
Type-Safe Data Plane Programming

vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

vorgelegt von

M.Sc. Matthias Eichholz

geboren in Oberhausen

Gutachter

Prof. Dr.-Ing. Mira Mezini
Technische Universität Darmstadt

Prof. Nate Foster
Cornell University, USA

Darmstadt, 2022

Matthias Eichholz: Type-Safe Data Plane Programming
Darmstadt, Technische Universität Darmstadt
Tag der mündlichen Prüfung: 12.10.2022
Jahr der Veröffentlichung der Dissertation auf TUprints: 2022
URN: urn:nbn:de:tuda-tuprints-228736

Veröffentlicht unter CC BY-SA 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

i

Abstract

Since the mid-1990s, there have been efforts to enable more flexible processing
of network packets by making packet processing programmable. With the advent
of software-defined networking (SDN), this idea has now become a reality. Early
approaches initially focused on control plane programming, with the goal of imple-
menting centralized network policies at a high level of abstraction without having to
use low-level, device-specific configuration mechanisms. For this purpose, various
network programming languages have been developed, which provide correctness
guarantees and make the formal verification of network policies possible.

More recently, it is also possible to program the network data plane. Being
able to define the structure of network packet headers freely, opens up a whole new
range of applications, from implementing new network protocols up to moving
application logic directly into the network. Until today, the P4 language has become
the de facto standard for programming data planes. While P4 provides declarative
abstractions for programming data planes, P4 lacks basic safety guarantees to help
avoid errors and implement correct applications for the data plane.

Modern programming languages use static type systems to provide languages
with basic safety guarantees that completely eliminate the occurrence of entire
categories of errors. Surprisingly, however, the use of type systems in the field of
network programming has hardly been investigated. This dissertation investigates
what appropriate type systems must look like in order to provide data plane pro-
gramming languages—in particular, P4—with static correctness guarantees. As a
first step, we present SafeP4, a domain-specific language for programmable data
planes that is equipped with a static type system that guarantees that all headers that
are read or written are valid, which is a common cause of errors. We then present
Π4, whose type system is based on dependent types and is thus able to bridge the
gap in terms of expressiveness between SafeP4 and full-fledged verification tools.
At the same time, Π4 enables modular verification of programs.

Our evaluation using open source programs confirms that accessing invalid
packet headers is a common source of errors in practice and that the SafeP4’s
type system is capable of identifying buggy programs. Using case studies, we show
that Π4’s type system is capable of expressing and verifying a variety of real-world
correctness properties.

ii

Zusammenfassung

Seit Mitte der 1990er Jahre gibt es Bestrebungen, eine flexiblere Verarbeitung
von Netzwerkpaketen zu ermöglichen, indem Paketverarbeitung programmierbar
wird. Mit demAufkommen von Software-Defined-Networking (SDN) ist diese Idee
nun Realität geworden. Frühe Ansätze haben sich zunächst auf die Programmie-
rung der Control-Plane konzentriert, mit dem Ziel, auf hohem Abstraktionsniveau
zentrale Netzwerkrichtlinien zu realisieren, ohne systemnahe, gerätespezifische
Konfigurationsmechanismen nutzen zu müssen. Hierfür entstanden diverse Pro-
grammiersprachen, die Korrektheitsgarantien gewähren und die formale Verifikati-
on der Netzwerkrichtlinien ermöglichen.

In jüngster Zeit ist es zudem auch möglich die Netzwerk-Data-Plane zu pro-
grammieren. Durch die Möglichkeit die Struktur von Netzwerkpaketheadern frei
zu definieren, eröffnen sich eine Vielzahl neuer Anwendungsmöglichkeiten, von
der Implementierung neuartiger Netzwerkprotokolle bis hin zur Auslagerung von
Anwendungsfunktionalität direkt in das Netzwerk. Bis heute hat sich die Sprache
P4 als Standard für die Programmierung von Data-Planes durchgesetzt. Zwar bietet
P4 deklarative Abstraktionen für die Programmierung von Data-Planes, allerdings
fehlen P4 grundlegende Sicherheitsgarantien, die dabei helfen Fehler zu vermeiden
und korrekte Anwendungen für die Data-Plane zu implementieren.

Modernen Programmiersprachen nutzen statische Typsysteme, um Sprachen
mit grundlegenden Sicherheitsgarantien auszustatten, die das Auftreten ganzer Feh-
lerkategorien vollständig ausschließen. Überraschenderweise wurde der Einsatz
von Typsysteme im Bereich der Netzwerkprogrammierung jedoch bislang kaum
untersucht. Diese Dissertation untersucht wie geeignete Typsysteme aussehen müs-
sen, um Data-Plane-Programmiersprachen – insbesondere P4 – mit statischen
Korrektheitsgarantien auszustatten. Im ersten Schritt präsentieren wir SafeP4, eine
domänenspezifische Sprache für programmierbare Data-Planes, die mit einem sta-
tischen Typsystem ausgestattet ist, das garantiert, dass alle Header, die gelesen oder
geschrieben werden gültig sind, was eine häufige Ursache für Fehler ist. Im zweiten
Schritt präsentieren wir Π4, dessen Typsystem auf Dependent-Types basiert und
damit in der Lage ist, die Lücke hinsichtlich der Ausdrucksstärke zwischen SafeP4
und vollwertigen Verifikationswerkzeugen zu schließen. Gleichzeitig ermöglicht
Π4 die modulare Verifikation von Programmen.

Unsere Auswertung anhand von Open-Source-Programmen bestätigt, dass der
Zugriff auf ungültige Paketheader in der Praxis eine häufige Fehlerquelle ist und das
SafeP4s Typsystem in der Lage ist, fehlerhafte Programme zu identifizieren. Anhand
von Fallstudien zeigen wir zudem, dass Π4s Typsystem imstande ist eine Vielzahl
praktisch relevanter Korrektheitseigenschaften auszudrücken und zu verifizieren.

iii

Acknowledgements

First and foremost, I thank my advisor Mira Mezini, who made it possible for me to pursue a
Phd in the first place and who helped me to ultimately achieve this goal. Thank you, Mira, for
the freedom to follow my own research ideas. However, I am at least as grateful to Nate Foster,
without whommany aspects of this work would probably have developed quite differently. Thank
you, Nate, I really learned a lot from you about what it needs to be a PL researcher.

I also like to thank the remaining members of my PhD committee Reiner Hähnle, Zsolt
István, and Marie-Christine Jakobs. Furthermore, I like to thank many others whom I met and
worked with during my time as a Phd student. In particular, I thank Eric Hayden Campbell for
his contributions to the papers that form the basis of this thesis, and for the many discussions
about formalizations and proofs. I thank my co-authors and fellow PhD students Marcel Blöcher,
Matthias Krebs, Johannes Krude, Katharina Keller, and Artur Sterz. I thank all members of
the Software Technology Group especially my long-time office colleagues Ragnar Mogk, Pascal
Weisenburger and Mirko Köhler for the numerous conversations, discussions and the occasional,
very entertaining rants. Thanks to Gudrun Harris and Claudia Roßmann, who always had your
back when it came to bureaucracy. I also thank former group member Guido Salvaneschi for his
support at the beginning of my time as a PhD student.

I thank my family, especially my parents and my sister for always being there for me and
believing in me. Last but not least, I like to thank my wife Christin and my little son Jonas.
Thank you, Christin, for accompanying and supporting me all these years through all the ups and
downs—it is finally done, but now for real. Thank you, Jonas, for always brightening up my day
with your little smile. I love you.

Contents

I Prologue 1

1 Introduction 3
1.1 Problem Statement . 4
1.2 State of the Art . 5
1.3 TheThesis in a Nutshell . 6

1.3.1 SafeP4 . 7
1.3.2 Π4 . 7

1.4 Contributions . 8
1.5 List of Publications . 9
1.6 Structure of the Thesis . 10

2 Background 11
2.1 Programmable Packet Processing . 11
2.2 The P4 Language . 13

2.2.1 Header Types and Header Instances 14
2.2.2 Metadata . 15
2.2.3 Parsers . 15
2.2.4 Tables and Actions . 16
2.2.5 Control . 18
2.2.6 Deparser . 19
2.2.7 Externs . 19
2.2.8 P4 Language Versions . 19

2.3 Chapter Summary . 20

3 Common Header Validity Bugs 23
3.1 Parser Bugs . 23
3.2 Control Bugs . 25
3.3 Table Reads Bugs . 26
3.4 Table Action Bugs . 27
3.5 Default Action Bugs . 29
3.6 Chapter Summary . 29

II Typed Data Plane Programming 31

4 A Typing Discipline to Ensure Header Validity 33
4.1 Design . 34
4.2 Syntax . 37

v

vi CONTENTS

4.3 Static Semantics . 39
4.3.1 Operations on header types . 40
4.3.2 Typing rules . 42

4.4 Dynamic Semantics . 45
4.5 Safety . 47
4.6 Related Work . 49
4.7 Chapter Summary . 50

5 Dependently-Typed Data Plane Programming 53
5.1 An Overview of Π4 . 54
5.2 Design . 55
5.3 Syntax . 57
5.4 Well-formedness . 58
5.5 Dynamic Semantics . 59
5.6 Static Semantics . 62
5.7 Chomp . 68

5.7.1 Single-bit Chomp . 68
5.7.2 Instance Refinement . 71
5.7.3 Correctness of Chomp . 71

5.8 Safety . 71
5.9 Related Work . 73
5.10 Chapter Summary . 74

6 An Implementation of Π4 75
6.1 Algorithmic Typing Rules . 75
6.2 Decidability . 76
6.3 SMT Encoding . 79
6.4 Optimizations . 84

6.4.1 Optimizing the SMT Encoding 84
6.4.2 Reducing the Number of SMT Solver Invocations 91

6.5 P4 Frontend . 93
6.6 Chapter Summary . 94

III Evaluation 97

7 Header Validity Bugs in Real-world Programs 99
7.1 Detecting and Repairing Bugs . 100
7.2 Overhead . 103
7.3 Chapter Summary . 104

8 Expressivity of Π4 105
8.1 Survey . 105
8.2 Checking Network Invariants . 107

8.2.1 Protocol conformance . 108
8.2.2 Determined Forwarding . 110
8.2.3 Parser-Deparser Compatibility 111
8.2.4 Mutual Exclusion of Headers . 111

8.3 Designing for Modularity . 114
8.3.1 Specifying Invariants . 115

CONTENTS vii

8.3.2 Checking Customer Programs 115
8.4 Chapter Summary . 118

9 Performance Evaluation 121
9.1 Checking Header Validity . 122
9.2 Effects of Optimizations on Runtime . 123
9.3 Effects of the MTU on Runtime . 124
9.4 Modular Verification . 126
9.5 Chapter Summary . 127

IV Epilogue 129

10 Conclusion and Future Work 131

Bibliography 135

A Proofs 145
A.1 SafeP4 . 145

A.1.1 Operations on Header Types . 145
A.1.2 Safety . 153

A.2 Π4 . 164
A.2.1 Safety . 164
A.2.2 Algorithmic Typing Correctness 205
A.2.3 Decidability of Typechecking . 218
A.2.4 Type Equivalences . 226

Part I

Prologue

1

CHAPTER 1
Introduction

For more than a quarter of a century, the idea has existed to overcome the limitations
imposed by the static nature of networks by providing programmability inside the
network [Smi+96; FRZ13]. Until today, with a major focus on interoperability, new
developments such as new network protocols usually have to undergo years of standard-
ization [Ten+97; WGT98; TW07; Cal06] before being adopted by hardware vendors
and being usable in practical deployments, which overall slows down innovation in the
field of networking. The functionality of most network devices is strongly linked to the
underlying hardware and the available functionality is solely dictated by hardware ven-
dors. Implementations are usually proprietary, and network administrators have only
limited configuration mechanisms available to adapt the functionality of the network
device to their needs. As such, there has long been a desire to implement new network
services or tailor packet processing functionality to the needs of applications running
on top of the network, but the original approaches have not caught on.

For a little over a decade, the way how we can configure networks has changed
significantly, and today this idea is finally becoming a reality. There is a shift towards
more flexible platforms, which allow to specify the behavior of the network in software.
These platforms are based on the idea of breaking the tight coupling between deciding
where to send packets and actually forwarding packets [Yan+04; Lak+04], which results
in a logically centralized control plane and a separate data plane.

Early efforts related to software-defined networking (SDN) focused on the control
plane software [Cas+07; McK+08]. These approaches made it possible to write programs
that determine how routes through the network are computed, load is balanced or how
security policies are enforced. The data plane was modeled as a simple pipeline that
operates on a fixed set of packet formats. In practice, it has been found that a fixed
number of available packet headers that can be accessed is not sufficient [Bos+14]. To
overcome the limitations imposed by a fixed data plane, there is a recent interest in
allowing the functionality of the data plane itself to be specified as a program. The goal
is to provide flexible mechanisms that allow arbitrary packet headers to be extracted
and processed. This opens up a whole new range of applications since it allows network
programmers to implement new network protocols, makemore efficient use of hardware
resources or even relocate application-level functionality into the network [Jin+17;
Jin+18].

3

4 CHAPTER 1. INTRODUCTION

In particular, the P4 language is becoming the de facto standard for programming
data planes. It enables the functionality of the data plane to be programmed in terms of
declarative abstractions such as header types, packet parsers, match-action tables, and
structured control flow that a compiler maps down to an underlying target device.

1.1 Problem Statement

Today, computer networks play a more important role than ever before, since they
provide the communication fabric for nearly all modern software systems. Unfortunately
networks are still programmedusing low-level languages that lack basic safety guarantees.
Unsurprisingly this results in networks being unreliable and remarkably insecure—e.g.,
the first step in a cyberattack often involves compromising a router or other network
device [KG16; OCo+18].

While a number of P4’s features were clearly inspired by designs found in modern
languages, the central abstraction for representing packet data—header types—lacks
basic safety guarantees. Header types are used to describe the structure of packet headers,
which—as a first approximation—can be thought of as a record, with one entry for each
header field. For example, the header type for an IPv4 packet would have a 4-bit version
field, an 8-bit time-to-live field, two 32-bit fields for the source and destination addresses,
and so on. According to the P4 language specification [P416], an instance of a header
type may either be valid or invalid. If the instance is valid, then all operations reading or
writing the header instance produce a defined value, but if it is invalid, then operations
yield undefined results. In practice, programs that manipulate invalid headers can
exhibit a variety of faults including dropping the packet when it should be forwarded or
even leaking information from one packet to the next. In addition, such programs are
also not portable, since their behavior can vary when executed on different targets.

The choice to model the semantics of header types in an unsafe way was intended to
make the language easier to implement on high-speed routers, which have often limited
amounts of memory. A typical P4 programmight specify the behavior for several dozen
different protocols, but any particular packet is likely to contain only a small handful
of headers. Consequently, if the compiler only needs to represent the valid headers
at run-time, then memory requirements can be reduced. However, while it may have
benefits for language implementers, the design is a disaster for programmers. It repeats
Hoare’s “mistake” [Hoa09] and bakes an unsafe feature deep into the design of a language
that has the potential to become the de facto standard in a multi-billion-dollar industry.

As programmable data planes become more prevalent and more complex applica-
tions are implemented inside the network, the more the risk of bugs increases. In the
past, various verification tools have been developed to statically detect errors result-
ing from insecure access of header instances. We believe that basic safety guarantees
should be part of the programming language instead. Modern programming languages
offer features such as type systems, structured control flow, objects, modules, etc. that
make it possible to express rich computations in terms of high-level abstractions rather
than machine-level code. Increasingly, many languages also offer fundamental safety
guarantees—e.g., well-typed programs do not go wrong [Mil78]—that make entire
categories of programming errors simply impossible.

Type systems are a lightweight and compositional way to establish program proper-
ties. Types for individual components document assumptions about the components
they rely upon as well as the guarantees they offer. However, the use of type systems in
the realm of network programming has barely been investigated until now. For simple

1.2. STATE OF THE ART 5

properties, such as handing the access to uninitialized memory locations, no additional
program annotations are necessary in contrast to existing verification tools.

The compositionality inherent to type systems, enables modular verification of
programs. Existing verification tools are monolithic and do not provide any support
for modular verification of programs, which was not a problem in the past, since P4
programs were also mostly monolithic and mostly still are. Although pre-processors
are used to separate the program code for individual sections of the packet processing
pipeline, P4 programs still contain a complete description of the processing pipeline.
Increasingly, however, attempts are being made to make data plane programs modu-
lar [Gao+20; Son+20], with the aim of creating libraries for programming data planes
from which data plane programs can be composed and that functionality can be ex-
tended in a modular fashion, such that programmers can describe the intended behavior
in terms of high-level abstractions instead of low-level, platform-specific language con-
structs.

In summary, the P4 language is used to program critical infrastructure, although
it lacks basic safety guarantees. Thus, with the steady proliferation of programmable
data planes, the risk of network devices exhibiting unexpected errors is increasing.
Future versions of P4 or new languages for programming data planes should therefore
be equipped with suitable type systems that provide the programmer with necessary
safety guarantees already at compile time.

1.2 State of the Art

In order to provide a better understanding of the proposed solution, we first provide an
overview of the current state of network programming and network program verifica-
tion.

Network Programming Languages

With OpenFlow [McK+08], the idea of a network operating system [Gud+08] emerged
that provides abstractions for the resources of the underlying network in a manner
similar to conventional operating systems providing access to system resources. The
goal was to provide programmers with higher abstractions for configuring networks
so that network policies no longer had to be realized by configuring individual devices
using low-level configuration mechanisms. On this basis, a multitude of programming
languages emerged, which raised the level of abstraction even further.

Various declarative programming paradigms such as logic programming [Hin+09],
functional reactive programming [VH11; VKF12] or tierless programming [Nel+14]
were used, with the goal of avoiding errors through complex interactions between
packet-handling rules, for example, when composing network policies [Mon+13], for
stateful packet processing [Ara+16], consistent network policy updates [McC+16] or to
enable formal reasoning [And+14; Kim+15].

In contrast, data planes are currently programmed primarily with low-level lan-
guages [Bos+14; Bro19]. Both µP4 [Son+20] and Lyra [Gao+20] aim to provide high-
level abstractions for the data plane, similar to the high-level languages for the control
plane, tomake code portable between architectures and to enable composition. However,
neither approach is suitable for specifying and verifying correctness properties for data
planes.

6 CHAPTER 1. INTRODUCTION

Verification of Data Plane Programs

Until now, only dedicated verification tools have been used for the verification of data
planes. Various verification tools have been developed in the recent years to statically
check the correctness of data planes, using a number of different verification techniques.
p4v [Liu+18] applies classical techniques based on predicate transformer semantics.
Vera [Sto+18] and Assert-P4 [Fre+18; Nev+18] are symbolic execution engines for P4.
p4pktgen [Nöt+18] uses symbolic execution to automatically generate test cases for
P4 programs. The bf4 tool [Dum+20] follows the approach pioneered in p4v, but also
attempts to infer control-plane constraints that are sufficiently strong to establish correct-
ness, and offers heuristics for repairing programs when verification fails. P4K [KR18]
provides a formal semantics of P4 in the K framework [RŞ10] and thus, can make use of
the verification tools provided by the K framework. P4aig [Nou+19] statically verifies
programmable data planes using sequential circuits—a hardware verification technique.
In contrast, P4RL [Shu+19] uses a dynamic approach—fuzz testing—for the verification
of P4 programs.

Having to resort to a separate verification tool increases the entry barrier for verifica-
tion compared to when verification mechanisms are part of the programming language
itself, as it is the case with type systems. In addition, none of the previously mentioned
verification tools allows to modularly reason about data planes.

Type Systems for Networks

Surprisingly, the use of type systems in the context of network programming has hardly
been investigated so far, although the use of strongly typed languages for programming
packet processing systems was already investigated in the 1990s in the context of Active
Networks [Hic+98; Ale+98], with the aim of providing the programmer with static
correctness guarantees for programs executed inside the network.

PacLang [ESM04] is an imperative, concurrent language for expressing packet
processing applications for Network Processors [All+03]. It uses a linear type system to
ensure that a packet is never processed by multiple threads simultaneously and can only
be processed by multiple threads if it was transferred between threads beforehand.

Muthukrishnan et al. proposed strongly typed networking [Mut+10], where packets
carry additional type information that describes how the receiver of the data will inter-
pret it. Network entities can then reject traffic based on this information if not enough
context is provided to correctly carry out its functionality.

In a position paper [GGW15], Gaboardi et al. propose the use of a simple type system
to ensure that rules installed by an SDN controller are compatible with the underlying
match-action table. For other properties they recognize the need for refinement type
systems or dependent type systems without providing a concrete solution. However,
all the above systems use simple type systems that are not suitable for providing static
correctness guarantees for data plane programs written in P4.

1.3 TheThesis in a Nutshell

For programming data planes, we lack programming languages that provide program-
mers even with basic safety guarantees. The development of a variety of verification
tools clearly shows that there is a need to statically verify the correctness of data planes.
The goal of this thesis is therefore to develop suitable type systems that are able to verify

1.3. THE THESIS IN A NUTSHELL 7

the correctness of data planes, starting from basic security properties up to application-
specific properties.

Thesis Statement

Type systems are well suited to equip data plane programming languages
with safety guarantees, which can be used to verify a wide range of safety
properties.

To validate this thesis, we develop two type systems for P4, currently the most
widely used programming language for data planes. Our first contribution is SafeP4, a
domain-specific language (DSL) that models the main abstractions of P4 and comes
with a static type system that guarantees header validity. While header validity is a
common cause of safety bugs, it is not sufficient to match the expressive power of full-
fledged verification tools. As a secondary contribution, we therefore develop Π4, a
dependently-typed version of P4, which allows us to express and verify rich network
properties while retaining the compositionality inherent to type systems.

1.3.1 SafeP4

To address header validity bugs, we design SafeP4, a domain-specific language for
programmable data planes, which has a static type system that guarantees that all
headers read or written by the program are guaranteed to be valid. SafeP4 models
all the essential features of the P4 language, but prunes away unnecessary complexity,
which results in a minimal calculus that is easy to reason about, but can still express
numerous real-world data plane programs. The type system has an expressive algebra
of so-called header types, by means of which it is possible to describe precisely which
headers are valid on a certain program path. The type checker can automatically reject
all programs that attempt to read or write headers that are not valid on all program
paths leading to a certain program statement.

The challenge in designing the type system is that header validity is actually a
dynamic property, because the set of valid headers can be modified at runtime. Data
plane programs do not fully describe the functionality of the data plane. Instead, the
functionality of the data plane is largely determined by the control plane, in the form
of packet processing rules used to populate match action tables. Depending on the
installed rules and the contents of the network packet that is processed, packet headers
can thus be added or removed. To still be able to achieve static safety, SafeP4 uses a
path-sensitive type system that incorporates information from conditional statements,
forwarding tables and the control plane to precisely track header validity.

The type system was implemented in the form of P4Check, a static analysis tool
that allows P4 programs to be analyzed without having to re-implement them using the
DSL provided by SafeP4. Our evaluation shows that SafeP4’s type system is capable of
discovering numerous unsafe header accesses in real-world P4 programs, both from
academia and the industry.

1.3.2 Π4

With the design of Π4, we pursue two goals: on the one hand, we want to close the
gap between SafeP4 and full-fledged data plane verification tools, and on the other

8 CHAPTER 1. INTRODUCTION

hand, we want to use the compositionality inherent to type systems to enable modular
verification of data planes.

Even though validity bugs are a common source of errors, there are a variety of other
safety properties that SafeP4 cannot express. The main reason is that SafeP4’s type
system is not able to capture values of individual fields, which is an essential requirement
for a multitude of safety properties, since network packets often rely on so-called type-
length-value encoding where the first bits determine the type, length, and structure of
subsequent bits.

For this reason, we resort to a more powerful typing discipline in Π4’s type system—
dependent types—which allow us to define types based on program values. Π4 extends
SafeP4’s header types to heap types, which not only capture which instances are valid,
but also the shape of header instances and the incoming and outgoing network packet
down to the bit-level. Overall Π4 features a combination of dependent function types,
dependent pairs, refinement types, union types and explicit substitutions, which en-
ables precise typing in the presence of domain-specific features that combine packet
serialization and de-serialization with imperative control flow.

In the design of Π4’s type system, we manage to balance the tradeoffs between
expressiveness and decidability. By encoding types into the effectively propositional
fragment of first-order logic over fixed-width bit vectors, we achieve automated subtyp-
ing and equivalence checks. This relieves the programmer from the burden of writing
manual proofs, which is often the case for dependent type systems.

1.4 Contributions

Themain contribution of this thesis is to demonstrate that type systems are well-suited
to verify the correctness of data planes and that it is not necessary to sacrifice safety
guarantees in favor of a simpler implementation. On the contrary, P4’s constrained
programming model lends itself perfectly to the use of expressive typing disciplines. As
part of the design, implementation and evaluation of SafeP4 and Π4, this thesis makes
the following individual contributions.

• We formalize SafeP4, a core calculus that models the core features of P4 and is
equipped with a type system based on header types—a limited form of regular
types—that statically guarantees header validity and prove its type system sound.

• With the formalization of SafeP4’s type system, we show how the dynamic
behavior of the control plane can be approximated and thus the dynamic property
of header validity can be made statically verifiable.

• We formalize Π4, a dependently-typed version of the P4 language that combines
dependent function types with heap types—a combination of refinement types,
a limited form of regular types and explicit substitutions. We show how precise
typing can be enabled in the presence of domain-specific language features that
combine packet serialization and de-serialization with imperative control flow.
Again, we prove soundness for Π4’s type system and in addition, we prove that
type checking is decidable.

• With our chomp operator that computes the type that remains after extracting
bits from a packet buffer, we demonstrate how we can compute derivatives of
regular types in the presence of dependent types.

1.5. LIST OF PUBLICATIONS 9

• We provide an implementation of Π4, which provides automated subtyping and
equivalence checks by encoding heap types into a decidable theory of first-order
logic.

• We provide a classification of which of P4’s language constructs are susceptible to
validity bugs and exemplify how to avoid corresponding bugs.

• We evaluate SafeP4 by checking a set of open-source P4 programs, both from
industry and academia, against SafeP4’s typing rules. Our results confirm that
header validity bugs are a common source of errors, more than 70% of programs
examined contained at least one such bug. Our evaluation further shows that
fixing header validity bugs usually entails only low overhead for the programmer.

• We evaluate the expressiveness ofΠ4 with a set of case studies, which demonstrate
that Π4 is capable of expressing and checking properties that were also addressed
by other data plane verification tools. In an additional case study, we further
demonstrate how Π4 can be used to reason about modular data plane programs.
Finally, we evaluate the runtime performance of Π4’s type checker on a set of
open-source P4 programs.

1.5 List of Publications

The contributions of this thesis appeared previously in the following publications at
peer-reviewed conferences. Parts of them are used verbatim.

[Eic+19] Matthias Eichholz et al. “How to Avoid Making a Billion-Dollar Mistake:
Type-Safe Data Plane Programming with SafeP4”. In: 33rd European Con-
ference on Object-Oriented Programming (ECOOP 2019). Ed. by Alastair F.
Donaldson. Vol. 134. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2019, 12:1–12:28. doi: 10.4230/LIPIcs.ECOOP.2019.12.

[Eic+22] Matthias Eichholz et al. “Dependently-Typed Data Plane Programming”.
In: Proceedings of the ACM on Programming Languages 6.POPL (2022).
doi: 10.1145/3498701.

I furthermore (co)authored the following peer-reviewed conference publications and
workshop papers, which are not part of this thesis.

[Eic16] Matthias Eichholz. “Language Support for Verifiable SDNs”. In: Compan-
ion Proceedings of the 2016 ACM SIGPLAN International Conference on
Systems, Programming, Languages and Applications: Software for Human-
ity. SPLASH Companion 2016. Amsterdam, Netherlands: Association for
Computing Machinery, 2016, pp. 9–11.

[ESM18] Matthias Eichholz, Guido Salvaneschi, and Mira Mezini. “Towards Safe
Modular Composition of Network Functions”. In: Conference Companion
of the 2nd International Conference on Art, Science, and Engineering of
Programming. Programming’18 Companion. Nice, France: Association for
Computing Machinery, 2018, pp. 81–86.

[Blö+19] Marcel Blöcher et al. “GRASS: Generic Reactive Application-Specific
Scheduling”. In: Proceedings of the 6th ACM SIGPLAN International Work-
shop on Reactive and Event-Based Languages and Systems. REBLS 2019.
Athens, Greece: Association for Computing Machinery, 2019, pp. 21–30.

https://doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://doi.org/10.1145/3498701

10 CHAPTER 1. INTRODUCTION

[Kru+19a] Johannes Krude et al. “Online Reprogrammable Multi Tenant Switches”.
In: Proceedings of the 1st ACMCoNEXTWorkshop on Emerging In-Network
Computing Paradigms. ENCP ’19. Orlando, FL, USA: Association for Com-
puting Machinery, 2019, pp. 1–8.

[Kru+19b] Johannes Krude et al. “Optimizing Data Plane Programs for the Network”.
In: Proceedings of the ACM SIGCOMM 2019 Workshop on Networking
and Programming Languages. NetPL’19. Beijing, China: Association for
Computing Machinery, 2019, p. 1.

[Ste+21] Artur Sterz et al. “ReactiFi: Reactive Programming of Wi-Fi Firmware on
Mobile Devices”. In:The Art, Science, and Engineering of Programming 5
(2021), p. 4.

1.6 Structure of theThesis

Although the work presented in this thesis is my own, research is still ultimately a
collaborative process and I have been fortunate to work with several co-authors, who
have helped to shape and improve the texts, concepts and solutions presented. In the
following I will state which parts of this thesis are based on which publication. In
addition, I will mention which contributions were mainly made by my co-authors.

Chapter 2 provides background on software-defined networking and network pro-
grammability. We summarize the central language abstractions of P4 and show what
differences exist between the two main language versions P414 and P416, which are
mainly of syntactic nature. Chapter 3 classifies common bugs that arise in P4 programs
caused by accessing invalid header instances and shows examples of how to fix these
bugs. The chapter is based on [Eic+19] where the classification was contributed by Eric
Hayden Campbell. Chapter 4 formalizes SafeP4 and proves soundness for its type
system. It is based on the work published at ECOOP [Eic+19]. Chapter 5 provides the
formalization of Π4, including the definition of our chomp operator and proves Π4’s
type system to be safe and decidable. This chapter is based on the work published at
POPL [Eic+22]. Chapter 6 describes the central insights underlying the implementation
ofΠ4, including the algorithmic typing, the SMT encoding and necessary optimizations.
This chapter is in parts also based on the work published at POPL [Eic+22]. Chapter 7
provides evaluation results that show that bugs due to invalid header references arise in
various industrial and academic data plane programs and is based on the work published
at ECOOP [Eic+22]. The implementation of the prototype was done by Nate Foster,
since he had access to a proprietary frontend for the P4 language and the evaluation
was mostly performed by Eric Hayden Campbell. Chapter 8 is also based on [Eic+22]
and describes several case studies that show that Π4 is well-suited to express a wide
range of network properties also addressed by verification efforts from the networking
community. Chapter 9 evaluates Π4’s runtime performance when checking real P4
programs. Chapter 10 concludes this thesis and discusses future research directions.

CHAPTER2
Background

This chapter introduces how programmability inside the network has emerged, leading
to the current state of programmable data planes. We then show how the behavior of
packet processing pipelines can be specified using the language abstractions provided
by the P4 language.

2.1 Programmable Packet Processing

The functionality of network devices is based on a division of labor between two com-
ponents, the control plane and the data plane. The control plane is responsible for
deciding where to forward packets, for example by calculating routes, distributing load
or enforcing security policies, while the data plane comprises specialized hardware
capable of efficiently processing network packets at line rate. Until today, the majority
of network devices exhibit a close tie between the control and data plane, as vendors
control and closely coordinate both the hardware and software. This complicates a
variety of network management tasks. For example, despite the distributed nature of
network control software, the majority of these devices must be configured individually
via vendor-specific configuration mechanisms—which usually differ between vendors
and sometimes even between devices from the same vendor—making it difficult to
debug network-wide configurations.

Moreover, the control software is usually limited to standardized network protocols
to ensure interoperability between devices from different vendors. Customizing the
behavior of network devices is only possible to a limited extent, but it is not readily
possible to simply replace the software, for example, to implement new functions such
as new network protocols. As a result, while network hardware continues to evolve,
innovation at the control software level is slowed down. Before new developments are
adopted by vendors, it usually takes several years for them to go through standardization
processes. For example, the standardization of IPv6 started as early as 1998 [DH98] and
was not completed until mid-2017 [DH17].

In order to accelerate innovations within the network, the idea of programmable
networks therefore first emerged in the mid-1990s. With the growing success of the
Internet, researchers wanted to address the limitation that implementing and testing
new network protocols was not possible in real networks, but instead limited to small lab

11

12 CHAPTER 2. BACKGROUND

Figure 2.1: Control plane and data plane in traditional networks (left) in comparison to
a logically centralized control plane used in SDN (right).

deployments or simulations. Active Networks [BCZ97; Ale+98; TW07] therefore aimed
at making packet processing on network nodes adaptable, such that new protocols could
be implemented with little effort and packet processing could even be adapted to the
requirements of individual applications. This was achieved by either providing network
switches with a set of functions that a packet could execute at runtime as needed or by
sending the code to be executed directly with the network packets. With the Packet
Language for Active Networks (PLAN) [Hic+98], there were even efforts to establish
safety guarantees as a fundamental part of the language by means of static and dynamic
typing. For many the proposed approaches were too radical and as a result the vision of
programmable networks did not catch on at the time.

The topic of programmable networks first gained considerable attention in the late
2000s with the advent of software-defined networks and, in particular, the development
of OpenFlow [McK+08]. OpenFlow managed to find a balance between the vision of
programmable networks and practical deployability by building on existing hardware,
which lead to a fast adoption both in academia and industry. As visualized in Figure 2.1,
SDN is based on a fundamental change in network architecture and builds on two
key ideas developed in previous years: the separation between the control and data
plane and the consolidation of the previously distributed control plane into a logically
centralized control plane. By removing the tight coupling between the control plane and
the data plane, it became possible to program the control plane software independently.
Henceforth, the control plane software runs on general-purpose machines while the
data plane consists of dumb network switches that interact with the control plane via
well-defined APIs such as OpenFlow. At the heart of an OpenFlow switch arematch-
action tables, whose entries form a set of rules that determine how network packets are
processed. Each rule consists of (1) a pattern that identifies a set of packets based on a
fixed set of packet headers, (2) a list of actions that are applied to packets for which the
pattern matches as well as (3) a priority for disambiguating rules and (4) counters for
tracking the total size of packets processed using the respective rule. Depending on the
set of installed rules, the switch can fulfill different roles, for example that of a router, a
firewall or a load balancer. Via a dedicated communication channel between the switch
and the controller, the controller can install new rules at runtime, but switches can also
issue packets to be processed on the controller, for example, in case that none of the
installed rules matches.

The development of OpenFlow was closely followed by the idea of a network oper-
ating system, which provides the programmer with a unified interface that abstracts
over the resources of the network (e.g. switches), thus enabling network-wide policies

2.2. THE P4 LANGUAGE 13

Parser
Match Action

Deparser

Figure 2.2: P4’s abstract forwarding model.

and making low-level, device-specific configurations obsolete. The task of network
operating system was taken over by a variety of controller platforms that were developed
in the following period. Furthermore, a multitude of programming languages based
on declarative programming paradigms such as logic programming [Hin+09], func-
tional reactive programming [VH11; VKF12] or tierless programming [Nel+14] emerged,
which raised the level of abstraction even further. The goal of these languages was to
avoid errors through complex interactions between packet-handling rules, for example,
when composing network policies [Mon+13], for stateful packet processing [Ara+16],
consistent network policy updates [McC+16] or to enable formal reasoning [And+14;
Kim+15].

As OpenFlow became more widely adopted, it became apparent that matching on
a set of predefined packet headers is not sufficient in practice to satisfy all application
domains, which initially led to the standard being extended several times to provide
new packet headers and eventually to efforts to make the data plane programmable as
well. While packet processing is still based on match-action tables, a central component
in these systems is a programmable parser, which allows defining new packet headers
as well as the order in which these are read from the packet being processed. This opens
up a variety of new applications, from new network protocols to more efficient use of
hardware resources to offloading application logic into the network [Jin+17; Jin+18].
The P4 language [Bos+14] has emerged as the de facto standard for programming data
planes.

2.2 The P4 Language

P4 is a domain-specific language for specifying the behavior of network data planes. It
provides declarative abstractions to describe how network devices process packets, i.e.,
arbitrary sequence of bits that can be divided into (1) a set of pre-determined headers
that determine how the packet will be forwarded through the network, and (2) a payload
that encodes application-level data. P4 is designed to be protocol-independent, which
means that it handles packets with standard header formats (e.g., Ethernet, IP, TCP, etc.)
as well as packets with custom header formats defined by the programmer.

By now, different kinds of devices can be programmed with P4, including PISA
switches [Bos+13], FPGAs [Iba+19; Wan+17] or software devices, e.g., eBPF [Høi+18].
Because individual devices can differ significantly in their internal structure–for exam-
ple, a programmable network interface card uses a different processing pipeline than a
switch—P4 uses the concept of architectures to abstract over hardware details. A P4 ar-
chitecture constitutes the programming model. It determines the programmable blocks
and which functions are available to the programmer to interact with the hardware.
The architecture is specified by the hardware vendor, which can either be a standard
architecture such as the Portable Switch Architecture (PSA) [PSA16], or it can be a custom

14 CHAPTER 2. BACKGROUND

1 header ethernet_t {

2 bit<48> dstAddr;

3 bit<48> srcAddr;

4 bit<16> etherType;

5 }

Figure 2.3: Header type declarations in P416.

1 struct headers {

2 ethernet_t ethernet;

3 ethernet_t inner_ethernet;

4 vlan_t[2] vlan;

5 }

Figure 2.4: Declaration of header instances in P416.

one. The PSA, for example, provides for a total of six programmable blocks, one parser,
one match action stage and one deparser each for both the ingress and egress processing
stages.

Simplified, P4 programs follow the abstract forwarding model shown in Figure 2.2,
which generalizes how packets are processed in different forwarding devices. A P4
program first parses the headers in the input packet into a typed representation, which
together with various metadata forms a global, per-packet state that is shared between
the pipeline stages. Next, it uses amatch-action pipeline to compute a transformation
on those headers—e.g., modifying fields, adding headers, or removing them. Finally,
a deparser serializes the headers back into a packet, which can be output to the next
device. The rest of this section describes P4’s typed representation, how the parsers, and
deparsers convert between packets and this typed representation, and how control flows
through the match-action pipeline.

2.2.1 Header Types and Header Instances

The packet headers on which a P4 program operates are referred to as header instances
while header types specify the internal representation of packet data. For example, the
code snippet shown in Figure 2.3 declares a header type (ethernet_t) for the Ethernet
header with fields for the destination (dstAddr) and source (srcAddr) addresses
and the so-called EtherType (etherType). Each field in a header type declaration is
annotated with a type. The type bit<W> indicates that the field is a bit vector of sizeW.

The code snippet in Figure 2.4 shows how headers are instantiated. Lines 2 and 3
define two header instances ethernet and inner_ethernet that share the same
structure defined by header type ethernet_t. As shown, multiple header instances
can be derived from the same header type, but since header instances in P4 are globally
scoped, instance names must be unique. Besides header instance declarations, P4 also
allows defining fixed-size arrays of headers with the same type, so-called header stacks.
On Line 4 in Figure 2.4, a header stack vlan that can hold two instances of type vlan_t
is defined. Both header stack instances can be referenced using the notation vlan[0]
and vlan[1] respectively. They both are equivalent to a non-stack header instance.

2.2. THE P4 LANGUAGE 15

In addition to fields that have been explicitly declared as part of a header type
declaration, all header instances automatically include an additional Boolean validity
field. Fields with Boolean type are implemented as bit vectors of size one, which is why
we speak of the validity bit of a header instance. If the value of the field is true, we say
that the header instance is valid, otherwise it is invalid. By default, header instances are
invalid. The validity bit can be manipulated by the parser or by explicitly marking a
header instance as valid or invalid. Each header stack instance has its own validity bit
and adding or removing elements from the stack does only change the number of valid
headers in the stack but not the number of headers.

2.2.2 Metadata

Metadata is per-packet state that is generated during the execution of a P4 program.
Metadata behaves like header instances, i.e., individual fields can be read andwritten, but
metadata has no validity bit and is therefore always valid. A distinction is made between
user-defined metadata and intrinsic metadata. The structure of user-defined metadata
is determined by the programmer and can be thought of as a set of temporary variables
that can be modified by the program. In contrast, intrinsic metadata is provided by the
architecture and holds information about the incoming packet such as the input port a
packet arrives at. In addition, intrinsic metadata performs the task of a control register,
i.e. by setting certain fields the programmer determines how the hardware processes
the packet. For example, in the architecture used by P414, the programmer determines
on which port the packet will be forwarded by setting the egress_spec field.

2.2.3 Parsers

A P4 parser specifies the order in which header instances are extracted from the input
packet using a simple abstraction based on finite state machines. Figure 2.5 shows an
implementation of a parser for three common headers Ethernet, VLAN and IPv4. Every
parser contains at least one start state named start and two final states, accept and reject.
The final state accept indicates successful parsing while the state reject indicates a parsing
failure. For example, the parser in Figure 2.5 transitions to the acceptance state if none
of the explicitly specified cases matches (Lines 7 and 14) or after parsing the IPv4 header
(Line 19). When extracting into a header instance, bits are copied from the input packet
into the header instance, which is as a result marked as valid. The select statement
is P4’s version of a switch statement and allows to transition to a different parser state
based on the contents of a previously extracted header.

The parser first extracts the instance ethernet, optionally followed by a vlan
instance, or an ipv4 instance, or both. Figure 2.6 depicts the headers accepted by the
parser. If the EtherType field of the Ethernet header contains any value except 0x0800
or 0x8100, no other headers except for Ethernet are extracted from the packet. If the
EtherType is 0x0800, the IPv4 header is also be extracted. Similarly, if the EtherType is
0x8100, the VLAN header is extracted instead. In this case, the value of the EtherType
field of the VLAN header determines whether the IPv4 header is additionally extracted
or not. The corresponding parse graph is shown in Figure 2.7, where the final state on
the right represents the accept state. When the parser reaches the accept state, processing
transitions into the ingress pipeline, which begins the match-action processing.

16 CHAPTER 2. BACKGROUND

1 parser Parser(packet_in packet, out headers hdr, ...) {

2 state start {

3 packet.extract(hdr.ethernet);

4 transition select(hdr.ethernet.etherType) {

5 0x0800: parse_ipv4;

6 0x8100: parse_vlan;

7 default: accept;

8 }

9 }

10 state parse_vlan {

11 packet.extract(hdr.vlan);

12 transition select(hdr.vlan.etherType) {

13 0x0800: parse_ipv4;

14 default: accept;

15 }

16 }

17 state parse_ipv4 {

18 packet.extract(hdr.ipv4);

19 transition accept;

20 }

21 }

Figure 2.5: P4 code implementing a parser in P416.

ethernet *

ethernet 0x0800 ipv4

ethernet 0x0810 vlan *

ethernet 0x0810 vlan 0x0800 ipv4

Figure 2.6: Headers accepted by the parsers in Figures 2.5 and 2.13.

2.2.4 Tables and Actions

The bulk of the processing for each packet in a P4 program is performed usingmatch-
action tables, a central data structure the match-action pipeline relies on. Match-action
tables encode conditional processing, more specifically, the table first looks up the values
being tested against a list of possible entries, and then executes a further piece of code
depending on which entry (if any) matched. However, unlike standard conditionals, the
entries in a match-action table are not known at compile-time. Rather, they are inserted
and removed at run-time by the control plane, which may be logically centralized (as
in a software-defined network), or it may operate as a distributed protocol (as in a
conventional network).

As shown in Figure 2.8, a table is defined in terms of (1) the data it reads to determine
a matching entry (if any) (2) the actions it may execute, and (3) an optional default action
it executes if no matching entry is found. In P416 the data read by the table is specified

2.2. THE P4 LANGUAGE 17

eth

ipv4

vlan

Figure 2.7: State machine of the parsers described by code in Figures 2.5 and 2.13.

1 table forward {

2 key = {

3 hdr.ipv4.isValid(): exact;

4 hdr.vlan.isValid(): exact;

5 hdr.ipv4.dstAddr: ternary;

6 }

7 actions = {

8 nop;

9 next_hop;

10 remove;

11 }

12 default_action = nop;

13 }

Figure 2.8: Table declaration in P416. forward reads the validity of the ipv4 and vlan
header instances and the dstAddr field of the ipv4 header instance, and calls one of
its actions: nop, next_hop, or remove.

using the keyword key. Table forward shown in Figure 2.8 reads the validity of the
ipv4 and vlan header instances and the dstAddr field of the ipv4 header instance.

A table also specifies thematch-kind that describes how each header field should
match with the patterns provided by the control plane. The P416 core library provides
three predefined match-kinds, exact, ternary and lpm. An exact match requires the
bits in the packet be exactly equivalent to the bits in the controller-installed pattern.
A ternary match allows wildcards in arbitrary positions, so the controller-installed
pattern 0* would match bit sequences 00 and 01. A longest prefixmatch (lpm) selects
the table entry where the largest number of leading bits of the specified header field
match those in the table entry. For example, let us assume that a table performs a longest
prefix match on the IPv4 destination address and the table contains two entries with
addresses 192.168.178.80/28 and 192.168.178.0/24. Both IP address ranges
each contain the address 192.168.178.88, but due to the longer matching prefix, the
table entry with the address 192.168.178.80/28 is selected for a packet containing
the destination address 192.168.178.88.

The behavior of a table depends on the entries installed at run-time by the control-
plane. Each table entry contains a match pattern, an action, and action data. Intuitively,
the match pattern specifies the bits that should be used to match values, the action is
the name of a pre-defined function (such as the ones in Figure 2.10), and the action
data are the arguments to that function. Operationally, to process a packet, a table first

18 CHAPTER 2. BACKGROUND

Pattern Action
ipv4 vlan ipv4.dstAddr Name Data
1 0 10.0.0.* next_hop d,p
0 1 * remove

Figure 2.9: Runtime contents of forward.

1 action next_hop(bit<48> dst, bit<9> port) {

2 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

3 hdr.ethernet.dstAddr = dst;

4 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

5 standard_meta.egress_spec = port;

6 }

1 action remove() {

2 hdr.ethernet.etherType = hdr.vlan.etherType;

3 hdr.vlan.setInvalid();

4 }

Figure 2.10: P4 actions.

scans its entries to locate the first matching entry. If such a matching entry is found,
the packet is said to “hit” in the table, and the associated action is executed. Otherwise,
if no matching entry is found, the packet is said to “miss” in the table, and the default
action (which is a no-op if unspecified) is executed.

Figure 2.9 provides an example of how the entries of the forward table populated
by the control plane might look light. The first rule tests whether ipv4 is valid, vlan
is invalid, and the first 24 bits of ipv4.dstAddr equal 10.0.0, and then applies
next_hop with arguments d and p, which stand for destination address and port. The
second rule checks that ipv4 is invalid, then that vlan is valid, and skips evaluating the
value of ipv4.dstAddr (since it is wildcarded), to finally apply the remove action.

Actions are functions containing sequences of primitive commands that perform
operations such as adding and removing headers, assigning values to fields, etc. For
example, Figure 2.10 depicts two actions next_hop and remove. The next_hop action
first updates the Ethernet source with the current Ethernet destination, then updates
the Ethernet destination with action data from the controller, then decrements the IPv4
TTL (time-to-live) field and finally sets the outgoing port, also with data provided by
the controller. The remove action copies the data contained in the EtherType field from
the VLAN header instance to the Ethernet header instance and invalidates the VLAN
header.

2.2.5 Control

In P416, tables and actions are declared as part of control blocks. In addition, control
blocks define inwhich order and underwhich conditions packet headers are transformed
by match action tables. The body (apply) of a control block is an imperative program
that uses standard control flow constructs to describe a pipeline of match action tables.
The ingress control block usually begins to execute as soon as the parser completes. The

2.2. THE P4 LANGUAGE 19

1 control Ingress(inout headers hdr, ...) {

2 // table and declarations

3 ...

4 apply {

5 if(hdr.ipv4.isValid() || hdr.vlan.isValid()) {

6 forward.apply();

7 }

8 }

9 }

Figure 2.11: Ingress control block in P416.

1 control Deparser(packet_out packet, in headers hdr) {

2 packet.emit(hdr.ethernet);

3 packet.emit(hdr.vlan);

4 packet.emit(hdr.ipv4);

5 }

Figure 2.12: P416 deparser.

ingress control shown in Figure 2.11 conditionally executes the table forward (Line 6)
if one of IPv4 or VLAN is valid (Line 5).

2.2.6 Deparser

The deparser reassembles the final output packet after all processing has been done by
serializing each valid header instance in some order. In P416, a control block is used to
describe the deparsed headers and their order as shown in Figure 2.12. In the example,
the deparser produces a packet with Ethernet, VLAN, and IPv4, in that order. Every
emit statement contains an implicit validity check, so headers are only emitted if they
are actually valid, otherwise emit behaves like a no-op instruction.

2.2.7 Externs

In addition to the core language, P4 provides so-called externs, a foreign-function
interface into the hardware. Externs allow P4 programs to use functionality that cannot
be expressed with P4 itself. P4 programs can interact with externs via well-defined APIs
and change their internal state, but the internal behavior of an extern itself is fixed and
dictated by the hardware. Which externs are available depends on the architecture of
the hardware. Examples for externs are checksum units, or stateful elements such as
counters, meters and registers that allow to save state between packets.

2.2.8 P4 Language Versions

There are two major versions of the P4 language, P414 and the newer revision P416.
With P416, the language designers have attempted to reduce the complexity of the
language into a core language that provides fewer distinguished language constructs. In

20 CHAPTER 2. BACKGROUND

1 parser start {

2 extract(ethernet);

3 return select(latest.etherType) {

4 0x0800: parse_ipv4;

5 0x8100: parse_vlan;

6 default: ingress;

7 }

8 }

9 parser parse_vlan {

10 extract(vlan);

11 return select(latest.etherType) {

12 0x0800: parse_ipv4;

13 default: ingress;

14 }

15 }

16 parser parse_ipv4 {

17 extract(ipv4);

18 return ingress;

19 }

Figure 2.13: P4 code implementing a parser in P414.

explaining the central language abstractions, we so far concentrated on P416, however,
since Chapters 3 and 4 refer to language version 14, we will now briefly point out the
main syntactic differences.

Figure 2.13 shows the same parser as Figure 2.5, but this time implemented in P414.
Parser states are specified using the keyword parser and parser states do not transition
to a next state but rather return the next parser to be executed. Accordingly, in P414
the end of the parsing phase is not expressed by a transition to an acceptance state, but
by the parser returning as the next state the name of a control block to be executed
afterwards. For example, Lines 6, 13 and 18 in Figure 2.13 indicate that after the parsing
phase, the ingress control should be executed.

The code in Figure 2.14 shows how the table from Figure 2.8 is declared in P414,
which is overall analogous to P416. The major syntactic difference is that match keys are
specified using the keyword reads. P414 also provides additional match-kinds such
as valid for matching on the validity bit of header instances. Tables and actions are
declared outside of control blocks, but otherwise control blocks are similar to P416 as
shown in Figure 2.15.

In P414 the compiler automatically generated the deparser from the parser, and
while the concept of externs was already present, stateful elements were part of the core
language.

2.3 Chapter Summary

This chapter outlined how the idea of programmable networks started in the mid-1990s
with Active Networks and how modern software-defined networks simplify network

2.3. CHAPTER SUMMARY 21

1 table forward {

2 reads {

3 ipv4: valid;

4 vlan: valid;

5 ipv4.dstAddr: ternary;

6 }

7 actions {

8 nop;

9 next_hop;

10 remove;

11 }

12 default_action : nop;

13 }

Figure 2.14: Table declaration in P414.

1 control ingress {

2 if(valid(ipv4) or valid(vlan)) {

3 apply(forward);

4 }

5 }

Figure 2.15: Control block implemented in P414.

management by separating the network control plane from the data plane. While early
efforts focused on the programmability of the control plane, more recently it is also
possible to program the data plane, for which the P4 language has established itself as
the de facto standard. The second part of the chapter provided a deeper insight into the
P4 language. Starting from P4’s abstract forwarding model consisting of the parser, the
match action pipeline and the deparser, we showed how these can be programmed with
the abstractions provided by P4.

CHAPTER3
Common Header Validity Bugs

While a number of P4’s features were inspired by designs found in modern languages,
the central abstraction for representing packet data—header types—lacks basic safety
guarantees. As discussed in the previous chapter, an instance of a header type may either
be valid or invalid. According to the P4 language specification, if the instance is valid,
then all operations produces a defined value, but if it is invalid, then reading or writing
a field yields an undefined result.

In practice, this has serious consequences for P4 programmers, since they must be
careful not to read or write invalid headers, because programs that manipulate invalid
headers can exhibit a variety of faults including dropping the packet when it should
be forwarded, or even leaking information from one packet to the next. In addition,
such programs are also not portable, since their behavior can vary when executed on
different targets.

In this chapter we present five categories of bugs found in open-source P4 programs
that arise due to reading and writing invalid headers. To identify the bugs we surveyed
a benchmark suite of 15 research and industrial P4 programs that are publicly available
on GitHub and compile to the BMv2 [Net18] backend. We categorize bugs based on the
following syntactic constructs: (1) parsers, (2) controls, (3) table reads, (4) table actions,
and (5) default actions. For each bug, we also present a possible type-safe fix.

For this survey, we exclusively considered programs implemented in P414 because
only few P416 programs were publicly available at that time, however, the same bug
categories persist to exist in P416.

3.1 Parser Bugs

The first class of errors is caused by the parser being too conservative about dropping
malformed packets, which increases the set of headers that may be invalid in the control
pipeline. In most programs, the parser chooses which headers to extract based on the
fields of previously-extracted headers using P4’s select statement. Programmers often
fail to handle packets falling through to the default case of these select statements.

Figure 3.1 illustrates this bug using an example from the codebase of the research tool
NetHCF [Bai+18; Li+19]—a tool designed to combat TCP spoofing. After extracting the

23

24 CHAPTER 3. COMMON HEADER VALIDITY BUGS

1 /* Unsafe */

2 parser parse_ethernet {

3 extract(ethernet);

4 return select(latest.etherType) {

5 0x0800: parse_ipv4;

6 default: ingress;

7 }

8 }

9 parser parse_ipv4 {

10 extract(ipv4);

11 return select(latest.protocol) {

12 6: parse_tcp;

13 default: ingress;

14 }

15 }

16 parser parse_tcp {

17 extract(tcp);

18 return ingress;

19 }

1 control ingress {

2 if(tcp.syn == 1 and ...) {...}

3 }

Figure 3.1: Parser bug example in NetHCF: parser (top) and ingress control (bottom).

Ethernet and IPv4 headers, the parser handles TCP packets in parse_ipv4 (Line 12)
based on the IPv4 protocol field and redirects all other packets to the ingress control,
exemplary shown in the bottom of Figure 3.1. However, the ingress control does not
check whether TCP is valid before accessing tcp.syn to check whether it is equal to 1.
This is unsafe since tcp is not guaranteed to be valid even though it is required to be
valid in the ingress control.

A possible fix of this bug is to throw an error during parsing, to stop the processing
of the current packet and drop it instead. In P414, this can be achieved by defining
a parser exception (Line 2 in Figure 3.2) with a handler that drops packets (Line 3 in
Figure 3.2). This handler protects the ingress control from having to handle unexpected
packets as shown in Lines 10 and 18.

In P416 we have to resort to a different mechanism, since parser exceptions are no
longer part of the language. Instead, we can use the verify statement, a simple form of
error handling, as shown on Line 7 in Figure 3.3. If the boolean expression used as the
first argument evaluates to false, the parser immediately transitions to the reject state,
which causes parsing to terminate immediately and sets the error state of the parser
to the error used as second argument (Unsupported). However, the actual runtime
behavior of this implementation highly depends on the target it is executed on. It is up
to the target’s implementation whether a rejected packet is actually dropped or just an
error flag is set, and therefore the code is not portable. In the latter case, to achieve an

3.2. CONTROL BUGS 25

1 /* Safe */

2 parser_exception unsupported {

3 parser_drop;

4 }

5 parser parse_ethernet {

6 extract(ethernet);

7 return select(latest.etherType) {

8 0x0800: parse_ipv4;

9 default:

10 parser_error unsupported;

11 }

12 }

13 parser parse_ipv4 {

14 extract(ipv4);

15 return select(latest.protocol) {

16 6: parse_tcp;

17 default:

18 parser_error unsupported;

19 }

20 }

Figure 3.2: Fixing parser bugs in P414 using parser exceptions.

equivalent runtime behavior to the P414 fix, we could check for an error in the ingress
and manually drop the packet.

In general, however, this fix might not be the best solution, because it alters the orig-
inal behavior of the program. However, without knowing the programmer’s intention,
it is generally not possible to automatically repair a program with undefined behavior.

3.2 Control Bugs

Another common bug occurs when a table is executed in a context in which the instances
referenced by that table are not guaranteed to be valid. This bug can be seen in the source
code of NetCache [Jin18; Jin+17], a system that uses P4 to implement a load-balancing
cache. The parser reserves a specific port (8888) to handle special-purpose traffic. If
UDP traffic arrives at port 8888, the parser extracts the NetCache-specific header
nc_hdr. Otherwise, it performs standard L2 and L3 routing.

As shown in the top-left of Figure 3.4, in the ingress control, the process_cache
control block is executed, which itself is shown in the bottom of Figure 3.4. The latter
defines and applies table check_cache_exist, which reads field nc_hdr.key as
part of the match key. However, it is never checked that nc_hdr is actually valid. The
invocation of the process_value table (not shown) contains another instance of the
same bug. As shown in the top-right of Figure 3.4, to fix these bugs, we can wrap the
calls to process_cache and process_value in a conditional that checks the validity
of the header nc_hdr. This ensures that nc_hdr is valid when process_cache refers
to it.

26 CHAPTER 3. COMMON HEADER VALIDITY BUGS

1 /* Safe */

2 error { Unsupported }

3

4 parser Parser(packet_in packet, out headers hdr, ...) {

5 state start {

6 packet.extract(hdr.ethernet);

7 verify(hdr.ethernet.etherType == 0x0800, error.

Unsupported)

8 transition select(hdr.ethernet.etherType) {

9 0x0800: parse_ipv4;

10 default: accept;

11 }

12 }

13 state parse_ipv4 {

14 packet.extract(hdr.ipv4);

15 verify(hdr.ipv4.protocol == 6, error.Unsupported)

16 transition select(hdr.ipv4.protocol) {

17 6: parse_tcp;

18 default: accept;

19 }

20 }

21 ...

22 }

Figure 3.3: Fixing parser bugs in P416 using the verify statement.

3.3 Table Reads Bugs

A similar bug arises in programs that contain tables that first match on the validity of
certain header instances before matching on the fields of those instances. The advantage
of this approach is that multiple types of packets can be processed in a single table,
which saves memory. However, if implemented incorrectly, this programming pattern
can lead to a bug, in which the match key reads bits from a header that may not be
valid. An example of this bug is exhibited by switch.p4, a “realistic production switch”
developed by Barefoot Networks, meant to be used “as-is, or as a starting point for more
advanced switches” [Kod15].

Table port_vlan_mapping, shown in the top of Figure 3.5, shows an archetypal
example of a table reads bug. This table is invoked in a context where it is unknown
which of the VLAN tags is valid, despite containing references to both vlan_tag_[0]
and vlan_tag_[1] in the match key declaration. The references to header fields
vlan_tag_[i].vid are guarded with keys that test the validity of vlan_tag_[i],
for i = 0, 1. However, as written, it is impossible for the control plane to install a rule
that will always avoid reading the value of an invalid header. The first match will check
whether instance vlan_tag_[0] is invalid, which is safe. However, the very next
match will try to read the value of field vlan_tag_[0].vid, even when the instance
is invalid. This attempt to access an invalid header results in undefined behavior, and

3.4. TABLE ACTION BUGS 27

1 /* Unsafe */

2 control ingress {

3

4 process_cache();

5 process_value();

6

7 apply(ipv4_route);

8 }

1 /* Safe */

2 control ingress {

3 if(valid(nc_hdr)) {

4 process_cache();

5 process_value();

6 }

7 apply(ipv4_route);

8 }

1 table check_cache_exist {

2 reads { nc_hdr.key : exact }

3 actions { ... }

4 }

5 control process_cache {

6 apply(check_cache_exist);

7 }

Figure 3.4: Control bug example in NetCache (top-left), type-safe fix (top-right) and
common code (bottom).

is therefore a bug. It is worthy to note that this code is not actually buggy on some
targets—in particular, on targets where invalid headers are initialized with 0. However,
0-initialization is not prescribed by the language specification, and therefore this code
is not portable across targets.

The naive solution to fix this bug is to refactor the table into four different tables (one
for each combination of validity bits) and then check the validity of each header before
the tables are invoked. While this fix is perfectly safe, it can result in a combinatorial
blowup in the number of tables, which is clearly undesirable both for efficiency reasons
and because it requires modifying the control plane. Fortunately, rather than factoring
the table into four tables, we can replace the exact match-kinds with ternary match-
kinds as shown in the bottom of Figure 3.5, which permit matching with wildcards.
In particular, the control plane can install rules that match invalid instances using an
all-wildcard patterns, which is safe. In order for this solution to be an actual fix, we also
need to assume that the control plane is well-behaved—i.e. that it will install wildcards
for the ternary matches whenever the header is invalid.

3.4 Table Action Bugs

Another common bug arises when distinct actions in a table require different (and
possible mutually exclusive) headers to be valid. This can lead to two problems: (1) the
control plane can populate the table with unsafe match-action rules, and (2) there may
be no validity checks that we can add to the control to make all the actions type-check.

Table fabric_ingress_dst_lkp shown in the top of Figure 3.6 provides an
example of this bug1. It reads the value of header field fabric_hdr.dstDevice and

1There are other actions in the real implementation, but these three actions demonstrate the core of the
problem.

28 CHAPTER 3. COMMON HEADER VALIDITY BUGS

1 /* Unsafe */

2 table port_vlan_mapping {

3 reads {

4 vlan_tag_[0]: valid;

5 vlan_tag_[0].vid: exact;

6 vlan_tag_[1]: valid;

7 vlan_tag_[1].vid: exact;

8 }

9 }

1 /* Safe */

2 table port_vlan_mapping {

3 reads {

4 vlan_tag_[0]: valid;

5 vlan_tag_[0].vid: ternary;

6 vlan_tag_[1]: valid;

7 vlan_tag_[1].vid: ternary;

8 }

9 }

Figure 3.5: Table reads bug in switch.p4 (top) and type-safe fix (bottom).

then invokes one of several actions: (1) term_cpu_packet (2) term_fabric_unica
st_packet, or (3) term_fabric_multicast_packet. These actions require that
the headers (1) fabric_hdr_cpu, (2) fabric_hdr_unicast, and (3) fabric_hdr_
multicast respectively are valid. However, the validity of these headers is mutually
exclusive.

Since all three headers are mutually exclusive, there is no single context that makes
this table safe. The only facility the table provides to determine which action should
be called is fabric_hdr.dstDevice. However, the P4 program doesn’t establish a
relationship between the value of fabric_hdr.dstDevice and the validity of any of
these three header instances. So, the behavior of this table is only well-defined when
the input packets are well-formed, an unreasonable expectation for real switches, which
may receive any sequence of bits “on the wire.”

We fix this bug by including validity matches in the match key, as shown in the
bottom of Figure 3.6. Similar to the fix presented in Section 3.3, this solution avoids
combinatorial blowup and extensive control plane refactoring. Again, we need to make
an assumption about the way the control plane will populate the table. Concretely, if an
action a is only safe to execute if a header h is valid, and h is not necessarily valid when
the table is applied, we assume that the control plane will only call a if h is matched as
valid. For example, fabric_hdr_cpu is not known to be valid when (the fixed version
of) fabric_ingress_dst_lkp is applied, so we assume that the control plane will
only call action term_cpu_packet when fabric_hdr_cpu is matched as valid.

3.5. DEFAULT ACTION BUGS 29

1 /* Unsafe */

2 table fabric_ingress_dst_lkp {

3 reads {

4 h.fabric_hdr.dstDevice: exact;

5 }

6 actions {

7 term_cpu_packet;

8 term_fabric_unicast_packet;

9 term_fabric_multicast_packet;

10 }

11 }

1 /* Safe */

2 table fabric_ingress_dst_lkp {

3 reads {

4 h.fabric_hdr.dstDevice: exact;

5 h.fabric_hdr_cpu: valid;

6 h.fabric_hdr_unicast: valid;

7 h.fabric_hdr_multicast: valid;

8 }

9 actions {

10 term_cpu_packet;

11 term_fabric_unicast_packet;

12 term_fabric_multicast_packet;

13 }

14 }

Figure 3.6: Table action bug in switch.p4 (top) and type-safe fix (bottom).

3.5 Default Action Bugs

Default action bugs occur when the programmer incorrectly assumes that a table per-
forms some action when a packet misses. The implementation of NetCache, which we
introduced in Section 3.2, exhibits an example of this bug. The bug is shown in the top of
Figure 3.7, where table add_value_header_1 is expected to make the nc_value_1
header valid, which is done in the add_value_header_1_act action. The control
plane may refuse to add any rules to the table, which would cause all packets to miss,
meaning that theadd_value_header_1_act actionwould never be called and header
nc_value_1may not be valid. To fix this error, as shown in the bottom of Figure 3.7,
we simply set the default action for the table to add_value_header_1_act, which
will force the table to add the header no matter what rules the controller installs.

3.6 Chapter Summary

In this chapter, we presented five of P4’s language constructs that are potentially vul-
nerable to validity bugs and what possible bug fixes for these bugs might look like. We

30 CHAPTER 3. COMMON HEADER VALIDITY BUGS

1 /* Unsafe */

2 table add_value_header_1 {

3 actions {

4 add_value_header_1_act;

5 }

6 }

1 /* Safe */

2 table add_value_header_1 {

3 actions {

4 add_value_header_1_act;

5 }

6 default_action = add_value_header_1_act();

7 }

Figure 3.7: Default action bug in NetCache: unsafe code missing a default action (top)
and type-safe fix (bottom).

do not claim that our taxonomy is complete and, moreover, the proposed bug fixes
may change the behavior of the original program, but this cannot be avoided without
knowing the programmer’s intentions.

Header validity bugs can be caused by the parser when packages that should not
be considered are handled inadequately. Additionally, they can also occur in various
places related to match action tables. Invalid headers can be accessed if headers a table
matches on are not guaranteed to be valid in the respective context, but also if in such
a case, the programmer wants to ensure validity by means of an additional validity
match, but which is not implemented correctly. Furthermore, bugs can occur when
actions require that certain—possibly mutually exclusive—headers are valid without
the program making a connection between the validity of these headers and the reads-
expressions of the table defining the actions, or when it is incorrectly assumed that a
header is made valid by an action without any guarantee that this action will ever be
executed.

Part II

Typed Data Plane Programming

31

CHAPTER4
A Typing Discipline to Ensure

Header Validity

While the way headers are represented in P4 has advantages for language implementers,
the design is a disaster for programmers. As we saw in the previous chapter, a variety
of subtle bugs can creep in at various points in a P4 program when invalid headers
are accessed, which makes it challenging for programmers to write correct data plane
programs. The fact that accessing invalid headers returns undefined values is comparable
to the existence of null references in various general-purpose programming languages.
Computer scientist Tony Hoare once called his invention of the null reference a billion-
dollar mistake [Hoa09]. Computer networks provide the foundation for the majority
of today’s software systems. By embedding an insecure language feature deep into the
design of a language that is about to become the standard in a billion-dollar industry,
we are about to repeat Hoare’s “mistake”.

In this chapter, we look at how we can incorporate header safety guarantees into
the language, thus enabling a correct-by-construction approach. We present SafeP4,
a domain-specific language for programmable data planes in which all packet data is
guaranteed to have a well-defined meaning and satisfy essential safety guarantees. We
equip SafeP4 with a static type system that statically guarantees header validity, which
relies on an expressive algebra of so-called header types that tracks validity information
at a fine level of granularity. One of the main challenges here is that P4 programs do not
completely specify the behavior of data planes. Part of the behavior is determined by the
match-action rules installed by the control plane at runtime. Since the available rules
can be altered at runtime, and as a consequence the set of valid headers can dynamically
change, header validity becomes a dynamic program property. As a result, SafeP4’s type
system employs a form of path-sensitive reasoning that tracks dynamic information
from conditional statements, routing tables and the control plane. We formalize the
syntax and semantics of SafeP4 in a core calculus and prove that the type system is
sound.

33

34 CHAPTER 4. A TYPING DISCIPLINE TO ENSURE HEADER VALIDITY

4.1 Design

Wemade four key design decisions when designing SafeP4. First, we represent only
the core of P4, i.e., the features relevant to packet processing. Second, we simplify and
generalize certain aspects to avoid unnecessary complications in the calculus. Third,
we use a set of sets of headers to capture valid header instances per program path to
avoid an overly restrictive type system and fourth, we assume that the control plane is
well-behaved.

Core calculus In the design of SafeP4, we draw inspiration from Featherweight
Java [IPW01], i.e., we model the essential features of P4, but prune away unnecessary
complexity. The result is a minimal calculus that is easy to reason about, but can still ex-
press numerous real-world data plane programs. Our calculus is protocol-independent
by allowing the programmer to specify the types of packet headers and their order in
the bit stream. Also, SafeP4mimics P4’s use of tables to interface with the control-plan
and decide which actions to execute at run-time.

Simplification and generalization Weomit a number of constructs that are secondary
to how packets are processed, including parser exceptions, counters, meters, etc., how-
ever, it would be relatively straightforward to add these to the calculus. Also, compared
to P4, SafeP4 does not enforce a strict separation between the parsing phase and the
control phase. Rather than unnecessarily complicating the syntax of SafeP4, we allow
the syntactic objects that represent parsers and controls to be freely mixed. Similarly,
we only enforce informally which primitive commands can be invoked within actions,
e.g., field modifications but not conditionals.

We also deviate from P4 with regard to the add command. In P416, the analogous
operation setValid (respectively add_header in P414) only modifies the validity
bit of a header instances. Accordingly, accessing an added header instance returns a
non-deterministic value if the header instance’s fields have not been manually initialized
beforehand. Instead of complicating our type system by additionally capturing whether
header fields are defined, we define the semantics of our add(h) command to initialize
each field of header instance h with a default value. We assume that in addition to our
type constants there exists a function init that accepts a header type η and returns a
header instance of type η with all fields set to their default value.

Last, we want to model the core behavior of both P414 and P416, however, both use
different type systems and evaluation behaviors for expressions. We therefore abstract
away expression typing and syntax variants by assuming that we are given a set of n-
ary constants k that can represent values like 0 or true (0-ary), or unary and binary
operators such as negation or logical conjunction, etc. We further assume that these
operators are assigned sound types. With these features in hand, one can instantiate our
type system over arbitrary constants.

Granularity of types To analyze the validity of header instances, our type system
needs a way to capture which header instances are valid. Naively, we can keep track of
a set of headers, which are guaranteed to be valid on all program paths and reject all
programs that reference headers not included in this set. However, this coarse-grained
approach would generate a large number of false positives.

For example, consider the parser implementation in Figure 4.1. The parser extracts
an Ethernet header and then either parses a VLAN header or proceeds to the ingress.

4.1. DESIGN 35

1 parser start {

2 extract(ethernet);

3 return select(latest.etherType) {

4 0x8100 : parse_vlan;

5 default: ingress;

6 }

7 }

8 parser parse_vlan {

9 extract(vlan);

10 return ingress;

11 }

Figure 4.1: Parser extracting Ethernet and optionally VLAN.

1 control ingress {

2 if(valid(vlan)) {

3 modify_field(ethernet.etherType, vlan.etherType);

4 remove_header(vlan);

5 }

6 }

Figure 4.2: Ingress program

Hence, at the beginning of the ingress, only Ethernet is guaranteed to be valid. However,
it is certainly safe to write an ingress program that references the VLAN header after
checking that it is valid as shown in Figure 4.2.

To reflect this in the type system, we introduce a special construct valid(h) c1 else c2,
which executes c1 if h is valid and c2 otherwise. When we type check this command,
following previous work on occurrence typing [TF10], we check c1 with the additional
fact that h is valid, and we check c2 with the additional fact that h is not valid. Despite
this enhancement, our type system would still be overly restrictive. For example, the
parser shown in Figure 4.3, first extracts Ethernet and then boots into ingress or extracts
IPv4. If IPv4 is valid, the parser optionally extracts TCP or UDP.

Now, suppose that we have an ingress control that defines a table tcp_table that
refers to both IPv4 and TCP in its key expression and that only checks the validity of
TCP before applying the table as shown in Figure 4.4. In general, the validity of TCP
also implies the validity of IPv4, so it should be safe to apply table tcp_table after
checking only the validity of TCP. However, with the representation of valid headers
as a set, the type checker would still reject the program, because at the point where
tcp_table is applied (Line 11), only Ethernet and TCP would be guaranteed to be
valid. Instead, we would need to explicitly check that both IPv4 and TCP are valid.

We solve the problem by using a more fine-grained type representation—namely
a set of sets of headers instead of a set—to capture header instances guaranteed to be
valid and their dependencies. Each inner set contains all headers that might be valid at
the current program point for some program path. For a given header reference to be
safe, it must be a member of all possible sets of headers, i.e., it must be valid on all paths

36 CHAPTER 4. A TYPING DISCIPLINE TO ENSURE HEADER VALIDITY

1 parser start {

2 extract(ethernet);

3 return select(latest.etherType) {

4 0x0800: parse_ipv4;

5 default: ingress;

6 }

7 }

8 parser parse_ipv4 {

9 extract(ipv4);

10 return select(latest.protocol) {

11 0x6: parse_tcp;

12 0x11: parse_udp;

13 default: ingress;

14 }

15 }

16 parser parse_tcp { ... }

17 parser parse_udp { ... }

Figure 4.3: Parser extracting Ethernet, optionally followed by IPv4 and if IPv4 is valid,
optionally followed by TCP or UDP.

1 table tcp_table {

2 reads {

3 ipv4.dstAddr: lpm;

4 tcp.port: exact;

5 }

6 actions { ... }

7 }

8

9 control ingress {

10 if(valid(tcp)) {

11 apply(tcp_table);

12 }

13 }

Figure 4.4: Ingress control that applies table tcp_table, which reads headers ipv4
and tcp.

through the program that reach the reference.

Control plane In the formalization of SafeP4, we model the control plane as a
function that—given a table and the currently valid headers—returns the action to call
and the (possibly empty) action data arguments. Also, a second function analyzes the
table and produces for each action a set of valid headers that can be safely assumed
valid when the entries are populated by the control plane. From the table declaration

4.2. SYNTAX 37

and the header instances that can be assumed valid, based on the match-kinds, we can
derive a list of match key expression that must be evaluated when the table is invoked.
Together, these functions model the run-time interface between the switch and the
controller. We assume that the control plane interface satisfies three simple correctness
properties: (1) the control plane can safely install table entries that never read invalid
headers, (2) the action data provided by the control plane has the types expected by the
action, and (3) the control plane will only assume valid headers for an action that are
valid for a given packet.

4.2 Syntax

The syntax of SafeP4 is shown in Figure 4.5. To lighten the notation, we write x as
shorthand for a (possibly empty) sequence x1 , ..., xn . A SafeP4 program consists of a
sequence of declarations d and a command c. Declarations include tables, header types
and header instances.

A table declaration t(h, (e ,m), a) is defined in terms of a sequence of valid-match
header instances h, a sequence ofmatch-key expressions (e ,m), where e is an expression
and m is the match-kind1 used to match this expression and a sequence of actions a.
The notation t.valids denotes the valid-match instances, t.reads denotes the expressions,
and t.actions denotes the actions. For example, the following table declaration

forward((ipv4, vlan), ((ipv4.dstAddr, ternary)), (
skip,
λs, d .ethernet.srcAddr = s; ethernet.dstAddr = d ,
ethernet.etherType = vlan.etherType; remove(vlan)

))

corresponds to the following P4 table, assuming action nop is—as the name suggests—a
no-op instruction, action next_hop sets the Ethernet source and destination addresses
to values provided by the control plane and action remove populates the EtherType
field of the Ethernet header with the value contained in EtherType field of the VLAN
header and ultimately removes the VLAN header.

1 table forward {

2 reads {

3 ipv4 : valid;

4 vlan : valid;

5 ipv4.dstAddr: ternary;

6 }

7 actions {

8 nop;

9 next_hop;

10 remove;

11 }

12 }

1In this work we focus on exact and ternary matches as well as matches on the validity bit.

38 CHAPTER 4. A TYPING DISCIPLINE TO ENSURE HEADER VALIDITY

Commands
c ∶∶=
∣ extract(h) extraction
∣ emit(h) deparsing
∣ c1; c2 sequence∗
∣ if (e) c1 else c2 conditional
∣ valid(h) c1 else c2 validity
∣ t.apply() application
∣ skip skip
∣ add(h) addition∗
∣ remove(h) removal∗
∣ h.f = e modification∗

Actions
a ∶∶= λx.c action

Expressions
e ∶∶=
∣ v values
∣ h.f header field
∣ x variable
∣ kn constant

Declarations
d ∶∶=
∣ t(h, (e,m), a) table
∣ η {f ∶ τ} header type
∣ h↦ η instantiation

Match Kinds Constants
m ∈ {exact, ternary} kn ∈ K

Program Values
P ∶∶= (d , c) v ∈ V

Header Types
Θ ∶∶=
∣ 0 contradiction
∣ 1 empty
∣ h instance
∣ Θ1 ⋅Θ2 concatenation
∣ Θ1 +Θ2 choice

Action Types Expression Types
α ∶∶= τ → Θ τ ∶∶= Bool

∣ τ → τ
∣ ⋯

Figure 4.5: Syntax of SafeP4

Actions are written as (uncurried) λ-abstractions. An action λx . c declares a (possibly
empty) sequence of parameters, drawn from a fresh set of names, which are in scope for
the command c. The run-time arguments for actions (action data) are provided by the
control plane. We artificially restrict the commands that can be called in the body of
the action to addition, removal of headers, modification of header fields and sequence.
These commands are identified with an asterisk in Figure 4.5.

Header type declarations describe the format of individual headers and are defined
in terms of a name and a sequence of field declarations. The notation “ f ∶ τ” indicates
that field f has type τ. We let η range over header types. A header instance declaration
assigns a name h to a header type η. ThemapHT encodes the (global)mapping between
header instances and header types.

The calculus provides commands for extracting (extract), creating (add), removing
(remove), and modifying (h.f=e) header instances. The emit command is used in the
deparser and serializes a header instance back into a bit sequence. The if -statement
conditionally executes one of two commands based on the value of a boolean condition.
Similarly, the valid-statement branches on the validity of h. Table application commands
(t.apply()) are used to invoke a table t in the current state. The skip command is a no-op.

The only built-in expressions in SafeP4 are variables x and header fields, written
h. f . We let v range over values and assume a collection of n-ary constant operators
kn ∈ K. For simplicity, we assume that every header referenced in an expression has
a corresponding instance declaration. We also assume that header instance names h,
header type names η, variable names x, and table names t are drawn from disjoint sets

4.3. STATIC SEMANTICS 39

JΘK ⊆ P(Header)
J0K = {}
J1K = {{}}
JhK = {{h}}

JΘ1 ⋅Θ2K = JΘ1K ● JΘ2K
JΘ1 +Θ2K = JΘ1K ∪ JΘ2K

Figure 4.6: Semantics of header types.

of names h,e,v, and t respectively and that each name is declared only once.
SafeP4 provides three kinds of types, header types Θ, expression types τ and action

types α. We assume that the set of expression types includes booleans (for conditionals)
as well as tuples and function types.

4.3 Static Semantics

SafeP4 uses a path-sensitive analysis, coupled with occurrence typing to keep track of
which headers are guaranteed to be available at any program point. The type system
rejects programs that reference headers that might be uninitialized, thus, preventing all
references to invalid headers.

Semantics of types A header type Θ represents a set of header instances that may be
valid at the same time. The type 0 denotes the empty set. This type arises when there are
unsatisfiable assumptions about which headers are valid. The type 1 denotes the empty
singleton set of headers. It describes the initial state of the program where no headers
are valid. The type h denotes a singleton set, {{h}}, i.e., states where only h is valid.
The type Θ1 ⋅Θ2 denotes the set obtained by combining headers from Θ1 and Θ2, i.e., a
product or concatenation (H1 ● H2 = {h1 ∪ h2 ∣ h1 ∈ H1 ∧ h2 ∈ H2}). Finally, the type
Θ1 +Θ2 denotes the union of Θ1 or Θ2, which intuitively represents an alternative.

The semantics of header types, JΘK, is defined by the equations in Figure 4.6. In-
tuitively, each subset represents one alternative set of headers that may be valid. For
example, the header type eth ⋅ (ipv4 + 1) denotes the set {{eth, ipv4}, {eth}}.

Typing judgment We use different typing judgments for command typing, expression
typing and action typing. The typing judgment for commands has the form Γ ⊢ c ∶
Θ1 Z⇒ Θ2, which means that in variable context Γ, if c is executed in the header context
Θ1, then a header instance typeΘ2 is assigned. Intuitively,Θ1 encodes the sets of headers
that may be valid when type checking a command. Γ is a standard type environment
which maps variables x to type τ. If there exists Θ2 such that Γ ⊢ c ∶ Θ1 Z⇒ Θ2, we say
that c is well-typed in Θ1.

The typing judgment for expressions and actions has the form Γ;Θ ⊢ e ∶ τ and
Γ;Θ ⊢ a ∶ τ → Θ respectively, meaning that expression e has type τ respectively that
action a has type τ → Θ in variable context Γ and header context Θ.

40 CHAPTER 4. A TYPING DISCIPLINE TO ENSURE HEADER VALIDITY

4.3.1 Operations on header types

To formulate the typing rules for SafeP4, we first define a set of operations on header
types, namely restriction, negated restriction, inclusion, removal and emptiness. In the
following we assume that S ranges over elements of the domain P(P(Headers)).

Restriction The operator RestrictΘ h recursively traversesΘ and keeps only those
choices in which h is contained, zeroing out the others. Semantically this has the effect
of throwing out the subsets of JΘK that do not contain h, i.e., we define restriction
semantically as S∣h ≜ {hs ∣ hs ∈ S ∧ h ∈ hs}. Syntactically we define restriction by
induction on Θ as follows:

Restrict 0 h ≜ 0
Restrict 1 h ≜ 0

Restrict g h ≜
⎧⎪⎪⎨⎪⎪⎩

g if g = h
0 otherwise

Restrict (Θ1 ⋅Θ2) h ≜ ((Restrict Θ1 h) ⋅Θ2) + (Θ1 ⋅ (Restrict Θ2 h))
Restrict (Θ1 +Θ2) h ≜ (Restrict Θ1 h) + (Restrict Θ2 h)

Lemma 4.1 captures the equivalence of the syntactic and the semantic definition.

Lemma 4.1 (Restrict Equal). JΘK∣h = JRestrict Θ hK

Proof. By induction on Θ.

Negated Restriction Dually to the restrict operator, NegRestrict Θ h produces
only those subsets where h is invalid. Semantically, negated restriction is defined as
S∣¬h ≜ {hs ∣ hs ∈ S ∧ h /∈ hs}. Syntactically we define negated restriction by induction
on Θ:

NegRestrict 0 h ≜ 0
NegRestrict 1 h ≜ 1

NegRestrict g h ≜
⎧⎪⎪⎨⎪⎪⎩

0 if g = h
g otherwise

NegRestrict (Θ1 ⋅Θ2) h ≜ (NegRestrict Θ1 h) ⋅ (NegRestrict Θ2 h)
NegRestrict (Θ1 +Θ2) h ≜ (NegRestrict Θ1 h) + (NegRestrict Θ2 h)

Lemma 4.2 captures the equivalence of the syntactic and the semantic definition.

Lemma 4.2. (NegRestrict Equal) JΘK∣¬h = JNegRestrict Θ hK

Proof. By induction on Θ.

4.3. STATIC SEMANTICS 41

Inclusion Includes Θ h traverses Θ and checks if h is valid in every path. Semanti-
cally this says that h is a member of every element of JΘK, i.e., h ⊏ S ≜ ∀hs ∈ S .h ∈ hs.
Syntactically we define inclusion by induction on Θ:

Includes 0 h ≜ true
Includes 1 h ≜ false

Includes g h ≜
⎧⎪⎪⎨⎪⎪⎩

true if g = h
false otherwise

Includes (Θ1 ⋅Θ2) h ≜ (Includes Θ1 h) ∨ (Includes Θ2 h)
Includes (Θ1 +Θ2) h ≜ (Includes Θ1 h) ∧ (Includes Θ2 h)

Lemma A.3 captures the equivalence of the syntactic and the semantic definition.

Lemma 4.3. (Includes Equal) ∀hs ∈ JΘK.h ∈ hs = Includes Θ h

Proof. By induction on Θ.

Removal Remove Θ h removes h from every path, which means, semantically that it
removes h from every element of JΘK, i.e., S∖h ≜ {hs ∣ hs ∈ S∧hs∖{h}}. Syntactically
we define removal by induction on Θ:

Remove 0 h ≜ 0
Remove 1 h ≜ 1

Remove g h ≜
⎧⎪⎪⎨⎪⎪⎩

1 if g = h
g otherwise

Remove (Θ1 ⋅Θ2) h ≜ (Remove Θ1 h) ⋅ (Remove Θ2 h)
Remove (Θ1 +Θ2) h ≜ (Remove Θ1 h) + (Remove Θ2 h)

Lemma A.4 captures the equivalence of the syntactic and the semantic definition.

Lemma 4.4. (Remove Equal) JΘK ∖ h = JRemove Θ hK

Proof. By induction on Θ.

Emptiness Empty Θ checks if Θ is semantically empty. Syntactically we define empti-
ness by induction on Θ:

Empty 0 ≜ true
Empty 1 ≜ false
Empty h ≜ false

Empty (Θ1 ⋅Θ2) ≜ Empty Θ1 ∨ Empty Θ2

Empty (Θ1 +Θ2) ≜ Empty Θ1 ∧ Empty Θ2

The equivalence of the syntactic and semantic definition is captured by Lemma A.5.

42 CHAPTER 4. A TYPING DISCIPLINE TO ENSURE HEADER VALIDITY

F(h, f i) = τ i Field type lookup
A(a) = λx ∶ τ. c Action lookup

H(e) = h Referenced Header instances
CA(t,H) = (a i , v) Control-plane actions

CV(t) = S Control-plane validity

maskable(t, e , exact) ≜ false
maskable(t, e , ternary) ≜H(e) ⊆ t.valids

Figure 4.7: Auxiliary functions.

Lemma 4.5. JΘK == {} if and only if Empty Θ.

Proof. By induction on Θ.

4.3.2 Typing rules

SafeP4’s typing rules rely on several auxiliary functions shown in Figure 4.7. The field
type lookup function F(h, f i) returns the type assigned to a field f i in header instance
h by first looking up the corresponding header type η from the global header table and
then looking up the field type from the header type declaration. The action lookup
function A(a) returns the action definition λx ∶ τ. c for action a and H(e) returns
the header instances h referenced by expression e. Given a table t and the currently
valid headers H, the function CA(t,H) returns the run-time action to call a i and the
(possibly empty) action data arguments v. The function CV(t) analyzes table t and
produces a list of sets of valid headers S—one set for each action—that can be safely
assumed valid when the entries are populated by the control plane. Both, CA(t,H) and
CV(t) are assumed to be instantiated by the control plane.

The function maskable(t, e ,m) takes in a table t, a match key expression e and
a match-kind m and checks whether expression e must be evaluated when table t is
invoked. If maskable evaluates to true, it means that the expression does not need
to be evaluated. If the match-kind is exact, e always needs to be evaluated and if the
match-kind is ternary, e only needs to be evaluated if it references at least one header
instance that is not part of the valid-match header instances (t.valids).

Command typing The typing rules for commands are presented in Figure 4.8. The rule
T-Zero gives a command an arbitrary output type if the input type is empty. The rules
T-Skip and T-Seq are standard. The rule T-If a path-sensitive union type between the
type computed for each branch. The rule T-IfValid is similar, but leverages knowledge
about the validity of h. So the true branch c1 is checked in the context Restrict Θ h,
and the false branch c2 is checked in the context NegRestrict Θ h. The top-level
output type is the union of the resulting output types for c1 and c2. The rule T-Mod
checks that h is guaranteed to be valid using the Includes operator, and uses the
auxiliary function F to obtain the type assigned to h. f . The set of valid headers does
not change when evaluating an assignment, so the output and input types are identical.

4.3. STATIC SEMANTICS 43

T-Zero
Empty Θ1

Γ ⊢ c ∶ Θ1 Z⇒ Θ2

T-Skip

Γ ⊢ skip ∶ Θ Z⇒ Θ

T-Seq
Γ ⊢ c1 ∶ Θ Z⇒ Θ1 Γ ⊢ c2 ∶ Θ1 Z⇒ Θ2

Γ ⊢ c1; c2 ∶ Θ Z⇒ Θ2

T-If
Γ;Θ ⊢ e ∶ Bool

Γ ⊢ c1 ∶ Θ Z⇒ Θ1 Γ ⊢ c2 ∶ Θ Z⇒ Θ2

Γ ⊢ if (e) c1 else c2 ∶ Θ Z⇒ Θ1 +Θ2

T-IfValid
Γ ⊢ c1 ∶ Restrict Θ h Z⇒ Θ1

Γ ⊢ c2 ∶ NegRestrict Θ h Z⇒ Θ2

Γ ⊢ valid(h) c1 else c2 ∶ Θ Z⇒ Θ1 +Θ2

T-Mod
Includes Θ h

F(h, f) = τ i Γ;Θ ⊢ e ∶ τ i
Γ ⊢ h. f = e ∶ Θ Z⇒ Θ

T-Extr

Γ ⊢ extract(h) ∶ Θ Z⇒ Θ ⋅ h

T-Add

Γ ⊢ add(h) ∶ Θ Z⇒ Θ ⋅ h

T-Rem

Γ ⊢ remove(h) ∶ Θ Z⇒ Remove Θ h

T-Emit

Γ ⊢ emit(h) ∶ Θ Z⇒ Θ

T-Apply
CV(t) = S t.actions = a

e = {e j ∣ (e j ,m j) ∈ t.reads ∧ ¬maskable(t, e j ,m j)}
⋅;Θ ⊢ e j ∶ τ j for e j ∈ e

⋅;Restrict Θ S i ⊢ a i ∶ τ i → Θ′
i for a i ∈ a

Γ ⊢ t.appl y() ∶ Θ Z⇒
⎛
⎝∑a i∈a

Θ′
i
⎞
⎠

Figure 4.8: Command typing rules for SafeP4.

The rules T-Extr and T-Add assign header extractions and header additions the type
Θ ⋅ h, reflecting the fact that h is valid after the command executes. Emitting packet
headers does not change the set of valid headers, which is captured by rule T-Emit. The
typing rule T-Rem uses the Remove operator to remove h from the input type Θ.

Finally, the rule T-Apply checks table applications. To understand how it works, let
us first consider a simpler, but less precise, typing rule:

t.reads = e ⋅;Θ ⊢ e i ∶ τ i for e i ∈ e
t.actions = a ⋅;Θ ⊢ a i ∶ τ i → Θ′

i for a i ∈ a
⋅ ⊢ t.appl y() ∶ Θ Z⇒ (∑Θ′

i)

Intuitively, this rule says that to type check a table application, we check each
expression it reads and each of its actions. The final header type is the union of the types
computed for the actions. This rule models table application as a non-deterministic
choice between its actions. However, while this rule is sound, it is overly conservative.
In particular, it does not model the fact that the control plane often uses header validity
bits to control which actions are executed.

Hence, the actual typing rule, T-Apply, makes use of function CV(t) to first obtain
for each action a i , a set of headers S i that can be assumed valid when type checking

44 CHAPTER 4. A TYPING DISCIPLINE TO ENSURE HEADER VALIDITY

1 table port_vlan_mapping {

2 reads {

3 vlan[0] : valid;

4 vlan[0].vid : ternary;

5 vlan[1] : valid;

6 vlan[1].vid : ternary;

7 } ...

8 }

Figure 4.9: Expressions vlan[0].vid and vlan[1].vidmust be wildcarded when
vlan[0] respectively vlan[1] are invalid. The typechecker can warn the programmer
about these assumptions for the table to be safe.

T-Const
typeof(k) = τ → τ′ Γ;Θ ⊢ e i ∶ τ i

Γ;Θ ⊢ k(e) ∶ τ′

T-Var
x ∶ τ ∈ Γ

Γ;Θ ⊢ x ∶ τ

T-Field
Includes Θ h F(h, f) = τ

Γ;Θ ⊢ h. f ∶ τ

Figure 4.10: Expression typing rules for SafeP4.

a i . From the match key expressions of the table declaration and the headers assumed
valid, we can derive a subset of the expressions read by the table, e.g., excluding ex-
pressions that can be wildcarded when certain validity bits are false using the function
maskable(t, e ,m). Consequently, we only need to type check these expressions. For
example, given the table in Figure 4.9, if an action a j is matched by the rule (0, ∗, 0, ∗),
both S j and e j are empty. Just like the simplified rule, the final header type is the union of
the types computed for the actions, however, we additionally restrict the header context
with the header instances assumed to be valid. Here we lift the Restrict operator to
sets of header instances:

Restrict Θ {} ≜ Θ
Restrict Θ {h1 , ..., hn} ≜ Restrict (Restrict (Restrict Θ h1) ...) hn

Expression typing The typing rules for expressions are shown in Figure 4.10. Con-
stants are type-checked according to rule T-Constant, as long as each expression that
is passed as an argument to the constant k has the type required by the typeof function.
The rule T-Var is standard. Rule T-Field checks that header instance h is guaranteed to
be valid and assigns the type obtained from the field type lookup function F .

Action typing Given a variable context Γ and header type Θ, an action λx ∶ τ. c
encodes a function of type τ → Θ′, so long as the body c is well-typed in the context
where Γ is extended with x i ∶ τ i for every i.

4.4. DYNAMIC SEMANTICS 45

Γ, x ∶ τ ⊢ c ∶ Θ Z⇒ Θ′

Γ;Θ ⊢ λx ∶ τ.c ∶ τ → Θ′
(T-Action)

Figure 4.11: Action typing rule for SafeP4.

4.4 Dynamic Semantics

We define the operational semantics for commands in terms of four-tuples ⟨I,O ,H, c⟩,
where I is the input bit stream (which is assumed to be infinite for simplicity), O is the
output bit stream, H is a map that associates each valid header instance with a records
containing the values of each field, and c is the command to be evaluated.

For the definition of the operational semantics, we assume that for each declared
header type η there exists a deserialization function (deserializeη), a serialization func-
tion (serializeη) and an initialization function (initη). The function deserializeη(I) =
(v , I′) takes in the input bit stream I and returns a header value v populated with bits
from I as well as the rest of the input bit stream. For example, assuming the header type
η = { f ∶ bit⟨3⟩; g ∶ bit⟨2⟩;} has two fields f and g and I = 11000B where B is the rest
of the bit stream following, then deserializeη(I) = ({f = 110; g = 00;},B). The serialize
function is the corresponding counterpart. It takes the bit values of the fields of a header
value and concatenates them in the order in which they are defined to produce a single
bit sequence. For example, calling serialize on the header value { f = 110; g = 00;}
returns the bit string 11000. Finally, the function initη returns a header instance of type
η with all fields set to a default value.

Semantics of commands The reduction rules are presented in Figure 4.12 and Fig-
ure 4.13. The command extract(h) evaluates via the rule E-Extr, which looks up the
header type in the global header tableHT and then invokes the corresponding deserial-
ization function. The deserialized header value v is added to the map of valid header
instances, H and evaluation continues with the remaining input bit stream I′. The rules
for validity checks step to the true branch if h ∈ dom(H) (E-IfValidTrue) and to the
false branch otherwise (E-IfValidFalse). The rule E-Rem removes the header from the
mapH. If a header h is already invalid, removing it has no effect. Modification of header
fields is evaluated according to rules E-Mod and E-Mod1. If the assigned expression is
fully reduced, the respective field in the header value is updated with the new value in
H. Otherwise, the assigned expression is reduced first. Table application commands
are evaluated according to rule E-Apply. We first invoke the control plane function
CA(t,H) to determine an action a i and action data v. Then we useA to look up the
definition of a i , yielding λx ∶ τ. c i and step to c i[v/x]. Note that for simplicity, wemodel
the evaluation of expressions read by the table using the control-plane function CA.
The rule E-Add evaluates addition commands add(h). Similar to header extraction, we
first obtain the header type η of the instance h and then use the function initη function
to obtain a header instance v of type η with all fields set to a default value and extend
the map H with h ↦ v. Note that according to E-AddValid, if the header instance is
already valid, add(h) does nothing. The rule E-Emit serializes a header instance h back
into a bit stream. It first looks up the corresponding header type and header value in
the header table HT and the map of valid headers respectively. The header value is
then passed to the serialization function for the header type to produce a bit sequence

46 CHAPTER 4. A TYPING DISCIPLINE TO ENSURE HEADER VALIDITY

E-Extr
HT (h) = η deserializeη(I) = (v , I′)

⟨I,O ,H, extract(h)⟩→ ⟨I′ ,O ,H[h ↦ v], skip⟩

E-IfValidTrue
h ∈ dom(H)

⟨I,O ,H, valid(h) c1 else c2⟩→ ⟨I,O ,H, c1⟩

E-IfValidFalse
h /∈ dom(H)

⟨I,O ,H, valid(h) c1 else c2⟩→ ⟨I,O ,H, c2⟩

E-Rem

⟨I,O ,H, remove(h)⟩→ ⟨I,O ,H ∖ h, skip⟩

E-Mod
H(h) = r r′ = {r with f = v}

⟨I,O ,H, h.f = v⟩→ ⟨I,O ,H[h ↦ r′], skip⟩

E-Mod1
⟨H, e⟩→ e′

⟨I,O ,H, h.f = e⟩→ ⟨I,O ,H, h.f = e′⟩

E-Apply
CA(t,H) = (a i , v̄) A(a i) = λx̄ .c i
⟨I,O ,H, t.appl y()⟩→ ⟨I,O ,H, c i[v̄/x̄]⟩

E-Add
HT (h) = η initη = v

⟨I,O ,H, add(h)⟩→ ⟨I,O ,H[h ↦ v], skip⟩

E-AddValid
h ∈ dom(H)

⟨I,O ,H, add(h)⟩→ ⟨I,O ,H, skip⟩

E-Emit
HT (h) = η serializeη(H(h)) = B̄
⟨I,O ,H, emit(h)⟩→ ⟨I,O .B̄,H, skip⟩

E-EmitInvalid
h /∈ dom(H)

⟨I,O ,H, emit(h)⟩→ ⟨I,O ,H, skip⟩

Figure 4.12: Operational semantics of commands.

that is appended to the output bit stream. We adopt the semantics of P4 with respect to
emitting invalid headers. Emitting an invalid header instance—i.e., a header instance
which has not been added or extracted—has no effect on the output bit stream (rule
E-EmitInvalid). Notice also that the header remains unchanged in H.

Sequential composition (cf. Figure 4.13) reduces left to right, i.e., the left command
needs to be reduced to skip (rule E-Seq1) before the right command can be reduced (rule
E-Seq). The evaluation of conditionals (rules E-If, E-IfTrue, E-IfFalse) is standard.
The expression in the condition is first evaluated to a value. If the condition is true, the
conditional steps to command c1 otherwise to command c2.

Semantics of expressions The semantics for expressions is defined in Figure 4.14. It
is defined in terms of tuples ⟨H, e⟩, where H is the same map used in the semantics
of commands and e is the expression to evaluate. The rule E-Field reduces header
field expressions to the value stored in the heap H for the respective field. To evaluate

4.5. SAFETY 47

E-Seq

⟨I,O ,H, skip; c2⟩→ ⟨I,O ,H, c2⟩

E-Seq1
⟨I,O ,H, c1⟩→ ⟨I′ ,O′ ,H′ , c′1⟩

⟨I,O ,H, c1; c2⟩→ ⟨I′ ,O′ ,H′ , c′1; c2⟩

E-If
⟨H, e⟩→ e′

⟨I,O ,H, if (e) then c1 else c2⟩→ ⟨I,O ,H, if (e′) then c1 else c2⟩

E-IfTrue

⟨I,O ,H, if (true) then c1 else c2⟩→ ⟨I,O ,H, c1⟩

E-IfFalse

⟨I,O ,H, if (false) then c1 else c2⟩→ ⟨I,O ,H, c2⟩

Figure 4.13: Operational semantics of commands (continued).

E-Field
H(h) = { f1 ∶ n1 , ..., fk ∶ nk}

⟨H, h. f i⟩→ n i

E-Const
JkK(v1 , ..., vn) = v
⟨H, k(v1 , ..., vn)⟩→ v

E-Const-Cong
⟨H, e i⟩→ e′i

⟨H, k(v1 , ..., v i−1 , e i , ..., en)⟩→ k(v1 , ..., v i−1 , e′i , ..., en)

Figure 4.14: Operational semantics for expressions.

constants via the rule E-Const, we assume that there is an evaluation function for
constants JkK(v) = v that is well-behaved—i.e., if typeof(k) = τ → τ′ and v ∶ τ,
then ⋅; ⋅ ⊢ JkK(v) ∶ τ′. Arguments passed to constants are evaluated left to right (rule
E-Const-Cong).

4.5 Safety

We prove safety in terms of progress and preservation [WF94]. Both theorems make
use of the relation H ⊧ Θ which intuitively holds if H is described by Θ. The formal
definition, as given in Figure 4.15, satisfies H ⊧ Θ if and only if dom(H) ∈ JΘK.

The empty header instance map only entails the empty header instance type 1 (Rule
Ent-Empty). If a header instance h is contained in the map of valid header instances
H, H entails the header instance type h (Rule Ent-Inst). The sequence type Θ1 ⋅ Θ2
is entailed by the distinct union of the maps entailing Θ1 and Θ2 respectively (Rule
Ent-Seq) and the choice type Θ1 +Θ2 is entailed either by the map entailing Θ1 or the
map entailing Θ2 (Rules Ent-ChoiceL and Ent-ChoiceR).

We prove progress and preservation only for commands. For expressions, we formu-
late these properties as additional lemmas (Lemmas 4.6 and 4.7). The respective proofs

48 CHAPTER 4. A TYPING DISCIPLINE TO ENSURE HEADER VALIDITY

Ent-Empty

⋅ ⊧ 1

Ent-Inst
dom(H) = {h}

H ⊧ h

Ent-Seq
H1 ⊧ Θ1 H2 ⊧ Θ2

H1 ∪H2 ⊧ Θ1 ⋅Θ2

Ent-ChoiceL
H ⊧ Θ1

H ⊧ Θ1 +Θ2

Ent-ChoiceR
H ⊧ Θ2

H ⊧ Θ1 +Θ2

Figure 4.15: The Entailment relation between header instances and header instance types

are straightforward for our system.

Lemma 4.6 (Expression Progress). If ⋅;Θ ⊢ e ∶ τ and H ⊧ Θ, then either e is a value or
∃e′ .⟨H, e⟩→ e′.

Lemma 4.7 (Expression Preservation). If Γ;Θ ⊢ e ∶ τ and H ⊧ Θ and ⟨H, e⟩→ e′ then
Γ;Θ ⊢ e′ ∶ τ.

To prove both theorems we also need the following propositions that model our
assumptions about the functions CA and CV modeling the control plane.

Proposition 1 (Control Plane Reads). If H ⊧ Θ and CV(t) = S̄ and ē = {e j ∣ (e j ,m j) ∈
t.reads() ∧ ¬maskable(t, e j ,m j)} and Γ;Θ ⊢ e j ∶ τ j for e j ∈ ē then CA(t,H) = (a i , v̄).

Proposition 2 (Control Plane Action Data). If H ⊧ Θ and CA(t,H) = (a i , v̄) and
A(a i) = λx̄ ∶ τ̄. c i then ⋅; ⋅ ⊢ v̄ ∶ τ̄

Proposition 3 (Control Plane Assumptions). If H ⊧ Θ and CA(t,H) = (a i , v̄) and
CV(t) = S̄ then H ⊧ Restrict Θ S i .

Proposition 1 captures the first assumption—i.e., the control plane can safely in-
stall table entries that never read invalid headers, Proposition 2 captures the second
assumption—i.e., the action data provided by the control plane has the types expected
by the action and Proposition 3 captures the third assumption—i.e., the control plane
will only assume valid headers for an action that are valid for a given packet.

Theorem 4.8 (Progress). If ⋅ ⊢ c ∶ Θ1 Z⇒ Θ2 and H ⊧ Θ1, then either, c = skip, or
∃⟨I′ ,O′ ,H′ , c′⟩. ⟨I,O ,H, c⟩→ ⟨I′ ,O′ ,H′ , c′⟩.

Proof. By induction on the typing derivation.

Intuitively, progress states that a well-typed command is fully reduced or can take a
step.

Theorem 4.9 (Preservation). If Γ ⊢ c ∶ Θ1 Z⇒ Θ2 and ⟨I,O ,H, c⟩ → ⟨I′ ,O′ ,H′ , c′⟩,
where H ⊧ Θ1, then ∃Θ′

1 , Θ′
2 . Γ ⊢ c ∶ Θ′

1 Z⇒ Θ′
2 where H′ ⊧ Θ′

1 and Θ′
2 < Θ2.

Proof. By induction on a derivation of Γ ⊢ c ∶ Θ1 Z⇒ Θ2, with a case analysis on the last
rule used.

4.6. RELATEDWORK 49

Preservation says that if a command c is well-typed with input type Θ1 and out-
put type Θ2 and c evaluates to c′ in a single step, then there exists an input type Θ′

1
and an output type Θ′

2 that make c′ well-typed, and Θ′
1 describes the same maps of

header instances H as Θ1, and Θ′
2 is semantically contained in Θ2. We define syntactic

containment to be Θ1 < Θ2 ≜ JΘ1K ⊆ JΘ2K.

4.6 RelatedWork

Formal Reasoning for P4 Programs With respect to verifying the correctness of P4
programs, probably the most closely related work to SafeP4 is p4v [Liu+18]. Unlike
SafeP4, which is based on a static type system, p4v uses Dijkstra’s approach to program
verification based on predicate transformer semantics. To model the behavior of the
control plane, p4v uses first-order annotations. SafeP4’s typing rule for table application
is inspired by this idea, but adopts simple heuristics—e.g., we only assume that the
control plane is well-behaved—rather than requiring logical annotations. Both p4v and
P4Check can be used to verify safety properties of data planes modelled in P4—e.g.,
that no read or write operations are possible on an invalid header. As it is often the case
when comparing approaches based on types to those based on program verification, p4v
can check more complex properties, including architectural invariants and program-
specific properties—e.g., that the IPv4 time-to-live field is correctly decremented on
every packet. However, in general, it requires annotating the program with formal speci-
fications both for the correctness property itself and to model the behavior of the control
plane. McKeown et al. developed an operational semantics for P4 [McK+16], which is
translated to Datalog to verify safety properties and to check program equivalence. An
operational semantics for P4 was also developed in the K framework [RŞ10], yielding a
symbolic model checker and deductive verification tool [KR18]. Vera [Sto+18] models
the semantics of P4 by translation to SymNet [Sto+16], and develops a symbolic execu-
tion engine for verifying a variety of properties, including header validity. Compared
to SafeP4, these approaches do not use their formalization of P4 as a foundation for
defining a type system that addresses common bugs. To the best of our knowledge,
SafeP4 is the first formal calculus for a P4-like packet processing language that provides
correct-by-construction guarantees of header safety properties.

Ensuring Null-Safety Other languages have used type systems to rule our safety prob-
lems due to null references. For example, NullAway [Sri18] analyzes all Java programs
annotated with special annotations, making path-sensitive deductions about which
references may be null. Similar to the validity checks in SafeP4, NullAway analyzes
conditionals for null checks of the form var != null using data flow analysis.

Packet Processing Languages Looking further afield, PacLang [ESM04] is a con-
current packet-processing language that uses a linear type system to allow multiple
references to a given packet within a single thread. PacLang and SafeP4 share the use
of a type system for verifying safety properties, but they differ in the kind of properties
they address and, hence, the kind of type system they employ for this purpose. In
addition, the primary focus in PacLang is on efficient compilation whereas SafeP4 is
concerned with ensuring safety of header data. Domino [Siv+16] is a domain-specific
language for data plane algorithms supporting packet transactions—i.e., blocks of code
that are guaranteed to be atomic and isolated from other transactions. In Domino, the
programmer defines the operations needed for each packet without worrying about

50 CHAPTER 4. A TYPING DISCIPLINE TO ENSURE HEADER VALIDITY

other in-flight packets. In case of success, the compiler guarantees performance at the
line rate supported on programmable switches. Overall, Domino focuses on transac-
tional guarantees and concurrency rather than header safety properties. BPF+ [BMG99]
and eEBPF [Cor14] are packet-processing frameworks that can be used to extend the
kernel networking stack with custom functionality. The modern eBPF framework is
based on machine-level programming model, but it uses a virtual machine and code
verifier to ensure a variety of basic safety properties. Much of the recent work on eBPF
focuses on techniques such as just-in-time compilation to achieve good performance.
SNAP [Ara+16] is a language for stateful packet processing based on P4. It offers a
programming model with global state registers that are distributed across many physical
switches while optimizing for various criteria, such as minimizing congestion. More
specifically, the compiler analyzes read/write dependencies to automatically optimize
the placement of state and the routing of traffic across the underlying physical topology.

Taint Analysis and Formal Calculi While our approach to track validity is network-
specific, it is similar to taint analysis [VIS96; HOM06; HDM14], which attempts to
identify secure program parts that can be safely accessed. Of course, there is a long
tradition of formal calculi that aim to capture some aspect of computation and make
it amenable for mathematical reasoning. The design of SafeP4 is directly inspired
by Featherweight Java [IPW01], which stands out for its elegant formalization of a
real-world language in an extensible core calculus.

4.7 Chapter Summary

In this chapter we introduced SafeP4, a domain-specific language for program-mable
data planes, which is equipped with a static type system that guarantees that all headers
read or written are guaranteed to be valid. SafeP4models the essential features of P4
but prunes away language constructs that are secondary to how packets are processed.
To be compatible with both language versions P414 and P416, SafeP4 abstracts away
expression typing and evaluation behaviors for expressions in terms of n-ary constants
that are assumed to have sound types.

SafeP4 introduces the notion of header types, which allow the type system to
statically capture which header instances are valid at a specific point in the program. To
ensure that capturing valid headers is not too restrictive, SafeP4 employs occurrence
typing, which allows the type checker to use more precise types depending on whether
explicit validity checks succeed or fail. Furthermore, using a fine-grained representation
of valid header instances based on sets of sets of headers, SafeP4 is able to capture valid
header instances together with their dependencies per program path.

The problem of header validity being a dynamic property due to the interaction with
the control plane is addressed by modeling the runtime interface between the switch
and the controller using three functions. Given a table and the currently valid headers,
the first function returns the action to call and the possibly empty action data arguments.
The second function produces for each action of a table a set of valid headers that can
be safely assumed valid when the entries are populated by the control plane. From the
table declaration and the header instances that can be assumed valid, the third function
derives a list of match key expressions that must be evaluated when the table is invoked.
In addition, the control plane interface relies on three basic correctness properties that
are assumed to hold: (1) the control plane can safely install table entries that never read
invalid headers, (2) the action data provided by the control plane has the types expected

4.7. CHAPTER SUMMARY 51

by the action, and (3) the control plane will only assume valid headers for an action that
are valid for a given packet. These correctness properties allowed us to prove safety for
SafeP4’s type system.

CHAPTER5
Dependently-Typed Data Plane

Programming

In Chapter 4, we introduced SafeP4, a domain-specific language that uses a correct-by-
construction approach to statically eliminate a variety of errors based on header validity.
A major advantage of the presented approach is that no complex program annotations
are required, as is the case with other data plane verification tools. However, because
header validity is deeply baked into the system as a central correctness property, SafeP4
is limited in its ability to verify richer properties compared to other verification tools.
In particular, SafeP4 is not able to capture individual values of the program state. For
example, it is not possible to guarantee that headers are only ever accessed on mutually
exclusive program paths (e.g., IPv4 and IPv6) or to track dependencies between headers
based on header field values.

While type system-based approaches are so far limited in their expressiveness, they
have one key advantage over many existing data plane verification tools, which is
compositionality. Type systems are designed to enable compositional reasoning—i.e.,
the types for individual components document assumptions about the components they
rely upon as well as the guarantees they offer. So far, there has been little effort in writing
modular P4 code in which individual parts of the code can be reused, which has long
been common practice in general-purpose programming languages. However, recently,
there have been efforts to enable modular designs of data plane programs [Gao+20;
Son+20], paving the way for an “open-world” model in which third-party components
are embedded into existing programs.

The question therefore arises whether it is possible to combine the expressive power
of fully-fledged verification tools with the compositional checking inherent to type
systems. Dependently-typed languages [XP99; Con+07; RKJ08; Vaz+14] are increasingly
blurring the line between type checking and theorem proving. For instance, Liquid
Haskell [RKJ08; Vaz+14] allows programmers to smoothly shift from properties that
can be checked with traditional typing disciplines to more sophisticated ones. Under
the hood, an SMT solver automatically discharges the formulas generated during type
checking without requiring manual proofs. So far, the dependently-typed approach has
not yet been explored in the context of network programming.

53

54 CHAPTER 5. DEPENDENTLY-TYPED DATA PLANE PROGRAMMING

1 parser MyParser(packet_in pkt, out headers hdr, ...) {

2 state start {

3 pkt.extract(hdr.ethernet);

4 transition select(hdr.ethernet.etherType) {

5 0x0800: parse_ipv4;

6 default: accept;

7 }

8 }

9 state parse_ipv4 {

10 pkt.extract(hdr.ipv4);

11 transition accept;

12 }

13 }

14

15 control MyIngress(inout headers hdr, ...) {

16 apply {

17 if (hdr.ipv4.isValid()) {

18 if (hdr.ipv4.src == 10.10.10.10) {

19 drop();

20 }

21 }

22 }

23 }

Figure 5.1: Safe program according to SafeP4, using a validity check in the ingress.

In this chapter, we present Π4, a dependently-typed core of the P4 language. For
Π4’s type system, we extend SafeP4’s header types to heap types, which also capture
the shape of valid packet headers as well as the shape of the incoming and outgoing
packet. We formalize its syntax and semantics and show how we can enable precise
typing in the presence of domain-specific features that combine packet serialization and
deserialization operations with imperative control flow. For example, our novel chomp
operator allows to precisely capture the effect of packet deserialization, i.e., it allows
to compute the type that remains after extracting bits from a packet buffer. Finally, we
prove safety for Π4’s type system.

5.1 An Overview of Π4

To get a first understanding of how dependent types allow checking richer properties,
this section provides a high-level overview ofΠ4. Let us consider the program shown in
Figure 5.1. The parser (lines 1 to 13) extracts Ethernet, optionally followed by IPv4. The
ingress uses an explicit validity check to make sure that IPv4 is valid before conditionally
dropping the packet depending on the value of the IPv4 source address (lines 17-19).

This program will pass SafeP4’s type checker. On the other hand, if we use the same
parser but the implementation of the ingress control shown in Figure 5.2, SafeP4’s type
checker will reject the program. This might be surprising, because the parser guarantees

5.2. DESIGN 55

1 control MyIngress(inout headers hdr, ...) {

2 apply {

3 if (hdr.ethernet.etherType == 0x0800) {

4 if (hdr.ipv4.src == 10.10.10.10) {

5 drop();

6 }

7 }

8 }

9 }

Figure 5.2: Ingress control using a data-dependent check to guarantee only valid headers
are accessed.

that if the EtherType is equal to 0x0800, the IPv4 header is also valid, thus, the program
is actually safe. However, the type computed for the parser ethernet ⋅ (ipv4 + 1)
does not guarantee that IPv4 is valid on all program paths and also the path-sensitive
reasoning does not add additional assumptions about the validity of IPv4 in the ingress.

To address this problem, Π4 employs a dependent type system [XP99], in which we
can compute a precise type for the program after parsing:

(x ∶ {y ∶ є ∣ ∣y.pktin∣ > 272})→

(Σy ∶ ether.{z ∶ ipv4 ∣ y.ether.etherType == 0x0800} +
{y ∶ ether ∣ y.ether.etherType ≠ 0x0800})

Intuitively, this type says that, starting with the empty heap (y ∶ є) with at least
enough bits to extract both the Ethernet and the IPv4 header (∣y.pkt in ∣ > 272), the
parser ends in one of two possible states (denoted by +): (1) both Ethernet and IPv4
are valid (Σy ∶ ether.{z ∶ ipv4 ∣ ...}), if the EtherType is equal to 0x0800 (note how
z ∶ ipv4 is conditioned by y.ether.etherType == 0x0800) or (2) just Ethernet is
valid, if EtherType is not equal to 0x0800. When checking the ingress control, the
type checker can use the predicate ether.etherType == 0x0800 on the conditional to
derive the set of valid header instances, which in this case includes IPv4. Thus, accessing
the IPv4 source address is safe, and the program correctly passes the type checker.

While the output type is admittedly notationally heavy—a common feature in
precise type systems— the programmer is not forced to write down the most precise
type. Π4 only requires the annotated type to be sufficiently precise to capture basic
safety guarantees and other desired invariants. For example, in a program where only
the Ethernet header is needed to be valid at the end of the parser, we can use the type
(x ∶ {y ∶ є ∣ ∣y.pktin∣ > 272})→ ether≈, which indicates that at least Ethernet is valid
but possibly others, too.

5.2 Design

In designing Π4, our primary goal is to enable data plane programmers to make use
of dependent types to verify useful program properties in a compositional way and
without having to write manual proofs. We want to show that dependent types are a
good match for data plane programming.

56 CHAPTER 5. DEPENDENTLY-TYPED DATA PLANE PROGRAMMING

Deviation from P4 Similar to SafeP4, Π4 focuses on the unique aspects of the P4
programming language, which benefit from dependent types, (e.g., parsing, deparsing,
validity, and control flow) and omits features that would simply add clutter (e.g., externs,
registers, checksums, hashing, and pipelines). We can even get away without explicitly
modeling tables. Following p4v [Liu+18],Π4 uses ghost state and conditionals to encode
tables, which is discussed in detail in Section 8.3.2. Consequently, Π4 is a loop-free1
imperative languagewith a few domain-specific primitive commands: extract(ι), add(ι),
remove(ι), remit(ι), and reset.

P4’s emit primitive serializes a header instance ι into a series of bits and prepends it
to the outgoing packet payload, only if ι is valid, otherwise it does nothing. To simplify
typing rules and semantics, Π4 provides the primitive remit(ι), which really emits ι if it
is valid, and otherwise gets stuck. Hence, emit(ι) can be expressed using the command
if (ι.valid) remit(ι) else skip.

We follow the design decisions made in SafeP4 with respect to explicitly validating
header instances. Again, to avoid dealing with undefined values from reads to uninitial-
ized header instances, rather than forcing the programmer to manually write default
values, the add(ι) command sets ι.valid to true, and assigns instance ι a pre-determined
default value (say 0). If required, P4’s behavior could be encoded using an extra 1-bit
header to independently track the validity of the instance and initialization of its fields.

We also introduce a new primitive, reset, which models the behavior of P4 between
pipeline stages. In many switch architectures [Bos+13], packets are deparsed and then
reparsed between pipelines—e.g., after ingress and before egress. The reset command
encodes the behavior of the inner step: it combines the deparsed bits with the packet’s
unparsed payload and passes it along as the input to the next stage.

Wemodel header field accesses as direct bit-slices into the instance (to avoid another
layer of indirection in our semantics)—i.e., eth.srcAddr is written eth[48 ∶96].

Type system Π4’s type system is intended to promote modular reasoning, so we need
a way to annotate and modularly check programs with types. We annotate a program c
with a type σ using an ascription operator c as σ . The ascription has no effect on the
runtime behavior of the code (i.e., c as σ always just steps to c). It does, however, indicate
a program point where type checking should occur. Hence, we can independently type
check c with type σ and then use σ when checking the rest of the program.

We always assign a dependent function type (x ∶ τ1)→ τ2 to a command c, where x
may occur in τ2. This design allows us to relate the input and output heaps of commands
described by heap types τ1 and τ2 respectively. For example, we may want to ensure that
the Ethernet header has the same value after being deparsed, followed by a reset, and then
being parsed again. To express equations like this, we use refinement types {y ∶ τ ∣ φ},
where φ is a formula in the logic of variable-width bit vectors with concatenation and
length operators. In this example, we could say that the Ethernet header is unchanged
by using the type {y ∶ τ2 ∣ x .eth = y.eth}.

Granularity of types Our goal is to equip Π4’s type system with the ability to cap-
ture information down to the bit level. In particular, we must ensure that the input
type and output type remain consistent after bits have been shuffled around by a com-
mand, which is especially challenging when parsing. For example, given an input type
{x ∶ ⊺ ∣ x .pkt in[0 ∶8] = 0x04 ∧ ∣x .pkt in ∣ > 160}, where x .pkt in represents an incoming

1P4 allows loops within parsers, but because programs are restricted to finite state, the language specifica-
tion allows implementations to unroll loops.

5.3. SYNTAX 57

τ ∶∶= ∅ ∣ ⊺ ∣ Σx ∶ τ.τ ∣ τ + τ ∣ {x ∶ τ ∣ φ} ∣ τ[x ↦ τ] (heap types)
σ ∶∶= N ∣ B ∣ BV ∣ (x ∶ τ)→ τ (base types)
φ ∶∶= e = e ∣ e > e ∣ φ ∧ φ ∣ ¬φ ∣ x .ι.val id ∣ true ∣ false (formulae)
e ∶∶= n ∣ bv ∣ ∣x .p∣ ∣ e + e ∣ e@e ∣ x .p ∣ x .p[l ∶r] ∣ x .ι[l ∶r] (expressions)
bv ∶∶= ⟨⟩ ∣ 0 ∶∶ bv ∣ 1 ∶∶ bv ∣ bn ∶∶ bv (bit vectors)
p ∶∶= pkt in ∣ pktout (packets)
c ∶∶= extract(ι) ∣ add(ι) ∣ remove(ι) ∣ ι.f ∶= e ∣ remit(ι) ∣ (commands)

reset ∣ if (φ) c else c ∣ c; c ∣ skip ∣ c as (x ∶ τ)→ τ
d ∶∶= η { f ∶ BV} ∣ ι ↦ η (declarations)
P ∶∶= (d , c) (programs)

Figure 5.3: Syntax of Π4

packet and the command extract(ipv4), the output type should reflect that the ipv4
header instance is now valid, that ipv4[0 ∶ 8] is 0x04, and that x .pkt in may have no
more bits remaining. Π4 accomplishes this using two key mechanisms: (1) a dependent
sum type Σx ∶ τ1 .τ2 that computes the disjoint union of the valid instances in τ1 and
τ2 and concatenates the incoming and outgoing packets and (2) a refinement trans-
former, chomp, that manipulates input refinements to be consistent with the extraction
operation.

5.3 Syntax

Figure 5.3 shows the syntax of Π4. Boolean formulae φ include expression equality
(e1 = e2), expression comparison (e1 > e2), conjunction (∧), negation (¬), validity of
instances (x .ι.valid) and boolean literals true and false. Expressions e include naturals,
bit vectors, packet length ∣x .p∣, addition (+), concatenation (e1@e2), packet access x .p
and slices of packets (x .p[l ∶ r]) and instances (x .ι[l ∶ r]). Packet accesses refer either to
the input packet (pkt in) or the output packet (pktout).

To ease the notation, we write x .ι[l] instead of x .ι[l ∶ l + 1] for bit-wise access,
x .ι. f instead of x .ι[l ∶ r] for ranges matching header instance fields, x .ι instead of
x .ι[0 ∶ sizeof(ι)], and similarly for the corresponding expressions involving packet
variables x .p. We use a list-like encoding of bit vectors. A bit vector is either the empty
bit vector ⟨⟩ or a concatenation of bits. We assume that bit variables bn are not part of
the surface syntax and are only used internally. For singleton bit vectors, we write ⟨b⟩
instead of b ∶∶ ⟨⟩.

We write x ≡ y (respectively x ≡ι y) as syntactic sugar for the boolean predicates
capturing strict equality (respectively instance equality) between the heaps bound to x
and y. Strict equality requires that both the input and output packets are equivalent as
well as all instances contained in the heap. It is formally defined as follows:

x ≡ y ≜ x .pkt in = y.pkt in ∧ x .pktout = y.pktout∧
⋀

ι∈dom(HT)
(x .ι.valid ∧ y.ι.valid ∧ x .ι = y.ι) ∨ (¬x .ι.valid ∧ ¬y.ι.valid)

In contrast, instance equality only requires that the instances are equivalent in both
heaps according to the following definition:

x ≡ι y ≜ ⋀
ι∈dom(HT)

(x .ι.val id ∧ y.ι.valid ∧ x .ι = y.ι) ∨ (¬x .ι.valid ∧ ¬y.ι.valid)

58 CHAPTER 5. DEPENDENTLY-TYPED DATA PLANE PROGRAMMING

A program consists of a sequence of declarations d and a command c, where x is
a shorthand for a possibly empty sequence x1 , ..., xn . Declarations d include header
type declarations η { f ∶ BV} and header instance declarations ι ↦ η. Header type
declarations specify the format of network packet headers. They are defined in terms of
a name and a sequence of field declarations, where each field is itself defined in terms of
a field name and a bit vector type. We write f ∶ BV to denote that field f has a bit vector
type BV. With η ranging over header types, the instance declaration ι ↦ η assigns the
name ι to header type η. The global mapping between header instances and header types
is stored in the so-called header tableHT . We assume that names of header instances
and header types are drawn from disjoint sets of names and that each name is declared
only once.

Π4 provides commands for parsing (extract), creating (add), removing (remove)
and modifying (ι. f ∶= e) header instances. The remit command serializes a header
instance into a bit sequence. The reset command resets the program state—in partic-
ular, the packet buffers and all assumptions about header validity. The if -command
conditionally executes one out of two commands based on the value of the boolean
formulae φ. Commands can be sequentially composed (c1; c2), skip is a no-op, and with
type ascription (c as (x ∶ τ)→ τ) it is possible to explicitly assign a type to a command
which it is assumed to have at the current point in the program. We assume that every
header referenced in a program has a corresponding instance declaration—a property
that could be enforced using a simple static analysis.

Both heap types and commands share the same syntactic categories of formulas and
expressions. However, since there are no binders at the level of commands, we implicitly
assume that formulas used as the condition for an if-statement as well as expressions
assigned to header fields are implicitly prefixed with a variable named heap. We usually
omit these binders in the surface syntax, for example, we write if(ethernet.valid)
...else... instead of if(heap.ethernet.valid)...else....

Π4 provides two categories of types, base types σ and heap types τ. Base types
include natural numbers (N), booleans (B), bit vectors (BV) and dependent function
types ((x ∶ τ) → τ). Heap types include the bottom type (∅), the top type (⊺) and
dependent pairs Σx ∶ τ1 .τ2, where x may occur in τ2. Π4 also supports fine-grained
path-dependent reasoning via union types (τ1 + τ2). Refinement types {x ∶ τ ∣ φ}
allow to endow a type with a boolean predicate φ which is assumed to hold for all
heaps described by type τ. We also often need to reference intermediate types, which is
achieved with substitution types τ2[x ↦ τ1], where x may occur in τ2. In such a type,
τ1 may represent the type at any earlier point in the program.

To ease the notation, we additionally define the types є, ι and ι≈. These types
are only syntactic sugar and thus can be expressed by combinations of the previously
described heap types. The type є ≜ {x ∶ ⊺ ∣ ⋀ι∈dom(HT) ¬x .ι.val id} describes the
empty heap on which no header instances are valid. The type ι ≜ {x ∶ ⊺ ∣ x .ι.valid ∧
⋀ι′∈dom(HT), ι′≠ι ¬x .ι′ .valid} describes the heap on which only instance ι is valid, while
ι≈ ≜ {x ∶ ⊺ ∣ x .ι.valid} describes the heap on which at least instance ι is guaranteed to
be valid.

5.4 Well-formedness

We assume that all types, formulae and expressions are well-formed, i.e., they satisfy the
following basic syntactic properties as defined in Figure 5.4, Figure 5.5 and Figure 5.6.

1. There are no free variables in types

5.5. DYNAMIC SEMANTICS 59

Wf-Nat

wf N

Wf-Bool

wf B

Wf-BV

wf BV

Wf-Pi
⋅ ⊢ wf τ τ1 x ⊢ wf τ τ2

wf (x ∶ τ1)→ τ2

Wf-Nothing

Γ ⊢ wf τ ∅

Wf-Top

Γ ⊢ wf τ ⊺

Wf-Choice
Γ ⊢ wf τ τ1 Γ ⊢ wf τ τ2

Γ ⊢ wf τ τ1 + τ2

Wf-Sigma
Γ ⊢ wf τ τ1 Γ, x ⊢ wf τ τ2

Γ ⊢ wf τ Σx ∶ τ1 .τ2

Wf-Ref
Γ ⊢ wf τ τ Γ, x ⊢ wfφ φ

Γ ⊢ wf τ {x ∶ τ ∣ φ}

Wf-Subst
Γ, x ⊢ wf τ τ1 Γ ⊢ wf τ τ2

Γ ⊢ wf τ τ1[x ↦ τ2]

Figure 5.4: Well-formedness of types.

Wf-True

Γ ⊢ wfφ true

Wf-False

Γ ⊢ wfφ false

Wf-Valid
x ∈ Γ

Γ ⊢ wfφ x .ι.val id

Wf-Neg
Γ ⊢ wfφ φ
Γ ⊢ wfφ ¬φ

Wf-Conj
Γ ⊢ wfφ φ1 Γ ⊢ wfφ φ2

Γ ⊢ wfφ φ1 ∧ φ2

Wf-Eq
Γ ⊢ wf e e1 Γ ⊢ wf e e2

Γ ⊢ wfφ e1 = e2

Wf-Gt
Γ ⊢ wf e e1 Γ ⊢ wf e e2

Γ ⊢ wfφ e1 > e2

Figure 5.5: Well-formedness of formulae.

2. The bounds of bit vector slices are positive and describe at least a range of length
one.

3. The bounds of instance slices respect the statically known size of the instance

5.5 Dynamic Semantics

The operational semantics of Π4 is in many aspects similar to the operational semantics
of SafeP4 (cf. Section 4.4). It is also defined in terms of a four-tuple ⟨I,O ,H, c⟩, where
I is the bit stream of the incoming packet, O is the bit stream of the outgoing packet, H
is a map that relates instance names to records containing the field values, and c is a
command. The rules of the operational semantics of Π4 are shown in Figure 5.8.

The semantics of the extract command (ruleE-Extract) is identical to the semantics
of the command in SafeP4. Again, we assume the existence of a deserialization function
deserializeη (as defined in Section 4.4) that copies the appropriate number of bits from
the input bit stream into the deserialized representation of the instance v leaving the
remainder of the input bit stream I′. The deserialized value is added to the map of valid
header instances H.

60 CHAPTER 5. DEPENDENTLY-TYPED DATA PLANE PROGRAMMING

Wf-Num

Γ ⊢ wf e n

Wf-Bitvec

Γ ⊢ wf e bv

Wf-Length
x ∈ Γ

Γ ⊢ wf e ∣x .p∣

Wf-Plus
Γ ⊢ wf e e1 Γ ⊢ wf e e2

Γ ⊢ wf e e1 + e2

Wf-Concat
Γ ⊢ wf e e1 Γ ⊢ wf e e2

Γ ⊢ wf e e1@e2

Wf-Packet
x ∈ Γ

Γ ⊢ wf e x .p

Wf-PacketSlice
x ∈ Γ l ≥ 0 l < r

Γ ⊢ wf e x .p[l ∶ r]

Wf-InstanceSlice
x ∈ Γ l ≥ 0 l < r r ≤ sizeof(ι)

Γ ⊢ wf e x .ι[l ∶ r]

Figure 5.6: Well-formedness of expressions.

E-Extract
HT (ι) = η deserializeη(I) = (v , I′)

⟨I,O ,H, extract(ι)⟩→ ⟨I′ ,O ,H[ι ↦ v], skip⟩

E-Add
ι /∈ dom(H) HT (ι) = η initη = v
⟨I,O ,H, add(ι)⟩→ ⟨I,O ,H[ι ↦ v], skip⟩

E-Remove
ι ∈ dom(H)

⟨I,O ,H, remove(ι)⟩→ ⟨I,O ,H ∖ ι, skip⟩

E-Mod
H(ι) = r r′ ≜ {r with f = v}

⟨I,O ,H, ι. f ∶= v⟩→ ⟨I,O ,H[ι ↦ r′], skip⟩

E-Mod1
⟨I,O ,H, t⟩→ t′

⟨I,O ,H, h.f = t⟩→ ⟨I,O ,H, h.f = t′⟩

E-Remit
ι ∈ dom(H) HT (ι) = η

serializeη(H(ι)) = bv
⟨I,O ,H, remit(ι)⟩→ ⟨I,O ∶∶ bv ,H, skip⟩

E-Reset
I′ = O@I

⟨I,O ,H, reset⟩→ ⟨I′ , ⟨⟩, [], skip⟩

Figure 5.7: Small-step operational semantics of Π4.

Command add evaluates by ruleE-Add if the instance is not yet valid. The evaluation
is similar to rule E-Extract, except that no bits are taken from the input bit stream.
Again, we assume that there exists an initialization function initη for every heap type η
that initializes all fields of an instance to a fixed value (cf. Section 4.4). If an instance is
already valid, the program gets stuck.

Removing a header instance (rule E-Remove) requires that the header instance is
valid—i.e., it is contained in H. While the input and output packet are not affected, the
instance is removed from the map of valid header instances H, which is denoted by
H ∖ ι.

Command remit(ι) (rule E-Remit) also requires that the header instance is valid.

5.5. DYNAMIC SEMANTICS 61

E-Seq

⟨I,O ,H, skip; c2⟩→ ⟨I,O ,H, c2⟩

E-Seq1
⟨I,O ,H, c1⟩→ ⟨I′ ,O′ ,H′ , c′1⟩

⟨I,O ,H, c1; c2⟩→ ⟨I′ ,O′ ,H′ , c′1; c2⟩

E-Ascribe

⟨I,O ,H, c as (x ∶ τ1)→ τ2⟩→ ⟨I,O ,H, c⟩

E-If
⟨I,O ,H, φ⟩→ φ′

⟨I,O ,H, if (φ) then c1 else c2⟩→ ⟨I,O ,H, if (φ′) then c1 else c2⟩

E-IfTrue

⟨I,O ,H, if (true) then c1 else c2⟩→ ⟨I,O ,H, c1⟩

E-IfFalse

⟨I,O ,H, if (false) then c1 else c2⟩→ ⟨I,O ,H, c2⟩

Figure 5.8: Additional rules of the small-step operational semantics of Π4.

Again, we assume there is a serialization function for every heap type (cf. Section 4.4),
which turns a record representing the instance back into a bit sequence. The serialized
bit sequence is appended to the end of the outgoing packet. Both the input packet and
the set of valid headers remain unchanged. In contrast to SafeP4, the program gets
stuck, if we try to emit a header instance that is currently not valid.

Rule E-Mod defines the semantics of assigning a value to a header field. Assuming r
is the record storing the values of the fields, an updated record r′ with the modified field
value is stored in H. The input and output packets remain unchanged. If the assigned
expression is not a value, it is reduced first (rule E-Mod1).

Rule E-Reset defines the semantics of the command reset. It would be invoked
between the ingress and egress pipelines, when the packet emitted by the ingress becomes
the input packet for the egress. Operationally, the bits contained in the output packet
are prepended to the bits of the input packet. This concatenated bit sequence serves as
the new input packet. The output packet is emptied and all valid header instances are
discarded.

An ascribed command c as σ (rule E-Ascribe) evaluates to c trivially, without
modifying the heap. The rules for sequencing (E-Seq, E-Seq1) are standard. Sequences
of commands evaluate from left to right—i.e., the left-hand command is reduced to
skip before the right-hand command is evaluated. The evaluation rules for conditionals
are also standard. Conditionals reduce the boolean formula first (rule E-If) and if it
evaluates to true, the then-branch (rule E-IfTrue) otherwise the else-branch (rule
E-IfFalse) is evaluated.

62 CHAPTER 5. DEPENDENTLY-TYPED DATA PLANE PROGRAMMING

JτKE ⊆ P(H)
J∅KE = {}
J⊺KE =H

Jτ1 + τ2KE = Jτ1KE ∪ Jτ2KE
JΣx ∶ τ1 .τ2KE = {h1 ++ h2 ∣ h1 ∈ Jτ1KE ∧ h2 ∈ Jτ2KE[x↦h1]}

Jτ1[x ↦ τ2]KE = {h∣h2 ∈ Jτ2KE ∧ h ∈ Jτ1KE[x↦h2]}
J{x ∶ τ ∣ e}KE = {h ∣ h ∈ JτKE ∧ JeKE[x↦h] = true}

Figure 5.9: Semantics of heap types

⎡⎢⎢⎢⎢⎢⎣

a ↦ 1011
pkt in ↦ 1101
pktout ↦ ⟨⟩

⎤⎥⎥⎥⎥⎥⎦
++

⎡⎢⎢⎢⎢⎢⎣

b ↦ 11
pkt in ↦ 0
pktout ↦ 0000

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a ↦ 1011
b ↦ 11
pkt in ↦ 11010
pktout ↦ 0000

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Figure 5.10: Example of a heap concatenation. The resulting heap contains the union of
header instances while the input packet respectively output packet of the second heap is
appended to the input packet respectively output packet of the first heap.

5.6 Static Semantics

Π4’s type system is capable of capturing bit-level dependencies between header instances
and the incoming and outgoing packet at any given program point. A heap h in the set of
heapsH describes such a possible system state, consisting of the incoming and outgoing
packet and the set of valid header instances. We model heaps as maps from names to bit
vectors. A heap contains for every valid header instance a mapping from the instance
name to a bit vector, as well as two special entries pkt in and pktout representing the
incoming and outgoing packet buffers.

Semantics of heap types Heap types τ represent sets of heaps, where each element in
the set describes a different program path. Heap types are evaluated in an environment
E , which maps variables x,y,z to heaps and bit variables b0, b1, b2 to single bits. The
environment models other heaps available in the current scope upon which the current
header type may depend.

The semantics of types is shown in Figure 5.9. The type ∅ denotes the empty set.
It is used in situations where there are unsatisfiable assumptions involving the header
instances or the incoming and outgoing packet buffers. The top type ⊺ denotes the set
of all possible heaps. The choice type τ1 + τ2 denotes the union of the sets of heaps
represented by τ1 and τ2. The dependent pair Σx ∶ τ1 .τ2 denotes the concatenation
of heaps from τ1 and τ2, where heaps described by τ2 may depend on heaps from τ1.
The concatenation h = h1 ++ h2 of two heaps h1 and h2 requires that header instances
contained in h1 and h2 are disjoint. The resulting heap contains all instances from h1
and from h2, with pkt in and pktout being the concatenation of respective bit vectors in
h1 and h2 as exemplified in Figure 5.10.

5.6. STATIC SEMANTICS 63

JφKE ∈ B
Je1 = e2KE = Je1KE = Je2KE
Je1 > e2KE = Je1KE > Je2KE
Jφ1 ∧ φ2KE = Jφ1KE ∧ Jφ2KE

J¬φKE = ¬JφKE
Jx .ι.validKE = ι ∈ dom(E(x))

JtrueK = true
JfalseK = false

Figure 5.11: Semantics of formulae.

The explicit substitution τ1[x ↦ τ2] denotes the set of heaps obtained by evaluating
τ1 for every heap described by τ2. Finally, the refinement type {x ∶ τ ∣ φ} denotes the set
of heaps described by τ for which the predicate φ holds. The semantics of the additional
heap types we have defined as syntactic sugar is defined as follows:

JєKE = {h ∣ ∀ι.ι /∈ dom(h)}
JιKE = {h ∣ ι ∈ dom(h) ∧ ∀ι′ ∈ dom(HT). ι′ ≠ ι → ι′ /∈ dom(h)}

Jι≈KE = {h ∣ ι ∈ dom(h)}

Semantics of formulae Thesemantics of formulae is defined in Figure 5.11. Refinement
predicates φ are evaluated in the same type of environment as heap types. Formulae
evaluate to a boolean value, i.e., JφKE ∈ B. The semantics of expression equality (e1 =
e2) is defined as the semantic equality between expressions e1 and e2. Similarly, the
semantics of expression comparison (e1 > e2) is defined as the semantic comparison
between expressions e1 and e2. Instance validity (x .ι.valid) evaluates to true, if header
instance ι is contained in the heap bound to x in environment E , otherwise it evaluates
to false. The semantics of conjunction, negation and the boolean literals true and false
are standard.

Semantics of expressions The semantics of expressions is defined in Figure 5.12.
Expressions evaluate to either a bit vector or a natural number. Again, we use the same
evaluation environment E . The semantics of naturals and bit vectors is standard, except
for bit variables bn. In addition to bit literals 0 and 1, bit vectors can contain bit variables,
which are looked up from the environment during evaluation. The semantic of addition
is also standard. To evaluate the length of a packet ∣x .p∣, we compute the length of the
bit vector of pkt in or pktout respectively in the heap bound to x in the environment.
The semantics of bit vector concatenation is as expected. If Je1KE = ⟨b0 , ..., bn⟩ and
Je2KE = ⟨bn+1 , ..., bm⟩, then Je1@e2K = ⟨b0 , ..., bn , bn+1 , ..., bm⟩.

A packet access x .p looks up the respective entry from the heap bound to variable x
in E . A packet slice x .p[l ∶r] is evaluated in the sameway, but additionally the designated
slice is obtained from the bit vector. The semantics of instance slices x .ι[l ∶r] is defined
similarly, but the lookup occurs on header instance ι. Since the size and order of header
fields is statically known, a field access x .ι. f is just a named slice on a header instance.
We interpret slices as half-open intervals, where the left bound is included and the right
bound is excluded. For example, given a bit vector bv = 1010 we have bv[1 ∶4] = 010.

64 CHAPTER 5. DEPENDENTLY-TYPED DATA PLANE PROGRAMMING

JeKE ∈ BV ∪N
JnKE = n

J∣x .p∣KE =
⎧⎪⎪⎨⎪⎪⎩

0 if E(x)(p) = ⟨⟩
n if E(x)(p) = ⟨b1 , ..., bn⟩

Je1 + e2KE = Je1KE + Je2KE
Je1@e2KE = Je1KE@Je2KE

Jx .pKE = {⟨b1 , ..., bn⟩ if E(x)(p) = ⟨b1 , ..., bn⟩

Jx .p[n ∶ m]KE = {⟨bn , ..., bm−1⟩ if Jx .pKE = ⟨b0 , ..., bk⟩ ∧ 0 ≤ n < m ≤ k + 1

Jx .ι[n ∶ m]KE = {⟨bn , ..., bm−1⟩ if Jx .ιKE = ⟨b0 , ..., bk⟩ ∧ 0 ≤ n < m ≤ k + 1

JbvKE ∈ BV
J⟨⟩KE = ⟨⟩

J0 ∶∶ bvKE = ⟨0, b1 , ..., bn⟩ if JbvKE = ⟨b1 , ..., bn⟩
J1 ∶∶ bvKE = ⟨1, b1 , ..., bn⟩ if JbvKE = ⟨b1 , ..., bn⟩

Jbn ∶∶ bvKE = ⟨E(bn), b1 , ..., bm⟩ if JbvKE = ⟨b1 , ..., bm⟩

Figure 5.12: Semantics of expressions (top) and bit vectors (bottom).

Operations on heap types Wedefine two semantic operations on heap types: inclusion
and exclusion of instances. The first, Includes Γ τ ι, traverses τ and checks that instance
ι is valid in every heap. Semantically this says that ι is a member of every element of
JτKE—i.e., if E ⊧ Γ, then ∀h ∈ JτKE .ι ∈ dom(h). The second, Excludes Γ τ ι, traverses
τ and checks that instance ι is invalid in every heap. Semantically this says that ι is no
member of every element of JτKE—i.e., if E ⊧ Γ, then ∀h ∈ JτKE .ι /∈ dom(h).

Typing Judgment The typing judgement has the form Γ ⊢ c ∶ (x ∶ τ1)→ τ2. Intuitively,
type τ1 describes the input heap and τ2 describes the output heap obtained after the
execution of command c. Γ is a variable context that maps variable names to heap
types and is used to capture additional dependencies of the input type. If a command
typechecks in a context where ymaps to τ (i.e., Γ, y ∶ τ ⊢ c ∶ (x ∶ τ1)→ τ2) it means that
given some heap described by type τ on which the input heap might depend, executing
c on the input heap described by τ1 will result in a heap described by τ2.

Subtyping We write Γ ⊢ τ1 <∶ τ2 to denote the subtyping check between τ1 and τ2.
Context Γ captures external dependencies of τ1 and τ2 respectively. We define subtyping
semantically as follows:

Γ ⊢ τ1 <∶ τ2 ≜ ∀E .E ⊧ Γ Ô⇒ Jτ1KE ⊆Jτ2KE

Type τ1 is a subtype of type τ2 in context Γ, if and only if for any environment E such
that environment E entails context Γ, the set of heaps described by τ1 is a subset of the
set of heaps described by τ2 both evaluated in environment E .

5.6. STATIC SEMANTICS 65

Ent-Top

(I,O ,H) ⊧E ⊺

Ent-ChoiceL
(I,O ,H) ⊧E τ1
(I,O ,H) ⊧E τ1 + τ2

Ent-ChoiceR
(I,O ,H) ⊧E τ2
(I,O ,H) ⊧E τ1 + τ2

Ent-Refine
(I,O ,H) ⊧E τ

JeKE[x↦(I ,O ,H)] = true
(I,O ,H) ⊧E {x ∶ τ ∣ e}

Ent-Sigma
(I1 ,O1 ,H1) ⊧E τ1

(I2 ,O2 ,H2) ⊧E[x↦(I1 ,O1 ,H1)] τ2
(I1@I2 ,O1@O2 ,H1 ∪H2) ⊧E Σx ∶ τ1 .τ2

Ent-Subst
(I2 ,O2 ,H2) ⊧E τ2

(I,O ,H) ⊧E[x↦(I2 ,O2 ,H2)] τ1
(I,O ,H) ⊧E τ1[x ↦ τ2]

Figure 5.13: Entailment between heaps and heap types.

The entailment between environment E and typing context Γ is formally defined as
follows:

E ⊧ Γ ≜ ∀x i ∈ dom(Γ).E(x i) = h i ∧ h i ⊧E Γ(x i)

An environment E entails a context Γ, iff for every mapping from a variable name x i
to some heap type τ i in Γ there exists a mapping from variable x i to some heap h i in
environment E and that heap h i entails type τ i . The entailment relation between a
heap and a type is defined in Figure 5.13. A heap H[pkt in ↦ I, pktout ↦ O], in short
(I,O ,H) entails a type τ, if the heap (I,O ,H) is contained in the semantics of τ.

Command typing The typing rules for commands are shown in Figure 5.14 and
Figure 5.15. The typing rule T-Extract first captures that in order to execute an extract
command, the input packet must provide enough bits to populate the instance. The
predicate sizeof pkt in(τ) ≥ n holds, if and only if the input packet in any heap described
by type τ contains at least n bits, i.e., sizeof pkt in(τ) ≥ n iff ∀E , h ∈ JτKE .∣h(pkt in)∣ ≥ n.

Further, rule T-Extract also captures that instance ι must be valid after an extract
command is executed. When a packet header is extracted, the first n bits—where n
is the number of bits contained in the header instance—are removed from the input
packet and copied into the instance. We need to reflect this change accordingly. This
is the task of the chomp refinement transformer, which transforms our input type to
obtain a new type, which reflects this change. The chomp operator will be discussed in
detail in Section 5.7.

Rule T-Add first checks that the instance is not yet included in the type and assigns
an output type that reflects that all information from the input type τ1 is retained and
just instance ι is added, which is initialized with the value provided by initialization
function initHT (ι).

To typecheck a modification of an instance field, the typing rule T-Mod first checks
if the instance to be modified is guaranteed to be valid in the input type. Helper function
F(ι, f) returns the bit vector type for field f in instance ι. While in our formalization we
do not explicitly distinguish different bit vector types, this allows for a more fine-grained
check if the assigned expression is compatible with the header field. Instead of just

66 CHAPTER 5. DEPENDENTLY-TYPED DATA PLANE PROGRAMMING

T-Extract
Γ ⊢ sizeof pkt in(τ1) ≥ sizeof(ι) φ1 ≜ z.pkt in = z.pktout = ⟨⟩

φ2 ≜ y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x
Γ ⊢ extract(ι) ∶ (x ∶ τ1)→ Σy ∶ {z ∶ ι ∣ φ1}.{z ∶ chomp(τ1 , ι, y) ∣ φ2}

T-Add
Excludes Γ τ1 ι initHT (ι) = v

φ ≜ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v
Γ ⊢ add(ι) ∶ (x ∶ τ1)→ Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ φ}

T-Mod
Includes Γ τ1 ι F(ι, f) = BV Γ; τ1 ⊢ e ∶ BV
φpkt ≜ y.pkt in = x .pkt in ∧ y.pktout = x .pktout
φι ≜ ∀κ ∈ dom(HT). κ ≠ ι Ô⇒ y.κ = x .κ ∧

φ f ≜ ∀g ∈ dom(HT (ι)). g ≠ f Ô⇒ y.ι.g = x .ι.g
Γ ⊢ ι. f ∶= e ∶ (x ∶ τ1)→ {y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = e[x/heap]}

T-Remove
Includes Γ τ1 ι

φι ≜ ∀κ ∈ dom(HT).κ ≠ ι Ô⇒ y.κ = x .κ
φpkt ≜ y.pkt in = x .pkt in ∧ y.pktout = x .pktout

Γ ⊢ remove(ι) ∶ (x ∶ τ1)→ {y ∶ ⊺ ∣ φι ∧ φpkt ∧ ¬y.ι.valid}

T-Remit
Includes Γ τ1 ι φ ≜ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι

Γ ⊢ remit(ι) ∶ (x ∶ τ1)→ Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ φ}

T-Reset
φ1 ≜ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout
φ2 ≜ z.pktout = ⟨⟩ ∧ z.pkt in = x .pkt in

Γ ⊢ reset ∶ (x ∶ τ1)→ Σy ∶ {z ∶ є ∣ φ1}.{z ∶ є ∣ φ2}

Figure 5.14: Typing rules for domain-specific commands.

checking if the assigned expression is of type bit vector, we can additionally check that
the bit-size of the assigned expression matches the bit-size of the header field we are
assigning to. The output type is similar to the strongest post-condition of the input
type: everything in the output type is the same as in x, except for the modified instance
field y.ι. f , which must be equal to e[x/heap]. Predicate φpkt ensures that the input
and output packet remain unchanged, predicate φι ensures that all instances beside
instance ι remain unchanged and predicate φ f ensures that all fields except for field
f on instance ι remain unchanged. Rule T-Remove first checks that the instance to
be removed is valid in the input type. The output type reflects that all other instances
besides instance ι as well as the input packet and output packet remain unchanged.
To typecheck the command T-Remit, we check whether the instance to be emitted is
guaranteed to be valid in the input type. The assigned output type ensures that emitting
a header instance appends the value of the instance to the end of the outgoing packet
(second projection of the assigned Σ-type) but leaves the input packet and all other

5.6. STATIC SEMANTICS 67

T-If
Γ; τ ⊢ φ ∶ B Γ ⊢ c1 ∶(x ∶ {y ∶ τ1 ∣ φ[y/heap]})→ τ12

Γ ⊢ c2 ∶(x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]})→ τ22
Γ ⊢ if (φ) c1 else c2 ∶(x ∶ τ1)→ {y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}

T-Seq
Γ ⊢ c1 ∶(x ∶ τ1)→ τ12 Γ, x ∶ τ1 ⊢ c2 ∶(y ∶ τ12)→ τ22

Γ ⊢ c1; c2 ∶(x ∶ τ1)→ τ22[y ↦ τ12]

T-Skip
τ2 ≜ {y ∶ τ1 ∣ y ≡ x}

Γ ⊢ skip ∶ (x ∶ τ1)→ τ2

T-Ascribe
Γ ⊢ c ∶ σ

Γ ⊢ c as σ ∶ σ

T-Sub
Γ ⊢ τ1 <∶ τ3

Γ, x ∶ τ1 ⊢ τ4 <∶ τ2
Γ ⊢ c ∶ (x ∶ τ3)→ τ4
Γ ⊢ c ∶ (x ∶ τ1)→ τ2

Figure 5.15: Additional command typing rules.

validity information unchanged (first projection of the assigned Σ-type). Rule T-Reset
resets all assumptions about header validity, empties the output packet pktout and sets
the input packet pkt in to be the concatenation of pktout and pkt in of the input type. In
the output type, we use a Σ-type to model the concatenation.

Rule T-If typechecks each branch of the conditional with the additional assumption
that the condition φ holds respectively does not hold. The resulting type is a path-
sensitive union type, which includes the types of both paths. By default, all variables in
formula φ in the command are bound to heap (cf. Section 5.3) and since we want to use
the formula as a refinement in the type, we have to adjust the binders accordingly. To turn
φ into a refinement on a type, we substitute every occurrence of heapwith the respective
binder of the type we want to refine. Wewrite φ[x/heap] to denote the formula obtained
from φ in which all variables heap are substitutedwith x. For example, if the command is
if(ethernet.etherType = 0x0800) extract(ipv4) else skip, we typecheck the
then-branch with type (x ∶ {y ∶ τ1 ∣ y.ethernet.etherType = 0x0800}) → τ12. The
full command is checked with type (x ∶ τ1) → {y ∶ τ12 ∣ x .ethernet.etherType =
0x0800} + {y ∶ τ22 ∣ ¬x .ethernet.etherType = 0x0800}.

The typing rule for sequencing T-Seq is mostly standard, with one peculiarity:
because our typing judgement assigns dependent function types to commands, the
result type τ22 of command c2 might depend on its input type τ12—i.e., variable y might
appear free in τ22. Hence, we must also capture the type τ12 in the result type. The typing
rule T-Skip is also standard, except that it strictly enforces that the heaps described by
the output type and input type respectively are equivalent. The typing rule for ascription
T-Ascribe is standard. The typing rule for subsumption T-Sub is also standard. Since
τ4 can depend on the input type τ3 and similarly, since τ2 can depend on τ1, we need
to extend the typing context with the respective types. Because of the subtype relation
between τ1 and τ3, all heaps that τ4 can depend on are also described by type τ1, thus for
the subtyping check between types τ4 and τ2 we extend the type typing context with τ1.

68 CHAPTER 5. DEPENDENTLY-TYPED DATA PLANE PROGRAMMING

chomp ∶ τ × ι ×X → τ
chomp(τ, ι, x) ≜ chompRec(τ, sizeof(ι), x , ι)

where

chompRec ∶ τ ×N ×X × ι → τ

chompRec(τ, n, x , ι) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

τ if n = 0
let τ′ = heapRef 1(o/w (bn fresh)

chomp1(τ, bn), bn , ι, n) in
chompRec(τ′ , n − 1, x , ι)

Figure 5.16: Definition of chomp.

chomp1 ∶ τ × Bn → τ
chomp1(Σx ∶ τ1 .τ2 , bn) ≜ Σx ∶ chomp1(τ1 , bn).chompRef 1(τ2 , x , bn) +

Σx ∶ {y ∶ τ1 ∣ ∣y.pkt in ∣ = 0}.chomp1(τ2 , bn)
chomp1(τ1 + τ2 , bn) ≜ chomp1(τ1 , bn) + chomp1(τ2 , b0)

chomp1({x ∶ τ ∣ e}, bn) ≜ {x ∶ chomp1(τ, bn) ∣ chompφ1 (e , x , bn)}
chomp1(τ1[x ↦ τ2], bn) ≜ chomp1(τ1 , bn)[x ↦ τ2]

chomp1(τ, _) ≜ τ

Figure 5.17: Definition of chomp1.

5.7 Chomp

When an instance ι is extracted, sizeof(ι) bits are moved from the input bit stream to
the instance. We want this process, which we call chomping, to be reflected in the type
that we assign to an extract command. For example, given a header instance y.A of
type Aη = { f ∶ 2}, and heap type τ = {x ∶ є ∣ x .pkt in[0 ∶2] = 11}, moving the first two
bits of the input packet into instance A is captured by the type {x ∶ є ∣ y.A[0 ∶2] = 11}.
Chomping is a syntactic transformation of a heap type, which is defined as a bitwise
operation consisting of (1) chomp1, the consumption of exactly one bit from pkt in and
(2) heapRef 1, the refinement of the consumed bit to the extracted instance. Finally,
chomp (c.f. Figure 5.16) lifts the pairwise application of chomp1 and heapRef 1 to be
applicable to whole instances.

5.7.1 Single-bit Chomp

For chomping off one bit from a heap type, we need to update references to the length,
as well as to the first bit of pkt in . The removal of one bit from pkt in through chomp1
resembles the computation of a Brzozowski derivative [Brz64]. We define 1-bit chomping
for heap types (chomp1), expressions (chompe1) and formulae (chompφ1).

As shown in Figure 5.17, function chomp1 takes two arguments, a heap type τ and
a bit variable bn out of the set of bit variables Bn and returns a heap type. Intuitively,

5.7. CHOMP 69

chompRef 1 ∶ τ ×X × Bn → τ
chompRef 1(Σx ∶ τ1 .τ2 , x , bn) ≜ Σx ∶ chompRef 1(τ1 , x , bn).chompRef 1(τ2 , x , bn)

chompRef 1(τ1 + τ2 , x , bn) ≜ chompRef 1(τ1 , x , bn) + chompRef 1(τ2 , x , bn)
chompRef 1({x ∶ τ ∣ φ}, x , bn) ≜ {x ∶ chompRef 1(τ, x , bn) ∣ chompφ1 (φ, x , bn)}
chompRef 1(τ1[y ↦ τ2], x , bn) ≜ chompRef 1(τ1 , x , bn)[y ↦ chompRef(τ2 , x , bn)]

chompRef 1(τ, _, _) ≜ τ

Figure 5.18: Definition of chompRef 1.

chomp1 removes the first bit of the input packet and replaces all references to this bit
with bit variable bn. Syntactically, when chomping a heap type τ we need to update each
occurrence of pkt in in a refinement, if that occurrence describes the first bit of pkt in of
a heap in the semantics of τ.

Types ∅ and ⊺, are not affected by chomping. For a choice type τ = τ1 + τ2 chomp1
is applied to both types τ1 and τ2 individually, as each branch of the choice type is
describing isolated heaps of τ. In the substitution type τ = τ1[x ↦ τ2] only τ1 is
chomped, as τ2 only captures information relevant for evaluating refinements. In the
refinement type τ = {x ∶ τ1 ∣ φ} τ1 is chomped as well as the formula φ. The binder x is
used in the chomping of the expression, as x is the latest leftmost binder for pkt in .

Chomping a sigma type τ = Σx ∶ τ1 .τ2 is a bit more involved than the previous cases,
because of the concatenation semantics of pkt in . Since we only chomp off exactly one
bit, we need to consider two cases. First, the input packet in the left projection τ1 of the
Σ-type contains at least one bit and second, the input packet of the first projection is
empty, i.e., the length is equal to zero. In the first case, a single bit is removed from τ1,
which requires that all references to x .pkt in in τ2 must be updated as τ1 is bound to
x in τ2. This is the responsibility of function chompRef. Otherwise, chomping could
cause contradictions between refinements referencing the same component.

For example, let us consider the heap type Σx ∶ {y ∶ є ∣ ∣y.pkt in ∣ = 1}.{z ∶ є ∣
∣x .pkt in ∣ = 1}, where both refinements reference the first projection. To obtain an
updated type that reflects the removal of the first bit of the input packet, chompmust
update both refinements accordingly, i.e., chomp1(Σx ∶ {y ∶ є ∣ ∣y.pkt in ∣ = 1}.{z ∶ є ∣
∣x .pkt in ∣ = 1}, b0) = Σx ∶ {y ∶ є ∣ ∣y.pkt in ∣ + 1 = 1}.{z ∶ є ∣ ∣x .pkt in ∣ + 1 = 1}.

In the second case, we remove the bit from the input packet of the second projection.
When we chomp in τ2 we use a refinement to assert the input packet pkt in of τ1 is
actually empty (e.g. chomp1(Σx ∶ є.{y ∶ є ∣ ∣x .pkt in ∣ = 0}, b0) = Σx ∶ {y ∶ є ∣ ∣y.pkt in ∣ =
0}.{y ∶ є ∣ ∣x .pkt in ∣ = 0}). Finally, we combine both possibilities with a choice type.

As defined in Figure 5.18, the function chompRef 1 takes three arguments, a heap
type τ, a variable x out of the set of all variables X and a bit variable bn. Intuitively,
chompRef 1 updates all references to x .pkt in in τ and replaces all references to this bit
with bit variable b0. It is defined recursively on all heap types and for refinement types
it passes on the execution to chompφ1 .

Function chompφ1 (cf. Figure 5.19) takes three arguments, a formula φ, a variable x
and a bit variable bn. Intuitively, chompφ1 updates via function chompe1 all expressions
referencing x .pkt in in formula φ such that references to the first bit of x .pkt in are
replaced with bit variable b0 and references to the length of x .pkt in are increased by
one. Formulae true, false and x .ι.valid are not affected by chomping and negation ¬e

70 CHAPTER 5. DEPENDENTLY-TYPED DATA PLANE PROGRAMMING

chompφ1 ∶ φ ×X × Bn → φ
chompφ1 (e1 = e2 , x , bn) ≜ chompe1 (e1 , x , bn) = chompe1 (e2 , x , bn)
chompφ1 (e1 > e2 , x , bn) ≜ chompe1 (e1 , x , bn) > chompe1 (e2 , x , bn)
chompφ1 (φ1 ∧ φ2 , x , bn) ≜ chompφ1 (φ1 , x , bn) ∧ chompφ(φ2 , x , bn)

chompφ1 (¬φ, x , bn) ≜ ¬chompφ1 (φ, x , bn)
chompφ1 (φ, _, _) ≜ φ

Figure 5.19: Definition of chompφ1 .

chompe1 ∶ e ×X × Bn → e

chompe1 (∣x .pkt in ∣, y, _) ≜
⎧⎪⎪⎨⎪⎪⎩

∣x .pkt in ∣ + 1 if x = y
∣x .pkt in ∣ otherwise

chompe1 (x .pkt in , y, bn) ≜
⎧⎪⎪⎨⎪⎪⎩

⟨bn⟩@x .pkt in if x = y
x .pkt in otherwise

chompe1 (x .pkt in[l ∶r], y, bn) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x .pkt in[l ∶r] if x ≠ y
⟨bn⟩ if x = y ∧ r ≤ 1
⟨bn⟩@x .pkt in[0 ∶r − 1] if x = y ∧ l = 0
x .pkt in[l − 1 ∶r − 1] if x = y ∧ l ≠ 0

chompe1 (n +m, y, bn) ≜ chompe1 (n, y, bn) + chompe1 (m, y, bn)
chompe1 (bv1@bv2 , y, bn) ≜ chompe1 (bv1 , y, bn)@chompe1 (bv2 , y, bn)

chompe1 (e , _, _) ≜ e

Figure 5.20: Definition of chompe1 .

and conjunction e1 ∧ e2 are standard congruence rules. For expression equality e1 = e2
and expression comparison e1 > e2, chompe1 is applied to both expressions individually.

Figure 5.20 defines how expressions are transformed as part of chompe1 . Function
chompe1 takes three arguments, an expression e, a variable x and a bit variable bn.
Intuitively, chomping expressions with chompe1 (e , x , bn) replaces references to the first
bit of x .pkt in in e with bn and references to the length of x .pkt in in e are incremented
by one. Expressions e that do not reference x .pkt in or ∣x .pkt in ∣, like x .pktout , numerals
n and bit vectors bv are not affected by chomping, thus chompe1 (e , x , bn) = e. If the
expression is x .pkt in or ∣x .pkt in ∣, but the binder does notmatch with the variable passed
to chompe1 , the expression remains unchanged. The cases e1@e2 and e1 + e2 are standard
congruence rules. We increment expressions ∣x .pkt in ∣ by one if the binder matches
with the variable argument passed to chompe1 . If e = x .pkt in , we prepend bit variable
bn, which effectively removes the first bit. For input packet slices (x .pkt in[l ∶ r]), the
result of chompe1 depends on the bounds l and r. If the right bound is less or equal to
one, the slice contains only a single bit, so we replace the whole slice with a bit vector
only containing bit variable bn (e.g., chompe1 (x .pkt in[0 ∶ 1], x , bn) = ⟨bn⟩). If the left
bound is zero, the bit variable bn is prepended and the size of the slice is reduced by

5.8. SAFETY 71

one to retain the overall size of the expression (e.g., chompe1 (x .pkt in[0 ∶ 8], x , bn) =
⟨bn⟩@x .pkt in[0 ∶7]). If the left bound is greater than zero, both bounds are decremented
by one (e.g., chompe1 (x .pkt in[4 ∶8], x , b0) = x .pkt in[3 ∶7]).

Example Given type τ = {x ∶ ι ∣ ∣x .pkt in ∣ = 8 ∧ x .pkt in[0 ∶ 8] = x .ι[4 ∶ 12]},
chomp1(τ, b0) = {x ∶ {y ∶ ι ∣ ∣y.pkt in ∣ + 1 = 8} ∣ b0 ∶∶ x .pkt in[0 ∶7] = x .ι[4 ∶ 12]}

5.7.2 Instance Refinement

With heapRef 1 we replace the placeholder bits introduced by chomp1 with references
to the extracted instance. As presented in Figure 5.21, the function heapRef 1 takes five
arguments, a heap type τ (we define the same function also for formulae and expres-
sions), a bit variable bn, a variable x, a header instance ι and a number n. Intuitively,
heapRef 1(τ, bn , x , ι, n) replaces bn in τ with x .ι[m ∶m + 1], where m = sizeof(ι) − n.

The only place where a bit variable can occur according to the syntax of Π4 is in
the bit vector construction. Each case except for expressions b ∶∶ bv will either be the
identity if the input is a value or a congruence rule if the input has sub-nodes. For a
expression b ∶∶ bv (1) if b ≠ bn, we keep b and continue searching in bv or (2) if b = bn,
we replace bn with x .ι[sizeof(ι) − n] and continue searching in bv.

Example Given header instance A of type Aη = { f ∶ 2} and heap type τ = {x ∶ є ∣
⟨b0⟩@x .pkt in[0] = 10}, heapRef 1(τ, b0 , y,A, 2) = {x ∶ є ∣ y.A[0]@x .pkt in[0] = 10}.

5.7.3 Correctness of Chomp

We can prove that our definition of the chomp operator (cf. Figure 5.16) has the desired
semantics. We first define a semantic chomp operation chomp⇓ that—given a heap h
and a number n—removes the first n bits from the input packet in heap h:

chomp⇓(h, n) ≜ h[pkt in ↦ h(pkt in)[n ∶]]

We can then prove the following lemma, which states that—given some heap h ∈
JτKE—there exists a corresponding heap h′ in the semantics of the chomped type that
is equivalent to heap obtained after applying chomp⇓ to heap h. Since chomp adds a
refinement on x .ι, we have to evaluate the chomped type in an environment, where
x maps to the heap in which ι contains the first sizeof(ι) bits from h(pkt in). This
corresponds with the intuition that chomp populates the header instance ι with the first
sizeof(ι) bits from the input packet.

Lemma 5.1 (Semantic Chomp). If x does not appear free in τ, then for all heaps h ∈
JτKE where ∣h(pkt in)∣ ≥ sizeof(ι), there exists h′ ∈ Jchomp(τ, ι, x)KE ′ such that h′ =
chomp⇓(h, sizeof(ι)) where E ′ = E[x ↦ (⟨⟩, ⟨⟩, [ι ↦ h(pkt in)[0 ∶ sizeof(ι)]])].

Proof. By unfolding the definition of chomp and by induction on the number of bits
consumed. The full proof can be found in Appendix A.2.1 (Lemma A.44).

5.8 Safety

We prove safety of Π4 in terms of standard progress and preservation theorems. That
is, well-typed programs do not get stuck and when well-typed programs are evaluated,

72 CHAPTER 5. DEPENDENTLY-TYPED DATA PLANE PROGRAMMING

heapRef 1 ∶ τ × bn ×X × ι ×N→ τ
heapRef 1(Σx ∶ τ1 .τ2 , bn , y, ι, n) ≜ Σx ∶ heapRef 1(τ1 , bn , y, ι, n).

heapRef 1(τ2 , bn , y, ι, n)
heapRef 1(τ1 + τ2 , bn , y, ι, n) ≜ heapRef 1(τ1 , bn , y, ι, n)+

heapRef 1(τ2 , bn , y, ι, n)
heapRef 1({x ∶ τ ∣ φ}, bn , y, ι, n) ≜ {x ∶ heapRef 1(τ, bn , y, ι, n) ∣

heapRef 1(φ, bn , y, ι, n)}
heapRef 1(τ1[x ↦ τ2], bn , y, ι, n) ≜ heapRef 1(τ1 , bn , y, ι, n)[x ↦

heapRef 1(τ2 , bn , y, ι, n)]
heapRef 1(τ, _, _, _, _) ≜ τ

heapRef 1 ∶ φ × bn ×X × ι × n → φ
heapRef 1(e1 = e2 , bn , x , ι, n) ≜ heapRef 1(e1 , bn , x , ι, n) = heapRef 1(e2 , bn , x , ι, n)
heapRef 1(e1 > e2 , bn , x , ι, n) ≜ heapRef 1(e1 , bn , x , ι, n) > heapRef 1(e2 , bn , x , ι, n)
heapRef 1(φ1 ∧ φ2 , bn , x , ι, n) ≜ heapRef 1(φ1 , bn , x , ι, n) ∧ heapRef 1(φ2 , bn , x , ι, n)

heapRef 1(¬φ, bn , x , ι, n) ≜ ¬heapRef 1(φ, bn , x , ι, n)
heapRef 1(φ, _, _, _, _) ≜ φ

heapRef 1 ∶ e × bn ×X × ι × n → e

heapRef 1(b ∶∶ bv , bn , x , ι, n) ≜
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x .ι[sizeof(ι) − n ∶ sizeof(ι) − n + 1]@
heapRef 1(bv , bn , x , ι, n) if b = bn

⟨b⟩@heapRef 1(bv , bn , x , ι, n) otherwise

heapRef 1(e , _, _, _) ≜ e

Figure 5.21: Definition of heapRef 1.

they remain well typed. Both theorems make use of the entailment relation defined in
Figure 5.13.

Theorem 5.2 (Progress). If ⋅ ⊢ c ∶(x ∶ τ1) → τ2 and (I,O ,H) ⊧ τ1, then either c = skip
or ∃⟨I′ ,O′ ,H′ , c′⟩.⟨I,O ,H, c⟩→ ⟨I′ ,O′ ,H′ , c′⟩.

Proof. By induction on the typing derivation. The full proof can be found in Ap-
pendix A.2.1 (Theorem A.35).

The progress theorem states that if a command is well-typed, it is either skip or it
can take a step.

Theorem 5.3 (Preservation). If Γ ⊢ c ∶ (x ∶ τ1)→ τ2 and ⟨I,O ,H, c⟩→ ⟨I′ ,O′ ,H′ , c′⟩
and E ⊧ Γ and (I,O ,H) ⊧E τ1, then there exists Γ′ , E ′ , x′ , τ′1 , τ′2, such that Γ′ ⊢ c′ ∶

5.9. RELATEDWORK 73

(x′ ∶ τ′1) → τ′2 and E ′ ⊧ Γ′ and Γ ⊆ Γ′ and E ⊆ E ′ and (I′ ,O′ ,H′) ⊧E ′ τ′1 and
Jτ′2KE ′[x′↦(I′ ,O′ ,H′)] ⊆ Jτ2KE[x↦(I ,O ,H)]

Proof. By induction on the typing derivation. The full proof can be found in Ap-
pendix A.2.1 (Theorem A.54).

Preservation says that if a command c is well-typed, command c can step to c′, and
the starting heap entails input type τ1, then c′ is well-typed with type (x′ ∶ τ′1)→ τ′2 for
some x′, τ′1 and τ′2 s.t. the stepped heap entails τ′1 and the set of heaps described by τ′2 is
a subset of the heaps described by τ2.

5.9 RelatedWork

Formal Reasoning for P4 Programs A number of different approaches for verifying
properties of P4 programs have been proposed in recent years. p4v [Liu+18] applies
classical techniques based on predicate transformer semantics to achieve monolithic ver-
ification of P4 programs. In contrast, Π4 uses dependent types and offers compositional
verification. Vera [Sto+18] and Assert-P4 [Fre+18; Nev+18] are symbolic execution
engines for P4. The bf4 tool [Dum+20] follows the approach pioneered in p4v, but also
attempts to infer control-plane constraints that are sufficiently strong to establish correct-
ness, and offers heuristics for repairing programs when verification fails. P4K [KR18]
provides a formal semantics of P4 in the K framework [RŞ10] and thus, can make use of
the verification tools provided by the K framework. Petr4 [Doe+21] develops a formal
semantics for P4 but does not itself offer verification tools. In contrast, P4RL [Shu+19]
uses a dynamic approach—fuzz testing—for the verification of P4 programs.

Dependent Types There is a long history of using dependent types to capture proper-
ties of low-level code. Early work by Xi and Pfenning [XP99] showed how dependent
types could be used to eliminate run-time safety checks—e.g., array bounds checks in
imperative programs. Xanadu [Xi00] adds dependent typing to imperative program-
ming, but does not capture the effect of mutations in the type. Xi and Harper later
showed how dependent types could be applied to assembly code [XH01].

Deputy [Con+07] used dependent types to reason about complex, heap-allocated
data structures. Similar to Deputy, Π4’s typing rule for modification of header fields is
also inspired by the Hoare axiom for assignment. Π4 is different in that type checking
has no effect on the run time, and it also supports path-sensitive reasoning.

Similar to Π4, Hoare TypeTheory (HTT) [NMB06] statically tracks how the heap
evolves during execution. Typing of computations in HTT is similar to the dependent
function types Π4 uses for commands. The type captures the state before and after
execution, possibly relating the output type with the input type. In our domain, this
requires bit-by-bit transformations on the input type, provided by chomp. Other type
systems like Ynot [Nan+08], FCSL [Nan+14], and F∗ [Swa+16] provide dependent
types for low-level imperative programming. While these type systems target general
functional verification and often require manual programs-as-proofs to do so, our type
system is designed with domain-specific properties of network programming in mind
and is fully automatic.

Solver-Aided Tools A key focus of recent work on dependently-typed language has
been on automation. This work builds on recent advances in SAT/SMT solvers and is
designed to make dependent types usable by ordinary programs. A prominent example

74 CHAPTER 5. DEPENDENTLY-TYPED DATA PLANE PROGRAMMING

is Liquid Haskell [RKJ08]. It extends Haskell with refinement types, but imposes restric-
tions to ensure the refinements remain decidable. Under the hood, all proof obligations
generated by Liquid Haskell during type checking are handled by an SMT solver in a
way that is transparent to the programmer. Π4 draws inspiration from Liquid Haskell’s
decidable refinement types. However, our SMT encoding and our proof of correctness
and decidability are novel. Liquid Haskell stipulates that its refinements must be in the
theory of quantifier-free integer linear arithmetic in order to be decidable. We encode
types into the effectively propositional fragment of first-order logic over bit vectors,
which facilitates automatic subtyping and equivalence checks.

The Prototype Verification System (PVS) [ORS92; Owr+95] is an interactive theorem
prover that similar to Π4 combines dependent types and refinement types in its specifi-
cation language. Also, PVS automatically extracts and solves proof obligations during
type checking, but in contrast to Π4, type checking is undecidable, which requires the
user to get involved in complex cases.

Formalizing Protocols Another line of work has developed language-based speci-
fications of protocols. CMU’s FoxNet project used SML to specify the behavior of an
entire networking stack [Bia+94]. McCann and Chandra used a type-based approach
to give abstract specifications of protocols [MC00]. Grammar-based tools such as
PADS [FG05], Narcissus[Del+19], and Yakker [JMW10], enable specifying the syntax of
complex, dependent formats including network protocols, and also provide tools for
serializing and deserializing data.

5.10 Chapter Summary

In this chapter, we introduced Π4, a dependently-typed version of the P4 language
that aims at closing the gap between type-system-based approaches and full-fledged
verification tools while enabling modular verification.

Featuring a combination of expressive types including refinement types, dependent
pairs, union types and explicit substitutions, Π4 is able to capture precise assumptions
about valid header instances and the incoming and outgoing packet as well as depen-
dencies between them down to the bit level. Dependent function types make it possible
to statically capture the effect of executing a command in a certain program state and to
relate both program states before and after the execution. Π4 addresses the challenge of
retaining precise types in the presence of packet deserialization, one central domain-
specific feature of the P4 language, by resorting to the novel chomp operator, which
computes a type that remains after extracting bits from a packet buffer.

Π4 relies on type ascription to enable modular checking of programs. By ascribing
dependent function types, it is possible to describe the requirements a command has on
the context in which it is executed as well as the guarantees the command provides to
the outside via the input type and output type respectively. Each ascribed type indicates
a program point where type checking should occur, thus, ascribed commands can be
independently type-checked. It is then sufficient to rely on the ascribed output type to
check the rest of the program. As a result, as we will see in Chapter 8, Π4 is capable of
expressing and verifying a variety of rich network properties in a modular way.

CHAPTER6
An Implementation of Π4

We have built a prototype implementation of Π4 in OCaml and Z3 [MB08], which
comprises approximately 7600 lines of OCaml code. Our implementation provides two
frontends, one based onMenhir, an LR(1) parser generator for the OCaml programming
language and one based on Petr4’s parser [Doe+21]. While the first allows the program-
mer to directly use the syntax described in Section 5.3, the latter allows processing P4
programs leveraging the built-in annotation mechanism. The programmer can annotate
P4 programs using @pi4 annotations to add custom type annotations to P4 code blocks
that are then checked by Π4’s type checker. Under the hood, our implementation uses
an encoding of Π4’s types into a decidable theory of first-order logic, facilitating an
SMT solver to automatically discharge the various side conditions that arise during type
checking.

We start this chapter by presenting the algorithmic type system ofΠ4. Next, we show
how to encode Π4’s types into a decidable theory of first-order logic, exploiting the fact
that in practice, the size of network packets are bound by theMaximum Transmission
Unit (MTU). With the algorithmic typing rules in place, we then formally prove that
given an input type that respects the bounds imposed by the MTU, we can also prove a
bound on the computed output types, which ultimately allows us to prove type checking
to be decidable. Finally, we discuss how the algorithmic typing rules can be optimized
to obtain a more efficient encoding and provide a brief overview of our P4 frontend.

6.1 Algorithmic Typing Rules

For our implementation, we define an algorithmic version of our type system (cf. Fig-
ures 6.1 and 6.2) whose rules are mostly identical to the rules from our declarative
type system. The first difference to the declarative type system is that the semantic
conditions that must be checked during type checking are encoded as subtype con-
straints. For example, when we type-check the command add(ι), we must check that
the newly added instance is not already valid in the input type τ1, i.e., Excludes Γ τ1 ι.
As shown by rule T-Add-Algo in Figure 6.1, Excludes Γ τ1 ι becomes the subtype
check Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ¬x .ι.valid}. Similarly, rule T-Mod and T-Remit require
Includes Γ τ1 ι, which becomes Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ x .ι.valid} in T-Mod-Algo and T-

75

76 CHAPTER 6. AN IMPLEMENTATION OF Π4

T-Extract-Algo
Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ sizeof(ι)} φ1 ≜ z.pkt in = z.pktout = ⟨⟩

φ2 ≜ y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x
Γ ⊢ extract(ι) ∶ (x ∶ τ1)↝ Σy ∶ {z ∶ ι ∣ φ1}.{z ∶ chomp(τ1 , ι, y) ∣ φ2}

T-Add-Algo
Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ¬x .ι.valid} initHT (ι) = v

Γ ⊢ add(ι) ∶ (x ∶ τ1)↝ Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v}

T-Remove-Algo
Γ ⊢ τ1 <∶ ι≈

φι ≜ ∀κ ∈ dom(HT).κ ≠ ι Ô⇒ y.κ = x .κ
φpkt ≜ y.pkt in = x .pkt in ∧ y.pktout = x .pktout

Γ ⊢ remove(ι) ∶ (x ∶ τ1)↝ {y ∶ ⊺ ∣ φι ∧ φpkt ∧ ¬y.ι.valid}

T-Mod-Algo
Γ ⊢ τ <∶ ι≈ F(ι, f) = BV Γ; τ1 ⊢ e ∶ BV
φpkt ≜ y.pkt in = x .pkt in ∧ y.pktout = x .pktout

φι ≜ ∀κ ∈ dom(HT). ι ≠ κ⇒ y.κ = x .κ
φ f ≜ ∀g ∈ dom(HT (ι)). f ≠ g ⇒ y.ι.g = x .ι.g

Γ ⊢ ι. f ∶= e ∶ (x ∶ τ1)↝ {y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = e[x/heap]}

T-Remit-Algo
Γ ⊢ τ1 <∶ ι≈ φ ≜ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι

Γ ⊢ remit(ι) ∶ (x ∶ τ1)↝ Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ φ}

T-Reset-Algo
φ1 ≜ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout
φ2 ≜ z.pktout = ⟨⟩ ∧ z.pkt in = x .pkt in

Γ ⊢ reset ∶ (x ∶ τ1)↝ Σy ∶ {z ∶ є ∣ φ1}.{z ∶ є ∣ φ2}

Figure 6.1: Algorithmic typing rules for domain-specific commands.

Remit-Algo respectively. The check sizeof pkt in(τ) ≥ sizeof(ι) required by T-Extract
becomes Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ sizeof(ι)} in rule T-Extract-Algo.

The second major difference is the rule for type ascription T-Ascribe-Algo. In our
implementation we check if the input type τ1 is a subtype of the ascribed input type τ̂1.
We then use the ascribed input type to compute an output type τc . Finally, we check if
the computed output type τc is a subtype of the ascribed output type τ̂2. Note, that our
type checking algorithm can be used to obtain a weak form of type inference. Given
an input type that describes the state before the execution, our algorithm computes an
output type, which describes the state after the execution of the program.

6.2 Decidability

An essential prerequisite to prove decidability of Π4’s type checking is that subtyping
checks are decidable. Since we encode types into bit vectors, this follows by finite
enumeration, if we can show that the bit vectors are finite. Unfortunately, the pkt in and

6.2. DECIDABILITY 77

T-Seq-Algo
Γ ⊢ c1 ∶ (x ∶ τ1)↝ τ12

Γ, (x ∶ τ1) ⊢ c2 ∶ (y ∶ τ12)↝ τ22
Γ ⊢ c1; c2 ∶ (x ∶ τ1)↝ τ22[y ↦ τ12]

T-Skip-Algo
τ2 ≜ {y ∶ τ1 ∣ y ≡ x}

Γ ⊢ skip ∶ (x ∶ τ1)↝ τ2

T-Ascribe-Algo
Γ ⊢ c ∶ (x ∶ τ̂1)↝ τc Γ ⊢ τ1 <∶ τ̂1

Γ, x ∶ τ̂1 ⊢ τc <∶ τ̂2
Γ ⊢ c as (x ∶ τ̂1)→ τ̂2 ∶ (x ∶ τ1)↝ τ̂2

T-If-Algo
Γ; τ1 ⊢ φ ∶ B Γ ⊢ c1 ∶ (x ∶ {y ∶ τ1 ∣ φ[y/heap]})↝ τ12

Γ ⊢ c2 ∶ (x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]})↝ τ22
Γ ⊢ if (φ) c1 else c2 ∶ (x ∶ τ1)↝ {y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}

Figure 6.2: Additional algorithmic typing rules.

pktout entries describe infinite bit vectors. However, in practice, packets are bounded
by theMaximum Transmission Unit (MTU) and therefore, we can bound the number
of bits required to represent heaps described by a certain heap type. More formally, we
say that a heap type τ is bounded by N in a context Γ, written Γ ⊢ τ ≤ N , iff for every
heap described by type τ, the length of the input packet and output packet together is
less or equal to N , which is captured by the following definition:

Γ ⊢ τ ≤ N ≜ ∀E ⊧ Γ,∀h ∈ JτKE , ∣h(pkt in)∣ + ∣h(pktout)∣ ≤ N

It is not sufficient to just require that ∣h(pkt in)∣ ≤ N and ∣h(pktout)∣ ≤ N , because
as seen in case of the reset command, the resulting input packet is the concatenation of
the input and output packet of the input heap, i.e., h(pktout)@h(pkt in), which might
violate the constraint.

As a first step, we want to prove that if a program typechecks with a bound on
its input type, then we can compute that maximum number of bits that we need to
encode the output type. Ideally, this would be the same bound, however, it is possible
for a program to emit more bits from the incoming packet than is allowed by the MTU.
So we define a helper function emit(c) ∈ N that over-approximates the maximum
number of bits that could be emitted along any program path in c, which is defined in
Figure 6.3. Command remit(ι) emits n bits, where n is the size of the header instance ι.
The number of emitted bits of conditionals is at most the maximum of the bits emitted
in the then-branch and the else-branch. Sequences emit the sum of emitted bits from
both commands and for ascribed commands we take the number of bits emitted by the
command itself. All other commands do not affect the number of emitted bits.

Theorem 6.1 captures the idea that given an algorithmic typing judgement on a
program c, for which the input type and all ascribed types in c respect the MTU N ,
the output type will require no more than N + emit(c) bits. Note that even though the
input type is constrained by the MTU, intermediate states may require more than just
N bits. This theorem shows that N + emit(c) suffices as the maximum combined width
of pkt in and pktout .

78 CHAPTER 6. AN IMPLEMENTATION OF Π4

emit(extract(ι)) ≜ 0
emit(if (b) c1 else c2) ≜ max(emit(c1), emit(c2))
emit(c1; c2) ≜ emit(c1) + emit(c2)
emit(ι. f ∶= e) ≜ 0
emit(remit(ι)) ≜ sizeof(ι)
emit(skip) ≜ 0
emit(reset) ≜ 0
emit(remove(ι)) ≜ 0
emit(add(ι)) ≜ 0
emit(c as σ) ≜ emit(c)

Figure 6.3: emit(c) ∈ N computes the maximum number of bits that can be emitted
along any path in c.

Theorem 6.1 (MTU-Bound). For every Γ, c, x, τ1, τ2, and N , if Γ ⊢ τ1 ≤ N and
Γ ⊢ c ∶ (x ∶ τ1)↝ τ2 and every ascribed type in c is also bounded by N , then Γ, (x ∶ τ1) ⊢
τ2 ≤ N + emit(c).

Proof. By induction on the typing derivation. For details, see Theorem A.78 in Ap-
pendix A.2.3.

Theorem 6.2 establishes the correctness of the algorithmic typing relation. It states
that a program c typechecks in the declarative system with type (x ∶ τ1)→ τ2 if and only
if it also typechecks in the algorithmic system with type (x ∶ τ1) ↝ τ′2 and the output
type of the algorithmic system τ′2 is a subtype of the output type τ2 of the declarative
system.

Theorem 6.2 (Algorithmic Typing Correctness). For all Γ, c, x, τ1, and τ2, where x is not
free in τ1, Γ ⊢ c ∶(x ∶ τ1)→ τ2 if and only if there is some τ′2 such that Γ ⊢ c ∶ (x ∶ τ1)↝ τ′2,
and Γ, (x ∶ τ1) ⊢ τ′2 <∶ τ2.

Proof. By induction on the typing derivation. For details, see Theorem A.73 in Ap-
pendix A.2.3.

WithTheorems 6.1 and 6.2 in hand, it is straightforward to show the decidability
of the declarative type system, i.e., that Γ ⊢ c ∶ (x ∶ τ1) → τ2 is decidable, which is
stated byTheorem 6.3. Theorem 6.2 allows us to equivalently show that type checking
the command in the algorithmic type system—i.e., Γ ⊢ c ∶ (x ∶ τ1) ↝ τ′2— and that
checking Γ, (x ∶ τ1) ⊢ τ′2 <∶ τ2 are decidable. We can prove the former by induction on
the typing derivation, while the latter follows by finite enumeration using the bounds
guaranteed byTheorem 6.1.

Theorem 6.3 (Decidability). If Γ, τ1, τ2 and every ascribed type in c are bounded by the
MTU N , then Γ ⊢ c ∶(x ∶ τ1)→ τ2 is decidable.

Proof. Proof by Algorithmic Typing Correctness,MTU-Bound and by induction on the
typing derivation. For details, see Theorem A.79.

6.3. SMT ENCODING 79

⋀
y∈dom(Γ)

smt(y, Γ(y)) ∧ smt(s, τ1) ∧

∀consts(t, τ2).smt(t, τ2) Ô⇒ ¬equal(s, t)

Figure 6.4: Encoding of subtyping check Γ ⊢ τ1 <∶ τ2

6.3 SMT Encoding

In our implementation, we convert every subtyping check Γ ⊢ τ1 <∶ τ2 into a formula in
the theory of uninterpreted functions and (fixed-width) bit vectors (UFBV) [WHM13].
Again, we exploit the fact that the MTU limits the number of bits network switches can
receive or transmit. So in our encoding, the MTU determines the size of the bit vectors.

Our encoding is based on the semantic notion of subtyping as defined in Section 5.6.
Intuitively, type τ1 is a subtype of τ2, i.e., Γ ⊢ τ1 <∶ τ2, if the set of heaps described by τ1
is a subset of the set of heaps described by τ2. Let S be the set of heaps described by τ1
and T the set of heaps described by τ2. Set S is a subset of set T (S ⊆ T) iff for all s ∈ S
there exists a t ∈ T such that s = t—i.e., ∀s ∈ S .∃t ∈ T .s = t. We want the formula to
hold for all assignments of s and t, so we check if the formula is valid by checking that
the negation of the formula ∃s ∈ S .∀t ∈ T .s ≠ t is not satisfiable (UNSAT).

Accordingly, the subtype check Γ ⊢ τ1 <∶ τ2 is encoded into the formula shown in
Figure 6.4. Similar to the elements in the set of heaps described by subtype τ1, heap types
bound to variables in context Γ respectively are also existentially quantified. However, in
the encoding, we can eliminate the existential quantifiers by skolemization. We declare
a set of global constants for all heap types (function consts(x , τ)), which we use to
model the heaps described by the types. We declare two constants for every header
instance in the header tableHT , a boolean constant capturing the validity of the header
instance (e.g. x.ethernet.valid) and a bit vector constant for the instance data (e.g.
x.ethernet), where the size of the bit vector corresponds to the size of the instance.
We declare two bit vector constants each for the input and output packet, one capturing
the length of the packet (e.g., x.pkt_in.length) and one capturing the contents of
the packet (e.g. x.pkt_in). The length of both bit vectors is determined by the MTU.
The length bit vector has as many bits as needed to store the value of the MTU, the
length of the packet bit vector is equal to the MTU.

In the encoding, we decompose heap types according to their recursive structure.
We reference the respective sub-heaps via the binders introduced by the types, which is
the reasonwhy all declared constants are prefixedwith a variable. For example, assuming
subtype τ1 has the form Σx ∶ {y ∶ ⊺ ∣ ...}.{z ∶ ⊺ ∣ ...}, the encoding will declare the
following set of constants:

• {s, xl , xr , y, z}.ι0 , . . . , {s, xl , xr , y, z}.ιn

• {s, xl , xr , y, z}.ι0 .valid, . . . , {s, xl , xr , y, z}.ιn .valid

• {s, xl , xr , y, z}.pkt_in, {s, xl , xr , y, z}.pkt_in.length

• {s, xl , xr , y, z}.pkt_out, {s, xl , xr , y, z}.pkt_out.length

Note, we introduce an additional binder s for the subtype and t for the supertype to be
able to refer to the top-level heap, which, for example, is necessary if the top-level type

80 CHAPTER 6. AN IMPLEMENTATION OF Π4

smt(x ,∅) ≜ false
smt(x , ⊺) ≜ true

smt(x , τ1 + τ2) ≜ smt(x , τ1) ∨ smt(x , τ2)
smt(x , Σy ∶ τ1 .τ2) ≜ smt(y l , τ1) ∧ smt(yr , τ2) ∧

pktbounds(x) ∧
pktbounds(y l) ∧
pktbounds(yr) ∧
append(x , y l , yr)

smt(x0 , τ0[x1 ↦ τ1]) ≜ smt(x0 , τ0) ∧ smt(x1 , τ1) ∧
pktbounds(x0) ∧
pktbounds(x1)

smt(x , {y ∶ τ ∣ e}) ≜ smt(y, τ) ∧ smt_form(e) ∧
pktbounds(x) ∧
pktbounds(y) ∧
equal(x , y)

Figure 6.5: SMT encoding of heap types.

is a choice type. For Σ-types we introduce binders for both projections, in the example
x l and xr 1.

Encoding of heap types As defined in Figure 6.5, the function smt(x , τ) encodes heap
type τ into a first-order logic formula that describes the heap identified by binder x, i.e.,
the formula adds assertions for constants prefixed with variable x. The types∅ and ⊺ are
encoded into boolean literals false and true respectively. A choice type τ1 + τ2 is encoded
into the disjunction between formulas for τ1 and τ2. The encoding of a Σ-type Σy ∶ τ1 .τ2
returns a conjunction between the formulas for τ1 and τ2, constraints on the input and
output packet (function pktbounds) as well as the encoding of the concatenation of
heaps described by τ1 and τ2 (function append). The auxiliary functions pktbounds
and append are defined in Figure 6.6. Function pktbounds(x) asserts for the input
and output packet of heap x that the length is less than the MTUM and that the
value of the input and output packet is constrained by the packet length. Function
append(x0 , x1 , x2) returns a formula that describes the concatenation of heaps x1 and
x2, where heap x0 is the resulting heap. An instance ι is valid in x0, if it is either valid in
x1 or x2. Depending on the validity of instances, function hdreq asserts that instances in
x0 are equal to instances in x1 and x2 respectively. Function append_pkt(x0 , x1 , x2 , p)
asserts that the packet p in x0 is the concatenation of packets p in x1 and x2. The packet
length is the sum of the packet lengths in x1 and x2, but at most the MTUM. If the
total length is greater than zero but the packet in x1 is empty, the resulting packet is
determined by x2. If the packet in x1 is not empty, the result of the concatenation
is obtained by computing the bitwise OR between the packet in x1 and the packet

1This is a design decision we made; instead we could have used the binder of the Σ-type for the left
projection and only introduce a fresh binder for the right projection.

6.3. SMT ENCODING 81

hdreq(x , y, ι) ≜ y.ι.val id Ô⇒ x .ι = y.ι
equal(x , y) ≜ ⋀

ι∈dom(HT)
x .ι = y.ι ∧ x .ι.valid = y.ι.valid ∧

⋀
p∈{pkt in ,pktout}

x .p = y.p ∧ x .p.length = y.p.length

pktbounds(x) ≜ ⋀
p∈{pkt in ,pktout}

(x .p.length ≤M ∧

(x .p.length = 0 ∨ x .p < 2x .p .length))

append_pkt(x0 , x1 , x2 , p) ≜ x0 .p.length = min(x1 .p.length + x2 .p.length,M) ∧
(x0 .p.length = 0 ∨ (x1 .p.length = 0 ∧ x0 .p = x2 .p) ∨
(x1 .p.length > 0 ∧ x0 .p = x1 .p ∣ (x2 .p≪ x1 .p.length)))

append(x0 , x1 , x2) ≜ ⋀
p∈{pkt in ,pktout}

append_pkt(x0 , x1 , x2 , p) ∧

⋀
ι∈dom(HT)

(x0 .ι.val id = (x1 .ι.valid ⊕ x2 .ι.valid) ∧

hdreq(x0 , x1 , ι) ∧ hdreq(x0 , x2 , ι))

Figure 6.6: Helper functions for SMT encoding.

in x2 shifted by the length of the packet in x1. For example, if x1 .pkt in .length = 3
and x1 .pkt in = 000101 and x2 .pkt in = 000110, x0 .pkt in = 000101∣(000110 << 3) =
000101∣110000 = 110101. Note, in the formalization of Π4, the least significant bit of a bit
vector is the left-most bit, while in Z3, the right-most bit is the least significant one—i.e,
in the formalization the concatenation of bit vectors x1 .pkt in = 101 and x2 .pkt in = 011
results in x1 .pkt in@x2 .pkt in = 101011.

The encoding of a substitution type τ0[x1 ↦ τ1] returns a conjunction of the formu-
las for τ0 and τ1 as well as packet constraints on x0 and x1 The encoding of a refinement
type {y ∶ τ ∣ φ} returns the conjunction between the formula for heap type τ and the
formula for Π4 formula φ, as well as constraints on the input and output packet and
the equality between heaps x and y (function equal(x , y)) with regard to instances and
input and output packets.

Encoding of formulae The encoding of formulae is defined in Figure 6.7. Boolean
literals, conjunctions and negations are encoded into their respective counterparts. The
encoding of instance validity checks simply returns the respective constant. In the
encoding of expression equality and expression comparison, we distinguish between
arithmetic expressions and bit vector expressions. The comparison of arithmetic ex-
pressions is defined in Figure 6.8. When comparing two arithmetic expressions a1
and a2, we first compute the maximum value (functionmax_value) these expressions
can have. For numerals, this corresponds to their value, the packet length can have at
most the value of the MTUM, and the maximum value of an addition is the sum of
both maximum values. Next, we compute the minimum number n of bits required to
represent the maximum value. Both terms are encoded into a fixed-width bit vector
of size n (function arith). We write [m]n to denote a bit vector of size n with value m.

82 CHAPTER 6. AN IMPLEMENTATION OF Π4

smt_form(true) ≜ true
smt_form(false) ≜ false

smt_form(φ1 ∧ φ2) ≜ smt_form(φ1) ∧ smt_form(φ2)
smt_form(¬φ) ≜ ¬smt_form(φ)

smt_form(x .ι.valid) ≜ x .ι.valid
smt_form(a1 = a2) ≜ cmp_arith(a1 , a2 , =)
smt_form(a1 > a2) ≜ cmp_arith(a1 , a2 , >)

smt_form(bv1 = bv2) ≜ cmp_bv(bv1 , bv2 , =)
smt_form(bv1 > bv2) ≜ cmp_bv(bv1 , bv2 , >)

Figure 6.7: SMT encoding of expressions.

arith(m, n) ≜ [m]n
arith(∣x .p∣, n) ≜ [x .p.l ength]n

arith(a1 + a2 , n) ≜ arith(a1 , n) + arith(a2 , n)

max_value(m) ≜ m
max_value(∣x .p∣) ≜M

max_value(n +m) ≜ max_value(n) +max_value(m)

cmp_arith(a1 , a2 , op) ≜ let m1 = max_value(a1) in
let m2 = max_value(a2) in
let len = min_bit_width(max(m1 ,m2)) in
arith(a1 , len) op arith(a2 , len)

Figure 6.8: SMT encoding of arithmetic terms and comparison of arithmetic terms.

Since packet length terms are encoded into the respective constant, it might happen that
the target size is larger than the pre-declared size of the constant’s bit vector type. In
this case, we zero-pad the declared constant to produce a bit vector of the desired size.
The comparison itself is straightforwardly encoded into a comparison of fixed-width bit
vectors

Similarly, we define the comparison of bit vectors in Figure 6.9. Themain challenge in
the encoding of bit vector expressions is the concatenation of two bit vectors, especially, if
a reference to either the input packet or the output packet is involved, e.g., x .pkt in@1010.
While the input packet (just as the output packet) is represented by a fixed-width bit
vector in the encoding, the bit vector representing the packet length actually determines
how many bits of the first actually contain meaningful data. For example, let us assume
that the input packet is represented by an 8-bit bit vector, but only three bits are used,
i.e., x.pkt_in = 00000111 and x.pkt_in.length = 3. We call the first the static size

6.3. SMT ENCODING 83

static_size(⟨⟩) ≜ 0
static_size(b ∶∶ bv) ≜ 1 + static_size(bv)

static_size(bv1@bv2) ≜ min(static_size(bv1) + static_size(bv2),M)
static_size(x .p[l ∶ r]) ≜ r − l
static_size(x .ι[l ∶ r]) ≜ r − l

static_size(x .p) ≜M

bv2smt(b ∶∶ bv) ≜ concat bv2smt(bv) [b]1

bits(bv , n) ≜ [bv2smt bv]n , n
bits(x .p, n) ≜ [x .p]n , x .p.length

bits(x .p[l ∶ r], n) ≜ [(extract (r − 1) l) x .p]n , r − l
bits(x .ι[l ∶ r], n) ≜ [(extract (r − 1) l) x .ι]n , r − l
bits(bv1@bv2 , n) ≜ let v1 , n1 = bits(bv1 , n) in

let v2 , n2 = bits(bv2 , n) in
⎧⎪⎪⎨⎪⎪⎩

v2 if n1 = 0
[v1 ∣ (v2 ≪ n1)]n , n1 + n2 otherwise

cmp_bv(bv1 , bv2 , op) ≜ let len = max(static_size(bv1), static_size(bv2)) in
let v1 , n1 = bits(bv1 , len) in
let v2 , n2 = bits(bv2 , len) in
n1 = n2 ∧ (n1 = 0 ∨ v1 op v2)

Figure 6.9: SMT encoding of bit vector terms

and the latter the dynamic size of x.pkt_in. Inconsiderately concatenating both bit
vectors results in 101000000111, but instead we want the bits 1010 to follow directly
after the three bits embodying the contents of x.pkt_in, i.e., 01010111.

In the encoding of a comparison of two bit vectors bv1 and bv2 (function cmp_bv),
we therefore first compute the maximum static size of both bit vectors len. We then
encode both bv1 and bv2 into an SMT bit vector expression of size len and finally the
formula for bit vector comparison asserts that the dynamic sizes of both bit vectors must
be the same and the size is either zero or the comparison relation holds. As defined in
the top of Figure 6.9, the static size of a bit vector value corresponds to the number of
bits. The static size of a concatenation of two bit vectors is the sum of the static sizes of
both bit vectors. The static size of a slice is determined by the number of bits the slice
comprises and the static size of a packet bit vector is the MTUM.

The encoding of bit vector terms is defined by function bits(e , n) that encodes a bit
vector expression e into a bit vector of size n and additionally returns the dynamic size
of the respective expression. Bit vector constants are encoded into bit vectors of size
n. The only peculiarity is that we have to reverse the order of bits during the encoding
because, as stated above, Π4’s formalization uses a different bit order than Z3. Note,
because Z3 does not support empty bit vectors, we cannot straightforwardly encode

84 CHAPTER 6. AN IMPLEMENTATION OF Π4

the empty bit vector ⟨⟩. In the encoding we therefore handle cases dealing with empty
bit vectors using assertions on the packet length. The encoding of packet references
simply returns the respective constant, possibly zero-extended to match size n. The
dynamic size is determined by the respective packet length constant. Slices on packets
and instances are encoded into a bit vector extraction. The dynamic size in these cases
is statically known and results from the size of the interval. For the concatenation of
two bit vectors bv1 and bv2 we first encode both bit vectors into an SMT expression. If
the dynamic size of bv1 is zero, the result is the result of encoding bv2. Otherwise, the
concatenated bit vector is obtained by shifting the result of encoding bv2 by the dynamic
size of the first bit vector to the left and applying the bitwise inclusive OR operator to
the resulting bit vector and the result of encoding bv1.

6.4 Optimizations

The performance of the type checker depends mainly on how fast the SMT solver is able
to perform subtyping checks. This results in two levers that can be used to optimize
the performance: (1) the encoding itself and (2) the number of invocations of the SMT
solver during the type checking process. In the following, we will look at a total of three
such optimizations.

6.4.1 Optimizing the SMT Encoding

First, we consider two optimizations to improve the SMT encoding. We discuss how
we can treat Σ-types as syntactic sugar to obtain a more efficient encoding, and also
how we can inline substitution types to reduce the overall complexity of generated SMT
queries.

Type Equivalences

The typing rules for parsing, adding and deparsing header instances as well as the rules
for commands reset and skip have one significant drawback both in the declarative and
in the algorithmic type system. The output type is obtained by extending the input type,
mostly by means of a Σ-type with new header instances or bits in the output packet,
which are added to the heap by the execution of the command. By carrying over the
input type, the computed type grows larger and larger the longer the program is that is
checked, and thus, subtyping checks become more expensive in terms of the time Z3
needs to solve formulae. Furthermore, the encoding of Σ-types presented above has
been shown to incur significant overhead in practice, i.e., subtyping checks that include
Σ-types take significantly longer.

Fortunately, we can assign equivalent types, which allows us to eliminate Σ-types
and even the chomp-operator. To eliminate Σ-types, we exploit the fact that Σ-types
can be expressed using refinement types and substitution types, which is captured by
Lemma 6.4. We write Γ ⊢ τ1 ≐ τ2 to denote the equivalence of types τ1 and τ2 in context
Γ, more formally:

Γ ⊢ τ1 ≐ τ2 ≜ ∀E ⊧ Γ.Jτ1KE = Jτ2KE

6.4. OPTIMIZATIONS 85

Lemma 6.4 (Rewriting Sigma Types). In any context Γ,

Σx ∶ τ1 .τ2
≐

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ∶ ⊺

RRRRRRRRRRRRRRRRRRRRRRR

(y.pkt in = x .pkt in@r.pkt in ∧
y.pktout = x .pktout@r.pktout

) ∧

⋀ι∈dom(HT)

⎛
⎜
⎝

y.ι.valid = x .ι.valid ⊕ r.ι.valid ∧
x .ι.valid Ô⇒ y.ι = x .ι ∧
r.ι.valid Ô⇒ y.ι = r.ι

⎞
⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

[r ↦ τ2] [x ↦ τ1]

Proof. Proof each direction separately.

(⇒) Let E ⊧ Γ and let h ∈ JΣx ∶ τ1 .τ2KE . By the semantics of heap types, we know
there exists h1 and h2 such that h = h1 ++ h2 and h1 ∈ Jτ1KE and h2 ∈ Jτ2KE[x↦h1].
By definition of heap concatenation, h(pkt in) = h1(pkt in)@h2(pkt in) and also
h(pktout) = h1(pktout)@h2(pktout). Further, dom(h) is the disjoint union of
dom(h1) and dom(h2) such that if ι ∈ dom(h i), h(ι) = h i(ι) for each i = 1, 2 and
each ι ∈ dom(HT). The result follows by definition of the semantics.

(⇐) Let E ⊧ Γ. By the definition of the semantics, it suffices to show, for h1 ∈ Jτ1KE ,
and h2 ∈ Jτ2KE[x↦h1], and h ∈ J⊺KE[x↦h1 ,r↦h2] such that the above refinement
holds for h, that h ∈ JΣx ∶ τ1 .τ2KE . By the semantics of heap types, it suffices to
show that h = h1 ++ h2. The refinement tells us that

• h(pkt in) = h1(pkt in)@h2(pkt in) and
• h(pktout) = h1(pktout)@h2(pktout).

Further, dom(h) is the disjoint union of dom(h1) and dom(h2) such that if ι ∈
dom(h i), h(ι) = h i(ι) for each i = 1, 2 and each ι ∈ dom(HT).

Since the Σ-types used in the typing rules are even more specific due to various
refinements, we are able to specify equivalent types that are even further simplified and
do not need to introduce additional substitution types. Lemma 6.5 shows exemplarily
for rule T-Extract, how we can construct a refinement type that is equivalent to the
Σ-type used for the output type. Similarly, equivalent types can be specified for the add,
remit, and reset commands.

Lemma 6.5 (Rewrite Sigma Extract). For all Γ, x, τ and ι, if Γ ⊢ sizeof pkt in(τ) ≥
sizeof(ι) and x does not occur free in τ, then

Γ, x ∶ τ ⊢

Σy ∶ {z ∶ ι ∣ z.pkt in = ⟨⟩ ∧
z.pktout = ⟨⟩

} .
⎧⎪⎪⎪⎨⎪⎪⎪⎩
z ∶ chomp(τ, ι, y)

RRRRRRRRRRRRR

y.ι@z.pkt in = x .pkt in ∧
z.pktout = x .pktout ∧
z ≡ι x

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≐

{y ∶ ⊺ ∣ y.ι.valid ∧⋀κ∈dom(HT)∧κ≠ι y.κ = x .κ ∧
y.ι@y.pkt in = x .pkt in ∧ y.pktout = x .pktout

}

Proof. Again, we prove both directions separately. The result follows by the semantics
of heap types and the relation between the semantics of chomped types and semantic
chomp (chomp⇓). The full proof can be found in Appendix A.2.4 (Lemma A.80)

86 CHAPTER 6. AN IMPLEMENTATION OF Π4

Lemma 6.6 shows that an equivalent type also exists for the output type of the rule
T-Skip, which does not copy the input type into the output type, but instead uses ⊺ as
the base type. Figure 6.10 summarizes all optimized algorithmic typing rules.

Lemma 6.6 (Rewriting Refinement Types). For Γ, τ, ι, x, y, such that x and y do not
occur free in τ,

Γ, (x ∶ τ) ⊢ {y ∶ τ ∣ x ≡ y} ≐ {y ∶ ⊺ ∣ x ≡ y}

Proof. Prove each direction separately.

(⇒) Let E ⊧ Γ, (x ∶ τ). We know E = E ′[x ↦ h1] such that h1 ∈ JτKE ′ . Let
h2 ∈ J{y ∶ τ ∣ x ≡ y}KE ′[x↦h1]. Then h2 ∈ JτKE ′[x↦h1] and Jx ≡ yKE ′[x↦h1 ,y↦h2] =
true. From the latter, we can conclude that h2 = h1. To show h2 ∈ J{y ∶ ⊺ ∣
y ≡ x}KE ′[x↦h1], we have to show that h2 ∈ J⊺KE ′[x↦h1], which is immediate, and
Jx ≡ yKE ′[x↦h1 ,y↦h2] = true, which immediately follows by the fact that h2 = h1.

(⇐) Let E ⊧ Γ, (x ∶ τ). We know E = E ′[x ↦ h1] such that h1 ∈ JτKE ′ . Let h2 ∈
J{y ∶ ⊺ ∣ x ≡ y}KE ′[x↦h1]. Then h2 ∈ J⊺KE ′[x↦h1], and Jx ≡ yKE[x↦h1 ,y↦h2] = true.
Observe that h1 = h2. To show that h2 ∈ J{y ∶ τ ∣ y ≡ x}KE ′[x↦h1], we must
show that h2 ∈ JτKE ′[x↦h1] and Jx ≡ yKE[x↦h1 ,y↦h2] = true. The first follows by
assumption that h1 ∈ JτKE ′ and the fact that h2 = h1. The second immediately
follows from h2 = h1.

Substitution Inlining

Another possibility for optimization arises with respect to the typing rule for sequencing
T-Seq(-Algo). As a reminder, since the output type τ22 of command c2 might depend
on the output type τ12 of c1, we need to memorize τ12 for the final output type. In
the formalization we achieve this in terms of a substitution type, which is elegant
for the formalization, but in practice again leads to the complexity of the computed
types growing with the length of the program. This in turn leads to an increase in the
complexity of the SMT queries, since as shown at the beginning of Section 6.3, additional
constants are generated for each binder, for which the SMT solver must solve additional
constraints.

As it turns out, in most cases it is possible to eliminate the explicit substitution while
obtaining an equivalent heap type. For example, let us consider the simple Π4 program
shown in the following code listing and let us assume this program typechecks with
some type (x ∶ τin)→ τout .

1 extract(ether);

2 skip

Let us further assume that the header table only contains header instance ether. Given
type τ in , the type checker computes the following type τc , where—starting from the input
heap bound to variable x—the refinement type bound to z describes the intermediate
heap obtained after executing command extract(ether).

6.4. OPTIMIZATIONS 87

T-Extract-Algo-Opt
Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ sizeof(ι)}

φι ≜ y.ι.valid ∧ y.ι = x .pkt in[0 ∶sizeof(ι)] ∧ ⋀
κ∈dom(HT)∧κ≠ι

y.κ = x .κ

φpkt ≜ y.ι@y.pkt in = x .pkt in ∧ y.pktout = x .pktout
Γ ⊢ extract(ι) ∶ (x ∶ τ1)↝ {y ∶ ⊺ ∣ φι ∧ φpkt}

T-Remit-Algo-Opt
Γ ⊢ τ1 <∶ ι≈ φpkt ≜ y.pkt in = x .pkt in ∧ y.pktout = x .pktout@x .ι

Γ ⊢ remit(ι) ∶ (x ∶ τ1)↝ {y ∶ ⊺ ∣ y ≡ι x ∧ φpkt}

T-Reset-Algo-Opt
φpkt ≜ y.pkt in = x .pktout@x .pkt in ∧ y.pktout = ⟨⟩

Γ ⊢ reset ∶ (x ∶ τ1)↝ {y ∶ ⊺ ∣ ⋀
ι∈dom(HT)

¬y.ι.valid ∧ φpkt}

T-Add-Algo-Opt
Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ¬x .ι.valid}

initHT (ι) = v φι ≜ y.ι.valid ∧ y.ι = v ∧ ⋀
κ∈dom(HT)∧κ≠ι

y.κ = x .κ

φpkt ≜ y.pkt in = x .pkt in ∧ y.pktout = x .pktout
Γ ⊢ add(ι) ∶ (x ∶ τ1)↝ {y ∶ ⊺ ∣ φι ∧ φpkt}

T-Skip-Algo-Opt

Γ ⊢ skip ∶ (x ∶ τ)↝ {y ∶ ⊺ ∣ y ≡ x}

Figure 6.10: Optimized algorithmic typing rules for Π4.

τc = {y ∶ ⊺ ∣ ∣y.pkt in ∣ = ∣z.pkt in ∣ ∧
y.pkt in = z.pkt in ∧
∣y.pktout ∣ = ∣z.pktout ∣ ∧
y.pktout = z.pktout ∧
((¬y.ether.valid ∧ ¬z.ether.valid) ∨
(y.ether.valid ∧ z.ether.valid ∧ y.ether = z.ether))}[z ↦
{v ∶ ⊺ ∣ v .ether.valid ∧

v .ether@v .pkt in = x .pkt in ∧
∣v .pkt in ∣ + 112 = ∣x .pkt in ∣ ∧
∣v .pktout ∣ = ∣x .pktout ∣ ∧
v .pktout = x .pktout}]

Suppose we want to convince ourselves what length of the input packet this type
allows. First, we see that the length of the input packet is determined by the refinement
∣y.pkt in ∣ = ∣z.pkt in ∣. So intuitively, in the next step we replace the information about
the length of the input packet that we have available in the type bound to variable z. In

88 CHAPTER 6. AN IMPLEMENTATION OF Π4

the example, the refinement ∣v .pkt in ∣ + 112 = ∣x .pkt in ∣ expresses that the input packet
is 112 bits shorter than it is in the input heap (x). Accordingly, we can also use this
information directly to describe the length of y.pkt in , i.e. ∣y.pkt in ∣+ 112 = ∣x .pkt in ∣. We
can repeat this step for all refinements referring to the substituted type z to ultimately
end up with the following equivalent type.

Γ, x ∶ τ in ⊢ τc ≐ {y ∶ ⊺ ∣ ∣y.pkt in ∣ + 112 = ∣x .pkt in ∣ ∧
x .pkt in[0 ∶112]@y.pkt in = x .pkt in ∧
∣y.pktout ∣ = ∣x .pktout ∣ ∧
y.pktout = x .pktout ∧
y.ether.valid ∧
y.ether = x .pkt in[0 ∶112]}

With regard to the SMT encoding, only 12 constants are generated for this type
instead of 24 constants for which the SMT solver must solve constraints. If we consider
longer, non-trivial programs, this difference becomes even bigger, since the calculated
substitution types grow with the program length. If we directly inline the resulting
substitution types during type checking of command sequences, the size of computed
types remains constant.

However, there are also substitution types that cannot be inlined. For example,
let us assume we are in a context, where variable x binds to type {x ∶ є ∣ ∣x .pkt in ∣ >
55 ∧ ∣x .pktout ∣ > 55}, i.e., the length of the input and output packet together is at least
112 bits.

{y ∶ ⊺ ∣ y.ether.valid ∧ y.ether = z.pkt in[0 ∶112]}[z ↦
{v ∶ ⊺ ∣ v .pkt in = x .pktout@x .pkt in}]

If we follow a similar approach before, we end up with the following equivalent type:

{y ∶ ⊺ ∣ y.ether.valid ∧ y.ether = (x .pktout@x .pkt in)[0 ∶112]}

Unfortunately, Π4’s current syntax prohibits expressing generic slices on bit vectors.
Currently, only slices on header instances and on the input or output packet are sup-
ported. Since the type bound to x does not specify how the 112 bits distributed over the
input and output packet, there exists no equivalent type by means of packet slices. As a
consequence, with Π4’s current syntax it is not possible to come up with an algorithm
that is able to inline arbitrary substitution types. We therefore outline below how we
can design an inlining algorithm specifically adapted to the types computed by Π4’s
type checker.

We now discuss based on the commands available in Π4 and their respective typing
rules2 which peculiarities arise for the inlining. Note, while we assume in the typing
rules that we can derive the length of pkt in and pktout from the respective bit vectors,
we have to handle them explicitly in our implementation and therefore consider them
explicitly with respect to inlining. All typing rules adhere to the same structure, i.e.,
the respective output types define (1) which part of the heap remains unchanged and
(2) which part of the heap has changed. The former consists of simple equalities such as
y.pkt in = x .pkt in , which can be easily replaced syntactically, as we saw in the initial

2We consider the optimized algorithmic typing rules presented in Figure 6.10.

6.4. OPTIMIZATIONS 89

example. We therefore focus mainly on the refinements that describe the changes to the
heap.

reset The output type of rule T-Reset-Algo-Opt manifests the example which we
have discussed before that cannot be inlined given the current syntax of Π4.
We therefore keep the substitution type around and only inline preceding and
subsequent commands. For example, if we have a program p; reset; s, the resulting
heap type is of the form (τs[y ↦ τr])[z ↦ τp], with τs being the inlined heap
type for all subsequent commands, τr being the inline heap type for command
reset and τp being the inlined heap type of all preceding commands.

c1 as (x ∶ τ1)→ τ2 As the ascribed output type τ2 can be an arbitrary heap type, it
may also contain statements that are not inlinable. Since there is currently no
trivial solution to inline ascribed types as this would require a generic inlining
approach, we skip the inlining for such commands. However, for a command
c1 as (x ∶ τ1)→ τ2; c2 it is still worth to inline the heap type for c1, even though it
will ultimately be replaced by the ascribed type τ2.

skip Since rule T-Skip-Algo-Opt only asserts that the heap remains unchanged, we
can straightforwardly inline all equalities as described before.

add(ι) The changes introduced by typing rule T-Add-Algo-Opt are captured by the
following two refinements: y.ι.valid and y.ι = v, where v is a bit vector initialized
with a statically known value such as ⟨0...0⟩. We can inline command sequences
of the form add(ι); c2 by replacing validity checks referencing the substitution
with the boolean literal true, and references to instance ι can be replaced with the
value of v. If preceded by another command, i.e. c1; add(ι), nothing needs to be
inlined because the two expressions do not depend on the input type.

remove(ι) Analogous to the inlining of command add(ι), we can inline the refine-
ment ¬y.ι.valid by replacing validity checks referencing the substitution with the
boolean literal false.

extract(ι) If we leave out all refinements capturing the part of the heap that remains
unchanged, the following type describes the changes introduced by command
extract(ι), where r = sizeof(ι).

{y ∶ ⊺ ∣ y.ι.valid ∧
y.ι = x .pkt in[0 ∶r] ∧
x .pkt in[0 ∶r]@y.pkt in = x .pkt in ∧
∣y.pkt in ∣ + r = ∣x .pkt in ∣}

As before, references to y.ι.valid are replaced by boolean literal true. References
to y.ι are replaced by sub-slices on x .pkt in[0 ∶r], depending on the fields defined
for instance ι. As extract(ι) is the only command except for reset that alters pkt in ,
and since we do not inline reset commands, the only interesting case arises from in-
lining two consecutive extract(ι) commands, for example, extract(ι1); extract(ι2).
With r1 = sizeof(ι1), r2 = sizeof(ι2), and binder x referencing the input type, the
resulting substitution type with only the refinements on the input packet looks as

90 CHAPTER 6. AN IMPLEMENTATION OF Π4

follows.

{y ∶ ⊺ ∣ z.pkt in[0 ∶r2]@y.pkt in = z.pkt in ∧
∣y.pkt in ∣ + r2 = ∣z.pkt in ∣}[z ↦
{v ∶ ⊺ ∣ x .pkt in[0 ∶r1]@v .pkt in = x .pkt in ∧

∣v .pkt in ∣ + r1 = ∣x .pkt in ∣}]

The inlined heap type captures that after executing the two consecutive extract
commands, x .pkt in[r ∶] remains left of the input packet, which is captured by the
following type:

{y ∶ ⊺ ∣ x .pkt in[0 ∶r1]@x .pkt in[r1 ∶r1 + r2]@y.pkt in = x .pkt in ∧
∣y.pkt in ∣ + r1 + r2 = ∣x .pkt in ∣}

with r = r1 + r2

≐{y ∶ ⊺ ∣ x .pkt in[0 ∶r]@y.pkt in = x .pkt in ∧ ∣y.pkt in ∣ + r = ∣x .pkt in ∣}

remit(ι) We can argue similarly as before for command remit(ι), which is the only
command besides reset that modifies the output packet. Accordingly, the most
interesting case results from a sequence of remit commands. Again, the following
substitution type captures the changes to the heap with respect to the output
packet after executing remit(ι1); remit(ι2).

{y ∶ ⊺ ∣ y.pktout = z.pktout@z.ι2 ∧ ∣y.pktout ∣ = ∣z.pktout ∣ + sizeof(ι2)}[z ↦
{v ∶ ⊺ ∣ v .pktout = x .pktout@x .ι1 ∧ ∣v .pktout ∣ = ∣x .pktout ∣ + sizeof(ι1)}]

After inlining, we obtain the following type, where again r = r1 + r2.

{y ∶ ⊺ ∣ y.pktout = x .pktout@x .ι1@x .ι2 ∧ ∣y.pktout ∣ = ∣x .pktout ∣ + r}

ι. f ∶= e Field assignments are the only commands that operate at the level of header
fields. As captured by typing rule T-Mod-Algo, in the output heap only the
value of field f of instance ι is changed, while the rest of the heap remains un-
changed. This is captured by the formula y.ι[l ∶ r] = e[x/heap], where l and
r are the respective field bounds. The inlining itself is mostly straightforward,
because as we have seen before, we can simply substitute all references to the field
respectively instance slice with the assigned expression. Note, however, that we
must decompose refinements that refer to the full instance. For example, given
header instance h with shape {a ∶ 4; b ∶ 4; c ∶ 2} and program h.b ∶= 0b1011; skip,
we encounter the following substitution type.

{y ∶ ⊺ ∣ y.h = z.h∧ ...}[z ↦ {v ∶ ⊺ ∣ v .h[4 ∶8] = 0b1011∧v .h[0 ∶4] = x .h[0 ∶4]...}]

To obtain the inlined type, we must decompose z.h properly to end up with type
{y ∶ ⊺ ∣ y.h = x .h[0 ∶4]@0b1011@x .h[8 ∶10]}.

if (φ) c1 else c2 Regardless of whether we consider programs c; if (φ) c1 else c2 or alter-
natively if (φ) c1 else c2; c, we must inline the type for command c in a union
type (i.e., (τthen + τe l se)[z ↦ τc]) or we must inline a union type in the type for
command c (i.e. τc[z ↦ (τthen + τe l se)]). In both cases, both branches of the
union type can be inlined independently as described before. The end result in
both cases is again a union type.

6.4. OPTIMIZATIONS 91

1 @pi4("(Parser;Ingress) as (x:{y:є|y.pkt_in.length > 304}) ->

{z:⊺|!z.vlan.valid}")
2 parser Parser(packet_in packet, out headers hdr, ...) {

3 state start {

4 packet.extract(hdr.ethernet);

5 transition select(hdr.ethernet.etherType) {

6 0x0800: parse_ipv4;

7 0x8100: parse_vlan;

8 default: accept;

9 }

10 }

11 state parse_vlan {

12 packet.extract(vlan);

13 transition select(hdr.vlan.etherType) {

14 0x0800: parse_ipv4;

15 default: accept;

16 }

17 }

18 state parse_ipv4 {

19 packet.extract(hdr.ipv4);

20 transition accept;

21 }

22 }

Figure 6.11: VLAN decapsulation example.

6.4.2 Reducing the Number of SMT Solver Invocations

If we look at the reasons for invoking the SMT solver during type checking, the most
common reason is to check the validity of headers. By strictly following the formalization
with the implementation, many of these checks become redundant. For example, let us
consider a somewhat realistic P4 program shown in Figures 6.11 and 6.12. The parser
first parses the Ethernet header, optionally followed by VLAN and IPv4. If the IPv4
header is valid in the ingress, the program then performs a basic forwarding operation
and if the VLAN header is valid, it removes the VLAN header. As indicated by the
@pi4 annotation in Line 1 of Figure 6.11, we want to check the whole program, i.e.,
the parser followed by the ingress with type (x ∶ {y ∶ є ∣ ∣y.pkt in ∣ > 304}) → {z ∶ ⊺ ∣
¬z.vlan.valid}. This type asserts that starting in a heap where no headers are valid, and
the input packet provides enough bits to extract all three header instances, we always
end up in a heap for which it is guaranteed that the VLAN header is not present. The
annotation mechanism provided by our P4 frontend will be explained in more detail in
the next section.

Translating the P4 program into Π4’s syntax and type checking the program with
the annotated type, takes about 12 seconds3, of which roughly 68% are used to check
the validity of headers. A total of 18 validity checks are performed, each one resulting

3Assuming an MTU of 1500 bytes

92 CHAPTER 6. AN IMPLEMENTATION OF Π4

1 control Ingress(inout headers hdr, ...) {

2 action ipv4_forward(bit<48> dstAddr, bit<9> port) {

3 standard_metadata.egress_spec = port;

4 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

5 hdr.ethernet.dstAddr = dstAddr;

6 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

7 }

8 action vlan_decap() {

9 hdr.ethernet.etherType = hdr.vlan.etherType;

10 hdr.vlan.setInvalid();

11 }

12 table ipv4_lpm {

13 key = { hdr.ipv4.dstAddr: lpm; }

14 actions = { ipv4_forward; }

15 }

16 apply {

17 if (hdr.ipv4.isValid()) {

18 ipv4_lpm.apply();

19 }

20 if (hdr.vlan.isValid()) {

21 vlan_decap();

22 }

23 }

24 }

Figure 6.12: VLAN decapsulation example continued.

in a call to the SMT solver. If we look at the program more closely, it is noticeable that
many of the checks are indeed redundant. For example, the parser guarantees that the
Ethernet header is valid. If we cache this information, we save a call to the SMT solver
for each subsequent read or write access to the Ethernet header, which are six in total
for this example program. In total, we can save all but two solver calls for the example
program this way.

Implementing this cache is mostly straightforward. If we successfully typecheck an
extract or add command, we store the information that on the current program path the
respective header instance is valid. After a remove command, we invalidate the instance
in the cache. For conditionals, we apply a simple heuristic to the condition. If it consists
of simple validity checks such as hdr.ipv4.isValid(), we add this information to
the cache used for the then and else branches accordingly. Since the validity assumptions
can diverge across both branches, we have to merge them for subsequent commands
of conditionals. If both branches provide the same validity information for a specific
instance, we keep the entry in the cache, otherwise we remove entries. After checking a
reset command, we store the information that all header instances are invalid, and type
ascriptions make it necessary to clear the entire cache. The reason for the latter is that
when applying a type ascription, we check that the computed output type τc is a subtype
of the ascribed output type τasc . This in turn means that the ascribed output type may

6.5. P4 FRONTEND 93

α ∶∶= β as (x ∶ τ)→ τ (annotations)
β ∶∶= P ∣ C ∣ reset ∣ β; β ∣ β as (x ∶ τ1)→ τ2 (annotation bodies)

Figure 6.13: Syntax of @pi4 annotations.

1 @pi4("(MyParser;MyIngress;MyDeparser) as (x:τ1) → τ2")
2 parser MyParser(packet_in p, ...) { ... }

3 control MyIngress(inout headers hdr, ...) { ... }

4 control MyDeparser(packet_out packet, ...) { ... }

Figure 6.14: The annotation on line 1 instructs the frontend to check the full pipeline
consisting of the parser, ingress control and deparser with type (x ∶ τ1)→ τ2.

be less specific than the actual type and as such we cannot transfer our knowledge about
instance validity in τc to τasc . When performing the validity checks, we first check the
cache for an entry. If no entry is available, we have to resort to the SMT solver and store
the computed result in the cache.

6.5 P4 Frontend

With our P4 frontend we are able to automatically translate a part of the P4 language into
Π4’s syntax. In order to be able to flexibly check P4 programs for different properties,
we use the annotation mechanism of the language to specify which parts of the program
should be checked with which type. For this we use the custom annotation @pi4("α"),
whose syntax is defined in Figure 6.13. An annotation α always consists of an annotation
body β ascribed with a dependent function type. The annotation body β is either
the name of a parser P or a control C, reset, a sequence of two annotation bodies, or
again an ascribed annotation body. For example, the annotation in Line 1 of Figure 6.14
expresses that the complete pipeline described by the parserMyParser, the ingress control
MyIngress, and the deparserMyDeparser should be checked with type (x ∶ τ1)→ τ2. We
allow the programmer to use certain unicode symbols in annotations, e.g., ⊺ or є, but
also more convenient notations, for example, && and || for conjunction and disjunction
(instead of ∧ and ∨) respectively. The parser and control blocks are translated into a
Π4 command c and likewise reset, β; β and β as (x ∶ τ1) → τ2 are translated into the
corresponding Π4 commands.

Since Π4 is an imperative language, we unroll parsers during translation. We model
match-action tables using an encoding similar to the one used in p4v [Liu+18], where
we create an extra header that captures the match keys and selected action and action
parameters. Figure 6.15 shows how table routing_v6 declared in control Forwarding
is translated. The table header type declaration in the lower half of Figure 6.15 contains a
one bit field act for modeling the choice of the actions, since a single bit is sufficient to
represent two actions. Field set_next_id_next_id represents the action parameter
next_id for action set_next_id and field ipv6_dst_addr_keymodels the match
key of table routing_v6. The table is then translated into a set of conditional com-
mands, where the conditions encode the matching on the key and the non-deterministic
choice of actions. There are limitations in the translation particularly with regard to

94 CHAPTER 6. AN IMPLEMENTATION OF Π4

1 control Forwarding(...) {

2 action set_next_id(bit<32> next_id) {

3 meta.next_id = next_id;

4 }

5 table routing_v6 {

6 key = { hdr.ipv6.dst_addr: exact; }

7 actions = {

8 set_next_id; NoAction;

9 }

10 default_action = NoAction();

11 }

12 }

1 header_type Forwarding_routing_v6_table_t {

2 act: 1;

3 set_next_id_next_id: 32;

4 ipv6_dst_addr_key: 128;

5 }

6 header Forwarding_routing_v6_table :

Forwarding_routing_v6_table_t

7 if(Forwarding_routing_v6_table.ipv6_dst_addr_key == ipv6.

dst_addr) {

8 if(Forwarding_routing_v6_table.act == 0b0) {

9 meta.next_id := Forwarding_routing_v6_table.

set_next_id_next_id

10 } else {

11 if(Forwarding_routing_v6_table.act == 0b1) {

12 skip

13 }

14 }

15 }

Figure 6.15: Translation of P4 tables into Π4: P4 table declaration (top) and result of
translation (bottom)

externs such as stateful elements or hash computations, since these cannot currently be
modeled with the syntax of Π4.

6.6 Chapter Summary

This chapter outlined the underlying details of the implementation of Π4’s type checker.
We started by defining the algorithmic version of Π4’s type system. We exploited the
fact that network switches are limited by theMaximum Transmission Unit (MTU) in the
size of packets they can receive and transmit, solving the problem that our heap types
describe possibly unbounded bit vectors. We were able to prove an upper bound on the

6.6. CHAPTER SUMMARY 95

size of computed output types under the assumption that the input type as well as all
ascribed types are bound by the MTU as well. Ultimately, this allowed us to prove our
type checking algorithm to be decidable. The MTU also allows us to encode subtyping
checks into a formula in the theory of uninterpreted functions and fixed-width bit
vectors (UFBV), facilitating automated subtyping checks. Finally, we discussed several
optimizations to speed up solving SMT queries in terms of simpler encodings, inlining
substitution types and by reducing the number of SMT solver invocations by caching
assumptions about header validity.

A formal proof that our encoding is correct is left for future work. Since the per-
formance of the SMT solver also depends heavily on the size of the bit vectors used, a
possible further optimization is to adapt the number of bits to the size of heap types
used to check a program. However, this requires being able to compute a bound for any
heap type. Currently, it is unclear if that is generally possible. In case it is, this would
also allow us to remove the constraint from our decidability theorem that every ascribed
type must be bounded.

Part III

Evaluation

97

CHAPTER7
Header Validity Bugs in
Real-world Programs

In Chapter 3, we identified five syntactic constructs of the P4 language that are vulnerable
to header validity bugs. In Chapter 4, we then introduced SafeP4, a type system that
statically ensures that all headers that are read or written, are valid. In this chapter, we
want to answer whether SafeP4’s type system is able to identify the different types of
header validity bugs in real-world P4 programs. We also investigate how often these
bugs occur in practice and how much effort is required by a programmer to fix header
validity bugs. Accordingly, we formulate the following three research questions:

RQ1 Is SafeP4 able to detect header validity bugs in real-world programs?

RQ2 How often do the different kinds of bugs occur in practice?

RQ3 What is the overhead for fixing these bugs?

To evaluate the type system proposed in Chapter 4, we implemented P4Check, a
tool that automatically checks whether P4 programs comply with the rules presented
in Section 4.3 and reports the respective violations if not. Our implementation uses
the frontend provided by p4v [Liu+18] and is able to cover the whole P414 language.
We used P4Check to check 15 open source programs that differ in size and complexity,
ranging from 143 lines of code to 9600 lines of code. We selected these programs based
on the following criteria: (1) each program must be open-source, (2) publicly available
onGitHub, (3) compile without errors and (4) contain either industrial or academic code
that implements standard or novel network functionality, i.e., we excluded programs
primarily used for teaching purposes.

Out of the 15 programs, only four did not violate any of our typing rules and passed
the checker. Thesewere primarily implementations of simple routers orDDoSmitigation
mechanisms, only consisting of a few lines of code (188-635 lines) and only accepting a
few packet types. For the remaining 11 programs, our tool found a total of 418 violations.
The high number of violations stems from the fact that each individual violation is
counted, even if multiple violations share the same root cause. For example, if a single

99

100 CHAPTER 7. HEADER VALIDITY BUGS IN REAL-WORLD PROGRAMS

sw
itc

h

ne
tca

che
-p4

PP
PoE

 us
ing

_P4

Hap
py

Flo
wFrie

nd
s

clic
kp

4

ne
tch

ain
-p4

Fle
xM

esh

NetH
CF1

 ca
che

NetH
CF2

 ha
sh

Cach
eP

4-T
est

::n
at

NetG
ua

rd
0%

25%

50%

75%

100%

1

2 2 2 2

2

3

1 2
22

1

5

4

3 2

3

Parser Table Reads Table Actions Default Action Control

Figure 7.1: Proportional frequencies of each bug type per-program. The raw number of
bugs for each program and category is reported on each stacked bar.

action modifies the source address and destination address field of an IPv4 header in a
context that cannot prove that IPv4 is valid, then both references will be reported as
violations, even though they are due to the same control bug. We therefore use another
metric inspired by the metric proposed in [Kle+18]. We relate the number of bugs
in each program to the number of bug fixes required for the program to successfully
type-check. Using this metric, we counted 58 bugs.

We classified the bugs according to the categories presented in Chapter 3. Figure 7.1
shows which bug type occurs how often per program and Figure 7.2 shows how often the
bugs from the different categories occur overall. It is particularly noticeable that although
table action bugs occur most often numerically (22 times), there are only occurrences
in one program (switch.p4). The reason for this is that switch.p4 heavily relies on
correct control plane configurations. In contrast, there were only nine respectively eight
occurrences of parser bugs and table read bugs across five programs. Compared to
p4v [Liu+18], P4Check was unable to detect any default action bugs in switch.p4, while
p4v reported many of such bugs, which has two reasons. First, p4v allows programmers
to specify complex properties that involve fine-grained conditions on tables and the
relationships between tables. In contrast, SafeP4makes various assumptions that rule
out a variety of bugs, including some default action bugs. Second, our repairs are often
coarse-grained, potentially forcing stronger guarantees on the program than necessary.
In contrast, p4v uses first-order logic annotations, which allows the programmer to
formulate the weakest and hence more complex assumptions.

7.1 Detecting and Repairing Bugs

We will now look at how P4Check detects bugs from the categories identified in Chap-
ter 3 and how the repairs affect the computed types.

Parser bugfix We have shown an example of a parser bug in Figure 3.1. The bug occurs
because the ingress expects packets where the IPv4 header and the TCP header are
valid, but the parser does not guarantee that only such packets are successfully parsed.
Instead, program execution switches to the ingress control, when the parser encounters
an unexpected header.

Our type system is able to detect this bug because the ingress expects packets of type
ethernet ⋅ipv4 ⋅tcp, i.e., it must be guaranteed that all three packet headers Ethernet,

7.1. DETECTING AND REPAIRING BUGS 101

0 5 10 15 20
Frequency

Default Action

Table Reads

Parser

Control

Table Actions

1

8

9

17

22

Figure 7.2: Frequency of each bug across all programs. The raw number of bugs in each
category is reported to the right of the bar.

./h.p4, line 350, cols 12-21: error tcp not guaranteed to be valid

./h.p4, line 118, cols 8-16: error ipv4 not guaranteed to be valid

./h.p4, line 101, cols 42-50: error ipv4 not guaranteed to be valid

./h.p4, line 320, cols 8-15: error tcp not guaranteed to be valid

./h.p4, line 362, cols 12-19:error tcp not guaranteed to be valid

./h.p4, line 362, cols 29-36: error tcp not guaranteed to be valid

./h.p4, line 295, cols 60-69: error tcp not guaranteed to be valid

./h.p4, line 107, cols 8-16: error ipv4 not guaranteed to be valid

./h.p4, line 101, cols 42-50: error ipv4 not guaranteed to be valid

./h.p4, line 163, cols 8-16: error ipv4 not guaranteed to be valid

./h.p4, line 101, cols 42-50: error ipv4 not guaranteed to be valid

./h.p4, line 350, cols 12-21: error tcp not guaranteed to be valid

./h.p4, line 320, cols 8-15: error tcp not guaranteed to be valid

./h.p4, line 362, cols 12-19: error tcp not guaranteed to be valid

./h.p4, line 362, cols 29-36: error tcp not guaranteed to be valid

./h.p4, line 295, cols 60-69: error tcp not guaranteed to be valid

Figure 7.3: Curated output from P4Check for the parser bug inNetHCF before (above)
and after (below) modifying parse_ethernet

IPv4 and TCP are valid on all program paths. However, the parser only produces packets
of type ethernet ⋅ (1+ipv4 ⋅ (1+tcp)), which means that only Ethernet is guaranteed
to be valid, while the IPv4 header and the TCP header are both optional. Accordingly,
P4Check reports each reference to the IPv4 header and TCP header as a violation of the
type system as shown in the top half of Figure 7.3. The ubiquity of the reports intimates
a mismatch between the parsing and the control types, which gives the programmer a
hint as how to fix the problem.

If we fix the program step-by-step and replace in parse_ethernet the default
clause with a parser exception as shown in Line 10 of Figure 3.2, the parser henceforth
guarantees that Ethernet and IPv4 are valid in the ingress, i.e, parsed packets have type
ethernet ⋅ ipv4 ⋅ (1 + tcp). If we run the tool again, all violations related to the IPv4
header are removed from the output, as shown in the bottom of Figure 7.3. Additionally
applying the second fix (cf. Line 18 of Figure 3.2) causes P4Check to output no violations,
since the type upon entering the ingress control is ethernet ⋅ ipv4 ⋅ tcp, resulting in

102 CHAPTER 7. HEADER VALIDITY BUGS IN REAL-WORLD PROGRAMS

port.p4, line 248, cols 8-24: warning: assuming either vlan_tag_[0]
matched as valid or vlan_tag_[0].vid wildcarded

port.p4, line 250, cols 8-24: warning: assuming either vlan_tag_[1]
matched as valid or vlan_tag_[1].vid wildcarded

fabric.p4 line 42, cols 41-67: warning: assuming fabric_header_cpu
matched as valid for rules with action terminate_cpu_packet

fabric.p4, line 57, cols 17-54: warning: assuming
fabric_header_unicast matched as valid for rules with action
terminate_fabric_unicast_packet

fabric.p4, line 81, cols 17-56: warning: assuming
fabric_header_multicast matched as valid for rules with action
terminate_fabric_multicast_packet

Figure 7.4: Warnings printed after fixing switch.p4’s reads bug (top), and its actions bug
(bottom)

all subsequent references to the IPv4 and TCP headers being safe.

Control bugfix Recall that a control bug occurs when the incoming type presents
a choice between two instances, but subsequent code expects one of the instances to
be valid. The control bug example in Figure 3.4 uses a parser that produces the type
Θ = ethernet ⋅ (1 + ipv4 ⋅ (1 + udp ⋅ (1 + nc_hdr ⋅ τ) + tcp)), where τ is a type
for caching operations. Especially, this type suggests that Includes Θ nc_hdr does
not hold, however, controls process_cache and process_value only typecheck in
contexts where Includes Θ nc_hdr is true.

Accordingly, P4Check reports type violations at every reference to nc_hdr. Fix-
ing this error is simply a matter of wrapping both calls to process_cache() and
process_value() in a validity check as demonstrated in the top right of Figure 3.4. As
a result, the type inside the validity check becomesΘ = ethernet⋅ipv4⋅udp⋅nc_hdr⋅τ
and thus Includes Θ nc_hdr is always true. As NetCache handles TCP and UDP
packets as well as its special-purpose packets, we can’t include the application of the
IPv4 routing table in the validity check. This is another instance of a parser bug, as the
type does not guarantee Includes Θ ipv4, which is required by table ipv4_route.

Table reads bugfix As shown in Figure 3.5, table reads errors occur when a header h is
included in the reads declaration of a table t with match kind k, and h is not guaranteed
to be valid at the call site of t, and if h /∈ valid_reads(t) or the match-kind of k ≠ ternary.
In the case of the port_vlan_mapping table in Figure 3.6, there is a valid bit for both
vlan_tag_[0] and vlan_tag_[1], both of which are followed by exact matches. We
fixed this bug by using a ternarymatch-kind instead, which allows the use of wildcard
matching, since when a field is matched with a wildcard, the table does not attempt to
compute the value of the reads expression.

However, this fix assumes that the controller is well-behaved and fills the table entry
for vlan_tag_[0].vid with a wildcard whenever vlan_tag_[0] is matched as invalid
(and similarly for vlan_tag_[1]). This also what SafeP4’s type system does, with its
maskable checks in typing rule T-Apply. P4Check prints warnings describing these
assumptions to the programmer as shown in the top of Figure 7.4, giving them guidelines
against which to check their control plane implementation.

7.2. OVERHEAD 103

Table action bugfix As exemplified with table fabric_ingress_dst_lkp in Fig-
ure 3.6, table actions bugs occur when at least one action cannot be safely executed
in all scenarios. In the example, the parser parses exactly one of the three headers
(1) fabric_hdr_cpu, (2) fabric_hdr_unicast and (3) fabric_hdr_multicast.
Thus, when the table is applied at type Θ, exactly one of Includes Θ fabric_hdr_i
for i ∈ {cpu, unicast, multicast} will hold. Now, the action term_cpu_packet
type-checks only with the (nonempty) type RestrictΘ fabric_hdr_cpu, and the ac-
tions term_fabric_i_packet only typecheck with the (nonempty) types RestrictΘ
term_fabric_i_packet for i = unicast, multicast

P4Check suggests that this is the cause of the bug since it reports type violations for
all references to these three headers in the control paths following from the application
of fabric_ingress_dst_lkp. As shown in the bottom of Figure 3.6, the optimal fix is
to augment the reads declaration to include a validity check for each contentious header.
We then assume that the controller is well-behaved enough to only call actions when
their required headers are valid, allowing us to typecheck each action in the appropriate
type restriction. Again, P4Check alerts the programmer whenever it makes such an as-
sumption. We show these warnings for the fixed version of fabric_ingress_dst_lkp
in the bottom part of Figure 7.4

Default action bugfix Recall that default action bugs, such as the one shown in
Figure 3.7, occur when a programmer creates a wrapper table for an action that modifies
the type, and forgets to force the table to call that action when the packet misses.
Table add_value_header_1 wraps action add_value_header_1_act, which itself
executes add_header(nc_value_1). The default action, when left unspecified, is nop,
whichmeans that if the pre-application type wasΘ, then the type after applying the table
is Θ′ = Θ +Θ ⋅ nc_value_1. For this type Includes Θ′ nc_value_1 is false, hence,
P4Check reports every subsequent reference (on this code path) to nc_header_1
to be a type violation. Fixing this bug by setting the default action to add_value_1
makes the post-application typeΘ ⋅nc_value_1+Θ ⋅nc_value_1 = Θ ⋅nc_value_1,
and therefore Includes Θ′ nc_value_1 is true, which allows the subsequent code to
typecheck.

7.2 Overhead

It is important to evaluate two kinds of overhead when considering a static type system:
overhead on programmers and on the underlying implementation. Typically, adding a
static type system to a dynamic type system requires more work for the programmer—
the field of gradual typing is devoted breaking this task into smaller commit-sized
chunks [Cam+17]. Surprisingly, in our experience, migrating real-world P4 code to pass
the SafeP4 type system only required modest programmer effort.

To qualitatively evaluate the effort required to change an unsafe program into a safe
one using our type system, we manually fixed all detected bugs. The programs that had
bugs required us to edit between 0.10% and 1.4% of the lines of code. The one exception
was PPPoE_using_P4, which was a 143 line program that required 6 line-edits (4%), all
of which were validity checks. Conversely, switch.p4 required 34 line edits, the greatest
observed number, but this only accounted for 0.37% of the total lines of code in the
program. Each class of bugs has a simple one-to-two line fix, as described in Section 7.1:
adding a validity check, adding a default action, or slightly modifying the parser. Each
of these changes was straightforward to identify and simple to make.

104 CHAPTER 7. HEADER VALIDITY BUGS IN REAL-WORLD PROGRAMS

Another possible concern is that extending tables with extra read expressions, or
adding run-time validity checks to controls, might impose a heavy cost on implementa-
tions, especially on hardware. Although we have not yet performed an extensive study
of the impact on compiled code, based on the size and complexity of the annotations we
added, we believe the additional cost should be quite low. We were able to compile our
fixed version of switch.p4 program to the Tofino architecture [Bos18] with only a modest
increase in resource usage. Overall, given the large number of potential bugs located by
P4Check, we believe the assurance one gains about safety properties by using a static
type system makes the costs well worth it.

7.3 Chapter Summary

In this chapter, we have shown how we can use SafeP4’s type system in practice to
check real P4 programs for header validity bugs according to the taxonomy presented
in Chapter 3 (RQ1). For this purpose we have shown exemplarily which effects buggy
programs as well as the repaired versions of these programs have on the computed types.
Validity bugs were present in the majority of the programs we examined, which clearly
indicates that validity bugs are ubiquitous in practice. Number-wise, table-action bugs
occurred most frequently, but only in a single program, which was significantly larger
than the others in terms of the number of lines of code. If we look at how often certain
bug categories appear in different programs, control and parser bugs predominate (RQ2).
Our evaluation has shown that validity bugs can usually be fixed with little effort, which
makes the effort for the programmer manageable. A first evaluation indicates that the
additional code required to fix the header validity bugs does not result in significantly
higher hardware resource consumption (RQ3).

CHAPTER8
Expressivity of Π4

One of our main goals in designing Π4 was to create a type system that is capable of
verifying relevant network properties beyond header validity but that retains at the same
time the modularity inherent to type systems. In this chapter, we evaluate to what extent
Π4 can bridge the gap between SafeP4 and full-fledged verification tools in terms of
expressiveness, and whether Π4 is actually able to verify P4 programs in a modular
fashion. We thereby answer the following two research questions:

RQ1 Can Π4 be used to verify practically relevant properties beyond header validity?

RQ2 Can Π4 be used to verify P4 programs in a modular fashion?

We start this chapter with a brief overview of properties discussed by other P4
verification tools ranging from basic safety properties to advanced safety properties.
We then show how the most common of these properties and other practically relevant
properties can be expressed using our heap types and verified by Π4’s type checker.
Finally, based on a case study, we investigate how we can facilitate Π4’s type system to
modularly verify P4 programs.

8.1 Survey

We surveyed the publications on recent P4 verification tools with respect to the network
properties discussed. Table 8.1 lists seven properties that were discussed in the context
of at least two tools. Other properties discussed are mainly application-specific and
are therefore not considered further. For each of the verification tools including Π4, a
checkmark indicates whether the respective property can be verified or not.

Header validity As already motivated in Chapter 3, accessing an invalid header in-
stance in P4 yields undefined values, which in turn can result in a variety of subtle bugs.
This problem has already been recognized, and as shown in Table 8.1, most P4 verifica-
tion tools provide the ability to detect invalid headers accesses. As it was already the
case with SafeP4, header validity is also a central safety property enforced by Π4’s type
system. The type checker rejects any program that attempts to access invalid headers.

105

106 CHAPTER 8. EXPRESSIVITY OF Π4

H
ea
de
rv
al
id
ity

Pr
ot
oc
ol
co
nf
or
m
an
ce

O
ut
-o
f-b

ou
nd
sa
cc
es
se
s

A
rit
hm

et
ic
ov
er
flo
w

D
et
er
m
in
ed

fo
rw
ar
di
ng

Pa
rs
er
-D
ep
ar
se
rc
om

pa
t.

Re
ad
-o
nl
y
fie
ld
s

ASSERT-P4 [Fre+18] ✓ ✓
p4v [Liu+18] ✓ ✓ ✓ ✓ ✓ ✓ ✓
Vera [Sto+18] ✓ ✓ ✓ ✓ ✓ ✓
P4RL [Shu+19] ✓ ✓
bf4[Dum+20] ✓ ✓ ✓ ✓

Π4 ✓ ✓ ✓ ✓ ✓

Table 8.1: Common safety properties examined by other P4 verification tools.

The main difference is that Π4 is able to ensure header validity even in the presence
of data-dependent validity checks. A corresponding example where the validity of the
IPv4 header is checked depending on the EtherType field of the Ethernet header, has
already been discussed in Section 5.1.

Protocol conformance To ensure interoperability between network devices of differ-
ent vendors, network protocols are usually standardized. For example, these standards
specify which values certain fields can contain, which other protocols are encapsulated
in the payload of the packet depending on certain header fields, or how packets must
be processed in certain situations. Protocol conformance is an umbrella term for a
variety of properties that ensure that protocols are implemented correctly. A frequently
considered example is the time-to-live (TTL) of an IPv4 packet, which limits how often
a packet can be forwarded before it must be discarded by the switch. We show in Sec-
tion 8.2.1 how we can express and verify protocol conformance such as the mentioned
example using Π4’s types.

Out-of-bound accesses P4’s header stacks represent fixed-size arrays of headers.
Accordingly, errors typical for arrays can occur, such as out-of-bounds accesses, which
a programmer usually wants to rule out. Currently, Π4 lacks the support for header
stacks. However, since this is not a fundamental limitation and avoiding out-of-bounds
access is a prime example of the use of dependent types, it should be possible to extend
Π4 accordingly in the future.

Arithmetic overflow Arithmetic operations in P4 do not detect overflows or under-
flows and should therefore be eliminated. Large values not fitting into a fixed number of
bits will be cut off, which might lead to unexpected behavior of the program. Currently,
it is not possible to check arithmetic overflows using Π4’s type system. Since our heap

8.2. CHECKING NETWORK INVARIANTS 107

types capture values down to the bit level, it seems possible to support this property in
the future.

Determined forwarding Another basic safety property, is determined forwarding.
Typical P4 programs contain thousands of paths on which a packet can be processed.
To avoid situations where packets are dropped unexpectedly, a desirable invariant is
that each program path contains an explicit forwarding decision—i.e., packets are either
forwarded on some switch port or dropped. We show in Section 8.2.2 how we can
encode this invariant with Π4’s heap types.

Parser-Deparser compatibility A P4 program typically defines the parser, controls
for ingress and egress pipelines, and the deparser. The main reason for this four-phase
structure is that separate ingress and egress pipelines allow packet processing to occur
both before and after packets are scheduled, typically using one or more queues. In
practice, parsing and deparsing may also happen between the ingress and egress stages—
i.e., the deparser code is additionally executed at the end of the ingress followed by the
parser code, before the egress. In such cases, it is important to ensure that data intended
to be carried from ingress to egress is serialized and deserialized correctly. Otherwise,
headers may be unexpectedly removed from the packet. We discuss this invariant in
more detail in Section 8.2.3 and show how this invariant can be checked using Π4.

Read-only fields In P4 there are certain metadata fields that are read-only (e.g. the
egress_port), yet the compiler does not rule out writes but instead silently ignores
them. To prevent unexpected behavior of the program, it is therefore desirable to
prohibit all write access to read-only fields. We show in Section 8.3 how an instance of
this invariant can be checked using Π4.

8.2 Checking Network Invariants

We now show how Π4’s type system can be used to check real network protocol invari-
ants and verify a variety of basic and advanced safety properties as discussed before. In
most P4 programs, the packet-forwarding behavior of the device is specified using a pre-
defined record of type standard_metadata_t. In particular, the field egress_spec
is used to instruct the switch to forward the packet on a specific port. We assume that the
field is initialized to 0x00, indicating that no forwarding decision has been made, and
that by setting the field to 0x1FF (i.e., the largest unsigned integer that can be encoded
into 9 bits, which is the width of the field), the switch can be instructed to drop the
packet. For simplicity, we treat P4 metadata as an ordinary header instance.

There is a general pattern that can be used to encode invariants in types. Given a
program that typechecks with some type (x ∶ τ in)→ τout , we can instead typecheck the
program with type (x ∶ τ in)→ {y ∶ τout ∣ φ inv}, which refines the output type with an
expression describing an invariant (φ inv). By doing so, we effectively filter out all heaps
for which the invariant does not hold. If the type computed by the type checker is not a
subtype of the annotated output type, there must be some heap allowed by the program,
for which the invariant does not hold.

108 CHAPTER 8. EXPRESSIVITY OF Π4

1 /* Unsafe */

2 if(ipv4.valid) {

3 stdmeta.egress_spec := 0x1 ;

4 ipv4.ttl := ipv4.ttl - 1

5 }

1 /* Safe */

2 if(ipv4.valid) {

3 if(ipv4.ttl == 0) {

4 stdmeta.egress_spec := 0x1ff

5 } else {

6 stdmeta.egress_spec := 0x1;

7 ipv4.ttl := ipv4.ttl - 1

8 }

9 }

(x ∶ {y ∶ ipv4≈ ∣ y.stdmeta.valid})→
{y ∶ ipv4≈ ∣ y.stdmeta.valid ∧

(y.ipv4.ttl = 0Ô⇒ y.stdmeta.egress_spec = 0x1ff)}

Figure 8.1: IPv4 TTL example. Top: property violated; middle: property holds; bottom:
Π4 type encoding the TTL invariant.

8.2.1 Protocol conformance

We start with examples showing how Π4’s type system can be used to ensure that a
program conforms with standard network protocols.

IPv4—Time To Live For Internet Protocol (IP) packets, the time to live (TTL) limits
how often a packet can be forwarded from one network switch to another. Every time a
packet is forwarded, the TTL is decremented; when the TTL is zero before the packet
has reached its destination, forwarding halts to eliminate the risk of infinite loops.1

In the code snippet in the top of Figure 8.1, the intended behavior is violated, because
the packet is always forwarded on the same port while the TTL is decremented. We
can detect this violation by checking the program with the type shown in the bottom of
Figure 8.1, which reads as follows: starting in a heap where at least IPv4 and the standard
metadata is valid, after executing the ingress code, still at least IPv4 and the standard
metadata is valid and if the IPv4 TTL is zero, the value of egress_spec indicates that
the packet will be dropped. The middle of Figure 8.1 shows a program that successfully
typechecks with the given type.

IPv4 Options The standard IPv4 header consists of at least 160 bits, but it may also
carry additional data in optional fields. The Internet Header Length (IHL) field specifies
the length of the header as multiples of 32 and indicates whether additional data is

1Strictly speaking, IPv4 requires a special ICMP message to be returned to the sender to indicate the
error, but here we will simply drop the packet.

8.2. CHECKING NETWORK INVARIANTS 109

1 /* Unsafe */

2 extract(ethernet);

3 if(ethernet.etherType == 0x0800) {

4 extract(ipv4)

5 }

1 /* Safe */

2 extract(ethernet);

3 if(ethernet.etherType == 0x0800) {

4 extract(ipv4);

5 if(ipv4.ihl != 0x5) {

6 extract(ipv4_opt)

7 }

8 }

(x ∶ {y ∶ є ∣ ∣y.pkt in ∣ > 592})→
{y ∶ ⊺ ∣ ((y.ipv4.valid ∧ y.ipv4.ihl ≠ 5) Ô⇒ y.ipv4_opt.valid) ∧

((y.ipv4.valid ∧ y.ipv4.ihl = 5) Ô⇒ ¬y.ipv4_opt.valid)}

Figure 8.2: IPv4 Options example. Top: property violated; middle: property holds;
bottom: Π4 type encoding the IPv4-Option specification.

available. The minimum IHL is 5 (5 ∗ 32 = 160) and the maximum value is 15. Due
to their flexibility, IP options are notoriously difficult to parse, and many real-world
network devices handle them incorrectly.

We can useΠ4’s type system to ensure that we also extract the IPv4 options from the
input packet, whenever IPv4 is valid and IHL > 5. Figure 8.2 provides one example where
this property is violated (top) and one where it holds (middle). To rule out violations,
we can check the respective programs with the type at the bottom of Figure 8.2. This
type states that executing the parser in the empty heap where enough bits are available
to extract Ethernet, IPv4 and IPv4 options, produces a heap satisfying the constraint
that if IPv4 is valid, then either IHL is 5 and IPv4 options are not valid, or IHL > 5 and
IPv4 options are valid.

Header Dependencies Most protocols have some way of keeping track of what other
protocols are encapsulated in the payload of a packet—i.e., which header follows next.
The correspondence between field values and protocols is typically defined as part of
the protocol standard. For example, an Ethernet frame uses the EtherType field (written
ethernet.etherType) for this purpose: a value of 0x0800 indicates that the next
header is an IPv4 header, while, for example, a value of 0x86DD indicates that the
next header is an IPv6 header. The code snippet in the top of Figure 8.3 violates the
dependency between the IPv4 header and the EtherType field of the Ethernet header.
Our type checker detects this violation by checking that executing the parser in an empty
heap, with enough bits to extract both Ethernet and IPv4, produces a heap with either
an invalid IPv4 header or a valid IPv4 header and an EtherType value of 0x0800, which
is captured by the type shown in the bottom of Figure 8.3. An example of a program

110 CHAPTER 8. EXPRESSIVITY OF Π4

1 /* Unsafe */

2 extract(ethernet);

3 extract(ipv4)

1 /* Safe */

2 extract(ethernet);

3 if(ethernet.etherType == 0x0800) {

4 extract(ipv4)

5 }

(x ∶ {y ∶ є ∣ ∣y.pkt in ∣ > 272})→
{y ∶ ⊺ ∣ y.ipv4.valid Ô⇒ y.ethernet.etherType == 0x0800}

Figure 8.3: Header dependency example. Top: property violated; middle: property
holds; bottom: Π4 type encoding IPv4’s dependency on Ethernet.

1 /* Unsafe */

2 if(ipv4.valid) {

3 if(ipv4.dstAddr != 0x0a0a0a0a) {

4 stdmeta.egress_spec := 0x1

5 }

6 }

1 /* Safe */

2 if(ipv4.valid) {

3 if(ipv4.dstAddr != 0x0a0a0a0a) {

4 stdmeta.egress_spec := 0x1

5 } else {

6 stdmeta.egress_spec := 0x1ff

7 }

8 }

(x ∶ {y ∶ ipv4≈ ∣ y.stdmeta.valid})→ {y ∶ ⊺ ∣ y.stdmeta.egress_spec ≠ 0x0}

Figure 8.4: Determined forwarding example. Top: property violated; middle: property
holds; bottom: Π4 type encoding the determined forwarding specification.

that successfully typechecks with the given type is shown in the middle of Figure 8.3.

8.2.2 Determined Forwarding

Our type checker is able to detect violations in programs that do not make an explicit
forwarding decision. For example, for the type shown at the bottom of Figure 8.4, the
program shown in the top of Figure 8.4 violates this property, while the property holds
for the program shown in the middle of the same figure. The type states that starting

8.2. CHECKING NETWORK INVARIANTS 111

in a heap where it is guaranteed that at least IPv4 and the standard metadata are valid,
after executing the program, we end in a state, where for all program paths the field
stdmeta.egress_spec does not contain the initial value anymore, which indicates
that a forwarding decision was made.

8.2.3 Parser-Deparser Compatibility

We now show how Π4 can guarantee that deparsed packets can be correctly re-parsed
without losing or corrupting information contained in packet headers. For example,
assuming that the parser shown in Figure 8.5 successfully parses the Ethernet and IPv4
headers from the input packet, but not a VLAN header, from the code we can conclude
that EtherType must be 0x0800. Further, assuming that the programmer intends the
ingress control shown in the middle right of Figure 8.5, after parsing, the switch checks if
a VLAN header is present. If a VLAN header was already parsed from the input packet,
no changes are made. Otherwise, a VLAN header is added (line 3) and the EtherType of
the Ethernet header is updated accordingly. If an IPv4 header is present, the EtherType
field of the VLAN header must also be updated (line 6) to obtain a protocol-conformant
packet.

On the other hand, if the programmer forgot the statement on Line 4, i.e., they
didn’t update the ethernet.etherType field, serializing and deserializing the parsed
headers will produce a corrupted packet. This unsafe example is shown on the middle
left of Figure 8.5. After running the deparser at the end of ingress, all three headers are
serialized: the first 112 bits correspond to the Ethernet header, followed by 32 bits of the
VLAN header, and another 160 bits of the IPv4 header. However, since the programmer
forgot to update the EtherType, bits 96 to 112 still contain the value 0x0800. Hence, if
the parser is run with this bit stream as the input, it will first parse the Ethernet header,
then look at the etherType and given the value 0x0800, it will continue to parse the
IPv4 header. As a result, the bits of the VLAN header are parsed as an IPv4 header,
leading to a corrupted packet.

To avoid such errors, we want to enforce the invariant that all instances valid at the
end of ingress are equivalent to those obtained after deparsing and re-parsing. The code
of the full pipeline is shown in the bottommost code snippet in Figure 8.5. The ascribed
input type starting in Line 3 captures the assumptions about the state after executing
the parser followed by the ingress control, i.e., both Ethernet and VLAN are guaranteed
to be valid and the validity of IPv4 is indicated by the EtherType field of the VLAN
header. The ascribed output type (Line 7) specifies the actual invariant, namely that
executing the deparser followed by a reset statement and the parser produces a heap that
is equivalent to the heap obtained after executing the parser followed by the ingress. We
instruct our type checker to verify the property by checking the program with the type
shown at the bottom of Figure 8.5, which ensures that there are enough bits to parse all
possible headers.

8.2.4 Mutual Exclusion of Headers

Mutual exclusion is another property of interest that arises from the fact that the contents
of specific header fields indicate which protocol header follows next and that each packet
at runtime usually specifies only one such a protocol. In an implementation, we can
take advantage of this property and use the same memory to store mutually exclusive
headers. An example is the parser shown in the top of Figure 8.6 that conditionally
parses either IPv4 or IPv6. Because only one of the paths is taken at runtime, it should

112 CHAPTER 8. EXPRESSIVITY OF Π4

1 Parser ≜
2 extract(ether);

3 if(ether.etherType == 0x8100) {

4 extract(vlan);

5 if(vlan.etherType == 0x0800) { extract(ipv4) }

6 } else {

7 if(ether.etherType == 0x0800) { extract(ipv4) }

8 }

1 UnsafeIngress ≜
2 if(!vlan.valid) {

3 add(vlan);

4 if(ipv4.valid) {

5 vlan.etherType := 0

x0800

6 }

7 }

1 SafeIngress ≜
2 if(!vlan.valid) {

3 add(vlan);

4 ether.etherType := 0

x8100;

5 if(ipv4.valid) {

6 vlan.etherType := 0

x0800

7 }

8 }

1 Deparser ≜
2 if(ether.valid) { remit(ether) };

3 if(vlan.valid) { remit(vlan) };

4 if(ipv4.valid) { remit(ipv4) }

1 /* Ingress is either UnsafeIngress or SafeIngress */

2 Parser; Ingress;

3 (Deparser; reset; Parser) as (x:{z:ether~|

4 z.ether.etherType == 0x8100 && z.vlan.valid &&

5 z.ipv4.valid <=> z.vlan.etherType == 0x0800 &&

6 z.pkt_out.length == 0 && z.pkt_in.length > 0}) ->

7 {y:⊺|x === y}

(x ∶ {y ∶ є ∣ ∣y.pktout ∣ = 0 ∧ y.pkt in .l ength > 304})→ ⊺

Figure 8.5: Roundtripping example. Common parser followed by the unsafe ingress
code (left) and safe ingress code (right), followed by the deparser. The last code snippet
shows the full pipeline, and type at the bottom is used to check the pipeline.

never happen that both instances are valid at the same time. In this small example, it is
easy to see that this invariant holds, but in larger programs it is difficult to track which
header instances are valid on which execution paths. We can check that the property
continues to hold in the ingress shown in Line 10 using the type in the annotation on
line 11. This type ensures that starting from a heap in which Ethernet and optionally
either IPv4 or IPv6 are valid, at the end of the ingress, it is still guaranteed that IPv4

8.2. CHECKING NETWORK INVARIANTS 113

1 (extract(ether);

2 if(ether.etherType == 0x86dd) {

3 extract(ipv6)

4 } else {

5 if(ether.etherType == 0x0800) {

6 extract(ipv4)

7 }

8 }) as (x:{y:є|y.pkt_in.length > 432}) -> {y:ether~|!(y.ipv4.

valid && y.ipv6.valid)};

10 Ingress /* Can be SafeIngress or UnsafeIngress*/

11 as (x:{y:ether~|!(y.ipv4.valid && y.ipv6.valid)}) ->

12 {y:ether~|!(y.ipv4.valid && y.ipv6.valid)};

14 if(ether.valid) {

15 remit(ether)

16 };

17 if(ipv4.valid) {

18 remit(ipv4)

19 };

20 if(ipv6.valid) {

21 remit(ipv6)

22 }

1 UnsafeIngress ≜
2 add(ipv6);

3 ether.etherType := 0x86dd

1 SafeIngress ≜
2 if(!ipv4.valid) {

3 add(ipv6);

4 ether.etherType = 0

x86dd

5 }

(x ∶ {y ∶ є ∣ ∣y.pkt in ∣ > 432})→ ⊺

Figure 8.6: Mutual exclusion example: IPv4 and IPv6 should never be simultaneously
valid. Top: common pipeline; middle left: unsafe ingress code; middle right: safe ingress
code; bottom: whole program type.

and IPv6 are not valid at the same time. The ingress code shown in the middle left of
Figure 8.6 exemplifies a violation of the property. If a packet enters the control block
with a valid IPv4 header, it will leave with both a valid IPv4 and a valid IPv6 header;
a violation of our property. The code in the middle right is safe because it includes a
conditional that explicitly checks the validity of IPv4 before adding IPv6.

Summary Π4’s types are expressive enough to express a variety of properties beyond
header validity, from protocol conformance to basic safety properties to complex proper-

114 CHAPTER 8. EXPRESSIVITY OF Π4

Figure 8.7: Hybrid switch architecture: fixed-function data plane in which the customer
can execute custom code at pre-defined program points.

ties such as mutual exclusion of headers or the compatibility of the parser and deparser.
This enables us to close the gap between previous type system-based approaches and
existing verification tools for P4 (RQ1).

8.3 Designing for Modularity

One key advantage of P4 programmable devices over traditional network devices is that
the functionality of the data plane can be tailored to the application needs. However, at
the same time, this advantage presents new challenges for network administrators, for
example, the entire functionality of such devices usually must be implemented from
scratch, without the possibility to rely on proven implementations provided by vendors.
Therefore, an emerging design pattern for data plane switches is partial programmability,
such as Cisco’s daPIPE [Bal19], which is designed for the Nexus 3400 switch [Cis21].
The idea is that a device vendor provides a partially-implemented pipeline together
with a set of program points where the customer can inject custom code as shown
in Figure 8.7. Since the P4 language was not designed for incremental programming,
where functionality is added to an existing data plane program, several challenges arise.
Most importantly, the base data plane program provided by the vendor should not be
affected by the injected code. Because of trade secrets or too much effort required to
understand the base program in detail, it is usually not an option that the vendor shares
the implementation of the base program such that the programmer can understand what
his program is allowed to do. A better approach is that vendors require that customer
programs satisfy certain properties, but in current architectures, these properties are
not automatically checked.

For example, consider a deployment of the customizable pipeline in a campus
network, where network engineers want to experiment with in-band network telemetry
(INT) without perturbing the VLAN tag, which is used to enforce security policies.
Let us assume that there are four classes of traffic, Visitor, Student, Faculty, and
Staff, each with unique VLAN identifiers. We want to ensure that no matter how the
customer-programmable part of the pipeline is instantiated, it cannot cause students
and visitors to acquire the privileges of faculty or staff.

With Π4, we can design a modular system that checks invariants on customer
programs to be integrated into vendor pipelines statically. Practically, we can ensure
that the VLAN tag is not changed, by checking that the customer’s code has a type
like: (x ∶ τ) → {y ∶ τ′ ∣ x .vlan.vid = y.vlan.vid}, where τ and τ′ are appropriate
for the specific pipeline. We check, once-and-for-all, that the surrounding switch code
composes with this type, and incrementally check that the customer code has this type
(for an appropriate τ).

8.3. DESIGNING FOR MODULARITY 115

1 extract(vlan);

2 Ingress /* Customer specified code: Default, Overwrite,

Table, or UnsafeActions */

3 as (x:Σy:stdmeta.vlan) -> {y:Σz:stdmeta~.vlan~|y.vlan ==

x.vlan};

4 remit(vlan)

Figure 8.8: Instantiation of modular router design; the parser and deparser are provided
by the vendor, the ingress is provided by the customer.

8.3.1 Specifying Invariants

In the following we will consider a very simple implementation of the example described
above, show in Figure 8.8. We assume that the header instance vlan is the standard
VLAN header (32 bits), including a 12-bit vlan tag field vlan.vid. We further assume
that instance stdmeta, which is initially valid, provides access to the standard meta-
data (325 bits) used in the P4 switch model, including a 9-bit egress specification field
meta.egress_spec.

The control flow simply extracts the VLAN instance, executes the modular ingress
control, and then emits the VLAN header. The overall behavior of the program is
captured by type (x ∶ {y ∶ stdmeta ∣ ∣y.pkt in ∣ > 32}) → Σy ∶ stdmeta≈ .vlan≈. This
type expresses that before executing the program stdmeta is valid and the input packet
provides at least 32 bits, i.e., enough bits to extract the VLAN header. After the execution
at least the metadata and VLAN headers are valid, but possibly also other headers added
in the ingress. However, this type is too coarse-grained to guarantee that the ingress
code will not change the parsed VLAN header.

Since both parser and deparser are provided by the vendor and stay unchanged,
it is also not necessary to re-check that the whole pipeline is well-typed every time
the customer implementation changes. Instead, we check once that the parser (Line 1
of Figure 8.8) is compatible with type (x ∶ {y ∶ stdmeta ∣ ∣y.pkt in ∣ > 32}) → Σy ∶
stdmeta.vlan and that the deparser (Line 4 of Figure 8.8) is compatible with type
(x ∶ Σy ∶ stdmeta.vlan)→ Σy ∶ stdmeta≈ .vlan≈. Of course, we could also provide a
more specific output type for the deparser, for example, asserting that the content of the
last 32 bits of the output packet is equal to the content of the VLAN instance.

When we swap in different implementations for the ingress control, we only need to
check the ascribed type on Line 3 of Figure 8.8, without rechecking the surrounding
code. This type defines the requirements the implementation of the ingress control
must fulfill in order to be compatible with the rest of the pipeline, i.e, possibly new
header instances can be added but the VLAN header must remain unchanged. With the
infrastructure Π4’s type system provides, network engineers can make changes to their
experimental module Ingress and check its compatibility with the switch without
re-checking the feasibility of the whole switch in a modular fashion.

8.3.2 Checking Customer Programs

We now consider a collection of customer programs that an engineer may want to install
into the switch and how Π4 prevents security vulnerabilities by ensuring the customer
code has the type annotated on Line 3 of Figure 8.8.

116 CHAPTER 8. EXPRESSIVITY OF Π4

1 Default ≜
2 skip

1 Overwrite ≜
2 vlan.vid := Faculty

1 Table ≜
2 add(_vlan_table);

3 if(_vlan_table.vid_key == vlan.vid) {

4 if(_vlan_table.act == 0b0) {

5 stdmeta.egress_spec := 0x1ff

6 } else {

7 stdmeta.egress_spec := 0x1

8 }

9 }

1 UnsafeActions ≜
2 add(_vlan_table);

3 if(_vlan_table.vid_key == vlan.vid) {

4 if(_vlan_table.act == 0b0) {

5 vlan.vid := Faculty

6 } else {

7 vlan.vid := Staff

8 }

9 } else {

10 vlan.vid := Visitor

11 }

Figure 8.9: A collection of safe and unsafe customer implementations for the Ingress
module from Figure 8.8. Top Left: Default; Top Right: Overwrite; Bottom Left: Table;
Bottom Right: Unsafe Actions

Default Consider the empty program, shown in the top of Figure 8.9, which would
surely be the default behavior when the programmer has not written any code yet. To
typecheck this no-op module, we check that command skip has the annotated type:

⋅ ⊢ skip ∶(x ∶ Σy ∶ stdmeta.vlan)→ {y ∶ Σz ∶ stdmeta≈ .vlan≈ ∣ y.vlan = x .vlan}

The command skip typechecks with this type by rules T-Skip and T-Sub, since

(x ∶ Σy ∶ stdmeta.vlan) ⊢ {y ∶ Σz ∶ stdmeta.vlan ∣ y ≡ x} <∶
{y ∶ Σz ∶ stdmeta≈ .vlan≈ ∣ y.vlan = x .vlan}

Overwrite Conversely, if the customer were to install an obviously incorrect program,
such as the second one in Figure 8.9, which always overwrites the VLAN tag with the
identifier reserved for faculty members, the type system complains that the following
subtyping check fails:

8.3. DESIGNING FOR MODULARITY 117

1 control Ingress(...) {

2 action drp() {

3 stdmeta.egress_spec = 0x1FF;

4 }

5 action fwd() {

6 stdmeta.egress_spec = 1;

7 }

8

9 table vlan {

10 key = { vlan.vid : exact; }

11 actions = { drp; fwd; }

12 }

13

14 apply {

15 vlan.apply();

16 }

17 }

Figure 8.10: P4 table encoded by the program Table from Figure 8.9.

(x ∶ Σy ∶ stdmeta.vlan) ⊢ {y ∶ Σz ∶ meta≈ .vlan≈ ∣ y.vlan.vid = Faculty} <∶
{y ∶ Σz ∶ stdmeta≈ .vlan≈ ∣ y.vlan.vid = x .vlan.vid}

For example, if the VLAN tag of the incoming packet (x .vlan.vid) is Student,
the two types denote disjoint sets of heaps.

Table The third program (Table) in Figure 8.9 encodes the P4 table shown in Fig-
ure 8.10, which matches on the value of header field vlan.vid and selects one of two
actions: (1) drp, which sets the outgoing port (egress_spec) to 0x1FF, and (2) fwd,
which sets it to 0x1.

As discussed in Section 6.5, to encode this table, we create a newheader_vlan_table
with a 12-bit field vid_key and a 1-bit field act. The field _vlan_table.vid_key
represents the match key of the table, while the field _vlan_table.act encodes the
different actions. Since in this example the table only provides two actions, a single
bit is sufficient to encode both alternatives. Actions drp and fwd are represented by
_vlan_table.act = 0 and _vlan_table.act = 1 respectively. This program will
typecheck since no branch of the code modifies the vlan.vid field, and _vlan_table
is permitted to be valid.

Unsafe actions Finally, let us consider the last program in Figure 8.9, which encodes
the P4 table shown in Figure 8.11. This table provides three actions fac, stf and vst,
each modifying the VLAN tag. The P4 annotation @defaultonly indicates that action
vst can only be used as default action and never in the table.

Whenever the table is applied, the VLAN tag is overwritten, however, without
respecting the VLAN tag of the incoming packet. This clearly violates the requirement

118 CHAPTER 8. EXPRESSIVITY OF Π4

1 control Ingress(...) {

2 action fac() {

3 vlan.vid = Faculty;

4 }

5 action stf() {

6 vlan.vid = Staff;

7 }

8 action vst() {

9 vlan.vid = Visitor;

10 }

11

12 table vlan {

13 key = { vlan.vid : exact; }

14 actions = {

15 fac; stf;

16 vst @defaultonly;

17 };

18 default_action = vst;

19 }

20

21 apply {

22 vlan.apply();

23 }

24 }

Figure 8.11: P4 table encoded by the program UnsafeActions from Figure 8.9.

that the VLAN tag must be unchanged after executing the ingress program, triggering a
violation of the subset check just as in the Overwrite example.

Summary This case study has shownhowΠ4 can be used to verify data plane programs
in a modular way (RQ2). Type annotations allow expressing requirements that other
modules must fulfill. If the implementation of modules changes, it is sufficient to re-
check these modules in isolation according to their external requirements without
having to re-check the entire pipeline.

8.4 Chapter Summary

In this chapter, we showed that Π4 is indeed expressive enough to verify a wide range
of real-world network properties. Thus, Π4 is able to bridge the gap between type
system-based approaches such as SafeP4 and full-fledged verification tools. At the same
time, our approach allows programs to be verified modularly, which will likely benefit
efforts to modularize P4 code in the future. There are still properties that Π4 does
not yet support. As we have shown, these include, properties like array bound checks
and arithmetic overflows, however we do not think this is a fundamental limitation
since eliminating array bound checks is one of the standard examples discussed in the

8.4. CHAPTER SUMMARY 119

dependent typing literature [XP98] and arithmetic overflows can be handled similarly.
On the other hand, the verification of language features such as hash functions, externs,
or registers poses a bigger challenge and is left for future work.

CHAPTER9
Performance Evaluation

After exemplifying in the previous chapter that Π4’s types are suitable for expressing
and checking a variety of practically relevant properties, in this chapter we evaluate the
runtime performance of Π4 using several real P4 programs. We thereby address the
following research questions.

RQ1 How long does it take to verify that a certain property holds?

RQ2 What impact do the optimizations described in Section 6.4 have?

RQ3 What impact does theMTU and as such the size of bit vectors used in the encoding
have?

RQ4 What is the impact of modular verification?

For our evaluation we used a collection of open-source programs and programs written
by ourselves, which are summarized in Table 9.1. We used our P4 frontend to automati-
cally translate P4 programs into Π4’s syntax and then used the type checker to check
annotated types. We were therefore limited to programs that can be translated into the
syntax of Π4, for example, we exclude programs using persistent state (e.g. registers or
counters). In some cases we have adapted the programs so that they could be translated,
or we only translated parts automatically and parts by hand, while trying to preserve
their semantics. For example, the program ngsdn is a slightly adapted version of the next
generation SDN platform1 tutorial, where we manually adjusted the control flow and
removed the segment routing over IPv6 feature because the parser could not be fully
translated. Similarly, we adapted the parser for program fabric—provided by the Open
Network Operating System (ONOS)2—since it contains an infinite loop. In practice,
the program relies on packets containing a specific header value that terminates the
loop. However, this makes it impossible for us to unroll the parser, which is necessary
for our translation to Π4. In addition, we only included the filtering and forwarding
features and removed all remaining. To provide a better intuition about the different
programs, Table 9.1 provides for each program (1) how many lines of P4 code it consists

1https://opennetworking.org/ng-sdn/
2https://opennetworking.org/onos/

121

https://opennetworking.org/ng-sdn/
https://opennetworking.org/onos/

122 CHAPTER 9. PERFORMANCE EVALUATION

Program LoC P4
Parser
states Tables

Total
header
length
(bytes)

Π4
Commands

multicast 116 2 1 38 23
basic 120 3 1 34 33
ecn 134 3 1 38 39
qos 157 3 1 38 41

vlan_decap 105 3 1 38 45
roundtrip 93 3 0 38 48

load_balance 170 4 3 38 49
basic_tunnel 156 4 2 38 55

ngsdn 421 10 6 88 239
fabric 537 15 6 86 541

Table 9.1: P4 programs used for the performance evaluation ordered by the number of
Π4 commands after translation.

of, (2) how many states the parser comprises, (3) how many tables the program uses,
(4) what is the longest sequence of packet headers that is parsed (in bytes), and (5) how
many Π4 commands the translated program consists of.

9.1 Checking Header Validity

To address our first research question, as suggested by Liu et al. [Liu+18], we check all
programs for header validity, as this property requires reasoning about all control-flow
paths. Since header validity is a fundamental safety guarantee of Π4’s type system, it is
sufficient to check that the programs produce any valid output heap. We can capture
this with the following type.

(x ∶ {y ∶ meta ⋅ standard_metadata ∣ ∣y.pkt in ∣ > LEN ∧ ∣y.pktout = 0∣})→ ⊺

This type states that, given an initial heap where both user-defined metadata and the
intrinsic metadata provided by the target are valid3, and enough bits are available in
the input packet to extract the longest sequence of headers, and additionally assuming
that the output packet is empty, the output heap is in the set of all possible heaps. For
example, for program fabric, we use LEN = (86 ∗ 8) − 1 to assert that the input packet
must at least provide 86 bytes = 688 bits.

We conducted all experiments on a workstation equipped with an Intel Core i7-
6700K CPU and 32 GiB of RAM. Since we quickly ran out of memory while checking
program ngsdn, we repeated the experiment on a server equipped with an AMD EPYC
7542 CPU and 512 GiB of RAM. In all other experiments, we obtained very similar
results on both machines, and surprisingly, our workstation was even able to check
programs faster in several cases.

For our first experiment, we used an MTU of 1500 bits, which is only one-eighth of
the standard MTU, but is sufficient for our programs because the length of the input

3As explained in Section 2.2.2, this is the default behavior in P4

9.2. EFFECTS OF OPTIMIZATIONS ON RUNTIME 123

mult
ica

st
ba

sic ec
n

qo
s

vla
n_

de
ca

p

rou
nd

trip

loa
d_

ba
lan

ce

ba
sic

_tu
nn

el

ng
sd

n
fab

ric

10
0

10
1

10
2

10
3

10
4

R
un

tim
e

(s
)

0.
43 0.
5

0.
36 0.

55 0.
61

2.
57

1.
56

1.
38

21
06

3.
3

50
.1

9

0.
66 0.

91

0.
84 1.

0 1.
05

4.
39

2.
0

2.
04

32
0.

27

0.
41 0.

61

0.
44

0.
82 0.

97

3.
51

2.
01

1.
5

18
75

.7
9

0.
64

1.
15

1.
09 1.

37 2.
12

5.
81

2.
64

2.
76

67
41

.2
1default

without cache
without inlining
without cache and inlining

Figure 9.1: Time needed to check header validity for the programs listed in Table 9.1, with
substitution inlining and validity caching enabled (default), without validity caching
enabled, without substitution inlining enabled and with both optimizations disabled.

packet plus the length of the output packet—which is twice the total header length
reported in Table 9.1—does not exceed this value. The results are given by the blue bars
(default) in Figure 9.1. Since there are huge spans between the measured values, we use
a logarithmic scale for the y-axis. However, since this distorts the actual size differences
in the plot, we additionally give the absolute value above each bar. Most notably are the
results for programs ngsdn and fabric. Intuitively, both programs take the longest to
verify, as they are also the largest programs. Surprisingly, it takes almost 6 hours (5:51)
to check ngsdn, while fabric with more than twice as many commands takes only about
50 seconds. The reason for this is that our type checker found a header validity bug in
the implementation of fabric, and thus can terminate early.

Figure 9.2 shows a stripped-down excerpt from fabric.p4 showing the offensive
code. The ingress control first applies the filtering control and afterwards applies the
forwarding control. The first control applies table fwd_classifier—shown in the
top of Figure 9.2—which matches on the Ethernet type field and sets the forwarding
type (fwd_type) accordingly. If the forwarding type is equal to the constant named
FWD_IPV6_UNICAST, the forwarding control applies table routing_v6, which reads
the IPv6 header. However, this program does not guarantee that the IPv6 header is
actually valid in this case. After repairing the bug by guarding the invocation of table
routing_ipv6 with an additional validity check, we ran our checker again on the
program, but—even on our server—eventually ran out of memory before the check was
completed.

9.2 Effects of Optimizations on Runtime

In the next step, we evaluatedwhether the optimizations described in Section 6.4 actually
have the desired effect, thus addressing RQ2. As a reminder, as a first optimization we
reduce the size of the computed types by eliminating explicit type substitutions and the

124 CHAPTER 9. PERFORMANCE EVALUATION

1 action set_forwarding_type(fwd_type_t fwd_type) {

2 meta.fwd_type = fwd_type;

3 }

4 table fwd_classifier {

5 key = { hdr.eth_type.value: ternary; }

6 actions = { set_forwarding_type; }

7 }

1 table routing_v6 {

2 key = { hdr.ipv6.dst_addr: lpm; }

3 }

4 apply {

5 if (meta.fwd_type == FWD_IPV6_UNICAST) {

6 routing_v6.apply();

7 }

8 }

Figure 9.2: Header validity bug in fabric.p4. Excerpt from control Filtering (top) and
control Forwarding (bottom). The validity of ipv6 in control Forwarding depends on
correct control-plane entries in table fwd_classifier.

second optimization reduces the number of SMT solver calls by caching assumptions
about header validity. The results can also be seen in Figure 9.1. Except for program
ngsdn, we ran all programs respectively without the header validity cache but with
substitution inlining, without substitution inlining but with the header validity cache,
and without any optimization. Program ngsdn could not be checked at all without the
optimizations.

As can be seen with programmulticast, substitution inlining may introduce addi-
tional overhead for programs that can be checked in a short time. For smaller programs,
the validity cache has a bigger impact on the runtime than substitution inlining, however,
this reverses for lager programs as can be seen with program fabric.

9.3 Effects of the MTU on Runtime

Next, we evaluate the impact of MTU on the runtime of the type checker (RQ3). Again,
we look at the time it takes our type checker to check header validity. We start with
an MTU of 1500 bits and then increase the MTU in steps of 1500 bits, up to a value of
12000 bits = 1500 bytes. As can be seen in Figure 9.3, the runtime of the type checker
increases with increasing MTU. For larger programs, the runtime increases significantly
more with larger MTU values than for comparatively smaller programs. The program
roundtrip is noticeable, which proportionally shows the largest increase in runtime. The
reason is that the program uses the reset command, which prohibits the calculated types
being completely inlined (cf. Section 6.4.1), which has a significant effect on the runtime
of the SMT solver.

To better quantify the respective increase in runtime, Figure 9.4 additionally shows
the percentage runtime increase compared to the next smaller MTU, i.e., how much
does the runtime increase when we increase the MTU from 1500 bits to 3000 bits, or

9.4. MODULAR VERIFICATION 125

1500 3000 4500 6000 7500 9000 10500 12000
MTU (bits)

0

20

40

60

80

100

120

140

R
un

tim
e

(s
)

multicast
basic
ecn
qos
vlan_decap
roundtrip
load_balance
basic_tunnel
fabric

Figure 9.3: Overall time needed to check header validity with varying MTUs.

30
00

45
00

60
00

75
00

90
00

10
50

0

12
00

0

MTU (bits)

50

25

0

25

50

75

100

125

150

In
cr

ea
se

 (%
)

multicast
basic
ecn
qos
vlan_decap
roundtrip
load_balance
basic_tunnel
fabric

Figure 9.4: Percentage increase in runtime compared to the previousMTUvalue, starting
from an MTU of 1500 bits. For example, checking program roundtrip with an MTU of
3000 bits increases the type checking time by roughly 130% compared to an MTU of
1500 bits.

from 3000 bits to 4500 bits, and so on. Overall, the runtime increases with a larger MTU
value, but no direct conclusions can be drawn from the selected MTU to the increase in
runtime. Not every increase in MTU results in the same percentage runtime increase.
Also, the runtime does not necessarily increase to a greater extent with larger MTU
values. In a few cases, a larger MTU value even leads to a reduced runtime compared to
the next smaller MTU value.

126 CHAPTER 9. PERFORMANCE EVALUATION

Program Parser Ingress Egress Deparser Complete

ngsdn 2.99 19.85 0.31 2.01 201.93
fabric 15.24 21.81 - 743.50 355.94

Table 9.2: Time in seconds needed to modularly verify header validity for programs
ngsdn and fabric. Parser, Ingress, Egress and Deparser are the required times to check the
respective pipeline stages in isolation. Complete indicates the time for the entire pipeline,
where we ascribed each pipeline stage with a type that captures the requirements on the
input heap and the guarantees for the resulting heap.

9.4 Modular Verification

Akey aspect ofΠ4 is its support formodular verification. Therefore, wewill now evaluate
to which extent we can exploit modularity to make verification of large programs in
particular achievable (RQ4). For this purpose we use program ngsdn and the fixed
version of fabric without any validity bugs. Table 9.2 shows the results for checking
each pipeline stage in isolation and for the whole pipeline. However, when checking the
complete pipeline, we ascribe a type to every pipeline stage, which exactly captures the
requirements it has on the input heap and the guarantees it offers with respect to the
output heap.

For example, we use the following type to describe the parser of program ngsdn.

(x ∶ {y ∶ standard_metadata ⋅ meta ∣ ∣y.pkt in ∣ > 703})→
{y ∶ ⊺ ∣ y.standard_metadata.valid ∧

y.meta.valid ∧
y.ethernet.valid ∧
¬y.cpu_in.valid ∧
y.icmpv6.valid Ô⇒ (y.ipv6.valid ∧
(y.icmpv6.type = 0x87 ∨ y.icmpv6.type = 0x88) Ô⇒
y.ndp.valid) ∧

∣y.pkt in ∣ ≥ 0}

This type states that given an input packet that provides enough bits to extract all
consecutive packet headers, the parser guarantees that afterwards the ethernet header
will be parsed, but not the cpu_in header. Furthermore, if the icmpv6 header is parsed,
it is guaranteed that the ipv6 header was also parsed and if the type field of header
icmpv6 contains the value 0x87 or 0x88 the ndp header will be additionally parsed.
This type captures exactly the requirements of the ingress control to also successfully
typecheck. We can proceed similarly for the egress and the deparser. For example the
egress has the requirement that the header cpu_inmust not be valid at the beginning,
which is guaranteed by both the parser and the ingress. Overall, this approach allowed
us to check the complete program ngsdn in about 3.5 minutes, which is a significant
improvement over the 6 hours previously measured.

By proceeding analogously, we can also significantly reduce the time required to
check program fabric. Note, the table does not provide a value for the egress because
we have initially limited this program to a portion of the ingress control. Since the
functionality of the ingress is described by two separate control blocks, we could also

9.5. CHAPTER SUMMARY 127

check them in isolation. For example, using this approach, it took us only about 5
seconds to check the filtering part of the ingress control. It is surprising that it takes
more than twice as long to check the deparser in isolation compared to the full pipeline.
However, a detailed root cause analysis is left for future work.

9.5 Chapter Summary

In this chapter, we showed that Π4’s SMT solver-based approach is suitable for checking
real P4 applications. However, especially with regard to larger programs, it is essential to
rely on Π4’s capability to modularly check programs, but still our approach is currently
not able to compete with tools like p4v [Liu+18] or Aquila [Tia+21]. It is crucial for an
implementation of our SMT-based approach that the complexity of the SMT queries
as well as the number of SMT solver invocations is reduced as much as possible, for
example, by applying the optimizations we have proposed. Furthermore, a crucial factor
with regard to the complexity of the SMT queries is the MTU used, which determines
the maximum size of the encoded bit vectors. An interesting question that has remained
open is whether it is possible to automatically compute the minimum required MTU for
each program and annotated type while preserving the properties of our type system,
thus avoiding unnecessary overhead.

Part IV

Epilogue

129

CHAPTER 10
Conclusion and Future Work

This dissertation confirms our initial hypothesis that type systems are well suited to
equip data plane programming languages—in particular the P4 language—with safety
guarantees, which makes it possible to verify a rich set of safety properties.

We started with the basic property of header validity where we were able to show that
several of P4’s language features are susceptible to bugs due to accessing invalid header
instances. Based on these findings, we then designed SafeP4, a domain-specific language
for programmable data planes whose static type system guarantees that all headers
accessed are guaranteed to be valid. We were faced with the challenge that due to the
interaction with the control plane, header validity becomes a dynamic property, which
we addressed both by employing path-sensitive typing that incorporates information
from forwarding table declarations and by assuming that the control plane satisfies three
basic safety properties. Our evaluation showed that all the error categories we identified
occur in real-world programs of varying sizes and that SafeP4’s type system can be
utilized to detect them without having to annotate the source code beforehand, which
is a major difference to existing verification tools. In the second step we addressed the
issue of SafeP4 being limited to checking header validity.

With Π4, we managed to close the gap between simple approaches such as SafeP4
and full-fledged verification tools with respect to the expressive power by resorting
to the more powerful typing discipline of dependent types. Since type systems are a
compositional way to establish program properties, our approach offers for the first time
the possibility to verify rich correctness properties for data plane programs in a modular
way. At the same time, we managed to automate subtype checks by encoding them into
SMT queries in the theory of fixed-width bit vectors, relieving the programmer from
writing manual proofs, which is common for dependently-typed systems.

With this dissertation we have laid the foundation for a wider adoption of type
systems in the field of network programming—in particular for programmable data
planes. This results in a variety of interesting directions in which our work can be
expanded.

Integration into P4 The first direction in which our work can be extended is mak-
ing our dependent type system practically usable. We have equipped our prototype
implementation with a frontend based on Petr4 that allows programs written in the

131

132 CHAPTER 10. CONCLUSION AND FUTUREWORK

P4 language to be parsed so that they can be annotated with types and type-checked.
However, our frontend is not complete and requires two major enhancements.

The first is with respect to the support of more advanced language features. There
are a few P4 features that our current prototype does not support, mostly because they
pose challenges to SMT-based approaches to verification. The unpredictability of hash
functions is difficult to verify. Besides over-approximating their behavior by representing
them as uninterpreted functions, we can resort to a more fine-grained approach such
as concolic verification [GKS05]. Registers are on-switch state that can be modified
by the packet or the controller and persists between packets. Representing persistent
state in our current semantics is tricky, since it involves distributed computing concerns
and needs further investigation if one does not simply want to over-approximate their
behavior, e.g., bymaking havoc of the values every time the register is read. More general,
to enable typing of externs, the work on typing foreign function interfaces [FF08] might
serve a starting point.

The second improvement concerns the integration of our type system into the P4
language. To guide the design of impactful systems for modular verification of data
plans, it is necessary to provide a gradual transition from untyped to fully typed code.
Gradual Typing [ST06; TF06] would allow P4 programmers to statically type parts of
their code as needed. Approaches such asmigrational typing [Cam+17] or the use of
type inference [SV08] could support a gradual migration. How type inference, such as
the one used by Liquid Haskell [VTV18], can be realized for Π4 is also future work.

In addition, the type-checking performancemust be further optimized. Even though
we have already implemented various optimizations, the overall time needed to check
even simple programs is not sufficient for quick feedback during the development pro-
cess. For this purpose, it can be examined whether special SMT tactics or an alternative
encoding allow a more efficient solving of our subtyping constraints. An alternative
could be an embedding of our type checker into a dependently-typed language that
does not need to rely on an SMT solver at all.

Extend guarantees offered by types A second direction in which we can extend our
work is to extend our type system to also cover the interaction between the data plane
and the control plane. Even though the functionality of the data plane is not specified
exclusively by the P4 program and depends to a large extent on the control plane, there
are no mechanisms to ensure that no faulty rules—e.g., causing inconsistencies between
the control plane and data plane [Shu+20]—are installed by the control plane.

It would therefore be interesting to investigate whether a specification of the data
plane using the dependent types we have developed can be used to restrict the set of
rules that can be installed by the control plane to conform to the network policy being
implemented. For example, if the parser never extracts a particular packet header, this
could result in the control plane program being forced to install a rule that ensures that
appropriate packets are processed by the controller.

This would, however, require that both the data plane and the control plane are
programmed together. Approaches from the field of tierless programming [Nel+14;
RV18] might be suitable starting points. From the common description, a compiler
could then generate platform-specific code, both for the data plane and the controller
that implements the necessary guarantees.

Exploring Applications of chomp Another direction in which our work can be
extended is with respect to our chomp operator. Here, it would be interesting to explore

133

what applications arise in other domains for our verified approach to parsing using
derivatives. The domain of verified serializers and deserializers like EverParse [Ram+19]
and Narcissus [Del+19] could be interesting. So far these approaches do not statically
capture what remains after parsing parts of a certain input.

Bibliography

[Ale+98] D. S. Alexander et al. “The SwitchWare Active Network Architecture”. In:
IEEE Network 12.3 (May 1998), pp. 29–36. doi: 10.1109/65.690959.

[All+03] J. R. Allen et al. “IBM PowerNP Network Processor: Hardware, Software,
and Applications”. In: IBM Journal of Research and Development 47.2-3
(2003), pp. 177–193. doi: 10.1147/rd.472.0177.

[And+14] Carolyn Jane Anderson et al. “NetKAT: Semantic Foundations for Net-
works”. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’14. San Diego, Califor-
nia, USA: Association for Computing Machinery, 2014, pp. 113–126. doi:
10.1145/2535838.2535862.

[Ara+16] Mina Tahmasbi Arashloo et al. “SNAP: Stateful Network-Wide Abstrac-
tions for Packet Processing”. In: Proceedings of the 2016 ACM SIGCOMM
Conference. SIGCOMM ’16. Florianopolis, Brazil: ACM, 2016, pp. 29–43.
doi: 10.1145/2934872.2934892.

[Bai+18] Jiasong Bai et al. “Filtering Spoofed IP Traffic Using Switching ASICs”. In:
Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos.
ACM. 2018, pp. 51–53.

[Bal19] M. Baldi. “daPIPE - A Data Plane Incremental Programming Environ-
ment”. In: 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). 2019, pp. 1–6. doi: 10.1109/ANCS.
2019.8901893.

[BCZ97] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura. “An Ar-
chitecture for Active Networking”. In: High Performance Networking VII:
IFIP TC6 Seventh International Conference on High Performance Networks
(HPN ‘97), 28th April – 2nd May 1997, White Plains, New York, USA. Ed.
by Ahmed Tantawy. Boston, MA: Springer US, 1997, pp. 265–279. doi:
10.1007/978-0-387-35279-4_17.

[Bia+94] Edoardo Biagioni et al. “Signatures for a Network Protocol Stack: A Sys-
tems Application of Standard Ml”. In: Proceedings of the 1994 ACM Con-
ference on LISP and Functional Programming. LFP ’94. Orlando, Florida,
USA: Association for Computing Machinery, 1994, pp. 55–64. doi: 10.
1145/182409.182431.

135

https://doi.org/10.1109/65.690959
https://doi.org/10.1147/rd.472.0177
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2934872.2934892
https://doi.org/10.1109/ANCS.2019.8901893
https://doi.org/10.1109/ANCS.2019.8901893
https://doi.org/10.1007/978-0-387-35279-4_17
https://doi.org/10.1145/182409.182431
https://doi.org/10.1145/182409.182431

136 BIBLIOGRAPHY

[BMG99] Andrew Begel, Steven McCanne, and Susan L. Graham. “BPF+: Exploit-
ing Global Data-flow Optimization in a Generalized Packet Filter Archi-
tecture”. In: Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication. SIGCOMM ’99.
Cambridge, Massachusetts, USA: ACM, 1999, pp. 123–134. doi: 10.1145/
316188.316214.

[Bos+13] Pat Bosshart et al. “Forwardingmetamorphosis: Fast programmablematch-
action processing in hardware for SDN”. In: ACM SIGCOMM Computer
Communication Review 43.4 (2013), pp. 99–110.

[Bos+14] Pat Bosshart et al. “P4: Programming Protocol-independent Packet Proces-
sors”. In: SIGCOMM Comput. Commun. Rev. 44.3 (July 2014), pp. 87–95.
doi: 10.1145/2656877.2656890.

[Bos18] Patrick Bosshart. “Programmable Forwarding Planes at Terabit/s Speeds”.
In: 2018 IEEE Hot Chips 30 Symposium (HCS). IEEE. 2018.

[Bro19] Broadcom Inc. Network Programming Language. https://nplang.
org/. Accessed: 11.03.2022. 2019.

[Brz64] Janusz A. Brzozowski. “Derivatives of Regular Expressions”. In: Journal of
the ACM 11.4 (Oct. 1964), pp. 481–494. doi: 10.1145/321239.321249.

[Cal06] KenCalvert. “Reflections onNetwork Architecture: AnActive Networking
Perspective”. In: SIGCOMM Comput. Commun. Rev. 36.2 (2006), pp. 27–
30. doi: 10.1145/1129582.1129590.

[Cam+17] John Peter Campora et al. “Migrating Gradual Types”. In: Proceedings of
the ACM on Programming Languages 2.POPL (2017), p. 15.

[Cas+07] Martin Casado et al. “Ethane: Taking Control of the Enterprise”. In: Pro-
ceedings of the 2007 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications. SIGCOMM ’07. Ky-
oto, Japan: Association for Computing Machinery, 2007, pp. 1–12. doi:
10.1145/1282380.1282382.

[Cis21] Cisco. Cisco Nexus 3000 Series Switches. https://www.cisco.com/
c/en/us/products/switches/nexus-3000-series-switches/
index.html. Jan. 2021.

[Con+07] Jeremy Condit et al. “Dependent Types for Low-level Programming”. In:
Proceedings of the 16th European Symposium on Programming. ESOP’07.
Braga, Portugal: Springer-Verlag, 2007, pp. 520–535.

[Cor14] Jonathan Corbet. BPF: The Universal In-kernel Virtual Machine. Available
at https://lwn.net/Articles/599755/, May 2014.

[Del+19] Benjamin Delaware et al. “Narcissus: Correct-by-construction Derivation
of Decoders and Encoders from Binary Formats”. In: Proc. ACM Program.
Lang. 3.ICFP (July 2019). doi: 10.1145/3341686.

[DH17] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
Tech. rep. 8200. RFCEditor, July 2017.url:https://www.rfc-editor.
org/rfc/rfc8200.txt.

[DH98] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
RFC 2460. RFC Editor, Dec. 1998. url: https://www.rfc-editor.
org/rfc/rfc2460.txt.

https://doi.org/10.1145/316188.316214
https://doi.org/10.1145/316188.316214
https://doi.org/10.1145/2656877.2656890
https://nplang.org/
https://nplang.org/
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/1129582.1129590
https://doi.org/10.1145/1282380.1282382
https://www.cisco.com/c/en/us/products/switches/nexus-3000-series-switches/index.html
https://www.cisco.com/c/en/us/products/switches/nexus-3000-series-switches/index.html
https://www.cisco.com/c/en/us/products/switches/nexus-3000-series-switches/index.html
https://lwn.net/Articles/599755/
https://doi.org/10.1145/3341686
https://www.rfc-editor.org/rfc/rfc8200.txt
https://www.rfc-editor.org/rfc/rfc8200.txt
https://www.rfc-editor.org/rfc/rfc2460.txt
https://www.rfc-editor.org/rfc/rfc2460.txt

BIBLIOGRAPHY 137

[Doe+21] Ryan Doenges et al. “Petr4: Formal Foundations for P4 Data Planes”. In:
Proc. ACM Program. Lang. 5.POPL (Jan. 2021). doi: 10.1145/3434322.

[Dum+20] Dragos Dumitrescu et al. “Bf4: Towards Bug-free P4 Programs”. In: Pro-
ceedings of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication. SIGCOMM ’20. Virtual Event,
USA: Association for Computing Machinery, 2020, pp. 571–585.

[Eic+19] Matthias Eichholz et al. “How to Avoid Making a Billion-Dollar Mistake:
Type-Safe Data Plane Programming with SafeP4”. In: 33rd European Con-
ference on Object-Oriented Programming (ECOOP 2019). Ed. by Alastair F.
Donaldson. Vol. 134. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2019, 12:1–12:28. doi: 10.4230/LIPIcs.ECOOP.2019.12.

[Eic+22] Matthias Eichholz et al. “Dependently-Typed Data Plane Programming”.
In: Proceedings of the ACM on Programming Languages 6.POPL (2022).
doi: 10.1145/3498701.

[ESM04] Robert Ennals, Richard Sharp, and Alan Mycroft. “Linear Types for
Packet Processing”. In: Programming Languages and Systems. Ed. by
David Schmidt. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 204–218.

[FF08] Michael Furr and Jeffrey S. Foster. “Checking Type Safety of Foreign
Function Calls”. In: ACM Trans. Program. Lang. Syst. 30.4 (Aug. 2008).
doi: 10.1145/1377492.1377493.

[FG05] Kathleen Fisher and Robert Gruber. “Pads: A Domain-specific Language
for Processing Ad Hoc Data”. In: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI
’05. Chicago, IL, USA: Association for Computing Machinery, 2005,
pp. 295–304. doi: 10.1145/1065010.1065046.

[Fre+18] Lucas Freire et al. “Uncovering Bugs in P4 Programs with Assertion-based
Verification”. In: Proceedings of the Symposium on SDN Research. SOSR
’18. Los Angeles, CA, USA: Association for Computing Machinery, 2018.
doi: 10.1145/3185467.3185499.

[FRZ13] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The Road to SDN: An
Intellectual History of Programmable Networks”. In: Queue 11.12 (2013),
pp. 20–40. doi: 10.1145/2559899.2560327.

[Gao+20] Jiaqi Gao et al. “Lyra: A Cross-Platform Language and Compiler for Data
Plane Programming on Heterogeneous ASICs”. In: Proceedings of the
Annual Conference of the ACM Special Interest Group on Data Communi-
cation on the Applications, Technologies, Architectures, and Protocols for
Computer Communication. SIGCOMM ’20. Virtual Event, USA: Asso-
ciation for Computing Machinery, 2020, pp. 435–450. doi: 10.1145/
3387514.3405879.

[GGW15] Marco Gaboardi, Michael Greenberg, and David Walker. Type Systems for
SDN Controllers. https://www.cs.princeton.edu/~dpw/papers/
typed-controllers-plvnet-2015.pdf. 2015.

https://doi.org/10.1145/3434322
https://doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://doi.org/10.1145/3498701
https://doi.org/10.1145/1377492.1377493
https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1145/3185467.3185499
https://doi.org/10.1145/2559899.2560327
https://doi.org/10.1145/3387514.3405879
https://doi.org/10.1145/3387514.3405879
https://www.cs.princeton.edu/~dpw/papers/typed-controllers-plvnet-2015.pdf
https://www.cs.princeton.edu/~dpw/papers/typed-controllers-plvnet-2015.pdf

138 BIBLIOGRAPHY

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed
Automated Random Testing”. In: Conference on Programming Language
Design and Implementation (PLDI). 2005, pp. 213–223.

[Gud+08] Natasha Gude et al. “NOX: Towards an Operating System for Networks”.
In: SIGCOMM Comput. Commun. Rev. 38.3 (July 2008), pp. 105–110. doi:
10.1145/1384609.1384625.

[HDM14] Wei Huang, Yao Dong, and Ana Milanova. “Type-Based Taint Analysis for
JavaWebApplications”. In: Proceedings of the 17th International Conference
on Fundamental Approaches to Software Engineering - Volume 8411. New
York, NY, USA: Springer-Verlag New York, Inc., 2014, pp. 140–154. doi:
10.1007/978-3-642-54804-8_10.

[Hic+98] Michael Hicks et al. “PLAN: A Packet Language for Active Networks”.
In: Proceedings of the Third ACM SIGPLAN International Conference on
Functional Programming. ICFP ’98. Baltimore, Maryland, USA: Associa-
tion for Computing Machinery, 1998, pp. 86–93. doi: 10.1145/289423.
289431.

[Hin+09] Timothy L. Hinrichs et al. “Practical Declarative Network Management”.
In: Proceedings of the 1st ACMWorkshop on Research on Enterprise Network-
ing. WREN ’09. Barcelona, Spain: Association for Computing Machinery,
2009, pp. 1–10. doi: 10.1145/1592681.1592683.

[Hoa09] Tony Hoare. Null References: The Billion Dollar Mistake. https://www.
infoq.com/presentations/Null-References-The-Billion-
Dollar-Mistake-Tony-Hoare/. Aug. 2009.

[Høi+18] TokeHøiland-Jørgensen et al. “The EXpress Data Path: Fast Programmable
Packet Processing in the Operating System Kernel”. In: Proceedings of the
14th International Conference on Emerging Networking EXperiments and
Technologies. CoNEXT ’18. Heraklion, Greece: Association for Computing
Machinery, 2018, pp. 54–66. doi: 10.1145/3281411.3281443.

[HOM06] William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. “Using
Positive Tainting and Syntax-aware Evaluation to Counter SQL Injection
Attacks”. In: Proceedings of the 14th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. SIGSOFT ’06/FSE-14. Port-
land, Oregon, USA: ACM, 2006, pp. 175–185. doi: 10.1145/1181775.
1181797.

[Iba+19] Stephen Ibanez et al. “The P4->NetFPGAWorkflow for Line-Rate Packet
Processing”. In: Proceedings of the 2019 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays. FPGA ’19. Seaside, CA, USA:
Association for Computing Machinery, 2019, pp. 1–9. doi: 10.1145/
3289602.3293924.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. “Featherweight
Java: A Minimal Core Calculus for Java and GJ”. In: ACM Trans. Pro-
gram. Lang. Syst. 23.3 (May 2001), pp. 396–450. doi: 10.1145/503502.
503505.

[Jin+17] Xin Jin et al. “NetCache: Balancing Key-Value Stores with Fast In-Network
Caching”. In: Proceedings of the 26th Symposium onOperating Systems Prin-
ciples. SOSP ’17. Shanghai, China: Association for Computing Machinery,
2017, pp. 121–136. doi: 10.1145/3132747.3132764.

https://doi.org/10.1145/1384609.1384625
https://doi.org/10.1007/978-3-642-54804-8_10
https://doi.org/10.1145/289423.289431
https://doi.org/10.1145/289423.289431
https://doi.org/10.1145/1592681.1592683
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/1181775.1181797
https://doi.org/10.1145/1181775.1181797
https://doi.org/10.1145/3289602.3293924
https://doi.org/10.1145/3289602.3293924
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/3132747.3132764

BIBLIOGRAPHY 139

[Jin+18] Xin Jin et al. “NetChain: Scale-Free Sub-RTT Coordination”. In: 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). Renton, WA: USENIX Association, Apr. 2018, pp. 35–49.

[Jin18] Xin Jin. BMV2-based implementation of NetCache. https://github.
com/netx-repo/netcache-p4. Mar. 2018.

[JMW10] Trevor Jim, Yitzhak Mandelbaum, and David Walker. “Semantics and
Algorithms for Data-dependent Grammars”. In: Proceedings of the 37th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’10. Madrid, Spain: Association for Computing
Machinery, 2010, pp. 417–430. doi: 10.1145/1706299.1706347.

[KG16] Rahul Kumar and B. B. Gupta. “Stepping Stone Detection Techniques:
Classification and State-of-the-art”. In: Proceedings of the international
conference on recent cognizance in wireless communication & image process-
ing. Springer. 2016, pp. 523–533.

[Kim+15] Hyojoon Kim et al. “Kinetic: Verifiable Dynamic Network Control”. In:
12th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 15). Oakland, CA: USENIX Association, May 2015, pp. 59–
72.

[Kle+18] George T. Klees et al. “Evaluating Fuzz Testing”. In: Proceedings of the
ACM Conference on Computer and Communications Security (CCS). Oct.
2018.

[Kod15] ChaitanyaKodeboyina.An open-source P4 switchwith SAI support.https:
/ / p4 . org / p4 / an - open - source - p4 - switch - with - sai -
support.html. June 2015.

[KR18] Ali Kheradmand andGrigore Roşu. P4K: A Formal Semantics of P4 and Ap-
plications. Tech. rep. https://arxiv.org/abs/1804.01468. University of Illinois
at Urbana-Champaign, Apr. 2018.

[Lak+04] T. V. Lakshman et al. “The SoftRouter Architecture”. In: ACM HOT-
NETS. ACM, 2004. url: https : / / www . microsoft . com / en -
us/research/publication/the-softrouter-architecture/.

[Li+19] Guanyu Li et al. “NETHCF: Enabling Line-rate and Adaptive Spoofed IP
Traffic Filtering”. In: 2019 IEEE 27th International Conference on Network
Protocols (ICNP). 2019, pp. 1–12. doi: 10.1109/ICNP.2019.8888057.

[Liu+18] Jed Liu et al. “P4V: Practical Verification for Programmable Data Planes”.
In: Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. SIGCOMM ’18. Budapest, Hungary: ACM, 2018,
pp. 490–503. doi: 10.1145/3230543.3230582.

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems. Ed.
by C. R. Ramakrishnan and Jakob Rehof. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 337–340.

[MC00] Peter J. McCann and Satish Chandra. “Packet Types: Abstract Specifica-
tion of Network Protocol Messages”. In: Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communication. SIGCOMM ’00. Stockholm, Sweden: Association for
Computing Machinery, 2000, pp. 321–333.

https://github.com/netx-repo/netcache-p4
https://github.com/netx-repo/netcache-p4
https://doi.org/10.1145/1706299.1706347
https://p4.org/p4/an-open-source-p4-switch-with-sai-support.html
https://p4.org/p4/an-open-source-p4-switch-with-sai-support.html
https://p4.org/p4/an-open-source-p4-switch-with-sai-support.html
https://www.microsoft.com/en-us/research/publication/the-softrouter-architecture/
https://www.microsoft.com/en-us/research/publication/the-softrouter-architecture/
https://doi.org/10.1109/ICNP.2019.8888057
https://doi.org/10.1145/3230543.3230582

140 BIBLIOGRAPHY

[McC+16] Jedidiah McClurg et al. “Event-Driven Network Programming”. In: Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’16. Santa Barbara, CA,USA:Association
for Computing Machinery, 2016, pp. 369–385. doi: 10.1145/2908080.
2908097.

[McK+08] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus Net-
works”. In: SIGCOMMComput. Commun. Rev. 38.2 (Mar. 2008), pp. 69–74.
doi: 10.1145/1355734.1355746.

[McK+16] Nick McKeown et al. Automatically Verifying Reachability and
Well-formedness in P4 Networks. Tech. rep. Sept. 2016. url: https :
/ / www . microsoft . com / en - us / research / publication /
automatically-verifying-reachability-well-formedness-
p4-networks/.

[Mil78] Robin Milner. “ATheory of Type Polymorphism in Programming”. In:
Journal of Computer and System Sciences 17.3 (Dec. 1978), pp. 348–375.

[Mon+13] Christopher Monsanto et al. “Composing Software Defined Networks”.
In: 10th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 13). Lombard, IL: USENIX Association, Apr. 2013, pp. 1–13.

[Mut+10] Chitra Muthukrishnan et al. “Using Strongly Typed Networking to Archi-
tect for Tussle”. In: Proceedings of the 9th ACM SIGCOMMWorkshop on
Hot Topics in Networks. Hotnets-IX. Monterey, California: Association for
Computing Machinery, 2010. doi: 10.1145/1868447.1868456.

[Nan+08] Aleksandar Nanevski et al. “Ynot: Dependent Types for Imperative Pro-
grams”. In: Proceedings of the 13th ACM SIGPLAN International Conference
on Functional Programming. ICFP ’08. Victoria, BC, Canada: Association
for Computing Machinery, 2008, pp. 229–240. doi: 10.1145/1411204.
1411237.

[Nan+14] Aleksandar Nanevski et al. “Communicating State Transition Systems for
Fine-Grained Concurrent Resources”. In: Programming Languages and Sys-
tems. Ed. by Zhong Shao. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 290–310.

[Nel+14] Tim Nelson et al. “Tierless Programming and Reasoning for Software-
Defined Networks”. In: Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation. NSDI’14. Seattle: USENIX
Association, 2014, pp. 519–531.

[Net18] Barefoot Networks. Behavioral Model. Dec. 2018. url: https://github.
com/p4lang/behavioral-model.

[Nev+18] Miguel Neves et al. “Verification of P4 Programs in Feasible Time Us-
ing Assertions”. In: Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies. CoNEXT ’18. Herak-
lion, Greece: Association for Computing Machinery, 2018, pp. 73–85. doi:
10.1145/3281411.3281421.

[NMB06] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. “Polymorphism
and Separation in Hoare Type Theory”. In: Proceedings of the Eleventh
ACM SIGPLAN International Conference on Functional Programming.
ICFP ’06. Portland, Oregon, USA: Association for Computing Machinery,
2006, pp. 62–73. doi: 10.1145/1159803.1159812.

https://doi.org/10.1145/2908080.2908097
https://doi.org/10.1145/2908080.2908097
https://doi.org/10.1145/1355734.1355746
https://www.microsoft.com/en-us/research/publication/automatically-verifying-reachability-well-formedness-p4-networks/
https://www.microsoft.com/en-us/research/publication/automatically-verifying-reachability-well-formedness-p4-networks/
https://www.microsoft.com/en-us/research/publication/automatically-verifying-reachability-well-formedness-p4-networks/
https://www.microsoft.com/en-us/research/publication/automatically-verifying-reachability-well-formedness-p4-networks/
https://doi.org/10.1145/1868447.1868456
https://doi.org/10.1145/1411204.1411237
https://doi.org/10.1145/1411204.1411237
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://doi.org/10.1145/3281411.3281421
https://doi.org/10.1145/1159803.1159812

BIBLIOGRAPHY 141

[Nöt+18] Andres Nötzli et al. “P4pktgen: Automated Test Case Generation for P4
Programs”. In: Proceedings of the Symposium on SDN Research. SOSR ’18.
Los Angeles, CA, USA: Association for Computing Machinery, 2018. doi:
10.1145/3185467.3185497.

[Nou+19] Mohammad A. Noureddine et al. “P4AIG: Circuit-Level Verification of P4
Programs”. In: 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks – Supplemental Volume (DSN-S). 2019,
pp. 21–22. doi: 10.1109/DSN-S.2019.00016.

[OCo+18] T. J. OConnor et al. “Pivotwall: SDN-based Information Flow Control”.
In: Proceedings of the Symposium on SDN Research. ACM. 2018, p. 3.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. “PVS: A prototype verification sys-
tem”. In: Automated Deduction—CADE-11. Ed. by Deepak Kapur. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992, pp. 748–752.

[Owr+95] S. Owre et al. “Formal verification for fault-tolerant architectures: prole-
gomena to the design of PVS”. In: IEEE Transactions on Software Engineer-
ing 21.2 (1995), pp. 107–125. doi: 10.1109/32.345827.

[P416] The P4 Language Consortium. P416 Language Specification, Version 1.2.2.
Tech. rep. Available at https://p4.org/specs/, 2021. url: https://p4.
org/p4-spec/docs/P4-16-v1.2.2.pdf.

[PSA16] The P4.org ArchitectureWorking Group. P416 Portable Switch Architecture
(PSA). Tech. rep. 2018.

[Ram+19] Tahina Ramananandro et al. “EverParse: Verified Secure Zero-Copy
Parsers for Authenticated Message Formats”. In: 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX Association,
Aug. 2019, pp. 1465–1482.

[RKJ08] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. “Liquid Types”.
In: Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’08. Tucson, AZ, USA: As-
sociation for Computing Machinery, 2008, pp. 159–169. doi: 10.1145/
1375581.1375602.

[RŞ10] Grigore Roşu and Traian Florin Şerbănuţă. “An Overview of the K Se-
mantic Framework”. In: Journal of Logic and Algebraic Programming 79.6
(2010), pp. 397–434. doi: 10.1016/j.jlap.2010.03.012.

[RV18] Gabriel Radanne and Jérôme Vouillon. “Tierless Web Programming in the
Large”. In: Companion Proceedings of theTheWeb Conference 2018. WWW
’18. Lyon, France, 2018, pp. 681–689. doi: 10.1145/3184558.3185953.

[Shu+19] Apoorv Shukla et al. “Runtime Verification of P4 Switches with Reinforce-
ment Learning”. In: Proceedings of the 2019Workshop on Network Meets AI
& ML. NetAI’19. Beijing, China: Association for Computing Machinery,
2019, pp. 1–7. doi: 10.1145/3341216.3342206.

[Shu+20] Apoorv Shukla et al. “P4Consist: Toward Consistent P4 SDNs”. In: IEEE
Journal on Selected Areas in Communications 38.7 (2020), pp. 1293–1307.
doi: 10.1109/JSAC.2020.2999653.

https://doi.org/10.1145/3185467.3185497
https://doi.org/10.1109/DSN-S.2019.00016
https://doi.org/10.1109/32.345827
https://p4.org/p4-spec/docs/P4-16-v1.2.2.pdf
https://p4.org/p4-spec/docs/P4-16-v1.2.2.pdf
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/3184558.3185953
https://doi.org/10.1145/3341216.3342206
https://doi.org/10.1109/JSAC.2020.2999653

142 BIBLIOGRAPHY

[Siv+16] Anirudh Sivaraman et al. “Packet Transactions: High-Level Programming
for Line-Rate Switches”. In: Proceedings of the 2016 ACM SIGCOMM
Conference. SIGCOMM ’16. Florianopolis, Brazil: ACM, 2016, pp. 15–28.
doi: 10.1145/2934872.2934900.

[Smi+96] Jonathan M. Smith et al. “SwitchWare: Accelerating Network Evolution
(White Paper)”. In: University of Pennsylvania Department of Computer
and Information Science Technical Report No. MS-CIS-96-38 (1996).

[Son+20] Hardik Soni et al. “Composing Dataplane Programs with µP4”. In: Pro-
ceedings of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication. SIGCOMM ’20. Virtual Event,
USA: Association for Computing Machinery, 2020, pp. 329–343. doi:
10.1145/3387514.3405872.

[Sri18] Manu Sridharan. Engineering NullAway, Uber’s Open Source Tool for De-
tecting NullPointerExceptions on Android. Dec. 2018. url: https://eng.
uber.com/nullaway/.

[ST06] Jeremy G. Siek and Walid Taha. “Gradual Typing for Functional Lan-
guages”. In: IN SCHEME AND FUNCTIONAL PROGRAMMINGWORK-
SHOP. 2006, pp. 81–92.

[Sto+16] Radu Stoenescu et al. “SymNet: Scalable Symbolic Execution for Modern
Networks”. In:ACMSIGCOMM. Florianopolis, Brazil: ACM, 2016, pp. 314–
327. doi: 10.1145/2934872.2934881.

[Sto+18] Radu Stoenescu et al. “Debugging P4 Programs with Vera”. In: ACM
SIGCOMM. Budapest, Hungary: ACM, 2018, pp. 518–532. doi: 10.1145/
3230543.3230548.

[SV08] JeremyG. Siek andManishVachharajani. “Gradual TypingwithUnification-
Based Inference”. In: Proceedings of the 2008 Symposium on Dynamic
Languages. DLS ’08. Paphos, Cyprus: Association for Computing Machin-
ery, 2008. doi: 10.1145/1408681.1408688.

[Swa+16] Nikhil Swamy et al. “Dependent Types and Multi-Monadic Effects in F*”.
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’16. St. Petersburg, FL, USA:
Association for ComputingMachinery, 2016, pp. 256–270. doi: 10.1145/
2837614.2837655.

[Ten+97] D.L. Tennenhouse et al. “A survey of active network research”. In: IEEE
Communications Magazine 35.1 (1997), pp. 80–86. doi: 10.1109/35.
568214.

[TF06] Sam Tobin-Hochstadt and Matthias Felleisen. “Interlanguage Migration:
From Scripts to Programs”. In: Companion to the 21st ACM SIGPLAN Sym-
posium on Object-Oriented Programming Systems, Languages, and Applica-
tions. OOPSLA ’06. Portland, Oregon, USA: Association for Computing
Machinery, 2006, pp. 964–974. doi: 10.1145/1176617.1176755.

[TF10] Sam Tobin-Hochstadt and Matthias Felleisen. “Logical Types for Untyped
Languages”. In: Proceedings of the 15th ACM SIGPLAN International Con-
ference on Functional Programming. ICFP ’10. Baltimore, Maryland, USA:
ACM, 2010, pp. 117–128. doi: 10.1145/1863543.1863561.

https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/3387514.3405872
https://eng.uber.com/nullaway/
https://eng.uber.com/nullaway/
https://doi.org/10.1145/2934872.2934881
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1109/35.568214
https://doi.org/10.1109/35.568214
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1863543.1863561

BIBLIOGRAPHY 143

[Tia+21] Bingchuan Tian et al. “Aquila: A Practically Usable Verification System for
Production-Scale Programmable Data Planes”. In: Proceedings of the 2021
ACM SIGCOMM 2021 Conference. SIGCOMM ’21. Virtual Event, USA:
Association for Computing Machinery, 2021, pp. 17–32. doi: 10.1145/
3452296.3472937.

[TW07] David L. Tennenhouse and David J. Wetherall. “Towards an Active Net-
work Architecture”. In: SIGCOMM Comput. Commun. Rev. 37.5 (Oct.
2007), pp. 81–94. doi: 10.1145/1290168.1290180.

[Vaz+14] Niki Vazou et al. “Refinement Types for Haskell”. In: ICFP. 2014, pp. 269–
282.

[VH11] Andreas Voellmy and Paul Hudak. “Nettle: Taking the Sting Out of Pro-
gramming Network Routers”. In: Practical Aspects of Declarative Lan-
guages. Ed. by Ricardo Rocha and John Launchbury. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 235–249.

[VIS96] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. “A Sound Type
System for Secure Flow Analysis”. In: J. Comput. Secur. 4.2-3 (Jan. 1996),
pp. 167–187.

[VKF12] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. “Procera: A Lan-
guage for High-Level Reactive Network Control”. In: Proceedings of the
First Workshop on Hot Topics in Software Defined Networks. HotSDN ’12.
Helsinki, Finland: Association for Computing Machinery, 2012, pp. 43–48.
doi: 10.1145/2342441.2342451.

[VTV18] Niki Vazou, Éric Tanter, and David Van Horn. “Gradual Liquid Type Infer-
ence”. In: Proceedings of the ACM on Programming Languages (PACMPL)
2.OOPSLA (Oct. 2018). doi: 10.1145/3276502.

[Wan+17] HanWang et al. “P4FPGA: A Rapid Prototyping Framework for P4”. In:
Proceedings of the Symposium on SDN Research. SOSR ’17. Santa Clara,
CA, USA: Association for Computing Machinery, 2017, pp. 122–135. doi:
10.1145/3050220.3050234.

[WF94] A.K. Wright and M. Felleisen. “A Syntactic Approach to Type Soundness”.
In: Inf. Comput. 115.1 (Nov. 1994), pp. 38–94. doi: 10.1006/inco.1994.
1093.

[WGT98] D.J. Wetherall, J.V. Guttag, and D.L. Tennenhouse. “ANTS: a toolkit for
building and dynamically deploying network protocols”. In: 1998 IEEE
Open Architectures and Network Programming. 1998, pp. 117–129. doi:
10.1109/OPNARC.1998.662048.

[WHM13] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo de Moura.
“Efficiently solving quantified bit-vector formulas”. In: Formal Methods in
System Design 42.1 (2013), pp. 3–23. doi: 10.1007/s10703-012-0156-
2.

[XH01] Hongwei Xi and Robert Harper. “A Dependently Typed Assembly Lan-
guage”. In: Proceedings of the Sixth ACM SIGPLAN International Confer-
ence on Functional Programming. ICFP ’01. Florence, Italy: Association
for Computing Machinery, 2001, pp. 169–180. doi: 10.1145/507635.
507657.

https://doi.org/10.1145/3452296.3472937
https://doi.org/10.1145/3452296.3472937
https://doi.org/10.1145/1290168.1290180
https://doi.org/10.1145/2342441.2342451
https://doi.org/10.1145/3276502
https://doi.org/10.1145/3050220.3050234
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1109/OPNARC.1998.662048
https://doi.org/10.1007/s10703-012-0156-2
https://doi.org/10.1007/s10703-012-0156-2
https://doi.org/10.1145/507635.507657
https://doi.org/10.1145/507635.507657

144 BIBLIOGRAPHY

[Xi00] Hongwei Xi. “Imperative programmingwith dependent types”. In:Proceed-
ings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat.
No.99CB36332). 2000, pp. 375–387. doi: 10.1109/LICS.2000.855785.

[XP98] Hongwei Xi and Frank Pfenning. “Eliminating Array Bound Checking
through Dependent Types”. In: Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation. PLDI
’98. Montreal, Quebec, Canada: Association for Computing Machinery,
1998, pp. 249–257. doi: 10.1145/277650.277732.

[XP99] Hongwei Xi and Frank Pfenning. “Dependent Types in Practical Program-
ming”. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’99. San Antonio, Texas,
USA: Association for Computing Machinery, 1999, pp. 214–227.

[Yan+04] L. Yang et al. Forwarding and Control Element Separation (ForCES) Fame-
work. RFC 3746. RFC Editor, Apr. 2004. url: https://www.rfc-
editor.org/rfc/rfc3746.txt.

https://doi.org/10.1109/LICS.2000.855785
https://doi.org/10.1145/277650.277732
https://www.rfc-editor.org/rfc/rfc3746.txt
https://www.rfc-editor.org/rfc/rfc3746.txt

APPENDIXA
Proofs

A.1 SafeP4

A.1.1 Operations on Header Types

Lemma A.1. JΘK∣h = JRestrict Θ hK.

Proof. By induction on Θ.

Case Θ = 0:

J0K∣h
= {}∣h by definition of J.K
= {hs∣hs ∈ {} ∧ h ∈ hs} by definition of .∣h
= {} by set theory
= J0K by definition of J.K
= JRestrict 0 hK by definition of Restrict . h

Case Θ = 1:

J1K∣h
= {{}}∣h by definition of J.K
= {hs∣hs ∈ {{}} ∧ h ∈ hs} by definition of .∣h
= {} by set theory
= J0K by definition of J.K
= JRestrict 1 hK by definition of Restrict . h

145

146 APPENDIX A. PROOFS

Case Θ = g:

JgK∣h
= {{g}}∣h by definition of J.K
= {hs∣hs ∈ {{g}} ∧ h ∈ hs} by definition of .∣h
Subcase h = g
= {{g}} by set theory
= JgK by definition of J.K
by def. of Restrict . h and by assumption h = g
= JRestrict g hK
Subcase h ≠ g
= {} by set theory
= J0K by definition of J.K
by def. of Restrict . hand by assumption h ≠ g
= JRestrict g hK

Case Θ = Θ1 ⋅Θ2:

JΘ1 ⋅Θ2K∣h
= {hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈ JΘ2J}∣h by def. of J.K
= {hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈ JΘ2K ∧ h ∈ (hs1 ∪ hs2)} by def. of .∣h
= {hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈ JΘ2K ∧ h ∈ hs1} ∪ by set theory
{hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈ JΘ2K ∧ h ∈ hs2}

by logic and set theory
= {hs1 ∪ hs2∣(hs1 ∈ JΘ1K ∧ h ∈ hs1) ∧ hs2 ∈ JΘ2K} ∪
{hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ (hs2 ∈ JΘ2K ∧ h ∈ hs2)}
= {hs1∣hs1 ∈ JΘ1K ∧ h ∈ hs1} ● {hs2∣hs2 ∈ JΘ2K} ∪ by def. of S1 ● S2
{hs1∣hs1 ∈ JΘ1K} ● {hs2∣hs2 ∈ JΘ2K ∧ h ∈ hs2}
= {hs1∣hs1 ∈ JΘ1K}∣h ● {hs2∣hs2 ∈ JΘ2K} ∪ by def. of .∣h
{hs1∣hs1 ∈ JΘ1K} ● {hs2∣hs2 ∈ JΘ2K}∣h
= JΘ1K∣h ● JΘ2K ∪ JΘ1K ● JΘ2K∣h by def. of J.K
= JRestrict Θ1 hK ● JΘ2K ∪ JΘ1K ● JRestrict Θ2 hK by IH
by def. of S1 ● S2 and J.K
= JRestrict Θ1 h ⋅Θ2 +Θ1 ⋅ Restrict Θ2 hK
by def. of Restrict . h
= JRestrict (Θ1 ⋅Θ2) hK

A.1. SAFEP4 147

Case Θ = Θ1 +Θ2:

JΘ1 +Θ2K∣h
= (JΘ1K ∪ JΘ2K)∣h by definition of J.K
= {hs∣hs ∈ (JΘ1K ∪ JΘ2K) ∧ h ∈ hs} by definition of .∣h
= {hs1∣hs1 ∈ JΘ1K ∧ h ∈ hs1} ∪ {hs2∣hs2 ∈ JΘ2K ∧ h ∈ hs2} by set theory
= JΘ1K∣h ∪ JΘ2K∣h by definition of .∣h
by induction hypothesis
= JRestrict Θ1 hK ∪ JRestrict Θ2 hK
= JRestrict Θ1 h + Restrict Θ2 hK by definition of J.K
by definition of Restrict . h
= JRestrict (Θ1 +Θ2) hK

Lemma A.2. JΘK∣¬h = JNegRestrict Θ hK.

Proof. By induction on Θ.

Case Θ = 0:

J0K∣¬h
= {}∣¬h by definition of J.K
= {hs∣hs ∈ {} ∧ h /∈ hs} by definition of .∣¬h
= {} by set theory
= J0K by definition of J.K
= JNegRestrict 0 hK by definition of NegRestrict . h

Case Θ = 1:

J1K∣¬h
= {{}}∣¬h by definition of J.K
= {hs∣hs ∈ {{}} ∧ h /∈ hs} by definition of .∣¬h
= {{}} by set theory
= J1K by definition of J.K
= JNegRestrict 1 hK by definition of NegRestrict . h

148 APPENDIX A. PROOFS

Case Θ = g:

JgK∣¬h
= {{g}}∣¬h by definition of J.K
= {hs∣hs ∈ {{g}} ∧ h /∈ hs} by definition of .∣¬h
Subcase h = g
= {} by set theory
= J0K by definition of J.K
by assumption h = g and by definition of NegRestrict . h
= JNegRestrict 0 hK
Subcase h ≠ g
= {{g}} by set theory
= JgK by definition of J.K
by assumption h ≠ g and by definition of NegRestrict . h
= JNegRestrict g hK

Case Θ = Θ1 ⋅Θ2:

JΘ1 ⋅Θ2K∣¬h
by definition of S1 ● S2
= (JΘ1K ● JΘ2K)∣¬h
by definition of J.K
= {hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈ JΘ2J}∣¬h
by definition of .∣¬h
= {hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈ JΘ2K ∧ h /∈ (hs1 ∪ hs2)}
by set theory and logic
= {hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈ JΘ2K ∧ h /∈ hs1 ∧ h /∈ hs2}
by set theory and logic
= {hs1 ∪ hs2∣(hs1 ∈ JΘ1K ∧ h /∈ hs1) ∧ (hs2 ∈ JΘ2K ∧ h /∈ hs2)}
by definition of S1 ● S2
= {hs1∣hs1 ∈ JΘ1K ∧ h /∈ hs1} ● {hs2∣hs2 ∈ JΘ2K ∧ h /∈ hs2}
by definition of .∣¬h
= JΘ1K∣¬h ● JΘ2K∣¬h
by induction hypothesis
= JNegRestrict Θ1 hK ● JNegRestrict Θ2 hK
By definition of J.K
= J(NegRestrict Θ1 h) ⋅ (NegRestrict Θ2 h)K
by definition of NegRestrict . h
= JNegRestrict (Θ1 ⋅Θ2) hK

A.1. SAFEP4 149

Case Θ = Θ1 +Θ2:

JΘ1 +Θ2K∣¬h
by definition of J.K
= (JΘ1K ∪ JΘ2K)∣¬h
by definition of .∣¬h
= {hs∣hs ∈ (JΘ1K ∪ JΘ2K) ∧ h /∈ hs}
by set theory
= {hs1∣hs1 ∈ JΘ1K ∧ h /∈ hs1} ∪ {hs2∣hs2 ∈ JΘ2K ∧ h /∈ hs2}
by definition of .∣¬h
= JΘ1K∣¬h ∪ JΘ2K∣¬h
by induction hypothesis
= JNegRestrict Θ1 hK ∪ JNegRestrict Θ2 hK
by definition of J.K
= JNegRestrict Θ1 h + NegRestrict Θ2 hK
by definition of NegRestrict . ¬h
= JNegRestrict (Θ1 +Θ2) hK

Lemma A.3. ∀hs ∈ S .h ∈ hs == Includes Θ h.

Proof. By induction on Θ.

Case Θ = 0:

h ⊏ J0K
=⋀(hs ∈ {} ∧ h ∈ hs) by definition of J.K
= true by logic and set theory
= Includes 0 h by definition of Includes . h

Case Θ = 1:

h ⊏ J1K
=⋀(hs ∈ {{}} ∧ h ∈ hs) by definition of J.K
= false by logic and set theory
= Includes 1 h by definition of Includes . h

150 APPENDIX A. PROOFS

Case Θ = g:

h ⊏ JgK
=⋀(hs ∈ {{g}} ∧ h ∈ hs) by definition of J.K
Subcase h = g
= true by logic and set theory
by definition of (Includes . h) and assumption h = g
= Includes g h
Subcase h ≠ g
= false by logic and set theory
by definition of (Includes . h) and assumption h ≠ g
= Includes g h

Case Θ = Θ1 ⋅Θ2:

h ⊏ JΘ1 ⋅Θ2K
by definition of S1 ● S2
= h ⊏ (JΘ1K ● JΘ2K)
by definition of J.K
= h ⊏ {hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈ JΘ2K}
by set theory and logic
= h ⊏ {hs1∣hs1 ∈ JΘ1K} ∨ h ⊏ {hs2∣hs2 ∈ JΘ2K}
by definition of h ⊏ .
=⋀(hs1 ∈ JΘ1K ∧ h ∈ hs1) ∨⋀(hs2 ∈ JΘ2K ∧ h ∈ hs2)
by definition of J.K
= h ⊏ JΘ1K ∨ h ⊏ JΘ2K
by induction hypothesis
= (Includes Θ1 h) ∨ (Includes Θ2 h)
by definition of Includes . h
= (Includes Θ1 ⋅Θ2 h)

A.1. SAFEP4 151

Case Θ = Θ1 +Θ2:

h ⊏ JΘ1 +Θ2K
by definition of J.K
= h ⊏ (JΘ1K ∪ JΘ2K)
by definition of h ⊏ .
=⋀(hs ∈ (JΘ1K ∪ JΘ2K) ∧ h ∈ hs)
by set theory and logic
=⋀(hs1 ∈ JΘ1K ∧ h ∈ hs1 ∧ hs2 ∈ JΘ2K ∧ h ∈ hs2)
by set theory and logic
=⋀(hs1 ∈ JΘ1K ∧ h ∈ hs1) ∧⋀(hs2 ∈ JΘ2K ∧ h ∈ hs2)
by definition of h ⊏ .
= h ⊏ JΘ1K ∧ h ⊏ JΘ2K
by induction hypothesis
= (Includes Θ1 h) ∧ (Includes Θ2 h)
by definition of Includes . h
= (Includes (Θ1 +Θ2) h)

Lemma A.4. JΘK ∖ h == JRemove Θ hK.

Proof. By induction on Θ.

Case Θ = 0:

J0K ∖ h
= {} ∖ h by definition of J.K
= {hs∣hs ∈ {} ∧ hs ∖ {h}} by definition of . ∖ h
= {} by set theory
= J0K by definition of J.K
= JRemove 0 hK by definition of Remove . h

Case Θ = 1:

J1K ∖ h
= {{}} ∖ h by definition of J.K
= {hs∣hs ∈ {{}} ∧ hs ∖ {h}} by definition of . ∖ h
= {{}} by set theory
= J1K by definition of J.K
= JRemove 1 hK by definition of Remove . h

152 APPENDIX A. PROOFS

Case Θ = g:

JgK ∖ h
= {{g}} ∖ h by definition of J.K
= {hs∣hs ∈ {{g}} ∧ hs ∖ {h}} by definition of . ∖ h
Subcase h = g
= {{}} by set theory
= J1K by definition of J.K
= JRemove 1 hK by definition of Remove . h
Subcase h ≠ g
= {{g}} by set theory
= JgK by definition of J.K
= JRemove g hK by definition of Remove . h

Case Θ = Θ1 ⋅Θ2:

JΘ1 ⋅Θ2K ∖ h
by definition of S1 ● S2
= (JΘ1K ● JΘ2K) ∖ h
by definition of J.K
= {hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈ JΘ2J} ∖ h
by definition of . ∖ h
= {hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈ JΘ2K ∧ (hs1 ∪ hs2) ∖ h}
by set theory and logic
= {hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈ JΘ2K ∧ hs1 ∖ h ∧ hs2 ∖ h}
by set theory and logic
= {hs1 ∪ hs2∣(hs1 ∈ JΘ1K ∧ hs1 ∖ h) ∧ (hs2 ∈ JΘ2K ∧ hs2 ∖ h)}
by definition of S1 ● S2
= {hs1∣hs1 ∈ JΘ1K ∧ hs1 ∖ h} ● {hs2∣hs2 ∈ JΘ2K ∧ hs2 ∖ h}
by definition of . ∖ h
= JΘ1K ∖ h ● JΘ2K ∖ h
by induction hypothesis
= JRemove Θ1 hK ● JRemove Θ2 hK
By definition of J.K
= J(Remove Θ1 h) ⋅ (Remove Θ2 h)K
by definition of Remove . h
= JRemove (Θ1 ⋅Θ2) hK

A.1. SAFEP4 153

Case Θ = Θ1 +Θ2:

JΘ1 +Θ2K ∖ h
= (JΘ1K ∪ JΘ2K) ∖ h by definition of J.K
= {hs∣hs ∈ (JΘ1K ∪ JΘ2K) ∧ hs ∖ {h}} by definition of . ∖ h
= {hs∣hs ∈ (JΘ1K ∪ JΘ2K) ∧ hs ∖ {h}} by definition of . ∖ h
= {hs1∣hs1 ∈ JΘ1K ∧ hs1 ∖ {h}} ∪ by logic and set theory
{hs2∣hs2 ∈ JΘ2K ∧ hs2 ∖ {h}}
= JΘ1K ∖ h ∪ JΘ2K ∖ h by definition of . ∖ h
= JRemove Θ1 hK ∪ JRemove Θ2 hK by induction hypothesis
= J(Remove Θ1 h) ⋅ (JRemove Θ2 h)K by definition of J.K
= JRemove (Θ1 ⋅Θ2) hK by definition of Remove . h

Lemma A.5. JΘK == {} if and only if Empty Θ.

Proof. By induction on Θ.

Case Θ = 0: We have J0K = {} and Empty 0 = true.

Case Θ = 1: We have J1K ≠ {} and Empty 1 = false.

Case Θ = h: We have JhK ≠ {} and Empty h = false.

Case Θ = Θ1 ⋅Θ2: By definition we have JΘ1 ⋅ Θ2K = JΘ1K ● JΘ2K which is equal to
{S1 ∪ S2 ∣ S1 ∈ JΘ1K ∧ S2 ∈ JΘ2K}. It follows that JΘ1 ⋅ Θ2K = {} iff JΘ1K =
{} or JΘ2K = {}. By induction hypothesis, we have JΘ1K = {} if and only if
EmptyΘ1 = true, and JΘ2K = {} if and only if EmptyΘ2 = true. The result follows
as Empty (Θ1 ⋅Θ2) = Empty Θ1 ∨ Empty Θ2.

Case Θ = Θ1 +Θ2: By definition we have JΘ1 + Θ2K = JΘ1K ∪ JΘ2K. It follows that
JΘ1 ⋅ Θ2K ≠ {} iff JΘ1K ≠ {} and JΘ2J≠ {}. By induction hypothesis, we have
JΘ1K ≠ {} if and only if EmptyΘ1 = true, and JΘ2K ≠ {} if and only if EmptyΘ2 =
true. The result follows as Empty (Θ1 +Θ2) = Empty Θ1 ∧ Empty Θ2.

A.1.2 Safety

Lemma A.6 (Expression Substitution). If Γ, x ∶ τ;Θ ⊢ e ∶ τ′ and ⋅; ⋅ ⊢ v̄ ∶ τ̄ then
Γ;Θ ⊢ e[v̄/x̄] ∶ τ′

Lemma A.7 (Entailment is Type Alternative). If H ⊧ Θ then dom(H) ∈ JΘK.

Proof. By induction on Θ.

Case Θ = 0: The case immediately holds as H ⊧ 0 is a contradiction.

Case Θ = 1: By inversion of Entailment, H = ⋅, and so dom(H) = {} ∈ J1K = {{}}.

154 APPENDIX A. PROOFS

Case Θ = h: By inversion of Entailment, dom(H) = {h} ∈ JhK = {{h}}.

Case Θ = Θ1 ⋅Θ2: By inversion of Entailment, H = H1 ∪ H2 ,H1 ⊧ Θ1 ,H2 ⊧ Θ2. By
induction hypothesis, dom(H1) ∈ JΘ1K and dom(H2) ∈ JΘ2K. By set theory,
dom(H) = dom(H1) ∪ dom(H2)
By definition of J.K and (●), JΘK = JΘ1K ● JΘ2K = {hs1 ∪ hs2∣hs1 ∈ JΘ1K ∧ hs2 ∈
JΘ2K} and therefore dom(H1)∪ dom(H2) ∈ {hs1 ∪ hs2∣hs1 ∈ JΘ1K∧ hs2 ∈ JΘ2K},
i.e., dom(H) ∈ JΘK.

Case Θ = Θ1 +Θ2: By inversion of Entailment, either H ⊧ Θ1 or H ⊧ Θ2.

Subcase H ⊧ Θ1: By the induction hypothesis, dom(H) ∈ JΘ1K and by set theory
dom(H) ∈ JΘ1K ∪ JΘ2K

Subcase H ⊧ Θ2: Symmetric to the previous subcase.

Lemma A.8 (Included Instances in Domain). If H ⊧ Θ and Includes Θ h, then
h ∈ dom(H).

Proof. By induction on Θ.

Case Θ = 0: The case immediately holds as H ⊧ 0 is a contradiction.

Case Θ = 1:
By inversion of Entailment, H = ⋅. The case immediately holds, as Includes Θ h
is a contradiction.

Case Θ = g:
By inversion of Entailment, dom(H) = {g}. By assumption IncludesΘ h, h = g
and thus h ∈ dom(H).

Case Θ = Θ1 ⋅Θ2: By inversion of Entailment, H = H1 ∪ H2 ,H1 ⊧ Θ1 ,H2 ⊧ Θ2. By
set theory dom(H) = dom(H1) ∪ dom(H2). By definition of Inclusion and by
assumption Includes Θ h, Includes Θ1 h ∨ Includes Θ2 h.

Subcase Includes Θ1 h: By induction hypothesis, h ∈ dom(H1) and by assump-
tion dom(H1) ⊆ dom(H), we can conclude h ∈ dom(H).

Subcase Includes Θ2 h: Symmetric to the previous subcase.

Case Θ = Θ1 +Θ2: By inversion of Entailment, either H ⊧ Θ1 or H ⊧ Θ2. By def-
inition of Inclusion and by assumption Includes Θ h, Includes Θ1 h and
Includes Θ2 h.

Subcase H ⊧ Θ1: By induction hypothesis, we can conclude h ∈ dom(H).
Subcase H ⊧ Θ2: Symmetric to the previous subcase.

A.1. SAFEP4 155

Progress

Theorem A.9 (Progress). If ⋅ ⊢ c ∶ Θ Z⇒ Θ′ and H ⊧ Θ, then either c = skip or
∃⟨I′ ,O′ ,H′ , c′⟩. ⟨I,O ,H, c⟩→ ⟨I′ ,O′ ,H′ , c′⟩

Proof. By induction on typing derivations of ⋅ ⊢ c ∶ Θ Z⇒ Θ′.

Case T-Skip: c = skip
Immediate.

Case T-Extr: c = extract(h)
Let (I′ , v) = deserializeη(I) and O′ = O and H′ = H[h ↦ v] and c′ = skip. The
result follows by E-Extract.

Case T-Emit: c = emit(h)
If h /∈ dom(H), let I′ = I andO′ = O andH′ = H, and c′ = skip. The result follows
by E-EmitInvalid. Otherwise, h ∈ dom(H). Let H(h) = v and B̄ = serializeη(v)
and I′ = I and O′ = O .B̄ and H′ = H and c′ = skip. The result follows by E-Emit.

Case T-Seq: c = c1; c2 and ⋅ ⊢ c1 ∶ Θ Z⇒ Θ1 and ⋅ ⊢ c2 ∶ Θ1 Z⇒ Θ2

By induction hypothesis, c1 is either skip or there is some ⟨I′ ,O′ ,H′ , c′1⟩, such
that ⟨I,O ,H, c1⟩→ ⟨I′ ,O′ ,H′ , c′1⟩.
If c1 = skip, let I′ = I and O′ = O and H′ = H and c′ = c2. The result follows by
E-Seq. Otherwise, the result follows by E-Seq1.

Case T-If: c = if (e) then c1 else c2 and ⋅;Θ ⊢ e ∶ Bool and ⋅ ⊢ c1 ∶ Θ Z⇒ Θ1 and
⋅ ⊢ c2 ∶ Θ Z⇒ Θ2
By the progress theorem for expressions, we have that e is either true, false, or
there is some e′ such that ⟨H, e⟩→ e′.

Subcase e = true: Let I′ = I and O′ = O and H′ = H and c′ = c1. The result
follows by E-IfTrue.

Subcase e = false: Symmetric to the previous case.
Subcase ⟨H, e⟩→ e′: Let I′ = I and O′ = O and H′ = H and c′ = if (e′) c1 c2.

The result follows by E-If.

Case T-IfValid: c = valid(h) c1 else c2
If h ∈ dom(H), let I′ = I and O′ = O and H′ = H and c′ = c1. The result follows
by E-IfValidTrueOtherwise, h /∈ dom(H). Let I′ = I and O′ = O and H′ = H
and c′ = c2. The result follows by E-IfValidFalse

Case T-Apply: c = t.apply()
By Proposition 1, we have CA(t,H) = (a i , v̄). LetA(a i) = λx̄ ∶ τ̄. c i . Let I′ = I
and O′ = O and H′ = H and c′ = c i[v̄/x̄]. The result follows by E-Apply.

Case T-Add: c = add(h)
If h ∈ dom(H), let I′ = I and O′ = O and H′ = H and c′ = skip. The result follows
by E-AddValid. Otherwise, h /∈ dom(H). Let v = initη and I′ = I and O′ = O
and H′ = H[h ↦ v] and c′ = skip. The result follows by E-Add

Case T-Remove: c = remove(h)
Let I′ = I and O′ = O and H′ = H ∖ h and c′ = skip. The result follows by
E-Remove.

156 APPENDIX A. PROOFS

Case T-Mod: c = h.f = e and Includes Θ h and F(h, f) = τ i and ⋅;Θ ⊢ e ∶ τ i
By the progress rule for expressions, either e is a value or there is some e′ such
that ⟨H, e⟩→ e′.

Subcase e = v: By Lemma A.8: h ∈ dom(H). Let r = H(h) and r′ = {r with f =
v}. Also let I′ = I and O′ = O and H′ = H[h ↦ r′] and c′ = skip. The result
follows by E-Mod.

Subcase ⟨H, e⟩→ e′: Let I′ = I and O′ = O and H′ = H and c′ = h.f = e′. The
result follows by E-Mod1.

Case T-Zero: Empty Θ1
By Lemma A.7, we have dom(H) ∈ JΘ1K. By Lemma A.5, we have JΘ1K = {},
which is a contradiction.

Preservation

Lemma A.10 (Restriction Entailed). If H ⊧ Θ and h ∈ dom(H), then
H ⊧ Restrict Θ h.

Proof. By induction on Θ.

Case Θ = 0: The case immediately holds as H ⊧ 0 is a contradiction.

Case Θ = 1: By inversion of Entailment, H = ⋅. The case immediately holds as h ∈
dom(⋅) is a contradiction.

Case Θ = g: By inversion of Entailment, dom(H) = {g}, and so h = g. By definition
Restrict Θ h = Restrict g g = g. By Ent-Inst H ⊧ g, i.e., H ⊧ Θ.

Case Θ = Θ1 ⋅Θ2: By inversion of Entailment H = H1 ∪ H2 ,H1 ⊧ Θ1 ,H2 ⊧ Θ2. By
h ∈ dom(H), either h ∈ dom(H1) or h ∈ dom(H2).

Subcase h ∈ dom(H1):
By the induction hypothesis, we have H1 ⊧ Restrict Θ1 h. By Ent-
Seq, we have H1 ∪ H2 ⊧ Restrict Θ1 h ⋅Θ2. By Ent-ChoiceL, we have
H1 ∪H2 ⊧ (RestrictΘ1 h ⋅Θ2)+ (Θ1 ⋅RestrictΘ2 h) which concludes
the case.

Subcase h ∈ dom(H2): Symmetric to the previous subcase.

Case Θ = Θ1 +Θ2: By inversion of Entailment, either H ⊧ Θ1 or H ⊧ Θ2.

Subcase H ⊧ Θ1: By the induction hypothesis, we have H ⊧ Restrict Θ1 h. By
Ent-ChoiceL, H ⊧ Restrict Θ1 h + Restrict Θ2 h.

Subcase H ⊧ Θ2: Symmetric to the previous subcase.

Lemma A.11 (NegRestriction Entailed). If H ⊧ Θ and h /∈ dom(H), then
H ⊧ NegRestrict Θ h.

Proof. By induction on Θ.

Case Θ = 0: The case immediately holds as H ⊧ 0 is a contradiction.

A.1. SAFEP4 157

Case Θ = 1: By inversion of Entailment, H = ⋅. By definition of Negated Restriction,
NegRestrict Θ h = NegRestrict 1 h = 1. By Ent-Empty ⋅ ⊧ 1, i.e., H ⊧
NegRestrict Θ h.

Case Θ = g: By inversion of Entailment, dom(H) = {g}. By assumption h ≠ g. By
definition of Restriction NegRestrict Θ h = NegRestrict g h = g. By Ent-
Inst H ⊧ g, i.e., H ⊧ NegRestrict Θ h.

Case Θ = Θ1 ⋅Θ2: By inversion of Entailment, H = H1 ∪ H2 ,H1 ⊧ Θ1 ,H2 ⊧ Θ2. By
h /∈ dom(H), h /∈ dom(H1) and h /∈ dom(H2). By the induction hypothesis,
H1 ⊧ NegRestrictΘ1 h andH2 ⊧ NegRestrictΘ2 h. By Ent-Seq,H1∪H2 ⊧
NegRestrict Θ1 h ⋅ NegRestrict Θ2 h which finishes the case.

Case Θ = Θ1 +Θ2: By inversion of Entailment, either H ⊧ Θ1 or H ⊧ Θ2.

Subcase H ⊧ Θ1:
By the induction hypothesis, we have H ⊧ NegRestrict Θ1 h.
By Ent-ChoiceL, H ⊧ NegRestrict Θ1 h + NegRestrict Θ2 h.

Subcase H ⊧ Θ2: Symmetric to the previous subcase.

Lemma A.12 (Entailment Congruence). If H ⊧ Θ and dom(H) = dom(H′) then
H′ ⊧ Θ.

Proof. By induction on Θ.

Case Θ = 0: The case immediately holds as H ⊧ 0 is a contradiction.

Case Θ = 1: By inversion of Entailment H = ⋅. By assumption dom(H) = dom(H′),
H′ = ⋅ and by Ent-Empty, H′ ⊧ Θ.

Case Θ = g: By inversion of Entailment, dom(H) = {g}. By assumption dom(H) =
dom(H′) and by Ent-Inst, H′ ⊧ Θ.

Case Θ = Θ1 ⋅Θ2: By inversion of Entailment, H = H1 ∪H2 ,H1 ⊧ Θ1 ,H2 ⊧ Θ2. By set
theory, dom(H) = dom(H1) ∪ dom(H2). By induction hypothesis if dom(H′

1) =
dom(H1) and dom(H′

2) = dom(H2), then H′
1 ⊧ Θ1, and H′

2 ⊧ Θ2. By Ent-Seq,
H′ = H′

1 ∪H′
2 ⊧ Θ1 ⋅Θ2.

Case Θ = Θ1 +Θ2: By inversion of Entailment, either H ⊧ Θ1 or H ⊧ Θ2.

Subcase H ⊧ Θ1: By induction hypothesis, we have H′ ⊧ Θ1. By Ent-ChoiceL,
H′ ⊧ Θ1 +Θ2.

Subcase H ⊧ Θ2: Symmetric to the previous subcase.

Lemma A.13 (Substitution). If Γ, x ∶ τ ⊢ c ∶ Θ Z⇒ Θ′ and ⋅; ⋅ ⊢ v ∶ τ then Γ ⊢ c[v/x] ∶
Θ Z⇒ Θ′.

Proof. By straightforward induction on the derivation Γ, x ∶ τ ⊢ c ∶ Θ Z⇒ Θ′.

Lemma A.14 (Entails Subsumption). If H ⊧ Θ then H[h ↦ v] ⊧ Θ ⋅ h

158 APPENDIX A. PROOFS

Proof. We analyze two cases.

Case h ∈ dom(H): By the assumption of the case, we have dom(H) = dom(H[h ↦ v]).
Let H1 = H[h ↦ v] and H2 = {h ↦ v}. Observe that H[h ↦ v] = H1 ∪ H2. By
Lemma A.12, we have that H1 ⊧ Θ. By Ent-Inst we have H2 ⊧ h. By Ent-Seq
we have H[h ↦ v] ⊧ Θ ⋅ h.

Case h /∈ dom(H): Let H1 = H and H2 = {h ↦ v}. Observe that H[h ↦ v] = H1 ∪H2.
By assumption we have H1 ⊧ Θ. By Ent-Inst we have H2 ⊧ h. By Ent-Seq we
have H[h ↦ v] ⊧ Θ ⋅ h.

Lemma A.15 (Entails Removal). If H ⊧ Θ then H ∖ h ⊧ Remove Θ h.

Proof. By induction on Θ.

Case Θ = 0: The case immediately holds, as H ⊧ 0 is a contradiction.

Case Θ = 1: By inversion of Entailment,H = ⋅. By set theory, ⋅∖h = ⋅ and Remove 1 h = 1.
By Ent-Empty, ⋅ ⊧ 1.

Case Θ = g: By inversion of Entailment, dom(H) = {g}.

Subcase g = h: By set theoryH∖ h = ⋅. By definition of Remove, RemoveΘ h = 1.
By Ent-Empty, ⋅ ⊧ 1, which concludes the case.

Subcase g ≠ h: By set theory H ∖ h = H. By definition of Remove, RemoveΘ h =
g. By assumption, H ⊧ Θ, which concludes the case.

Case Θ = Θ1 ⋅Θ2: By inversion of Entailment, H = H1 ∪ H2 ,H1 ⊧ Θ1 ,H2 ⊧ Θ2. By
induction hypothesis, H1 ∖ h ⊧ Remove Θ1 h and H2 ∖ h ⊧ Remove Θ2 h.
By set theory, H1 ∖ h ∪ H2 ∖ h = (H1 ∪ H2) ∖ h. By definition of Removal,
RemoveΘ1 h ⋅RemoveΘ2 h = Remove (Θ1 ⋅Θ2) h. By Ent-Seq, (H1 ∪H2)∖h ⊧
Remove (Θ1 ⋅Θ2) h.

Case Θ = Θ1 +Θ2: By inversion of Entailment, either H ⊧ Θ1 or H ⊧ Θ2.

Subcase H ⊧ Θ1: By induction hypothesis, H ∖ h ⊧ Remove Θ1 h. By Ent-
ChoiceL, applied to H ∖ h ⊧ Remove Θ1 h, and Remove Θ2 h, we can
conclude H ∖ h ⊧ Remove Θ1 h + Remove Θ2 h. By definition of Removal,
Remove Θ1 h + Remove Θ2 h = Remove (Θ1 +Θ2) h.

Subcase H ⊧ Θ2: Symmetric to previous subcase.

Lemma A.16 (Order Extend). If Θ′
1 < Θ1 then Θ′

1 ⋅ h < Θ1 ⋅ h.

Proof. By assumptionΘ′
1 < Θ1 and the definition of < follows JΘ′

1K ⊆ JΘ1K By J.K follows
JΘ′

1 ⋅ hK == JΘ′
1K ● {{h}} and JΘ1 ⋅ hK == JΘ1K ● {{h}}.

Let S ∈ JΘ′
1K ● {{h}}. By definition of ●, S = S′ ∪ {h}, where S′ ∈ JΘ′

1K. By
JΘ′

1K ⊆ JΘ1K, follows that S′ ∈ JΘ1K. By set theory, S′ ∪ {h} ∈ JΘ1K ● {{h}}. Then
JΘ′

1K ● {{h}} ⊆ JΘ1K ● {{h}}.

A.1. SAFEP4 159

Lemma A.17 (Order Remove). If Θ′
1 < Θ1 then JRemove Θ′

1 hK ⊆ JRemove Θ1 hK.

Proof. Since JRemoveΘ′
1 hK == JΘ′

1K∖h and JRemoveΘ1 hK == JΘ1K∖h by LemmaA.4,
we can equivalently show that JΘ′

1K ∖ h ⊆ JΘ1K ∖ h, which follows from set theory.

Lemma A.18 (Order Restrict). If Θ′
1 < Θ1 then JRestrict Θ′

1 hK ⊆ JRestrict Θ1 hK

Proof. By Lemma 4.1, JRestrict Θ′
1 hK == JΘ′

1K∣h and JRestrict Θ1 hK == JΘ1K∣h.
By set theory, JΘ′

1K∣h ⊆ JΘ1K∣h when JΘ′
1K ⊆ JΘ1K, so we are done.

Lemma A.19 (Order NegRestrict). If Θ′
1 < Θ1 then

JNegRestrict Θ′
1 hK ⊆ JNegRestrict Θ1 hK

Proof. By Lemma 4.2, JNegRestrictΘ′
1 hK == JΘ′

1K∣¬h and JNegRestrictΘ1 hK ==
JΘ1K∣¬h. By set theory, JΘ′

1K∣¬h ⊆ JΘ1K∣¬h when JΘ′
1K ⊆ JΘ1K, so we are done.

Lemma A.20 (Order Include). If Θ′
1 < Θ1 and Includes Θ1 h then Includes Θ′

1 h.

Proof. By LemmaA.3, IncludesΘ′
1 h = h ⊏ Θ′

1. By the same lemma, IncludesΘ1 h =
h ⊏ Θ1. Let S ∈ JΘ′

1K to show h ∈ S and hence h ⊏ Θ′
1. Since JΘ′

1K ⊆ JΘ1K, by assumption
and definition of <, then S ∈ JΘ1K. Since h ⊏ Θ1, conclude h ∈ S and we are done.

Lemma A.21 (Order Empty). If Θ′
1 < Θ1 and Empty Θ1 then Empty Θ′

1.

Proof. By definition of <, JΘ′
1K ⊆ JΘ1K. By Lemma A.5 and assumption Empty Θ1

follows JΘ1K = {}. By set theory JΘ′
1K = {}. The result follows by Lemma A.5.

Lemma A.22 (Order Choice). If Θ′
a < Θa and Θ′

b < Θb then Θ′
a +Θ′

b < Θa +Θb .

Proof. We have to show that JΘ′
a +Θ′

bK ⊆ JΘa +ΘbK when Θ′
a < Θa and Θ′

b < Θb . By
definition of J.K we can equally show that JΘ′

aK ∪ JΘ′
bK ⊆ JΘaK ∪ JΘbK, which follows

from set theory.

Lemma A.23 (Expression Type Bounds). If Γ;Θ ⊢ e ∶ τ and Θ′ < Θ, then Γ;Θ′ ⊢ e ∶ τ.

Proof. By induction on the typing derivation.

Case T-Constant: We know e = k(ē), and Γ;Θ ⊢ e i ∶ τ i for all i, and typeof(k) =
τ̄ → τ and Θ′ < Θ. By induction hypothesis, Γ;Θ′ ⊢ e i ∶ τ i for all i and we are
done by T-Constant.

Case T-Var: We know e = x, and x ∶ τ ∈ Γ, and Θ′ < Θ. We are done by T-Var.

Case T-Field: We know e = h. f , and Includes Θ h and Θ′ < Θ. By Lemma A.20,
we know Includes Θ′ h and the result follows by T-Field.

Lemma A.24 (Action Type Bounds). If Γ;Θ1 ⊢ a ∶ τ̄ → Θ2 and Θ′
1 < Θ1, then

∃Θ′
2 .Γ;Θ′

1 ⊢ a ∶ τ̄ → Θ′
2 and Θ′

2 < Θ2.

Proof. Rule T-Action is the only rule by which we have concluded that Γ;Θ1 ⊢ a ∶ τ̄ →
Θ2. This rule gives us two facts: we know a = λx̄ ∶ τ̄.c, and Γ, x̄ ∶ τ̄ ⊢ c ∶ Θ1 Z⇒ Θ2.

Since this c is an action command, is only generated by the add, remove,modification
and sequence commands. So we perform a limited induction on the structure of c:

160 APPENDIX A. PROOFS

Case c = add(h): The only typing rule that applies is T-Add, so we know Θ2 = Θ1 ⋅ h.
Now let Θ′

2 = Θ′
1 ⋅ h. Then T-Add shows Γ, x̄ ∶ τ̄ ⊢ add(h) ∶ Θ′

1 Z⇒ Θ′
1 ⋅ h and

Θ′
1 ⋅ h < Θ1 ⋅ h follows by Lemma A.16, and we are done.

Case c = remove(h): The only typing rule that could have applied is T-Remove, so we
know that Θ2 = Remove Θ1 h. Let Θ′

2 = Remove Θ′
1 h. Then T-Remove shows

Γ, x̄ ∶ τ̄ ⊢ remove(h) ∶ Θ′
1 Z⇒ Remove Θ1 h and Remove Θ′

1 h < Remove Θ1 h
follows by Lemma A.17 and by definition of <.

Case c = h.f = v: The only typing rule that could have applied is T-Mod, so we know
that Θ2 = Θ1. Let Θ′

2 = Θ′
1, which proves Θ′

2 < Θ2 by assumption. We know by
our case assumption that Γ, x̄ ∶ τ̄;Θ1 ⊢ e ∶ F(h, f) and Includes Θ1 h.
By T-Mod, we only need to show that

(1) Γ, x̄ ∶ τ̄;Θ′
1 ⊢ e ∶ F(h, f), which follows by Lemma A.23 and

(2) Includes Θ′
1 h, which follows by Lemma A.20.

Case c = c1; c2: The only rule that could have applied is T-Seq, so we know that Γ, x̄ ∶
τ̄ ⊢ c1 ∶ Θ1 Z⇒ Θ11, and Γ, x̄ ∶ τ̄ ⊢ c2 ∶ Θ11 Z⇒ Θ2.
The inductive hypothesis on c1 gives us a Θ′

11 < Θ11 such that Γ, x̄ ∶ τ̄ ⊢ c1 ∶ Θ′
1 Z⇒

Θ′
11.

The inductive hypothesis on c2 gives us a Θ′
2 < Θ2 such that Γ, x̄ ∶ τ̄ ⊢ c2 ∶ Θ′

11 Z⇒
Θ′
2. The result follows by T-Seq.

Lemma A.25 (Control Type Bounds). If Γ ⊢ c ∶ Θ1 Z⇒ Θ2 and Θ′
1 < Θ1, then ∃Θ′

2 .Γ ⊢
c ∶ Θ′

1 Z⇒ Θ′
2 and Θ′

2 < Θ2.

Proof. By induction on a derivation of Γ ⊢ c ∶ Θ1 Z⇒ Θ2. We refer to the general
assumptions as follows:

(A) Γ ⊢ c ∶ Θ1 Z⇒ Θ2 and

(B) Θ′
1 < Θ1

Similarly, we refer to the proof goals as

(1) ∃Θ′
2 .Γ ⊢ c ∶ Θ′

1 Z⇒ Θ′
2

(2) Θ′
2 < Θ2

Case T-Zero: We know Empty Θ1. By assumption (B) and Lemma A.21 we have
Empty Θ′

1. Let Θ′
2 = Θ2. We have Γ ⊢ c ∶ Θ′

1 Z⇒ Θ2 by T-Zero, proving (1), and
and Θ′

2 < Θ2 by reflexivity, proving (2).

Case T-Skip: We know c = skip and Θ2 = Θ1. Let Θ′
2 = Θ′

1. Then by assumption (B)
Θ′
2 = Θ′

1 < Θ1 = Θ2, proving (2) and Γ ⊢ skip ∶ Θ′
1 Z⇒ Θ′

1 by T-Skip, proving (1).

Case T-Emit: We know c = emit(h) and Θ2 = Θ1. Let Θ′
2 = Θ′

1. Then by assumption
(B), Θ′

2 = Θ′
1 < Θ1 = Θ2, proving (2) and Γ ⊢ emit(h) ∶ Θ′

1 Z⇒ Θ′
1 by T-Emit,

proving (1).

A.1. SAFEP4 161

Case T-Add: We know c = add(h) and Θ2 = Θ1 ⋅ h. Let Θ′
2 = Θ′

1 ⋅ h. (1) follows since
we can prove Γ ⊢ add(h) ∶ Θ′

1 Z⇒ Θ′
1 ⋅ h by T-Add. (2), i.e., Θ′

1 ⋅ h < Θ1 ⋅ h, follows
from Lemma A.16.

Case T-Extr: Weknow c = extract(h) andΘ2 = Θ1 ⋅h. LetΘ′
2 = Θ′

1 ⋅h. (1) follows since
we can prove Γ ⊢ extract(h) ∶ Θ′

1 Z⇒ Θ′
1 ⋅ h by T-Extract. (2), i.e., Θ′

1 ⋅ h < Θ1 ⋅ h,
follows from Lemma A.16.

Case T-Rem: We know c = remove(h) andΘ2 = RemoveΘ1 h. LetΘ′
2 = RemoveΘ′

1 h.
(1) follows by T-Rem. For (2) we have to show that Remove Θ′

1 h < Remove Θ1 h,
which follows from Lemma A.17.

Case T-Mod: We know c = h.f = e and Θ2 = Θ1 and Includes Θ1 h, and F(h, f) =
τ and Γ;Θ1 ⊢ e ∶ τ. Let Θ′

2 = Θ′
1. (1) follows by T-Mod, if we can show

Includes Θ′
1 h, which follows by assumption (B) and Lemma A.20. (2) follows

by assumption (B).

Case T-Seq: We know c = c1; c2 and Γ ⊢ c1 ∶ Θ1 Z⇒ Θ11 and Γ ⊢ c2 ∶ Θ11 Z⇒ Θ2. By
induction hypothesis, ∃Θ′

11 .Γ ⊢ c1 ∶ Θ′
1 Z⇒ Θ′

11 andΘ′
11 < Θ11. Again, by induction

hypothesis, ∃Θ′
2 .Γ ⊢ c2 ∶ Θ′

11 Z⇒ Θ′
2 and Θ′

2 < Θ2 (proving (2)). (1) follows by
T-Seq, which concludes the case.

Case T-IfValid: We know c = valid(h) c1 else c2 and Γ ⊢ c1 ∶ Restrict Θ1 h Z⇒
Θt , Γ ⊢ c2 ∶ NegRestrictΘ1 h Z⇒ Θ f , Θ2 = Θt+Θ f . LetΘ′

2 = RestrictΘ′
1 h+

NegRestrict Θ′
1 h. (1) is immediate from T-IfValid. (2) follows from Lemmas

A.18, A.19 and A.22.

Case T-If: We know c = if (e) c1 else c2, and Γ ⊢ c1 ∶ Θ1 Z⇒ Θ11, and Γ ⊢ c2 ∶ Θ1 Z⇒ Θ12,
and Γ;Θ1 ⊢ e ∶ Bool.
By induction hypothesis, there exists Θ′

11 such that (1a) Γ ⊢ c1 ∶ Θ′
1 Z⇒ Θ′

11 and
(2a) Θ′

11 < Θ11. Also by induction hypothesis, there exists Θ′
12 such that (1b)

Γ ⊢ c2 ∶ Θ′
1 Z⇒ Θ′

12 and (2b) Θ′
12 < Θ12. Let Θ′

2 = Θ′
11 + Θ′

12. By Lemma A.23
follows Γ;Θ′

1 ⊢ e ∶ Bool. (1) then follows by T-If with (1a) and (1b). (2) follows by
Lemma A.22 with (2a) and (2b).

Case T-Apply: We know

• c = t.apply()
• Θ2 = Θ11 +Θ12 + ... +Θ1n

• t.actions = a1 + a2 + ... + an
• ⋅;Θ1 ⊢ e j ∶ τ j for j = 1, ...,m
• CV(t) = (S1 ...Sn)
• (e1 ...em) = {e i ∣(e i ,m i) ∈ t.reads() ∧ ¬maskable(t, e i ,m i)}
• ⋅;Restrict Θ1 S i ⊢ a i ∶ τ̄ i → Θ1i

We want to construct Θ′
2 < Θ2 such that Γ ⊢ t.apply() ∶ Θ′

1 Z⇒ Θ′
2. By repeated

application of LemmaA.18, RestrictΘ′
1 S i < RestrictΘ1 S i . For every i apply

Lemma A.24, which gives us Γ;Restrict Θ′
1 S i ⊢ a ∶ τ̄ → Θ1 i and Θ′

1i < Θ1i .
Also for every j apply Lemma A.23, which gives us ⋅;Θ′

1 ⊢ e j ∶ τ j for j = 1, ...,m
LetΘ′

2 = ∑i Θ′
1i . (2) follows by T-Apply. To show (1), i.e.,Θ′

2 = ∑i Θ′
1i < ∑i Θ1i =

Θ2. We know Θ′
1i < Θ1i for all i. The result follows by repeated application of

Lemma A.22.

162 APPENDIX A. PROOFS

Theorem A.26 (Preservation). If Γ ⊢ c ∶ Θ1 Z⇒ Θ2 and ⟨I,O ,H, c⟩ → ⟨I′ ,O′ ,H′ , c′⟩,
where H ⊧ Θ1, then ∃Θ′

1 , Θ′
2 . Γ ⊢ c′ ∶ Θ′

1 Z⇒ Θ′
2 where H′ ⊧ Θ′

1 and Θ′
2 < Θ2.

Proof. By induction on a derivation of Γ ⊢ c ∶ Θ1 Z⇒ Θ2, with a case analysis on the last
rule used.

Case T-Skip: c = skip and Θ2 = Θ1
Vacuously holds as there is no c′ such that ⟨I,O ,H, c⟩→ ⟨I′ ,O′ ,H′ , c′⟩.

Case T-Extr: c = extract(h) and Θ2 = Θ1 ⋅ h
The only evaluation rule that applies to c is E-Extr, so we also have c′ = skip and
HT (h) = η and H′ = H[h ↦ v] where deserializeη(I) = (v , I′).
Let Θ′

1 = Θ′
2 = Θ2. We have Γ ⊢ c′ ∶ Θ′

1 Z⇒ Θ′
2 by T-Skip, we have H′ ⊧ Θ′

2 by
Lemma A.14, and we have Θ′

2 < Θ2 by reflexivity.

Case T-Emit: c = emit(h) and Θ2 = Θ1.
There are two evaluation rules that apply to c, E-Emit and E-EmitInvalid. In
either case, c′ = skip and H′ = H.
Let Θ′

1 = Θ′
2 = Θ1. We have Γ ⊢ c′ ∶ Θ′

1 Z⇒ Θ′
2 by T-Skip, we have H′ ⊧ Θ′

1 by
assumption, and we have Θ′

2 < Θ2 by reflexivity.

Case T-Seq: c = c1; c2 and Γ ⊢ c1 ∶ Θ1 Z⇒ Θ12 and Γ ⊢ c2 ∶ Θ12 Z⇒ Θ2

There are two evaluation rules that apply to c, E-Seq1 and E-Seq.

Subcase E-Seq: c′ = c2 and H′ = H
By inversion of Γ ⊢ c1 ∶ Θ1 Z⇒ Θ12 we have Θ12 = Θ1. Let Θ′

1 = Θ1 and
Θ′
2 = Θ2. We have Γ ⊢ c′ ∶ Θ′

1 Z⇒ Θ′
2 by assumption, we have H ⊧ Θ′

1 also
by assumption, and Θ′

2 < Θ2 by reflexivity.
Subcase E-Seq1: c′ = c′1; c2 and ⟨I,O ,H, c1⟩→ ⟨I′ ,O′ ,H′ , c′1⟩.

By IH we have Γ ⊢ c1 ∶ Θ′
1 Z⇒ Θ′

12 such that H′ ⊧ Θ′
1 and Θ′

12 < Θ12. By
Lemma A.25 we have Γ ⊢ c2 ∶ Θ′

12 Z⇒ Θ′
2 for some Θ′

2 < Θ2. We have
Γ ⊢ c1; c2 ∶ Θ′

1 Z⇒ Θ′
2 by T-Seq, which finishes the case.

Case T-If: c = if (e) c1 else c2 and Γ;Θ1 ⊢ e ∶ Bool and Γ ⊢ c1 ∶ Θ1 Z⇒ Θ12 and
Γ ⊢ c2 ∶ Θ1 Z⇒ Θ22 and Θ2 = Θ12 +Θ22.
There are three evaluation rules that apply to c, E-If, E-IfTrue, and E-IfFalse.

Subcase E-If: c′ = if (e′) c1 else c2 and H′ = H
Let Θ′

1 = Θ1 and Θ′
2 = Θ2. We have Γ ⊢ if (e) c1 else c2 ∶ Θ′

1 Z⇒ Θ′
2 by T-If,

we have H ⊧ Θ1 by assumption, and we have Θ2 < Θ′
2 by reflexivity.

Subcase E-IfTrue: c′ = c1 and H′ = H.
Let Θ′

1 = Θ1 and Θ′
2 = Θ12. We have Γ ⊢ c′ ∶ Θ′

1 Z⇒ Θ′
2 by assumption, we

have H ⊧ Θ′
1 also by assumption, and we have Θ′

2 < Θ2 by the definition of
< and the semantics of types.

Subcase E-IfFalse: c′ = c2 and H′ = H.
Symmetric to the previous case.

Case T-IfValid: c = valid(h) c1 else c2 and Γ ⊢ c1 ∶ Restrict Θ1 h Z⇒ Θ12 and
Γ ⊢ c2 ∶ NegRestrictΘ1 h Z⇒ Θ22 andΘ2 = Θ12+Θ22. There are two evaluation
rules that apply to c, E-IfValidTrue and E-IfValidFalse

A.1. SAFEP4 163

Subcase E-IfValidTrue: c′ = c1 and h ∈ dom(H) and H′ = H.
Let Θ′

1 = Restrict Θ1 h and Θ′
2 = Θ12. We have Γ ⊢ c′ ∶ Θ′

1 Z⇒ Θ′
2 by

assumption, we have H ⊧ Θ′
1 by Lemma A.10, and we have Θ′

2 < Θ2 by the
definition of < and semantics of types.

Subcase E-IfValidFalse: c′ = c2 and h /∈ dom(H) and H′ = H.
Symmetric to the previous case.

Case T-Apply: c = t.apply() and CV(t) = S̄ and t.actions = ā and ē = {e j ∣ (e j ,m j) ∈
t.reads() ∧ ¬maskable(t, e j ,m j)} and ⋅;Θ ⊢ e i ∶ τ i for e i ∈ ē and Θ2 = ∑ (Θ′

i)
and ⋅;Restrict Θ1 S i ⊢ a i ∶ τ̄ i → Θ′

i for a i ∈ a
There is only one evaluation rule that applies to c, E-Apply.
It follows that CA(t,H) = (a i , v̄), and c′ = c i[v̄/x̄] where A(a i) = λx̄ . c i .
Next, inverting T-Action, we have ⋅, x̄ ∶ τ̄ i ⊢ c i ∶ Restrict Θ S i Z⇒ Θ′

i . By
Proposition 2, we have ⋅; ⋅ ⊢ v̄ ∶ τ̄ i . Hence, by Lemma A.13, we have ⋅ ⊢ c i[v̄/x̄] ∶
Restrict Θ S i Z⇒ Θ′

i .
Let Θ′

1 = Restrict Θ S i and Θ′
2 = Θ′

i . We have already shown that Γ ⊢ c′ ∶
Θ′
1 Z⇒ Θ′

2. We have that H′ ⊧ Θ′
1 by Proposition 3, and we have Θ′

2 < Θ2 by the
definition of < and the semantics of union types.

Case T-Add: c = add(h) and Θ2 = Θ1 ⋅ h
There are two evaluation rules that apply to c, E-Add and E-AddValid.

Subcase E-Add: c′ = skip andHT (h) = η and initη = v and H′ = H[h ↦ v]
Let Θ′

1 = Θ′
2 = Θ2. We have Γ ⊢ c′ ∶ Θ′

1 Z⇒ Θ′
2 by T-Skip, we have H′ ⊧ Θ′

1
by Lemma A.14, and we have Θ′

2 < Θ2 by reflexivity.
Subcase E-AddValid: c′ = skip and H′ = H

Let Θ′
1 = Θ′

2 = Θ2. We have Γ ⊢ c′ ∶ Θ′
1 Z⇒ Θ′

2 by T-Skip, We have H′ ⊧ Θ′
1

by Lemma A.12 and Lemma A.14 since dom(H′) = dom(H[h ↦ v]) for any
v, and we have Θ′

2 < Θ2 by reflexivity.

Case T-Rem: c = remove(h) and Θ2 = Remove Θ1 h
There is only one evaluation rule that applies to c, E-Rem, so we have c′ = skip
and H′ = H ∖ h. Let Θ′

1 = Θ′
2 = Remove Θ1 h. We have Γ ⊢ c′ ∶ Θ′

1 Z⇒ Θ′
2 by

T-Skip, we have H′ ⊧ Θ′
1 by Lemma A.15, and we have Θ′

2 < Θ2 by reflexivity.

Case T-Mod: c = h.f = e and Includes Θ1 h and HT (h, f) = τ i and ⋅;Θ1 ⊢ e ∶ τ i
and Θ2 = Θ1
There are two evaluation rules that applies to c, E-Mod1 and E-Mod.

Subcase E-Mod1: c′ = h.f = e′ and e → e′ and H′ = H
By preservation for expressions we have ⋅;Θ1 ⊢ e′ ∶ τ i . Let Θ′

1 = Θ′
2 = Θ1.

We have Γ ⊢ c′ ∶ Θ′
1 Z⇒ Θ′

2 by T-Mod, we have H′ ⊧ Θ′
1 by assumption, and

we have Θ′
2 < Θ2 by reflexivity.

Subcase E-Mod: c′ = skip and dom(H′) = dom(H)
Let Θ′

1 = Θ′
2 = Θ1. We have Γ ⊢ c′ ∶ Θ′

1 Z⇒ Θ′
2 by T-Skip, we have H′ ⊧ Θ′

1
by Lemma A.12, and we have Θ′

2 < Θ2 by reflexivity.

Case T-Zero: Empty Θ1
By Lemma A.7, we have dom(H) ∈ JΘ1K. By Lemma A.5, we have JΘ1K = {},
which is a contradiction.

164 APPENDIX A. PROOFS

A.2 Π4

A.2.1 Safety

Lemma A.27 (Semantic Entailment). If (I,O ,H) ⊧E τ, then (I,O ,H) ∈ JτKE

Proof. By induction on τ.

Case τ = ∅: Immediate, since (I,O ,H) ⊧E ∅ is a contradiction.

Case τ = ⊺: Immediate, since J⊺KE =H.

Case τ = Σx ∶ τ1 .τ2: By inversion of entailment, we get

(A1) (I,O ,H) = (I1@I2 ,O1@O2 ,H1 ∪H2) and
(A2) (I1 ,O1 ,H1) ⊧E τ1 and
(A3) (I2 ,O2 ,H2) ⊧E[x↦(I1 ,O1 ,H1)] τ2

By (A2) respectively (A3) and the induction hypothesis, we get

(A4) (I1 ,O1 ,H1) ∈ Jτ1KE and
(A5) (I2 ,O2 ,H2) ∈ Jτ2KE[x↦(I1 ,O1 ,H1)].

To show that (I,O ,H) ∈ JΣx ∶ τ1 .τ2KE = {h1++ h2 ∣ h1 ∈ Jτ1KE∧h2 ∈ Jτ2KE[x↦h1]},
we have to show that (I,O ,H) is the concatenation of two heaps h1 and h2, where
h1 ∈ Jτ1KE and h2 ∈ Jτ2KE[x↦h1], which follows from (A1), (A4) and (A5).

Case τ = τ1 + τ2: By inversion of entailment, either (I,O ,H) ⊧E τ1 or (I,O ,H) ⊧E τ2.
To show that (I,O ,H) ∈ Jτ1 + τ2KE = Jτ1KE ∪ Jτ2KE , we have to show that
(I,O ,H) ∈ Jτ1KE or (I,O ,H) ∈ Jτ2KE .

Subcase (I,O ,H) ⊧E τ1: By induction hypothesis, (I,O ,H) ∈ Jτ1KE . We can
conclude (I,O ,H) ∈ Jτ1 + τ2KE .

Subcase (I,O ,H) ⊧E τ2: Symmetric to previous subcase.

Case τ = {x ∶ τ1 ∣ φ}: By inversion of entailment, we get

(A1) (I,O ,H) ⊧E τ and
(A2) JφKE[x↦(I ,O ,H)] = true

To show that (I,O ,H) ∈ J{x ∶ τ ∣ φ}KE = {h ∣ h ∈ JτKE ∧ JφKE[x↦h]}, we have to
show that (I,O ,H) ∈ JτKE and that JφKE[x↦(I ,O ,H)] = true. The first follows by
induction hypothesis and (A1) and the latter by (A2).

Case τ = τ1[x ↦ τ2]: By inversion of entailment, we get

(A1) (I2 ,O2 ,H2) ⊧E τ2 for some I2 ,O2 ,H2 and
(A2) (I,O ,H) ⊧E[x↦(I2 ,O2 ,H2)] τ1

To show that (I,O ,H) ∈ Jτ1[x ↦ τ2]KE = {h ∣ h2 ∈ Jτ2KE ∧ h ∈ Jτ1KE[x↦h2]},
we have to show that (I,O ,H) ∈ Jτ1KE[x↦h2] where h2 ∈ Jτ2KE . By induction
hypothesis and (A2) follows that (I,O ,H) ∈ Jτ1KE[x↦(I2 ,O2 ,H2)]. (I2 ,O2 ,H2) ∈
Jτ2KE follows by induction hypothesis and (A1), which concludes this case.

A.2. Π4 165

LemmaA.28 (Semantic Containment Entails). If (I,O ,H) ∈ JτKE , then (I,O ,H) ⊧E τ.

Proof. By induction on τ.

Case τ = ∅: Immediate, since there is no heap in J∅KE .

Case τ = ⊺: Result directly follows by Ent-Top.

Case τ = Σx ∶ τ1 .τ2: By the semantics of heap types, all heaps h ∈ JΣx ∶ τ1 .τ2K have
the form h = h1 ++ h2, where h1 = (I1 ,O1 ,H1) ∈ Jτ1KE and h2 = (I2 ,O2 ,H2) ∈
Jτ2KE[x↦h1]. By applying the induction hypothesis, we get (I1 ,O1 ,H1) ⊧E τ1 and
(I2 ,O2 ,H2) ⊧E[x↦h1] τ2. The result directly follows by Ent-Sigma.

Case τ = τ1 + τ2: By the semantics of heap types, for any h ∈ Jτ1 + τ2KE holds that either
h ∈ Jτ1KE or h ∈ Jτ2KE .

Subcase h ∈ Jτ1KE : By induction hypothesis, h ⊧E τ1. The result directly follows
by Ent-ChoiceL.

Subcase h ∈ Jτ1KE : Symmetric to previous subcase.

Case τ = {y ∶ τ1 ∣ φ}: By the semantics of heap types, h ∈ Jτ1KE and JφKE[x↦h] = true.
By induction hypothesis, h ⊧E τ. The result directly follows by Ent-Refine.

Case τ = τ1[x ↦ τ2]: By the semantics of heap types, h ∈ Jτ1KE[x↦h2] where h2 ∈ Jτ2KE .
By induction hypothesis, h2 ⊧E τ2 and h ⊧E[x↦h2] τ1. The result directly follows
by Ent-Subst.

Lemma A.29 (Subtype Entailment). If (I,O ,H) ⊧E τ1 and E ⊧ Γ and Γ ⊢ τ1 <∶ τ2,
then (I,O ,H) ⊧E τ2.

Proof. By Lemma A.27, (I,O ,H) ∈ Jτ1KE . With E ⊧ Γ and by definition of subtyping,
(I,O ,H) ∈ Jτ2KE . The result follows by Lemma A.28.

Lemma A.30 (Extended Environment Entails). If E ⊧ Γ and (I,O ,H) ⊧E τ and
x /∈ dom(E), then E[x ↦ (I,O ,H)] ⊧ Γ, x ∶ τ.

Proof. By definition of entailment between environments and typing contexts and by
assumptions.

Progress

Lemma A.31 (Included Instances in Domain). If (I,O ,H) ⊧E τ and Includes Γ τ ι,
then ι ∈ dom(H).

Proof. By LemmaA.27, (I,O ,H) ∈ JτKE . By assumption Includes Γ τ ι and by definition
of inclusion, ∀h ∈ JτKE .ι ∈ dom(h), we can conclude that ι ∈ dom(H).

LemmaA.32 (Excluded Instances not in Domain). If (I,O ,H) ⊧E τ and Excludes Γ τ ι,
then ι /∈ dom(H).

166 APPENDIX A. PROOFS

Proof. By Lemma A.27, (I,O ,H) ∈ JτKE . By assumption Excludes Γ τ ι and by defini-
tion of exclusion, ∀h ∈ JτKE .ι /∈ dom(h), we can conclude that ι /∈ dom(H).

Lemma A.33 (Expression Progress). If Γ; τ ⊢ e ∶ σ and E ⊧ Γ and (I,O ,H) ⊧E τ, then
either e is a value or ∃e′ .⟨I,O ,H, e⟩→ e′.

Lemma A.34 (Formulae Progress). If Γ; τ ⊢ φ ∶ B and E ⊧ Γ and (I,O ,H) ⊧E τ, then
either φ is a value or ∃φ′ .⟨I,O ,H, φ⟩→ φ′

Theorem A.35 (Progress). If Γ ⊢ c ∶(x ∶ τ1)→ τ2 and E ⊧ Γ and (I,O ,H) ⊧E τ1, then
either c = skip or there exists ⟨I′ ,O′ ,H′ , c′⟩ such that ⟨I,O ,H, c⟩→ ⟨I′ ,O′ ,H′ , c′⟩.

Proof. By induction on typing derivations of Γ ⊢ c ∶(x ∶ τ1)→ τ2.

Case T-Skip: c = skip
The result is immediate.

Case T-Extract: c = extract(ι) and Γ ⊢ sizeof pkt in(τ1) ≥ sizeof(ι)
By inversion of (I,O ,H) ⊧E τ1, we know that I contains enough bits such that
deserializeη(I) does not fail. Let (v , I′) = deserializeη(I) and O′ = O and H′ =
H[ι ↦ v] and c′ = skip. The result follows by E-Extract.

Case T-Reset: c = reset
Let I′ = O@I,O′ = ⟨⟩,H′ = [] and c′ = skip. The result follows by E-Reset.

Case T-Remit: c = remit(ι) and Includes Γ τ1 ι
By Lemma A.31 we know ι ∈ dom(H). Let I′ = I,O′ = O@serializeη(H(ι)),H′ =
H and c′ = skip. The result follows by E-Remit

Case T-Remove: c = remove(ι) and Includes Γ τ1 ι
By Lemma A.31, we can conclude that ι ∈ dom(H). Let I′ = I and O′ = O and
H′ = H ∖ ι. The result follows by E-Remove.

Case T-Mod: c = ι. f ∶= e and Includes Γ τ1 ι andF(ι, f) = BV and Γ; τ1 ⊢ e ∶ BV and
τ2 = {y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = e[x/heap]}
By Lemma A.33, either e is a value or there is some e′ such that ⟨I,O ,H, e⟩→ e′.

Subcase e = v: By Lemma A.31, ι ∈ dom(H). Let r = H(ι) and r′ = {r with f =
v}. Let I′ = I,O′ = O ,H′ = H[ι ↦ r] and c′ = skip. The result follows by
E-Mod.

Subcase ⟨I,O ,H, e⟩→ e′: Let I′ = I,O′ = O ,H′ = H′ and c′ = ι. f ∶= t′. The
result follows by E-Mod1.

Case T-Seq: c = c1; c2 and Γ ⊢ c1 ∶(x ∶ τ1)→ τ′1 and Γ ⊢ c2 ∶(x ∶ τ′1)→ τ2
By induction hypothesis, c1 is either skip or there is some ⟨I′ ,O′ ,H′ , c′1⟩, such
that ⟨I,O ,H, c1⟩ → ⟨I′ ,O′ ,H′ , c′1⟩. If c1 = skip, let I′ = I,O′ = O ,H′ = H and
c′ = c2. The result follows by E-Seq. Otherwise, the result follows by E-Seq1.

Case T-If: c = if (φ) c1 else c2 and Γ; τ1 ⊢ e ∶ B
By Lemma A.34, we have that φ is either true, false or there is some φ′ such that
⟨I,O ,H, φ⟩→ φ′.

Subcase φ = true: Let I′ = I,O′ = O ,H′ = H and c′ = c1. The result follows by
E-IfTrue.

A.2. Π4 167

Subcase φ = false: Symmetric to previous subcase.
Subcase ⟨I,O ,H, φ⟩→ φ′: Let I′ = I and O′ = O and H′ = H. Further, let

c′ = if (φ′) c1 else c2. The result follows by E-If.

Case T-Add: c = add(ι) and Excludes Γ τ ι.
By Lemma A.32, ι /∈ dom(H). The result follows by E-Add.

Case T-Ascribe: c = ca as (x ∶ τa1) → τa2 . Let I′ = I , O′ = O, H′ = H and c′ = ca .
The result follows by E-Ascribe.

Case T-Sub: Γ ⊢ τ1 <∶ τ3 and Γ, x ∶ τ1 ⊢ τ4 <∶ τ2 and Γ ⊢ c ∶ (x ∶ τ3) → τ4. By
Lemma A.29, (I,O ,H) ⊧E τ3. By IH, c = skip or there exists I′ ,O′ ,H′ , c′ s.t.
⟨I,O ,H, c⟩→ ⟨I′ ,O′ ,H′ , c′⟩. The result follows directly.

Preservation

Lemma A.36 (Semantic Chomp Expression). For all expressions e, heaps h and h′, envi-
ronments E and E ′ and variables x, if h′ = chomp⇓(h, 1), and E ′ = E[x ↦ (⟨⟩, ⟨⟩, [ι ↦
v])] and, if x ∈ dom(E), v = E(x)(ι)@h(pkt in)[0 ∶ 1] and E(x)(pkt in) = ⟨⟩ and
E(x)(pktout) = ⟨⟩, and otherwise v = h(pkt in)[0 ∶1] and x not free in e, then

JeKE[y↦h] = JheapRef 1(chompe1 (e , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

Proof. Proof by induction on e. We only consider expressions referencing pkt in . All
other expressions are not affected by chomping, and therefore the semantic is unchanged.

Case e = z.pkt in[l ∶r]: Case distinction on z = y:

Subcase z ≠ y:
JheapRef 1(chompe1 (z.pkt in[l ∶r], y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(z.pkt in[l ∶r], b0 , x , ι, 1)KE ′[y↦h′]

= Jz.pkt in[l ∶r]KE ′[y↦h′]

If z ≠ x, z binds to some heap in E , which must also be contained in E ′
unchanged. If z = x, by assumption, x .pkt in maps to the empty bit vector,
both in E and E ′.

= Jz.pkt in[l ∶r]KE[y↦h]

Subcase z = y, r ≤ 1:
JheapRef 1(chompe1 (y.pkt in[0 ∶1], y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(chompe1 (y.pkt in[0 ∶1], y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(b0 ∶∶ ⟨⟩, b0 , x , ι, 1)KE ′[y↦h′]

= Jx .ι[sizeof(ι) − 1 ∶sizeof(ι) − 1 + 1]@⟨⟩KE ′[y↦h′]

= Jx .ι[∣v∣ − 1 ∶ ∣v∣]KE ′[y↦h′]

= E ′(x)(ι)[∣v∣ − 1]
= h(pkt in)[0 ∶1]
= Jy.pkt in[0 ∶1]KE[y↦h]

168 APPENDIX A. PROOFS

Subcase z = y, l = 0:

JheapRef 1(chompe1 (y.pkt in[0 ∶r], y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(chompe1 (y.pkt in[0 ∶r], y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(b0 ∶∶ y.pkt in[0 ∶r − 1], b0 , x , ι, 1)KE ′[y↦h′]

= Jx .ι[sizeof(ι) − 1 ∶sizeof(ι) − 1 + 1]@y.pkt in[0 ∶r − 1]KE ′[y↦h′]

= Jx .ι[∣v∣ − 1 ∶ ∣v∣]@y.pkt in[0 ∶r − 1]KE ′[y↦h′]

= E ′(x)(ι)[∣v∣ − 1 ∶ ∣v∣]@h′(pkt in)[0 ∶r − 1]

with v = E(x)(ι)@h(pkt in)[0] follows

= h(pkt in)[0 ∶1]@h′(pkt in)[0 ∶r − 1]

with h′ = chomp⇓(h, 1) follows

= h(pkt in)[0 ∶1]@h(pkt in)[1 ∶r]
= h(pkt in)[0 ∶r]
= Jy.pkt in[0 ∶r]KE[y↦h]

Subcase z = y, l ≠ 0:

JheapRef 1(chompe1 (y.pkt in[l ∶r], y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(chompe1 (y.pkt in[l ∶r], y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(y.pkt in[l − 1 ∶r − 1], b0 , x , ι, 1)KE ′[y↦h′]

= Jy.pkt in[l − 1 ∶r − 1]KE ′[y↦h′]

= h′(pkt in)[l − 1 ∶r − 1]

with h′ = chomp⇓(h, 1) follows

= h(pkt in)[l ∶r]
= Jy.pkt in[l ∶r]KE[y↦h]

Case e = z.pkt in : Case distinction on z = y:

Subcase z ≠ y: Symmetric to first subcase of previous case.
Subcase z = y:

JheapRef 1(chompe1 (y.pkt in , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(b0 ∶∶ y.pkt in , b0 , x , ι, 1)KE ′[y↦h′]

= Jx .ι[sizeof(ι) − 1 ∶sizeof(ι) − 1 + 1]@y.pkt inKE ′[y↦h′]

= Jx .ι[∣v∣ − 1 ∶ ∣v∣]@y.pkt inKE ′[y↦h′]

= h(pkt in)[0 ∶1]@h′(pkt in)

with h′ = chomp⇓(h, 1) follows

= h(pkt in)
= Jy.pkt inKE[y↦h]

A.2. Π4 169

Case e = ∣z.pkt in ∣: Case distinction on z = y:

Subcase z ≠ y:

JheapRef 1(chompe1 (∣z.pkt in ∣, y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= J∣z.pkt in ∣KE ′[y↦h′]

If z = x, the length of x .pkt in = 0 in both environments and otherwise,
z.pkt in refers to the same heap in both E and E ′.

= J∣z.pkt in ∣KE[y↦h]

Subcase z = y:

JheapRef 1(chompe1 (∣y.pkt in ∣, y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= J∣y.pkt in ∣ + 1KE ′[y↦h′]

with h′ = chomp⇓(h, 1) follows

= J∣y.pkt in ∣KE[y↦h]

Case e = b ∶∶ bv:

JheapRef 1(chompe1 (b ∶∶ bv , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(b ∶∶ chompe1 (bv , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= Jb ∶∶ heapRef 1(chompe1 (bv , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JbKE ′[y↦h′] ∶∶ JheapRef 1(chompe1 (bv , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JbKE ′[y↦h′] ∶∶ JbvKE[y↦h]

by IH follows

= JbKE[y↦h] ∶∶ JbvKE[y↦h]

since b is either 0 or 1

= Jb ∶∶ bvKE[y↦h]

Case e = bv1@bv2:

JheapRef 1(chompe1 (bv1@bv2 , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(chompe1 (bv1 , y, b0)@chompe1 (bv2 , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(chompe1 (bv1 , y, b0), b0 , x , ι, 1)KE ′[y↦h′]@
JheapRef 1(chompe1 (bv1 , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= Jbv1KE[y↦h]@Jbv2KE[y↦h]

by IH

= Jbv1@bv2KE[y↦h]

170 APPENDIX A. PROOFS

Case e = n +m: Symmetric to previous case.

Lemma A.37 (Semantic Chomp Formulae). For all formulae φ, heaps h and h′, environ-
ments E and E ′ and variables x, if h′ = chomp⇓(h, 1), and E ′ = E[x ↦ (⟨⟩, ⟨⟩, [ι ↦ v])],
and if x ∈ dom, v = E(x)(ι)@h(pkt in)[0 ∶1] and E(x)(pkt in) = ⟨⟩ and E(x)(pktout) =
⟨⟩ and otherwise v = h(pkt in)[0 ∶1] and x not free in φ, then

JφKE[y↦h] = JheapRef 1(chompφ1 (φ, y, b0), b0 , x , ι, 1)KE ′[y↦h′]

Proof. By induction on φ.

Case φ = e1 = e2:

JheapRef 1(chompφ1 (e1 = e2 , y, b0), b0 , x , ι)KE ′[y↦h′]

= JheapRef 1(chompφ1 (e1 , y, b0), b0 , x , ι) =
heapRef 1(chompφ1 (e1 , y, b0), b0 , x , ι)KE ′[y↦h′]

= JheapRef 1(chompφ1 (e1 , y, b0), b0 , x , ι)KE ′[y↦h′] =
JheapRef 1(chompφ1 (e1 , y, b0), b0 , x , ι)KE ′[y↦h′]

by Lemma A.36 follows

= Je1KE[y↦h] = Je2KE[y↦h]

= Je1 = e2KE[y↦h]

Case φ = φ1 ∧ φ2:

JheapRef 1(chompφ1 (φ1 ∧ φ2 , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(chompφ1 (φ1 , y, b0), b0 , x , ι, 1)∧
heapRef 1(chompφ1 (φ2 , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(chompφ1 (φ1 , y, b0), b0 , x , ι, 1)KE ′[y↦h′]∧
JheapRef 1(chompφ1 (φ2 , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

by IH follows

= Jφ1KE[y↦h] ∧ Jφ2KE[y↦h]

= Jφ1 ∧ φ2KE[y↦h]

Case φ = ¬φ1:

JheapRef 1(chompφ1 (¬φ1 , y, b0), b0 , x , ι, 1)KE ′[y↦h]

= J¬heapRef 1(chompφ1 (φ1 , y, b0), b0 , x , ι, 1)KE ′[y↦h]

= ¬JheapRef 1(chompφ1 (φ1 , y, b0), b0 , x , ι, 1)KE ′[y↦h]

by IH follows

= ¬JφKE[y↦h]

= J¬φKE[y↦h]

A.2. Π4 171

Case φ = z.ι′ .val id:

JheapRef 1(chompφ1 (z.ι′ .val id , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= Jz.ι′ .val idKE ′[y↦h′]

= ι′ ∈ dom(E ′[y ↦ h′](z))
= ι′ ∈ dom(E[y ↦ h](z))

by definition of E ′ and h′ follows

= Jz.ι′ .val idKE[y↦h]

Case φ = true:

JheapRef 1(chompφ1 (true, y, b0), b0 , x , ι, 1)KE ′[y↦h]

= JtrueKE ′[y↦h]

= true
= JtrueKE[y↦h]

Case φ = false: Symmetric to previous case.

Lemma A.38 (Semantic Chomp Refinement). For all heap types τ, heaps h and h′, envi-
ronments E and E ′ and variables x, if h′ = chomp⇓(h, 1), and E ′ = E[x ↦ (⟨⟩, ⟨⟩, [ι ↦
v])], and, if x ∈ dom, v = E(x)(ι)@h(pkt in)[0 ∶ 1] and E(x)(pkt in) = ⟨⟩ and
E(x)(pktout) = ⟨⟩, and otherwise v = h(pkt in)[0 ∶1] and x not free in τ, then

JτKE[y↦h] = JheapRef 1(chompRef 1(τ, y, b0), b0 , x , ι, 1)KE ′[y↦h′]

Proof. Proof by induction on τ.

Case τ = ∅:

JheapRef 1(chompRef 1(∅, y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= J∅KE ′[y↦h′]

= {}
= JτKE[y↦h]

Case τ = ⊺:

JheapRef 1(chompRef 1(⊺, y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= J⊺KE ′[y↦h′]

= H
= J⊺KE

172 APPENDIX A. PROOFS

Case τ = Σz ∶ τ1 .τ2:

JheapRef 1(chompRef 1(Σz ∶ τ1 .τ2 , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JΣz ∶ heapRef 1(chompRef 1(τ1 , x , b0), b0 , x , ι, 1).
heapRef 1(chompRef 1(τ2 , x , b0), b0 , x , ι, 1)KE ′[y↦h′]

= {h′1 ++ h′2 ∣ h′1 ∈ JheapRef 1(chompRef 1(τ1 , x , b0), b0 , x , ι, 1)KE ′[y↦h′] ∧
h′2 ∈ JheapRef 1(chompRef 1(τ2 , x , b0), b0 , x , ι, 1)KE ′[y↦h′ ,z↦h′1]}

= {h′1 ++ h′2 ∣ h′1 ∈ Jτ1KE[y↦h] ∧ h′2 ∈ Jτ2KE[y↦h ,z↦h′1]}
= JΣz ∶ τ1 .τ2KE[y↦h]

Case τ = τ1 + τ2:

JheapRef 1(chompRef 1(τ1 + τ2 , y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(chompRef 1(τ1 , x , b0), b0 , x , ι, 1) +
heapRef 1(chompRef 1(τ2 , x , b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(chompRef 1(τ1 , x , b0), b0 , x , ι, 1)KE ′[y↦h′] ∪
JheapRef 1(chompRef 1(τ2 , x , b0), b0 , x , ι, 1)KE ′[y↦h′]

= Jτ1KE[y↦h] ∪ Jτ1KE[y↦h]

= Jτ1 + τ2KE[y↦h]

Case τ = {z ∶ τ1 ∣ φ}:

JheapRef 1(chompRef 1({z ∶ τ1 ∣ φ}, y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= J{z ∶ heapRef 1(chompRef 1(τ1 , y, b0), b0 , x , ι, 1) ∣
heapRef 1(chompφ1 (φ, y, b0), b0 , x , ι, 1)}KE ′[y↦h′]

= {h ∣ h ∈ JheapRef 1(chompRef 1(τ1 , y, b0), b0 , x , ι, 1)KE ′[y↦h′] ∧
JheapRef 1(chompφ1 (φ, y, b0), b0 , x , ι, 1)KE ′[y↦h′] = true}

= {h ∣ h ∈ Jτ1KE[y↦h] ∧ JφKE[y↦h] = true}
= J{z ∶ τ1 ∣ φ}KE[y↦h]

Case τ = τ1[z ↦ τ2]:

JheapRef 1(chompRef 1(τ1[z ↦ τ2], y, b0), b0 , x , ι, 1)KE ′[y↦h′]

= JheapRef 1(chompRef 1(τ1 , y, b0), b0 , x , ι, 1)[z ↦
heapRef 1(chompRef 1(τ2 , y, b0), b0 , x , ι, 1)]KE ′[y↦h′]

= {h ∣ h2 ∈ JheapRef 1(chompRef 1(τ2 , y, b0), b0 , x , ι, 1)KE ′[y↦h′]∧
h ∈ JheapRef 1(chompRef 1(τ1 , y, b0), b0 , x , ι, 1KE ′[y↦h′ ,z↦h2]}

= {h ∣ h2 ∈ Jτ2KE[y↦h] ∧ h ∈ Jτ1KE[y↦h ,z↦h2]}
= Jτ1[z ↦ τ2]KE[y↦h]

A.2. Π4 173

LemmaA.39 (Semantic Chomp1). For all heap types τ, environments E and E ′, and vari-
ables x, if E ′ = E[x ↦ (⟨⟩, ⟨⟩, [ι ↦ v])], and if x ∈ dom(E), v = E(x)(ι)@h(pkt in)[0 ∶
1] and E(x)(pkt in) = E(x)(pktout) = ⟨⟩, otherwise v = h(pkt in)[0 ∶ 1], then ∀h ∈
JτKE .∣h(pkt in)∣ ≥ 1 Ô⇒ ∃h′ ∈ JchompRec(τ, 1, ι, x)KE ′ .h′ = chomp⇓(h, 1)

Proof.

∀h ∈ JτKE .∣h(pkt in)∣ ≥ 1 Ô⇒ ∃h′ ∈ JchompRec(τ, 1, ι, x)KE ′ .h′ = chomp⇓(h, 1)
⇔ (By definition of chompRec)

∀h ∈ JτKE .∣h(pkt in)∣ ≥ 1 Ô⇒
∃h′ ∈ JheapRef 1(chomp1(τ, b0), b0 , x , ι, 1)KE ′ .h′ = chomp⇓(h, 1)

Proof by induction on τ.

Case τ = ∅: J∅KE = {}. As there are no heaps in the semantics, the case holds.

Case τ = ⊺: Let h be some heap from J⊺KE = H. Let h′ = h except that h′(pkt in) =
h(pkt in)[1 ∶].
By definition of chomp1 and heapRef 1, heapRef 1(chomp1(⊺, b0), b0 , x , ι, 1) = ⊺
and J⊺KE ′ = H.
We can conclude that h′ ∈ JheapRef 1(chomp1(⊺, b0), b0 , x , ι, 1)KE ′ and h′ =
chomp⇓(h, 1) follows by construction of h′(pkt in) = h(pkt in)[1 ∶].

Case τ = Σy ∶ τ1 .τ2: Let h be some heap from JΣy ∶ τ1 .τ2KE . We know h = h1 ++ h2, for
some h1 ∈ Jτ1KE and some h2 ∈ Jτ2KE[y↦h1].
We have to show that there exists some

h′ ∈ JheapRef 1(chomp1(Σy ∶ τ1 .τ2 , b0), b0 , x , ι, 1)KE ′

such that h′ = chomp⇓(h, 1).
We deconstruct JheapRef 1(chomp1(τ, b0), b0 , x , ι, 1)KE ′ :

JheapRef 1(chomp1(Σy ∶ τ1 .τ2 , b0), b0 , x , ι, 1)KE ′
= JheapRef 1(Σy ∶ chomp1(τ1 , b0).chompRef 1(τ2 , y, b0) +

Σy ∶ {z ∶ τ1 ∣ ∣z.pkt in ∣ = 0}.chomp1(τ2 , b0), b0 , x , ι, 1)KE ′
= JΣy ∶ heapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1).

heapRef 1(chompRef 1(τ2 , x , b0), b0 , x , ι, 1) +
Σy ∶ heapRef 1({z ∶ τ1 ∣ ∣z.pkt in ∣ = 0}, b0 , x , ι, 1).

heapRef 1(chomp1(τ2 , b0), b0 , x , ι, 1)KE ′
= JΣy ∶ heapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1).

heapRef 1(chompRef 1(τ2 , x , b0), b0 , x , ι, 1)KE ′ ∪
JΣy ∶ {z ∶ τ1 ∣ ∣z.pkt in ∣ = 0}.heapRef 1(chomp1(τ2 , b0), b0 , x , ι, 1)KE ′
= {h′1 ++ h′2∣h′1 ∈ JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)KE ′ ∧

h′2 ∈ JheapRef 1(chompRef 1(τ2 , x , b0))KE ′[y↦h′1]} ∪
{h′1 ++ h′2∣h′1 ∈ J{z ∶ τ1 ∣ ∣z.pkt in ∣ = 0}KE ′ ∧

h′2 ∈ JheapRef 1(chomp1(τ2 , b0), b0 , x , ι, 1)KE ′[y↦h′1]}

By case distinction on the length of pkt in in h1.

174 APPENDIX A. PROOFS

Subcase ∣h1(pkt in)∣ = 0:
By definition of E ′, Jτ1KE = Jτ1KE ′ , because, τ1 can’t contain a reference to
the newly added bit in E ′(x)(ι), from which follows that h1 ∈ Jτ1KE ′ .
By semantics of heap types, h1 ∈ J{z ∶ τ1 ∣ ∣z.pkt in ∣ = 0}KE ′ .
By IH there exists

h′2 ∈ JheapRef 1(chomp1(τ2 , b0), b0 , x , ι, 1)KE ′[y↦h1]

such that h′2 = chomp⇓(h2 , 1).
Let h′ = h1 ++ h′2.
We conclude that

h′ ∈ {h′1 ++ h′2∣h′1 ∈ J{z ∶ τ1 ∣ ∣z.pkt in ∣ = 0}KE ′ ∧
h′2 ∈ JheapRef 1(chomp1(τ2 , b0), b0 , x , ι, 1)KE ′[y↦h′1]}

and thus h′ ∈ JheapRef 1(chomp1(Σy ∶ τ1 .τ2 , b0), b0 , x , ι, 1)KE ′ .
By assumption ∣h1(pkt in)∣ = 0, we can conclude that

h1 ++ chomp⇓(h2 , 1) = chomp⇓(h1 ++ h2 , 1)

thus

h′ = h1 ++ h′2
= h1 ++ chomp⇓(h2 , 1)
= chomp⇓(h1 ++ h2 , 1)
= chomp⇓(h, 1)

Subcase ∣h1(pkt in)∣ ≠ 0:
By IH there exists h′1 ∈ JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)KE ′ , such that
h′1 = chomp⇓(h1 , 1).
By Lemma A.38 follows that

h2 ∈ JheapRef 1(chompRef 1(τ2 , x , b0), b0 , x , ι, 1)KE ′[y↦h′1]

Let h′ = h′1 ++ h2.
We conclude that

h′ ∈ {h′1 ++ h2∣h′1 ∈ JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)KE ′ ∧
h2 ∈ JheapRef 1(chompRef 1(τ2 , x , b0))KE ′[y↦h′1]}

and thus h′ ∈ JheapRef 1(chomp1(Σy ∶ τ1 .τ2 , b0), b0 , x , ι, 1)KE ′ .
With

h′ = h′1 ++ h2
= chomp⇓(h1 , 1) ++ h2
= chomp⇓(h1 ++ h2 , 1)
= chomp⇓(h, 1)

we can conclude this case.

A.2. Π4 175

Case τ = τ1 + τ2:
Let h be some heap from Jτ1 + τ2KE . By the semantics of heap types, we know
h ∈ Jτ1KE or h ∈ Jτ2KE .

Subcase h ∈ Jτ1KE :
By IH we know that there exists

h′ ∈ JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)KE ′

such that h′ = chomp⇓(h, 1).
By set theory and

JheapRef 1(chomp1(τ1 + τ2 , b0), b0 , x , ι, 1)KE ′
= JheapRef 1(chomp1(τ1 , b0) + chomp1(τ2 , b0), b0 , x , ι, 1)KE ′
= JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1) +

heapRef 1(chomp1(τ2 , b0), b0 , x , ι, 1)KE ′
= JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)KE ′ ∪

JheapRef 1(chomp1(τ2 , b0), b0 , x , ι, 1)KE ′

we conclude h′ ∈ JheapRef 1(chomp1(τ1 + τ2 , b0), b0 , x , ι, 1)KE ′ .
Subcase h ∈ Jτ2KE : Symmetric to previous subcase.

Case τ = {y ∶ τ1 ∣ φ}:
Let h be some heap from J{y ∶ τ1 ∣ φ}KE .
By the semantics of heap types, we know that h ∈ Jτ1KE and JφKE[y↦h] = true. By
induction hypothesis there exists h′ ∈ JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)KE ′
such that h′ = chomp⇓(h, 1).
By Lemma A.37 we know that

JφKE[y↦h] = JheapRef 1(chompφ1 (φ, y, b0), b0 , x , ι, 1)KE ′[y↦h′]

To apply Lemma A.37, we must show that x is not free in φ, if x /∈ dom(E). If this
does not hold, there is no h ∈ JτKE , which violates our initial assumption. With

JheapRef 1(chomp1({y ∶ τ1 ∣ φ}, b0), b0 , x , ι, 1)KE ′
= JheapRef 1({y ∶ chomp1(τ1 , b0) ∣ chompφ1 (φ, y, b0)}, b0 , x , ι, 1)KE ′
= J{y ∶ heapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1) ∣

heapRef 1(chompφ1 (φ, y, b0), b0 , x , ι, 1)}KE ′
= {h∣h ∈ JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)KE ′ ∧

JheapRef 1(chompφ1 (φ, y, b0), b0 , x , ι, 1)KE ′[y↦h]}

and with our assumptions from Lemma A.37 and the induction hypothesis, we
conclude that h′ ∈ JheapRef 1(chomp1({y ∶ τ1 ∣ φ}, b0), b0 , x , ι, 1)KE ′ such that
h′ = chomp⇓(h, 1).

Case τ = τ1[y ↦ τ2]:
Let h be some heap from Jτ1[y ↦ τ2]KE . We know that h ∈ Jτ1KE[y↦h2] for some
h2 ∈ Jτ2KE .

176 APPENDIX A. PROOFS

By IH there exists some h′ ∈ JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)KE ′[y↦h2] such
that h′ = chomp⇓(h, 1).
To conclude this case, we must show that

h′ ∈ JheapRef 1(chomp1(τ1[y ↦ τ2], b0), b0 , x , ι, 1)KE ′

From heapRef 1, chomp1 and the semantics of heap types, we get:

JheapRef 1(chomp1(τ1[y ↦ τ2], b0), b0 , x , ι, 1)KE ′
= JheapRef 1(chomp1(τ1 , b0)[y ↦ τ2], b0 , x , ι, 1)KE ′
= JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)[y ↦ τ2]KE ′
= {h11∣h22 ∈ Jτ2KE ′ ∧ h11 ∈ JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)KE ′[y↦h22]}

With h11 = h′ and h22 = h2, we can conclude that

h′ ∈ JheapRef 1(chomp1(τ1[y ↦ τ2], b0), b0 , x , ι, 1)KE ′

To argue that h2 ∈ Jτ2KE ′ , we make a case distinction on x ∈ dom(E).

Subcase x /∈ dom(E): x cannot appear free in τ and thereby also not in τ2, other-
wise there would be no h ∈ JτKE , thus for all h2 ∈ Jτ2KE , h2 ∈ Jτ2KE ′ .

Subcase x ∈ dom(E): By assumption, there is some h2 ∈ Jτ2KE . By semantics of
heap types, all formulae in τ2 referencing x, evaluate to true, i.e., they only
refer to information contained in E(x). By assumption, E(x)(pkt in) =
E ′(x)(pkt in), E(x)(pktout) = E ′(x)(pktout), and E(x)(ι)@h(pkt in)[0 ∶
1] = E ′(x)(ι). Since all information of E(x) is preserved in E ′, h2 ∈ Jτ2KE ′ .

Lemma A.40 (ChompRec Unroll). For all instances ι, if m + 1 ≤ sizeof(ι), then

chompRec(chompRec(τ,m, x , ι), 1, x , ι) = chompRec(τ,m + 1, x , ι)

Proof. By induction on n.

Case n = 0:

chompRec(chompRec(τ, 0, x , ι), 1, x , ι)
= chompRec(τ, 1, x , ι)

Case n = 1:

chompRec(chompRec(τ, 1, x , ι), 1, x , ι)
= chompRec(chompRec(heapRef 1(chomp1(τ, b0), b0 , ι, 1), 0, x , ι), 1, x , ι)
= chompRec(heapRef 1(chomp1(τ, b0), b0 , ι, 1), 1, x , ι)
= chompRec(τ, 2, x , ι)

A.2. Π4 177

Case n = m:

We assume that the lemma holds for n = m. We now have to show that the lemma
also holds for n = m + 1.

chompRec(chompRec(τ,m + 1, x , ι), 1, x , ι)
= chompRec(chompRec(heapRef 1(chomp1(τ, b0), b0 , ι,m + 1),m, x , ι),

1, x , ι)
= chompRec(heapRef 1(chomp1(τ, b0), b0 , ι,m + 1),m + 1, x , ι)
= chompRec(τ,m + 2, x , ι)

Lemma A.41 (Semantic Chomp Unroll). For all heaps h and all n ∈ N, if ∣h(pkt in)∣ ≥
n + 1, then chomp⇓(chomp⇓(h, n), 1) = chomp⇓(h, n + 1)

Proof. By definition of chomp⇓,

chomp⇓(chomp⇓(h, n), 1)
= h[pkt in ↦ h(pkt in)[n ∶]][pkt in ↦ h[pkt in ↦ h(pkt in)[n ∶]](pkt in)[1 ∶]]
= h[pkt in ↦ h[pkt in ↦ h(pkt in)[n ∶]](pkt in)[1 ∶]]
= h[pkt in ↦ h(pkt in)[n + 1 ∶]]
= chomp⇓(h, n + 1)

Lemma A.42 (Chomp Slice). For all heaps h and all n ∈ N, if ∣h(pkt in)∣ ≥ n + 1, then

chomp⇓(h, n)(pkt in)[0 ∶1] = h(pkt in)[n ∶n + 1]

Proof. By definition of chomp⇓,

chomp⇓(h, n)(pkt in)[0 ∶1] = h[pkt in ↦ h(pkt in)[n ∶]](pkt in)[0 ∶1]

Let bv = h(pkt in) = ⟨b0 , ..., bn , ..., bm⟩.
Let bv′ be the bit vector we obtain after removing the first n bits from bv′, bv′ =

⟨bn , ..., bm⟩.
Accessing the first bit of bv′ gives us bit bn , which is also the n-th bit in bv, i.e.,

bv[n ∶n + 1].

Lemma A.43 (Semantic ChompRec). For all heap types τ, environments E and E ′,
variables x and n ∈ N, if x does not appear free in τ, and E ′ = E[x ↦ (⟨⟩, ⟨⟩, [ι ↦
h(pkt in)[0 ∶n]])], then

∀h ∈ JτKE .∣h(pkt in)∣ ≥ n Ô⇒ ∃h′ ∈ JchompRec(τ, n, ι, x)KE ′ .h′ = chomp⇓(h, n).

Proof. Proof by induction on n.

178 APPENDIX A. PROOFS

Case n = 0:

∀h ∈ JτKE .∣h(pkt in)∣ ≥ 0 Ô⇒
∃h′ ∈ JchompRec(τ, 0, ι, x)KE ′ .h′ = chomp⇓(h, 0)

⇔ ∀h ∈ JτKE .∃h′ ∈ JτKE ′ .h′ = h

Let h′ = h, i.e., we have to show that h ∈ JτKE ′ . By assumption, x is not free in τ,
i.e., the binding of x in E ′ has no effect on the semantics of τ. Since E and E ′ are
otherwise identical, τ evaluated in both environments is described by the same
set of heaps, from which we can conclude that h ∈ JτKE ′ .

Case n = 1:

∀h ∈ JτKE .∣h(pkt in)∣ ≥ 1 Ô⇒
∃h′ ∈ JchompRec(τ, 1, ι, x)KE ′ .h′ = chomp⇓(h, 1)

The result directly follows by Lemma A.39.

Case n = m + 1:
We assume that the lemma holds for n = m, i.e.,

∀h ∈ JτKE .∣h(pkt in)∣ ≥ m Ô⇒
∃h′ ∈ JchompRec(τ,m, ι, x)KE ′ .h′ = chomp⇓(h,m)

We have to show that the lemma also holds for n = m + 1, i.e.,

∀h ∈ JτKE .∣h(pkt in)∣ ≥ m + 1 Ô⇒
∃h′ ∈ JchompRec(τ,m + 1, ι, x)KE ′ .h′ = chomp⇓(h,m + 1)

where E ′ = E[x ↦ [ι ↦ h(pkt in)[0 ∶m + 1], pkt in ↦ ⟨⟩, pktout ↦ ⟨⟩]].
Let h be some heap h ∈ JτKE0 .
By induction hypothesis, there exists some h′ ∈ JchompRec(τ,m, ι, x)KE ′0 , such
that h′ = chomp⇓(h,m).
Let E1 = E ′0 = E0[x ↦ (⟨⟩, ⟨⟩, [ι ↦ h(pkt in)[0 ∶m]])]. We use (A) to refer to this
assumption.
By Lemma A.39, for all h1 ∈ JchompRec(τ,m, ι, x)KE1 , there exists some heap
h′1 such that h′1 ∈ JchompRec(chompRec(τ,m, ι, x), 1, ι, x)KE ′1 and E

′
1 = E1[x ↦

(⟨⟩, ⟨⟩, [ι ↦ E1(x)(ι)@h1(pkt in)[0 ∶1]])], and h′1 = chomp⇓(h1 , 1).
Since, by assumption, h′ ∈ JchompRec(τ,m, ι, x)KE ′0 and also E1 = E

′
0, we can

define h1 to be equal to h′, i.e., h′1 = chomp⇓(h′ , 1).
From h′ = chomp⇓(h,m) follows h′1 = chomp⇓(chomp⇓(h,m), 1).
From Lemma A.41 also follows that h′1 = chomp⇓(h,m + 1).
We must show that h′1 ∈ JchompRec(τ,m + 1, ι, x)KE ′ .
We know that

h′1 ∈ JchompRec(chompRec(τ,m, ι, x), 1, ι, x)KE ′1

A.2. Π4 179

and by Lemma A.40, h′1 ∈ JchompRec(τ,m + 1, ι, x)KE ′1 , so we must show that
E ′ = E ′1 .
By assumption, E ′1 = E1[x ↦ (⟨⟩, ⟨⟩, [ι ↦ E1(x)(ι)@h1(pkt in)[0 ∶ 1]])], where
h1 = chomp⇓(h,m) (by IH).
Also by assumption, E(x)(ι) = h(pkt in)[0 ∶ m], i.e., E ′1 = E[x ↦ (⟨⟩, ⟨⟩, [ι ↦
h(pkt in)[0 ∶m]@h1(pkt in)[0 ∶1]])].
Again, substituting h1 with h′, and by h′ = chomp⇓(h,m), we obtain E ′1 = E[x ↦
(⟨⟩, ⟨⟩, [ι ↦ h(pkt in)[0 ∶m]@chomp⇓(h,m)(pkt in)[0 ∶1]])].
By Lemma A.42 and by definition of bit vector concatenation, E ′1 = E[x ↦
(⟨⟩, ⟨⟩, [ι ↦ h(pkt in)[0 ∶m + 1]])] = E ′.

Lemma A.44 (Semantic Chomp). If x does not appear free in τ, then forall heaps
h ∈ JτKE where ∣h(pkt in)∣ ≥ sizeof(ι), there exists h′ ∈ Jchomp(τ, ι, x)KE ′ such that
h′ = chomp⇓(h, sizeof(ι)) where E ′ = E[x ↦ (⟨⟩, ⟨⟩, [ι ↦ h(pkt in)[0 ∶ sizeof(ι)]])].

Proof. By definition of chomp, we know that

chomp(τ, ι, x) = chompRec(τ, sizeof(ι), x , ι)

The result follows from Lemma A.43.

Lemma A.45 (Semantic Chomp1 Inverse). For all x, v, τ, E ′ and h′ such that E ′(x) =
(⟨⟩, ⟨⟩, [ι ↦ v]) and h′ ∈ JchompRec(τ, 1, x , ι)KE ′ and x not free in τ and sizeof(v) ≥ 1,
there exists h and E such that,

(1) h ∈ JτKE and

(2) h′ = chomp⇓(h, 1) and

and

(3) E = E ′ ∖ x and

(4) v = h(pkt in)[0 ∶ 1]

or

(3) x ∈ dom(E) and

(4) v = E(x)(ι)@h(pkt in)[0 ∶1] and

(5) E = E ′[x ↦ (⟨⟩, ⟨⟩, [ι ↦ v[0 ∶ sizeof(v) − 1]])]

Proof. We refer to the general assumptions as follows:

(A) E ′(x) = (⟨⟩, ⟨⟩, [ι ↦ v])

(B) h′ ∈ JchompRec(τ, 1, x , ι)KE ′ and

(C) x not free in τ and

(D) sizeof(v) ≥ 1

180 APPENDIX A. PROOFS

Proof by induction on τ. By definition of chompRec follows that

JchompRec(τ, 1, x , ι)KE = JheapRef 1(chomp1(τ, b0), b0 , x , ι, 1)KE

Case τ = ∅:

JheapRef 1(chomp1(∅, b0), b0 , x , ι, 1)KE ′
= JheapRef 1(∅, b0 , x , ι, 1)KE ′
= J∅KE ′
= {}

As there is no h′ ∈ JchompRec(τ, 1, ι, x)KE ′ , this case is immediate.

Case τ = ⊺:

JheapRef 1(chomp1(⊺, b0), b0 , x , ι, 1)KE ′
= JheapRef 1(⊺, b0 , x , ι, 1)KE ′
= J⊺KE ′
=H

Let E ′ where E ′(x) = (⟨⟩, ⟨⟩, [ι ↦ v]) be arbitrary.
Let h′ ∈ JchompRec(⊺, 1, ι, x)KE ′ = H be arbitrary. We have to distinguish two
cases.

Subcase sizeof(v) = 1:
Let E = E ′∖x and let h = h′[pkt in ↦ v@h′(pkt in)], i.e., h(pkt in)[0 ∶1] = v.
(1) follows by the semantics of heap types. (2) follows by the definition of
chomp⇓. (3) and (4) immediately follow from the definition of h and E .

Subcase sizeof(v) > 1:
Let E = E ′[x ↦ (⟨⟩, ⟨⟩, [ι ↦ v[0 ∶ sizeof(v) − 1]])] and let h = h′[pkt in ↦
v[sizeof(v) − 1 ∶ sizeof(v)]@h′(pkt in)]. (1) follows by the semantics of
heap types. (2) follows by the definition of chomp⇓ (3) and (4) immediately
follow from the definition of h and E

Case τ = τ1 + τ2: Let E ′ where E ′(x) = (⟨⟩, ⟨⟩, [ι ↦ v]) be arbitrary.
Let h′ ∈ JchompRec(τ1 + τ2 , 1, ι, x)KE ′ be arbitrary.

JchompRec(τ1 + τ2 , 1, ι, x)KE ′
= JheapRef 1(chomp1(τ1 + τ2 , b0), b0 , x , ι, 1)KE ′
= JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)KE ′ ∪

JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)KE ′
= JchompRec(τ1 , 1, xι)KE ′ ∪ JchompRec(τ2 , 1, xι)KE ′

We have to distinguish two cases,

1. h′ ∈ JchompRec(τ1 , 1, x , ι)KE ′ and
2. h′ ∈ JchompRec(τ2 , 1, xι)KE ′ .

A.2. Π4 181

Subcase h′ ∈ JchompRec(τ1 , 1, xι)KE ′ : We further distinguish between the size
of v.
Subcase sizeof(v) = 1:

By IH, there exists h1, E1, such that
(A1) h1 ∈ Jτ1KE1
(A2) h′ = chomp⇓(h1 , 1)
(A3) E1 = E ′ ∖ x
(A4) v = h1(pkt in)[0 ∶1]
Let h = h1 and E = E1. h ∈ Jτ1 + τ2KE follows from the semantics of
heap types and by (A1). The rest is immediate.

Subcase sizeof(v) > 1: By IH, there exists h1, E1, such that
(A1) h1 ∈ Jτ1KE1
(A2) h′ = chomp⇓(h1 , 1)
(A3) E1 = E ′[x ↦ (⟨⟩, ⟨⟩, [ι ↦ v[0 ∶sizeof(v) − 1]])]
(A4) v = E(x)(ι)@h1(pkt in)[0 ∶1]
Let h = h1 and E = E1. h ∈ Jτ1 + τ2KE follows from the semantics of
heap types and by (A1). The rest is immediate.

Subcase h′ ∈ JchompRec(τ2 , 1, x , ι)KE ′ :
Symmetric to previous subcase.

Case τ = Σy ∶ τ1 .τ2: Let E ′ where E ′(x) = (⟨⟩, ⟨⟩, [ι ↦ v]) be arbitrary. Let h′ ∈
JchompRec(Σy ∶ τ1 .τ2 , 1, ι, x)KE ′ be arbitrary.

JchompRec(Σy ∶ τ1 .τ2 , 1, ι, x)KE ′
= {h′1 ++ h′2∣h′1 ∈ JchompRec(τ1 , 1, ι, x)KE ′ ∧

h′2 ∈ JheapRef 1(chompRef 1(τ2 , x , b0))KE ′[y↦h′1]} ∪
{h′1 ++ h′2∣h′1 ∈ J{z ∶ τ1 ∣ ∣z.pkt in ∣ = 0}KE ′∧

h′2 ∈ JchompRec(τ2 , 1, ι, x)KE ′[y↦h′1]}

Case distinction on the membership of h′.

Subcase h′ contained in the first subset:

(A1) h′ = h′1 ++ h′2 and
(A2) h′1 ∈ JchompRec(τ1 , 1, ι, x)KE ′ and
(A3) h′2 ∈ JheapRef 1(chompRef 1(τ2 , x , b0))KE ′[y↦h′1].

We distinguish two additional cases.
Subcase sizeof(v) = 1: By IH, there exists h1, E1, such that

(A4) h1 ∈ Jτ1KE1
(A5) h′1 = chomp⇓(h1 , 1)
(A6) E1 = E ′ ∖ x
(A7) v = h1(pkt in)[0 ∶1]
By Lemma A.38, h′2 ∈ Jτ2KE ′[y↦h1]. Since h

′
1 ++ h′2 is defined, i.e., they

have disjoint sets of headers and chomp⇓ does not affect the validity of
headers, h1 ++ h′2 is defined.

182 APPENDIX A. PROOFS

Let h = h1 ++ h′2 and E = E1.
(1) follows by (A4) and h′2 ∈ Jτ2KE1[y↦h1]. The latter holds, because x is
not free in τ2 by assumption.
To show (2), we must show that h′1 ++ h′2 = chomp⇓(h1 ++ h′2 , 1)⇔
chomp⇓(h1 , 1) ++ h′2 = chomp⇓(h1 ++ h′2 , 1). This equality holds, be-
cause chomping of one bit from the input packet of h1 and then con-
catenating h′2 yields the same heap as concatenating both heaps and
then removing the first bit of the input packet.
(3) follows by (A6) and (4) follows by (A7).

Subcase sizeof(v) > 1: By IH, there exists h1, E1, such that
(A8) h1 ∈ Jτ1KE1
(A9) h′1 = chomp⇓(h1 , 1)
(A10) E1 = E ′[x ↦ (⟨⟩, ⟨⟩, [ι ↦ v[0 ∶sizeof(v) − 1]])]
(A11) v = E1(x)(ι)@h1(pkt in)[0 ∶1]
By Lemma A.38, h′2 ∈ Jτ2KE ′[y↦h1]. Since h

′
1 ++ h′2 is defined, i.e., they

have disjoint sets of headers and chomp⇓ does not affect the validity of
headers, h1 ++ h′2 is defined.
Let h = h1 ++ h′2 and E = E1.
(1) follows by (A8) and h′2 ∈ Jτ2KE1[y↦h1]. The latter holds, because x is
not free in τ2 by assumption.
To show (2), we must show that h′1 ++ h′2 = chomp⇓(h1 ++ h′2 , 1)⇔
chomp⇓(h1 , 1) ++ h′2 = chomp⇓(h1 ++ h′2 , 1). This equality holds, be-
cause chomping of one bit from the input packet of h1 and then con-
catenating h′2 yields the same heap as concatenating both heaps and
then removing the first bit of the input packet.
(3) follows by (A10) and (4) follows by (A11) and (5) follows by (A10).

Subcase h′ contained in the second subset:

(A1) h′ = h′1 ++ h′2 and
(A2) h′1 ∈ J{z ∶ τ1 ∣ ∣z.pkt in ∣ = 0}KE ′ and
(A3) h′2 ∈ JchompRec(τ2 , 1, ι, x)KE ′[y↦h′1].

We distinguish two cases.
Subcase sizeof(v) = 1: By IH, for every h′1 ∈ J{z ∶ τ ∣ ∣z.pkt in ∣ = 0}KE ′ ,

there exists h2, E2, such that
(A4) h2 ∈ Jτ2KE2
(A5) h′2 = chomp⇓(h2 , 1)
(A6) E2 = E ′[y ↦ h′1] ∖ x
(A7) v = h2(pkt in)[0 ∶1]
Let h = h′1 ++ h2 and E = E2 ∖ y. We have to show that h ∈ JΣx ∶ τ1 .τ2KE .
By assumption, x is not free in τ1 and τ2. By (A2) and by the fact that
E = E ′ ∖ x, h′1 ∈ J{z ∶ τ1 ∣ ∣z.pkt in ∣ = 0}KE and by subtyping, h′1 ∈ Jτ1KE .
(1) follows together with (A4).
To show (2), we must show that h′1 ++ h′2 = chomp⇓(h′1 ++ h2 , 1)⇔
h′1 ++ chomp⇓(h2 , 1) = chomp⇓(h′1 ++ h2 , 1). Since by (A2), the input
packet of h′1 is empty, the input packet of both heaps are equal.
(3) follows by (A6) and (4) follows by (A7).

A.2. Π4 183

Subcase sizeof(v) > 1: By IH, for every h′1 ∈ J{z ∶ τ ∣ ∣z.pkt in ∣ = 0}KE ′ ,
there exists h2, E2, such that

(A8) h2 ∈ Jτ2KE2
(A9) h′2 = chomp⇓(h2 , 1)
(A10) E2 = E ′[y ↦ h′1 , x ↦ (⟨⟩, ⟨⟩, [ι ↦ v[0 ∶sizeof(v) − 1]])]
(A11) v = E2(x)(ι)@h2(pkt in)[0 ∶1]
Let h = h′1 ++ h2 and E = E2 ∖ y. To show that h ∈ JΣx ∶ τ1 .τ2KE . By
assumption that x is not free in τ1 and by (A2), h′1 ∈ J{z ∶ τ1 ∣ ∣z.pkt in ∣ =
0}KE and by subtyping, h′1 ∈ Jτ1KE .
(1) follows together with (A8).
To show (2), we must show that h′1 ++ h′2 = chomp⇓(h′1 ++ h2 , 1)⇔
h′1 ++ chomp⇓(h2 , 1) = chomp⇓(h′1 ++ h2 , 1). Since by (A2), the input
packet of h′1 is empty, the input packet of both heaps are equal.
(3) follows by (A10) and (4) follows by (A11) and (5) follows by (A10).

Case τ = {y ∶ τ1 ∣ φ}:
Let E ′ where E ′(x) = (⟨⟩, ⟨⟩, [ι ↦ v]) be arbitrary.
Let h′ ∈ JchompRec({y ∶ τ1 ∣ φ}, 1, ι, x)KE ′ be arbitrary.

JchompRec({y ∶ τ1 ∣ φ}, 1, ι, x)KE ′
= JheapRef 1(chomp1({y ∶ τ1 ∣ φ}, b0), b0 , x , ι, 1)KE ′
= {h′∣h′ ∈ JchompRec(τ1 , 1, ι, x)KE ′ ∧

JheapRef 1(chompφ1 (φ, y, b0), b0 , x , ι, 1)KE ′[y↦h′]}

We distinguish two cases.

Subcase sizeof(v) = 1:
By IH, there exists h1, E1, such that
(A1) h1 ∈ Jτ1KE1
(A2) h′ = chomp⇓(h1 , 1)
(A3) E1 = E ′ ∖ x
(A4) v = h1(pkt in)[0 ∶1]
Let E = E1 and h = h1. To show (1), we must show that h1 ∈ J{y ∶ τ1 ∣ φ}KE1 ,
which follows by (A1) and Lemma A.37.
(2) follows by (A2), (3) follows by (A3) and (4) follows by (A4).

Subcase sizeof(v) > 1:
By IH, there exists h1, E1, such that
(A1) h1 ∈ Jτ1KE1
(A2) h′ = chomp⇓(h1 , 1)
(A3) E1 = E ′[x ↦ (⟨⟩, ⟨⟩, [ι ↦ v[0 ∶sizeof(v) − 1]])]
(A4) v = E1(x)(ι)@h1(pkt in)[0 ∶1]
Let E = E1 and h = h1. To show (1), we must show h1 ∈ J{y ∶ τ1 ∣ φ}KE1 ,
which follows by (A1) and Lemma A.37.
(2) follows by (A2), (3) follows by (A3), (4) follows by (A4) and (5) follows
by (A3).

184 APPENDIX A. PROOFS

Case τ = τ1[y ↦ τ2]:
Let E ′ where E ′(x) = (⟨⟩, ⟨⟩, [ι ↦ v]) be arbitrary.
Let h′ ∈ JchompRec(τ1[y ↦ τ2], 1, ι, x)KE ′ be arbitrary.

JchompRec(τ1[y ↦ τ2], 1, ι, x)KE ′
= JheapRef 1(chomp1(τ1[y ↦ τ2], b0), b0 , x , ι, 1)KE ′
= JheapRef 1(chomp1(τ1 , b0)[y ↦ τ2], b0 , x , ι, 1)KE ′
= JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)[y ↦ heapRef 1(τ2 , b0 , x , ι, 1)]KE ′
= JheapRef 1(chomp1(τ1 , b0), b0 , x , ι, 1)[y ↦ τ2]KE ′
= {h′1∣h2 ∈ Jτ2KE ′ ∧ h′1 ∈ JchompRec(τ1 , 1, x , ι)KE ′[y↦h2]}

We distinguish two cases.

Subcase sizeof(v) = 1:
By IH, for every h2 ∈ Jτ2KE ′ , there exists h1, E1, such that
(A1) h1 ∈ Jτ1KE1[y↦h2]

(A2) h′1 = chomp⇓(h1 , 1)
(A3) E1 = E ′[y ↦ h2] ∖ x
(A4) v = h1(pkt in)[0 ∶1]
Let E = E1 and h = h1. Since x and y not free in τ2, for every heap h2 ∈
Jτ2KE ′ also holds that h2 ∈ Jτ2KE1 , from which we can conclude (1), i.e.,
h ∈ Jτ1[y ↦ τ2]KE .
To show (2), we must show that h′ = chomp⇓(h, 1) = chomp⇓(h1 , 1), which
follows from (A2) and the fact that h′ = h′1.
(3) follows by choice of E and (A3). (4) follows by (A4).

Subcase sizeof(v) > 1:
By IH, for every h2 ∈ Jτ2KE ′ , there exists h1, E1, such that
(A1) h1 ∈ Jτ1KE1[y↦h2]

(A2) h′1 = chomp⇓(h1 , 1)
(A3) E1 = E ′[y ↦ h2 , x ↦ (⟨⟩, ⟨⟩, [ι ↦ v[0 ∶sizeof(v) − 1]])]
(A4) v = E1(x)(ι)@h1(pkt in)[0 ∶1]
Let E = E1 and h = h1.
To show (1), we must show that h ∈ Jτ1[y ↦ τ2]KE1 . Since x and y not free in
τ2, for every heap h2 ∈ Jτ2KE ′ also holds that h2 ∈ Jτ2KE1 . The result follows
by the semantics of heap types.
To show (2), we must show that h′ = chomp⇓(h1 , 1), which follows from
(A2) and h′ = h′1.
(3) follows by (A3), (4) follows by (A4) and (5) follows also by (A3).

Lemma A.46 (Semantic ChompRec Inverse). For all variables x, values v, n ∈ N,
heap types τ, environments E ′ and heaps h′ such that E ′(x) = (⟨⟩, ⟨⟩, [ι ↦ v]) and
h′ ∈ JchompRec(τ, n, ι, x)KE ′ and x not free in τ and sizeof(v) = n, there exists h and
E such that h ∈ JτKE and E = E ′ ∖ x and chomp⇓(h, n) = h′.

A.2. Π4 185

Proof. Proof by induction on n.

Case n = 0:
By definition of chompRec, chompRec(τ, 0, ι, x) = τ. Together with assumption
h′ ∈ JchompRec(τ, n, ι, x)KE ′ , we know that h′ ∈ JτKE ′ . Let h = h′. By assump-
tion, x is not free in τ, thus the binding of x in E ′ does not affect the semantics of
τ. We can therefore remove the binding altogether, so τ describes the same set
of heaps both in E ′ and in E . We can conclude that h ∈ JτKE . chomp⇓(h, 0) = h′
follows from the definition of semantic chomp.

Case n = 1:
The result directly follows by Lemma A.45.

Case n = m + 1:
We assume that the lemma holds for n = m. We have to show that the lemma
also holds for n = m + 1. Let h′0 be some heap such that h′0 ∈ JchompRec(τ,m +
1, ι, x)KE ′0 . Together with Lemma A.40, we can conclude that

h′0 ∈ JchompRec(chompRec(τ,m, ι, x), 1, ι, x)KE ′0

By Lemma A.45, there is some h′1, E ′1 such that h′1 ∈ JchompRec(τ,m, ι, x)KE ′1
and h′0 = chomp⇓(h′1 , 1) where E ′1 = E ′0[x ↦ (⟨⟩, ⟨⟩, [ι ↦ v[0 ∶ m]])]. By
IH, there exists a h1 and E1, such that h1 ∈ JτKE1 where E1 = E ′1 ∖ x and h′1 =
chomp⇓(h1 ,m). From h′0 = chomp⇓(chomp⇓(h1 ,m), 1) and Lemma A.41, fol-
lows h′0 = chomp⇓(h1 ,m + 1).

Lemma A.47 (Semantic Chomp Inverse). For all variables x, values v, instances ι,
heap types τ, environments E ′ and heaps h′ such that E ′(x) = (⟨⟩, ⟨⟩, [ι ↦ v]) and
h′ ∈ Jchomp(τ, ι, x)KE ′ and x not free in τ, there exists h and E such that h ∈ JτKE and
E = E ′ ∖ x and chomp⇓(h, sizeof(ι)) = h′.

Proof. By definition of chomp, we know that

chomp(τ, ι, x) = chompRec(τ, sizeof(ι), x , ι)

The result follows by Lemma A.46.

Lemma A.48 (Weakening). If Γ ⊢ c ∶(x ∶ τ1)→ τ2 and variable z does not appear free
in τ1 or τ2, then Γ, z ∶ τ ⊢ c ∶(x ∶ τ1)→ τ2 for any heap type τ.

Proof. By induction on the typing derivation.

Lemma A.49 (Input Type Strengthening). If Γ ⊢ c ∶ (x ∶ τ1) → τ2 and Jτ′1KE ′ ⊆ Jτ1KE
and E ⊧ Γ and E ′ ⊧ Γ′ and Γ ⊆ Γ′ and E ⊆ E ′, then ∃τ′2 .Γ′ ⊢ c ∶ (x ∶ τ′1) → τ′2 and
∀h′ ∈ Jτ′1KE ′ .Jτ′2KE ′[x↦h′] ⊆ Jτ2KE[x↦h′]

Proof. By induction on a derivation of Γ ⊢ c ∶ (x ∶ τ1) → τ2 with case analysis on the
last rule used. We refer to the proof goals as follows:

(1) ∃τ′2 .Γ′ ⊢ c ∶ (x ∶ τ′1)→ τ′2

186 APPENDIX A. PROOFS

(2) ∀h′ ∈ Jτ′1KE ′ .Jτ′2KE ′[x↦h′] ⊆ Jτ2KE[x↦h′]

We refer to the assumptions as follows:

(A) Jτ′1KE ′ ⊆ Jτ1KE

(B) E ⊧ Γ

(C) E ′ ⊧ Γ′

(D) Γ ⊆ Γ′

(E) E ⊆ E ′

Case T-Add:
By inversion of rule T-Add, we get

(A1) Excludes Γ τ ι and
(A2) initHT (ι) = v
(A3) τ2 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ z.pktout = z.pkt in = ⟨⟩ ∧ z.ι = v}.

Let τ′2 = Σy ∶ {z ∶ τ′1 ∣ z ≡ x}.{z ∶ ι ∣ z.pktout = z.pkt in = ⟨⟩ ∧ z.ι = v}. By
assumptions (A1), (A) and (C) we can conclude that Excludes τ′1 ι Γ′ must also
hold. (1) follows by T-Add.
Let h′ ∈ Jτ′1KE ′ be arbitrary.

JΣy ∶ {z ∶ τ′1 ∣ z ≡ x}.{z ∶ ι ∣ z.pktout = z.pkt in = ⟨⟩ ∧ z.ι = v}KE ′[x↦h′] ⊆
JΣy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ z.pktout = z.pkt in = ⟨⟩ ∧ z.ι = v}KE[x↦h′]

⇔{h1 ++ h2 ∣ h1 ∈ J{z ∶ τ′1 ∣ z ≡ x}KE ′[x↦h′] ∧
h2 ∈ J{z ∶ ι ∣ z.pktout = z.pkt in = ⟨⟩ ∧ z.ι = v}KE ′[x↦h′ ,y↦h1]} ⊆

{h1 ++ h2 ∣ h1 ∈ J{z ∶ τ1 ∣ z ≡ x}KE[x↦h′] ∧
h2 ∈ J{z ∶ ι ∣ z.pktout = z.pkt in = ⟨⟩ ∧ z.ι = v}KE[x↦h′ ,y↦h1]}

⇔{h′ ++ h2 ∣ h2 ∈ J{z ∶ ι ∣ z.pktout = z.pkt in = ⟨⟩ ∧ z.ι = v}KE ′[x↦h′ ,y↦h′]} ⊆
{h′ ++ h2 ∣ h2 ∈ J{z ∶ ι ∣ z.pktout = z.pkt in = ⟨⟩ ∧ z.ι = v}KE[x↦h′ ,y↦h′]}

The type {z ∶ ι ∣ z.pktout = z.pkt in = ⟨⟩ ∧ z.ι = v} does not contain any free
variables, so the semantics does not depend on the environment. In fact, the sets
of heaps described by τ′2 and τ2 is actually equivalent, which shows (2).

Case T-Ascribe:
By inversion of rule T-Ascribe, we get

(A1) c = ca as (x ∶ τ1)→ τ2 and
(A2) Γ ⊢ ca ∶(x ∶ τ1)→ τ2

From assumptions (A2) and (D) together with Lemma A.48 follows that

(A3) Γ′ ⊢ ca ∶(x ∶ τ1)→ τ2

Since E ′ differs from E only in that it potentially contains additional bindings, we
can conclude that

A.2. Π4 187

(A4) Jτ1KE = Jτ1KE ′ and together with assumption (B)

(A5) Γ′ ⊢ τ′1 <∶ τ1.

By assumption (A3) and T-Ascribe we get

(A6) Γ′ ⊢ ca as (x ∶ τ1)→ τ2 ∶(x ∶ τ1)→ τ2

Let τ′2 = τ2. (1) follows by T-Sub.

For (2), we have to show that ∀h′ ∈ Jτ′1KE ′ .Jτ2KE ′[x↦h′] ⊆ Jτ2KE[x↦h′]. In fact τ2
describes the same set of heaps, both in E and E ′. Variable x binds to the same
heap and both environments provide the same bindings for any other free variable
in τ2.

Case T-Extract:

By inversion of rule T-Extract, we get

(A1) Γ ⊢ sizeof pkt in(τ1) ≥ sizeof(ι)

(A2) τ2 = Σy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.{z ∶ chomp(τ1 , ι, y) ∣
y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x}

Let τ′2 = Σy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.{z ∶ chomp(τ′1 , ι, y) ∣
y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x}. By assumptions (A) and
(A1) follows that sizeof pkt in(τ′1) ≥ sizeof(ι) (1) follows by T-Extract.

188 APPENDIX A. PROOFS

Let h′ ∈ Jτ′1KE ′ be arbitrary.

JΣy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.
{z ∶ chomp(τ′1 , ι, y) ∣ y.ι@z.pkt in = x .pkt in ∧

z.pktout = x .pktout ∧ z ≡ι x}KE ′[x↦h′] ⊆
JΣy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.

{z ∶ chomp(τ1 , ι, y) ∣ y.ι@z.pkt in = x .pkt in ∧
z.pktout = x .pktout ∧ z ≡ι x}KE[x↦h′]

⇔{h1 ++ h2 ∣ h1 ∈ J{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}KE[x↦h′] ∧
h2 ∈ J{z ∶ chomp(τ′1 , ι, y) ∣ y.ι@z.pkt in = x .pkt in ∧

z.pktout = x .pktout ∧
z ≡ι x}KE[x↦h′ ,y↦h1]} ⊆

{h1 ++ h2 ∣ h1 ∈ J{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}KE[x↦h′] ∧
h2 ∈ J{z ∶ chomp(τ1 , ι, y) ∣ y.ι@z.pkt in = x .pkt in ∧

z.pktout = x .pktout ∧
z ≡ι x}KE[x↦h′ ,y↦h1]}

⇔{h1 ++ h2 ∣ h1 ∈ J{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}KE[x↦h′] ∧
h2 ∈ {h22∣h22 ∈ Jchomp(τ′1 , ι, y)KE[x↦h′ ,y↦h1] ∧

Jy.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧
z ≡ι xKE[x↦h′ ,y↦h1 ,z↦h22]}} ⊆

{h1 ++ h2 ∣ h1 ∈ J{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}KE[x↦h′] ∧
h2 ∈ {h22∣h22 ∈ Jchomp(τ1 , ι, y)KE[x↦h′ ,y↦h1] ∧

Jy.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧
z ≡ι xKE[x↦h′ ,y↦h1 ,z↦h22]}}

By Lemma A.44, we obtain all heaps contained in Jchomp(τ′1 , ι, y)KE[x↦h′ ,y↦h1]
by taking all heaps from Jτ′1KE ′ and removing the first sizeof(ι) bits from the
input packet. From assumption (A) we know that all heaps described by τ′1 are
also contained in the set of heaps described by τ1 and when we remove the first
sizeof(ι) bits from the input packet, the relation still holds. Since the rest of the
types are identical this also holds for the concatenated heaps. This shows (2) and
concludes the case.

Case T-If:

By inversion of rule T-If, we get

(A1) Γ; τ1 ⊢ e ∶ B
(A2) Γ ⊢ c1 ∶ (x ∶ {y ∶ τ1 ∣ φ[y/heap]})→ τ12
(A3) Γ ⊢ c2 ∶ (x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]})→ τ22
(A4) τ2 = {y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ φ[x/heap]}
(A5) c = if (φ) c1 else c2

To be able to conclude (1) by T-If, we must show that

A.2. Π4 189

(1.1) Γ′; τ′1 ⊢ φ ∶ B
(1.2) Γ′ ⊢ c1 ∶ (x ∶ {y ∶ τ′1 ∣ φ[y/heap]})→ τ′12
(1.3) Γ′ ⊢ c2 ∶ (x ∶ {y ∶ τ′1 ∣ ¬φ[y/heap]})→ τ′22

To apply the IH to c1, we need some τ′IH1
such that

Jτ′IH1
KE ′ ⊆ J{y ∶ τ1 ∣ φ[y/heap]}KE

Let τ′IH1
= {y ∶ τ′1 ∣ φ[y/heap]}.

By IH, there exists τ′12 such that

(A6) Γ′ ⊢ c1 ∶ (x ∶ {y ∶ τ′1 ∣ φ[y/heap]})→ τ′12
(A7) ∀h′1 ∈ J{y ∶ τ′1 ∣ φ[y/heap]}KE ′ .Jτ′12KE ′[y↦h′1] ⊆ Jτ12KE[y↦h′1]

With a similar argument as before, also by IH, there exists τ′22 such that

(A8) Γ′ ⊢ c2 ∶ (x ∶ {y ∶ τ′1 ∣ ¬φ[y/heap]})→ τ′22
(A9) ∀h′2 ∈ J{y ∶ τ′1 ∣ ¬φ[y/heap]}KE ′ .Jτ′22KE ′[y↦h′2] = Jτ22KE[y↦h′2]

Γ′; τ′1 ⊢ φ ∶ B also holds, because the subtyping relation between τ′1 and τ1 ensures
that heaps described by τ′1 have the same shape (i.e., the same instances are valid)
and thus we can typecheck formula e in the context of type τ′1.
(1) follows by T-If.
Let τ′2 = {y ∶ τ′12 ∣ φ[x/heap]} + {y ∶ τ′22 ∣ ¬φ[x/heap]}
To show ∀h′1 ∈ Jτ′1KE ′ .J{y ∶ τ′12 ∣ φ[x/heap]}+{y ∶ τ22 ∣ ¬φ[x/heap]}KE ′[x↦h′1] ⊆
J{y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}KE[x↦h′1]

Let h′1 ∈ Jτ′1KE ′ be arbitrary. Case distinction on wheter the formula φ in h′1
evaluates to true or false.

Subcase e evaluates to true:

J{y ∶ τ′12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}KE ′[x↦h′1] ⊆
J{y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}KE[x↦h′1]

⇔J{y ∶ τ′12 ∣ true} + {y ∶ τ22 ∣ false}KE ′[x↦h′1] ⊆
J{y ∶ τ12 ∣ true} + {y ∶ τ22 ∣ false}KE[x↦h′1]

⇔Jτ′12KE ′[x↦h′1] ⊆ Jτ12KE[x↦h′1]

The result follows by (A7).
Subcase e evaluates to false: Symmetric to previous subcase. The result follows

by (A9).

Case T-Mod:

(A1) τ2 = {y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = e[x/heap]}
(A2) Includes Γ τ1 ι
(A3) Γ; τ ⊢ t ∶ BV
(A4) F(ι, f) = BV
(A5) c = ι. f ∶= e

190 APPENDIX A. PROOFS

To show: There exists τ′2 such that

(1) Γ′ ⊢ ι. f ∶= e ∶ (x ∶ τ′1)→ τ′2 and
(2) ∀h′1 ∈ Jτ′1KE ′ .Jτ′2KE[x↦h′1] ⊆ Jτ2KE[x↦h′1]

Let τ′2 = τ2.
Includes Γ τ′1 ι follows by assumptions (A2) and (A) and set theory. By assumption
(A), we know that τ′1 has the same shape (contains the same instances) as τ1, so
we can typecheck expression e in context τ′1 with a bit vector type, from which
follows that Γ′; τ′1 ⊢ e ∶ BV. (1) follows by T-Mod.
Let h′1 ∈ Jτ′1KE ′ be arbitrary. To show (2), we must show that

Jτ2KE ′[x↦h′1] ⊆ Jτ2KE[x↦h′1]

⇔J{y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = t[x/heap]}KE ′[x↦h′1] ⊆
J{y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = t[x/heap]}KE[x↦h′1]

Since the only free variable is x

⇔J{y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = t[x/heap]}K[x↦h′1] ⊆
J{y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = t[x/heap]}K[x↦h′1]

The result is immediate.

Case T-Remit:
By inversion of rule T-Remit, we get

(A1) Includes Γ τ ι
(A2) τ2 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}

Let τ′2 = Σy ∶ {z ∶ τ′1 ∣ z ≡ x}.{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}.
Includes Γ′ τ′1 ι follows by assumptions (A1) and (A) and set theory. (1) follows
by T-Remit. Let h ∈ Jτ′1KE be arbitrary.

JΣy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}KE[x↦h]

={h1 ++ h2 ∣ h1 ∈ J{z ∶ τ1 ∣ z ≡ x}KE[x↦h]∧
h2 ∈ J{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}KE[x↦h ,y↦h1]}

={h ++ h2 ∣ h2 ∈ J{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}KE[x↦h ,y↦h]}

x is the only free variable in {z ∶ є ∣ z.pkt in = ⟨⟩∧ z.pktout = x .ι}, which maps to
the same heap h in both environments E[x ↦ h, y ↦ h] and E ′[x ↦ h, y ↦ h].

={h ++ h2 ∣ h2 ∈ J{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}KE ′[x↦h ,y↦h]}
={h1 ++ h2 ∣ h1 ∈ J{z ∶ τ′1 ∣ z ≡ x}KE ′[x↦h]∧

h2 ∈ J{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}KE ′[x↦h ,y↦h1]}
=JΣy ∶ {z ∶ τ′1 ∣ z ≡ x}.{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}KE ′[x↦h]

This concludes the case by showing (2).

A.2. Π4 191

Case T-Remove:

By inversion of rule T-Remove, we get

(A1) Includes Γ τ1 ι
(A2) τ2 = {y ∶ ⊺ ∣ φι ∧ φpkt ∧ ¬y.ι.valid}

Let τ′2 = τ2.
Includes Γ τ′1 ι follows by assumptions (A1) and (A) and set theory. (1) then
follows by T-Remove.
J{y ∶ ⊺ ∣ φι∧φpkt∧¬y.ι.valid}KE ′[x↦h′] ⊆ J{y ∶ ⊺ ∣ φι∧φpkt∧¬y.ι.valid}KE[x↦h′]
also holds, because the only free variable is x, which maps to the same heap in
both environments. This shows (2) and concludes the case.

Case T-Reset:

By inversion of rule T-Reset, we get

(A1) c = reset
(A2) τ2 = Σy ∶ {z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}.{z ∶ є ∣ z.pktout =

⟨⟩ ∧ z.pkt in = x .pkt in}

Let τ′2 = τ2. (1) follows by T-Reset. Let h′1 ∈ Jτ′1KE ′ be arbitrary.

JΣy ∶ {z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}.
{z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pkt in}KE ′[x↦h′1] ⊆

JΣy ∶ {z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}.
{z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pkt in}KE[x↦h′1]

Both sets are actually equal, because x is the only free variable in τ2 and τ′2
respectively. Thus, all other bindings in the environments E and E ′ have no effect
on the semantics of τ2 and τ′2 respectively. This shows (2) and concludes the case.

Case T-Seq:

By inversion of rule T-Seq, we get

(A1) c = c1; c2
(A2) Γ ⊢ c1 ∶ (x ∶ τ1)→ τ12
(A3) Γ, x ∶ τ1 ⊢ c2 ∶ (y ∶ τ12)→ τ22
(A4) τ2 = τ22[y ↦ τ12]

By IH with (A2), (A), (B) and (C), there exists some τ′12 such that

(A5) Γ′ ⊢ c1 ∶ (x ∶ τ′1)→ τ′12
(A6) ∀h′1 ∈ Jτ′1KE ′ .Jτ′12KE ′[x↦h′1] ⊆ Jτ12KE[x↦h′1]

Apply the IH again to c2:
Let h′1 ∈ Jτ′1KE ′ be arbitrary. By (A3) Γ, x ∶ τ1 ⊢ c2 ∶ (y ∶ τ12) → τ22. By (A6),
Jτ′12KE ′[x↦h′1] ⊆ Jτ12KE[x↦h′1]. E[x ↦ h′1] ⊧ Γ, x ∶ τ1 because by assumption E ⊧ Γ

192 APPENDIX A. PROOFS

the entailment holds for all x i ≠ x. For x there exists a binding to heap h′1 ∈ Jτ1KE
(with assumption (A)) and the entailment between h and τ1 trivially holds.

To show E ′[x ↦ h′1] ⊧ Γ′ , x ∶ τ′1, wemust show that∀x i , τ i .Γ′(x i) = τ i ⇒ E ′[x ↦
h′1](x i) = h i ∧ h i ⊧E[x↦h′1] τ i . Case x i ≠ x: this holds by assumption (C). Case
x i = x. E ′[x ↦ h′1](x) = h′1. To show that h′1 ⊧E ′[x↦h′1] τ

′
1 ⇔ h′1 ∈ Jτ′1KE ′[x↦h′1].

By assumption, x is not free in τ′1, so we can equivalently show that h′1 ∈ Jτ′1KE ′ ,
which holds by assumption.

Again by IH, there exists some τ′22 such that

(A7) Γ′ , x ∶ τ′1 ⊢ c2(y ∶ τ′12)→ τ′22
(A8) ∀h′12 ∈ Jτ′12KE ′[x↦h′1] .Jτ

′
22KE ′[x↦h1 ,y↦h′12] ⊆ Jτ22KE[x↦h1 ,y↦h′12]

Let τ′2 = τ′22[y ↦ τ′12]. (1) follows by T-Seq.
For (2), we must show that ∀h′1 ∈ Jτ′1KE ′ .Jτ′2KE ′[x↦h′1] ⊆ Jτ2KE[x↦h′1]

Let h′1 ∈ Jτ′1KE ′ be arbitrary.

Jτ′22[y ↦ τ′12]KE ′[x↦h′1] ⊆ Jτ22[y ↦ τ12]KE[x↦h′1]

⇔ ⋃
h′12∈Jτ′12KE′[x↦h′1]

Jτ′22KE ′[x↦h′1 ,y↦h′12] ⊆ ⋃
h12∈Jτ12KE[x↦h′1]

Jτ22KE[x↦h′1 ,y↦h12]

The result follows by (A6), (A8) and set theory.

Case T-Skip:

By inversion of rule T-Skip, we get

(A1) c = skip
(A2) τ2 = {y ∶ τ1 ∣ y ≡ x}

Let τ′2 = {y ∶ τ′1 ∣ y ≡ x}. (1) follows by T-Skip.
To show (2), let h′ ∈ Jτ′1KE ′ be an arbitrary heap.

J{y ∶ τ′1 ∣ y ≡ x}KE ′[x↦h′] ⊆ J{y ∶ τ1 ∣ y ≡ x}KE[x↦h′]

⇔{h′} ⊆ J{y ∶ τ1 ∣ y ≡ x}KE[x↦h′]

⇔{h′} ⊆ {h′} by (A)

Case T-Sub:

By inversion of rule T-Sub, we get

(A1) Γ ⊢ c ∶ (x ∶ τ3)→ τ4
(A2) Γ ⊢ τ1 <∶ τ3
(A3) Γ, x ∶τ1 ⊢ τ4 <∶ τ2

By assumption Jτ′1KE ′ ⊆ Jτ1KE and from (A2) follows that Jτ1KE ⊆ Jτ3KE and thus
Jτ′1KE ′ ⊆ Jτ3KE . By IH, there exists τ′4 such that

(A4) Γ′ ⊢ c ∶ (x ∶ τ′1)→ τ′4
(A5) ∀h′ ∈ Jτ′1KE ′ .Jτ′4KE ′[x↦h′] ⊆ Jτ4KE[x↦h′]

A.2. Π4 193

Let τ′2 = τ′4. (1) follows by (A4).
For (1), we have to show that ∀h′ ∈ Jτ′1KE ′ .Jτ′4KE ′[x↦h′] ⊆ Jτ2KE[x↦h′], which
follows by (A3) and (A5) and by set theory.

Lemma A.50 (Formulae Preservation). If Γ; τ ⊢ φ ∶ B and E ⊧ Γ and (I,O ,H) ⊧E τ
and ⟨I,O ,H, φ⟩→ φ′ then Γ; τ ⊢ φ′ ∶ B.

Proof. By induction on a derivation of Γ; τ ⊢ φ ∶ B.

Lemma A.51 (Semantic Formulae Preservation). If Γ; τ ⊢ φ ∶ B and E ⊧ Γ and
(I,O ,H) ⊧E τ and ⟨I,O ,H, φ⟩→ φ′ then

Jφ[x/heap]KE[x↦(I ,O ,H)] = Jφ′[x/heap]KE[x↦(I ,O ,H)]

Proof. By induction on a derivation of Γ; τ ⊢ φ ∶ B.

Lemma A.52 (Expression Preservation). If Γ; τ ⊢ e ∶ σ and E ⊧ Γ and (I,O ,H) ⊧E τ
and ⟨I,O ,H, e⟩→ e′ then Γ; τ ⊢ e′ ∶ σ .

Proof. By induction on a typing derivation of Γ; τ ⊢ e ∶ σ .

Lemma A.53 (Semantic Expression Preservation). If Γ; τ ⊢ e ∶ σ and E ⊧ Γ and
(I,O ,H) ⊧E τ and ⟨I,O ,H, e⟩→ e′ then

Je[x/ cmdVar]KE[x↦(I ,O ,H)] = Je′[x/heap]KE[x↦(I ,O ,H)]

Proof. By induction on a typing derivation of Γ; τ ⊢ e ∶ σ .

Theorem A.54 (Preservation). If Γ ⊢ c ∶ (x ∶ τ1) → τ2, ⟨I,O ,H, c⟩ → ⟨I′ ,O′ ,H′ , c′⟩,
E ⊧ Γ and (I,O ,H) ⊧E τ1, then ∃Γ′ , E ′ , x′ , τ′1 , τ′2 .Γ′ ⊢ c′ ∶ (x′ ∶ τ′1) → τ′2 and
E ′ ⊧ Γ′ and Γ ⊆ Γ′ and E ⊆ E ′ and (I′ ,O′ ,H′) ⊧E ′ τ′1 and Jτ′2KE ′[x′↦(I′ ,O′ ,H′)] ⊆
Jτ2KE[x↦(I ,O ,H)]

Proof. By induction on a derivation of Γ ⊢ c ∶ (x ∶ τ1) → τ2 with case analysis on the
last rule used. We refer to the proof goals as follows:

(1) Γ′ ⊢ c′ ∶ (x′ ∶ τ′1)→ τ′2

(2) E ′ ⊧ Γ′

(3) Γ ⊆ Γ′

(4) E ⊆ E ′

(5) (I′ ,O′ ,H′) ⊧E ′ τ′1
(6) Jτ′2KE ′[x′↦(I′ ,O′ ,H′)] ⊆ Jτ2KE[x↦(I ,O ,H)]

General assumptions:

(A) Γ ⊢ c ∶ (x ∶ τ1)→ τ2

(B) ⟨I,O ,H, c⟩→ ⟨I′ ,O′ ,H′ , c′⟩

194 APPENDIX A. PROOFS

(C) E ⊧ Γ

(D) (I,O ,H) ⊧E τ1

Case T-Add:
By inversion of rule T-Add, we get

(A1) c = add(ι)
(A2) Excludes Γ τ1 ι
(A3) τ2 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v}

Only evaluation rule E-Add applies to c:

(A4) ι /∈ dom(H)
(A5) HT (ι) = η
(A6) init = v.
(A7) I′ = I and O′ = O and H′ = H[ι ↦ v] and c′ = skip

Let Γ′ = Γ, x ∶ τ1 and E ′ = E[x ↦ (I,O ,H)].
Let τ′1 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v} and
τ′2 = {w ∶ Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v} ∣ w ≡ x′}.
(1) follows by T-Skip and (2) follows by assumptions (C) and (D) and LemmaA.30.
(3) and (4) are immediate.
To show (5), we must show that (I,O ,H[ι ↦ v]) ⊧E[x↦(I ,O ,H)] Σy ∶ {z ∶ τ1 ∣ z ≡
x}.{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v}. By Ent-Sigma, we must show that

(5.1) (I,O ,H) ⊧E[x↦(I ,O ,H)] {z ∶ τ1 ∣ z ≡ x} and
(5.2) (⟨⟩, ⟨⟩, [ι ↦ v]) ⊧E[x↦(I ,O ,H)y↦(I ,O ,H)] {z ∶ ι ∣ z.pkt in = ⟨⟩ ∧ z.pktout =

⟨⟩ ∧ z.ι = v}.

(5.1) follows by Ent-Refine and (D). To show (5.2), by Ent-Refine, we must
show that

(5.2.1) (⟨⟩, ⟨⟩, [ι ↦ v]) ⊧E[y↦(I ,O ,H)] {z ∶ ⊺ ∣ z.ι.valid ∧ ⋀κ∈dom(HT) ¬κ.valid}
and

(5.2.2) Jz.pkt in = ⟨⟩ ∧ z.pktout = ⟨⟩ ∧ z.ι = vKE[y↦(I ,O ,H),z↦(⟨⟩,⟨⟩,[ι↦v])] = true

(5.2.1) follows by Ent-Refine, Ent-Top and the semantics of formulae. (5.2.2)
follows from the semantics of formulae.
(6) follows by

JΣy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v}KE[x↦(I ,O ,H)]

={(I,O ,H[ι ↦ v])}
={h ∣ h ∈ JΣy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧

z.ι = v}KE[x↦(I ,O ,H),x′↦(I ,O ,H[ι↦v])] ∧
Jw ≡ x′KE[x↦(I ,O ,H),x′↦(I ,O ,H[ι↦v]),w↦h]}

=J{w ∶ Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v} ∣
w ≡ x′}KE[x↦(I ,O ,H),x′↦(I ,O ,H[ι↦v])]

A.2. Π4 195

Case T-Ascribe:

By inversion of rule T-Ascribe, we get

(A1) c = ca as (x ∶ τ1)→ τ2
(A2) Γ ⊢ ca ∶ (x ∶ τ1)→ τ2

There is one evaluation rule that applies to c, E-Ascribe, so I′ = I and O′ = O
and H′ = H and c′ = ca . Let Γ′ = Γ, E ′ = E , τ′1 = τ1 and τ′2 = τ2. (1) follows
by (A2), (2) follows by assumption (C). (3) and (4) are immediate. (5) follows
by assumption (D) and (6) follows from the equality of τ2 and τ′2, which itself
follows by reflexivity.

Case T-Extract:

By inversion of rule T-Extract, we get

(A1) c = extract(ι)
(A2) Γ ⊢ sizeof pkt in(τ1) = sizeof(ι)
(A3) τ2 = Σy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.{z ∶ chomp(τ1 , ι, y) ∣

y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x}

Only evaluation rule E-Extract applies to c:

(A4) deserializeHT (ι)(I) = (v , I′)
(A5) O′ = O
(A6) H′ = H[ι ↦ v]
(A7) c′ = skip

Let Γ′ = Γ, x ∶ τ1 , E ′ = E[x ↦ (I,O ,H)].
Let τ′1 = Σy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.{z ∶ chomp(τ1 , ι, y) ∣
y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x}.
Let τ′2 = {v ∶ Σy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.{z ∶ chomp(τ1 , ι, y) ∣
y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x} ∣ v ≡ x}.
(1) follows by T-Skip and (2) follows by assumptions (C) and (D) and LemmaA.30.
(3) and (4) are immediate.

To show (5), we must show that (I′ ,O ,H[ι ↦ v]) ⊧E[x↦(I ,O ,H)] Σy ∶ {z ∶
ι ∣ z.pkt in = z.pktout = ⟨⟩}.{z ∶ chomp(τ1 , ι, y) ∣ y.ι@z.pkt in = x .pkt in ∧
z.pktout = x .pktout ∧ z ≡ι x}.
By Ent-Sigma, we must show that

(5.1) (⟨⟩, ⟨⟩, [ι ↦ v]) ⊧E[x↦(I ,O ,H)] {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}, which
follows by Ent-Refine and the semantics of types and

(5.2) (I′ ,O ,H) ⊧E[x↦(I ,O ,H),y↦(⟨⟩,⟨⟩,[ι↦v])] {z ∶ chomp(τ1 , ι, y) ∣ y.ι@z.pkt in =
x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x}
By Ent-Refine, we must show that

196 APPENDIX A. PROOFS

(5.2.1) (I′ ,O ,H) ⊧E[x↦(I ,O ,H),y↦(⟨⟩,⟨⟩,[ι↦v])] chomp(τ1 , ι, y)
By Lemma A.28, it is sufficient to show that

(I′ ,O ,H) ∈ Jchomp(τ1 , ι, y)KE[x↦(I ,O ,H),y↦(⟨⟩,⟨⟩,[ι↦v])]

By assumption (D) and by Lemma A.28 follows (I,O ,H) ∈ Jτ1KE .
By Lemma A.44, there exists some heap

h ∈ Jchomp(τ1 , ι, y)KE[x↦(I ,O ,H),y↦(⟨⟩,⟨⟩,[ι↦v])]

such that h = chomp⇓((I,O ,H), sizeof(ι)).
From the definition of chomp⇓ follows that

chomp⇓((I,O ,H), sizeof(ι)) = (I′′ ,O ,H)

where I′′ = I[sizeof(ι) ∶] = I′.
(5.2.2) Jy.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧

z ≡ι xKE[x↦(I ,O ,H),y↦(⟨⟩,⟨⟩,[ι↦v]),z↦(I′ ,O ,H)], which follows by the defi-
nition of deserialize and the semantics of formulae and expressions.

Finally, we must show that Jτ2KE[x↦(I ,O ,H)] ⊆ Jτ′2KE[x↦(I′ ,O ,H[ι↦v])].

Jτ2KE[x↦(I ,O ,H)]

=JΣy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.
{z ∶ chomp(τ1 , ι, y) ∣ y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧

z ≡ι x}KE[x↦(I ,O ,H)]

={h1 ++ h2 ∣ h1 ∈ J{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}KE[x↦(I ,O ,H)] ∧
h2 ∈ J{z ∶ chomp(τ1 , ι, y) ∣ y.ι@z.pkt in = x .pkt in ∧

z.pktout = x .pktout ∧ z ≡ι x}KE[x↦(I ,O ,H),y↦h1]}
={h1 ++ h2 ∣ h1 ∈ J{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}KE[x↦(I ,O ,H)] ∧

h2 ∈ {h′2 ∈ Jchomp(τ1 , ι, y)KE[x↦(I ,O ,H),y↦h1]∧
Jy.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧
z ≡ι xKE[x↦(I ,O ,H),y↦h1 ,z↦h′2]}}

By Lemma A.44

={h1 ++ h2 ∣ h1 ∈ J{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}KE[x↦(I ,O ,H)] ∧
h2 ∈ {h ∈ Jτ1KE[x↦(I ,O ,H)] ∧ h′2 = chomp⇓(h, sizeof(ι)) ∧

Jy.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧
z ≡ι xKE[x↦(I ,O ,H),y↦h1 ,z↦h′2]}}

A.2. Π4 197

By definition of chomp⇓ and semantics of types

={(I′ ,O ,H[ι ↦ v])}
={h ∣ h ∈ JΣy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.

{z ∶ chomp(τ1 , ι, y) ∣ y.ι@z.pkt in = x .pkt in ∧
z.pktout = x .pktout ∧ z ≡ι x}KE[x↦(I ,O ,H),x′↦(I′ ,O ,H[ι↦v])] ∧

Jv ≡ x′KE[x↦(I ,O ,H),x′↦(I′ ,O ,H[ι↦v]),v↦h]}
=J{v ∶ Σy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.

{z ∶ chomp(τ1 , ι, y) ∣ y.ι@z.pkt in = x .pkt in ∧
z.pktout = x .pktout ∧ z ≡ι x} ∣

v ≡ x}KE[x↦(I ,O ,H),x′↦(I′ ,O ,H[ι↦v])]

This shows (6) and concludes the case.

Case T-If:
By inversion of rule T-If, we get

(A1) Γ; τ1 ⊢ φ ∶ B
(A2) Γ ⊢ c1 ∶ (x ∶ {y ∶ τ1 ∣ φ[y/heap]})→ τ12
(A3) Γ ⊢ c2 ∶ (x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]})→ τ22
(A4) τ2 = {y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}

T-If There are three evaluation rules that apply to c.

Subcase E-If:
(A5) c′ = if (φ′) c1 else c2
(A6) I′ = I,O′ = O ,H′ = H
Let Γ′ = Γ, E ′ = E , x′ = x,
τ′1 = τ1 and
τ′2 = {y ∶ τ12 ∣ φ′[x/heap]} + {y ∶ τ22 ∣ ¬φ′[x/heap]}.
By Lemma A.50, Γ; τ1 ⊢ φ′ ∶ B.
By Lemma A.51, Jφ[x/heap]KE[x↦(I ,O ,H)] = Jφ′[x/heap]KE[x↦(I ,O ,H)].
From (A2) follows that Γ ⊢ c1 ∶ (x ∶ {y ∶ τ1 ∣ φ′[y/heap]})→ τ12 and from
(A3) follows that Γ ⊢ c2 ∶ (x ∶ {y ∶ τ1 ∣ ¬φ′[y/heap]})→ τ22 (1) follows by
T-If.
(2) follows by assumption (C), (3) and (4) are immediate.
(5) follows by assumption (D).
(6) follows together with the assumption

Jφ[x/heap]KE[x↦(I ,O ,H)] = Jφ′[x/heap]KE[x↦(I ,O ,H)]

from the equality Jτ′2KE ′[x↦(I′ ,O′ ,H′)] = Jτ2KE[x↦(I ,O ,H)].

Jτ2KE[x↦(I ,O ,H)]

=J{y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}KE[x↦(I ,O ,H)]

=J{y ∶ τ12 ∣ φ′[x/heap]} + {y ∶ τ22 ∣ ¬φ′[x/heap]}KE[x↦(I ,O ,H)]

=Jτ′2KE ′[x↦(I′ ,O′ ,H′)]

198 APPENDIX A. PROOFS

Subcase E-IfTrue:

(A7) c′ = c1
(A8) I′ = I,O′ = O ,H′ = H
(A9) φ = true

Let Γ′ = Γ, E ′ = E , x′ = x,
τ′1 = {y ∶ τ1 ∣ φ[y/heap]} = {y ∶ τ1 ∣ true} = τ1 and
τ′2 = τ12.
(1) holds by assumption (A2), (2) holds by assumption (C). (3) and (4)
are immediate and (5) (I′ ,O′ ,H′) ⊧E ′ τ′1 ⇔ (I,O ,H) ⊧E τ1 holds by
assumption (D).
(6) follows from

J{y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}KE[x↦(I ,O ,H)]

=J{y ∶ τ12 ∣ true} + {y ∶ τ22 ∣ false}KE[x↦(I ,O ,H)]

=Jτ12KE[x↦(I ,O ,H)]

=Jτ′2KE ′[x↦(I′ ,O′ ,H′)]

Subcase E-IfFalse:
Symmetric to previous subcase.

Case T-Mod:

By inversion of rule T-Mod, we get

(A1) c = ι. f ∶= e
(A2) Includes Γ τ1 ι

(A3) F(ι, f) = BV
(A4) Γ; τ1 ⊢ e ∶ BV
(A5) τ2 = {y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = e[x/heap]}
(A6) φpkt ≜ y.pkt in = x .pkt in ∧ y.pktout = x .pktout
(A7) φι ≜ ∀κ ∈ dom(HT).ι ≠ κ → y.κ = x .κ
(A8) φ f ≜ ∀g ∈ dom(HT (ι)). f ≠ g → y.ι.g = x .ι.g

There are two evaluation rule that apply to c.

Subcase E-Mod:

(A9) H(ι) = r
(A10) r′ ≜ {r with f = v}
(A11) (I′ ,O′ ,H′) = (I,O ,H[ι ↦ r′])
(A12) c′ = skip
(A13) e = v
(A14) τ2 = {y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = v[x/heap]}

A.2. Π4 199

Let Γ′ = Γ, x ∶ τ1 and E ′ = E[x ↦ (I,O ,H)] and τ′1 = τ2 and τ′2 = {z ∶ τ2 ∣
z ≡ x}.
(1) follows by T-Skip and T-Sub. (2) follows by assumptions (C) and (D)
and Lemma A.30. (3) and (4) are immediate.
To show (5), we must show that (I,O ,H[ι ↦ r′]) ⊧E[x↦(I ,O ,H)] ⊺ and
Jφpkt ∧ φι ∧ φ f ∧ y.ι. f = v[x/heap]KE[x↦(I ,O ,H),y↦(I ,O ,H[ι↦r′])] = true.
Since E(x)(I) = E(y)(I) and E(x)(O) = E(y)(O), φpkt holds. Similarly,
E(x)(H) = E(y)(H) in every aspect, except for field f of instance ι, so φ f
and φ inst also hold. y.ι. f = v[x/heap] also holds, because

Jy.ι. f KE[x↦(I ,O ,H),y↦(I ,O ,H[ι↦r′])] =
Jv[x/heap]KE[x↦(I ,O ,H),y↦(I ,O ,H[ι↦r′])]

⇔ v = Jv[x/heap]K[x↦(I ,O ,H)]

⇔ v = v

To show

Jτ′2KE ′[x′↦(I′ ,O′ ,H′)] ⊆ Jτ2KE[x↦(I ,O ,H)]

⇔ J{z ∶ τ2 ∣ z ≡ x}KE[x↦(I ,O ,H),x′↦(I′ ,O′ ,H′)] ⊆ Jτ2KE[x↦(I ,O ,H)]

⇔ {(I′ ,O′ ,H′)} ⊆ Jτ2KE[x↦(I ,O ,H)]

⇔ {(I,O ,H[ι ↦ r′])} ⊆ Jτ2KE[x↦(I ,O ,H)]

To show (6), let h = (I,O ,H[ι ↦ r′]). Therefore,

(A15) h(pkt in) = I and
(A16) h(pktout) = O and
(A17) for all κ ∈ dom(HT) such that κ ≠ ι, h(κ) = H(κ)
(A18) for all g ∈ dom(HT (ι)) such that g ≠ f , h(ι)(g) = H(ι)(g)
(A19) h(ι)(f) = v[x/heap] = v
From the semantics of types follows that h ∈ Jτ2KE[x↦(I ,O ,H)].

Subcase E-Mod1:

(A20) ⟨I,O ,H, t⟩→ e′

(A21) c′ = ι. f ∶= e′

(A22) I′ = I,O′ = O and H′ = H

Let Γ′ = Γ and E ′ = E and x′ = x.
Let τ′1 = τ1 and
τ′2 = {y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = e′[x/heap]}.
By semantic expression preservation (Lemma A.53), we know that
Je[x/heap]KE[x↦(I ,O ,H)] = Je′[x/heap]KE[x↦(I ,O ,H)].
If Γ; τ1 ⊢ e ∶ BV and Je[x/heap]KE[x↦(I ,O ,H)] = Je′[x/heap]KE[x↦(I ,O ,H)]
holds, then it must hold that Γ; τ1 ⊢ e′ ∶ BV.
(1) follows by T-Mod, (2) follows from assumption (C). (3) and (4) are
immediate. (5) follows from assumption (D).

200 APPENDIX A. PROOFS

(6) follows from

Jτ′2KE ′[x′↦(I′ ,O′ ,H′)] ⊆ Jτ2KE[x↦(I ,O ,H)]

⇔Jτ′2KE[x↦(I ,O ,H)] ⊆ Jτ2KE[x↦(I ,O ,H)]

⇔J{y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = e′[x/heap]}KE[x↦(I ,O ,H)] ⊆
J{y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = e[x/heap]}KE[x↦(I ,O ,H)]

together with assumption

Je[x/heap]KE[x↦(I ,O ,H)] = Je′[x/heap]KE[x↦(I ,O ,H)]

and the semantics of types.

Case T-Remit:

By inversion of rule T-Remit, we get

(A1) c = remit

(A2) τ2 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}
(A3) Includes Γ τ1 ι

There is only evaluation rule E-Remit that applies to c.

(A4) ι ∈ dom(H)
(A5) HT (ι) = η
(A6) serializeη(H(ι)) = bv
(A7) I′ = I, O′ = O@bv, H′ = H, c′ = skip

Let Γ′ = Γ, x ∶ τ1 and E ′ = E[x ↦ (I,O ,H)].
Let τ′1 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι} and
τ′2 = {v ∶ Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι} ∣ v ≡ x′}.
(1) follows by T-Skip and (2) follows by assumptions (C) and (D) and LemmaA.30.

(3) and (4) are immediate.

For (5) we have to show that (I,O@bv ,H) ⊧E[x↦(I ,O ,H)] Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶
є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}. By Ent-Sigma, we must show that

(5.1) (I,O ,H) ⊧E[x↦(I ,O ,H)] {z ∶ τ1 ∣ z ≡ x} and
(5.2) (⟨⟩, bv , []) ⊧E[x↦(I ,O ,H),y↦(I ,O ,H)] {z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}

For (5.1) we must show by Ent-Refine that (I,O ,H) ⊧E[x↦(I ,O ,H)] τ1, which
follows by assumption (D) and the fact that x is not free in τ1. We must also show
that Jz ≡ xKE[x↦(I ,O ,H),z↦(I ,O ,H)], which follows by the semantics of formulae
and by reflexivity.

To show (5.2), by Ent-Refine, we must show that

(⟨⟩, bv , []) ⊧E[x↦(I ,O ,H),y↦(I ,O ,H)] є

A.2. Π4 201

and that

Jz.pkt in = ⟨⟩ ∧ z.pktout = x .ιKE[x↦(I ,O ,H),y↦(I ,O ,H),z↦(⟨⟩,bv ,[])] = true

The first follows after unfolding the definition of є by Ent-Top, Ent-Refine and
the semantics of formulae. The second follows by the semantics of formulae and
(A6).

(6) follows by

Jτ2KE[x↦(I ,O ,H)]

=JΣy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}KE[x↦(I ,O ,H)]

={h1 ++ h2 ∣ h1 ∈ J{z ∶ τ1 ∣ z ≡ x}KE[x↦(I ,O ,H)]∧
h2 ∈ J{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}KE[x↦(I ,O ,H),y↦h1]}

={(I,O ,H) ++ (⟨⟩, bv , [])}
={(I,O@bv ,H)}
={h ∣ h ∈ JΣy ∶ {z ∶ τ1 ∣ z ≡ x}.

{z ∶ є ∣ z.pkt in = ⟨⟩ ∧
z.pktout = x .ι}KE[x↦(I ,O ,H),x′↦(I ,O@bv ,H)] ∧

Jv ≡ x′KE[x↦(I ,O ,H),x′↦(I ,O@bv ,H),v↦h]}
=J{v ∶ Σy ∶ {z ∶ τ1 ∣ z ≡ x}.

{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι} ∣
v ≡ x′}KE[x↦(I ,O ,H),x′↦(I ,O@bv ,H)]

=Jτ′2KE ′[x′↦(I′ ,O′ ,H′)]

Case T-Remove:

By inversion of rule T-Remove, we get

(A1) c = remove(ι)

(A2) τ2 = {y ∶ ⊺ ∣ φι ∧ φpkt ∧ ¬y.ι.valid}

Only evaluation rule E-Remove applies to c.

(A3) c′ = skip

(A4) I′ = I and O′ = O and H′ = H ∖ ι

Let Γ′ = Γ, x ∶ τ1 and E ′ = E[x ↦ (I,O ,H)].

Let τ′1 = τ2 and let τ′2 = {z ∶ τ2 ∣ z ≡ x′}.

(1) follows by T-Skip. (2) follows by assumptions (C) and (D) and Lemma A.30.
(3) and (4) are immediate.

To show (5), we must show that (I,O ,H ∖ ι) ⊧E[x↦(I ,O ,H)] {y ∶ ⊺ ∣ φι ∧ φpkt ∧
¬y.ι.valid}, which follows by Ent-Refine, Ent-Top and the semantics of formu-
lae and expressions.

202 APPENDIX A. PROOFS

(6) follows by

Jτ′2KE ′[x′↦(I′ ,O′ ,H′)]
=J{z ∶ {y ∶ ⊺ ∣ φι ∧ φpkt ∧ ¬y.ι.valid} ∣ z ≡ x′}KE[x↦(I ,O ,H),x′↦(I ,O ,H∖ι)]

={h ∣ h ∈ J{y ∶ ⊺ ∣ φι ∧ φpkt ∧ ¬y.ι.valid}KE[x↦(I ,O ,H),x′↦(I ,O ,H∖ι)] ∧
Jz ≡ x′KE[x ↦ (I,O ,H), x′ ↦ (I,O ,H ∖ ι), z ↦ h]}
={(I,O ,H ∖ ι)}
=J{y ∶ ⊺ ∣ φι ∧ φpkt ∧ ¬y.ι.valid}KE[x↦(I ,O ,H)]

Case T-Reset:

By inversion of rule T-Reset, we get

(A1) c = reset
(A2) τ2 = Σy ∶ {z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}.{z ∶ є ∣ z.pktout =

⟨⟩ ∧ z.pkt in = x .pkt in}

There is only one evaluation rule that applies to c, E-Reset.

(A3) c′ = skip
(A4) I′ = O@I, O′ = ⟨⟩ and H′ = []

Let E ′ = E[x ↦ (I,O ,H)] and Γ′ = Γ, x ∶ τ1.
Let τ′1 = Σy ∶ {z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}.{z ∶ є ∣ z.pktout =
⟨⟩ ∧ z.pkt in = x .pkt in}
Let τ′2 = {v ∶ Σy ∶ {z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}.{z ∶ є ∣ z.pktout =
⟨⟩ ∧ z.pkt in = x .pkt in} ∣ v ≡ x′}
(1) follows by T-Skip and (2) follows by assumptions (C) and (D) and LemmaA.30.

(3) and (4) are immediate.

To show (5), we must show that

(O@I, ⟨⟩, []) ⊧E[x↦(I ,O ,H)] Σy ∶{z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}.
{z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pkt in}

By Ent-Sigma, we must show that

(O , ⟨⟩, []) ⊧E[x↦(I ,O ,H)] {z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}

and

(I, ⟨⟩, []) ⊧E[x↦(I ,O ,H),y↦(O ,⟨⟩,[])] {z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pkt in}

Both follow after unfolding the definition of є by Ent-Refine, Ent-Top and the
semantics of formulae.

A.2. Π4 203

(6) follows by

JΣy ∶ {z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}.
{z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pkt in}KE[x↦(I ,O ,H)]

={h1 ++ h2 ∣ h1 ∈ J{z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}E[x↦(I ,O ,H)]K∧
h2 ∈ J{z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pkt in}KE[x↦(I ,O ,H),y↦h1]}

={(O , ⟨⟩, []) ++ (I, ⟨⟩, [])}
={(O@I, ⟨⟩, [])}
=J{v ∶ Σy ∶ {z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}.

{z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pkt in} ∣
v ≡ x′}KE[x↦(O@I ,⟨⟩,[]),x′↦(O@I ,⟨⟩,[])]

Case T-Seq:
By inversion of rule T-Seq, we get

(A1) c = c1; c2
(A2) Γ ⊢ c1 ∶ (x ∶ τ1)→ τ12
(A3) Γ, x ∶ τ1 ⊢ c2 ∶ (y ∶ τ12)→ τ22
(A4) τ2 = τ22[y ↦ τ12]

Subcase E-Seq:
(A5) c1 = skip
(A6) c′ = c2
By E-Seq, I′ = I, O′ = O, H′ = H.
Let Γ′ = Γ, x ∶ τ1, E ′ = E[x ↦ (I,O ,H)] and x′ = y.
Let τ′1 = τ12 and τ′2 = τ22.
(1) follows by (A3), (2) follows by assumptions (C) and (D) and Lemma A.30.
(3) and (4) are immediate.
To show (5), we must show that (I,O ,H) ⊧E[x↦(I ,O ,H)] {z ∶ τ1 ∣ z ≡ x}
holds. By Ent-Refine, we must show that (I,O ,H) ⊧E[x↦(I ,O ,H)] τ1 and
Jz ≡ xKE[x↦(I ,O ,H),z↦(I ,O ,H)], which follows by assumption (D) and the
semantics of formulae.
For (6), we must show that

Jτ′2KE ′[x↦(I′ ,O′ ,H′)] ⊆ Jτ2KE[x↦(I ,O ,H)]

⇔Jτ22KE[x↦(I ,O ,H),y↦(I ,O ,H)] ⊆ Jτ22[y ↦ {z ∶ τ1 ∣ z ≡ x}]KE[x↦(I ,O ,H)]

Jτ22[y ↦ τ12]KE[x↦(I ,O .H)]

={h22∣h12 ∈ J{z ∶ τ1 ∣ z ≡ x}KE[x↦(I ,O ,H)] ∧ h22 ∈ Jτ22KE[x↦(I ,O ,H),y↦h12]}
={h22∣h12 = (I,O ,H) ∧ h22 ∈ Jτ22KE[x↦(I ,O ,H),y↦h12]}
={h22∣h22 ∈ Jτ22KE[x↦(I ,O ,H),y↦(I ,O ,H)]}
=Jτ22KE[x↦(I ,O ,H),y↦(I ,O ,H)]

This shows (6) and concludes this subcase.

204 APPENDIX A. PROOFS

Subcase E-Seq1:

(A7) c′ = c′1; c2
(A8) ⟨I,O ,H, c1⟩→ ⟨I′ ,O′ ,H′ , c′1⟩
By IH with (A2), (A7), (C) and (D), there exists Γ′ , E ′ , τ′1 , τ′12 , x′, such that,
(A9) Γ′ ⊢ c′1 ∶ (x′ ∶ τ′1)→ τ′12 where
(A10) E ′ ⊧ Γ′

(A11) Γ ⊆ Γ′
(A12) E ⊆ E ′
(A13) (I′ ,O′ ,H′) ⊧E ′ τ′1
(A14) Jτ′12KE ′[x′↦(I′ ,O′ ,H′)] ⊆ Jτ12KE[x↦(I ,O ,H)]

(1) follows by T-Seq, if we can show that there exists some τ′22, such that
Γ′ , x′ ∶ τ′1 ⊢ c2 ∶ (y ∶ τ′12)→ τ′22 where τ′2 = τ′22[y ↦ τ′12]:

T-Seq
Γ′ ⊢ c′1 ∶ (x ∶ τ′1)→ τ′12 Γ′ , x ∶ τ′1 ⊢ c2 ∶ (y ∶ τ′12)→ τ′22

Γ′ ⊢ c′1; c2 ∶ (x ∶ τ′1)→ τ′22[y ↦ τ′12]

By Lemma A.49 with (A3) and (A13), there exists some τ′22 such that
(A15) Γ′ , x′ ∶ τ′1 ⊢ c2 ∶ (y ∶ τ′1)→ τ′22
(A16) ∀h′ ∈ Jτ′12KE ′[x′↦(I′ ,O′ ,H′)] .Jτ′22KE ′[x′↦(I′ ,O′ ,H′),y↦h′] ⊆

Jτ22KE[x↦(I ,O ,H),y↦h′]

(2) follows by (A10) and (3) follows by (A11), (4) follows by (A12) and (5)
follows by (A13).
(6) follows by

Jτ′2KE ′[x′↦(I′ ,O′ ,H′)] ⊆ Jτ2KE[x↦(I ,O ,H)]

⇔Jτ′22[y ↦ τ′12]KE ′[x↦(I′ ,O′ ,H′)] ⊆ Jτ22[y ↦ τ12]KE[x↦(I ,O ,H)]

⇔ ⋃
h′∈Jτ′12KE′[x↦(I′ ,O′ ,H′)]

Jτ′22KE ′[x↦(I′ ,O′ ,H′),y↦h′] ⊆

⋃
h∈Jτ12KE[x↦(I ,O ,H)]

Jτ22KE[x↦(I ,O ,H),y↦h]

and by (A14), (A16) and the semantics of heap types.

Case T-Skip:
Immediately holds as there is no c′ such that ⟨I,O ,H, c⟩→ ⟨I′ ,O′ ,H′ , c′⟩.

Case T-Sub:

(A1) Γ ⊢ c ∶ (x ∶ τ3)→ τ4
(A2) Γ ⊢ τ1 <∶ τ3
(A3) Γ, x ∶τ1 ⊢ τ4 <∶ τ2

By Lemma A.29 with assumptions (C), (D) and (A2),

A.2. Π4 205

(A4) (I,O ,H) ⊧E τ3.

By IH with (A1), (B), (C) and (A4), there exists Γ′ , E ′ , τ′3 , τ′4 , x′ such that

(A5) Γ′ ⊢ c ∶ (x′ ∶ τ′3)→ τ′4
(A6) E ′ ⊧ Γ′

(A7) Γ ⊆ Γ′

(A8) E ⊆ E ′

(A9) (I′ ,O′ ,H′) ⊧E ′ τ′3
(A10) Jτ′4KE ′[x′↦(I′ ,O′ ,H′)] ⊆ Jτ4KE[x↦(I ,O ,H)]

Let τ′1 = τ′3 and τ′2 = τ′4. (1) follows by (A5), (2) follows by assumption (A6),
(3) follows by assumption (A7), (4) follows by assumption (A8), (5) follows by
assumption (A9) and (6) follows by (A3) and (A10).

A.2.2 Algorithmic Typing Correctness

Lemma A.55 (Subtype Reflexivity). For all subtyping contexts Γ and heap types τ, Γ ⊢
τ <∶ τ.

Proof. Immediate.

Lemma A.56 (Subtype Transitivity). If Γ ⊢ τ1 <∶ τ2, and Γ ⊢ τ2 <∶ τ3, then Γ ⊢ τ1 <∶ τ3.

Proof. Assume Γ ⊢ τ1 <∶ τ2 and also assume Γ ⊢ τ2 <∶ τ3. Let E ⊧ Γ and h ∈ Jτ1KE be
arbitrary. By the first assumption h ∈ Jτ2KE . By the second assumption h ∈ Jτ3KE .

Lemma A.57 (Environment Entails Subtype). If Γ ⊢ τ1 <∶ τ3, and E ⊧ Γ, x ∶ τ3, then
E ⊧ Γ, x ∶ τ1.

Proof. Let Γ ⊢ τ1 <∶ τ3 and E ⊧ Γ, (x ∶ τ3). Let E ⊧ Γ, (x ∶ τ1). We can write
E = E ′[x ↦ h1], such that E ′ ⊧ Γ, and h1 ∈ Jτ1KE ′ . The definition of subtyping gives
h1 ∈ Jτ3KE ′ . The result follows by definition of entailment.

Lemma A.58 (Context Strengthening). If Γ ⊢ τ1 <∶ τ3 and Γ, x ∶ τ3 ⊢ τ2 <∶ τ4 then
Γ, x ∶ τ1 ⊢ τ2 <∶ τ4.

Proof. Assume Γ ⊢ τ1 <∶ τ3 and further assume Γ, x ∶ τ3 ⊢ τ2 <∶ τ4. Let E ⊧ Γ, x ∶ τ1.
By Lemma A.57 and the first assumption, E ⊧ Γ, (x ∶ τ3). Let h ∈ Jτ2KE , the second
assumption gives that h ∈ Jτ2KE , and we’re done.

Lemma A.59 (Packet Bound Subtype). Γ ⊢ sizeof pkt in(τ) ≥ N iff Γ ⊢ τ <∶ {x ∶ ⊺ ∣
∣x .pkt in ∣ ≥ sizeof(ι)}.

Proof. We show each direction separately.

(⇒) Assume Γ ⊢ sizeof pkt in(τ) ≥ N . Let E ⊧ Γ and h ∈ JτKE be arbitrary. By
definition, ∣h(pkt in)∣ ≥ N . By the definition of subtyping, it suffices to show
h ∈ J{x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ N}KE . By definition, J{x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ N}KE = {h ∣
h ∈H ∧ h(pkt in) ≥ N}, which concludes this case.

206 APPENDIX A. PROOFS

(⇐) Assume Γ ⊢ τ <∶ {x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ N}. We have to show that Γ ⊢
sizeof pkt in(τ) ≥ N . Let E ⊧ Γ and h ∈ JτKE be arbitrary. By the definition of
subtyping, h ∈ J{x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ N}KE . By definition of the semantics, we can
conclude h(pkt in) ≥ N .

Lemma A.60 (Chomp Subtype). If x not free in τ and τ′, and Γ ⊢ sizeof pkt in(τ) ≥
sizeof(ι) and Γ ⊢ τ <∶ τ′, then Γ, x ∶ {y ∶ ι ∣ y.pkt in = y.pktout = ⟨⟩} ⊢
chomp(τ, ι, x) <∶ chomp(τ′ , ι, x).

Proof. Given some heap h′ ∈ Jchomp(τ′ , ι, x)KE ′ . By Lemma A.47 there exists some E
and h′′ ∈ Jτ′KE , such that E ′ = E[x ↦ (⟨⟩, ⟨⟩, [ι ↦ h′′(pkt in)[0 ∶sizeof(ι)]])] and
h′ = chomp⇓(h′′ , sizeof(ι)). By assumption Γ ⊢ τ <∶ τ′, we also know that h′′ ∈ JτKE .

By Lemma A.44, we know that there exists h ∈ Jchomp(τ, ι, x)KE ′′ such that h =
chomp⇓(h′′ , sizeof(ι)) and E ′′ = E[x ↦ (⟨⟩, ⟨⟩, [ι ↦ h′′(pkt in)[0 ∶ sizeof(ι)]])].
From h′ = chomp⇓(h′′ , sizeof(ι)) and h = chomp⇓(h′′ , sizeof(ι)) follows by the tran-
sitivity of equality that h′ = h. By the fact that E ′ = E ′′ follows that for every heap
h′ ∈ Jchomp(τ′ , ι, x)KE ′ also holds that h′ ∈ Jchomp(τ, ι, y)KE ′′ .

Lemma A.61 (Refinement Subtype). If Γ ⊢ τ′ <∶ τ, then Γ ⊢ {x ∶ τ′ ∣ φ} <∶ {x ∶ τ ∣ φ}.

Proof. Let E ⊢ Γ and h ∈ J{x ∶ τ′ ∣ φ}KE . Then h ∈ Jτ′KE , and JφKE[x↦h] = true. By
assumption Γ ⊢ τ′ <∶ τ, h ∈ JτKE . Conclude h ∈ J{x ∶ τ ∣ φ}KE by definition. The result
follows.

Lemma A.62 (Sigma Left-Subtype). If Γ ⊢ τ′1 <∶ τ1 then Γ ⊢ Σx ∶ τ′1 .τ2 <∶ Σx ∶ τ1 .τ2.

Proof. Let E ⊧ Γ, and h ∈ JΣx ∶ τ′1 .τ2KE . By definition of the semantics, h = h1 +
+ h2,where h1 ∈ Jτ′1KE and h2 ∈ Jτ2KE[x↦h]. By assumption Γ ⊢ τ′1 <∶ τ1 follows,
h1 ∈ Jτ1KE . By the definition of the semantics, h ∈ JΣx ∶ τ1 .τ2KE . The result follows.

Lemma A.63 (Sigma Right-Subtype). If Γ, x ∶ τ1 ⊢ τ′2 <∶ τ2 then Γ ⊢ Σx ∶ τ1 .τ′2 <∶ Σx ∶
τ1 .τ2.

Proof. Let E ⊧ Γ and h ∈ JΣx ∶ τ1 .τ′2KE . By definition, h = h1 ++ h2 such that h1 ∈ Jτ1KE ,
and h2 ∈ Jτ′2KE[x↦h1]. Notice that E[x ↦ h1] ⊧ Γ, (x ∶ τ1), so by assumption Γ, x ∶ τ1 ⊢
τ′2 <∶ τ2 follows h2 ∈ Jτ2KE[x↦h1]. By the definition of the semantics h ∈ JΣx ∶ τ1 .τ2KE .
The result follows.

Lemma A.64 (Substitution Subtype). If Γ ⊢ τ′1 <∶ τ1 and Γ, (x ∶ τ′1) ⊢ τ′2 <∶ τ2, then
Γ ⊢ τ′2[x ↦ τ′1] <∶ τ2[x ↦ τ1].

Proof. Let E ⊧ Γ and h2 ∈ Jτ′2[x ↦ τ′1]KE . Then we know h1 ∈ Jτ′1KE and h2 ∈
Jτ′2KE[x↦h1]. Assumption Γ ⊢ τ′1 <∶ τ1 tells us that h1 ∈ Jτ1KE . Notice that E[x ↦
h1] ⊧ Γ, (x ∶ τ′1). Assumption Γ, (x ∶ τ1) ⊢ τ′2 <∶ τ2 gives h2 ∈ Jτ2KE[x↦h1]. By the
definition of the semantics of heap types, h2 ∈ Jτ2[x ↦ τ1]KE .

Lemma A.65 (Choice Subtype). If Γ ⊢ τ′1 <∶ τ1, and Γ ⊢ τ′2 <∶ τ2, then Γ ⊢ τ′1 + τ′2 <∶
τ1 + τ2

Proof. Let E ⊧ Γ. Let h ∈ Jτ′1 + τ′2KE . By semantics of heap types, either h ∈ Jτ′1KE or
h ∈ Jτ′2KE .

A.2. Π4 207

Subcase h ∈ Jτ′1KE : By assumption Γ ⊢ τ′1 <∶ τ1 it also holds that h ∈ Jτ1KE and we can
conclude that h ∈ Jτ1 + τ2KE .

Subcase h ∈ Jτ′2KE : By assumption Γ ⊢ τ′2 <∶ τ2 it also holds that h ∈ Jτ2KE and we can
conclude that h ∈ Jτ1 + τ2KE .

Lemma A.66 (Context-Bound Refinement Subtype). If heap is the only free binder in φ,
and Γ, x ∶ {y ∶ τ1 ∣ φ[y/heap]} ⊢ τ′2 <∶ τ2 then Γ, x ∶ τ1 ⊢ {y ∶ τ′2 ∣ φ[x/heap]} <∶ {y ∶
τ2 ∣ φ[x/heap]}.

Proof. Let E ⊧ Γ, x ∶ τ1. We can write this as E = E ′[x ↦ h1], where h1 ∈ Jτ1KE .
Let h2 ∈ J{y ∶ τ′2 ∣ φ[x/heap]}KE . Then h2 ∈ Jτ′2KE and Jφ[x/heap]KE[y↦h2] = true.
Compute as follows, recalling that heap is the only free binder in φ:

Jφ[x/heap]KE[y↦h2]

=Jφ[x/heap]KE
=Jφ[x/heap]KE ′[x↦h1]

=Jφ[y/heap]KE ′[y↦h1]

Together with assumption h1 ∈ Jτ1KE , we get h1 ∈ J{y ∶ τ1 ∣ φ[y/heap]}KE ′ , and thus
E ′[x ↦ h1] ⊧ Γ, x ∶ {y ∶ τ1 ∣ φ[y/heap]}.

With assumption Γ, x ∶ {y ∶ τ1 ∣ φ[y/heap]} ⊢ τ′2 <∶ τ2, we can conclude that
h2 ∈ Jτ2KE . Since we already have that Jφ[x/heap]KE[y↦h2] = true, it follows that
h2 ∈ J{y ∶ τ2 ∣ φ[x/heap]}KE , which is what we wanted to show.

Lemma A.67 (If Choice Subtype). If heap is the only free binder in φ and Γ, x ∶ {y ∶
τ′1 ∣ φ[y/heap]} ⊢ τ′12 <∶ τ12, and Γ, x ∶ {y ∶ τ′1 ∣ ¬φ[y/heap]} ⊢ τ′22 <∶ τ22, then
Γ, x ∶ τ′1 ⊢ {y ∶ τ′12 ∣ φ[x/heap]}+ {y ∶ τ′22 ∣ φ[x/heap]} <∶ {y ∶ τ12 ∣ φ[x/heap]}+ {y ∶
τ22 ∣ ¬φ[x/heap]}

Proof. By Lemmas A.66 and A.65.

Lemma A.68 (Algorithmic Weakening). If Γ ⊢ c ∶ (x ∶ τ1)↝ τ2 and variable y does not
appear free in τ1 or τ2, then Γ, y ∶ τ ⊢ c ∶ (x ∶ τ1)↝ τ2 for any heap type τ.

Proof. By induction on the typing derivation.

Lemma A.69 (Typing Context Subtype). If Γ, x ∶ τ1 ⊢ c ∶ (y ∶ τ12)↝ τ22 and Γ ⊢ τ′1 <∶
τ1, then Γ, x ∶ τ′1 ⊢ c ∶ (y ∶ τ12)↝ τ22.

Proof. If x is not free in τ12 or τ22, the result follows from Lemma A.68. Otherwise we
proceed by induction on the typing derivation. We refer to the general assumptions as
follows:

(A) Γ, x ∶ τ1 ⊢ c ∶ (y ∶ τ12)↝ τ22

(B) Γ ⊢ τ′1 <∶ τ1

Case T-Extract-Algo: By inversion of T-Extract-Algo, we know

(A1) Γ, x ∶ τ1 ⊢ extract(ι) ∶ (y ∶ τ12)↝ τ22

208 APPENDIX A. PROOFS

(A2) τ22 = Σz ∶ {v ∶ ι ∣ φ1}.{v ∶ chomp(τ12 , ι, z) ∣ φ2}
(A3) Γ, x ∶ τ1 ⊢ τ12 <∶ {z ∶ ⊺ ∣ ∣z.pkt in ∣ ≥ sizeof(ι)}

By Lemma A.58 applied to (A3) and (B) follows

(A4) Γ, x ∶ τ′1 ⊢ τ12 <∶ {z ∶ ⊺ ∣ ∣z.pkt in ∣ ≥ sizeof(ι)}

The result follows by T-Extract-Algo.

Case T-Seq-Algo: By inversion of T-Seq-Algo, we know

(A1) Γ, x ∶ τ1 ⊢ c1; c2 ∶ (y ∶ τ12)↝ τ22
(A2) Γ, x ∶ τ1 ⊢ c1 ∶ (y ∶ τ12)↝ τ′12
(A3) Γ, x ∶ τ1 , y ∶ τ12 ⊢ c2 ∶ (z ∶ τ′12)↝ τ′22
(A4) τ22 = τ′22[z ↦ τ′12]

By IH applied to (A2) and (B) follows

(A5) Γ, x ∶ τ′1 ⊢ c1 ∶ (y ∶ τ12)↝ τ′12

By IH applied to (A3) and (B) follows

(A6) Γ, x ∶ τ′1 , y ∶ τ12 ⊢ c2 ∶ (z ∶ τ′12)↝ τ′22

The result follows by T-Seq-Algo with (A5) and (A6).

Case T-Skip-Algo: The result immediately follows by T-Skip-Algo.

Case T-Remit-Algo: By inversion of T-Remit-Algo, we know

(A1) Γ, x ∶ τ1 ⊢ τ12 <∶ ι≈

By Lemma A.58 applied to (A1) and (B) follows

(A2) Γ, x ∶ τ′1 ⊢ τ12 <∶ ι≈

The result follows by T-Remit-Algo.

Case T-Reset-Algo: The result immediately follows by T-Reset-Algo.

Case T-Ascribe-Algo: By inversion of T-Ascribe-Algo, we know

(A1) Γ, x ∶ τ1 ⊢ c0 as (y ∶ τ̂12)→ τ22 ∶ (y ∶ τ12)↝ τ22
(A2) Γ, x ∶ τ1 ⊢ c0 ∶ (y ∶ τ̂12)↝ τ′22
(A3) Γ, x ∶ τ1 ⊢ τ12 <∶ τ̂12
(A4) Γ, x ∶ τ1 , y ∶ τ̂12 ⊢ τ′22 <∶ τ22

By IH applied to (A2) and (B) follows

(A5) Γ, x ∶ τ′1 ⊢ c0 ∶ (y ∶ τ̂12)↝ τ′22

By Lemma A.58 applied to (A3) and (B) follows

(A6) Γ, x ∶ τ′1 ⊢ τ12 <∶ τ̂12

By Lemma A.58 applied to (A4) and (B) follows

A.2. Π4 209

(A7) Γ, x ∶ τ′1 , y ∶ τ̂12 ⊢ τ′22 <∶ τ22

The result follows by T-Ascribe-Algo with (A5), (A6) and (A7).

Case T-If-Algo:
By inversion of T-If-Algo, we know

(A1) Γ, x ∶ τ1 ⊢ c1 ∶ (y ∶ {z ∶ τ12 ∣ φ[z/heap]})↝ τ′12
(A2) Γ, x ∶ τ1 ⊢ c1 ∶ (y ∶ {z ∶ τ12 ∣ ¬φ[z/heap]})↝ τ′′12
(A3) τ22 = {z ∶ τ′12 ∣ φ[x/heap]} + {z ∶ τ′′12 ∣ ¬φ[x/heap]}
(A4) Γ, x ∶ τ1; τ12 ⊢ φ ∶ B

By IH applied to (A1) and (B) follows

(A5) Γ, x ∶ τ′1 ⊢ c1 ∶ (y ∶ {z ∶ τ12 ∣ φ[z/heap]})↝ τ′12

By IH applied to (A2) and (B) follows

(A6) Γ, x ∶ τ′1 ⊢ c1 ∶ (y ∶ {z ∶ τ12 ∣ ¬φ[z/heap]})↝ τ′′12

Since Γ, x ∶ τ1; τ12 ⊢ φ ∶ B, it also holds that Γ, x ∶ τ′1; τ12 ⊢ φ ∶ B. The result then
follows by T-If-Algo.

Case T-Mod-Algo: By inversion of T-Mod-Algo, we know

(A1) Γ, x ∶ τ1 ⊢ τ12 <∶ ι≈
(A2) Γ, x ∶ τ1; τ12 ⊢ e ∶ BV

By Lemma A.58 applied to (A1) and (B) follows

(A3) Γ, x ∶ τ′1 ⊢ τ12 <∶ ι≈

Since Γ, x ∶ τ1; τ12 ⊢ e ∶ BV, it also holds that Γ, x ∶ τ′1; τ12 ⊢ e ∶ BV. The result
follows by T-Mod-Algo.

Case T-Add-Algo: By inversion of T-Add-Algo, we know

(A1) Γ, x ∶ τ1 ⊢ τ12 <∶ {x ∶ ⊺ ∣ ¬x .ι.valid}

By Lemma A.58 applied to (A1) and (B) follows

(A2) Γ, x ∶ τ′1 ⊢ τ12 <∶ {x ∶ ⊺ ∣ ¬x .ι.valid}

The result follows by T-Add-Algo.

Case T-Remove-Algo: By inversion of T-Remove-Algo, we know

(A1) Γ, x ∶ τ1 ⊢ τ12 <∶ ι≈

By Lemma A.58 applied to (A1) and (B) follows

(A2) Γ, x ∶ τ′1 ⊢ τ12 <∶ ι≈

The result follows by T-Remove-Algo.

210 APPENDIX A. PROOFS

Lemma A.70 (Algorithmic Input Subtype). If Γ ⊢ τ′1 <∶ τ1 and Γ ⊢ c ∶ (x ∶ τ1) ↝ τ2
such that x is not free in τ1 or τ′1, then there exists τ′2 such that Γ ⊢ c ∶ (x ∶ τ′1)↝ τ′2 and
Γ, x ∶ τ′1 ⊢ τ′2 <∶ τ2.

Proof. By induction on the typing derivation. We refer to the general assumptions as
follows:

(A) Γ ⊢ τ′1 <∶ τ1

(B) Γ ⊢ c ∶ (x ∶ τ1)↝ τ2

(C) x not free in τ1 or τ′1

We refer to the proof goals as follows:

(1) Γ ⊢ c ∶ (x ∶ τ′1)↝ τ′2

(2) Γ, x ∶ τ′1 ⊢ τ′2 <∶ τ2

Case T-Extract-Algo: By inversion of T-Extract-Algo, we know

(A1) c = extract(ι)
(A2) Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ sizeof(ι)}
(A3) φ1 ≜ z.pkt in = z.pktout = ⟨⟩
(A4) φ2 ≜ y.ι@z.pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x
(A5) τ21 ≜ {z ∶ ι ∣ φ1}
(A6) τ22 ≜ {z ∶ chomp(τ1 , ι, y) ∣ φ2}
(A7) τ2 = Σy ∶ τ21 .τ22

By Lemma A.56 with (A) and (A2),

(A8) Γ ⊢ τ′1 <∶ {x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ sizeof(ι)}

By Lemma A.60 with (A2) and (A),

(A9) Γ, y ∶ τ21 ⊢ chomp(τ′1 , ι, y) <∶ chomp(τ1 , ι, y)

(1) follows by T-Extract-Algo. (2) follows by Lemmas A.61 and A.63 and (A9).

Case T-Seq-Algo: By inversion of T-Seq-Algo, we know

(A1) c = c1; c2
(A2) Γ ⊢ c1 ∶ (x ∶ τ1)↝ τ12
(A3) Γ, x ∶ τ1 ⊢ c2 ∶ (y ∶ τ12)↝ τ22
(A4) τ2 = τ22[y ↦ τ12]

By IH applied to (A2) and (A), there is some τ′12 such that

(A5) Γ ⊢ c1 ∶ (x ∶ τ′1)↝ τ′12, and
(A6) Γ, x ∶ τ′1 ⊢ τ′12 <∶ τ12

By Lemma A.69 with (A) and (A3),

A.2. Π4 211

(A7) Γ, x ∶ τ′1 ⊢ c2 ∶ (y ∶ τ12)↝ τ22

By IH applied to (A7) and (A6), there is some τ′22 such that

(A8) Γ, x ∶ τ′1 ⊢ c2 ∶ (y ∶ τ′12)↝ τ′22, and
(A9) Γ, x ∶ τ′1 , y ∶ τ′12 ⊢ τ′22 <∶ τ22

(1) follows by T-Seq-Algo with (A5) and (A8). To show (2), we just need to show
that Γ, x ∶ τ′1 ⊢ τ′22[y ↦ τ′12] <∶ τ22[y ↦ τ12]. This follows by Lemma A.64 applied
to (A6) and (A9).

Case T-Skip-Algo: Immediate by T-Skip-Algo.

Case T-Remit-Algo: By inversion of T-Remit-Algo, we know

(A1) Γ ⊢ τ1 <∶ ι≈
(A2) c = remit(ι)
(A3) τ2 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}

By Lemma A.56 with (A1) and (A) follows

(A4) Γ ⊢ τ′1 <∶ ι≈

Let τ′2 = Σy ∶ {z ∶ τ′1 ∣ z ≡ x}.{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι}. (1) follows by
T-Remit-Algo. By Lemma A.58, and since x does not occur free in τ1 or τ′1, we
know

(A5) Γ, x ∶ τ′1 ⊢ τ′1 <∶ τ1

By Lemma A.61 we know

(A6) Γ, x ∶ τ′1 ⊢ {z ∶ τ′1 ∣ z ≡ x} <∶ {z ∶ τ1 ∣ z ≡ x}

By Lemma A.62 with τ22 = {z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι} follows

(A7) Γ, x ∶ τ′1 ⊢ Σy ∶ {z ∶ τ′1 ∣ z ≡ x}.τ22 <∶ Σy ∶ {z ∶ τ1 ∣ z ≡ x}.τ22

This shows (2) and concludes this case.

Case T-Reset-Algo: By inversion of T-Reset-Algo, we know

(A1) τ2 = Σy ∶ {z ∶ є ∣ z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout}.{z ∶ є ∣ z.pktout =
⟨⟩ ∧ z.pkt in = z.pkt in}

Let τ′2 = τ2. (1) follows by T-Reset-Algo and (2) follows by Lemma A.55.

Case T-Ascribe-Algo: By inversion of T-Ascribe-Algo, we know

(A1) c = c0 as (x ∶ τ̂1)→ τ2
(A2) Γ ⊢ c0 ∶ (x ∶ τ̂1)↝ τc
(A3) Γ ⊢ τ1 <∶ τ̂1
(A4) Γ, x ∶ τ̂1 ⊢ τc <∶ τ2

By Lemma A.56 applied to (A) and (A3) follows that

(A5) Γ ⊢ τ′1 <∶ τ̂1

212 APPENDIX A. PROOFS

Let τ′2 = τ2. (1) follows by T-Ascribe-Algo with (A2), (A4) and (A5). (2) follows
by Lemma A.55.

Case T-If-Algo: By inversion of T-If-Algo, we know

(A1) c = if (φ) c1 else c2
(A2) Γ; τ1 ⊢ φ ∶ B
(A3) Γ ⊢ c1 ∶ (x ∶ {y ∶ τ1 ∣ φ[y/heap]})↝ τ12
(A4) Γ ⊢ c2 ∶ (x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]})↝ τ22
(A5) τ2 = {y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}

By (A) and Lemma A.61, we know

(A6) Γ ⊢ {y ∶ τ′1 ∣ φ[y/heap]} <∶ {y ∶ τ1 ∣ φ[y/heap]}, and
(A7) Γ ⊢ {y ∶ τ′1 ∣ ¬φ[y/heap]} <∶ {y ∶ τ1 ∣ ¬φ[y/heap]}

By applying the IH to (A6) and (A3) we get τ′12 such that

(A8) Γ ⊢ c1 ∶ (x ∶ {y ∶ τ′1 ∣ φ[y/heap]})↝ τ′12, and
(A9) Γ, x ∶ {y ∶ τ′1 ∣ φ[y/heap]} ⊢ τ′12 <∶ τ12

By applying the IH to (A7) and (A4) we get τ′22 such that

(A10) Γ ⊢ c2 ∶ (x ∶ {y ∶ τ′1 ∣ ¬φ[y/heap]})↝ τ′22, and
(A11) Γ, x ∶ {y ∶ τ′1 ∣ ¬φ[y/heap]} ⊢ τ′22 <∶ τ22

From (A2) and (A), we can conclude that

(A12) Γ; τ′1 ⊢ φ ∶ B

Let τ′2 = {y ∶ τ′12 ∣ φ[x/heap]} + {y ∶ τ′22 ∣ ¬φ[x/heap]}. (2) follows by
Lemma A.67. (1) follows by T-If-Algo with (A8), (A10) and (A12).

Case T-Mod-Algo: By inversion of T-Mod-Algo, we know

(A1) Γ ⊢ τ1 <∶ ι≈
(A2) Γ; τ1 ⊢ e ∶ BV
(A3) τ2 = {y ∶ ⊺ ∣ φ ∧ φι ∧ φ f ∧ y.ι. f = e[x/heap]}

By Lemma A.56 with (A) and (A1) follows

(A4) Γ ⊢ τ′1 <∶ ι≈

From (A2) and (A), we can conclude

(A5) Γ; τ′1 ⊢ e ∶ BV

Let τ′2 = τ2. (1) follows by T-Mod-Algo with (A4) and (A5). (2) follows by
Lemma A.55.

Case T-Add-Algo: By inversion of T-Add-Algo, we know

(A1) Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ¬x .ι.valid}
(A2) τ2 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v}

A.2. Π4 213

By Lemma A.56 with (A1) and (A) follows

(A3) Γ ⊢ τ′1 <∶ {x ∶ ⊺ ∣ ¬x .ι.valid}

Let τ′2 = Σy ∶ {z ∶ τ′1 ∣ z ≡ x}.{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v}. (1) follows
by T-Add-Algo. By Lemma A.58 with (A) and (C),

(A4) Γ, x ∶ τ′1 ⊢ τ′1 <∶ τ1

By Lemma A.61 follows

(A5) Γ, x ∶ τ′1 ⊢ {z ∶ τ′1 ∣ z ≡ x} <∶ {z ∶ τ1 ∣ z ≡ x}

(2) follows by Lemma A.62 with (A5).

Case T-Remove-Algo: By inversion of T-Remove-Algo, we know

(A1) Γ ⊢ τ1 <∶ ι≈

By Lemma A.56 with (A1) and (A),

(A2) Γ ⊢ τ′1 <∶ ι≈

Let τ′2 = τ2. (1) follows by T-Remove-Algowith (A2). (2) follows by Lemma A.55.

Lemma A.71 (Includes Subtype). Includes Γ τ ι ⇐⇒ Γ ⊢ τ <∶ ι≈

Proof. Prove each direction separately

(⇒) Assume Includes Γ τ ι. Let E ⊧ Γ and h ∈ JτKE . By definition of the inclusion
relation, ι ∈ dom(h). By the definition of subtyping, it suffices to show h ∈ Jι≈KE .
By definition, Jι≈KE = {h ∣ ι ∈ dom(h)}, and we’re done.

(⇐) Assume Γ ⊢ τ <∶ ι≈. Show Includes Γ τ ι. To that end, let E ⊧ Γ and h ∈ JτKE
be arbitrary. By the definition of subtyping, h ∈ Jι≈KE . By definition of the
semantics, conclude ι ∈ dom(h).

Lemma A.72 (Excludes Subtype). Excludes Γ τ ι iff Γ ⊢ τ <∶ {x ∶ ⊺ ∣ ¬x .ι.valid}

Proof. Prove each direction separately

(⇒) Assume Excludes Γ τ ι. Let E ⊧ Γ and h ∈ JτKE . By definition of the exclusion
relation, ι /∈ dom(h). By the definition of subtyping, it suffices to show h ∈ J{x ∶
⊺ ∣ ¬x .ι.valid}KE . By definition, J{x ∶ ⊺ ∣ ¬x .ι.valid}KE = {h ∣ ι /∈ dom(h)}, and
we’re done.

(⇐) Assume Γ ⊢ τ <∶ {x ∶ ⊺ ∣ ¬x .ι.valid}. Show Excludes Γ τ ι. To that end, let
E ⊧ Γ and h ∈ JτKE be arbitrary. By the definition of subtyping, h ∈ J{x ∶ ⊺ ∣
¬x .ι.valid}KE . By definition of the semantics, conclude ι /∈ dom(h).

214 APPENDIX A. PROOFS

Theorem A.73 (Algorithmic Typing Correctness). For all subtyping contexts Γ, com-
mands c, variables x, heap types τ1, and τ2, where x is not free in τ1, Γ ⊢ c ∶(x ∶ τ1)→ τ2
if and only if there is some τ′2 such that Γ ⊢ c ∶ (x ∶ τ1)↝ τ′2, and Γ, (x ∶ τ1) ⊢ τ′2 <∶ τ2.

Proof. (⇒) Assume Γ ⊢ c ∶ (x ∶ τ1) → τ2. Proceed by induction on the typing
derivation, leaving Γ general. We refer to the proof goals as follows:

(1) Γ ⊢ c ∶ (x ∶ τ1)↝ τ′2
(2) Γ, (x ∶ τ1) ⊢ τ′2 <∶ τ2

Case T-Extract:
(A1) c = extract(ι)
(A2) Γ ⊢ sizeof pkt in(τ1) ≥ sizeof(i)
(A3) φ1 ≜ z.pkt in = z.pktout = ⟨⟩
(A4) φ2 ≜ y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x
(A5) τ2 = Σy ∶ {z ∶ ι ∣ φ1}.{z ∶ chomp(τ1 , ι, y) ∣ φ2}
The only algorithmic rule that applies to extract(ι) is T-Extract-Algo.
Since Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ sizeof(ι)} by (A2) and Lemma A.59,
T-Extract-Algo produces τ′2 such that
(A6) φ′1 ≜ z.pkt in = z.pktout = ⟨⟩
(A7) φ′2 ≜ y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x
(A8) τ′2 = Σy ∶ {z ∶ ι ∣ φ′1}.{z ∶ chomp(τ1 , ι, y) ∣ φ′2}
which shows (1). (2) follows by Lemma A.55.

Case T-Seq:
(A1) c = c1; c2
(A2) Γ ⊢ c1 ∶(x ∶ τ1)→ τ12
(A3) Γ, (x ∶ τ1) ⊢ c2 ∶(y ∶ τ12)→ τ22
(A4) τ2 = τ22[x ↦ τ12]
By applying the IH to (A2), we get τ′12 such that
(A5) Γ ⊢ c1 ∶ (x ∶ τ1)↝ τ′12, and
(A6) Γ, x ∶ τ1 ⊢ τ′12 <∶ τ12
By applying the IH to (A3), we get τ′22 such that
(A7) Γ, x ∶ τ1 ⊢ c2 ∶ (y ∶ τ12)↝ τ′22, and
(A8) Γ, x ∶ τ1 , y ∶ τ12 ⊢ τ′22 <∶ τ22
By Lemma A.70 with (A6) and (A7) there exists τ′′22 such that
(A9) Γ, x ∶ τ1 ⊢ c2 ∶ (y ∶ τ′12)↝ τ′′22, and
(A10) Γ, x ∶ τ1 , y ∶ τ′12 ⊢ τ′′22 <∶ τ′22
By T-Seq-Algo with (A5) and (A9) follows

(A11) Γ ⊢ c1; c2 ∶ (x ∶ τ1)↝ τ′′22[y ↦ τ′12]
which shows (1). By Lemma A.58 with (A6) and (A8) follows

(A12) Γ, x ∶ τ1 , y ∶ τ′12 ⊢ τ′22 <∶ τ22
By Lemma A.56 with (A10) and (A12) follows

(A13) Γ, x ∶ τ1 , y ∶ τ′12 ⊢ τ′′22 <∶ τ22

A.2. Π4 215

By Lemma A.64 follows
(A14) Γ, x ∶ τ1 ⊢ τ′′22[y ↦ τ′12] <∶ τ22[y ↦ τ12]
which shows (2) and concludes this case.

Case T-Skip: (1) follows by T-Skip-Algo and (2) follows by Lemma A.55.
Case T-Remit: By inversion of T-Remit, we know

(A1) c = remit(ι)
(A2) Includes Γ τ1 ι
(A3) φ ≜ z.pkt in = ⟨⟩ ∧ z.pktout = x .ι
(A4) τ2 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ φ}
By Lemma A.71 and (A2), T-Remit-Algo computes τ′2 such that
(A5) Γ ⊢ remit(ιi) ∶ ((x ∶ τ1))↝ τ′2, and
(A6) τ′2 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ z.pkt in = ⟨⟩ ∧ z.pkt in = x .ι}
which shows (1). Since τ′2 = τ2, (2) follows by Lemma A.55.

Case T-Reset: (1) follows by T-Reset-Algo and (2) follows by Lemma A.55.
Case T-Ascribe: By inversion of T-Ascribe, we know

(A1) c = c0 as (x ∶ τ1)→ τ2
(A2) Γ ⊢ c0 ∶(x ∶ τ1)→ τ2
By IH applied to (A2), there exists τ̂2 such that
(A3) Γ ⊢ c0 ∶ (x ∶ τ1)↝ τ̂2
(A4) Γ, x ∶ τ1 ⊢ τ̂2 <∶ τ2
By T-Ascribe-Algo with (A3), (A4) and Lemma A.55,
(A5) Γ ⊢ c0 as (x ∶ τ1)→ τ2 ∶ (x ∶ τ1)↝ τ2
showing (1). (2) follows by Lemma A.55.

Case T-If: By inversion of T-If, we know
(A1) c = if (φ) c1 else c2
(A2) Γ; τ1 ⊢ φ ∶ B
(A3) Γ ⊢ c1 ∶(x ∶ {y ∶ τ1 ∣ φ[y/heap]})→ τ12
(A4) Γ ⊢ c2 ∶(x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]})→ τ22
(A5) τ2 = {y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}
By the IH applied to (A3) there exists τ′12 such that
(A6) Γ ⊢ c1 ∶ (x ∶ {y ∶ τ1 ∣ φ[y/heap]})↝ τ′12
(A7) Γ, x ∶ {y ∶ τ1 ∣ φ[y/heap]} ⊢ τ′12 <∶ τ12
By the IH applied to (A4) there exists τ′22 such that
(A8) Γ ⊢ c2 ∶ (x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]})↝ τ′22
(A9) Γ, x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]} ⊢ τ′22 <∶ τ22
(1) follows by T-If-Algo with (A2), (A6) and (A8).
(2) follows by Lemma A.67 with (A7) and (A9).

Case T-Mod: By inversion of T-Mod, we know
(A1) c = ι. f ∶= e
(A2) Includes Γ τ1 ι

216 APPENDIX A. PROOFS

(A3) F(ι, f) = BV
(A4) Γ; τ1 ⊢ e ∶ BV
(A5) τ2 = {y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = e[x/heap]}
By Lemma A.71 and (A2),
(A6) Γ ⊢ τ1 <∶ ι i
(1) follows by T-Mod-Algo with (A3),(A4), (A5), and (A6). (2) follows by
Lemma A.55.

Case T-Add: By inversion of T-Add, we know
(A1) Excludes Γ τ1 ι
(A2) initHT (ι) = v
(A3) τ2 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v}
By Lemma A.72 and (A1),
(A4) Γ ⊢ τ <∶ {x ∶ ⊺ ∣ ¬x .ι.valid}
(1) follows by T-Add-Algo with (A1) and (A2). (2) follows by Lemma A.55.

Case T-Sub: By inversion of T-Sub, there exists some τ3 and τ4 such that
(A1) Γ ⊢ τ1 <∶ τ3
(A2) Γ, x ∶ τ1 ⊢ τ4 <∶ τ2
(A3) Γ ⊢ c ∶(x ∶ τ3)→ τ4
By applying the IH to (A3) there is some τ′4 such that
(A4) Γ ⊢ c ∶ (x ∶ τ3)↝ τ′4, and
(A5) Γ, x ∶ τ3 ⊢ τ′4 <∶ τ4
By Lemma A.58 together with (A1) and (A5), follows
(A6) Γ, x ∶ τ1 ⊢ τ′4 <∶ τ4
By applying Lemma A.70 to (A1) and (A4) we get τ′′4 such that
(A7) Γ ⊢ c ∶ (x ∶ τ1)↝ τ′′4 , and
(A8) Γ, x ∶ τ1 ⊢ τ′′4 <∶ τ′4
(1) follows by (A7). (2) follows by repeated application of Lemma A.56 with
(A2), (A6) and (A8).

Case T-Remove: By inversion of T-Remove, we know
(A1) Includes Γ τ1 ι
(A2) τ2 = {y ∶ ⊺ ∣ φι ∧ φpkt ∧ ¬y.ι.valid}
By Lemma A.71 with (A1), we get
(A3) Γ ⊢ τ1 <∶ ι≈
(1) follows by T-Remove-Algo. (2) follows by Lemma A.55.

(⇐) Proceed by induction on the typing derivation. We refer to the general
assumptions as follows:

(A) Γ ⊢ c ∶ (x ∶ τ1)↝ τ′2
(B) Γ, (x ∶ τ1) ⊢ τ′2 <∶ τ2

Case T-Extract-Algo: By inversion of T-Extract-Algo, we know

A.2. Π4 217

(A1) Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ sizeof(ι)}
(A2) τ′2 = Σy ∶ {z ∶ ι ∣ φ1}.{z ∶ chomp(τ1 , ι, y) ∣ φ2}
By Lemma A.59 follows
(A3) Γ ⊢ sizeof pkt in(τ1) ≥ sizeof(ι)
The result follows by T-Extract with (A3) and Lemma A.55.

Case T-Seq-Algo: By inversion of T-Seq-Algo, we know
(A1) c = c1; c2
(A2) Γ ⊢ c1 ∶ ((x ∶ τ1))↝ τ12
(A3) Γ, (x ∶ τ1) ⊢ c2 ∶ ((y ∶ τ12))↝ τ22
(A4) τ′2 = τ22[y ↦ τ12]
(A5) Γ, x ∶ τ1 ⊢ τ′2 <∶ τ2
With Lemma A.55 follows
(A6) Γ, x ∶ τ1 ⊢ τ12 <∶ τ12
By IH with (A2) and (A6) follows
(A7) Γ ⊢ c1 ∶(x ∶ τ1)→ τ12
Similarly, applying the IH to (A3) gives
(A8) Γ, (x ∶ τ1) ⊢ c2 ∶(x ∶ τ12)→ τ22
By T-Seq with (A7) and (A8) follows
(A9) Γ ⊢ c1; c2 ∶(x ∶ τ1)→ τ22[y ↦ τ12]
By (A4), (A5), Lemma A.55 and T-Sub follows

(A10) Γ ⊢ c1; c2 ∶(x ∶ τ1)→ τ2
which concludes this case.

Case T-Skip-Algo:
The result follows by T-Skip, Lemma A.55, and T-Sub.

Case T-Remit-Algo: Theresult follows byT-Remit, LemmaA.71, LemmaA.55,
and T-Sub.

Case T-Reset-Algo: The result follows by T-Reset, Lemma A.55, and T-Sub.
Case T-Ascribe-Algo: By inversion of T-Ascribe-Algo, we know

(A1) c = c0 as (x ∶ τ̂1)→ τ′2
(A2) Γ ⊢ c0 ∶ (x ∶ τ̂1)↝ τ′′2
(A3) Γ ⊢ τ1 <∶ τ̂1
(A4) Γ, x ∶ τ̂1 ⊢ τ′′2 <∶ τ′2
By IH applied to (A2) and (A4), we get
(A5) Γ ⊢ c0 ∶(x ∶ τ̂1)→ τ′2
By T-Ascribe follows from (A5) that
(A6) Γ ⊢ c0 as (x ∶ τ̂1)→ τ′2 ∶(x ∶ τ̂1)→ τ′2
The result follows by T-Sub with assumptions (B), (A3) and (A6).

Case T-If-Algo: By inversion of T-If-Algo, we know
(A1) c = if (φ) c1 else c2

218 APPENDIX A. PROOFS

(A2) Γ; τ1 ⊢ φ ∶ B
(A3) Γ ⊢ c1 ∶ (x ∶ {y ∶ τ1 ∣ φ[y/heap]})↝ τ12
(A4) Γ ⊢ c2 ∶ (x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]})↝ τ22
(A5) τ′2 = {y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}
By Lemma A.55, we can conclude
(A6) Γ, x ∶ {y ∶ τ1 ∣ φ[y/heap]} ⊢ τ12 <∶ τ12
By IH with (A3) and (A6) follows
(A7) Γ ⊢ c1 ∶(x ∶ {y ∶ τ1 ∣ φ[y/heap]})→ τ12
We can reason similarly as before to conclude
(A8) Γ ⊢ c2 ∶(x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]})→ τ22
The result follows by T-If with (A2), (A7), (A8) and (A5) and by T-Sub with
assumption (B).

Case T-Mod-Algo: The result follows by T-Mod with Lemmas A.55 and A.71
and T-Sub.

Case T-Add-Algo: The result follows by T-Add with Lemmas A.55 and A.72
and T-Sub.

Case T-Remove-Algo: The result follows by T-Remove with Lemmas A.55
and A.71 and T-Sub.

A.2.3 Decidability of Typechecking

Lemma A.74 (Refinement Bound). For every Γ, x, τ, φ, N , such that Γ ⊢ τ ≤ N ,
Γ ⊢ {x ∶ τ ∣ φ} ≤ N .

Proof. Let Γ, x, τ, φ, N , be given such that Γ ⊢ τ ≤ N . Let E ⊧ Γ. Further, let
h ∈ J{x ∶ τ ∣ φ}KE . By the semantics of heap types, we also know that h ∈ JτKE .
Assumption Γ ⊢ τ ≤ N gives us that ∣h(pkt in)∣ + ∣h(pktout)∣ ≤ N , which is what we
want to show.

Lemma A.75 (Bound Constraints). For every Γ, x, y, τ1, τ2, and φ, such that heap
is the only free variable in φ, Γ, x ∶ τ1 ⊢ {y ∶ τ2 ∣ φ[x/heap]} ≤ N , if and only if
Γ, x ∶ {y ∶ τ1 ∣ φ[y/heap]} ⊢ τ2 ≤ N .

Proof. Let Γ, x, y, τ1, τ2, and φ be given. Prove each direction separately.

(⇒) Assume Γ, x ∶ τ1 ⊢ {y ∶ τ2 ∣ φ[x/heap]} ≤ N .
Let E ⊧ Γ, x ∶ {y ∶ τ1 ∣ φ[y/heap]}. We can write E = E ′[x ↦ h] for some E ′ ⊧ Γ,
and some h1 ∈ Jτ1KE ′ , such that Jφ[y/heap]KE ′[y↦h1] = JφKE ′[heap↦h1] = true.
Since y does not occur in φ, then we also have JφKE[heap↦h ,y↦h2] = true.
Now, consider h2 ∈ Jτ2KE ′[x↦h1]. To show that ∣h2(pkt in)∣ + ∣h2(pktout)∣ ≤ N .
Since JφKE[heap↦h ,y↦h2] = true = Jφ[x/heap]KE[x↦h ,y↦h2], we can conclude that
h2 ∈ J{y ∶ τ2 ∣ φ[x/heap]}KE ′[x↦h]. Now, since E ′[x ↦ h] ⊧ Γ, (x ∶ τ1), the result
follows by our initial assumption assumption Γ, (x ∶ τ1) ⊢ {y ∶ τ2 ∣ φ[x/heap]} ≤
N .

A.2. Π4 219

(⇐) Assume Γ, (x ∶ {y ∶ τ1 ∣ φ[y/heap]}) ⊢ τ2 ≤ N .
Let E ⊧ Γ, (x ∶ τ1). We can write E = E ′[x ↦ h1] where h1 ∈ Jτ1KE ′ and E ′ ⊧ Γ.

Now consider h2 ∈ J{y ∶ τ2 ∣ φ[x/heap]}KE ′[x↦h1]. To show ∣h2(pkt in)∣ +
∣h2(pktout)∣ < N .
By the semantics of heap types, we have JφKE ′[x↦h1 ,y↦h2] = JφKE ′[heap↦h1 ,y↦h2] =
true. Since y is not free in φ, we also have JφKE ′[heap↦h1] = Jφ[y/heap]KE ′[y↦h1] =
true, so we can conclude that h1 ∈ J{y ∶ τ1 ∣ e[y/heap]}KE ′ . By our initial
assumption, every heap in τ2 is bounded and as such also heap h2 ∈ J{y ∶ τ2 ∣
φ[x/heap]}KE ′[x↦h1].

Lemma A.76 (Bound Choice). If Γ ⊢ τ1 ≤ N and Γ ⊢ τ2 ≤ M, then Γ ⊢ τ1 + τ2 ≤
max(M ,N).

Proof. Let E ⊧ Γ and h ∈ Jτ1 + τ2KE . We have to show that ∣h(pkt in)∣ + ∣h(pktout)∣ ≤
max(M ,N).

Case M = N :

Assume M = N , so max(M ,N) = M = N . By the semantics of heap types
h ∈ Jτ1KE or h ∈ Jτ2KE .

Subcase h ∈ Jτ1KE : The result immediately follows by assumption Γ ⊢ τ1 ≤ N .
Subcase h ∈ Jτ2KE : The result immediately follows by assumption Γ ⊢ τ2 ≤ M.

Case M > N : Without loss of generality, we assume thatM > N , so max(M ,N) = M.
By the semantics of heap types h ∈ Jτ1KE or h ∈ Jτ2KE .

Subcase h ∈ Jτ1KE : By assumption Γ ⊢ τ1 ≤ N and since by assumption N < M,
it follows Γ ⊢ τ1 ≤ M.

Subcase h ∈ Jτ2KE : The result immediately follows by assumption Γ ⊢ τ2 ≤ M.

Lemma A.77 (Bound Substitution). For all Γ, y, τ1, τ2, N , Γ ⊢ τ2[y ↦ τ1] ≤ N if and
only if Γ, (y ∶ τ1) ⊢ τ2 ≤ N .

Proof. Let Γ, y, τ1, τ2, and N be given. Prove each direction separately:

(⇒) Assume Γ ⊢ τ2[y ↦ τ2] ≤ N . Let E ⊧ Γ, y ∶ τ1 such that h2 ∈ Jτ2KE . This means
there is some E ′ ⊧ Γ and h1 ∈ Jτ1KE ′ such that h2 ∈ Jτ2KE ′[y↦h1]. By the semantics
of heap types follows that h2 ∈ Jτ2[y ↦ τ1]KE ′ . With the initial assumption
Γ ⊢ τ2[y ↦ τ1] ≤ N , we can conclude that ∣h2(pkt in)∣ + ∣h2(pktout)∣ ≤ N .

(⇐) Assume Γ, y ∶ τ1 ⊧ τ2 ≤ N . Let E ⊧ Γ and let h2 ∈ Jτ2[y ↦ τ1]KE . By the
semantics of heap types, there is some h1 ∈ Jτ1KE such that h2 ∈ Jτ2KE[y↦h1].
Notice that E[y ↦ h1] ⊧ Γ, y ∶ τ1. The initial assumption proves that ∣h(pkt in)∣+
∣h(pktout)∣ ≤ N .

220 APPENDIX A. PROOFS

Theorem A.78 (Forwards MTU Bound). For every Γ, c, x, τ1, τ2, and N ∈ N, if Γ ⊢
τ1 ≤ N and Γ ⊢ c ∶ (x ∶ τ1)↝ τ2 and every ascribed type in c is also bounded by N , then
Γ, x ∶ τ1 ⊢ τ2 ≤ N + emit(c)

Proof. Proceed by induction on c, leaving Γ and N general. We refer to the general
assumptions as follows:

(A) Γ ⊢ τ1 ≤ N

(B) Γ ⊢ c ∶ (x ∶ τ1)↝ τ2

Case extract(ι):
The only algorithmic typing rule that applies to extract(ι) is T-Extract-Algo.
By inversion, we know

(A1) τ2 = Σy ∶ {z ∶ ι ∣ φ1}.{z ∶ chomp(τ1 , ι, y) ∣ φ2}
(A2) φ1 = z.pkt in = z.pktout = ⟨⟩
(A3) φ2 = y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x.

Since emit(extract(ι)) = 0, it suffices to show Γ, x ∶ τ1 ⊢ τ2 ≤ N .
Let E ⊧ Γ, x ∶ τ1 and let h2 ∈ Jτ2KE . We can write E as E ′[x ↦ h1] where
h1 ∈ Jτ1KE ′ .
By definition of the semantics of heap types we know there are some h21 and h22
such that

(A4) h2 = h21 ++ h22,
(A5) h21(pkt in) = h21(pktout) = ⟨⟩
(A6) h1(pkt in) = h21(ι)@h22(pkt in)
(A7) h1(pktout) = h22(pktout)

We can further conclude that

(A8) h2(pktout) = h1(pktout),
(A9) h2(pkt in) = h22(pkt in) = h1(pkt in)[∣ι∣ ∶]

From assumption (A) follows

(A10) ∣h1(pkt in)∣ + ∣h1(pktout)∣ ≤ N

Together with (A8) and (A9), we can conclude that ∣h2(pkt in)∣ + ∣h2(pktout)∣ <
∣h1(pkt in)∣ + ∣h1(pktout)∣ ≤ N .

Case add(ι):
The only algorithmic typing rule that applies to add(ι) is T-Add-Algo. By inver-
sion, we know

(A1) τ2 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩ ∧ z.ι = v}.

Since emit(add(ι)) = 0, it suffices to show that Γ, x ∶ τ1 ⊢ τ2 ≤ N .
Let E ⊧ Γ, x ∶ τ1, and h2 ∈ Jτ2KE . We can write E as E ′[x ↦ h1] where h1 ∈ Jτ1KE ′ .
By definition of the semantics of heap types we know there are some h21 and h22
such that

A.2. Π4 221

(A2) h2 = h21 ++ h22
(A3) h21 = h1
(A4) h22(pkt in) = h22(pktout) = ⟨⟩

From these three equations we can conclude that

(A5) h2(pkt in) = h1(pkt in)
(A6) h2(pktout) = h1(pktout)

The result follows by assumption (A).

Case remove(ι):
The only algorithmic typing rule that applies to remove(ι) is T-Remove-Algo.
By inversion, we know

(A1) τ2 = {y ∶ ⊺ ∣ φι ∧ φpkt ∧ ¬y.ι.valid}
(A2) φpkt = y.pkt in = x .pkt in ∧ y.pktout = x .pktout

Since emit(remove(ι)) = 0, it suffices to show that Γ, x ∶ τ1 ⊢ τ2 ≤ N .
Let E ⊧ Γ, x ∶ τ1 and h2 ∈ Jτ2KE . We can write E as E ′[x ↦ h1] where h1 ∈ Jτ1KE ′ .
From assumption (A1) and by the semantics of heap types follows

(A3) h2(pkt in) = h1(pkt in)
(A4) h2(pktout) = h1(pktout)

The result follows by assumption (A).

Case ι. f ∶= e:
The only algorithmic typing rule that applies to ι. f ∶= e is T-Mod-Algo. By
inversion, we know

(A1) τ2 = {y ∶ ⊺ ∣ φpkt ∧ φι ∧ φ f ∧ y.ι. f = e[x/heap]}
(A2) φpkt = y.pkt in = x .pkt in ∧ y.pktout = x .pktout

Since emit(ι. f ∶= e) = 0, it suffices to show that Γ, x ∶ τ1 ⊢ τ2 ≤ N .
Let E ⊧ Γ, x ∶ τ1 and h2 ∈ Jτ2KE . We can write E as E ′[x ↦ h1] where h1 ∈ Jτ1KE ′ .
From assumption (A1) and by the semantics of heap types follows

(A3) h2(pkt in) = h1(pkt in)
(A4) h2(pktout) = h1(pktout)

The result follows by assumption (A).

Case remit(ι):
The only algorithmic typing rule that applies to remit(ι) is T-Remit-Algo. By
inversion, we know

(A1) τ2 = Σy ∶ {z ∶ τ1 ∣ z ≡ x}.{z ∶ є ∣ φ}
(A2) φ = z.pkt in = ⟨⟩ ∧ z.pktout = x .ι

222 APPENDIX A. PROOFS

Since emit(remit(ι)) = sizeof(ι), we have to show that Γ, x ∶ τ1 ⊢ τ2 ≤ N +
sizeof(ι).
Let E ⊧ Γ, x ∶ τ1 and h2 ∈ Jτ2KE . We can write E as E ′[x ↦ h1] where h1 ∈ Jτ1KE ′ .
By the semantics of heap types, there exists h21 and h22 such that

(A3) h2 = h21 ++ h22
(A4) h21 = h1
(A5) h22(pkt in) = ⟨⟩
(A6) h22(pktout) = h1(ι)

From (A4) and (A5), we can conclude that

(A7) h2(pkt in) = h1(pkt in)

From (A4) and (A6), we can further conclude that

(A8) h2(pktout) = h1(pktout)@h1(ι)

From (A7) and (A8) then follows

(A9) ∣h2(pkt in)∣ + ∣h2(pktout)∣ = ∣h1(pkt in)∣ + ∣h1(pktout)∣ + sizeof(ι)

Together with assumption (A), we can conclude that ∣h2(pkt in)∣+ ∣h2(pktout)∣ ≤
N + sizeof(ι).

Case reset:
The only algorithmic typing rule that applies to reset is T-Reset-Algo. By inver-
sion, we know

(A1) τ2 = Σy ∶ {z ∶ є ∣ φ1}.{z ∶ є ∣ φ2}
(A2) φ1 = z.pktout = ⟨⟩ ∧ z.pkt in = x .pktout
(A3) φ2 = z.pktout = ⟨⟩ ∧ z.pkt in = x .pkt in

Since emit(reset) = 0, we have to show that Γ, x ∶ τ1 ⊢ τ2 ≤ N .
Let E ⊧ Γ, x ∶ τ1 and h2 ∈ Jτ2KE . We can write E as E ′[x ↦ h1] where h1 ∈ Jτ1KE ′ .
By the semantics of heap types, there exists h21 and h22 such that

(A4) h2 = h21 ++ h22
(A5) h21(pktout) = ⟨⟩
(A6) h21(pkt in) = h1(pktout)
(A7) h22(pktout) = ⟨⟩
(A8) h22(pkt in) = h1(pkt in)

By (A4), (A5) and (A7) follows

(A9) h2(pktout) = ⟨⟩

and by (A4), (A6) and (A8) follows

(A10) h2(pkt in) = h1(pktout)@h1(pkt in)

A.2. Π4 223

Since by assumption (A), ∣h1(pkt in)∣ + ∣h1(pktout)∣ ≤ N , by (A9) and (A10),
∣h2(pkt in)∣ + ∣h2(pktout)∣ ≤ N .

Case if (φ) c1 else c2: The only algorithmic typing rule that applies is T-If-Algo. By
inversion, we know

(A1) τ2 = {y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]}
(A2) Γ ⊢ c1 ∶ (x ∶ {y ∶ τ1 ∣ φ[y/heap]})↝ τ12
(A3) Γ ⊢ c1 ∶ (x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]})↝ τ22

Since emit(if (φ) c1 else c2) = max(emit(c1), emit(c2)), we have to show that
Γ, x ∶ τ1 ⊢ τ2 ≤ N +max(emit(c1), emit(c2)).
By Lemma A.74 and assumption (A) follows

(A4) Γ ⊢ {y ∶ τ1 ∣ φ[y/heap]} ≤ N
(A5) Γ ⊢ {y ∶ τ1 ∣ ¬φ[y/heap]} ≤ N

Applying the IH to (A2) and (A2) with (A4) and (A5) respectively, gives

(A6) Γ, x ∶ {y ∶ τ1 ∣ φ[y/heap]} ⊢ τ12 ≤ N + emit(c1)
(A7) Γ, x ∶ {y ∶ τ1 ∣ ¬φ[y/heap]} ⊢ τ22 ≤ N + emit(c2)

By Lemma A.75 with (A6) and (A7) respectively follows

(A8) Γ, x ∶ τ1 ⊢ {y ∶ τ12 ∣ φ[x/heap]} ≤ N + emit(c1)
(A9) Γ, x ∶ τ1 ⊢ {y ∶ τ22 ∣ ¬φ[x/heap]} ≤ N + emit(c2)

By Lemma A.76 with (A8) and (A9) follows

(A10) Γ, x ∶ τ1 ⊢ {y ∶ τ12 ∣ φ[x/heap]} + {y ∶ τ22 ∣ ¬φ[x/heap]} ≤ max(N +
emit(c1),N + emit(c2))

The result follows together with the fact that max(A+B,A+C) = A+max(B,C).

Case c1; c2:
The only algorithmic typing rule that applies to c1; c2 is T-Seq-Algo. By inversion,
we know

(A1) Γ ⊢ c1 ∶ (x ∶ τ1)↝ τ12
(A2) Γ, x ∶ τ1 ⊢ c2 ∶ (y ∶ τ12)↝ τ22
(A3) τ2 = τ22[y ↦ τ12]

Since emit(c1; c2) = emit(c1) + emit(c2), we have to show that Γ, x ∶ τ1 ⊢ τ2 ≤
N + emit(c1) + emit(c2). Let E ⊧ Γ, x ∶ τ1 and let h2 ∈ Jτ2KE .
By applying the IH to (A1), we get

(A4) Γ, x ∶ τ1 ⊢ τ12 ≤ N + emit(c1)

Since we left Γ and N general, we can apply the IH again to (A2) and get

(A5) Γ, x ∶ τ1 , y ∶ τ12 ⊢ τ22 ≤ N + emit(c1) + emit(c2)

The result follows by Lemma A.77 with (A5).

224 APPENDIX A. PROOFS

Case skip:
The only algorithmic typing rule that applies to skip is T-Skip-Algo. By inversion,
we know

(A1) τ2 = {y ∶ τ1 ∣ y ≡ x}

Since emit(skip) = 0, we have to show that Γ, x ∶ τ1 ⊢ τ2 ≤ N .
Let E ⊧ Γ, x ∶ τ1 and h2 ∈ Jτ2KE . We can write E as E ′[x ↦ h1] where h1 ∈ Jτ1KE ′ .
By the semantics of heap types, follows

(A2) h2(pkt in) = h1(pkt in)
(A3) h2(pktout) = h1(pktout)

The result follows by assumption (A).

Case c0 as (x ∶ τ̂1)→ τ2:
The only algorithmic typing rule that applies is T-Ascribe-Algo. By inversion,
we know

(A1) Γ ⊢ c0 ∶ (x ∶ τ̂1)↝ τc
(A2) Γ ⊢ τ1 <∶ τ̂1
(A3) Γ, x ∶ τ̂1 ⊢ τc <∶ τ2

Since emit(c0 as σ) = emit(c0), we have to show that Γ, x ∶ τ1 ⊢ τ2 ≤ N +
emit(c0). By our initial assumption, every ascribed type is also bounded by N .
We therefore have Γ, x ∶ τ1 ⊢ τ2 ≤ N from which the result immediately follows.

Theorem A.79 (Decidability). If Γ, τ1, τ2 and every ascribed type in c are bounded by
the MTU N , then Γ ⊢ c ∶(x ∶ τ1)→ τ2 is decidable.

Proof. ByTheorem A.73 (Algorithmic Typing Correctness), we can equivalently show
that Γ ⊢ c ∶ (x ∶ τ1)↝ τ′2 and Γ, x ∶ τ1 ⊢ τ′2 <∶ τ2 are decidable. ByTheorem A.78, τ′2 is
bounded. Γ, x ∶ τ1 ⊢ τ′2 <∶ τ2 is therefore decidable by finite enumeration.

To show that Γ ⊢ c ∶ (x ∶ τ1) ↝ τ′2 is decidable, we proceed by induction on the
algorithmic typing derivation.

Case T-Skip-Algo:
Immediate, because T-Skip-Algo does not perform any subtyping checks.

Case T-Reset-Algo:
Also immediate, because T-Reset-Algo does not perform any subtyping checks.

Case T-Seq-Algo:
By inversion of T-Seq-Algo,

(A1) Γ ⊢ c1 ∶ (x ∶ τ1)↝ τ12
(A2) Γ, x ∶ τ1 ⊢ c2 ∶ (y ∶ τ12)↝ τ22

By (A1) andTheorem A.78,

A.2. Π4 225

(A3) Γ, x ∶ τ1 ⊢ τ12 ≤ N + emit(c1)

Applying the IH to (A1) with assumption Γ ⊢ τ1 ≤ N and (A3) gives us that
Γ ⊢ c1 ∶ (x ∶ τ1)↝ τ12 is decidable.
Again, by Theorem A.78 with (A2) and (A3), follows

(A4) Γ, x ∶ τ1 , y ∶ τ12 ⊢ τ22 ≤ N + emit(c1) + emit(c2)

By IH follows that Γ, x ∶ τ1 ⊢ c2 ∶ (y ∶ τ12) ↝ τ22 is decidable and thus type
checking the sequence of both commands is decidable.

Case T-Add-Algo:
By inversion, we know that T-Add-Algo performs the subtyping check Γ ⊢ τ1 <∶
{x ∶ ⊺ ∣ ¬x .ι.valid}. To show that type checking is decidable in this case, we must
show that Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ¬x .ι.valid} is decidable. This is the case because we
can finitely enumerate the heaps h described by τ1 and check wether every h is a
member of {x ∶ ⊺ ∣ ¬y.ι.valid}.

Case T-Extract-Algo:
By inversion, we know that T-Extract-Algo performs the subtyping check
Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ sizeof(ι)}. To show that type checking is decidable
in this case, we must show that Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ sizeof(ι)} is
decidable. This is the case because we can finitely enumerate the heaps h described
by τ1 and check wether every h is a member of {x ∶ ⊺ ∣ ∣x .pkt in ∣ ≥ sizeof(ι)}.

Case T-Remove-Algo:
By inversion, we know that T-Remove-Algo performs the subtyping check
Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ x .ι.valid}. To show that type checking is decidable in this
case, we must show that Γ ⊢ τ1 <∶ {x ∶ ⊺ ∣ x .ι.valid} is decidable. This is the case
because we can finitely enumerate the heaps h described by τ1 and check wether
every h is a member of {x ∶ ⊺ ∣ x .ι.valid}.

Case T-Remit-Algo:
Identical to the previous subcase.

Case T-Mod-Algo:
Identical to the previous subcase.

Case T-If-Algo:
Since τ1 is bounded by assumption and refining the input type does not increase
the size, {y ∶ τ1 ∣ φ[y/heap]} and {y ∶ τ1 ∣ ¬φ[y/heap]} are still bounded. By
Theorem A.78 then follows that the output types of c1 and c2 are also bounded.
By IH applied to c1 and c2, we get that the algorithmic type checking applied to c1
and c2 respectively is decidable and thus checking the conditional is decidable.

Case T-Ascribe-Algo:
By assumption, Γ, τ1 and τ̂1 are bounded, so Γ ⊢ τ1 <∶ τ̂1 is decidable by finite
enumeration. Since by assumption Γ ⊢ τ1 ≤ N , by Theorem A.78 follows that
Γ, x ∶ τ̂1 ⊢ τc ≤ N + emit(c0). By IH then follows that Γ ⊢ c ∶ (x ∶ τ1) ↝ τ′2 is
decidable. Since τc is bounded and by assumption also τ′2 is bounded, we can
finitely enumerate, so Γ, x ∶ τ̂1 ⊢ τc <∶ τ′2 is also decidable and thus type checking
an ascribed command is decidable.

226 APPENDIX A. PROOFS

A.2.4 Type Equivalences

Lemma A.80 (Rewrite Sigma Extract). For all Γ, x, τ and ι, if Γ ⊢ sizeof pkt in(τ) ≥
sizeof(ι) and x does not occur free in τ, then

Γ, x ∶ τ ⊢

Σy ∶ {z ∶ ι ∣ z.pkt in = ⟨⟩ ∧
z.pktout = ⟨⟩

} .
⎧⎪⎪⎪⎨⎪⎪⎪⎩
z ∶ chomp(τ, ι, y)

RRRRRRRRRRRRR

y.ι@z.pkt in = x .pkt in ∧
z.pktout = x .pktout ∧
z ≡ι x

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≐

{y ∶ ⊺ ∣ y.ι.valid ∧⋀κ∈dom(HT)∧κ≠ι y.κ = x .κ ∧
y.ι@y.pkt in = x .pkt in ∧ y.pktout = x .pktout

}

Proof. Proof each direction separately.

(⇒) Let E ⊧ Γ, x ∶ τ. We know E = E ′[x ↦ h] such that h ∈ JτKE ′ . Let hΣ ∈
JΣy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.{z ∶ chomp(τ, ι, y) ∣ y.ι@z.pkt in =
x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x}KE ′[x↦h] be arbitrary. By the semantics of
heap types follows

(A1) hΣ = h1 ++ h2
(A2) h1 ∈ J{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}KE ′[x↦h]

(A3) h2 ∈ J{z ∶ chomp(τ, ι, y) ∣ y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧
z ≡ι x}KE ′[x↦h ,y↦h1]

(A4) h2 ∈ Jchomp(τ, ι, y)KE ′[x↦h ,y↦h1]

(A5) Jy.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι xKE ′[x↦h ,y↦h1 ,z↦h2] =
true

By Lemma A.47, there exists ĥ2 ∈ JτKE ′[x↦h] such that

(A6) h2 = chomp⇓(ĥ2 , sizeof(ι))

Together with (A5), we can conclude that

(A7) ĥ2(pktout) = h(pktout)
(A8) ĥ2(pkt in) = h(pkt in)[sizeof(ι) ∶]
(A9) ∀κ ≠ ι.ĥ2(κ) = h(κ)
(A10) ι /∈ dom(ĥ2)

hΣ ∈ J{y ∶ ⊺ ∣ y.ι.valid ∧⋀κ∈dom(HT)∧κ≠ι y.κ = x .κ ∧ y.ι@y.pkt in = x .pkt in ∧
y.pktout = x .pktout}KE follows by the semantics of heap types with (A1), (A6),
(A7), (A8), (A9) and (A10).

(⇐) Let E ⊧ Γ, x ∶ τ. We know E = E ′[x ↦ h] such that h ∈ JτKE ′ . Let ĥ ∈ J{y ∶
⊺ ∣ y.ι.valid ∧⋀κ∈dom(HT)∧κ≠ι y.κ = x .κ ∧ y.ι@y.pkt in = x .pkt in ∧ y.pktout =
x .pktout}KE ′[x↦h]

By the semantics of heap types,

(A1) ĥ(ι) = h(pkt in)[0 ∶sizeof(ι)]

A.2. Π4 227

(A2) ∀κ ≠ ι.ĥ(κ) = h(κ)
(A3) ĥ(pktout) = h(pktout)
(A4) ĥ(ι)@ĥ(pkt in) = h(pkt in)⇔ ĥ(pkt in) = h(pkt in)[sizeof(ι) ∶]

To show that ĥ ∈ JΣy ∶ {z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}.{z ∶ chomp(τ, ι, y) ∣
y.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x}KE ′[x↦h], we have to
show that there exists h1 and h2 such that ĥ = h1 ++ h2 and h1 ∈ J{z ∶ ι ∣
z.pkt in = z.pktout = ⟨⟩}KE ′[x↦h] and h2 ∈ J{z ∶ chomp(τ, ι, y) ∣ y.ι@z.pkt in =
x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x}KE ′[x↦h ,y↦h1].
Let h1(pkt in) = h1(pktout) = ⟨⟩ and h1(ι) = h(pkt in)[0 ∶ sizeof(ι)] and no
other instances be valid in heap h1. h1 ∈ J{z ∶ ι ∣ z.pkt in = z.pktout = ⟨⟩}KE ′[x↦h]
then follows by the semantics of heap types. By Lemma A.44, there exists h2 ∈
Jchomp(τ, ι, y)KE ′[y↦h1] such that h2 = chomp⇓(h, sizeof(ι)). Since x not free
in τ, it also holds that h2 ∈ Jchomp(τ, ι, y)KE ′[x↦h ,y↦h1].
Since h1(ι)@h2(pkt in) = h(pkt in), h2(pktout) = h(pktout) and since chomp
does not change already valid header instances also for all κ ≠ ι, h2(κ) = h(κ),
we can conclude that Jy.ι@z.pkt in = x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι
xKE ′[x↦h ,y↦h1 ,z↦h2] = true and thus h2 ∈ J{z ∶ chomp(τ, ι, y) ∣ y.ι@z.pkt in =
x .pkt in ∧ z.pktout = x .pktout ∧ z ≡ι x}KE ′[x↦h ,y↦h1].
By the semantics of heap types, we can further conclude that

(A5) (h1 ++ h2)(pkt in) = h2(pkt in) = h′(pkt in)
(A6) (h1 ++ h2)(pktout) = h(pktout) = h′(pktout)
(A7) (h1 ++ h2)(ι) = h(pkt in)[0 ∶sizeof(ι)] = h′(ι)
(A8) ∀κ ≠ ι.(h1 ++ h2)(κ) = h2(κ) = h(κ) = h′(κ)

This shows that actually h′ = h1 ++ h2 and concludes this case.

	Front Matter
	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents

	Prologue
	Introduction
	Problem Statement
	State of the Art
	The Thesis in a Nutshell
	SafeP4
	Π4

	Contributions
	List of Publications
	Structure of the Thesis

	Background
	Programmable Packet Processing
	The P4 Language
	Header Types and Header Instances
	Metadata
	Parsers
	Tables and Actions
	Control
	Deparser
	Externs
	P4 Language Versions

	Chapter Summary

	Common Header Validity Bugs
	Parser Bugs
	Control Bugs
	Table Reads Bugs
	Table Action Bugs
	Default Action Bugs
	Chapter Summary

	Typed Data Plane Programming
	A Typing Discipline to Ensure Header Validity
	Design
	Syntax
	Static Semantics
	Operations on header types
	Typing rules

	Dynamic Semantics
	Safety
	Related Work
	Chapter Summary

	Dependently-Typed Data Plane Programming
	An Overview of Π4
	Design
	Syntax
	Well-formedness
	Dynamic Semantics
	Static Semantics
	Chomp
	Single-bit Chomp
	Instance Refinement
	Correctness of Chomp

	Safety
	Related Work
	Chapter Summary

	An Implementation of Π4
	Algorithmic Typing Rules
	Decidability
	SMT Encoding
	Optimizations
	Optimizing the SMT Encoding
	Reducing the Number of SMT Solver Invocations

	P4 Frontend
	Chapter Summary

	Evaluation
	Header Validity Bugs in Real-world Programs
	Detecting and Repairing Bugs
	Overhead
	Chapter Summary

	Expressivity of Π4
	Survey
	Checking Network Invariants
	Protocol conformance
	Determined Forwarding
	Parser-Deparser Compatibility
	Mutual Exclusion of Headers

	Designing for Modularity
	Specifying Invariants
	Checking Customer Programs

	Chapter Summary

	Performance Evaluation
	Checking Header Validity
	Effects of Optimizations on Runtime
	Effects of the MTU on Runtime
	Modular Verification
	Chapter Summary

	Epilogue
	Conclusion and Future Work
	Bibliography
	Proofs
	SafeP4
	Operations on Header Types
	Safety

	Π4
	Safety
	Algorithmic Typing Correctness
	Decidability of Typechecking
	Type Equivalences

