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Abstract

Niederenergetische Antiprotonen können als Sonde verwendet werden, um den Protonen- und
Neutronengehalt im Ausląufer der Kerndichteverteilung zu untersuchen. In Richtung der Neutronen-
abbruchkante ist dieser Bereich durch das Ausbilden von Neutronenhąuten und das Auftreten von
Halos gekennzeichnet.
Bis heute gibt es keine Anlage, die eine Kollision von niederenergetischen Antiprotonen mit ra-

dioaktiven Kernen ermöglicht. Am CERN (Schweiz) gibt es jedoch sowohl eine Anlage zur Erzeugung
radioaktiver Ionenstrahlen (ISOLDE) als auch eine Anlage für die Produktion von Antiprotonen (die
Antimatter Factory), die die Voraussetzungen für die Erzeugung dieser Wechselwirkungen schaffen.

Das AntiProton Unstable Matter Annihilation Experiment (PUMA) zielt darauf ab, 109 Antiprotonen
von der Antimatter Factory zu ISOLDE zu transportieren, um den Ausląufer der Kerndichteverteilung
zu untersuchen, indem das Neutronen-zu-Protonen-Annihilationsverhąltnis von sowohl stabilen als
auch kurzlebigen Kernen gemessen wird. In dieser Arbeit wird die Entwicklung der Zeitprojek-
tionskammer (Time Projection Chamber, TPC), der Hauptdetektionskomponente der geladenen
Annihilationsprodukte, vorgestellt. Da der Detektor in die Öffnung des 4 T Magneten von PUMA
eingesetzt werden soll, ist ein kompaktes und wartungsarmes Gerąt erforderlich. Das geometrische
Design basierte auf Monte-Carlo-Simulationen, die für die Detektionseffizienz und die Ladungsidenti-
fikation optimiert wurden. Das elektrische Design wurde ebenfalls optimiert, um ein homogenes
elektrisches Feld in der Driftregion des Detektors zu erzeugen. Abschließend wurde das mechanische
Design entwickelt.

Die Empfindlichkeit der bei PUMA verwendeten Methode wird mit einem Atomkaskadencode unter-
sucht, der auf antiprotonische Zinn- und Kalziumatome angewendet wird, um die Auswirkungen der
unbekannten Einfangzustąnde zu untersuchen. Der Vergleich und die Validierung mit Röntgendaten
liefern eine erste Schątzung der Einfangparameter, und die Kaskadenberechnungen zeigen, dass 70%
der Annihilationen in den zirkuląren Zustąnden (n, l = n− 1) stattfinden, was das PUMA-Konzept
bestątigt. Die Empfindlichkeit in Abhąngigkeit der Isotopen des durch die Messung erhaltenen
Annihilationsbreitenverhąltnisses wird quantifiziert. Zusątzliche theoretische Entwicklungen, die
den vollstąndigen Einfang und die Kaskade beschreiben, sind erforderlich, um die Auswirkungen
von Annihilationen mit Antiprotonen, die einen niedrigem Drehimpuls besitzen, zu berücksichtigen.
Diese haben sich hier als nicht vernachląssigbar erwiesen.
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Abstract

Low-energy antiprotons can be used as a probe to study the proton and neutron content of the
nuclear density tail. Towards the neutron drip line, this region is characterized by the development
of neutron skins and the emergence of halos.
As of today, there is no facility that can provide a low-energy antiproton-radioactive ion collider.

At CERN (Switzerland), however, the existence of both a Radioactive Ion Beam facility (ISOLDE)
and a facility to produce antiprotons (the Antimatter Factory) provides a feasible ground to generate
these interactions.
The antiProton Unstable Matter Annihilation experiment (PUMA) aims at transporting 109 an-

tiprotons from the Antimatter Factory to ISOLDE to study the nuclear density tail by measuring the
neutron-to-proton annihilation ratio of both stable and short-lived nuclei.

In this work, the development of the Time Projection Chamber (TPC), main detection component
of the charged annihilation products, is presented. As the detector aims at being inserted into
the bore of the 4 T solenoid of PUMA, a compact and low-maintenance device is required. The
geometrical design was based on Monte-Carlo simulations optimized for detection efficiency and
charge identification. The electrical design was also optimized to provide an homogeneous electric
field in the drift region of the detector. Finally, the mechanical design was performed.

The sensitivity of the method used at PUMA is investigated with an atomic cascade code applied to
antiprotonic tin and calcium atoms to study the impact of the unknown capture states. Benchmarks
of the code with X-ray data provide an initial estimation of the capture parameters and the cascade
calculations show that 70% of the annihilations occur at the circular states (n, l = n−1), validating the
PUMA concept. The isotopic sensitivity of the annihilation width ratio obtained from the measurement
is quantified. Additional theoretical developments that describe the full capture and cascade are
needed to account for the impact of low-l annihilations which are here observed to be non-negligible.
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1. Introduction and Motivation

1.1. The Size of the Nucleus

One could consider the beginning of the nuclear physics era with the experiment of E. Rutherford in
1911, in which he discovered that the atom was in fact composed of a positively charged nucleus
surrounded by a negatively charged cloud of electrons [1]. A few years later, using similar scattering
techniques with α particles, he identified a new particle emerging from the interactions, marking
the discovery of the proton [2]. It was twenty years later, in 1932, that J. Chadwick discovered the
existence of neutrons by shooting α particles in a beryllium target in which the emitted neutrons would
collide and scatter protons from a paraffin block, subsequently detected in a ionisation chamber [3].

Since then, multiple experimental and theoretical efforts have been devoted to fully describe the
nuclear structure. Electron scattering experiments, for instance, have offered a detailed description of
the charge radii and charge distribution of stable nuclei [4, 5]. The density profile observed in various
experiments indicates that there is a proportionality between the mass number A and the radius. This
suggests that the nucleus has a constant saturation density, deduced to be n0 ∼ 0.16 fm−3, regardless
of its mass number. An example of this trend is shown in Fig. 1.1, which displays the charge density
profile ρc of different stable isotopes across the nuclear chart. These profiles can be described to a
good approximation by the two-parameter Fermi distribution, given by

ρc(r) =
ρ0

1 + exp(r − a)/c
, (1.1)

where a is the half-density radius, c is the diffuseness parameter and ρ0 is a normalisation constant.
This evidence suggested that the nuclear force should be attractive at a short range, be stronger than
the Coulomb repulsion among protons and have a repulsive core.
Similar evidence has been found when studying the neutron density profile of stable isotopes,

although the measurements are generally hindered by uncertainties related to the hadronic reaction
mechanisms (see Sec. 1.2) or low cross sections. Accordingly, the available data indicates that protons
and neutrons are, in principle, uniformly distributed within the nucleus, as shown schematically on
the lower side of Fig. 1.2. At the top side of the figure, the schematic neutron and proton potential
wells are displayed, where the horizontal dashed line corresponds to the Fermi energy of the nucleons.
The electromagnetic repulsion produces a shallower well for the protons with respect to that of the
neutrons. Additionally, the β stability of the nucleus favours the occupation of the same Fermi levels
in both potential wells. Assuming that the nuclear potential has a finite slope, one can deduce from
these effects that the proton density lies within the neutron profile, shown on the lower side of Fig.
1.2 [7].

In light stable nuclei (Z≲ 20), the neutron to proton ratio is roughly one. However, as the nuclear
mass increases, the stability is obtained in nuclei containing larger amounts of neutrons. In Fig. 1.3,
the nuclear chart displays the nuclei’s half-lives, where the stable nuclei are shown in black and the
line of Z=N nuclei is shown as reference.
From this figure, it is evident that the vast majority of known isotopes are neutron-rich and that

most are not stable: there is rather an increasing instability towards the neutron and proton drip
lines. Here, the measurements of proton and neutron density profiles is scarce in comparison due to

1



Figure 1.1.: Charge density distribution of a few stable isotopes, ranging from A=4 to A=208. This
figure is reprinted with permission from [6] ©2022 by Springer Nature.

the technological challenges of studying short-lived nuclei. Nevertheless, data shows that the nuclear
structure in this region displays unique features largely unexplored. As such, the rest of this chapter
is devoted to explaining the physical background and existing techniques to tackle the proton and
neutron densities at the edge of stability, as well as the methods and experiment proposed by the
PUMA collaboration.

1.2. Nuclear Halos and Neutron Skins

An intuitive formulation that gives a rough estimation of the matter radius of stable isotopes R across
the nuclear landscape is to assume the nucleus with N neutrons and Z protons as a hard sphere with
a constant nucleon density. Then

R(A) = r0A
1/3, (1.2)

where A = N + Z is the mass number and r0 ∼ 1.2 fm.
However, as one approaches the limit of stability towards the neutron drip line, this picture starts

to blur and the observed matter radius shows a non-negligible extension beyond the value calculated
with Eq. (1.2).

The paradigmatic case is 11Li, which was evidenced for the first time by I. Tanihata in 1985 [9]. In
this experiment, the interaction cross sections σI of lithium isotopes 6Li to 11Li, beryllium isotopes
7Be, 9Be, 10Be and helium isotopes 4He, 6He and 8He on beryllium, carbon and aluminium targets
were measured. The experimental results are shown in Fig. 1.4.

2



Figure 1.2.: Schematic view of the proton and neutron density distributions and the relationship with
the nuclear well potential. See text for details. This figure is reprinted with permission
from [7] ©2022 by the American Physical Society.

As one can observe for the case of lithium, the isotopic chain follows approximately the trend
expected by Eq. (1.2) except for 11Li, for which the matter radius was measured to be (3.27± 0.24)
fm. Additionally, neutron-rich 6He and 8He also show an unexpected deviation.
This unusual extension of the nuclear density profile was later explained in terms of quantum

mechanics [10]. The prominent feature is that - because near the neutron drip line, the one and two
neutron separation energies are significantly reduced - the probability density distribution of the
neutrons extends beyond the classically allowed region. Indeed, a neutron tunnels out and there is a
non-negligible probability of finding it at large distances from the core, effectively creating a one or
two neutron halo.
A simple way of illustrating this behaviour is by assuming a valence neutron decoupled from the

internal degrees of freedom of the core nucleus, obtaining effectively a two-body system. It is also
assumed that the neutron is bound by a short range potential V (r).

In this case, the Schrödinger equation of the neutron reads

[︃

− ℏ
2

2µ

1

r

∂2

∂r2
r +

ℏ
2

2µ

ℓ(ℓ+ 1)

r2
+ V (r)

]︃

ψ(r) = Esψ(r),

where µ is the reduced mass of the system and Es is the separation energy.
Considering for simplicity a finite well potential, the wave function outside the well takes the form

ψ(r) =

(︃

2π

κ

)︃(︃−eκr

r

)︃[︃

ekR

(1 + kR)1/2

]︃

,

where R is the width of the potential and κ =
√
2µEs/ℏ. From this expression it can be observed

that the separation energy drives the decay of the tail of the wave function through the variable κ.
The mean-square radius is, then,

⟨︁

r2
⟩︁

=

∫︁

r4 dr (e−κr/κr)
2

∫︁

r2 dr (e−κr/κr)2
=

ℏ
2

4µEs
,
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Half life (s)

Z=N

Figure 1.3.: Nuclear chart showing the nuclides half-lives and the Z=N slope in red. While black
indicates stable nuclei, the half-life decreases from blue to pink. Chart from [8].

where the inverse relation between Es and
⟨︁

r2
⟩︁

is manifest. In stable nuclei, the separation energy
is roughly constant across the nuclear chart, in the order of ∼ 6− 8 MeV. On the other hand, the
separation energy in neutron halos is approximately ≤ 1 MeV [11].
Additional evidence to support the notion of the halos was obtained by deducing the transverse

momentum distribution of 11Li from projectile fragmentations of 9Li following a 11Li+C reaction [12].
Considering Heisenberg’s uncertainty principle

∆x∆p ≥ ℏ

2
,

a narrow momentum distribution corresponds to a wide position distribution and vice versa. By
looking at the transverse momentum distribution of 11Li, one would expect to obtain a Gaussian-like
distribution with two different widths: a more de-localized one, corresponding to the core nucleons
and a narrower one related to the broader radial distribution of the halo neutrons. The observed
distribution in this experiment is shown in Fig. 1.5.
The width of the wider component is σ = (95 ± 12) MeV/c. This value is consistent with the

widths in the fragmentation of stable nuclei [13]. The other component shows a narrow width of
σ = (23± 5) MeV/c, reflecting the large spread of the two outer neutrons in the 11Li nucleus.

Proton-nucleus elastic scattering, a method commonly used to obtain nuclear matter distributions
of stable nuclei, has also been applied by means of the inverse kinematics scheme with He and Li
beams to investigate halos [14]. In this experiment, the exotic beams in the energy range of 700 to
1000 MeV would impinge in an active target Time Projection Chamber (TPC)1, filled with hydrogen,
and the momentum of the recoiled protons was measured. The scattering angle (or momentum
transfer) is then deduced and the matter distributions are obtained from the best fit to the elastic

1An active target TPC serves as target and detector simultaneously.
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Figure 1.4.: Matter radius of Be, He, Li, C isotopes. This figure is reprinted with permission from [9]
©2022 by the American Physical Society.

scattering data. Figure 1.6 shows the differential cross sections as a function of the momentum
transfer of different lithium isotopes, showing the sensitivity of the method. The results in this case
are also consistent with the previous findings by I. Tanihata.
Other one- and two-neutron halos in medium-mass nuclei have been inferred from indirect mea-

surements, such as 31Ne [16] and 37Mg [17].
Proton halos are also predicted to exist [18–20]. Unlike neutrons, protons are subject to the

electromagnetic force and as such they are affected by the Coulomb barrier of the nuclei. As a
consequence, their radial extension would not be as prominent as for the neutron halos. The first
proton halo to be confirmed was 8B [21, 22]. Other proton halo candidates await proper experimental
evidence, such as 13N [23], the two-proton halo 17Ne [24–26] and the excited state of 17F [27].
Figure 1.7 illustrates the observed or claimed neutron and proton halos.

Although halos are predicted to occur at the drip lines (for the ground state), the spatial extension
of neutrons versus protons is expected to gradually change from stability towards this region. Indeed,
the neutrons tend to accommodate at the surface of the density profile of neutron-rich nuclei, forming
a neutron skin.
Neutron skins are usually characterised by the so-called neutron skin thickness, defined as the

difference between the neutron and proton rms radius:

∆rnp =
√︁

⟨r2n⟩ −
√︂

⟨︁

r2p
⟩︁

.

A schematic view of the difference between a normal nucleus, a nucleus with a neutron skin and a
nucleus with a neutron halo is depicted in Fig. 1.8.

Neutron skins are already observed in stable nuclei, and they are predicted to develop in neutron-
rich isotopes [31–35]. Multiple theoretical models based on Hartree-Fock methods, that describe the
nucleon density profile of the nuclei, predict different values for the skin thickness, ranging from
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Figure 1.5.: Transverse momentum distribution of 9Li fragments. This figure is reprinted with per-
mission from [12] ©2022 by the American Physical Society.

zero for stable isotopes with similar number of protons and neutrons, to ∼0.3 fm for 208Pb with 44
excess neutrons. Figure 1.9 shows the prediction of 23 different Skyrme interactions used within
the Hartree-Fock-Bogoliubov theory for tin isotopes. There are experimental methods developed
to measure the neutron skin thickness, briefly explained in the following: Parity-violating electron
scattering provides an approach but it is challenging since the statistical and systematic errors need
to be controlled better than 1 part per billion [36]. A recent example of a neutron skin measurement
with this method is the experiment performed by the PREX collaboration, that measured the neutron
skin thickness of 208Pb to be (0.283±0.071) fm [37].

Another way to measure the neutron skin thickness is by using hadrons as probes, such as proton-
nucleus scattering [38, 39], α scattering [40], π scattering [41], coherent π0 photoproduction [42]
and nucleon removal reactions [43]. However, all these methods feature model-dependencies and
a lack of proper treatment of the uncertainties which translate into large discrepancies for the
extraction of neutron skins [40, 44–46]. For instance, the proton scattering method has suffered
from a systematic energy dependence of the proton beam, giving values of neutron skin in 208Pb
ranging from negative values up to 1.5 fm [47]. Another limitation is that the determination of
matter radius of radioactive ion beams with hadronic probes require intensities of about 104 pps at
intermediate energies (≥ 200 MeV/nucleon). A precision down to 0.1 fm can be achieved when the
statistics are high enough [30].

The measurement of neutron skins can also be used as a tool to obtain information about neutrons
stars [36, 49, 50]. Nowadays, radius of neutron stars remains poorly constrained [49]. The Neutron
Star Interior Composition Explorer (NICER) telescope, installed aboard the International Space
Station, has measured the mass and radius of the PSR J0030+0451 pulsar [51] via spectroscopy of
low-band (0.2-12 keV) X-ray flux modulations due to rotating hot spots on the surface of a neutron
star [52]. Its finding of M= 1.44+0.15

−0.14M⊙ and Re = 13.02+1.24
−1.06 km remains the most precise measure-

ment performed so far. The radius, in particular, serves as a probe to describe their interior [53].
One way to infer some of these properties on earth is by measuring neutron skins.

The equation of state (EoS) describes the energy per nucleon and it can be decomposed onto
powers of the proton and neutron densities or, equally, as a function of total density ρ and asymmetry
α

ϵ(ρ, α) ≡ −B
A

≡ ϵ(ρ, α = 0) + S(ρ)α2, (1.3)
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Figure 1.6.: Proton scattering amplitude as a function of themomentum transfer for lithium isotopes.
This figure is reprinted with permission from [15] ©2022 by the American Physical
Society.

where the first term corresponds to the EoS of symmetric matter, with

α ≡ (ρN − ρP )/(ρN + ρP )

describing the symmetry between protons and neutrons. Furthermore, the symmetry energy term,
S(ρ), describes how the energy of nuclear matter is modified by an isospin asymmetry. There is
currently a lack of understanding of the density dependence of the symmetry energy in the vicinity
of the saturation density [54]. Expanding the symmetry energy at this density, one gets

S(ρ) = J + L(ρ− ρ0) +
K(ρ− ρ0)

2

2
+ . . . ,

where the slope parameter L is the slope of the symmetry energy at saturation density. Additionally,
this term is directly proportional to the pressure in neutron stars

P ∼ 1

3
ρ0Lx,

and consequently to their radius [36, 55].
On the other hand, a wide range of nuclear density functionals predict a linear relation between

the neutron skins and the slope parameter, shown in Fig. 1.10. This relation implies that the
measurement of neutrons skins is essential to unravel unknown features of neutron stars.

Beyond the mean field treatment of nucleons, correlations at the nuclear surface (where the nuclear
density is lower than the saturation density) including the formation of clusters of deuterons, tritons
and alpha particles [57–59] in the ground state of heavy neutron-rich nuclei are predicted [60]. In
this case, there is a competition between the formation of clusters and neutron skins, suggesting
a reduction in the neutron skin thickness with respect to the models that do not take clusters into
account [61]. Experimental evidence is needed to confirm the existence of these correlations, which
would then modify our understanding of the symmetry energy of the EoS.
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Figure 1.7.: Nuclear chart showing the existing and predicted neutron and proton halos in the light-
mass region. Figure from [28], adapted from [29].
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Figure 1.8.: Top: Pictorical representation of the difference between normal nuclei, skin nuclei and
halo nuclei. Bottom: Schematic proton and neutron density distributions. Figure inspired
by [30].

1.3. Antiprotons as a Probe

An additional tool available to investigate the structure of nuclei is the use of low-energy antiprotons.
The general idea is to produce antiprotonic atoms with the ion of interest: In this process, the
antiproton is captured in a highly excited state and it subsequently decays emitting auger electrons
and x-rays, until it annihilates with either a proton or a neutron situated in the tail of the nucleus’
density profile. As a consequence, charged and neutral pions are produced. In the following, details
on the experimental techniques are given.

1.3.1. Radial Position of Annihilation

The main feature of antiprotons as probes of nuclei is that the mean radius of annihilation is estimated
to take place at 2 to 2.5 fm away from the nuclear half-density radius [35].
To illustrate the sensitivity to the nuclear radial distribution, Fig. 1.11 shows the matter density

distribution of 132Sn (in green) together with the antiproton’s annihilation probability density
distribution (in blue) and a (p,2p) nucleon removal distribution with an incident energy of 250 MeV
per nucleon (in red). The light blue dashed line indicates the mean radius where the annihilation
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Figure 1.9.: Neutron skin of tin isotopes, calculated with 23 Skyrme forces. This figure is reprinted
with permission from [48] ©2022 by the American Physical Society.

would occur, while the red dashed line shows the mean radius at which a nucleon removal following
a knockout reaction at high beam energies would take place.
The annihilation distribution in this figure is a combination of the wave functions where the

antiproton absorption is most probable: 45% |n = 7, l = 6⟩ and 35% |n = 8, l = 7⟩, while the less
contributing states are not included.

1.3.2. The X-ray Method

The key aspect of this method is the measurement of the X-ray spectra produced by the de-excitation
of the antiproton as it transitions towards the nucleus. This spectrum encodes information about the
antiproton-nucleon strong interaction: the characteristic fingerprint is a broadening of the width Γ
and a shift of the mean energy ε of the lower populated antiprotonic levels with respect to the pure
electromagnetic interaction, below which no further transitions are observed due to the antiproton-
nucleon’s annihilation [62, 63]. As an example, Fig. 1.12 shows the x-ray spectrum of antiprotonic
176Yb, where a broader width is observed in the transition 9→8. Additionally, a reduction of the
yield in the same transition due to the absorption of the antiproton is manifest (see details in Ch. 6).

One of the main drawbacks of this method is that the information that can be extracted is somewhat
limited: The widths and shifts of only one transition affected by the strong interaction (the last before
absorption) can be deduced. Additionally, this measurement is possible as long as the width Γ is in
the range of the detector resolution, in the order of a few keV [65].

1.3.3. The Pion Method

The annihilation of the antiproton with a nucleon produces multiple channels consisting of a combi-
nation of charged and neutral particles, mostly pions [66, 67] (see Sec. 3.1 for a compilation of the
main channels and their branching ratios)2. Because the total charge of the reaction is conserved, by

2About 5% of the annihilations can also produce kaons [68], which are neglected at this stage but should be considered
during the analysis of the data.
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Figure 1.10.: Neutron skin thickness of 208Pb as a function of the slope parameter L. This figure is
reprinted with permission from [56] ©2022 by the American Physical Society.

measuring the charge of the pions it is possible to retrieve the identity of the initial nucleon:

∑︂

π+ +
∑︂

π− = 0 for pp̄,
∑︂

π+ +
∑︂

π− = −1 for np̄.

However, the mesons produced during the annihilation may undergo Final State Interactions (FSI)
by interacting with the residual nucleus before being detected. During FSI, a pion may suffer charge-
exchange or absorption [69, 70], preventing the annihilated nucleon to be accurately identified.
According to intra-nuclear cascade calculations, FSI occur in 80% to 90% of the annihilations while
in the rest the pions effectively "miss" the residual nucleus.
The study of the periphery of the nuclear structure with antiprotons was performed for the first

time in 1973, at Brookhaven National Laboratory (USA), using this method [71]. In this experiment,
a beam of low-energy antiprotons impinging on four different targets (C, Ti, Ta and Pb) was used.
The detection of the charge of the pions was done with a bubble chamber, inside which the targets
were placed. Their result showed a neutron excess for the Pb and Ta isotopes, although the analysis
of the data with respect of FSI were considered in a schematic way (renormalised to 12C). To describe
their outcome they defined a "halo factor" given by

fhalo :=
N(p̄, n)

N(p̄, p)

Z

N

Im (app̄)

Im (anp̄)
,

where N(p̄,n)
N(p̄,p) corresponds to the neutron-to-proton annihilation ratio and Im(app̄)

Im(anp̄)
is the ratio of the

annihilation probability of a proton over that of a neutron. At the time, this term was found to be
0.63, in agreement with an experiment performed three years later by M. Wade [72].

1.3.4. The Radiochemical Method

The PS209 experiment, at the Low Energy Antiproton Ring (LEAR) facility at CERN provided, in
1998, additional evidence of the neutron excess in the nuclear periphery of multiple stable isotopes
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Figure 1.11.: Matter density distribution of 132Sn (green curve), antiproton annihilation probability
(blue curve) and (p,2p) nucleon-removal distribution with 250 MeV/nucleon incident
energy. The pink dashed line shows the typical position of nucleon removal, while the
light blue dashed line shows the mean annihilation radius. (p,2p) data provided by M. R.
Gomez.

by measuring the yield of the radioactive products using gamma-ray spectroscopy techniques [73,
74]: When a low-energy antiproton annihilates with a target ion of mass number At, the residual
ion has a mass Ar=At-1 with either a proton number Zr=Zt-1 and a neutron number Nr=Nt or a
proton number Zr=Zt and a neutron number Nr=Nt-1. If both of these possible residual ions are
radioactive, then the emitted γ-rays can be detected with standard spectroscopic methods, allowing
to identify them. In this way, a proton to neutron annihilation ratio in the nuclear periphery can be
deduced. A clear limitation of this method is that it works as long as the residual ions are radioactive.

The FSI can influence the output of these measurements as well. Indeed, as a result of this reaction,
the residual nucleus can emit charged particles, neutrons or be induced into fission [69]. According to
this, the method works as long as no pion re-interacts with the residual nucleus. It has been predicted
that there is a geometrical dependence on the effect of FSI [75]: The missing probability, defined as
the probability of no pion re-interacting with the residual nucleus, depends on the location of the
annihilation and it increases with distance from the residual nucleus.Thus, a correlation between the
γ yields and the annihilation site is expected. Calculations claim that this method is sensitive to the
density distribution at about 3 fm away from the half-density radius, a region complementary to that
probed via the two other methods, which is calculated to be between 2 to 2.5 fm away [65].

1.3.5. The PUMA Concept

The primary goal of the antiProton-Unstable Matter Annihilation (PUMA) experiment is to provide
a new observable that describes the proton and neutron probability density distributions in the
periphery of stable and radioactive nuclei.
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Figure 1.12.: X-ray spectrum of antiprotonic 176Yb. This figure is reprinted with permission from [64]
©2022 by the American Physical Society.

The method proposed in the PUMA experiment is to calculate the neutron-to-proton annihilation
ratio from the reconstruction of the charge of the emitted pions.
To provide a reliable observable, a comprehensive study of the full process that leads to the

annihilation until the pions are detected needs to be considered. This process can be divided into
four sequential steps, which are detailed in Ch. 6:

• The capture of the antiproton in a state with quantum numbers |n, l⟩.

• The de-excitation of the antiprotonic atom through Auger and radiative emissions.

• The annihilation of the antiproton with a nucleon.

• The Final State Interactions (FSI), namely the re-interaction of the pions with the residual
nuclei.

In this way, PUMA could be able to provide a way to characterise the asymmetry between protons
and neutrons in the density tail of radioactive nuclei. As a consequence, new proton and neutron
halos will be evidenced, and a further understanding of the neutron skin development along isotopic
chains will be possible.

1.4. The PUMA Experiment in Brief

The last few decades saw an increasing interest in fundamental nuclear physics research, since the
on-line production and separation of radioactive isotopes has been made possible. Nowadays there
are multiple facilities [76] dedicated to the production of Radioactive Ion Beams (RIBs), such as
ISOLDE at CERN (Switzerland), RIBF at RIKEN (Japan), TRIUMF (Canada), FRIB (USA), Spiral
(Caen), SPES (Italy), HIAF (China) and FAIR at GSI (Germany) which will start operations in 2026.

On the other hand, the production of antiprotons "on-demand" is currently only possible at two
locations worldwide: Fermilab (USA) and CERN. In the latter, antiprotons are produced by the

12



collision of 26 GeV protons with an iridium target. The antiprotons are decelerated to 5.3 MeV in the
Antiproton Decelerator (AD) within the Antimatter Factory hall [77], and are then fed into the ELENA
storage ring for further deceleration to an energy of 100 keV using RF and electron cooling [78].
Since 2021, ELENA is in full-fledge operation, delivering bunches of ∼ 4 × 106 antiprotons every
110 s to up to four experiments simultaneously.

As of today there is no facility that produces antiprotons and RIBs at the same location. To overcome
this difficulty, PUMA aims at trapping 109 antiprotons produced in the Antimatter Factory at CERN,
and transport them to the ISOLDE facility [79]. The RIBs produced there are then introduced into
the PUMA trap where the annihilations occur. Figure 1.13 shows a Computer-Aided Design (CAD) of
the portable setup.
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Figure 1.13.: CAD design of the PUMA setup. The dimensions are in mm. See text for details. Figure
from [28].

The trapping will be achieved by means of a double Penning trap [80], which combines a region for
storing the antiprotons (the storage zone) and a region to produce the reactions with a non-neutron
plasma of 107 antiprotons (the reaction zone). The main components consist of a superconducting 4 T
magnet, uniform along the beam axis (blue cylinder in the Fig. 1.13) and a set of axially symmetric
electrodes that provide an electrostatic field (see Fig. 1.14). In this way, the charged particles are
confined axially by the electrostatic potential and radially by the magnetic field.
Some of the technical challenges faced by PUMA have been successfully deployed in the past,

albeit never performed simultaneously. The transportation of charged particles, for instance, was
achieved in 1993. Indeed, 6×104 electrons were trapped in a Penning trap within a 4.7 T magnet
and brought for over 5000 km from Massachusetts to California in the USA, to demonstrate the
feasibility of antiprotons’ transportation [81].
The lifetime of the antiproton plasma depends on the amount of residual gas present in the trap.

To target a storage of 30 days, a pressure of 10−16 mbar would be needed [28]. In this case, a
system cooled at ∼ 4 K is necessary, as the walls then adsorb the residual gas molecules on the
surface. At least two experiments at the antimatter factory have successfully reached a vacuum level
< 10−17 mbar: BASE [82], that has continuously stored antiprotons in a sealed trap for more than 7
years [83] and ATRAP [84], which has stored non-neutron plasma of 107 antiprotons to produce
antihydrogen [85].
The effective mixing of the low-energy positive ions at ISOLDE with the antiproton plasma has

been performed for antihydrogen at the the Antimatter Factory [86, 87]. At PUMA, this is achieved
with a nested potential by means of a multi-ring Penning trap, as both species have opposite charges.
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Figure 1.14.: CAD render of the cross sectional view of the trap and detectors designed for the PUMA
experiment.

The production of antihydrogen has, as well, motivated the use of these kind of cylindrical traps at
the Antimatter Factory in different experiments, such as Alpha [88] and AEgIS [89].
The detection of the pions, main subject of the first part of this thesis, is explained extensively

throughout Ch. 2 to 5.
In the following, Ch. 2 is dedicated to the physical principles driving the interaction of charged

particles and subsequent detection with gas chambers, particularly with TPCs. Afterwards, Ch.
3 specifies the simulations performed for the optimisation of the pion’s detection. In Ch. 4, the
simulations concerning the field cage design and performance are explained. Finally, in Ch. 5, the
TPC construction and mechanical structure are detailed.

On the second part of the thesis, the antiprotonic decay and annihilation is described. In Ch. 6 the
cascade code is used to benchmark existing measured antiprotonic x-ray yields and in Ch. 7 a study
of the sensitivity of PUMA with Sn and Ca isotopes is presented.
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Part I.

Annihilation Detection
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2. Physics Background and Operation Principles of
a TPC

The Time Projection Chamber (TPC) was initially developed by D. Nygren at the Lawrence Berkeley
Laboratory in 1978 to study electron-positron collisions in the PEP (Positron-Electron Project) at the
SLAC National Accelerator Laboratory in the USA [90]. One of its main features is the capability of
providing a full 3D spatial reconstruction of a charged particle’s track. The detector consists of a
chamber filled with an ionizing gas in addition to two conductive endcaps on each side and a field
cage that provides a uniform electric field. The anode is segmented to obtain 2D spatial information:
when a charged particle traverses the chamber, the gas is ionized along its track, producing free
electrons that drift towards the anode due to the electric field. Once near the anode, the electrons
undergo an avalanche process as a product of a multiplication region, included to amplify the signal.
The signal is subsequently induced and eventually collected in the segmented plane and the 2D
projected track is obtained.

Additionally, with known transport parameters (namely the electrons’ drift velocity) and the timing
information (given by an external timing signal correlated to the charged-particle production time)
the third coordinate of the track is extracted. Figure 2.1 shows the basic working principle of a TPC.

E

Charged  
Particle

Sensitive media 
(Gas)

Electrons

1
2

3

Segmented  
Anode Field cage

Cathode

Electron drift

Figure 2.1.: Diagram of the working principle of a TPC: 1) A charged particle traverses the chamber,
ionizing the gas. 2) The electrons drift towards the segmented anode due to the external
electric field and are multiplied before collection. 3) The signal is induced in the anode,
obtaining a 2D projection of the track.

In the following sections, details of the salient physics of charged particles through matter will
be given, followed by the principles of motion in gases for particle detection. In addition, a section
dedicated to the multiplication region is presented.
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2.1. Interaction of charged particles with matter

2.1.1. Energy deposit in a medium

There are two dominant processes1 driven by the electromagnetic interaction of heavy charged
particles with matter: the excitation and the ionization of the material’s constituent atoms, as the
passing charged particle deposits energy in it. The latter process can be quantified mathematically
with the Bethe-Bloch formula [91] for the particle energies treated herein: considering a particle
with velocity v and charge z interacting with a material of density ρ, atomic number Z and mass
number A, the mean energy loss rate is given by

−
⟨︃

dE

dx

⟩︃

= 4πNAr
2
emec

2ρz2
Z

A

1

β2

[︃

1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ(βγ)

2

]︃

, (2.1)

where c is the speed of light, γ is the Lorentz factor defined by γ=1/
√︁

1− β2, β = v/c, NA is
Avogadro’s constant, I is the mean ionization potential of the medium considered, re and me are the
electron’s classical radius and rest mass, respectively and Tmax the maximum ionization energy that
can be transferred to one electron. Figure 2.2 shows the energy deposit (also referred to as the mass
stopping power of the material) for different materials and charged particles as a function of their
momentum.

Figure 2.2.: Mass stopping power of copper, as a function of charged particle’s (muon, pion and
proton) momentum. Figure from [92].

In the lower energy domain, the energy deposit is driven by the 1/β2 factor up to a speed of about

1Another important process is the Bremsstrahlung radiation, dominant for electrons in the energy range E > 10 MeV.
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0.9c, where a global minimum is reached. For larger values of βγ, the relativistic extension of the
transverse electric field is observed and the logarithmic term starts to dominate (damped by the
correction factor δ). The particles with a momentum such that they deposit energy in the range that
corresponds to this minimum (∼1GeV/c) are called the Minimum Ionizing Particles (MIPs). This
minimum ionization is very similar across different materials for particles of the same charge, as
evidenced in Fig 2.2.

It is often the case, particularly in gas detectors, that the sensitive material is a mixture or compound
of substances. In that case, a good approximation of the mean energy deposit is to use the Bragg’s

rule [93]

⟨︃

dE

dx

⟩︃

=
∑︂

j

wj

⟨︃

dE

dx

⟩︃

j

,

where the average energy deposit for each compound j is weighted by the fraction wj of that element
in the mixture.

In the case of PUMA, the typical momentum of charged pions after the annihilation is 100 MeV/c.
Considering the medium to be pure Ar at one atmosphere, and following Fig. 2.2, the pions will be
close to MIPs and their energy loss in the gas is ∼200 keV/cm.

2.1.2. Creation of electron-ion pairs

The ionization probability of a charged particle traversing a gas is related to the mean free path of the
charged particle λ = 1/(σin), where σi is the ionization cross-section and n the number density of
electrons. Because the ionization probability is a random process and each encounter is independent,
a particle with a track length L has a poissonian probability of ionizing k particles

P (L/λ, k) =
(L/λ)k

k!
exp(−L/λ),

where the mean number of primary ionizations is L/λ. The number of primary ionizations per cm
for different gases is shown in Fig. 2.3.

Figure 2.3.: Primary ionizing collisions per cm as a function of the atomic number of gases at stan-
dard conditions of temperature and pressure. This figure is reprinted with permission
from [94] ©2022 by Springer Nature.
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If an electron acquires sufficient kinetic energy, it might produce secondary ionizations by further
ionizing atoms, creating a cluster. However, the probability of this process is usually low [95] and
these high-energy electrons (called δ−electrons) are rapidly stopped by the quenching gas of the
mixture (see Sec. 2.2).

Considering the above, the mean energy needed to produce an electron-ion pair is

w =

⟨︃

dE

dx

⟩︃

L.

However, it should be noted that w is not equal to the ionization potential of a gas, since only some
energy is lost by ionization, while interactions also lead to the excitation of the atoms. As an example,
the ionization potential of Ar is 15.8 eV while the mean energy needed for pair creation is 26 eV [95].
Following the estimation for PUMA in Sec. 2.1.1, it is deduced that the mean number of electron-ion
pairs created by the pions in an argon gas at normal temperature and pressure (20 and 1 atm) is ∼
650/cm.

2.2. Principles of Gas Detectors

Gaseous detectors are widely used in particle and nuclear physics experiments [96–99] since they
offer excellent particle identification and tracking capabilities with large solid angle acceptance,
together with a low material budget and a large dimension range from a volume of a few cubic
decimetres, such as the MINOS TPC [100] to several cubic meters, as the ALICE TPC, at CERN [96].

The behaviour of produced electrons in a gas detector depends strongly on the electric field applied
across the detector volume. As a consequence, the charge collection varies as shown in Fig. 2.4.
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Figure 2.4.: Qualitative division of the gas operation modes as a function of the applied voltage
(See text for description).

In Region 1 Electron-ion recombination is dominant: when there is no or a too small electric
field applied, all electrons eventually recombine and no charge is collected. As the applied voltage
increases (region II), the ionized electrons feel a force due to the field and do not have time to
recombine, as they end up being collected. In this "ionization chamber region", the charge collected
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corresponds to the energy deposited by the charged particle. In region III, the intensity of the field
is enough to accelerate the electrons such that secondary ionizations are produced, and the signal
collected is proportional to the primary one. For an even higher voltage (region IV), the number
of electrons produced is such that space charge effects start to take place, UV photons above the
ionization energy are emitted and the proportionality is lost, until eventually a discharge occurs
(region V). In this phase (Geiger-Müller) a chain reaction develops. Above this stage (in region VI)
the electric field generates a continuous discharge, and hence the chamber is no longer capable of
detecting any incident ionization.

In an ideal gas, the ionization electrons should have a low probability of recombining with the ions
so that they can drift across the volume and be collected. On the other hand, uncontrolled creation
of secondary electrons and UV photons that render the detector non-operational should be avoided.
These seemingly conflicting properties can coexists by using an adequate combination of gases with
distinctive properties. A relevant parameter to consider is the electron attachment, which quantifies
the probability of an electron to recombine with an ion of a certain gas. For an electron with velocity
v, the attachment rate R is proportional to the attachment cross section σa and the number density
n: R = vσan.
Because of their closed shell structure, the attachment rate of noble gases is among the lowest

across the periodic table of elements. For the same reason, their first ionization energy (which varies
between 22 eV for Xe to 46 for He [101]) is higher than the average, which poses a limit to the gain
of the gas (see Sec. 2.2.4). However, an effect that one can take advantage of is the Penning effect:
When the excitation energy of a gas A is higher than the ionization energy of a gas B, the molecules
of B can be ionized by collisional transfer of the de-excitation energy of A.

A∗ +B → A+B+ + e−

This effect can significantly increase the gain of the gas mixture. For instance, it was observed that
adding 0.13% of Ar to pure He changed its ionization energy from 41.3 eV to 29.7 eV [102].
To prevent discharges, the primary gas is usually mixed with a quencher. These types of gases

absorb the UV photons and de-excite mostly through rotational and vibrational transitions. An
example are polyatomic gases, such as CH4. Inorganic gases such as CO2 can also be used [96].
The addition of a small percentage of a quencher is paramount to allow a stable operation with
higher gains that could reach values up to 106 [103]. A very common mixture for gas detectors is the
so-called "P-10", used for instance in the STAR TPC [104]. The primary gas is Argon (90%) and a
small amount of CH4 (10%) is added to quench the secondary electrons and UV creation.

2.2.1. Drift of electrons in a gas

One of A. Einstein’s realisations during his Annus mirabilis2 (or "Miracle year") was that the random
motion of a dust particle in water, observed by R. Brown in 1827 [109], was due to the thermal
movement of the molecules of the liquid [106]. Indeed, any particle of mass m immersed in a "bath"
of atoms at temperature T is in a thermodynamical equilibrium by collisions, therefore acquiring a
mean kinetic energy

v =
λ

τ
=

√︃

3kBT

m
,

where kB = 1.38× 10−23 JK−1 is Boltzmann’s constant, and λ and τ are the mean free path and
mean free time between collisions, respectively.

2This expression refers to the year 1905, where Einstein published four ground-breaking papers in which he explained: the
photoelectric effect [105], the brownian motion [106], special relativity [107] and the mass-energy equivalence [108].
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The consequence of this random motion is that, for a localized cluster of N particles (say, electrons
in a gas) in absence of external forces, there is an isotropical spatial diffusion over time t, described
by a Gaussian distribution

dN

N
=

1√
4πDt

e−
x⃗2

4Dt dx⃗,

with a spread in 3D defined by the diffusion coefficient D:

σ(x⃗) =
√
6Dt,

where D = vλ
3 .

Using the definition of the mean free path λ = 1
σin

, where σi is the interaction cross section and n
is the number density, the diffusion coefficient becomes

D =
2

3Pσi

√︃

(kBT )3

πm
,

where the ideal gas law P = nkBT is used to obtain an expression that only depends on the gas
parameters P, T and the interaction cross section σi. Because of their large mass difference, the
diffusion of electrons is much more gas dependent than the ions. Indeed, the diffusion of an electron
cloud can vary from 100 µm to 1 mm after 1 ms, depending on the gas, while the diffusion of an ion
cloud is roughly 140 µm in the same time period, independently of the gas used.

2.2.2. Drift in the presence of an external electric field

When an external electric field E⃗ is applied, the electrons are accelerated between collisions in the
direction of the field in superposition with the random scattering explained in Subsec. 2.2.1. As a
consequence, there is a net velocity - so-called drift velocity v⃗d - that emerges and can be described
by

v⃗d =
eE⃗

m
τ,

where e is the charge of the electrons, τ the average time between collisions and E⃗ is the electric
field. The term eτ

m is usually referred to as the mobility µ of the electrons. It should be noted that v⃗d
is a mean value which describes the collective motion of electrons in a medium with an electric field,
an it is not the instantaneous velocity that the electrons acquire between collisions.

Because of the drift velocity’s mass dependence, ions are ∼1000 times slower than electrons.
In addition to the electric field, the drift velocity depends greatly on the gas composition and

its macroscopic physical properties (pressure, temperature). An increased pressure P increases the
probability of collisions and reduces the mean free path of the electrons, decreasing the drift velocity.
To pull out this effect, a reduced field E/P is often used. Figure 2.5 shows the dependency of the
electron drift velocity with respect to the electric field for different gas mixtures. A global maximum
is reached in the range of 100–300 V/(cm atm), which implies that small variations in E/P will not
affect the drift velocity, making it the preferred range of operation.
At low electric fields, the drift velocity increases sharply due to the decrease in the interaction

cross section, as the electrons acquire more energy. However, C. Ramsauer [110] observed that the
scattering cross section of electrons in a gas had a minimum value for certain kinetic energies instead
of decreasing monotonically, as expected by the classical explanation.

Because the electrons start drifting in a privileged direction, the diffusion is not isotropic anymore.
In this case, one can distinguish between a transverse and longitudinal (along the drift direction)
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Figure 2.5.: Drift velocity for different Argon based gases as a function of the applied electric field
and pressure.

diffusion coefficients, DT and DL, respectively. After a drift distance L, the spread in the transverse
and longitudinal directions, σT and σL, of an electron cloud is

σ2T = 4DTL/vd,

σ2L = 2DLL/vd.

As shown in Fig. 2.6, when the electric field is high enough, the additional energy of the electrons
in the drift direction produces a decrease in the longitudinal diffusion with respect to the transverse
diffusion.

2.2.3. Drift in the presence of an external magnetic field

The presence of a magnetic field modifies both the drift properties and the diffusion of the electrons.
A more general description of the motion of an electron is given by the Langevin equation

m
dv⃗d
dt

= eE⃗ + ev⃗d × B⃗ −Kv⃗d, (2.2)

where the right hand side is nothing but the Lorentz force with an additional "viscosity" term which
describes a frictional force proportional to v⃗d, caused by the interaction of the particle with the gas.

Defining τ = m/K and the electron’s cyclotron frequency ω = eB/m, there is a stable solution for
t≫ τ , in which dv⃗d

dt = 0:

v⃗d =
e

m
τ |E⃗| 1

1 + (ωτ)2

(︂

Ê + ωτ
[︂

Ê × B̂
]︂

+ (ωτ)2
(︂

Ê · B̂
)︂

B̂
)︂

. (2.3)
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Figure 2.6.: Transverse and longitudinal diffusion for Argon gas as a function of the applied electric
field.

In the particular case where E⃗ ∥ B⃗, which is the usual case for TPCs, the drift velocity contains
only one non-zero component (in the direction of the field lines) and takes the form

vd =
e/m

1 + (ωτ)2

[︃

E + (ωτ)2
E ·B
B⃗

2 B

]︃

.

Note that if B⃗ = 0, the expression obtained in Sec. 2.2.2 is recovered. As an example, ωτ ∼0.3 for
the ALICE TPC gas mixture (Ne:CO2:N2/85:10:5), while the same factor is approximately 2 for the
P10 gas mixture. In small magnetic fields or short time between collisions, ωτ ∼0, and the electrons
tend to follow the E lines. On the contrary case, they will tend to curl around the magnetic field lines.
This effect is much less prominent for ions due to their mass difference (ωτ ∼ 1/m).

The diffusion is also modified in the presence of a magnetic field. Considering again the case where
E⃗ ∥ B⃗, the Lorentz force causes a circular motion in the transverse trajectory, effectively reducing
the transverse diffusion

DT (ω) =
DT (0)

1 + ω2τ2
.

This effect is clearly observed in Fig. 2.7, where the transverse diffusion of drifting electrons in an
Ar based gas mixture was measured.

2.2.4. Amplification

Considering that only a few number of electrons are created by primary ionization, well below the
nominal electronic noise of the readout used in gaseous detectors [112], it is therefore necessary to
amplify the signal before collection.
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Figure 2.7.: Transverse diffusion in the presence of magnetic fields for Ar/CH4:91/9 at 1 atm and
a drift field of 115 V/cm. This figure is reprinted with permission from [111] ©2022 by
Springer Nature.

The way this is achieved is based on the principle of the avalanche effect: Immersed in a strong
electric field (typically some kV/cm), a free electron with a mean free path λ is accelerated, increasing
the ionization cross section of the gas [113]. Secondary electrons are produced and a multiplication
process begins, usually stopped by electrons being captured or absorbed by the detector. The amount
of electrons created in this process (typically >104) was quantified by J. Townsend [114]. For
an initial cloud of N0 electrons in a uniform electric field, the number of electrons created by the
avalanche effect in a path of distance x is

N = N0e
αx

where α = λ−1 is the so-called Townsend coefficient. The multiplication factor, or gain, is then given
by

G =
N

N0
= eαx.

In the general case where the electric field is non-uniform, the Townsend coefficient might not be
constant

G = exp

[︃
∫︂ x2

x1

α(x)dx

]︃

.

This value depends on the strength of the electric field and the gas composition and its determination
with existing software is valuable to assess the expected current and improve the signal-to noise-ratio.
It is important to note that even though the mathematical expression describes an exponential
increase, in reality the gain is limited by the electrical breakdown at which point discharges occur
(see Sec. 2.2), at G < 108, called the Raether limit [115].

One (trivial) negative consequence of the multiplication of electrons is that also ions are multiplied.
Because of their positive charge, the ions drift in the opposite direction of that of electrons at a rate
∼ 1000 times slower, due to their mass. In general, a small percentage < 15% [103] of the ions
will drift back into the main volume of the detector after amplification, while most of them will
be absorbed by the detector (see below). The fractional Ion Back Flow (IBF), defined as the ratio
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between the current measured in the cathode (due to ions) over the one measured in the anode
(due to electrons) has been extensively studied [116–118] since it induces strong field distortions in
the otherwise uniform electric field, compromising the tracking of the electrons. In addition, an ion
current can create discharges and potentially damage the detector.
In modern TPCs, there are two technologies which are used for electron amplification: the Gas

Electron Multiplier [119] and the Micromegas [120] detectors. Both technologies provide a strong
focusing effect: since the field in this region is typically ten times stronger than in the drift region,
the field lines are compressed in the transition interface, allowing for a high percentage of electron
transmission. Details of their working principle are given in the following.

GEM

The standard configuration in this type of technology consists of etching holes of 50 µm radius (with a
typical pitch of∼ 140 µm) into a 50 µm Kapton foil, coated in copper on both sides. The amplification
of the charge is achieved by applying a voltage difference of a few hundred volts between the top and
the bottom sides, creating a strong electric field inside the holes. The electrons are then amplified,
with a typical gain of ∼103 and most of the ions (that slowly drift towards the direction of the
incoming tracks) are absorbed by the foil, where the IBF is in the order of ∼15% [116]. A sketch of
the device is shown in Fig. 2.8.

140 μm

50 μm

Field lines through one holeHoles

Kapton

Copper

Pad plane

V

Figure 2.8.: Sketch of the working principle of a GEM.

Multiple GEMs stacked on top of each other is a common configuration used to obtain an even
higher amplification and additionally reduce the ion back flow [121–123]. For a stack of four GEMs,
an IBF lower than 3.8% was achieved for Ar-CO2 based mixtures [116]. In this type of configuration,
the operation voltage to produce a detectable signal can be reduced while the overall gain is kept or
even improved. Another key advantage is minimization of discharges that can damage or degrade
the lifetime of the detector and the readout electronics [124].

Micromegas

Even though both technologies are widely used in nuclear and particle physics experiments and offer
similar advantages, the expertise acquired by past experiences is the main reason why in the case
of the PUMA experiment, the Micro-MEsh GAseous Structure (Micromegas) is used to amplify the
charge collection.
Developed by G. Charpak and I. Giomataris at Saclay, France in 1994 [120], the Micromegas

consists of a metallic grid (micro-mesh) with 17 µm openings every 25 µm, placed at typically 128 µm
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from the pad plane. By applying a strong electric field of a few kV/cm to the gap, the avalanche
process can take place. The mesh has an ∼80% transparency to allow an efficient penetration of the
primary electrons into the amplification region. The micro-mesh also contributes to the IBF mitigation
by absorbing the majority of the ions created during the avalanche [125, 126]. An illustration of the
concept is shown in Fig. 2.9.
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Figure 2.9.: Sketch of the working principle of the Micromegas detector.

The main advantage of the micromegas detector is that it can withstand sparks without compro-
mising the performance of the full instrument, even if certain regions might be damaged [127].
Furthermore, it is easily produced in a large range of dimensions. A critical aspect, however, is
the need to maintain a uniform gap between the mesh and the pads in order to achieve an even
gain throughout the pad plane. This is accomplished by the stretching of the mesh together with
the implementation of regular pillars across the mesh-to-anode gap. A convenient manufacturing
method using photolithographic techniques, called bulk micromegas, allows for an integrated anode-
mesh structure. In this way, large-area micromegas with a simpler and more reliable structure is
achieved. [128]

In the simplest scenario where the charge is induced in only one pad (details about signal induction
are given in Sec. 2.3.1), the spatial resolution is roughly the size of the pad. However, one way
to improve the position resolution of the detector without raising the number of channels and
additionally protecting the electronics from sparks, is by using the resistive-Micromegas technology.
In this case, a foil with high surface resistivity - typically a Diamond Like Carbon (DLC) foil - is glued
on top of the pad plane. By doing so, the cluster of electrons produced in the avalanche is spread
over the DLC following the 2D-Telegraph equation [129]:

∂ρ

∂t
=

1

RC

[︃

∂2ρ

∂r2
+

1

r

∂ρ

∂r

]︃

. (2.4)

Assuming an infinite plane and a delta function point charge, the charge density ρ is

ρ(r, t) =
RC

2t
e−r2RC/(4t), (2.5)

where RC is the time constant determined by the DLC resistance R and the capacitance C created
by the pad plane and the DLC, where the dielectric constant of the glue has to be considered.
Realistically, the charge is not point-like but a gaussian-shaped cloud of ne electrons of charge q

with a width w, proportional to the transverse diffusion. In this case, the solution is given by
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ρ(x, y, t) =
qne

2π
(︁

2t
RC + w2

)︁e−r2/[2( 2t
RC

+w2)]. (2.6)

Integrating eq. (2.6) constrained to a pad’s boundaries xhigh , yhigh, xlow and ylow, it is then straight-
forward to obtain the charge on a single pad [130]:

Qpad (t) =
qne
4

[︃

erf

(︃

xhigh√
2σr

)︃

− erf

(︃

xlow√
2σr

)︃]︃[︃

erf

(︃

yhigh√
2σr

)︃

− erf

(︃

ylow√
2σr

)︃]︃

,

where σr =
√︂

2t
RC + w2.

As an example, for a fixed gain of 6000, a 50 µm foil of Kapton with a resistance R=1kΩ/□ on
top of a 100 µm layer of glue and an electronics shaping time of 500 ns (with a negligible transverse
diffusion), a spread of ∼ 1.5 mm is created. A sketch of the cross-sectional view of its working
principle is shown in Fig. 2.10
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Figure 2.10.: Sketch of the working principle of the resistive Micromegas detector.

With the high suppression of the transverse diffusion in strong magnetic fields, as explained in
Sec. 2.2.1, the ionization charge clusters arriving at the pad plane would be confined to a single pad,
resulting in a loss of resolution. However, the spread of the signal over several pads perpendicular to
the track yields a more accurate centroid determination.

A disadvantage of the DLC method is that the uniformity of the resistivity and capacitance across
the anode surface is technically challenging, leading to inaccuracies of up to 30% [131]. An innovative
method to produce a spread of the charge among neighbouring pads is the capacitive sharing [132].
This method consists of a stack of layers of pads, arranged in such a way as to make the size of the
pads in a given layer half the size of the pads below, as seen in Fig. 2.11. The induced signal from the
micromegas amplification is then transferred by capacitive coupling from one layer to the next. The
use of the DLC becomes purely protective, as one is therefore able to increase the foil resistivity to
10–20 MΩ. In addition to being simple to produce, the main advantage of the technology is that the
spatial resolution is kept in the order of ∼100 µm with a lower number of readout channels needed.

2.3. Signal acquisition

2.3.1. Signal induction: The Ramo theorem

The signal usually consists of a short current pulse since a static charge is not measurable. Ramo’s
theorem [133] provides a method to calculate the current i induced in the readout pads by the
movement of the charge:
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Figure 2.11.: Charge sharing with the capacitive coupling method.

i(t) = qE⃗wv⃗,

where q is the charge of the carrier, v⃗ is the instantaneous velocity and E⃗w is the weighting field.
The weighting field is the component of the electric field which would exist in the direction of v⃗ at
the charge’s instantaneous position fulfilling the following requirements:

• The voltage in the electrode of interest is set to 1V.

• The rest of the electrodes are set to ground.

If the position of the carrier is determined following the field lines of the real field E⃗, then the time
profile of the induced current (or charge) can also be traced out to determine the shape of the pulse.
As an illustration of the theorem, let us consider the simple scenario of an electron-ion pair

immersed in a uniform electric field E⃗ produced by parallel plates (see Fig. 2.12).
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Figure 2.12.: Left: Electron-ion pair in a uniform electric field. Right: Current (top) and charge
(bottom) induced in Electrode 1 by an electron-ion pair.

The weighting field for Electrode 1 would be

E⃗
(1)

w =
êz
d
,

and therefore, the total induced current is
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i1(t) =

⎧
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⎨

⎪

⎩

ev
−

z

d if t ≤ z
v−z

ev
+
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d if z
v−z

< t ≤ d−z
v+z

(2.7)

where v+z and v−z are the drift velocities of the ion and the electron, respectively.
Similarly, the charge collected is given by

Q(t) =
e(d− z)

d
+
ez

d
.

Because of their mass difference, the signal induced by electrons is ×1000 faster than that of the
ions (see right side of Fig. 2.12). In the first case, it corresponds to a short pulse of large amplitude,
while the ions produce a long and lower signal. In fast detectors, the signal detected in gas detectors
is typically induced by the electrons. However, if the integration time of the electronics is >150 ns,
both contributions are integrated and the ions contribute equally to the amplitude of the signal.

2.3.2. Readout electronics

The electronic components for the extraction and acquisition of the signal follows a general scheme
that can be tuned to optimize the observables desired. Figure 2.13 shows the minimal scheme
required to readout a physical signal.

Sensor Preamplifier Pulse shaping ADC

DAQ

Induced 

Current

Figure 2.13.: Typical components used for the readout of the signal. See text for details. Figure
inspired from [134].

The induced signal on an electrode (a pad of the TPC) is usually fed into a preamplifier since the
amount of charge created is small with respect to the electronic noise (which is often the case in gas
detectors, see Sec. 2.2.4). Next, a pulse shaper is used. Its main purpose is to set the bandwidth of
the system and limit the duration of the pulse which sets the maximum signal rate allowed by the
system. The shaping time must be matched to the duration of the signals: Otherwise a portion of
the signal might be lost (if it’s too short) or degraded (if it’s too long). Finally, the shaped signal is
digitized by a sampling in an analog-to-digital converter (ADC) for subsequent storage and analysis.
The analog to digital conversion time is what drives the dead time of the readout. A commonly used
front-end readout in TPCs, the STAGE chips integrated into the ARC card [135], converts the analog
signal into digital format using a 4 channel, 25 MHz 12-bit multi-channel analog-to-digital converter,
meaning a dead time in the order of microseconds. Once the digital conversion is finished, the signal
is sent to a Data Acquisition system (DAQ) in a computer, where it is stored and analysed.

2.3.3. Noise

The acquired signal is superimposed with noise. Understanding the nature of the random fluctuations
in a signal and tune the setup to minimize it, determines the quality of the signal and accuracy of
the measurements.
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If one considers the current induced in an electrode by n electrons, as defined in eq. (2.7), its
fluctuation is given by

⟨∆i⟩2 =
(︂ne

d
⟨∆v−z ⟩

)︂2
+

(︃

ev−z
d

⟨∆n⟩
)︃2

.

The first term corresponds to the drift velocity fluctuations due to thermal excitations, that define
the thermal noise (see Sec. 2.2.1).
The second term is the shot noise, which describes the fluctuation of the number of electrons

through the readout electronics system. Since none of these processes have a frequency dependence,
they are white noise sources.
The noise of the preamplifier is particularly important as it affects the ultimate resolution of the

detector [95]. In particular, to optimize the counting rate, the thresholds should be set above the
noise (3-5 sigmas). If the noise is too high, one might cut the signal on some pads and therefore lose
resolution. The electronics noise is usually quantified in terms of its equivalent noise charge (ENC).
The ENC is defined as the signal amplitude after the preamplifier that makes the signal-to-noise ratio
equal to one [112].

In a simplistic manner, one can think of the detector as a capacitor Cd in which the induced charge
is modified as the electrons and ions drift through the gas. For an input resistance Ri and capacitance
Ci, the time constant for discharging the sensor is τ = Ri(Cd + Ci). If τ is large compared to the
signal pulse time, the charge will be integrated on the input capacitance and the signal voltage Vs. In
this case, Vs =

Qs

Ci+Cd
. Therefore, the signal-to-noise ratio of the detector, assuming a noise voltage

Vn is

Vs
Vn

=
Qs

Vn(Cd + Ci)
. (2.8)

Relation 2.8 evidences the inverse proportionality of the signal with the system’s capacitance. Since
the transportation of the signal from the detector to the preamplifier is carried through coaxial cables
which introduce an additional capacitance that increases linearly with length, it is good practice to
place them as close as possible as to improve the signal-to noise-ratio. In the case of PUMA, where
1.3 m long cables are used, a capacitance of 80pF is expected to produce a noise level of 1200
electrons rms (see Ch. 5).
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3. Simulations

3.1. Overview of the simulation package

The geometrical acceptance as well as the detection efficiency of the TPC was optimised. To that end,
simulations of the setup with realistic annihilation events have been carried out using the Geant4
toolkit [136], followed by the analysis of the simulated data with the ROOT framework [137]. The
overall procedure can be divided into four main stages:

• The generation of realistic events following experimental branching ratios of the possible decay
channels of a nucleon / antiproton annihilation.

• The implementation of the realistic setup and detector components.

• The electrons’ drift, amplification and collection of the signal in the pad plane.

• The identification of the charge of the pions by the bending of the tracks in the magnetic field.
The tracking algorithm is based on the method validated by the MINOS collaboration [100,
138].

Each of these stages are further detailed in the following subsections.

Setup and Event Generation

Each event produced in the simulation consists of a set of pions randomly generated according to the
measured branching ratios of antiproton–neutron [66] and antiproton–proton [67] annihilations. A
typical event is composed of three charged pions in average, where the most probable branching
ratios are 1π+1π−3π0 (23.3%), 2π+2π−1π0 (19.6%) and 2π+2π−2π0 (16.6%) for a p̄p reaction, and
2π−1π+kπ0(k > 1) (39.7%), 2π−1π+1π0 (17%) and 3π−2π+1π0 (12%) for a p̄n annihilation (see
Tab. 3.1). The reaction channels in which only π0 particles are produced, that amount to 3% of the
total branching ratios of the antiproton-proton annihilations, have not been taken into account.
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Figure 3.1.: Kinetic energy distribution of charged pions at the vertex before final state interactions.
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Table 3.1.: Pion final states for antiproton-neutron [66] and antiproton-proton [67] annihilations. Not
all decay channels are shown and the total sums of the above branching ratios do not
reach 100%.

antiproton-proton antiproton-neutron
Pion final state Branching Pion final state Branching
π+π− 0.0032 π−π−π+π0 0.17
π+π−π0 0.069 π−π−π+kπ0(k > 1) 0.397
π+π−π0π0 0.093 π−π−π−π+π+ 0.042
π+π−π0π0π0 0.233 π−π−π−π+π+π0 0.12
π+π−π0π0π0π0 0.028 π−π−π−π+π+kπ0(k > 1) 0.066
π+π−π+π− 0.069 π−π−π−π−π+π+π+kπ0(k ≥ 0) 0.0035
π+π−π+π−π0 0.196
π+π−π+π−π0π0 0.166
π+π−π+π−π0π0π0 0.042
π+π−π+π−π+π− 0.021
π+π−π+π−π+π−π0 0.019

The total kinetic energy that satisfies energy conservation is isotropically shared among final–state
pions. The energy distribution of the pions at the creation vertex, obtained from the simulation, is
shown in Fig 3.1. The most energetic pions reach up to 800 MeV while the most probable kinetic
energy is in the 100-200 MeV range. The final state interaction with the residual nucleus is not
considered in these simulations.

To accurately reproduce the experimental conditions, the different components of the setup in the
collision zone are simulated following the properties detailed in Tab. 3.2.

Table 3.2.: Material budget of the inner tube, the TPC and the plastic scintillators.

Piece Material Density Thickness Rad. len. Rad. len.
[g/cm3] [mm] [mm] [%X0]

Trap Cu 8.96 4 14.3 27.9
Cryostat Cu 8.96 0.75 14.3 5.2
70 K shield Al 2.50 1 88.9 1.12
300 K vacuum pipe Al 2.50 5 88.9 5.62
Insulator Polyimide 1.42 4 × 0.02 285 0.02
Field cage outer structure PCB 1.8 1.5 280 0.53
Field cage inner structure PCB 1.8 0.3 280 0.1
Field Cage Air gap Air 1 11 3.039×105 0.003
Gas mixture ArCF4Iso 0.0019 53 - 55 1.07×105 0.05
Insulator Mylar 1.4 0.02 285 0.007
Scintillator wrap Teflon 0.38 1 158 0.63
Scintillator PVT 1.032 4 425 0.9

Fig. 3.2 shows the kinetic energies of the detected pions at the first interaction point with the gas
mixture in the TPC (blue curve) compared to that at the creation vertex (red curve).
As opposed to Fig. 3.1, the pions that contribute to the vertex counts in this case are only those

that are later detected in the TPC. In this way it is possible to compare directly the influence of the
setup on the pions energy. The sharp energy rise of the pions at ∼40 MeV at the vertex gives a notion
of the minimum energy required to reach the detector in the first place. Lower energy pions are
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Figure 3.2.: Kinetic energy distribution of charged pions at the vertex before final state interactions,
compared to the kinetic energy at the first interaction point with the gas in the TPC.

either stopped in the setup or their curvature radius due to the Lorentz force is smaller than the
internal radius of the TPC. The inner tube in which the TPC is inserted has a radius of 50 mm. This
means that any pion with a kinetic energy ≤6.8 MeV does not exit the tube, which accounts for 1.5%
of the pions. In addition, the sensitive gas begins only 12 mm (radially) afterwards. This additional
length increases the minimum kinetic energy to reach the gas to 12.4 MeV, corresponding to 3.2% of
the total charged pions produced.

Upon reaching the sensitive gas, the pions suffer an energy loss. This is observed in the low energy
shift between both curves, of the order of 30 MeV, although the most probable energy remains in the
100 MeV range.

After an event is generated in the trap, the energy loss of the pions within the sensitive gas (10–
15 keV with a track-length of ∼15 cm, as calculated with Geant4) and the interaction points of the
particles in the gas are saved. A production cut of 0.01 mm inside the TPC was chosen to smooth
the energy loss and avoid clusters. This information is then used as input to implement the primary
electron generation and drift. Fig. 3.3 presents a typical event in the collision trap surrounded by the
TPC and the plastic barrel.

Figure 3.3.: Typical event simulated with the Geant4 toolkit, where the green region corresponds
to the annihilation region and the pink bars are the plastic barrels. The blue curve
corresponds to a π+ and the red ones to π−.
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3.1.1. Generation and drift of electrons

The number of primary electrons created in a given interaction point (x0, y0) is randomly generated
following a Gaussian distribution centered at Ne = ∆E/w, where ∆E is the computed energy loss
and w is the average energy needed to produce one electron-ion pair.
The drift of the electrons throughout the gas, from the creation point (x0, y0, z0) to the anode

plane, is influenced by the gas properties, electric field and magnetic field, as described in Sec. 2.2.
In the plane transversal to the drift (x, y plane) the final position of the electrons follows a gaussian

distribution given by

Pi =
1√
2πσT

e
−

(i−i0)
2

2σ2
T ,

where the index i corresponds to the x and y axis and the dispersion is σT = DT
√
z0, where DT is

the transverse diffusion coefficient. Similarly, along the drift direction (z axis):

Pz =
1√
2πσL

e
−

(z−z0)
2

2σ2
L ,

where the probability distribution contains, instead, the longitudinal diffusion coefficient DL, with
the corresponding dispersion σL = DL

√
z0.

The transport parameters used in this simulation (namely the drift velocity, DT and DL) were
calculated beforehand with Magboltz [139] in the conditions of the experiment for different gas
mixtures (see Sec. 3.3)).

After simulating the drift, the amplification of the signal is implemented. The avalanche effect is a
statistical process in nature, meaning that the gain produced in the amplification stage fluctuates
around a mean gain Ḡ. The distribution that describes this process is the Polya distribution [140],
given by

PG(G/Ḡ; θ) =
(θ + 1)θ+1

Γ(θ + 1)

(︃

G

Ḡ

)︃θ

exp

(︃

−(θ + 1)

(︃

G

Ḡ

)︃)︃

,

where Γ is the Gamma function and θ a parameter usually set to θ ∼ 1. In the simulation, a gain with
a mean value corresponding to the expected gain for each gas mixture considered was included (see
Sec. 3.3 ). These values are calculated with Magboltz and vary in the range of 103−104, depending
on the gas.
For these simulations, the anode plane is segmented into rectangular pads of constant area (see

Sec. 5.2) in which the response of the electronics system is simulated. The model used was developed
and validated in the MINOS experiment [100]. White noise corresponding to the electronics intrinsic
noise as well as the noise produced by a cable length of 1 m was added (see Sec. 2.3.2), with a
detection threshold five times larger, estimated in 2500 electrons. An example of the waveform in a
pad as a function of time is shown in Fig. 3.4.

3.1.2. Tracking method

The correct determination of the charge of the pions is key to determine which type of nucleon was
annihilated on the surface of the nuclei (p̄p or p̄n). Charged particles in an electromagnetic field
have a curved trajectory following the Lorentz force

F = q(E+ v ×B).

If a uniform magnetic field B perpendicular to the velocity v of the particle is applied, then the
force F will be orthogonal to both quantities at each instant, making its trajectory circular in the
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Figure 3.4.: Simulated signal waveform in a pad.

plane perpendicular to the B field. The direction of motion will only depend on the charge q of the
particle, making it possible to differentiate π+ from π−. The assumption of a constant 4 T B field
parallel to the E field is justified by the requirements and measured values of the PUMA solenoid
(homogeneity better than few percent in the drift region - see [28]).

For this reason, a track reconstruction software to determine the direction of the particle’s trajectory
in the XY plane is implemented. To that end, each track is fitted with the circle equation using the
MINUIT tool with the MIGRAD minimizer [141]: The data points considered are the center of each
pad that was hit weighted by the charge it collected. An additional constraint for the minimization is
that the track should arrive from the center of the trap, meaning that the XY origin is an extra point
added to every track as initial guess.

To determine the charge, a straight line between the fired pads of closest and farthest distance from
the inner radius of the TPC is created (see left side of Fig. 3.5). Thereafter, a vector perpendicular to
the line pointing towards the farthest fired pad is produced. The direction of this vector (to either
side of the straight line) determines the charge of the track.

Figure 3.6 shows an example of a fitted track in 2D. In this simulation, the gain is 104, corresponding
to a field strength of 45 kV with Ar:CF4:C4H10 / 82:15:3 gas mixture.
With this approach, it is possible to obtain 95% of charge identification efficiency (see Sec. 3.2).

There are three types of tracks in which this method does not work: on the one hand, energetic pions
that produce straight tracks. In the second case, pions that fire less than four pads, therefore not
having enough points to determine a direction of curvature. In the third case, a small percentage
of low-energy pions do not exit the detector and instead return back to the trap. In these case the
2D charge reconstruction becomes unreliable (see left-hand side of Fig. 3.7). These correspond to
2.2% of the charged pions that reach the detector’s sensitive gas, with a maximum kinetic energy
of 21 MeV at this stage. The timing information was therefore used to determine the charge of the
tracks, where the position in the axial direction (Z) was extracted using the known drift velocity
(4.38 mm/µs). The same track is shown in the right-hand side of Fig. 3.7, where the trap (in green)
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Figure 3.5.: Procedure to determine the charge of the pions. Left: Circular fit of fired pads (crosses)
and straight line creation from both ends of the track. Right: vector perpendicular to the
line pointing to the farthest pad from the line. The direction of the vector determines
the charge of the pions.

was included to facilitate the visualization.
With this method in place, the three-steps Monte-Carlo simulation is run systematically to optimize

different parameters of the Time Projection Chamber, as detailed in the following.

3.2. Dimensioning of TPC

The TPC external radius R, its length L and the pads shape and size were studied to optimize the
detector geometry.

The total detection efficiency is defined as

εtot = εTPC · εID

where εTPC corresponds to the ratio of pions that are within the TPC’s geometrical acceptance and
not absorbed by the surrounding materials over the total number of charged pions generated after
an annihilation. The charge identification efficiency, εID, is the ratio of charged pions whose charge
is correctly identified by the analysis software over the total number of charged pions detected by
the TPC.

3.2.1. TPC length

Figure 3.8 displays the efficiencies εtot (triangles), εTPC (squares) and εID (circles) obtained as a
function of the length of the TPC after the simulation of 1500 events, corresponding to roughly 3500
charged pions. The material from which the trap is made of as well as the rest of the components
surrounding the trap, described in Tab. 3.2 were simulated. The external radius of the TPC used for
this simulation was R=120 mm and a point-like plasma cloud was used. At this stage, the pads were
simulated with a rectangular shape of 3 mm of height and 2 mm of width.
In this case, the acceptance of the TPC (depicted by the blue curve) increases sharply up to an

efficiency of 0.75 at 300 mm - the chosen length for the detector - and remains stable afterwards.
The accurate identification of the charge (green curve) is not affected by this parameter, as the length
of the tracks remains constant.
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Figure 3.6.: Two-dimensional charge collection distribution of two tracks after the drift of electrons
following an event. The red lines represent the fitted curves (a section of a circle) of the
tracks. See text for details.

3.2.2. TPC external radius

The TPC’s internal radius is fixed by the dimensions of the trap, thermal screens and vacuum tube at
Rint = 51 mm. Additionally, another 13 mm are needed to accommodate the TPC’s field cage (see Ch.
4), placing the inner radius of the TPC’s sensitive volume at rint = 64 mm. Optimising the detection
efficiency as a function of its external radius is relevant for the determination of the magnet’s bore
radius and the thickness of the plastic barrel.
Figure 3.9 shows the efficiencies obtained in the same conditions as for the length study, fixing

the TPC’s length at L=300 mm. The blue curve (squares) corresponds to the aforementioned εTPC

which, as expected, remains constant: The absorption probability of a pion depends only on the
materials the particle traverses during its path towards the TPC sensitive gas, and the geometrical
acceptance only depends on its length.
An increase is observed in the charge identification efficiency εID (circles) due to the increase of

the track’s length as the radius enlarges. A plateau is reached at R∼120 mm, which determines the
minimum radius that ensures the maximum efficiency. Considering the additional space needed for
the mechanics, electronics and the plastic scintillators, the magnet’s bore was then set to 140 mm
radius.

3.3. Gas Choice

The selection of the gas is a defining feature of the detector’s performance and several aspects need to
be considered. Three candidates are compared (Fig. 3.10 and Fig. 3.11). All the mixtures are Argon
based because of its low ionization energy (∼25 eV) and low cost. One of the mixtures contains
Carbon tetrafluoride (CF4) (usually used to attain a higher drift velocity [100, 142]) and isobutane
as a quencher, while the other two use carbon dioxide, instead. In addition, one of the mixtures
include a small percentage of methane (CH4) which modifies slightly the drift velocity and electron
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Figure 3.7.: Left: 2D projection of a track fitted with a circle, whose charge cannot be determined on
the basis of the 2D projection information only. Right: The extraction of the drift time is
used to reconstruct the track, allowing to disentangle the charge of the pion.
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Figure 3.8.: Efficiencies εtot (triangles), εTPC (squares) and εID (circles) as a function of the length
of the TPC. The error bars correspond to statistical uncertainty from the simulation.

attachment, as observed in Fig. 3.10. The simulations shown in this figure were produced with
MAGBOLTZ considering a temperature of 295 K and a pressure of 1 atm.
The drift velocity need to comply with the detector’s drift length, electronic’s readout frequency

and the rate of events. In the case of PUMA, the drift velocity is not a defining factor since a maximum
rate of events of 100 Hz is expected when stable isotopes are studied (and it will decrease in the
case of exotic ions). This low rate and the compact size of the TPC (300 mm of maximum drift
length) allows to optimize other properties of the gas. Importantly, the nominal field at which the
detector operates would ideally be set such that the drift velocity remains stable within small pressure
fluctuations. This condition is met at the local maxima of each curve (left side of Fig. 3.10), obtained
at 200-300 V/cm in the CO2 mixtures while a field of 1000 V/cm would be needed in the third gas.
Due to the constrained space and proximity to ground of the PUMA field cage (see Ch. 4), a lower
operation field is preferred. Moreover, the gain in the three cases, given by G=eαx is comparable
although the CO2 mixtures show a slight higher Townsend coefficient in the 104-105 V/cm region.

The electron attachment probability per unit length η is also highly suppressed in the CO2 mixtures.
This is also a desirable feature as the loss of electrons due to attachment reduces the signal.

The diffusion coefficients are considered in Fig. 3.11. Due to the high magnetic field of 4 T present
in the TPC, the transverse diffusion coefficient DT is suppressed in all cases. The charge is indeed
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Figure 3.10.: Drift velocity, first Townsend coefficient and electron attachment as a function of the
electric field of candidate’s gas mixtures for the PUMA TPC.

foreseen to be diffused by the capacitive coupling method (see Sec. 2.2.4) before collection so as to
improve the spatial resolution with a centroid determination. The longitudinal diffusion coefficient
DL impacts the TPC resolution in the drift direction. In the case of PUMA, however, its influence
would be negligible due to the small size of the TPC (between 0.3 to 0.7 mm for half the drift distance
-where the pions are produced-, depending on the gas).

The safety and environmental regulations are in place at CERN constrain the choices to gases
that are non-flammable and that do not contribute to the greenhouse effect. This last regulation in
particular requires the forbids the use of fluorine. In terms of flammability, Ar-CO2 is non-flammable
while CH4 is non-flammable as long as it’s present in less than 5% of the proportion [143].

It is therefore concluded that both gas mixtures based in Ar and CO2 are adequate options for the
PUMA TPC.
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Figure 3.11.: Diffusion coefficients DL and DT of candidate gas mixtures for the PUMA TPC.

3.4. Background rejection

The influence of atmospheric muons in the experiment, product of cosmic ray showers in the at-
mosphere, is investigated. The PUMA concept is based on solely the detection of pions with no
coincidence with recoil nuclei. Therefore, cosmic rays can in principle be a source of background
which we wish to quantify with the chosen geometry. To this end, simulations with Geant4 are
produced to determine their rate and the rejection capabilities of PUMA.

Event generator

The simulation of atmospheric muons is done integrating into Geant4 the Cosmic Ray Shower library
(CRY) [144], in which cosmic ray showers are generated from data tables and show good agreement
with cosmic rays measurements [145]. The library allows to choose a set of parameters (altitude,
latitude and date -to account for the eleven year, sunspot cycle-) to adjust the particle distributions
to the conditions in which the experiment will take place. Cosmic particles are generated in an area
of 5×5 m2 on top of the detector to allow a large angular acceptance. The cosmic muons arriving
from the other side of the world are not considered since they are largely suppressed by the planet.
The latitude is set to Geneva (CERN location) and the year to adjust the Sun cycle is set to 2023.

Rate of atmospheric muons

The package needs the number of cosmic muons to be simulated as input, and the output includes
their rate, angular distribution and energy.

From the simulations, the rate of muons expected to cross the TPC is ∼2 sec−1. However, ∼90 % of
them are rejected by adding the constraint that their track should also pass through the collision zone
of the trap: In this case, after a simulation of 3 million muons, the expected rate is 8± 0.5 min−1.

The total energy deposit per particle in the TPC is shown in Fig. 3.12, assuming a rate of 10 min−1

real events. Only the muons that cross the trap are considered for the comparison. In this case, the
energy deposit of the muons is larger than that of the pions since their track is about twice as large.

A clear cut can be seen at ∼30 keV and only less than 1% of the pions will have an energy deposit
in the TPC similar to the muons. In addition, muons will only pollute the channels of multiplicity M
= 1 and 2, which represent 30% of the total branching ratios. Considering all of these factors, it
is estimated that at least 99.7% of the muons will be rejected. The PUMA magnet is added to the
simulation to investigate if the rates of muons are modified. Figure 3.13 shows the energy deposit in
the TPC in the conditions where the magnet is present and when it is not. Additionally, the energy
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Figure 3.12.: Comparison of the energy deposit in the TPC by pions (red histogram) with respect to
muons (blue histogram) traversing the trap.

deposit in the TPC of the proportion of muons that also traverse the trap is included. The result
indicates that the magnet shows no effect in the rate of muons observed.
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4. Design of the Field Cage

The path of the primary electrons in the drift region can be altered by changes in the uniformity
of the electric and magnetic fields, as well as variations in the gas properties (such as temperature,
pressure, impurities). As such, not only a minimisation of these effects during the design phase of
the TPC is required, but also a comprehensive understanding of these distortions, which introduce a
systematic offset that will need to be corrected during the data analysis.

4.1. Uniformity of the fields

One of the main sources of distortions of the electric field uniformity is given by edge effects produced
by the cathode and anode plates. The standard way of mitigating this effect to a first approximation
is by introducing a field cage, which is nothing but a set of conductive rings, centred along the
drift direction and connected to one another through a resistor chain. As a consequence, a linearly
decreasing potential is created within which the electrostatic field lines show an overall straight path
from anode to cathode in the active volume of the TPC.
To visualise this effect, Fig. 4.1 displays an electrostatic simulation of parallel plates in 2D, in

which the difference in the potential contours created by adding and removing the field cage is
evidenced.

Without field cage With field cage Comparison

Figure 4.1.: Left: Potential lines in an electrostatics 2D-parallel plate simulation. Middle: A field cage
is added to the setup. The contour lines are less distorted within the cage area. Right:
Comparison of contour lines. The red contour lines correspond to the ones produced
with the field cage while the black ones without it.

Because of the finite size of the strips and inter-strip distance, it is expected to see non-uniformities
close to their boundaries. In order to avoid dead channels at the edges of the pad plane, product of
these distortions, the design of the field cage, consisting mainly of the strips, the cathode and the
anode is optimised.
The study of the field homogeneity is performed with the Finite Element Method (FEM), which

consists of solving numerically a set of differential equations with given boundary conditions. To do
that, the space where the solution is expected is subdivided in discrete elements, effectively forming
a mesh interconnected at points common to two or more elements or boundaries. It is at these nodes
that the field is explicitly calculated, and the solution of the full system is interpolated.
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Because of the cylindrical symmetry of the PUMA TPC and to avoid large computation times, a
2-dimensional mesh consisting of the main components of the field cage is produced with the finite
element mesh generator software, Gmsh [146]. To solve the Poisson equation, the mesh is introduced
into Elmer FEM [147], an open source multi-physics solver. At this stage, the input consists of the
boundary conditions (fixed potential of each electrode, the cathode, the anode and the grounds),
together with the dielectric constants of the media where the field is to be solved.

The accuracy of the simulation depends significantly on the quality of the mesh [148]. One of the
metrics used to evaluate the mesh elements is the aspect ratio, defined as the ratio of the shortest
length to the longest length of one element. An aspect ratio closer to one implies a better quality
element. Figure 4.2 shows the quality of the mesh elements produced for the simulation of the PUMA
field cage, according to this metric. As it can be observed, the most frequent value corresponds to
1.1, while 90% of the elements are within the range <1.4, well below the typical "limit" of 4-5 to
consider an element still acceptable [149].

Figure 4.2.: Quality of the mesh elements according to the aspect ratio metric [150].

The output of the mesh generator and the electrostatic solver is shown in Fig. 4.3. The elements
are refined in the regions where the field is expected to change abruptly and particularly in the
vicinity of the strips, where the most accurate solution is desired.

(V)

Figure 4.3.: Field cage mesh calculated with the Gmsh software using FEM and electrostatic field
solved with ElmerFEM.
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4.1.1. Field cage structure

As shown in Fig. 4.4, the structure of the field cage consists of a flexible PCB substrate, in which two
layers of strips (one at each side of the PCB with an offset of half a pitch) of 1 mm long with a 0.5 mm
separation are interconnected by a chain of 1 MΩ resistors. The strips are made of gold-plated copper
and have a thickness of 50-80 µm with rounded edges to minimise edge effects. Two flexible PCBs
(one for the internal radius of the TPC and another for the external radius) with the same disposition
are used. An additional two PCBs separated by an 11 mm gap of air from the internal ones, provide
the external structure of the TPC. The external structure is shaped in a 32-sided polygon in which
the barrel of plastic scintillators sit.

Cathode  

Shield

Anode 

Mesh

Cathode

External PCB

External Strips

Internal Strips

z

1 mm

0.5 mm

z

Strip

PCB

Internal PCB

Figure 4.4.: Structure of the TPC’s field cage. The inset shows the double layer of strips at each
side of a PCB in the inner and outer radius of the active area. See text for details.

The main considerations to define the strip configuration are related to uniformity of the field and
electrical protection against sparks. For instance, the two-layered PCB minimises field distortions in
the inter-strip regions in the vicinity of the field cage. In the same way, the distance between the
strips and the grounds can impact the uniformity of the electric field within the drift region. Figure
4.5 shows the potential lines produced by a smaller gap (5 mm) and the 11 mm separation from the
ground.

Inner tube 

(Ground)
PCB Air PCB

Gap

5 mm gap

11 mm gap

Electrodes

Figure 4.5.: Left: Triangular mesh. Insets: Contour lines produced by two different gap sizes (5 mm
and 11 mm).

The distortion of the electric field near the strips is shown in Fig. 4.6. In this figure, each count
corresponds to a node in the mesh where the field is calculated exactly. Similarly, each histogram
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specifies the relative distortion within the radial boundaries specified, zero being exactly at the strips
edge. As it can be observed, the field lines become less than 5% distorted within less than 1 mm
away from the strips.
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Figure 4.6.: Relative distortion of the electric field for different radial distances from the inner
boundary of the field cage. See text for details.

4.1.2. Anode Side

One of the main challenges of the PUMA TPC is the field adjustment between the anode and the
field cage. The homogeneity of the electric field near the pad plane is particularly relevant to avoid
tracks distortions, electron loses and dead channels. In the case of PUMA, the anode is grounded
and extended towards the outer structure of the field cage. The advantage is that the edge effects
are shifted away of the active region and into the field cage inner layer structure, as seen in Fig. 4.7.

Short anode Long anode

Figure 4.7.: Field lines produced by different anode lengths.
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4.1.3. Cathode Side

The high tension applied to the cathode (-6 kV to obtain an operational field of 200 V/cm) presents
. A thick cathode provides, on the one hand, stability for the mechanical elements (gas and high
voltage connections) as well as the possibility of machining a larger radius of curvature.

Figure 4.8.: Cathode shape of the PUMA TPC.

The proposed configuration is simulated and the results are shown in the following.

4.1.4. Electron drift simulation

A quantitative approach is developed to determine the drift direction of electron clusters in the
experimental setup proposed. To that end, the software Garfield++[151] is used. This toolkit, based
on the ROOT framework, is designed to simulate the tracks of particles in a gaseous medium. Once
the gas composition is set, the program loads the collision rates corresponding to the selected gas
from the database Magboltz [152] and modifies them to comply with the chosen extrinsic parameters
(temperature and pressure).

The electrostatic field calculated with Elmer FEM, as well as the magnetic field map simulated for
the design of the PUMA solenoid [28] are used as inputs. Additionally, a gas mixture of Ar/CF4/iso:
85/13/2 is used at ambient temperature and 1 atm pressure. Under these conditions, the drift velocity
of the electrons is vd=6.1 cm/µs, the transverse diffusion is 16.5 µm/

√
cm and the longitudinal

diffusion is 218.1 µm/
√
cm. In this case, Garfield++ transforms the 2D solution of the electrostatic

field into 3D following the axial symmetry of the setup.
A point-like cloud of 1000 electrons is systematically created at different initial positions within

the active volume of the TPC (xi, yi, zi) and drifted following the Monte Carlo method: Each electron
is tracked microscopically, where at each step there is a certain collision probability. Iteratively, the
new electron energy and position is calculated. The final position of each group of electrons (xf , yf )
when they arrive to the anode (zf ), is saved. Figure 4.9 shows the 2D distribution of the final position
of the electron clusters, initially released at six different initial positions: The radial internal edge,
external edge and middle at full drift length (xi=68.5, yi=285) mm, (xi=90, yi=285) mm and
(xi=119.5, yi=285) mm, respectively, and the same radial positions, but for a short drift length:
(xi=68.5, yi=10) mm, (xi=90, yi=10) mm and (xi=119.5, yi=10) mm, respectively.

Both simulations released at a radial distance of 90 mm show centred clouds that only differ in
the size, product of the transverse diffusion which makes the cluster corresponding to the longer
drift distance to be ∼10 times larger. In addition to the diffusion, the electrons released at the radial
boundaries of the TPC show a collective deviation of <200 µm for the ’worst case scenario’, where
the electrons travel the full drift length of 285 mm.
To have a consistent metric of the electron cluster’s deflection at different initial positions within
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Figure 4.9.: Deflection of the electron cluster for different drift lengths along the radial direction of
the TPC.

the sensitive volume of the TPC, the transverse deviation ∆r given by

∆r =
√︂

(xf − xi)2 + (yf − yi)2,

is used. Figure 4.10 shows the deflection of the electrons∆rwith respect to the central position from
which they were released, where each curve corresponds to a given drift length and the horizontal
axis is the radial distance from the center of the TPC. The inner and outer radial boundaries of the
field cage are specified with vertical red lines.

As it can be observed, the full drift region shows a deviation of <100 µm in more than 70% of the
TPC volume, while the remaining percentage, at the edges of the cage, shows a deviation smaller
than 200 µm. These values are to be compared with the pads size in the anode plane (see Sec. 5.2),
which have an average value of 3×3 mm2. Therefore, the impact of the deviation of the tracks due to
the (ideal) field cage structure is negligible.

Simulations considering structural imperfections or realistic elements are detailed in the following.

4.1.5. Resistor Chain Homogeneity

The strips are interconnected through a chain of 200 resistors of 1 MΩ and imperfections in the
resistors can then modify the expected field uniformity. To assess their influence, simulations
including realistic resistors, with 0.1%, 0.5% and 1% precision have been carried out. In this case, a
random value following a flat distribution is assigned within the corresponding tolerance to each
resistor, and the corresponding potential drop is computed. Following the same method as in the
previous section, the deflection ∆r is calculated for the full drift length at the radial positions of
68.5mm, 90mm and 119.5mm, corresponding to the radial boundaries and center of the TPC. Figure
4.11 shows the deviation as a function of the tolerances simulated, where the first points - at zero -
correspond to the case of ideal resistors.
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Figure 4.10.: Deflection of electron clusters for different drift lengths along the radial direction of
the TPC. The vertical red lines correspond to the radial boundaries of the TPC.

The edges of the field cage, closer to the resistors, show a higher deviation as it was evident in
Fig. 4.9, and the larger tolerance variation show a slight influence, where the variation with respect
to the perfect resistors at 1% precision is less than 10%, while it increases up to 23% considering
resistors with 5% tolerance. The center radial region of the TPC (green points) is not affected by this
effect at these tolerance ranges.

4.1.6. Magnetic Field Homogeneity

The 4 T magnetic field in the PUMA experiment fulfils two different purposes: On the one hand, to
trap axially the ions and antiprotons in the Penning traps and, on the other hand, to curve the track
of the pions traversing the TPC in order to identify their charge due to the Lorentz force. For both
these goals, the B field has been designed to have a uniformity better than 0.2% in the traps region
and better than 5% within the full drift volume of the TPC [28]. Inhomogeneities and misalignments
between the electric and magnetic field can lead to distortions, as detailed:

Fields Alignment

When the fields are not parallel, there is a distortion in the clusters, leading to inaccurate tracks
reconstruction.
Figure 4.12 shows the deflection of electron’s clusters in the middle region of the drift area. As

observed, the alignment with a precision better than 0.1◦ would be desirable to ensure a deflection
of less than 500µm due to the E×B effect.

Lorentz Angle

According to the Langevin equation (2.2), any non-parallel component between the electric and
magnetic fields, modifies the electrons’ drift velocity direction and magnitude, and its impact is
therefore gas dependent. To drift velocity is then computed for the three candidate gases using
Garfield++ as a function of the angle between the electric and 4 T magnetic field. For this calculation,
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Figure 4.11.: Deviation as a function of the resistor’s precision.

the expected nominal electric field of 200 V/cm was used. Figure 4.13 shows the components of
the drift velocity vE, vB and vE×B, parallel to the electric field, to the transverse magnetic field and
transverse to both, respectively.

As observed in this figure, the three gas mixtures show a similar behaviour in orders of magnitude.
An angle of 0.1 rad, (5.7◦) leads to a component of the drift velocity in the transverse magnetic field
direction which is 1% of vE. However, considering the constrain obtained of 0.1◦ found the previous
section, this effect is negligible for the gas mixtures considered.

4.2. Electric Protection Design

The cathode is a disk at -6 kV placed in a compact space surrounded by ground: Internally, by the
PUMA ultra high vacuum tube and, externally, by the bore of the 4 T magnet. As such, the field
strength in this area presents a risk of sparks and care needs to be taken in order to ensure a stable
and safe operation of the detector.

4.2.1. Breakdown Voltage

The phenomena of breakdown is attained when the electric field strength in a certain medium
is sufficiently high as to produce a discharge. This process was investigated by F. Paschen, who
developed an empirical law to determine the breakdown voltage in gases Vd, depending on their
pressure p and the gap between the electrodes d, modelled by Eq. (4.1) [153]

Vb =
Bdp

ln(Apd)− ln
(︂

ln
(︂

1 + 1
γse

)︂)︂ , (4.1)

where A and B are gas dependent constants determined experimentally, and γse is the secondary
Townsend coefficient. This coefficient is the number of secondary electrons produced per electron in
the primary avalanche [154].For air, as an example, A=112.5 (kPa cm)−1 and B=2737.5 V (kPa
cm)−1. The breakdown voltage of air at 1– 4 bar as a function of the spacing between electrodes is
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Figure 4.13.: Drift velocity as a function of the Lorentz Angle for the three candidate gas mixtures.

shown in Fig. 4.14. At very low pressures, the breakdown voltage is high since the mean free path of
electrons is longer than the gap distance. As a consequence, the electrons reach the ground before
encountering atoms to ionize. In contrast, at a high pressure the mean free path is so small that
electrons cannot reach the necessary acceleration to ionize an atom before colliding. The minimum
breakdown voltage at one bar in air is reached for a gap in the range of 6 to 8 µm.

Corona Discharge

This type of discharge involves a partial arc between two electrodes (instead of a full short). The
main disadvantage of the corona discharge is that even though it is will not produce an instant
failure of the detector, the partial discharges over time degrades the insulation system, diminishing
the detector’s lifetime. To minimize corona, sharp edges are to be avoided and insulations should be
as thick as possible [156].

To mitigate this risk, a study of the field strength in unwanted areas where air or the gas mixture
might be present is carried out.
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Figure 4.14.: Paschen curves of air at different pressures, as a function of the gap between elec-
trodes. Figure reused with permission by [155] ©2008 IEEE.

4.2.2. COMSOL Simulations

The critical areas were identified and a study of the field strength and risk of discharge was performed
with the electric currents package of the multi-physics software COMSOL. Figure 4.15 shows the
cross-section of the 3D simulated section of the field cage, identifying the components included. The
materials and electrical properties are summarised in table 4.1. The critical regions are:

• The air encapsulated in the O-Rings groove.

• The air encapsulated in the screws.

• The conductive edges of the resistors.

• The air encapsulated in regions where the epoxy might not completely cover the cathode.

• The HV connector region.

Table 4.1.: Materials electrical parameters.

Part Material Conductivity Permittivity
(S/m) (F/m)

O-Rings Fluorinated Ethylene Propylene (FEP) 1× 10−7 2.1
Screws Polyetheretherketone (PEEK) 1× 10−14 3.3

HV housing Brass 1.6× 107

Metallic shield Aluminium 3.7× 107

Cathode Copper 5.9× 107

Insulation Epoxy 6.1× 10−11 5.4
- Air 3× 10−15 1
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Figure 4.15.: Cross sectional view of the field cage components simulated in COMSOL for the
discharge study.

Air encapsulated in the screws

When inserting screws to assemble the field cage, air can be trapped within the threads and create
discharges in the high field region. The simulation in this case consists of inserting a non-metallic1

M4 screw as sketched in Fig. 4.15 with a layer of air of variable thickness surrounding it. The results
of the simulation are shown in Fig. 4.16.

The left hand side of Fig. 4.16 shows a 2D representation of the field strength obtained considering
a layer of air of five different thicknesses surrounding the screw. The drop of the curves corresponds
to the field inside the screw, while the peaks are the interfaces among both media. The highest fields
are seen at the side of closest approach to the cathode (right peaks). These values are then compared
with the electric field strength corresponding to the breakdown of air following the Paschen model
up to an air gap of 1 mm. Higher values are considered to be unlikely to occur. As it can be observed,
the expected breakdown is in the order of at least twice as much as the field strength foreseen in this
area, leaving a prudent safety margin.

Air encapsulated in the O-Ring groove and in the epoxy-cathode interface

Similarly to the previous case, the air contained in the space between the O-rings and the groove is
studied (see Fig. 4.17). By comparing the electric field strength with the breakdown voltage from
the Paschen curves of Fig. 4.14, it is observed that the maximum field strength is below 2.5 kV/mm,

1The screw is made out of a high purity polymer called PEEK, specially suitable for assemblies in high voltage.
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Figure 4.16.: Left: Electric field strength across the simulated screw for different air gaps surrounding
it. Right: Comparison of the field strength required for breakdown in air according to
the Paschen model (blue) with respect to the field strength obtained in the most critical
points (marked with orange in both figures).

while the Paschen field strength needed to produce a breakdown ranges between 4.5 kV/mm (for a
1 mm gap) to ∼13 kV/mm (for a 50 µm gap).

In order to not have the rounded cathode close to the tube in air, the copper piece is surrounded
by epoxy which provides a high dielectric strength. The right-hand side of Fig. 4.17 shows the result
of the simulation in the air trapped between the cathode, the epoxy and the PCB. In this case, the
electric field strength in gaps lower than 0.5 mm remain at least one order of magnitude below
the breakdown voltage. The closest approach to the breakdown voltage is at 0.5 mm, where the
breakdown voltage becomes 4 kV/mm and the simulation shows that the field strength is ≲ 3 kV/mm,
which is nonetheless safe of discharges. For larger gaps the discrepancy increases once more.

63 64 65

L (mm)

28.5

29.5

L
 (

m
m

)

1

2

3

4

5

6

7

(kV/mm)

Epoxy

Air

PCB Cathode

59.5 60 6261.56160.5

0.5

1

1.5

2

(kV/mm)

O-Ring

Flange 

(Epoxy)
Air

L (mm)

Figure 4.17.: Left: Electric field strength in the area of the O-ring. Right: The same result in the air
trapped in the interface between the epoxy and the PCB.

The High-Voltage connector region

The left-hand side of Fig. 4.18 shows the positioning of the high voltage connector2 within the
cathode and with respect to surrounding grounds. The output of the simulation is shown on the

2The connector part is a Lemo EHP.1S.405.CTL.
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right-hand side of the same figure. It is observed, in this case, that the high field strength is rapidly
quenched within the housing of the connector due to the built-in insulator, posing no risk for the
setup.
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Figure 4.18.: Left: Positioning of the high voltage connector in the TPC. Right: Field strength in the
region.

Resistors’ edges

The sharp conductive edges of the resistors near the cathode at a distance of 11 mm to the ground,
might be a source of discharges. In this case, a reduced version of the field cage that captures the
essence of the region of concern is simulated and shown in Fig. 4.19. The ground is placed at a
distance of 11 mm from the high voltage, at -6 kV. Additionally, the conductive strips in both sides
of the internal PCB are included. Finally, a set of four resistors3 of 2×1.25×0.5 mm3 are placed
on top of consecutive strips, away from the boundaries of the simulated region in order to avoid
inaccuracies in the calculation due to artificial edge effects.

1 mm 0.5 mm

11 mm

External PCB

Internal PCB
Strips

Ground

Resistor

Ground

External PCB

Internal PCB

Resistors

Strips

3D view 2D sketch

Figure 4.19.: Left: 3D view of the setup in COMSOL to study the discharge probability due to the
edges of the resistors. Right: 2D sketch with dimensions included. See text for more
details.

The mean field strength around tip of the edge of the resistors is extracted. As a first step, a mesh
size analysis is made: the same simulation is performed for different mesh sizes until convergence of
the results is achieved, as shown in Fig. 4.20.

3Based on a high reliability 1MΩ Panasonic resistor, ERA series model.
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Figure 4.20.: Field strength obtained at the resistor’s edges for different mesh sizes.

To increase the safety of the region, the resistors will be sprayed with Polyurethan to create a
100 µm insulating layer. This material has a high dielectric strength that suppresses the possible
sparks that might emerge. With this addition, the maximum electric field strength obtained in this
air gap is 0.049 kV/mm.
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5. TPC Construction

The output of the TPC simulations converged into the technical design of the detector. The PUMA
TPC is being built at CERN by the micro-pattern gas detector (MPGD) group of CERN [157]. Details
of the process and full setup are given in the following.

5.1. Cathode and Field Cage

The cathode is a 10 mm thick copper plate with 1 mm round corners and a 1-100 µm gold-plating
(see Fig. 5.1). The gold plating provides higher conductivity and less degradation of the surface
over time than copper. Additionally, the round corners ensure a field strength below the breakdown
voltage of air (as seen in Ch. 4).

Figure 5.1.: Cathode of the TPC. Left: Raw material (copper). Right: Cathode after the gold-coating
procedure.

The cathode provides the entrance of four gas entrance and exits to the active zone (and additional
four at the anode side) and it is shielded from the ground at the inner and outer radius through a
16 mm tick PCB layer, shown in the technical drawing of Fig. 5.2. The cathode is screwed into the
PCB with 16 M4 screws embedded into the plate (only two are shown in the figure).

Cathode Cathode

PCB PCB

HV connector HV connector

Soldering 

point
M4

Figure 5.2.: Drawing of the cathode assembly with the shielding PCB (left) and the high voltage
connection (right).
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The field cage structure consists of 200 field shaping strips 1 mm wide with 40 µm rounded edges
and 500 µm interstrip, printed at each side of a flexible PCB.The strips on both sides are connected
through vias, and the degraded potential is achieved by a resistor chain (1 MΩ each) soldered on
the outer side of the active volume. The scheme is shown on the left side of Fig. 5.3 while the
manufactured strips are displayed in the middle figure. The first strip of the field cage is connected
to the cathode, rendering both at the same potential. An identical resistor chain is installed in case
of failure of one of them. A current readout of 10 nA provides sufficient resolution as to determine
wether a resistor works at 80% of its nominal operation. The resistors soldered into the PUMA field
cage is shown in the right-hand side of the same figure.

Figure 5.3.: Left: Strips and resistors scheme. Middle: TPC Field cage foil from the sensitive volume
side. Right: Detail of the soldered resistor chains on the opposite side of the foil.

5.2. Pad Plane

5.2.1. Layout

A study of the geometry of the pads is performed in order to optimize the identification of the charge
of the pions. To that end, three different possibilities are studied. On the one hand, the option of
identically square pads of 3×3 mm2 of area (see left side of Fig. 5.4). The second and third alternative
consists of ∼10 mm2 pads. The difference between these two lies in how the azimuthal and radial
widths vary. The middle plot of Fig. 5.4 shows a layout identified as "radial extension", corresponding
to pads that are square in the outer ring and become elongated in the radial direction towards the
inner ring. In contrast, the right-hand side of the same figure displays the "azimuthal extension"
layout, corresponding to square pads at the inner ring which become wider in the azimuthal direction
towards the outer radius of the TPC.
The simulation is run for 1500 events and the 2D projection of the tracks in the pad plane are

analysed by fitting a circle, in the same manner as explained in Sec. 3.2. The result is shown in
Fig. 5.5.
It is observed that all three options converge to an efficiency of 95% at R= 120 mm. The trend

shows that the radial extension geometry performs systematically better than the others. The reason
is the increased granularity in the angular direction with respect to the other two geometries. In
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Figure 5.4.: Pad geometries studied with two tracks simulated. The pads area is kept constant
in all cases. Left: Square pads. Middle: Pads with radial extension. Right: Pads with
azimuthal extension.

contrast, the azimuthal extension is the least efficient of the three, for the same reason. The efficiency
obtained with the square geometry is a middle ground between the two.
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Figure 5.5.: Efficiency for accurately detecting the charge of the pions as a function of the external
radius of the TPC.

Considering this study, either option would be suitable for the PUMA TPC (since its outer radius is
120 mm). However, considering the trend and production feasibility, the "radial extension" geometry
is chosen.

5.2.2. Mapping

The final design of the pad plane consists of a total of 4096 channels distributed in 16 sectors. Each
sector is formed of 256 channels and read by a single front-end electronics card "A Readout Card"
(ARC) containing four 64 channels STAGE chips [158], see Sec. 5.3. The dead-time of the system
is driven by the chip with the highest number of channels hit. Since each sector of the TPC is read
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exactly by one card, the distribution of the channels within the layout of the pad plane is optimized
in order to obtain the minimum number of channels occupied by a single chip.

The upper part of figure 5.6 shows the three different distributions per sector simulated. For each
event, the number of active channels per chip is recorded and the maximum of the group is saved
and stored in a histogram. The output is shown in the lower side of Fig. 5.6.
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Figure 5.6.: Possible mappings of a TPC sector to the front-end electronics chips for a single card.

In the left radial distribution it is observed that the highest number of channels occupied in a single
chip is 15±5 channels, corresponding a dead time of 0.4±0.1 ms. The right-hand side distribution
(azimuthal) the mean number of maximum occupied channels decreases to 8, or 0.2±0.02 ms. Finally,
for a compromise between both (middle distribution), a mean dead time of 0.3±0.05 ms is obtained.
Because the expected maximum event rate corresponds to 100 Hz, any of these possibilities are

suitable for the PUMA TPC. The middle distribution is finally chosen as it is easier to produce than the
"angular" option, while still keeping a low dead-time in views of possible upgrades of the experiment
that would entail higher event rates.

5.2.3. Manufacturing

The anode consists of a composite sandwich structure where the top layer is a 50 µm Diamond-Like
Carbon (DLC) with a resistance of 10 MΩ/□1, used to protect the pad plane from discharges. The
DLC, which is at ∼500 V, is enclosed in a Faraday cage via the Micromegas mesh and the anode pads.
The grounded mesh extends below the field cage internal PCB structure. Three additional layers
alternating copper, glue and epoxy make up the charge sharing section and three more layers are
used to map the pad plane to the connectors in the backplane.
The manufacturing steps of the anode require, first, the cutting and drilling of the holes of the

PCB. After that, the excess debris from the holes is removed by desmear. In this chemical process, the
resin remaining is softened with water-based solutions [159] and subsequently the chemical bonds
are broken with paramanganate. Finally, a neutraliser is used to remove the permanganate. Once
the PCB is cleaned, lithographic techniques are used to etch and print the circuit one layer at a time.
The left-hand side of Fig. 5.7 shows the mask of the backplane, where the holes are vias for the pins
of the connectors which need to be etched out.

The middle picture of Fig. 5.7 shows the back plane of the anode side. The printed layout in radial
position of the 32 140-pin connectors for data transfer are observed, each of which is mapped to
128 channels. Additionally, the four 3 mm holes for the entrance/exit of the gas are placed, as well

1This unit is commonly used to describe the surface resistivity across any given square area of a material.
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as two points for measuring the current in the mesh. Additional holes for mechanical support are
placed in the inner and outer radius.

The segmentation of the pad plane according to the study shown in subsection 5.2.1 is shown on
the right hand side.

Figure 5.7.: Anode side of the PUMA TPC. Left: Mask. Middle: Back plane. Right: Segmented pad
plane

5.3. TPC Electronics

5.3.1. Front-End Electronics

The signal is collected in 16 Front-End Cards, one shown in Fig. 5.8. Each card consists of 4 ASICs
with 64 channels each. Upon reception of an external trigger (from the plastic scintillator’s barrel)
the signal is sampled in a 511-bucket switched capacitor array (SCA) analog memory and converted
to digital format with a 25 MHz 12-bit multi-channel analog-to-digital converter (ADC).
The system will operate with the latest generation of the AFTER ASIC, called STAGE [158],

developed at IRFU (CEA Saclay). STAGE allows a digitization of the signals at an adjustable frequency
of 1-100 MHz and choice of peaking time from 50 ns to 100 µs. Additionally, STAGE provides the
possibility of self-trigger, with a discriminator in each channel for multiplicity building that allows
only hit channels to be read-out, accordingly reducing dead-time. Another advantage is that the
charge sensitive preamplifier (CSA) has an adjustable gain to support the dynamic range of 120 fC to
10 pC for event latex rates of up to 1 kHz, which is adjustable for each channel.

The signal transportation from the pad plane to the front-end electronics is carried out via 1.3 m
long, high speed (propagation delay of 4.2 ns/m) micro coaxial ribbon cables of 75 Ω at 59 pF/m.
The rms noise per channel as a function of the input capacitance of the STAGE chip is given in

Fig. 5.9, for a 120 pC dynamic range. Using a peaking time of 230 ns and an input total capacitance of
80 pF2, gives a noise level of 1200 electrons rms. Hence thresholds of above 5×σrms= 6000 electrons
gives a significant operational margin to use the multiplicity trigger in the ARC electronics.

5.3.2. Back-end Electronics

Outputs, numeric data, clock, and trigger are optically carried to the Trigger and Data Concentrator
Module (TDCM) and the switch. The back-end consists of a TDCM, seen on the right-hand side

2A capacitance of 80 pF corresponds to 1.3 m long of low-capacitance cables.
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Figure 5.8.: Left: Front-end card containing four AGET chips. Right: ARC with an electromagnetic
shield and cooling system.

Figure 5.9.: ENC vs. input capacitance for different peaking times in the 120 fC dynamic range of
the AGET chip. Figure reused with permission by [158] ©2011 IEEE.

of Fig. 5.10, which distributes a primary reference clock to the set of front-end cards as well as a
common trigger signal and global synchronization of the front-end. The TDCM is composed of two
mezzanine cards (custom made board that can house up to 16 small form factor pluggable optical
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transceivers (SFP)) that are plugged into the carrier board of the back-end unit, a Field Programmable
Gate Arrays (FPGA) module (the Mercury ZX1 commercially available from Enclustra [160]), and a
main carrier board designed to carry the FPGA module and the mezzanine cards.

Figure 5.10.: Left: Diagram of the TPC electronics. Right: Back-end module (TDCM) of the TPC
electronics.

One TDCM module is enough for the PUMA TPC since it can host up to 8000 channels (16 front
end boards per mezzanine card). A diagram of the electronics system for the TPC is shown on the
left side of Fig. 5.10.

5.4. Mechanics and Plastic Barrel

The TPC will be fixed mechanically to the beam tube with no extra degree of freedom, and the full
trap-TPC-plastic barrel system will be aligned to the magnetic field together. Both PCB plates holding
the anode and cathode of the TPC are shaped in a 32-faced polygon to support the plastic scintillator
bars. Two wheels at either end of the setup will accurately set the plastic scintillators in position
(see Fig. 5.11).
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PCBRing holder

PCBSheets

PCBSheets

PCBRing holder
PCB

PCB

Cathode shield
Cathode

Figure 5.11.: TPC and Plastic scintillators assembled in the beam tube.

The wheels are 3D printed and have radial grooves on the inner side, where sheets of aluminium
are slid and glued. The same grooves are added to two additional thin (0.5 mm) plates screwed to
the TPC’s backplanes. In this way, the wheles and the TPC remain mechanically fixed through the
sheets.
The barrel of 1 m long plastic scintillators are held together with lids on top of the wheels and a

200 µm layer of kapton will cover the full barrel. The plastics are read-out via silicon photomultipliers
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(SiPMs) attached to PCBs to the wheels and provide the trigger to the TPC. The characterization of
the barrel is out of the scope of this work and is part of the Master thesis of C. Xanthopoulou (TU
Darmstadt, 2022).
At the time of the submission of the present PhD thesis manuscript, the TPC is being built but is

not yet finalized.
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Part II.

Antiprotonic atom decay
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6. The Formation and Decay of Antiprotonic Atoms

In this part of the thesis, a review of the formation and decay of exotic atoms, and antiprotonic
in particular, is presented. Based on these physics principles, a cascade code is used to compute
the X-rays and annihilation probabilities of tin and calcium isotopes for different Skyrme densities
parametrizations and capture states in order to estimate the sensitivity of PUMA.

6.1. Exotic Atoms

The exotic atoms consist of a negatively charged particle bound to an atom by the Coulomb in-
teraction in exchange of (at least) one electron. In particular, one can distinguish among muonic
atoms and hadronic atoms (where the exotic particle is either π−, K−, Ξ− or p̄). The difference
lies in that the hadronic atoms interact with the nucleus via the strong force, in addition to the
electromagnetic attraction. Exotic atoms were predicted in 1940 [161, 162] and observed for the
first time in photographic emulsions by detecting Auger electrons, product of the heavy particle’s
transitions [163] (see Sec. 6.1.2). Muonic [164], kaonic [165], pionic [166] and antiprotonic [167]
atoms have been observed and extensively studied. Furthermore, atomic sigma hyperons have also
been observed [168].

Exotic atoms provide an excellent tool to probe the nucleus. Because of the large mass difference
between electrons and the mentioned particles, the Bohr-like radius

a′0 = ℏ/e2µ,

(where µ is the reduced mass of the particle-atom system) is >200 times closer to the nucleus than
the Bohr radius of an electron, a0. In particular, the muonic and antiprotonic atoms Bohr radius are
28.8 fm and 57 fm, respectively.

This feature has been used with muonic atoms, for instance, to provide an answer to the long-
standing question of the proton radius puzzle [169] where it was measured to be 0.842±0.001 fm,
5σ smaller than some of the previous measurements that were already in tension. Additional
experiments [170–172] and re-evaluation of previous data [173, 174] agree with the muonic
measured value.
In the case of kaons, precision studies of the hadron-nucleus interaction in kaonic atoms are

performed to constrain low-energy QCD in the strangeness sector through scattering length determi-
nation [175], with implications in astrophysics [176] and physics beyond the standard model [177].

Additionally, the X-ray spectroscopy of pionic decays has provided the most accurate measurement
of the mass of π−, giving a value of 139.57077±0.00018 MeV/c2 [178].

Historically, antiprotonic atoms have served as a test-bench to study antiprotons themselves: Indeed,
the first observation of antiprotonic atoms was in the context of measuring the antiproton mass [167].
The first experiment that used antiprotons as probes was performed at the Brookhaven National

Laboratory (see Sec. 1.3.3). However, their systematic use was made possible after the development
of a stable antiproton beam in the 1980s, at the LEAR facility at CERN [179]. Nowadays, antiprotonic
atoms are used to study different phenomena. As an example, antiprotonic He was used (among
others) to set an upper limit to the interaction strength of potential new long range interactions
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among nucleons [180]. In another recent experiment [181], antiprotonic He was used to study
high-resolution laser spectroscopy applications in superfluids, with implications in the detection of
cosmic-rays antiprotons or antideuterons.

The process by which a heavy negatively charged particle interacts with the atomic nucleus can be
divided into three main steps:

• The capture of the particle by the ion or atom in a highly excited state.

• The de-excitation (or cascade) of the particle through the atomic energy levels via emission of
Auger electrons (higher levels) and X rays (lower levels).

• The absorption of the particle due to the strong force interaction and further production of
mesons. Muons can either decay or be captured by the nuclei [182].

Each of these steps, specified for antiprotons, are sketched in Fig. 6.1 and detailed in the following.
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X ray
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Figure 6.1.: Steps in the antiproton-nucleon interaction: 1. The capture of the antiproton. 2. The
de-excitation via emission of Auger electrons and X rays. 3. The annihilation with a
nucleon, followed by the emission of pions.

6.1.1. Capture

When the energy of a negatively charged particle X− is similar to the energy of the valence electron
of an atom, the particle is captured in an Auger process by ejecting the valence electron. The energy
level of the capture corresponds to

nX ≈ ne−

√︃

µ

me−

where ne is the energy level of the ejected electron and µ is the reduced mass of theX−–atom system.
The pioneering model to describe the capture of negative heavy particles in matter was developed

by Fermi and Teller [162]. In this model, the particle is treated classically under the assumption
that it sustains a continuous energy loss by the interaction with a cloud of electrons, considered
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a degenerate Fermi gas. This assumption is based on the fact that the wavelength of the exotic
particle is much shorter that the electrons’ in the energy range where the capture occurs [183]. As
an example, a muon with an energy of 10 eV would have a wavelength of 0.03 a0.

Under these assumptions, the average energy loss of the negatively charged particle per unit time
is given by

−dW
dt

=

∫︂

2 d3ki
(2π)3

vrel∆E
dσ

dΩcm
dΩcm (6.1)

where vrel corresponds to the relative velocity between the electron and the negatively charge particle,
dσ/dΩcm is the center-of-mass differential cross section for the collision [184] and ∆E is the X−

kinetic energy transferred per collision. This model served as a basis of multiple semiclassical [185–
188] and quantum mechanical [189–191] calculations aimed at tackling the capture process.

Direct experimental evidence of this part of the interaction is technically difficult, as the energy of
the Auger electrons ejected at capture and while the particle traverses the electron cloud (in the order
of a few tens of eV) is too small for detection [192]. Instead, the X-rays from lower energy transitions
are measured and compared to quantum mechanical calculations for different initial distributions
of angular momentum, which are then adjusted accordingly to best agree with the experimental
values [193–195].

By simply counting the number of substates available at each orbital l at a fixed energy level n,
one obtains a statistical distribution

P (l) = (2l + 1),

in which the particle can be captured.
A more general parametrization is the modified distribution

P (l) = (2l + 1)eαl,

where α is a free parameter. A positive value indicates a bigger capture probability in higher l orbitals,
whereas negative values correspond to a dominant population in lower angular momentums and
α=0 recovers the statistical distribution. Measurements of X-ray data indicate that the value of α is
constrained to the range 0 < α ≤ 0.2, where the variation corresponds to a dependence on Z and
the chemical compounds in which the interaction occurs [185, 196, 197].
Despite the impossibility of measuring the initial distribution, calculations show that the angular

momentum distribution at capture is essentially not modified as the particle traverses the electron
cloud upon reaching the K electron shell [184, 193]. This level corresponds to np̄ ∼ 43 in the case of
the antiproton.

6.1.2. Cascade

After traversing the electron cloud, the remaining de-excitation steps, starting from nX = 14 for muons
up to nX = 43 for antiprotons, can be fully described with quantum mechanical calculations [198].

For atoms with Z>21, the two leading decay mechanisms are Auger and radiative dipole transitions,
in which the widths are related to the transition energy ∆E by [201]:

ΓA ∝ ∆E−1/2, (6.2)

ΓR ∝ ∆E3. (6.3)

From these widths it is observed that the Auger transitions are favoured in the higher states of the
cascade, where the transition energies are small, while the radiative transitions are dominant in the

1In antiprotonic hydrogen atoms a dominant process is the Stark mixing, in which the antiproton feels the electric field
of neighbouring atoms, producing transitions towards lower l for a given n level [199, 200].
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lower states. In order for the Auger de-excitation to occur, however, two additional conditions need
to be met:

1. There have to be electrons available to eject.

2. The transition energy ∆E has to be larger than the ionization energy of the electron to be
ejected [202, 203].

The first point is relevant in isolated systems, which is the case for PUMA. As there are no available
electrons in the surroundings that can be picked-up to refill the hole of an ejected electron, the
atomic shells become progressively empty until no electrons are left. The cascade continues, then,
via the emission of X rays.

As the shells are successively emptied, the ionization energies of the inner electrons increase while
the screening of the nuclear charge is reduced [204]. In the case the second condition is not met, the
auger de-excitation is interrupted and continues via radiative emission until the transition energy of
a subsequent state becomes large enough to allow, once again, for an Auger ionization.

Because the Auger transitions do not change the shape of the angular momentum [184] and as a
result of the radiative transition electric dipole selection rule of the angular momentum (∆l = ±1,
due to conservation of angular momentum of the emitted photon), the cascade tends to converge to
the circular states (n, l = n− 1) quickly [198].

As the particle approaches the lower energy levels, the strong interaction from the nucleus modifies
the purely electromagnetic cascade. This process detailed in the following.

6.1.3. Annihilation

The X-ray widths and energies of the last observable lines are distorted by the strong force, and the
antiproton’s annihilation with a nucleon takes place. This mechanism occurs at the overlap between
the matter density and the wave function probability density, which gives a classical solution for the
annihilation site of the antiproton.
The calculation of the shifts and widths is possible by considering a phenomenological optical

potential, which is assumed to depend linearly on the nuclear density distribution [183, 205–207],
consistent with existing X-ray data [208]

V (r) =
2π

µ
[anp̄ρn(r) + app̄ρp(r)] , (6.4)

where µ is the reduced mass of the antiproton-nucleon system, app̄ is the proton-antiproton scattering
length and ρp is the proton density. The same variables with the subindex n correspond to the
neutron, instead. With this assumption and treating the strong interaction as a perturbation of the
electromagnetic interaction, the shifts and widths can be calculated as

Γ = 4
π

µNp̄
Im (aNp̄)

∫︂

drρ(r) |ψp̄(r)|2 ,

ε = 2
π

µNp̄
Re (aNp̄)

∫︂

drρ(r) |ψp̄(r)|2 ,

where the subscriptN indicates either a proton or a neutron and ψp̄ is the antiprotonic wave function.
The scattering length’s values are extracted by fitting the X-ray data. Experiments performed with
oxygen isotopes [209] indicate scattering lengths consistent with aNp̄= (1.53 ± 0.27) + i (2.50 ±
0.25) [205] . However, later analysis of X rays [206] and experiments [210] found a better agreement
with aNp̄=(2.4 ± 0.3) + i (3.4 ± 0.3).
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6.1.4. Final-State Interactions (FSI)

The re-interaction of the residual nucleus with a pion after the antiproton’s annihilation is a non-
negligible process (estimated to happen 80%-90% of the cases [69, 70]). As a result of this interaction,
a pion can be often absorbed or undergo charge-exchange (π0 → π±, π± → π0), affecting the charged
pion multiplicity of an event and the accurate charge identification. For this reason, an event-by-event
analysis would not provide accurate information of the annihilated nucleon. Instead, a statistical
treatment of the data, proposed by M. Wada and Y. Yamazaki [211] would allow for the reconstruction
of the annihilation ratios by considering the charge exchange and absorption probabilities, λ±, ω±,
expected to be in the range 0.1-0.2. This analysis is based on a phenomenological four-parameter
model developed by S. Wycech [212].
The treatment of FSI for PUMA is out of the scope of this work. However, the development of

a neural network that treats FSI with this method is currently ongoing by members of the PUMA
collaboration [213]. The objective of PUMA is to reach an uncertainty below 10%.

6.2. The Cascade Code

The aim of the code is to compute the antiprotonic transition rates as the antiproton cascades down
towards the nucleus of a pre-defined atom and annihilates with a nucleon. The computation saves
the X-ray intensities, annihilation probability, antiprotonic population and the evolution of the 1s, 2s
and 2p electron configurations at each step of the cascade.

An initial version of the cascade code was written in FORTRAN 77 by R. Seki, and later on modified
by T. Koike. A version adapted to FORTRAN 90 was implemented by R. Seki.

6.2.1. Physics principles

The antiproton’s transition probability between an initial state (ni, li) and a final state (nf , lf ),
assuming that the energy of the final state Ef < Ei, is described by Fermi’s golden rule [214]

Γni,li→nf ,lf =
2π

ℏ
|⟨nf , lf |H|ni, li⟩|2ρ(Ef ),

where ρ(Ef ) is the density of final states that satisfies conservation of energy and H is the Hamiltonian
of the system.
In the case of an electric dipole transition E1, where the selection rules require ∆l = ±1, this

transition rate for the antiproton is given by

Γrad
ni,li→nf ,li±1 =

4

3

α

Z2µ2
(︁

∆Eninf

)︁3 |⟨nf lf | r|nili⟩ × (li010|lf0)|2CF−M,

where α ∼1/137 is the fine structure constant, |(li010|l′0)| corresponds to the coupling of the
angular momenta described by the Clebsch-Gordan coefficients. The term CF−M is the Fried-Martin
factor [215], given by

CF−M ≡
(︄

A+ Z p̄
effmp̄

A+mp̄

)︄2

,

corresponding to a correction due to the center-of-mass motion of the nucleus.
The factor Z p̄

eff corresponds to the effective charge seen by the antiproton, which depends on the
number of electrons present and the antiproton’s distance to the nucleus [204].
The Auger transition rates, corresponding to the emission of one of the bound electrons in the

state (n′, l′) to the continuum l due to the de-excitation of the antiproton are calculated. In this case,
the transition rates are [216]
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ΓA =
q4

3ℏ2

⃓

⃓

⃓

⃓

⟨np̄f , l
p̄
f |⟨nef , lef |

r<
r2>

|nei , lei ⟩|np̄i , l
p̄
i ⟩
⃓

⃓

⃓

⃓

2

×
⃓

⃓

⟨︁

l1100
⃓

⃓l20⟩⟨l′100
⃓

⃓ l0
⟩︁⃓

⃓

2 × k,

where the superscripts p̄ and e correspond to the antiproton and electron, respectively, and k is the
number of electrons in the shell. Additionally, r<(r>) is the smaller (larger) of r1 and r2, the radial
variables of p̄ and e, respectively.

These rates are written explicitly in the code. As an example, the K-Auger transition rate for
ejecting a 1s-electron reads

Γ1 s−Aug
ni,li→nf ,li±1 =

16

3

παc

a0

(︂me

M∗

)︂2
(︃

Z∗
e

Z

)︃2 y2

(1 + y2)

exp
[︁

y
(︁

4 tan−1 y − π
)︁]︁

sinh(πy)

(︂

Rni,li
nf ,li±1

)︂2
,

where
(︂

Rni,li
nf ,lf

)︂2
= |⟨nf lf |r|nili⟩ × (li010 | li ± 1 0)|2CF−M.

The variable y corresponds to

y ≡ Z∗
e

a0ke
,

where ke is its kinetic energy at ejection, a0 is the Bohr radius and Z∗
e is the effective charge seen

by the electron. This value is the charge experienced by an electron in a given shell, considering
the presence of the nucleus, other electrons and the antiproton. In the neutral atom case, it can be
computed with Hartree-Fock calculations [217, 218]. In this code, because the cascade begins after
the antiproton has traversed the electron cloud, the effective charge used is the corresponding to the
electron shell in neutral Z-1 atom.

In addition to the radiative and Auger rates, the strong absorption widths are included to account
for the strong interaction and annihilation probability of the antiproton. This rate is given by

Γs = 4
π

µNp
Im (aNp)

∫︂

drρ(r) |ψp(r)|2 ,

as already introduced in Sec. 6.1.3.
To summarise, the transition rates considered that impact the evolution of the antiprotonic cascade

are: The radiative transition rate Γrad, the Auger transition rates corresponding to the removal of
the 1s, 2s and 2p electrons: Γ1 s−Aug,Γ2 s−Aug and Γ2 p−Aug, respectively, and the strong absorption
rates Γstr.
The rate equation in the antiproton sector can therefore be written as

dNα(t)

dt
= −

⎡

⎣

∑︂

α′

Γrad
α→α′ + Γ1s−Aug

α→α′

∑︂

j

f1s(j)(t) + Γ2s−Aug
α→α′

∑︂

j

f2s(j)(t)

+ Γ2p−Aug
α→α′

∑︂

j

f2p(j)(t) + Γabs
α

⎤

⎦Nα(t), (6.5)

where α indicates all the possible (n, l) states and f1s(j)(t), f2s(j)(t) and f2p(j)(t) correspond to the
electron population in the 1s, 2s and 2p, respectively. Their evolution is determined by the following
rates:

• 1s: The electron pick-up rate Γpick.
1s (refilling from neighbouring atoms), the auger electron

refilling from shells 2s and 2p (ΓKLL
(2s,2s), Γ

KLL
(2s,2p), Γ

KLL
(2p,2p), illustrated in Fig. 6.2), the radiative

refilling rate from the 2p→1s transition and the electron depletion due to the antiprotonic
Auger transition Γ1s−Aug

α→α′ .
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• 2s: The electron pick-up rate Γpick.
2s (refilling from neighbouring atoms), the depletion from

Auger transitions towards the K-shell
(︂

ΓKLL
(2s,2s) and ΓKLL

(2s,2p)

)︂

.

• 2p: The electron pick-up rate Γpick.
2p (refilling from neighbouring atoms), the depletion from

Auger transitions towards the K-shell
(︂

ΓKLL
(2s,2p) and ΓKLL

(2p,2p)

)︂

and depletion due to the radiative

decay towards the K shell Γrad.

KLsLs KLpLp

1s

2s

2p

KLsLp Coster-Krönig

Figure 6.2.: Auger transitions in the electron sector included in the code. The pink arrow depicts a
decay to a lower level. The green line corresponds to the energy transfer to the second
electron, which is ejected from the atom (blue arrow).

With these considerations, the rate equations in the electron sector are [219]

df1s(i)(t)

dt
=Γrad

2p→1s(1− f1s(i)(t)){
∑︂

i

f2p(j)(t)}+ ΓKLL
(2s,2s){1− f1s(i)}f2s(1)(t)f2s(2)(t)

+ ΓKLL
(2s,2p)(1− f1s(i)(t)){

∑︂

j

f2s(j)(t)}{
∑︂

j

f2p(j)(t)}

+ ΓKLL
(2p,2p)(1− f1s(i)(t)){

∑︂

j

f2p(1)(t)}{
∑︂

j

f2p(2)(t)},

(6.6)

df2s(i)(t)

dt
=Γpick.

2s (1− f2s(i)(t))− ΓKLL
(2s,2s){

∑︂

i

(1− f1s(j)(t))}f2s(1)(t)f2s(2)(t)

− ΓKLL
(2s,2p){

∑︂

j

(1− f1s(j)(t))}{
∑︂

j

f2s(j)(t)}f2p(i)(t),
(6.7)

df2p(i)(t)

dt
=Γpick.

2p (1− f2p(i)(t))− Γrad
2p→1s{

∑︂

j

(1− f1s(j))}f2p(i)(t)

− ΓKLL
(2s,2p){

∑︂

j

(1− f1s(j)(t))}{
∑︂

j

f2s(j)(t)}f2p(i)(t)

− ΓKLL
(2p,2p){

∑︂

j

(1− f2p(1)(t))}f2p(1)(t)f2p(2)(t).

(6.8)

6.2.2. Inputs

For a given isotope, the input is provided in a single file essentially consisting of the initial conditions
of the cascade. The parameters are:

• N: Energy level where the calculation of the cascade begins.
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• α: Free parameter that determines the initial l distribution of the p̄.

• F1S00A(B): Initial population probability of electron A and electron B in the 1s orbital.

• F2S00A(B): Initial population probability of the electrons (A and B) in the 2s orbital.

• F2P00A(B,C,D,E,F,G): Initial population probability of the electrons (A, B, C, D, E, F) in the 2p
orbital.

• XFILL: Radiative electron refilling rate of the transition 2p→1s.

• XKLSLS, XKLSLP, XKLPLP: Auger refilling rates in the 1s, 2s and 2p orbitals, respectively.

• XPKS, XPKP: Pick-up rate in the 2s and 2p orbitals.

• XCK: Coster-Krönig rate.

Additional isotope-specific parameters are hard-coded:

• The atomic mass, in MeV.

• The atomic number Z.

• The electron configuration of the neutral atom.

• The effective charge seen by the electrons of the atom with charge Z-1. This is an approximation
to account for the screened nuclear charge due to the p̄ presence.

6.2.3. Cascade Code Flowchart

Fig. 6.3 shows a scheme with the main functions of the code. Each of these is described :

• Main: Initializes the cascade by calling the main functions. Declaration and definition of the
matrix where the calculations are stored.

• DIST: Computes the initial antiprotonic population distribution according to P (l) = (2l+1)eαl,
where l ϵ [0, l=N0-1].

• TRR: Computes the p̄ transition rates from ni, li to all possible nf , lf as described in eq. (6.5).

• ECONF: Computes the evolution of the 1s, 2s and 2p electron configuration according to eqs.
(6.6), (6.7) and (6.8) by considering the refilling rates and transition rates of the p̄.

• TXIN: Produces the four output files: XPOP.DAT, EPOP.DAT, XRAY.DAT and NABS.DAT.

6.2.4. Outputs

The outputs of the code consist of four files: The X-ray transition spectrum, XRAY.DAT, consisting of
transitions ∆n1 (n→ n− 1) to ∆n5 (n→ n− 5); the 1s, 2s and 2p electron configuration evolution
at each antiprotonic transition step (EPOP.DAT); the antiprotonic population evolution at each (n, l)
state (XPOP.DAT) and the annihilation probability at each (n, l) (NABS.DAT).
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Initialization

TRR

TXIN

DIST

Partial de-excitation and  

absorption rates are saved

ECONF

-New rates after refilling are saved


-Annihilation fraction is saved

nf , lf

ni, li

nf , lf

Figure 6.3.: Flowchart of the cascade code.

6.3. Code Benchmarks

The initial study with the cascade code consists of producing benchmarks with existing data. To that
end, the X-ray spectra of 176Yb, 124Sn, 48Ca and 40Ar measured at LEAR was used2.

The choice of 176Yb is based on the comprehensive study done by R. Schmidt et al. [64] who used a
cascade code based on a work by M. Leon [184] to deduce the capture parameters of the antiproton
as well as the neutron density diffusion parameter (see below). In his work he reported the input
parameters he used for his cascade calculations to reproduce the X-ray yields.

One important milestone that will be measured at PUMA is the isotopic chain of tin, which makes
the existing data of 124Sn [220] a natural choice to test the code.
Finally, a benchmark of 48Ca and 40Ar provides information about the suitability of the code in

the lighter mass region of the nuclear chart. Importantly, the existing X-ray spectrum of 40Ar was
measured at low pressure [204, 221], where the electron refilling is highly suppressed, as it will be
the case of the antiprotonic atoms produced at PUMA.

6.3.1. 176Yb

Context

The benchmark of 176Yb is based on the results shown by R. Schmidt et al. [64]. In the mentioned
work, the X-ray spectrum of antiprotonic 176Yb was measured and correlated with the X-ray yield
resulting from the cascade code. As a result, the capture parameter α that agrees best with the data

2The datapoints of the plots shown throughout this section are explicitly shown in Appendix A.
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was deduced in addition to the diffuseness of the neutron density tn. The proton density parameters
cp and tp (half-density radius and diffuseness, respectively) were obtained from the model ’a’ of
Ref. [222] and the difference cn-cp=0.13 fm was derived from HFB calculations of 208Pb [223].
Furthermore, the scattering length a = (1.53 + i 2.5) fm calculated by C. Batty [205] was used, and
the electron configuration of the lower shells 1s, 2s and 2p were assumed to be filled.
The measurement was performed at CERN with antiprotons of 414 MeV/c provided by LEAR,

which were stopped in a 176Yb target of 324 mg/cm2 thickness. Afterwards, the emitted X rays were
detected with two germanium detectors.
The reported value of α, with the cascade calculation started at the energy level N=20, is

α=0.092±0.008. Similarly, the difference of the neutron and proton density diffuseness was best
adjusted to tn − tp=(0.71±0.01) fm.

Calculations

To benchmark the experimental data and numerical findings, the adjusted and fixed parameters
were used as input. In addition, the strong absorption widths were calculated numerically [224]
by introducing the neutron and proton two-parameter Fermi distributions as well as the scattering
length. These widths were then included in the cascade code, as shown in Fig. 6.4.

Inputs

 

 

 

 

tp = 2.18

cp = 6.27 fm

cn = 6.4 fm

a = 1.53 + i 2.5

N0 = 20

Adjusted parameters

Fixed parameters

Cascade codeStrong absorption calculation

 

 

α = 0.092

tn = 2.88

1s22s22p6 = Filled

Figure 6.4.: Inputs and flowchart calculation for 176Yb. The shadowed parameters were used to
calculate the strong absorption widths.

The comparison between the experimental X-ray yields; the calculated spectrum by Schmidt et al.

and the benchmark are shown in Fig. 6.5. The numerical values of the calculated data from Schmidt et
al. were scanned with a plot digitizer software [225] and an uncertainty of 1% was assigned to the
extracted X-ray relative intensities. Both calculations show good agreement (within 91%) for the
X-ray yields, justifying the assumption of a statistical population of the angular momentum at N=20.

Each curve (∆n=1, 2, 3, 4 and 5) displays the relative X-ray yields normalized to the transition
12→11. The sharp drop of intensity in the transition 9→8 corresponds to the high probability of
absorption of the antiproton when lying on the n=9 orbital, competing favourably compared to the
X-ray decay.

This effect is further seen in Fig. 6.6, where the antiprotonic population probability at each step
of the cascade is shown. The left figure shows its evolution as the ∆n de-excitation progresses
(curves) as a function of the angular momentum quantum number l. On the right figure, the rapid
development of the cascade towards circular states (n, l = n− 1) is emphasized. Additionally, the
inset displays the total population probability at each n level (red curve) together with the total
annihilation probability (blue curve). The small annihilation probability of ∼ 10% at the beginning of
the cascade corresponds to the antiprotonic population at low l, where the overlap of the antiprotonic
s- and p- wave functions with the nucleus is the largest. Unlike the large percentage of antiprotonic
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Figure 6.5.: Benchmark of the cascade code with antiprotonic 176Yb with initial parameters N0=20
and α=0.092. The black markers show the experimental X-ray yields. Each curve
corresponds to the transitions ni → ni −∆i, normalized to the transition ∆n=12→11.

annihilations at the circular levels, these annihilations occur in the interior of the nucleus and need
to be accounted for as a correction factor in the data analysis of PUMA.

The 40% drop of the initial antiprotonic population (red curve in the insert of Fig. 6.6) is related
to the increase at lower levels (n=11 to n=15), where it spreads through transitions ∆n ≥ 2.

6.3.2. 124Sn

Context

A similar approach was used to benchmark the code with the experimental values of 124Sn measured
by R. Schmidt et al. [220]. The same experimental method and setup as in the case of 176Yb
was used. The proton half-density radius and diffuseness parameters were measured from muonic
X-rays [226] to be cp = 5.532 and tp = 1.995, respectively. Based on HFB calculations using the SkP
force [227], the neutron half-density radius was chosen cn = cp. The best fitting value of α was
found to be α=0.162±0.017 while the density diffuseness parameter difference was adjusted to
tn − tp=0.19±0.12 [228]. The calculated X-ray yield was not published in this case, therefore the
comparison is performed against the experimental values.

Calculations

Using the reported parameters as inputs of the cascade code, the experimental X-ray yields are
compared to the numerical output in Fig. 6.7. In this calculation, no initial energy level N0 was
reported. The benchmark run was produced with N0 =20, where the results show an excellent
agreement with the experimental values for ∆n=1, ∆n=2 and ∆n=3 with a systematic discrepancy
of 70% with ∆n = 4. This discrepancy could be related to the unknown initial N0 that yield the
reported alpha by Schmidt et al. (α=0.162±0.017). Further analysis is performed to obtain the
initial conditions that best fit with the data by correlating N0 and α and a comparison of the α value
found is presented (see Sec. 6.4).
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Figure 6.6.: Top: Antiprotonic population at each step of the cascade in 176Yb, as a function of the
angular momentum. Bottom: The same quantity as a function of n− l. The inset shows
the evolution of the population (red) and annihilation probability (blue) as a function of
the cascade level n. In these cases, the probabilities are summed over the quantum
number l.
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n
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Experimental data

Benchmark

Figure 6.7.: Benchmark of the cascade code with antiprotonic 124Sn. The initial parameters of the
cascade are N0=20 and α=0.162. The black markers show the experimental X-Ray yields.
Each curve corresponds to the transitions ni → ni −∆i, normalized to the transition
∆n=10→9.

6.3.3. 48Ca

Context

This benchmark is done with respect to the measurements performed at LEAR and cascade calculations
done by is Hartmann et al. [229]. The experimental setup consists of a beam of antiprotons with
an initial momentum of 106 MeV/c impinging on a target of 46.9 mm/cm2 thickness. Once again,
the antiprotonic X-rays were detected with high-purity-Ge detectors. In this case, however, due to
the low charge of the Ca isotopes, the transition energies are smaller than those of Yb and Sn. As a
consequence, less transitions were detected with respect to the previous cases (see Fig. 6.8) and an
average of the X-ray yields measured with antiprotonic 40Ca, 42Ca, 43Ca, 44Ca and 48Ca is reported
together with a mean α=0.129±0.019, with the cascade started at N0=20.

The proton and neutron half-densities used for 48Ca were taken equal to 3.56 fm and the proton-
density diffusion tp=2.18 fm. Furthermore, the neutron-density diffusion was fitted to the X-ray
data, obtaining tn − tp=0.46±0.13 fm.

Calculations

The cascade calculation was performed with 48Ca. The X-ray yield calculated is shown in Fig. 6.8.
The calculated values by Hartmann et al. were also scanned with a plot digitizer tool [225]. The
error assigned in this case (4%) is higher than for 176Yb. The reason is that a shift of this percentage
was observed at the normalised transition: The tool was calibrated within 1% error according to the
axis, but expected value of this transition (100) was shifted by 4%.

The yields of the three types of transitions∆n1,∆n2 and∆n3 obtained are within 90% agreement
with the experimental values, as well as with the calculated values from Hartmann et al., and in this
case, too, the calculations are further analysed in Sec. 6.4.
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Figure 6.8.: Benchmark of the cascade code with antiprotonic 48Ca with initial parameters N0=20
and α=0.129. The black markers show the experimental X-Ray yields. Each curve
corresponds to the transitions ni → ni −∆i, normalized to the transition 7→6.

6.3.4. 40Ar

Context

A final benchmark of the code consists of comparing the X-ray spectrum of antiprotonic Argon at low
pressure. The ionization of antiprotonic atoms in diluted noble gases (Ar, Xe and Kr) was studied at
LEAR [204, 221]. The main objective of the experiment was to correlate the X-ray spectrum with the
depletion of the electron shells, as it was deduced that a pressure lower than 100 hPa was sufficient
to remove the refilling of electrons. The available data consists of only the circular transitions, shown
in Fig. 6.9.
It was deduced in [221] that the antiproton has enough energy to remove all the electrons via

Auger transitions by the time it reaches the level n=40, except for the ones in the K-shell, with
calculated ionization energies of 3.5 keV and 3.8 keV. The observed suppression of the lines in the
transitions 17→16 (∆E=3.52 keV) and 16→15 (∆E=4.25 keV) was interpreted as a signature of
electron shell depletion, as these two transitions are the first ones that overcome the ionization
energy of the 1s electrons. However, in a later study of the same data [204] with Multiconfiguration
Dirac-Fock calculations (MCDF) [230], the ionization energies of these electrons were deduced to
be 3659 eV and 3947 eV. As a consequence, the energy of the transition 17→16 is not sufficient to
remove the first electron, unless at least four additional electrons in the subsequent shells are present:
in this case the binding energy of the 1K-shell electrons drops to 3309 eV (see Table 6.1).

Calculations

A first calculation to estimate the suitability of the code to reproduce this spectrum consisted of
using the effective charges as seen by the electrons, Zeff., reported by Gotta et al. [204] as input in
order to compare the electron ionization energies (see Table 6.1). From the table it is observed a
discrepancy of 0.4% in the ionization energy of the 1s level when only one electron is present, while
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Figure 6.9.: Measured X-ray spectrum of circular states (∆n=1) of antiprotonic 40Ar in a low-pressure
gas. Data from [221].

Table 6.1.: Effective charges for different electron configurations and corresponding binding ener-
gies of the levels 1s and 2s.

e− config. 1s1 1s2 1s22s2 1s22s22p2

Levels Source MCDFa Codeb MCDFa Codeb MCDFa Codeb MCDFa Codeb

Eff. charge 17 16.6 16.6 16.5
1s

Bind. E (eV) 3947 3930 3659 3740 3490 3740 3309 3704
Eff. charge 15.4 14.9

2s
Bind. E (eV) 806 745 628 755

a. Calculations reported in Gotta et al. [204].
b. Binding energies calculated with the cascade code.

it increases up to 11% for the same electron level in the 1s22s22p2 configuration. In particular, the
ionization energy obtained with the code is systematically above the transition energy between the
levels 17→16 (∆E=3.52 keV). On the other hand, it is possible to observe the suppression of the
line corresponding to the transition 16→15 (∆E=4.25 keV), shown in Fig. 6.10.

In this case there were no studies of the antiproton capture, hence the initial conditions are
unknown. An initial test run with similar parameters was performed. The initial energy level was
kept at N=20 as in the previous two cases, while α was set to 0.1. The neutron and proton half
density radius and diffuseness parameters were extracted from HFB calculations with the SIII force.

The code is able to reproduce the X-ray suppression for the transition 16→15, although the same
kind of benchmark as for the previous atoms is not possible due to the lack of experimental data.
More refined calculations that can accurately reproduce the ionization energy of each electron would
be required.
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Figure 6.10.: Fraction of radiative circular transitions (∆n=1) of antiprotonic 40Ar calculated with the
cascade code.

6.4. Capture Parameters Correlation

The sensitivity of the cascade calculations to the capture parameters is evaluated. The method consists
of finding the best agreement among the experimental X-ray spectra (Xobs) and the calculated spectra
(Xexp) with a given set of initial conditions (N, α) by minimizing the χ2, given by

χ2 =
(Xexp −Xobs)

2

mσ2
,

where σ corresponds to the experimental uncertainties and m is the number of degrees of freedom,
corresponding in this case to the number of experimental data points.

The results obtained for 176Yb, 124Sn and 48Ca are shown in Fig. 6.11. For a fixed initial N0, each
red mark corresponds to the appropriate α such that the χ2 is minimum.
A similar correlation is observed in every case, where the minimum χ2 is found at lower N0 as

α increases. This means that angular momentum distributions closer to captures in circular states
are preferred for lower N0. This behaviour is expected as the antiproton population tends towards
circular states during de-excitation, as explained in Sec. 6.1.2.

It is chosen to fit the points with quadratic functions with parameters p0, p1 and p2 fulfilling

α(N) = p0 + p1N + p2N
2.

The fitted parameters with their errors are given in Table 6.2.
Additionally, in Table 6.3, the α minimum χ2 found at N=20 are compared to the values reported.
As it can be observed, the calculated χ2 values of both 124Sn and 176Yb lie within 7.1% of the

reported ones. Furthermore, the associated α of 176Yb id within the error reported by Schmidt et al..
In the case of Sn, its associate α has a discrepancy of less than 17%. Calcium, on the other hand,
shows a higher discrepancy overall, obtaining a difference of 62% in the value of α, which is rooted
in the fact that the experimental data is an average of other Ca isotopes as well, as opposed of pure
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Figure 6.11.: χ2 minimization of 124Sn (top left), 48Ca (top right) and 176Yb (bottom left).

Table 6.2.: Fitted parameters, where p0 corresponds to the constant term, p1 is the linear term and
p2 is the quadratic term.

176Yb 124Sn 48Ca
p0 0.76±0.07 0.87±0.07 1.60 ± 0.085
p1 -0.053±0.006 -0.053±0.006 -0.125 ± 0.008
p2 0.0009±0.0001 0.0009±0.0001 0.0024 ± 0.0002

48Ca. The found correlations provide a meaningful landscape of initial conditions (N0, α) where to
calculate the cascade in Sn and Ca isotopic chains, subject of Ch. 7.

Table 6.3.: Calculated cascade parameters at N0=20, α and χ2 compared with reported.

Calculated Reported
α χ2 α χ2

48Ca 0.09 6.1 0.129±0.019 1.1
124Sn 0.19 2.9 0.162±0.017 2.7
176Yb 0.08 2.02 0.092±0.008 1.9
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7. Sensitivity of Sn and Ca isotopes

In the following, the sensitivity of the PUMA observable to atomic physics inputs is investigated. To
that end, cascade calculations are performed with initial parameters (N0, α) that reproduce the
experimental X-ray yields within one unit of the global minimum χ2, in each case. The same regions
are kept for the rest of the Sn and Ca isotopes, respectively. Figure 7.1 shows the chosen regions in
both cases.
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Figure 7.1.: (N0, α) regions chosen to produce the sensitivity calculations for Sn (left) and Ca
isotopes (right).

7.1. Annihilation Probability

Each run with initial conditions (N0, α) calculates the annihilation probability ωn,l of the antiproton
with quantum numbers (n, l), such that the total annihilation density distribution is

ptot =
∑︂

(n,l)

|ψ(n,l)|2r2ω(n,l),

where
∫︂

ptot(r)dr = 1,

and ψn,l is the radial part of the antiprotonic wave function. The wave function of the antiproton in
the center of mass of the antiprotonic atom of charge Z can be described by

ψn,ℓ(r) = −

√︄

(︃

2Z

naµ

)︃3 (n− ℓ− 1)!

2n(n+ ℓ)!
e−Zr/naµ

(︃

2Zr

naµ

)︃ℓ

L
(2ℓ+1)
n−ℓ−1

(︃

2Zr

naµ

)︃

.

In this case, L2l+1
n−l−1 are the generalized Laguěrre polynomials, aµ = 4πε0ℏ

2/µe2 is the Bohr radius
of the antipoton-nucleus system and

µ =
mp̄mA

(mp̄ +mA)
,
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is the antiproton-nucleus reduced mass.
Undere the assumption of a spherical nucleus, the angular part of the wave function does not
contribute to the equation since

|Y m
l (θ, ϕ)|2 = Y m∗

l (θ, ϕ)Y m
l (θ, ϕ) = 1.

The absorption width is then

Γ =
2π

µ

∫︂

dr3V (r̄)
∑︂

(n,l)

|ψn,l|2r2ω(n,l). (7.1)

From eq. (7.1), V (r) is the optical potential, assumed to depend linearly on the densities, as
explained in Ch. 6,

V (r) =
2π

µ
(ap̄NρN (r) + ap̄pρp(r)) ,

Considering the ratio of the absorption widths with either a neutron or a proton, we obtain

Γn

Γp
=

∫︁

dr3ρn(r)
∑︁

(n,l) |ψn,l|2 r2ω(n,l)
∫︁

dr3ρp(r)
∑︁

(n,l) |ψn,l|2 r2ω(n,l)

Im

(︃

ap̄n
ap̄p

)︃

(7.2)

which, as observed, is directly related to the neutron to proton density distributions.
The gamma ratio is non-zero only where the antiproton distribution overlaps with the neutron and

proton density distributions. Under the assumption of point-like particles and zero-range interaction,
one can interpret the radius of the annihilation as

⟨Rp̄N ⟩ =
∫︂

r2 |ψn,l(r)|2 ImVp̄N (r)dr.

Figure 7.2 show as an example, the proton and neutron density distributions (ρp and ρn, respec-
tively) calculated with the Skyrme parametrization SIII (see Sec. 7.2), together with the total wave
function density ρ(f)p̄ and the overlap among them.

As it can be seen in the figure, the annihilation of the antiproton with a nucleon involves the inner
tail of the total antiprotonic probability density, where the overlaps with the proton and neutron
densities probe the tail of the density profiles. The ratio of these two distributions (shaded red and
yellow areas), and therefore the annihilation ratio, provides a measure of the neutron-to-proton
density distributions in this region.

It should be noted that the densities are calculated in the center of mass of the nucleus while the
wave function of the antiproton is calculated in the center of mass of the antiprotonic atom, leading
to an inconsistency due to the difference of the reference frames. However, this effect is negligible for
the heavy isotopes ( Sn and Ca) considered in this case.

7.2. Density Distributions

The calculation of the proton and neutron density profiles is performed with the HFBRAD code [231],
that solves closed shell approximations assuming spherical nuclei with the Hartree-Fock-Bogolyubov
method (HFB), using different Skyrme force parametrizations. The numerical method consists of
the direct integration of the HFB equations in the coordinate representation. The Skyrme effective
interaction is described by the 2- and 3- body potential [232]

V =
∑︂

i<j

V (ri, rj) +
∑︂

i<j<k

V (ri, rj , rk) .
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Figure 7.2.: Proton and neutron densities distribution (ρP and ρN respectively, modelled with SIII),

together with the total probability density weighted by each state’s contribution ρ
(f)
p̄ .

The overlap between the antiprotonic density function with ρN and ρP are the shaded
yellow and red areas, respectively.

The 2-body part is parametrized according to [231]

V12 =t0 (1 + x0Pσ) δ +
1

2
t1 (1 + x1Pσ)

(︁

k
′2δ + δk2

)︁

+ t2 (1 + x2Pσ)k
′ · δk

+
1

6
t3 (1 + x3Pσ) ρ

γδ + iW0 (σ1 + σ2) ·
(︁

k
′ × δk

)︁

,

as a short-range expansion of finite range interactions. Here, δ is a short notation for δ (r1 − r2);
the terms k and k

′ are the relative momentum operators acting on the wave functions on the right
and on the left, respectively and Pσ = (1 + σ1 · σ2)/2 is the spin-exchange operator. The parameters
t0, t1, t2, t3, x0, x1, x2, x3 and W0 depend on choice of the Skyrme force. These are adjusted to
experimental binding energies and radii and nuclear matter saturation properties [30].

To ensure that our conclusions are not dependent on the chosen Skyrme interaction, three distinctive
Skyrme forces have been chosen for this study: SIII [233], SLy4 [234] and SKI5 [235]. The
parametrization SIII is particularly successful in reproducing the spectroscopic properties of spherical
nuclei. It additionally reproduces the N-Z dependence of the binding energy [236], although its
incompressibility is said to be too large [233]. The parametrization Sly4 was built for astrophysical
use, in particular to optimize the description of neutrons stars and the Equation of State. In this
case, an incompressibility of 230 MeV of symmetric nuclear matter is set. It was also optimized
to reproduce correctly pure neutron matter and a good reproduction of the saturation point of the
symmetric infinite nuclear matter with no constraint on the surface properties. Finally, SKI5 was built
to optimize the behaviour for the isotope shifts in the Pb region, which was achieved by optimising
the term related to the spin-orbit contribution.

The corresponding parameters of each of these forces are shown in Tab. 7.1 and Fig. 7.3 displays
the computed proton (left) and neutron (right) density distributions in each case.
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Figure 7.3.: Comparison of the 132Sn neutron (left) and proton (right) densities calculations with
the Skyrme parametrizations SIII, SLy4 and SKI5. The inserts show the densities in
logarithmic scale.

Table 7.1.: Values of the three different Skyrme parametrizations compared.

SIII SLy4 SKI5
t0 -1128.75 -2488.913 -1772.91
t1 395. 486.818 550.84
t2 -95. -546.395 -126.685
t3 14000. 13777. 8206.25
x0 0.45 0.834 -0.1171
x1 0. -0.344 -1.3088
x2 0. -1. -1.0487
x3 0. 1.354 0.34
γ 1. 1/6 1/4
W0 130. 123. 120.
t0′ -248.5 -283.3 -325.3

7.3. Calculations

7.3.1. Annihilation Probabilities

The cascade calculation is run systematically for each pair of (N0, α) shown in Fig. 7.1. For a given
run, the annihilation probability ωn,l at each antiprotonic state (n, l) is saved. Figure 7.4 shows
the annihilation probability obtained for every (N0, α) run at the circular states (n, l = n− 1) and
next-to-circular states (n, l = n− 2) of Sn isotopes with a given Skyrme interaction (SIII).
It can be seen in this figure that the annihilation probability peaks at the circular state (7, 6)

consistently, and it decays from 0.6 for 104Sn towards 0.45 for 132Sn, in which a higher contribution
from the state (8, 7) is observed. The shift towards annihilating in higher energy levels is consistent
with increase of the nuclear mass and as a consequence the overlap between the antiproton and
nuclear density distributions occurs at a higher radius. The contribution from next-to-circular states
amounts to 10% and the slight increase at higher mass is related to the probability of the antiproton
not fully converging to the circular states.

In the case of Ca isotopes (Fig. 7.5), the dominant antiprotonic state where the annihilation occurs
is the circular level (5, 4). Similarly as before, the increase in the mass of the isotope increases the
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Figure 7.4.: Weight in the circular and l=n-2 states for the Sn isotopes studied for all the (N0, α)
pairs considered. The calculation shown was performed with the SIII parametrization.

probability of an earlier annihilation in the state (6, 5), which amounts to 5% for 54Ca.
It is also important to notice that the variation of the initial parameters (N0,α) show a stable

and consistent output. The largest spread of results is in the order of 10% at the most probable
annihilation level in all the computed isotopes, implying an independence of the annihilation process
from the initial conditions considered for the capture once the distribution is constrained by the X
ray decay pattern.

7.4. Gamma Ratios

The computed weights are used to calculate the neutron-to-proton annihilation ratios. At a first stage,
the total antiprotonic probability density is computed. As an example, the density obtained from the
calculations with 124Sn with the SKI5 paramterization is shown in Fig. 7.6.
Even though the weights of non-circular states are significantly lower, a closer look at their

contribution is performed by computing the overlap between the matter density and antiprotonic
density distributions, shown in Fig. 7.7. The left-hand-side figure shows, in logarithmic scale, the
antiprotonic states (n, l) of the contributing circular states. Additionally, the figure in the middle adds
the next-to-circular states, and finally, the right-hand side plot shows all the contributions. It can be
observed in this case, that the antiprotonic states with l<n-2 have a non-negligible contribution that
shifts the absorption widths towards the core of the nuclei. The effect that these contributions add to
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Figure 7.5.: Weight in the circular and l=n-2 states for the Sn isotopes studied for all the (N0, α)
pairs considered. This calculation was performed with SIII.

the computation of the gamma ratios is studied next.

7.4.1. Sensitivity to Skyrme parametrizations

The gamma ratios as defined in eq. (7.2) are computed for the Sn and Ca isotopes, with the neutron
and proton density parametrizations SIII, SKY5 and SLy4. Figure 7.8 shows the calculations obtained
for 104Sn, 112Sn, 124Sn and 132Sn. The figure on the left displays the gamma ratio calculated with the
contributions of the circular states only (∼75% of the total set of states), while the middle figure
includes the next-to circular as well. The right figure shows the result for all states with the weighted
annihilation probability, namely considering as well the lower l states. Each point represents the
gamma ratio obtained for a given set of capture parameters (N0, α).
The figure shows a clear sensitivity of the gamma ratio to the nuclear surface, evidenced by

the increasing values observed for larger isotopic masses. However, it is also observed that the
contribution to the annihilation probability of the lower l states (right side), in the range of 10%-12%,
shifts and broadens significantly the gamma ratios, losing the sensitivity to the tail. This requires the
development of a model that fully describes the capture of the antiproton and cascade through the
electron cloud, which is not treated in this model.
A comparison with existing antiproton-nucleon annihilation data [71, 237] is not possible, as

the radiochemical method was used to determine the halo factor, which depends on the ratio of
produced radioactive daughter nucleus to determine the annihilation ratio (see Sec. 1.3.4). This
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Figure 7.6.: Weighted antiprotonic wave functions with the sum of the weighted contributions.

method, in addition, probes a complementary region (∼ 1 fm farther) to the one proposed by the
PUMA experiment.

7.4.2. Sensitivity to neutron skin

To estimate the sensitivity to the diffusion of the neutron density tail tn, the densities calculated
with HFBRAD are fitted with a two-parameter Fermi distribution, given by

ρ =
ρ0

1 + e
r−cn
tn

,

where cn is the half density radius, tn = 4ln(3)dn is the neutron skin, related to the diffuseness
parameter dn, and ρ0 is a normalization factor with respect to the number of neutrons and protons.
The skin term is then increased by 0.1 fm, which corresponds to a variation in the order of 5% to
10% from the fitted values, depending on the isotope mass. The gamma ratio is computed with this
new distribution for both Ca and Sn isotopes. Figure 7.9 shows the result obtained with the SIII
Skyrme parametrization. The upper half of the figure corresponds to Sn isotopes, while the lower
half corresponds to Ca.
On the left-hand side of the figure, the result as a function of the mass (top: Sn, bottom: Ca) is

shown. On the right-hand side, the same result is shown as histograms, one per isotope considered.
The mean value of each distribution is shown as a vertical, dashed line. The isotopes show a separation
that decreases as a function of the mass. The mean value ranges from 7% difference at 104Sn to 0.9%
for 132Sn. In the case of Ca, the gamma ratio difference at 40Ca is 12.6 %, which decreases to 4.7%
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for 54Ca, showing that the proposed method by PUMA is sensitive to small variations of the neutron
skin including the expected uncertainties of final states interactions, which are foreseen to be lower
than 10%.
As a conclusion, this work has systematically compared X-Ray calculations of Ar, Sn, Ca and Yb

with available experimental and numerical data, getting a good control over the cascade code. The
benchmarks were used to find proper initial cascade parameters N0 and α. With these parameters,
the calculation of the antiprotonic annihilation states are shown to be independent of N0 and α and
it is observed that 70% of the annihilations occur in circular states.
A first estimation of the sensitivity of PUMA in tin and calcium isotopes is presented. The cal-

culations show that the gamma ratios are sensitive to the isotope mass. A comparison among the
Skyrme parameterizations SIII, SLy4 and SKI5 shows that the influence of low angular momentum
annihilations is non-negligible. Finally, a study of the neutron skin in tin and calcium isotopes show
that the method is sensitive to small diffusiveness variations of 5%-10%.
As an outlook, a full model that allows one to obtain P (N0, l) should be developed which allows

to properly describe the influence of low l levels annihilations. Additionally, the model considering
Final State Interactions with the complete estimation of the uncertainties needs to be included (Y.
Kubota, S. Wycech, in preparation).
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Conclusions and Outlook

PUMA is a new experiment at CERN that aims at developing low-energy antiprotons as a tool to probe
the isospin structure of the density tail of stable and unstable nuclei. The experiment is currently
under construction. The work of this thesis contributes to the core of PUMA: the detection of the
annihilation products and the sensitivity of the method.

The simulation, design and development of the Time Projection Chamber (TPC) for the PUMA
experiment was performed. Monte-Carlo simulations of realistic events implementing the experi-
mental setup with Geant4 led to the dimensioning of the annular TPC for optimized detection and
charge identification of the pions within the 4 T magnet. The simulations also included the drift,
amplification and electronic’s response expected with low-capacitance, 1 m long cables. As a result
of this work, the TPC is chosen to be 300 mm long with an internal, structural radius of 50 mm
constrained by the trap, and a sensitive internal radius of 64 mm. The external sensitive radius is
120 mm. This geometry allows for a combined detection and charge identification efficiency of 75%.
The overall design of the TPC is tailored to provide a stable operation and long-term reliability within
the compact space available inside the magnet’s bore of 280 mm diameter, as the detector is hardly
accessible once the full setup is assembled. This has an impact on the choices of ionizing gas, drift
field, field cage configuration and pad plane design:
An argon based gas mixture for the TPC is chosen due to its low ionization energy and wide availability.
Mixtures with Carbon Dioxide and a small percentage of methane have been investigated as they
provide an optimal drift field operation at relatively low electric fields of 200-250 V/cm, compared
to other widely used mixtures in TPCs.
As the cathode at -6 kV, a few millimetres away from the ground, presents a spark risk and the Finite
Element Methods (FEM) softwares Gmsh, ElmerFEM and COMSOL were used to design the field
cage in order to minimize discharges and optimize the field uniformity. In this way, a maximum field
strength of up to half as the expected breakdown voltage in the critical regions was achieved.
Overall, the anode, cathode and field cage design led to a relative distortion of the electric field close
to the shaping electrodes lower than 5% within 0.9 mm away from the field cage strips. Using the
Monte-Carlo tracking software Garfield++, the drift of the electrons in the TPC was simulated in
order to determine electric and magnetic imperfections. The drift volume shows a mean variation of
less than 100 µm in 90% of the volume, while less than 200 µm deflection is expected for electrons
traversing the full drift length near edges of the TPC.
The background impact and rejection capabilities of PUMA was estimated by introducing the external
Geant4 library CRY into the simulation. The realistic cosmic rays showed a rate of two muons per
second in the TPC active volume, although 90% do not cross the trap and can be rejected. In this case
a rate of only eight particles per minute, which pollute events of multiplicities 1 and 2, are expected.

The PUMA TPC is currently being built and its delivery is planned for end of Sept., 2022. The next
steps consist of its validation first with a 55Fe radioactive source and once its correct operation is
under control, first measurements with cosmic rays at CERN, where a test bench is deployed, will be
performed. The first measurements with antiprotons at ELENA are expected to start taking place
during the spring of 2023.

97



In a second part of the thesis, an existing cascade code was used to estimate the sensitivity of
PUMA to the density tails of Sn and Ca isotopes. The code was systematically benchmarked with
experimental X-ray yields of 124Sn, 48Ca, 40Ar and 176Yb measured at LEAR, obtaining results also
consistent with calculations performed with another cascade code. These benchmarks laid the
ground for the choice of meaningful capture parameters: The antiprotonic capture energy level,
N0, and a free parameter, α, that shapes the angular momentum probability distribution, given by
P (l) = (2l + 1)eαl. Based on these values, the neutron-to- proton annihilation ratios of Sn and Ca
isotopes was calculated.
The calculations with the cascade code showed that 70% of the annihilations occur in antiprotonic
circular levels, validating the PUMA concept.
Different Skyrme parametrizations were used to describe the densities, and the gamma ratios show a
clear dependency with the nuclear mass, as expected. Additionally, a non-negligible contribution
from antiprotonic annihilations at low l levels were observed. A small variation of the diffusion
coefficient of the densities shows that the gamma ratios are sensitive to small variations of 5%-10%.
This study did not include the effect of final state interactions of pions produced at the annihilation
with the residual nucleus, which is outside the scope of the present work and which has been studied
elsewhere.

An important theoretical next step is the development of a full cascade model, including the decay
of the antiproton through the electron cloud. It would also be interesting to integrate the calculation
of the absorption widths with custom densities and optical potentials. In this way, other effects such
as alpha clustering could be studied and allow for a determination of the experimental sensitivity of
PUMA.
To reduce experimentally the uncertainties related to the capture, a coincidence measurement

of pions and X rays would be a major upgrade of the PUMA experiment. This would allow to tag
pion events together with the annihilation levels, which has never been performed experimentally.
A low density or Xenon TPC would be able to detect both. This could be thought of as a future
implementation of PUMA, although major modifications in the setup would be required. Indeed, the
X-rays would not be able to traverse the penning trap and beamline layers as conceived today.
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A. Antiprotonic X-ray transitions

The experimental and calculated values of the X-ray transitions relative intensities, normalized to
the transition 12→11 in 176Yb are specified in Tab. A.1 (for the transition ∆n1, ∆n2 and ∆n3) and
Tab. A.2 (for the transition ∆n4 and ∆n5).

Table A.1.: Experimental, calculated by Schmidt and calculated in this work X-ray relative intensities
(∆n1, ∆n2 and ∆n3) of 176Yb normalized to the transition n=12→11.

ni
∆n1 ∆n2 ∆n3

Exp. Calc.a Calc.b Exp. Calc.a Calc.b Exp. Calc.a Calc.b

19 42.2±2.2 46.±0.4 46.6 13.7±1.1 12.9±0.1 12.49 5.7±0.6 5.45±0.05 4.3
18 56.1±2.9 57.8±0.5 57.6 5.1±0.5 5.9±0.05 4.7
17 67.7±2.4 66.2±0.6 67. 17.5±0.8 15.6±0.1 13.4 5.8±0.5 5.67±0.05 6.9
16 53.1±2.6 49.2±0.5 48.5 14.3±0.7 11.9±0.1 15.5 6.5±0.5 6.85±0.06 5.6
15 65.8±2.3 67.1±0.6 65.5 13.4±0.6 15.2±0.1 14.7 4.2±0.3 4.7±0.04 5.8
14 96.9±3. 95.3±0.9 93.4 16.8±0.6 15.6±0.1 11.7 4.3±0.4 4.2±0.04 5.4
13 91.9±2.8 94.1±0.9 90.1
12 100±2.9 100.4±1 100. 15.3±0.7 13.4±0.1 15.7
11 106.1±3.1 107.7±1 105.7 13.6±0.7 12.4±0.1 12.9
10 110.2±3.2 116.8±1 114.
9 28.7±1.1 28.6±0.2 26.
a: Calculated by Schmidt et al.
b: Calculated in this work

The experimental X-ray relative intensities and calculated in this work of 124Sn, normalized with
respect to the transition 11→10, is shown in Tab. A.3.

The experimental and calculated values of the X-ray transitions relative intensities, normalized to
the transition 7→6 in 48Ca are specified in Tab. A.4

Table A.5 shows the experimental yield of circular transitions in low-pressure 40Ar from Bacher et.
al.

Table A.2.: Experimental, calculated by Schmidt and calculated in this work X-ray relative intensities
(∆n4 and ∆n5) of 176Yb normalized to the transition n=12→11.

ni
∆n4 ∆n5

Exp. Calc.a Calc.b Exp. Calc.a Calc.b

19 3±0.4 2.7±0.02 1.6 1.9±0.5 1.43±0.01 1.3
18 1.6±0.3 1.34±0.01 1.4
17 1.9±0.3 2.42±0.02 1.6
16 2.1±0.4 1.7±0.01 2.4
15 2.2±0.5 1.62±0.01 2.7
a: Calculated by Schmidt et al.
b: Calculated in this work
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Table A.3.: Experimental and calculated in this work X-ray relative intensities of 124Sn normalized to
the transition 11→10.

ni
∆n1 ∆n2 ∆n3 ∆n4

Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc.
19 27.2 6.26±0.7 7.4 3.61±0.33 3.22 1.3±1. 1.01
18 39.6 10. 2.76±0.22 4.15 1.18
17 52.6 11.79±0.8 11.7 4.83±0.3 4.36 2.24±0.15 1.02
16 23.5 6.2±0.9 5.9 3.9±1. 2.39 0.57
15 29.47±6.52 38.5 8.49±0.6 9.6 3.62±0.21 3.6 1.69±0.14 0.69
14 61.55±8.85 53.7 12.4±6.92 12.1 4.68±0.26 4.12 1.18±0.17 0.55
13 72.97±7.26 70.1 13.9 4.04 1.15±0.13 0.28
12 83.95±5.75 86.1 13.42±0.7 14.4 3.16±0.22 3.4
11 100.±5.61 100. 16.86±1.5 13.5 1.58±1. 2.14
10 126.26±6.48 110. 11.56±0.77 10.3
9 110.±5.5 109.9 3.52±0.26 2.53
8 56.19±2.5 54.9

Table A.4.: Experimental, calculated byHartmann and calculated in thiswork X-ray relative intensities
(∆n1, ∆n2 and ∆n3) of 48Ca normalized to the transition n=7→6

ni
∆n1 ∆n2 ∆n3

Exp. Calc.a Calc.b Exp. Calc.a Calc.b Exp. Calc.a Calc.b

10 38.0$$2.1 41.9±1.6 51.9 13.2±0.7 11.86±0.47 12.4 5.7±0.4 4.67±0.18 4.8
9 66.2±3.4 62.1±2.4 74. 14.1±0.8 15.04±0.60 14.5 5.5±0.5 4.97±0.19 4.2
8 75.1±3.8 84.7±3.3 89.5 16.0±0.9 17.03±0.68 13.4
7 100.0±5. 103.1±4. 100. 8.9±0.6 10.80±0.43 8.2
6 85.0±4.3 101.±4. 90.4
a : Calculated by Hartmann et al.

b : Calculated in this work

Table A.5.: Experimental yield of circular transitions in low-pressure 40Ar from Bacher et. al.

ni Experimental Absolute yield
22 0.27±0.124
21 0.44±0.107
20 0.328±0.107
19 0.523±0.104
18 0.68±0.13
17 0.21±0.061
16 0.132±0.033
15 0.511±0.089
14 0.588±0.100
13 0.624±0.104
12 0.595±0.099
11 0.593±0.098
10 0.605±0.100
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B. Academic CV

Removed in this published version.
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