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abstract

High-level computer vision tasks, such as object detection in single images, are of
growing importance for our every day lives. Reliable systems for object detection,
in particular, may simplify our lives significantly or make them safer (e.g. in driver
assistance scenarios). Graphical models lend themselves to analyze and design com-
puter vision algorithms because of their modularity that allows to design complex
models built on simpler modules. This modularity and decomposability enables a
better understanding of the domain of interest that in turn enables the design of
models with increased reliability.

In this dissertation we study discriminative, undirected graphical models, namely
conditional random fields (CRFs), and propose extensions to standard CRFs in order
to address object detection in challenging scenes. We discuss the advantages of
discriminative models compared to generative variants in the presence of cluttered
background, partial occlusion and viewpoint variation. While standard CRFs are
restricted to fixed, local neighborhood dependencies we propose to learn arbitrary
graph structures. Furthermore, we take advantage of the decomposability of graphi-
cal models and propose to interpret the random variables as object parts and develop
a joint approach of part-based and monolithic object detection. This view on objects
yields a better and intuitive understanding of the structure of objects, and in accor-
dance with observations of related work we demonstrate an improved reliability of
our joint system.

A secondary focus of this work is the field of search and rescue robotics. Specifi-
cally, we are concerned with victim detection in search and rescue scenarios, which
requires additional demands besides reliability. In this setting we require real-time
capable models, hence, we need efficient algorithms without sacrificing performance.
We propose to leverage the complementarity of different sensors (visual, thermal and
laser in this work) within a sensor fusion scheme for an improved victim detection
performance.
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zusammenfassung

Diese Dissertation beschäftigt sich mit der Lokalisierung von Objekten in komplexen
Szenen. Die Lokalisierung von Objekten in solchen Szenen ist von immenser Bedeu-
tung für unser tägliches Leben, weil zuverlässige Systeme unser Leben vereinfachen
oder eine höhere Sicherheit garantieren könnten (z.B. in Fahrerassistenzprogram-
men). Basierend auf graphischen Modellen werden Modelle vorgeschlagen, die ein
besseres Verständnis von der Struktur von Objekten liefern können. Graphische
Modelle eignen sich dafür besonders wegen ihrer Faktorisierbarkeit in einfachere
Module.

Diese Arbeit untersucht diskriminative, ungerichtete graphische Modelle (soge-
nannte Conditional Random Fields). Um die anspruchsvollen Szenen handhaben zu
können, werden Erweiterungen der ursprünglichen Modelle vorgeschlagen. Diese Er-
weiterungen ermöglichen ein besseres Verständnis der Objekt Struktur und erzielen
eine empirisch bewiesene bessere Genauigkeit. Dafür wird speziell die standard-
mäßige, lokal begrenzte Nachbarschaftsabhängigkeit durch beliebige Nachbarschafts-
beziehungen ersetzt. Ein effizienter Algorithmus zur Selektion der Nachbarchaften
wird in das graphische Modell eingebunden. Weiterhin wird die Modularität der
graphischen Modelle ausgenutzt und die einzelnen Zufallsvariablen als Objektteile
interpretiert. Dadurch wird ein lokales Objektteile basiertes Modell mit einem glob-
alen Objektmodell kombiniert, um, einhergehend mit verwandten Arbeiten, eine
höhere Genauigkeit in der Lokalisierung von Objekten zu erzielen.

Ein weiterer Schwerpunkt der Arbeit ist die Entwicklung von Rettungsrobotern.
Zusätzlich zu der Genauigkeit des Systems wird in diesem Szenario eine hohe An-
forderung an die Laufzeit gestellt. Nur Modelle, die in Echtzeit und auf dem Roboter
direkt laufen, sind hierfür adequat. In dieser Dissertation wird ein Modell vorgeschla-
gen, basierend auf mehreren verschiedenen Sensoren. Hier werden visuelle, Wärme-
und Lasersensoren verwendet um schnelle aber trotzdem zuverlässige Modelle zu
entwickeln.
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1I N T R O D U C T I O N

Contents
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Datasets and evaluation criteria . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Computer vision has gained increased attention in the last years, in which
an increasing power of computers enabled the development of complex
and powerful algorithms for automatic perception. Even though notable

improvements have been made, the abilities of modern computer vision algorithms
are still far behind the capabilities of human perception. Especially in high-level
computer vision tasks the recently presented approaches cannot yet reach human
performance. Nonetheless, high-level computer vision tasks and especially object
detection, the main topic of this dissertation, are of substantial importance for our
every day lives, as they may simplify them or make them safer. Consider, for example,
a driver assistance scenario, in which the car warns the driver about dangerous
situations or even drives completely autonomously without human interaction. In
such scenarios, object detection can provide crucial information, for example, the
location of pedestrians and other traffic participants. The knowledge of the locations
of all traffic participants can in turn be used to decide on next steps in order to avoid
accidents. Therefore, however, a generic object detector is desirable in order to detect
all instances of all classes meaning that we cannot leverage prior knowledge about
single classes (e.g. the configuration of pedestrians). Another example explicitly
addressed in this dissertation is victim detection in search and rescue scenarios.
Think of a collapsed building with possible human victims inside. In case it may be
too dangerous for human rescuers to enter the building, one could send out teams
of autonomous robots, searching for human victims.

Many high-level vision tasks, especially object detection, involve inference in
challenging scenes, for example detection under partial occlusion, cluttered back-
ground or articulation. Consider for example Fig. 1.1 in which humans can still
reliably locate partially visible object instances, even though the car in the front or
the rightmost motorbike is only partially visible. Leveraging contextual informa-
tion is key to the success of human perception. As an example, Fig. 1.1 shows a

1



2 chapter 1. introduction

Figure 1.1: Example of a challenging scene. For humans the context of a garage-like
scene helps to detect all object instances in the image. Even severely occluded and
only partially visible instances can be reliably detected by humans, while computer
vision approaches are still far behind the capabilities of human perception.

garage-like scene, in which one could expect object classes like cars and motorbikes.
Moreover, human perception relies on contextual information on a more local level:
Even though instances may only be partially visible, the visible parts yield enough
evidence to infer the presence and location of objects. Here, global and local in-
formation of objects is exploited simultaneously: While the visible parts provide
limited evidence, the global interpretation of the constellation of object parts and
prior knowledge about the expected size of the instance yields good object detection
performance. To this date, object detection models are not able to sufficiently rep-
resent such complex dependencies. This is due to lacking feature representations
and noisy sensor measurements, but also due to the limitations of today’s models
themselves. Many models, for example, build on either local or global information,
but not both simultaneously, or they do not represent dependencies among object
parts, which would allow to model the structure of objects (i.e. the constellation of
object parts). The main goal of this dissertation is to address both of these issues
through hierarchical representations and modeling dependencies of object parts,
and to propose probabilistic models that make a step toward richer feature repre-
sentations and learning the constellation of object parts. Another secondary focus
of this dissertation lies in advancing the field of search and rescue robotics on the
sensing and planing side: This dissertation proposes a framework that builds on
complementary sensor measurements such as visual and thermal data in order to
overcome error-prone single sensor measurements.

In order to address the mentioned issues based on hierarchical representations
and part constellations, we propose a probabilistic framework that is built on undi-
rected graphical models. These undirected graphical models open up a natural



1.1 challenges 3

way to incorporate pairwise dependencies between nodes that can be interpreted as
representing spatially located object parts. Let y describe (output) random variables
that we want to infer while x denotes (input) random variables; in many computer
vision applications x is interpreted as an input image while y is often interpreted as
localized random variables that take on part labels of objects or model the presence
or absence of objects. Traditionally, undirected graphical models represent the joint
distribution p(y, x) of these output and input variables; these instantiations are also
known as generative models. However, such approaches require to represent the
distribution p(x) of the input variables even though these are fixed when the model
is applied, which causes difficulties if rich and overlapping feature descriptors are
used. In this case, the dependencies of the features need to be modeled carefully,
which could result in poor models. Consequently, discriminative variants have been
proposed, which specifically address this issue (Lafferty et al., 2001). These so-called
conditional random fields model the conditioned distribution p(y | x) directly, which
obviates representing dependencies among input variables x and allows for incor-
porating rich and overlapping feature descriptors. This flexibility in defining the
feature descriptors is particularly appealing in complex high-level computer vision
tasks such as object detection.

The main thesis put forward in this dissertation is that for challenging scenes
discriminatively trained part-based models are more reliable than monolithic models
or generatively trained variants. We study this thesis based on graphical models,
which open up a natural way to model and interpret dependencies among object
parts.

1.1 challenges

Object detection in real world images is a very challenging task as the characteristics
of different object categories range, for example, from rigid objects such as cars to
articulated objects such as cats, or they can be man-made or natural. Moreover, the
appearance of objects of the same class can vary greatly across different instances.
In the following we sketch some of these challenges of object detection in real world
images.

Intra-class variation. The appearance of instances of the same object class often
varies greatly, since the human understanding of one object class can often be very
broad. In Fig. 1.2, for example, the aeroplane class varies from passenger plane to
propeller-driven aircraft and the boat class contains instances of cruise ships and sail
boats. This high intra-class variation imposes high demands on the expressiveness
and flexibility of models that are used for object detection.

Partial occlusion. In real world images objects of interest are often partially oc-
cluded by other objects in the scene. While humans can often detect objects even
in these challenging scenarios, computer vision algorithms cannot reach human
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Figure 1.2: Examples of high intra-class variation. The aeroplane class shows
instances of passenger plane and propeller-driven aircraft, while the boat class
includes cruise ships and sail boats. This intra-class variation causes a high variation
of the appearance of different object instances. The yellow boxes show the original
annotations.

capabilities (see Fig. 1.3). Especially monolithic models such as (Dalal and Triggs,
2005) often suffer from incomplete visibility of objects, while part-based approaches
such as (Leibe et al., 2005) specifically leverage visible local information and are
robust to a certain degree of partial occlusion. However, these part-based approaches
are often prone to fake evidence in cluttered background, where false alarms like
object-like structures may be assigned a higher confidence of the object’s presence
than partially occluded instances.

Figure 1.3: The two left looking cars in the back of the image are severely occluded
and often cause difficulties to today’s object detection algorithms. The chair class is
specifically prone to occlusion since humans often happen to sit on chairs; in this
case chair instances are often visible by only 10− 30%. The yellow boxes show the
original annotations.

Viewpoint variation. Viewpoint variation is particularly challenging for object
classes for which the aspect ratio changes considerably with the viewpoint. Bicycles,
for example, are relatively wide when seen from the side and narrow when seen
from the front or back (see Fig. 1.4). The viewpoint furthermore influences the
appearance of object instances. Canonical sideviews of cars, for example, show
two wheels that are relatively salient for the presence of a car. Front or rear views,
on the other hand, do not exhibit such discriminative parts. This again affects the
visual appearance of objects, and with changing viewpoints, the appearance varies
dramatically.
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Figure 1.4: For some object classes the appearance of instances of that class changes
significantly with the viewpoint. Sideviews of bicycle and cars for example show
two wheels, which can discriminate objects from background while front or back
views often do not show such discriminative object parts. The yellow boxes show
the original annotations.

Articulation. Another challenge is added when we consider articulated objects
like cats and dogs (Fig. 1.5). These object classes raise demands on the flexibility of
detection models. An ideal model would adapt to physically plausible configurations
of objects but not allow for impossible configurations of object parts. Ioffe and
Forsyth (2001) discuss this problem for detecting pedestrians: Limb-like structure
that does not correspond to people, but by chance occurs in groups resembling
people. Here, we recognize a trade-off between being flexible enough to adapt
to all possible articulations and being powerful enough to discriminate cluttered
background from object instances.

Figure 1.5: For articulated objects like cats and dogs the spatial constellation of
object parts like head and legs can differ dramatically across object instances. This
challenge imposes high demands on the flexibility of detection frameworks to model
such variations in articulation. The yellow boxes show the original annotations.

Background clutter. Cluttered background complicates reliable object detection
significantly, since object-like structures can appear accidentally in the background
or make robust and reliable feature calculation difficult (clutter could distract from
clear boundaries of object parts or entire objects; see Fig. 1.6). Flexible generative
models often suffer from such cluttered background while discriminative monolithic
models can handle these difficult scenes more reliably (this aspect will be discussed
in the related work chapter in more detail). Nonetheless, the challenge of cluttered
background is far from being solved and reliable models for object detection need to
address this challenge explicitly.
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Figure 1.6: Cluttered scenes can often distract models to fake evidence in the
background, in which object-like structures leads to a high confidence of an object’s
presence. The yellow boxes show the original annotations.

Real-time requirements. While the previously mentioned challenges are primarily
addressed by models proposed in chapters 3, 4 and 5, the challenge of real-time
capable models is discussed in chapter 6. For mobile robots it is crucial to detect
objects of interest in real-time, since especially for search and rescue robotics the
computation time is one of the most important considerations. Most of today’s
state-of-the-art models are not real-time capable since the primary focus is on the
reliability of the system. Recently, efficient implementations and parallel techniques
on the graphics processing unit have enabled speeding-up detection by two or more
orders of magnitude.

Lack of prior knowledge. Another challenging condition in robotic search and
rescue scenarios is the assumption that no prior knowledge of the scene is given.
Imagine a building that has collapsed and is explored by a robot: In this case we do
not know in advance what the illumination conditions are and what the appearance
of possible victims looks like. While in many datasets the data is captured and split
afterwards into training and test images and thus the training and test images may be
similar, in this scenario we are confronted with a much more challenging setting: The
appearance of victims in the test images may differ dramatically from the training
instances due to changes in illumination and in general no prior knowledge about
the specific site and the appearance of the background is given.

1.2 datasets and evaluation criteria

This section briefly describes the datasets and evaluation criteria used throughout
this dissertation. While we already introduced challenges of reliable object detection
above, we now refer to the datasets that present all of the discussed challenges.

1.2.1 Datasets

In order to demonstrate the effectiveness and power of our models in chapters 3,
4, 5, we evaluate them on the so-called PASCAL VOC datasets (Everingham et al.,
2006, 2007). The images contained in these datasets are downloaded from flickr and
comprise real world pictures taken from its users. In a sense these images are as close
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Figure 1.7: Examples of sensor data: (a) Visual image with victim detection. (b)
Thermal image with heat detections. (c) Range samples along the horizontal axis of
the image.

to the real world as they could be and show most of the challenges discussed above.
Among the most challenging issues are: partial occlusion, intra-class variability,
viewpoint variation and background clutter. The PASCAL datasets are known to be
very challenging and the best models on these datasets presented to date perform
marginally above 30% average precision (this common evaluation criterion measures
the area under the precision recall curve).

In order to evaluate our sensor fusion scheme of chapter 6 we recorded our own
dataset since no adequate benchmarks are available to the best of our knowledge.
Since we are interested in victim detection in search and rescue scenarios, we
recorded an indoor setting with fairly complex instances of victims. We logged
visual, thermal and laser data from the respective complementary sensors in order
to evaluate the effectiveness of our sensor fusion scheme. Fig. 1.7 shows examples of
visual, thermal and laser used for the sensor fusion experiments.

1.2.2 Evaluation criteria

Throughout the dissertation, we measured performance based on the PASCAL
evaluation criterion (Everingham et al., 2006, 2007), which is defined as follows: If the
intersection area of the hypothesis and the ground truth divided by the union area of
both exceeds 0.5, then the hypothesis is considered correct. The area of intersection
and union is typically computed on the bounding boxes of the hypothesis and the
ground truth. This evaluation criterion is also used for the PASCAL challenge and
in many more settings.

1.3 contributions

The main contributions of this dissertation involve extended conditional random
fields based models for object detection in challenging scenes. An overview of these
contributions is given in Fig. 1.8: First we describe a part-based and hierarchical
extension to standard one layer and foreground/background CRFs in chapter 3.
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Figure 1.8: Overview over the contributions in CRFs for object detection. Starting
from standard fixed structure, foreground/background CRFs we propose hierarchical
and part-based representations to overcome the restriction to fixed structures by
learning arbitrary pairwise graph representations.

Then we relax the restriction of fixed structure of the underlying graphical model as
explained in chapter 4. Afterwards we combine both ideas (part-based + structure
learning) in one single consistent framework, in which structure learning is carried
forward to latent multi-class CRFs (chapter 5). An overview over the underlying
graphical models is shown in Fig. 1.9: Fig. 1.9(a) depicts the fixed structure of
standard one-layer CRFs, Fig. 1.9(b) shows the hierarchical structure used in chapter
3, while Fig. 1.9(c) gives an example of the general learned structure used in chapters
4 and 5. The last contribution of this work addresses sensor fusion of complementary
devices for robust and reliable victim detection in search and rescue robotics (chapter
6). Another contribution in that direction has been published (Andriluka et al., 2010),
but is not described in this work.

Hierarchical Support Vector Random Fields: Joint Training to Combine Local and
Global Features (Schnitzspan et al., 2008). We propose a hierarchical model that
combines the flexibility of part-based approaches and local representations with
the expressiveness and power of monolithic feature descriptors. The model is built
on a conditional random field that allows to incorporate rich feature descriptors
of different scopes and enables a natural way to jointly learn and infer the entire
hierarchy of the model. Therefore, our model is able to automatically learn the
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(a) (b) (c)

Figure 1.9: Illustration of different graphical models: (a) Example of a standard,
fixed one-layer structure. (b) example of a fixed hierarchical structure. (c) Example
of a flexible, learned structure.

trade-off and interplay between local, semi-local and global feature contributions.
Moreover, we rely on a joint and discriminative learning paradigm, which trains all
model parameters jointly in a single consistent framework. Experimentally, we show
that both the combination of local and global features as well as the joint training
result in improved detection performance on challenging datasets.

Discriminative Structure Learning of Hierarchical Representations for Object De-
tection (Schnitzspan et al., 2009). We propose a hierarchical multi-feature repre-
sentation and automatically learn flexible hierarchical object models for a wide
variety of object classes. To that end, we relax the restriction to fixed structures
in conditional random fields by automatically selecting and modeling complex,
long-range feature couplings within our model. To achieve this generality and
flexibility our work combines structure learning in conditional random fields and
discriminative parameter learning of classifiers using hierarchical features. We adopt
an efficient gradient-based heuristic for model selection and carry it forward to dis-
criminative, multidimensional selection of features and their couplings for improved
detection performance.

Automatic Discovery of Meaningful Object Parts with Latent CRFs (Schnitzspan
et al., 2010). This part can be seen as a generalization of both of the previous
contributions. We combine the power of discriminative models with the flexibility
of part-based models and structure learning. Specifically, we propose a latent
conditional random field (CRF) based on a flexible assembly of parts. By modeling
part labels as hidden nodes and developing an EM algorithm for learning from
class labels alone, our approach enables the automatic discovery of semantically
meaningful object part representations. To increase the flexibility and expressiveness
of the model, we learn the pairwise structure of the underlying graphical model at
the level of object part interactions. Efficient gradient-based techniques are used to
estimate the structure of the domain of interest and carried forward to the multi-label
or object part case.
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Object Detection in Search and Rescue Robotics (Meyer et al., 2010; Andriluka
et al., 2010). In this part of the dissertation we focus on the challenge of onboard
and real-time object detection on mobile and autonomous robots. We propose a
probabilistic framework that leverages the complementary nature of different sensor
types such as visual, thermal and laser devices. While sensor fusion is not new,
the main focus of this part of the dissertation lies on integrating recent success
in computer vision on object detection into the field of search and rescue robots.
Particularly, we show that using powerful models combined with complementary
information of different sensors benefits the detection performance even in the
presence of erroneous sensor alignments.

While the sensor fusion scheme for ground vehicles is described in this disserta-
tion, we want to point to an extension to aerial vehicles, which is not described in
this dissertation. In (Andriluka et al., 2010), we describe how inertial sensor mea-
surements of a quad-rotored aerial vehicle can benefit detection of human victims
lying on the ground.

1.4 outline

The dissertation is structured as follows:

Chapter 2 (related work) describes the notation of this dissertation and basic con-
cepts that are important for understanding this work, and reviews related work on
object detection in monocular, single images of challenging scenes and sensor fusion
in robotic systems. We structure the related work along the main axes hierarchical
and part-based models, conditional random fields, structure learning in graphical models
and sensor fusion for mobile robotics.

Chapter 3 (hierarchical support vector random fields) describes our efforts to de-
fine a hierarchical, multi-class graphical model that learns all model parameters
jointly in a single consistent framework.

The work presented in this chapter corresponds to the ECCV’08 publication
(Schnitzspan et al., 2008) "Hierarchical Support Vector Random Fields: Joint Training
to Combine Local and Global Features".

Chapter 4 (discriminative structure learning) extends standard fixed structure con-
ditional random fields to automatic selection of pairwise feature couplings. Here
we show how the estimation of the underlying structure of the domain of interest
improves the detection performance in challenging object detection datasets.

The work presented in this chapter corresponds to the CVPR’09 publication
(Schnitzspan et al., 2009) "Discriminative Structure Learning of Hierarchical Repre-
sentations for Object Detection".

Chapter 5 (latent CRFs) combines the advantages of chapters 3 and 4. In this chapter
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we combine the expressiveness of part-based models and the flexibility of structure
learning in order to automatically learn a meaningful part-based representation in a
weakly supervised framework.

The work presented in this chapter corresponds to the CVPR’10 publication
(Schnitzspan et al., 2010) "Automatic Discovery of Meaningful Object Parts with
Latent CRFs".

Chapter 6 (sensor fusion for mobile robotics) discusses sensor fusion techniques
for onboard and real-time processing on a mobile robotic platform. This chapter
describes interdisciplinary and joint work conducted in the research training group
"Cooperative, Adaptive and Responsive Monitoring in Mixed Mode Environments".
While in the other chapters the focus lies on advancing the field of object detection
in challenging scenes, this chapter focuses on meeting real-time requirements of
autonomous search and rescue robotics.

The work presented in this chapter corresponds to the RoboCup Symposium’10

publication (Meyer et al., 2010) "A Semantic World Model for Urban Search and
Rescue Based on Heterogeneous Sensors".

Chapter 7 (conclusion and future work) concludes the dissertation and discusses
possible future directions that are not yet covered by this work.
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In the context of computer vision, object detection has been approached from two
opposing directions – generative and discriminative models. Both paradigms
are inspired by probability theory since both of them model the probability of

random variables x and y; in our terminology we refer to x as the input variables
while y refers to the output. We interpret x often as an image while y are spatially
distributed object parts. Both, generative and discriminative models, have in common
that during inference (detecting object instances in our case) they compute the
probability p(y | x) of output variables y conditioned on the input x. However, they
differ in the interpretation of the learning and modeling task. A generative model
represents a full probability of all (input + output) variables while a discriminative
model provides a model for only the output variable conditioned on the input. While
discriminative models learn this conditional distribution directly, generative variants
model the joint probability of input and output variables. The joint probability
is more general by allowing to generate new and artificial samples of the joint
probability while the conditional probability learns the classification into positive
and negative instances directly. The discussion, which paradigm is preferable, has not
yet come to a conclusive end. Typically, generative models perform better if only few
training samples are given while discriminative models happen to be advantageous
in the presence of a large training set. In this work, we make use of discriminative
models as they have been shown to be advantageous on the challenging datasets
considered in this dissertation (Dalal and Triggs, 2005; Felzenszwalb et al., 2008).
Another important aspect of this dissertation is the study of part-based models.
Recently, exploiting part-based models has been shown to considerably support
monolithic object detection (Felzenszwalb et al., 2008; Desai et al., 2009). Combining

13
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both worlds in one model yields the discriminative power of monolithic models
but also a higher flexibility due to deformable constellations of object parts. We
study the applicability of graphical models for learning such representations. In
general, graphical models provide a natural way to analyze and design machine
learning and computer vision models. One major advantage of graphical models lies
in their decomposability that allows to compose complex models of simpler modules.
The probabilistic nature of graphical models ensures consistency of the model and
enables the linkage of the model to the data. The graph theoretical part defines the
way the different modules interact with each other. In our setting we leverage the
graph structure to represent dependencies among spatially located object parts. As
we show in chapter 5 we take advantage of the modularity of graphical models by
marginalization over the vertices that is beneficial for an increased reliability.

Recently, conditional random fields (Lafferty et al., 2001) have been proposed as
discriminative graphical models and leveraged for object detection (Quattoni et al.,
2004; Kapoor and Winn, 2006; Winn and Shotton, 2006; Hoiem et al., 2007). These
conditional random field approaches show favorable properties by opening a natural
way to directly model neighborhood and longer-range dependencies within and
between object instances and between object and background. While most models
are restricted to a fixed pairwise connected graph structure, recently discriminatively
learning arbitrary structures have been shown to be feasible (Schmidt et al., 2008).
In our work we are not only interested in the pure object detection problem, but
also want to automatically learn a meaningful object part representation of instances
of a given class since this has proven to increase the reliability of object detection
frameworks (Felzenszwalb et al., 2008). As a desirable side product we can infer a
decomposition of objects into parts, which in turn can be used for further interpre-
tations of an instance, for example the viewpoint or the pose of objects. Therefore,
we discuss part-based models in the related work section, too, again looking at the
discrepancy between generative and discriminative models. In the remainder of the
chapter, we review the basic concepts this thesis is built on and describe related
work that we roughly structure along four main axes namely hierarchical, part-based
and multi-feature models, conditional random fields, structure learning in graphical models
and sensor fusion for mobile robotics.

2.1 background and notation

In the following we describe basic concepts and briefly summarize the notation used
in this thesis. We try to keep the same notation throughout this work as especially
in chapters 3, 4 and 5 we build our model on conditional random fields (CRFs),
making a unified notation desirable and valuable. In this section we describe the
basic aspects, which are most important to understand the conditional random field
models described in this thesis. An extensive discussion is clearly beyond the scope
of this thesis and we refer to other more comprehensive work for further readings:
(Wainwright and Jordan, 2003; Yedidia et al., 2003; Bishop, 2006). We start with
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describing graphical models, conditional random fields and support vector machines
and end with summarizing the notation.

2.1.1 Graphical models

Graphical models have the appealing property that they help in understanding and
formalizing probability distributions over many variables. Consequently, graphical
models find widespread use in many fields, among them computer vision. An
interesting aspect about graphical models is that the associated graphical structure
provides insight into the factorization of the probability of the random variables.
The graphical model is denoted by G = (V, E), where V indexes the set of random
variables x∪ y, where x is typically referred to as the input (e.g. an image) while
y denotes the output variables. E denotes the set of edges, where each edge (i, j)
connects two nodes i, j ∈ V. Graphs can either be directed or undirected as described
in the following.

Directed graphical models. Directed graphical models are also known as Bayesian
networks. In these models, the edges are directed and the graph needs to be acyclic
in order to guarantee a factorization, which obeys the causality of the random
variables. A directed edge defines a parent-child hierarchy, in which the parents
π(i) of node i have an edge pointing to node i. The joint probability distribution of
random variables x, y is defined over these parent-child dependencies

p(y, x) = ∏
i∈V

p(vi|π(i)) , (2.1)

where π(i) denotes the set of random variables belonging to the parents of node
i. vi refers to a random variable out of x∪ y. An appealing property of directed
graphical models is the inherent causal structure modeled with the parent-child
dependencies. However, the restriction to acyclic graphs prohibits widespread use
in complex computer vision problems.

Undirected graphical models. Undirected graphical models generalize the di-
rected instantiations in that they allow for arbitrary structures including cyclic
structures. In this case, the factorization of the model is described over maximal
cliques that form fully connected subsets of nodes.

p(y, x) =
1
Z ∏

c∈C
ψc(yc, xc) , (2.2)

where ψc defines a potential function of the random variable associated to clique c ∈
C. C refers to the set of all maximal cliques. The partition function (a normalization
factor) Z ensures integration of p(y, x) (or summation) to 1 and is calculated as

Z =
∫

y∪ x
∏
c∈C

ψc(yc, xc)d(y∪ x) . (2.3)
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Modeling the joint probability of x and y with an undirected graphical model is
also referred to as Markov random fields if the random variables obey the Markov
property. This Markov property requires a random variable to be independent of all
other variables given its neighbors.

The general undirected formalism involves a major drawback. Exact computation
of the partition function Z is computational expensive since the space, which needs to
be integrated over, is exponentially large making brute force computation intractable.
As long as the graph obeys a tree structure exact inference is feasible with smart
inference techniques. However, for arbitrary and highly connected graphs, on which
we often rely in our work, exact inference is typically intractable, drawing the need
for approximate inference techniques.

Inference. Inference provides information about (unobserved) variables in the
model. Typically, we want to compute the marginal distribution p(yi) of single
nodes (or sets of nodes). Moreover in undirected graphical models, inference yields
(an approximation of) the partition function Z . While tree-structured graphs can be
inferred efficiently (Pearl, 1988), in general graphs (especially cyclic graphs) exact
inference is intractable. In this case, we need to resort to approximate inference
techniques. In our case we use the loopy variant of belief propagation that was
shown to perform often surprisingly well even for complex cyclic graphs (Murphy
et al., 1999).

2.1.2 Conditional random fields

Conditional random fields (CRFs) are discriminative models (in contrast to generative
Markov random fields) building on undirected graphical models. CRFs represent
the conditional probability p(y | x) of discrete random variables y given an input
x; typically x is an image in our terminology. The conditioned modeling of the
random variables given the input shows convenient properties especially for complex
high-level tasks like object detection. Since the distribution of random variables
is conditioned on the input, we do not need to explicitly represent dependencies
among the input variables. This aspect is particularly interesting in the case of
hierarchical and overlapping feature descriptors as considered in this thesis.

An undirected graphical model is a conditional random field if all output vari-
ables obey the Markov property, meaning a random variable is conditionally in-
dependent of all variables given its neighbors. Generally, CRFs can be written as

p(y | x; θ) =
1
Z (x; θ) ∏

c∈C
ψc(yc, x; θ) , (2.4)

where θ denotes the model parameters to be learned. Now the random variables
y are conditioned on the input x and the clique potential function depends on the
entire input and not only subsets of the input. Instead of using the clique notation
we often build on a pairwise structure of the graph. In this case we explicitly
differentiate between types of potentials (unary and pairwise). The conditional
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probability is then defined as

p(y | x; θ) =
1

Z(θ, x) ∏
i∈V

ψi(yi, x; θ) ∏
(i,j)∈E

φij(yi, yj, x; θ) , (2.5)

where ψ refers to the unary potentials, whereas φ refers to the pairwise potentials.
The main difference to Markov random fields (MRFs) lies in the direct definition

of the conditioned probability. In contrast, MRFs model the joint distribution
p(y, x; θ), which requires careful definition of the feature functions in order to
guarantee tractable learning of the model. This is due to the need to model p(x) in
MRFs, in which dependencies among the features has to be covered by the graphical
model rather than only among output variables y as is the case for CRFs. Sutton and
McCallum (2007) discuss the main advantage of CRFs over MRFs as follows: CRFs
allow for rich and overlapping features. This can be explained by the fact that we do
not need to model p(x) and thus CRFs make independence assumptions among y
but not among x.

Originally, CRFs have been paired with linear feature functions in the potential
functions:

ψi(yi, x; θ) = exp
(

θT
yi

fi(x)
)

, (2.6)

with a feature function fi that defines the features of node i. The pairwise potentials
are typically defined similarly:

φij(yi, yj, x; θ) = exp
(

θT
yiyj

gij(x)
)

, (2.7)

with a feature function gij that maps the input to the joint feature of nodes i and j.
The learning task is presented as maximizing either the conditional log-likelihood

or the log-posterior over a set of M images X = (x1, . . . , xM):

L(θ) = log p(Y|X; θ) = ∑
m∈M

log p(ym|xm; θ) , (2.8)

where Y = (y1, . . . , yM) refers to all random variables. The log-posterior adds an
additional prior log p(θ) imposed on the model parameters. In the case of linear
potentials, the optimization problem is convex and optimization techniques such as
gradient descent are guaranteed to reach the global optimum.

Hidden variables. The CRF model above assumes that all random variables y are
observed. However, in some cases it is useful to define hidden random variables for
which the label assignment is not known in advance. These hidden variables are
marginalized out in order to compute the probability of observed variables given
the input. Let z denote latent random variables:

p(y | x; θ) = ∑
z

p(y, z | x; θ) . (2.9)

In this case, the potential functions can be defined to additionally depend on the
latent variables z. Unfortunately the optimization problem with latent variables in
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the graphical model is no longer convex, which may result in local optima. In this
case good initializations of the hidden variables can be helpful to avoid these local
optima.

2.1.3 Support vector machines

Since we use support vector machines (SVMs) in our model, we want to introduce
the notion of such models as well (Boser et al., 1992; Vapnik, 1998). SVMs are
discriminative models that aim to optimally separate positive examples from the
negative ones. The foundation of their success on many challenging computer
vision tasks lies in the maximum margin paradigm that aims to fit a separating
hyperplane to the training data with maximum distance to opposing classes. The
dual optimization problem is defined as

max
α

l

∑
i=1

αi −
1
2

l

∑
i=1

l

∑
j=1

titjαiαjK(xi, xj)

s.t. 0 ≤ αi ≤ C, ∀i = (1, . . . , l)
l

∑
i=1

tiαi = 0

, (2.10)

where α refers to the support vector coefficients. ti ∈ {−1, 1} denotes the label of
training sample xi. K(·, ·) describes a Mercer kernel - a scalar product in a potentially
high dimensional vector space. l limits the number of training samples while C
refers to a penalty factor. Classifying a new test sample x can be computed as:

F(x) = ∑
i∈S

αiK(xi, x) + α0 , (2.11)

where S denotes the set of support vectors - those training examples xi, for which
αi 6= 0. α0 denotes an offset. F(x) is the margin of test sample x - the signed distance
to the separating hyperplane. The estimated class can be computed via sign (F(x)).

2.1.4 Summary of notation

In summary, the terminology of the most important variables, parameters and
functions is defined as follows.

• m is an index to the (training) images while M denotes the number of images.

• V = (1, . . . , N) refers to the nodes of our graphical model.

• E ⊂ V ×V denotes the set of edges connecting two nodes.

• Images or bounding boxes are indicated by X = (x1, . . . , xM).
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• Observed random variables are denoted by Y = (y1, . . . , yM) with ym =
(ym

1 , . . . , ym
N).

• Hidden random variables are referred to as Z = (z1, . . . , zM) with zm =
(zm

1 , . . . , zm
N).

• Both ym
i and zm

i can take on the labels {0, . . . , P}

• The labels {0, . . . , P} can be interpreted as object parts where 0 stands for
background. In the simpler foreground/background case, the random variables
are drawn out of {−1, 1} or {0, 1}.

• Z refers to the partition function - a normalization factor.

• θ denotes the set of model parameters that are optimized during the training
phase.

• ψ and φ refer to the unary and pairwise potentials respectively.

• α and β are used for support vector coefficients while S refers to a set of
support vectors in the terminology of support vector machines.

2.2 hierarchical, part-based and multi-feature models

In the following we discuss related work on hierarchical, part-based and multi-feature
models that have been primarily used for object detection and object recognition.

Part-based models. The foundation of part-based models goes back to the seminal
work of Fischler and Elschlager (1973). This work initiated an extensive and still
ongoing discussion about part-based models that are considered powerful due to
their expressiveness and their intuitive interpretation.

Generative part-based models show favorable properties like factorizability into
different components that can often be interpreted as object parts, and a certain
robustness to partial occlusion (Fergus et al., 2003; Leibe et al., 2004; Felzenszwalb and
Huttenlocher, 2005). This robustness stems from the respective local representation
of objects and the interaction between this local representation either directly or
implicitly over an anchor point. These local interactions of parts usually enable
another favorable property, namely robustness to articulation and local deformations
of object instances (Felzenszwalb and Huttenlocher, 2005; Amit and Trouve, 2007).
Consequently, richer local representations have been developed yielding hierarchical
part representations, which increase the semantic interpretability as well as the
robustness to viewpoint changes (Bouchard and Triggs, 2005; Epshtein and Ullman,
2007). Moreover, interpreting local representations as object parts has been recently
leveraged for knowledge transfer across object classes, allowing to share object
parts such as for example wheels of cars, motorbikes and bicycles (Stark et al., 2009;
Sudderth et al., 2008). Sharing of parts means that we want to learn a general class
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(a)

(b)

Figure 2.1: (a) Example of a part-based model taken from (Felzenszwalb et al., 2008).
(b) Representation of global features (left), representation of located object parts
(middle), and (right) canonical spatial locations of parts relative to the object instance.

of parts that can occur across different object classes, for example a wheel can either
occur on cars or bicycles. The different constellations of object parts then describe
the different object classes.

Unfortunately, all these generative part-based models comprehend certain draw-
backs. Factorizing object instances into local representations often results in weakly
structured and simplifying models (Leibe et al., 2004) that could lead to hallucinated
and superfluous object parts that correspond to fake evidence. In the case of fully
connected models (Fergus et al., 2003) training and inferring the model is computa-
tionally expensive leading to restrictions in the number of considered object parts.
These observations have led to extensions of generative models that impose a global
verification stage on top of the locally inferred hypothesis (Leibe et al., 2005).

While generative models are said to perform better than discriminative variants if
only few training data are available, discriminatively trained models typically enable
higher levels of performance with increasing number of training instances (Dollár
et al., 2008; Kumar et al., 2009). Consequently, Maji and Malik (2009) extended the
generative model of Leibe et al. (2004) to a discriminatively trained max margin
model that directly optimizes the classification problem instead of modeling the
(potentially complex) distribution of positive samples.

This discriminative learning paradigm is often used in monolithic models, too.
Contradictory to part-based models, these monolithic models encode objects in a
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single typically high dimensional feature descriptor. Paired with discriminative
classifiers such as SVMs, these models enable high levels of performance as shown
by one of the most prominent representative of such models (Dalal and Triggs,
2005). However, monolithic models often require large amounts of training data and
typically degrade in the presence of partial occlusion. In an effort to combine the
advantages of both worlds (part-based as well as monolithic models) monolithic
models have been enriched with the notion of parts and both have been presented to
a discriminative classifier (Desai et al., 2009; Felzenszwalb et al., 2008). Fig. 2.1 shows
an example detection and the feature representations inferred with (Felzenszwalb
et al., 2008). The additional notion of object parts yields a much higher flexibility
than pure monolithic models and, at the same time, accounts for a better alignment
of object instances.

Hierarchical and multi-feature models. Hierarchical models have been designed
to strike a balance between local and global information of objects or images. Similar
to part-based models the lower layers of the hierarchy are typically responsible for
encoding a local view on objects or images while the higher layers encode a holistic
view. Such hierarchical models lack the flexibility of purely part-based methods as
they can be seen as monolithic models enhanced with local information. However,
the two most prominent representatives of such models encode the hierarchical
representation within a spatial pyramid kernel that is used in a discriminative
classifier (Grauman and Darrell, 2007; Lazebnik et al., 2006). The kernel definition
within SVMs is replaced with a more general and powerful kernel:

K( f (x1), f (x2)) = ∑
l∈L

1
2L−l Kl( f (x1), f (x2)) , (2.12)

where L refers to the number of layers and each Kl denotes a layer-specific kernel
function. Typically, the kernels encode local information (bottom layer) to holistic
views on the image or object (top layer). Even though the local features are encoded
in a rather rigid spatial layout, the models showed promising performance on a
variety of tasks.

An interesting extension to the hierarchical models mentioned so far is given in
the work of Harzallah et al. (2009). While approaches based on spatial pyramid were
mainly used for image classification the work of Harzallah et al. (2009) combines the
latter task with object localization. The global information about the presence or
absence of a specific object class in an image can benefit the local search for specific
instances of that class and vice versa. Another model which uses spatial pyramid
representations for object detection is discussed in (Lampert et al., 2009). In this
work the hierarchical representation of objects is enhanced by additional more fine
grained layers, and even though this is in general computational expensive, the
model remains applicable as it is combined with an efficient subwindow search.

In the work of Varma and Ray (2007) a multi-feature framework has been pro-
posed building on the idea of multiple kernel learning (MKL) (Bach et al., 2004). The
appealing idea behind this approach lies in the automatic combination and impor-
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tance weighting of different complementary feature descriptors. MKL generalizes
the SVM model to consider weighted sums of different kernels, which can be seen as
a generalization of the pyramid kernel above. Let dk denote the weight of kernel k:

K( f (x1), f (x2)) = ∑
k

dkKk( f k(x1), f k(x2)) , (2.13)

with ∑k dk = 1. If all kernels Kk are Mercer, than the weighted sum is a Mercer
kernel as well. Here, every kernel could refer to a kernel computed on one of
several complementary feature descriptors. The use of such complementary features
is considered beneficial since the complementary nature is exploited directly and
drawing wrong conclusions due to lacking feature descriptors could be avoided.
Consequently, an intensive but rather confusing discussion about the power of MKL
in computer vision has been opened. Recently, Gehler and Nowozin (2009a) shed
some light into the discussion damping the excitement and expectation on MKL, since
it was shown that MKL is only advantageous in the presence of many uninformative
features. However, the features used in computer vision are often engineered for
the specific task making uninformative features unlikely. Subsequently, generalized
variants of MKL have been proposed putting MKL back to success (Varma and Babu,
2009; Gehler and Nowozin, 2009b).

The work of Bosch et al. (2007) represents a first effort to combine hierarchical
representations and multi-feature approaches. This idea was further traced in
(Vedaldi et al., 2009) showing promising levels of performances on a variety of
computer vision tasks. Even though both approaches build on the original MKL
formalism, the automatic combination of several complementary and rich feature
descriptors happened to be responsible for enabling performance improvements.

Inspiration for our work. In this dissertation, we combine the power of hierar-
chical representations with the rich notation of part-based models. In contrast to
sparsely represented models of related work, we aim at inferring a dense repre-
sentation of objects and the object parts and explicitly consider partially occluded
instances in our model. Inspired by recent success of discriminative models, we
take a discriminative learning approach within a graphical model representation. As
an outlook for future work, we show preliminary experiments with multi-feature
models, which consistently improves the performance of object detection. Due to
the generality of our work, more complementary feature descriptors can be easily
adapted and integrated.

2.3 conditional random fields

As described above CRFs allow for rich feature descriptors that may overlap signifi-
cantly. This property is especially appealing for incorporating hierarchical represen-
tations as is done in this dissertation. Further, due to the modularity and intuitive
interpretability of the model components, CRFs can be modified easily in different
aspects. Several related works have focused on different aspects and in the following
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we cluster and describe related work on CRFs in the field of computer vision along
three measures namely powerful unary classifiers, contextual models and latent models.
As a brief reminder, the conditional probability of random variables y given input x
based on a pairwise connectivity can be written as:

p(y | x; θ) =
1

Z(θ, x) ∏
i∈V

ψi(yi, x; θ) ∏
(i,j)∈E

φij(yi, yj, x; θ) , (2.14)

with model parameters θ, and unary and pairwise potentials ψ and φ.

Powerful unary classifiers. Standard CRFs usually build on linear classifiers for
modeling the distribution of the random variables. However, in complex tasks like
scene segmentation and object detection incorporating powerful classifiers has been
proven beneficial in recent work. While the following methods agree on the benefit
of incorporating powerful classifiers, the underlying learning paradigms vary greatly
among the different approaches.

In (Lee et al., 2005, 2006a) the linear classifiers are replaced with discriminative
support vector machines (SVMs) for modeling the unary potential functions. In the
notation of CRFs the unary potentials are defined as

ψi(yi, x; α) =
exp (F(α(yi), fi(x)))

∑c exp (F(α(c), fi(x)))
, (2.15)

with (S refers to the set of support vectors)

F(α(c), fi(x)) = ∑
j∈S

αj(c)K( f j(x), fi(x)) + α0(c) . (2.16)

In (Lee et al., 2005) and (Lee et al., 2006a) the authors train the SVM classifiers
separately from the imposed pairwise feature couplings, resulting in an efficient
training procedure and showing improved performance over standard linear models,
even though the model alternates between the maximum margin formalism and the
likelihood maximization paradigm of CRFs.

Another framework building on SVMs that comes particularly close to our joint
learning paradigm discussed in chapter 3 is discussed in (Taskar et al., 2003). In this
work the authors specifically address the issue of different learning paradigms by
transforming the primal random field formulation into its equivalent dual repre-
sentation and training all model parameters simultaneously in a maximum margin
learning scheme. This joint learning paradigm was proven beneficial showing
improved performance compared to using different learning schemes.

Tsochantaridis et al. (2005) think the other way around and extend standard
support vector machines to consider structured output variables. In contrast to
adding powerful unary classifiers to a graphical model, this can be seen as adding a
dependency structure to powerful classifiers like SVMs. The authors cast the entire
learning problem into a consistent max margin support vector machine formulation.
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In (Torralba et al., 2004) and (Shotton et al., 2009) boosting was integrated as a
discriminative and powerful classifier replacing the linear potentials. Both methods
relax the restriction to local neighborhood dependencies of standard CRFs by ex-
plicitly using longer-range dependencies of either neighboring objects of interest or
neighboring image regions.

All of these CRF-based models replace the standard linear classifiers with more
powerful and potentially non-linear classifiers. Especially the combinations with
large margin classifiers have been shown to be appealing because they all lead to
improved performance on the respective tasks compared to the standard linear
formulation.

Contextual models. The foundation of using CRFs in computer vision was laid by
Kumar and Hebert (2003) and more recently Kumar et al. (2006). These works have
proposed to leverage contextual information of neighboring image regions yielding
an improved detection and segmentation performance compared to non-contextual
models. The authors propose a pairwise potential that specifically leverages discon-
tinuities in the image:

φij(yi, yj, x; θ) = exp
(

yiyj + σ
(

yiyjθ
Tgij(x)

))
, (2.17)

where σ is a sigmoid mapping to the interval [−1, 1] and g refers to the pairwise
feature function. The first term yiyj is a smoothness term favoring the same labels
in neighboring nodes. Ideally, the data-dependent term (second term) will act as
a discontinuity adaptive model that will moderate smoothing when the data from
two sites is ’different’. The focus of this early CRF model lies on exploiting the
discriminative nature of CRFs that has been shown to yield superior performance
compared to generative Markov random fields.

As already briefly mentioned Torralba et al. (2004) and Shotton et al. (2009)
integrate richer pairwise dependencies by directly exploiting contextual information
in images. Torralba et al. (2004) directly relate objects or regions of interest to each
other being able to discard unlikely constellations of objects. Shotton et al. (2009)
trace a similar approach induced on a more local level, namely the class labels of
neighboring image regions are set in context inferring only plausible combinations.
The approaches of He et al. (2004) and He et al. (2006) are similar in spirit in that
they leverage contextual information of the entire image in order to improve the
reasoning about present object classes. While in (He et al., 2004) an explicit global
potential function is defined to model the spatial occurrence of object classes, the
authors leverage super-pixel segmentations in (He et al., 2006) and model likely
cooccurrences at the longer-range super-pixel level. The work of He and Zemel
(2008) extends the model of He et al. (2006) in that a latent topic model is introduced
additionally to the longer-range super-pixel segmentation. This topic model exploits
global image information as cooccurring image topics are modeled to restrict the
cooccurrence of labels at the pixel level.

Larlus and Jurie (2008) combines a local Markov random field with a global object
presentation. In this work inferred contours in the image are aligned with object



2.3 conditional random fields 25

hypothesis in order to benefit from both, local as well as longer-range dependencies.
Kohli et al. (2009) describe a higher order CRF that combines the power of Shotton

et al. (2009) with the strong notion of context at super-pixel level of He et al. (2006).
The standard CRF model is augmented with an additional potential function, which
works on super-pixels:

p(y | x; θ) =
1

Z(θ, x) ∏
i∈V

ψi(yi, x; θ) ∏
(i,j)∈E

φij(yi, yj, x; θ) ∏
c∈C

λc(c, x; θ) , (2.18)

where C denotes the set of super-pixels and λ denotes a super-pixel potential
function that favors the same labels for all nodes in one super-pixel. The authors
explicitly mention the need for higher order potentials, which work on longer-range
dependencies in order to incorporate a strong interpretation of context within images.
In (Ladicky et al., 2009) the model was further extended to a hierarchical model,
which respects multiple super-pixel segmentations at the same time.

Another approach that leverages contextual information at a more local level is
given in the work of Levin and Weiss (2006). The focus of this work lies on combining
local and global information of objects in one consistent framework, which highly
motivated our hierarchical feature representation described in chapters 3, 4 and 5. In
this spirit the contextual information is integrated at the object scale and the holistic
object information supports the description and arrangement of local features.

Similar in spirit to (Levin and Weiss, 2006) the work of Winn and Shotton (2006)
goes beyond the notion of context at the object instance level. The authors describe a
principled framework to guarantee so-called layout consistency of objects that ensures
that all object instances are structured similarly. The layout consistency is exploited
in the pairwise potentials, where all possible state transitions are distinguished:

− log ψij(yi, yj, x; θ) =





θbg, background-background
0, consistent foreground
θfbgij(x), foreground-background
θcogij(x), class occlusion
θiogij(x), instance occlusion
θicgij(x), inconsistent foreground

. (2.19)

This model is particularly interesting because the challenging case of partially
occluded object instances is treated directly by defining different valid transition
states of direct neighbors (e.g. self occlusion, object boundary, class occlusion). Hoiem
et al. (2007) extends the notion of layout consistency to the three-dimensional case.
This generalization comes closer to the real world since under varying viewpoints
the neighborhood dependency of consistent object parts obeys rather a 3D than
a projected 2D propagation scheme. In the general case even complex occlusion
scenarios and differing viewpoints can be handled reliably.
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Latent models. The work of Quattoni et al. (2004) and Quattoni et al. (2007) comes
particularly close to our framework presented in chapter 5 in terms of the model rep-
resentation. Quattoni et al. (2004) extends CRFs to hidden-state CRFs by introducing
latent nodes to the model:

p(y | x; θ) = ∑
z

p(y, z | x; θ) =
1

Z(x, θ) ∏
i∈V

ψi(yi, zi, x; θ) ∏
(i,j)∈E

φij(yi, yj, zi, zj, x; θ) ,

(2.20)
where z refers to the hidden random variables that are marginalized out. Especially
for object detection these latent nodes are promising, since in most object detection
datasets only bounding box labels at the object scale are given. Introducing hidden
nodes opens up the opportunity to include a notion of object parts that is known to
be advantageous in object detection. Since assignments of local features to object
parts is not known from bounding box labels, the weakly supervised model of
Quattoni et al. (2004) is shown to adapt to spatially well located object parts.

Kapoor and Winn (2006) extend the notion of hidden nodes to so-called located
hidden random fields. While in (Quattoni et al., 2004) the authors have inferred
mostly local neighborhood dependencies, the work of Kapoor and Winn (2006)
successfully introduces longer-range dependencies to the graphical model. The
authors superimpose a global node at the object scale and define all local nodes to
depend on this global state. Thereby, the resulting model is capable to build stronger
relationships between the object parts and infer more meaningful object parts.

Inspiration for our work. Inspired by the expressive power of replacing linear
potentials with powerful classifiers, we integrate SVMs as unary potentials within
our CRF-based model. Since the discriminative nature of CRFs enables potentially
high levels of performances, we decided to use the discriminative variant of graphical
models instead of generative random fields. Since in most object detection challenges
only bounding box labels are provided, we discuss a latent model in chapter 5, which
is able to learn meaningful object part representations.

2.4 structure learning in graphical models

Structure learning in graphical models is promising for object detection because it
allows to learn the structure of the domain of interest and a deeper understanding
of the structure or objects. Graph structure learning is motivated by feature selection
and both are related in that in the problem statements the most meaningful or
significant feature or feature coupling is to be selected. While feature selection has a
long history in computer vision, several authors succeeded in structure learning in
general graphs only recently. It turned out that many successful structure learning
approaches have adapted fundamental ideas from feature selection methods such
as the used selection criteria that in most cases can be adopted directly. However,
in this review of related work we focus on recent advances in graphical structure
learning rather than feature selection since an extensive study of related feature
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selection models is beyond the scope of this dissertation.
The problem statement of structure learning in graphical models is particularly

interesting because the optimal solution would estimate the implicit dependencies
of nodes in the graphs and therefore the structure of the domain of interest, for
example, short- and long-range dependencies of object parts. Generally, optimal
structure learning is NP hard making approximations or relaxations necessary to
cope with large scale problems. Given the graphical model G = (V, E) the task
involves the selection of optimal pairwise dependencies depicted by E. Typically,
this learning task is interpreted as selecting the optimal pairwise couplings out of
the complete candidate set V ×V.

In the following we cluster the related work describing those approximations or
relaxations along the axes Bayesian networks, in which graphical structure learning
was initially described, and random fields. Generally speaking, the Bayesian network
models estimate the structure of the graphical model decoupled from parameter
learning while the random field variants are advantageous in that they enable simul-
taneous parameter training in a single consistent framework. Moreover, Bayesian
networks account for directed acyclic graphs while random fields comprise general
graphs. The random field discussion involves MRFs as well as CRFs. Since CRFs are
discriminative classifiers they are often paired with discriminative structure learning
while in MRFs the generative nature is often exploited for structure learning as well.

A notable exception that cannot be intuitively associated to graphical models is
the work of Tran and Forsyth (2007). In this work the configuration of pedestrians is
included in the histograms of oriented gradients (Dalal and Triggs, 2005) and signifi-
cant performance gains are reported by doing so. The configuration of pedestrians
is learned directly within the model which can be seen as a variant of structure
learning that is not based on a graphical model.

Bayesian networks. Heckerman et al. (1995) describes a generative framework, in
which the user provides prior knowledge about the structure of the directed acyclic
graph. This prior structure is then modified by greedily adding and removing edges
based on the Bayesian information criterion (BIC) of the provided statistical data.
While this model is not guaranteed to yield the optimal solution, Chickering (2003)
proved the prerequisites under which the optimal solution can be found with greedy
equivalence search. In the limit of large sample size this method converges to the
optimal solution if the optimal solution can be modeled with a directed acyclic graph.
The runtime of both of these approaches is super-exponential in the size of variables
- the nodes or vertices of the graphical model. Koivisto and Sood (2004) specifically
address the runtime issue and introduce an efficient and exact algorithm to yield
the optimal solution for moderately many variables. In the case of a huge amount
of variables the proposed algorithm remains feasible if a suitable prior restriction
is imposed in the structure. The idea of efficient algorithms is further traced in
(Guo and Schuurmans, 2006), in which a convex relaxation of the structure learning
problem is defined. Since the relaxed problem is convex it is guaranteed to yield
the optimal (relaxed) solution. Experimentally, the authors show that the relaxed
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solution outperforms greedy heuristic search.
All of the mentioned structure learning models need to restrict the number of

edges directing into one and the same node in order to bound the complexity of the
inferred graph. Tsamardinos et al. (2006) overcome this restriction by exploiting the
local parent-child search within the global structure learning framework. By first
inferring the parents and children of all nodes and then greedily orienting the edges
with gradient descent, the authors are able to efficiently estimate and approximate
the underlying structure of the domain of interest. Schmidt et al. (2007) further
extend the latter model by imposing an L1 sparsity prior on the learned structure
and inferring the Markov blanket as candidates for selecting pairwise connections.
This combination of local search and global structure learning showed promising
results even for many variables.

An interesting extension to learning the structure of Bayesian networks is pre-
sented in (Greiner et al., 2005), in which structure learning of Bayesian networks is
paired with discriminative parameter learning. This approach was proven advanta-
geous in most cases compared to generative parameter learning. Another extended
approach that inverts the idea of Greiner et al. (2005) is discussed in (Grossman and
Domingos, 2004). Here discriminative structure learning is paired with generative
parameter learning.

A more comprehensive study of the extended approaches is given in (Pernkopf
and Bilmes, 2005). Here, many combinations of generative/discriminative parame-
ter learning with generative/discriminative structure learning are evaluated. The
authors conclude that in general the discriminative methods perform better than the
generative ones.

Random fields. Recently, the Markov blanket scheme for candidate selection
of pairwise couplings was adapted to Markov random fields (Wainwright et al.,
2006; Meinshausen and Buhlmann, 2006). In (Meinshausen and Buhlmann, 2006) a
Gaussian model is assumed that learns the dependency network

p(yi|y1, . . . , yi−1, yi+1, . . . , yN) .

Even though the model was shown to yield consistent topologies, it cannot be used
for classification since it is not a joint density estimator p(y). Wainwright et al. (2006)
theoretically infer a lower bound on the training samples in terms of number of nodes
and maximum neighborhood size in order to guarantee convergence. Additionally
an L1 regularization scheme is discussed that leads to sparse solutions even for high
dimensional problems.

Opposing to the local Markov blanket search, Lee et al. (2006b) discuss a global
random field variant, in which the joint density p(y) is estimated. This variant
enables the estimation of the graphical model structure and simultaneous training
of the associated parameters in one consistent model. This work is particularly
interesting as it discusses and compares different efficient feature selection heuristics
and adapts those for pairwise feature selection in random fields. Specifically, the
gain-based heuristic of Pietra et al. (1997) was shown to perform marginally better
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than the gradient-based heuristic of Perkins et al. (2003), while the latter heuristic is
more efficient to compute. Moreover, Lee et al. (2006b) includes an L1 sparsity prior
to structure learning, which results in desirably sparse (tractable) solutions.

Höfling and Tibshirani (2009) generalize the pseudo-likelihood formalism to a
fast and exact method for parameter as well as structure learning in Markov random
fields. The authors show improved runtime compared to (Lee et al., 2006b) while not
sacrificing performance.

Johnson et al. (2007) propose a maximum entropy relaxation to the structure
learning problem in order to yield a convex optimization problem. The model is
tractable to learn thin graphs including tolerance specifications that are suitable to
address the trade-off between data-fidelity and sparsity. Another relaxed problem
discussion can be found in (Banerjee et al., 2008). The authors define a convex
problem that is guaranteed to reach the global optimum and sparse solutions since
an L1 regularizer is included like in other related work.

Schmidt and Murphy (2010) discuss an interesting generalization of structure
learning in Markov random fields that relaxes the restriction to pairwise couplings.
The authors describe an efficient hierarchical embedding scheme that prunes all
higher order potentials, which contain an inactive lower order potential. With
this hierarchical embedding scheme the model is guaranteed to converge and the
generalization to higher order potentials is shown to perform significantly better
than the restricted pairwise models.

Using CRFs for structure learning is not as well explored as the MRF variants.
Parise and Welling (2006) evaluates both a MRF on synthetic data and a linear chain
CRF on real data, where both models are paired with generative structure learning.
Interestingly, the MRF shows promising results for small datasets but deteriorates
with growing number of training samples while the CRF’s performance improves
with larger datasets.

The most recent work on structure learning in CRFs and the only related model
to date, which combines the discriminative nature of CRFs with discriminative
structure learning is the work of Schmidt et al. (2008). This model was the first to
allow for the general case of multiple states per random variables as an extension
to binary random variables considered in other related work on structure learning.
This generalization requires block regularizations since each pairwise coupling
can be associated with several parameter sets (one for each state/class pair). The
authors conclude with a comprehensive comparison of generative and discriminative
structure learning: discriminative structure learning was shown to outperform the
generative variant.

Inspiration for our work. We adapt the discriminative random field notation
of Schmidt et al. (2008), since in most object detection datasets no valuable prior
knowledge about (or even the ground truth of) the structure of the domain of interest
is given. Therefore, the random field variant is favorable since we specifically want
to allow for cycles if they help to discriminate objects from background. Since we are
facing a complex learning problem, we aim at adapting an efficient gradient-based
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pairwise coupling selection scheme (Lee et al., 2006b) and modify it for discriminative
learning (see chapter 4). In chapter 5 we discuss an extension to structure learning
of hidden part-based models.

2.5 sensor fusion

Our work on sensor fusion is mainly focused on the deployment of mobile robots.
Thus, the review of related work not only touches upon computer vision but goes
into more detail in the robotic fields. Since we primarily explore the use of visual,
thermal and laser sensors and the combination of recent advances in computer vision
with sensor fusion, we restrict the review of related work to those models.

Hall and Llinas (1997) give an introduction to sensor fusion distinguishing
decision level fusion, feature level fusion and data level fusion, see Fig. 2.2. Data level
fusion associates incoming data of different sensors directly to each other, followed
by feature extraction and then detection/recognition. Hariharan et al. (2006), for
example, show favorable properties of the complementary nature of the sensors:
While for a visual sensor some information of a scene is occluded, a thermal device
may be sensible for this particular cue and vice versa. Feature level fusion associates
the different data sources after decoupled feature extraction. Klein et al. (2009), for
example, propose to enrich the visual cues with additional laser-range data and
cast all features forward to AdaBoost. Decision level fusion associates different
sensor data after detection in each sensor process as discussed, for example, in
(Zivkovic and Kröse, 2007; Kleiner and Kümmerle, 2007; Spinello et al., 2008). In all
these proposed frameworks a complete detection process is inferred for each sensor
device and afterwards all detections are combined to one single output. Intuitively
we recognize that the complexity of the data association problem increases from
decision level over feature level to data level schemes. In data level fusion we need
synchronized sensors and a pixel-by-pixel correspondence, while decision level
frameworks are inherently robust to small offsets in synchronization and minor
shifts in correspondence of pixels.

An interesting modification of decision level fusion for people detection is dis-
cussed in (Doherty and Rudol, 2007). The authors propose to scan images with
a thermal camera and extract regions of interest wherever regions with human
temperature are detected. These regions of interest are then analyzed (i.e. verified)
with a visual model based on a boosted part-based model.

Inspiration for our work. In our work we are interested in combining recent
advances in computer vision with the progress on exploring the complementarity
of different sensors. In our setting we are facing a noisy sensor synchronization
implying to use decision level fusion. We found that this scheme already leads to
improved performance and we leave the comparison to other techniques for future
work. We evaluate our model in a search and rescue application, in which a mobile
robot explores an area, searching for human victims.
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Figure 2.2: Illustration of different sensor fusion schemes. The terminology is
adapted from (Hall and Llinas, 1997). Intuitively, decision level fusion is inherently
more robust to offsets and errors in data association than feature or data level fusion.

Inspired by (Doherty and Rudol, 2007), we search for human body temperature,
while not adapting the sequential region of interest verification scheme, but rather
stick to the original decision level fusion, in which the decisions or detections
of human evidence are inferred independently from each other. The data fusion
then takes place by associating visual and thermal detections to each other. We
further extend this approach by verifying the estimated distance to victims with
the measured distance from a laser scanner. While the thermal evidence is inferred
with a simple generative heat blob detector, we adapt the monolithic, discriminative
model of Dalal and Triggs (2005) for visual evidence (we integrate the efficient and
real-time capable implementation of Wojek et al. (2008)).
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In this chapter we extend standard foreground-background, one-layer conditional
random fields (CRFs) (Lafferty et al., 2001) to a multi-layer and multi-class
model. Our goal is to incorporate richer object representations in a hierarchical

model and propose a modified learning paradigm that enables joint training of
all model parameters in a single consistent framework. The underlying graphical
model structure that is discussed here realizes a step towards incorporating longer-
range dependencies in CRFs, while standard CRFs typically consider only local
neighborhood relations. The focus in this chapter is on evaluating the usefulness
of hierarchical, part-based models for object detection. While in this chapter the
graphical model structure is fixed, we discuss in the following chapter, how flexible
structures can be learned and incorporated automatically. This chapter describes the
work published in (Schnitzspan et al., 2008).

3.1 introduction

While impressive results have been reported for the detection of objects in challeng-
ing real world scenes, the underlying models vary greatly even between the most
successful approaches. Methods using a global feature descriptor (e.g. (Dalal and
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Triggs, 2005)) paired with discriminative classifiers such as SVMs enable high levels
of performance, but require large amounts of training data and typically degrade
in the presence of partial occlusions. Local feature-based approaches (e.g. (Felzen-
szwalb and Huttenlocher, 2005; Fergus et al., 2003; Leibe et al., 2005)) are more robust
in the presence of partial occlusions but often produce a significant number of
false positives. This chapter discusses an extension to standard CRFs called hierar-
chical support vector random field that allows 1) to combine the power of global
feature-based approaches with the flexibility of local feature-based methods in one
consistent multi-layer framework and 2) to automatically learn the trade-off and
the optimal interplay between local, semi-local and global feature contributions. In
order to achieve this, we leverage the ability of CRFs (Lafferty et al., 2001) to model
neighborhood dependencies not only between local image features, but also between
object subparts and parts using a multi-layer CRF. On the top-layer we incorporate
a global object detector while on the layers below we employ smaller apertures
in terms of object-parts and local features or subparts. The layers are connected
via intra-layer potentials to benefit from simultaneous bottom-up and top-down
propagation schemes. This allows to set up a joint and hierarchical model of local
and global discriminative methods that augments CRFs to a multi-layer model with
powerful unary classifiers.

The contributions of this chapter are the following: First, we extend classical
one-layer CRFs to multi-layer CRFs while maintaining computational tractability.
Second, this work shows how to integrate local, semi-local and global information in
a powerful model. Third, we extend CRFs to a consistent framework, which allows to
jointly train the parameters of non-linear classifiers and the CRF parameters. Fourth,
we experimentally show the contributions of the various components of the model
on challenging datasets.

The chapter is structured as follows. In section 3.2 we introduce our multi-layer
model, the respective potential functions and the parameters to be optimized. In
section 3.3 we explain how we apply the model to object detection and verification.
Finally, in section 3.4 we evaluate various aspects of our work on two different
datasets.

3.2 hierarchical support vector random fields (hsvrf)

While global detectors have been shown to achieve impressive results in object
detection for unoccluded object instances, part-based approaches tend to be more
successful in dealing with partial occlusion. Since adjacent regions in images are
not independent from each other, CRFs model these dependencies directly by
introducing pairwise clique potentials. However, standard CRFs work on a very local
level and long-range dependencies are not addressed explicitly in simple one-layer
models. In this chapter we discuss how SVM learning and multiple connected layers
can be incorporated in one consistent framework in order to overcome restrictions to
local neighborhoods and combine both, local as well as long-range dependencies.
In the following we will describe how we set up the multi-layer model step by step
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Figure 3.1: Illustration of the model architecture. Two layers are connected via the
ternary cliques T. The alternation between pairwise cliques E and ternary cliques T
is key to the computationally feasibility while a high degree of of interconnectedness
is introduced.

starting from the one-layer case.

3.2.1 One-layer CRF model

We denote the set of all images with X = (x1, . . . , xM). Each image xm is overlaid
with a grid of nodes where each node is linked to the evidence in the image via
unary ψ and pairwise φ potential functions. We denote the set of grid nodes by
i ∈ V in which each node i is associated to a certain region of the image xm. (i, j) ∈ E
refers to the pairwise cliques connecting two adjacent nodes i and j. Each node i ∈ V
will be assigned a label from yi ∈ {0, . . . , P} which indicates the parts of an object
{1, . . . , P} or background {0}. We denote the set of all labels by Y . Therefore, the
factorization of the conditional probability distribution can be written as

p(y |xm; θ) =
1

Z(xm, θ) ∏
i∈V

ψi(yi, xm; θ) ∏
(i,j)∈E

φij(yi, yj, xm; θ) . (3.1)

Here, Z(·, ·) refers to a normalization factor called the partition function. θ denotes
the model parameters as explained below. Here and in the remainder of the chapter
we drop superscript m for notational simplicity wherever applicable.
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3.2.2 Multi-layer CRF model

As motivated before, one-layer CRFs act at a very local level and represent a single
view on the data typically represented with unary and pairwise potentials. In order
to overcome those local restrictions, we introduce multiple layers l ∈ {1, . . . , nL} with
associated unary potentials ψl and pairwise potentials φl, to enhance the model by
evidence aggregation on a local (l = 1) to a global level (l = nL). Different numbers
of parts are deployed to different layers {0, . . . , Pl}. We propose a connectivity
between the layers as displayed in Figure 3.1, which provides a high degree of
interconnectedness and yet results in a computationally tractable model, which is
highly desirable for both inference and training. The key to this is the alternation
between pairwise cliques (i, j) ∈ El and ternary cliques (i, j, k) ∈ Tl that omit the
introduction of higher (higher than third) order cliques. The conditional distribution
for this multi-layer model resolves into:

p(y | x; θ) = 1
Z(x,θ) ∏L

l=1

[
∏i∈Vl ψl

i(yi, x; θ)∏(i,j)∈El φl
ij(yi, yj, x; θ)

]
(intra-layer)

∏L−1
l=1 ∏(i,j,k)∈Tl λl

ijk(yi, yj, yk, x; θ) (inter-layer)
(3.2)

where additional to the one-layer notation λl
ijk(·, ·, ·, ·; ·) denotes the ternary clique

potentials that connect layer l to layer l + 1 using third-order cliques. Tl describes
the set of all ternary cliques between layer l and layer l + 1 (see Figure 3.1 for
illustration).

This model combines different views on the data by layer-specific potentials and
the hierarchical structure accounts for longer-range dependencies.

3.2.3 Potentials

As described in Eq. 3.1 and 3.2 the conditional probabilities factor into unary
potentials ψl, pairwise potentials φl and additional ternary potentials λl required
for the multi-layer model. Due to the flexibility of CRFs, the layer-specific feature
functions f l(x), gl(x) and hl(x) for the unary, pairwise and ternary potentials
respectively can be chosen freely. Those deployed in the experiments are detailed in
section 3.3.1.

Unary potentials. The discriminative power in the unary potentials is key to the
overall performance of the CRF. In some cases, a CRF using less powerful classifiers
such as the commonly used logistic regression can even be outperformed by an SVM
employing no connectivity at all (Lee et al., 2005).

Therefore, we build our unary potentials on SVMs to leverage previous results
on robust large margin classification. We adapt the one-against-all strategy which
results in training one SVM for each class. f l(·) refers to the feature function for the
node features and ρl

c denotes the offset. Then, the potential of node yi being of class
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c is defined as

ψl
i(yi = c, x; βl

c, Sl
c, ρl

c) = exp


∑

j∈Sl
c

(
βl

c

)
j
K( f l

j (x), f l
i (x)) + ρl

c


 , (3.3)

where Sl
c indexes the set of support vectors for class c and layer l and

(
βl

c
)

refers to
model parameters to be optimized. We use RBF kernels to define the kernel function

K( f l
j (x), f l

i (x)) = exp
(
−γ

∥∥∥ f l
j (x)− f l

i (x)
∥∥∥

2
)

with bandwidth parameter γ. Note,

that this approach employs multi-class one-against-all SVMs.

Pairwise and ternary potentials. We define the pairwise and ternary potentials
using a linear classification model, which is a popular choice in the CRF literature.
For the pairwise potentials we set

φl
ij(yi = c1, yj = c2, x; el) = exp

((
el

c1c2

)T
gl

ij(x)
)

, (3.4)

where i and j are two adjacent nodes and c1 and c2 refer to any label from {0, . . . , Pl}.
gl(·) denotes the feature function for the pairwise potentials of layer l. el

c1c2
refers to

the parameters to be trained. The ternary potentials are defined as

λl
ijk(yi = c1, yj = c2, yk = c3, x; tl) = exp

((
tl
c1c2c3

)T
hl

ijk(x)
)

, (3.5)

where i, j, k belong to one three-wise connected clique (i, j, k) and c1, c2 ∈ {0, . . . , Pl}
and c3 ∈ {0, . . . , Pl+1} . hl(·) denotes the feature function for the ternary potentials
at layer l. tl

c1c2c3
refers to the parameters to be optimized.

3.2.4 Parameter learning and inference

We jointly optimize all model parameters in contrast to related CRF literature (Hoiem
et al., 2007; Winn and Shotton, 2006; Lee et al., 2005; Shotton et al., 2006). . Given M
training images xm, m = {1, . . . , M} we optimize the conditional log-likelihood

L(β, e, t) =
M

∑
m=1

log p (ym|xm; β, e, t) (3.6)

via gradient descent for pairwise and ternary clique potentials. The unary potentials
are trained with Newton optimization.

This joint training is facilitated by the primal SVM training proposed by Chapelle
(2007) showing competitive results compared to common quadratic programming in
the dual formalism. We make use of that idea and incorporate primal SVM training
in the CRF framework.
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(a)

(b)

Figure 3.2: (a) Three-layer instantiation of our model. The evidence aggregation
is sketched: Starting from local information like fragments of a wheel over whole
wheels to entire objects at the top layer. (b) Example of the part assignment of
training data (left: training image; middle: part assignment of middle layer; right:
part assignment of bottom layer). Colors encode assignments of parts; dark blue
indicates background

Primal SVM training. As described in (Chapelle, 2007) the constraints of the
original primal optimization problem can be integrated with a loss function in the
objective function, yielding an unconstrained optimization problem. As long as this
loss function is differentiable with respect to the model parameters, the optimization
can be solved by Newton optimization. Originally, the non-differentiable hinge
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loss is used for SVM training in the dual, but Chapelle (2007) showed competitive
results using the differentiable quadratic loss or the Huber loss (a differentiable
approximation of the hinge loss). The primal optimization problem for kernel SVMs
is denoted by:

min
βl

c

Q = min
βl

c


 ∑

i,j∈Sl
c

(
βl

c

)
i

(
βl

c

)
j
K( fi(x), f j(x)) + C

N

∑
i=1

L
(

yi, Fl
c

(
f l
i (x)

))

 , (3.7)

where L denotes a suitable loss function and C the penalty term. The target function
Fl

c(·) is of the form (representer theorem (Kimeldorf and Wahba, 1970)):

Fl
c

(
f l
i (x)

)
= ∑

j∈Sl
c

(
βl

c

)
j
K( f l

j (x), f l
i (x)) + ρl

c , (3.8)

where f l
i (x) denotes a feature vector to be classified. K(·, ·) denotes the kernel

function and βl
c refers to the parameters to be optimized (note that these are not

Lagrange multipliers). We consider the differentiable quadratic loss:

L(yi, Fl
c( fi(x))) =

(
max

{
0; 1− (δ(yi, c))

(
Fl

c

(
f l
i (x)

))})2
, (3.9)

where δ(yi, c) ∈ {−1, 1} refers to whether yi belongs to class c (= 1) or not (= −1).
Chapelle (2007) proposed to optimize the parameters βl

c with Newton optimiza-
tion:

βl
c ← βl

c − η
(

Hl
)−1 ∂Q

∂βl
c

, (3.10)

where η denotes the learning rate and the Hessian Hl equals 2
(

1
C K + KI0K

)
with

kernel matrix K. I0 is a diagonal matrix, where the entries are 1 for
∣∣∣
(

βl
c

)
i

∣∣∣ > 0 and
0 otherwise. The number of non-zero entries equals the number of support vectors.
In order to update the offset ρl

c the Hessian can be augmented by an additional row
and column and the offset term can be concatenated with the parameters βl

c (see
(Chapelle, 2007) for details).

Joint training of hSVRF. In order to account for joint training of the hSVRF
parameters, we adapt the loss function L(·, ·) to consider unary SVM classifications
as well as joint CRF classifications , which respects the entire multi-layer model. In
that sense, object evidence, local neighborhood dependencies as well as longer-range
dependencies are taken into account to optimize the unary parameters. We achieve
this by adapting the loss function to consider the belief of node yi belonging to class
c inferred with loopy belief propagation (Pearl, 1988).

L(yi, bc(yi), Fl
c( fi(x))) =

[
max

{
0; (1− δ(yi, c)bi(c))

(
1− δ(yi, c)Fl

c

(
f l
i (x)

))}]2
,

(3.11)
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where the belief bi(c) of node i belonging to class c is scaled to the range [−1, 1].
Whenever the CRF votes for the wrong class ((1− δ(yi, c)bi(c)) > 1) the original
primal SVM loss function is amplified for calculating the Newton step. Otherwise
((1− δ(yi, c)bi(c)) < 1) the impact of the original primal loss function on the Newton
step is reduced. Note, the Hessian is not affected by our changes in the loss function
and ∂Q

∂βl
c

can be computed similar to (Chapelle, 2007).

The parameters of the pairwise and ternary clique potentials can be optimized
via gradient descent. Similar to (Kumar et al., 2006), the gradient with respect to the
pairwise parameters {el

c1c2
} of layer l can be expressed as

∂L
∂el

c1c2

= ∑
(i,j)∈E

(
δ(yi, c1)δ(yj, c2)− bij(c1, c2)

)
gl

ij(x) , (3.12)

where δ(·, ·) refers to the Kronecker-delta and bij(c1, c2) denotes the pairwise belief
of two adjacent nodes belonging to class c1 and c2.

Analogously, the gradient with respect to the ternary clique parameters tl
c1c2c3

of
layer l can be written as

∂L
∂tl

c1c2c3

= ∑
(i,j,k)∈T

(
δ(yi, c1)δ(yj, c2)δ(yk, c3)− bijk(c1, c2, c3)

)
hl

ijk(x) , (3.13)

where bijk(c1, c2, c3) denotes the ternary beliefs of three connected nodes.
This concept for updating the parameters of our model alternates between the

maximum margin formalism of SVM training and the likelihood maximization of
CRFs. Although imposing potential restrictions to the learning framework we stick
to this alternating scheme and show performance gains with our joint training model.
Future directions might involve an adaption of the max margin formalism of random
fields of Taskar et al. (2003) in order to incorporate one unique optimization scheme.

We use quadratic programming (the common SVM training) decoupled from
the CRF to initialize the parameters βl. The dual support vector coefficients αl

c and
parameters βl

c are connected via
(

βl
c

)
j
= δ(yj, c)

(
αl

c
)

j as described in (Chapelle,

2007). Given the starting solution for βl we start the joint optimization by Newton
optimization for unary classifiers and gradient descent for pairwise and ternary
clique parameters.

Inference. Given the parameters βl, el and tl we seek to infer probabilities of the
nodes belonging to the different classes. Loopy belief propagation (LBP) (Pearl, 1988)
infers beliefs that one node y belongs to class c while respecting the pairwise and
three-wise dependencies of adjacent nodes.

3.3 application to computer vision tasks

To support our claims about the benefits of the local to global CRF model and the
presented joint optimization, we evaluate the approach on two challenging computer
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vision tasks: object detection and hypothesis verification. But first we describe in
detail how the method is adapted to the specific settings and show how to obtain
part annotations for the training phase. We consider a 3-layer instantiation of the
presented model as visualized in Figure 3.2(a) and detailed below.

3.3.1 Feature functions

Until now, we have not defined the feature functions f l(·), gl(·), hl(·) that are specific
to each layer in the CRF we propose. They link the potentials to the actual image
evidence and account for local neighborhood and long-range dependencies. We
build on the concept of computing histograms of oriented gradients that has been
shown to be very successful on a local level, describing interest points (Lowe, 2004),
as well as on a global level (Dalal and Triggs, 2005), describing full objects in a
holistic manner. However, due to the generality of our work, any suitable feature
function can be deployed to our model.

Unary potential feature functions. We calculate histograms of oriented gradients
for a grid of non-overlapping 8× 8 pixel regions and concatenate 4 neighboring
histograms of gradients to one block descriptor as described in (Dalal and Triggs,
2005). This results in a 36-dimensional feature for each node that we define to be the
unary feature function on the first level f 1(·). For the higher levels f 2(·), . . . , f L(·)
we successively double the number of considered blocks in horizontal and vertical
directions until on the highest level, we encode the full object as in (Dalal and
Triggs, 2005). As illustrated in Figure 3.2(a), the motivation behind this scheme is to
aggregate evidence for an object class from different spatial localities ranging from
fragments (e.g. fragment of a wheel), parts (e.g. whole wheel) to a holistic view on
the object (e.g. whole motorbike).

Pairwise potential feature functions. Intuitively, pairwise potentials are responsi-
ble for modeling local dependencies by supporting or inhibiting label propagation
to the neighboring nodes. In computer vision, simple pixel-based gradient-based
measures are often used to inhibit propagation across potential object borders (Shot-
ton et al., 2006). Our approach goes beyond that by taking into account the change
in the gradient orientation histograms between the neighboring nodes.

gl
ij(X) =

( ∣∣∣ f l
i (x)− f l

j (x)
∣∣∣ , 1

)T
. (3.14)

Here, we extended each difference by an offset for being capable of eliminating small
isolated regions.

Ternary potential feature functions. Similar to the pairwise potentials, ternary
potentials encode local dependencies, too. But furthermore, they act as a link
between layers, facilitating propagation of information across locality and position in
our model. Due to the computational tractability of the hierarchy we can propagate
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object evidence across layers and thereby manage efficient bottom-up and top-down
reasoning during inference.

To allow the ternary potential to assess the compatibility of a particular labeling of
a three-wise connected clique, we define the ternary potential feature function to be
the stacked pairwise difference of the feature vector associated to the 3 relevant nodes.
Since higher level nodes involve more HOG blocks and are higher dimensional
than lower level ones, we calculate the average over connected blocks (denoted by
operation avg(·)) in order to fit the dimension of lower level nodes.

hl
ijk(x) =




| f l
i (x) − f l

j (x) |
| f l

i (x) − avg( f l+1
k (x)) |

| f l
j (x) − avg( f l+1

k (x)) |
1


 , (3.15)

where nodes i and j are on layer l and node k is on layer l + 1.

3.3.2 Part assignment

For optimizing the conditional log-likelihood during training, ground truth part
labels are required for each training instance in order to be able to train the multi-
class potentials of our model. While the labeling for the top (object) layer is given by
a bounding box annotation or segmentation of the objects, the part annotation on
the lower layers is not obvious. Inspired by (Bouchard and Triggs, 2005) we obtain
part labels in a data-driven way by applying k-means clustering across images to
infer part annotations. Instead of mere spatial clustering, we append to the image
coordinates the features described in 3.3.1. In this fashion the importance is on
the cluster appearance and the 2 coordinate dimensions act as regularization for
the clustering to maintain a rough spatial layout. Despite the simple data-driven
approach, we obtain a sensible partitioning of our training instances that exposes
appearance-based though well localized assignment of parts as exemplified in Fig.
3.2(b).

3.3.3 Object detection and verification

In this paragraph we show how we infer object locations of one object class. As
described in section 3.2.4, LBP yields a label assignment across layers taking into
account beliefs that nodes are associated with parts (bottom and middle layer), object
(top layer) or background (all layers). Given a test image we could initialize our
model at every pixel location for being able to infer all possible object hypotheses.
However, to reduce computational effort we first deploy the bottom and middle layer
of our model. This step produces a part map of the whole image while respecting
the dependencies of the bottom and middle layer. From the training set we know
possible part constellations and we search for those constellations in the part map
of test images to infer hypotheses of object locations. This approach resembles the
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Method EER
Multi-layer 97.5
One-layer part-based joint training 96.0
One-layer part-based without joint training 93.0
Global object detector (Dalal and Triggs, 2005) 87.0
(Mutch and Lowe, 2006) 99.9
(Leibe et al., 2005) 97.5
(Hoiem et al., 2007) approx. 93.5
(Winn and Shotton, 2006) approx. 92.9

Table 3.1: Results of the detection task on the UIUC car dataset

ISM voting of Leibe et al. (2005) despite that the evidence of parts of our model are
inferred simultaneously and therefore the parts interact with each other. Thus, the
evidence of one subpart conditions the constellation of direct neighbors via links
in the bottom layer and via the middle layer it also affects the evidence of further
image regions. This step generates initial hypotheses that still need to be validated
by the complete model. Since the part-based approach of the lower layers showed
to yield a high recall, this approach makes sense as we first search for possible
locations and then infer the complete model for the hypothesized bounding boxes.
The approach of coupling generative models with a discriminative verification stage
has been shown to be fruitful (Fritz et al., 2005). In this spirit, we address a hypothesis
verification task by only inferring our model at hypothesized bounding boxes. LBP
simultaneously infers beliefs of all nodes of our model. Since at the top layer we
only deploy one node, we can directly use the belief of that node belonging to the
object class as a score. For the layers underneath we compute object probabilities
similar to the ISM part voting scheme (Leibe et al., 2005) as described above and
multiply them to the global belief. Thereby we distinguish between left and right
facing objects and consider the maximum of the deduced scores.

3.4 experiments

In all experiments we used SVMlight (Joachims, 1999) for initial SVM training. Train-
ing the model took approximately 12 hours while we were able to infer 15 hypotheses
per second.

Object detection. For the detection task we evaluated our model on the UIUC
single scale car dataset. We trained the whole model on 250 bounding boxes
containing cars and 200 negative crops. This experiment contains performance
measurements of i) only the global object detector, ii) the one-layer model of our
approach while training the SVM and CRF parameters separately, iii) the one-layer
model while training the parameters jointly and iv) the complete multi-layer model.
For the part labeling during training we deployed k-means clustering with 8 means



44 chapter 3. hierarchical support vector random fields

Figure 3.3: Examples on the UIUC dataset. The columns show results at EER of
HOG detector, one-layer separate training, one-layer joint training and multi-layer
model.

for the bottom layer and 4 means for the middle layer. For the one-layer model we
used 8 means in the clustering step. The detection performance was evaluated on
the 170 UIUC test images. Figure 3.4 compares the different aspects described in the
previous sections. Both the joint training and the multi-layer approach consistently
improved the performance. Especially note the large performance gap between the
complete model (97.5% in equal error rate) and the HOG detector (87.0% in EER).
Figure 3.4 shows some example images where the HOG detector can not detect all
cars due to partial occlusion and the one-layer models infer false positives, while the
multi-layer model detects all cars correctly.

These results expose the benefits of joint training and integration of local to global
information. Our model successfully learns the trade-off between global vs. local
object detection and improves the performance of both ideas by combining powerful
global descriptors and flexible local feature approaches.

Further note the performance improvement between training the SVM indepen-
dently from the other CRF parameters (93.0%) and training them jointly (96.0%) for
the one-layer model. This evaluation highlights the advantage of training all model
parameters jointly as proposed in section 3.2. In Tab. 3.1 we compare our model to
the state-of-the-art in object detection on this dataset. As it can be seen, we achieve
competitive results compared to other well performing models. Only Mutch and
Lowe (2006) outperform our model while we obtained the same performance as
Leibe et al. (2005). Further, we outperform the CRF-based approaches of Hoiem et al.
(2007) and Winn and Shotton (2006).
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Figure 3.4: UIUC detection performance of the different aspects.

Verification of HOG detector hypothesis. For the hypothesis verification task we
evaluated our model on the PASCAL 2006 motorbikes dataset (Everingham et al.,
2006) containing challenging multiscale, partially occluded and multiview instances.
Since we want to explore the combination of an initial detector with our model acting
as a verification stage, we trained a HOG detector on the provided training set and
generated initial hypotheses on the test set. We set the parameters to allow for high
recall at the drawback of more false positives. We also trained our joint multi-layer
model on the training set and calculated the score of our approach on the hypotheses
of the HOG detector (see Figure 3.4). Thereby, our multi-layer model achieved 43.7%
in average precision (the common performance measure in (Everingham et al., 2006))
improving the state-of-the-art by 4.7%. Note in particular that we outperformed the
global HOG detector that reported an average precision of 39%, which emphasizes
the benefit of combining global and local features. The next best performance for
the motorbikes is 37.1% achieved by the approach of Chum and Zisserman (2007)
which we outperform by 6.6%. Furthermore, our model shows a high performance
improvement (more than 10% in average precision) compared to the remaining
approaches. Particularly, the high precision for high scores of bounding boxes is
promising; with no false positives 16% of all motorbikes are extracted while none of
the other state-of-the-art approaches obtained such high recall at perfect precision.

Fig. 3.6(a) shows precision-recall-curves from which the contributions of different
aspects of our model to the overall performance gain can be deduced. Consistent
with the results obtained on the UIUC database, the jointly trained multi-layer model
improves the performance to 43.7% while the non-jointly trained model with fixed
SVM coefficients obtained 42% in average precision. After the publication of the
work, Felzenszwalb et al. (2008) reported a performance of 58.2% on the motorbike
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Figure 3.5: Example images for detecting sideviews of motorbikes: (Left) one-layer
part-based model; (middle) HOG sideviews; (right) joint multi-layer model.

class of the 2006 PASCAL challenge.

Verification of generative ISM object detector hypothesis. For further testing
the different aspects of our model, we decided to test our discriminative model on
hypotheses obtained by the ISM model. Since the latter model was shown to yield
promising results for the subset of left or right facing instances, we trained our model
on sideviews of motorbikes, but evaluated the aspects on the complete multiview
dataset. Overall the ISM model extracted 4238 hypotheses and achieved an average
precision of 15.3%. We trained our model on 100 rightfacing and respective mirrored
left views and 200 randomly cropped background images. As it can be seen in Fig.
3.4 our multi-layer model could improve the performance compared to other settings
of our approach.

Concerning the average precision performance measure the jointly trained multi-
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layer model (36.0%) significantly improved the results of the non-jointly trained
model with fixed SVM parameters (33.5%), completely decoupled layers (32.3%), the
HOG detector trained on sideviews (30%) and the one-layer settings of our model:
jointly trained SVM and CRF parameters (27.7%), fixed SVM parameters (24.2%) and
the unary classifier (SVM) (19.0%).

Fig. 3.4 shows some example detections for training on sideviews. Partially
occluded objects can not be detected by the global detector, while the part-based
approach and our multi-layer model infer them correctly. Furthermore, false detec-
tions of the part-based approach can be removed by the global detector for correct
detections of our multi-layer model. However, the rear view of the motorbike (third
row) can not be detected correctly due to the focus on sideviews. The measured
improvements for joint training and the multi-layer approach are consistent with
respect to both tested databases.

Method AP AP trained
on sidev.

Multi-layer 43.7 36.0
Multi-layer not jointly trained 42.0 33.5
Decoupled multiple layers - 32.2
One-layer model - 27.7
One-layer not jointly trained - 24.2
One-layer unary classifier - 19.0
(Dalal and Triggs, 2005) 39.0 30.0
(Chum and Zisserman, 2007) 37.1 -
(Laptev, 2006) 31.8 -
(Viitaniemi and Laaksonen, 2006) 26.5 -
(Shotton et al., 2006) 17.8 -
(Leibe et al., 2005) 15.3 -
(Felzenszwalb et al., 2008) 58.2 -

Table 3.2: Results for the motorbike PASCAL06 challenge (AP = average precision).
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(a)

(b)

Figure 3.6: (a) PASCAL06 detection performance of our model. (b) State-of-the-art
approaches on the PASCAL06 motorbikes
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3.5 conclusion

This chapter presents a novel multi-layer CRF which combines the power of global
object detectors and flexible local feature approaches. Our model successfully
learns the trade-off between local and global feature contributions for improved
performance. Furthermore, we show how SVM classifiers can be incorporated
into this multi-layer CRF framework and how training can be performed jointly.
Experiments show that performance improves consistently. Finally, we show state-
of-the-art performance on the challenging PASCAL06 motorbike detection task. Our
model is kept general to allow for integration of more layers and deployment of
different tractable hierarchies. Moreover, different (or additional complementary)
features can be considered as well, from which we expect further performance gains.
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In the previous chapter we extended standard conditional random fields to
a multi-layer and multi-class model in order to learn richer representations
of objects. Even though we incorporated longer-range dependencies within

the proposed hierarchical structure, the approach remains restricted in the usage
of neighborhood dependencies. In this chapter we overcome the restriction of
building on a fixed structure by introducing structure learning of short- as well as
long-range feature couplings. This structure learning framework is able to learn
the structure of the domain of interest and experimentally shows an increased
flexibility in detecting object instances compared to other approaches. The first
instantiation of structure learning in graphical models, as discussed here, goes
back to a foreground-background framework, neglecting the notion of object parts,
whereas the combination of both, structure learning and object parts representations,
is discussed in the following chapter. This chapter describes the work published in
(Schnitzspan et al., 2009).

4.1 introduction

A variety of flexible models have been proposed to detect objects in challenging real
world scenes. Motivated by some of the most successful techniques, we propose a
hierarchical multi-feature representation and automatically learn flexible hierarchical
object models for a wide variety of object classes. To that end, we do not only rely on
automatic selection of relevant individual features, but go beyond previous work by
automatically selecting and modeling complex, long-range feature couplings within

51
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Figure 4.1: Schematic overview of our hierarchical model (Best viewed in color). The
nodes of our graphical model are indicated as green dots; learned feature couplings
are represented as colored lines. F refers to the discriminative unary classifiers.

this model. To achieve this generality and flexibility our work combines structure
learning in conditional random fields and discriminative parameter learning of
classifiers using hierarchical features. We adopt an efficient gradient-based heuristic
for model selection and carry it forward to discriminative, multidimensional selection
of features and their couplings for improved detection performance.

Hierarchical and multi-feature representations have shown to be a powerful basis
for achieving impressive results in object detection and recognition across a variety
of different datasets (Grauman and Darrell, 2007; Lazebnik et al., 2006; Varma and
Ray, 2007; Zhang et al., 2007). The use of multiple features requires appropriate
determination of the relative importance (i.e. weighting) of the features. Beyond
doing this manually, a number of recent approaches have attempted to learn these
weights automatically using variants of multiple kernel learning (Varma and Ray,
2007; Vedaldi et al., 2009).

These learning mechanisms, however, only allow to identify and weigh the
most discriminant features, but do not allow to identify and model the interplay
between features that may prove to be important to representing objects well. In
fact, one may posit that for many object classes the coupling between different
features might be the key to discriminate object classes from others. A number
of proposed conditional random field approaches allow modeling local as well as
simple hierarchical couplings of features (Hoiem et al., 2007; Kapoor and Winn, 2006;
Lee et al., 2006a; Schnitzspan et al., 2008; Winn and Shotton, 2006). In particular,
these approaches associate a label with each localized feature and model label
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dependencies by leveraging the interplay of the corresponding features. These
approaches are limited, however, in that they model only simple, short-range and
mid-range dependency structures in the label space, meaning they assume a fixed
graphical model structure; the corresponding features are typically neighboring in
space or scale.

Based on the hierarchical feature representation introduced in the preceding
chapter, we address these limitations by discussing an approach that allows to learn
short-range, mid-range as well as long-range dependencies, where the structure of
these dependencies is identified and learned in a fully automatic manner. Unlike
previous work, our approach does not require any notion of locality of the coupled
features, but instead allows to find and model relevant (i.e. discriminant) couplings
among arbitrary pairs of features. To enable learning of the interplay of features
we cast the problem as one of structure learning in graphical models (Lee et al.,
2006b; Parise and Welling, 2006; Schmidt et al., 2008). Specifically, we use a con-
ditional random field to predict local labels from the image features and employ
discriminative structure learning to identify dependencies whose modeling improves
the discriminative power of the model. The resulting graphical model reflects the
interplay between different features and therefore provides additional insights in the
domain of interest in terms of feature selection and feature coupling.

Based on the hierarchical feature representation discussed in the previous chapter,
we also choose a hierarchy of HOG descriptors (histograms of oriented gradients
(Dalal and Triggs, 2005; Felzenszwalb et al., 2008)), but additionally integrate a
hierarchical bag of visual words (BoW) representation (Fergus et al., 2003; Grauman
and Darrell, 2007; Lazebnik et al., 2006) for capturing the appearance of the object
and its parts (see Fig. 4.1 for a schematic overview). Our model extends previous
work by learning the contribution of the different feature types and simultaneously
including relevant long-range as well as short-range couplings between arbitrary
pairs of image features. As such our framework is able to model the dependency
between the prediction from a HOG feature at a certain level in the hierarchy and a
BoW feature at another level (cf. Fig. 4.1), if that improves the discriminative power
of the model.

We apply our approach to the problem of object detection and show that it
consistently outperforms SVM classifiers, which may be seen as the de facto standard
in discriminant object model learning. On the PASCAL VOC 2007 detection challenge,
the proposed approach outperforms one of the leading SVM-based techniques
(Felzenszwalb et al., 2008) on all 20 object categories. Moreover, we report the most
accurate results in the literature on 16 of the 20 classes.

As the experimental results below show, our model profits from the use of
powerful hierarchical and multi-feature representations. However, it is important to
note that the proposed approach is very general and can be used for any local or
global feature representation, not just the features used here.

Fig. 4.2 shows the first true positives (TP) and false positives (FP) of our model
as well as of DPM (Felzenszwalb et al., 2008), one of the leading methods on the
dataset. DPM typically assigns high scores to canonical sideviews, while our work
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seems to show more flexibility in modeling variations in viewpoint, appearance and
articulation. Instead of being wholly misclassified, many FPs are due to misaligned
bounding boxes.

4.2 crf model

In our approach we rely on conditional random fields (CRFs), which has several
motivations, among them that structure learning in graphical models is a well-
established field. Our approach represents each object class as a CRF with a pairwise
graph structure, which models the posterior probability p(y|x) of labels y given
an image x. Each node i ∈ V of the underlying graph represents a binary label
yi ∈ {1,−1} encoding the presence or absence of an object of a specific class. The set
of all possible edges Ω = V ×V connecting the nodes is partitioned into the active
set A ⊂ Ω and the inactive set I ⊂ Ω (with A∪ I = Ω and A∩ I = ∅). The active
set A defines the edge structure of our CRF model. Later we will see how to learn A
automatically from training data; for now we assume that A is already given. The
posterior distribution is then defined as

p(y|x; θ,A) = 1
Z(x, θ,A) ∏

i∈V
ψi(yi, x; θ) · ∏

(i,j)∈A
φij(yi, yj, x; θ) , (4.1)

where ψi are the unary potentials, φij are the pairwise or edge potentials, θ are the
parameters of the model, and Z(x, θ,A) is the partition function (a normalization
factor). The set of parameters θ = {α, w, e} includes parameters of the unary
potentials α and w, as well as the parameters e of the edge potentials.

Unary potentials. The unary potentials in the CRF allow for local and global
evidence aggregation; each potential ψi models the evidence from considering a
specific image feature fi(x). Our representation relies on several levels of features in a
hierarchy, where the feature functions at the lowest level extract local representations
and the feature functions at higher levels aggregate a larger area until a global view
of the object is obtained at the top level (cf. Fig. 4.1 for the hierarchical view on
objects). The features will be explained in more detail in Section 4.2.1.

We define the unary potential for a node i using the softmax function (cf. (Kumar
et al., 2006))

ψi(yi, x; θ) =
exp

(
yi ·wT

i F (αi, fi(x))
)

∑c∈{−1,1} exp
(
c ·wT

i F (αi, fi(x))
) , (4.2)

based on a weighted combination of the output of a bank of N different classifiers
F (αi, fi(x)) = (F (αi,1, fi(x)) , . . . , F (αi,N, fi(x)))

T. Each classifier is assumed to yield
a continuous-valued score. αi are the parameters of the classifier, and wi are
the weights. In Fig. 4.1 the classifiers are denoted with F. Interestingly, such a
formulation can be seen as a probabilistic analog to multiple kernel learning (Varma
and Ray, 2007) as it allows for a weighted combination of different classifiers.
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Edge potentials. The edge potentials φij model the interaction of two labels yi and
yj based on the interaction of two features fi(x) and f j(x). These pairwise potentials
are crucial for our model, as they allow us to capture the interplay of features and
therefore to define the structure of objects. To that end, we realize the pairwise
potentials with a linear classification of concatenated unary features that is passed
through a softmax non-linearity:

φij(yi, yj, x; θ) =
exp

(
( fi(x), f j(x))Te

yiyj
ij

)

∑c,d∈{−1,1} exp
(
( fi(x), f j(x))Tecd

ij

) . (4.3)

We use a specific classification vector ecd
ij for each possible edge and each combination

of labels that allows to model spatial dependencies and relations of different feature
types. It is important here to emphasize that these potentials may also involve
long-range dependencies of distant nodes and are not restricted to modeling only
local neighborhood structures as in many recent approaches (Hoiem et al., 2007;
Kumar et al., 2006; Lee et al., 2006a; Levin and Weiss, 2006; Schnitzspan et al., 2008;
Shotton et al., 2006; Winn and Shotton, 2006).

Both, the unary and pairwise potentials, contribute to our discriminative frame-
work in the sense that the unary potentials classify nodes in the hierarchy inde-
pendently while the pairwise potentials encode dependencies and thus the spatial
configuration and underlying structure of objects. What sets this work apart from
previous approaches is that we are able to learn the graph structure A automatically,
which gives us a sound and efficient way of modeling complex, long-range depen-
dencies. This allows us to determine the structure of the underlying domain and
simultaneously consider a powerful hierarchical view on objects.

4.2.1 Hierarchical features

Before showing how to learn the parameters and structure of the model, we will first
introduce the features and classifiers that the CRF model is based on.

We use a hierarchical representation of objects, which provides a powerful de-
scriptor and yet is flexible enough to capture appearance, articulation and viewpoint
changes. It is furthermore based on a dense representation of multiple descriptors
in order to aggregate different cues on objects. We include both hierarchical HOG
(hHOG) (Dalal and Triggs, 2005) and hierarchical bag of words (hBoW) (Lazebnik
et al., 2006) features to account for local and global representations of objects. In
the following, we assume that each local classifier F(αn, f (x)) is actually the con-
catenation of a HOG and BoW classifier F( f (x)) =

(
FH
(
αn, fH(x)

)
, FB

(
αn, f B(x)

))
,

which will be described in turn1.

1Here and in the remainder of the chapter we drop the subscript i for parameters α and feature
functions f for notational simplicity.
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Hierarchical HOG descriptors. For computing the hierarchical HOG features, we
compute a dense grid of non-overlapping cells of oriented gradients (Dalal and
Triggs, 2005) over the image. As in (Maji et al., 2008), we extract multiple layers of
those cell grids with increasing cell size at higher levels. Four neighboring cells
are concatenated and normalized to one block, resulting in a dense grid of blocks
(neighboring blocks overlap by 50%). We concatenate several blocks to form our
local descriptors (details in Section 4.4). The global descriptor captures a holistic
view on the object, since we concatenate all blocks of the bottom layer into a single
global feature. The various descriptors are associated with the nodes of our model,
indicated as green dots in Fig. 4.1.

Based on the local and global HOG descriptors, we train discriminative classi-
fiers in order to represent local deformations as well as global statistics of objects.
Therefore, we divide the grid of nodes in rectangular subregions (3× 3 at the bottom
layer) and train one SVM per subregion. Within the hierarchy, we reduce the number
of subregions at higher levels: 2× 2 at the second level and 1× 1 at all other levels.
Each classifier is a kernel-based SVM (cf. Fig. 4.1):

FH
(

αHn , fH(x)
)
= ∑

s∈SHn

αHn,sK
(

s, fH(x)
)
+ αHn,0 , (4.4)

where SHn refers to the set of support vectors, K is an appropriate Mercer kernel, αHn,s
denotes the support vector coefficients, and αHn,0 an offset. We employ linear kernels,
though any Mercer kernel can be used.

In Fig. 4.3(b) we show the hierarchical HOG (hHOG) features of the shown object
weighted with the parameters of our model and in Fig. 4.3(c) weighted with the
weights of a linear SVM trained on the concatenation of all features. Note, with our
model the real structure and shape is better represented, since our framework is able
to learn feature couplings for capturing spatial dependencies of features.

Hierarchical BoW descriptors. For integrating a hierarchical bag of words (hBoW)
approach (Lazebnik et al., 2006) in our model we calculate SIFT descriptors (Lowe,
2004) with radii (5, 10, 15) and spacing of 10 pixels. Those descriptors are vector
quantized with k-means clustering over the positive training instances. We calculate
one global BoW descriptor over the entire image and subsequently divide the image
in regions according to the number of nodes of every level of our hierarchical model.
In every subregion, we build a histogram of word occurrences and use it as the
feature f B(x). The hBoW features are also classified using a kernel-based SVM:

FB
(

αBn , f B(x)
)
= ∑

s∈SBn

αBn,sK
(

s, f B(x)
)
+ αBn,0 , (4.5)

where SBn refers to the set of support vectors, K is again a Mercer kernel, αBn,a denote
the support vector coefficients, and αBn,0 is the offset.

Bootstrapping hard negatives. We bootstrap hard negative examples from the
negative images and train the SVMs again with the additional negative images.
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(a)

(b) (c)

Figure 4.3: (a) Object instance. (b) Hierarchical HOG features of the instance
weighted with parameters of our model. (c) Hierarchical HOG features of the
instance weighted with linear SVM weights.

4.3 model learning

Given training data consisting of a set of images X and the corresponding set of
node labels Y, our goal is to estimate the model parameters θ = {α, w, e} and to
identify a suitable graph structure represented by the active set A.

4.3.1 Parameter learning

For now assuming a fixed graph structure A, our goal is to train the parameters of
the CRF model in a discriminative fashion. To that end, we consider the log-posterior
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of the parameters

L(θ) = log p(Y|X; θ,A) + log p(θ) , (4.6)

which we aim to maximize. Here, p(θ) = p(w) · p(e) denotes a prior over the model
parameters that regularizes parameter estimation to avoid overfitting. The SVM
classifiers including the parameters α are trained ahead of time decoupled from
the rest of the model using standard quadratic programming, as for example in
(Hoiem et al., 2007; Lee et al., 2006a; Shotton et al., 2006; Winn and Shotton, 2006).
This step attempts to optimally separate each object region from the background
independently from other nodes in the hierarchy. Note that it would be also possible
to train α during CRF training based on the primal form of the SVM as described
in the previous chapter 3, but we stick to the easier decoupled training procedure,
since the focus of this chapter is on structure learning.

As usual in CRFs (Lafferty et al., 2001), it is not possible to find a closed form
estimate for the parameters. Hence we rely on gradient ascent (see e.g. (Levin and
Weiss, 2006)) on the log-posterior to determine w and e. Moreover, at each iteration
we only consider a subset of the training data to improve efficiency, which yields a
stochastic gradient ascent procedure.

Unary potentials. Assuming a Gaussian prior for the unary parameters (P(w) ∼
N (0, 1)), we derive the gradient of the log-posterior with respect to wi as

∂L
∂wi

=
[

∑
x∈X

EY|x [F(αi, fi(x)) · yi · ψi(yi, x)]−

Ep(y|x) [F(αi, fi(x)) · yi · ψi(yi, x)]
]
−wi , (4.7)

where EY|x[·] denotes the empirical expectation and Ep(y|x)[·] denotes the expectation
value under the posterior probability of our model. While the empirical expectation
can be easily computed by plugging in the training label corresponding to x, the
expectation over the model distribution requires computing the marginal distribution
p(yi|x). For a loopy graph as used here, this marginal cannot be computed in closed
form. Consequently, we approximate it using loopy sum-product belief propagation
(LBP) (Yedidia et al., 2003), as is widely done in the literature (e.g. (Levin and Weiss,
2006)).

Note that learning the unary parameters corresponds to a simple form of structure
learning that determines the relative importance of the features, much like multiple
kernel learning does in SVMs. Intuitively, the weight of a node should be small, if
that node is classified incorrectly for most of the training instances. Otherwise, the
weight should be high, if a node helps to discriminate foreground from background
training instances.

Pairwise potentials. For the pairwise potentials, we proceed in a similar fashion.
We put a Laplace prior p(e) ∝ exp(−||e||) on the weights corresponding to a
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Figure 4.4: (a) Comparison of the average precision for learned (blue) and fixed
(red) structure. The learned structure is plotted vs. number of edges. The fixed
structure accounts for 800 edges. (b) Number of edges vs. number of iterations. (c)
AP vs. different percentage of connectedness for binary labels (blue) and multi-labels
(red)

L1-regularization (see below), and derive the gradient of the log-posterior as:

∂L
∂e

yiyj
ij

=
[

∑
x∈X

EY|x
[
( fi(x), f j(x))Tφij(yi, yj, x)

]
− (4.8)

Ep(y|x)
[
( fi(x), f j(x))Tφij(yi, yj, x)

] ]
− sgn(e

yiyj
ij ) .

To compute the expectation over the model distribution, we require the marginals
p(yi, yj|x), which we again approximate using the beliefs from LBP.

The L1-regularization term not only avoids overfitting, but more importantly
favors sparse solutions, where the majority of edges are inactive because of small
weights (Lee et al., 2006b). Care needs to be taken near 0 since the L1-regularizer
is non-differentiable there. We avoid numerical problems by approximating the
L1-norm by

√
‖e‖2 + ε.



4.3 model learning 61

0
5

10
15

20
25

0

2

4

6

8

10

10

15

20

25

30

35

40

Figure 4.5: 2.5d visualization of the learned structure of our model.

4.3.2 Structure learning

The key contribution of this chapter compared to other CRF models is that we not
only learn the parameters, but also the appropriate graph structure. In particular,
our goal is to find a sparse set of edges that best describes the relevant dependencies
and feature interactions for a particular class of objects (we learn one active set A per
class). Similar to (Lee et al., 2006b), we do this in an iterative fashion, where at each
iteration we add meaningful pairwise features to the active set A from the large pool
of candidate edges (the inactive set I) and simultaneously remove features from the
model that have become irrelevant. Since any change of the graph structure may
render the current set of parameters θ inappropriate, we interleave each update of
the graph structure with parameter learning as described above (100 iterations of
gradient ascent). The procedure starts with a fully disconnected graph (A = ∅ and
I = Ω) and iteratively adds and removes edges.

Adding pairwise couplings. Since optimal feature selection is NP-hard, we use
a gradient-based heuristic for estimating which feature most likely improves the
model. We adapt the heuristic of Perkins et al. (2003), where at each step the
feature with the largest likelihood-gradient is added to the active set. However, this
method is only defined for generative models; here we carry this heuristic forward
to discriminative structure learning with high-dimensional features. While such
gradient-based heuristics are suboptimal, Lee et al. (2006b) showed that information
gain-based heuristics provide only slight improvements compared to gradient-based
heuristics, but the latter are more efficient to compute.

The intuition behind this is that edge (i, j) with the largest log-likelihood gradient
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∂ log p(y = 1|x, θ)/∂eij has the largest impact on changes of the target function
(foreground likelihood) (Perkins et al., 2003). In a generative setting, this would
help explaining the foreground object, because we can expect the highest increase
in likelihood by adding that edge, and thus the largest improvement of the model.
Here we take a discriminative approach instead, and not only look at the importance
of explaining the object, but rather link the likelihood assuming object and the
likelihood assuming background to each other. To that end, we consider the log-
likelihood ratio

(
log p(y|x,θ)

p(−y|x,θ)

)
, and find the edge from the inactive set that maximizes

the log-likelihood ratio:

(i∗, j∗) = arg max
(i,j)∈I

∥∥∥∥∥
∂L

∂e11
ij
− ∂L

∂e−1−1
ij

∥∥∥∥∥ . (4.9)

This criterion approximately finds the edge whose feature combination provides the
largest improvement in discriminative power. The edge is subsequently added to
the model (A ← A∪ {(i∗, j∗)} and I ← I \ {(i∗, j∗)}).

So far, we argued for selecting edges according to (4.9), which requires computing
the parameter gradient from (4.8). However, this is difficult to do as long as the edge
is not added to the graph, but simply adding each potential candidate edge to the
graph for computing (4.8) is infeasible. The underlying issue is that we need the
pairwise marginals p(yi, yj|x) to compute (4.8). We can, however, approximate this
pairwise marginal using LBP as described in (Wainwright et al., 2002):

b̃ij(yi, yj) ∝ ψi(yi, x) · ψj(yj, x) · φij(yi, yj, x) · ∏
k∈Γi\j

Mki(yi) ∏
k∈Γj\i

Mkj(yj) . (4.10)

Here Γi refers to the neighborhood of i that is all nodes in A that are connected to i,
and Mki(yi) denotes the message that is passed from node k to node i.

Removing feature couplings. In order to avoid the model from becoming overly
complex, which would make it inefficient and prone to overfitting, we follow two dif-
ferent strategies. The first is to use L1-regularization for the edge parameters, which
encourages sparsity as discussed above. The other is to remove edges after each
iteration of the structure learning procedure that are not crucial to the discriminative
power. Whenever the weight of an active edge (i, j) ∈ A drops below a threshold
(‖ecicj

ij ‖ ≤ τ1) and the weight gradient is below a threshold as well (‖ ∂L
∂e

cicj
ij

‖ ≤ τ2), we

remove it from the active set (A ← A \ {(i, j)} and I ← I ∪ {(i, j)}). In this case
the edge has no major influence on the log-likelihood ratio and since the gradient is
small, one would expect the weights not to change significantly with more iterations
of parameter learning. Thus, the edge and the coupling of the features can be
removed without deteriorating the discriminative power considerably.
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4.4 experiments

We report experiments on the challenging PASCAL VOC 2007 dataset (Everingham
et al., 2007) to support our claims about the benefits of our structure learning
approach. For all experiments we report the average precision (AP), the common
evaluation criterion of the PASCAL challenge. Due to computational reasons we
prefiltered object hypotheses X̃ with the model of Felzenszwalb et al. (2008) and
rescored them with our framework. Note, we do not leverage misclassifications
of Felzenszwalb et al. (2008), but train our model on the provided training and
validation bounding boxes and randomly cropped negative bounding boxes. Given
our learned model (i.e. active edges and parameters α, w, e), for every x̃ ∈ X̃ we
compute the log-likelihood that the object of interest is present, log p(y = 1|x̃), in
the hypothesized bounding box x̃ and use this as the score. Note that we do not
perform inference during testing, which is due to the fact that we are interested
in an efficient way of obtaining a detection score. Inference during testing would
additionally allow us to obtain a segmentation.

In all experiments we used SVMlight (Joachims, 1999) with linear kernels to train
the parameters α. We did not add only a single edge per iteration but estimated and
added the 20 best edges. In terms of pairwise parameters e we only optimize e+1,+1

and e−1,−1, and set e+1,−1 = e−1,+1 = 0, since we aim to classify whether bounding
boxes contain the object or not. Thus, the case of changing signs is not represented
in the training set and unlikely to appear during testing. Training the model takes
approx. 10h while calculating the score for one bounding box takes approx. 0.3s.

Feature descriptors. In our experiments the global HOG descriptor is the same as
in (Dalal and Triggs, 2005), though we use different sizes of local HOG descriptors.
They are specific to each object class and depend on the aspect ratio and the average
size of the bounding box. We used sizes between 4× 2 or 2× 4 blocks and 9× 5
or 5× 9 blocks of local gradient histograms. Thus, each local descriptor covers
an area between 40 × 24 and 80 × 48 pixels (or 24 × 40 and 48 × 80). The local
descriptors are sampled densely over the bounding box and may overlap up to 2

3 .
For the experiments using the hierarchical representation we deployed 3 levels of
local descriptors and one global descriptor (see Fig. 4.3.1).

PASCAL VOC 2006 motorbikes. A preliminary experiment on the motorbikes
class of the PASCAL VOC 2006 challenge serves to shed light on the different aspects
of our model. This dataset contains challenging multiscale, partially occluded and
multiview instances. We trained our model on the provided training and validation
set. In Tab. 4.1 and Fig. 4.6 results are summarized and detailed below. In Fig. 4.3.1
the most relevant feature couplings are shown. As it can be seen, our model includes
short-range as well as long-range dependencies within but also between layers.

Our complete model (hHOG + hBoW features) yields a performance of 64.0%
(histogram intersection kernel) and 63.2% (linear kernel), outperforming the baseline
(Felzenszwalb et al., 2008) (58.2%) by more than 5% AP. This emphasizes the benefit
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VOC 2006 lin. SVM/ Unary lin. SVM Our model
motorbikes RBF-SVM poten. on unary structure

lin. / HI
BoW 36.1 / 38.0 20.3 23.7 42.7 / 45.1
hBoW 49.0 / 50.1 45.0 47.1 52.4 / 53.5
HOG 49.1 / 50.3 47.3 48.5 51.0 / 53.3
hHOG 60.1 / 61.2 59.1 60.0 62.8 / 63.4
hHOG + hBoW 61.0 / 61.7 60.2 61.4 63.2 / 64.0
train on (Felzenszwalb et al., 2008) - - - 64.2 / -
sliding window - - - 60.1 / -
DPM (Felzenszwalb et al., 2008) 58.2 - - -

Table 4.1: Summary of the results of different aspects of our model on the PASCAL
VOC 2006 motorbikes. HI denotes the use of histogram intersection kernels.

of learning the structure of objects, since in (Felzenszwalb et al., 2008) a fixed
structure is assumed. When we train on the output of Felzenszwalb et al. (2008) the
performance of our model increases to 64.2% with linear kernels. When not using
(Felzenszwalb et al., 2008) as a pre-filter, but sliding window instead we achieve
60.1% still outperforming (Felzenszwalb et al., 2008).

In Fig. 4.4(a) we compare our structure learning method vs. an instantiation
with local, fixed pairwise couplings (as described in the previous chapter 3), which
amount to 800 pairwise edges. The model with fixed structure showed a performance
of 61.9%, while our structure learning scheme achieved the same performance with
fewer edges. When we look at the performance of structure learning with 800

automatically discovered edges, our framework achieved 62.7% AP.
For further investigating the stability of our model we experimented with different

initializations of the active set A (empty and the structure described in the previous
chapter 3), with different thresholds for removing edges and with different numbers
of edges to be added to A in each iteration. For all these experiments our model
learned similar structures and achieved similar performance. In Fig. 4.4(c) (blue
line) we plot the performance vs. different degrees of connectedness (resulting from
different thresholds). As it can be seen the performance does not differ dramatically
for different thresholds when a certain level of connectedness is reached.

Furthermore, we compared our work against several baseline methods: SVM
classification (linear and RBF kernels) on the concatenation of all features (column
one of Tab. 4.1), unary classification alone (column two), and SVM classification on
the output of our unary potentials (column three). SVM-based classification of the
concatenation of our features showed 61.0% AP for linear kernels and 61.7% for RBF
kernels, which we outperform by 3.0% and 2.3% AP respectively. Concerning unary
classification alone, we calculated only the unary potentials (i.e. no active edges) and
added them up to one classification score yielding 60.2% AP. Compared to the latter,
our complete model showed an improvement of 3.8% AP. In a different setting we
train a support vector machine on the output of our unary potentials, yielding a
comparable performance (61.4%) as pure SVM classification. Note that our model
outperforms all other corresponding learning methods on the challenging dataset,
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hHOG+hBoW 26.1 11.3 48.5 38.9 35.8 14.8 17.7 18.8 34.1 39.8 27.5
hHOG 25.2 10.8 47.3 37.4 35.5 13.7 16.3 18.6 32.4 37.6 26.8
DPM 22.8 10.6 44.1 37.0 35.2 13.6 16.1 18.5 31.8 36.9 25.9
Best VOC07 9.8 16.2 33.5 37.5 22.1 12.0 17.5 14.7 33.4 28.9 23.3

Table 4.2: Results of our algorithm on the PASCAL VOC 2007 challenge.

which supports our claims about the flexibility and advantage of structure learning.
For further insights into our work, we evaluated our model when only using BoW

features with one layer and with the hierarchy (hBoW), using only HOG features
with one layer and with the hierarchy (hHOG). As can be seen in Tab. 4.1 our
structure learning scheme consistently outperforms the other corresponding baseline
models across all evaluated features.

Preliminary experiments with a multi-label setting as in the previous chapter
3 showed slightly worse performance than our binary label setting. This loss of
performance might stem from the need to define the part descriptors need carefully,
since the part descriptors are not given in the annotation of objects. Therefore, the
learning algorithm has to be adapted to handle hidden nodes, which is described in
the following capter 5. In Fig. 4.4(c) (red line) the performance vs. different degrees
of connectedness is plotted.

PASCAL VOC 2007. In order to further support our claims about the advantages
of our structure learning scheme, we evaluated our model on all 20 classes of the
PASCAL VOC 2007 challenge. We compare our complete model using hierarchical
HOG and hierarchical BoW features against using only hierarchical HOG features.
Furthermore, we show the performance of the baseline of Felzenszwalb et al. (2008)
and the best performance of the original challenge (Everingham et al., 2007). Note,
we used (Felzenszwalb et al., 2008) as the baseline, since it is one of the leading
methods on the PASCAL dataset and is most similar to our approach in terms of
used features and basic representations. All results are summarized in Tab. 4.2.

On average across classes, our model achieved a performance of 27.5% outper-
forming the baseline of Felzenszwalb et al. (2008) (25.9%) by 1.6% AP. Furthermore,
our structure learning model consistently improves the detection performance of the
baseline across all categories between 0.1% AP for chairs and 4.4% AP for horses.
As can be seen in Fig. 4.2 our work is more flexible in terms of modeling differ-
ent viewpoints, appearances, and articulated instances. Furthermore, the highest



66 chapter 4. discriminative structure learning

scored false positives of our model mainly account for misaligned bounding boxes
containing the object of interest or sensible false alarms like bicycles recognized
as motorbikes and cows recognized as horses. Thus, we conclude that our model
helps in understanding the domain of interest and successfully discriminates object
instances from background.

When comparing against the original VOC 2007 challenge, we achieved the best
results for 16 of 20 classes. On average, we improved the best performance of the
challenge (23.3%) by 4.2% AP. Note, in that measure we do not compare against one
single model, but against the performance of the best model for every object class.

Furthermore, we tested our complete model (hBoW and hHOG features) in com-
parison to only using hHOG features. On average, using hBoW and hHOG improves
the performance of using only hHOG (26.8%) by 0.7% AP. Again, the complete
model consistently shows equal (chairs) or better performance (all other classes) up
to an improvement of 2.2% AP. Thus, including different features helps our frame-
work to model complex object classes and increases the detection performance. This
observation is consistent with the work of Vedaldi et al. (2009) who included more
complementary features yielding an increased performance. We expect additional
performance gains by incorporating additional orthogonal features.

4.5 conclusions

This chapter presented a novel discriminative structure learning framework ap-
plied to hierarchical representations for object detection. Our model is defined
as a structure learning extension to standard CRF models that allows to preserve
the discriminative notion and increase the expressiveness of the model for object
detection. The model is capable of capturing inherent structure of the domain of
interest, as it flexibly learns local as well as long-range feature couplings. Paired
with discriminative hBoW- and hHOG-based classification, our scheme lends itself
to modeling the spatial layout of objects, which is crucial for detection in challenging
real world scenes. As the experiments show, our model can represent a higher varia-
tion in viewpoint, appearance and articulation than the currently leading method on
the PASCAL VOC challenge.

Future directions might involve exploration of global context information and
other complementary information. Furthermore, the joint learning paradigm as
discussed in the previous chapter 3 could be adapted to train all model parameters
in a single consistent framework.
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Figure 4.6: Precision-recall curves for the PASCAL VOC 2006 motorbikes dataset .
(a) Our model using shape and appearance features (hHOG+hBoW) vs. our model
using shape features (hHOG) vs. the model of Felzenszwalb et al. (2008) (DPM). (b)
Our model (hHOG+hBoW) vs. RBF-kernel SVM classification on the concatenation
of all of our unary features (RBF-SVM) vs. linear kernel SVM classification on
the concatenation of all of our unary features (lin-SVM) vs. additively combined
classifier scores from the unary potential of our model. (c) as in b) when only
using hierarchical shape features. (d) as in b) but only using non-hierarchical shape
features. (e) as in b) but only using hierarchical appearance features. (f) as in b) but
only using non-hierarchical appearance features.
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This chapter can be seen as an extension to (or a generalization of) chapters 3

and 4. While the preceding chapters are restricted to either fixed structures or
foreground-background instantiations, this chapter combines both ideas for

incorporating richer notations (object parts) and flexible models (structure learning)
in one consistent framework. We aim at learning the object parts in a weakly
supervised fashion since in most object detection datasets only bounding box labels
at the object level are provided. Experimentally we show that our model is able
to learn meaningful parts, their spatial extent and the topological structure. This
chapter describes the work published in (Schnitzspan et al., 2010).

5.1 introduction

Object recognition is challenging due to high intra-class variability caused, for
example, by articulation, viewpoint changes, and partial occlusion. Successful
methods need to strike a balance between being flexible enough to model such
variation and discriminative enough to detect objects in cluttered, real world scenes.
Motivated by these challenges we propose a latent conditional random field (CRF)
based on a flexible assembly of parts.

The goal of this chapter is to introduce a model for object classes that brings
together the competitive power of discriminative learning with the flexibility and
expressiveness of part-based models. An important consideration is that we do

69



70 chapter 5. latent crfs

Figure 5.1: Parts of motorbikes, horses, bikes and sheep automatically discovered
by our approach. Note how different viewpoints, articulation, and partial occlusions
can be handled.

not want to provide supervision at the part level, but instead train the model in a
weakly supervised fashion from class labels alone (cf. (Crandall and Huttenlocher,
2006; Felzenszwalb et al., 2008)). In order to enable the automatic discovery of
semantically meaningful part representations of objects, we model part labels as
hidden nodes in a graphical model. We rely on two major components: A multi-label
conditional random field (CRF) that aggregates image evidence and predicts object
part occurrences, and a probabilistic classifier that predicts object or background
occurrence from the spatial part configuration (see Fig. 5.2). In order to avoid having
to provide part labels, we take a Bayesian approach and marginalize out the latent
part configuration. Thus, our detector is a mixture of part-driven classifiers, which
can take advantage of the uncertainty of bottom-up part discovery. To increase
the flexibility and expressiveness of the model, we learn the pairwise structure of
the underlying graphical model at the level of object part interactions. Efficient
gradient-based techniques are used to estimate the structure of the domain of interest
and carried forward to the multi-label or object part case.

Fig. 5.1 shows examples of how our approach automatically discovers semanti-
cally meaningful parts for PASCAL VOC 2007 motorbikes, horses, bikes and sheep.
Note how the part interpretation stays consistent across different viewpoints and
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other intra-class variations, and how articulation and partial occlusions are detected
and handled. To train both the part CRF as well as the part-driven object classifier,
we develop an expectation maximization (EM) algorithm that only requires bounding
box labels as given in many object detection datasets. Our experimental results
demonstrate that our model not only enables learning of semantically meaningful
parts, but also obtains competitive results on the difficult PASCAL VOC 2007 dataset.

5.2 latent crf model

In our object detection scenario we are given a set of M images (or more precisely
bounding boxes) X = (x1, . . . , xM), which contains objects from a particular class
and background images. We are also given observed variables Y = (y1, . . . , yM),
ym ∈ {−1, 1}, which specify whether the corresponding image contains the object
of interest (ym = 1) or not (ym = −1). We additionally introduce latent variables
Z = (z1, . . . , zM), which refer to inferred part labelings for each image. Every part
labeling zm consists of N variables zm = (zm

1 , . . . , zm
N), which denote localized part

labels and are represented by the output nodes of the part CRF. Each zm
i ∈ {0, . . . , P}

takes on one of the possible part labels. P refers to the (maximum) number of object
parts; part 0 represents the background. Without yet specifying the CRF in detail,
we denote its nodes as V = (1, . . . , N) and let E refer to the edges of the graph. For
simplicity of notation, we drop the superscript m indicating the training instance
wherever applicable.

Since in object detection we are interested in the probability of presence or
absence of objects, we model the posterior directly by marginalizing out the latent
variables z:

p(y| x; θ, E) = ∑
z

p(y|z; γ)︸ ︷︷ ︸
part-driven classifier

p(z|x; α, e, E)︸ ︷︷ ︸
part CRF

, (5.1)

where the set of parameters is given by θ = {γ, α, e}. Here we assume that p(y|z; γ)
is conditionally independent of x given z, which implies that the object classifier only
relies on the inferred part configuration rather than on the image itself. The part
CRF models the distribution of object parts, and by marginalizing over z we obtain a
mixture of part-driven object classifiers (see Fig. 5.2). The marginalization has the
advantage that rather than committing to a possibly wrong configuration early on
and drawing the wrong conclusion in consequence, we can consider all possible part
configurations and take advantage of the inherent uncertainty of bottom-up part
prediction.

5.2.1 Part CRF

We build our part model on CRFs since they provide a direct way of using multiple
labels to represent spatially distributed parts in an image, and allow to model
the uncertainty of the part configuration. The nodes in our graphical model are
distributed over the image plane in an arbitrary layout, and are linked to features
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Figure 5.2: Model architecture consisting of a part CRF for bottom-up part detection,
and part-driven object classifier. The part variables are marginalized out, taking
advantage of their uncertainty.

computed from certain image regions. We associate a part label with each node, no
matter where the corresponding feature is located or how small or large the feature
size relative to the bounding box is. Several nodes can be associated with the same
part label, thus allowing our model to flexibly adapt the spatial extent of object
parts. During learning, the spatial extent of the object parts, their hierarchical feature
representation, as well as the graph structure (= object topology) are determined
automatically. In that sense our model is more powerful and far more flexible than
related work (Felzenszwalb et al., 2008; Kapoor and Winn, 2006; Kumar et al., 2009).
Moreover, it can be seen as a combination or generalization of the two preceding
chapters and (Schnitzspan et al., 2008, 2009).

Through the connection of nodes to image regions, the assigned node labels can
be interpreted as a semantic representation of localized object parts. To deal with this
flexible domain, we automatically learn the pairwise structure of feature couplings
to allow arbitrary part interactions within the spatial extent of objects. The posterior
distribution p(z|x) of part labels z given an image x is modeled as a CRF with unary
and pairwise potentials:

p(z|x; α, e, E) =
1

Z(α, e, x, E) ∏
i∈V

ψi(zi, x; α) · ∏
(i,j)∈E

φij(zi, zj, x; e) . (5.2)

The unaries ψi aggregate part evidence from a single image feature, while the pair-
wise potentials ψij allow taking advantage of pairwise feature couplings. Z(α, e, x, E)
is the partition function, which ensures normalization. For now we assume that the
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graph structure is given, meaning the set of edges E ⊆ V ×V is fixed, and describe
in Sec. 5.3 how the graph structure is learned as well.

Unary potentials. The unary potentials in our model are responsible for modeling
part occurrences in an image based on single features fi(x). To supply robust
discriminative part classifiers we train one support vector machine (SVM) F(·, ·) per
object part and feature type. For now we assume that a part assignment is given for
SVM training; in Sec. 5.3 we describe in detail how the part assignment is estimated
from the class labels. Note that the part classifier is shared between all possible
locations of a localized feature, which allows the object parts to occur anywhere
in the bounding box and enables the model to capture articulations, viewpoint
changes, and partial occlusions. In contrast to global object descriptors, this allows
the representation to more easily adapt to positional variations and enables more
specific appearance models. Based on the SVM classifier, we define the unary
potential of node i for part label zi using a softmax as

ψi(zi, x; α) =
exp (F(α(zi), fi(x)))

∑P
c=0 exp (F(α(c), fi(x)))

, (5.3)

where the fi(x) refer to the features as described in Sec. 5.4, and α(zi) denotes the
support vector coefficients of part label (class) zi. The background “part” is modeled
as

F(α(0), fi(x)) = const . (5.4)

This constant controls the uncertainty in part estimation of the unary SVM predic-
tions.

Pairwise potentials. The pairwise potentials capture the structure of the domain
of interest by modeling the cooccurrence of parts at connected nodes (i, j). Based
on the interaction of the corresponding image features fi(x) and f j(x), we capture
the interplay of parts by computing softmax classifiers on the concatenated features.
On the one hand, these linear classifiers on concatenated features are able to learn
the appearance of object parts, and on the other hand, they can also model the
cooccurrence of two object parts:

φij(zi, zj, x; e) =
exp

(
( fi(x), f j(x))Te

zizj
ij

)

∑P
c1,c2=0 exp

(
( fi(x), f j(x))Tec1c2

ij

) . (5.5)

Here, the parameters e
zizj
ij are specific to each pairwise coupling and each combina-

tion of part labels. By allowing connections between arbitrary pairs of nodes, we
obtain the flexibility to represent spatial relations not only of object parts in local
neighborhoods, but also between distant locations within the spatial extent of objects.
This topology is more flexible than simple star-shaped part models (Felzenszwalb
et al., 2008).
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5.2.2 Part-driven object classifier

Given a spatial distribution of object parts the part-driven object classifier estimates
object or background occurrence. We set up this object classifier in a non-parametric
way that allows to model the contribution of each localized part label toward the
object or background hypothesis. This holistic interpretation of part occurrences has
the advantage that it allows for ambiguities in part localization as well as in part
annotation. Such ambiguities are inevitable particularly in our latent variable setting,
in which parts are inferred automatically. The object classifier can be written as

p(y|z; γ) =

{
∑i∈V γi(zi), y = 1
1−∑i∈V γi(zi), y = −1

, (5.6)

with ∑i∈V ∑P
c=0 γi(c) = 1 to ensure normalization. Note that by defining the classifier

through weighted sums of part occurrences, it remains robust to an occasional
absence of parts. This is in contrast to hidden CRFs that instead assume a factorized
model (Kapoor and Winn, 2006; Quattoni et al., 2007). During training, as will be
explained in Sec. 5.3, the parameters γ are learned from the inferred part occurrences
in the training set.

5.2.3 Detecting object instances

In order to evaluate whether an object instance is present in the bounding box x
or not, we need to compute p(y = 1|x; θ, E) = ∑z p(y = 1| z; γ)p(z | x; α, e, E), which
involves marginalization over all part configurations. The posterior object probability
simplifies to

p(y = 1|x; θ, E) = ∑
i∈V

P

∑
zi=0

γi(zi)p(zi| x; α, e, E) . (5.7)

Proof.

p(y = 1|x; θ, E) = ∑
z

p(y = 1| z; γ)p(z | x; α, e, E) (5.8)

= ∑
z

((
∑
i∈V

γi(zi)

)
p(z | x; α, e, E)

)
(5.9)

= ∑
i∈V

P

∑
zi=0


γi(zi)


∑

z \zi

p(z | x; α, e, E)




 (5.10)

= ∑
i∈V

P

∑
zi=0

γi(zi)p(zi| x; α, e, E) . (5.11)
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Since exact computation of the marginals p(zi| x; α, e, E) is intractable, we ap-
proximate them using the beliefs bi(zi) from sum-product belief propagation. For
efficiency reasons, we pre-filter candidate bounding boxes with a HOG detector
(Dalal and Triggs, 2005) and compute the score of the pre-filtered windows with our
full model. For the sake of completeness we also report the performance without
pre-filtering.

5.3 learning the model

To train our latent variable model, we rely on the well-known expectation maximiza-
tion (EM) algorithm. This allows our approach to discover semantically interpretable
part annotations from object class labels alone. The combination of the flexibility of
our model and the power of EM to infer and adapt to soft assignments of hidden
nodes, and therefore part labels, yields a theoretically sound, yet practically scalable
approach. Our objective is to maximize the expected complete log-likelihood with
respect to θ = {γ, α, e}:

Q(θ, θold) = ∑
Z

[
p(Z|Y, X; θold, Eold) · log

(
p(Y|Z; γ)p(Z|X; α, e, E)

)]
, (5.12)

where θold refers to the parameters from the last M-step.

Initialization. It is well known that EM requires proper initialization to work well.
We infer an initial part labeling using k-means clustering over the positive training
instances, which yields a hard assignment of nodes to object parts (cf. (Schnitzspan
et al., 2008) and previous chapter). We use these hard part assignments from the
positive instances and randomly sampled negative instances to initially train the
part classifiers (i.e. SVMs), which yields our initialization for α. Note here that this
procedure only provides an initialization; later the part classifiers are re-trained as
required by the part representation. The parameters of the part-driven classifier γ
are initialized by counting part occurrences in the inferred hard assignment and
normalizing. The edge parameters e require no initialization, as at the beginning no
edges are present in the graph (see below).

E-Step. In the E-step we compute expected (i.e. soft) assignments of part labels to
nodes for the training set of observed class labels Y and images X:

p(Z|Y, X; θold, Eold) =
M

∏
m=1

p(ym|zm; γold)p(zm|xm; αold, eold, Eold)

p(ym|xm; θold, Eold)
. (5.13)

Here, p(ym|xm; θold, Eold) is computed approximately using belief propagation as in
Eq. (5.7). The E-step thus yields probabilities of nodes belonging to certain object
parts, which flexibly adapts toward a meaningful representation of parts as learning
proceeds.



76 chapter 5. latent crfs

Generalized M-Step. After computing the soft part assignments, we maximize
the expected complete log-likelihood Q(θ, θold) with respect to θ. We use gradient
ascent, since there is no closed form solution for the parameters γ. In the following
let bold

i denote the part beliefs from the previous iteration. Per M-step we use one
gradient update. The gradient can be approximated as

∂Q(θ, θold)

∂γi(c)
≈

M

∑
m=1,ym=1

bold
i (c)

p(ym|xm;θold,Eold)
−

M

∑
m=1,ym=−1

bold
i (c)

p(ym|xm;θold,Eold)
, (5.14)

Proof. In the proof we make use of the approximation p(y| z;γold)
p(y| z;γ) ≈ 1. Also recall that

p(z | x; α, e, E) does not depend on γ.

∂Q(θ,θold)
∂γi(c)

=∑
Z

(
M

∏
j=1

p(zj|yj, xj; θold, Eold)

)(
M

∑
m=1

1
p(ym|zm;γ)

∂p(ym|zm;γ)
∂γi(c)

)
(5.15)

=
M

∑
m=1

∑
zm

p(zm|ym,xm;θold,Eold)
p(ym|zm;γ)

∂p(ym|zm;γ)
∂γi(c)


 ∑

Z\zm

M

∏
j=1
j 6=m

p(zj|yj, xj; θold, Eold)




︸ ︷︷ ︸
=1

(5.16)

=
M

∑
m=1

∑
zm

p(ym| zm;γold)p(zm|xm;αold,eold,Eold)
p(ym|zm;γ)p(ym|xm;θold,Eold)

∂p(ym|zm;γ)
∂γi(c)

(5.17)

≈
M

∑
m=1

∑
zm

p(zm|xm;αold,eold,Eold)
p(ym|xm;θold,Eold)

∂p(ym|zm;γ)
∂γi(c)

. (5.18)

Here we observe that ∂p(ym|zm;γ)
∂γi(c)

does not depend on zm
j for j 6= i since

∂

∂γi(c)
p(ym|zm; γ) =





1, if ym = 1 and zm
i = c

−1, if ym = −1 and zm
i = c

0, otherwise .
(5.19)

In the following we factor out ∂
∂γi(c)

p(ym|zm; γ) and approximate

p(zm
i |xm; αold, eold, Eold) ≈ bold

i (zi):

∂Q(θ,θold)
∂γi(c)

≈
M

∑
m=1

P

∑
zm

i =0



(

∂
∂γi(c)

p(ym|zm; γ)
)

∑
zm \zm

i

p(zm|xm;αold,eold,Eold)
p(ym|xm;θold,Eold)


 (5.20)

=
M

∑
m=1

P

∑
zm

i =0

((
∂

∂γi(c)
p(ym|zm; γ)

)
p(zm

i |xm;αold,eold,Eold)

p(ym|xm;θold,Eold)

)
(5.21)

≈
M

∑
m=1,ym=1

bold
i (c)

p(ym|xm;θold,Eold)
−

M

∑
m=1,ym=−1

bold
i (c)

p(ym|xm;θold,Eold)
. (5.22)



5.3 learning the model 77

We optimize the parameters α by re-training the SVM part classifier. To exploit
the uncertainty of the part labeling expressed by the soft assignments, we weigh each
part occurrence in the training set with its soft assignment. Here we alternate between
the maximum margin objective of SVM training and likelihood maximization. As
also mentioned in the preceding chapter, this potential restriction could be avoided
by adapting the maximum margin Markov network formalism of Taskar et al. (2003).
However, the focus of this chapter is on learning the hidden part labels and the
structure between them.

As is the case even for fully observed training of CRFs, there is no closed
form solution for the edge parameters e. We thus use gradient ascent that locally
maximizes Q(θ, θold). The gradient with respect to edge parameters for parts c1 and
c2 is given as

∂Q(θ,θold)

∂e
c1c2
ij

=
M

∑
m=1

[
∑
zm

(
∂ log(p(zm|xm,α,e,E))

∂e
c1c2
ij

p(ym|zm; γold)

p(zm|xm, αold, eold, Eold)
/

p(ym|xm, θold, Eold)

)]
. (5.23)

Proof. In order to derive this equation we simplify the notation of Q(·, ·).

Q(θ, θold) =

M

∑
m=1

∑
Z

[(
log p(ym|zm; γ) + log p(zm|xm; α, e, E)

)
·

p(Z|Y, X; θold, Eold)
] (5.24)

=

M

∑
m=1

∑
zm

[(
log p(ym|zm; γ) + log p(zm|xm; α, e, E)

)
·

∑
Z\zm

p(Z|Y, X; θold, Eold)
] (5.25)

=

M

∑
m=1

∑
zm

[(
log p(ym|zm; γ) + log p(zm|xm; α, e, E)

)
·

p(zm|ym, xm; θold, Eold)
]

.

(5.26)

Following this we can easily derive the gradient with respect to the edge parameters
e. Recall that p(y|z; γ) does not depend on the parameters e.

∂Q(θ,θold)

∂e
c1c2
ij

=
M

∑
m=1

∑
zm

((
∂ log(p(zm|xm;α,e,E))

∂e
c1c2
ij

)
p(ym|zm;γold)p(zm|xm;αold,eold,Eold)

p(ym|xm;θold,Eold)

)
. (5.27)

Computing the gradient of Q(θ, θold) thus reduces to calculating the conditional
log-likelihood gradient, which is also required for training standard CRFs. The
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gradient of the conditional log-likelihood C(e) = log p(z | x, α, e, E) with respect to
the edge parameters is given as:

∂C(e)
∂ec1c2

ij
=Ez{zi=c1,zj=c2}|x

[
( fi(x), f j(x))Tφij(c1, c2, x)

]
−

Ep(z{zi=c1,zj=c2}|x)
[
( fi(x), f j(x))Tφij(c1, c2, x)

]
,

(5.28)

where Ez|x denotes the empirical expectation and Ep(z|x) refers to the expectation
under the posterior distribution of our part CRF. A similar notation is used in
(Schnitzspan et al., 2009) and the previous chapter and more details on this gradient
can be found there.

In order to cope with differing major orientations of the instances (left-right), we
initialize our model with the original orientations of the dataset. In each iteration we
evaluate our model on the original and a mirrored image and choose the one with
the highest score for the next iteration.

5.3.1 Structure learning

In order to learn the spatial relationship between object parts, we use discriminative
structure learning to find the edges in the CRF that maximize the discriminative
power of the overall model. In particular, we develop a multi-label extension
of L1-regularized gradient-based discriminative structure learning (Schmidt et al.,
2008; Schnitzspan et al., 2009). In our scenario we are interested in improving the
discriminative power of our approach in terms of the object’s presence or absence,
and therefore consider the log-posterior ratio

R(eij) = max
(c1,c2)∈{0..P}2

∥∥∥∥∥
M

∑
m=1,ym=1

∂ log p(ym=1|xm;θ,E)
∂e

c1c2
ij

−
M

∑
m=1,ym=−1

∂ log p(ym=−1|xm;θ,E)
∂e

c1c2
ij

∥∥∥∥∥ .

(5.29)
The edges that maximize this ratio likely improve our model, and therefore should
be added to it. At the same time, edges that have small ratio and small absolute
edge weights can be removed from the current active edge set, because they have
only a small impact on the objective. In the preceding chapter, we discussed the
binary case, in which the maximum has to be calculated only over all candidate
edges. Here we assume the more complex case, in which we additionally have to
consider part labellings. Therefore the structure learning objective R(eij) considers
the gradient over all possible edges and possible part constellations and takes the
maximum. The gradient can be written as

∂ log p(y| x;θ,E)
∂e

c1c2
ij

= 1
p(y|x;θ,E)

(
∑
z

p(y|z; γ)p(z|x; α, e, E) ∂ log p(z|x;α,e,E)
∂e

c1c2
ij

)
. (5.30)

Proof. By exploiting that

∂

∂ec1c2
ij

p(z|x; α, e, E) = p(z|x; α, e, E) · ∂

∂ec1c2
ij

log p(z|x; α, e, E) , (5.31)
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we derive the ratio R(·) for a fixed m and drop this index for notational simplicity:

∂ log p(y|x; θ, E)
∂ec1c2

ij
=

1
p(y|x; θ, E)

∂

∂ec1c2
ij

(
∑
z

p(y|z; γ)︸ ︷︷ ︸
independent of e

c1c2
ij

p(z|x; α, e, E)

)
(5.32)

= ∑
z

(
p(y|z; γ)

p(y|x; θ, E)

(
∂

∂ec1c2
ij

p(z|x; α, e, E)

))
(5.33)

= ∑
z

p(y|z; γ)p(z | x; α, e, E)
p(y|x; θ, E)

∂ log p(z | x; α, e, E)
∂ec1c2

ij
. (5.34)

We can now compute R(eij) using the conditional log-likelihood gradient of a
standard CRF.

The gradient on the right hand side is computed as in Eq. (5.28). We proceed by
finding the best edge to add:

ei∗ j∗ = arg max
(i,j)∈V×V\E

R(eij) . (5.35)

We start the learning process with no pairwise couplings of nodes and iteratively
add the ten best edges (highest ratio of gradient norm) to the model at the end of
each M-step. At the same time, we remove edges with absolute weight below a
threshold τ1 that also have an absolute gradient norm below the threshold τ2. In
combination with L1-regularization, this scheme leads to sparsely connected graphs,
and at convergence has a connectedness of approximately 20%. Experiments with
different τ1 and τ2 showed that the determined structure is robust to changes in
τ1 and τ2 even though these parameters control the connectedness of our model –
higher thresholds yield lower connectedness.

5.4 image features

The aggregation of features and their linkage to image regions defines the basic
spatial layout of the latent nodes of our model. We build a dense representation
of objects that includes both histograms of oriented gradients (HOG) (Dalal and
Triggs, 2005) and bag of words (BoW) (Lazebnik et al., 2006) descriptors. In our
experiments these specific feature descriptors emerged to be suitable to capture local
deformations and viewpoint changes. Note, however, that our model allows for an
arbitrary layout of nodes, which means that we can rely on any feature aggregation
scheme, both local and global. This allows for future integration of orthogonal
features, which appears promising due to the success of combining several features
(Vedaldi et al., 2009). In our experiments we fixed the extent of our features (the
size of the linked image region) and leave it for future work to automatically select
optimal feature scopes.
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HOG descriptors. The HOG descriptors are computed by calculating a dense grid
of non-overlapping cells of oriented gradients (Dalal and Triggs, 2005) - each cell
being 8× 8 pixels in size. A dense block grid with 50% overlap between blocks is built
by concatenating and normalizing four neighboring cells. Similar to (Felzenszwalb
et al., 2008), we rely on local views of objects by concatenating several neighboring
blocks to form one feature descriptor. In our experiments we concatenate 5× 5
neighboring blocks into one local descriptor. In addition, we compute a global
descriptor that comprises all blocks of the grid, thus aggregating evidence from the
entire object.

BoW descriptors. The bag of words (BoW) descriptors (Lazebnik et al., 2006) are
formed by densely calculating SIFT features (Lowe, 2004) with radii (5, 10, 15) and a
spacing of 10 pixels. We vector-quantize these features with k-means clustering over
the positive training instances. We divide the image into overlapping regions, which
each forms a feature descriptor. In our experiments we use regions of 50× 50 pixels
with an overlap of 50%. A local BoW descriptor is then formed by measuring the
word occurrences in one specific region. A global BoW descriptor is calculated by
measuring the word occurrences in the entire bounding box.

Part classifiers. For each local as well as global feature and feature type T ∈
{H,B} (H denotes HOG, and B BOW) we train one SVM

FT (αT (c), f Ti (x)) = ∑
s∈ST (c)

αTs (c)K
(

s, f Ti (x)
)
+ αT0 (c) , (5.36)

where ST (·) refers to the set of support vectors and K(·, ·) denotes an appropriate
Mercer kernel. In our experiments we make use of the histogram intersection kernel
(Maji et al., 2008). Each part classifier is then defined as a sum of HOG and BoW
classifiers F(α(c), fi(x)) = FH(αH(c), fHi (x)) + FB(αB(c), f Bi (x)).

5.5 experiments

We evaluated our model on the PASCAL VOC 2007 dataset with the common average
precision (AP) metric (Everingham et al., 2007). This dataset includes images from 20

object classes and is challenging due to partial occlusion, articulation, and viewpoint
changes. Training our model takes approximately 8 hours while computing detection
scores for an entire image takes approximately 15 sec on a 2 GHz AMD Opteron
machine, when using a global HOG pre-filter. Without the pre-filter we apply belief
propagation for all locations and scales, which increases the computation time to
approximately 450 sec per image. We use SVMlight for training the SVMs (Joachims,
1999).

Qualitative observations. Fig. 5.3 shows mean images over the positive training
instances of motorbikes (top) and horses (bottom). The left column shows the
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Figure 5.3: Mean image averaged over (left) all instances, (middle) part occurrences
of k-means clustering, (right) part occurrences learned with EM. (top) VOC 2007

motorbikes, (bottom) horses.

VOC 2007 fixed structure (“no sl”) structure learning (“sl”)
global 30.2 -
k-means 32.1 33.2
maximization 33.4 35.0
marginalization 34.2 36.3

Table 5.1: Comparison of different model instantiations on a subset of PASCAL VOC
2007 motorbikes (in average precision).

pr
ec

is
io

n

recall

Figure 5.4: Evaluation of different instantiations of our model on a subset of PASCAL
VOC 2007 motorbikes.
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Figure 5.5: Motorbike segmentation examples (see text for details).

global mean image over all bounding boxes, where it is challenging to see any real
object class structure. The middle column shows mean part occurrences of a fixed
k-means part assignment (cf. (Schnitzspan et al., 2008)) weighted by their probability
and shifted to their canonical location. Even though one can recognize a trend
towards the discovery of object parts, the object structure is still rather weak. The
right column shows part occurrences of our latent CRF model, where the parts
are weighted by their probability from the part CRF and shifted to their canonical
location (the spatial mean of the classifier weights γi(c)). It becomes clearly visible
that our model automatically discovers object parts, such as wheels of motorbikes or
the head of horses, allowing for a much better alignment of instances and parts.

Figs. 5.1, 5.5, and 5.6 show object segmentations, where the color-coded part
labelings are automatically inferred by our model. The color saturation encodes
the probability of each part. As can be seen in Fig. 5.5 (motorbikes) our model
is capable of handling viewpoint variation (row one) as well as partial occlusion
(row two left and row three left). These segmentations illustrate one major benefit
of our framework: Our model implicitly handles partial occlusions by considering
all possible configurations simultaneously and weighing them according to their
probability. This avoids relying on the most probable and possibly misleading part
labeling. For articulated object classes like horses (Fig. 5.6) we can observe the same.
Our model captures articulation (row one left and row three left), viewpoint variation
(row four left) as well as partial occlusion (row two right, row four left). Note how
our model adapts to a meaningful representation of parts even for articulated object
classes like horses.
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Quantitative evaluation on VOC 2007 motorbikes. In Tab. 5.1 and Fig. 5.4 we
compare different components and settings of our model on a subset (left and right
facing) of the images of the motorbike class of the PASCAL VOC 2007 challenge.
We show the performance of (i) using only global part descriptors, (ii) using a fixed
k-means assignment of parts, (iii) using the most probable part (MAP) per node
instead of marginalization, and (iv) using marginalization. All part-based settings are
evaluated with a fixed and a learned graph structure. The fixed structure accounts
for local neighborhood dependencies that connect each node to its four neighbors in
a regular grid, as in standard CRFs.

As can be seen, our full model outperforms the global template model by 6.1%
AP, which emphasizes the importance of enriching global models with a semantically
meaningful notion of parts. Moreover, treating part labels as hidden nodes is clearly
advantageous to fixing them based on k-means clustering (AP increase of 3.1%). This
holds true for the case of fixed graph structure as well (gain of 2.1% AP), which
shows that the higher expressiveness of latent models results in superior performance.
This quantitative evaluation is consistent with our qualitative observations, where
parts inferred by our model showed a much better alignment of instances than the
k-means instantiation.

In order to show the benefit of marginalizing out all possible part configurations,
we compare the marginalization scheme against considering only the maximum
part assignment (MAP) for each node. Marginalization shows a gain of 1.3% AP
over maximization, which emphasizes the benefit of considering all possible part
configurations instead of relying only on possibly misleading maximal responses.
This observation agrees with the work of Kapoor and Winn (2006), which assumed
the hypothesis of max-product, that the posterior mass is concentrated at the mode,
being inaccurate due to the uncertainty in the latent part variables Note that structure
learning always led to better results than a fixed graph structure, which demonstrates
the increased flexibility of the learned structure.

Quantitative evaluation on all VOC 2007 classes. In order to further evaluate the
contribution of our work, we show results of different instantiations of our model
(using only global parts, using our full model but only HOG features with and
without pre-filter, and our full model with HOG and BoW descriptors). Tab. 5.5
compares those with state-of-the-art approaches. As can be seen our model achieves
competitive performance (28.7% AP on average).

Using only HOG features allows a fair comparison to (Felzenszwalb et al., 2008),
who use similar features. On average over all classes, our flexible part-based ap-
proach shows an improvement over (Felzenszwalb et al., 2008) of 1.0% AP. We achieve
better results on 16 of 20 classes, which emphasizes the benefits of the flexible object
topology and marginalizing over all part constellations. Note, that our model with-
out applying the pre-filter (27.1% AP on average across classes) is on par or slightly
better than inferring our model on pre-filtered hypotheses (26.9% AP on average
across classes).

We achieve an improvement of 1.5% AP and better results on 17 of 20 classes
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Figure 5.6: Horse segmentation examples (see text for details).

compared to (Desai et al., 2009), who considered detections of all object classes within
an image by simultaneously inferring a notion of multi-class layout and context.
Such additional information is orthogonal to our model and is likely to improve the
performance further.

Compared to our binary structure learning approach as discussed in the previous
chapter and in (Schnitzspan et al., 2009), we could improve the performance by 1.2%
AP, which shows the advantage of integrating part labels in a structure learning
framework.

We achieve better performance than (Vedaldi et al., 2009) on 5 object categories,
even though the latter approach gives better performance on average. It is likely that
a large part of this increased performance is due to integrating more complementary
feature descriptors, which could also be done in our model as sketched in Sec. 5.4.
Since our model remains general and allows for integration of more features, we
expect a substantial performance gain by doing so.

Compared to the original VOC 2007 challenge we achieve a performance gain of
5.4% AP and show better results on 17 of 20 object classes. Here we compare against
the best method per class and not against a single model.
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5.6 conclusions

This chapter presented a novel discriminative framework that successfully combines
powerful discriminative learning techniques with the flexibility and expressiveness
of part-based models and discriminative pairwise structure learning. We relied on
weakly supervised training by treating part labels as hidden nodes, and letting our
approach automatically discover semantically meaningful part representations. Our
model lends itself to modeling the spatial layout of objects even in the presence
of heavy articulation and viewpoint variation, and provides an implicit occlusion
reasoning. Quantitatively our scheme achieves competitive performance on the
difficult PASCAL VOC 2007 challenge, and qualitatively yields object segmentations
with meaningful part labelings that reoccur across object instances.
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While in the previous chapters we described object detection with graphical
models, we want to focus on onboard and real-time object detection for
mobile robotic platforms in this chapter. This chapter mainly addresses in-

terdisciplinary work within the research training group 1362 funded by the Deutsche
Forschungsgemeinschaft (DFG). The goal of this chapter is to combine several com-
plementary sensors for an increased reliability while at the same time respecting
real-time requirements of search and rescue robotics. This chapter describes the
work published in (Meyer et al., 2010).

6.1 introduction

Modeling the world in complex environments is a crucial aspect on the way toward
reliable, intelligent, and autonomous search and rescue robots. It is desirable not only
to infer a geometrically interpretable map, but also to integrate semantic attributes to
enable high-level scene interpretation as motivated in related work (Asada and Shirai,
1989; Burgard and Hebert, 2008; Kumar et al., 2004). In urban search and rescue
(USAR), reliable robots have to provide a semantically meaningful interpretation of
objects within a scene (e.g. victims in collapsed buildings) (Tadokoro et al., 2000).
In unconstrained environments (as is the case in USAR scenarios) relying only on
one type of sensor is often insufficient, while fusing complementary information
(i.e. information from different types of sensors) enables semantic interpretability of
scenes and superior reliability.
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Figure 6.1: Examples of sensor and world model data: (a) Visual image with
victim detection. (b) Thermal image with heat detections. (c) Range samples along
the horizontal axis of the image. (d) Snapshot of the semantic world model with
estimated victim locations denoted by the red covariance ellipses.

The main goal of this chapter is to propose a mobile robot system for autonomous
detection of victims in USAR scenarios. The system is capable of autonomous
navigation and map learning, and localizes victims and objects of interest in a 3D
world coordinate system. Our setting approaches actual search and rescue operations
in realism and complexity: Real human victims have to be localized in unstructured
environments, even in the presence of background clutter and multiple thermal
sources such as office equipment and heating. By adding objects of interest to the
metric map of the environment, we augment the robot’s environment with semantic
information, which then can be utilized for decision making by human operators.
Our system is able to achieve high performance even for cluttered and complex
datasets (see Fig. 6.1). All information is processed onboard and in real-time, as is
crucial for realistic rescue deployments.

In our system visual information is supplied to a generic object detector that
allows detecting structured objects and assigns them a semantic meaning (e.g. upper
bodies of victims or hazardous material signs). To avoid relying on a single source of
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information, we consider the information from all sensors simultaneously, and derive
a generic model that is able to leverage complementary information. As motivated
in (Kleiner and Kümmerle, 2007), merging different sources of information helps
achieving higher levels of performance in victim detection.

Sec. 6.2 describes our system, while in Sec. 6.3 the sensors and detection algo-
rithms for victim and object detection are introduced. Afterwards two approaches
for sensor fusion are presented in Sec. 6.4. Experimental validation is presented in
Sec. 6.5.

6.2 system overview

Since the locations of victims need to be specified in world coordinates, the robot pose
and a metric map have to be estimated using a combination of inertial sensing and
simultaneous localization and mapping (SLAM). These estimates are continuously
updated over time and used for integrating victim hypotheses obtained from different
sensor types. Simultaneously with the pose and map estimation at each update step,
our system generates a set of object hypotheses using a visual object detector and
thermal-camera-based detector, which are used as a basis for sensor fusion.

We explore two complementary approaches for sensor fusion. In the first, which
we denote as explicit sensor fusion, we integrate information from different sensors
directly in the sensor space using known transformations between different sensor
modalities (i.e. the mapping between thermal and visual images). This allows to use
known dependencies of sensor signals to either amplify or attenuate the confidence
in the measurements.

In the second approach, which we denote as implicit sensor fusion, the global
belief is updated independently for each observation. The advantage of using
complementary sensors is realized through accumulation of positive evidence in
the world model. Integrating hypotheses into the model requires an association
step for matching an hypothesis to an already known object. The case in which
previously unknown objects have been found must be considered separately. Once
association is established, the matching is taken for granted and the corresponding
victim location estimate and evidence is updated by using an extended Kalman
filter (EKF). Integration of observations into the global belief state can therefore be
considered to be a method for temporal sensor fusion. Additionally, confidence in a
hypothesis is influenced by negative observations, where the absence of expected
detections or contradictory measurements reduce the confidence value.

When applying implicit sensor fusion the observations from different sensors
are integrated independently into the world map, while explicit sensor fusion is an
optional step that precedes the integration step, and is primarily used to increase
the reliability of observations.
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6.2.1 World model

World models generally account for a mathematical description of the environment,
with different aspects being considered important depending on the application. In
our USAR scenario the model is formed by a representation of building geometry and
additional semantic information, like the location of people and objects of interest.
By applying additional high-level knowledge to the model, it can be easily enriched
with more detailed information in future work, for example classification of places,
a graph of passable paths through a building, or estimates of hazardousness of
specific locations. Based on this high-level description of the environment, the robot
is able to plan reasonable future actions and – when integrating human operators –
is able to deliver valuable information to rescue teams, for example to guide them to
detected victims.

The robot state vector yk contains the estimated 6DOF robot pose as well as
translational and angular velocities in the global coordinate system and is updated
at discrete timesteps t = tk. The location of objects, including the victims, is referred
to as xj

k with j being an index variable over the estimates. The objects are modeled as
points, ignoring their spatial extent. In this chapter we assume the world to be static
apart from the movement of the robot itself. The number of objects is not known in
advance. Besides the location information we introduce the probability π

j
k that object

j is detected correctly as a measure of confidence, which is incrementally updated
with each new sensor reading and typically increases when more detections of the
same object occur.

The process of world modeling requires inference in state space from measure-
ments given in sensor-space. Since sensors are error-prone, a probabilistic model
description is used here. We choose a Gaussian representation for the continuous
state variables, with estimated means ŷk and x̂j

k, and variances Ck and Pj
k, respectively.

6.2.2 Simultaneous localization and mapping (SLAM)

State estimation of the vehicle and a map is performed by two components. A
2D pose and map estimate is provided by a module using incremental maximum
likelihood alignment of laser scans with the estimated map. The map is represented
by a discrete grid and updated using the log-odd probabilities of occupancy (Schiele
and Crowley, 1994; Thrun et al., 2005).

Estimation of the robot state yk is performed by an extended Kalman filter (EKF)
integrating observations from all available sensors. Attitude estimation is provided
by a built-in IMU and compass, while position estimation is provided by wheel
encoders and the 2D pose estimation updates from the SLAM module. For the
USAR scenarios described in this work, our approach is sufficiently accurate as to
not require multiple map hypotheses (e.g. using a Rao-Blackwellized particle filter),
or explicit loop closure.
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6.3 victim and object detection

In order to enrich the map with semantic information, we perform onboard detection
of objects of interest, which in our case correspond to people and dangerous materials
marked with hazmat signs. In this chapter we focus on the detection of upper bodies
of people, since this allows to detect both standing people as well as possibly injured
people sitting on the ground (see Fig. 6.1), and leave more complex cases for future
work. Due to background clutter, partial occlusions and complex articulations, visual
people detection is a difficult problem even in this somewhat restricted setting. In
particular, state-of-the-art computer vision methods are still severely challenged by
this task (Ferrari et al., 2009).

Object detection. In order to find initial hypotheses of people and hazmat signs
in camera images, we use the popular sliding window approach. In this approach
every image is exhaustively scanned over a range of positions and scales; for each
position and scale a discriminative SVM classifier is used to make binary decisions
about the presence or absence of an object. While seemingly expensive, the sliding
window approach is especially suitable for parallel implementation, since each object
location can be examined independently of the rest of the image.

In order to describe the contents of the image at each particular location, we
leverage recent results in computer vision and rely on a histogram of oriented
gradients (HOG) descriptor (Dalal and Triggs, 2005). In our system we scan the image
with steps of 8 pixels and relative scale factors of 1.05. We use a GPU implementation
developed in our group, which allows to achieve real-time performance without
sacrificing recognition performance (Wojek et al., 2008).

The confidence svis
k ∈ [0, 1] of a hypothesis is calculated via a sigmoidal mapping:

svis
k =

1
1 + exp(a · fk + b)

, (6.1)

where fk is the SVM score of the hypothesis, and a and b are parameters that are
estimated by cross-validation (Platt, 1999).

Object classification. A HOG descriptor is especially well suited for capturing the
characteristic shape of an object. However, it has shortcomings when it is necessary
to distinguish between objects with similar shape, such as different hazmat signs,
all of which have a rhombus shape and differ mainly in color, internal patterns
and text. In order to identify hazmat signs we augment the HOG descriptors with
color histograms. For each hazmat sign hypothesis of the HOG-based detector,
we compute a color histogram in LAB color space and use this to perform the
final classification of hazmat signs by applying a k-nearest-neighbor approach in
combination with the χ2-distance. As our experiments demonstrate, the combination
of HOG and color histograms yields good performance for hazmat sign classification
(Sec. 2).
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Figure 6.2: (a) Correspondence between annotation height and distance. (b) Example
detections of frame 561. (c) Scanline of frame 561. (d) Example detections of frame
287. (e) Thermal image of frame 287.

Thermal victim detection. In addition to victim hypotheses from visible light
camera images, our system also creates a set of hypotheses based on images from a
thermal camera. These thermal hypotheses are generated with a simple procedure
that searches the images for large enough groups of connected pixels with tempera-
ture values within the human body temperature range. Each such group of pixels
is used to generate a hypothesis. Although hypotheses generated by the thermal
camera alone are significantly less reliable compared to hypotheses produced by the
visual object detector, we found them to be effective in reducing the number of false
positives.

We define a simple model for the confidence stherm
k ∈ [0, 1] by counting the

number of pixels within the person’s bounding box that have a temperature close to
human bodies. This model is robust to small offsets in corresponding locations in
visual and thermal images, which arise due to imprecise synchronization between
these modalities.

6.4 sensor fusion

The reliability of the entire victim detection framework can be increased by fusing
victim hypotheses from different sensors and across time steps. Intuitively, the
confidence of a detected victim should be increased if it is observed in several
update steps or by different sensors and on the other hand stay below a certain
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threshold when it is only spotted once. We employ an extended Kalman filter (EKF)
in order to update the locations xj

k of victims in our world model and integrate

several hypotheses across update steps. In parallel, the confidence π
j
k that the victim

is present at the respective location is updated in a separate filter with the respective
measurement confidence as described below.

For simplification of notation we assume without loss of generality that at most
one hypothesis is observed in every update step k. We define the measurement zk
to consist of the distance dk, the bearing angle αk, and the relative vertical angle βk
between the hypotheses and the robot:

zk =
[
dk, αk, βk

]T
= h(xj

k, yk) + vk , (6.2)

where h(·, ·) refers to a non-linear measurement function that projects the victim’s
position into the world model. xj

k and yk denote the victim’s position estimate and
robot state vector respectively. The random vector vk is unbiased and uncorrelated
Gaussian measurement noise with hand-tuned variance R. The measurement func-
tion also depends on the robot’s state yk, which in turn is estimated with an EKF
independently.

Data association. In order to find an optimal matching between measurements
and existing estimates of victim locations we use the following probability of mea-
surement zk given the index j and the position estimate x̂j

k−1 with variance Pj
k−1:

p(zk|j) ∝ N (zk; h(x̂j
k−1, ŷk), R + H j

kPj
k−1(H j

k)
T) , (6.3)

with a first order approximation H j
k of the measurement function h(x̂j

k−1, ŷk) at the
current estimated means.
Whenever this probability p(zk|j) is above a previously defined threshold, we
associate the new measurement to the best matching estimate with index j∗k =
arg maxj p(zk|j). Otherwise, a new estimate is added to the world model as of a
previously unobserved victim.

Kalman filter updates. We assume the victims to be static in our setting and
therefore no explicit prediction step is needed. The measurement update equations
of the Kalman filter are defined as:

K j
k = Pj

k−1(H j
k)

T
(

H j
kPj

k−1(H j
k)

T + R
)−1

(6.4)

x̂j
k = x̂j

k−1 + λk(zk, sk) · K j
k

(
zk − h(x̂j

k−1, ŷk)
)

(6.5)

Pj
k =

(
I − λk(zk, sk) · K j

kH j
k

)
Pj

k−1 , (6.6)

where I denotes the identity matrix and sk refers to the initial score of hypothesis k
as will be explained below. The measurement update uses the confidence λk(·, ·) ∈
[0, 1] of an observation as an additional factor to the gain matrix K j

k to honor the



94 chapter 6. sensor fusion for mobile robots

observation quality and discard uncertain updates. The measurement confidence is
of the form

λk(zk, sk) = sk · φ(zk, dlaser) · ψ(zk) , (6.7)

where dlaser is the distance to the next obstacle measured with the laser scanner.
φ(·, ·) imposes a prior on the estimated distance to zk and measured distance dlaser to
the next obstacle and is proportional to a Gaussian with manually defined variance
according to the uncertainty in the sensor measurements. ψ(·) refers to a Gaussian
height prior with mean 80cm (height of upper bodies) and manually defined variance.
By employing φ(·, ·), we ensure that the size of an hypothesis approximately matches
the size that we expect, and avoid false positives with inappropriate estimated and
measured distances (see Fig. 6.2(b)). ψ(·) guarantees that all objects appear at the
expected height from the robot, while unlikely pitch angles are discarded.

Label confidence update. In the case that a new measurement is associated to a
given estimate, we update the estimate’s label confidence according to the disjunctive
combination of two binary random events, so that confidence is increased with every
new measurement:

π
j
k = π

j
k−1 + λk · (1− π

j
k−1) . (6.8)

If no measurement in time step k is available we decrease the label confidence
of all victim estimates within the field of view by employing "negative evidence".
Negative evidence is information that arises from the fact that the confidence of
an estimate can decrease if it is not confirmed by sensor observations. Applying
negative evidence to our algorithm helps to decrease the number of false alarms, as
many false positives do not reoccur in consecutive time steps.

The negative update is applied to all objects j that should be visible in the image
according to the current estimated map and positions, but have no detection event
associated for the current time step. Their label confidence is reduced according to

π
j
k =

pmiss · π j
k−1

pmiss · π j
k−1 + (1− π

j
k−1)

. (6.9)

The probability pmiss of missed detections is approximated as the inverse probability
of the detector’s recall on the trained dataset.

Implicit vs. explicit integration We evaluate two different fusion schemes: implicit
and explicit fusion. These two approaches differ in the way the complementary
information of sensors is integrated. In our model this boils down to the treatment
of the initial score sk of an hypothesis in Eq. (6.7).

In the implicit fusion scheme we consider each hypothesis from both the visual
light and thermal sensor as a new measurement that is either associated to a given
estimate or enters the world model as a new estimate. In this setting the sensor
fusion is implicitly handled with the Kalman filter, since the measurements of both
sensors can be used for data association and updating the confidence. Here we
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directly use the visual or thermal score as initial score sk:

sk =

{
svis

k , if visual light hypothesis
stherm

k , if thermal hypothesis .
(6.10)

In the explicit integration scheme we compute the overall detection confidence as
a weighted sum from the individual scores of complementary sensors, yielding a
single observation model where bearing and distance information is taken from the
visible light bounding box only:

sk = γ1 · svis
k + γ2 · stherm

k + γ3 · slaser
k , (6.11)

where ∑i γi = 1 and the coefficients γi are trained with cross-validation. This
additive formulation makes the model robust to sensor failures (e.g. due to partial
occlusions) and takes relative importance of different sensors into account. The first
two components of the mixture correspond to the probability of correct detection
given the score of the SVM classifier and the output probability of the thermal victim
detector for the same bounding box as defined in Sec. 6.3.

While more detailed integration of different sensor modalities is possible and we
plan to explore it in the future, we opt for this re-estimation approach since it allows
to decouple training of the visual object detector from the rest of the system, does
not require exact synchronization between different sensor streams, and allows to
use simple algorithms for integration of thermal and laser sensors.

In order to model slaser
k , we fit a log-linear model to a set of jointly observed

bounding boxes and laser-range measurements as shown in Fig. 6.2(a). slaser
k is set

to a Gaussian computed at the difference between the predicted distance from the
log-linear model and the median distance measured with the laser-range finder. The
variance is set by hand.

6.5 experiments

We evaluate the performance of our system on the tasks of people and hazmat sign
detection. In particular we quantify performance gains due to fusion of multiple
sensor modalities and evaluate both detection in single frames and performance
of the full system. For evaluation we use the dataset which consists of daylight
images, thermal images, and laser-range scanner and odometry measurements
collected while the robot was driving along the closed path of approximately 120
meters within the office building. For the sake of single-frame evaluation, we have
annotated all people appearing in the daylight images, which are larger then 40
pixels in height. The resulting dataset contains 1480 daylight images with 300
annotated victims corresponding to 10 distinct subjects. Due to difficult illumination
conditions, motion blur and large variability in viewpoints, visual people detection
in such data is very challenging. At the same time detection of people in thermal
images is complicated by the presence of multiple background heat sources, such as
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heating and illumination equipment, computers and other office devices. In order
to evaluate the robustness of our system to partial occlusions, we have collected
an additional dataset of 28 images with 115 annotated people, 69 of which are
partially occluded. We denote these datasets as “Hector Data 1” and “Hector Data
2” respectively 2. In order to demonstrate the generality of our method we do not
adapt the visual people detector to our scenario, although this would likely lead
to improved performance, and train our visual detector on the INRIA pedestrian
dataset (Dalal and Triggs, 2005), where we have re-annotated the upper bodies of
people. For the detection experiments we report the average precision (AP), which
measures the area under the precision-recall curve. This is a common comparison
measure, for which a perfect detector would achieve 100% AP. In the following we
first present the results of single-frame detection of people and hazmat signs, and
then evaluate performance of the full system. For the single frame detection the
confidence of an object hypothesis is computed according to the Eq. 6.11, while for
the full system the confidence is based on the measurements over multiple frames.

Single frame people detection. Fig. 6.3(a) and Fig. 6.3(b) show the results of
single-frame people detection of our system on the “Hector Data 1” and “Hector
Data 2” datasets in form of recall/precision curves.

On the “Hector Data 1” dataset, the detector based on visual information achieves
36.3% AP, integration of visual and laser-range measurements results in 42.9% AP,
and integration of visual and thermal measurements results in 43.0% AP. Integration
of all three sensors leads to the best performance of 45.0% AP. The missing detections
on this dataset mainly correspond to either very small or blurry instances.

Similar trends can be observed on the “Hector Data 2”, where images contain less
motion blur, but a significant number of people is partially occluded. On this dataset
we obtain 36.5% AP using the visual detector alone, which improves to 39.1% AP
by integration visual and thermal detectors. When evaluating only on the partially
occluded people we obtain 27.2% AP with the visual detector, and 31.1% AP with the
combination of visual and thermal detectors. These results show that, despite some
drop in performance, our system is still producing meaningful detection results even
in the case when people are partially occluded. The integration of thermal sensor
measurements results in consistent improvement of performance of around 4% AP.

Hazmat sign detection and classification. Fig. 6.3(e) shows a precision-recall
curve quantifying single-frame hazmat sign detection performance. On this type
of objects we obtain 60.1% AP. Due to smaller intra-class variability the results for
hazmat signs are somewhat better than results for people detection. The missing
detections are often due to motion blur and hazmat signs at small scales.

We further investigate the performance of our system on the hazmat sign classifi-
cation task, in which the goal is to distinguish between one of the nine hazmat sign
classes depicted in Fig. 6.3(f). For that purpose we take the detection windows at
maximum recall and assign them to one of the given classes or background.

2Both datasets are available at http://www.gkmm.tu-darmstadt.de/rescue
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For the classification we follow the procedure based on color histograms, de-
scribed in Sec. 6.3. We evaluate two approaches to histogram computation, one
in which a color histogram is calculated on the entire detection window, and an-
other in which the detection window is subdivided into four subregions and a
separate histogram is computed for each of them. In the latter approach the final
descriptor is formed by concatenating histograms of each subregion. We obtain
the recognition rate of 37.5% using histograms based on the entire window, and
58.3% using subregion-based histograms. The improvement is mainly due to a better
discrimination between hazmat classes with globally similar color distribution, for
example white/red hazmat signs “Combustible” and “Flamable Solid” shown on
Fig. 6.3(f). Region-based histograms provide better representation of the image in
such difficult cases, since they are also capable of capturing the spatial distribution
of colors within the detection window.

Full system performance. Finally, we evaluate the capability of our full system to
correctly detect and localize people in the environment map. The predicted location
and detection confidence of each person hypothesis is infered by temporal integration
of sensor measurements according to the filtering procedure described in Sec. 6.4. In
contrast to single frame evaluation, the detection performance is reported for the
whole series of measurements contained in the dataset. The victim is considered to
be localized correctly if its predicted location on the map is within 1 meter radius
of the ground truth annotation, obtained my manual labeling. Multiple hits on the
same ground truth annotation are only counted once, where each subsequent hit is
considered a false positive.

As can be seen in Figs. 6.3(d) and 6.3(c) merging complementary information of
heterogeneous devices (vis+laser+therm) outperforms all other settings by a large
margin. It achieves 78.7%AP (explicit sensor fusion) and 87.2% AP (implicit sensor
fusion) outperforming vis+laser by 2.9% AP and 18% AP respectively. When not
using the laser, our framework suffers from placing the victims too far from ground
truth annotations. vis+therm achieves 29.6% AP for explicit fusion and 49.7% AP for
implicit fusion. The baseline of using only visual information achieves 29.2% AP. The
implicit integration scheme achieves a higher precision for vis+thermal+laser and
vis+thermal than explicit integration while the latter fusing scheme yields higher
levels of recall. Note that in contrast to single-frame evaluation, where recall levels
are below 60%, the complete system has recall of 90% for implicit and 100% for
explicit sensor fusion schemes. This is an important result for search and rescue
applications, in which the ultimate goal is to find all of the victims.
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Figure 6.3: (a, b) Single-frame people detection performance for different combination
of sensors on “Hector Data 1” and “Hector Data 2” datasets. (c) Single-frame hazmat
sign detection performance on “Hector Data 1” dataset. (d, e) People detection
performance of the full system on the "Hector Data 1” dataset for explicit and
implicit sensor fusion schemes. (f) Collection of different hazmat signs.
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6.6 conclusion

This chapter addresses sensor fusion of heterogeneous sensors with a generic seman-
tic world model. Our framework is able to leverage complementary information
for increased reliability in complex USAR scenarios. Geometric maps are enriched
with semantic interpretation of scenes by detecting victims and possibly hazardous
areas. The importance of sensor fusion and the expressiveness of our model are
experimentally evaluated on a complex real world dataset. In future work we will
address distributed sensor fusion by using multiple robots.
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Graphical models are playing an increasingly important role in the design
and analysis of machine learning and computer vision algorithms. Key to
the success are two basic ideas that are merged coherently in the underlying

theory: On one hand, the probabilistic nature of graphical models allows to treat
the uncertainty in many computer vision tasks and let us interface the model with
the provided data. On the other hand, the graph theoretical part allows to naturally
model the structure of the domain of interest. The accompanying modularity of
graphical models is particularly interesting for computer vision because a complex
model can be decomposed into simpler parts that allow a deeper understanding of
the domain of interest.

Therefore, this dissertation has investigated and leveraged graphical models
for object detection in challenging scenes. Such scenes require computer vision
approaches to be powerful, yet flexible enough to reliably detect object instances
under, for example, partial occlusion, cluttered background and articulation. We
have addressed these challenges by developping and studying graphical models
along our main thesis that discriminatively trained, part-based models outperform
monolithic, generative approaches. To that end, we have taken advantage of the
modularity and intuitive decomposability of graphical models and have interpreted
the random variables to represent object parts or entire objects.

7.1 discussion of contributions

As we have discussed, many generative part-based models for object detection
have been proposed in the literature, but recently, discriminative variants have
gained increased attention as they have been shown to outperform generative
models on a variety of challenging datasets, especially if a considerable number
of training instances is given. The likely advantage of discriminative approaches
lies in their direct modeling of the classification task, which is easier than to learn
the joint probability of input and output variables, which is modeled by generative
models. Another advantage of discriminative CRFs over generative MRFs is that
rich and possibly overlapping feature representations can be included in the model
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without needing to worry about of the independence assumptions among the feature
descriptors.

This aspect is particularly interesting when we consider hierarchical feature
representations that may overlap severely. We have argued that these hierarchical
representations are advantageous to both, purely local and purely monolithic models,
as they allow to learn the trade-off between flexible local and powerful global object
representations. However, for high-level computer vision tasks like object detection
graphical models have frequently fallen short of simpler (non-linear) classifiers,
which is due to the inferior linear potential function used in standard CRFs. We
have addressed this issue by incorporating large margin classifiers into the model
and have demonstrated the effectiveness of such classifiers within our graphical
model in accordance with observations of related work. We have extended related
work by developing a new learning method, which simultaneously learns all model
parameters, and we demonstrated the effectiveness of such joint learning paradigms.

Object detection has been approached from two opposing directions: part-based
approaches and monolithic models have been proposed to handle the omnipresent
challenges in detection scenarios. For example, part-based approaches are able to
handle articulation but tend to degrade in the presence of cluttered background while
monolithic models are more robust in cluttered scenes but often fail to represent
articulation. While both interpretations of object representations have long been
studied separately from each other, recently, joint models unifying the advantages of
both worlds have become more and more important. Thereby, recent models have
revealed superior modeling power and increased performances especially in datasets,
for which flexible yet powerful models are required. We have studied this aspect
by taking advantage of the modular nature of graphical models: By interpreting
the random variables as object parts and developing multi-layer models, we have
demonstrated the effectiveness of graphical models to simultaneously represent
part-based and global views on objects. Our model lends itself to design complex
object models, yet is simple enough to allow interpreting it intuitively.

As we have seen, graphical models are particularly interesting since they enable
an explicit definition of pairwise dependencies among object parts and between
parts and entire objects. However, standard conditional random fields, our choice of
discriminative graphical models, are restricted to local neighborhood dependencies
that are not suitable to represent complex dependencies among object parts. We have
addressed this issue by first exploiting longer-range dependencies in a hierarchical
setting even though this still accounts only for fixed dependencies. Since we do
not know in advance, which pairwise dependencies best reflect the structure of the
domain of interest and we would like to avoid the tedious manual definition of the
graph structure, we have overcome the restriction to a fixed graphical structure in a
second step by adapting an efficient structure learning approach to our case. Exper-
imentally, we have demonstrated the effectiveness of learning arbitrary structures
compared to restricted fixed structures.

Many recent part-based models have focused on one particular object class and
therefore the parts have been defined manually. In our work, we have studied the
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applicability to a wide range of object classes, and hence the goal has been to avoid
tedious hand-labelling of thousands of object instances. We have developed a weakly
supervised model, which not only allows to learn discriminative part representations
but also to discover meaningful object parts. To that end, we have adopted a
latent interpretation of random variables and have learned the object models from
bounding box labels alone. By pairing the hidden model with discriminative learning
techniques we have shown that we are able to successfully learn and represent the
spatial layout of objects even in the presence of articulation and partial occlusion.

While single feature approaches are error-prone and often cannot represent
the versatility of object appearance, multi-feature approaches have been recently
proposed to overcome such restrictions. Going into the same direction, we have de-
veloped a principled and modular framework that allows to easily integrate different
feature descriptors; we have shown preliminary results with two complementary
feature descriptors. In accordance with related work on multi-feature approaches
we have reported consistent performance improvements by leveraging the comple-
mentarity of different feature types. A similar idea has been elaborated for search
and rescue robotics but at a different level: We have not integrated different feature
descriptors, but studied the use of complementary sensor information such as visual,
thermal and laser data. To that end, we have developed a principled framework to
integrate different sensor data with the focus on increased reliability of search and
rescue robotics.

7.2 outlook

In this dissertation, we have shown how standard CRFs can be enhanced to achieve
an increased modeling power. However, the presented approaches have some
limitations that may foster future research on graphical models for object detection.
One limitation of our models is that we infer each object instance separately and
consider image context only in a local surrounding of an object. In order to address
this issue one could infer entire images instead of only bounding boxes of objects.
In this respect, the presence and location of one object could be used to explain
the presence and location of another object. For example, people tend to sit on
horses or bicycles, and chairs and dining tables often appear next to each other.
Enhancing our approach to model entire images would allow to model such object-
object interactions. Moreover, one could infer global image statistics (e.g. indoor
vs. outdoor scenarios and urban vs. natural environments), which in turn favor the
presence or absence of certain object classes.

Another issue is the two-dimensional treatment of objects. When we infer a
bounding box of an object we assume that the object appears at the same scale
relative to the bounding box. However, certain viewpoints of objects (e.g. 45 degree
views of cars) rather follow a three-dimensional propagation scheme and object parts
appear differently under these viewpoints. This issue is not yet addressed in our
models; especially when considering entire images and object-object relations we are
in need of a three-dimensional interpretation. In this case the object-object relations
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are no longer two-dimensional making a three-dimensional understanding of the
entire scene necessary.

We have combined two different learning paradigms in our model, namely the
max margin objective of SVMs and maximum likelihood in case of CRFs. This might
be a more technical limitation since intuitively one consistent and unique learning
objective is desirable. In order to address this issue one could adopt the max margin
formalism of random fields (Taskar et al., 2003) to our model.

A promising idea that we have not considered yet is sharing features and parts
across categories. Many object categories have certain parts in common, for example,
quadrupeds stand on four legs, and cars, busses, bicycles and motorbikes have
wheels. These shared parts have similar appearances but the object classes differ
largely by the composition of object parts or the presence or absence of some
additional parts that are unique to each class. This observation motivates to jointly
learn and share common object parts across classes and distinguish the different
classes through different constellations of these parts.
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