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Abstract

We construct integral models for moduli spaces of shtukas with deep Bruhat-Tits level
structures. In the Drinfeld case, we define Drinfeld level structures for Drinfeld shtukas of
any rank and show that their moduli spaces are regular and admit finite flat level maps.
In particular, the moduli space of Drinfeld shtukas with Drinfeld I'y(p")-level structures
provides a good integral model and a relative compactification of the moduli space of
shtukas with naive I'y(p")-level defined using shtukas for dilated group schemes.

For general reductive groups, we embed the moduli space of global shtukas for the deep
Bruhat-Tits group scheme into the limit of the moduli spaces of shtukas for all associated
parahoric group schemes. We define the integral model of the moduli space of shtukas
with deep Bruhat-Tits level as the schematic image of this map and show that the integral
models defined in this way admit proper, surjective and generically étale level maps as well
as a natural Newton stratification. In the Drinfeld case, this general construction of integral
models recovers the moduli space of Drinfeld shtukas with Drinfeld level structures.







Zusammenfassung

Wir konstruieren ganzzahlige Modelle von Modulraumen von globalen Shtukas mit tie-
fen Bruhat-Tits Levelstrukturen. Im Drinfeld-Fall definieren wir Drinfeld Levelstrukturen
fiir Drinfeld Shtukas von beliebigem Rang. Wir zeigen die Regularitit der zugehorigen
Modulrdume sowie dass die Levelabbildungen endlich flach sind. Insbesondere liefert der
Modulraum von Drinfeld Shtukas mit Drinfeld I'y(p™)-Levelstrukturen ein gutes ganzzah-
liges Modell und eine relative Kompaktifizierung des Modulraums von Shtukas mit naiven
Iy (p™)-Levelstrukturen definiert mithilfe von nicht konstanten Gruppenschemata.

Im Fall allgemeiner reduktiver Gruppen betten wir den Modulraum von globalen Shtukas
fiir ein tiefes Bruhat-Tits Gruppenschema in den Limes seiner zugehorigen Modulraume
von Shtukas mit parahorischem Level ein. Wir definieren unser ganzzahliges Modell fiir
den Modulraum von Shtukas mit tiefem Level als das schematheoretische Bild dieser Ab-
bildung und zeigen, dass die in dieser Weise definierten ganzzahligen Modelle eigentliche,
surjektive und generisch étale Levelabbildungen genau wie eine natiirliche Newtonstratifi-
zierung besitzen. Im Drinfeld-Fall stimmt das allgemein definierte ganzzahlige Modell mit
dem Modulraum von Drinfeldmoduln mit Drinfeldlevelstrukturen iiberein.
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1. Introduction

Moduli spaces of (global) shtukas serve as function field analogues of Shimura varieties.
They were first introduced in [Dri87b] for GL, and later generalised to arbitrary split
reductive groups [Var04] and even flat affine group schemes of finite type in [AH21]. They
are used to great succes in establishing a Langlands correspondence over function fields
in [Dri87a] for GL,, [Laf02] for GL,, and [Laf18] for arbitrary reductive groups. While a
lot of progress has been made in understanding the geometry of moduli spaces of shtukas
for general reductive groups with parahoric level, compare for example [AH14], [AH19],
[Brel8], [YZ19] and [Zhul4], little is known for deeper level structures. The goal of
this work is to construct good integral models of moduli spaces of shtukas with deep
Bruhat-Tits level structures for general reductive groups that generalise the parahoric case,
and to give an explicit moduli description of these integral models in the Drinfeld case
(that means GL,.-shtukas for some fixed » > 1 with two legs bounded by the minuscule
cocharacters (0,...,0,—1) and (1,0,...,0)) with I'y(p™)-level structure. Let us explain
the construction in more detail.

Let X be a smooth, projective and geometrically connected curve over a finite field I,,.
Let us fix an F,-rational point co of X and let us denote X’ = X'\{cc}. In this introduction,
we focus on the case of Drinfeld shtukas of rank 2. Roughly speaking, a Drinfeld shtuka
of rank 2 is a vector bundle of rank 2 on X together with a rational isomorphism to its
Frobenius twist. More precisely, a Drinfeld shtuka of rank 2 (with pole fixed at o0) over an
[F,-scheme S is given by the data £ = (z, &, ¢), where

* 2 € X'(S) is the characteristic section (also called leg or paw),
e £ is a rank r vector bundle on X¢ and

* 9 0" E|x\(Tpul') = €| Xs\(TyuTy) 1S an isomorphism of Ox4-modules away from
the graphs I'; of x and I', of oo, such that ¢ extends to a map ¢: c*E|x — &|x-
with coker(¢) supported on I',, and invertible on its support, and ¢! extends to a
map ¢ !: €| x\r, = €| x\r, with coker(p 1) supported on I'y, and invertible on
its support.




In this sense, one can think of ¢ as having a zero of order 1 at 2 and a pole of order 1 at co.
We denote by Sht, the stack of Drinfeld shtukas of rank 2, it is a Deligne-Mumford stack
locally of finite type over F,. The projection to the characteristic section defines a map
Shty — X', which is smooth of relative dimension 2. Drinfeld shtukas in this sense are a
generalisation of Drinfeld modules (compare Proposition 2.2.3 for a precise statement).
Moduli spaces of rank 2 Drinfeld modules can be thought of as a function field analogue
of the moduli space of elliptic curves. In this sense, Sht, is a function field analogue of
the modular curve.

As in the case of elliptic curves, we want to consider I'y(p™)-level structures. Let
us explain what this means. Let us fix a F,-rational point 0 of X and denote by Oy
(respectively p = po) the completion of the local ring of X at 0 (respectively its maximal
ideal). We denote for n € N by D,, = n[0] € X the effective Cartier divisor in X defined
by (multiples of) the point 0. Then we have D,, = Spec(Oy/p™). For a Drinfeld shtuka
£ € Sht,.(5) over a (F;-)scheme S, we denote by &|p, , its pullback to D,, 5. A naive
[o(p™)-level structure on a rank 2 shtuka £ is given by a quotient £ — L of Op, ,-modules
such that £ is finite locally free of rank 1 on Op,, , and such that ¢ descends to a map
o*L — L. By the analogy with the modular curve, in the fibre of the moduli space of
shtukas with T'y(p™)-level structures over 0 we should expect to find n + 1 components
intersecting at supersingular points. However, it can be shown that in the non-parahoric
case (in other words if n > 2) the moduli space of Drinfeld shtukas with naive level
structures as above only has two components which moreover do not intersect in its fibre
over 0. In particular, its supersingular points are missing (compare Remark 2.1.20).

The reduction modulo p of modular curves with I';- and I'g-level structures was studied
by [DR73] using a normalisation procedure. [KM85] gave an explicit moduli description
of an integral model using Drinfeld level structures. This notion goes back to [Dri76], who
first introduced such level structure for Drinfeld modules. The analogy to the modular
curve suggests a strategy to construct good integral models in our shtuka setting, in other
words, to define a good notion of level structure that also behaves as desired at a place of
bad reduction: to use Drinfeld level structures.

In order to define Drinfeld level structures for shtukas, we associate to a Drinfeld
shtuka its scheme of p™-torsion points £[p"|. This was essentially constructed in [Dri87b]
and shares similar properties with the scheme of p™-torsion points of a Drinfeld module
(respectively the scheme of p™-torsion points of an elliptic curve). It is a finite locally free
Op/p™-module scheme of rank ¢> over S. Moreover, we show that étale locally on S we
find an embedding of £[p™] as a Cartier divisor into A} by adapting a similar result for the
p"-torsion of one-dimensional p-divisible groups of [Fri19] (compare Proposition 2.2.13
and Remark 2.2.14).

This allows us to define Drinfeld I'g(p™)-level structures on Drinfeld shtukas as follows.




Definition 1.0.1 (compare Definition 2.4.2 for general rank). A (Drinfeld-) I'g(p™)-level
structure on a rank 2 shtuka £ is a finite locally free closed subscheme H < £[p"] of
rank ¢" that admits a generator fppf-locally on S, that means an Oy/p™-linear map
v (p7"/Op) — Ep™](S) such that after the choice of an embedding £[p"] — A} we have

Y o)) =H and Y [a) Sl

aep—" /O aep—1/0p
as Cartier divisors in Aj.

Note the subtle difference compared to the definition of I'y(p™)-level structures in
[KM85]: In the setting of elliptic curves the second condition is automatic. However, in
our setting the second condition is in particular necessary to get well-defined level maps,
see Remark 2.3.4 for an explicit counterexample.

Adapting the theory of Drinfeld level structures for elliptic curves in [KM85], we obtain
the following.

Theorem 1.0.2 (compare Theorem 2.4.3 for general rank). Let n > 0 be an integers.

(1) The moduli stack Shty ) of rank 2 Drinfeld shtukas with Drinfeld T'g(p")-level
structures is representable by a regular Deligne-Mumford stack locally of finite type
over If,.

(2) The level map Shty 1 (,ny — Shty is schematic, finite and flat. Moreover, it is finite
étale away from p.

In particular, Sht, p,(,») acquires the supersingular points missing in the moduli space
of rank 2 Drinfeld shtukas with naive I'y(p™)-level structures.

As in the case of elliptic curves in [KM85, Chapter 5], we first show the corresponding
results for I';(p™)-level structures. The main step in the proof of the I'; (p™)-case is the
study of the deformation theory at supersingular points, where we rely on results of
[Dri76]. Using the flatness of the moduli space, we construct a compatible system of level
maps

Sht271"0(pn) — Shtzr‘o(pm)

that are finite locally free and generically étale for all m < n.

The level maps allow us to interpret our construction in the following way in terms of
the combinatorics of the Bruhat-Tits building B(GL2, K() of GL over the fraction field
Ky of Oy. Let us denote by Q2 = [0, n] the standard interval of length n in the standard
apartment of B(GLg, K(). By Bruhat-Tits theory, for such a subset 2 of the Bruhat-Tits
building we get an associated smooth affine group scheme GL; o over O, that can be




glued with GL; to a smooth affine group scheme over X that we denote by a slight
abuse of notation also by GLy ;. Following [MRR20], we can view Drinfeld shtukas with
naive I'g(p")-level structures as shtukas for the Bruhat-Tits group scheme GL, o bounded
by © = ((0,...,0,—1),(1,0,...,0)). For a precise definition see Section 2.1.5 below.
Let us denote by Shty o the moduli stack of shtukas for the Bruhat-Tits group scheme
GL2 o bounded by (0,...,0,—1) and (1,0,...,0). To such a bounded GL; n-shtuka we
can associate a Drinfeld shtuka with Drinfeld ' (p™)-level structure, this is explained in
more detail below. Moreover, using the level maps, we get compatible system of maps
Shty ry(pn) — Shta; to the moduli space of shtukas for Bruhat-Tits group schemes for all
facets f < Q2 contained in 2.

Theorem 1.0.3 (compare Theorem 2.5.7). The map Shty o — yLnRQ Shty; is a quasi-

compact open immersion and an isomorphism away from 0. Its schematic image in the sense
of [EG21] is Shty o = Shty 1, (yn) via the maps

Sth,Q — Sth,FO(P") — yLnSht?,f
f<Q

constructed above. In the parahoric case n = 1, the map Shty o — Shty () is an isomor-
phism.

Another way to phrase Theorem 1.0.3 is that we (relatively) compactified the level map
Shty o — Shty, which we saw in the example above is not proper in general, by factoring it
in an open immersion with dense image followed by a finite (hence proper) and surjective
map

ShtZQ — Sht?IO(P”) — Sht,.

We can also interpret this result as follows. The theorem shows that ﬁlg = Shty 1y (pm)
is the flat closure of the generic fibre inside @f<g Shty 5. In this sense, Theorem 1.0.3

suggests that a candidate for a good integral model for the moduli spaces of shtukas
for a general reductive group with deep Bruhat-Tits level structure (i.e. level structures
generalising I'g(p™)-level structures in the GLy-case) is the closure of the moduli stack
of shtukas for the Bruhat-Tits group scheme inside the limit of all moduli stacks with
corresponding parahoric level.

In the second part of this thesis, we confirm this expectation by considering the following
situation. Let G be a (connected) reductive group over the function field K of X and let
us fix a parahoric model G — X of G. That is, G is a smooth affine group scheme over X
with generic fibre G such that for all closed points x of X the pullback Gy, is a parahoric
group scheme in the sense of [BT84]. Let {2 be a bounded subset of an apartment in the




Bruhat-Tits building of G,, where K| is the completion of K at 0. As in the GLy case
above, we get a smooth affine Oy-group scheme G, that we glue with G outside of x,
to obtain a (global) Bruhat-Tits group scheme G, — X which is smooth and affine by
construction. Without loss of generality, we may assume that €2 is convex, closed and a
union of facets.

Let I be a finite set and let 1 = (u;);e;r be a tuple of conjugacy classes of geometric
cocharacters of G. For simplicity, we assume in this introduction that 1 is defined over the
function field K of X (in general it will only be defined over a finite separable extension
of K). A global G-shtuka over a scheme S is a Gg-bundle £ on Xg together with an
isomorphism ¢: 0*&|x\r, = = €| XS\F away from the graph T',. of an I-tuple z € X/(S) of

points of X. We denote by Sht oXT the moduli space of global Go-shtukas bounded by p,
compare Definition 3.2.7 and Constructlon 3.2.14 for the precise definition of boundedness

conditions. Note that in the Drinfeld case Shty o = ShtG]E(OQ )?2 (1,0)) | {0} x x7- In this sense,

Shtg* 1 generalises the moduli space of Drinfeld shtukas with naive I'g(p")-level structure.

While for a subset ' of Q there is still a natural map Sht QX ™ Shtg X1 by [Brel8,
Theorem 3.20] (compare also Theorem 3.3.3), already in the Drlnfeld case G = GLy, the

<((07_1)7(170)) <((07_1)7(170)) 1 1 1 1
level map ShtGLQ’[Om]’ P ShtGLQ’ 2 is neither proper nor surjective for n > 2 as

discussed above.

We propose the following construction to relatively compactify Shtg X1

Definition 1.0.4 (compare Definition 3.3.7). In the situation above, that is, for a reductive
group G over K, and a Bruhat-Tits group scheme Gy — X for a subset 2 (assumed to be
convex, closed and a union of facets) of the Bruhat-Tits building for G, at the fixed point
0 of X as above, the integral model of the moduli space of shtukas with Gq-level structure
Shtg X1 is defined to be the schematic image in the sense of [EG21] of the map

Sht.” lim Sh "

gXI_’
Q

gXI7

where the limit is taken over all facets f contained in €.

Clearly, in the parahoric case (that is, when (2 is a facet) we have

she;” ;= She ;" = lim Sht;”
f<Q

XI ’

so the construction above generalises the parahoric case. Moreover, as we have seen above,
this general notion of integral models in the Drinfeld case recovers the moduli space of
shtukas with Drinfeld I'y(p™)-level structure at 0.




The main result of this work is to show that this construction of integral models admits
proper, surjective and generically finite étale level maps:

Theorem 1.0.5 (compare Proposition 3.3.6 and Theorem 3.3.8). In the situation of
Definition 1.0.4, the map
<H . <p
Shtg, xr — limShtg %,
f<Q
is schematic and a quasi -compact locally closed immersion. It factors into an open immersion

lim_ Sht\“ The

Shtg X1~ Sht 0T followed by the closed immersion She g XTI

Ga, X1
restriction of the lncluswn

~

SH Sy
Shtgn,Xf |(X\{0})’ - Shtgﬂ,xz|(X\{0})I
away from 0 is an isomorphism. Moreover, for a subset () < (, there is a natural level map

_ SIS
pQ/7Q. ShtgQ 7 Shth, xI

that is schematic, proper, surjective and over (X\{0})! is finite étale.

In the parahoric case, the level maps on moduli spaces of shtukas are also studied in
[Bre18, Theorem 3.20]. However, the notion of bounds used there does not quite capture
the situation we are interested in here. We discuss the notion of global bounds for global
shtukas following [AH19] and give a defintion of local bounds that is compatible with the
global notion. We generalise the result of [Bre18, Theorem 3.20] to include bounds in
this sense (compare Theorem 3.3.3). Using the assertion in the parahoric case, we are
able to deduce the result also for deep level structures.

Additionally to the existence of well-behaved level maps, we show that the Newton
stratification on the special fibre of the moduli space of shtukas in the parahoric case
induces a well-defined Newton stratification on the special fibre in the case of deeper level.
For a reductive group H over a local field k¥ we denote by B(H) the set of s-conjugacy
classes in H (k), where k is the completion of the maximal unramified extension of k. Then
B(H) classifies quasi-isogeny classes of local shtukas for (an integral model of) H.

We fix a tuple of pairwise distinct closed points y = (yi)ie; in X and denote by
Shtggj X1F, = Sht 1 Xx1 Fy the special fibre over y, where F, is the compositum
of the residue ﬁelds of the points y; of X.

Theorem 1.0.6 (compare Definition 3.4.3 and Corollary 3.4.4). Let ¢ be an algebraically
closed extension of F,. There is a well-defined map

e I
00+ Shtg, ip, (00 = [ [ B(GK,,)

el




that is compatible with the level maps in the sense that for Q' < 2 we have

5g§2 = (5ng © pQI,Q

Moreover, for b = (b;)ier € B(Gk,,) the preimage of b under dg,, is the set of (-valued points of
a locally closed substack Sht\“’ of Sht\#

2 XTF, F, called the Newton stratum of Sht
for b.

o, X1 o, X1 Fy

In the parahoric case this result is due to [Brel8, Section 5], compare also [HV11,
Theorem 7.11]. In this case, the map ¢ is given by associating to a point in the special
fibre over y the quasi-isogeny classes of its local shtukas at the points y;. We use the
compatibility of the Newton stratification with the level maps in the parahoric case to
extend this result to the case of deep level.

Moreover, we show that in the hyperspecial case the Newton stratification satisfies the
strong stratification property (as for Shimura varieties). Recall that there is a natural
order on B(H) induced by the dominance order on cocharacters. It is well-known in

oxir, S Urs Sht;/;;F Note that this also

generalises to deeper level. We say that the Newton stratification satisfies the strong
stratification property when we even have equality. However, the inclusion is strict in
general.

the parahoric case that the closure Sht

Theorem 1.0.7 (compare Theorem 3.4.5). Let G — X be a parahoric group scheme that
is hyperspecial at y; for all i € I. Then the Newton stratification at y satisfies the strong
stratification property in the sense that

<u, <M7
SthI]F USthIFy
o<t/

forallbe [T, B(Gy,).

We deduce the closure relations from the corresponding local result in [Viel3] using the
(bounded version of the) Serre-Tate theorem for shtukas. For PEL-type Shimura varieties,
this result is due to [Ham15].

In order to establish the first two assertions of Theorem 1.0.5, we study the deformation
theory of torsors under Bruhat-Tits group schemes. In the process, we show two results
that may also be of independent interest. In the local case (and hence also for the
corresponding global Bruhat-Tits group schemes), we get the not necessarily parahoric
Bruhat-Tits group scheme as the limit of all its associated parahoric group schemes.




Theorem 1.0.8 (compare Theorem 3.1.3). Let G be a reductive group over a local field k
and () a subset of the Bruhat-Tits building for G as above. Then the induced map

Go — lim G;
<2

is an isomorphism of O-group schemes, where O is the ring of integers of k.

We use this result on the level of group schemes to show that the moduli stack of
Go-bundles Bung,, on X embeds via an open immersion into the limit of Bung, over all
associated parahoric group schemes.

Theorem 1.0.9 (compare Theorem 3.1.13). In the situation of Definition 1.0.4, the natural
map
Bung, — lim Bung,
f<Q

is a quasi-compact open immersion.

Note that given a compatible system of G;-torsors for all facets § < (2, it is in general not
true that their limit is a torsor for G, as it might be impossible to construct a compatible
system of sections. By controlling the deformation theory of torsors for the G;, we are
able to show that the locus where the limit of a compatible system of G;-bundles on X is
already a Go-bundle on X is open.

Conclusion and Outlook

In this thesis, we construct integral models for moduli spaces of shtukas with deep Bruhat-
Tits level structures that generalise the known constructions in the parahoric case and the
GL,-case with T'g(p™)-level structure. Moreover, we show that our integral models admit
proper, surjective and generically finite étale level maps.

In future work, we use our construction of integral models to study the local geometry
of the fibres of our integral models at places with deep level structures. To this end, we
aim to construct a local model also for deep level structures in order to relate the geometry
of the special fibre to the combinatorics of the Bruhat-Tits building as in the parahoric
case.

As an application, we can then use the insights on the geometry of the special fibre
to calculate the semisimple trace of Frobenius on the sheaf of nearby cycles in order to
construct elements of the Bernstein center of the (local) Hecke algebra of the reductive
group G.




Organisation

This thesis is organised as follows. In Chapter 2, we consider the Drinfeld case and study
the moduli space of Drinfeld shtukas with Drinfeld level structures. More precisely, in
Section 1 we recall some facts on shtukas (in particular Drinfeld shtukas) and define
naive I'g(p™)-level structures. In Section 2, we explain the comparison with Drinfeld
modules. This provides us with a way to associate group schemes to (global, local and
finite) shtukas, which is what makes it possible to define Drinfeld level structures in the
first place. In particular, we construct the scheme of p”-division points of a Drinfeld
shtuka and study its properties. In Sections 3 and 4, we define our Drinfeld (I';- and
I'o-type) level structures and prove the regularity of their moduli spaces. For this, we
follow [KM85]. In Section 5, we show that the Drinfeld level structures actually provide
a good (relative) compactification of the moduli space with naive level structure Sht, .
Chapter 2 is contained in [Bie22].

In Chapter 3, we consider the case of shtukas for a general reductive group with deep
Bruhat-Tits level structures. In Section 1, we study (torsors under) Bruhat-Tits group
schemes and show Theorems 1.0.8 and 1.0.9. In Section 2, we introduce moduli spaces of
shtukas and discuss how to define boundedness conditions. In particular, we give a new
definition of local bounds that is compatible in a natural way with usual notions of global
bounds. In Section 3, we first prove a variant of the functoriality result for moduli spaces
of shtukas of [Brel8, Theorem 3.20] showing in particular that the level maps in the
parahoric case are well-behaved in our setting. We use this result to define our integral
models with deep level structure and show that these models admit well-behaved level
maps as well, proving Theorem 1.0.5. In Section 4, we construct a Newton stratification
on the integral models with deep level.

Notation

We fix the following notation. Let F, be a finite field with ¢ elements, let p be the
characteristic of FF,. All schemes will be [F,-schemes unless otherwise specified. Let X
be a smooth projective and geometrically connected curve over I, with function field K.
For a closed point « of X we denote by Ox , the local ring at  and by O, its completion.
Moreover, we denote by K, the completion of K at x.

We denote by o the (absolute) g-Frobenius endomorphism Frobg of some F,-scheme S,
and also the map o = idx x Frobg: Xg — Xg. It is always clear from context which map
o is meant.







2. Compactification of level maps of moduli
spaces of Drinfeld Shtukas

2.1. Moduli spaces of shtukas and naive I')(p")-level structures

Drinfeld Shtukas were introduced in [Dri87b] as elliptic sheaves and were vastly generalised
to arbitrary reductive groups or even general smooth affine group schemes in [Var04] and
[AH14], respectively.

We introduce naive I'g(p™)-level structures on Drinfeld shtukas, present how to encode
these level structures in terms of Bruhat-Tits group schemes following [MRR20] and
explain, why the naive definition is not appropriate for deeper level (that means for
n>1).

Let us for the whole of this chapter fix two distinct F,-rational points oo and 0 of X and
denote by p = py the maximal ideal in the complete local ring O at 0. Let us also fix a
uniformiser @ of p.

2.1.1. Global shtukas

We recall the definitions of global shtukas and isogenies of Drinfeld shtukas. We restrict
ourselves to shtukas with two legs with one leg fixed at the point oo.

Definition 2.1.1 ([AH14]). Let G be a smooth affine group scheme on X. A global
G-shtuka over a scheme S is given by the data

E=(x,E,p:0%E --5 &),
where
* z € X'(S) is a section of X' = X\{c0},
* £is a G-bundle on X¢ and

* @ 0" E|xo\(Tpul'y) = &l xg\(TsuT,,) 18 an isomorphism of G-bundles away from the
graphs I, of z and Ty, of co.
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The point x is called characteristic or leg of £. A map of G-shtukas is a tuple of maps of
G-bundles compatible with the maps ¢ and ¢’.

Note that there are several ways to bound the zeros (and poles, respectively) of G-
shtukas, and in general they are not equivalent (compare Remark 2.1.7). We will mostly
be interested in the case of Drinfeld shtukas, that means we consider G = GL, (or
corresponding Bruhat-Tits group schemes) and bounds given by the minuscule coweights
u=((0,...,0,-1),(1,0,...,0)). These admit the following explicit description.

Definition 2.1.2 ([Dri87b]). A Drinfeld shtuka of rank r over a scheme S is given by the
data

E=(z,& ),
where

* 2 € X'(S) is the characteristic section,
* £ is arank r vector bundle on Xg and

* @ 0" E|xo\(Npul'y) =& |xg\("'yur',) 1s an isomorphism of O x,-modules away from
the graphs I';, of x and I'y, of oo, such that ¢ extends to a map ¢: 0*&|x — &|x-
with coker(¢) supported on I',, and invertible on its support, and ¢! extends to a
map ¢ ': E|x\r, — 0*E|x\r, With coker(¢ ') supported on oo and invertible on
its support.

We denote by Sht, the stack of Drinfeld shtukas of rank r.

It is well known that Sht, is a Deligne-Mumford stack locally of finite type over F,.
It has a forgetful map Sht, — X’ which is smooth of relative dimension (2r — 2), see
[Dri87b, Proposition 3.2 and 3.3].

In the context of Drinfeld shtukas, the characteristic section z is often called the zero
of £ while the second leg (that we fixed to be o) is the pole of £. By a slight abuse of
notation we say that £ is in characteristic p if its characteristic section factors through 0.

Remark 2.1.3. Note that once the zero and the pole of the shtuka do not intersect, we can
glue £ and o*¢ along the isomorphism ¢ over X¢\(I'; u I',/) and obtain a vector bundle
&' together with maps
P ESE — o€

of Ox-modules that satisfy the analogous conditions on the cokernels as in our definition
of Drinfeld shtukas. This notion is used in the original definition of Drinfeld shtukas in
[Dri87b] and does not require the two legs of the shtuka to be disjoint. We denote by
Sht, x» — X? the stack of Drinfeld shtukas in this sense. Then Sht, = Sht, x2 x x2({c0} x
X".
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For n € N we denote by D,, = n[0] € X the effective Cartier divisor in X. Note that
D,, = Spec(Op/p™).

Definition 2.1.4. Amap f: £, — &, of Drinfeld shtukas is an isogeny if f is injective and
coker( f) is finite locally free as Og-module. Moreover, we say that f is a p"™-isogeny, if the
O x¢-module structure on coker( f) factors through Op, ,, in other words, if coker(f) is
p"-torsion.

In order to give a criterion which Og-modules can arise as cokernels of p™-isogenies,
we use the following notion of a p”-torsion shtuka, which are an O /p"-linear analogue of
the ¢-sheaves introduced by [Dri87b].

Definition 2.1.5. A p"-torsion shtuka over S is a pair F = (F, ) consisting of a quasi-
coherent Op, ,-module F which is finite locally free as Os-module and an Op,, ,-module
homomorphism ¢: ¢*F — F. A map of p”-torsion shtukas is a map of the underlying
Op, s-modules compatible with . We say that a p"-torsion shtuka is étale if ¢ is an
isomorphism.

In [HS19] Drinfeld’s ¢-sheaves are also called finite shtukas. For our purposes however,
the Op, -module structure is central.

To a rank r Drinfeld shtuka £ = (z,&, ) over S we associate its p"-torsion shtuka
defined as the pullback of £ to the divisor D,, s, which is more explicitly given by £|p,, ¢ =
(€]p, s ¥lD, s)- Note that its underlying Og-module has rank nr. A second important
class of examples of p™-torsion shtukas are cokernels of p”-isogenies of Drinfeld shtukas.
Note that £|p, s is the cokernel of the p™-isogeny £(p") — &, where we denote by
E(p") = E®O(D,,s) the twist of £ by the divisor D,,.

2.1.2. Local shtukas

We can associate to Drinfeld shtukas its local counterparts called local shtukas in the
same way p-divisible groups are local analogues of abelian varieties. Local shtukas are
introduced as Dieudonné F, [cw]-modules in [Har05] as analogues of Dieudonné modules
of p-divisible groups and are studied and generalised for example by [HV11] and [AH14].

Let us denote by F, [(] the ring of formal power series in the formal variable ¢ and by
Nilpg, | the category of schemes S over [, [(] such that ( is locally nilpotent in S. For a
ring R, we denote by R [w] the ring of formal power series in the formal variable w and by
R ((w)) the ring of formal Laurent series in  on S. Note that for Spec(R) € Nilpg, we

have R (@) = R[=] {w#_c} . We denote by o the endomorphism of R[] (respectively
R (=))) that acts as the identity on o and as b — b% on R.
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Definition 2.1.6. Let S = Spec(R) € Nilpg,[¢]- A local shtuka G = (G, ¢) of rank r over
S is a locally free sheaf of R ((w))-modules G of rank r together with an isomorphism
¢: 0*G[5te] — Gtz of R ((w))-modules. The local shtuka G is called effective if ¢ comes
from a map ¢: 0*G < G of R [w]-modules and étale if additionally ¢ is an isomorphism.
A quasi-isogeny f: G — G’ between local shtukas is an isomorphism G [1] = G’ [1] of
the underlying R (())-modules, which is compatible with ¢ and ’.

We say a local shtuka G = (G, ¢) is bounded by (1,0, ...,0) if it is effective, coker(y) is
locally free of rank 1 as an R-module and (w — () annihilates coker(y). Similarly, we say
G is bounded by (0,...,0,—1) if o=! is bounded by (1,0, ...,0) in the above sense. More
precisely, G is bounded by (0,...,0,—1) if ¢ induces a map G < ¢*G with a cokernel
which is locally free of rank 1 as R-module and which is annihilated by (@ — ().

Remark 2.1.7. There are several ways to define bounds for local shtukas in general, cf.
[HV11, Definition 3.5 and Lemma 4.3.] and [AH14, Defintion 4.8.]. For the Drinfeld case
the bound in the sense of [AH14] is also given more explicitly in [Brel8, Section 7.2.].
Note that the straightforward generalisation of our definition above does not produce the
correct notion for coweights (d, 0, ...,0) with d > 1 by [HS19, Example 8.3]. In particular
[HV11, Example 4.5] and [Zhul7, Example 2.1.8.] seem to be problematic.

The Newton stratification for local shtukas is defined in [HV11] as an analogue of the
Newton stratification for F-isocrystals in [RR96].

Definition 2.1.8. The Newton point of of a local shtuka G of rank r over an algebraically
closed field 7 is (u1,...,u,) € Q" with w; > ... > u, and the u; are the slopes associated
to the corresponding isoshtuka G [ '] by the Dieudonné-Manin classification in the
function field case [Lau96, Theorem 2.4.5].

We denote by B(GL,) the Kottwitz set of isomorphism classes of isoshtukas over an
algebraically closed field ¢, in other words, the set of o-conjugacy classes of invertible
(r x r)-matrices over / ((z)). The set B(GL,) does not depend on the choice of /. Recall that
the Newton map vg, : B(GL,) — Q" is already injective (this fails for general reductive
groups). The Bruhat order on the space of cocharacters X.(T) ®; Q =~ Q" induces a
partial order on B(GL,). It is more explicitly given by

% 7
(ugy ... up) < (U, ... ) if Zuj<2u;»
Jj=1 J=1

for all 1 < i < r with equality in the case i = r. Moreover, for a dominant cocharacter
i, in other words, = (p1,..., ) € Z" with p1 > ... > pu,, we denote by B(GL,, u) =
{{b] € B(GL): vau, ([b]) < p}-
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For a local shtuka G over a scheme S = Spec(R) and a geometric point s of S we denote
by [G,] the associated point in B(GL,) after pullback to s. Note that if G is bounded by
p = (1,0,...,0), then [G | is contained in B(GL,,u) for all s € S. The Newton point
induces a stratification in the following way.

Proposition 2.1.9 ([HV11, Theorem 7.3], compare also [RR96, Theorem 3.6]). Let
S = Spec(R) be an affine F,-scheme and G be a local shtuka over S and b € B(GL,). Then
the set {s € S: [G ] < b} is a Zariski-closed subset of S. Furthermore, {s € S: [G ] = b} is an
open subset of the former.

We denote by S, the closed subscheme of S given by the reduced subscheme on
{s € S:[G,] < b} and similarly S, the corresponding open subscheme of S¢;. Then Sy, is
a locally closed subscheme of S.

2.1.3. Global-to-local functor and a Serre-Tate theorem

We explain how to associate local shtukas to global shtukas. We follow the general
construction of [AH14]. This is a generalisation of the construction of [BH11, Section 8]
for abelian sheaves and Anderson motives.

We follow the notation of [AH14, Section 5.2.]. Let y be a closed point of X, which we
assume for simplicity to be defined over F,. This is the only case we use later. For the
general construction we refer to [AH14]. Let O, be the completed local ring at y. The
choice of a uniformiser w, at y defines an isomorphism O, = F, [w,]. Let z € X (Spec(R))
be a section that factors through Spf(O,). Then w, is nilpotent in R. Let D, = Spec(O,)
and D,, = Spf(O,)). We denote by D, x the w,-adic completion of D, xF, Spec(R).

By [AH14, Lemma 5.3.], the section z induces a canonical isomorphism of the formal
completion of Xy along the graph I', of z with }Dy, r- By construction, the formal com-
pletion along I';, has structure sheaf R [w, — (], where ( is the image of w, in R. As ( is
nilpotent in R, R [w, — (] and R [w,] are isomorphic.

We fix a pair y = (y1,y2) of (F,-rational) closed points of X with y; # y». Let O, be
the completion of the local ring of X? at y. We denote by Shts = Sht, x2 x x2 Spf(0,) the
substack of Sht, y2 such that the legs factor through Spf(0,,) and Spf(O,,), respectively.
In particular, for points of Sht? the graphs of its legs are disjoint. Let £ = (2/,z,&,¢) €
Sht#(R). The local shtuka associated to £ at y; is then its pullback to Dyi, rfori=1,2.

Definition 2.1.10. The global-to-local functor associates to a global shtuka £ € Shtx(R) a
pair of local shtukas (at y; and -, respectively) given by

—~  ~
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Then, £,, is called the local shtuka of £ at y;.

By definition of Sht,. x2, the local shtuka at 35 is bounded by (1,0, ..., 0) as the condition
that (w,, — (y,) annihilates the cokernel in the local case directly corresponds to the fact
that the cokernel is supported on the graph in the global case. Similarly, the local shtuka
at y; is bounded by (0,...,0,—1).

The global-to-local functor also gives rise to a Serre-Tate theorem relating the deforma-
tion theory of global shtukas with the deformation theory of their associated local shtukas.
Let S = Spec(R) € Nilpp, and let i: S = Spec(R/I) — S be a closed subscheme defined
by a nilpotent ideals /. Let £ € Sht+(S). The category Defz(S) is the category of defor-
mations of £ to S, i.e. the category of pairs (€, f: i*€ — &) where £ € Sht#(S) and f is
an isomorphism of shtukas over S. Similarly, for a local shtuka G bounded by (1,0,...,0)

(1,0,...,0)

we define Defg (9) as the category of deformations of G to S, i.e. the category of

pairs (G, g: i*G — G) where G is a local shtuka on S bounded by (1,0, ...0) and g is an
isomorphism of local shtukas over S. Similarly, we define deformations of local shtukas
bounded by (0,...,0,—1).

Proposition 2.1.11 (Serre-Tate Theorem for shutkas, [AH14, Theorem 5.10.]). Let £ €
Sht/(S). Then the functor

(—)y: Defz(S) — Def=0 0 V(5) x Def=100(5) (£, 1) > [] (€, )

£y, £y, i=1,2
induced by the global-to-local functor is an equivalence of categories.

Proof. As before, this follows directly from the unbounded case in [AH14, Theorem 5.10.]
as a global GL,-shtuka is bounded by (0, ...,0,—1),(1,0,...,0) if and only if the associated
local shtukas are. O

The Newton stratification induces also a stratification on the special fibre of the stack
of (global) Drinfeld shtukas in the sense of [Brel8, Section 4]. We continue to restrict
ourselves to the case of Drinfeld shtukas with one leg fixed at oo as this is the only case of
interest to us in the following. The following has obvious analogues also for Sht,. x-. For a
closed point y of X with residue field F}, different from oo we set Sht, g, = Sht, xx/ ,F,.

Definition 2.1.12 (compare [Neul6, Proposition 4.1.4.], [Bre18, Definition 4.12.] for the
general definition). Le by, € B(GL, k., (0,...,0,—1)). The locally closed and reduced
substack of Sht, where the associated local shtuka at oo has Newton point by, is called
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the Newton stratum associated to by, and is denoted by Sht, ;. In a similar fashion, for a
closed point y of X and a pair

QE = (bw, by) € B(GL. ., (0,...,0,-1)) x B(GL; x,, (1,0,...,0))

the locally closed and reduced substack of Sht, r, where the associated local shtuka at oo
has Newton point by, and the associated local shtuka at y has Newton point b, is denoted
by Sht,,, .

Py

2.1.4. Isogenies of Drinfeld shtukas

We study isogenies of Drinfeld shtukas in more detail. We consider the following moduli
problem of Drinfeld shtukas with chains of isogenies.

Definition 2.1.13. Let m,ry,...,r, = 1 be positive integers such that Z;”:l ry <r. A
chain of p™-isogenies of type (r1,...,r,) on a Drinfeld shtuka £ over a scheme S is a flag
of quotients of p”-torsion shtukas

§|D7L,S:£m+1_»£m_»"'_»£1%0

over S such that F; has rank n - (r; + ... + ;) as Og-module. We denote the stack of
Drinfeld shtukas with chains of p"-isogenies of type (r1,...,7m) by Sht, (v, ) —pr_chain-

We show below that a chain of p"™-isogenies of type (ri,...,7,) in the sense of the
definition is the same as giving a chain of actual p"-isogenies of Drinfeld shtukas

EW") = Epy 5 g, I Bog Ihg =g
such that the composition f,,,+1 o ... o fj is the inclusion £(p") — &.

Proposition 2.1.14. Let £ € Sht.(S) be a Drinfeld shtuka. Every quotient £|p, ; — F,
where F is a p"-torsion shtuka, is the cokernel of a p"-isogeny.

Moreover, for two p™-isogenies f1: £, < £ and fo: £5 — & such that the cokernels factor
as successive quotients &|p,, ¢ — coker(fi) — coker(f2), there exists a unique p"-isogeny
f: & — & such that fi = fo o f and coker(f) = ker(coker(f;) — coker(f2)).

Proof. Let F be a p™-torsion shtuka as in the statement of the proposition. Let us denote
by & = ker(£ — F). As a first step, we want to show that £’ is finite locally free of
rank r on Xg. In order to do so, we may by reduction to the universal case assume that
S = Spec R is affine and noetherian. As £’ — £ is an isomorphism away from p, it then
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suffices by fpqc-descent to show that the completion at 0 is finite locally free of rank r. As
we assumed R to be noetherian, completion at 0 is exact. The completion 5(’) =& ®0y of
&’ at 0 is hence given by the kernel of f:’;) —» F. The assertion now follows from [Gen96,
Lemma 2.2.8].

By the right exactness of the tensor product, the cokernel of the induced map o*&’ — o*&
is given by o* F. By [Harl9, Lemma 2.2], the map ¢*&’ — ¢*& is thus injective, and
o*&" = ker(c*E — o*F). In particular, we obtain an induced map ¢: o*&’ --+ £’ defined
away from I';, and I'y,. As the map £’ — £ is an isomorphism away from 0, locally around
o0 we obtain a map &’ — o*&’ with cokernel supported at co and of rank 1 as Og-module.
It follows also that ¢/ Xy a*&'| X, = &' xy, is a well-defined and injective map (as ¢
is). Note that (&' XL o' x7,) is the associated A-motive in the sense of [Har19] where
A =T'(X\{oo}, Ox). By [Harl9, Proposition 2.3], the A-motive (&'|x;, ¢'|x,) is effective,
this means that coker(¢'|x ) is annihilated by J" for some positive integer n, where
J is the quasi-coherent sheaf of ideals defining I', < Xg. Using [Harl9, Proposition
5.8] we obtain that coker(¢'|y;,) has rank 1 as Og-module. Thus, coker(y'|y;) is already
annihilated by 7, which means that (€', ') defines a point of Sht,(S).

For the second part let f;: £, — £ and f2: €5 — £ be two p"-isogenies as in the asser-
tion. It follows essentially by assumption that there is a unique injective homomorphism
of shtukas f: £, — £, such that fo = f; o f. It remains to check that f is a p"-isogeny.
We have the short exact sequence of R-modules

0 — &1/f(E) = coker(f) — £/ f2(Ey) = coker(fa2) - £/ f1(E1) = coker(f1) — 0,

where the first map is f; and the second map is well-defined by assumption. As both
f1 and f, are isogenies, their cokernels are finite locally free R-modules. It follows that
coker( f) is finite locally free as well, and thus f is an isogeny. That it is a p"-isogeny is
also clear. O

Remark 2.1.15. (1) Note that in the proof we really used that 0 is I,-rational. It would
be desirable to have an analogous statement in general.

(2) Using the comparison [Har19, Theorem 5.8] with isogenies of Drinfeld modules, we
get as immediate corollaries that any finite locally free closed submodule scheme
with strict [F,-action of the p”-torsion of a Drinfeld module is the kernel of an isogeny
and a factorisation property as in the second part of the proposition. Both of these
facts seem to be only proven in the literature when the base is a field in [Leh09, 2,
Lemma 3.1 and Lemma 3.2].
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(3) This also shows that giving a point of Sht,. (., .. )y chain 1S the same as giving a
chain of actual p”-isogenies of Drinfeld shtukas

EPY) = Epy T g, I g S e

such that coker( f;) has rank n - r; and such that the composition f,,,110...0 fi is
the inclusion £(p™) — €£.

2.1.5. Naive I'y(p")-level structures and shtukas for Bruhat-Tits group schemes

We introduce naive I'y(p™)-level structures on Drinfeld shtukas and explain how to interpret
them as shtukas for certain Bruhat-Tits group schemes. These naive level structures seem
inadequate in the non-parahoric case (that means when n > 1), as their moduli spaces
are missing points in the fibre over 0. In other words, the level map to Sht, is not proper,
compare Remark 2.1.20 below. The interpretation of naive level structures in terms of
Bruhat-Tits group schemes allows us to give a candidate for a compactification of the level
map: We can take the closure of the stack of shtukas with naive level in the product of the
stacks of Drinfeld shtukas with corresponding parahoric level.

Definition 2.1.16. A naive I'g(p™)-level structure on a Drinfeld shtuka £ = (£, ) € Sht,.(S)
of rank r is a flag of quotients of p™-torsion finite shtukas

§|Dn,s:ér_»érfl_»"'_»él_»éﬂzo

such that £; is finite locally free of rank i as O D, s-module (and hence of rank in as
Og-module).

Remark 2.1.17. By Proposition 2.1.14, a naive I'y(p™)-level structure is equivalently given
as a chain of isogenies

cpm =& b 5e - Be=¢

r

such that coker( f;) is finite locally free of rank 1 as Op,, s-module foralll <i<r.

We interpret naive I'y(p™)-level structures on Drinfeld shtukas as shtukas for certain
Bruhat-Tits group schemes in the following sense.

Definition 2.1.18. A Bruhat-Tits group scheme on X is a smooth affine group scheme
G — X such that

(1) all fibres of GG are connected,
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(2) the generic fibre of G is a reductive group over K and

(3) for every closed point x of X the base change Go, = G x x Spec(O,) is a Bruhat-Tits
group scheme in the sense that there is a non-empty bounded subset €2 in some
appartment in the Bruhat-Tits building of G, such that G(O,) < G(K,) is the
connected fixator of 2 in the sense of [BT84, (4.6.26)].

A Bruhat-Tits group scheme is parahoric, if the subgroups G(O,) € G(K,) in (3) are
parahoric for all places of X.

Remark 2.1.19. Of particular relevance to our situation is the case where €2 is the stabiliser
of a regular (r — 1)-simplex  in the standard appartment of the (reduced) Bruhat-Tits
building of GL, x, with side-length n. We denote by GL, o — X the corresponding Bruhat-
Tits group scheme that is isomorphic to GL, away from 0 and such that GL,(Oy) < GL,(K))
is the connected stabiliser of (2.

We can more explicitly describe this subgroup by GL, o(Oy) = {M € GL.(Op): M
mod p" € B(Op/p™)}. By [MRR20, Lemma 3.1 and Theorem 3.2], the group scheme
GL, o can thus also be interpreted as the Néron blowup of GL, in its subgroup B of upper
triangular matrices along the divisor D,, in the sense of [MRR20, Section 3.1].

By [MRR20, Theorem 4.8], giving a GL, o-torsor on X is equivalent to giving a GL,-
torsor £ on X together with a reduction of £ to an B-torsor over the divisor D,, of X. More
explicitly, a point of Bungr, , () is given by a rank 7 vector bundle £ on X together a flag
of quotients of £|p,, 4 as in the definition of naive I'g(p")-level structures. In this sense, a
naive I'g(p™)-level structure on a Drinfeld shtuka £ defines a (B, D,,)-level structure on £
in the sense of [MRR20, Section 4.2.2].

A GL, o-shtuka is called bounded by p = ((0,...,0,—-1),(1,0,...,0)) if its underlying
GL,-shtuka (z, £, ¢) is bounded by (0,...,0,—1),(1,0,...,0), and if the flag of quotients
given by the (B, D,,)-structure on the underlying vector bundle £ is y-stable. In other
words, the GL, o-shtukas bounded by y in this sense are exactly the Drinfeld shtukas with
naive I'g(p")-level structures in the sense above. We denote this stack of bounded GL, o-
shtukas (or equivalently the stack of Drinfeld shtukas with naive I'y(p™)-level structures)
by Shth.

For a facet f in the Bruhat-Tits building of GL, x, we write f < Q if f is contained in
the closure of €. In a similar fashion to the construction above, for such a facet f < Q
we write GL, ; for the corresponding Bruhat-Tits group scheme and Sht, ; for the stack
of GL, s-shtukas bounded by y in the sense above. By Bruhat-Tits theory, for any facet §
contained in ) there is a map of group schemes GL, o — GL,; that is the identity away
from 0. By [Brel8, Corollary 3.16], we get maps Sht, o — Sht,..
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In particular, in the case n = 1 the set €2 is just given by the base alcove (corresponding
to the standard Iwahori subgroup of matrices that upper triangular mod p). Hence,
for an alcove f its corresponding moduli space of shtukas Sht, ; parametrises chains of
isogenies of Drinfeld shtukas as in Definition 2.1.16. For a facet § of the alcove § the map
Sht,; — Sht, y is then given by projection to some subchain of isogenies, depending on
the position of §'. In particular, when §' is a vertex, Sht, y parametrises single Drinfeld
shtukas and when {' is an edge, Sht, ; parametrises pairs of Drinfeld shtukas with a certain
isogeny between them.

In order to describe the maps Sht, o — Sht, ; for facets § < {2 more explicitly, we label
the vertices in Q) by tuples m = (my,...,m,—1) such thatn > my > ... > m,_1 > 0,
edges are between vertices m and m’ if and only if 0 < m; —m/ < 1forallior 0 <
m; —m}, < 1 for all i. The base alcove corresponds to the simplex defined by the vertices
0,...,0),(1,0,...,0),(1,1,0,...,0),...,(1,1,...,1). The vertex (0,...,0) corresponds
to the constant group scheme GL,.

Note that every facet f < €2 has a unique base point m (such that m; < x; for all i
and points z € f), and an orientation that we encode by an element 7 € Sym,_; of the
symmetric group on (r — 1) elements. The orientation 7 is chosen such that the vertices
of f are given by m + 7-(17(21) for 0 <i < r— 1, where lgl =(1,...,1,0,...,0) ez !
has exactly i many entries equal to 1. For a given pair (m, 7) there clearly exists a unique
alcove f,, - in the standard apartment of the Bruhat-Tits building with base point m and
orientation 7.

Starting from a GL, o-shtuka (&, (£;)) € Sht, o(S), we construct a Drinfeld shtuka &,,
for a vertex m < Q as follows. Assume that S = Spec(R) is affine and that all £; are
finite free as R[w]/(w™)-modules. In this case, we can choose a basis (e, ...,e,—1) of
L,_1 = (R[w]/(w™))" ' such that (e, ...,e;) is a basis for £; forall 1 <i <r —1. We
consider the quotient

Lr—1— Ly = R[w]/(@™)e1 ®... 0 R[w]/(w"*)er—_1.

As all the £; are ¢-stable quotients of £,_, the matrix representation of ¢ with respect to
(e1,...,er—1) is upper-triangular. This shows that also £, is ¢-stable as m; > ... > m,
by assumption. By a similar argument, £,, does not depend on the choice of basis (any
base change matrix is again upper-triangular). Thus, we can glue to obtain a ¢-stable
quotient L,, also in the general case. We then associate to the vertex m the Drinfeld
shtuka corresponding to the kernel £,, = ker(€ — L,,,) by Proposition 2.1.14. Moreover,
by the second part of Proposition 2.1.14, there are also canonical isogenies associated to
the edges in the Bruhat-Tits building.

Using this construction, for an alcove f,, » < €2 the level map Sht, o — Sht, ;, associates
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to (£, (£;)) the chain of isogenies

EnlP") &) 7o 2 Epa,) 7 e

This means that the induced map Sht, o — &iLnf< 9 Sht, ; associates to a Drinfeld shtuka

with naive I'y(p”)-level structure a diagram (&,,,)» with the canonical isogenies as con-
structed above.

Remark 2.1.20. For parahoric level (in our case that means n < 1) [Bre18] shows that the
level maps are proper and surjective. An explicit calculation for deeper level (that is for
n > 1) shows that this is false already in the GLy-case over X = P! in general. Namely,
we study the fibre over 0 using the local model of [AH19]. An explicit calculation in the
local model shows that for n = 1 we get the familiar local picture of two copies of P!
intersecting transversally at supersingular points.

However, for any n > 1 the special fibres of the corresponding local models only contain
two copies of A! that do not intersect. This means in particular that Sht, ¢, is missing the
supersingular points in the special fibre. Moreover, from the comparison with the modular
curve, we might expect to find n + 1-components two of which are reduced by [KM85,
Theorem 13.4.7]. The two components we see using the naive level structure correspond
to the two reduced components, but we do not get the non-reduced ones.

It turns out that requiring the quotients in the definition of naive level structures to be
locally free as Op,, ;-modules is too restrictive and we rather should allow in the special
fibre also degenerations to certain p™-torsion finite shtukas which are not locally free as
Op,, s-modules.

The goal of this paper is to explain one way to remedy this. We show that we can
explicitly describe the schematic image of the map Sht, o — LiLnkQ Sht,; in terms of

Drinfeld level structures and that this provides a natural compactification of the level map.

2.2. Group schemes attached to Drinfeld shtukas

In order to define Drinfeld level structures for Drinfeld shtukas, we explain how to construct
a (finite locally free Oy /p™-module) scheme of p™-torsion points £ of a Drinfeld shtuka.
This scheme of p”-torsion points serves as an analogue of the scheme of p"-torsion points
of an elliptic curve and behaves similarly in many ways. In order to study properties of
E[p™] we use an explicit comparison of Drinfeld shtukas and Drinfeld modules.
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2.2.1. Comparison with Drinfeld modules

We recall some facts about Drinfeld modules and show how to construct Drinfeld shtukas
from them. Let A = I'(X\{oo}, Ox). The point 0 of X then corresponds to a maximal
ideal of A, which by a slight abuse of notation we denote by p as well.

Roughly speaking, a Drinfeld A-module is an A-module structure on a (geometric)
line bundle. Drinfeld modules were first introduced in [Dri76] in order to construct
a Langlands correspondence in the cohomology of their moduli spaces. In this sense,
Drinfeld modules (of rank 2) are function field analogues of elliptic curves in the number
field case. For a more detailed treatment also compare [Leh09], [BS97] or [Lau96].

Let £ be an invertible sheaf on S. The corresponding geometric line bundle is denoted
by G,z = Spec S(Sym(ﬁ_l)). If S = Spec(R) is an affine scheme such that £ is trivial, the
corresponding line bundle is given by G, r = Spec R[t]. Locally, the ring of endomorphisms
of a line bundle is then given by the skew-polynomial ring R{7} with the commutation
relation 7¢ = ¢?7 for c € R.

Definition 2.2.1. A Drinfeld A-module E = (G, ¢, e) of rank r over a scheme S consists
of an additive group scheme G,  and a ring homomorphism e: A — End(G, z),a — e,
such that e, is finite for all ¢ # 0 € A of degree |a|", where | - | is the normalised absolute
value on K corresponding to co. The composition ¢ o e with the differential induces a map
S — Spec(A) called the characteristic of E.

We denote by Dr-Mod, the moduli stack of Drinfeld modules of rank r. It is a Deligne-
Mumford stack of finite type over [, which is smooth of relative dimension  — 1 over
X' = Spec(A).

When S = Spec/ is the spectrum of a field (or more generally when the line bundle £ is
trivial), a Drinfeld module as a ring homomorphism e: A — ¢{7}. As for Drinfeld shtukas,
in a slight abuse of notation, we say E has characteristic p if the the characteristic of E
factors through 0, or in other words, if the kernel of the induced map 4 — Og(5) is p.
We say that a Drinfeld module over a field ¢ in characteristic p has height h, if the smallest
non-vanishing coefficient in e, € ¢{r} has degree h, where w € p is a uniformiser.

There are several ways to associate vector bundles to Drinfeld modules, for example
the so-called elliptic sheaves due to [Dri77], for a more detailed treatment also compare
[BS97], [Har0O5] or [Wie04], or t-motives [And86] and their generalisations, see for
example [Har19]. However, a precise comparison to Drinfeld shtukas, which is certainly
well-known to the experts, does not seem to be part of the literature yet. We explain how
to construct Drinfeld shtukas from Drinfeld modules.

Recall that an elliptic sheaf £ over S of rank r is given by the data (x, (&;)iez, (Si)iez, (ti)icz)
where z: S — X' = X\{oo} is a map of schemes, &; is a rank r vector bundle on X x S
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for every i € Z and s;: & — &+1 and t;: 0*E; — &;41 are injective maps that satisfy
some further properties. In particular, coker(s;) and coker(¢;) are supported on co and I,
respectively and invertible as Og-modules on their support. We denote by £¢/, the moduli
stack of elliptic sheaves. We have a well-defined map £¢/,, — Sht, given by the projection

(z, (&), (50), (t:) = (2,0, 50 ' [x\(Taora) © tol x\(T o))

or by Remark 2.1.3 equivalently by projection to (x, &y, £1, s, to). We use this second
perspective for the remainder of this section as it more convenient in this context. We
define a functor Z x Dr-Mod,. — Sht, by composing the equivalence Z x Dr-Mod, — £/,
of [Dri77] with this projection.

Lemma 2.2.2. The projection £4¢, — Sht, is fully faithful.

Proof. Let &, = (x, (&), (si), (t;)) and £, = (, (;), (3:), (;)) be two elliptic sheaves over
S. Assume that we have a map of the corresponding shtukas, in other words a pair of
maps fo: & — Ep and f1: & — &, that commute with sy and ¢, in the obvious way. By
[Wie04, Corollary 5.4] we may then glue f; and o*f; to get a map fo: & — & again
commuting with s; and ¢;. Such a map is necessarily unique. We continue inductively to
define maps in higher degrees. The maps in degrees smaller than 0 can be constructed as
twists. O

Let us denote by by, = (—1/r,...,—1/r) € B(GL, k.., (0,...,0,—1)) the basic Newton
polygon. Recall that we defined Sht,;  to be the (reduced) locus in Sht, where the local
shtuka at co has Newton polygon b,. Note that Sht, ; is a closed substack of Sht, as by
is basic.

Proposition 2.2.3. The functor Z x Dr-Mod, — Sht, is schematic and a closed immersion
which factors through an isomorphism

Z x Dr-Mod, = Sht, ;. .

Proof. As a first step we show that the locus where a Drinfeld shtuka can be extended to
an elliptic sheaf is closed. Let £ = (z,€_1,&),5-1,t-1) € Sht,(S). As the zero and pole of
£ do not intersect, we can repeatedly glue &; and ¢*&; to obtain a commutative diagram

///

*5_1 — o*
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If the diagram comes from an elliptic sheaf, we have by definition that & — &, identifies
&p with &.(—0). In a similar fashion we get & = &,41(—0).

We claim that these two conditions are already sufficient for the diagram to come from
an elliptic sheaf. By construction, the cokernel of s; is supported on I'y, and the cokernel
of ¢; is supported on I',, and both are invertible on their respective supports. We first
check that sp = s, ® idp (_a)- As all s; are isomorphisms away from co and the question
is fpqc-local on S, it suffices to consider the completion at co and we may assume that
S = Spec(R) is affine and all &; are free R [wy]-modules of rank r. Thus, the s; are
identified with endomorphisms of R [y ]" such that both s, j0...0spand s,o...o0s; are
multiplication by w,, by assumption, where w,, is a uniformiser at co. But as multiplication
by wq, is injective and lies in the centre of the endomorphism ring, this implies that sg = s,
as desired. Moreover, the s; induce isomorphism coker(t; 1) = coker(t;) for all i > 1,
hence t, = t_; ®idp, (). Hence, we get inductively that &4, = & ® O x (o0) for all i > 1.
The data for indices ¢ < 0 is then obtained by twisting. This shows the claim.

It remains to check that the conditions of the claim are closed conditions. In order to see
that the locus where &, = £,.(—0) is closed, we argue as follows. As &, /& is supported
on 'y, the uniformiser wy, at oo acts on &, /& and we have & = £,.(—o) if and only if
we = 01in Endpg(&,/&). Hence, the locus where & = &,(—) is represented by the

vanishing locus V'(Z) of the quasi-coherent ideal Z = image(Endo, (€, /&)Y b, Og). In
a similar fashion, the locus where £; = &, 1(—o0) is representable by a closed subscheme
of S given by the vanishing locus of a quasi-coherent sheaf of ideals Z’ in Og. Thus, the
locus where £ defines a (necessarily unique) elliptic sheaf is representable by the closed
subscheme S’ = V(Z + Z') of S. In particular, Z x Dr-Mod, — Sht, is schematic and a
closed immersion.

Moreover, it is clear that both stacks have the same geometric points, as one can easily
see by the classification of bounded local shtukas over algebraically closed fields that a
Drinfeld shtuka over an algebraically closed field ¢ comes from a Drinfeld module if and
only if the local shtuka at oo is

Uwe]" o -
1 0

The second part of the assertion follows as Dr-Mod,. and the Newton stratum Sht,;  both
are reduced. O
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Remark 2.2.4. (1) For the general case (when oo is not defined over [F,,) giving a correct
definition of the truncation is more subtle, as the pole might not be supported at
oo but at some Frobenius twist of co. In order to remedy this, one should include
a Frobenius twist in the action of Z by shifts and still obtain a well-defined closed
immersion Z x Dr-Mod, — Sht,..

(2) It follows that we get an essentially surjective functor Sht,; — Dr-Mod, that
agrees with the construction from [Brel8, Proposition 7.8] (up to forgetting the
level structure).

(3) By [Har19] and [HS19], the comparison is compatible with local and finite objects.
More precisely, the local equivalence of [HS19, Theorem 8.3] and [Har19, Theo-
rem 7.6] identifies the p-divisible module associated to a Drinfeld module E over
S € Nilpp) the local shtuka at 0 of any Drinfeld shtuka associated to E by the
comparison. We call this local shtuka the local shtuka at 0 (or the local shtuka at p)
of the Drinfeld module E. By [Dri76, Proposition 1.7], the Newton polygon of the
local shtuka at p associated to a Drinfeld module of height / over an algebraically
closed field in characteristic p is given by (1/h,...,1/h,0,...,0).

2.2.2. Strong stratification property of the Newton stratification

The existence of supersingular Drinfeld modules then implies the non-emptiness of the
basic Newton stratum in Sht,..

Proposition 2.2.5. Let by = ((—=1/r,...,—1/r),(1/r,...,1/7)) € B(GL. K, ) x B(GL; k).
Then the basic Newton stratum Sht,., < Sht, r, is non-empty.

Proof. By Remark 2.2.4 and Proposition 2.2.3 a basic Drinfeld module in characteristic p,
that is, a Drinfeld module of both rank and height r, defines a point in Sht,; . But basic
Drinfeld modules in characteristic p exist by [KY20, Proposition 7.4.1]. O

As a next step, we study closure relations among the Newton strata. The result may be
well-known to experts. The author was unable to track down a precise reference. The
corresponding statement for Shimura varieties in the Siegel case is due to [Oor01] and
has been generalised to the PEL case by [Ham15].

For a pair of closed points y = (y1,y2) of X we define a partial order on B(GL, g, ) x
B(GL,, Kyg) (and also on B(GL, Ky, > p1) x B(GL,, Ky 2) for a pair of cocharacters pi1, po
of GL,) by by = (by,,by,) < b, = (by,,b),) if by, < b, and by, < b,,. Let us fix the
cocharacters p; = (0,...,0,—1) and p2 = (1,0,...,0) of GL,.
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Theorem 2.2.6. The Newton stratification on Sht,y, satisfies the strong stratification
property. In other words, for all b € B(GL; o, pt1) X B(GLy0, 12) we have

Sht,;, = | J Sht,,; = Sht, <.

b'<b
Moreover, all the Newton strata Sht,.j, for b € B(GLy o, pt1) x B(GLy, f12) are non-empty.

Viehmann in [Vie20, Remark 5.6.] remarks that the assertion should follow by a similar
argument as in [Ham15] for Shimura varieties of PEL type.

Proof. Let b° correspond to ((1/r,...,1/r),(=1/r,...,—1/r)), which is the unique basic
point in B(GL, k., pt1) x B(GL; K, pt2). By Proposition 2.2.5 the Newton stratum Shtr,bo
is non-empty. The non-emptiness of the other strata will follow from the closure relations.

Now, let b € B(GL, i, ) x B(GL, g,) and assume that Sht, ; is non-empty. We fix a
point s € Sht,;, and let R be its universal deformation ring. Then s lies in the closure
of some Sht, y for ¥’ < b if and only if the same is true in the Newton stratification
on Spec R. By the Serre-Tate Theorem (Proposition 2.1.11) the universal deformation
ring factors as Spec R = Spec Ry x Spec Ry, where R, is the universal deformation
ring of the corresponding local shtuka at * = o0,0. Under this isomorphism we have
Spec(R), = Spec(R1)p,, x Spec(Rz)p,, where we denote by Spec(R. ), the corresponding
Newton strata in Spec R, for * = 00, 0. On Spec R, the closure properties hold by [Viel3,
Theorem 2, Lemma 21 (2)], and thus they hold on Spec R. This proves the assertion. [

Remark 2.2.7. In a similar fashion, there is a Newton stratification on the moduli space of
Drinfeld modules in characteristic p defined via the local shtukas as defined in Remark 2.2.4
(3). The Newton stratifications are clearly compatible with the projection Sht,;, r, —
Dr-Mod, f, in the fibre over 0 from Remark 2.2.4 (2). Thus, the Newton stratification on
Drinfeld modules retains the strong stratification property as in the theorem above.

Corollary 2.2.8. Let £ be a Drinfeld shtuka over a complete local noetherian ring R with
algebraically closed residue field ¢ such that the characteristic of £, factors through 0. Then
there exists a Drinfeld module E over R such that the local shtukas at 0 of £ and E are
isomorphic.

Proof. The case where R = { is a field directly follows from the non-emptiness of Newton
strata of Theorem 2.2.6 and Remark 2.2.7. The case that R is local artinian then follows
from the Serre-Tate Theorem 2.1.11, and the general case that R is a complete noetherian
local ring with algebraically closed residue field follows from the fact that Dr-Mod, is of
finite type over I, and [HV11, Proposition 3.16]. O
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2.2.3. The p"-torsion scheme of a Drinfeld shtuka.

We briefly explain how to construct a scheme of p”-torsion points of a shtuka, which will
play the role of the p"-torsion points of an elliptic curve. The construction goes back to
[Dri87b]. Let F be a p-sheaf (for example a p™-torsion shtuka) over S. We set

Dr,(F) = Spec (Sym*® F) /Z,

where 7 is the ideal locally generated by the sections v®7 — p(o*v). It induces a con-
travariant functor from the category of p-sheaves to the category of finite locally free
group schemes with [F,-action over S. Assume S = Spec R is affine, 7 = R" is trivial and
¢ is given by the Matrix (a;;). Then

Dr,(F) = Spec (R[Yl, LY <qu = YlanYi,... V1= aY)) :
i=1

=1

Proposition 2.2.9 ([Dri87b, Proposition 2.1], [Abr06, Theorem 2] and [HS19, Theorem
5.2]). Let F = (F,¢) be a finite shtuka of rank r on S. Then the group scheme Dr,(F)
is finite locally free of rank q¢" over S, étale over S if and only if ¢ is an isomorphism, and
radicial over S if and only if ¢ is locally nilpotent on S. Moreover, the functor Dr, is F-linear
and exact. Its essential image is characterised by the property that the IF,-action is strict in
the sense of [Fal02].

Note that the notion of a strict F-action is a condition on the [, action on the co-Lie
complex of a certain deformation of the group scheme. We do not need the exact definition
here and refer to [Fal02] or [HS19] for more details. In our setting the strictness of the
[F,-action will usually be automatic.

Definition 2.2.10. Let £ be a rank r Drinfeld shtuka over S. We denote by

Elp"] = Dry(€lp, s)
the scheme of p™-division points of £.

The previous proposition implies that £[p™] is a finite locally free S-group scheme of rank
q"" with strict F;-action. The Op/p"-module structure on &|p,, ¢ gives rise to a canonical
Op/p"-module structure on £[p”]. The finite shtuka equivalence in particular induces
an equivalence of quotients of £|p, ; as p"-torsion shtukas and finite locally free closed
O/p™-module subschemes with strict I -action of £[p"].

By comparison with Drinfeld modules, we get the following explicit description of the
p"-torsion in characteristic p.
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Corollary 2.2.11. Let £ be a Drinfeld shtuka over a complete local noetherian ring R with
algebraically closed residue field ¢ such that the characteristic of £, factors through 0. Then
there exists a Drinfeld module E over R such that

as Oy /p"-module schemes over R for all n € N.

Proof. This follows directly from the corresponding assertion for the local shtukas in
Corollary 2.2.8. O

Proposition 2.2.12. The scheme of p™-division points of a shtuka £ of rank r over an
algebraically closed ¢ is given by the Oy /p"-module scheme
EP" = agn x (p7"/0p)" ",

where the operation of @ on o, is given by t — t4", and where h is the height of £ (we use
the convention h = 0 when the characteristic of £ is away from 0).

Proof. We first consider the case that p is away from the characteristic of £. Then, E[p"]
is a finite étale scheme by the finite shtuka equivalence. It follows that étale locally
on S the Oy/p"-module scheme £[p™] is constant. Over geometric points, we have that
Ep™ = (p7"/Op)" as the corresponding étale local shtuka is trivial by [AH14, Corollary
2.9]. In characteristic p, by the previous Corollary 2.2.11 it suffices to check the assertion
for Drinfeld modules, which then follows from [Leh09, 3, Proposition 1.5], [Leh09, 3,
Proposition 1.5] and [Leh09, 2, Corollary 2.4.]. O

Even more generally, we can embed the scheme of p-torsion points as a closed subscheme
of a smooth curve. However, this smooth curve will not be a Drinfeld module in general.

Proposition 2.2.13. Let £ be a Drinfeld shtuka over S. Then étale-locally on S, the scheme
of p"-division points of £ can be embedded as a closed subscheme of a smooth curve over S.
More precisely, we can étale-locally on S embed E[p"] as a closed subscheme of Aj.

Remark 2.2.14. For one-dimensional p-divisible groups a similar statement is discussed
in [Fri1l9, Lemma 5.2.1], building on arguments from [HT01]. However, [Fri19] claims
that an embedding even exists Zariski-locally on .S, this seems to be problematic to us for
the following reason. Let us assume that S is the spectrum of a finite field. We assume
that the étale part of £[p”] is non-trivial and constant over S. Then the number of rational
points of £[p"] tends to infinity as n — co. However, the number of S-rational points on
AY is bounded. In particular, it cannot be possible to embed £[p"] into A} for all n € N.
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For the proof of the proposition, we essentially adapt the proof of [Fril9, Lemma
5.2.1], but we allow finite extensions on the residue fields in order to circumvent the issue
discussed above. So we only get an étale local statement.

Proof. We adapt the proof of [Fril9, Lemma 5.2.1]. We first consider the case that
S = Spec/ is the spectrum of an algebraically closed field. In this case, the assertion
follows from the explicit description of £[p™] in Proposition 2.2.12.

For the general case, we may by reduction to the universal case assume that S is
locally of finite type over ;. As the statement is local on S, we may further assume that
S = Spec(R) is affine and of finite type over F,. Then £[p"] = Spec(B) is affine as well.
We fix a closed point s € S. By the argument above, there exists a finite extension I of
the residue field k(s) (which is finite by assumption) at s such that there exists a closed
immersion £[p"]r — Al over F, in other words a surjection F[t] -+ B ® F. By [Stacks,
Tag 00UD] there exists an étale neighbourhood Spec R* — Spec R of s and a point s’ over
s such that the extension of residue fields k(s) — k(s') is given by k(s) — F. We can
thus lift the surjection to a map R'[t] - B ® R’ by choosing a lift of the image of ¢. By
Nakayma’s lemma this is a surjection over some R’,, where f € R’ is not contained in the
maximal ideal at s'. In other words, £[p"|r — Al extends to £[p"] R, < A}%,f over the

étale neighbourhood Spec(R}) of s. O

We conclude this section by collecting some consequences on isogenies of Drinfeld
shtukas. Using the finite shtuka equivalence we see that a chain of p”-isogenies of type
(ri,...,mn) on a Drinfeld shtuka £ is equivalent to the data of a flag

0OCH cHy<...cH, < &lp"]

of finite locally free submodule schemes H; < £[p"] of rank ¢"("1++7:) over S with strict
[F,-action. In particular, H; /H; ; has rank ¢""* and has an induced strict F,-action.

Proposition 2.2.15. The stack Sht,. (., ., )_pn-chain 1 a Deligne-Mumford stack locally of

finite type over F,. The forgetful map to Sht, given by projection to £ is schematic and finite.
Moreover, the forgetful map Sht,. ( —pn-chain — Sht,. s finite étale away from 0.

T1yeeesTm)
Proof. Let € € Sht,(S). The functor on S-schemes
flags of quotients £|p,, , - F; — ... — F,, — 0 of p"-torsion
T : m
finite shtukas such that F; has rank n(r; + ... + r;) as Op-module

is representable by the closed subscheme of a certain flag variety of quotients of £|p,, 4
(as Og-module) where both the map o*€|p, ;s — £|p, s and the Oy/p"-module structure
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descend to all the F;. As the flag variety is projective, we see that Sht, (., . ,.)—pr-chain =
Sht, is schematic and projective.

In order to show finiteness of the map we proceed as in the proof of [KM85, Proposition
6.5.1]. By [EGA4, Corollaire 18.12.4] it suffices to show that the map has finite fibres.
Let ¢ be an algebraically closed field and let £ be a rank r shtuka over /. It suffices to show
that £[p”| only has finitely many submodule schemes. We know by Proposition 2.2.12
that for some 4 > 0 we have

Elp" = agn x (97" /o) "

As / is in particular perfect, any Op/p"-submodule scheme H < £[p"| factors as H =~
H™ » Hé but for both factors (which are necessarily submodule schemes of a,» and

(p "/ C’)O)Tfh, respectively) there are only finitely many possibilities.
The étaleness away from 0 follows for example from [Var04, Lemma 3.3 a)]. O

2.3. Drinfeld I';(p")-level structures on shtukas

In this section, we introduce I';-type (Drinfeld-) level structures on Drinfeld shtukas
adapting similar constructions for Drinfeld modules and elliptic curves. We show that
the moduli space of Drinfeld shtukas with these level structures is regular following the
arguments of [KM85]. For Drinfeld modules, full Drinfeld level structures were studied
extensively starting with [Dri76], compare for example also [Leh09]. For other kinds of
level structures some results are known, [Sha07] considers I'; (p)-level structures in the
rank 2 case and [KY20] study level structures for arbitrary torsion modules and higher
rank Drinfeld modules.

We propose a slightly different generalisation of a M -level structure on Drinfeld shtukas
for a p-torsion Op-module M. In this notation (p~"/Oy)"-structures are full level structures
and in the rank 2 case (p~"/Op)-strucutres are I'; (p™)-level structures. For us, it does not
seem to be a priori clear that our definition and the analogue of [KY20] agree, even for
full level, as is claimed in [KY20, (4.1.2.)]. For full level structures on Drinfeld modules,
this follows from a deep result on the deformation theory of [Leh09, Proposition 3.3]. We
show that the two definitions agree in general in a similar fashion. One could also directly
adapt the definition of [KM85], as does for example [Tae06]. However, it seems to us that
this definition does not give the correct moduli space, see Remark 2.3.4.

Moreover, we define analogues of balanced level structures of [KM85] and use this
notion of balanced level structure to give a definition of I'; (p™)-level structure for Drinfeld
shtukas of arbitrary rank and arbitrary n € N in Definition 2.3.15.
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2.3.1. M-Structures on Drinfeld shtukas

In order to define Drinfeld level structures we use the notion of full sets of sections, compare
[KM8S5, Section 1.8]. When working with closed subschemes of a smooth curve, this can
be expressed in terms of Cartier divisors by [KM85, Theorem 1.10.1]. Katz and Mazur
hoped that the notion of ”full sets of sections” might be useful to define level structures for
higher dimensional abelian varietes. However, this notion gives rise to a moduli problem
which is not even flat over Z in general (compare [CN90]). Nevertheless, these issues
do not appear in our setting, as Proposition 2.2.13 allows us to locally work with Cartier
divisors in A'. Note that in a similar fashion Drinfeld level structures are well-behaved
when working with one-dimensional p-divisible groups, as do [HT01] and [Sch13].

Let M be a finitely generated p"-torsion Op-module. In order to define M -structures
on Drinfeld shtukas, we would like for an Oyp-module homomorphism ¢: M — E[p"](S)
to induce a (unique) scheme generated by ., similar to the Cartier divisor generated by
an I'y (p™)-Drinfeld level structure on elliptic curves. In other words, we are looking for a
unique finite locally free scheme over S such that the image of « forms a full set of sections
for S in the sense of [KM85, Section 1.8]. This notion is defined as follows. Let Z be a
finite locally free S-scheme of rank N. A set of sections P, ..., Py € Z(5) is called full set
of sections of Z if for every affine S-scheme Spec(R) — S and every f € I'(Zr, Oz,) we
have Norm(f) = ]_[f\il f(P;). By [KM85, Theorem 1.10.1], when Z — (' is embedded as
a relative effective Cartier divisor in a smooth curve C over S, the set Pi,..., Py € Z(S)
is a full set of sections of Z if and only if Z = Zf\il [P;] as Cartier divisors in C.

Recall that in general, that given a set of sections Py, ..., Py» € Z(S) we can neither
expect that a finite locally free subscheme Z’ of Z of rank N’ such that P, ..., Py: forms a
full set of sections of Z’ exists nor that it is unique when it exists (compare [KM85, Remark
1.10.4]). However, Proposition 2.2.13 allows us to construct such a unique scheme in the
cases we are interested in.

Lemma 2.3.1. Let £ be a Drinfeld shtuka over S and let M be a p"-torsion module. Let
v: M — E[p™](S) be an Oy-linear map.

(1) Assume there exists a closed immersion E[p"] < C'into a smooth curve C over S. Then
there exists a unique finite locally free closed subscheme H of C such that the image of
¢ (in C(.9)) forms a full set of sections for H.

(2) There exists at most one finite locally free closed subscheme H < £[p"| such that the
image of « forms a full set of sections for H.

(3) There exists a (by the previous point necessarily unique) finite locally free closed
subscheme H of £[p"] such that . gives a full set of sections for H if and only if the
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following equivalent conditions are satisfied:

a) For all étale maps U — S and all closed immersions E[p" ]|y < C into a smooth
curve over U, the Cartier divisor defined by the image of  in C(U) is a subscheme

of E[p"]u.

b) There exists an étale cover {U;};er of S and for each i € I a smooth curve C; over
U; together with a closed immersion E[p" |y, < C; such that the Cartier divisor
defined by the image of « in C;(U;) is a subscheme of E[p"]y, for all i € I.

The existence of such an H is a closed condition on S, defined locally on S by finitely
many equations.

Proof. (1) This is [KM85, Theorem 1.10.1]. The scheme H is the Cartier divisor
ZaeM [L(O‘)} .

(2) Thisis clear from the previous point, as étale-locally on S, £[p"| admits an embedding
into a smooth curve over S by Proposition 2.2.13.

(3) It is clear that the existence of an H implies condition (a), and that condition (a)
implies (b) using Proposition 2.2.13. Let us now assume that condition (b) is
satisfied. We denote by H; the Cartier divisor in C; defined by .. We can glue the H;
to form a finite locally free scheme H over S by the uniqueness in the previous point.
It is clear that . forms a full set of sections for H, this can be checked étale-locally
onS.

In order to check that the locus of existence of H is closed in S, we may choose an
étale cover {U;} of S together with embeddings of £[p"| into a smooth curve over
U;. The assertion on U; follows from [KM85, Key Lemma 1.3.4].

O

We can now give our definition of M -structures for shtukas.

Definition 2.3.2. Let £ € Sht, (S) be a rank r shtuka over S. Let M be a finitely generated
Op/p"-module. A M-structure on £ is an Op-module homomorphism ¢: M — E[p"](S)
such that there exists a finite locally free subscheme H of £[p] of rank | M [p]| such that the
image of the restriction ¢|(; of ¢ to the p-torsion forms a full set of sections for H in the
sense of [KMS85, Section 1.8].

Remark 2.3.3. Note that in the theory of Drinfeld modules the modules M and £|[p]
would usually be considered as p-torsion A-modules, where A = I'(X\{0},Ox). As
A/p™ = Oy/p™ this does not give a different notion of level structures. In our context,
working with Oy- instead of A-modules seems more natural and should stress that the
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level structure only depends on local data of £ at 0 and in particular not on the choice of
0.

Remark 2.3.4. Our definition is an analogue of Drinfeld’s original definition of full level
structures in [Dri76]. The definition in [KM85] for elliptic curves is slightly different.
The direct analogue of their definition asserts that there is a finite locally free subgroup
scheme H < £[p"| of rank |M | such that ¢ is a full set of sections for H (instead of the
corresponding assertion only for the p-torsion). We show that this is implied by our
definition in Proposition 2.3.10. For full level structures on Drinfeld modules, [Leh09, 3,
Proposition 3.1] and [Wiel0] show that the two notions are equivalent. However, this
is not true in general as we can see in the following example. Consider X = ]P’}Fq, and
S = Dy = 2[0] = Spec(F,[¢]/(¢?)) viewed as an X-scheme via the canonical inclusion.
Then the map

defines a rank 2 Drinfeld shtuka over S. Its schemes of p- and p?-torsion points are given
by

&lp] = Spec (R[t] St 4t + Ct)) and  E[p? = Spec (R[t] /@ 4t th2)) ,

respectively. Then the constant zero map ¢: p~2/Oy — R, w2 + 0 defines the subscheme
of Spec(R[t]/ gtqz )) € E[p?]. However, the restriction of « to p~! /Oy induces the subscheme
Spec(R[t]/(t?")) of £[p?], which is not a subscheme of £[p]. Thus, ¢ is not an p=2/Op-
structure in the sense of our definition. Hence, the definition of [KM85] does not yield
well-defined level maps in our setting and thus does not seem to be adequate here.

We also do not require the subscheme defined by ¢ to be a subgroup scheme as we show
this is already automatic below in Proposition 2.3.10. Moreover, we show that it is even
automatically an Oy-module subscheme.

Proposition 2.3.5. Let £ € Sht,.(S) be a Drinfeld shtuka over S and let M be a finitely
generated Oy /p"-module. Let .: M — E[p™]|(S) be a M-structure on £ and let M' = M be
a submodule. The restriction of « to M’ defines a M’-structure on £.

Proof. Etale locally, the Cartier divisor defined by the restriction of + to M”[p] is a closed
subscheme of the Cartier divisor defined by ¢y, which in turn is a closed subscheme of
£[p] by assumption. The assertion follows from Lemma 2.3.1. O

In the étale case, we have the following descriptions of M -structures.

34



Proposition 2.3.6. Let £ € Sht,.(S) be a Drinfeld shtuka over S and let M be a finitely
generated Oy /p"-module. Let v: M — E[p™](S) be an Op-module homomorphism. The
following are equivalent:

(1) For every geometric point Spec{ — S, the induced homomorphism
et M — E[p)(0)
is injective.
(2) The map . defines a locally free closed subscheme of £[p™] which is finite étale over S.
(3) The map . defines a closed immersion of Oy /p"-module S-schemes
Mg — E[p"]
and ¢ is a full set of sections for the image of this map (as subscheme of E[p"]).

If the equivalent conditions (1)-(3) are satisfied, ¢ is a M-structure on £. Moreover, when S
is connected, these conditions are equivalent to saying that M — H(S) is an isomorphism of
Op-modules for some constant closed finite locally free Oy-module subscheme H of £.

Moreover, these conditions are automatically satisfied when the characteristic of £ is away
from 0 and ¢ is a M-structure on £.

Proof. We adapt the proof of an analogous assertion for elliptic curves in [KM85, Lemma
1.4.4].

(2) & (3): This follows directly from the set-theoretic analogue in [KM85, Proposition
1.8.3].

(1) & (3): The map ¢ defines a map of Oy-module schemes Mg — £[p"]. We may work
étale-locally on S and assume that we can embed £[p”] into a smooth curve C over S. Let
us denote by D the Cartier divisor in C' defined by . We can check that the natural map
Mg — D is an isomorphism on geometric points as in the proof of [KM85, Lemma 1.4.4.],
and this is clearly satisfied if and only if ¢ is injective on geometric points.

Let us now assume that (1)-(3) are satisfied. By (3) the restriction of « to M [p] defines
a subscheme of £[p]. Thus, ¢ is a M-structure on £.

Now assume that p is away from the characteristic. Let . be a M-structure on £. We
check that condition (1) is satisfied. Let Spec/ — S be a geometric point of S. By
Proposition 2.2.12, we have an Oy-linear isomorphism E[p"](¢) = (p~"/Op)". Now ¢,
is injective if and only if the restriction ¢¢[,), is injective, as multiplying a non-trivial
element m in the kernel of ¢, by the maximal power of w that does not kill m produces a
non-trivial element in the kernel of ¢/| ;. The injectivity of ¢¢| () follows by assumption
and the implication (2) = (1) in the n = 1 case. O
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Remark 2.3.7. If the characteristic is away from 0, Drinfeld level structures agree with
corresponding classical level structures. Let £ € Sht,(S) be such that the characteristic is
away from 0. By the previous Proposition 2.3.6, a full level structure is an isomorphism of
étale Oy /p™-module schemes over S

(p7"/00)g = EP"]

by. By [Dri87b, Proposition 2.2], this is the same as giving a trivialisation of £| Dn.s

2.3.2. Regularity of the moduli stack of shtukas with )/-structures

We show the main result on M-structures: the corresponding moduli problem gives rise
to a Deligne-Mumford stack, which we show to be regular following the corresponding
result on elliptic curves in [KM85].

Proposition 2.3.8. Let £ be a Drinfeld shtuka over S and let M be a finitely generated
Oo/p"-module. The functor on S-schemes

T +— {M-structures on E}

is representable by a finite S-scheme locally of finite presentation. Moreover, it is finite étale
over S if p is away from the characteristic of £ and can in this case étale locally on S be
represented by the constant S-scheme

S x {injective Oy-module homomorphisms M — (p~"/Op)"}.

Proof. We proceed as in the proof of the corresponding assertions for elliptic curves in
[KM85, Proposition 1.6.2, Proposition 1.6.4 and Corollary 3.7.2]. By the classification of
finitely generated modules over principal ideal domains, there exists an isomorphism of
Op/p"-modules M = (O /p™ )@ ... D (Op/p™™) for some m > 0 and integers 1 < n; < n
for 1 < ¢ < m. Using this isomorphism, we find for a scheme 7" over S that

Homop, (M, E[p"]( HHomOO/pnl(Oo/p L EP™] HS il

The functor of M-structures on £ is clearly represented by the closed subscheme of
[ [; E[p™](T) over which the universal homomorphism defines a M -structure on £. This is
a closed subscheme defined locally by finitely many equations by Lemma 2.3.1.

Now assume that the characteristic of £ is away from 0. By the above, it suffices to show
that the scheme is formally étale. Therefore, let Ty < T be a closed subscheme defined by
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a locally nilpotent sheaf of ideals. Let 1o be a M-structure on £, . Then ¢ factors through
Ep™](Tp). As p is away from the characteristic of £, the scheme E[p"] is étale over S. We
construct a map ¢: M — E[p"](T) where we associate to m € M the unique lift of ¢o(m)
to E[p"](T). As lifts are unique, the Op-linearity of o implies that ¢« is an Op-linear map
as well. We check that . defines a M -structure on £. Using Proposition 2.3.6 this can be
done on geometric points, but the geometric points of T and 7' agree.

For the second claim, we may assume that £[p"] = (p~"/Op)’s by Proposition 2.2.12.
So, the claim follows from Proposition 2.3.6 (3). O

We denote by Sht, , the stack parametrising shtukas of rank r with a M-structure as
defined above.

Theorem 2.3.9. Let M be a submodule of (p~"/Oy)". The stack Sht, ys is a regular Deligne-
Mumford stack locally of finite type over F,. Moreover, the forgetful map Sht, »; — Sht, is
schematic and finite flat. It is finite étale away from 0.

Proof. By Proposition 2.3.8, the forgetful map to Sht, is schematic and finite. In particular,
Sht, »s is a Deligne-Mumford stack locally of finite type over I, (since Sht, is a DM-stack
locally of finite type over ;). Also by Proposition 2.3.8, the forgetful map is finite étale
away from 0.

We proceed as in the proof of [KM85, Theorems 5.1.1 and 5.2.1]. Again since Sht, is a
smooth DM-stack of dimension (2r — 1) over F,, we find an étale presentation S — Sht,
by a (2r — 1)-dimensional smooth scheme S over F,. We denote by 7" = S x g, Sht, .

We denote by U < S the set of points in s € S such that the local rings at all points in
T over s are regular. Then U is open in S, as its complement is the image under a finite
(hence closed) map of the non-regular locus in 7', which is closed in 7" as T is locally of
finite type over a perfect field.

In order to show that U = S, it suffices to show that all closed points of S are contained
in U. As the map 7' — S is étale away from 0, clearly all points away from 0 are contained
in U. It remains to check that all closed points in the fibre over 0 are in U. By passing to
the completion of the strict henselisation we are reduced to showing that for all /-valued
points 5 of S in the fibre over 0, where ¢ is an algebraic closure of F,, the complete local
rings at all /-valued points of T over s are regular. Note that  the completion of the strict

henselisation at a closed point s € S over 0 is then given by Of{‘s = @Seﬂwﬂ ;5> where Sy
denotes the base change S x x Spec(? [«]).

Let us fix some ¢-valued point 5 of S over 0 and let £, € Sht,(¢) be the corresponding
shtuka. By [Stacks, Tag 07N9], the disjoint union of the spectra of the completions of all
local rings at ¢-valued points of Ty over 5 is given by the scheme

T = TZ[[wﬂ XSZ[[w]] SpeC(@Seﬂng).
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As S is étale over Sht,, we get by [Dri76, Proposition 3.3] that

OS[HWH S = E [[wa T17 o 7T2T—2]] )

which identifies the pullback of the universal shtuka to Spec((A’)ggﬂw]]) with the universal
deformation £ of £;. In particular, 77 = (Sht, as)g := Sht, ar Xsh, Spec(@gl_,[[w]] ), where
we interpret £ as the corresponding Spec(@gz[[wﬂ,g)—valued point of Sht.

Thus, by construction, 7" only depends on the scheme of p”-torsion points of £ (and
thus on its local shtuka at 0 by [Har19, Theorem 7.6]), which in turn by the Serre-Tate
Theorem (Proposition 2.1.11) only depends on the local shtuka at 0 of £,, which are
classified up to isomorphism by their Newton polygons. In particular, s is contained in U
if and only if U contains all points in the fibre over 0 in the same Newton stratum. By
Theorem 2.2.6 it thus suffices to show that U contains a basic point.

Let thus s be a basic point in characteristic p (recall that such a point exists by Proposition
2.2.5) corresponding to a shtuka £,. By Proposition 2.2.12, we get that £,[p"](¢) = {0}
for all n € N, so in particular the only possible M-structure is the zero map (which is
readily checked to be a M -structure as M is a submodule of (p~"/Oy)"), so there is exactly
one point lying over 5. This means that 7" is the spectrum of the complete local ring
pro-representing the deformation functor of the unique point lying over s. Note that since
£ is basic, the associated divisible module at 0 is formal (in the sense of [Dri76, §1] or
[HS19, Definition 1.1]). As M-structures only depend on the local shtukas, the Serre-
Tate Theorem is also compatible with M -structures and we are thus reduced to showing
that the deformation functor of formal modules with M -structures is representable by a
r-dimensional regular local ring.

This can be shown as in [Dri76, Proposition 4.3]. We sketch the argument. We write
M = (p7™/0) @...® (p~™"/Op). Note that by assumption " < r. The lemma
in the proof of [Dri76, Proposition 4.3] shows that the deformation functor on for-
mal modules with (p~!/ Op)" -structure is pro-represented by a complete regular local
ring R, finite flat over Ry = /¢ [w,T1,...,T,—1] whose maximal ideal is generated by
w(e1),...u(ew), T, ..., T, 1, where ey, ..., e is a basis of (p—' /)" and . is the univer-
sal (p~'/Op)" -structure. This settles the case that M is p-torsion. As a next step we show
the claim for M[p™] by induction on m. Let us assume that a complete regular local ring
R,, finite flat over R,,_; pro-represents the deformation functor of formal modules with

M [p™]-level and that ¢, (co—™r{remdy -y (o= min{nemby T, 0T forms a system
of local parameters for R,,, where ¢,, is the universal M [p™]-level structure. Let us denote
by i1, ...,i; the indices such that n; > m. Then

Rypir = B [[T . ,Tij]] J(eor(Tiy )=t (o™ ™00 mdy e (T Yty (o™ T )
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This also shows that R,,,+ is regular and finite flat over R,,. Moreover, it has a system of
local parameters as desired. O

The regularity allows us to collect some consequences. We show that a M -structure
defines an Op-module subscheme H < £[p"].

Proposition 2.3.10. Let £ € Sht,(S) and let v: M — E[p"](S) be a M-structure on & for
some submodule M < (p~"/Op)".

(1) There exists a (necessarily unique) finite locally free closed subscheme H < E[p"] of
rank | M| such that the image of « forms a full set of sections for H.

Moreover, for each submodule M' of M the restriction of « to M’ defines a M'-structure
on &£ and in particular there exists a finite locally free closed subscheme Hy; of £ of
rank M’ such that iy forms a full set of sections for Hy.

(2) His an Op-module subscheme of £[p"] such that the F,-module structure on H is strict.

We call H the subscheme generated by « and the map ¢ a M-generator of H. To be more
precise, when we say that a map « is a M -generator of a finite locally free closed subscheme
H c £[p"] of rank |M |, we really mean both that ¢ gives a full set of sections of H and
that ¢ is a M-structure on £ (recall that the first condition does not imply the second one,
compare Remark 2.3.4).

For full level structures on Drinfeld modules the assertion is essentially shown in [Leh09,
3, Proposition 3.3.]. The proposition also implies that for general M -structures on Drinfeld
modules our definition agrees with the one given in [KY20].

Proof. That the restriction to M’ defines a M’-structure is Proposition 2.3.5 and thus, the
second statement in (1) follows from the first. In order to show both the first part of (1)
and (2), we may assume by reduction to the universal case that S is locally noetherian and
flat over X'. Both assertions are true away from 0 by Proposition 2.3.6. It thus remains
to show that the conditions are closed in both cases. For the first part of (1) this follows
from Lemma 2.3.1.

For (2) we may additionally assume that S = Spec(R) is affine and that we can embed
Ep™] in AL as the assertion is étale local on S (for the strictness of the F,-action this is
[Har19, Lemma 4.4]). The locus where the group structure on £ restricts to a group
structure on H is closed by the argument of [KM85, Corollary 1.3.7].

By the discussion above, we can write [p"] = Spec(R[t]/(f)) for some monic polynomial
f € R[t] and H = Spec(R]t]/(g)) for some monic polynomial g € R][t] such that f € (g).
Then the Oy /p™-module structure restricts to H if and only if for each a € Oy /p™ the map
eq induces a map
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in other words, that e,(g)(t) = g(eh(t)) = 0 mod g, where ¢/ () € R[t] is a polynomial
defining the map e,. Thus, the locus where H is an O /p"-module subscheme is the closed
subscheme of Spec(R) where all the coefficients of the remainders of g(ef(t)) modulo g
vanish. Note that this is clearly independent of the choice of eh.

It remains to show that the locus where the [F,-action is strict is closed. As £[p™] carries a
strict IF,-action by construction, we have a lift of the F,-action to £[p"]” = Spec(R][t]/(tf))
by [HS19, Lemma 4.4]. By the same argument as for the Oy /p"-module structure, the F,-
action restricts to a map on the deformation H> = Spec(R|[t]/(tg)) < £[p"]’. That it induces
the correct operation on the co-Lie complex of (H, H’) is again a closed condition. O

We now define M -cyclic isogenies.
Definition 2.3.11. Let £ € Sht,.(S) and let M be a finitely generated p"-torsion module.

(1) A M-generator of a finite locally free subscheme H < £[p"] is a M-structure . on €«
such that the subscheme of £[p"]ss defined by ¢ is Hg.

(2) A finite locally free subscheme H < £[p”] is called M-cyclic if there is an fppf cover
S’ — S such that Hg admits a M-generator.

(3) A p™-isogeny of Drinfeld shtukas f: £ — £’ is called M-cyclic if Dr,(coker(f)) is
M-cyclic.

Note that a M-cyclic subscheme necessarily has rank |A/|. We also use the term p"-cyclic
as abbreviation for (p~"/Oy)-cyclic submodule schemes or isogenies, respectively.

Lemma 2.3.12. Let M be a submodule of (p~"/Oy)". Every M-cyclic subscheme H € E[p"]
is an Op-module subscheme with strict F-action.

Proof. All of the assertions can be checked fppf-locally on the base, where they follow
from Lemma 2.3.10. O

We collect two representability results.
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Proposition 2.3.13. Let £ € Sht,(S) and assume that its characteristic is away from 0. Let
M be a finitely generated O /p"-module. Then the functor on S-schemes

T — {M-cyclic subgroups of E[p"|r}.

is representable by a finite étale S-scheme. Moreover, étale locally on S the functor is
representable by the constant S-scheme

S x {submodules of (p~"/Oy)" isomorphic to M}.

Proof. We proceed as in the proof of [KM85, Theorem 3.7.1]. By descent for finite locally
free schemes and closed immersions, and the fact that cyclicity is local for the fppf-
topology by definition, the functor is a fppf (and hence an étale) sheaf. By étale descent,
it thus suffices to show the second statement. We may assume that £[p"] = (p~"/Op)’
by Proposition 2.2.12. By the argument in the proof of [KM85, Theorem 3.7.1], over a
connected base 7" any finite locally free closed subgroup scheme of a constant scheme is
itself constant. The claim follows from the explicit description in Proposition 2.3.6. [

Proposition 2.3.14. Let £ € Sht,(S), let M be a finitely generated O /p"-module and let
H < E[p"] be a finite locally free closed Oy-module subscheme of rank |M|. We consider its
functor of generators, i.e. the functor on S-schemes

T — {M-generators of Hy in the sense of Definition 2.3.11}.

It is representable by a finite scheme of finite presentation over S denoted by H*. Moreover,
it is finite étale when H is étale (in particular, when the characteristic of £ is away from 0).

Proof. We adapt the proof of [KM85, Proposition 1.6.5]. The functor clearly is repre-
sentable by the closed subscheme of Hom(A/, H) over which the universal homomorphism
is a M -structure on £ (which is a closed condition locally defined by finitely many equations
by Proposition 2.3.8) and over which the subscheme defined by the universal homomor-
phism is H, which is also a closed condition given by finitely many equations by Lemma
2.3.1 and [KM85, Corollary 1.3.5].

If H is étale, we show as in the proof of Proposition 2.3.8 that H* is formally étale. [

2.3.3. Balanced level structures for shtukas

Definition 2.3.15. Let m € N and let 1, . .., ry, be positive integers such that >};" | r; < r.
A balanced p™-level structure of type (r1,...,n) on a Drinfeld shtuka £ over S is a chain
of isogenies

EP") = Epy 2 g, I g I g =
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such that the composition f,,+1 o ... o fi is the inclusion £(p") — &, together with
(p~"/Op)"i-generators of Dr,(coker(f;)) < &;[p"] for all 1 < ¢ < m in the sense of
Definition 2.3.2. We denote by Sht, yn pa1.(r, ... r,,,) the stack parametrising Drinfeld shtukas
together with a balanced p”-level structure of type (r1,...,7n)-

AT (p™)-level structure on a Drinfeld shtuka of rank r is a balanced p™-level structure of
type 1, = (1,...,1) € Z". We denote by Sht,.r n) = Sht, ynpar1, the stack of Drinfeld
shtukas with a I'; (p™)-level structure.

As for Drinfeld shtukas with chains of isogenies, we see that a balanced p"-level structure
of type (r1,...,7,) on a Drinfeld shtuka £ is equivalent to the data of a flag

0OcH cHy,<...CH, < Ep"

of finite locally free submodule schemes H; = £[p"] of rank n - (11 + ... + r;) with strict
[F,-action together with (p~"/Op)"-generators of H; /H;_; for all 1 <i < m.

Lemma 2.3.16. The stack Sht, yn_(,, . ;,.)—bal IS representable by a Deligne-Mumford stack
locally of finite type over F,. The projection Sht, yn_(,, . r.)—bal — Sht; is schematic and
finite. Moreover, it is finite étale away from 0.

Proof. We have a well-defined map of stacks

Sht, pn (41, rm)—bal = SHty (1 2y pnchain -

This map is schematic, finite and moreover finite étale away from 0 by Proposition 2.3.14.
The assertions then follow from Proposition 2.2.15. O

Proposition 2.3.17. The Deligne-Mumford stack Sht, yn_(, . . )_pal Is regular.

Proof. As in the proof of Theorem 2.3.9 it suffices to check that the deformation functor
of the p-divisible module of a basic point over 0 with balanced p"-level structure of type
(ri,...,mmn) is pro-representable by a regular local ring. By [KM85, Proposition 5.2.2] it
suffices to show that the maximal ideal is generated by r elements.

Let (Go, (Ho, t0.i)1<i<m) be the p-divisible module of a basic Drinfeld shtuka of rank
over an algebraically closed field ¢ in the fibre over 0 together with a balanced p™-level
structure of type (r1,...,r,) on Gy. Note that Gy is automatically formal and the level
structure is unique, all the ¢y ; are the zero map. Then by the Serre-Tate theorem the
deformation functor of (Gg, (Ho i, t0,i)1<i<m) is representable by a complete local ring
denoted by B. Let (G, ((H;), (¢i))1<i<m) be the universal deformation over B. For every

1 < ¢ < m we choose a basis egi), e ,eq(n? of (p™"/Op)". We claim that the maximal
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ideal of B is generated by Ll( (@ )) forl<i<mandl<j<r;and T, 4 4r, -, Lr—1.
We proceed as in the proof of [KMS8S5, Theorem 5.3.2., (5.3.5.)]. We need to check
that for every artin local ¢ [w]-algebra R such that 7)., 1, ,...,T,—1 vanish in R every
deformation (G, ((I:Iz-), (;))1<i<m) on R such that all ; are the constant zero maps is itself
constant.
Using [KM85, Lemma 1.11.3] we see inductively that the zero mapisan (p =" /Op) 1+ 17i-

structure on H; for all 1 < ¢ < m. In particular, the zero map is an (p="/Qp) T *"i-
structure on G and thus G is constant by the proof of Theorem 2.3.9. O

We collect some consequences. We start by constructing balanced level structures
from (p~"/Oy)" -structures. Let m € N and let 7y, ..., r,, be positive integers such that
P =3" r; <. Let (£,1) be a Drinfeld shtuka together with an (p="/Op)" -structure
on S. For 1 < ¢ < m the restriction of ¢ restricted to the first r; + ... + r; components is
an (p~" /)" T *Ti-structure by Proposition 2.3.5 and thus deﬁnes an Opy/p"-submodule
scheme H; of £[p"| by Proposition 2.3.10. We denote by ¢; the induced map (p="/Op)"* —

Hi/HZ‘_l(S).

Proposition 2.3.18. Let (£,1) be a rank r Drinfeld shtuka together with an (p~"/Og)" -
structure over S. Using the notation as above, the flag of finite locally free closed submodule
schemes 0 = Hy < H; < ... € H,, € £[p"] together with the maps (t;)1<i<m defines a
balanced p™-level structure of type (r1,...,7m) on E.

Proof. We follow the proof of [KM85, Theorem 5.5.2.]. By reduction to the universal case
and Theorem 2.3.9 we may assume that S is flat and affine over X’. The assertion is clear
when the characteristic of £ is away from 0. The condition that ¢; generates H; /H;_; is
closed and thus the assertion follows by flatness. O

The proposition can also be applied in the following more general situation. Let £ be a
Drinfeld shtuka together with a balanced p"—level structure of type (ri,...,rn) denoted by

((H;), (¢i)). Let 1 < m/ < m and for each 1 < j < m'letd; and r} , iyt 77"§1+...+z'j

be positive integers such that ZZ 1T tij_14i = T+ BY applying Proposition 2.3.18
to each LJ for 1 < j < m’/, we obtain a well-defined balanced p"-level structure of type
(T 5T 4 qq ) ODNE. ThlS construction thus induces a map of stacks

Sht, yn(ry,....r)—bal = Shty pn )—bal - (2.1

! !
_(7"17---77’1'1+Aee+im,

Corollary 2.3.19. The map (2.1) is finite locally free of constant rank. In particular, fppf-
locally on the base, any balanced p"-level structure of type (r},...,r on £ can be
extended to a balanced p"-level structure of type (r1,...,ry) on E.

’Iil+...+im/)
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Proof. We follow the proof of [KM85, Corollaries 5.5.3. & 5.5.4.] As both the stacks
Sht, pn_ rm)—bal and Sht,n’pn,(r/1 v o, )—bal aT€ regular r-dimensional, the map
L e e

(2.1) is necessarily finite flat. The degree can be computed in the étale case, where it is
clearly constant. The second assertion follows immediatly. O

T1yeees

Corollary 2.3.20. Let £ be a Drinfeld shtuka over S together with a balanced p™-level
structure of type (r1,...,rmy) denoted by (H;, 1;)1<i<m. Then H; is (p~"/Op)" T Ti-cyclic.

Proof. We use induction on i. For i = 1 the assertion is clear by definition. Let now i > 1
and let us assume that H; 1 is (p~"/Op)" 1T *Ti-1-cyclic. As the question is fppf-local on
S, we may assume that H;_; admits a generator over S. Then 0 € H;_; € H; € £[p"]
together with the generators of H;_; and H; /H;_; defines a balanced p"-level structure of
type (r1 + ...+ ri—1,7r;) on £. By Corollary 2.3.19, it can be completed fppf-locally to an
(p~"/Op)r1tFTistructure. But this exactly means that H; admits a generator fppf-locally
on S. O

2.4. Drinfeld I'y(p")-level structures on shtukas

We are now in a position to discuss I'g(p™)-level structures on Drinfeld shtukas. We closely
follow the exposition of [KM85, Chapter 6] for elliptic curves and adapt the arguments to
suit our situation.

2.4.1. Main theorem on p"-cyclic submodule schemes

The goal of this section is to show the following analogue of [KM85, Theorems 6.1.1 and
6.4.1].

Theorem 2.4.1 (Main Theorem on p”-Cyclic Modules). Let £ € Sht,.(S) be a Drinfeld
shtuka of rank r over a scheme S. Let H < E[p"| be a finite locally free Oy /p"-submodule
scheme of rank q" over S.

(1) Suppose that H is p™-cyclic and admits a generator 1. Let D < H be the finite locally
free subscheme of H of rank ¢ (q — 1) defined by the restriction of . to (p " /Og)* =
(p~"/O)\(p~ =D /Oy). Then D = H* as subschemes of H.

(2) His p™-cyclic if and only if its scheme of generators H* is finite locally free over S of
rank

g1
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(3) Cyclicity of H is a closed condition, in the sense that there is a closed subscheme W < S
locally of finite presentation over S such that for any T' — S the pullback Hr is p™-cyclic
if and only if T — S factors through W.

Proof. Assertion (3) follows from (2) by the flattening stratification as in the proof of
[KM85, Theorem 6.4.1]. We sketch the argument. As a first step we note that in the
case where S = Spec(k) is the spectrum of a field and H is not cyclic, we have H* = .
Namely, any generator of H can be defined over a finite extension of k, but by assumption
H does not admit a generator after any finite extension of k. Hence, H* does not have
any field valued points and is thus the empty scheme.

As the question is Zariski-local on S and both H and £[p”] are of finite presentation over
S, we may assume that S = Spec(R) is affine and Noetherian. By the above argument,
the maximal rank of H* over S is ¢"~!(q — 1). By the flattening stratification, the locus
where H* has rank ¢" (¢ — 1) and hence H is cyclic by (2) is closed.

It is also clear that (2) follows from (1) as in [KM85, Theorem 6.1.1]. Namely, if H* is
finite locally free of rank ¢"~'(q — 1), the diagonal map H* — Hy;, is a section of H* after
base change along H* — S. Hence, H admits a generator after the fppf base change to
H* and is thus p"-cyclic. Conversely, assume that H is p™-cyclic. The question is fppf-local
on S, we may thus assume H admits a generator. The assertion in this case follows from

D).

It thus remains to show (1). We adapt the proof of [KM85, Theorem 6.1.1]. The
assertion is certainly true when the characteristic of £ is away from p by Proposition 2.3.6.

As a first step we show that D < H*. It is clear by definition that D < H. By reduction
to the universal case and using Theorem 2.3.9, it suffices to consider the case when S is
Noetherian and flat over X’ and as the question is local on S, we may further assume
that S = Spec(R) is affine. It follows that D is then also flat over X’. In order to show
that D € H*, we show that the tautological section of H over D induced by the inclusion
D — H is a generator of Hp. This is certainly true away from p. The claim follows from
the flatness of D over X’ and the fact that the locus where D — Hp, is a generator is closed
in D by Lemma 2.3.1. Hence, D — H factors over H* and the induced map D < H* is
necessarily a closed immersion.

In order to show that the closed immersion D — H* is an isomorphism, we introduce
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the following two auxiliary moduli problems.

£ € Sht,(S5), H < £[p"] an p"-cyclic submodule scheme,
X1(S) = <(€,H, t1,P): 11 e H*(S), P € D(S) such that {aP: a € (Oy/p"™)*} >
is a full set of sections for D

£ € Sht,.(5), H < £[p™] an p"-cyclic submodule scheme,
XQ(S):<(57H71/17[/2): Zl LQEI'I(X()S) [p ] p y >

It is clear that &) and A5 are stacks, and both map to Sht,. (,-» ¢, by forgetting P and
L2, respectively. This maps are clearly schematic and finite as they are representable by
(a closed subscheme of) the finite schemes D and H*, respectively. Note that both X}
and X, have a unique point lying over a supersingular point of Sht, over an algebraically
closed field in characteristic p.

Since D < H* there is a natural map &) — &» over Sht, (,-» /0,) Which is an isomor-
phism away from p as noted above. We show that the map is an isomorphism. By an
argument as in the proof of Theorem 2.3.9 (compare also [KM85, Theorem 6.2.1]), it
suffices to check it is an isomorphism at the completed local rings at the unique points
lying over supersingular points over algebraically closed fields in characteristic p.

Let £, € Sht,(¢) be a supersingular rank r Drinfeld shtuka over some algebraically
closed field ¢ in characteristic p and let £ be its universal formal deformation over
/ = l[|w,Th,...,Tr-1,Ty,...,Tor—2]. We denote by B = {[w,T1,...,T,—1]. Note
that B pro-represents the deformatlon functor of the local shtuka of £, at p. Recall
that (Sht, (,-n/0,))e = Spec(By) is an affine scheme, which is finite over B and that B,

is a complete regular noetherian ring by Theorem 2.3.9. Then X} ¢ = Spec(Bl) and
Xog = Spec(Bg) are affine schemes finite over By (and therefore also over B). Thus,
31 and Bj are complete, local and noetherian rings. We have to check that the map
By — B is an isomorphism. By the Serre-Tate theorem (which is clearly compatible
with all the relevant level structures as they only depend on the p"-torsion), we can write
Bi=B;®/ [T;,...T5—2] for some complete, local and noetherian rings B; finite over B.
Moreover, By is regular. It clearly suffices to check that B — Bj is an isomorphism. Note
that since D < H* is a closed immersion, we obtain that the map By — B is surjective.

By Corollary 2.2.11, we may assume that we can identify £[p"] in an A-linear fashion
with the p”-torsion of a Drinfeld A-module E with trivial underlying vector bundle (as the
base B is local). We have the following explicit descriptions of the rings By, B; and Bs.
As B-algebras we find

By = B[P]/Z,

where 7 is the ideal expressing the fact that the map ¢: p™" /Oy — B[P] = E(B[P])
defined by w™" + P is a well-defined (p~" /Oy )-structure. More precisely, Z is generated
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by exn(P), eq(P), where (w™, a) = p™ in A, (this implies that P € £[p"](By) and thus that
the map can be extended A-linearly to a well-defined map ¢) and the equations defining
the condition that ) ¢, -1 /0, [L(0)] = X ,eo,/pl€amn—1 (P)] is a subscheme of E[p] (this
condition is defined by finitely many equations by [KM85, Lemma 1.3.4.]). Recall that
By is a regular local ring with maximal ideal generated by P, T1,...,T,_1 by the proof of
Theorem 2.3.9. In a similar fashion the rings B; and B are given as By-algebras as

By = Bo[Q]/J,

where J is the principal ideal generated by [ ] ,cp, /pn (Q — €a(P)), and
By = By[Q]/K,

where K is the ideal expressing the fact that () defines an (p~™"/Op)-structure as above
and defines the same submodule scheme as P, i.e. K is generated by e (Q), e,(Q),
where (w,a) = p in A, the equations defining the condition that }, .o, /p[€awn-1(Q)]
is a subscheme of £[p] and the coefficients of the polynomial [],co, /pn(t — €a(Q)) —
[oeoo o (t = a(P)).

By [KM85, Lemma 6.3.4.], the multiplication by ) on B; is injective. We denote by K
the kernel of the map B> — Bj. Applying the snake lemma to the diagram

0 K By B, 0
[
0 K B, By 0,

where the vertical maps are given by multiplication by @, yields the short exact sequence
(using the injectivity of multiplication by @) on By)

By Nakayama’s Lemma K vanishes if and only if K /Q K vanishes. It thus suffices to show
that

By/QBy — B1/QBy

is an isomorphism.
We proceed as in [KM85, Lemma 6.3.5]. From the explicit description of B; and B,
above we get that

Bl/QBl = 30/7 and BQ/QBQ = BO/E7
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where 7 is the ideal generated by [ [, e« (P) and K is the ideal generated by the coefficiens
of the polynomial t?" —] ], (t—eq (P)), and the reductions of e (Q), e,(Q), where (w, a) =
p and the equations defining the condition that 3} o /[€awn-1(Q)] is a subscheme of £]p]
modulo Q. It suffices to show that [ ], e (P) € K. We show that it is (up to multiplication
by a unit in By) the coefficient of the term of degree ¢" —¢™ (g—1) of t4" — [, (t —ea(P)).
This coefficient is the sum of all ¢"~!(q — 1)-fold products of distinct elements of the set
{ea(P): e Op/p"}.

By the definition of Drinfeld modules it follows that e, (P) is of the form (unit in B)- P for
ae (Og/p™)* and of the form (elt in max(B))- P for o € p. Thus, both [ [ e (P) and the
coefficient of the term of degree ¢ — ¢" (g —1) of are of the form (unit in B)-P*®"), [

It would be desirable to have a similar statement also for other types of level structures.

2.4.2. T'\(p™)-level structures on Drinfeld shtukas

Definition 2.4.2. A T'y(p")-level structure on a Drinfeld shtuka £ over a scheme S is a
chain of p™-cyclic isogenies

g=epm e 5 - Be=¢

such that the composition f, o ... o fi is the inclusion £,(p") — £,. We denote the stack
of Drinfeld shtukas with I'g(p")-level structures by Sht,. r(n)-

Using the finite shtuka equivalence, a I'y(p"™)-level structure on £ is equivalently given
by a flag
0=HycH cHyc...cH, =¢£[p"]

of finite locally free submodule schemes H; < £[p"] of rank n - ¢ with strict F,-action
such that H; /H;_; is p™-cyclic for all 1 < i < r. In particular, a I'y(p™)-level structure can
fppf-locally on the base be extended to a I'; (p™)-structure by definition. By Proposition
2.3.18, such a level structure can fppf-locally be extended to a (p~"/Op)" !-structure on
£. We call such an extension a (p~"/0)"~!-generator of the T'y(p")-level structure.

We can now show one of our main theorems, that Drinfeld T'y(p")-level structures
produce a regular moduli problem.

Theorem 2.4.3. The stack Sht, p(,n) is a regular Deligne-Mumford stacks locally of finite
type over F. The forgetful map Sht, p,n) — Sht, is schematic and finite flat. It is finite étale
away from 0. Moreover, the forgetful map Sht, ., ,n) — Sht, p (ny is schematic, faithfully
flat and locally of finite presentation.
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Proof. We follow the proof of [KM85, Theorem 6.6.1]. As cyclicity is a closed condition
by Theorem 2.4.1, Sht, r(,n) is the closed substack of Sht,. , (,») over which the universal
isogeny is cyclic. Thus, the forgetful map Sht,  ») — Sht, is schematic and finite.
It follows that Sht, 1 (,n is a Deligne-Mumford stack of finite type over F,. Moreover,
the forgetful map Sht,.p (,») — Sht, 1 (un) is representable by the scheme of generators
(Hy/Hp)* x (Hy/Hy)* ... x (H,/H,_1)* and thus in particular finite flat by Theorem 2.4.1.
Since Sht,. 1 (,ny is regular by Theorem 2.3.17, it follows that Sht,. 1 (,») is also regular by
[AK?70, VII, Theorem 4.8]. Thus, also the map Sht,. ,») — Sht, is finte flat by Miracle
Flatness [Mat86, §23]. It is finite étale away from 0 by Proposition 2.3.14. O

Remark 2.4.4. In a similar fashion we can also show the regularity of the moduli stack
of Drinfeld shtukas together with a chain of p™-cyclic isogenies of length ' < r. In other
words, a chain of p”-isogenies

Evn =& S e e, . B —¢
such that f1,..., f,» are p™-cyclic. The following corollaries have also obvious analogues

in this setting. Note that we could generalise the argument to moduli spaces of other
kinds of cyclic isogenies provided we had an analogue of Theorem 2.4.1.

Using the flatness of our moduli problems, we show that there are well-defined level
maps.

Corollary 2.4.5. Let £ € Sht,.(S) and let (H;); be a I'o(p™)-level structure on £. Let
n=(ny,...,n—1) with 0 < n,_; < ... < ny <n. Then there is a canonical subscheme
H,, € H,_;, which is an Oy /p"-module subscheme H,, € £ [pmaX{”i}]. Fppf-locally on S, the
scheme H,, is defined for any (p~™/0g)"'-generator v: (p~"/0p)" "+ — £(S) of (H;); by
the restriction L|(p—n1/OO)@...@(p*"r—l/oo) as in Proposition 2.3.10.

Proof. We follow the proof of [KM85, Theorem 6.7.2]. It suffices to construct H,, fppf-
locally on S. We may thus assume that (H;); admits a (p~"/0)"!-generator. Let + and
/' be two such (p~"/0y)"~!-generators of (H;);. By Proposition 2.3.10 the restrictions
to (p7™/Op) ® ... @ (p " =1/Oy) of both + and ./ define closed submodule schemes
H,,H] < £[p™]. We have to check H,, = H/,.

By reduction to the universal case we may assume that S is noetherian and flat over X’
as the moduli space of Drinfeld shtukas with I'g(p™)-level together with two generators is
given by

Sht;. (- j0g) 1 X Sht,, 0 (pn) Sht, (p-n j0gyr—1

which is flat over X’ by Theorem 2.4.3 and Corollary 2.3.19. In this case equality of
closed subschemes of £[p™] is a closed condition by [KM85, Lemma 6.7.3]. The assertion
is clear away from 0 and thus follows from the flatness of S in the general case. O
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E[p"] corresponds to a p"-isogeny £, — £. For 1 < m < n we denote by m(9)
(m,...,m,0,...,0) with ¢ non-zero entries. Then

Via the finite shtuka equivalence and Proposition 2.1.14 the submodule scheme H,,

0= Hm(o) c Hm(l) c...C Hm(T_n c Ep™]

is a I'g(p™) level structure on £. This shows that we have a well-defined level map
Sht,. r,(yn) — Sht,. ryym) for all 0 < m < n which is automatically finite flat. We show that
we can also construct this level map by taking closures without making explicit reference
to the generators.

Corollary 2.4.6. Let S be a scheme which is flat over X'. Let £ be a Drinfeld shtuka over S
and Let (H;); be a T'y(p™)-level structure on . For every 1 < i < r the canonical submodule

scheme H,,:) < H; is the schematic closure of Hy| g ., (xn{oy)[p™] in E[p™].

Proof. From the explicit descriptions away from p it is clear that H,; is given by the
p"-torsion of H; away from 0. The assertion then follows from the fact that H,, () is flat
over S and closed in E[p™]. O

Motivated by the discussion in Section 2.1.5, we also construct additional level maps.
Recall that the I'y(p™)-level corresponds to a standard (r — 1)-simplex 2 of sidelength
n in the standard appartment of the Bruhat-Tits building of GL,. We want to construct
level maps corresponding to inclusions of sub-(r — 1)-simplices (of smaller sidelength).
Recall that we enumerated alcoves in the standard apartment by its basepoint m and its
orientation given by a permutation 7. In a similar fashion, a (r — 1)-subsimplex of (2 is
determined by its basepoint m = (mq,...,m,_1) with m; > ... = m,_1, a sidelength n’
and an orientation given by some 7 € Sym, ;. Note that the simplex with basepoint m,

sidelength 7 and orientation 7 € Sym,._, is contained in 2 if and only if m + ﬁ(Ti) < Q. Let
us denote by it € 771 the vector containig 7 in entries 7(1),...,7(i) and O otherwise.
Corollary 2.4.7. Let £ € Sht,(S) and let (H;); be a Ty(p™)-level structure on £. Let
m = (my,...,mp_1) With 0 < my_; < ... < my < n. Let 0 < n < n such that

m+ ﬁ(f) < Q for all i. Then the flag of quotients

0CH o/HnCH  _o/HnCS...CH cn/HyCEpp"]

m+n

+

defines a I'o(p™)-level structure on the Drinfeld shtuka &,,,, which we denote by (H Al JHpm)i.

In case that (H;); admits a (p~"/A)"~!-generator 1, (Hm+ﬁ(i) /Hpy,)i is generated by

tm,f,r - (p~ /A - Hm_@(r—l)/Hm(S)-

50



defined using the isomorphism

(p /Ay
=((pm ot/ A e. e e A (T /A @@ (p T [ A))
Moreover, the canonical subscheme from Corollary 2.4.5 for m' = (m/,...,m]_,) with

n=my>=...>m._; >0is given by
(H,, 50 /Hmn)m' = Hy o) /Hin-

Proof. We follow the proof of [KM85, Theorem 6.7.4]. The question is fppf-local on S, so
we can assume that H has a generator. By reduction to the universal case, we may further
assume that S is flat over X’ and noetherian by Theorem 2.3.9. Note that all assertions
are clear away from 0. It thus suffices to show that the locus, where they are satisfied is
closed.

The locus where each H | 15 /H 4Rl is p™-cyclic is closed in S by Theorem 2.4.1
(3). This shows the first claim. For the second claim, the locus where 1, 5 - is a generator
of (H i) /Hy,): is closed by [KM85, Proposition 1.9.1]. Moreover, the condition that

H +;¢>7Hm)m/ = H,;,4 7 (m/)/Hm is closed by [KM85, Lemma 6.7.3]. This shows the last
claim. O

Associating the I'g(p™)-level structure (HmHl(i) /Hp,)i on &, to (H;); as in the previous
corollary defines a map of stacks -

Fmim: Shtr,Fo(p") — Shtr,l"o(pﬁ) .
Proposition 2.4.8. The level map F, ., - is schematic and finite locally free.

Proof. Note that by Theorem 2.4.3 the map Fy o is schematic and finite locally free. As a
first step we show that F}, o: Sht, r(,») — Sht, is schematic and finite locally free for all
m. In order to show that the map is representable by a finite scheme, we consider the
auxiliary moduli problem Sht,. ,,, _isoq 1 (p») Parametrising a Drinfeld shtuka &, a p"-isogeny
f: € — &' such that coker( f) has rank 22;11 m; as Og-module, and a 'y (p™)-level structure
(H;); on £'. The projection to £ defines then a map of stacks Sht,. 1, —isog,To(p) — Sht,
which is schematic and finite by Proposition 2.2.15 and Theorem 2.4.3. We also have a
map Sht, p ) — Shty p_isog o (pr) S€Ning (€, (H;);) to (€,,, €, (H;);), which identifies
Sht,. r, (p») With the substack of Sht, ,, isog 1y (pn) Where £ = & /m By [KM85, Lemma 6.7.3],
this is schematic and representable by a closed immersion. The composition of the maps
Sht,. 1y (pn) = Sht, yisog,1o(pm) — Sht, is clearly given by Fy, o, which is thus schematic
and finite.
Note that we have a commutative diagram
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Sht"’,FO (pﬁ)

ka« Fo,o

Sht,

with vertical arrows that are schematic and finite. In order to see that F,, 5 - is schematic
we argue as follows. We fix a map S’ — Sht, p(,7) from some S-scheme ', in other
words a Drinfeld shtuka (£, (H;);) together with a I'g(p™)-level structure. By composition
with Fpo, we get a map S’ — Sht,. By the discussion above, S” = S xgp;, Sht, p (un)
is representable by a finite S-scheme. Let (€', (H});) denote the corresponding I'g(p")-
level structure. Then the fibre product S’ x gy, .. Sht, 1 yny is the locus where the
mLo(p™) ’

image of (&', (H});) under F}, 7 , is given by (£, (H;);). By [KM85, Lemma 6.7.3], this is
representable by a closed subscheme of S”.

As both F;,, o and Fp g are finite, it is immediate that F}, 5 - is finite as well. As both
Sht,. r(umy and Sht, p 7y are regular and (2r — 1)-dimensional, the level map is flat by
miracle flatness. O

2.5. Comparison with naive level structures and Bruhat-Tits
theory

We compare the Drinfeld level structures defined above with naive I'y(p™)-level structures.
The naive I'g(p")-level structures seem inadequate when n > 1 as the fibre above 0 is
missing points (compare Remark 2.1.20). We construct a map from the stack of Drinfeld
shtukas with naive I'y(p™)-level structure to our stack of Drinfeld shtukas with Drinfeld
[y(p™)-level which is an open immersion and an isomorphism away from 0. Moreover, we
show that the two notions of level structures agree in the parahoric case. In this sense,
the Drinfeld level structures provide a compactification of the level maps.

Recall that we defined a naive I'y(p")-level structure on a Drinfeld shtuka £ = (€, ) of
rank r as a flag of quotients as p™-torsion finite shtukas

Elp,s =L, > L, 1> ... L SLy=0

such that £; is finite locally free of rank i as Op,, ;-module. Equivalently, using Proposition
2.1.14, a naive I'g(p™)-level structure is a chain of p™-isogenies

Ep") =€, ﬁ)—r—l = Erg— .t ﬁ’ﬁo =&

such that coker(f;) is finite locally free of rank 1 as Op,, ;-module.
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Lemma 2.5.1. Let £ = (&, ¢) be a Drinfeld shtuka of rank r over S and let £|p, ¢ — Lbea
quotient p"-torsion finite shtuka such that L is finite locally free of rank 1 as Op,, ;-module.
Then Dry(L£) < E[p™] is an p"-cyclic submodule scheme.

Proof. We denote by £() = £]| D, s for 1 <i < n. Then L9 is a locally free O D, s-module
of rank 1, and consequently a locally free Og-module of rank . Thus,

é:é(n) s é(nfl) e _»4(2) _»é(l) 0

corresponds via the finite shtuka equivalence to a flag of finite locally free submodule
schemes with strict [F,-action

0cHY c...c H" Y cH™ c gpn],

where we denote by H®) = Dr,(£®"). It is clear that H®”) < E[p’] by construction. As a
next step, we inductively construct a generator of H(®) fppf-locally on S.

We may assume that S = Spec(R) is affine and that £ is a free Op, ; = R[w]/(=")-
module of rank 1. Then, £*) ~ R[w]/(w"). We choose the standard basis 1,w, ..., w !
of £L() as R-module. As a map of finite free R[w]/(w")-modules, ¢ is given by multplication
by an element o = Zé‘;lo ajw! € Rlw]/(w"), and thus, its matrix as an R-linear map with
respect to the standard basis is given by

Qo
a1 @Q
o; ;-1 ... Op

It follows that
‘ ‘ i—1 i—1
H® = Dr,(£") = Spec (R[to, o tio] /(8 — 2 ajtj,td — 2 ity .. tl | — aoti_1)> .
j=0 j=1

As the question is fppf-local on R, we may assume that R contains a root 3y of the
polynomial t9~! — o, a root 3, of the polynomial t? — agt; — o1y and inductively a
root 3; of the polynomial t¢ — oyt — 1 5j—1 — ... —a;fp forall 0 < j < i — 1. Then
(Bi—1,Bi-2, ..., P1,Po) is a section of H(® over R by construction. We claim that the map

(D2 p=i/0y - HO(R)
wii 4 (6’i—17 ﬁ’i—?a e 751750)
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is a p~?/Oy-generator of H"). We proceed by induction on i.

Let i = 1. In this case HY) = Spec(R[t]/(t] — aoto)). In particular, H) can be
embedded in Al,. Then p~!/Oy — HV)(R) given by w~! — 3 is a generator of HY), as
[Toer,(t —aB) =11 =gt =1 —at.

Let us now assume that the claim is true for i > 1. Note that the subscheme H(Y) < H(+1)
is given by the locus where ¢; = 0 by construction. Note that the map .+, o, = () is
given by w =% > (Bi_1, Bi—2,- .., B1, Bo,0). Thus, it factors through H(® and is a generator
of H®) by hypothesis.

Moreover, the quotient H+1) /H() is then given by the canonical inclusion

7
R[tz]/(t;] — Oéoti) — R[to, ey iz, tz]/(tg — Z ajtj, ... ,t;-] — Ozoti).
=0

Moreover, the image of the section (fo, ..., 3;i_1) of H/*Y in the quotient H*1 /H®) is
Bo. In particular, the map

L) mod p@: p=t/Og = (p~HY /Oy /(p7H/Op) — (H(Hl)/H(i)) (R)

is well-defined and sends @ ! to 3 and is thus a generator of H*1) /H(®) by the discussion
of the case i = 1 above. By [KM85, Lemma 1.11.3] it follows that LY is a full set of
sections of H(*+1),

Thus, (H, ) is a generator of HY) in the sense of Definition 2.3.2 and H(+1) is
p‘*lcyclic. This shows the claim. O

Proposition 2.5.2. Let £ = (€, p) be a Drinfeld shtuka over S and let
Elp,s=Lr > Ly ... » L1 > Lo=0
be a naive T'y(p™)-level structure on £. Then
0 Dry(Ly) ... Drg(£, ) < E[p"]
is a Drinfeld T (p™)-level structure on £ in the sense of Definition 2.4.2.
Proof. This follows directly from Lemma 2.5.1. O

Recall that a Drinfeld shtuka with a naive I'y(p")-level structure is a bounded global
GL, o-shtuka for the Bruhat-Tits group scheme GL, o as defined in Remark 2.1.19. In
particular, we thus constructed a map of Deligne-Mumford stacks

Shth - Shtnpo(pn) . (2.2)

As a next step, we show that the map (2.2) is an isomorphism in the case n = 1.
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Proposition 2.5.3. Let £ € Sht,.(S). Then every I'g(p)-level structure on £ comes from a
naive T'g(p)-level structure.

Proof. 1t suffices to show that for an p-cyclic submodule scheme H < £[p], the correspond-
ing finite shtuka M (H) is finite locally free of rank 1 as R ® Op/p = R-module. But this
is clear by construction. O

Lemma 2.5.4. Let £ € Sht,.(S) and assume its characteristic is away from 0. Then every
Lo(p™)-level structure on £ comes from a naive I'g(p™)-level structure.

Proof. Let (H;)1<i<, be a I'o(p™)-structure on £. As the characteristic of £ is away from 0,
all the H; are finite étale over S. As the claim is fppf-local on the base, we may choose a
(p~"/Og)"~!-generator of (H;)1<;<,. By Proposition 2.3.6, the H; are then given by

0C (p"/O0)s € (07"/O0)§ ... € (p7"/O0)5 " < Ep").
By the finite shtuka equivalence, this corresponds to the flag of quotients

r—1
§|Dn,S —» ODn,S — > ODn,s — 0,

i+1 ; . . . . . .
where the map O})ms — OZDn,s is given by the projection to the first i components and

the Frobenius-linear map on OiDn . is the trivial one. This is clearly a naive Lo(p™)-level
structure. ’ O

Proposition 2.5.5. The map (2.2) is schematic and a quasi-compact open immersion.

Proof. By construction, Sht;q, is identified with the substack of Sht,. r (,») where all the H;
correspond to finite locally free Op,, ;-modules of rank i via the finite shtuka equivalence,
or equivalently the locus, where all H; /H; ; correspond to finite locally free Op,, ;-modules
of rank 1.

In order to show that this condition is representable by an open subscheme, we work
locally and assume that S = Spec(R) is affine. Let M be a R[w]|/(w™)-module such that
M is free of rank n as R-module. Then M is locally free of rank 1 as R[w]/(w")-module
if and only if it is generated by a single element.

Let ¢ < R be a prime ideal such that M ® x(q) is a one-dimensional vector space over
the residue field x(q) of R[w]/(w™) at (¢,w) (k(q) is also the residue field of R at ¢). By
Nakayama’s Lemma, there exists a a € (R[w]/(w@"))\(¢, @) such that M[a~!] is free of
rank 1. Let ap = a(0) be the constant term of a. Then M[a~!'] = M[ay*']. Hence, the
principal open D(ag) S Spec(R) is an open neighbourhood of ¢ such that M [a, '] is locally
free of rank 1 as R[a; '|[w]/w"-module over D(a). Hence, the condition is representable
by an open immersion on the base scheme. O
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By Propositions 2.4.8 and 2.5.3, we can interpret the level maps to I'g(p)-level structures
as maps
Fm7177—2 Shtr,Fo(p") — Shthfm,-rv

where §,, - is the alcove in the Bruhat-Tits building corresponding to m and 7. This
system of maps is compatible with level maps to parahoric levels given by smaller facets
by Corollary 2.4.5 and thus define a map

Fq: Sht?“,ro(p") — lln Sht,ﬂ,f . (2.3)
<

Proposition 2.5.6. The map Fq, is a closed immersion.

Proof. As all the maps Sht,. p(yn) — liLnf< 0 Sht, ; are schematic and finite, so is their limit.
Moreover, by the explicit moduli description it is clear that the map Fy, is a monomorphism.

O]

Theorem 2.5.7. The map Sht, o — yLnR o Sht, ; is schematic and representable by a quasi-
compact open immersion that is an isomorphism away from 0. Its schematic image in the
sense of [EG21] is

ﬁﬁg = Shtﬁfo(p")

via the maps
Shtr@ — ShtT,Fo(p”) — liLl’lShtmc
f<Q
constructed above. In the parahoric case n = 1, the map Sht, o — Sht, p (. is an isomor-
phism.

Proof. The assertion for the parahoric case is Proposition 2.5.3. That the inclusion

Sht, o — liLn Sht,;
<

is schematic and representable by a quasi-compact locally closed immersion follows from
Propositions 2.5.5 and 2.5.6. That the image of Sht, g in Sht,.r (,») is dense follows from
the fact that the inclusion (2.2) is an isomorphism away from 0 by Lemma 2.5.4 together
with the flatness of Sht, (,n) over X' from Theorem 2.4.3.

In order to see that the map Sht, o — @R o Sht; ; is already open, we follow the proof
of Proposition 2.5.5. One can again check that a point (€,,)m € Liﬂlk 0 Sht, ; comes from
Shtq if and only if the cokernels of the isogenies £(,, . ,00...0) = Em,..nno,..0) are
locally free of rank 1 as Op, ;-modules. By the argument in the proof of Proposition 2.5.5,
this condition is representable by an open subscheme. O

56



3. Integral models of moduli spaces of
shtukas with deep Bruhat-Tits level
structures

3.1. Torsors under Bruhat-Tits group schemes

We show that a Bruhat-Tits group scheme is the limit of all corresponding parahoric group
schemes and use this observation to show that the induced map on the level of Bung is an
open immersion. We first discuss (pseudo-)torsors for limits of groups.

3.1.1. Pseudo-torsors for limits of groups

We use the following result on pseudo-torsors under limits of groups. For a sheaf of
groups G on a site C we denote by PTor the category of G-pseudo-torsors for G with
G-equivariant maps. In other words, an object of PTor is given by a sheaf £ on C together
with a (right) action £ x G — FE of G such that the induced map £ x G — E x E given by
(e,g) — (e, eg) is an isomorphism. A map f: G — G’ of sheaves of groups on C induces a
functor f,: PTorg — PTory given by E — E x& G, where the action of G’ is by right
multiplication in the second factor. Moreover, the canonical map (idg, 1¢/): E — E x&G’
is G-equivariant for the G-action on E x< G’ via f on the second factor.

A G-pseudo-torsor F is a G-torsor if for every object U on C there is a cover {U; —
U:ieI}ofUinC such that I'(U;, E) # . We denote by B(G) the full subcategory of
PTorg of G-torsors on C. The map f, for a map of sheaves of groups f: G — G’ restricts
to amap fi: B(G) — B(G).

Lemma 3.1.1. Let I be a finite partially ordered set and let (G;);ec; be a diagram of sheaves
of groups over I. Let G = LiLnie ;G Then G is a sheaf of groups on C together with a
compatible system of projection maps f;: G — G,. The functor

lim f; . : PTorg — lim PTorg,, E — (E x%G))ier
1€l 1€l
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has a right-adjoint given by

lim: <l£n PTorGi> — PTorg, (Ei)ier — LLHEZ

iel el

Moreover, the restriction im__, f; »: B(G) — lim _ B(G,) to the full subcategory of torsors
is fully faithful.

Proof. As a first step, we show that lim,_, E; is indeed a pseudo-torsor for G. The sheaf of
groups G acts on E; by the action induced by f;, and all these actions are compatible by
the observation above that the reduction maps are equivariant. Hence, LiLnie ; i carries a
canonical G-action. As all the E; are pseudo-torsors under G;, the induced map

€l el el
((ei)ier, g) ¥ ((€i)ier, (eifi(9))ier)

is an isomorphism, so lim _ E; is a G-pseudo-torsor.

As a next step, we show that the limit is right adjoint to the family of projections. Let
(Fy)ier € liLnie ;PTorg,. A G-equivariant map £ — [ factorsas £ — E x¢ G, — F; fora
unique G;-equivariant map E x& G, — F;. Hence, we get

Homprorg (E, l%le) = Homym _ prorg, (£ << Gy iers (Fier)-
2

In order to see that the restriction to B(G) is fully faithful, we check that the unit of the
adjunction £ — lim,_ E x & @, is an isomorphism for £ € B(G). We can do so locally, so
we may assume that F is trivial. As all maps E — E x& G, are G-equivariant, choosing
a trivialisation of F induces a compatible choice of trivialisations of all E x& G,;. Hence,
the map £ — lim,_ £ x& @, is given by G — lim . G;, which is an isomorphism by
construction. O

Remark 3.1.2. Note that given a compatible family of G;-torsors (E;);es € liilie s B(G,),
their limit will in general not be a G-torsor, as it might not be possible to produce a
compatible system of sections for (E;);e;. For example, consider G; = Gy = {e} the trivial
group and G3 = Z/2. Then G x¢, G2 = {e} is again the trivial group. Let us moreover
consider the sets Fy = Fy = {+} and F3 = {a;,a2}. Then FE; is a trivial G;-torsor for all
1 = 1,2, 3. However, under the maps f;: E; — E3,* — a; for ¢ = 1,2, the fibre product
E\ x g, E» is empty, hence in particular not a torsor under the trivial group.
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3.1.2. Deep Bruhat-Tits group schemes are limits of parahoric group schemes

Let us briefly recall some facts from Bruhat-Tits theory [BT72; BT84]. In this section, let
k be a discretely valued henselian field with ring of integers . We denote by m < O its
maximal ideal and by F = O/m its residue field. Moreover, we denote by £"" the maximal
unramified extension inside some fixed algebraic closure of k, by O its ring of integers
and by k (respectively O) the completion of k" (respectively OU).

Let GG be a (connected) reductive group over k such that G is quasi-split over £"*. Note
that G is automatically quasi-split over k" when the cohomological dimension of k"' is at
most 1 by a theorem of Steinberg. This includes in particular the case k¥ = F ((w)) for a
finite field IF we are interested in later. Let us fix a maximal k-split torus S < G. We denote
by B(G/k) the corresponding (reduced) Bruhat-Tits building and by A = A(G, S, k) <
B(G, k) the apartment corresponding to S. Let & = &(G, S) be the set of roots of G with
respect to S and let ®+ < ® be a system of positive roots. We denote by $~ = —&* and
by &, = ®* (respectively by ® , = &) the subset of non-divisible positive (respectively
negative) roots.

We consider the space of affine functionals .A* on A and the set of affine roots ¥ =
V(G,S) € A* of G with respect to S. For an affine functional ¢ € A*, let Hy < A
be the vanishing hyperplane for ¢ and let H,~o = {z € A: ¢)(z) > 0} (respectively
Hy<o = {z € A: ¢(z) < 0}) be the corresponding half-spaces. For an affine functional
1 € A*, we denote by ¢ its gradient. By construction, for ¢) € ¥ we have ¢ € ®.

For a non-empty bounded subset 2 = A, we consider the corresponding (local) Bruhat-
Tits group scheme! Gq constructed in [BT84, § 5.1.9 (resp. § 4.6.26)]. It is the unique
smooth affine O-group scheme with generic fibre GG, connected special fibre and G (O") =
G(k")2, where G(k'), is the “connected” (pointwise) stabiliser of (2.

For a bounded subset 2 < A, we denote by cl(Q2) = ﬂwew,ﬂngo M=o the intersection
of all half-spaces containing 2. Then the corresponding Bruhat-Tits group scheme does
not change when replacing 2 by cl(2), compare [BT84, § 4.6.27]. Hence, we may always
assume ) = cl(€2) in the following. By construction, cl({2) is convex. For two bounded
subsets 2, Q' of A(G, S, k) with Q = cl(Q2), we write Q' < Q if Q' is contained in 2. In this
case, we obtain an induced homomorphism of O-group schemes po o: Go — Gor whose
restriction to the generic fibre is given by the identity on G. Below, we often take limits
over the partially ordered set {f < 2} of facets contained in Q2 ordered by inclusion. This
poset is connected as 2 = cl({2) is connected.

For a root a € ® and 2 as above, we denote by U, o < G(k) the corresponding root

!In the literature it is often additionally required that € is contained in a facet. We explicitly allow Q to not
be contained in the closure of a facet (this will be the interesting case later) and call G, with © contained
in the closure of a facet a parahoric (Bruhat-Tits) group scheme.
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subgroup and by U, ¢, its integral model, which is a smooth affine O-group scheme. As for
the G, the group scheme U, o only depends on cl(€2) and for Q' < Q there is a natural
map U, o — U, . These integral models are used to construct the big open cell

[] tao x 2 x [] Uao = Go,

- +
ae@nd ae@nd

which is an open immersion by [BT84, § 4.6.2], where Z is an integral model of the
centraliser Z of S. Note that when G is quasi-split, T' = Z is a maximal torus in G.
The main result of this section is the following theorem.

Theorem 3.1.3. Let G be a reductive group over k such that G is quasi-split over the maximal
unramified extension k" of k. Let Q@ < A(G, S, k) be a bounded subset with 2 = cl(2). The
map
p=1limp;q: Go — UmG;
f<Q f<Q2

induced by the p; q for facets | < §) is an isomorphism of O-group schemes.

We need some results on the deformation theory of torsors under (limits of) Bruhat-Tits
group schemes. For us, torsors are always taken with respect to the fppf-topology. However,
torsors for smooth affine group schemes are always representable by a (necessarily smooth
affine) scheme and thus have sections étale locally. The deformation theory of such sections
of torsors can be controlled by the (dual of) the invariant differentials wg,» = ¢*Qg /0,
where e: O — G is the identity section, due to the following result.

Lemma 3.1.4. Let G be a smooth affine O-group scheme and let R be an O-algebra with an
ideal I of square I? = 0. We denote by R=R/Iandr: O — R the induced map. Let £ be a

G-torsor over R. Let vy € £(R) be a section of £. Then the set of all lifts of v to R is a torsor
under g(r ) = r*wgv/o ®z 1.

Proof. This is essentially a special case of [SGA1, Exposé III, Corollaire 5.2]. Recall that £
is representable by a smooth affine O-scheme. In particular, there exist lifts of v to R, so
£ is trivial. So let us fix a lift v’ of v and a trivialisation of £ that identifies the section ~/
with the unit in Gi. By [SGA1, Exposé III, Corollaire 5.2], the set of lifts of + is then a
torsor under
T p® L =700 @ 1 = 1wy 0 ® 1.
O

We use the following lemma to relate the deformation theory problem to the combina-
torics in the Bruhat-Tits building.
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Lemma 3.1.5 (compare [BT84, § 4:6.41]). Assume that G is quasi-split. Let 1) € A* be an
affine functional with gradient a = 1. Let Q2 < A be a bounded subset such that 2 € H <.
Let moreover ' < Q such that ' < H. Then the natural map wy, 00 W /O is an

isomorphism.

Proof. By assumption, we have U, o = U, « as subgroups of G(k). Hence, the induced
maps on integral models and consequently on invariant differentials are isomorphisms. [J

Note that in the situation of the lemma when Q n H, .o # & the induced map on Lie
algebras for the negative root groups

Lie(U_,qF) = W&,a,g/o o F — Lie(U_q o r) = %VLE o0 ®oF

in the special fibre of Spec(O) typically (in particular when a is non-divible and 2a is not
a root) is the zero map by [BT84, § 4.6.41].

Let (&)i<q € liLnf< o B(G;)(R) be a compatible system of Gj-torsors. We use the previous
two lemmas to construct compatible lifts of sections of £ = mkg &. This serves two
purposes: On the one hand, we use this result for the trivial torsors & = G; to show that
we can lift sections from the special fibre of LiLnkQ G; in the proof of Theorem 3.1.3 and
on the other hand, we use it in the proof of Proposition 3.1.10, which gives a criterion

when &, is actually a Gq-torsor. For a subset ' < Q we denote by £ = liLnRQ, &.

Lemma 3.1.6. Assume that G is quasi-split. Let R be an O-algebra with an ideal I of square
I? = 0. We denote by R = R/I.

(1) Let Q1,99 <  be two bounded subsets such that Q; = cl(1), Q2 = cl(Q2) and
that 21 n §y is contained in an affine root hyperplane H,, for some )  W. Assume
moreover that Qy U )y is convex and that Q1 S Hy»o and Qs S Hy<p lie in different
half-spaces.

Assume that the assertion of Theorem 3.1.3 holds for Go, and Gq,. Assume that
there is a section v € Eq, Lo, (R) and deformations vq, € g, (R) and vq, € £q,(R)
of the images of v in £y, and &Eq,, respectively. Then there exists a deformation
Y0100 € E0y00, (R) of 7.

(2) Letnow Q) =cl(Y) < Qandleta € @:{d and let 1 < 1y < ... < 1), be the affine roots
with gradient ¢Z = a such that Q n Hy, # &. We denote by Q; = (Q N Hy,<0)\Qi—1
fori=1,....mwith Qy = & and Q41 = O\(Qp\Hy,, )-

Assume that the assertion of Theorem 3.1.3 holds for Gq, fori =1,...,m+ 1. Assume

that there is a section v € Ey (R) and deformations o, € Eq,(R) of the image of -y in
Eq, for all 1 < i < m + 1. Then there exists a deformation o € Eq (R) of 7.
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We will prove Theorem 3.1.3 by induction on 2 and use this lemma in the inductive
step. Hence, it is feasible to assume the validity of Theorem 3.1.3 for subsets of (2 here.
Once we have established Theorem 3.1.3 in full (in particular for the application of the
lemma in the proof of Proposition 3.1.10), these conditions of course are vacuous. Before
we give the proof of the lemma, let us briefly discuss an example that nicely illustrates the
main idea.

Example 3.1.7. We consider G' = GL; over k = I, ((=)) with T" the split maximal diagonal
torus. Then X*(T') = Z? with roots ® = {£(1, 1)} € X*(T), where the choice of the
positive root a = (1, —1) corresponds to the choice of the Borel subgroup given by upper
triangular matrices. Let us consider the interval Q = [0,2] € R = A(GLy,T) with
Ql = [0, 1] and QQ = [1,2]

0 Qo

Let us consider the case R = F, [w] /(w?) and R = R/(w) = F,. In this case, for a
smooth affine group scheme G over O, the module g = e*wy 0 ®F, (w)/(w=?) is given by
the tangent space of G at the identity section in its special fibre. Let us assume we are
in the situation of Lemma 3.1.6 (1). We are given a section v € &)y 9)(F,;) and sections
Vo) € Epa)(Fq[w] /(w?)) and vy o) € Epgj(Fy [w] /(w?)) that lift 4. Recall that by
Lemma 3.1.4, for ' < ) the set of all lifts of v in &y is a torsor under gq. Hence, after
fixing a trivialisation of £}, the images of the lifts (9 1}, 1,9 in &;1y induce points in gyy;.
Thus, the question becomes if the intersection of the orbits g 1).70,1] ™ 9[1,2]-7]1,2] ID 841}
is non-empty, where g|o ;) acts via the natural map gy ;] — g1}, similarly for g}, 9.

For Q' < ), we decompose the Lie algebras into its root spaces gor = g o @ h Du_, v,
where a = (1, —1) is the positive root. In this situation, the root spaces u., o/ are one-
dimensional while the Cartan  is two-dimensional. Then the induced map g1} — g1} is
the identity on the Cartan algebra b as well as on the positive root space u, jo 1] = 1} by
Lemma 3.1.5 while it is the zero map u_, [o;] — u_, (1} on the negative root spaces. By a
similar argument, for the second facet 25 = [1, 2] the map g[; o) — gy1; is the identity on
the Cartan and the negative root space, while it is the zero map on the positive root space.

Decomposing the lifts vjp,;; and 7, o) in their components, this shows that by the action
of g, we can guarantee that the u,-components agree and by the action of g|; o) we can
get matching components in the u_,-component. This shows the non-emptiness of the
intersection of the orbits and hence the existence of a compatible set of lifts.

In order to guarantee the correct mapping property in the other directions, it is necessary
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to have the convexity assumption. This can be seen in the following example in the GL;3-
case:

Hy

We are given two chambers 2; and (2, in the standard apartment in the Bruhat-Tits
building of GL3 that intersect in a single vertex. In particular, £2; U €25 is not convex. The
base of both of the triangles lies in some affine root hyperplane #,, with ¢ = a while
both ©; and (2 are contained in the positive half space #,. But this means that both
Ug 0 — Ug,01nQ and U 0, — Ug 0, ~Q, are the zero maps. Hence, it is in general not
possible to lift sections in this situation.

The difference to the convex case is the following. We have cl(2; U Q2) = Q1 U Qs U Q3,
where Q3 is the triangle “between” ; and 9. For a pair of Gg,- (respectively Gg,-)
torsors £g, and &, the existence of a compatible G, -torsor £n, (such a torsor does not
exist in general!) can be interpreted as a compatibility condition on the a-root spaces, as
it will guarantee by Lemma 3.1.6 (1) that for two given lifts v, € Eq, (F, [=] /(=?)) and
Ya, € Ea, (Fy [@] /(w?)) their image in u, o, ~o, agrees.

Proof of Lemma 3.1.6. (1) Given some ' < Q) (for which Theorem 3.1.3 holds), the set
of all lifts of v € £y (R) to Eq(R) is a torsor under gor = go (g, 1) (if such lifts exist
at all) by Lemma 3.1.4. Using the decomposition of the big open cell in Gq/, we can

decompose g into the root spaces as

g = @ uo®h® @ ue-

- +
ae® y ae®

After fixing a trivialisation of £q, ~q,, the images of the lifts yo, and v, in o, A0,
thus define elements of g, ~o,. The question whether there exists a lift vo, 0, €
Ea, 00, (R) of v, or in other words, a compatible pair of lifts v, and vq, in &g,
(respectively in £q, ), is thus the question if the orbits in go, ~q, have a non-empty
intersection

90,701 N 80,70, # .
We treat this question componentwise with respect to the decomposition into root

spaces. On the torus part this is clear as the maps go, — gq,~q, restrict to iso-
morphisms on h by construction for ¢ = 1, 2. It suffices to show that for all roots
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a € ®pq at least one of go, — g, ~n, restricts to an isomorphism u, 0, = g0, ~Q,-
For a = +1) this directly follows from Lemma 3.1.5.

Let now a € ®\{£¢}, and let ¢/ € A the minimal affine functional with gradient
Qb' = a such that Q; n Qy € Hy<o. By the convexity assumption, at least one of the
€); is contained in H o for i = 1, 2. But then u, g, = Ug 0, ~Q, 1S an isomorphism
by Lemma 3.1.5.

(2) Foreachi =1,...,m, the pair of subsets UKJ-@- Qj, Q41 of QY satisfies the assump-
tions of (1) by construction (in particular, their intersection is contained in H,,).
Using induction on i, we construct lifts of v for all €U1<J<i o, using (1), and hence in
particular for Eqy.

O

Proof of Theorem 3.1.3. We first remark that the limit liLnf< oYiisa finite limit of affine
O-group schemes of finite type, hence is again an affine O-group scheme of finite type.
Moreover, as all transition maps are identities on the generic fibres, the generic fibre of
the limit is isomorphic to G and p induces an isomorphism on the generic fibre.

By étale descent it suffices to work over k, the completion of the maximal unramified
extension of k. We may thus assume that k¥ = k, in which case G is quasi-split by
assumption. Moreover, we have

(lim G;)(0) = lim(G;(0)) = [ ) G(k)} = G(k)D.
f<Q f<Q f<Q

It remains to show that @kg G; is smooth, as smoothness implies by [BT84, § 1.7.3]

that yLnRQ Gy is étoffé in the sense of [BT84, Définition 1.7.1]. But this means that p is
an isomorphism by the previous observations.

We use induction on (2 to show that liLnRQ Gy is smooth. Let us fix some enumeration of

the set of non-divisible positive roots &, = {a1, ..., an}. We inductively cut down €2 into
slices by hyperplanes with gradient a; and in each step use Lemma 3.1.6 (2) to construct
lifts of the section in the special fibre. For the start of the induction, note that the theorem
clearly is satisfied when (2 is (the closure of) a facet. More concretely, in the last step
of the induction we write Q =  J, ;<. {4 using the notation from Lemma 3.1.6 (2)
with a = a;. By induction, we assume that the theorem holds for each ; (that we got by
cutting down each 2; using hyperplanes with gradient as).

We check that liLnf< q 9y is formally smooth. Let R be an O-algebra and let I < R be an

ideal of square zero. We denote by R = R/I. Let us fix a section g € @RQ Gi(R). Using
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the inductive hypothesis, there exist sections g; € LiLnR q. 9i(R) = Gg,(R). By Lemma
3.1.6 (2), we then obtain a lift g € liLnRQ Gi(R). As liLnRQ
finite presentation over O, this shows that G, is smooth. This finishes the proof of the
theorem. [

G; is an affine scheme of

Corollary 3.1.8. The Bruhat-Tits group scheme Gq, is isomorphic to the closure of the diagonal
in the generic fibre
¢ 5119

<

Proof. The inclusion yLnf< 0 91 = [i<q Gj is a closed immersion since all G; are affine and

thus separated over O. Since Gy, is in particular flat over O, it is the closure of its generic
fibre. The claim then follows from Theorem 3.1.3. O

Remark 3.1.9. Let Q < B(G, k) be a bounded subset that is not necessarily contained in a
single apartment. Theorem 3.1.3 suggests a way to associate an (O-group scheme to 2,
namely to define
Go = lim G;.
f<Q

It is however neither clear whether G, is smooth nor whether it has a connected special
fibre.

3.1.3. Torsors for deep Bruhat-Tits group schemes

We consider torsors for the Bruhat-Tits group schemes above. Recall that a limit of G;-
torsors for facets f < Q is a Gg-pseudo torsor by Lemma 3.1.1, but may fail to be a
Gao-torsor in general. We give a criterion when a limit of G;-torsors is already a Go-torsor.

Proposition 3.1.10. Let Q2 < A be a bounded subset with Q0 = cl(2) and let R be an
O-algebra. Let (&)ij<q € liilkﬁ B(G;)(R). Then
&q = lim &
f<Q

is a smooth affine B-scheme. In particular, g is a Go-torsor if and only if £ — Spec(R) is
surjective.

Proof. The second assertion follows from the first one using Lemma 3.1.1, Theorem 3.1.3
and [SGA1, Exposé XI, Proposition 4.2].
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The first assertion is étale-local on Spec(R), so we may assume that G is quasi-split.
It suffices to show that &, — Spec(R) is formally smooth, as &, is clearly representable
by an affine R-scheme of finite presentation. But this follows from Lemma 3.1.6 (2) by
induction on (2 as in the proof of Theorem 3.1.3. O

The goal of this section is to show that the isomorphism of Bruhat-Tits group schemes of
Theorem 3.1.3 induces an immersion on the level of the corresponding moduli stacks of G-
bundles on X. Therefore, let us now change perspective and consider (global) Bruhat-Tits
group schemes in the following sense.

Definition 3.1.11. A smooth, affine group scheme G — X is called a (global) Bruhat-Tits
group scheme if it has geometrically connected fibres, its generic fibre G = G is a reductive
group over K and if for all closed points = of X the pullback Gp, = G x x Spec(O,) is
of the form G for some bounded subset ) contained in an apartment of the Bruhat-Tits
building B(G/K,). The group scheme G is called a parahoric (Bruhat-Tits) group scheme
if moreover all Gy, are parahoric group schemes.

Let G be a (connected) reductive group over the function field K of X. Bruhat-Tits
group schemes with generic fibre G can be constructed as follows.

Construction 3.1.12. (1) There exists a reductive model G — U of G over some dense
open subset U € X. For each of the finitely many points € X \U in the complement
of U we choose a parahoric group scheme G(*) — Spec((,) with generic fibre
Q%j = Gk, AsUI] [ cx\p Spec(O;) — X is an fpqe-cover, we can glue G — U
with all G*) using fpqc-descent to obtain a smooth affine group scheme G — X,
which is a parahoric group scheme by construction.

(2) Let us now fix a parahoric model G — X and a closed point z( of X. For a connected
bounded subset 2 in an apartment of the Bruhat-Tits building of Gk,  as in the
previous paragraph, we denote by G — Spec(O,, ) the corresponding (local) Bruhat-
Tits group scheme. We glue G with G along the identity over K, and denote the
resulting smooth affine group scheme over X by a slight abuse of notation again by
Gq. Then Gg is a Bruhat-Tits group scheme in the sense of the previous definition
and parahoric if and only if 2 is contained in the closure of a facet.

The local homomorphisms po o: Go — Gqr over Spec(Oy,) for ' < Q glue with
the identity away from x, to morphisms of group schemes po o: Go — Gor on X.

In particular, the isomorphism of Theorem 3.1.3 extends to an isomorphism

Ga = @l gf
f<Q
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of the corresponding global Bruhat-Tits group schemes.

For any smooth affine group scheme 4 on X, we denote by Buny, the moduli stack of
H-bundles on X. By the functoriality of Bun, the maps pj o induce maps p; o . : Bung, —
Bung, for all facets § < €.

Theorem 3.1.13. Let G be a reductive group over K, let x( be a closed point of X and let
Q = cl(2) be a bounded subset of an apartment in the Bruhat-Tits building B(Gk,, , Kx,)-
Let Go — X be the corresponding Bruhat-Tits group scheme from Construction 3.1.12 (2).
The map
pa,x = limp; o .t Bung, — limBung,
f<Q2 f<2

induced by the p;q . for facets § < € is schematic and a quasi-compact open immersion.

Proof. By [Brel8, Proposition 3.19], the maps p; o . are schematic and quasi-projective
for all facets f < €2. By Lemma A.0.2, the map pq . is schematic, separated and of finite
type. Moreover, all Bung, are locally of finite type over F, by [HeilO, Proposition 1]. By
Lemma 3.1.1, the map pq . is a monomorphism.

We show that pq, .. is formally étale. Let R be a local artinian FF,-algebra with maximal
ideal I < R of square zero. Let moreover (&j)j<q € liLnf< q Bung; (R) such that yLnf< o&iisa

Ga-torsor over X4, where R=R /I. We claim that iiLnf< o & is already a Go-torsor over X .

The map (mo U (X\{z0})r — Xr is a fpqc-cover, where (mo = Spec(Oy, ® 1, R),
with O, ® r,V being the underlying IF,-algebra of the completion of X along x¢. As all
maps Go — G for f < Q are the identity away from x, all transition maps &y g x 97 g; —
&;,r are isomorphisms away from x. Using Proposition 3.1.10, it remains to check that

tieﬂlllback to iiLnRQ & — (XR)q, is surjective, but the underlying topological spaces of

(XR)z, and (X3)s, agree.
Hence, pq . is formally étale and thus a quasi-compact open immersion being a flat
monomorphism of finite presentation. O]

3.2. Bounds for shtukas

Global shtukas for GL,, were first introduced in [Dri87b] and generalised to split reductive
groups (respectively to flat affine group schemes of finite type) by [Var04] and [AH21],
respectively. In this section, we recall the definition and basic properties of moduli spaces
of (iterated, global) shtukas. We use global bounds following [AH19] and introduce a
new notion of local bounds in the style of [AH14] compatible with global bounds. For
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Bruhat-Tits group schemes we construct (global and local) bounds given by cocharacters
that recover the bounds from [Laf18] in the constant split reductive case.

Let G — X be a smooth affine group scheme. Let I be a finite setand let / = 1 u... U,
be a partition of I. We write I, = (I1,..., L,).

Definition 3.2.1 ([AH21, Definition 3.3]). We denote by Shtg, X1 1. the stack fibered in
groupoids over I, whose .S valued points are given by tuples

((wi)ier, (€5)j=0,...m» (¥)j=1,...m: 0),
where
* x; € X(S) are points on X called the characteristic sections (or legs) fori € I,
e & € Bung(S) are G-bundles on Xg for 0 < j < m,

* it Eim|xa\ Uiy T = Ejlxs\U,e, T., are isomorphisms of G-bundles away from
K ] k2 K1 ,7 K2
the graphs I';, © X of the sections z;, and

¢ 0: 0%, = & isan isomorphism of G-bundles on Xg.

The projection to the characteristic sections defines a map Shtg xr ;, — X I, By [AH21,
Theorem 3.15], Shtg x: 4, is an ind-Deligne Mumford stack that is separated and locally
of ind-finite type over X .

Let I] be a second partition of [ that is finer than I,. The forgetful map

Shtg,XI,H g Shtg,XI,I.
is an isomorphism over
U={z = (zi)ier € X7, xy, # Xy, forallig,ipe [jand 1 < j <m} < x!
by the argument in [VarO4, Lemma A.8 a)].
When I, = (I) is the trivial partition, we write Shtg xr = Shtg xr (7). Let us fix pairwise
different closed points y; € X for all i € I. We denote by

Sht% x1I = Shtg7xl71. Xxl Spf(og) — Shtg7XI XXI Spf(Og)

the restriction of the moduli space of shtukas to the formal neighbourhood of O,. By the
previous observation, this stack does not depend on the choice of the partition I, of I.
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Assumption 3.2.2. In the following, we consider moduli spaces of shtukas in essentially
three different situations.

(1) G — X is a smooth affine group scheme. (The smooth affine case)

(2) G is a reductive group over K and G — X is a smooth affine group scheme with
generic fibre G. (The generically reductive case)

(3) G is a reductive group over K and Go — X is a Bruhat-Tits group scheme for a
bounded subset 2 = cl(2) of an apartment in the Bruhat-Tits building for G, for
some fixed closed point xg of X as in Construction 3.1.12. (The Bruhat-Tits case)

3.2.1. Global bounds

We recall the notion of (global) bounds for shtukas following [AH19, Definition 3.1.3]. In
the case where G is a Bruhat-Tits group scheme, we construct boundedness conditions
given by cocharacters in the style of [Laf18].

We need the following iterated version of Beilinson-Drinfeld affine Grassmannians first
introduced by [BD96] in the case of constant group schemes.

Definition 3.2.3. We denote by Grg 1 j, the functor on F,-schemes whose S valued
points are given by tuples

((z)ier; (€5)j=0....m» (¢4)j=1,..m: &),
where
* x; € X(S) are points on X called the characteristic sections (or legs) fori € I,

* & € Bung(S) are G-bundles on X for 0 < j < m,

° .. . = . 1 1 -
©jt Ei-1lxq\ User, To; — Ejlxs\ User, T, are isomorphisms of G-bundles, and

o c: &, = G xx X is a trivialisation of &,,.

Then Grg x1 j, is representable by an ind-scheme over X I by [Heil0].

Let R be a F,-algebra. For a relative effective Cartier divisor D < Xg, the formal
completion of X along D is a formal affine scheme. We denote by Op the underlying
R-algebra and by D = Spec(Op) the corresponding affine scheme. Then D is a closed
subscheme of D and we set D’ = D\D. We apply this construction in particular when
D =Ty = J;e; 'z, is the union of graphs of points x = (z;)er € X I(R). In this case we

. - A0 ~0
writeI'; = Dand I'y, = D .
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Remark 3.2.4. Using Beauville-Laszlo descent [BL95] (compare also [BD96, Remark 2.3.7
and Theorem 2.12.1] and [LS97]), the affine Grassmannian has the following alternative
description, compare [Laf18, Construction 1.8]. Let R be a [ -algebra. Then an R-point
of Grg x1 j, is given by a tuple

((@i)iers (£5)j=0,...m» (P5)j=1,....m:+ €),
where the £; are now G-torsors on I', and the ¢, are isomorphisms over fg\f%, where
Lj = (xi)z‘elj-

Let U < X! be the complement of all diagonals. Using this description of the affine
Grassmannian, we find that Grg x1 ;, [v = ([ [;¢; Grg.x) u-
We also make use of a global version of the (positive) loop group.

Definition 3.2.5. The global loop group L is the functor on the category of F,-algebras
I ~ 0
LxiG: R+ {(Lg)3 ze X' (R),geG(l'y )} :
The positive global loop group E} ;G is the functor on the category of F,-algebras
£4,G: R {(2,0):ze X' (R),ge 6T},

By [Heil0, Proposition 2], £ y:G is representable by an ind-group scheme over X' and
E;’( .G is representable by an affine group scheme over X' with geometrically connected
fibres. Moreover, the projection LG — Grg x: induces an isomorphism of fpqc-sheaves
Lx1G/L},G — Grg x1. There s anatural left £}, G-action on Grg yr ;, given by changing
the trivialisation e.

Remark 3.2.6. It is well-known that there is a formally smooth map
Shtg7xl7I. — [ﬁ;—([g\ Grg7xl7].],
compare for example [AH19, Theorem 3.2.1] and [Laf18, Proposition 2.8]. In this sense,
the affine Grassmannian is a local model for the moduli stack of shtukas.
We define (global) bounds for shtukas as certain subschemes of the affine Grassmannian

following [AH19, Definition 3.1.3].

Definition 3.2.7. We fix an algebraic closure K218 of the function field K = K(X) of X.
For a finite extension K’ of K in K28 we denote by X - the normalisation of X in K’. It
is a smooth projective curve over F, together with a finite morphism X » — X.
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(1) Let K; and K5 be two finite extensions of K. Two locally closed subschemes
~T ~1

Zy < Grg x1 g, xx1 X g, and Zy € Grg x1 1, x y1 X, are called equivalent if there

is a finite extension K;.K> € K’ < K8 of the composite K.K> of | and K>, such

thatZ1 X o1 XK/:ZQ X ~1 XK’ lnGrgXII. XXIXK"
XKI XK2 ’ ’

Let Z be an equivalence class of locally closed subschemes Zx+ < Grg y1 g, % x1 X 2,
and let Gz := {g € Aut(K¥8/K) : g*(Z) = Z}. The field of definition Kz of Z is
the intersection of the fixed field of Gz in K2 with all the finite extensions of K
over which a representative of Z exists.

(2) A bound is an equivalence class Z of quasi-compact locally closed subschemes 7y —
1 . . . ...
Grg x15, % x1 X jo that admits a representative Zy_ over its field of definition Kz
) T ) ~ T
that is moreover stable under the left £; 19 x x1 X _-action on Grg x1 j, % x1 X _.

The field of definition Kz of Z is called the reflex field of Z, and the corresponding
curve Xz := X, is called the reflex curve of Z.

By abuse of notation we usually identify Z with its representative over the reflex
curve. Such a representative is unique by Lemma 3.2.10 below.

(3) Let Z be a bound in the above sense and let

E = ((®)ier: (§))j=0,..m» (©5)j=1,..m, 0) € (Shtg x1 1, X x1 XZ)(S).

By [HR20, Lemma 3.4], there exists an étale cover 7" — S such that lA“QT — fg
trivializes &,,|p . Fixing a trivialisation a: & | =g |t defines a point in
z Edsy Esy

(Grg x1 1, x x1XL)(T), compare Remark 3.2.4. We say that £ is bounded by Z if this
point factors through Z. As Z is invariant under the left £; ;G-action, the definition
is independent of the choice of the trivialisation «.

We denote by Shtg x1.7, — X% the moduli stack of G-shtukas bounded by Z in this sense.

As in the unbounded case, for a tuple (y;);e; of pairwise distinct closed points of Xz we

write -
y

Shtg,xf =

Shtg 1 x x1 SPF(Oy).
Let us recall some properties of this stack of bounded global G-shtukas.

Remark 3.2.8. By [AH19, Theorem 3.1.6], the moduli stack of bounded G-shtukas
Shté xIp, isa Deligne-Mumford stack locally of finite type and separated over X/, and a

locally closed substack of Shtg y: j,. The diagonal of Shté x1,1, is schematic, finite and
unramified by [AH21, Corollary 3.16].
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Remark 3.2.9. There is a version of the local model theorem also for the moduli space
of bounded shtukas. Let Z be a bound. By [AH19, Theorem 3.2.1], its representative
Z inside the affine Grassmannian Grg x1 ;, % x7 X% is an étale local model for Shté XTI
Moreover, the £; ;G-action on Z factors through a finite-dimensional quotient H of Lj( Y

and we have a smooth map Shtg’ x1.7, = [H\Z], compare [Laf18, Proposition 2.8].

The following lemma is a global analogue of [AH14, Remark 4.6] and shows in particular,
that the representative of a bound Z over the reflex field is unique.

~ 1
Lemma 3.2.10. Let Z i, and Z3 k, be two closed subschemes of Grg xr1 ;, X x1 X g, and

1 . . . .
Grg x1 1, % x1 X ,, respectively. Then Zy i, and Zs k, are equivalent if and only if Z1 jor =
Zy i for all finite extensions K’ of K containing both K and K.

Proof. Let Zy i, and Z; i, be equivalent and let K" be a common (finite) extension of
K, and K> such that Z; g» = Z g». Let moreover K'/K be another finite extension

.. .. . o B
of K containing both K7 and K». The question if Z; g = Zs g in Grg x1 1, % x1 X/ is

~ T ~1
fpqc-local and satisfied after the fpqc base change along X s ;v — X by assumption.
Note that the flatness of the map follows from the flatness of the normalisation map
Xk gn — Xk Hence, Z) i = Zs i The other direction is clear. O

Remark 3.2.11. Our definition has a couple of subtle differences compared with [AH19,
Definition 3.1.3]. We do not require our bounds to be closed but only locally closed
subschemes of the affine Grassmannian. This allows us to also consider for example
Schubert cells as bounds.

On the other hand, we require the bounds to have a representative over the reflex field.
We do not know if such a representative always exists in this generality, as noted in [AH19,
Remark 3.1.4]. However, this condition is certainly satisfied for bounds given by Schubert
varieties, in which case the reflex field of the bound is the reflex field of the corresponding
cocharacter. Moreover, we use the existence of a representative over the reflex field for
example in the proof of Lemma 3.2.13.

By Lemma 3.2.10, a point £ € (Shtg 1 ;, x x1X%)(S) is bounded by Z if and only if
after the choice of some trivialisation of £ over some fppf-cover 7" — S the induced point
T xx1 X ﬁ(, — Grg x1 g, % X ﬁ(/ factors through Zx+ for some (or equivalently for all)
representative Z -+ of Z. In particular, the notion of bounded shtukas above agrees in this
aspect with the defintion of [AH19].

In our setting, the notion of a shtuka datum (respectively a map of shtuka data) in the
sense of [Brel8, Definitions 3.1 and 3.9] restricts to the following.
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Definition 3.2.12. A shtuka datum (G, Z) is a pair of a smooth affine group scheme
G — X and a bound Z in Grg x1;, x x1 X%, where Xz is the reflex curve of Z. A map of
shtuka data f: (G, Z) — (G', 2') is a map of group schemes f: G — G’ such that the map

Z XXé Xéz/ —> Grgyxljl. XXéXé.Z, ﬁ) Grglyxlyl. XXéXé~Z,
factors through Z’ x xt, X é 2z, where Xz z» = X, i, is the normalisation of the
L .

compositum of the reflex fields of Z and Z’, respectively.

A map of shtuka data f: (G, Z) — (G’, Z’) induces a map on the corresponding moduli
stacks of shtukas

z I z I
for Shtg xr g, % x1 X5 20 — Shtg 1, xx1,Xz.z
by the following lemma that is an analogue of [Brel8, Lemma 3.15].

Lemma 3.2.13. Let f: (G, Z) — (G', 2') be a map of shtuka data. Let
ée (ShtngI’I. XXIXéZ/)(S)
Then f.€ € (Shtg y1 1, ¥ x1 X% 2,)(S) is bounded by Z'.

PTOOf. Let § = ((l’i)z‘el’, (53')3':0’“.,7”, (ng)j:Lm,m, 9) € (ShthIJ. XXIXé.Z/)(S)' LetT —
S be a fppf-cover that trivialises £, | and choose a trivialisation a: &, = Glp .
z zT g
Then (€, ) defines an T-valued point in Grg x1 ;, X xy1 X% 2. As £ is bounded by Z, the
induced point T x y1 XL . — Grg 1y, xx1 X% 5 factors through Z Xx1, XL .
Then the map
T—>T XXé Xé.zl — Grg7XI,I. XXIXé.Z’

factors through Z x x . X i, 2, hence its image under f, liesin Z'x x _, X é » by assumption.
Thus, the map T Xx1, XL . — Grg x1 5, xx1X% 2 factors through 2’ Xx1, XL,
too. O

Note that we used the existence of a representative of the bounds over their respective
reflex fields. We do not know how to prove the lemma without this assumption.

Construction 3.2.14 (Bounds from cocharacters in the generically reductive case). Let us
now construct bounds given by cocharacters in the generically reductive case (compare
Assumption 3.2.2 (2)).
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Let GG be a reductive group over K and let i be a conjugacy class of geometric cocharac-
ters of G with reflex field K,. Let K'/K be a finite separable extension that splits G. We
denote by Gré’;‘( , € Grg,, = Grg xx K' the Schubert variety inside the (classical) affine
Grassmannian for Gx-. The Schubert variety is already defined over the reflex field of
and hence descends to a closed subscheme Gré“ c Grg xg K.

Let now G — X be a smooth affine group scheme with generic fibre Gx = G. By
[RS21], the generic fibre of Beilinson-Drinfeld Grassmannian for G can be identified (non
canonically) with the affine Grassmannian for G, Grg x x x Spec(K) = Grg. We use this
observation to define Gré‘j( as the scheme-theoretic image

Gré‘;( = image (Gré“ — Grg x xXXM)

where we denote by X, = X K, the reflex curve of ;. Note that this definition is indepen-
dent of the choice of the identification of the generic fibre.

Let i = (p)ier be a tuple of conjugacy classes of cocharacters ; of G. We denote
by K, the compositum of all reflex fields of the n; and by X, = X k,- We denote by

<
Grgﬁ( I
under the isomorphism Grg y1 1, |v = (I 1,e; Gro.x) [, where U < X7 is the complement
of all diagonals in X 7.

€ Grg x1q, xx1X é the Zariski closure of the preimage of | [,; (Gré’j( XX, X, ﬁ)

<p

g7XI7I.
is a representative of this bound over X,,. We say that a global G-shtuka
SH <p 7
gjxl’[. g,XIJ. = Shtg’XI?I. ><X'IAXVﬁ

the corresponding moduli stack of global G-shtukas bounded by Gré%( g

By construction, the equivalence class of Gr defines a bound for G with reflex curve

Xﬂ and Gr

<p
g7XI)IO

is bounded by p if it is bounded by Gr and denote by Sht

Lemma 3.2.15. Let G be a reductive group and let f: G — G’ be a map of smooth affine
group schemes with generic fibres G such that f is an isomorphism over a dense open subset

U of X. Let i = (j;)ier be a tuple of conjugacy classes of geometric cocharacters of G. Then
sp

=p . . . ]
— Grg 1 g, that is an isomorphism over U".

. <p
f induces a map f: Grg&,J.

Proof. That f, is defined and an isomorphism over U is clear. That f, extends to a map
<p

g.xi. a4 schematic closure. O

over X! follows by the construction of Gr

Remark 3.2.16. Let us comment on how the bounds constructed above compare to other
notions of bounds given by cocharacters in the literature.
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(1) When G is constant split reductive, our bounds agree with the bounds of [Laf18,
Définition 1.12]. This in particular includes the case of Drinfeld shtukas in [Dri87b],
that means shtukas for G = GL,, and ¢ = ((1,0,...,0),(0,...,0,—1)). In a similar
fashion, the bounds used in the unita;y case in [FYZ21b; FYZ21a] can be realised
in this way.

(2) Already in the split case, there are several other ways to define bounds given by
cocharacters, compare [Var04] and [AH21]. In general, these definitions do not
agree, see for example [Laf18, Remarque 1.8]. The proof of our main Theorem 3.3.8
does not rely on the concrete construction of the bounds, but only on the fact that
the bounds constructed above satisfy Lemma 3.2.15 and the conditions of Theorem
3.3.3.

(3) In the non-split case, [Laf18, § 12.3.1] constructs bounds for parahoric group
schemes G that are given by representations of the L-group of GG. Starting from a
cocharacter p of a split maximal torus 7" of G (defined over some finite extension
of K), we can take the direct sum W of all Galois translates of . We can then

. e < .
(at least in the generic fibre) recover Grg%( 1 ;. @ a component in the base change

Grng,, o xx1X é, where Grgfx 17, denotes the bound given by W from [Laf18].
However, in order to study the geometry of the special fibre of our moduli spaces of
shtukas it seems to be necessary to use the finer bounds.

3.2.2. Local bounds

We define similar bounds for local shtukas. [AH14] define a notion of local boundedness
conditions. However, using their definition the local and global notions are not compatible
in a natural way in general, compare Remark 3.2.22 below. We introduce a variant of
their notion of local bounds that are naturally compatible with the global bounds defined
above.

We start by giving the definition of local shtukas. We continue to use the notation in
the local setting from above. Let £ = F ((¢)) be a local field in characteristic p with ring of
integers O = F [t] and finite residue field F. Let G — O be a smooth affine group scheme.
We denote by LG (respectively L™G) the (positive) loop group of G defined as functors on
the category of F-algebras as

R~ LG(R)=G(R(t)) and R~ LYG(R)=G(R[t]),

respectively. The loop group LG is representable by an ind-group scheme of ind-finite
type over IF, the positive loop group is representable by an affine (infinite dimensional)
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group scheme over F. Recall that the (classical) affine Grassmannian Grg for G is given by
the fpqc-sheafification of the quotient Grg = (LG /L™ G)gyqc. Moreover, using the inclusion
L*G — LG, there is a natural way to associate to a L*G-torsor £ its corresponding
LG-torsor £.

For an F [t]-algebra R we denote by ¢ € R the image of t. We denote by Nilpgy] the
category of F [t]-algebras where ( is nilpotent.

Definition 3.2.17. Let R € Nilppp. A local G-shtuka over R is a pair £ = (ET, )
consisting of a L*G-torsor £ on R and an isomorphism of LG-torsors ¢: c*£ — £.

Instead of defining bounds as certain subschemes in Grg x Spf(F [t]) as in [AH14],
we use the following local variant of Beilinson-Drinfeld affine Grassmannians following
[Ric21] to define local bounds.

Definition 3.2.18. The Beilinson-Drinfeld affine Grassmannian Grg ¢ for G is the functor
on (0-algebras defined by
& a G-torsor on Spec(R [t — (]),
R = (5, Oé) : ~ e a4 .
a: E|p—c¢) = GRr(t—¢) a trivialisation overR ((t — ()

By [Ric21], Grg ¢ is representable by an ind-scheme over O. Moreover, for a smooth,
affine group scheme G — X and a closed point 2 € X we have a canonical isomorphism
Gl’gowoac = GI‘g7X Xx Spec((’)x).

The affine Grassmannian Grg ( carries an action of the positive loop group ,cgg defined
as the functor on O-algebras by

R (L5G)(R) = G(R[t - C]).

Note that the special fibre of Grg ¢ is the classical affine Grassmannian for G, while the
generic fibre of Grg o is the Bgg-affine Grassmannian for G = ;.

In order to define bounded local shtukas, we need to construct points in (the formal
completion of) Grg o from a local shtuka. This is done as follows. Let £ = (£, ¢) be a
local shtuka over R € Nilpg(c]. Let R — R’ be an fppf-cover that trivialises £. As ( € R is
nilpotent by assumption, we have R [t — (] = R [t]. Using the equivalence of L*G-torsors
over R with formal G = G xr[e) SPE(F [t])-torsors over Spf(R [t]) = Spf(R [t — (]) from
[AH14, Proposition 2.4], a trivialisation «: £z —> Gspf( rt—¢)) defines a R'-rational point
in Gr g rpy = Grg rpe %spec(rfe]) SPE(F [t]) given by (0*&, a0 ¢).

Using this version of affine Grassmannians, we define local bounds in the style of [AH14,
Definitions 4.5 and 4.8].
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Definition 3.2.19. Let us fix an algebraic closure k28 of .

(1) Let O € 01,05 be two finite extensions of discrete valuation rings in k28, We call
two locally closed subschemes

Z1 € Grg o X Spec(0) Spec(0y) and Zy < Grg o X Spec(©) Spec(O2)

equivalent if there is a common finite extension 01,0y < O’ of discrete valu-

ation rings in k%8 such that Z; X spec(0;) SPeC(O') = Za Xgpec(0,) SPeC(O’) in
Grg o X Spec(0) Spec((’)').

(2) A local bound is an equivalence class Z of quasi-compact locally closed subschemes
of Grg o such that all representatives are stable under the £},G-action and such that
Z admits a representative over its field of definition (also called its reflex field) as
defined in [AH14, Definition 4.5].

(3) Let Z be a bound in the above sense and let £ = (£, ¢) be a local shtuka over R €
N ilpppep- Let R — R’ be an fppf-cover that trivialises £ and choose a trivialisation «
of £ over R'. We say that £ is bounded by Z if for all representatives Zy of Z over O,
the point in Gr ¢.0(R’) induced by « factors through Zo. As Z is invariant under
the left £, G-action, the definition is independent of the choice of the trivialisation
a.

Remark 3.2.20. The discussion of [AH14, Remarks 4.6, 4.7 and 4.9] (respectively their
global analogues in Lemma 3.2.10 and Remark 3.2.11) also applies in this setting. In
particular, the representative of a bound over its reflex field is unique and it suffices to
check boundedness of a local shtuka for a single representative. By a slight abuse of
notation we may thus identify a bound with its representative over its reflex field. Note
that it is not known if an equivalence class of £;G-stable subschemes in Grg o always
admits a representative over its reflex field.

As in the global case (compare Construction 3.2.14) we define bounds given by cochar-
acters when the generic fibre of G is reductive. When § is parahoric, these bounds coincide
with the global Schubert varieties defined in [Ric16, Definition 2.3].

Definition 3.2.21. Assume that the generic fibre G = G of G is reductive. Let u be a
conjugacy class of geometric cochcaracters of G with reflex field £,,. Let O, be the ring of
integers in k,. Then Gré% is defined to be the scheme-theoretic closure of Gré“ inside

Grg,O X Spec(0) Spec(ou)'

Clearly, Glré‘f9 defines a local bound with reflex ring O,,. Note that when G is constant
split reductive, the bounds defined here may differ from the bound given by x in [HV11,
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Definition 3.5], compare [Zhul7, Remark 2.1.7] and [Laf18, Remark 1.18]. However,
they do agree when 4 is minuscule and G9¢* is simply connected.

Remark 3.2.22. Morally, the difference between bounds defined as (locally) closed sub-
schemes of Grg % Spf(O) (as in [AH14]) and Grg ¢ as defined above is the following. As
noted in [AH14, Example 4.13], the first kind of subschemes naturally gives rise to bounds
along ¢t = t (in the notation of [HV11]), while our bounds give rise to bounds along
t =t — (. In this sense, it seems more natural to define bounds for local shtukas inside
Grg 0, compare [HV11, Remark 3.6]. When G is constant split reductive, the bounds
given by (u,t — ¢) of [HV11] can be represented inside Grg x Spf(®) by [AH14, Example
4.13]. However, this may fail to be the case in general.

3.2.3. Local-global compatibility.

We explain how to construct local bounds from global ones. We recall the global-to-local
functor for shtukas from [AH14, Section 5] and show that our notions of global and local
bounds are compatible in the sense that a global shtuka is bounded if and only if its
corresponding local shtukas are bounded by the associated local bounds. This observation
gives rise to a bounded version of the Serre-Tate Theorem [AH14, Theorem 5.13].

We use the following notation following [AH14, Remark 5.2]. Let y € X be a closed
point. We denote by O, the completed local ring at y, and by m;, < O, and F,, = O, /m,
its maximal ideal with uniformiser w, and residue field, respectively. Let = € X (R) be
a section of X such that « factors through Spf(O,), in other words, the image of the
uniformiser w, in R is nilpotent. Then the m-adic completion of O, ®r, R factors as

0,&r,R=(F,®, R [wl= [] 0&,kR= T[] RI=l.

1<<[Fy: Fy 1<l<[Fy: Fy

The (-th factor is defined by the ideal a; = (a x 1 — 1@ z(a)? : a € x,) in 0,&r, R and
the Frobenius o cyclically permutes the factors.
Remark 3.2.23. We explain how global bounds give rise to local bounds following [AH19,
Proposition 4.3.3]. Let G — X be a smooth affine group scheme and let Z be a global
bound for G. Let us fix a tuple y = (y;)ic; € X! of pairwise distinct closed points in
X. Using the isomorphism Grg;@, 1.l = (I Lie; Grg,x) |u over the complement of all
diagonals U in X', we denote by Z; the image of Z under the projection to the i-th
component. Then Z; € Grg x x x Xz is a quasi-compact locally closed subscheme stable
under the action of £3,G.

Let y, be a closed point of X z lying over y;. We denote by Zy =Zix X Spec(Oy).
Then Z, < Grg,0, Xspec(0,) Spec((‘)yé) is a locally closed subscheme stable under the
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loop group action. In particular, for a tuple of points y' = (y});er of X% lying over y,
we can associate to a global bound Z an I-tuple of equivalence classes of £}G-stable
subschemes (2, ),e 7. Note that it is not clear in general that the equ1valence class of
subschemes defined by Z,, does indeed admit a representative over its reflex ring (which
will in general be dlfferent from 0, )

However, in the generically reductive case and Z = Gro for an I-tuple of conjugacy

XI I
classes of geometric cocharacters of G = G we get Z,, = Grgoy_ 0y, X Spec(0,.,) Spec(Oy)

by construction, so in this case the Z,, do indeed define local bounds.
Remark 3.2.24. More precisely, [AH19, Proposition 4.3.3] construct local bounds in the
sense of [AH14] by further pulling back the global bound to a subscheme in Grg x, Spf(O).

In particular, the local bounds associated to Gr, in the split reductive case are

G, XI A
Gra’“ xr, Spf(O) rather than Grgg;i 0, » compare Remark 3.2.22.

Global-to-local functor

We explain how to associate local shtukas to global shtukas following [AH14, Section 5].

Let us fix a tuple y = (y;)ser of pairwise distinct closed points of X. Let £ = ((;)ie1, &, 9) €
Shté 1 (). By the observation above, the y;-adic completion of £ decomposes as

gQXR Spf((’)yl.@ﬂqu) = H ESEXR Spf(R Hwyi]])7
1<y, : Tyl

and each component is a formal gy = G xx Spf(O,,)-torsor over R. Hence, é; =
(EXx,V (ag), pe8)) is a local Go,,-shtuka over R.

Definition 3.2.25. The global-to-local functor associates to a global shtuka £ € Sht,
a tuple of local G,,-shtukas for i € I given by

L (R)

—

Then, 5 is called the local shtuka of £ at y;.

Remark 3.2.26. In a similar fashion, for a closed point y of X we can associate to a global
shtuka € = ((;), (§5), (v;),0) € Shtg xr 1, [(x\fyy)r (1) With characteristic sections away

from y an étale local shtuka at y by [AH14, Remark 5.6] as follows. We denote by éy =
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Resy, /r,G0,- Then G, is a smooth affine group scheme over F, [w,]. The étale local G-
shtuka associated to £ is then given by Ey = (gy, ©) with Ey = Resy, /r, (Smj(\R((’)y ®]Fq R))
and o = @, 0...0pg060. Note that P , is called €étale as ¢ is an isomorphism by assumption.

The global-to-local functor is compatible with our notion of bounds in the following
sense. Let us fix a global bound Z for G and a tuple of closed points ' = (¥;);e;c x1 such

that y/ lies over y;. We denote by Shtéx, = Shtg x1 x x1 SPf(Oy ).
Proposition 3.2.27. Assume that the associated local equivalence classes Z,; constructed in

Remark 3.2.23 are local bounds. A global shtuka £ € Shtg 1 (R) is bounded by Z if and

only if for all i € I its associated local shtuka §Ay1 at y; is bounded by Zy.

Proof. Let us fix an fppf-cover R* — R and a trivialisation a: £|; =6 lp . As
T p T pr

the (y;);er were assumed to be pairwise distinct, we have f‘gR, = Uies r Moreover,

by [AH14, Lemma 5.3] we have f% w = V(ap). By construction, the Ziﬁduced point
(Err, @) € Grg x1(R') factors through Z if and only if the restriction of a to I';, , fac-
tors through Z,, for all i € I, or equivalently the corresponding point R XOzy; Oy —
GIg,0,, *spec(0,,) SPec(Oy,) factors through Z,,. But this is the case if and only if the
local shtuka £, at y; is bounded by Z,, by definition. O

Remark 3.2.28. Let y = (yi)ier be a tuple of pairwise distinct closed points of X. Let
(Zi)ier be a tuple of local bounds at y. We denote by O(z,),_, = @ielozi. As in [AH19,
Definition 4.3.2], we say a global shtuka £ € Shté X1 XSpf(0,) Spf(O(z,),.,) is bounded
by (Z;)ier if its associated local shtuka at y; is bounded by Z; for all i € I. When the
local bounds come from a global bound, the previous proposition shows that this notion
of local boundedness conditions agrees with the global one. We do not explore these
local boundedness conditions for global shtukas further here as the bounds we are later
interested in, namely the ones given by cocharacters, arise from global bounds.

The global-to-local functor also gives rise to a Serre-Tate theorem relating the de-
formation theory of global shtukas with the deformation theory of their associated lo-
cal shtukas, compare [AH14, Theorem 5.10]. Let S = Spec(R) € Nilpo, and let
i: S = Spec(R/I) — S be a closed subscheme defined by a nilpotent ideals I. Let
Ee Shts”)% ;(S). We denote by Defg (S) the category of bounded deformations of £ to S,
in other words, the category of pairs (&, 3: i*€ — £) where £ € Shté}% ;(S) and § is an

isomorphism of G-shtukas over S.
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Similarly, for a local G,,-shtuka € bounded by Z,, we define Def? i (S) as the category
of bounded deformations of £ to S, that is, the category of pairs (£ ,75: i*E - £) where £
is a local G,,-shtuka on S bounded by Z,, and /3 is an isomorphism of local G,,-shtukas
over S.

Z7y Yl

Corollary 3.2.29 (Bounded Serre-Tate Theorem for shutkas). Let £ € Sht; 1(S). The

restriction of the global-to-local functor
(“)y: Deff () = [ [Def2(S),  (£.8) > (£, By er
i€l —Yi
is an equivalence of categories.

Proof. This follows directly from the unbounded case in [AH14, Theorem 5.10.] together
with Proposition 3.2.27 O

3.3. Level maps and integral models with deep Bruhat-Tits level

We construct integral models for moduli spaces of shtukas with deep Bruhat-Tits level
structures and show that these integral models admit proper, surjective and generically
étale level maps. In order to do so, we first study the morphism on shtuka spaces induced
by a generic isomorphism of group schemes extending a result of [Brel8].

3.3.1. Functoriality of shtuka spaces under generic isomorphisms

We study functoriality of shtuka spaces under homomorphisms of group schemes that are
generic isomorphisms. We prove an analogue of [Brel8, Theorem 3.20] in our setting of
shtukas with global bounds. In particular, we get the result on the whole curve and need
not restrict the legs to a formal neighbourhood of fixed sections as in [Bre18]. Moreover,
we show that the level maps in our setting are generically finite étale, which is not part of
[Brel8]. This already shows that we have nice level maps in the parahoric case.

Remark 3.3.1. Let us first note the following functoriality properties of the affine Grass-
mannian in this setting.

(1) Let f: G — G’ be a homomorphism of group schemes over X such that f is an
isomorphism over a dense open subset U € X. The induced map

fr Grg xrp, = Grgrxip,

is then an isomorphism over U’ using the moduli description from Remark 3.2.4.
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(2) In the Bruhat-Tits case (compare Assumption 3.2.2 (3)) it follows that the map

pa«: Grg, x1. 1, — liLnGrgf,XI,I.
F<Q

is an open immersion by Theorem 3.1.13 and an isomorphism over (X\{z(})’ using
the previous observation.

(3) Moreover, using Lemma 3.2.15 we obtain a map

<p .
POt GrgQ,X,J. — lim Gr

f<Q

<u
gfvxlvl'

that factors as a closed immersion followed by an open immersion

<p

<p u u
Orgx1,1. = CTon.x0 10 Xim_ arg o ,, UM GT G X1,

— lim Gr
. <«—
f<Q

and is hence locally closed immersion and an isomorphism over (X\{zo})’.
We need the following lemma on twisted flag varieties in the local setting.

Lemma 3.3.2. Let k = F ((t)) be the field of formal Laurent series over an arbitrary field F
and let o = F [t] the subring of formal power series. Let G be a smooth affine group scheme
over k and let G and G’ be two smooth integral models of G with geometrically connected
fibres. Let f: G — G' be a homomorphism of o-group schemes that is the identity on G over
k.

(1) The corresponding twisted flag variety LTG'/ LG is representable by a smooth and
separated scheme of finite type over F. If I is finite or separably closed, then

(L*G'/L7G) (F) = G'(0)/G (o).

(2) Assume that T is finite. We equip G(k) with the analytic topology induced by the
natural topology on k (note that k is locally compact in this case). Then G(o) is a
compact open subgroup of G'(0). In particular, the quotient G'(0)/G (o) is discrete and
finite.

(3) Let S be an F-scheme. Giving a LT G-torsor over S is equivalent to giving a L™ G'-torsor
&' over S together with an isomorphism &' /£L1G = £1G'/LTG.

Note that giving an isomorphism &£’ /£tG = £1G'/£1G in (3) is also clearly equivalent
to giving a section in (£'/L£1G) (9).
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Proof.

(2)

(3)

(1) By the argument in the proof of [Bre18, Lemma 3.17], the quotient stack
L*TG'/L*G is representable by a separated scheme of finite type over F that is
moreover a closed subscheme of the affine Grassmannian Grg. As both £7G and
LTG" are formally smooth over F, the quotient L*G’/L*G is hence formally smooth
as well.

For the second claim, it suffices to show that H'(F, LT G) is trivial by the moduli
description of the quotient stack. But this is shown in the proof of [Ric20, Corollary
3.22].

Clearly, both G(0) and G'(0) are compact open subgroups of G(k) by construction.
The existence of the map f then means that G(o) is a subgroup of G’(0). The assertion
on the quotient then directly follows from basic facts from topology.

Given a £ G-torsor & on S, its associated £ G'-torsor is given by € x£79 £¢’. The
map on sections given by (e, g) — ¢ then induces an isomorphism

E/Lte S g /Lte.

This construction is an equivalence.
O

Theorem 3.3.3. Let G and G’ be two smooth affine group schemes over X with geometrically
connected fibres. Let f: (G,Z) — (G', Z') be a map of shtuka data such that the map
f: G — G is an isomorphism over U = X\{y1,...,yn} for a finite set of closed points

{yl,...

€Y

Y} of X.
The induced map

. QheZ I 2/ I
fu: Shtg xr g, Xx1 Xz 20— Shtg) xrj % x1 Xz 2

is schematic, separated and of finite type.

(2) Assume that G is a parahoric Bruhat-Tits group scheme and that Z < Grg x1 j, X x1 X%

is a closed subscheme. Then the map f, is moreover proper.

(3) Assume that Z X X1 Xz 21> Z X X1 Xz z is an isomorphism over (U x x XZ,Z/)I.

Then the map f, is étale locally representable by the constant scheme

[19'(0,)/6(0,,).
=1

In particular, f, is finite étale and surjective over (U xx Xz z')[ .
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(4) Under the assumptions of (2) and (3) assume additionally that Z’ is the schematic
closure of Z' |(UXX PNy in Grg, X1, 1.0 Then f, is surjective.

Remark 3.3.4. The first two statements are direct analogues of the corresponding state-
ments in [Brel8, Theorem 3.20], while there is no analogue of the third assertion in
[Bre18, Theorem 3.20]. In order to get surjectivity of the map f,, in [Bre18] it is assumed
that the bound Z arises as the base change of Z’ under the map f, on affine Grassman-
nians. This assumption does not seem adequate in our setting, in particular, it is not
satisfied for the bounds given by cocharacters in the Bruhat-Tits case. We thus replace the
assumption by the condition that the map on bounds is a generic isomorphism and that
the bounds arise as schematic closures from their generic part, both of which are satisfied
in our setting. Note that when Z arises as a base change, the map Z — Z’ is clearly an
isomorphism over U,

Note moreover that a similar statement also holds for moduli spaces of shtukas with
local boundedness conditions as in Remark 3.2.28. In fact, the proof of [Brel8] for (1)
and (2) directly translates to this setting.

Proof. (1) We proceed as in the proof of [Brel8, Theorem 3.20]. We consider the

ey

& = ((x4)ier, (gjl-)j:07...7m, (@j)j:l,...,m,e) € (Shtgl’XIJ. XXé/Xé‘ZI> (S).

We claim that the induced map

m
zZ 1
S X I (Shtg,XI,I. XXéXZ.Z/) — S XH;”Zl Bung/ HBung

!
ShtZ, ;  x.r XL _,
g xlp, "xL,"zz j=1

is a quasi-compact locally closed immersion. This shows the assertion (1) using that
Bung — Bung is schematic and quasi-projective by [Brel8, Proposition 3.18].

In order to show the claim, let us fix a point

(s, (8j)j:1,A..ma (@/}j)j:l,“.,m) € (S XH;_"/ZI Bung, H Bung)(T),
j=1

where s: T'— S is a map of schemes, the £; are G-bundles and ¢;: s*&’ = [ s
an isomorphism of G’-bundles over Xr. As in the proof of [Bre18, Theorem 3.20],

there is at most one 7T-valued point (s, £, 1) of S x szl Shtg x1,7, Mmapping to
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(2)

(3

(4)

(s,(&)j=1,..ms (¥j)j=1,...m) as the maps ¢; of £ are already uniquely determined
over an open dense subset by the 903-.

It remains to check that the locus where such an extension exists is closed in 7. Let

D = X\U be the effective Cartier divisor in X given by y. Let 1 < j < m. The map
.Y, / - e £

LN gjfl |XT\Uite Py, - €j|XT\U¢e1j Lz, defines a map @ : g]—1|XT\(DUUieI]~)F£j -

Ejlxo\( DU Ta)- Trivialising both &;_; and £ over Du ij defines an element
K1 J =3 =2

p; €G (DO ul'y, ). By the argument that the positive loop group is a closed subscheme

of the loop group, the locus where ¢; can be extended to D\Fg is closed. Finally, the
locus where this is bounded by Z is reprsentable by a quasi-compact immmersion.

This follows from the argument in (1) as in the parahoric case the map Bung — Bung:
is projective by [Brel18, Proposition 3.18].

It suffices to show the first claim that the map f, is étale locally representable by the
constant scheme [ [;_, G'(O,,)/G(O,,). We follow the proof of [Var04, Proposition
2.16]. Let

£ = (i), (). (¢}),0) € St xr 1, lus_ ().

For / =1,...,n, we denote by é’\y; = (5’ e ) the associated étale local shtuka of
&' at yy as defined in Remark 3.2.26. The fibre product

I __
ST =5 %o gz

Z
Sht I I
¢! x1 Is |Ué Z”f* G, X, 1. |Uz,Z'

is then given by the set of tuples (E;I\y;) ¢=1,...n of étale local @;y; -shtukas such that
I *gjy; = gy; As the claim is étale-local on S, we may assume that all gl y, are trivial
E*% -torsors. By Lemma 3.3.2 (3), the fibre product S’ is then representable by
the scheme of Frobenius fixed points of [ [,_; % / L‘*@;y; , which is given by the
constant scheme [ [;_, (£+gby[ / £+goy£) (F,) by [Var04, Lemma 3.3]. By Lemma

3.3.2 (1), this scheme can be identified with [ [,_, ¢’(O,,)/G(0O,,), and by Lemma
3.3.2 (2) it is finite over F,.

Let us fix a point s € Shtg," xr.1,- 1f s lies over U, it is in the image of Shtg," XT.1.
by (3). Let us thus assume that s maps to X/\U. By the local model theorem
(compare Remark 3.2.9), we have a smooth map Shtg,/, xt.7, = [H\Z'], where H
is a finite-dimensional quotient of E; ;G. By assumption on Z’, the image of s in
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[#\Z'] has a generalisation s’ over U. As the local model map is smooth, s’ lifts to a
generalisation s” of s in Shtg,: x1.1,- As [« is generically surjective by (3), there is a
point t € Shtg X1 7, Mmapping to s". As f, is proper by (2), specialisations lift along
f+. Hence, s is in the image of f,.

O

Let us also state the result in the generically reductive case with bounds given by
cocharacters.

Corollary 3.3.5. Let G be a reductive group over K and let f: G — G’ be a map of two
smooth affine models of G that is an isomorphism over some dense open subset U of X. Let
i = (u;)ier be an I-tuple of conjugacy classes of cocharacters for G. The induced map

<p

<u
fa: Shtg* — Shtg,jle.

7X17]'

is schematic, separated and of finite type. Moreover, it is finite étale and surjective over
(U xx X,,)!. When G is a parahoric Bruhat-Tits group scheme, f, is proper and surjective.

Proof. The bounds given by x for G and G’ clearly satisfy the conditions of Theorem
3.3.3. O

3.3.2. Moduli spaces of shtukas with deep Bruhat-Tits level structure

In this section, we define the integral model of the moduli space of shtukas with deep
Bruhat-Tits level structure as the schematic image of the moduli space of shtukas for the
Bruhat-Tits group scheme inside the limit of all the corresponding spaces for parahoric
level.

Proposition 3.3.6. In the situation of Assumption 3.2.2 (3), the map

Sp
Ga,X 1,1,

<u

PQ,x Sht G X1 I,

— lim Sht
am
f<

is schematic and representable by a quasi-compact locally closed immersion. Moreover, pq .

is an open and closed immersion over (X\zo)!. When Q is (the closure of) a facet, pq . is an
isomorphism.

Proof. The assertion in the case that (2 is a facet is clear. By Corollary 3.3.5 and Lemma
A.0.2, the map is schematic, separated and of finite type. By Theorem 3.1.13, the
corresponding map on the unbounded moduli stacks of shtukas is an open immersion.
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Hence, pq . is certainly a locally closed immersion as being bounded by 1 is a closed
condition. B
Over (X\z¢)!, an element of Shtg,, x1 1, is bounded by p if and only if its image under
p;,0,« for one (or equivalently all) facet f < Q is bounded by p by Lemma 3.2.15. Thus,
pa.« is an open immersion over (X\z()!. Moreover, the map pq . is finite away from z
by Lemma A.0.2, hence also a closed immersion.
0

Definition 3.3.7. The integral model Shtg XTI
Ga-level is defined to be the schematic image in ‘the sense of [EG21] of the map

of the moduli space of shtukas with

Shtg XTI — lim ShtgﬁX, I
<Q
By Proposition 3.3.6, we have Sht XTI T Sht XTI in the parahoric case. Moreover,
the inclusion Shtg X~ Shtg XTI is an 1somorphlsm away from xy by Proposition

3.3.6 together with the fact that the schematic closure commutes with flat base change.

— Sht for all facets f < €.

By construction, we have level maps p; o : Shtg X1 3 Gr XTI

In particular, for Q' < © we obtain a map pg She” that

Go.X1 I hmf o Sh

<p
tg X7,

factors through Sht 11, by construction.

"X
Theorem 3.3.8. Let 2, be two bounded connected subsets of an appartment in the
Bruhat-Tits building of G, such that Q' < Q. Then, the level map

_ s STISH

pQ/7Q : Shth,XI,[. s Shth/,XI,I.
is schematic, proper; surjective and finite étale away from x,.

Proof. As a first step, we show that pgy ¢, is schematic. By Lemmas A.0.1 and A.0.2, the
map

lim Sht XTI — lim Sht
f<Q f’<Q’

XI e

is schematic. The claim for p¢y (, then follows from Lemma A.0.3.

That the map is finite étale away from x follows from the fact that the map Sht XTI

Shtg& x7 1, is an isomorphism away from z, by the observation above together with
Corollary 3.3.5.
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TSM . <p . . . . ..
Moreover, the map Shtg_, xr;, — @f< o Shtgf’ X1, 182 closed immersion by definition.

Thus, by Lemma A.0.2, it suffices to consider the level maps

o<
ShthI;XIJ. — Shtéfuxl I

- . e ,
for facets § < 2 to show the properness. Similarly, by construction of Shtg;; , it suffices to
show the claim for the projections

: <p <p
gSthﬁ xir Shtgh XTI,

But for the projections the claim follows from Lemma A.0.1. The surjectivity follows as in
the parahoric case in the proof of Theorem 3.3.3. O

3.4. Newton stratification

We recall the Newton stratification on stacks of global shtukas and define a Newton
stratification on our integral models with deep level. We show that the expected closure
relations of Newton strata are satisfied in the hyperspecial case.

Let £ =~ [F((t)) be a local field in characteristic p with ring of integers O =~ F [¢] and
finite residue field F. We denote by k = k*¢P a fixed separable closure and by k =~ F2 ((£))
the completion of the maximal unramified extension of k. Let G/k be a reductive group
and let us fix T G be a maximal torus defined over k. As G}, = G x, k is quasi-split by a
theorem of Steinberg, we can choose a Borel B < G containing T}. We denote by X, (7
its group of geometric cocharacters and by 71 (G) the algebraic fundamental group of G
given by the quotient of the cocharacter lattice by the coroot lattice.

We denote by B(G) the set of o-conjugacy classes in G(k) = LG(F?). By [Kot85;
Kot97; RR96], the elements of B(G) are classified by two invariants: the Kottwitz map
denoted by

t: B(G) = m1(G)galgi/k)

and the Newton map denoted by
v: B(G) — (Hom(]D)E’G%)/G(E))Gal(k/k)7

where D denotes the pro-torus with character group Q and G(k) acts by conjugation. Note
that we can identify

= 2 \Gal(k/k
(Hom(Dy, G) /G (k) /D = X, (1) 5 = X (T)E o
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with the set of rational dominant (with respect to the choice of B) Galois-invariant
cocharacters, and that x(b) = v(b) in 71(G)g,gai(k/k)-

The choice of Borel determines a set of simple positive roots and consequently defines
the dominance order on X, (T')g by 11 < po if p1g — g1 is a Q-linear combination of positive
simple roots with non-negative coefficients. Via x and v the dominance order induces a
partial order on B(G) by b1 < be if and only if x(b1) = x(b2) and v(b1) < v(b2).

Let G — Spec(O) be a smooth affine group scheme such that G, = G. Note that for
an algebraically closed extension ¢ of F the set of o-conjugacy classes in LG/(¢) does not
depend on the choice of ¢/ by [RR96, Lemma 1.3]. It classifies quasi-isogeny classes of
local G-shtukas by associating to (L™ G, b) the class [b] € B(G). For a local G-shtuka &£ over
S = Spec(R) and a point s € S we denote by [£,] € B(G) the corresponding element.
This does not depend on the choice of an algebraic closure of the residue field at s.

Let us shift perspective back to the global setting again and consider a smooth affine
group scheme G — X with generic fibre G = G a reductive group. Let us moreover fix a
tuple y = (y;):er of pairwise distinct closed points of X. Let us fix a bound Z and points

. Zy
Y = (y})ier € X% lying over y. We denote by Shté X1F, = Shtg’ )% 1 XSpf(0,) Spec(F) the
special fibre of the moduli space of shtukas at y.

Definition 3.4.1 ([Brel8, Definition 4.12]). Let ¢ be an algebraically closed extension of
Fy . The global-to-local functor induces maps

0G,y; 0 : Shtg,XI,Fy, (6) = B(Gy,)

£ [g,]

foralli e I and
5g,g,€ = H 597%76: Shtg,XI,IE‘y/ (E) - H B(Gyz)
1€l - i€l
Let b = (bi)ier € [ [;e; B(Gy,). The locus in ShtéXIJF , Where dg,, maps to b is locally

closed by [HV11, Theorem 7.11], comngire also [RR96]. The reduced substack on this

locally closed subset is denoted by Shtg 1, and called the Newton stratum associated
) ) Q’
to b.

The Newton map is compatible with changing the group scheme in the following sense.

Lemma 3.4.2 (compare [Brel8, Section 5.2]). Let G/ K be a reductive group and let G and
G’ be two smooth affine models of G over X. Let f: (G, Z) — (G', Z’) be a map of shtuka
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data such that f: G — G’ is given by the identity on G in the generic fibre. Recall that f
induces a map
f* : Shtg,Xl,I. XXéXé.Z’ — Shtg’,Xl,I. XXé,XzI'Z.Z"

Then
59’,yof* = 0g,y

Proof. The proof of [Brel8, Section 5.2] carries over to this situation. O

Let us now consider the Bruhat-Tits case, compare Assumption 3.2.2 (3). Thus, let 2 =
cl(€2) be a subset of an appartment of the Bruhat-Tits building of G, for a fixed closed
point xy of X. Let G, be the corresponding Bruhat-Tits group scheme. Let p = (14;)ier
be a conjugacy class of geometric cocharacters of G. Let moreover y' = (y;) be a tuple of

closed points of X, lying over y. In order to define a Newton stratification on Sht 0 X1

we note that by construction and by the previous lemma, we have that the map
\/ny \/J’
(5gfy o pya: Shtg X1 Fy - Shtg xI F, — HB(G%)
i€l

does not depend on the choice of the facet f < 2. Hence, we obtain a well-defined map

5991/ Sht\#xlﬁr HHB vi)

el

Let b = (bi)ier € [ ;e B(Gy,). The locus in Shtg XIF, where dg,, , maps to b is again

locally closed by the result in the parahoric case together with Lemma 3.4.2.
Definition 3.4.3. Let b = (b;)ier € | [;c; B(Gy;). The Newton stratum in Shtg XTIy
associated to b is the reduced locally closed substack on the set of points where 5g,g maps

ST oSM,b

to b. It is denoted by Shtg XTEy

We have the obvious analogue of Lemma 3.4.2 for deep level, in other words, the
Newton stratification for deep levels is still compatible with the level maps.

Corollary 3.4.4. Let Q' < Q) be two connected bounded subsets of the Bruhat-Tits building.
Then ) )

0Geyy © Por .o = 0Ga.y-
;u},F N Sht;M;I]F # Jonlyif b <b

In particular, Sht
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Proof. This follows from the construction and Lemma 3.4.2. The second statement then
follows directly from the parahoric case in [Bre18, Proposition 4.11, Section 5], compare
also [HV11, Theorem 7.11]. O

We conclude by showing the strong stratification property of the Newton stratification
in the hyperspecial case.

Theorem 3.4.5. Let G — X be a parahoric group scheme that is hyperspecial at y; for all
i€ l. Let pu = (ui)ier be a conjugacy class of geometric cocharacters of G. Then the Newton
stratification at y' satisfies the strong stratification property in the sense that

<psb <u7
Sht GXTE, USh X5,
YT

forallbe [[,.; B(Gy,).

Proof. Let b,b' € [, ( ) with ' < b. It suffices to show that every closed point

s=¢&¢€ Sht;;(b, P, ( ) lies in the closure of Sht\'} it B Let R be the O, -algebra

<p,b
G.XIF,
if and only if the same is true in the Newton stratification on Spec R. By the bounded
Serre-Tate Theorem (Corollary 3.2.29) the universal deformation ring factors as Spec R =
[ I,e; Spec R;, where R; is the universal deformation ring of the corresponding bounded
local shtuka at y;. Under this isomorphism we have Spec(R), = [ [,.; Spec(R;)s,, where
we denote by Spec(R;);, the corresponding Newton strata in Spec R; for i € I. On Spec R;
the closure properties hold by [Viel3, Theorem 2, Lemma 21 (2)], and thus they hold on
Spec R. This proves the assertion. O

pro-representing the deformation functor of s. Then s lies in the closure of Sht
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A. Some lemmata on algebraic stacks

We collect some results on finite connected limits of algebraic stacks we use below for
which we could not find a reference in the literature.

In this section, I will always denote a connected index category and (X;);e; denotes a
diagram over I of (fppf-) Artin stacks over some base scheme S.

Lemma A.0.1. Assume that all algebraic stacks X; have a diagonal that is schematic. Let all
transition maps in (X;);e; be schematic. Then the projections liLnie s X; — X are schematic
forall jelI.

Moreover; assume that all X; are separated over S and that all transition maps have
a property P of morphisms of schemes that is stable under base change and composition
and is smooth local on the target such that all proper maps have P. Then the projections
liLnieI X; — X have property P for all j € I.

Proof. It suffices to show the claim for fibre products and equalisers. For fibre products
this is clear. Let us thus consider the equaliser diagram

X T A
g

The equaliser of this diagram is given by the fibre product X = X5 X A x, x s x5,(f,9) X1-

Thus, the projection X — A arises as the base change of the diagonal of A} and is thus

schematic in the first case and moreover proper in the second case (as we assumed X to

be separated). The projection X — X5 has the required properties as it is the composition
X - X — X, ]

Lemma A.0.2. Let (f;: X — Xj)ier be a cone over the diagram (X;)es such that all maps
fi are schematic. Then the limit f: X — yan‘e ; X; is schematic as well.

Assume moreover that all f; are separated and have a property P of morphisms of schemes
that is stable under base change and composition and is smooth local on the target such that
all closed immersions have P. Then f has P.
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Proof. Let Let T' be an S-scheme. Let us fix a map 7' — lim _ A&;. As different limits
commute, we get that
T XI}I—nieIXi X = lLH(T X x; X),
el

which is representable by a scheme by assumption. For the second part, let us denote by
T; =T xx, X. Then T; is a separated 7T-scheme by assumption. As I is connected, we
may take the limit on the right hand side in the category of T-schemes (as opposed to the
category of S-schemes). We represent the limit as an equaliser between products

im T =eq([Tic; i — 2 [ies 1)

where the products are taken in the category of T-schemes. As all 7; are separated over T',
the inclusion of liLnie I T; < [ [,e; Ti is a closed immersion. Moreover, as all 7; — 7" have
property P, so does their product. Hence, lim . 7; — T has property P. O

Lemma A.0.3. Let f: X — X’ be a schematic map of algebraic stacks and let Y < X and
V' < X' be two closed substacks such that f|y factors through )'. Then fl|y: Y — V' is
schematic.

Proof. Let S be a scheme and let us fix a map y': S — )'. As f is schematic, the fibre
product T' = S x,, xv r ) is representable by a scheme. Then T' = § x5 V. O
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