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Abstract

We construct integral models for moduli spaces of shtukas with deep Bruhat-Tits level
structures. In the Drinfeld case, we define Drinfeld level structures for Drinfeld shtukas of
any rank and show that their moduli spaces are regular and admit finite flat level maps.
In particular, the moduli space of Drinfeld shtukas with Drinfeld Γ0(p

n)-level structures
provides a good integral model and a relative compactification of the moduli space of
shtukas with naive Γ0(p

n)-level defined using shtukas for dilated group schemes.
For general reductive groups, we embed the moduli space of global shtukas for the deep

Bruhat-Tits group scheme into the limit of the moduli spaces of shtukas for all associated
parahoric group schemes. We define the integral model of the moduli space of shtukas
with deep Bruhat-Tits level as the schematic image of this map and show that the integral
models defined in this way admit proper, surjective and generically étale level maps as well
as a natural Newton stratification. In the Drinfeld case, this general construction of integral
models recovers the moduli space of Drinfeld shtukas with Drinfeld level structures.
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Zusammenfassung

Wir konstruieren ganzzahlige Modelle von Modulräumen von globalen Shtukas mit tie-
fen Bruhat-Tits Levelstrukturen. Im Drinfeld-Fall definieren wir Drinfeld Levelstrukturen
für Drinfeld Shtukas von beliebigem Rang. Wir zeigen die Regularität der zugehörigen
Modulräume sowie dass die Levelabbildungen endlich flach sind. Insbesondere liefert der
Modulraum von Drinfeld Shtukas mit Drinfeld Γ0(p

n)-Levelstrukturen ein gutes ganzzah-
liges Modell und eine relative Kompaktifizierung des Modulraums von Shtukas mit naiven
Γ0(p

n)-Levelstrukturen definiert mithilfe von nicht konstanten Gruppenschemata.
Im Fall allgemeiner reduktiver Gruppen betten wir den Modulraum von globalen Shtukas

für ein tiefes Bruhat-Tits Gruppenschema in den Limes seiner zugehörigen Modulräume
von Shtukas mit parahorischem Level ein. Wir definieren unser ganzzahliges Modell für
den Modulraum von Shtukas mit tiefem Level als das schematheoretische Bild dieser Ab-
bildung und zeigen, dass die in dieser Weise definierten ganzzahligen Modelle eigentliche,
surjektive und generisch étale Levelabbildungen genau wie eine natürliche Newtonstratifi-
zierung besitzen. Im Drinfeld-Fall stimmt das allgemein definierte ganzzahlige Modell mit
dem Modulraum von Drinfeldmoduln mit Drinfeldlevelstrukturen überein.
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1. Introduction

Moduli spaces of (global) shtukas serve as function field analogues of Shimura varieties.
They were first introduced in [Dri87b] for GLn and later generalised to arbitrary split
reductive groups [Var04] and even flat affine group schemes of finite type in [AH21]. They
are used to great succes in establishing a Langlands correspondence over function fields
in [Dri87a] for GL2, [Laf02] for GLn and [Laf18] for arbitrary reductive groups. While a
lot of progress has been made in understanding the geometry of moduli spaces of shtukas
for general reductive groups with parahoric level, compare for example [AH14], [AH19],
[Bre18], [YZ19] and [Zhu14], little is known for deeper level structures. The goal of
this work is to construct good integral models of moduli spaces of shtukas with deep
Bruhat-Tits level structures for general reductive groups that generalise the parahoric case,
and to give an explicit moduli description of these integral models in the Drinfeld case
(that means GLr-shtukas for some fixed r ¥ 1 with two legs bounded by the minuscule
cocharacters (0, . . . , 0,�1) and (1, 0, . . . , 0)) with Γ0(p

n)-level structure. Let us explain
the construction in more detail.

Let X be a smooth, projective and geometrically connected curve over a finite field Fq.
Let us fix an Fq-rational point8 of X and let us denote X 1 = Xzt8u. In this introduction,
we focus on the case of Drinfeld shtukas of rank 2. Roughly speaking, a Drinfeld shtuka
of rank 2 is a vector bundle of rank 2 on X together with a rational isomorphism to its
Frobenius twist. More precisely, a Drinfeld shtuka of rank 2 (with pole fixed at 8) over an
Fq-scheme S is given by the data E = (x, E , ϕ), where

• x P X 1(S) is the characteristic section (also called leg or paw),

• E is a rank r vector bundle on XS and

• ϕ : σ�E |XSz(ΓxYΓ8)
�
ÝÑ E |XSz(ΓxYΓ8) is an isomorphism of OXS -modules away from

the graphs Γx of x and Γ8 of 8, such that ϕ extends to a map ϕ : σ�E |X 1 Ñ E |X 1

with coker(ϕ) supported on Γx and invertible on its support, and ϕ�1 extends to a
map ϕ�1 : E |XzΓx Ñ σ�E |XzΓx with coker(ϕ�1) supported on Γ8 and invertible on
its support.
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In this sense, one can think of ϕ as having a zero of order 1 at x and a pole of order 1 at8.
We denote by Sht2 the stack of Drinfeld shtukas of rank 2, it is a Deligne-Mumford stack
locally of finite type over Fq. The projection to the characteristic section defines a map
Sht2 Ñ X 1, which is smooth of relative dimension 2. Drinfeld shtukas in this sense are a
generalisation of Drinfeld modules (compare Proposition 2.2.3 for a precise statement).
Moduli spaces of rank 2 Drinfeld modules can be thought of as a function field analogue
of the moduli space of elliptic curves. In this sense, Sht2 is a function field analogue of
the modular curve.
As in the case of elliptic curves, we want to consider Γ0(p

n)-level structures. Let
us explain what this means. Let us fix a Fq-rational point 0 of X and denote by O0

(respectively p = p0) the completion of the local ring of X at 0 (respectively its maximal
ideal). We denote for n P N by Dn = n[0] � X the effective Cartier divisor in X defined
by (multiples of) the point 0. Then we have Dn = Spec(O0/p

n). For a Drinfeld shtuka
E P Shtr(S) over a (Fq-)scheme S, we denote by E |Dn,S its pullback to Dn,S . A naive
Γ0(p

n)-level structure on a rank 2 shtuka E is given by a quotient E ↠ L of ODn,S -modules
such that L is finite locally free of rank 1 on ODn,S and such that ϕ descends to a map
σ�L Ñ L. By the analogy with the modular curve, in the fibre of the moduli space of
shtukas with Γ0(p

n)-level structures over 0 we should expect to find n+ 1 components
intersecting at supersingular points. However, it can be shown that in the non-parahoric
case (in other words if n ¥ 2) the moduli space of Drinfeld shtukas with naive level
structures as above only has two components which moreover do not intersect in its fibre
over 0. In particular, its supersingular points are missing (compare Remark 2.1.20).

The reduction modulo p of modular curves with Γ1- and Γ0-level structures was studied
by [DR73] using a normalisation procedure. [KM85] gave an explicit moduli description
of an integral model using Drinfeld level structures. This notion goes back to [Dri76], who
first introduced such level structure for Drinfeld modules. The analogy to the modular
curve suggests a strategy to construct good integral models in our shtuka setting, in other
words, to define a good notion of level structure that also behaves as desired at a place of
bad reduction: to use Drinfeld level structures.
In order to define Drinfeld level structures for shtukas, we associate to a Drinfeld

shtuka its scheme of pn-torsion points E [pn]. This was essentially constructed in [Dri87b]
and shares similar properties with the scheme of pn-torsion points of a Drinfeld module
(respectively the scheme of pn-torsion points of an elliptic curve). It is a finite locally free
O0/p

n-module scheme of rank q2 over S. Moreover, we show that étale locally on S we
find an embedding of E [pn] as a Cartier divisor into A1

S by adapting a similar result for the
pn-torsion of one-dimensional p-divisible groups of [Fri19] (compare Proposition 2.2.13
and Remark 2.2.14).

This allows us to define Drinfeld Γ0(p
n)-level structures on Drinfeld shtukas as follows.
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Definition 1.0.1 (compare Definition 2.4.2 for general rank). A (Drinfeld-) Γ0(p
n)-level

structure on a rank 2 shtuka E is a finite locally free closed subscheme H � E [pn] of
rank qn that admits a generator fppf-locally on S, that means an O0/p

n-linear map
ι : (p�n/O0)Ñ E [pn](S) such that after the choice of an embedding E [pn] ãÑ A1

S we have¸
αPp�n/O0

[ι(α)] = H and
¸

αPp�1/O0

[ι(α)] � E [p]

as Cartier divisors in A1
S .

Note the subtle difference compared to the definition of Γ0(p
n)-level structures in

[KM85]: In the setting of elliptic curves the second condition is automatic. However, in
our setting the second condition is in particular necessary to get well-defined level maps,
see Remark 2.3.4 for an explicit counterexample.

Adapting the theory of Drinfeld level structures for elliptic curves in [KM85], we obtain
the following.

Theorem 1.0.2 (compare Theorem 2.4.3 for general rank). Let n ¥ 0 be an integers.

(1) The moduli stack Sht2,Γ0(pn) of rank 2 Drinfeld shtukas with Drinfeld Γ0(p
n)-level

structures is representable by a regular Deligne-Mumford stack locally of finite type
over Fq.

(2) The level map Sht2,Γ0(pn) Ñ Sht2 is schematic, finite and flat. Moreover, it is finite
étale away from p.

In particular, Sht2,Γ0(pn) acquires the supersingular points missing in the moduli space
of rank 2 Drinfeld shtukas with naive Γ0(p

n)-level structures.
As in the case of elliptic curves in [KM85, Chapter 5], we first show the corresponding

results for Γ1(p
n)-level structures. The main step in the proof of the Γ1(p

n)-case is the
study of the deformation theory at supersingular points, where we rely on results of
[Dri76]. Using the flatness of the moduli space, we construct a compatible system of level
maps

Sht2,Γ0(pn) Ñ Sht2,Γ0(pm)

that are finite locally free and generically étale for all m ¤ n.
The level maps allow us to interpret our construction in the following way in terms of

the combinatorics of the Bruhat-Tits building B(GL2,K0) of GL2 over the fraction field
K0 of O0. Let us denote by Ω = [0, n] the standard interval of length n in the standard
apartment of B(GL2,K0). By Bruhat-Tits theory, for such a subset Ω of the Bruhat-Tits
building we get an associated smooth affine group scheme GL2,Ω over O0 that can be
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glued with GL2 to a smooth affine group scheme over X that we denote by a slight
abuse of notation also by GL2,Ω. Following [MRR20], we can view Drinfeld shtukas with
naive Γ0(p

n)-level structures as shtukas for the Bruhat-Tits group scheme GLr,Ω bounded
by µ = ((0, . . . , 0,�1), (1, 0, . . . , 0)). For a precise definition see Section 2.1.5 below.
Let us denote by Sht2,Ω the moduli stack of shtukas for the Bruhat-Tits group scheme
GL2,Ω bounded by (0, . . . , 0,�1) and (1, 0, . . . , 0). To such a bounded GL2,Ω-shtuka we
can associate a Drinfeld shtuka with Drinfeld Γ0(p

n)-level structure, this is explained in
more detail below. Moreover, using the level maps, we get compatible system of maps
Sht2,Γ0(pn) Ñ Sht2,f to the moduli space of shtukas for Bruhat-Tits group schemes for all
facets f   Ω contained in Ω.

Theorem 1.0.3 (compare Theorem 2.5.7). The map Sht2,Ω Ñ limÐÝf Ω
Sht2,f is a quasi-

compact open immersion and an isomorphism away from 0. Its schematic image in the sense
of [EG21] is Sht2,Ω = Sht2,Γ0(pn) via the maps

Sht2,Ω ãÑ Sht2,Γ0(pn) ãÑ limÐÝ
f Ω

Sht2,f

constructed above. In the parahoric case n = 1, the map Sht2,Ω Ñ Sht2,Γ0(p) is an isomor-
phism.

Another way to phrase Theorem 1.0.3 is that we (relatively) compactified the level map
Sht2,Ω Ñ Sht2, which we saw in the example above is not proper in general, by factoring it
in an open immersion with dense image followed by a finite (hence proper) and surjective
map

Sht2,Ω ãÑ Sht2,Γ0(pn) Ñ Sht2 .

We can also interpret this result as follows. The theorem shows that Sht2,Ω = Sht2,Γ0(pn)

is the flat closure of the generic fibre inside limÐÝf Ω
Sht2,f. In this sense, Theorem 1.0.3

suggests that a candidate for a good integral model for the moduli spaces of shtukas
for a general reductive group with deep Bruhat-Tits level structure (i.e. level structures
generalising Γ0(p

n)-level structures in the GL2-case) is the closure of the moduli stack
of shtukas for the Bruhat-Tits group scheme inside the limit of all moduli stacks with
corresponding parahoric level.

In the second part of this thesis, we confirm this expectation by considering the following
situation. Let G be a (connected) reductive group over the function field K of X and let
us fix a parahoric model G Ñ X of G. That is, G is a smooth affine group scheme over X
with generic fibre G such that for all closed points x of X the pullback GOx is a parahoric
group scheme in the sense of [BT84]. Let Ω be a bounded subset of an apartment in the
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Bruhat-Tits building of GK0 , where K0 is the completion of K at 0. As in the GL2 case
above, we get a smooth affine O0-group scheme GΩ that we glue with G outside of x0
to obtain a (global) Bruhat-Tits group scheme GΩ Ñ X which is smooth and affine by
construction. Without loss of generality, we may assume that Ω is convex, closed and a
union of facets.
Let I be a finite set and let µ = (µi)iPI be a tuple of conjugacy classes of geometric

cocharacters of G. For simplicity, we assume in this introduction that µ is defined over the
function field K of X (in general it will only be defined over a finite separable extension
of K). A global GΩ-shtuka over a scheme S is a GΩ-bundle E on XS together with an
isomorphism ϕ : σ�E |XSzΓx

�
ÝÑ E |XSzΓx away from the graph Γx of an I-tuple x P XI(S) of

points of X. We denote by Sht¤µGΩ,XI the moduli space of global GΩ-shtukas bounded by µ,
compare Definition 3.2.7 and Construction 3.2.14 for the precise definition of boundedness
conditions. Note that in the Drinfeld case Sht2,Ω = Sht¤((0,�1),(1,0))

GL2,Ω,X2 |t8u�X 1 . In this sense,

Sht¤µGΩ,XI generalises the moduli space of Drinfeld shtukas with naive Γ0(p
n)-level structure.

While for a subset Ω1 of Ω there is still a natural map Sht¤µGΩ,XI Ñ Sht¤µGΩ1 ,X
I by [Bre18,

Theorem 3.20] (compare also Theorem 3.3.3), already in the Drinfeld case G = GL2, the
level map Sht¤((0,�1),(1,0))

GL2,[0,n],X2 Ñ Sht¤((0,�1),(1,0))
GL2,X2 is neither proper nor surjective for n ¥ 2 as

discussed above.
We propose the following construction to relatively compactify Sht¤µGΩ,XI .

Definition 1.0.4 (compare Definition 3.3.7). In the situation above, that is, for a reductive
group G over K, and a Bruhat-Tits group scheme GΩ Ñ X for a subset Ω (assumed to be
convex, closed and a union of facets) of the Bruhat-Tits building for GK0 at the fixed point
0 of X as above, the integral model of the moduli space of shtukas with GΩ-level structure
Sht¤µGΩ,XI is defined to be the schematic image in the sense of [EG21] of the map

Sht¤µGΩ,XI Ñ limÐÝ
f Ω

Sht¤µGf,XI ,

where the limit is taken over all facets f contained in Ω.

Clearly, in the parahoric case (that is, when Ω is a facet) we have

Sht¤µGΩ,XI = Sht¤µGΩ,XI = limÐÝ
f Ω

Sht¤µGf,XI ,

so the construction above generalises the parahoric case. Moreover, as we have seen above,
this general notion of integral models in the Drinfeld case recovers the moduli space of
shtukas with Drinfeld Γ0(p

n)-level structure at 0.
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The main result of this work is to show that this construction of integral models admits
proper, surjective and generically finite étale level maps:

Theorem 1.0.5 (compare Proposition 3.3.6 and Theorem 3.3.8). In the situation of
Definition 1.0.4, the map

Sht¤µGΩ,XI Ñ limÐÝ
f Ω

Sht¤µGf,XI

is schematic and a quasi-compact locally closed immersion. It factors into an open immersion
Sht¤µGΩ,XI Ñ Sht¤µGΩ,XI followed by the closed immersion Sht¤µGΩ,XI Ñ limÐÝf Ω

Sht¤µGf,XI . The
restriction of the inclusion

Sht¤µGΩ,XI |(Xzt0u)I
�
ÝÑ Sht¤µGΩ,XI |(Xzt0u)I

away from 0 is an isomorphism. Moreover, for a subset Ω1
  Ω, there is a natural level map

ρ̄Ω1,Ω : Sht¤µGΩ,XI Ñ Sht¤µGΩ1 ,X
I

that is schematic, proper, surjective and over (Xzt0u)I is finite étale.

In the parahoric case, the level maps on moduli spaces of shtukas are also studied in
[Bre18, Theorem 3.20]. However, the notion of bounds used there does not quite capture
the situation we are interested in here. We discuss the notion of global bounds for global
shtukas following [AH19] and give a defintion of local bounds that is compatible with the
global notion. We generalise the result of [Bre18, Theorem 3.20] to include bounds in
this sense (compare Theorem 3.3.3). Using the assertion in the parahoric case, we are
able to deduce the result also for deep level structures.
Additionally to the existence of well-behaved level maps, we show that the Newton

stratification on the special fibre of the moduli space of shtukas in the parahoric case
induces a well-defined Newton stratification on the special fibre in the case of deeper level.
For a reductive group H over a local field k we denote by B(H) the set of σ-conjugacy
classes inH(k̆), where k̆ is the completion of the maximal unramified extension of k. Then
B(H) classifies quasi-isogeny classes of local shtukas for (an integral model of) H.
We fix a tuple of pairwise distinct closed points y = (yi)iPI in X and denote by

Sht¤µGΩ,XI ,Fy = Sht¤µGΩ,XI �XI Fy the special fibre over y, where Fy is the compositum
of the residue fields of the points yi of X.

Theorem 1.0.6 (compare Definition 3.4.3 and Corollary 3.4.4). Let ℓ be an algebraically
closed extension of Fy. There is a well-defined map

δ̄GΩ
: Sht¤µGΩ,XI ,Fy(ℓ)Ñ

¹
iPI

B(GKyi )

6



that is compatible with the level maps in the sense that for Ω1
  Ω we have

δ̄GΩ
= δ̄GΩ1

� ρ̄Ω1,Ω.

Moreover, for b = (bi)iPI P B(GKyi ) the preimage of b under δ̄GΩ
is the set of ℓ-valued points of

a locally closed substack Sht¤µ,bGΩ,XI ,Fy of Sht
¤µ

GΩ,XI ,Fy called the Newton stratum of Sht¤µGΩ,XI ,Fy
for b.

In the parahoric case this result is due to [Bre18, Section 5], compare also [HV11,
Theorem 7.11]. In this case, the map δ̄ is given by associating to a point in the special
fibre over y the quasi-isogeny classes of its local shtukas at the points yi. We use the
compatibility of the Newton stratification with the level maps in the parahoric case to
extend this result to the case of deep level.

Moreover, we show that in the hyperspecial case the Newton stratification satisfies the
strong stratification property (as for Shimura varieties). Recall that there is a natural
order on B(H) induced by the dominance order on cocharacters. It is well-known in

the parahoric case that the closure Sht¤µ,bG,XI ,Fy �
�
b1¤b Sht

¤µ,b1

G,XI ,Fy . Note that this also
generalises to deeper level. We say that the Newton stratification satisfies the strong
stratification property when we even have equality. However, the inclusion is strict in
general.

Theorem 1.0.7 (compare Theorem 3.4.5). Let G Ñ X be a parahoric group scheme that
is hyperspecial at yi for all i P I. Then the Newton stratification at y satisfies the strong
stratification property in the sense that

Sht¤µ,bG,XI ,Fy =
¤
b¤b1

Sht¤µ,b
1

G,XI ,Fy

for all b P
±
iPI B(Gyi).

We deduce the closure relations from the corresponding local result in [Vie13] using the
(bounded version of the) Serre-Tate theorem for shtukas. For PEL-type Shimura varieties,
this result is due to [Ham15].

In order to establish the first two assertions of Theorem 1.0.5, we study the deformation
theory of torsors under Bruhat-Tits group schemes. In the process, we show two results
that may also be of independent interest. In the local case (and hence also for the
corresponding global Bruhat-Tits group schemes), we get the not necessarily parahoric
Bruhat-Tits group scheme as the limit of all its associated parahoric group schemes.
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Theorem 1.0.8 (compare Theorem 3.1.3). Let G be a reductive group over a local field k
and Ω a subset of the Bruhat-Tits building for G as above. Then the induced map

GΩ
�
ÝÑ limÐÝ

f Ω

Gf

is an isomorphism of O-group schemes, where O is the ring of integers of k.

We use this result on the level of group schemes to show that the moduli stack of
GΩ-bundles BunGΩ

on X embeds via an open immersion into the limit of BunGf
over all

associated parahoric group schemes.

Theorem 1.0.9 (compare Theorem 3.1.13). In the situation of Definition 1.0.4, the natural
map

BunGΩ
Ñ limÐÝ

f Ω

BunGf

is a quasi-compact open immersion.

Note that given a compatible system of Gf-torsors for all facets f   Ω, it is in general not
true that their limit is a torsor for GΩ, as it might be impossible to construct a compatible
system of sections. By controlling the deformation theory of torsors for the Gf, we are
able to show that the locus where the limit of a compatible system of Gf-bundles on X is
already a GΩ-bundle on X is open.

Conclusion and Outlook

In this thesis, we construct integral models for moduli spaces of shtukas with deep Bruhat-
Tits level structures that generalise the known constructions in the parahoric case and the
GLr-case with Γ0(p

n)-level structure. Moreover, we show that our integral models admit
proper, surjective and generically finite étale level maps.

In future work, we use our construction of integral models to study the local geometry
of the fibres of our integral models at places with deep level structures. To this end, we
aim to construct a local model also for deep level structures in order to relate the geometry
of the special fibre to the combinatorics of the Bruhat-Tits building as in the parahoric
case.
As an application, we can then use the insights on the geometry of the special fibre

to calculate the semisimple trace of Frobenius on the sheaf of nearby cycles in order to
construct elements of the Bernstein center of the (local) Hecke algebra of the reductive
group G.
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Organisation

This thesis is organised as follows. In Chapter 2, we consider the Drinfeld case and study
the moduli space of Drinfeld shtukas with Drinfeld level structures. More precisely, in
Section 1 we recall some facts on shtukas (in particular Drinfeld shtukas) and define
naive Γ0(p

n)-level structures. In Section 2, we explain the comparison with Drinfeld
modules. This provides us with a way to associate group schemes to (global, local and
finite) shtukas, which is what makes it possible to define Drinfeld level structures in the
first place. In particular, we construct the scheme of pn-division points of a Drinfeld
shtuka and study its properties. In Sections 3 and 4, we define our Drinfeld (Γ1- and
Γ0-type) level structures and prove the regularity of their moduli spaces. For this, we
follow [KM85]. In Section 5, we show that the Drinfeld level structures actually provide
a good (relative) compactification of the moduli space with naive level structure Shtr,Ω.
Chapter 2 is contained in [Bie22].
In Chapter 3, we consider the case of shtukas for a general reductive group with deep

Bruhat-Tits level structures. In Section 1, we study (torsors under) Bruhat-Tits group
schemes and show Theorems 1.0.8 and 1.0.9. In Section 2, we introduce moduli spaces of
shtukas and discuss how to define boundedness conditions. In particular, we give a new
definition of local bounds that is compatible in a natural way with usual notions of global
bounds. In Section 3, we first prove a variant of the functoriality result for moduli spaces
of shtukas of [Bre18, Theorem 3.20] showing in particular that the level maps in the
parahoric case are well-behaved in our setting. We use this result to define our integral
models with deep level structure and show that these models admit well-behaved level
maps as well, proving Theorem 1.0.5. In Section 4, we construct a Newton stratification
on the integral models with deep level.

Notation

We fix the following notation. Let Fq be a finite field with q elements, let p be the
characteristic of Fq. All schemes will be Fq-schemes unless otherwise specified. Let X
be a smooth projective and geometrically connected curve over Fq with function field K.
For a closed point x of X we denote by OX,x the local ring at x and by Ox its completion.
Moreover, we denote by Kx the completion of K at x.

We denote by σ the (absolute) q-Frobenius endomorphism FrobS of some Fq-scheme S,
and also the map σ = idX � FrobS : XS Ñ XS . It is always clear from context which map
σ is meant.
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2. Compactification of level maps of moduli
spaces of Drinfeld Shtukas

2.1. Moduli spaces of shtukas and naive Γ0(p
n)-level structures

Drinfeld Shtukas were introduced in [Dri87b] as elliptic sheaves and were vastly generalised
to arbitrary reductive groups or even general smooth affine group schemes in [Var04] and
[AH14], respectively.

We introduce naive Γ0(p
n)-level structures on Drinfeld shtukas, present how to encode

these level structures in terms of Bruhat-Tits group schemes following [MRR20] and
explain, why the naive definition is not appropriate for deeper level (that means for
n ¡ 1).

Let us for the whole of this chapter fix two distinct Fq-rational points 8 and 0 of X and
denote by p = p0 the maximal ideal in the complete local ring O0 at 0. Let us also fix a
uniformiser ϖ of p.

2.1.1. Global shtukas

We recall the definitions of global shtukas and isogenies of Drinfeld shtukas. We restrict
ourselves to shtukas with two legs with one leg fixed at the point 8.

Definition 2.1.1 ([AH14]). Let G be a smooth affine group scheme on X. A global
G-shtuka over a scheme S is given by the data

E = (x, E , ϕ : σ�E ‧‧➡ E),

where

• x P X 1(S) is a section of X 1 = Xzt8u,

• E is a G-bundle on XS and

• ϕ : σ�E |XSz(ΓxYΓ8)
�
ÝÑ E |XSz(ΓxYΓ8) is an isomorphism of G-bundles away from the

graphs Γx of x and Γ8 of 8.
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The point x is called characteristic or leg of E . A map of G-shtukas is a tuple of maps of
G-bundles compatible with the maps ϕ and ϕ1.

Note that there are several ways to bound the zeros (and poles, respectively) of G-
shtukas, and in general they are not equivalent (compare Remark 2.1.7). We will mostly
be interested in the case of Drinfeld shtukas, that means we consider G = GLr (or
corresponding Bruhat-Tits group schemes) and bounds given by the minuscule coweights
µ = ((0, . . . , 0,�1), (1, 0, . . . , 0)). These admit the following explicit description.

Definition 2.1.2 ([Dri87b]). A Drinfeld shtuka of rank r over a scheme S is given by the
data

E = (x, E , ϕ),
where

• x P X 1(S) is the characteristic section,

• E is a rank r vector bundle on XS and

• ϕ : σ�E |XSz(ΓxYΓ8)
�
ÝÑ E |XSz(ΓxYΓ8) is an isomorphism of OXS -modules away from

the graphs Γx of x and Γ8 of 8, such that ϕ extends to a map ϕ : σ�E |X 1 Ñ E |X 1

with coker(ϕ) supported on Γx and invertible on its support, and ϕ�1 extends to a
map ϕ�1 : E |XzΓx Ñ σ�E |XzΓx with coker(ϕ�1) supported on 8 and invertible on
its support.

We denote by Shtr the stack of Drinfeld shtukas of rank r.

It is well known that Shtr is a Deligne-Mumford stack locally of finite type over Fq.
It has a forgetful map Shtr Ñ X 1 which is smooth of relative dimension (2r � 2), see
[Dri87b, Proposition 3.2 and 3.3].
In the context of Drinfeld shtukas, the characteristic section x is often called the zero

of E while the second leg (that we fixed to be 8) is the pole of E . By a slight abuse of
notation we say that E is in characteristic p if its characteristic section factors through 0.
Remark 2.1.3. Note that once the zero and the pole of the shtuka do not intersect, we can
glue E and σ�E along the isomorphism ϕ over XSz(Γx Y Γx1) and obtain a vector bundle
E 1 together with maps

ϕ1 : E ãÑ E 1 Ðâ σ�E : ϕ
of OXS -modules that satisfy the analogous conditions on the cokernels as in our definition
of Drinfeld shtukas. This notion is used in the original definition of Drinfeld shtukas in
[Dri87b] and does not require the two legs of the shtuka to be disjoint. We denote by
Shtr,X2 Ñ X2 the stack of Drinfeld shtukas in this sense. Then Shtr = Shtr,X2 �X2(t8u�
X 1).
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For n P N we denote by Dn = n[0] � X the effective Cartier divisor in X. Note that
Dn = Spec(O0/p

n).

Definition 2.1.4. A map f : E1 Ñ E2 of Drinfeld shtukas is an isogeny if f is injective and
coker(f) is finite locally free as OS-module. Moreover, we say that f is a pn-isogeny, if the
OXS -module structure on coker(f) factors through ODn,s , in other words, if coker(f) is
pn-torsion.

In order to give a criterion which OS-modules can arise as cokernels of pn-isogenies,
we use the following notion of a pn-torsion shtuka, which are an O0/p

n-linear analogue of
the ϕ-sheaves introduced by [Dri87b].

Definition 2.1.5. A pn-torsion shtuka over S is a pair F = (F , ϕ) consisting of a quasi-
coherent ODn,S -module F which is finite locally free as OS-module and an ODn,S -module
homomorphism ϕ : σ�F Ñ F . A map of pn-torsion shtukas is a map of the underlying
ODn,S -modules compatible with ϕ. We say that a pn-torsion shtuka is étale if ϕ is an
isomorphism.

In [HS19] Drinfeld’s ϕ-sheaves are also called finite shtukas. For our purposes however,
the ODn-module structure is central.
To a rank r Drinfeld shtuka E = (x, E , ϕ) over S we associate its pn-torsion shtuka

defined as the pullback of E to the divisor Dn,S , which is more explicitly given by E |Dn,S =
(E |Dn,S , ϕ|Dn,S ). Note that its underlying OS-module has rank nr. A second important
class of examples of pn-torsion shtukas are cokernels of pn-isogenies of Drinfeld shtukas.
Note that E |Dn,S is the cokernel of the prn-isogeny E(pn) ãÑ E , where we denote by
E(pn) = E bO(Dn,S) the twist of E by the divisor Dn.

2.1.2. Local shtukas

We can associate to Drinfeld shtukas its local counterparts called local shtukas in the
same way p-divisible groups are local analogues of abelian varieties. Local shtukas are
introduced as Dieudonné Fq JϖK-modules in [Har05] as analogues of Dieudonné modules
of p-divisible groups and are studied and generalised for example by [HV11] and [AH14].
Let us denote by Fq JζK the ring of formal power series in the formal variable ζ and by

N ilpFqJζK the category of schemes S over Fq JζK such that ζ is locally nilpotent in S. For a
ring R, we denote by R JϖK the ring of formal power series in the formal variableϖ and by
R ((ϖ)) the ring of formal Laurent series in ϖ on S. Note that for Spec(R) P N ilpFJζK, we
have R ((ϖ)) = R JϖK

[︂
1

ϖ�ζ

]︂
. We denote by σ the endomorphism of R JϖK (respectively

R ((ϖ))) that acts as the identity on ϖ and as b ÞÑ bq on R.
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Definition 2.1.6. Let S = Spec(R) P N ilpFqJζK. A local shtuka G = (G, ϕ) of rank r over
S is a locally free sheaf of R ((ϖ))-modules G of rank r together with an isomorphism
ϕ : σ�G[ 1

ϖ�ζ ]Ñ G[ 1
ϖ�ζ ] ofR ((ϖ))-modules. The local shtuka G is called effective if ϕ comes

from a map ϕ̃ : σ�G ãÑ G of R JϖK-modules and étale if additionally ϕ̃ is an isomorphism.
A quasi-isogeny f : G Ñ G1 between local shtukas is an isomorphism G

[︁
1
ϖ

]︁
Ñ̃ G1

[︁
1
ϖ

]︁
of

the underlying R ((ϖ))-modules, which is compatible with ϕ and ϕ1.

We say a local shtuka G = (G, ϕ) is bounded by (1, 0, . . . , 0) if it is effective, coker(ϕ) is
locally free of rank 1 as an R-module and (ϖ � ζ) annihilates coker(ϕ). Similarly, we say
G is bounded by (0, . . . , 0,�1) if ϕ�1 is bounded by (1, 0, . . . , 0) in the above sense. More
precisely, G is bounded by (0, . . . , 0,�1) if ϕ induces a map G ãÑ σ�G with a cokernel
which is locally free of rank 1 as R-module and which is annihilated by (ϖ � ζ).
Remark 2.1.7. There are several ways to define bounds for local shtukas in general, cf.
[HV11, Definition 3.5 and Lemma 4.3.] and [AH14, Defintion 4.8.]. For the Drinfeld case
the bound in the sense of [AH14] is also given more explicitly in [Bre18, Section 7.2.].
Note that the straightforward generalisation of our definition above does not produce the
correct notion for coweights (d, 0, . . . , 0) with d ¡ 1 by [HS19, Example 8.3]. In particular
[HV11, Example 4.5] and [Zhu17, Example 2.1.8.] seem to be problematic.
The Newton stratification for local shtukas is defined in [HV11] as an analogue of the

Newton stratification for F -isocrystals in [RR96].

Definition 2.1.8. The Newton point of of a local shtuka G of rank r over an algebraically
closed field ℓ is (u1, . . . , ur) P Qr with u1 ¥ . . . ¥ ur and the ui are the slopes associated
to the corresponding isoshtuka G

[︁
ϖ�1

]︁
by the Dieudonné-Manin classification in the

function field case [Lau96, Theorem 2.4.5].

We denote by B(GLr) the Kottwitz set of isomorphism classes of isoshtukas over an
algebraically closed field ℓ, in other words, the set of σ-conjugacy classes of invertible
(r�r)-matrices over ℓ ((ϖ)). The setB(GLr) does not depend on the choice of ℓ. Recall that
the Newton map νGLr : B(GLr)Ñ Qr is already injective (this fails for general reductive
groups). The Bruhat order on the space of cocharacters X�(T ) bZ Q � Qr induces a
partial order on B(GLr). It is more explicitly given by

(u1, . . . , ur) ¤ (u11, . . . , u
1
r) if

i̧

j=1

uj ¤
i̧

j=1

u1j

for all 1 ¤ i ¤ r with equality in the case i = r. Moreover, for a dominant cocharacter
µ, in other words, µ = (µ1, . . . , µr) P Zr with µ1 ¥ . . . ¥ µr, we denote by B(GLr, µ) =
t[b] P B(GLr) : νGLr([b]) ¤ µu.
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For a local shtuka G over a scheme S = Spec(R) and a geometric point s of S we denote
by [Gs] the associated point in B(GLr) after pullback to s. Note that if G is bounded by
µ = (1, 0, . . . , 0), then [Gs] is contained in B(GLr, µ) for all s P S. The Newton point
induces a stratification in the following way.

Proposition 2.1.9 ([HV11, Theorem 7.3], compare also [RR96, Theorem 3.6]). Let
S = Spec(R) be an affine Fq-scheme and G be a local shtuka over S and b P B(GLr). Then
the set ts P S : [Gs] ¤ bu is a Zariski-closed subset of S. Furthermore, ts P S : [Gs] = bu is an
open subset of the former.

We denote by S¤b the closed subscheme of S given by the reduced subscheme on
ts P S : [Gs] ¤ bu and similarly Sb the corresponding open subscheme of S¤b. Then Sb is
a locally closed subscheme of S.

2.1.3. Global-to-local functor and a Serre-Tate theorem

We explain how to associate local shtukas to global shtukas. We follow the general
construction of [AH14]. This is a generalisation of the construction of [BH11, Section 8]
for abelian sheaves and Anderson motives.

We follow the notation of [AH14, Section 5.2.]. Let y be a closed point of X, which we
assume for simplicity to be defined over Fq. This is the only case we use later. For the
general construction we refer to [AH14]. Let Oy be the completed local ring at y. The
choice of a uniformiserϖy at y defines an isomorphismOy � Fq JϖyK. Let x P X(Spec(R))
be a section that factors through Spf(Oy). Then ϖy is nilpotent in R. Let Dy = Spec(Oy)

and D̂y = Spf(Oy). We denote by D̂y,R the ϖy-adic completion of Dy �Fq Spec(R).
By [AH14, Lemma 5.3.], the section x induces a canonical isomorphism of the formal

completion of XR along the graph Γx of x with D̂y,R. By construction, the formal com-
pletion along Γx has structure sheaf R Jϖy � ζK, where ζ is the image of ϖy in R. As ζ is
nilpotent in R, R Jϖy � ζK and R JϖyK are isomorphic.
We fix a pair y = (y1, y2) of (Fq-rational) closed points of X with y1 � y2. Let Oy be

the completion of the local ring of X2 at y. We denote by Shtyr = Shtr,X2 �X2 Spf(Oy) the
substack of Shtr,X2 such that the legs factor through Spf(Oy1) and Spf(Oy2), respectively.
In particular, for points of Shtyr the graphs of its legs are disjoint. Let E = (x1, x, E , ϕ) P
Shtyr(R). The local shtuka associated to E at yi is then its pullback to D̂yi,R for i = 1, 2.

Definition 2.1.10. The global-to-local functor associates to a global shtuka E P Shtyr(R) a
pair of local shtukas (at y1 and y2, respectively) given by

Eyix := (E |D̂yi,R , ϕ̃) and Eyx = (Ey1x , Ey2x ).
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Then, Eyix is called the local shtuka of E at yi.

By definition of Shtr,X2 , the local shtuka at y2 is bounded by (1, 0, . . . , 0) as the condition
that (ϖy2 � ζy2) annihilates the cokernel in the local case directly corresponds to the fact
that the cokernel is supported on the graph in the global case. Similarly, the local shtuka
at y1 is bounded by (0, . . . , 0,�1).

The global-to-local functor also gives rise to a Serre-Tate theorem relating the deforma-
tion theory of global shtukas with the deformation theory of their associated local shtukas.
Let S = Spec(R) P N ilpOy and let i : S = Spec(R/I) ãÑ S be a closed subscheme defined
by a nilpotent ideals I. Let Ē P Shtyr(S). The category DefĒ(S) is the category of defor-
mations of E to S, i.e. the category of pairs (E , f : i�E Ñ̃ Ē) where E P Shtyr(S) and f is
an isomorphism of shtukas over S. Similarly, for a local shtuka Ḡ bounded by (1, 0, . . . , 0)

we define Def¤(1,0,...,0)

Ḡ (S) as the category of deformations of Ḡ to S, i.e. the category of
pairs (G, g : i�G Ñ̃ Ḡ) where G is a local shtuka on S bounded by (1, 0, . . . 0) and g is an
isomorphism of local shtukas over S. Similarly, we define deformations of local shtukas
bounded by (0, . . . , 0,�1).

Proposition 2.1.11 (Serre-Tate Theorem for shutkas, [AH14, Theorem 5.10.]). Let Ē P
Shtyr(S). Then the functor

(�)yz : DefĒ(S)Ñ Def¤(0,...,0,�1)

Ey1
y (S)� Def¤(1,0,...,0)

Ey2
y (S), (E , f) ÞÑ

¹
i=1,2

(Eyix , fyi
x)

induced by the global-to-local functor is an equivalence of categories.

Proof. As before, this follows directly from the unbounded case in [AH14, Theorem 5.10.]
as a global GLr-shtuka is bounded by (0, . . . , 0,�1), (1, 0, . . . , 0) if and only if the associated
local shtukas are.

The Newton stratification induces also a stratification on the special fibre of the stack
of (global) Drinfeld shtukas in the sense of [Bre18, Section 4]. We continue to restrict
ourselves to the case of Drinfeld shtukas with one leg fixed at 8 as this is the only case of
interest to us in the following. The following has obvious analogues also for Shtr,X2 . For a
closed point y of X with residue field Fy different from 8 we set Shtr,Fy = Shtr �X 1,yFy.

Definition 2.1.12 (compare [Neu16, Proposition 4.1.4.], [Bre18, Definition 4.12.] for the
general definition). Le b8 P B(GLr,K8 , (0, . . . , 0,�1)). The locally closed and reduced
substack of Shtr where the associated local shtuka at 8 has Newton point b8 is called
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the Newton stratum associated to b8 and is denoted by Shtr,b8 . In a similar fashion, for a
closed point y of X and a pair

by = (b8, by) P B(GLr,K8 , (0, . . . , 0,�1))�B(GLr,Ky , (1, 0, . . . , 0))

the locally closed and reduced substack of Shtr,Fy where the associated local shtuka at 8
has Newton point b8 and the associated local shtuka at y has Newton point by is denoted
by Shtr,by .

2.1.4. Isogenies of Drinfeld shtukas

We study isogenies of Drinfeld shtukas in more detail. We consider the following moduli
problem of Drinfeld shtukas with chains of isogenies.

Definition 2.1.13. Let m, r1, . . . , rm ¥ 1 be positive integers such that
°m
j=1 rj ¤ r. A

chain of pn-isogenies of type (r1, . . . , rm) on a Drinfeld shtuka E over a scheme S is a flag
of quotients of pn-torsion shtukas

E |Dn,S = Fm+1 ↠ Fm ↠ . . .↠ F1 ↠ 0

over S such that Fi has rank n � (r1 + . . . + ri) as OS-module. We denote the stack of
Drinfeld shtukas with chains of pn-isogenies of type (r1, . . . , rm) by Shtr,(r1,...,rm)�pn-chain.

We show below that a chain of pn-isogenies of type (r1, . . . , rm) in the sense of the
definition is the same as giving a chain of actual pn-isogenies of Drinfeld shtukas

E(pn) = Em+1
fm+1
ÝÝÝÑ Em

fm
ÝÝÑ . . .

f2ÝÑ E1
f1ÝÑ E0 = E

such that the composition fm+1 � . . . � f1 is the inclusion E(pn)Ñ E .

Proposition 2.1.14. Let E P Shtr(S) be a Drinfeld shtuka. Every quotient E |Dn,S ↠ F ,
where F is a pn-torsion shtuka, is the cokernel of a pn-isogeny.

Moreover, for two pn-isogenies f1 : E1 ãÑ E and f2 : E2 ãÑ E such that the cokernels factor
as successive quotients E |Dn,S ↠ coker(f1) ↠ coker(f2), there exists a unique pn-isogeny
f : E1 ãÑ E2 such that f1 = f2 � f and coker(f) � ker(coker(f1) ↠ coker(f2)).

Proof. Let F be a pn-torsion shtuka as in the statement of the proposition. Let us denote
by E 1 = ker(E ↠ F). As a first step, we want to show that E 1 is finite locally free of
rank r on XS . In order to do so, we may by reduction to the universal case assume that
S = SpecR is affine and noetherian. As E 1 ãÑ E is an isomorphism away from p, it then
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suffices by fpqc-descent to show that the completion at 0 is finite locally free of rank r. As
we assumed R to be noetherian, completion at 0 is exact. The completion E 10p = E 1 bO0 of
E 1 at 0 is hence given by the kernel of E0p ↠ F . The assertion now follows from [Gen96,
Lemma 2.2.8].

By the right exactness of the tensor product, the cokernel of the inducedmap σ�E 1 Ñ σ�E
is given by σ�F . By [Har19, Lemma 2.2], the map σ�E 1 Ñ σ�E is thus injective, and
σ�E 1 = ker(σ�E ↠ σ�F). In particular, we obtain an induced map ϕ̃ : σ�E 1 ‧‧➡ E 1 defined
away from Γx and Γ8. As the map E 1 Ñ E is an isomorphism away from 0, locally around
8 we obtain a map E 1 Ñ σ�E 1 with cokernel supported at 8 and of rank 1 as OS-module.
It follows also that ϕ1|X 1

S
: σ�E 1|X 1

S
Ñ E 1|X 1

S
is a well-defined and injective map (as ϕ

is). Note that (E 1|X 1
S
, ϕ1|X 1

S
) is the associated A-motive in the sense of [Har19] where

A = Γ(Xzt8u,OX). By [Har19, Proposition 2.3], the A-motive (E 1|X 1
S
, ϕ1|X 1

S
) is effective,

this means that coker(ϕ1|X 1
S
) is annihilated by J n for some positive integer n, where

J is the quasi-coherent sheaf of ideals defining Γx � XS . Using [Har19, Proposition
5.8] we obtain that coker(ϕ1|X 1

S
) has rank 1 as OS-module. Thus, coker(ϕ1|X 1

S
) is already

annihilated by J , which means that (E 1, ϕ1) defines a point of Shtr(S).
For the second part let f1 : E1 ãÑ E and f2 : E2 ãÑ E be two pn-isogenies as in the asser-

tion. It follows essentially by assumption that there is a unique injective homomorphism
of shtukas f : E2 Ñ E1 such that f2 = f1 � f . It remains to check that f is a pn-isogeny.
We have the short exact sequence of R-modules

0Ñ E1/f(E2) = coker(f) ãÑ E/f2(E2) = coker(f2) ↠ E/f1(E1) = coker(f1)Ñ 0,

where the first map is f1 and the second map is well-defined by assumption. As both
f1 and f2 are isogenies, their cokernels are finite locally free R-modules. It follows that
coker(f) is finite locally free as well, and thus f is an isogeny. That it is a pn-isogeny is
also clear.

Remark 2.1.15. (1) Note that in the proof we really used that 0 is Fq-rational. It would
be desirable to have an analogous statement in general.

(2) Using the comparison [Har19, Theorem 5.8] with isogenies of Drinfeld modules, we
get as immediate corollaries that any finite locally free closed submodule scheme
with strict Fq-action of the pn-torsion of a Drinfeld module is the kernel of an isogeny
and a factorisation property as in the second part of the proposition. Both of these
facts seem to be only proven in the literature when the base is a field in [Leh09, 2,
Lemma 3.1 and Lemma 3.2].
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(3) This also shows that giving a point of Shtr,(r1,...,rm)�pn-chain is the same as giving a
chain of actual pn-isogenies of Drinfeld shtukas

E(pn) = Em+1
fm+1
ÝÝÝÑ Em

fm
ÝÝÑ . . .

f2ÝÑ E1
f1ÝÑ E0 = E

such that coker(fi) has rank n � ri and such that the composition fm+1 � . . . � f1 is
the inclusion E(pn)Ñ E .

2.1.5. Naive Γ0(p
n)-level structures and shtukas for Bruhat-Tits group schemes

We introduce naive Γ0(p
n)-level structures on Drinfeld shtukas and explain how to interpret

them as shtukas for certain Bruhat-Tits group schemes. These naive level structures seem
inadequate in the non-parahoric case (that means when n ¡ 1), as their moduli spaces
are missing points in the fibre over 0. In other words, the level map to Shtr is not proper,
compare Remark 2.1.20 below. The interpretation of naive level structures in terms of
Bruhat-Tits group schemes allows us to give a candidate for a compactification of the level
map: We can take the closure of the stack of shtukas with naive level in the product of the
stacks of Drinfeld shtukas with corresponding parahoric level.

Definition 2.1.16. A naive Γ0(p
n)-level structure on a Drinfeld shtuka E = (E , ϕ) P Shtr(S)

of rank r is a flag of quotients of pn-torsion finite shtukas

E |Dn,S = Lr ↠ Lr�1 ↠ . . .↠ L1 ↠ L0 = 0

such that Li is finite locally free of rank i as ODn,S -module (and hence of rank in as
OS-module).

Remark 2.1.17. By Proposition 2.1.14, a naive Γ0(p
n)-level structure is equivalently given

as a chain of isogenies

E(pn) = Er
fr
Ñ Er�1

fr�1
Ñ Er�2 Ñ . . .

f1Ñ E0 = E

such that coker(fi) is finite locally free of rank 1 as ODn,S -module for all 1 ¤ i ¤ r.
We interpret naive Γ0(p

n)-level structures on Drinfeld shtukas as shtukas for certain
Bruhat-Tits group schemes in the following sense.

Definition 2.1.18. A Bruhat-Tits group scheme on X is a smooth affine group scheme
GÑ X such that

(1) all fibres of G are connected,
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(2) the generic fibre of G is a reductive group over K and

(3) for every closed point x ofX the base changeGOx = G�X Spec(Ox) is a Bruhat-Tits
group scheme in the sense that there is a non-empty bounded subset Ω in some
appartment in the Bruhat-Tits building of GKx such that G(Ox) � G(Kx) is the
connected fixator of Ω in the sense of [BT84, (4.6.26)].

A Bruhat-Tits group scheme is parahoric, if the subgroups G(Ox) � G(Kx) in (3) are
parahoric for all places of X.

Remark 2.1.19. Of particular relevance to our situation is the case where Ω is the stabiliser
of a regular (r � 1)-simplex Ω in the standard appartment of the (reduced) Bruhat-Tits
building of GLr,K0 with side-length n. We denote by GLr,Ω Ñ X the corresponding Bruhat-
Tits group scheme that is isomorphic to GLr away from 0 and such that GLr(O0) � GLr(K0)
is the connected stabiliser of Ω.
We can more explicitly describe this subgroup by GLr,Ω(O0) = tM P GLr(O0) : M

mod pn P B(O0/p
n)u. By [MRR20, Lemma 3.1 and Theorem 3.2], the group scheme

GLr,Ω can thus also be interpreted as the Néron blowup of GLr in its subgroup B of upper
triangular matrices along the divisor Dn in the sense of [MRR20, Section 3.1].

By [MRR20, Theorem 4.8], giving a GLr,Ω-torsor on X is equivalent to giving a GLr-
torsor E onX together with a reduction of E to an B-torsor over the divisorDn ofX. More
explicitly, a point of BunGLr,Ω(S) is given by a rank r vector bundle E onXS together a flag
of quotients of E |Dn,S as in the definition of naive Γ0(p

n)-level structures. In this sense, a
naive Γ0(p

n)-level structure on a Drinfeld shtuka E defines a (B,Dn)-level structure on E
in the sense of [MRR20, Section 4.2.2].
A GLr,Ω-shtuka is called bounded by µ = ((0, . . . , 0,�1), (1, 0, . . . , 0)) if its underlying

GLr-shtuka (x, E , ϕ) is bounded by (0, . . . , 0,�1), (1, 0, . . . , 0), and if the flag of quotients
given by the (B,Dn)-structure on the underlying vector bundle E is ϕ-stable. In other
words, the GLr,Ω-shtukas bounded by µ in this sense are exactly the Drinfeld shtukas with
naive Γ0(p

n)-level structures in the sense above. We denote this stack of bounded GLr,Ω-
shtukas (or equivalently the stack of Drinfeld shtukas with naive Γ0(p

n)-level structures)
by Shtr,Ω.
For a facet f in the Bruhat-Tits building of GLr,K0 we write f   Ω if f is contained in

the closure of Ω. In a similar fashion to the construction above, for such a facet f   Ω
we write GLr,f for the corresponding Bruhat-Tits group scheme and Shtr,f for the stack
of GLr,f-shtukas bounded by µ in the sense above. By Bruhat-Tits theory, for any facet f
contained in Ω there is a map of group schemes GLr,Ω Ñ GLr,f that is the identity away
from 0. By [Bre18, Corollary 3.16], we get maps Shtr,Ω Ñ Shtr,f.
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In particular, in the case n = 1 the set Ω is just given by the base alcove (corresponding
to the standard Iwahori subgroup of matrices that upper triangular mod p). Hence,
for an alcove f its corresponding moduli space of shtukas Shtr,f parametrises chains of
isogenies of Drinfeld shtukas as in Definition 2.1.16. For a facet f1 of the alcove f the map
Shtr,f Ñ Shtr,f1 is then given by projection to some subchain of isogenies, depending on
the position of f1. In particular, when f1 is a vertex, Shtr,f1 parametrises single Drinfeld
shtukas and when f1 is an edge, Shtr,f1 parametrises pairs of Drinfeld shtukas with a certain
isogeny between them.
In order to describe the maps Shtr,Ω Ñ Shtr,f for facets f   Ω more explicitly, we label

the vertices in Ω by tuples m = (m1, . . . ,mr�1) such that n ¥ m1 ¥ . . . ¥ mr�1 ¥ 0,
edges are between vertices m and m1 if and only if 0 ¤ mi � m1

i ¤ 1 for all i or 0 ¤
mi �m1

i ¤ 1 for all i. The base alcove corresponds to the simplex defined by the vertices
(0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1). The vertex (0, . . . , 0) corresponds
to the constant group scheme GLr.
Note that every facet f   Ω has a unique base point m (such that mi ¤ xi for all i

and points x P f), and an orientation that we encode by an element τ P Symr�1 of the
symmetric group on (r � 1) elements. The orientation τ is chosen such that the vertices
of f are given by m+ τ(1(i)

r�1) for 0 ¤ i ¤ r � 1, where 1(i)
r�1 = (1, . . . , 1, 0, . . . , 0) P Zr�1

has exactly i many entries equal to 1. For a given pair (m, τ) there clearly exists a unique
alcove fm,τ in the standard apartment of the Bruhat-Tits building with base point m and
orientation τ .
Starting from a GLr,Ω-shtuka (E , (Li)) P Shtr,Ω(S), we construct a Drinfeld shtuka Em

for a vertex m   Ω as follows. Assume that S = Spec(R) is affine and that all Li are
finite free as R[ϖ]/(ϖn)-modules. In this case, we can choose a basis (e1, . . . , er�1) of
Lr�1 = (R[ϖ]/(ϖn))r�1 such that (e1, . . . , ei) is a basis for Li for all 1 ¤ i ¤ r � 1. We
consider the quotient

Lr�1 ↠ Lm := R[ϖ]/(ϖm1)e1 ` . . .`R[ϖ]/(ϖmr�1)er�1.

As all the Li are ϕ-stable quotients of Lr�1, the matrix representation of ϕ with respect to
(e1, . . . , er�1) is upper-triangular. This shows that also Lm is ϕ-stable as m1 ¥ . . . ¥ mr�1

by assumption. By a similar argument, Lm does not depend on the choice of basis (any
base change matrix is again upper-triangular). Thus, we can glue to obtain a ϕ-stable
quotient Lm also in the general case. We then associate to the vertex m the Drinfeld
shtuka corresponding to the kernel Em = ker(E ↠ Lm) by Proposition 2.1.14. Moreover,
by the second part of Proposition 2.1.14, there are also canonical isogenies associated to
the edges in the Bruhat-Tits building.

Using this construction, for an alcove fm,τ   Ω the level map Shtr,Ω Ñ Shtr,fm associates
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to (E , (Li)) the chain of isogenies

Em(pn) ãÑ E
m+τ(r�1(1)r�1)

ãÑ . . . ãÑ E
m+τ(1(1)r�1)

ãÑ Em.

This means that the induced map Shtr,Ω Ñ limÐÝf Ω
Shtr,f associates to a Drinfeld shtuka

with naive Γ0(p
n)-level structure a diagram (Em)m with the canonical isogenies as con-

structed above.

Remark 2.1.20. For parahoric level (in our case that means n ¤ 1) [Bre18] shows that the
level maps are proper and surjective. An explicit calculation for deeper level (that is for
n ¡ 1) shows that this is false already in the GL2-case over X = P1 in general. Namely,
we study the fibre over 0 using the local model of [AH19]. An explicit calculation in the
local model shows that for n = 1 we get the familiar local picture of two copies of P1

intersecting transversally at supersingular points.
However, for any n ¡ 1 the special fibres of the corresponding local models only contain

two copies of A1 that do not intersect. This means in particular that Shtr,Ω is missing the
supersingular points in the special fibre. Moreover, from the comparison with the modular
curve, we might expect to find n+ 1-components two of which are reduced by [KM85,
Theorem 13.4.7]. The two components we see using the naive level structure correspond
to the two reduced components, but we do not get the non-reduced ones.

It turns out that requiring the quotients in the definition of naive level structures to be
locally free as ODn,S -modules is too restrictive and we rather should allow in the special
fibre also degenerations to certain pn-torsion finite shtukas which are not locally free as
ODn,S -modules.

The goal of this paper is to explain one way to remedy this. We show that we can
explicitly describe the schematic image of the map Shtr,Ω Ñ limÐÝf Ω

Shtr,f in terms of
Drinfeld level structures and that this provides a natural compactification of the level map.

2.2. Group schemes attached to Drinfeld shtukas

In order to define Drinfeld level structures for Drinfeld shtukas, we explain how to construct
a (finite locally free O0/p

n-module) scheme of pn-torsion points E of a Drinfeld shtuka.
This scheme of pn-torsion points serves as an analogue of the scheme of pn-torsion points
of an elliptic curve and behaves similarly in many ways. In order to study properties of
E [pn] we use an explicit comparison of Drinfeld shtukas and Drinfeld modules.
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2.2.1. Comparison with Drinfeld modules

We recall some facts about Drinfeld modules and show how to construct Drinfeld shtukas
from them. Let A = Γ(Xzt8u,OX). The point 0 of X then corresponds to a maximal
ideal of A, which by a slight abuse of notation we denote by p as well.
Roughly speaking, a Drinfeld A-module is an A-module structure on a (geometric)

line bundle. Drinfeld modules were first introduced in [Dri76] in order to construct
a Langlands correspondence in the cohomology of their moduli spaces. In this sense,
Drinfeld modules (of rank 2) are function field analogues of elliptic curves in the number
field case. For a more detailed treatment also compare [Leh09], [BS97] or [Lau96].

Let L be an invertible sheaf on S. The corresponding geometric line bundle is denoted
by Ga,L = Spec

S
(Sym(L�1)). If S = Spec(R) is an affine scheme such that L is trivial, the

corresponding line bundle is given byGa,R = SpecR[t]. Locally, the ring of endomorphisms
of a line bundle is then given by the skew-polynomial ring Rtτu with the commutation
relation τc = cqτ for c P R.

Definition 2.2.1. A Drinfeld A-module E = (Ga,L, e) of rank r over a scheme S consists
of an additive group scheme Ga,L and a ring homomorphism e : AÑ End(Ga,L), a ÞÑ ea
such that ea is finite for all a � 0 P A of degree |a|r, where | � | is the normalised absolute
value on K corresponding to8. The composition B � e with the differential induces a map
S Ñ Spec(A) called the characteristic of E.

We denote by Dr-Modr the moduli stack of Drinfeld modules of rank r. It is a Deligne-
Mumford stack of finite type over Fq, which is smooth of relative dimension r � 1 over
X 1 = Spec(A).

When S = Spec ℓ is the spectrum of a field (or more generally when the line bundle L is
trivial), a Drinfeld module as a ring homomorphism e : AÑ ℓtτu. As for Drinfeld shtukas,
in a slight abuse of notation, we say E has characteristic p if the the characteristic of E
factors through 0, or in other words, if the kernel of the induced map A Ñ OS(S) is p.
We say that a Drinfeld module over a field ℓ in characteristic p has height h, if the smallest
non-vanishing coefficient in eϖ P ℓtτu has degree h, where ϖ P p is a uniformiser.
There are several ways to associate vector bundles to Drinfeld modules, for example

the so-called elliptic sheaves due to [Dri77], for a more detailed treatment also compare
[BS97], [Har05] or [Wie04], or t-motives [And86] and their generalisations, see for
example [Har19]. However, a precise comparison to Drinfeld shtukas, which is certainly
well-known to the experts, does not seem to be part of the literature yet. We explain how
to construct Drinfeld shtukas from Drinfeld modules.

Recall that an elliptic sheaf E over S of rank r is given by the data (x, (Ei)iPZ, (si)iPZ, (ti)iPZ)
where x : S Ñ X 1 = Xzt8u is a map of schemes, Ei is a rank r vector bundle on X � S
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for every i P Z and si : Ei Ñ Ei+1 and ti : σ�Ei Ñ Ei+1 are injective maps that satisfy
some further properties. In particular, coker(si) and coker(ti) are supported on8 and Γx,
respectively and invertible as OS-modules on their support. We denote by Eℓℓr the moduli
stack of elliptic sheaves. We have a well-defined map Eℓℓr Ñ Shtr given by the projection

(x, (Ei), (si), (ti)) ÞÑ (x, E0, s�1
0 |Xz(ΓxYΓ8) � t0|Xz(ΓxYΓ8)),

or by Remark 2.1.3 equivalently by projection to (x, E0, E1, s0, t0). We use this second
perspective for the remainder of this section as it more convenient in this context. We
define a functor Z�Dr-Modr Ñ Shtr by composing the equivalence Z�Dr-Modr Ñ Eℓℓr
of [Dri77] with this projection.

Lemma 2.2.2. The projection Eℓℓr Ñ Shtr is fully faithful.

Proof. Let E
 = (x, (Ei), (si), (ti)) and Ẽ
 = (x, (Ẽ i), (s̃i), (t̃i)) be two elliptic sheaves over
S. Assume that we have a map of the corresponding shtukas, in other words a pair of
maps f0 : E0 Ñ Ẽ0 and f1 : E1 Ñ Ẽ1 that commute with s0 and t0 in the obvious way. By
[Wie04, Corollary 5.4] we may then glue f1 and σ�f1 to get a map f2 : E2 Ñ Ẽ2 again
commuting with s1 and t1. Such a map is necessarily unique. We continue inductively to
define maps in higher degrees. The maps in degrees smaller than 0 can be constructed as
twists.

Let us denote by b8 = (�1/r, . . . ,�1/r) P B(GLr,K8 , (0, . . . , 0,�1)) the basic Newton
polygon. Recall that we defined Shtr,b8 to be the (reduced) locus in Shtr where the local
shtuka at 8 has Newton polygon b8. Note that Shtr,b8 is a closed substack of Shtr as b8
is basic.

Proposition 2.2.3. The functor Z� Dr-Modr Ñ Shtr is schematic and a closed immersion
which factors through an isomorphism

Z� Dr-Modr
�
ÝÑ Shtr,b8 .

Proof. As a first step we show that the locus where a Drinfeld shtuka can be extended to
an elliptic sheaf is closed. Let E = (x, E�1, E0, s�1, t�1) P Shtr(S). As the zero and pole of
E do not intersect, we can repeatedly glue Ei and σ�Ei to obtain a commutative diagram

E�1 E0 E2 . . .

σ�E�1 σ�E0 σ�E2 . . .

s�1 s0 s2

t�1 t0 t2
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If the diagram comes from an elliptic sheaf, we have by definition that E0 ãÑ Er identifies
E0 with Er(�8). In a similar fashion we get E1 = Er+1(�8).

We claim that these two conditions are already sufficient for the diagram to come from
an elliptic sheaf. By construction, the cokernel of si is supported on Γ8 and the cokernel
of ti is supported on Γx, and both are invertible on their respective supports. We first
check that s0 = sr b idOX(�8). As all si are isomorphisms away from 8 and the question
is fpqc-local on S, it suffices to consider the completion at 8 and we may assume that
S = Spec(R) is affine and all Ei are free R Jϖ8K-modules of rank r. Thus, the si are
identified with endomorphisms of R Jϖ8Kr such that both sr�1 � . . .�s0 and sr � . . .�s1 are
multiplication byϖ8 by assumption, whereϖ8 is a uniformiser at8. But as multiplication
byϖ8 is injective and lies in the centre of the endomorphism ring, this implies that s0 = sr
as desired. Moreover, the si induce isomorphism coker(ti�1)

�
ÝÑ coker(ti) for all i ¥ 1,

hence tr = t�1b idOX(8). Hence, we get inductively that Ei+r = EibOX(8) for all i ¥ 1.
The data for indices i ¤ 0 is then obtained by twisting. This shows the claim.

It remains to check that the conditions of the claim are closed conditions. In order to see
that the locus where E0 = Er(�8) is closed, we argue as follows. As Er/E0 is supported
on Γ8, the uniformiser ϖ8 at 8 acts on Er/E0 and we have E0 = Er(�8) if and only if
ϖ8 = 0 in EndOS (Er/E0). Hence, the locus where E0 = Er(�8) is represented by the
vanishing locus V (I) of the quasi-coherent ideal I = image(EndOS (Er/E0)_

ϖ_8ÝÝÑ OS). In
a similar fashion, the locus where E1 = Er+1(�8) is representable by a closed subscheme
of S given by the vanishing locus of a quasi-coherent sheaf of ideals I 1 in OS . Thus, the
locus where E defines a (necessarily unique) elliptic sheaf is representable by the closed
subscheme S1 = V (I + I 1) of S. In particular, Z � Dr-Modr Ñ Shtr is schematic and a
closed immersion.

Moreover, it is clear that both stacks have the same geometric points, as one can easily
see by the classification of bounded local shtukas over algebraically closed fields that a
Drinfeld shtuka over an algebraically closed field ℓ comes from a Drinfeld module if and
only if the local shtuka at 8 is⎛⎜⎜⎜⎝ℓ Jϖ8Kr , σ �

⎛⎜⎜⎜⎝
0 ϖ�1

8

1
. . .

1 0

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

The second part of the assertion follows as Dr-Modr and the Newton stratum Shtr,b8 both
are reduced.
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Remark 2.2.4. (1) For the general case (when8 is not defined over Fq) giving a correct
definition of the truncation is more subtle, as the pole might not be supported at
8 but at some Frobenius twist of 8. In order to remedy this, one should include
a Frobenius twist in the action of Z by shifts and still obtain a well-defined closed
immersion Z� Dr-Modr Ñ Shtr.

(2) It follows that we get an essentially surjective functor Shtr,b8 Ñ Dr-Modr that
agrees with the construction from [Bre18, Proposition 7.8] (up to forgetting the
level structure).

(3) By [Har19] and [HS19], the comparison is compatible with local and finite objects.
More precisely, the local equivalence of [HS19, Theorem 8.3] and [Har19, Theo-
rem 7.6] identifies the p-divisible module associated to a Drinfeld module E over
S P N ilpFJϖK the local shtuka at 0 of any Drinfeld shtuka associated to E by the
comparison. We call this local shtuka the local shtuka at 0 (or the local shtuka at p)
of the Drinfeld module E. By [Dri76, Proposition 1.7], the Newton polygon of the
local shtuka at p associated to a Drinfeld module of height h over an algebraically
closed field in characteristic p is given by (1/h, . . . , 1/h, 0, . . . , 0).

2.2.2. Strong stratification property of the Newton stratification

The existence of supersingular Drinfeld modules then implies the non-emptiness of the
basic Newton stratum in Shtr.

Proposition 2.2.5. Let b0 = ((�1/r, . . . ,�1/r), (1/r, . . . , 1/r)) P B(GLr,K8)�B(GLr,K0).
Then the basic Newton stratum Shtr,b0 � Shtr,F0 is non-empty.

Proof. By Remark 2.2.4 and Proposition 2.2.3 a basic Drinfeld module in characteristic p,
that is, a Drinfeld module of both rank and height r, defines a point in Shtr,b0 . But basic
Drinfeld modules in characteristic p exist by [KY20, Proposition 7.4.1].

As a next step, we study closure relations among the Newton strata. The result may be
well-known to experts. The author was unable to track down a precise reference. The
corresponding statement for Shimura varieties in the Siegel case is due to [Oor01] and
has been generalised to the PEL case by [Ham15].
For a pair of closed points y = (y1, y2) of X we define a partial order on B(GLr,Ky1 )�

B(GLr,Ky2 ) (and also on B(GLr,Ky1 , µ1)�B(GLr,Ky2 , µ2) for a pair of cocharacters µ1, µ2
of GLr) by by = (by1 , by2) ¤ b1y = (b1y1 , b

1
y2) if by1 ¤ b1y1 and by2 ¤ b1y2 . Let us fix the

cocharacters µ1 = (0, . . . , 0,�1) and µ2 = (1, 0, . . . , 0) of GLr.
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Theorem 2.2.6. The Newton stratification on Shtr,F0 satisfies the strong stratification
property. In other words, for all b P B(GLr,8, µ1)�B(GLr,0, µ2) we have

Shtr,b =
¤
b1¤b

Shtr,b1 = Shtr,¤b .

Moreover, all the Newton strata Shtr,b for b P B(GLr,8, µ1)�B(GLr,0, µ2) are non-empty.

Viehmann in [Vie20, Remark 5.6.] remarks that the assertion should follow by a similar
argument as in [Ham15] for Shimura varieties of PEL type.

Proof. Let b0 correspond to ((1/r, . . . , 1/r), (�1/r, . . . ,�1/r)), which is the unique basic
point in B(GLr,K8 , µ1)�B(GLr,K0 , µ2). By Proposition 2.2.5 the Newton stratum Shtr,b0
is non-empty. The non-emptiness of the other strata will follow from the closure relations.
Now, let b P B(GLr,K8) � B(GLr,K0) and assume that Shtr,b is non-empty. We fix a

point s P Shtr,b and let R be its universal deformation ring. Then s lies in the closure
of some Shtr,b1 for b1 ¤ b if and only if the same is true in the Newton stratification
on SpecR. By the Serre-Tate Theorem (Proposition 2.1.11) the universal deformation
ring factors as SpecR = SpecR8 � SpecR0, where R� is the universal deformation
ring of the corresponding local shtuka at � = 8, 0. Under this isomorphism we have
Spec(R)b = Spec(R1)b8�Spec(R2)b0 , where we denote by Spec(R�)b� the corresponding
Newton strata in SpecR� for � = 8, 0. On SpecR� the closure properties hold by [Vie13,
Theorem 2, Lemma 21 (2)], and thus they hold on SpecR. This proves the assertion.

Remark 2.2.7. In a similar fashion, there is a Newton stratification on the moduli space of
Drinfeld modules in characteristic p defined via the local shtukas as defined in Remark 2.2.4
(3). The Newton stratifications are clearly compatible with the projection Shtr,b8,F0 Ñ
Dr-Modr,F0 in the fibre over 0 from Remark 2.2.4 (2). Thus, the Newton stratification on
Drinfeld modules retains the strong stratification property as in the theorem above.

Corollary 2.2.8. Let E be a Drinfeld shtuka over a complete local noetherian ring R with
algebraically closed residue field ℓ such that the characteristic of Eℓ factors through 0. Then
there exists a Drinfeld module E over R such that the local shtukas at 0 of E and E are
isomorphic.

Proof. The case where R = ℓ is a field directly follows from the non-emptiness of Newton
strata of Theorem 2.2.6 and Remark 2.2.7. The case that R is local artinian then follows
from the Serre-Tate Theorem 2.1.11, and the general case that R is a complete noetherian
local ring with algebraically closed residue field follows from the fact that Dr-Modr is of
finite type over Fq and [HV11, Proposition 3.16].
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2.2.3. The pn-torsion scheme of a Drinfeld shtuka.

We briefly explain how to construct a scheme of pn-torsion points of a shtuka, which will
play the role of the pn-torsion points of an elliptic curve. The construction goes back to
[Dri87b]. Let F be a ϕ-sheaf (for example a pn-torsion shtuka) over S. We set

Drq(F) = Spec (Sym
F) /I,

where I is the ideal locally generated by the sections vbq � ϕ(σ�v). It induces a con-
travariant functor from the category of ϕ-sheaves to the category of finite locally free
group schemes with Fq-action over S. Assume S = SpecR is affine, F = Rr is trivial and
ϕ is given by the Matrix (aij). Then

Drq(F) = Spec

(︄
R[Y1, . . . , Yr]/

(︄
Y q
1 �

ŗ

i=1

ai1Yi, . . . , Y
q
r �

ŗ

i=1

airYi

)︄)︄
.

Proposition 2.2.9 ([Dri87b, Proposition 2.1], [Abr06, Theorem 2] and [HS19, Theorem
5.2]). Let F = (F , ϕ) be a finite shtuka of rank r on S. Then the group scheme Drq(F)
is finite locally free of rank qr over S, étale over S if and only if ϕ is an isomorphism, and
radicial over S if and only if ϕ is locally nilpotent on S. Moreover, the functor Drq is Fq-linear
and exact. Its essential image is characterised by the property that the Fq-action is strict in
the sense of [Fal02].

Note that the notion of a strict Fq-action is a condition on the Fq action on the co-Lie
complex of a certain deformation of the group scheme. We do not need the exact definition
here and refer to [Fal02] or [HS19] for more details. In our setting the strictness of the
Fq-action will usually be automatic.

Definition 2.2.10. Let E be a rank r Drinfeld shtuka over S. We denote by

E [pn] = Drq(E |Dn,S )

the scheme of pn-division points of E .

The previous proposition implies that E [pn] is a finite locally free S-group scheme of rank
qnr with strict Fq-action. The O0/p

n-module structure on E |Dn,S gives rise to a canonical
O0/p

n-module structure on E [pn]. The finite shtuka equivalence in particular induces
an equivalence of quotients of E |Dn,S as pn-torsion shtukas and finite locally free closed
O/pn-module subschemes with strict Fq-action of E [pn].
By comparison with Drinfeld modules, we get the following explicit description of the

pn-torsion in characteristic p.
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Corollary 2.2.11. Let E be a Drinfeld shtuka over a complete local noetherian ring R with
algebraically closed residue field ℓ such that the characteristic of Eℓ factors through 0. Then
there exists a Drinfeld module E over R such that

E [pn] � E[pn]

as O0/p
n-module schemes over R for all n P N.

Proof. This follows directly from the corresponding assertion for the local shtukas in
Corollary 2.2.8.

Proposition 2.2.12. The scheme of pn-division points of a shtuka E of rank r over an
algebraically closed ℓ is given by the O0/p

n-module scheme

E [pn] = αqh � (p�n/O0)
r�h,

where the operation of ϖ on αqh is given by t ÞÑ tq
h , and where h is the height of E (we use

the convention h = 0 when the characteristic of E is away from 0).

Proof. We first consider the case that p is away from the characteristic of E . Then, E [pn]
is a finite étale scheme by the finite shtuka equivalence. It follows that étale locally
on S the O0/p

n-module scheme E [pn] is constant. Over geometric points, we have that
E [pn] � (p�n/O0)

r as the corresponding étale local shtuka is trivial by [AH14, Corollary
2.9]. In characteristic p, by the previous Corollary 2.2.11 it suffices to check the assertion
for Drinfeld modules, which then follows from [Leh09, 3, Proposition 1.5], [Leh09, 3,
Proposition 1.5] and [Leh09, 2, Corollary 2.4.].

Even more generally, we can embed the scheme of p-torsion points as a closed subscheme
of a smooth curve. However, this smooth curve will not be a Drinfeld module in general.

Proposition 2.2.13. Let E be a Drinfeld shtuka over S. Then étale-locally on S, the scheme
of pn-division points of E can be embedded as a closed subscheme of a smooth curve over S.
More precisely, we can étale-locally on S embed E [pn] as a closed subscheme of A1

S .

Remark 2.2.14. For one-dimensional p-divisible groups a similar statement is discussed
in [Fri19, Lemma 5.2.1], building on arguments from [HT01]. However, [Fri19] claims
that an embedding even exists Zariski-locally on S, this seems to be problematic to us for
the following reason. Let us assume that S is the spectrum of a finite field. We assume
that the étale part of E [pn] is non-trivial and constant over S. Then the number of rational
points of E [pn] tends to infinity as nÑ8. However, the number of S-rational points on
A1
S is bounded. In particular, it cannot be possible to embed E [pn] into A1

S for all n P N.
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For the proof of the proposition, we essentially adapt the proof of [Fri19, Lemma
5.2.1], but we allow finite extensions on the residue fields in order to circumvent the issue
discussed above. So we only get an étale local statement.

Proof. We adapt the proof of [Fri19, Lemma 5.2.1]. We first consider the case that
S = Spec ℓ is the spectrum of an algebraically closed field. In this case, the assertion
follows from the explicit description of E [pn] in Proposition 2.2.12.
For the general case, we may by reduction to the universal case assume that S is

locally of finite type over Fq. As the statement is local on S, we may further assume that
S = Spec(R) is affine and of finite type over Fq. Then E [pn] = Spec(B) is affine as well.
We fix a closed point s P S. By the argument above, there exists a finite extension F of
the residue field k(s) (which is finite by assumption) at s such that there exists a closed
immersion E [pn]F ãÑ A1

F over F, in other words a surjection F[t] ↠ B b F. By [Stacks,
Tag 00UD] there exists an étale neighbourhood SpecR1 Ñ SpecR of s and a point s1 over
s such that the extension of residue fields k(s) Ñ k(s1) is given by k(s) Ñ F. We can
thus lift the surjection to a map R1[t] Ñ B b R1 by choosing a lift of the image of t. By
Nakayma’s lemma this is a surjection over some R1

f , where f P R1 is not contained in the
maximal ideal at s1. In other words, E [pn]F ãÑ A1

F extends to E [pn]R1f ãÑ A1
R1f

over the
étale neighbourhood Spec(R1

f ) of s.

We conclude this section by collecting some consequences on isogenies of Drinfeld
shtukas. Using the finite shtuka equivalence we see that a chain of pn-isogenies of type
(r1, . . . , rm) on a Drinfeld shtuka E is equivalent to the data of a flag

0 � H1 � H2 � . . . � Hm � E0[p
n]

of finite locally free submodule schemes Hi � E [pn] of rank qn�(r1+...+ri) over S with strict
Fq-action. In particular, Hi/Hi�1 has rank qnri and has an induced strict Fq-action.

Proposition 2.2.15. The stack Shtr,(r1,...,rm)�pn-chain is a Deligne-Mumford stack locally of
finite type over Fq. The forgetful map to Shtr given by projection to E is schematic and finite.
Moreover, the forgetful map Shtr,(r1,...,rm)�pn-chain Ñ Shtr is finite étale away from 0.

Proof. Let E P Shtr(S). The functor on S-schemes

T ÞÑ

"
flags of quotients E |Dn,T ↠ F1 ↠ . . .↠ Fm ↠ 0 of pn-torsion
finite shtukas such that Fi has rank n(r1 + . . .+ ri) as OT -module

*
is representable by the closed subscheme of a certain flag variety of quotients of E |Dn,S
(as OS-module) where both the map σ�E |Dn,S Ñ E |Dn,S and the O0/p

n-module structure
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descend to all the Fi. As the flag variety is projective, we see that Shtr,(r1,...,rm)�pn-chain Ñ
Shtr is schematic and projective.

In order to show finiteness of the map we proceed as in the proof of [KM85, Proposition
6.5.1]. By [EGA4, Corollaire 18.12.4] it suffices to show that the map has finite fibres.
Let ℓ be an algebraically closed field and let E be a rank r shtuka over ℓ. It suffices to show
that E [pn] only has finitely many submodule schemes. We know by Proposition 2.2.12
that for some h ¥ 0 we have

E [pn] � αqh �
(︁
p�n/O0

)︁r�h
.

As ℓ is in particular perfect, any O0/p
n-submodule scheme H � E [pn] factors as H �

Hconn � Hét but for both factors (which are necessarily submodule schemes of αqh and
(p�n/O0)

r�h, respectively) there are only finitely many possibilities.
The étaleness away from 0 follows for example from [Var04, Lemma 3.3 a)].

2.3. Drinfeld Γ1(p
n)-level structures on shtukas

In this section, we introduce Γ1-type (Drinfeld-) level structures on Drinfeld shtukas
adapting similar constructions for Drinfeld modules and elliptic curves. We show that
the moduli space of Drinfeld shtukas with these level structures is regular following the
arguments of [KM85]. For Drinfeld modules, full Drinfeld level structures were studied
extensively starting with [Dri76], compare for example also [Leh09]. For other kinds of
level structures some results are known, [Sha07] considers Γ1(p)-level structures in the
rank 2 case and [KY20] study level structures for arbitrary torsion modules and higher
rank Drinfeld modules.

We propose a slightly different generalisation of aM -level structure on Drinfeld shtukas
for a p-torsionO0-moduleM . In this notation (p�n/O0)

r-structures are full level structures
and in the rank 2 case (p�n/O0)-strucutres are Γ1(p

n)-level structures. For us, it does not
seem to be a priori clear that our definition and the analogue of [KY20] agree, even for
full level, as is claimed in [KY20, (4.1.2.)]. For full level structures on Drinfeld modules,
this follows from a deep result on the deformation theory of [Leh09, Proposition 3.3]. We
show that the two definitions agree in general in a similar fashion. One could also directly
adapt the definition of [KM85], as does for example [Tae06]. However, it seems to us that
this definition does not give the correct moduli space, see Remark 2.3.4.
Moreover, we define analogues of balanced level structures of [KM85] and use this

notion of balanced level structure to give a definition of Γ1(p
n)-level structure for Drinfeld

shtukas of arbitrary rank and arbitrary n P N in Definition 2.3.15.
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2.3.1. M-Structures on Drinfeld shtukas

In order to define Drinfeld level structures we use the notion of full sets of sections, compare
[KM85, Section 1.8]. When working with closed subschemes of a smooth curve, this can
be expressed in terms of Cartier divisors by [KM85, Theorem 1.10.1]. Katz and Mazur
hoped that the notion of ”full sets of sections” might be useful to define level structures for
higher dimensional abelian varietes. However, this notion gives rise to a moduli problem
which is not even flat over Z in general (compare [CN90]). Nevertheless, these issues
do not appear in our setting, as Proposition 2.2.13 allows us to locally work with Cartier
divisors in A1. Note that in a similar fashion Drinfeld level structures are well-behaved
when working with one-dimensional p-divisible groups, as do [HT01] and [Sch13].

LetM be a finitely generated pn-torsion O0-module. In order to defineM -structures
on Drinfeld shtukas, we would like for an O0-module homomorphism ι : M Ñ E [pn](S)
to induce a (unique) scheme generated by ι, similar to the Cartier divisor generated by
an Γ1(p

n)-Drinfeld level structure on elliptic curves. In other words, we are looking for a
unique finite locally free scheme over S such that the image of ι forms a full set of sections
for S in the sense of [KM85, Section 1.8]. This notion is defined as follows. Let Z be a
finite locally free S-scheme of rank N . A set of sections P1, . . . , PN P Z(S) is called full set
of sections of Z if for every affine S-scheme Spec(R)Ñ S and every f P Γ(ZR,OZR) we
have Norm(f) =

±N
i=1 f(Pi). By [KM85, Theorem 1.10.1], when Z ãÑ C is embedded as

a relative effective Cartier divisor in a smooth curve C over S, the set P1, . . . , PN P Z(S)
is a full set of sections of Z if and only if Z =

°N
i=1[Pi] as Cartier divisors in C.

Recall that in general, that given a set of sections P1, . . . , PN 1 P Z(S) we can neither
expect that a finite locally free subscheme Z 1 of Z of rankN 1 such that P1, . . . , PN 1 forms a
full set of sections of Z 1 exists nor that it is unique when it exists (compare [KM85, Remark
1.10.4]). However, Proposition 2.2.13 allows us to construct such a unique scheme in the
cases we are interested in.

Lemma 2.3.1. Let E be a Drinfeld shtuka over S and let M be a pn-torsion module. Let
ι : M Ñ E [pn](S) be an O0-linear map.

(1) Assume there exists a closed immersion E [pn] ãÑ C into a smooth curve C over S. Then
there exists a unique finite locally free closed subscheme H of C such that the image of
ι (in C(S)) forms a full set of sections for H.

(2) There exists at most one finite locally free closed subscheme H � E [pn] such that the
image of ι forms a full set of sections for H.

(3) There exists a (by the previous point necessarily unique) finite locally free closed
subscheme H of E [pn] such that ι gives a full set of sections for H if and only if the
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following equivalent conditions are satisfied:
a) For all étale maps U Ñ S and all closed immersions E [pn]U ãÑ C into a smooth

curve over U , the Cartier divisor defined by the image of ι in C(U) is a subscheme
of E [pn]U .

b) There exists an étale cover tUiuiPI of S and for each i P I a smooth curve Ci over
Ui together with a closed immersion E [pn]Ui ãÑ Ci such that the Cartier divisor
defined by the image of ι in Ci(Ui) is a subscheme of E [pn]Ui for all i P I.

The existence of such an H is a closed condition on S, defined locally on S by finitely
many equations.

Proof. (1) This is [KM85, Theorem 1.10.1]. The scheme H is the Cartier divisor°
αPM [ι(α)].

(2) This is clear from the previous point, as étale-locally on S, E [pn] admits an embedding
into a smooth curve over S by Proposition 2.2.13.

(3) It is clear that the existence of an H implies condition (a), and that condition (a)
implies (b) using Proposition 2.2.13. Let us now assume that condition (b) is
satisfied. We denote by Hi the Cartier divisor in Ci defined by ι. We can glue the Hi
to form a finite locally free scheme H over S by the uniqueness in the previous point.
It is clear that ι forms a full set of sections for H, this can be checked étale-locally
on S.
In order to check that the locus of existence of H is closed in S, we may choose an
étale cover tUiu of S together with embeddings of E [pn] into a smooth curve over
Ui. The assertion on Ui follows from [KM85, Key Lemma 1.3.4].

We can now give our definition ofM -structures for shtukas.

Definition 2.3.2. Let E P Shtr(S) be a rank r shtuka over S. LetM be a finitely generated
O0/p

n-module. A M -structure on E is an O0-module homomorphism ι : M Ñ E [pn](S)
such that there exists a finite locally free subscheme H of E [p] of rank |M [p]| such that the
image of the restriction ι|M [p] of ι to the p-torsion forms a full set of sections for H in the
sense of [KM85, Section 1.8].

Remark 2.3.3. Note that in the theory of Drinfeld modules the modules M and E [p]
would usually be considered as p-torsion A-modules, where A = Γ(Xzt8u,OX). As
A/pn � O0/p

n this does not give a different notion of level structures. In our context,
working with O0- instead of A-modules seems more natural and should stress that the
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level structure only depends on local data of E at 0 and in particular not on the choice of
8.

Remark 2.3.4. Our definition is an analogue of Drinfeld’s original definition of full level
structures in [Dri76]. The definition in [KM85] for elliptic curves is slightly different.
The direct analogue of their definition asserts that there is a finite locally free subgroup
scheme H � E [pn] of rank |M | such that ι is a full set of sections for H (instead of the
corresponding assertion only for the p-torsion). We show that this is implied by our
definition in Proposition 2.3.10. For full level structures on Drinfeld modules, [Leh09, 3,
Proposition 3.1] and [Wie10] show that the two notions are equivalent. However, this
is not true in general as we can see in the following example. Consider X = P1

Fq , and
S = D2 = 2[0] = Spec(Fq[ζ]/(ζ2)) viewed as an X-scheme via the canonical inclusion.
Then the map

ϕ : σ�O2
XS

(︂
0 ϖ�ζ
1 �ζ

)︂
ÝÝÝÝÑ O2

XS

defines a rank 2 Drinfeld shtuka over S. Its schemes of p- and p2-torsion points are given
by

E [p] = Spec
(︂
R[t]/(tq

2
+ ζtq + ζt)

)︂
and E [p2] = Spec

(︂
R[t]/(tq

4
+ ζtq

3
+ ζtq

2
)
)︂
,

respectively. Then the constant zero map ι : p�2/O0 Ñ R,ϖ�2 ÞÑ 0 defines the subscheme
of Spec(R[t]/(tq2)) � E [p2]. However, the restriction of ι to p�1/O0 induces the subscheme
Spec(R[t]/(tq2)) of E [p2], which is not a subscheme of E [p]. Thus, ι is not an p�2/O0-
structure in the sense of our definition. Hence, the definition of [KM85] does not yield
well-defined level maps in our setting and thus does not seem to be adequate here.

We also do not require the subscheme defined by ι to be a subgroup scheme as we show
this is already automatic below in Proposition 2.3.10. Moreover, we show that it is even
automatically an O0-module subscheme.

Proposition 2.3.5. Let E P Shtr(S) be a Drinfeld shtuka over S and let M be a finitely
generated O0/p

n-module. Let ι : M Ñ E [pn](S) be aM -structure on E and letM 1 �M be
a submodule. The restriction of ι toM 1 defines aM 1-structure on E .

Proof. Étale locally, the Cartier divisor defined by the restriction of ι toM 1[p] is a closed
subscheme of the Cartier divisor defined by ι|M [p], which in turn is a closed subscheme of
E [p] by assumption. The assertion follows from Lemma 2.3.1.

In the étale case, we have the following descriptions ofM -structures.
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Proposition 2.3.6. Let E P Shtr(S) be a Drinfeld shtuka over S and let M be a finitely
generated O0/p

n-module. Let ι : M Ñ E [pn](S) be an O0-module homomorphism. The
following are equivalent:

(1) For every geometric point Spec ℓÑ S, the induced homomorphism

ιℓ : M Ñ E [pn](ℓ)

is injective.

(2) The map ι defines a locally free closed subscheme of E [pn] which is finite étale over S.

(3) The map ι defines a closed immersion of O0/p
n-module S-schemes

MS ãÑ E [pn]

and ι is a full set of sections for the image of this map (as subscheme of E [pn]).

If the equivalent conditions (1)-(3) are satisfied, ι is aM -structure on E . Moreover, when S
is connected, these conditions are equivalent to saying thatM Ñ H(S) is an isomorphism of
O0-modules for some constant closed finite locally free O0-module subscheme H of E .

Moreover, these conditions are automatically satisfied when the characteristic of E is away
from 0 and ι is aM -structure on E .

Proof. We adapt the proof of an analogous assertion for elliptic curves in [KM85, Lemma
1.4.4].
(2)ô (3): This follows directly from the set-theoretic analogue in [KM85, Proposition
1.8.3].
(1)ô (3): The map ι defines a map of O0-module schemesMS Ñ E [pn]. We may work
étale-locally on S and assume that we can embed E [pn] into a smooth curve C over S. Let
us denote by D the Cartier divisor in C defined by ι. We can check that the natural map
MS Ñ D is an isomorphism on geometric points as in the proof of [KM85, Lemma 1.4.4.],
and this is clearly satisfied if and only if ι is injective on geometric points.

Let us now assume that (1)-(3) are satisfied. By (3) the restriction of ι toM [p] defines
a subscheme of E [p]. Thus, ι is aM -structure on E .
Now assume that p is away from the characteristic. Let ι be a M -structure on E . We

check that condition (1) is satisfied. Let Spec ℓ Ñ S be a geometric point of S. By
Proposition 2.2.12, we have an O0-linear isomorphism E [pn](ℓ) � (p�n/O0)

r. Now ιℓ
is injective if and only if the restriction ιℓ|M [p] is injective, as multiplying a non-trivial
element m in the kernel of ιℓ by the maximal power of ϖ that does not kill m produces a
non-trivial element in the kernel of ιℓ|M [p]. The injectivity of ιℓ|M [p] follows by assumption
and the implication (2)ñ (1) in the n = 1 case.
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Remark 2.3.7. If the characteristic is away from 0, Drinfeld level structures agree with
corresponding classical level structures. Let E P Shtr(S) be such that the characteristic is
away from 0. By the previous Proposition 2.3.6, a full level structure is an isomorphism of
étale O0/p

n-module schemes over S(︁
p�n/O0

)︁r
S

�
ÝÑ E [pn]

by. By [Dri87b, Proposition 2.2], this is the same as giving a trivialisation of E |Dn,S .

2.3.2. Regularity of the moduli stack of shtukas with M-structures

We show the main result onM -structures: the corresponding moduli problem gives rise
to a Deligne-Mumford stack, which we show to be regular following the corresponding
result on elliptic curves in [KM85].

Proposition 2.3.8. Let E be a Drinfeld shtuka over S and let M be a finitely generated
O0/p

n-module. The functor on S-schemes

T ÞÑ tM -structures on ET u

is representable by a finite S-scheme locally of finite presentation. Moreover, it is finite étale
over S if p is away from the characteristic of E and can in this case étale locally on S be
represented by the constant S-scheme

S � tinjective O0-module homomorphismsM ãÑ (p�n/O0)
ru.

Proof. We proceed as in the proof of the corresponding assertions for elliptic curves in
[KM85, Proposition 1.6.2, Proposition 1.6.4 and Corollary 3.7.2]. By the classification of
finitely generated modules over principal ideal domains, there exists an isomorphism of
O0/p

n-modulesM � (O0/p
n1)` . . .` (O0/p

nm) for somem ¥ 0 and integers 1 ¤ ni ¤ n
for 1 ¤ i ¤ m. Using this isomorphism, we find for a scheme T over S that

HomO0(M, E [pn](T )) =
¹
i

HomO0/pni (O0/p
ni , E [pni ](T )) =

¹
i

E [pni ](T ).

The functor of M -structures on E is clearly represented by the closed subscheme of±
i E [pni ](T ) over which the universal homomorphism defines aM -structure on E . This is

a closed subscheme defined locally by finitely many equations by Lemma 2.3.1.
Now assume that the characteristic of E is away from 0. By the above, it suffices to show

that the scheme is formally étale. Therefore, let T0 � T be a closed subscheme defined by
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a locally nilpotent sheaf of ideals. Let ι0 be aM -structure on ET0 . Then ι0 factors through
E [pn](T0). As p is away from the characteristic of E , the scheme E [pn] is étale over S. We
construct a map ι : M Ñ E [pn](T ) where we associate to m PM the unique lift of ι0(m)
to E [pn](T ). As lifts are unique, the O0-linearity of ι0 implies that ι is an O0-linear map
as well. We check that ι defines aM -structure on E . Using Proposition 2.3.6 this can be
done on geometric points, but the geometric points of T0 and T agree.
For the second claim, we may assume that E [pn] � (p�n/O0)

r
S by Proposition 2.2.12.

So, the claim follows from Proposition 2.3.6 (3).

We denote by Shtr,M the stack parametrising shtukas of rank r with aM -structure as
defined above.
Theorem 2.3.9. LetM be a submodule of (p�n/O0)

r. The stack Shtr,M is a regular Deligne-
Mumford stack locally of finite type over Fq. Moreover, the forgetful map Shtr,M Ñ Shtr is
schematic and finite flat. It is finite étale away from 0.
Proof. By Proposition 2.3.8, the forgetful map to Shtr is schematic and finite. In particular,
Shtr,M is a Deligne-Mumford stack locally of finite type over Fq (since Shtr is a DM-stack
locally of finite type over Fq). Also by Proposition 2.3.8, the forgetful map is finite étale
away from 0.
We proceed as in the proof of [KM85, Theorems 5.1.1 and 5.2.1]. Again since Shtr is a

smooth DM-stack of dimension (2r � 1) over Fq, we find an étale presentation S Ñ Shtr
by a (2r � 1)-dimensional smooth scheme S over Fq. We denote by T = S �Shtr Shtr,M .
We denote by U � S the set of points in s P S such that the local rings at all points in

T over s are regular. Then U is open in S, as its complement is the image under a finite
(hence closed) map of the non-regular locus in T , which is closed in T as T is locally of
finite type over a perfect field.

In order to show that U = S, it suffices to show that all closed points of S are contained
in U . As the map T Ñ S is étale away from 0, clearly all points away from 0 are contained
in U . It remains to check that all closed points in the fibre over 0 are in U . By passing to
the completion of the strict henselisation we are reduced to showing that for all ℓ-valued
points s̄ of S in the fibre over 0, where ℓ is an algebraic closure of Fq, the complete local
rings at all ℓ-valued points of T over s̄ are regular. Note that the completion of the strict
henselisation at a closed point s P S over 0 is then given by Osh

S,s
y = OpSℓJϖK,s, where SℓJϖK

denotes the base change S �X Spec(ℓ JϖK).
Let us fix some ℓ-valued point s̄ of S over 0 and let E0 P Shtr(ℓ) be the corresponding

shtuka. By [Stacks, Tag 07N9], the disjoint union of the spectra of the completions of all
local rings at ℓ-valued points of TℓJϖK over s is given by the scheme

T 1 = TℓJϖK �SℓJϖK Spec(OpSℓJϖK,s).
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As S is étale over Shtr, we get by [Dri76, Proposition 3.3] that

OpSℓJϖK,s � ℓ Jϖ,T1, . . . , T2r�2K ,

which identifies the pullback of the universal shtuka to Spec(OpSℓJϖK) with the universal
deformation E of E0. In particular, T 1 = (Shtr,M )E := Shtr,M �Shtr Spec(OpSℓJϖK,s), where
we interpret E as the corresponding Spec(OpSℓJϖK,s)-valued point of Sht1r.
Thus, by construction, T 1 only depends on the scheme of pn-torsion points of E (and

thus on its local shtuka at 0 by [Har19, Theorem 7.6]), which in turn by the Serre-Tate
Theorem (Proposition 2.1.11) only depends on the local shtuka at 0 of E0, which are
classified up to isomorphism by their Newton polygons. In particular, s̄ is contained in U
if and only if U contains all points in the fibre over 0 in the same Newton stratum. By
Theorem 2.2.6 it thus suffices to show that U contains a basic point.

Let thus s̄ be a basic point in characteristic p (recall that such a point exists by Proposition
2.2.5) corresponding to a shtuka E0. By Proposition 2.2.12, we get that E0[p

n](ℓ) = t0u
for all n P N, so in particular the only possible M -structure is the zero map (which is
readily checked to be aM -structure asM is a submodule of (p�n/O0)

r), so there is exactly
one point lying over s̄. This means that T 1 is the spectrum of the complete local ring
pro-representing the deformation functor of the unique point lying over s̄. Note that since
E is basic, the associated divisible module at 0 is formal (in the sense of [Dri76, §1] or
[HS19, Definition 1.1]). As M -structures only depend on the local shtukas, the Serre-
Tate Theorem is also compatible withM -structures and we are thus reduced to showing
that the deformation functor of formal modules withM -structures is representable by a
r-dimensional regular local ring.
This can be shown as in [Dri76, Proposition 4.3]. We sketch the argument. We write

M = (p�n1/O0) ` . . . ` (p�nr1/O0). Note that by assumption r1 ¤ r. The lemma
in the proof of [Dri76, Proposition 4.3] shows that the deformation functor on for-
mal modules with (p�1/O0)

r1-structure is pro-represented by a complete regular local
ring R1 finite flat over R0 = ℓ Jϖ,T1, . . . , Tr�1K whose maximal ideal is generated by
ι(e1), . . . ι(er1), Tr1 , . . . , Tr�1, where e1, . . . , er1 is a basis of (p�1/O0)

r1 and ι is the univer-
sal (p�1/O0)

r1-structure. This settles the case thatM is p-torsion. As a next step we show
the claim forM [pm] by induction on m. Let us assume that a complete regular local ring
Rm finite flat over Rm�1 pro-represents the deformation functor of formal modules with
M [pm]-level and that ιm(ϖ�mintn1,mu), . . . , ιm(ϖ

�mintnr1 ,mu), Tr1 , . . . , Tr forms a system
of local parameters for Rm, where ιm is the universalM [pm]-level structure. Let us denote
by i1, . . . , ij the indices such that ni ¡ m. Then

Rm+1 = Rm

r
T̃ i1 , . . . , T̃ ij

z
/(eϖ(T̃ i1)�ιm(ϖ

�mintni1 ,mu), . . . , eϖ(T̃ ij )�ιm(ϖ
�mintnij ,mu)).
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This also shows that Rm+1 is regular and finite flat over Rm. Moreover, it has a system of
local parameters as desired.

The regularity allows us to collect some consequences. We show that a M -structure
defines an O0-module subscheme H � E [pn].

Proposition 2.3.10. Let E P Shtr(S) and let ι : M Ñ E [pn](S) be aM -structure on E for
some submoduleM � (p�n/O0)

r.

(1) There exists a (necessarily unique) finite locally free closed subscheme H � E [pn] of
rank |M | such that the image of ι forms a full set of sections for H.
Moreover, for each submoduleM 1 ofM the restriction of ι toM 1 defines aM 1-structure
on E and in particular there exists a finite locally free closed subscheme HM 1 of E of
rankM 1 such that ι|M 1 forms a full set of sections for HM 1 .

(2) H is an O0-module subscheme of E [pn] such that the Fq-module structure on H is strict.

We call H the subscheme generated by ι and the map ι aM -generator of H. To be more
precise, when we say that a map ι is aM -generator of a finite locally free closed subscheme
H � E [pn] of rank |M |, we really mean both that ι gives a full set of sections of H and
that ι is aM -structure on E (recall that the first condition does not imply the second one,
compare Remark 2.3.4).

For full level structures on Drinfeld modules the assertion is essentially shown in [Leh09,
3, Proposition 3.3.]. The proposition also implies that for generalM -structures on Drinfeld
modules our definition agrees with the one given in [KY20].

Proof. That the restriction toM 1 defines aM 1-structure is Proposition 2.3.5 and thus, the
second statement in (1) follows from the first. In order to show both the first part of (1)
and (2), we may assume by reduction to the universal case that S is locally noetherian and
flat over X 1. Both assertions are true away from 0 by Proposition 2.3.6. It thus remains
to show that the conditions are closed in both cases. For the first part of (1) this follows
from Lemma 2.3.1.

For (2) we may additionally assume that S = Spec(R) is affine and that we can embed
E [pn] in A1

R as the assertion is étale local on S (for the strictness of the Fq-action this is
[Har19, Lemma 4.4]). The locus where the group structure on E restricts to a group
structure on H is closed by the argument of [KM85, Corollary 1.3.7].

By the discussion above, we can write E [pn] = Spec(R[t]/(f)) for somemonic polynomial
f P R[t] and H = Spec(R[t]/(g)) for some monic polynomial g P R[t] such that f P (g).
Then the O0/p

n-module structure restricts to H if and only if for each a P O0/p
n the map

ea induces a map
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R[t]/(f) R[t]/(f)

R[t]/(g) R[t]/(g),

ea

in other words, that ea(g)(t) = g(e7a(t)) � 0 mod g, where e7a(t) P R[t] is a polynomial
defining the map ea. Thus, the locus where H is an O0/p

n-module subscheme is the closed
subscheme of Spec(R) where all the coefficients of the remainders of g(e7a(t)) modulo g
vanish. Note that this is clearly independent of the choice of e7a.

It remains to show that the locus where the Fq-action is strict is closed. As E [pn] carries a
strict Fq-action by construction, we have a lift of the Fq-action to E [pn]5 = Spec(R[t]/(tf))
by [HS19, Lemma 4.4]. By the same argument as for the O0/p

n-module structure, the Fq-
action restricts to a map on the deformationH5 = Spec(R[t]/(tg)) � E [pn]5. That it induces
the correct operation on the co-Lie complex of (H,H5) is again a closed condition.

We now defineM -cyclic isogenies.

Definition 2.3.11. Let E P Shtr(S) and letM be a finitely generated pn-torsion module.

(1) AM -generator of a finite locally free subscheme H � E [pn] is aM -structure ι on ES1
such that the subscheme of E [pn]S1 defined by ι is HS1 .

(2) A finite locally free subscheme H � E [pn] is calledM -cyclic if there is an fppf cover
S1 Ñ S such that HS1 admits aM -generator.

(3) A pn-isogeny of Drinfeld shtukas f : E Ñ E 1 is called M -cyclic if Drq(coker(f)) is
M -cyclic.

Note that aM -cyclic subscheme necessarily has rank |M |. We also use the term pn-cyclic
as abbreviation for (p�n/O0)-cyclic submodule schemes or isogenies, respectively.

Lemma 2.3.12. LetM be a submodule of (p�n/O0)
r. EveryM -cyclic subscheme H � E [pn]

is an O0-module subscheme with strict Fq-action.

Proof. All of the assertions can be checked fppf-locally on the base, where they follow
from Lemma 2.3.10.

We collect two representability results.
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Proposition 2.3.13. Let E P Shtr(S) and assume that its characteristic is away from 0. Let
M be a finitely generated O0/p

n-module. Then the functor on S-schemes

T ÞÑ tM -cyclic subgroups of E [pn]T u.

is representable by a finite étale S-scheme. Moreover, étale locally on S the functor is
representable by the constant S-scheme

S � tsubmodules of (p�n/O0)
r isomorphic toMu.

Proof. We proceed as in the proof of [KM85, Theorem 3.7.1]. By descent for finite locally
free schemes and closed immersions, and the fact that cyclicity is local for the fppf-
topology by definition, the functor is a fppf (and hence an étale) sheaf. By étale descent,
it thus suffices to show the second statement. We may assume that E [pn] � (p�n/O0)

r
S

by Proposition 2.2.12. By the argument in the proof of [KM85, Theorem 3.7.1], over a
connected base T any finite locally free closed subgroup scheme of a constant scheme is
itself constant. The claim follows from the explicit description in Proposition 2.3.6.

Proposition 2.3.14. Let E P Shtr(S), letM be a finitely generated O0/p
n-module and let

H � E [pn] be a finite locally free closed O0-module subscheme of rank |M |. We consider its
functor of generators, i.e. the functor on S-schemes

T ÞÑ tM -generators of HT in the sense of Definition 2.3.11u.

It is representable by a finite scheme of finite presentation over S denoted by H�. Moreover,
it is finite étale when H is étale (in particular, when the characteristic of E is away from 0).

Proof. We adapt the proof of [KM85, Proposition 1.6.5]. The functor clearly is repre-
sentable by the closed subscheme of Hom(M,H) over which the universal homomorphism
is aM -structure on E (which is a closed condition locally defined by finitely many equations
by Proposition 2.3.8) and over which the subscheme defined by the universal homomor-
phism is H, which is also a closed condition given by finitely many equations by Lemma
2.3.1 and [KM85, Corollary 1.3.5].

If H is étale, we show as in the proof of Proposition 2.3.8 that H� is formally étale.

2.3.3. Balanced level structures for shtukas

Definition 2.3.15. Letm P N and let r1, . . . , rm be positive integers such that
°m
i=1 ri ¤ r.

A balanced pn-level structure of type (r1, . . . , rm) on a Drinfeld shtuka E over S is a chain
of isogenies

E(pn) = Em+1
fm+1
ÝÝÝÑ Em

fm
ÝÝÑ . . .

f2ÝÑ E1
f1ÝÑ E0 = E
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such that the composition fm+1 � . . . � f1 is the inclusion E(pn) Ñ E , together with
(p�n/O0)

ri-generators of Drq(coker(fi)) � E i[pn] for all 1 ¤ i ¤ m in the sense of
Definition 2.3.2. We denote by Shtr,pn-bal-(r1,...,rm) the stack parametrising Drinfeld shtukas
together with a balanced pn-level structure of type (r1, . . . , rm).

A Γ1(p
n)-level structure on a Drinfeld shtuka of rank r is a balanced pn-level structure of

type 1r = (1, . . . , 1) P Zr. We denote by Shtr,Γ1(pn) = Shtr,pn-bal-1r the stack of Drinfeld
shtukas with a Γ1(p

n)-level structure.

As for Drinfeld shtukas with chains of isogenies, we see that a balanced pn-level structure
of type (r1, . . . , rm) on a Drinfeld shtuka E is equivalent to the data of a flag

0 � H1 � H2 � . . . � Hm � E [pn]

of finite locally free submodule schemes Hi � E [pn] of rank n � (r1 + . . .+ ri) with strict
Fq-action together with (p�n/O0)

ri-generators of Hi/Hi�1 for all 1 ¤ i ¤ m.

Lemma 2.3.16. The stack Shtr,pn�(r1,...,rm)�bal is representable by a Deligne-Mumford stack
locally of finite type over Fq. The projection Shtr,pn�(r1,...,rm)�bal Ñ Shtr is schematic and
finite. Moreover, it is finite étale away from 0.

Proof. We have a well-defined map of stacks

Shtr,pn�(r1,...,rm)�bal Ñ Shtr,(r1,...,rm)�pn-chain .

This map is schematic, finite and moreover finite étale away from 0 by Proposition 2.3.14.
The assertions then follow from Proposition 2.2.15.

Proposition 2.3.17. The Deligne-Mumford stack Shtr,pn�(r1,...,rm)�bal is regular.

Proof. As in the proof of Theorem 2.3.9 it suffices to check that the deformation functor
of the p-divisible module of a basic point over 0 with balanced pn-level structure of type
(r1, . . . , rm) is pro-representable by a regular local ring. By [KM85, Proposition 5.2.2] it
suffices to show that the maximal ideal is generated by r elements.

Let (G0, (H0,i, ι0,i)1¤i¤m) be the p-divisible module of a basic Drinfeld shtuka of rank r
over an algebraically closed field ℓ in the fibre over 0 together with a balanced pn-level
structure of type (r1, . . . , rm) on G0. Note that G0 is automatically formal and the level
structure is unique, all the ι0,i are the zero map. Then by the Serre-Tate theorem the
deformation functor of (G0, (H0,i, ι0,i)1¤i¤m) is representable by a complete local ring
denoted by B. Let (G, ((Hi), (ιi))1¤i¤m) be the universal deformation over B. For every
1 ¤ i ¤ m we choose a basis e(i)1 , . . . , e

(i)
ri of (p�n/O0)

ri . We claim that the maximal
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ideal of B is generated by ιi(e
(i)
j ) for 1 ¤ i ¤ m and 1 ¤ j ¤ ri and Tr1+...+rm , . . . , Tr�1.

We proceed as in the proof of [KM85, Theorem 5.3.2., (5.3.5.)]. We need to check
that for every artin local ℓ JϖK-algebra R such that Tr1+...+rm , . . . , Tr�1 vanish in R every
deformation (G̃, ((H̃i), (ι̃i))1¤i¤m) on R such that all ι̃i are the constant zero maps is itself
constant.

Using [KM85, Lemma 1.11.3] we see inductively that the zeromap is an (p�n/O0)
r1+...+ri-

structure on Hi for all 1 ¤ i ¤ m. In particular, the zero map is an (p�n/O0)
r1+...+ri-

structure on G̃ and thus G is constant by the proof of Theorem 2.3.9.

We collect some consequences. We start by constructing balanced level structures
from (p�n/O0)

r1-structures. Let m P N and let r1, . . . , rm be positive integers such that
r1 =
°m
i=1 ri ¤ r. Let (E , ι) be a Drinfeld shtuka together with an (p�n/O0)

r1-structure
on S. For 1 ¤ i ¤ m the restriction of ι restricted to the first r1 + . . .+ ri components is
an (p�n/O0)

r1+...+ri-structure by Proposition 2.3.5 and thus defines an O0/p
n-submodule

scheme Hi of E [pn] by Proposition 2.3.10. We denote by ιi the induced map (p�n/O0)
ri Ñ

Hi/Hi�1(S).

Proposition 2.3.18. Let (E , ι) be a rank r Drinfeld shtuka together with an (p�n/O0)
r1-

structure over S. Using the notation as above, the flag of finite locally free closed submodule
schemes 0 = H0 � H1 � . . . � Hm � E [pn] together with the maps (ιi)1¤i¤m defines a
balanced pn-level structure of type (r1, . . . , rm) on E .

Proof. We follow the proof of [KM85, Theorem 5.5.2.]. By reduction to the universal case
and Theorem 2.3.9 we may assume that S is flat and affine over X 1. The assertion is clear
when the characteristic of E is away from 0. The condition that ιi generates Hi/Hi�1 is
closed and thus the assertion follows by flatness.

The proposition can also be applied in the following more general situation. Let E be a
Drinfeld shtuka together with a balanced pn-level structure of type (r1, . . . , rm) denoted by
((Hi), (ιi)). Let 1 ¤ m1 ¤ m and for each 1 ¤ j ¤ m1 let ij and r1i1+...+ij�1+1, . . . , r

1
i1+...+ij

be positive integers such that
°ij
i=1 r

1
i1+...+ij�1+i

= rj . By applying Proposition 2.3.18
to each ιj for 1 ¤ j ¤ m1, we obtain a well-defined balanced pn-level structure of type
(r11, . . . , r

1
i1+...+im1

) on E . This construction thus induces a map of stacks

Shtr,pn�(r1,...,rm)�bal Ñ Shtr,pn�(r11,...,r
1
i1+...+im1

)�bal . (2.1)

Corollary 2.3.19. The map (2.1) is finite locally free of constant rank. In particular, fppf-
locally on the base, any balanced pn-level structure of type (r11, . . . , r1i1+...+im1 ) on E can be
extended to a balanced pn-level structure of type (r1, . . . , rm) on E .
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Proof. We follow the proof of [KM85, Corollaries 5.5.3. & 5.5.4.] As both the stacks
Shtr,pn�(r1,...,rm)�bal and Shtr,pn�(r11,...,r

1
i1+...+im1

)�bal are regular r-dimensional, the map
(2.1) is necessarily finite flat. The degree can be computed in the étale case, where it is
clearly constant. The second assertion follows immediatly.

Corollary 2.3.20. Let E be a Drinfeld shtuka over S together with a balanced pn-level
structure of type (r1, . . . , rm) denoted by (Hi, ιi)1¤i¤m. Then Hi is (p�n/O0)

r1+...+ri-cyclic.

Proof. We use induction on i. For i = 1 the assertion is clear by definition. Let now i ¡ 1
and let us assume that Hi�1 is (p�n/O0)

r1+...+ri�1-cyclic. As the question is fppf-local on
S, we may assume that Hi�1 admits a generator over S. Then 0 � Hi�1 � Hi � E [pn]
together with the generators of Hi�1 and Hi/Hi�1 defines a balanced pn-level structure of
type (r1 + . . .+ ri�1, ri) on E . By Corollary 2.3.19, it can be completed fppf-locally to an
(p�n/O0)

r1+...+ri-structure. But this exactly means that Hi admits a generator fppf-locally
on S.

2.4. Drinfeld Γ0(p
n)-level structures on shtukas

We are now in a position to discuss Γ0(p
n)-level structures on Drinfeld shtukas. We closely

follow the exposition of [KM85, Chapter 6] for elliptic curves and adapt the arguments to
suit our situation.

2.4.1. Main theorem on pn-cyclic submodule schemes

The goal of this section is to show the following analogue of [KM85, Theorems 6.1.1 and
6.4.1].

Theorem 2.4.1 (Main Theorem on pn-Cyclic Modules). Let E P Shtr(S) be a Drinfeld
shtuka of rank r over a scheme S. Let H � E [pn] be a finite locally free O0/p

n-submodule
scheme of rank qn over S.

(1) Suppose that H is pn-cyclic and admits a generator ι. Let D � H be the finite locally
free subscheme of H of rank qn�1(q� 1) defined by the restriction of ι to (p�n/O0)

� =
(p�n/O0)z(p

�(n�1)/O0). Then D = H� as subschemes of H.

(2) H is pn-cyclic if and only if its scheme of generators H� is finite locally free over S of
rank

qn�1(q � 1).
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(3) Cyclicity of H is a closed condition, in the sense that there is a closed subschemeW � S
locally of finite presentation over S such that for any T Ñ S the pullbackHT is pn-cyclic
if and only if T Ñ S factors throughW .

Proof. Assertion (3) follows from (2) by the flattening stratification as in the proof of
[KM85, Theorem 6.4.1]. We sketch the argument. As a first step we note that in the
case where S = Spec(k) is the spectrum of a field and H is not cyclic, we have H� =H.
Namely, any generator of H can be defined over a finite extension of k, but by assumption
H does not admit a generator after any finite extension of k. Hence, H� does not have
any field valued points and is thus the empty scheme.

As the question is Zariski-local on S and both H and E [pn] are of finite presentation over
S, we may assume that S = Spec(R) is affine and Noetherian. By the above argument,
the maximal rank of H� over S is qn�1(q � 1). By the flattening stratification, the locus
where H� has rank qn�1(q � 1) and hence H is cyclic by (2) is closed.

It is also clear that (2) follows from (1) as in [KM85, Theorem 6.1.1]. Namely, if H� is
finite locally free of rank qn�1(q�1), the diagonal map H� Ñ H�

H� is a section of H� after
base change along H� Ñ S. Hence, H admits a generator after the fppf base change to
H� and is thus pn-cyclic. Conversely, assume that H is pn-cyclic. The question is fppf-local
on S, we may thus assume H admits a generator. The assertion in this case follows from
(1).

It thus remains to show (1). We adapt the proof of [KM85, Theorem 6.1.1]. The
assertion is certainly true when the characteristic of E is away from p by Proposition 2.3.6.

As a first step we show that D � H�. It is clear by definition that D � H. By reduction
to the universal case and using Theorem 2.3.9, it suffices to consider the case when S is
Noetherian and flat over X 1 and as the question is local on S, we may further assume
that S = Spec(R) is affine. It follows that D is then also flat over X 1. In order to show
that D � H�, we show that the tautological section of H over D induced by the inclusion
D ãÑ H is a generator of HD. This is certainly true away from p. The claim follows from
the flatness ofD overX 1 and the fact that the locus whereD Ñ HD is a generator is closed
in D by Lemma 2.3.1. Hence, D ãÑ H factors over H� and the induced map D � H� is
necessarily a closed immersion.

In order to show that the closed immersion D ãÑ H� is an isomorphism, we introduce
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the following two auxiliary moduli problems.

X1(S) =

C
(E ,H, ι1, P ) :

E P Shtr(S), H � E [pn] an pn-cyclic submodule scheme,
ι1 P H�(S), P P D(S) such that tαP : α P (O0/p

n)�u
is a full set of sections for D

G

X2(S) =

B
(E ,H, ι1, ι2) :

E P Shtr(S), H � E [pn] an pn-cyclic submodule scheme,
ι1, ι2 P H�(S)

F
It is clear that X1 and X2 are stacks, and both map to Shtr,(p�n/O0) by forgetting P and
ι2, respectively. This maps are clearly schematic and finite as they are representable by
(a closed subscheme of) the finite schemes D and H�, respectively. Note that both X1

and X2 have a unique point lying over a supersingular point of Shtr over an algebraically
closed field in characteristic p.
Since D � H� there is a natural map X1 Ñ X2 over Shtr,(p�n/O0) which is an isomor-

phism away from p as noted above. We show that the map is an isomorphism. By an
argument as in the proof of Theorem 2.3.9 (compare also [KM85, Theorem 6.2.1]), it
suffices to check it is an isomorphism at the completed local rings at the unique points
lying over supersingular points over algebraically closed fields in characteristic p.
Let E0 P Shtr(ℓ) be a supersingular rank r Drinfeld shtuka over some algebraically

closed field ℓ in characteristic p and let E be its universal formal deformation over
B̃ = ℓ Jϖ,T1, . . . , Tr�1, Tr, . . . , T2r�2K. We denote by B = ℓ Jϖ,T1, . . . , Tr�1K. Note
that B pro-represents the deformation functor of the local shtuka of E0 at p. Recall
that (Shtr,(p�n/O0))E = Spec(B̃0) is an affine scheme, which is finite over B̃ and that B̃0

is a complete regular noetherian ring by Theorem 2.3.9. Then X1,E = Spec(B̃1) and
X2,E = Spec(B̃2) are affine schemes finite over B̃0 (and therefore also over B̃). Thus,
B̃1 and B̃2 are complete, local and noetherian rings. We have to check that the map
B̃2 Ñ B̃1 is an isomorphism. By the Serre-Tate theorem (which is clearly compatible
with all the relevant level structures as they only depend on the pn-torsion), we can write
B̃i = Bibℓ ℓ JTr, . . . T2r�2K for some complete, local and noetherian rings Bi finite over B.
Moreover, B0 is regular. It clearly suffices to check that B2 Ñ B1 is an isomorphism. Note
that since D � H� is a closed immersion, we obtain that the map B2 Ñ B1 is surjective.
By Corollary 2.2.11, we may assume that we can identify E [pn] in an A-linear fashion

with the pn-torsion of a Drinfeld A-module E with trivial underlying vector bundle (as the
base B is local). We have the following explicit descriptions of the rings B0, B1 and B2.
As B-algebras we find

B0 = B[P ]/I,

where I is the ideal expressing the fact that the map ι : p�n/O0 Ñ B[P ] = E(B[P ])
defined by ϖ�n ÞÑ P is a well-defined (p�n/O0)-structure. More precisely, I is generated
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by eϖn(P ), ea(P ), where (ϖn, a) = pn in A, (this implies that P P E [pn](B0) and thus that
the map can be extended A-linearly to a well-defined map ι) and the equations defining
the condition that

°
αPp�1/O0

[ι(α)] =
°
αPO0/p

[eαϖn�1(P )] is a subscheme of E [p] (this
condition is defined by finitely many equations by [KM85, Lemma 1.3.4.]). Recall that
B0 is a regular local ring with maximal ideal generated by P, T1, . . . , Tr�1 by the proof of
Theorem 2.3.9. In a similar fashion the rings B1 and B2 are given as B0-algebras as

B1 = B0[Q]/J ,

where J is the principal ideal generated by
±
αPO0/pn

(Q� eα(P )), and

B2 = B0[Q]/K,

where K is the ideal expressing the fact that Q defines an (p�n/O0)-structure as above
and defines the same submodule scheme as P , i.e. K is generated by eϖn(Q), ea(Q),
where (ϖ, a) = p in A, the equations defining the condition that

°
αPO0/p

[eαϖn�1(Q)]
is a subscheme of E [p] and the coefficients of the polynomial

±
αPO0/pn

(t � eα(Q)) �±
αPO0/pn

(t� eα(P )).
By [KM85, Lemma 6.3.4.], the multiplication by Q on B1 is injective. We denote by K

the kernel of the map B2 Ñ B1. Applying the snake lemma to the diagram

0 K B2 B1 0

0 K B2 B1 0,

where the vertical maps are given by multiplication by Q, yields the short exact sequence
(using the injectivity of multiplication by Q on B1)

0Ñ K/QK Ñ B2/QB2 Ñ B1/QB1 Ñ 0.

By Nakayama’s Lemma K vanishes if and only if K/QK vanishes. It thus suffices to show
that

B2/QB2 Ñ B1/QB1

is an isomorphism.
We proceed as in [KM85, Lemma 6.3.5]. From the explicit description of B1 and B2

above we get that

B1/QB1 = B0/J and B2/QB2 = B0/K,
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where J is the ideal generated by
±
α eα(P ) andK is the ideal generated by the coefficiens

of the polynomial tqn�
±
α(t�eα(P )), and the reductions of eϖn(Q), ea(Q), where (ϖ, a) =

p and the equations defining the condition that
°
αPO0/p

[eαϖn�1(Q)] is a subscheme of E [p]
modulo Q. It suffices to show that

±
α eα(P ) P K. We show that it is (up to multiplication

by a unit inB0) the coefficient of the term of degree qn�qn�1(q�1) of tqn�
±
α(t�eα(P )).

This coefficient is the sum of all qn�1(q � 1)-fold products of distinct elements of the set
teα(P ) : α P O0/p

nu.
By the definition of Drinfeld modules it follows that eα(P ) is of the form (unit in B)�P for

α P (O0/p
n)� and of the form (elt in max(B)) �P for α P p. Thus, both

±
α eα(P ) and the

coefficient of the term of degree qn�qn�1(q�1) of are of the form (unit in B) �P φ(p
n).

It would be desirable to have a similar statement also for other types of level structures.

2.4.2. Γ0(p
n)-level structures on Drinfeld shtukas

Definition 2.4.2. A Γ0(p
n)-level structure on a Drinfeld shtuka E over a scheme S is a

chain of pn-cyclic isogenies

Er = E(pn) fr
Ñ Er�1

fr�1
Ñ Er�2 Ñ . . .

f1Ñ E0 = E

such that the composition fr � . . . � f1 is the inclusion E0(p
n) ãÑ E0. We denote the stack

of Drinfeld shtukas with Γ0(p
n)-level structures by Shtr,Γ0(pn).

Using the finite shtuka equivalence, a Γ0(p
n)-level structure on E is equivalently given

by a flag
0 = H0 � H1 � H2 � . . . � Hr = E [pn]

of finite locally free submodule schemes Hi � E [pn] of rank n � i with strict Fq-action
such that Hi/Hi�1 is pn-cyclic for all 1 ¤ i ¤ r. In particular, a Γ0(p

n)-level structure can
fppf-locally on the base be extended to a Γ1(p

n)-structure by definition. By Proposition
2.3.18, such a level structure can fppf-locally be extended to a (p�n/O0)

r�1-structure on
E . We call such an extension a (p�n/O0)

r�1-generator of the Γ0(p
n)-level structure.

We can now show one of our main theorems, that Drinfeld Γ0(p
n)-level structures

produce a regular moduli problem.

Theorem 2.4.3. The stack Shtr,Γ0(pn) is a regular Deligne-Mumford stacks locally of finite
type over Fq. The forgetful map Shtr,Γ0(pn) Ñ Shtr is schematic and finite flat. It is finite étale
away from 0. Moreover, the forgetful map Shtr,Γ1(pn) Ñ Shtr,Γ0(pn) is schematic, faithfully
flat and locally of finite presentation.
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Proof. We follow the proof of [KM85, Theorem 6.6.1]. As cyclicity is a closed condition
by Theorem 2.4.1, Shtr,Γ0(pn) is the closed substack of Shtr,Γ1(pn) over which the universal
isogeny is cyclic. Thus, the forgetful map Shtr,Γ0(pn) Ñ Shtr is schematic and finite.
It follows that Shtr,Γ0(pn) is a Deligne-Mumford stack of finite type over Fq. Moreover,
the forgetful map Shtr,Γ1(pn) Ñ Shtr,Γ0(pn) is representable by the scheme of generators
(H1/H0)

��(H2/H1)
� . . .�(Hr/Hr�1)

� and thus in particular finite flat by Theorem 2.4.1.
Since Shtr,Γ1(pn) is regular by Theorem 2.3.17, it follows that Shtr,Γ0(pn) is also regular by
[AK70, VII, Theorem 4.8]. Thus, also the map Shtr,Γ0(pn) Ñ Shtr is finte flat by Miracle
Flatness [Mat86, §23]. It is finite étale away from 0 by Proposition 2.3.14.

Remark 2.4.4. In a similar fashion we can also show the regularity of the moduli stack
of Drinfeld shtukas together with a chain of pn-cyclic isogenies of length r1   r. In other
words, a chain of pn-isogenies

Er1+1 = E0(p
n)

fr1+1
Ñ Er1

fr1Ñ Er1�1 Ñ . . .
f1Ñ E0 = E

such that f1, . . . , fr1 are pn-cyclic. The following corollaries have also obvious analogues
in this setting. Note that we could generalise the argument to moduli spaces of other
kinds of cyclic isogenies provided we had an analogue of Theorem 2.4.1.
Using the flatness of our moduli problems, we show that there are well-defined level

maps.
Corollary 2.4.5. Let E P Shtr(S) and let (Hi)i be a Γ0(p

n)-level structure on E . Let
n = (n1, . . . , nr�1) with 0 ¤ nr�1 ¤ . . . ¤ n1 ¤ n. Then there is a canonical subscheme
Hn � Hr�1, which is an O0/p

n-module subscheme Hn � E [pmaxtniu]. Fppf-locally on S, the
scheme Hn is defined for any (p�n/O0)

r�1-generator ι : (p�n/O0)
r�1 Ñ E(S) of (Hi)i by

the restriction ι|(p�n1/O0)`...`(p�nr�1/O0)
as in Proposition 2.3.10.

Proof. We follow the proof of [KM85, Theorem 6.7.2]. It suffices to construct Hn fppf-
locally on S. We may thus assume that (Hi)i admits a (p�n/O0)

r�1-generator. Let ι and
ι1 be two such (p�n/O0)

r�1-generators of (Hi)i. By Proposition 2.3.10 the restrictions
to (p�n1/O0) ` . . . ` (p�nr�1/O0) of both ι and ι1 define closed submodule schemes
Hn,H1

n � E [pm]. We have to check Hn = H1
n.

By reduction to the universal case we may assume that S is noetherian and flat over X 1,
as the moduli space of Drinfeld shtukas with Γ0(p

n)-level together with two generators is
given by

Shtr,(p�n/O0)r�1 �Shtr,Γ0(p
n)
Shtr,(p�n/O0)r�1 ,

which is flat over X 1 by Theorem 2.4.3 and Corollary 2.3.19. In this case equality of
closed subschemes of E [pm] is a closed condition by [KM85, Lemma 6.7.3]. The assertion
is clear away from 0 and thus follows from the flatness of S in the general case.
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Via the finite shtuka equivalence and Proposition 2.1.14 the submodule scheme Hn �
E [pn] corresponds to a pn-isogeny En ãÑ E . For 1 ¤ m ¤ n we denote by m(i) =
(m, . . . ,m, 0, . . . , 0) with i non-zero entries. Then

0 = Hm(0) � Hm(1) � . . . � Hm(r�1) � E [pm]

is a Γ0(p
m) level structure on E . This shows that we have a well-defined level map

Shtr,Γ0(pn) Ñ Shtr,Γ0(pm) for all 0 ¤ m ¤ n which is automatically finite flat. We show that
we can also construct this level map by taking closures without making explicit reference
to the generators.

Corollary 2.4.6. Let S be a scheme which is flat over X 1. Let E be a Drinfeld shtuka over S
and Let (Hi)i be a Γ0(p

n)-level structure on E . For every 1 ¤ i ¤ r the canonical submodule
scheme Hm(i) � Hi is the schematic closure of Hi|S�X1 (X 1zt0u)[p

m] in E [pm].

Proof. From the explicit descriptions away from p it is clear that Hm(i) is given by the
pm-torsion of Hi away from 0. The assertion then follows from the fact that Hm(i) is flat
over S and closed in E [pm].

Motivated by the discussion in Section 2.1.5, we also construct additional level maps.
Recall that the Γ0(p

n)-level corresponds to a standard (r � 1)-simplex Ω of sidelength
n in the standard appartment of the Bruhat-Tits building of GLr. We want to construct
level maps corresponding to inclusions of sub-(r � 1)-simplices (of smaller sidelength).
Recall that we enumerated alcoves in the standard apartment by its basepoint m and its
orientation given by a permutation τ . In a similar fashion, a (r � 1)-subsimplex of Ω is
determined by its basepoint m = (m1, . . . ,mr�1) with m1 ¥ . . . ¥ mr�1, a sidelength n1
and an orientation given by some τ P Symr�1. Note that the simplex with basepoint m,
sidelength ñ and orientation τ P Symr�1 is contained in Ω if and only ifm+ ñ

(i)
τ   Ω. Let

us denote by ñ(i)τ P Zr�1 the vector containig ñ in entries τ(1), . . . , τ(i) and 0 otherwise.

Corollary 2.4.7. Let E P Shtr(S) and let (Hi)i be a Γ0(p
n)-level structure on E . Let

m = (m1, . . . ,mr�1) with 0 ¤ mr�1 ¤ . . . ¤ m1 ¤ n. Let 0 ¤ ñ ¤ n such that
m+ ñ

(i)
τ   Ω for all i. Then the flag of quotients

0 � H
m+ñ

(1)
τ
/Hm � H

m+ñ
(2)
τ
/Hm � . . . � H

m+ñ
(r�1)
τ

/Hm � Em[pñ]

defines a Γ0(p
ñ)-level structure on the Drinfeld shtuka Em, which we denote by (H

m+ñ
(i)
τ
/Hm)i.

In case that (Hi)i admits a (p�n/A)r�1-generator ι, (H
m+ñ

(i)
τ
/Hm)i is generated by

ιm,ñ,τ : (p
�ñ/A)r�1 Ñ Hm+ñ(r�1)/Hm(S).
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defined using the isomorphism

(p�ñ/A)r�1

�
(︁
(p�mτ(1)�ñ/A)` . . .` (p�mτ(r�1)�ñ/A)

)︁
/
(︁
(p�mτ(1)/A)` . . .` (p�mτ(r�1)/A)

)︁
.

Moreover, the canonical subscheme from Corollary 2.4.5 for m1 = (m1
1, . . . ,m

1
r�1) with

ñ ¥ m1
1 ¥ . . . ¥ m1

r�1 ¥ 0 is given by

(H
m+ñ

(i)
τ
/Hm)m1 � Hm+τ(m1)/Hm.

Proof. We follow the proof of [KM85, Theorem 6.7.4]. The question is fppf-local on S, so
we can assume that H has a generator. By reduction to the universal case, we may further
assume that S is flat over X 1 and noetherian by Theorem 2.3.9. Note that all assertions
are clear away from 0. It thus suffices to show that the locus, where they are satisfied is
closed.
The locus where each H

m+ñ
(i)
τ
/H

m+ñ
(i�1)
τ

is pñ-cyclic is closed in S by Theorem 2.4.1
(3). This shows the first claim. For the second claim, the locus where ιm,ñ,τ is a generator
of (H

m+ñ
(i)
τ
/Hm)i is closed by [KM85, Proposition 1.9.1]. Moreover, the condition that

(H
m+ñ

(i)
τ
/Hm)m1 � Hm+τ(m1)/Hm is closed by [KM85, Lemma 6.7.3]. This shows the last

claim.

Associating the Γ0(p
ñ)-level structure (H

m+ñ
(i)
τ
/Hm)i on Em to (Hi)i as in the previous

corollary defines a map of stacks

Fm,ñ,τ : Shtr,Γ0(pn) Ñ Shtr,Γ0(pñ) .

Proposition 2.4.8. The level map Fn,m,τ is schematic and finite locally free.

Proof. Note that by Theorem 2.4.3 the map F0,0 is schematic and finite locally free. As a
first step we show that Fn,0 : Shtr,Γ0(pn) Ñ Shtr is schematic and finite locally free for all
m. In order to show that the map is representable by a finite scheme, we consider the
auxiliary moduli problem Shtr,m�isog,Γ0(pn) parametrising a Drinfeld shtuka E , a pn-isogeny
f : E ãÑ E 1 such that coker(f) has rank

°r�1
i=1 mi asOS-module, and a Γ0(p

n)-level structure
(Hi)i on E 1. The projection to E defines then a map of stacks Shtr,m�isog,Γ0(pn) Ñ Shtr
which is schematic and finite by Proposition 2.2.15 and Theorem 2.4.3. We also have a
map Shtr,Γ0(pn) Ñ Shtr,m�isog,Γ0(pn) sending (E , (Hi)i) to (Em, E , (Hi)i), which identifies
Shtr,Γ0(pn) with the substack of Shtr,m�isog,Γ0(pn) where E = E 1m. By [KM85, Lemma 6.7.3],
this is schematic and representable by a closed immersion. The composition of the maps
Shtr,Γ0(pn) Ñ Shtr,m�isog,Γ0(pn) Ñ Shtr is clearly given by Fm,0, which is thus schematic
and finite.
Note that we have a commutative diagram
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Shtr,Γ0(pn) Shtr,Γ0(pñ)

Shtr

Fm,ñ

Fm,0 F0,0

with vertical arrows that are schematic and finite. In order to see that Fm,ñ,τ is schematic
we argue as follows. We fix a map S1 Ñ Shtr,Γ0(pñ) from some S-scheme S1, in other
words a Drinfeld shtuka (E , (Hi)i) together with a Γ0(p

ñ)-level structure. By composition
with F0,0, we get a map S1 Ñ Shtr. By the discussion above, S2 = S1 �Shtr Shtr,Γ0(pn)

is representable by a finite S-scheme. Let (E 1, (H1
i)i) denote the corresponding Γ0(p

n)-
level structure. Then the fibre product S1 �Sht

r,Γ0(p
ñ)

Shtr,Γ0(pn) is the locus where the
image of (E 1, (H1

i)i) under Fm,ñ,τ is given by (E , (Hi)i). By [KM85, Lemma 6.7.3], this is
representable by a closed subscheme of S2.
As both Fm,0 and F0,0 are finite, it is immediate that Fm,ñ,τ is finite as well. As both

Shtr.Γ0(pn) and Shtr,Γ0(pñ) are regular and (2r � 1)-dimensional, the level map is flat by
miracle flatness.

2.5. Comparison with naive level structures and Bruhat-Tits
theory

We compare the Drinfeld level structures defined above with naive Γ0(p
n)-level structures.

The naive Γ0(p
n)-level structures seem inadequate when n ¡ 1 as the fibre above 0 is

missing points (compare Remark 2.1.20). We construct a map from the stack of Drinfeld
shtukas with naive Γ0(p

n)-level structure to our stack of Drinfeld shtukas with Drinfeld
Γ0(p

n)-level which is an open immersion and an isomorphism away from 0. Moreover, we
show that the two notions of level structures agree in the parahoric case. In this sense,
the Drinfeld level structures provide a compactification of the level maps.

Recall that we defined a naive Γ0(p
n)-level structure on a Drinfeld shtuka E = (E , ϕ) of

rank r as a flag of quotients as pn-torsion finite shtukas

E |Dn,S = Lr ↠ Lr�1 ↠ . . .↠ L1 � L0 = 0

such that Li is finite locally free of rank i as ODn,S -module. Equivalently, using Proposition
2.1.14, a naive Γ0(p

n)-level structure is a chain of pn-isogenies

E(pn) = Er
fr
Ñ Er�1

fr�1
Ñ Er�2 Ñ . . .

f1Ñ E0 = E

such that coker(fi) is finite locally free of rank 1 as ODn,S -module.

52



Lemma 2.5.1. Let E = (E , ϕ) be a Drinfeld shtuka of rank r over S and let E |Dn,S ↠ L be a
quotient pn-torsion finite shtuka such that L is finite locally free of rank 1 as ODn,S -module.
Then Drq(L) � E [pn] is an pn-cyclic submodule scheme.

Proof. We denote by L(i) = L|Di,S for 1 ¤ i ¤ n. Then L(i) is a locally free ODi,S -module
of rank 1, and consequently a locally free OS-module of rank i. Thus,

L = L(n) ↠ L(n�1) ↠ . . .↠ L(2) ↠ L(1) ↠ 0

corresponds via the finite shtuka equivalence to a flag of finite locally free submodule
schemes with strict Fq-action

0 � H(1) � . . . � H(n�1) � H(n) � E [pn],

where we denote by H(i) = Drq(L(i)). It is clear that H(i) � E[pi] by construction. As a
next step, we inductively construct a generator of H(i) fppf-locally on S.
We may assume that S = Spec(R) is affine and that L is a free ODn,S = R[ϖ]/(ϖn)-

module of rank 1. Then, L(i) � R[ϖ]/(ϖi). We choose the standard basis 1, ϖ, . . . ,ϖi�1

of L(i) asR-module. As a map of finite freeR[ϖ]/(ϖi)-modules, ϕ is given by multplication
by an element α =

°i�1
j=0 αjϖ

j P R[ϖ]/(ϖi), and thus, its matrix as an R-linear map with
respect to the standard basis is given by⎛⎜⎜⎜⎝

α0

α1 α0
... . . .
αi αi�1 . . . α0

⎞⎟⎟⎟⎠ .

It follows that

H(i) = Drq(L(i)) = Spec

(︄
R[t0, . . . , ti�1]/(t

q
0 �

i�1̧

j=0

αjtj , t
q
1 �

i�1̧

j=1

αj�1tj , . . . , t
q
i�1 � α0ti�1)

)︄
.

As the question is fppf-local on R, we may assume that R contains a root β0 of the
polynomial tq�1 � α0, a root β1 of the polynomial tq � α0t1 � α1β0 and inductively a
root βj of the polynomial tq � α0t � α1βj�1 � . . . � αjβ0 for all 0 ¤ j ¤ i � 1. Then
(βi�1, βi�2, . . . , β1, β0) is a section of H(i) over R by construction. We claim that the map

ι(i) : p�i/O0 Ñ H(i)(R)

ϖ�i ÞÑ (βi�1, βi�2, . . . , β1, β0)
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is a p�i/O0-generator of H(i). We proceed by induction on i.
Let i = 1. In this case H(1) = Spec(R[t]/(tq0 � α0t0)). In particular, H(1) can be

embedded in A1
R. Then p�1/O0 Ñ H(1)(R) given by ϖ�1 ÞÑ β is a generator of H(1), as±

aPFq(t� aβ) = tq � βq�1t = tq � αt.
Let us now assume that the claim is true for i ¥ 1. Note that the subschemeH(i) � H(i+1)

is given by the locus where ti = 0 by construction. Note that the map ι(i+1)|p�i/O0
= ι(i) is

given by ϖ�i ÞÑ (βi�1, βi�2, . . . , β1, β0, 0). Thus, it factors through H(i) and is a generator
of H(i) by hypothesis.

Moreover, the quotient H(i+1)/H(i) is then given by the canonical inclusion

R[ti]/(t
q
i � α0ti)Ñ R[t0, . . . , ti�1, ti]/(t

q
0 �

i̧

j=0

αjtj , . . . , t
q
i � α0ti).

Moreover, the image of the section (β0, . . . , βi�1) of H(i+1) in the quotient H(i+1)/H(i) is
β0. In particular, the map

ι(i+1) mod p(i) : p�1/O0 � (p�(i+1)/O0)/(p
�i/O0)Ñ

(︂
H(i+1)/H(i)

)︂
(R)

is well-defined and sendsϖ�1 to β0 and is thus a generator ofH(i+1)/H(i) by the discussion
of the case i = 1 above. By [KM85, Lemma 1.11.3] it follows that ι(i+1) is a full set of
sections of H(i+1).
Thus, (H(1), ι) is a generator of H(i+1) in the sense of Definition 2.3.2 and H(i+1) is

pi+1-cyclic. This shows the claim.

Proposition 2.5.2. Let E = (E , ϕ) be a Drinfeld shtuka over S and let

E |Dn,S = Lr ↠ Lr�1 ↠ . . .↠ L1 ↠ L0 = 0

be a naive Γ0(p
n)-level structure on E . Then

0 � Drq(L1) � . . .Drq(Lr�1) � E [pn]

is a Drinfeld Γ0(p
n)-level structure on E in the sense of Definition 2.4.2.

Proof. This follows directly from Lemma 2.5.1.

Recall that a Drinfeld shtuka with a naive Γ0(p
n)-level structure is a bounded global

GLr,Ω-shtuka for the Bruhat-Tits group scheme GLr,Ω as defined in Remark 2.1.19. In
particular, we thus constructed a map of Deligne-Mumford stacks

Shtr,Ω Ñ Shtr,Γ0(pn) . (2.2)

As a next step, we show that the map (2.2) is an isomorphism in the case n = 1.
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Proposition 2.5.3. Let E P Shtr(S). Then every Γ0(p)-level structure on E comes from a
naive Γ0(p)-level structure.

Proof. It suffices to show that for an p-cyclic submodule scheme H � E [p], the correspond-
ing finite shtukaM q(H) is finite locally free of rank 1 as RbO0/p � R-module. But this
is clear by construction.

Lemma 2.5.4. Let E P Shtr(S) and assume its characteristic is away from 0. Then every
Γ0(p

n)-level structure on E comes from a naive Γ0(p
n)-level structure.

Proof. Let (Hi)1¤i¤r be a Γ0(p
n)-structure on E . As the characteristic of E is away from 0,

all the Hi are finite étale over S. As the claim is fppf-local on the base, we may choose a
(p�n/O0)

r�1-generator of (Hi)1¤i¤r. By Proposition 2.3.6, the Hi are then given by

0 � (p�n/O0)S � (p�n/O0)
2
S � . . . � (p�n/O0)

r�1
S � E [pn].

By the finite shtuka equivalence, this corresponds to the flag of quotients

E |Dn,S ↠ Or�1
Dn,S

↠ . . .↠ ODn,S ↠ 0,

where the map Oi+1
Dn,S

Ñ Oi
Dn,S

is given by the projection to the first i components and
the Frobenius-linear map on Oi

Dn,S
is the trivial one. This is clearly a naive Γ0(p

n)-level
structure.

Proposition 2.5.5. The map (2.2) is schematic and a quasi-compact open immersion.

Proof. By construction, Shtr,Ω is identified with the substack of Shtr,Γ0(pn) where all the Hi
correspond to finite locally free ODn,S -modules of rank i via the finite shtuka equivalence,
or equivalently the locus, where allHi/Hi�1 correspond to finite locally freeODn,S -modules
of rank 1.
In order to show that this condition is representable by an open subscheme, we work

locally and assume that S = Spec(R) is affine. LetM be a R[ϖ]/(ϖn)-module such that
M is free of rank n as R-module. ThenM is locally free of rank 1 as R[ϖ]/(ϖn)-module
if and only if it is generated by a single element.
Let q � R be a prime ideal such thatM b κ(q) is a one-dimensional vector space over

the residue field κ(q) of R[ϖ]/(ϖn) at (q,ϖ) (κ(q) is also the residue field of R at q). By
Nakayama’s Lemma, there exists a a P (R[ϖ]/(ϖn))z(q,ϖ) such that M [a�1] is free of
rank 1. Let a0 = a(0) be the constant term of a. Then M [a�1] = M [a�1

0 ]. Hence, the
principal openD(a0) � Spec(R) is an open neighbourhood of q such thatM [a�1

0 ] is locally
free of rank 1 as R[a�1

0 ][ϖ]/ϖn-module over D(a). Hence, the condition is representable
by an open immersion on the base scheme.
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By Propositions 2.4.8 and 2.5.3, we can interpret the level maps to Γ0(p)-level structures
as maps

Fm,1,τ : Shtr,Γ0(pn) Ñ Shtr,fm,τ ,
where fm,τ is the alcove in the Bruhat-Tits building corresponding to m and τ . This
system of maps is compatible with level maps to parahoric levels given by smaller facets
by Corollary 2.4.5 and thus define a map

FΩ : Shtr,Γ0(pn) Ñ limÐÝ
f Ω

Shtr,f . (2.3)

Proposition 2.5.6. The map FΩ is a closed immersion.

Proof. As all the maps Shtr,Γ0(pn) Ñ limÐÝf Ω
Shtr,f are schematic and finite, so is their limit.

Moreover, by the explicit moduli description it is clear that the map FΩ is a monomorphism.

Theorem 2.5.7. The map Shtr,Ω Ñ limÐÝf Ω
Shtr,f is schematic and representable by a quasi-

compact open immersion that is an isomorphism away from 0. Its schematic image in the
sense of [EG21] is

Shtr,Ω = Shtr,Γ0(pn)

via the maps
Shtr,Ω ãÑ Shtr,Γ0(pn) ãÑ limÐÝ

f Ω

Shtr,f

constructed above. In the parahoric case n = 1, the map Shtr,Ω Ñ Shtr,Γ0(p) is an isomor-
phism.

Proof. The assertion for the parahoric case is Proposition 2.5.3. That the inclusion

Shtr,Ω Ñ limÐÝ
f Ω

Shtr,f

is schematic and representable by a quasi-compact locally closed immersion follows from
Propositions 2.5.5 and 2.5.6. That the image of Shtr,Ω in Shtr,Γ0(pn) is dense follows from
the fact that the inclusion (2.2) is an isomorphism away from 0 by Lemma 2.5.4 together
with the flatness of Shtr,Γ0(pn) over X 1 from Theorem 2.4.3.

In order to see that the map Shtr,Ω Ñ limÐÝf Ω
Shtr,f is already open, we follow the proof

of Proposition 2.5.5. One can again check that a point (Em)m P limÐÝf Ω
Shtr,f comes from

ShtΩ if and only if the cokernels of the isogenies E(n,...,n,0,0,...,0) ãÑ E(n,...,n,n,0,...,0) are
locally free of rank 1 as ODn,S -modules. By the argument in the proof of Proposition 2.5.5,
this condition is representable by an open subscheme.
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3. Integral models of moduli spaces of
shtukas with deep Bruhat-Tits level
structures

3.1. Torsors under Bruhat-Tits group schemes

We show that a Bruhat-Tits group scheme is the limit of all corresponding parahoric group
schemes and use this observation to show that the induced map on the level of BunG is an
open immersion. We first discuss (pseudo-)torsors for limits of groups.

3.1.1. Pseudo-torsors for limits of groups

We use the following result on pseudo-torsors under limits of groups. For a sheaf of
groups G on a site C we denote by PTorG the category of G-pseudo-torsors for G with
G-equivariant maps. In other words, an object of PTorG is given by a sheaf E on C together
with a (right) action E�GÑ E of G such that the induced map E�GÑ E�E given by
(e, g) ÞÑ (e, eg) is an isomorphism. A map f : GÑ G1 of sheaves of groups on C induces a
functor f� : PTorG Ñ PTorG1 given by E ÞÑ E �G G1, where the action of G1 is by right
multiplication in the second factor. Moreover, the canonical map (idE ,1G1) : E Ñ E�GG1

is G-equivariant for the G-action on E �G G1 via f on the second factor.
A G-pseudo-torsor E is a G-torsor if for every object U on C there is a cover tUi Ñ

U : i P Iu of U in C such that Γ(Ui, E) � H. We denote by B(G) the full subcategory of
PTorG of G-torsors on C. The map f� for a map of sheaves of groups f : GÑ G1 restricts
to a map f� : B(G)Ñ B(G1).

Lemma 3.1.1. Let I be a finite partially ordered set and let (Gi)iPI be a diagram of sheaves
of groups over I. Let G = limÐÝiPI Gi. Then G is a sheaf of groups on C together with a
compatible system of projection maps fi : GÑ Gi. The functor

limÐÝ
iPI

fi,� : PTorG Ñ limÐÝ
iPI

PTorGi , E ÞÑ (E �G Gi)iPI
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has a right-adjoint given by

lim :

(︄
limÐÝ
iPI

PTorGi

)︄
Ñ PTorG, (Ei)iPI ÞÑ limÐÝ

iPI

Ei.

Moreover, the restriction limÐÝiPI fi,� : B(G)Ñ limÐÝiPI B(Gi) to the full subcategory of torsors
is fully faithful.

Proof. As a first step, we show that limÐÝiPI Ei is indeed a pseudo-torsor for G. The sheaf of
groups G acts on Ei by the action induced by fi, and all these actions are compatible by
the observation above that the reduction maps are equivariant. Hence, limÐÝiPI Ei carries a
canonical G-action. As all the Ei are pseudo-torsors under Gi, the induced map(︄

limÐÝ
iPI

Ei

)︄
�GÑ

(︄
limÐÝ
iPI

Ei

)︄
�

(︄
limÐÝ
iPI

Ei

)︄
((ei)iPI , g) ÞÑ ((ei)iPI , (eifi(g))iPI)

is an isomorphism, so limÐÝiPI Ei is a G-pseudo-torsor.
As a next step, we show that the limit is right adjoint to the family of projections. Let

(Fi)iPI P limÐÝiPI PTorGi . A G-equivariant map E Ñ Fi factors as E Ñ E �G Gi Ñ Fi for a
unique Gi-equivariant map E �G Gi Ñ Fi. Hence, we get

HomPTorG(E, limÐÝ
iPI

Fi) = HomlimÐÝiPI
PTorGi

((E �G Gi)iPI , (Fi)iPI).

In order to see that the restriction to B(G) is fully faithful, we check that the unit of the
adjunction E ÞÑ limÐÝiPI E �

G Gi is an isomorphism for E P B(G). We can do so locally, so
we may assume that E is trivial. As all maps E Ñ E �G Gi are G-equivariant, choosing
a trivialisation of E induces a compatible choice of trivialisations of all E �G Gi. Hence,
the map E Ñ limÐÝiPI E �G Gi is given by G Ñ limÐÝiPI Gi, which is an isomorphism by
construction.

Remark 3.1.2. Note that given a compatible family of Gi-torsors (Ei)iPI P limÐÝiPI B(Gi),
their limit will in general not be a G-torsor, as it might not be possible to produce a
compatible system of sections for (Ei)iPI . For example, consider G1 = G2 = teu the trivial
group and G3 = Z/2. Then G1 �G3 G2 = teu is again the trivial group. Let us moreover
consider the sets E1 = E2 = t�u and E3 = ta1, a2u. Then Ei is a trivial Gi-torsor for all
i = 1, 2, 3. However, under the maps fi : Ei Ñ E3, � ÞÑ ai for i = 1, 2, the fibre product
E1 �E3 E2 is empty, hence in particular not a torsor under the trivial group.
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3.1.2. Deep Bruhat-Tits group schemes are limits of parahoric group schemes

Let us briefly recall some facts from Bruhat-Tits theory [BT72; BT84]. In this section, let
k be a discretely valued henselian field with ring of integers O. We denote by m � O its
maximal ideal and by F = O/m its residue field. Moreover, we denote by kur the maximal
unramified extension inside some fixed algebraic closure of k, by Our its ring of integers
and by k̆ (respectively Ŏ) the completion of kur (respectively Our).

Let G be a (connected) reductive group over k such that G is quasi-split over kur. Note
that G is automatically quasi-split over kur when the cohomological dimension of kur is at
most 1 by a theorem of Steinberg. This includes in particular the case k = F ((ϖ)) for a
finite field F we are interested in later. Let us fix a maximal k-split torus S � G. We denote
by B(G/k) the corresponding (reduced) Bruhat-Tits building and by A = A(G,S, k) �
B(G, k) the apartment corresponding to S. Let Φ = Φ(G,S) be the set of roots of G with
respect to S and let Φ+ � Φ be a system of positive roots. We denote by Φ� = �Φ+ and
by Φ+

nd � Φ+ (respectively by Φ�
nd � Φ�) the subset of non-divisible positive (respectively

negative) roots.
We consider the space of affine functionals A� on A and the set of affine roots Ψ =

Ψ(G,S) � A� of G with respect to S. For an affine functional ψ P A�, let HΨ � A
be the vanishing hyperplane for ψ and let Hψ¥0 = tx P A : ψ(x) ¥ 0u (respectively
Hψ¤0 = tx P A : ψ(x) ¤ 0u) be the corresponding half-spaces. For an affine functional
ψ P A�, we denote by ψ̇ its gradient. By construction, for ψ P Ψ we have ψ̇ P Φ.

For a non-empty bounded subset Ω � A, we consider the corresponding (local) Bruhat-
Tits group scheme1 GΩ constructed in [BT84, § 5.1.9 (resp. § 4.6.26)]. It is the unique
smooth affineO-group scheme with generic fibreG, connected special fibre and GΩ(Our) =
G(kur)0Ω, where G(kur)0Ω is the “connected” (pointwise) stabiliser of Ω.

For a bounded subset Ω � A, we denote by cl(Ω) =
�
ψPΨ,Ω�Hψ¥0

Hψ¥0 the intersection
of all half-spaces containing Ω. Then the corresponding Bruhat-Tits group scheme does
not change when replacing Ω by cl(Ω), compare [BT84, § 4.6.27]. Hence, we may always
assume Ω = cl(Ω) in the following. By construction, cl(Ω) is convex. For two bounded
subsets Ω,Ω1 of A(G,S, k) with Ω = cl(Ω), we write Ω1

  Ω if Ω1 is contained in Ω. In this
case, we obtain an induced homomorphism of O-group schemes ρΩ1,Ω : GΩ Ñ GΩ1 whose
restriction to the generic fibre is given by the identity on G. Below, we often take limits
over the partially ordered set tf   Ωu of facets contained in Ω ordered by inclusion. This
poset is connected as Ω = cl(Ω) is connected.
For a root a P Φ and Ω as above, we denote by Ua,Ω � G(k) the corresponding root

1In the literature it is often additionally required that Ω is contained in a facet. We explicitly allow Ω to not
be contained in the closure of a facet (this will be the interesting case later) and call GΩ with Ω contained
in the closure of a facet a parahoric (Bruhat-Tits) group scheme.
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subgroup and by Ua,Ω its integral model, which is a smooth affine O-group scheme. As for
the GΩ, the group scheme Ua,Ω only depends on cl(Ω) and for Ω1

  Ω there is a natural
map Ua,Ω Ñ Ua,Ω1 . These integral models are used to construct the big open cell¹

aPΦ�nd

Ua,Ω � Z �
¹
aPΦ+

nd

Ua,Ω ãÑ GΩ,

which is an open immersion by [BT84, § 4.6.2], where Z is an integral model of the
centraliser Z of S. Note that when G is quasi-split, T = Z is a maximal torus in G.

The main result of this section is the following theorem.

Theorem 3.1.3. LetG be a reductive group over k such thatG is quasi-split over the maximal
unramified extension kur of k. Let Ω � A(G,S, k) be a bounded subset with Ω = cl(Ω). The
map

ρ = limÐÝ
f Ω

ρf,Ω : GΩ Ñ limÐÝ
f Ω

Gf

induced by the ρf,Ω for facets f   Ω is an isomorphism of O-group schemes.

We need some results on the deformation theory of torsors under (limits of) Bruhat-Tits
group schemes. For us, torsors are always taken with respect to the fppf-topology. However,
torsors for smooth affine group schemes are always representable by a (necessarily smooth
affine) scheme and thus have sections étale locally. The deformation theory of such sections
of torsors can be controlled by the (dual of) the invariant differentials ωG/O = e�ΩG/O,
where e : O Ñ G is the identity section, due to the following result.

Lemma 3.1.4. Let G be a smooth affine O-group scheme and let R be an O-algebra with an
ideal I of square I2 = 0. We denote by R = R/I and r : O Ñ R the induced map. Let E be a
G-torsor over R. Let γ P E(R) be a section of E . Then the set of all lifts of γ to R is a torsor
under g(R,I) = r�ω_G/O bR I.

Proof. This is essentially a special case of [SGA1, Exposé III, Corollaire 5.2]. Recall that E
is representable by a smooth affine O-scheme. In particular, there exist lifts of γ to R, so
E is trivial. So let us fix a lift γ1 of γ and a trivialisation of E that identifies the section γ1
with the unit in GR. By [SGA1, Exposé III, Corollaire 5.2], the set of lifts of γ is then a
torsor under

γ�Ω_
E/R bR I � r�e�Ω_

G/O bR I = r�ω_G/O bR I.

We use the following lemma to relate the deformation theory problem to the combina-
torics in the Bruhat-Tits building.
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Lemma 3.1.5 (compare [BT84, § 4.6.41]). Assume that G is quasi-split. Let ψ P A� be an
affine functional with gradient a = ψ̇. Let Ω � A be a bounded subset such that Ω � Hψ¤0.
Let moreover Ω1

  Ω such that Ω1 � Hψ. Then the natural map ω_Ua,Ω/O Ñ ω_Ua,Ω1/O
is an

isomorphism.

Proof. By assumption, we have Ua,Ω = Ua,Ω1 as subgroups of G(k). Hence, the induced
maps on integral models and consequently on invariant differentials are isomorphisms.

Note that in the situation of the lemma when ΩXHψ 0 � H the induced map on Lie
algebras for the negative root groups

Lie(U�a,Ω,F) = ω_U�a,Ω/O bO FÑ Lie(U�a,Ω1,F) = ω_U�a,Ω1/O
bO F

in the special fibre of Spec(O) typically (in particular when a is non-divible and 2a is not
a root) is the zero map by [BT84, § 4.6.41].

Let (Ef)f Ω P limÐÝf Ω
B(Gf)(R) be a compatible system of Gf-torsors. We use the previous

two lemmas to construct compatible lifts of sections of EΩ = limÐÝf Ω
Ef. This serves two

purposes: On the one hand, we use this result for the trivial torsors Ef = Gf to show that
we can lift sections from the special fibre of limÐÝf Ω

Gf in the proof of Theorem 3.1.3 and
on the other hand, we use it in the proof of Proposition 3.1.10, which gives a criterion
when EΩ is actually a GΩ-torsor. For a subset Ω1

  Ω we denote by EΩ1 = limÐÝf Ω1
Ef.

Lemma 3.1.6. Assume that G is quasi-split. Let R be an O-algebra with an ideal I of square
I2 = 0. We denote by R = R/I.

(1) Let Ω1,Ω2   Ω be two bounded subsets such that Ω1 = cl(Ω1), Ω2 = cl(Ω2) and
that Ω1 X Ω2 is contained in an affine root hyperplane Hψ for some ψ � Ψ. Assume
moreover that Ω1 Y Ω2 is convex and that Ω1 � Hψ¥0 and Ω2 � Hψ¤0 lie in different
half-spaces.
Assume that the assertion of Theorem 3.1.3 holds for GΩ1 and GΩ2 . Assume that
there is a section γ P EΩ1YΩ2(R) and deformations γΩ1 P EΩ1(R) and γΩ2 P EΩ2(R)
of the images of γ in EΩ1 and EΩ2 , respectively. Then there exists a deformation
γΩ1YΩ2 P EΩ1YΩ2(R) of γ.

(2) Let nowΩ1 = cl(Ω1)   Ω and let a P Φ+
nd and letψ1   ψ2   . . .   ψm be the affine roots

with gradient ψi̇ = a such that ΩXHψi � H. We denote by Ωi = (ΩXHψi¤0)zΩi�1

for i = 1, . . . ,m with Ω0 =H and Ωm+1 = Ωz(ΩmzHψm).
Assume that the assertion of Theorem 3.1.3 holds for GΩi for i = 1, . . . ,m+1. Assume
that there is a section γ P EΩ1(R) and deformations γΩi P EΩi(R) of the image of γ in
EΩi for all 1 ¤ i ¤ m+ 1. Then there exists a deformation γΩ1 P EΩ1(R) of γ.
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We will prove Theorem 3.1.3 by induction on Ω and use this lemma in the inductive
step. Hence, it is feasible to assume the validity of Theorem 3.1.3 for subsets of Ω here.
Once we have established Theorem 3.1.3 in full (in particular for the application of the
lemma in the proof of Proposition 3.1.10), these conditions of course are vacuous. Before
we give the proof of the lemma, let us briefly discuss an example that nicely illustrates the
main idea.

Example 3.1.7. We considerG = GL2 over k = Fq ((ϖ)) with T the split maximal diagonal
torus. Then X�(T ) � Z2 with roots Φ = t�(1,�1)u � X�(T ), where the choice of the
positive root a = (1,�1) corresponds to the choice of the Borel subgroup given by upper
triangular matrices. Let us consider the interval Ω = [0, 2] � R � A(GL2, T ) with
Ω1 = [0, 1] and Ω2 = [1, 2].

0 1 2

Ω1 Ω2

Let us consider the case R = Fq JϖK /(ϖ2) and R = R/(ϖ) = Fq. In this case, for a
smooth affine group scheme G over O, the module g = e�ω_G/O bFq (ϖ)/(ϖ2) is given by
the tangent space of G at the identity section in its special fibre. Let us assume we are
in the situation of Lemma 3.1.6 (1). We are given a section γ P E[0,2](Fq) and sections
γ[0,1] P E[0,1](Fq JϖK /(ϖ2)) and γ[1,2] P E[1,2](Fq JϖK /(ϖ2)) that lift γ. Recall that by
Lemma 3.1.4, for Ω1

  Ω the set of all lifts of γ in EΩ1 is a torsor under gΩ1 . Hence, after
fixing a trivialisation of Et1u, the images of the lifts γ[0,1], γ[1,2] in Et1u induce points in gt1u.
Thus, the question becomes if the intersection of the orbits g[0,1].γ[0,1] X g[1,2].γ[1,2] in gt1u
is non-empty, where g[0,1] acts via the natural map g[0,1] Ñ gt1u, similarly for g[1,2].

For Ω1
  Ω, we decompose the Lie algebras into its root spaces gΩ1 = ua,Ω1 ` h` u�a,Ω1 ,

where a = (1,�1) is the positive root. In this situation, the root spaces u�a,Ω1 are one-
dimensional while the Cartan h is two-dimensional. Then the induced map g[0,1] Ñ gt1u is
the identity on the Cartan algebra h as well as on the positive root space ua,[0,1] = ua,t1u by
Lemma 3.1.5 while it is the zero map u�a,[0,1] Ñ u�a,t1u on the negative root spaces. By a
similar argument, for the second facet Ω2 = [1, 2] the map g[1,2] Ñ gt1u is the identity on
the Cartan and the negative root space, while it is the zero map on the positive root space.

Decomposing the lifts γ[0,1] and γ[1,2] in their components, this shows that by the action
of g[0,1] we can guarantee that the ua-components agree and by the action of g[1,2] we can
get matching components in the u�a-component. This shows the non-emptiness of the
intersection of the orbits and hence the existence of a compatible set of lifts.

In order to guarantee the correct mapping property in the other directions, it is necessary
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to have the convexity assumption. This can be seen in the following example in the GL3-
case:

Ω1 Ω2

Hψ

a
Ω3

We are given two chambers Ω1 and Ω2 in the standard apartment in the Bruhat-Tits
building of GL3 that intersect in a single vertex. In particular, Ω1 Y Ω2 is not convex. The
base of both of the triangles lies in some affine root hyperplane Hψ with ψ̇ = a while
both Ω1 and Ω2 are contained in the positive half space Hψ¥0. But this means that both
ua,Ω1 Ñ ua,Ω1XΩ2 and ua,Ω2 Ñ ua,Ω1XΩ2 are the zero maps. Hence, it is in general not
possible to lift sections in this situation.

The difference to the convex case is the following. We have cl(Ω1YΩ2) = Ω1YΩ2YΩ3,
where Ω3 is the triangle “between” Ω1 and Ω2. For a pair of GΩ1- (respectively GΩ2-)
torsors EΩ1 and EΩ2 the existence of a compatible GΩ3-torsor EΩ3 (such a torsor does not
exist in general!) can be interpreted as a compatibility condition on the a-root spaces, as
it will guarantee by Lemma 3.1.6 (1) that for two given lifts γΩ1 P EΩ1(Fq JϖK /(ϖ2)) and
γΩ2 P EΩ2(Fq JϖK /(ϖ2)) their image in ua,Ω1XΩ2 agrees.

Proof of Lemma 3.1.6. (1) Given some Ω1
  Ω (for which Theorem 3.1.3 holds), the set

of all lifts of γ P EΩ1(R) to EΩ1(R) is a torsor under gΩ1 = gΩ1,(R,I) (if such lifts exist
at all) by Lemma 3.1.4. Using the decomposition of the big open cell in GΩ1 , we can
decompose gΩ1 into the root spaces as

gΩ1 =
à
aPΦ�nd

ua,Ω1 ` h`
à
aPΦ+

nd

ua,Ω1 .

After fixing a trivialisation of EΩ1XΩ2 , the images of the lifts γΩ1 and γΩ2 in EΩ1XΩ2

thus define elements of gΩ1XΩ2 . The question whether there exists a lift γΩ1YΩ2 P
EΩ1YΩ2(R) of γ, or in other words, a compatible pair of lifts γ1Ω1

and γ1Ω2
in EΩ1

(respectively in EΩ2), is thus the question if the orbits in gΩ1XΩ2 have a non-empty
intersection

gΩ1 .γΩ1 X gΩ2 .γΩ2 � H.

We treat this question componentwise with respect to the decomposition into root
spaces. On the torus part this is clear as the maps gΩi Ñ gΩ1XΩ2 restrict to iso-
morphisms on h by construction for i = 1, 2. It suffices to show that for all roots
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a P Φnd at least one of gΩi Ñ gΩ1XΩ2 restricts to an isomorphism ua,Ωi Ñ ua,Ω1XΩ2 .
For a = �ψ̇ this directly follows from Lemma 3.1.5.

Let now a P Φzt�ψ̇u, and let ψ1 P A the minimal affine functional with gradient
ψ̇
1
= a such that Ω1 XΩ2 � Hψ1¤0. By the convexity assumption, at least one of the

Ωi is contained in Hψ1¤0 for i = 1, 2. But then ua,Ωi
�
ÝÑ ua,Ω1XΩ2 is an isomorphism

by Lemma 3.1.5.

(2) For each i = 1, . . . ,m, the pair of subsets
�

1¤j¤iΩj ,Ωi+1 of Ω1 satisfies the assump-
tions of (1) by construction (in particular, their intersection is contained in Hψi).
Using induction on i, we construct lifts of γ for all E�

1¤j¤i Ωi
using (1), and hence in

particular for EΩ1 .

Proof of Theorem 3.1.3. We first remark that the limit limÐÝf Ω
Gf is a finite limit of affine

O-group schemes of finite type, hence is again an affine O-group scheme of finite type.
Moreover, as all transition maps are identities on the generic fibres, the generic fibre of
the limit is isomorphic to G and ρ induces an isomorphism on the generic fibre.
By étale descent it suffices to work over k̆, the completion of the maximal unramified

extension of k. We may thus assume that k = k̆, in which case G is quasi-split by
assumption. Moreover, we have

(limÐÝ
f Ω

Gf)(O) = limÐÝ
f Ω

(Gf(O)) =
£
f Ω

G(k)0f = G(k)0Ω.

It remains to show that limÐÝf Ω
Gf is smooth, as smoothness implies by [BT84, § 1.7.3]

that limÐÝf Ω
Gf is étoffé in the sense of [BT84, Définition 1.7.1]. But this means that ρ is

an isomorphism by the previous observations.
We use induction on Ω to show that limÐÝf Ω

Gf is smooth. Let us fix some enumeration of
the set of non-divisible positive roots Φ+

nd = ta1, . . . , amu. We inductively cut down Ω into
slices by hyperplanes with gradient ai and in each step use Lemma 3.1.6 (2) to construct
lifts of the section in the special fibre. For the start of the induction, note that the theorem
clearly is satisfied when Ω is (the closure of) a facet. More concretely, in the last step
of the induction we write Ω =

�
1¤i¤m+1Ωi using the notation from Lemma 3.1.6 (2)

with a = a1. By induction, we assume that the theorem holds for each Ωi (that we got by
cutting down each Ωi using hyperplanes with gradient a2).
We check that limÐÝf Ω

Gf is formally smooth. Let R be an O-algebra and let I � R be an
ideal of square zero. We denote by R = R/I. Let us fix a section g P limÐÝf Ω

Gf(R). Using
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the inductive hypothesis, there exist sections gi P limÐÝf Ωi
Gf(R) = GΩi(R). By Lemma

3.1.6 (2), we then obtain a lift g P limÐÝf Ω
Gf(R). As limÐÝf Ω

Gf is an affine scheme of
finite presentation over O, this shows that GΩ is smooth. This finishes the proof of the
theorem.

Corollary 3.1.8. The Bruhat-Tits group scheme GΩ is isomorphic to the closure of the diagonal
in the generic fibre

G
∆
ÝÑ
¹
f Ω

Gf.

Proof. The inclusion limÐÝf Ω
Gf Ñ

±
f Ω Gf is a closed immersion since all Gf are affine and

thus separated over O. Since GΩ is in particular flat over O, it is the closure of its generic
fibre. The claim then follows from Theorem 3.1.3.

Remark 3.1.9. Let Ω � B(G, k) be a bounded subset that is not necessarily contained in a
single apartment. Theorem 3.1.3 suggests a way to associate an O-group scheme to Ω,
namely to define

GΩ = limÐÝ
f Ω

Gf.

It is however neither clear whether GΩ is smooth nor whether it has a connected special
fibre.

3.1.3. Torsors for deep Bruhat-Tits group schemes

We consider torsors for the Bruhat-Tits group schemes above. Recall that a limit of Gf-
torsors for facets f   Ω is a GΩ-pseudo torsor by Lemma 3.1.1, but may fail to be a
GΩ-torsor in general. We give a criterion when a limit of Gf-torsors is already a GΩ-torsor.

Proposition 3.1.10. Let Ω � A be a bounded subset with Ω = cl(Ω) and let R be an
O-algebra. Let (Ef)f Ω P limÐÝf Ω

B(Gf)(R). Then

EΩ = limÐÝ
f Ω

Ef

is a smooth affine B-scheme. In particular, EΩ is a GΩ-torsor if and only if EΩ Ñ Spec(R) is
surjective.

Proof. The second assertion follows from the first one using Lemma 3.1.1, Theorem 3.1.3
and [SGA1, Exposé XI, Proposition 4.2].

65



The first assertion is étale-local on Spec(R), so we may assume that G is quasi-split.
It suffices to show that EΩ Ñ Spec(R) is formally smooth, as EΩ is clearly representable
by an affine R-scheme of finite presentation. But this follows from Lemma 3.1.6 (2) by
induction on Ω as in the proof of Theorem 3.1.3.

The goal of this section is to show that the isomorphism of Bruhat-Tits group schemes of
Theorem 3.1.3 induces an immersion on the level of the corresponding moduli stacks of G-
bundles on X. Therefore, let us now change perspective and consider (global) Bruhat-Tits
group schemes in the following sense.

Definition 3.1.11. A smooth, affine group scheme G Ñ X is called a (global) Bruhat-Tits
group scheme if it has geometrically connected fibres, its generic fibre GK = G is a reductive
group over K and if for all closed points x of X the pullback GOx = G �X Spec(Ox) is
of the form GΩ for some bounded subset Ω contained in an apartment of the Bruhat-Tits
building B(G/Kx). The group scheme G is called a parahoric (Bruhat-Tits) group scheme
if moreover all GOx are parahoric group schemes.

Let G be a (connected) reductive group over the function field K of X. Bruhat-Tits
group schemes with generic fibre G can be constructed as follows.

Construction 3.1.12. (1) There exists a reductive model GÑ U of G over some dense
open subset U � X. For each of the finitely many points x P XzU in the complement
of U we choose a parahoric group scheme G(x) Ñ Spec(Ox) with generic fibre
G(x)
Kx

= GKx . As U >
²
xPXzU Spec(Ox) Ñ X is an fpqc-cover, we can glue G Ñ U

with all G(x) using fpqc-descent to obtain a smooth affine group scheme G Ñ X,
which is a parahoric group scheme by construction.

(2) Let us now fix a parahoric model G Ñ X and a closed point x0 ofX. For a connected
bounded subset Ω in an apartment of the Bruhat-Tits building of GKx0 as in the
previous paragraph, we denote by GΩ Ñ Spec(Ox0) the corresponding (local) Bruhat-
Tits group scheme. We glue GΩ with G along the identity over Kx0 and denote the
resulting smooth affine group scheme over X by a slight abuse of notation again by
GΩ. Then GΩ is a Bruhat-Tits group scheme in the sense of the previous definition
and parahoric if and only if Ω is contained in the closure of a facet.
The local homomorphisms ρΩ1,Ω : GΩ Ñ GΩ1 over Spec(Ox0) for Ω1

  Ω glue with
the identity away from x0 to morphisms of group schemes ρΩ1,Ω : GΩ Ñ GΩ1 on X.

In particular, the isomorphism of Theorem 3.1.3 extends to an isomorphism

GΩ
�
ÝÑ limÐÝ

f Ω

Gf
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of the corresponding global Bruhat-Tits group schemes.
For any smooth affine group scheme H on X, we denote by BunH the moduli stack of

H-bundles on X. By the functoriality of Bun, the maps ρf,Ω induce maps ρf,Ω,� : BunGΩ
Ñ

BunGf
for all facets f   Ω.

Theorem 3.1.13. Let G be a reductive group over K, let x0 be a closed point of X and let
Ω = cl(Ω) be a bounded subset of an apartment in the Bruhat-Tits building B(GKx0 ,Kx0).
Let GΩ Ñ X be the corresponding Bruhat-Tits group scheme from Construction 3.1.12 (2).
The map

ρΩ,� := limÐÝ
f Ω

ρf,Ω,� : BunGΩ
Ñ limÐÝ

f Ω

BunGf

induced by the ρf,Ω,� for facets f   Ω is schematic and a quasi-compact open immersion.

Proof. By [Bre18, Proposition 3.19], the maps ρf,Ω,� are schematic and quasi-projective
for all facets f   Ω. By Lemma A.0.2, the map ρΩ,� is schematic, separated and of finite
type. Moreover, all BunGf

are locally of finite type over Fq by [Hei10, Proposition 1]. By
Lemma 3.1.1, the map ρΩ,� is a monomorphism.
We show that ρΩ,� is formally étale. Let R be a local artinian Fq-algebra with maximal

ideal I � R of square zero. Let moreover (Ef)f Ω P limÐÝf Ω
BunGf

(R) such that limÐÝf Ω
Ef is a

GΩ-torsor overXR, whereR = R/I. We claim that limÐÝf Ω
Ef is already a GΩ-torsor overXR.

The map (XR)x0
{ Y (Xztx0u)R Ñ XR is a fpqc-cover, where (XR)x0

{ = Spec(Ox0 bpFqR),
with Ox0 bpFqV being the underlying Fq-algebra of the completion of XR along x0. As all
maps GΩ Ñ Gf for f   Ω are the identity away from x0, all transition maps Ef1,R �Gf1 Gf Ñ
Ef,R are isomorphisms away from x0. Using Proposition 3.1.10, it remains to check that
the pullback to limÐÝf Ω

Ef Ñ (XR)x0
{ is surjective, but the underlying topological spaces of

(XR)x0
{ and (XR)x0

{ agree.
Hence, ρΩ,� is formally étale and thus a quasi-compact open immersion being a flat

monomorphism of finite presentation.

3.2. Bounds for shtukas

Global shtukas for GLn were first introduced in [Dri87b] and generalised to split reductive
groups (respectively to flat affine group schemes of finite type) by [Var04] and [AH21],
respectively. In this section, we recall the definition and basic properties of moduli spaces
of (iterated, global) shtukas. We use global bounds following [AH19] and introduce a
new notion of local bounds in the style of [AH14] compatible with global bounds. For
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Bruhat-Tits group schemes we construct (global and local) bounds given by cocharacters
that recover the bounds from [Laf18] in the constant split reductive case.

Let G Ñ X be a smooth affine group scheme. Let I be a finite set and let I = I1Y. . .YIm
be a partition of I. We write I
 = (I1, . . . , Im).

Definition 3.2.1 ([AH21, Definition 3.3]). We denote by ShtG,XI ,I
 the stack fibered in
groupoids over Fq whose S valued points are given by tuples

((xi)iPI , (Ej)j=0,...,m, (ϕj)j=1,...,m, θ),

where

• xi P X(S) are points on X called the characteristic sections (or legs) for i P I,

• Ej P BunG(S) are G-bundles on XS for 0 ¤ j ¤ m,

• ϕj : Ej�1|XSz
�
iPIj

Γxi

�
ÝÑ Ej |XSz�iPIj Γxi are isomorphisms of G-bundles away from

the graphs Γxi � XS of the sections xi, and

• θ : σ�Em
�
ÝÑ E0 is an isomorphism of G-bundles on XS .

The projection to the characteristic sections defines a map ShtG,XI ,I
 Ñ XI . By [AH21,
Theorem 3.15], ShtG,XI ,I
 is an ind-Deligne Mumford stack that is separated and locally
of ind-finite type over XI .

Let I 1
 be a second partition of I that is finer than I
. The forgetful map

ShtG,XI ,I 1

Ñ ShtG,XI ,I


is an isomorphism over

U = tx = (xi)iPI P X
I : xi1 � xi2 for all i1, i2 P Ij and 1 ¤ j ¤ mu � XI

by the argument in [Var04, Lemma A.8 a)].
When I
 = (I) is the trivial partition, we write ShtG,XI = ShtG,XI ,(I). Let us fix pairwise

different closed points yi P X for all i P I. We denote by

ShtyG,XI = ShtG,XI ,I
 �XI Spf(Oy) = ShtG,XI �XI Spf(Oy)

the restriction of the moduli space of shtukas to the formal neighbourhood of Oy. By the
previous observation, this stack does not depend on the choice of the partition I
 of I.
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Assumption 3.2.2. In the following, we consider moduli spaces of shtukas in essentially
three different situations.

(1) G Ñ X is a smooth affine group scheme. (The smooth affine case)

(2) G is a reductive group over K and G Ñ X is a smooth affine group scheme with
generic fibre G. (The generically reductive case)

(3) G is a reductive group over K and GΩ Ñ X is a Bruhat-Tits group scheme for a
bounded subset Ω = cl(Ω) of an apartment in the Bruhat-Tits building for GKx0 for
some fixed closed point x0 of X as in Construction 3.1.12. (The Bruhat-Tits case)

3.2.1. Global bounds

We recall the notion of (global) bounds for shtukas following [AH19, Definition 3.1.3]. In
the case where G is a Bruhat-Tits group scheme, we construct boundedness conditions
given by cocharacters in the style of [Laf18].

We need the following iterated version of Beilinson-Drinfeld affine Grassmannians first
introduced by [BD96] in the case of constant group schemes.

Definition 3.2.3. We denote by GrG,XI ,I
 the functor on Fq-schemes whose S valued
points are given by tuples

((xi)iPI , (Ej)j=0,...,m, (ϕj)j=1,...,m, ε),

where

• xi P X(S) are points on X called the characteristic sections (or legs) for i P I,

• Ej P BunG(S) are G-bundles on XS for 0 ¤ j ¤ m,

• ϕj : Ej�1|XSz
�
iPIj

Γxi

�
ÝÑ Ej |XSz�iPIj Γxi are isomorphisms of G-bundles, and

• ε : Em
�
ÝÑ G �X XS is a trivialisation of Em.

Then GrG,XI ,I
 is representable by an ind-scheme over XI by [Hei10].
Let R be a Fq-algebra. For a relative effective Cartier divisor D � XR, the formal

completion of XR along D is a formal affine scheme. We denote by ÔD the underlying
R-algebra and by D̂ = Spec(ÔD) the corresponding affine scheme. Then D is a closed
subscheme of D̂ and we set D̂0

= D̂zD. We apply this construction in particular when
D = Γx =

�
iPI Γxi is the union of graphs of points x = (xi)iPI P X

I(R). In this case we
write Γ̂x = D̂ and Γ̂

0
x = D̂

0.
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Remark 3.2.4. Using Beauville-Laszlo descent [BL95] (compare also [BD96, Remark 2.3.7
and Theorem 2.12.1] and [LS97]), the affine Grassmannian has the following alternative
description, compare [Laf18, Construction 1.8]. Let R be a Fq-algebra. Then an R-point
of GrG,XI ,I
 is given by a tuple

((xi)iPI , (Ej)j=0,...,m, (ϕj)j=1,...,m, ε),

where the Ej are now G-torsors on Γ̂x and the ϕj are isomorphisms over Γ̂xzΓ̂xj , where
xj = (xi)iPIj .

Let U � XI be the complement of all diagonals. Using this description of the affine
Grassmannian, we find that GrG,XI ,I
 |U = (

±
iPI GrG,X) |U .

We also make use of a global version of the (positive) loop group.

Definition 3.2.5. The global loop group LXIG is the functor on the category of Fq-algebras

LXIG : R ÞÑ
!
(x, g) : x P XI(R), g P G(Γ̂x

0
)
)
.

The positive global loop group L+
XIG is the functor on the category of Fq-algebras

L+
XIG : R ÞÑ

!
(x, g) : x P XI(R), g P G(Γ̂x)

)
.

By [Hei10, Proposition 2], LXIG is representable by an ind-group scheme over XI and
L+
XIG is representable by an affine group scheme over XI with geometrically connected

fibres. Moreover, the projection LG Ñ GrG,XI induces an isomorphism of fpqc-sheaves
LXIG/L+

XIG Ñ GrG,XI . There is a natural leftL+
XIG-action on GrG,XI ,I
 given by changing

the trivialisation ε.
Remark 3.2.6. It is well-known that there is a formally smooth map

ShtG,XI ,I
 Ñ [L+
XIGzGrG,XI ,I
 ],

compare for example [AH19, Theorem 3.2.1] and [Laf18, Proposition 2.8]. In this sense,
the affine Grassmannian is a local model for the moduli stack of shtukas.

We define (global) bounds for shtukas as certain subschemes of the affine Grassmannian
following [AH19, Definition 3.1.3].

Definition 3.2.7. We fix an algebraic closure Kalg of the function field K = K(X) of X.
For a finite extension K 1 of K in Kalg we denote by XrK1 the normalisation of X in K 1. It
is a smooth projective curve over Fq together with a finite morphism XrK1 Ñ X.
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(1) Let K1 and K2 be two finite extensions of K. Two locally closed subschemes
Z1 � GrG,XI ,I
 �XIXr IK1

and Z2 � GrG,XI ,I
 �XIXr IK2
are called equivalent if there

is a finite extensionK1.K2 � K 1 � Kalg of the compositeK1.K2 ofK1 andK2, such
that Z1 �

Xr IK1

Xr IK1 = Z2 �
Xr IK2

Xr IK1 in GrG,XI ,I
 �XIXr IK1 .

Let Z be an equivalence class of locally closed subschemes ZK1 � GrG,XI ,I
 �XIXr IK1

and let GZ := tg P Aut(Kalg/K) : g�(Z) = Zu. The field of definition KZ of Z is
the intersection of the fixed field of GZ in Kalg with all the finite extensions of K
over which a representative of Z exists.

(2) A bound is an equivalence class Z of quasi-compact locally closed subschemes ZK1 �

GrG,XI ,I
 �XIXr IK1 that admits a representative ZKZ over its field of definition KZ

that is moreover stable under the left L+
XIG �XI Xr IKZ -action on GrG,XI ,I
 �XIXr IKZ .

The field of definition KZ of Z is called the reflex field of Z, and the corresponding
curve XZ := XrKZ is called the reflex curve of Z.
By abuse of notation we usually identify Z with its representative over the reflex
curve. Such a representative is unique by Lemma 3.2.10 below.

(3) Let Z be a bound in the above sense and let

E = ((xi)iPI , (Ej)j=0,...,m, (ϕj)j=1,...,m, θ) P (ShtG,XI ,I
 �XIXI
Z)(S).

By [HR20, Lemma 3.4], there exists an étale cover T Ñ S such that Γ̂xT Ñ Γ̂x

trivializes Em|Γ̂x . Fixing a trivialisation α : Em|Γ̂xT
�
ÝÑ G|Γ̂xT defines a point in

(GrG,XI ,I
 �XIXI
Z)(T ), compare Remark 3.2.4. We say that E is bounded by Z if this

point factors through Z. As Z is invariant under the left L+
XIG-action, the definition

is independent of the choice of the trivialisation α.

We denote by ShtZG,XI ,I

Ñ XI

Z the moduli stack of G-shtukas bounded by Z in this sense.
As in the unbounded case, for a tuple (yi)iPI of pairwise distinct closed points of XZ we
write

ShtZ,yG,XI = ShtZG,XI �XI
Z
Spf(Oy).

Let us recall some properties of this stack of bounded global G-shtukas.
Remark 3.2.8. By [AH19, Theorem 3.1.6], the moduli stack of bounded G-shtukas
ShtZG,XI ,I


is a Deligne-Mumford stack locally of finite type and separated over XI , and a
locally closed substack of ShtG,XI ,I
 . The diagonal of ShtZG,XI ,I


is schematic, finite and
unramified by [AH21, Corollary 3.16].
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Remark 3.2.9. There is a version of the local model theorem also for the moduli space
of bounded shtukas. Let Z be a bound. By [AH19, Theorem 3.2.1], its representative
Z inside the affine Grassmannian GrG,XI ,I
 �XIXI

Z is an étale local model for ShtZG,XI ,I

.

Moreover, the L+
XIG-action on Z factors through a finite-dimensional quotient H of L+

XIG
and we have a smooth map ShtZG,XI ,I


Ñ [HzZ], compare [Laf18, Proposition 2.8].

The following lemma is a global analogue of [AH14, Remark 4.6] and shows in particular,
that the representative of a bound Z over the reflex field is unique.

Lemma 3.2.10. Let Z1,K1 and Z2,K2 be two closed subschemes of GrG,XI ,I
 �XIXr IK1
and

GrG,XI ,I
 �XIXr IK2
, respectively. Then Z1,K1 and Z2,K2 are equivalent if and only if Z1,K1 =

Z2,K1 for all finite extensions K 1 of K containing both K1 and K2.

Proof. Let Z1,K1 and Z2,K2 be equivalent and let K2 be a common (finite) extension of
K1 and K2 such that Z1,K2 = Z2,K2 . Let moreover K 1/K be another finite extension
of K containing both K1 and K2. The question if Z1,K1 = Z2,K1 in GrG,XI ,I
 �XIXr IK1 is
fpqc-local and satisfied after the fpqc base change along Xr IK1.K2 Ñ Xr IK1 by assumption.
Note that the flatness of the map follows from the flatness of the normalisation map
XrK1.K2 Ñ XrK1 . Hence, Z1,K1 = Z2,K1 . The other direction is clear.

Remark 3.2.11. Our definition has a couple of subtle differences compared with [AH19,
Definition 3.1.3]. We do not require our bounds to be closed but only locally closed
subschemes of the affine Grassmannian. This allows us to also consider for example
Schubert cells as bounds.

On the other hand, we require the bounds to have a representative over the reflex field.
We do not know if such a representative always exists in this generality, as noted in [AH19,
Remark 3.1.4]. However, this condition is certainly satisfied for bounds given by Schubert
varieties, in which case the reflex field of the bound is the reflex field of the corresponding
cocharacter. Moreover, we use the existence of a representative over the reflex field for
example in the proof of Lemma 3.2.13.
By Lemma 3.2.10, a point E P (ShtG,XI ,I
 �XIXI

Z)(S) is bounded by Z if and only if
after the choice of some trivialisation of E over some fppf-cover T Ñ S the induced point
T �XI

Z
Xr IK1 Ñ GrG,XI ,I
 �XIXr IK1 factors through ZK1 for some (or equivalently for all)

representative ZK1 of Z. In particular, the notion of bounded shtukas above agrees in this
aspect with the defintion of [AH19].

In our setting, the notion of a shtuka datum (respectively a map of shtuka data) in the
sense of [Bre18, Definitions 3.1 and 3.9] restricts to the following.
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Definition 3.2.12. A shtuka datum (G,Z) is a pair of a smooth affine group scheme
G Ñ X and a bound Z in GrG,XI ,I
 �XIXI

Z , where XZ is the reflex curve of Z. A map of
shtuka data f : (G,Z)Ñ (G1,Z 1) is a map of group schemes f : G Ñ G1 such that the map

Z �XI
Z
XI

Z.Z 1 ãÑ GrG,XI ,I
 �XI
Z
XI

Z.Z 1
f�
ÝÑ GrG1,XI ,I
 �XI

Z
XI

Z.Z 1

factors through Z 1 �XI
Z1
XI

Z.Z 1 , where XZ.Z 1 = XrKZ .KZ1 is the normalisation of the
compositum of the reflex fields of Z and Z 1, respectively.

A map of shtuka data f : (G,Z)Ñ (G1,Z 1) induces a map on the corresponding moduli
stacks of shtukas

f� : ShtZG,XI ,I

�XI

Z
XI

Z.Z 1 Ñ ShtZ
1

G1,XI ,I

�XI

Z1
XI

Z.Z 1

by the following lemma that is an analogue of [Bre18, Lemma 3.15].

Lemma 3.2.13. Let f : (G,Z)Ñ (G1,Z 1) be a map of shtuka data. Let

E P (ShtZG,XI ,I

�XIXI

Z.Z 1)(S).

Then f�E P (ShtG1,XI ,I
 �XIXI
Z.Z 1)(S) is bounded by Z 1.

Proof. Let E = ((xi)iPI , (Ej)j=0,...,m, (ϕj)j=1,...,m, θ) P (ShtZG,XI ,I

�XIXI

Z.Z 1)(S). Let T Ñ
S be a fppf-cover that trivialises Em|Γ̂x and choose a trivialisation α : Em|Γ̂xT

�
ÝÑ G|Γ̂xT .

Then (ET , α) defines an T -valued point in GrG,XI ,I
 �XIXI
Z.Z 1 . As E is bounded by Z, the

induced point T �XI
Z
XI

Z.Z 1 Ñ GrG,XI ,I
 �XIXI
Z.Z 1 factors through Z �XI

Z1
XI

Z.Z 1 .
Then the map

T ãÑ T �XI
Z
XI

Z.Z 1 Ñ GrG,XI ,I
 �XIXI
Z.Z 1

factors throughZ�XZX
I
Z.Z 1 , hence its image under f� lies inZ 1�XZ1X

I
Z.Z 1 by assumption.

Thus, the map T �XI
Z1
XI

Z.Z 1 Ñ GrG1,XI ,I
 �XIXI
Z.Z 1 factors through Z 1 �XI

Z1
XI

Z.Z 1 ,
too.

Note that we used the existence of a representative of the bounds over their respective
reflex fields. We do not know how to prove the lemma without this assumption.

Construction 3.2.14 (Bounds from cocharacters in the generically reductive case). Let us
now construct bounds given by cocharacters in the generically reductive case (compare
Assumption 3.2.2 (2)).
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Let G be a reductive group over K and let µ be a conjugacy class of geometric cocharac-
ters of G with reflex field Kµ. Let K 1/K be a finite separable extension that splits G. We
denote by Gr¤µGK1 � GrGK1 = GrG�KK 1 the Schubert variety inside the (classical) affine
Grassmannian for GK1 . The Schubert variety is already defined over the reflex field of µ
and hence descends to a closed subscheme Gr¤µG � GrG�KKµ.
Let now G Ñ X be a smooth affine group scheme with generic fibre GK = G. By

[RS21], the generic fibre of Beilinson-Drinfeld Grassmannian for G can be identified (non
canonically) with the affine Grassmannian for G, GrG,X �X Spec(K) � GrG. We use this
observation to define Gr¤µG,X as the scheme-theoretic image

Gr¤µG,X = image
(︂
Gr¤µG ãÑ GrG,X �XXµ

)︂
where we denote by Xµ = XrKµ the reflex curve of µ. Note that this definition is indepen-
dent of the choice of the identification of the generic fibre.
Let µ = (µi)iPI be a tuple of conjugacy classes of cocharacters µi of G. We denote

by Kµ the compositum of all reflex fields of the µi and by Xµ = XrKµ . We denote by

Gr¤µG,XI ,I

� GrG,XI ,I
 �XIXI

µ the Zariski closure of the preimage of
±
iPI

(︂
Gr¤µiG,X �XµiXµ

)︂
under the isomorphism GrG,XI ,I
 |U

�
ÝÑ (
±
iPI GrG,X) |U , where U � XI is the complement

of all diagonals in XI .
By construction, the equivalence class of Gr¤µG,XI ,I


defines a bound for G with reflex curve

Xµ and Gr¤µG,XI ,I

is a representative of this bound over Xµ. We say that a global G-shtuka

is bounded by µ if it is bounded by Gr¤µG,XI ,I

and denote by Sht¤µG,XI ,I


� ShtG,XI ,I
 �XIXI
µ

the corresponding moduli stack of global G-shtukas bounded by Gr¤µG,XI ,I

.

Lemma 3.2.15. Let G be a reductive group and let f : G Ñ G1 be a map of smooth affine
group schemes with generic fibres G such that f is an isomorphism over a dense open subset
U of X. Let µ = (µi)iPI be a tuple of conjugacy classes of geometric cocharacters of G. Then
f induces a map f� : Gr¤µG,XI ,I


Ñ Gr¤µG1,XI ,I

that is an isomorphism over U I .

Proof. That f� is defined and an isomorphism over U I is clear. That f� extends to a map
over XI follows by the construction of Gr¤µG,XI ,I


as a schematic closure.

Remark 3.2.16. Let us comment on how the bounds constructed above compare to other
notions of bounds given by cocharacters in the literature.
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(1) When G is constant split reductive, our bounds agree with the bounds of [Laf18,
Définition 1.12]. This in particular includes the case of Drinfeld shtukas in [Dri87b],
that means shtukas for G = GLn and µ = ((1, 0, . . . , 0), (0, . . . , 0,�1)). In a similar
fashion, the bounds used in the unitary case in [FYZ21b; FYZ21a] can be realised
in this way.

(2) Already in the split case, there are several other ways to define bounds given by
cocharacters, compare [Var04] and [AH21]. In general, these definitions do not
agree, see for example [Laf18, Remarque 1.8]. The proof of our main Theorem 3.3.8
does not rely on the concrete construction of the bounds, but only on the fact that
the bounds constructed above satisfy Lemma 3.2.15 and the conditions of Theorem
3.3.3.

(3) In the non-split case, [Laf18, § 12.3.1] constructs bounds for parahoric group
schemes G that are given by representations of the L-group of G. Starting from a
cocharacter µ of a split maximal torus T of G (defined over some finite extension
of K), we can take the direct sum W of all Galois translates of µ. We can then
(at least in the generic fibre) recover Gr¤µG,XI ,I


as a component in the base change
GrWG,XI ,I


�XIXI
µ, where GrWG,XI ,I


denotes the bound given by W from [Laf18].
However, in order to study the geometry of the special fibre of our moduli spaces of
shtukas it seems to be necessary to use the finer bounds.

3.2.2. Local bounds

We define similar bounds for local shtukas. [AH14] define a notion of local boundedness
conditions. However, using their definition the local and global notions are not compatible
in a natural way in general, compare Remark 3.2.22 below. We introduce a variant of
their notion of local bounds that are naturally compatible with the global bounds defined
above.
We start by giving the definition of local shtukas. We continue to use the notation in

the local setting from above. Let k = F ((t)) be a local field in characteristic p with ring of
integers O = F JtK and finite residue field F. Let G Ñ O be a smooth affine group scheme.
We denote by LG (respectively L+G) the (positive) loop group of G defined as functors on
the category of F-algebras as

R ÞÑ LG(R) = G(R ((t))) and R ÞÑ L+G(R) = G(R JtK),

respectively. The loop group LG is representable by an ind-group scheme of ind-finite
type over F, the positive loop group is representable by an affine (infinite dimensional)

75



group scheme over F. Recall that the (classical) affine Grassmannian GrG for G is given by
the fpqc-sheafification of the quotient GrG = (LG/L+G)fpqc. Moreover, using the inclusion
L+G Ñ LG, there is a natural way to associate to a L+G-torsor E+ its corresponding
LG-torsor E .
For an F JtK-algebra R we denote by ζ P R the image of t. We denote by N ilpFJζK the

category of F JtK-algebras where ζ is nilpotent.

Definition 3.2.17. Let R P N ilpFJζK. A local G-shtuka over R is a pair E = (E+, ϕ)
consisting of a L+G-torsor E+ on R and an isomorphism of LG-torsors ϕ : σ�E Ñ E .

Instead of defining bounds as certain subschemes in GrG �p Spf(F JtK) as in [AH14],
we use the following local variant of Beilinson-Drinfeld affine Grassmannians following
[Ric21] to define local bounds.

Definition 3.2.18. The Beilinson-Drinfeld affine Grassmannian GrG,O for G is the functor
on O-algebras defined by

R ÞÑ

"
(E , α) :

E a G-torsor on Spec(R Jt� ζK),
α : E |R((t�ζ))

�
ÝÑ GR((t�ζ)) a trivialisation overR ((t� ζ))

*
.

By [Ric21], GrG,O is representable by an ind-scheme over O. Moreover, for a smooth,
affine group scheme G Ñ X and a closed point x P X we have a canonical isomorphism
GrGOx ,Ox = GrG,X �X Spec(Ox).

The affine Grassmannian GrG,O carries an action of the positive loop group L+
OG defined

as the functor on O-algebras by

R ÞÑ (L+
OG)(R) = G(R Jt� ζK).

Note that the special fibre of GrG,O is the classical affine Grassmannian for G, while the
generic fibre of GrG,O is the BdR-affine Grassmannian for G = Gk.
In order to define bounded local shtukas, we need to construct points in (the formal

completion of) GrG,O from a local shtuka. This is done as follows. Let E = (E , ϕ) be a
local shtuka over R P N ilpFJζK. Let RÑ R1 be an fppf-cover that trivialises E . As ζ P R is
nilpotent by assumption, we have R Jt� ζK = R JtK. Using the equivalence of L+G-torsors
over R with formal Ĝ = G �FJtK Spf(F JtK)-torsors over Spf(R JtK) = Spf(R Jt� ζK) from
[AH14, Proposition 2.4], a trivialisation α : ER1

�
ÝÑ ĜSpf(R1Jt�ζK) defines a R1-rational point

in GrxG,FJtK := GrG,FJtK�Spec(FJtK) Spf(F JtK) given by (σ�E , α � ϕ).
Using this version of affine Grassmannians, we define local bounds in the style of [AH14,

Definitions 4.5 and 4.8].
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Definition 3.2.19. Let us fix an algebraic closure kalg of k.

(1) Let O � O1,O2 be two finite extensions of discrete valuation rings in kalg. We call
two locally closed subschemes

Z1 � GrG,O �Spec(O) Spec(O1) and Z2 � GrG,O �Spec(O) Spec(O2)

equivalent if there is a common finite extension O1,O2 � O1 of discrete valu-
ation rings in kalg such that Z1 �Spec(O1) Spec(O1) = Z2 �Spec(O2) Spec(O1) in
GrG,O �Spec(O) Spec(O1).

(2) A local bound is an equivalence class Z of quasi-compact locally closed subschemes
of GrG,O such that all representatives are stable under the L+

OG-action and such that
Z admits a representative over its field of definition (also called its reflex field) as
defined in [AH14, Definition 4.5].

(3) Let Z be a bound in the above sense and let E = (E , ϕ) be a local shtuka over R P
N ilpFJζK. Let RÑ R1 be an fppf-cover that trivialises E and choose a trivialisation α
of E overR1. We say that E is bounded by Z if for all representatives ZO1 of Z overO1,
the point in GrxG,O(R

1) induced by α factors through ZO1 . As ZO1 is invariant under
the left L+

O1G-action, the definition is independent of the choice of the trivialisation
α.

Remark 3.2.20. The discussion of [AH14, Remarks 4.6, 4.7 and 4.9] (respectively their
global analogues in Lemma 3.2.10 and Remark 3.2.11) also applies in this setting. In
particular, the representative of a bound over its reflex field is unique and it suffices to
check boundedness of a local shtuka for a single representative. By a slight abuse of
notation we may thus identify a bound with its representative over its reflex field. Note
that it is not known if an equivalence class of L+

OG-stable subschemes in GrG,O always
admits a representative over its reflex field.

As in the global case (compare Construction 3.2.14) we define bounds given by cochar-
acters when the generic fibre of G is reductive. When G is parahoric, these bounds coincide
with the global Schubert varieties defined in [Ric16, Definition 2.3].

Definition 3.2.21. Assume that the generic fibre G = Gk of G is reductive. Let µ be a
conjugacy class of geometric cochcaracters of G with reflex field kµ. Let Oµ be the ring of
integers in kµ. Then Gr¤µG,O is defined to be the scheme-theoretic closure of Gr¤µG inside
GrG,O �Spec(O) Spec(Oµ).

Clearly, Gr¤µG,O defines a local bound with reflex ring Oµ. Note that when G is constant
split reductive, the bounds defined here may differ from the bound given by µ in [HV11,
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Definition 3.5], compare [Zhu17, Remark 2.1.7] and [Laf18, Remark 1.18]. However,
they do agree when µ is minuscule and Gder is simply connected.
Remark 3.2.22. Morally, the difference between bounds defined as (locally) closed sub-
schemes of GrG �p Spf(O) (as in [AH14]) and GrG,O as defined above is the following. As
noted in [AH14, Example 4.13], the first kind of subschemes naturally gives rise to bounds
along t̃ = t (in the notation of [HV11]), while our bounds give rise to bounds along
t̃ = t� ζ. In this sense, it seems more natural to define bounds for local shtukas inside
GrG,O, compare [HV11, Remark 3.6]. When G is constant split reductive, the bounds
given by (µ, t� ζ) of [HV11] can be represented inside GrG �p Spf(O) by [AH14, Example
4.13]. However, this may fail to be the case in general.

3.2.3. Local-global compatibility.

We explain how to construct local bounds from global ones. We recall the global-to-local
functor for shtukas from [AH14, Section 5] and show that our notions of global and local
bounds are compatible in the sense that a global shtuka is bounded if and only if its
corresponding local shtukas are bounded by the associated local bounds. This observation
gives rise to a bounded version of the Serre-Tate Theorem [AH14, Theorem 5.13].
We use the following notation following [AH14, Remark 5.2]. Let y P X be a closed

point. We denote by Oy the completed local ring at y, and by my � Oy and Fy = Oy/my

its maximal ideal with uniformiser ϖy and residue field, respectively. Let x P X(R) be
a section of X such that x factors through Spf(Oy), in other words, the image of the
uniformiser ϖy in R is nilpotent. Then the m-adic completion of Oy bFq R factors as

OybpFqR = (Fy bFq R) JϖyK =
¹

1¤ℓ¤[Fy : Fq ]
OybpFyR =

¹
1¤ℓ¤[Fy : Fq ]

R JϖyK .

The ℓ-th factor is defined by the ideal aℓ = xa� 1� 1b x(a)q
ℓ
: a P κyy in OybpFqR and

the Frobenius σ cyclically permutes the factors.
Remark 3.2.23. We explain how global bounds give rise to local bounds following [AH19,
Proposition 4.3.3]. Let G Ñ X be a smooth affine group scheme and let Z be a global
bound for G. Let us fix a tuple y = (yi)iPI P X

I of pairwise distinct closed points in
X. Using the isomorphism GrG,XI ,I
 |U = (

±
iPI GrG,X) |U over the complement of all

diagonals U in XI , we denote by Zi the image of Z under the projection to the i-th
component. Then Zi � GrG,X �XXZ is a quasi-compact locally closed subscheme stable
under the action of L+

XG.
Let y1i be a closed point of Xr Z lying over yi. We denote by Zy1i = Zi �XrK1 Spec(Oy1i

).
Then Zy1i � GrG,Oy �Spec(Oy) Spec(Oy1i

) is a locally closed subscheme stable under the
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loop group action. In particular, for a tuple of points y1 = (y1i)iPI of X I
Z lying over y,

we can associate to a global bound Z an I-tuple of equivalence classes of L+
OG-stable

subschemes (Zy1i)iPI . Note that it is not clear in general that the equivalence class of
subschemes defined by Zy1i does indeed admit a representative over its reflex ring (which
will in general be different from Oy1i

).
However, in the generically reductive case and Z = Gr¤µG,XI ,I


for an I-tuple of conjugacy
classes of geometric cocharacters of G = GK we get Zy1i = Gr¤µiGOyi

,Oyi
�Spec(Oµi ) Spec(Oy1i

)

by construction, so in this case the Zy1i do indeed define local bounds.

Remark 3.2.24. More precisely, [AH19, Proposition 4.3.3] construct local bounds in the
sense of [AH14] by further pulling back the global bound to a subscheme in GrG �̂Fq Spf(O).
In particular, the local bounds associated to Gr¤µ

G,XI ,I

in the split reductive case are

Gr¤µiG �̂Fq Spf(O) rather than Gr¤µiGOyi
,Oyi

, compare Remark 3.2.22.

Global-to-local functor

We explain how to associate local shtukas to global shtukas following [AH14, Section 5].
Let us fix a tuple y = (yi)iPI of pairwise distinct closed points ofX. Let E = ((xi)iPI , E , ϕ) P
ShtyG,XI (R). By the observation above, the yi-adic completion of E decomposes as

E�pXR Spf(OyibpFqR) = º
1¤ℓ¤[Fyi : Fq ]

E�pXR Spf(R JϖyiK),

and each component is a formal Ĝyi = G �X Spf(Oyi)-torsor over R. Hence, Eyix =(︁
E�pXRV (a0), ϕ

deg(yi)
)︁
is a local GOyi -shtuka over R.

Definition 3.2.25. The global-to-local functor associates to a global shtuka E P ShtyG,XI (R)

a tuple of local Gyi-shtukas for i P I given by

Eyx = (Eyix )iPI .

Then, Eyix is called the local shtuka of E at yi.

Remark 3.2.26. In a similar fashion, for a closed point y of X we can associate to a global
shtuka E = ((xi), (Ej), (ϕj), θ) P ShtG,XI ,I
 |(Xztyu)I (R) with characteristic sections away
from y an étale local shtuka at y by [AH14, Remark 5.6] as follows. We denote by Gry =
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ResFy/FqGOy . Then Gry is a smooth affine group scheme over Fq JϖyK. The étale local Gry-
shtuka associated to E is then given by Ery = (Ery, ϕ) with Ery = ResFy/Fq(EmXR

y(OybpFqR))
and ϕ = ϕm � . . .�ϕ0 �θ. Note that Ery is called étale as ϕ is an isomorphism by assumption.
The global-to-local functor is compatible with our notion of bounds in the following

sense. Let us fix a global bound Z for G and a tuple of closed points y1 = (y1i)iPIPXI
Z
such

that y1i lies over yi. We denote by Shty
1

G,XI = ShtG,XI �XI Spf(Oy1).

Proposition 3.2.27. Assume that the associated local equivalence classes Zy1i constructed in

Remark 3.2.23 are local bounds. A global shtuka E P Shty
1

G,XI (R) is bounded by Z if and
only if for all i P I its associated local shtuka Eyix at yi is bounded by Zy1i .

Proof. Let us fix an fppf-cover R1 Ñ R and a trivialisation α : E |Γ̂x
R1

�
ÝÑ G|Γ̂x

R1
. As

the (yi)iPI were assumed to be pairwise distinct, we have Γ̂xR1 =
�
iPI Γ̂xi,R1 . Moreover,

by [AH14, Lemma 5.3] we have Γ̂xi,R1 = V (a0). By construction, the induced point
(ER1 , α) P GrG,XI (R1) factors through Z if and only if the restriction of α to Γ̂xi,R1 fac-
tors through Zy1i for all i P I, or equivalently the corresponding point R1 �OZ

y1
i

Oy1i
Ñ

GrG,Oyi �Spec(Oyi ) Spec(Oy1i
) factors through Zy1i . But this is the case if and only if the

local shtuka Eyix at yi is bounded by Zy1i by definition.

Remark 3.2.28. Let y = (yi)iPI be a tuple of pairwise distinct closed points of X. Let
(Zi)iPI be a tuple of local bounds at y. We denote by O(Zi)iPI =

Âx
iPIOZi . As in [AH19,

Definition 4.3.2], we say a global shtuka E P ShtyG,XI �Spf(Oy) Spf(O(Zi)iPI ) is bounded
by (Zi)iPI if its associated local shtuka at yi is bounded by Zi for all i P I. When the
local bounds come from a global bound, the previous proposition shows that this notion
of local boundedness conditions agrees with the global one. We do not explore these
local boundedness conditions for global shtukas further here as the bounds we are later
interested in, namely the ones given by cocharacters, arise from global bounds.
The global-to-local functor also gives rise to a Serre-Tate theorem relating the de-

formation theory of global shtukas with the deformation theory of their associated lo-
cal shtukas, compare [AH14, Theorem 5.10]. Let S = Spec(R) P N ilpOy and let
i : S = Spec(R/I) ãÑ S be a closed subscheme defined by a nilpotent ideals I. Let
Ē P ShtZ,yG,XI (S). We denote by DefZĒ (S) the category of bounded deformations of E to S,

in other words, the category of pairs (E , β : i�E Ñ̃ Ē) where E P ShtZ,yG,XI (S) and β is an
isomorphism of G-shtukas over S.
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Similarly, for a local Gyi-shtuka Ē bounded by Zyi we define DefZyiĒ (S) as the category
of bounded deformations of Ē to S, that is, the category of pairs (E , β : i�E Ñ̃ Ē) where E
is a local Gyi-shtuka on S bounded by Zyi and β is an isomorphism of local Gyi-shtukas
over S.

Corollary 3.2.29 (Bounded Serre-Tate Theorem for shutkas). Let Ē P ShtZ,yG,XI (S). The
restriction of the global-to-local functor

(�)yz : DefZĒ (S)Ñ
¹
iPI

DefZi
Eyi
y(S), (E , β) ÞÑ (Eyix , βyi

x )iPI

is an equivalence of categories.

Proof. This follows directly from the unbounded case in [AH14, Theorem 5.10.] together
with Proposition 3.2.27

3.3. Level maps and integral models with deep Bruhat-Tits level

We construct integral models for moduli spaces of shtukas with deep Bruhat-Tits level
structures and show that these integral models admit proper, surjective and generically
étale level maps. In order to do so, we first study the morphism on shtuka spaces induced
by a generic isomorphism of group schemes extending a result of [Bre18].

3.3.1. Functoriality of shtuka spaces under generic isomorphisms

We study functoriality of shtuka spaces under homomorphisms of group schemes that are
generic isomorphisms. We prove an analogue of [Bre18, Theorem 3.20] in our setting of
shtukas with global bounds. In particular, we get the result on the whole curve and need
not restrict the legs to a formal neighbourhood of fixed sections as in [Bre18]. Moreover,
we show that the level maps in our setting are generically finite étale, which is not part of
[Bre18]. This already shows that we have nice level maps in the parahoric case.
Remark 3.3.1. Let us first note the following functoriality properties of the affine Grass-
mannian in this setting.

(1) Let f : G Ñ G1 be a homomorphism of group schemes over X such that f is an
isomorphism over a dense open subset U � X. The induced map

f� : GrG,XI ,I
 Ñ GrG1,XI ,I


is then an isomorphism over U I using the moduli description from Remark 3.2.4.
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(2) In the Bruhat-Tits case (compare Assumption 3.2.2 (3)) it follows that the map

ρΩ,� : GrGΩ,XI ,I
 Ñ limÐÝ
f Ω

GrGf,XI ,I


is an open immersion by Theorem 3.1.13 and an isomorphism over (Xztx0u)I using
the previous observation.

(3) Moreover, using Lemma 3.2.15 we obtain a map

ρΩ,� : Gr¤µGΩ,XI ,I

Ñ limÐÝ

f Ω

Gr¤µGf,XI ,I


that factors as a closed immersion followed by an open immersion

Gr¤µGΩ,XI ,I

Ñ GrGΩ,XI ,I
 �limÐÝf Ω

GrGf,XI ,I

limÐÝ
f Ω

Gr¤µGf,XI ,I

Ñ limÐÝ

f Ω

Gr¤µGf,XI ,I


and is hence locally closed immersion and an isomorphism over (Xztx0u)I .

We need the following lemma on twisted flag varieties in the local setting.

Lemma 3.3.2. Let k = F ((t)) be the field of formal Laurent series over an arbitrary field F
and let o = F JtK the subring of formal power series. Let G be a smooth affine group scheme
over k and let G and G1 be two smooth integral models of G with geometrically connected
fibres. Let f : G Ñ G1 be a homomorphism of o-group schemes that is the identity on G over
k.

(1) The corresponding twisted flag variety L+G1/L+G is representable by a smooth and
separated scheme of finite type over F. If F is finite or separably closed, then(︁

L+G1/L+G
)︁
(F) = G1(o)/G(o).

(2) Assume that F is finite. We equip G(k) with the analytic topology induced by the
natural topology on k (note that k is locally compact in this case). Then G(o) is a
compact open subgroup of G1(o). In particular, the quotient G1(o)/G(o) is discrete and
finite.

(3) Let S be an F-scheme. Giving a L+G-torsor over S is equivalent to giving a L+G1-torsor
E 1 over S together with an isomorphism E 1/L+G �

ÝÑ L+G1/L+G.

Note that giving an isomorphism E 1/L+G �
ÝÑ L+G1/L+G in (3) is also clearly equivalent

to giving a section in (E 1/L+G) (S).
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Proof. (1) By the argument in the proof of [Bre18, Lemma 3.17], the quotient stack
L+G1/L+G is representable by a separated scheme of finite type over F that is
moreover a closed subscheme of the affine Grassmannian GrG . As both L+G and
L+G1 are formally smooth over F, the quotient L+G1/L+G is hence formally smooth
as well.
For the second claim, it suffices to show that H1(F, L+G) is trivial by the moduli
description of the quotient stack. But this is shown in the proof of [Ric20, Corollary
3.22].

(2) Clearly, both G(o) and G1(o) are compact open subgroups of G(k) by construction.
The existence of the map f then means that G(o) is a subgroup of G1(o). The assertion
on the quotient then directly follows from basic facts from topology.

(3) Given a L+G-torsor E on S, its associated L+G1-torsor is given by E �L+G L+G1. The
map on sections given by (e, g) ÞÑ g then induces an isomorphism

E 1/L+G �
ÝÑ L+G1/L+G.

This construction is an equivalence.

Theorem 3.3.3. Let G and G1 be two smooth affine group schemes overX with geometrically
connected fibres. Let f : (G,Z) Ñ (G1,Z 1) be a map of shtuka data such that the map
f : G Ñ G1 is an isomorphism over U = Xz ty1, . . . , ynu for a finite set of closed points
ty1, . . . , ynu of X.

(1) The induced map

f� : ShtZG,XI ,I

�XI

Z
XI

Z.Z 1 Ñ ShtZ
1

G1,XI ,I

�XI

Z1
XI

Z.Z 1

is schematic, separated and of finite type.

(2) Assume that G is a parahoric Bruhat-Tits group scheme and thatZ � GrG,XI ,I
 �XIXI
Z

is a closed subscheme. Then the map f� is moreover proper.

(3) Assume that Z �XI
Z
XZ.Z 1 Ñ Z 1 �XI

Z
XZ.Z 1 is an isomorphism over (U �X XZ.Z 1)

I .
Then the map f� is étale locally representable by the constant scheme

n¹
i=1

G1(Oyi)/G(Oyi).

In particular, f� is finite étale and surjective over (U �X XZ.Z 1)
I .
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(4) Under the assumptions of (2) and (3) assume additionally that Z 1 is the schematic
closure of Z 1|(U�XXZ1 )

I in GrG1,XI
Z1 ,I


. Then f� is surjective.

Remark 3.3.4. The first two statements are direct analogues of the corresponding state-
ments in [Bre18, Theorem 3.20], while there is no analogue of the third assertion in
[Bre18, Theorem 3.20]. In order to get surjectivity of the map f�, in [Bre18] it is assumed
that the bound Z arises as the base change of Z 1 under the map f� on affine Grassman-
nians. This assumption does not seem adequate in our setting, in particular, it is not
satisfied for the bounds given by cocharacters in the Bruhat-Tits case. We thus replace the
assumption by the condition that the map on bounds is a generic isomorphism and that
the bounds arise as schematic closures from their generic part, both of which are satisfied
in our setting. Note that when Z arises as a base change, the map Z Ñ Z 1 is clearly an
isomorphism over U I .
Note moreover that a similar statement also holds for moduli spaces of shtukas with

local boundedness conditions as in Remark 3.2.28. In fact, the proof of [Bre18] for (1)
and (2) directly translates to this setting.

Proof. (1) We proceed as in the proof of [Bre18, Theorem 3.20]. We consider the
projection ShtZG,XI ,I


Ñ
±
j=1,...,m BunG given by E ÞÑ (Ej)j=1,...,m. Let us fix

E 1 = ((xi)iPI , (E 1j)j=0,...,m, (ϕj)j=1,...,m, θ) P
(︂
ShtZ

1

G1,XI ,I

�XI

Z1
XI

Z.Z 1
)︂
(S).

We claim that the induced map

S �ShtZ1G1,XI ,I

�
XI

Z1
XI

Z.Z1

(︂
ShtZG,XI ,I


�XI
Z
XI

Z.Z 1
)︂
Ñ S �±m

j=1 BunG1

m¹
j=1

BunG

is a quasi-compact locally closed immersion. This shows the assertion (1) using that
BunG Ñ BunG1 is schematic and quasi-projective by [Bre18, Proposition 3.18].

In order to show the claim, let us fix a point

(s, (Ej)j=1,...m, (ψj)j=1,...,m) P (S �±m
j=1 BunG1

m¹
j=1

BunG)(T ),

where s : T Ñ S is a map of schemes, the Ej are G-bundles and ψj : s�E 1
�
ÝÑ f�E is

an isomorphism of G1-bundles over XT . As in the proof of [Bre18, Theorem 3.20],
there is at most one T -valued point (s, E , ψ) of S �ShtZ1G1,XI ,I


ShtZG,XI ,I

mapping to
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(s, (Ej)j=1,...m, (ψj)j=1,...,m) as the maps ϕj of E are already uniquely determined
over an open dense subset by the ϕ1j .
It remains to check that the locus where such an extension exists is closed in T . Let
D = XzU be the effective Cartier divisor in X given by y. Let 1 ¤ j ¤ m. The map
ϕ1j,T : E 1j�1|XT z

�
iPIj

Γxj
Ñ E 1j |XT z�iPIj Γxj defines a map ϕj : Ej�1|XT z(DY

�
iPIj

)Γxj
Ñ

Ej |XT z(DY�iPIj Γxj ). Trivialising both Ej�1 and E over D̂ Y Γ̂xj defines an element

ϕj P G(D̂0
YΓxj ). By the argument that the positive loop group is a closed subscheme

of the loop group, the locus where ϕj can be extended to D̂zΓx is closed. Finally, the
locus where this is bounded by Z is reprsentable by a quasi-compact immmersion.

(2) This follows from the argument in (1) as in the parahoric case the map BunG Ñ BunG1
is projective by [Bre18, Proposition 3.18].

(3) It suffices to show the first claim that the map f� is étale locally representable by the
constant scheme

±n
ℓ=1 G1(Oyℓ)/G(Oyℓ). We follow the proof of [Var04, Proposition

2.16]. Let
E 1 = ((xi), (E 1i), (ϕ1i), θ) P ShtZ

1

G1,XI ,I

|UIZ,Z1

(S).

For ℓ = 1, . . . , n, we denote by E 1yk
� = (E 1r yℓ , ϕ) the associated étale local shtuka of

E 1 at yℓ as defined in Remark 3.2.26. The fibre product

S1 = S �E 1,ShtZ1G1,XI ,I

|
UI
Z,Z1

,f�
ShtZG,XI ,I


|UIZ,Z1

is then given by the set of tuples (E 1yℓ
�)ℓ=1,...,n of étale local GOyℓ

�-shtukas such that
f�E 1yℓ
� = E 1yℓ

� . As the claim is étale-local on S, we may assume that all E 1r yℓ are trivial
L+G1Oyℓ
�-torsors. By Lemma 3.3.2 (3), the fibre product S1 is then representable by

the scheme of Frobenius fixed points of
±n
ℓ=1 G1Oyℓ
�/L+GOyℓ

�, which is given by the

constant scheme
±n
ℓ=1

(︂
L+G1Oyℓ
�/L+GOyℓ

�)︂
(Fq) by [Var04, Lemma 3.3]. By Lemma

3.3.2 (1), this scheme can be identified with
±n
ℓ=1 G1(Oyℓ)/G(Oyℓ), and by Lemma

3.3.2 (2) it is finite over Fq.

(4) Let us fix a point s P ShtZ
1

G1,XI ,I

. If s lies over U , it is in the image of ShtZ

1

G1,XI ,I


by (3). Let us thus assume that s maps to XIzU . By the local model theorem
(compare Remark 3.2.9), we have a smooth map ShtZ

1

G1,XI ,I

Ñ [HzZ 1], where H

is a finite-dimensional quotient of L+
XIG. By assumption on Z 1, the image of s in
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[HzZ 1] has a generalisation s1 over U . As the local model map is smooth, s1 lifts to a
generalisation s2 of s in ShtZ

1

G1,XI ,I

. As f� is generically surjective by (3), there is a

point t P ShtZG,XI ,I

mapping to s2. As f� is proper by (2), specialisations lift along

f�. Hence, s is in the image of f�.

Let us also state the result in the generically reductive case with bounds given by
cocharacters.

Corollary 3.3.5. Let G be a reductive group over K and let f : G Ñ G1 be a map of two
smooth affine models of G that is an isomorphism over some dense open subset U of X. Let
µ = (µi)iPI be an I-tuple of conjugacy classes of cocharacters for G. The induced map

f� : Sht¤µG,XI ,I

Ñ Sht¤µG1,XI ,I


is schematic, separated and of finite type. Moreover, it is finite étale and surjective over
(U �X Xµ)

I . When G is a parahoric Bruhat-Tits group scheme, f� is proper and surjective.

Proof. The bounds given by µ for G and G1 clearly satisfy the conditions of Theorem
3.3.3.

3.3.2. Moduli spaces of shtukas with deep Bruhat-Tits level structure

In this section, we define the integral model of the moduli space of shtukas with deep
Bruhat-Tits level structure as the schematic image of the moduli space of shtukas for the
Bruhat-Tits group scheme inside the limit of all the corresponding spaces for parahoric
level.

Proposition 3.3.6. In the situation of Assumption 3.2.2 (3), the map

ρΩ,� : Sht¤µGΩ,XI ,I

Ñ limÐÝ

f Ω

Sht¤µGf,XI ,I


is schematic and representable by a quasi-compact locally closed immersion. Moreover, ρΩ,�
is an open and closed immersion over (Xzx0)I . When Ω is (the closure of) a facet, ρΩ,� is an
isomorphism.

Proof. The assertion in the case that Ω is a facet is clear. By Corollary 3.3.5 and Lemma
A.0.2, the map is schematic, separated and of finite type. By Theorem 3.1.13, the
corresponding map on the unbounded moduli stacks of shtukas is an open immersion.
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Hence, ρΩ,� is certainly a locally closed immersion as being bounded by µ is a closed
condition.

Over (Xzx0)I , an element of ShtGΩ,XI ,I
 is bounded by µ if and only if its image under
ρf,Ω,� for one (or equivalently all) facet f   Ω is bounded by µ by Lemma 3.2.15. Thus,
ρΩ,� is an open immersion over (Xzx0)I . Moreover, the map ρΩ,� is finite away from x0
by Lemma A.0.2, hence also a closed immersion.

Definition 3.3.7. The integral model Sht¤µGΩ,XI ,I

of the moduli space of shtukas with

GΩ-level is defined to be the schematic image in the sense of [EG21] of the map

ρΩ,� : Sht¤µGΩ,XI ,I

Ñ limÐÝ

f Ω

Sht¤µGf,XI ,I

.

By Proposition 3.3.6, we have Sht¤µGf,XI ,I

= Sht¤µGf,XI ,I


in the parahoric case. Moreover,

the inclusion Sht¤µGΩ,XI ,I

Ñ Sht¤µGΩ,XI ,I


is an isomorphism away from x0 by Proposition
3.3.6 together with the fact that the schematic closure commutes with flat base change.

By construction, we have level maps ρf,Ω : Sht¤µGΩ,XI ,I

Ñ Sht¤µGf,XI ,I


for all facets f   Ω.

In particular, for Ω1
  Ω we obtain a map ρΩ1,Ω : Sht¤µGΩ,XI ,I


Ñ limÐÝf Ω1
Sht¤µGf,XI ,I


that

factors through Sht¤µGΩ1 ,X
I ,I


by construction.

Theorem 3.3.8. Let Ω,Ω1 be two bounded connected subsets of an appartment in the
Bruhat-Tits building of GKx0 such that Ω1

  Ω. Then, the level map

ρΩ1,Ω : Sht¤µGΩ,XI ,I
 Ñ Sht¤µGΩ1 ,X
I ,I


is schematic, proper, surjective and finite étale away from x0.

Proof. As a first step, we show that ρΩ1,Ω is schematic. By Lemmas A.0.1 and A.0.2, the
map

limÐÝ
f Ω

Sht¤µGf,XI ,I

Ñ limÐÝ

f1 Ω1
Sht¤µGf1 ,X

I ,I


is schematic. The claim for ρΩ1,Ω then follows from Lemma A.0.3.
That themap is finite étale away from x0 follows from the fact that themap Sht¤µGΩ,XI ,I


Ñ

Sht¤µGΩ,XI ,I
 is an isomorphism away from x0 by the observation above together with
Corollary 3.3.5.
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Moreover, the map Sht¤µGΩ1 ,X
I ,I
 Ñ limÐÝf Ω1

Sht¤µGf,XI ,I

is a closed immersion by definition.

Thus, by Lemma A.0.2, it suffices to consider the level maps

Sht¤µGΩ,XI ,I
 Ñ Sht¤µGf,XI ,I


for facets f   Ω to show the properness. Similarly, by construction of Sht¤µGΩ
, it suffices to

show the claim for the projections

limÐÝ
f Ω

Sht¤µGf,XI ,I

Ñ Sht¤µGf,XI ,I


.

But for the projections the claim follows from Lemma A.0.1. The surjectivity follows as in
the parahoric case in the proof of Theorem 3.3.3.

3.4. Newton stratification

We recall the Newton stratification on stacks of global shtukas and define a Newton
stratification on our integral models with deep level. We show that the expected closure
relations of Newton strata are satisfied in the hyperspecial case.
Let k � F ((t)) be a local field in characteristic p with ring of integers O � F JtK and

finite residue field F. We denote by k̄ = ksep a fixed separable closure and by k̆ � Falg ((t))
the completion of the maximal unramified extension of k. Let G/k be a reductive group
and let us fix T � G be a maximal torus defined over k. As Gk̆ = G�k k̆ is quasi-split by a
theorem of Steinberg, we can choose a Borel B � Gk̆ containing Tk̆. We denote by X�(T )
its group of geometric cocharacters and by π1(G) the algebraic fundamental group of G
given by the quotient of the cocharacter lattice by the coroot lattice.
We denote by B(G) the set of σ-conjugacy classes in G(k̆) = LG(Falg). By [Kot85;

Kot97; RR96], the elements of B(G) are classified by two invariants: the Kottwitz map
denoted by

κ : B(G)Ñ π1(G)Gal(k̄/k)

and the Newton map denoted by

ν : B(G)Ñ (Hom(Dk̄, Gk̄)/G(k̄))
Gal(k̄/k),

where D denotes the pro-torus with character group Q and G(k̄) acts by conjugation. Note
that we can identify

(Hom(Dk̄, Gk̄)/G(k̄))
Gal(k̄/k) = X�(T )

+,Gal(k̄/k)
Q = X�(T )

+
Q,Gal(k̄/k)
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with the set of rational dominant (with respect to the choice of B) Galois-invariant
cocharacters, and that κ(b) = ν(b) in π1(G)Q,Gal(k̄/k).

The choice of Borel determines a set of simple positive roots and consequently defines
the dominance order onX�(T )Q by µ1 ¤ µ2 if µ2�µ1 is aQ-linear combination of positive
simple roots with non-negative coefficients. Via κ and ν the dominance order induces a
partial order on B(G) by b1 ¤ b2 if and only if κ(b1) = κ(b2) and ν(b1) ¤ ν(b2).
Let G Ñ Spec(O) be a smooth affine group scheme such that Gk = G. Note that for

an algebraically closed extension ℓ of F the set of σ-conjugacy classes in LG(ℓ) does not
depend on the choice of ℓ by [RR96, Lemma 1.3]. It classifies quasi-isogeny classes of
local G-shtukas by associating to (L+G, b) the class [b] P B(G). For a local G-shtuka E over
S = Spec(R) and a point s P S we denote by [Es] P B(G) the corresponding element.
This does not depend on the choice of an algebraic closure of the residue field at s.

Let us shift perspective back to the global setting again and consider a smooth affine
group scheme G Ñ X with generic fibre GK = G a reductive group. Let us moreover fix a
tuple y = (yi)iPI of pairwise distinct closed points of X. Let us fix a bound Z and points

y1 = (y1i)iPI P X
I
Z lying over y. We denote by ShtZG,XI ,Fy1

= ShtZ,y
1

G,XI �Spf(Oy1 ) Spec(Fy1) the
special fibre of the moduli space of shtukas at y.

Definition 3.4.1 ([Bre18, Definition 4.12]). Let ℓ be an algebraically closed extension of
Fy1 . The global-to-local functor induces maps

δG,yi,ℓ : ShtZG,XI ,Fy1
(ℓ)Ñ B(Gyi)

E ÞÑ [Eyix ]

for all i P I and
δG,y,ℓ =

¹
iPI

δG,yi,ℓ : ShtZG,XI ,Fy1
(ℓ)Ñ

¹
iPI

B(Gyi).

Let b = (bi)iPI P
±
iPI B(Gyi). The locus in ShtZG,XI ,Fy1

where δG,y maps to b is locally
closed by [HV11, Theorem 7.11], compare also [RR96]. The reduced substack on this
locally closed subset is denoted by ShtZ,bG,XI ,Fy1

and called the Newton stratum associated
to b.

The Newton map is compatible with changing the group scheme in the following sense.

Lemma 3.4.2 (compare [Bre18, Section 5.2]). Let G/K be a reductive group and let G and
G1 be two smooth affine models of G over X. Let f : (G,Z)Ñ (G1,Z 1) be a map of shtuka
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data such that f : G Ñ G1 is given by the identity on G in the generic fibre. Recall that f
induces a map

f� : ShtZG,XI ,I

�XI

Z
XI

Z.Z 1 Ñ ShtZ
1

G1,XI ,I

�XI

Z1
XI

Z.Z 1 .

Then
δG1,y � f� = δG,y.

Proof. The proof of [Bre18, Section 5.2] carries over to this situation.

Let us now consider the Bruhat-Tits case, compare Assumption 3.2.2 (3). Thus, let Ω =
cl(Ω) be a subset of an appartment of the Bruhat-Tits building of GKx0 for a fixed closed
point x0 of X. Let GΩ be the corresponding Bruhat-Tits group scheme. Let µ = (µi)iPI
be a conjugacy class of geometric cocharacters of G. Let moreover y1 = (y1i) be a tuple of
closed points of Xµ lying over y. In order to define a Newton stratification on Sht¤µGΩ,XI ,Fy1

,

we note that by construction and by the previous lemma, we have that the map

δGf,y � ρf,Ω : Sht¤µ,GΩ,XI ,Fy1
Ñ Sht¤µGf,XI ,Fy1

Ñ
¹
iPI

B(Gyi)

does not depend on the choice of the facet f   Ω. Hence, we obtain a well-defined map

δ̄GΩ,y : Sht
¤µ

GΩ,XI ,Fy1
Ñ
¹
iPI

B(Gyi).

Let b = (bi)iPI P
±
iPI B(Gyi). The locus in Sht¤µGΩ,XI ,Fy1

where δ̄GΩ,y maps to b is again

locally closed by the result in the parahoric case together with Lemma 3.4.2.

Definition 3.4.3. Let b = (bi)iPI P
±
iPI B(Gyi). The Newton stratum in Sht¤µGΩ,XI ,Fy1

associated to b is the reduced locally closed substack on the set of points where δ̄G,y maps

to b. It is denoted by Sht¤µ,bGΩ,XI ,Fy1
.

We have the obvious analogue of Lemma 3.4.2 for deep level, in other words, the
Newton stratification for deep levels is still compatible with the level maps.

Corollary 3.4.4. Let Ω1
  Ω be two connected bounded subsets of the Bruhat-Tits building.

Then
δ̄GΩ1 ,y

� ρ̄Ω1,Ω = δ̄GΩ,y.

In particular, Sht¤µ,b
1

GΩ,XI ,Fy1
X Sht¤µ,bGΩ,XI ,Fy1

� H only if b1 ¤ b.
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Proof. This follows from the construction and Lemma 3.4.2. The second statement then
follows directly from the parahoric case in [Bre18, Proposition 4.11, Section 5], compare
also [HV11, Theorem 7.11].

We conclude by showing the strong stratification property of the Newton stratification
in the hyperspecial case.

Theorem 3.4.5. Let G Ñ X be a parahoric group scheme that is hyperspecial at yi for all
i P I. Let µ = (µi)iPI be a conjugacy class of geometric cocharacters of G. Then the Newton
stratification at y1 satisfies the strong stratification property in the sense that

Sht¤µ,bG,XI ,Fy1
=
¤
b1¤b

Sht¤µ,b
1

G,XI ,Fy1

for all b P
±
iPI B(Gyi).

Proof. Let b, b1 P
±
iPI B(Gyi) with b1 ¤ b. It suffices to show that every closed point

s̄ = E P Sht¤µ,b
1

G,XI ,Fy1
(Falg
y1 ) lies in the closure of Sht¤µ,bG,XI ,Fy1

. Let R be the Oy1-algebra

pro-representing the deformation functor of s̄. Then s̄ lies in the closure of Sht¤µ,bG,XI ,Fy1

if and only if the same is true in the Newton stratification on SpecR. By the bounded
Serre-Tate Theorem (Corollary 3.2.29) the universal deformation ring factors as SpecR =±
iPI SpecRi, where Ri is the universal deformation ring of the corresponding bounded

local shtuka at yi. Under this isomorphism we have Spec(R)b =
±
iPI Spec(Ri)bi , where

we denote by Spec(Ri)bi the corresponding Newton strata in SpecRi for i P I. On SpecRi
the closure properties hold by [Vie13, Theorem 2, Lemma 21 (2)], and thus they hold on
SpecR. This proves the assertion.
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A. Some lemmata on algebraic stacks

We collect some results on finite connected limits of algebraic stacks we use below for
which we could not find a reference in the literature.

In this section, I will always denote a connected index category and (Xi)iPI denotes a
diagram over I of (fppf-) Artin stacks over some base scheme S.

Lemma A.0.1. Assume that all algebraic stacks Xi have a diagonal that is schematic. Let all
transition maps in (Xi)iPI be schematic. Then the projections limÐÝiPI Xi Ñ Xj are schematic
for all j P I.
Moreover, assume that all Xi are separated over S and that all transition maps have

a property P of morphisms of schemes that is stable under base change and composition
and is smooth local on the target such that all proper maps have P. Then the projections
limÐÝiPI Xi Ñ Xj have property P for all j P I.

Proof. It suffices to show the claim for fibre products and equalisers. For fibre products
this is clear. Let us thus consider the equaliser diagram

X1 X2.
f

g

The equaliser of this diagram is given by the fibre product X = X2 �∆,X2�SX2,(f,g) X1.
Thus, the projection X Ñ X1 arises as the base change of the diagonal of X1 and is thus
schematic in the first case and moreover proper in the second case (as we assumed X1 to
be separated). The projection X Ñ X2 has the required properties as it is the composition
X Ñ X1 Ñ X2.

Lemma A.0.2. Let (fi : X Ñ Xi)iPI be a cone over the diagram (Xi)iPI such that all maps
fi are schematic. Then the limit f : X Ñ limÐÝiPI Xi is schematic as well.

Assume moreover that all fi are separated and have a property P of morphisms of schemes
that is stable under base change and composition and is smooth local on the target such that
all closed immersions have P. Then f has P.
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Proof. Let Let T be an S-scheme. Let us fix a map T Ñ limÐÝiPI Xi. As different limits
commute, we get that

T �limÐÝiPI
Xi X = limÐÝ

iPI

(T �Xi X ),

which is representable by a scheme by assumption. For the second part, let us denote by
Ti = T �Xi X . Then Ti is a separated T -scheme by assumption. As I is connected, we
may take the limit on the right hand side in the category of T -schemes (as opposed to the
category of S-schemes). We represent the limit as an equaliser between products

limÐÝiPI Ti = eq (
±
iPI Ti

±
iPI Ti) ,

where the products are taken in the category of T -schemes. As all Ti are separated over T ,
the inclusion of limÐÝiPI Ti ãÑ

±
iPI Ti is a closed immersion. Moreover, as all Ti Ñ T have

property P, so does their product. Hence, limÐÝiPI Ti Ñ T has property P.

Lemma A.0.3. Let f : X Ñ X 1 be a schematic map of algebraic stacks and let Y � X and
Y 1 � X 1 be two closed substacks such that f |Y factors through Y 1. Then f |Y : Y Ñ Y 1 is
schematic.

Proof. Let S be a scheme and let us fix a map y1 : S Ñ Y 1. As f is schematic, the fibre
product T = S �y,X 1,f Y is representable by a scheme. Then T = S �Y 1 Y.
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