
Security & Scalability of
Content-Centric Networking
Sicherheit und Skalierbarkeit von Content-Centric Networking
Master-Thesis von Tobias Lauinger aus Schwetzingen
September 2010

Fachbereich Informatik
Peer-to-Peer Netzwerke

Security & Scalability of Content-Centric Networking
Sicherheit und Skalierbarkeit von Content-Centric Networking
Sécurité et extensibilité de Content-Centric Networking

Master’s thesis by Tobias Lauinger from Schwetzingen, Germany

Submitted in September 2010 to TU Darmstadt and Eurécom/Télécom ParisTech

Filière (Eurécom): Sécurité des systèmes de communication
Studiengang (TU Darmstadt): Master of Science Informatik

Confidentiality: No

Advisors:
Prof. Ernst Biersack (Eurécom)
Nikolaos Laoutaris (Telefónica)
Pablo Rodriguez (Telefónica)
Prof. Thorsten Strufe (TU Darmstadt)

Work done during an internship at Telefónica Investigación y Desarrollo, Barcelona, Spain. Thesis
jointly supervised by Technische Universität Darmstadt, Darmstadt, Germany and Eurécom, Sophia-
Antipolis, France as part of a Double Master agreement between TU Darmstadt and Télécom Paris-
Tech, Paris, France.

Please cite this document as:
Tobias Lauinger: “Security & Scalability of Content-Centric Networking,” Master’s Thesis, TU Darm-
stadt, Darmstadt, Germany and Eurécom, Sophia-Antipolis, France, September 2010.

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 19. September 2010

(T. Lauinger)

i

ii Erklärung zur Master-Thesis

Abstract
By suggesting radical changes to the current Internet, approaches to clean-slate architectures run the
risk of introducing new opportunities for attacks. These attacks can range from new forms of denial-of-
service to attacks against other users’ privacy. In this thesis, we analyse the architecture proposed by
Content-Centric Networking from a security perspective.

One security-critical feature of Content-Centric Networking is the introduction of general-purpose
caches that are shared by a small number of users. We show how attackers can leverage these caches
to monitor what content its users are retrieving. More generally, we argue that there is a tradeoff
between network efficiency and user privacy. Countermeasures against cache-based privacy attacks need
to carefully explore this tradeoff.

Résumé

En changeant Internet d’une manière radicale, une refonte de son architecture court le risque d’introduire
de nouvelles possibilités d’attaques. Entre autres, ces attaques peuvent être des attaques par déni de
service ou des atteintes a la vie privée des utilisateurs. Cette thèse analyse l’architecture de Content-Centric
Networking sous l’angle de la sécurité.

Une particularité critique vis-à-vis de la sécurité de Content-Centric Networking est l’introduction de
tampons universels qui sont partagés par de petits groupes d’utilisateurs. Des attaquants peuvent exploiter
ces tampons pour surveiller les contenus auxquels les utilisateurs accèdent. Les mesures contre ce type
d’attaques passent par un équilibre entre l’efficacité du réseau et la vie privée des utilisateurs.

Zusammenfassung

Wegen der grundlegenden Veränderung der Architektur laufen Ansätze zur kompletten Neuentwicklung
des Internet Gefahr, neue Arten von Angriffen zu ermöglichen. Solche Angriffe können von Denial-
of-Service bis zu Angriffen auf die Privatsphäre der Nutzer reichen. Diese Masterarbeit analysiert die
Architektur von Content-Centric Networking unter dem Aspekt der Netzwerksicherheit.

Eine sicherheitskritische Eigenschaft von Content-Centric Networking ist die Einführung von Allzweck-
caches für kleine Gruppen von Benutzern. Angreifer können diese Zwischenspeicher ausnutzen um zu
überwachen, auf welche Inhalte die Benutzer zugreifen. Daraus folgt, dass die Effizienz des Netzwerks
und die Privatheit der Nutzer zueinander in einer Austauschbeziehung stehen. Dementsprechend müssen
Maßnahmen gegen diesen Angriffstyp beide Faktoren gegeneinander abwägen.

iii

iv 0 Abstract

Contents

Abstract iii

List of Figures vii

List of Tables ix

1 Introduction 1

2 Content-Centric Networking 3
2.1 State-of-the-Art of CCN . 3
2.2 Research Agenda for CCN . 4

2.2.1 Scalability Research Topics . 4
2.2.2 Security-Related Research Topics . 8

2.3 Conclusion . 11

3 Security of CCN 13
3.1 System Model . 13
3.2 Threat Analysis . 13

3.2.1 Architectural Risks & Comparison to TCP/IP . 14
3.2.2 Attack Tree for Denial-of-Service Attacks . 15

3.3 Known Attacks . 16
3.3.1 DoS by Forcing Expensive Computations . 16
3.3.2 DoS Against Content Sources . 16
3.3.3 DoS with Special Bits . 17

3.4 New Attacks . 17
3.4.1 Keeping Unwanted Data Available in the Caches . 17
3.4.2 DoS by Decreasing the Efficiency of Caching . 18
3.4.3 DoS by Filling Available Memory of a Router . 19
3.4.4 Cache Snooping: List Cache Contents, Monitor Object Access, Copy Conversations 19

3.5 Conclusion . 20

4 Cache Snooping 23
4.1 Related Work . 24
4.2 System Model . 26
4.3 Attack Goals . 27
4.4 Topology Intelligence . 28

4.4.1 Latency Measurement . 28
4.4.2 Cache Lifetime Measurement . 29

4.5 Attack I: List Cache Contents . 30
4.6 Attack II: Probe Specific Name . 31

4.6.1 Insertion & Eviction Time Detection . 31
4.6.2 Infer Access Rate . 32

4.7 Attack III: Clone Conversation . 33
4.8 Countermeasures . 34

v

4.9 Conclusion . 36

5 Evaluation 37
5.1 CCN Simulator . 37
5.2 Scenario . 38
5.3 Evaluation Results . 39
5.4 Attack Traffic . 40
5.5 Conclusion & Future Work . 41

6 Conclusion 43

Glossary 45

Bibliography 47

vi Contents

List of Figures
3.1 Attack tree for denial-of-service attacks in CCN. 21

4.1 CCN message exchange in different request modes. 26
4.2 Measuring the latency of the first CCN cache. 28
4.3 Estimating the characteristic time of a cache. 30
4.4 Parallel probing involving three chunks. 32
4.5 Measuring the request rate in a LRU cache. 33

5.1 The popularity and length of videos in the Youtube Science & Technology Category. 38
5.2 CCDF of the number of cache hits per object evicted from the cache. 39
5.3 CDF of the characteristic time of the cache. 39
5.4 Progress of the measurement algorithm for the characteristic time. 40

vii

viii List of Figures

List of Tables
3.1 Types of attackers. 14

ix

1 Introduction
When the Internet was originally built, the main concern of its designers was to connect and share
expensive resources such as mainframe computers [1]. Since then, the Internet has evolved from an
academic research network to a global infrastructure that is used for business and entertainment. In terms
of bytes, the major use of the Internet today is content retrieval [2, 3]. Although truly end-to-end protocols
such as VoIP, SSH and chat only make up for a tiny fraction of the traffic, the Internet’s mechanisms
and primitives are still optimised for addressing end systems at fixed locations instead of catering for
location-independent content.

The scientific world is divided over how to handle this situation [4]: One side defends an evolutionary
approach and argues that the current Internet should be improved in an incremental and backwards-
compatible way. The other side favours a clean-slate approach and advocates a hard switch to a
next-generation, unconstrained Internet architecture.

Among the clean-slate approaches, Content-Centric Networking (CCN) [5] is one of the most recent
and most vividly discussed proposals. CCN proposes to focus the network’s main mechanisms on content
names instead of content locations, to follow a receiver-based communication model, and to introduce
generalised caching in potentially every network device. Section 2 of this thesis gives an introduction
to CCN, reviews its current state of research, and identifies future research directions related to CCN’s
scalability and security.

Changing the architecture of the Internet involves the risk of introducing new opportunities for attacks.
For instance, CCN routers need to keep per-communication state that can be abused for denial-of-service
attacks. Caches contain potentially sensitive communication traces that can be extracted by attackers,
thereby endangering users’ privacy. In Section 3, we investigate the architectural features of CCN with
respect to their effect on network security. We illustrate our findings with attacks that exploit these novel
characteristics.

In the main part of this thesis, we focus on how attackers can exploit network-level caches that are
located close to the users. CCN breaks down any type of communication into independent, named
content objects that can be cached. Even though these content objects might be encrypted, they still leak
information through side-channels such as the content name, timing, and their size. Because only few
users share such a cache, the amount of personal information revealed by communication traces can be
very high. To substantiate this threat, we explain in Section 4 how attackers can list the contents of a
cache, monitor requests for a particular content object, and duplicate the conversation that two clients
are having via a cache. More generally, we argue that countermeasures against this privacy threat need
to carefully trade off communication privacy against network performance. While we consider these
attacks in the context of CCN, we believe that this problem applies to all network architectures in which
general-purpose caches are shared by small groups of users.

The feasibility of these cache-based attacks depends on how much attack traffic is required to carry
them out, and on how precise the conclusions are that the attacker can draw. In Section 5, we evaluate
the attack in a scenario with one hundred users who are connected to the same DSLAM, and who are
concurrently downloading and watching Youtube-like videos. We find that the attack traffic required to
monitor requests for one video is so low that the attack could be extended to monitoring a large set of
videos at the same time.

The overall goal of this work is to identify how basic building blocks and concepts impact security and
scalability of future Internet architectures, using CCN as a case study. Our hope is that the lessons learned
in this work will be useful to improve the security of current and future architectural proposals. To this
end, the contributions of this thesis can be summarised as follows:

1

• We identify several promising research problems in the context of CCN’s security and scalability.

• We analyse the impact of architectural features and design decisions on network security by
describing a range of attacks that exploit these features. In particular, we argue that more powerful
routers (in terms of per-communication state, computation, and cache) increase the attack surface
of the network, and we show how caches can be misused as storage, for denial-of-service and for
privacy-related attacks.

• For the privacy attacks, we develop algorithms that exploit the timing side channel to continuously
monitor requests for objects, even if the exact characteristics of the cache and its environment are
not previously known, and that require attack traffic of only 37.3 bit/s in our Youtube/DSLAM
scenario.

2 1 Introduction

2 Content-Centric Networking
This chapter gives an overview of the state of research in Content-Centric Networking (CCN). We first
review the available literature on CCN before we discuss problems that have not yet been addressed in
current research.

2.1 State-of-the-Art of CCN

Content-Centric Networking [5] is a new communication paradigm, together with a new network
architecture, that has been designed to complement, and ultimately to replace the current Internet. More
specifically, compared to the current TCP/IP architecture and communication model, CCN differs in the
following ways:

• Receiver-based communication model: Receivers pull information by sending an Interest message. At
most one data message is delivered in response to an Interest. Communication is unreliable and
soft-state: The applications on the receiver side have to re-express interest for content if previous
Interests have timed out.

• Hierarchical content naming scheme: CCN does not address hosts, but location-independent content
objects. Content is given arbitrary, user-defined names organised in a hierarchy similar to URLs.
Interests are matched with content, or with routes to content, by doing longest-prefix matching.
Because of these properties, receivers can express interest in names that do not yet exist. These
Interests will be routed to a content source capable of generating the corresponding content.

• Cache-based architecture: Every participant in the system, such as end nodes and routers, may cache
content objects and use them to serve future requests.

• Content security: Every content message exchanged in CCN is digitally signed. In this way, the
content publisher certifies the binding between the content and its name to ensure integrity and
authenticity. Encryption can be used if confidentiality is required.

• Stateful, more powerful routers: Content routers in CCN need to keep per-interest state to avoid
routing loops, and to send back data responses on the same path that the corresponding Interests
took. Routers can verify the content objects’ signatures to avoid content spoofing attacks. CCN also
supports a limited query language for Interests that routers must implement.

When a CCN node receives an Interest, it first attempts to satisfy it with content from its local content
store (cache). Typically, such a cache implements a Least Recently Used (LRU) or Least Frequently Used
(LFU) replacement policy.

If no suitable content can be found, the Interest will be forwarded. The Forward Interest Base (FIB) is
used to find the outgoing interface for forwarding, similar to a routing table. The FIB may contain routes
to applications running on the same host, or to physical interfaces. CCN supports multiple connectivity
with parallel routes to the same content prefixes.

Every outgoing Interest is added to the Pending Interest Table (PIT), to know on which interface to
send back incoming replies, and to avoid forwarding identical Interests several times. This aggregation of
Interests is used for efficiency, and to tolerate loops in the CCN topology.

A strategy layer is used to adapt CCN’s parameters and behaviour to different transmission media or
paradigms, such as fixed, wireless, or delay-tolerant networking.

3

The CCNx project [6], sponsored by PARC, develops an open-source implementation of CCN. This early
prototype implements the basic functionality of a CCN node, including FIB, PIT, a main memory cache,
and forwarding using static routes. Content signing and signature verification, key management, optional
encryption and decryption are also supported. The prototype also contains a persistent, disk-based content
repository that can be used to serve files, and some example programs such as an implementation of Voice
over CCN [7], a chat application, and several command line tools for data transfer.

2.2 Research Agenda for CCN

At the current state of research, the papers about CCN present general architectural principles, and the
CCNx prototype defines APIs and local communication. Applications that would benefit heavily from CCN,
large-scale evaluation of CCN and routing proposals are among the issues that are left for future work.

This section summarises open CCN research problems by discussing ideas proposed in the literature
and new ideas that need further investigation. Many of these issues are interrelated. First, we discuss
problems that are related to scaling CCN to widespread use; then we focus on security-related research
issues.

2.2.1 Scalability Research Topics

CCN’s routers need to keep state for every Interest that they forward, CCN nodes may forward their
Interests to several nodes at once, and routing happens on content names instead of location. All these
differences to TCP/IP might have an influence on CCN’s scalability and prompt for research. This section
discusses the research problems of suitable applications, routing, and router design as well as some
protocol details of CCN.

Applications

Deployment of CCN will require significant investments into equipment and education of networking
staff and programmers. In addition to bandwidth savings, CCN is expected to enable a new range of
applications that make use of CCN’s flexible naming/addressing & discovery. Future research should
identify these applications.

As to existing applications, it is assumed that content-oriented applications can work on top of and bene-
fit from CCN. The Voice-over-CCN prototype [7] focusses on demonstrating that traditional, conversation-
oriented protocols can also be ported to CCN. The assumption is that both users involved in a conversation
are reachable under a globally unique prefix, such as /domain/user. Assume that Alice wants to call Bob.
Then the following steps are carried out to establish a call:

1. A SIP Invite message is used to request a call. In VoCCN, Alice encodes it into the name
she requests in an Interest to call Bob. The name can be encrypted for confidentiality:
/domain/sip/bob/encoded-invite-message.

2. Bob sends his SIP response back in a data message with the requested name.

3. The RTP voice data stream is encapsulated in CCN data messages. Alice sends In-
terests to request voice data from Bob, and vice versa. Interests follow the scheme
/domain/user/call-id/rtp/sequence-number.

While this scheme shows that end-to-end conversations are feasible, it also shows that pushing data is
not an easy task in CCN: If data is pushed to a destination by encoding it into the name, the destination
should not simply send a data message as a response to this Interest, because the data message would send

4 2 Content-Centric Networking

the whole data back as part of its name. Therefore, push-scenarios require both parties to be reachable
under a globally unique name1.

A second issue about such end-to-end protocols is that the messages exchanged between the participants
will be cached, although it is unlikely that there will be any cache hit in the future. In this way, those
messages use cache space that could be used better for other, reusable data. This raises the question if
applications such as voice or remote login should be using CCN.

Versioning is another issue in this context. Assume a newspaper with its front page being reachable
under /newspaper. Obviously, the front page will change from time to time. CCN allows content names
to carry special version markers. However, clients cannot be assumed to know in advance what the latest
version number is. Therefore, there needs to be an algorithm to find out the latest version number in
presence of older copies that might still be cached.

On the CCNx mailing list [8], an algorithm was proposed that we list in a slightly modified version:

1. Request the content without version marker, or with the latest version that the client knows of.

2. Extract the version number from the response that has been received, increase it by one, and request
the same content again.

3. Iterate until no content can be found: The highest available version number has been determined.

This solution seems unsatisfactory because it might be inefficient, particularly if the algorithm has to
be run frequently. Furthermore, it is challenging to implement this algorithm in a way that provides a
guarantee that the latest version has indeed been found: If the version number requested by the client is
too high, the content source has to reply with a “content not available” message that has a very short
lifetime so that replay attacks are unfeasible. In absence of this reply, it is not possible for the client to
distinguish this case from a simple timeout.

Broadcast or multicast protocols, such as those used for IPTV, need more investigation about how they
could be implemented over CCN. By default, a CCN node may accept a data response only if a previous
Interest has been sent. A CCN node connected to a broadcast link could overhear Interests sent by other
nodes and suppress its own Interest to reduce the traffic on the link. However, this still means that an
Interest must be sent for every data message transmitted to the multicast group, which increases the
overhead compared to IP-based protocols.

Architecture

An important question relating to content routing, and to caching in general, is at which layer this
functionality is best implemented. Running everything over CCN, i. e. replacing IP, has the advantage of
providing a generalised caching infrastructure. On the other hand, some applications might not benefit
from caching, and end-to-end communication, as discussed above, might be less efficient than with IP.

Alternatively, CCN could run as an overlay on top of IP, with only selected applications making use of
CCN. This would raise the question of how much more efficient CCN would be as compared to traditional
content distribution networks, and redundancy elimination techniques [9, 10].

Routing

In their CoNext paper [5], Jacobson et al. show as an example how CCN can be mapped on existing routing
protocols: Intra-domain routing with link-state protocols uses the prefixes of local resources (such as
persistent content repositories) and neighbour adjacencies to build a topology. For inter-domain routing,

1 Pushing data in Interests that are never followed by a data response might confuse attack detection heuristics as the one
described in Section 3.3.2

2.2 Research Agenda for CCN 5

the authors suggest a scheme to establish tunnels between CCN-capable domains in an incremental
deployment scenario of CCN. The gateway of one domain would look up the first component of the
requested CCN name as a DNS name. The result would be the IP address of a content router in the other
domain, with which an UDP tunnel can be established. For a full CCN deployment, the authors propose to
integrate CCN prefixes into BGP announcements. However, it is not clear how big routing tables would
grow, and how much “content source mobility” would be supported by this scheme.

The routing approach summarised above is quite conservative in that it closely matches routing on the
current Internet. CCN, however, is more flexible because it tolerates loops, and it supports multi-path
routing, forwarding at most one data response back to the requestor. Many different routing protocols for
CCN are conceivable, and their choice depends mainly on what the system should be capable of: Support
content source mobility, enable disconnected operation, or look for cached content everywhere in the
system as opposed to only following the (default) path to the content source.

One approach to routing could argue that popular content is likely to be found in nearby router caches,
thus flooding-like routing protocols would be appropriate. However, in this approach it would be difficult
to locate unpopular content, and to locate content sources for initial seeding.

More traditional approaches could oppose that main-memory-based router caches are likely to be
relatively small compared to the total content size, thus they would not be a reliable source for content,
but rather a dynamic and possibly short-term storage. Therefore, it would require less effort to find
content at a relatively stable location, such as the original content producer.

To save transit bandwidth, ISPs could build large server farms with a lot of disk storage to serve cached
content according to their caching policies. Because this would happen entirely inside their domain, ISPs
could configure this system as they wish and thereby force their customers to use it. However, disk-based
caches might induce a higher latency as compared to accessing the content directly at a more distant
content source that has the data in main memory.

CDNs are unlikely to become obsolete because content providers wishing to reduce latency may need
to deploy their own application logic close to their customers. CCN’s caching cannot provide custom
application logic and dynamic content creation. However, CCN’s content name routing could be configured
to accommodate CDNs much more transparently than the current Internet.

Caching

Caches are a central element of CCN’s architecture. CCN might not only carry static content that can be
shared between users, but also dynamic, individual content that is unlikely (or impossible) to be shared.
Given these circumstances, we identified the following research questions with respect to caching:

• The topology of the caches, i. e. do caches cooperate, and how are they organised (hierarchy, mesh).

• The size of each cache as a function of the line speed, or the position in the hierarchy.

• The replacement policy used by the cache.

• How to assess the utility of data in the cache, i.e., what to cache and what not. For instance, dynamic
content might not be cached.

• How the caches should interact with the routing algorithm: What content is announced to external
parties, and shall caches cooperate beyond domains/ISPs?

• CCN splits large files into chunks—should caches be aware of this when making insertion and
eviction decisions?

6 2 Content-Centric Networking

Network and Transport Protocol Issues

CCN’s primitives work at the network level to provide unreliable content routing. Research is required to
define policies for Interest forwarding that enable priorities for certain kinds of traffic, if desired, and that
ensure fair sharing of network resources between all participants.

To date, CCN lacks a transport protocol that ensures reliability and fairness. Some of the CCNx tools
pipeline Interests to achieve a higher throughput, similar to TCP, but a protocol still needs to be formally
defined.

Interests time out if no reply has been received in a given time window. It is not clear how these
timeouts are to be chosen, and which entities have to re-send an Interest that timed out: If intermediate
routers retry, the protocol might be more efficient than if the original requestor has to reissue the Interest.
However, this would also make it more difficult for the original requestor to set a timeout for the whole
process.

Router Design

CCN requires more powerful routers than IP: CCN routers need to verify signatures, process Interests
with complex query features, and keep state for every pending Interest. Routers might also have to run
algorithms to detect and prevent denial-of-service attacks. And most importantly, CCN routers have to
work at speeds comparable to today’s IP routers.

To date, it is not sure how such routers can be built, and how much they would cost. An intermediate
question towards solving this goal would be to determine the processing power and memory requirements
for CCN routers as a function of the line speed. In particular, how do Interest aggregation and cache
hits affect the amount of memory needed for the PIT? This question is of particular concern because
state in CCN routers is proportional to the number of Interests forwarded. In addition to potentially
impeding scalability, state in routers also poses security-related challenges because it could be abused for
denial-of-service attacks, as we will discuss in Section 3.4.3.

Furthermore, CCN contains cryptographic algorithms that might have to be replaced if compromised or
approaching the end of their lifetime. This raises the question of how to implement them, in hardware or
in software [11].

Depending on the targeted size of caches, CCN routers might need considerable amounts of fast
random-access memory. It might even be necessary to back main memory with a large, but slower disk.
This raises the question of how disks can be integrated into the architecture without increasing the total
request latency (compared to fetching the data from the content source that is distant, but has the data
available in main memory).

Energy Efficiency

In [12], Lee, Rimac and Hilt compare the energy consumption of content distribution networks, nano
data centres and CCN architectures. Their main finding is that a CCN architecture reduces the number of
hops, thus reduces the energy consumption. However, the authors use a simplified system model in which
routers do not consume any additional power due to increased computation requirements. Furthermore,
the authors assume caches of considerable size, and assume that requested data is always cached.

We believe that these assumptions are oversimplified. CCN routers need additional computation power
to verify signatures and to process special query features in Interests. Furthermore, caches might be quite
limited in size if implemented with main memory to avoid the latency increase imposed by harddisk-based
caches. Different routing protocols might also have an influence on energy efficiency. We believe that all
these reasons motivate a more differentiated investigation into CCN’s energy efficiency.

2.2 Research Agenda for CCN 7

Statistics Infrastructure

Content providers are interested in statistics about how their content is being accessed, and by which
user population. This information is essential to determine pricing of advertisements, and to optimise
the service delivered to users. Because CCN does not provide endpoint identifiers in Interests, because
multiple Interests can be aggregated, and because content can be served from caches instead of the
content source, it is very difficult for content providers to establish such statistics.

A solution could consist in using a digital rights management system for the content, which would
require users to interact with the content source to retrieve a decryption key that permits to decrypt the
requested content. The content, in turn, could be served from caches. We elaborate on this below in
Section 2.2.2.

If the content source needs geographical information about its users, it could require users to register
and to provide this information before accessing content. However, the content provider would need
to verify this data through a secondary channel. Especially for geographically restricted content, such
as sports events, this procedure might not be deemed secure or efficient enough. In this case, a CCN
implementation could force users to sign their Interests with a key that contains geographical information.
The correctness of this information could be certified by the users’ ISP. This approach is discussed below
in Section 2.2.2.

2.2.2 Security-Related Research Topics

The change of architecture and communication paradigm imposed by CCN also changes many aspects
about network security. This section focuses on unsolved problems from a high-level systems and design
perspective, whereas attacks will be discussed in greater detail in Chapter 3.

Use of Cryptography

The extensive use of cryptographic techniques is at the heart of CCN: Because content is not bound to a
location, it must be authenticated and integrity-protected to avoid basic spoofing attacks. Furthermore,
access control in CCN is provided by encryption. That is, an attacker can rather easily obtain an encrypted
version of the content that he is interested in. CCN’s security is based on the fact that the attacker cannot
make any conclusions about the plaintext of the content, and that he cannot exploit side channels.

However, even encrypted data tends to leak some information, such as the size of the content, the
time when it was requested, and the name of the content. We will discuss these issues in more detail in
Chapter 4. Another issue with the use of cryptography stems from the fact that cryptographic algorithms
have a limited lifetime, which is generally assumed to be around 30 years. After that time, available
computing power will have increased to such an extent that brute force attacks on encrypted content
become practical. This means that an attacker with access to encrypted data that will still be valuable 30
years after its creation might simply keep the data for later analysis. We will discuss in Section 3.4.4 how
attackers can clone the conversations of other participants.

Furthermore, once content has been released, it is unclear how it could be revoked: Copies of that
content can be cached in many places in the network. To prevent more users from accessing revoked
content, a revocation list could be published and enforced by routers. Alternatively, content could be
released with relatively short lifetimes, after which routers would not serve cached copies any more.
However, this would mean a higher load on the content publisher because it would have to serve copies
of its content more frequently.

The issue of revocation is particularly important in the context of keys that are used for content
signatures. For instance, if a key is found to have been compromised, the key should be marked as invalid.
This information has to be spread to all consumers of the compromised data, and maybe even to all
routers, in a timely manner.

8 2 Content-Centric Networking

Finally, use of cryptography requires the exchange of key material, and particularly the use of a trust
model (some suggestions can be found in [5, 13]). Policies need to be defined to prevent multiple parties
from claiming the same name space.

Denial of Service

A recurring topic in networking security research have been mechanisms to make the Internet more
denial-of-service proof. Because attackers, especially if they control a large number of machines, can
simply craft IP packets and send them to the victim, no matter their location, this type of attack is relatively
easy to carry out.

CCN has some properties that make denial-of-service attacks more difficult. Firstly, data is not routed; it
always follows previously sent Interests, and on each interface, at most one data packet will be accepted
for a previous Interest. Thus, if an attacker wants to drown a distant victim in data messages, he would
have to make the victim generate Interests for an amount of data that is larger than what the victim can
handle, which is a quite unrealistic scenario.

Interests, on the other hand, are routed. If the attacker chooses the prefix of the victim content source,
and a different suffix for every Interest, responses from caches will be avoided and the resulting Interests
will be routed to the victim. However, according to [5], a second property of CCN makes it possible to
develop countermeasures: Data messages travel on the same path as Interests. Thus, routers can observe
the fraction of Interests per prefix that never resulted in transmission of a data reply. If this fraction is too
high, an attack could be detected and the Interest could be dropped.

This algorithm would have to be deployed in intermediate routers. An efficient implementation of
this algorithm and optimal attack detection thresholds have still to be researched. Knowing how the
detection algorithms work, an attacker could simply choose an attack rate that lies below the threshold
to avoid detection, but that is still high enough to achieve the attacker’s goals. This stems from the fact
that intermediate routers have no knowledge about application semantics: Only the final destination can
define whether it is under attack. To this end, Jacobson et al. suggest using a mechanism in which “the
attacked domain can ask downstream routers to throttle the number of Interests they forward by name
prefix”.

A target for denial-of-service attacks that has not yet been discussed are the intermediate routers.
Because they offer more powerful functionality than IP routers, and because they have to keep per-Interest
state, CCN routers have an increased attack surface and might become victims of denial-of-service attacks
themselves. We discuss such attacks in Chapter 3.

Privacy

CCN messages are self-contained, named objects. As such, they carry more semantic information than
an IP packet taken from an opaque TCP stream. Furthermore, these objects are (temporarily) kept in
caches without any access restriction, which means that communication traces linger around all over the
network.

Attackers can determine if a given data object is cached at a node by measuring the response time when
requesting that item. Furthermore, even encrypted data leaks information through meta-data such as its
name or the publisher’s public key, and through side channels such as the content length, and the request
time. This type of attack, called cache snooping, will be discussed in Chapter 4, where we also outline
countermeasures.

Another threat to user privacy are malicious ISPs. ISPs wanting to profile their customers can easily do
so by monitoring the access routers and by logging which customer requests which names. It is not clear
how this could technically be prevented without disabling caching: Assume a hypothetical cryptographic
or obfuscation construct that can map a clear-text name component c to n obfuscated names o1, ..., on.

2.2 Research Agenda for CCN 9

Let this construct be one-way, that is, these n names can be inferred from the clear-text name, but the
opposite is not true. If a malicious ISP sees such a name, it cannot tell directly which real-world content
source this name belongs to, thus one might claim that some level of “privacy” has been achieved.

In order to allow forwarding of such obfuscated Interests, and to allow cache hits, there must be a
function that can detect a match between two obfuscated names for the same object, oi and o j. However,
if such a function exists, a malicious ISP can build a dictionary of obfuscated names for the content
sources of which the use is to be monitored, and match incoming Interests with the dictionary. Even
worse, because a router always sees the data response to an Interest, the malicious ISP could build a
dictionary of content hashes to fingerprint the data payload. Hence, the privacy gain would be minimal.
On the other hand, if such a function does not exist, i. e. if names and payload are encrypted individually
for every user, the privacy gain would be maximal. Yet, this would imply that caching is operational on a
per-user basis only, which considerably limits its effectiveness.

Given these thoughts, the research question is if a mechanism can be found that makes it impractical
for a malicious ISP to build a dictionary of obfuscated names, but that still allows (prefix) matching for
forwarding and caching. Furthermore, one could investigate whether a tradeoff can be found between
user privacy and network efficiency. More generally, research is needed into what privacy needs users
have: Do they trust their ISP or do they need technically enforced guarantees? Do they care less about
access to popular content being profiled, and more about unpopular (but more personal) content?

Finally, a point could be made that logging of user access to content should not be prevented at all, but
should be made mandatory for law enforcement purposes, as we discuss below.

Accountability Infrastructure

Under TCP/IP, if a host is under attack, it has some approximate knowledge about where the attack comes
from. Sender IP addresses can often be faked, but if the attacker needs to receive answer packets, the
address must have at least some truth to it.

CCN, in contrast, does not have endpoint identifiers; only the previous hop is known when a message is
received. Data responses follow back the path left by the Interests in the PITs, but this trail disappears as
soon as a data message has been forwarded. Consequently, CCN content sources that are under attack
cannot trace back where the attack came from, and they cannot selectively block that origin. They could
disable the link on which the troublesome packet was received, but this would potentially disconnect a
large number of innocent users.

The reason for this problem is that CCN abolishes endpoint identifiers and true end-to-end connection
semantics, but emulates something similar: Individual services, such as dynamically generated content,
still require access to a specific, physical machine. While users (and attackers) can route Interests to this
machine, it is not possible for the machine to identify the other end of the “connection” any more. The
new communication paradigm is more flexible in cases of intermittent connectivity or mobility of the
requestor, but this comes at the cost of the new problems discussed above.

Law enforcement agencies could monitor access routers or DSLAMs, because at this location the
previous hop leads to the customer. However, it might not be an easy task to correlate an attack observed
at the victim site with information gathered on the network edge. Especially, this only works if all access
providers worldwide are monitored. The other way around, if a malicious Interest is observed at an access
router, without a complaint from a “victim”, it might be difficult to proof where the Interest was routed
because the state of the network (routing tables, cache contents) can quickly change.

A potential solution would be to force users to digitally sign their Interests, or to automatically sign
Interests at the access router. The signing key could be provided by the ISP, and could be changed on
a regular basis, such as every day, to provide privacy comparable to today’s situation with dynamic IP
addresses. The signing keys could contain information such as contact information of the ISP, and the
name of the region or country. This solution would allow content sources to selectively block a specific,
but still anonymous user, or to contact the user’s ISP in case of severe problems to reveal the user’s identity

10 2 Content-Centric Networking

and commence prosecution. However, aggregation of signed Interests in routers is much more difficult, if
possible at all.

Protecting Content

Content providers are interested in making their content available under controlled circumstances.
Sponsored content, for instance, shall be displayed only on their own page with advertisements, and third
parties shall be prevented from deep-linking such content, i. e. from using it on other pages without the
original authors’ consent. Providers of subscription content need to make sure that the content is viewed
only during the subscription period, and only on authorised devices with authorised software.

On today’s WWW, content providers serve the content from a machine that they control, thus they can
enforce a set of conditions before they admit a user’s request for content. For instance, for free content
they can check that the user is requesting the content from a page hosted on the same server, or that the
user is logged on.

Subscription content, such as on iTunes, can be reproduced only with authorised software that enforces
the access restrictions imposed by the content provider. After payment, the software downloads the
content, which is encrypted with a single master key. The software also obtains the master key to decrypt
the content, but this key is hidden from the user. Using a single encryption key per file instead of
individually encrypting the file per user reduces the computational load of the servers, and facilitates the
use of CDNs.

The security of this scheme is based on the assumption that only the authorised software is used. If
attackers manage to understand the encryption scheme and extract the master decryption key, they can
circumvent any restrictions imposed on the content. If such cases become public, content providers usually
change their protection mechanisms and force all legitimate users to upgrade to the newest version of
their client software by refusing connections from earlier versions.

With CCN, cached content is retrievable without restrictions. For subscription content, this means that
once a protection scheme has been compromised, all content that is cached somewhere is not protected
any more. Thus, it is important for CCN to have a solid revocation scheme for cached content as discussed
in the beginning of this section2. Furthermore, even the semi-free (sponsored) content needs to be
protected with such a digital rights management system to enforce the relatively loose rules on the
playback environment. CCN’s caching means less data traffic for content providers, but at the same time
they lose direct communication with the users, thus the providers also lose some degree of control.

2.3 Conclusion

The CCN papers define the principles of a new networking architecture and the CCNx project develops a
prototype implementation of CCN. Many details need to be investigated:

• Which applications should use CCN and at which layer should CCN operate;

• what capabilities should CCN’s routing support;

• how should the caching infrastructure be organised;

• how can scalable CCN routers be built, and

• how can content providers control usage of their content and gain statistics about its use?

• CCN makes denial-of-service attacks more difficult, but at the same time the enhanced architecture
provides new attack opportunities.

2 The alternative of individually encrypting the content for each user would remove all benefit from caching and would be
more costly than the solutions used today.

2.3 Conclusion 11

• The widespread use of caches can be exploited by attackers to extract privacy-relevant information
about other users.

In the following chapter, we continue our study of CCN with a systematic security analysis.

12 2 Content-Centric Networking

3 Security of CCN
In this chapter, we undertake a systematic security analysis of CCN. We begin by discussing a simplified
system model in Section 3.1, and continue with a threat analysis related to this model (Section 3.2).
Section 3.3 reviews denial-of-service attacks that have already been reported in the CCN literature,
whereas Section 3.4 introduces new attacks with a focus on denial-of-service and cache-related attacks.

3.1 System Model

Our system model encompasses the main participants and components in a potential CCN deployment.
Because there is no fully functional and deployed implementation of CCN yet, we focus our analysis
on architectural and conceptional weaknesses in the novel aspects of CCN’s design. Implementation
weaknesses, such as buffer overflows, incomplete verification of parameters, or flawed use of cryptography,
are considered out of scope. The goal of this analysis is to predict system-inherent challenges with respect
to securing CCN, so that these issues can be resolved before a large-scale deployment is started.

Participants:

• End users request content by generating Interests.

• Content sources produce content by generating data in response to Interests.

• ISPs connect end users and sources by forwarding Interests and data.

Components:

• End user equipment might include home routers and a set of personal computers; for simplicity, we
assume that every customer of the ISP corresponds to one single device.

• Routers forward Interests and forward back the corresponding data. They are generally assumed
to have caches built in. These caches can differ in size and implementation technology. In the
following, we assume that caches are implemented in fast random access memory. Consequently,
their size is in the order of tens of gigabytes, or less.

• Content sources, or content generators, have available or generate upon request the content that
is solicited in incoming Interests. While in reality large server farms and even geographically
distributed CDNs might be used to serve content, we simplify our model by assuming that one single
machine is serving all requests.

• Links connect all the components listed above. Real-world links differ in technology and speed, but
we do not distinguish this in our model.

We envision a CCN deployment as an open system similar to the current Internet, where participants do
not necessarily fully trust each other.

3.2 Threat Analysis

Any of the participants listed above can become an attacker. We use the term attacker in its broadest
sense, i.e., we would consider an ISP to be an attacker if they spy on their users or otherwise reduce users’

13

privacy. Consequently, depending on its type, an attacker might be in control of any of the components
listed above. In the same way, the targeted victim can be any of the participants.

Table 3.1 identifies several types of attackers that differ in their knowledge, budget, capabilities, and
goals. The risk of a given attack depends on how difficult it is to exploit, i.e. which attackers are able to
carry out the attack, how many potential attackers exist, and what investment these attackers would have
to make.

Type Knowledge Budget Capabilities Motivation
Simple user little (use attack tools) small own connection reputation, revenge, boredom

Professional attacker medium to high medium botnet, hacked routers money (paid attacks)

Malicious ISP, insider high access own equipment money, law & regulations,

Malicious content src. competitive advantage

Cyber warrior up to insider very high botnet, hacked routers retaliation, deterrence,

influence of public opinion

Table 3.1: Types of attackers.

3.2.1 Architectural Risks & Comparison to TCP/IP

CCN has a different architecture than TCP/IP. The most notable difference is that CCN enables systematic
caching of all data in routers. Caching, however, means that there is a tradeoff between efficiency
and privacy: Users leave communication traces in caches. These traces can be retrieved by anyone, either
by using Interests with special query features, or by probing caches and using the timing of replies to
find out whether an item was cached. In particular, it might be possible to extract the whole sequence of
packets that a third party exchanged in a conversation. This fact considerably simplifies attacks, because
the attacker does not need the capability of sniffing the victim’s link in real-time any more as it would
be the case with TCP/IP. The attacker only needs to be connected to a common cache, and the attack
might even be carried out retroactively. Furthermore, caching requires encryption for data confidentiality.
Cryptography, however, has a limited lifetime that is considered to be around 30 years. Thus, an attacker
might collect data and keep it for the future when the encryption algorithms cannot withstand brute force
attacks any more.

CCN’s communication model is purely content-oriented. CCN addresses content instead of location,
thus users trust content and its original author, not its current origin (which could be an arbitrary,
potentially untrusted cache). Consequently, it is necessary to protect the content’s integrity as well as the
binding to its name and author.

Because TCP/IP enforces direct communication with a (trusted) content source, being up-to-date is
not an issue in the Internet. In contrast, CCN requires to prevent replay of old content, and to have a
secure means to gain assurance that some given content is the latest version released by its author.

Denial-of-service attacks against content sources are more difficult to carry out in CCN, but they
are still feasible: Because only Interests are routed, only Interests can be used to overwhelm a content
source. (Data always follows back the path that the Interest took.) Aggregation of Interests and caching
implies that attackers must generate Interests that will be routed to the same content source, but that
request different names. In contrast, an attacker on the Internet can generate an arbitrary amount of
identical IP packets that will all be routed to the target. Detection algorithms in CCN routers can leverage
the fact that requests and replies always take the same path. Nevertheless, they are complicated by the
fact that Interests do not carry an identifier that would enable identification of their origin.

Location identifiers are available in TCP/IP and can be used to defend against attacks or to implement
end-to-end protocols. Communication in CCN is “one-hop” because of Interest aggregation and lack of
endpoint addressing. Without additional mechanisms, a CCN node cannot identify the originator of a

14 3 Security of CCN

query, as it would be required to trace back an attack to its origin, for instance. Conversation-oriented
protocols that have end-to-end semantics will need to implement an explicit way to make this information
available. The risk is that such an “optional” extra layer might not be adopted by everyone, and could
therefore be evaded by attackers to achieve a high level of anonymity.

CCN routers are more powerful, both in state and computation power, than IP routers. This is largely
an implementation choice: A loop-free topology and introduction of source routing backwards to the
Interest issuer would make the PIT redundant. This choice has consequences on the system’s security,
as more powerful devices inside the network increase its attack surface and could therefore lead to
Denial-of-Service attacks, for instance.

3.2.2 Attack Tree for Denial-of-Service Attacks

Figure 3.1 on page 21 shows an attack tree for denial-of-service attacks in CCN. An attack tree shows
different ways of achieving the goal of the attack. The leaves of the tree represent basic steps of the attack;
inner nodes contain intermediate subgoals. The root of the tree stands for the ultimate goal of the attack.
In this example, all subtrees are alternatives, that is, a path from a leaf to the root explains one potential
attack instance.

One way to deny service to clients is to make content unreachable for requests:

• A source can be disrupted by flooding it; to achieve this an attacker can send a large number of
Interests to the source (Sections 3.3.2 and 3.3.3), or he can decrease the efficiency of caching so
that the regular traffic is entirely forwarded to the source and overloads it (Section 3.4.2).

• Routing can be disrupted by malicious (or compromised) routers that do not forward requests. We
believe that economic forces make ISPs forward Interests as expected by customers. Preventing
attackers from gaining administrative access to routers is considered out of scope in this discussion.

Every router (PIT) has a timeout after which it deletes pending Interests and does not forward
responses any more. There can be configurations of different timeout settings in different routers
that prevent content from being retrieved; however, it is not clear how an attacker could enforce
such a configuration.

• There are two types of intermediate devices that can be disrupted: Links can be flooded with a large
number of artificial Interests so that the link reaches its capacity limit and legitimate traffic is queued
in routers (Sections 3.3.2, 3.3.3 and 3.4.2). Routers can be slowed down by sending requests that
require the router to carry out expensive computations (Section 3.3.1). Alternatively, the router’s
memory for state can be exhausted by overflowing the PIT (Section 3.4.3).

The other way to deny service to clients is to serve fake responses:

• Valid content can be blocked by routers that believe that the content is invalid: Attackers can replay
(or generate) a “content does not exist” response.

• Content can be spoofed by generating fake responses that are not signed or signed with a wrong
key, hoping that the client accepts the response. For instance, the client might not know the correct
key of the content source. Alternatively, old content signed with the right key can be replayed, or
the attacker might have gained access to the source’s signing key and is now able to spoof content.

The latter attacks are possible if CCN’s cryptographic protocols are not correctly implemented, or if
clients have an unsafe configuration with respect to their use of cryptographic mechanisms. Because these
risks are already present in current network architectures, we will not consider them further.

3.2 Threat Analysis 15

3.3 Known Attacks

In this section, we summarise some attacks related to denial-of-service, and their countermeasures, that
have already been discussed in the CCN papers [5, 13], or on the CCNx mailing lists [14].

3.3.1 DoS by Forcing Expensive Computations

If routers verify content signatures, an attacker can request many data items that require the router to do
expensive computations, which ultimately might negatively affect the service delivered to other users.

Assumptions: Content routers systematically verify the signatures of the content objects that they
receive. Routers may cache keys, but they do not have every key readily available. The attacker controls
one or more machines, and colludes with a malicious content source.

Attack: The attacker requests data from the malicious content source. Every data item is different and
signed with a different key. In order to verify the signature, the router has to retrieve the key from the
location indicated by the content source. To delay this operation, the content source can artificially slow
down its response. Furthermore, knowing the cryptographic algorithms and their implementation that is
being used, the attacker could choose the keying material and signatures such that they execute in the
worst case time.

Impact: The router is busy verifying signatures, and may slow down service delivered to legitimate
users. Alternatively, the router might stop verifying signatures to keep up with the demand.

Countermeasures:

• Stop verifying signatures when the load becomes too high. In any case, CCN receivers are expected
to verify all signatures themselves.

• In order not to admit spoofed content into the cache, signatures should be verified. However,
verification can be delayed until processing power is available. Alternatively, signatures could be
verified only if the content has been cached for some time (i.e., avoid investing computing power
for content that is immediately evicted from the cache).

• Detect content sources that use a suspiciously high number of different keys. Either do not verify
these signatures, or retrieve the keys and verify the signatures only when sufficient spare processing
power is available.

Risk: Low. The attack can be detected, requires a colluding content source and potentially considerable
attack traffic (signature verification might be implemented in hardware to reach high speeds).

3.3.2 DoS Against Content Sources

Attackers can avoid cache hits and send Interests directly to the source with the goal of overwhelming the
source and denying service to legitimate clients.

Assumptions: It is possible to build names of content that does not exist, and route Interests directly
to the content source. The attacker is assumed to have access to one or more machines, such as a botnet.

Attack: The attacker constructs a large set of different names for content that does not exist. This
guarantees that no cache hit can occur, and the Interests will be routed directly to the content source.

Impact: If many compromised machines carry out this attack at the same time, the content source can
be flooded with Interests, so that legitimate clients are denied service.

Countermeasures:

• Routers can keep track of how many responses are received for the Interests that have been
forwarded per prefix. If routers detect a suspiciously high fraction of Interests without response,
they can slow down the rate of Interests forwarded for this prefix.

16 3 Security of CCN

Risk: Low-medium. Detection is possible although it might be evaded; the attack requires access to a
botnet and high attack traffic.

3.3.3 DoS with Special Bits

Some special Interest bits allow attackers to avoid cache hits. These can be abused to flood the content
source with Interests and deny service to legitimate users.

Assumptions: CCN Interests can specify that the response may not be retrieved from a cache. The
attacker is assumed to control one or several machines, such as a botnet.

Attack: The attacker sends a large number of Interests to a given content source, specifying that the
responses may not be fetched from caches.

Impact: The source will be flooded with Interests. Legitimate users are denied service.
Countermeasures:

• Limit the use of this special Interest option. For instance, it might be permitted only for Interests
with local scope (that are not forwarded beyond the local machine or network). Alternatively, only
digitally signed Interests might be able to use this option. The hope is that the key certificate would
reveal the identity of the attacker. However, the attacker could steal keys from unsuspecting users
to carry out the attack under a false name.

Risk: Low. A perfect countermeasure is available; the attack requires access to a botnet and high attack
traffic.

3.4 New Attacks

In this section, we introduce new attacks that have not yet been discussed in the context of CCN.

3.4.1 Keeping Unwanted Data Available in the Caches

By leveraging the widespread router caches, this attack allows an attacker to gain free and uncontrolled
storage for illegal content, or to keep deleted content available in router caches.

Assumptions: CCN makes widespread use of caches, where the size of the caches might be substantial.
The attacker is assumed to have access to one or several machines, such as a botnet, that are connected to
a cache.

Attack: The attacker continuously issues Interests for the file that is to be kept in the cache. This
artificially high number of requests creates a false locality, as described in [15, 16]: To the router, the
popularity of the file looks higher than it actually is.

An attacker needs to issue an Interest shortly before the file would be evicted from the cache. In case of
LRU caches, an item remains in the cache for at least the cache’s characteristic time [17] tc. This means
that the request frequency must be higher than or equal to t−1

c .
If caches cooperate in a mesh architecture, it is enough for the attacker to infiltrate one cache, and the

item will be available to all connected clients. In the case of a tree-like hierarchy, the attacker ideally
would like to infiltrate the root in order to make the file available to the maximum number of clients. In a
LRU hierarchy, higher-level caches make sense only if they have a strictly higher characteristic time than
the caches at the lower levels [17]. This is because a LRU cache works like a low-pass filter on (aggregate)
request frequencies with a cut-off frequency of t−1

c . Thus, if an attacker wants to infiltrate the root, he
only needs to determine the characteristic time of the root cache, and adapt the request rate accordingly.
We describe a measurement algorithm in Section 4.4.2. While measuring the characteristic time of the
root is challenging, targeting the root instead of a leaf requires a lower request rate.

3.4 New Attacks 17

Impact: An attacker can use this technique to keep files that have been deleted from the origin server
available to a broad range of users by using the CCN infrastructure as a content distribution network. In
particular, publishers of illegal content can seed their content temporarily from a web server and then
keep the files inside the CCN network, which means that shutting down the web server is not sufficient to
prevent the content from being retrieved.

A variant of this attack just increases the popularity of legitimate content to offload the servers. For
instance, a content provider could link its unpopular files to its most popular files so that they load
together. By increasing the request frequency to be slightly higher than the characteristic time, the items
will be retrieved from the cache instead of being fetched from the origin server. Thus, a content provider
can abuse its popularity to obtain free content distribution services.

Countermeasures:

• To prevent retrieval of illegal content, a list of censored names could be defined. Routers would not
deliver content that is on the list.

• Caches could be forced to periodically revalidate content with the original content source. However,
it is not clear how a cache could distinguish a response from another cache from a response that has
been fetched directly from the source.

• False locality attacks can be detected with a heuristic algorithm described in [15].

Risk: Low. The attack has a high complexity compared to easier means of achieving the same effect,
and countermeasures are available. Potentially, a high request rate would be necessary.

3.4.2 DoS by Decreasing the Efficiency of Caching

By modifying the popularity distribution of requests observed by a cache, an attacker can decrease the
efficiency of caching. If many of these attacks take place at the same time, the increased bandwidth
requirements could lead to denial-of-service against network infrastructure or content sources.

Assumptions: Caching enables considerable bandwidth savings. To save costs, the network/server
infrastructure is designed for a workload with caching enabled. The attacker has access to one or several
machines (e.g., a botnet) that are connected to a cache.

Attack: The attacker selects a set of unpopular files U , and requests them periodically to increase their
popularity. The request frequency of U should be similar to the request frequency of the truly popular
files P. The size of U has to be chosen such that the observed overall popularity distribution at the cache
becomes considerably more uniform. Because the cache is not large enough to keep all content, caching
becomes less efficient and more requests have to be forwarded upstream. This attack is known as locality
disruption attack [15].

Impact: The hit rate of the caches decreases, which increases the load on network links (cost for the
ISP) and also increases the number of files that are directly retrieved from the content source (cost for
the content provider). If the infrastructure has been designed for a workload with functional caches, the
infrastructure might become congested. Ultimately, this might result in a denial of service.

Countermeasures:

• Provide infrastructure for the worst case, that is, for an assumed cache hit rate of zero. However,
this would result in a high cost and question why CCN should be used at all.

• A heuristic algorithm to detect locality disruption attacks is described in [15].

Risk: Medium. Only detection heuristics are available; the attack requires a botnet and potentially high
attack traffic, but it is feasible.

18 3 Security of CCN

3.4.3 DoS by Filling Available Memory of a Router

By filling up the memory that routers reserve for keeping the communication state, attackers can degrade
or disrupt the service delivered to other users.

Assumptions: CCN routers need to keep in memory the Pending Interest Table that contains every
Interest that has been received and forwarded, but not yet answered. The memory for these entries is
limited. We assume the attacker to have access to one or several machines, such as a botnet. The attacker
has a colluding content source under his control to participate in the attack.

Attack: The basic attack consists in requesting a large number of different, inexistent names in order
to fill up the PIT. However, a high fraction of Interests without reply could be detected by the router.
Therefore, the attack should be refined by colluding with a content source: The content source generates
replies, but delivers them only shortly before a PIT entry in the router would time out. In this way, the
number of requests necessary to fill up the PIT is minimised. Routers could still detect the frequent
accesses to the colluding content source’s prefix, thus the attacker might use several different prefixes
to evade detection. In particular, if an attacker controls a botnet, he could use every machine to serve
content, meaning that there would be as many requestors as colluding content sources.

Every pending Interest has a size of several hundred Bytes for the name and additional fields such as
exclude, scope etc. As the attacker controls the Interests that are generated, he can craft Interests that
maximise memory consumption. For instance, the attacker can accelerate the attack by choosing very
long names.

Impact: If the PIT is full, legitimate clients can be denied service.
Countermeasures:

• Do not store the full requested name in the PIT, but use hashing techniques to save memory and
prevent an attacker from speeding up the attack.

• Drop Interests at the head of the PIT instead of at the tail. That is, a new Interest is always admitted,
and replaces the oldest pending Interest. This makes it more difficult to fill up the PIT by delaying
responses from the content source. (CCN is unreliable, thus routers are allowed to drop Interests.)

• Develop a mechanism to detect a large number of requests to a very low number of name prefixes.

• To implement reverse forwarding, use a data structure, potentially similar to a bloom filter, that
stores exact information under normal conditions, and slowly degrades to flooding as it reaches its
capacity limit.

• Design stateless routers without PIT: Use a loop-free topology and add reverse source routing fields
to Interests and data packets.

Risk: Medium. The attack targets central components of the network, thus it has high impact. However,
it requires a botnet and high attack traffic.

3.4.4 Cache Snooping: List Cache Contents, Monitor Object Access, Copy Conversations

By requesting data just like a regular user, and by examining whether the response was cached, attackers
can extract privacy-relevant information from caches. Furthermore, if the naming scheme permits to
identify items belonging to the same message exchange, it is possible to clone the full conversation.

Assumptions: Caches are the heart of CCN. In a typical network, every device that carries out
forwarding tasks can be expected to be equipped with a cache: Core Internet routers, access routers,
DSLAMs, and also routers in corporate networks. This means that there will be caches very close to the
end user, and because of the limited number of users that access these caches, they will contain very
specific content. We assume that the attacker is directly connected to the same cache as his victims.

3.4 New Attacks 19

Attack: Cache snooping is a technique used to determine the contents of a cache. To find out if an item
with a given name is cached, the attacker sends a request for the data item to the cache and measures the
response time. The attacker can send a second request for another data item that is guaranteed not to
be cached, and compare the response times to determine where the first data item came from (from the
probed cache, from any intermediate cache, or from the content source).

Alternatively to using timing, there might be other means for an attacker to find out information about
a cache’s content. For instance, CCN’s prefix matching and the exclude field in Interests allow an attacker
to retrieve the entire contents of a cache without knowing the names beforehand.

If the attacker can find out the scheme that is used to name subsequent data items in a conversation, he
can retrieve them from the cache and reassemble the entire conversation. Even if the content is encrypted,
the attacker might be able to find out valuable information from unsecured side channels [18, 19].

Impact: The potential privacy threat ranges from finding out that two entities are communicating to
drawing conclusions about the contents of the conversation.

Countermeasures:

• Use a minimum response delay for every answer provided by an access cache. While this delays
legitimate requests, it still preserves the bandwidth saving and limits the privacy leak in timing
attacks.

• Encrypt names of dynamic content so that only authorised parties can attribute a data item to a
conversation.

• Disable complex Interest features such as exclude or limit its use over time.

Risk: High. Every user can carry out the attack and potentially gain access to a large range of data.
We discuss this attack, and more countermeasures, in more detail in the next chapter.

3.5 Conclusion

In this chapter, we have shown that the architectural differences of CCN compared to TCP/IP have
consequences on network security:

• Caching implies a tradeoff between network efficiency and user privacy.

• More powerful routers increase the network’s attack surface.

• CCN makes it difficult to identify the origin of a request.

• Denial-of-service attacks require more effort on CCN than on TCP/IP, but they are still feasible.

• Per-request state in routers can be abused for denial-of-service attacks.

• Caches can be misused in the following ways:

– Attackers can use caches as storage to make their own content available.

– The efficiency of caches can be decreased by attackers with the goal of denial-of-service attacks.

– Content can be extracted by any attacker connected to the cache, putting users’ privacy at risk.

In the next chapter, we will analyse in detail cache-based attacks on user privacy.

20 3 Security of CCN

make content unavailable to clients

force wrong responsesmake content unreachable for requests
(a) Overview

make content unreachable for requests

disrupt intermediate device

link

flood with requests

router

state

PIT overflow

expensive computations

request signed data

disrupt routing

enforce bad timeoutsdo not forward requests or data

disrupt source

flood source

inhibit caching

uniform popularity distribution

generate requests

(b) Make content unreachable for requests.

force wrong responses

spoof content

signed with correct keysigned with wrong keynot signed

make routers believe valid content is invalid

inject “not valid” messages

(c) Force wrong responses.

Figure 3.1: Attack tree for denial-of-service attacks in CCN.

3.5
Conclusion

21

22 3 Security of CCN

4 Cache Snooping
In networking systems, caches are used to increase efficiency by storing a copy of requested data in a
cache. Subsequent requests can be satisfied with the local copy found in the cache instead of fetching the
content from the content source. This efficiency gain is twofold: Firstly, the data traffic to the content
source is reduced because some requests can be satisfied locally. Secondly, caches can reduce the response
time for cached content because caches are usually located closer to the clients than the content source.

However, caching introduces a fundamental tradeoff between efficiency and privacy: While cached content
increases the efficiency of the system, the presence of content in a cache can be abused to violate users’
privacy. The types of privacy-relevant information that attackers might be interested in can be related to:

• who is communicating with whom (meta-information), or

• what is the data being exchanged, i.e. the actual contents of the communication.

The attack that aims at extracting communication traces from a cache is called the cache snooping attack.
In this chapter, we examine three distinct attacks:

1. Obtaining a copy of the cache’s contents (Section 4.5). The attacker is interested in a snapshot of the
cache, revealing the objects that are currently being requested by the cache’s users. By comparing
the cache’s contents with a list of “interesting” objects, the attacker can find out if someone of the
cache’s users has visited a particular page, or seen a particular object. Furthermore, an attacker can
prepare subsequent attacks by determining the protocols that are being used by the user population.

2. Analysing access to a given name (Section 4.6). The attacker checks if any of the cache’s users has
recently accessed an object with a given name. By regularly repeating these probes, an attacker can
obtain more precise access time information, and even infer the request rate. Periodic probing also
enables an attacker to observe a cache and trigger an alarm if some specific object has been served
to any of the cache’s users.

3. Cloning conversations (Section 4.7). The attacker uses the cache to obtain a copy of all data
exchanged between two participants, and reassembles their conversation. Even if the communication
is encrypted, side channels such as message timing and message size can leak privacy-relevant
information.

Previous works have targeted communication traces in local DNS caches [20, 21, 22, 23]. They permit
to remotely inspect which web sites are being accessed by the client population, what applications are
being used, and with which relative popularity. Another work [24] described how malicious web sites can
infer users’ browsing histories from their web browser caches. We discuss these works in more detail in
Section 4.1.

From an attacker’s point of view, caching has several advantages. Firstly, caching relaxes attacks in the
time domain: Large caches might keep the data for a long time after the original conversation has ended.
Thus, an attacker does not need to carry out his attack at the same time as the victim’s conversation takes
place. Secondly, caching decouples attacks in the space domain: An attacker only needs snooping, but not
sniffing capabilities. In other words, the attacker only needs to be connected to the same cache as the
victim; direct access to the wire (or the ether) used by the victim is not necessary any more.

Cache-based network architectures potentially increase privacy leakage. Current deployments of caches,
such as DNS caches, web caches, and CDNs, are application-specific and serve a large population. For

23

instance, DNS caches are typically deployed at a high aggregation level inside a provider’s network, such
as on a per-city basis. Cache-based network architectures, in turn, claim to be application-independent
and deploy caches at a lower level in the aggregation hierarchy: CCN suggests to have cache memory
available in every network device, including routers and DSLAMs. The lower number of potential users
per cache means that the information leaked by the content found in the cache is more significant as there
is less ambiguity in attributing data to users. Furthermore, CCN’s application-independence potentially
gives an attacker access to a wider range of information, including types of content that are not cached
today.

Although previous work has identified several cache-based attacks for specific applications, as we
summarise in Section 4.1, we are not aware of any work that discusses the general impact of caches
on user privacy in network architectures such as CCN. As we have argued above, generalised caching
exacerbates the privacy threat that users are exposed to. We believe that it is important to study cache-
based attacks in the context of network architectures to raise awareness for the problem, and to develop
countermeasures before the architecture is eventually deployed. While we use CCN as a case study, as far
as its commands and protocols are already known, we suspect that the problems that we reveal in this
chapter apply as well to other proposed Internet architectures.

For the attacks described in this chapter, we assume that the attacker’s objective is to find out sensitive
information about his neighbours. We base our description of these attacks on the system model outlined
in Section 4.2, and follow the way that an attacker would typically proceed:

1. Firstly, the attacker needs to define what sensitive information is (Section 4.3). The output of this
step should be a list of interesting object names. Examples include called phone numbers, or the
names of web sites or videos.

2. Secondly, the attacker must gain some information about the topology. He should find out approx-
imately how many users are connected to the same cache as he is, how many users are aggregated
at the next level, and so on. Some of the techniques require the attacker to have estimates on the
round-trip time to caches at the different levels of the hierarchy. Some techniques also require
knowledge of the average lifetime of an object in the cache, if it is not requested again after it has
been added. Measurement algorithms to gather this knowledge can be found in Section 4.4.

3. Thirdly, the information has to be retrieved from the cache. At this point, the attacker carries out
one of the three attacks introduced above. We describe them in detail in Sections 4.5, 4.6 and 4.7.

After having described these three attacks, we conclude this chapter with a discussion of potential
countermeasures in Section 4.8.

4.1 Related Work

DNS snooping [20] permits to find out from a DNS cache if someone with access to this cache has recently
resolved a given domain name, for instance to visit a web page or to send email. This is achieved by
querying the cache to determine if information about the domain name is locally available. DNS caches
can be queried in two ways:

• Non-recursive queries are always answered with local knowledge of the cache. In case no data is
locally available, an error message is returned.

• Recursive queries are forwarded to other caches if necessary to supply a valid response. Although
recursive queries always return a response, there are two ways for an attacker to find out if the
information was originally cached locally: Firstly, the response is slower if the data has to be fetched
from somewhere else. Secondly, DNS responses always carry the remaining time-to-live (TTL) of
the data in the cache. The initial value is defined by the domain’s authoritative DNS server. If the

24 4 Cache Snooping

TTL returned with the reply is low compared to the initial value, there is a high probability that the
data was cached.

In addition to some scenarios in which the information gained from the cache is used for further attacks,
the author gives recommendations for countermeasures:

1. To prevent distant attackers from gaining access to a DNS cache, every cache should allow requests
from local clients only.

2. To make the attack more difficult, a DNS cache should not allow non-recursive queries.

3. A DNS cache can add entropy to the TTL by adding some randomness to the initial TTL when
inserting an entry into the cache.

For speed optimisation, several web browsers pre-fetch domain names appearing in links on web pages.
Krishnan and Monrose [25] show how to exploit pre-fetching of the DNS names found on search engine
result pages to infer the keywords that have been used during searches. Attackers can build a list of
domain names that would be resolved for a given keyword, and probe DNS caches for these domains. By
comparing the initial TTL values set by the authoritative DNS server and the remaining TTL of the cached
entries, it is possible to detect if these domain names have been inserted into the cache at approximately
the same time. If this is the case for the majority of the expected names, the attacker can conclude that
someone has used the corresponding keyword.

The authors show that with a 30 minutes probing delay, they could obtain an accuracy of 85 % in
detecting searches for a given keyword. They note, however, that in the general case, inferences can
be made only about the cache population as a whole, but not about individuals. CCN, in comparison,
potentially provides more information: Firstly, whole object names are accessible and discoverable, not
only domain names. Secondly, the user population per CCN cache is much smaller than the population of
a DNS cache.

Several works [21, 22, 23] measure the time a DNS entry is not cached, and use this information to
infer its request rate. They make the following simplifying assumptions:

• The time that an item stays in the cache is constant and equal to the TTL defined by the respective
authoritative name server. In particular, the number of cache hits while the item is cached has no
influence on the item’s lifetime in the cache, and no replacement takes place in the cache.

• Client requests are independent and identically, exponentially distributed, and so are the gaps
during which the item is not cached.

In the case of low popularity, the hit rate obtained during cache snooping is a sufficiently good
approximation of the request rate. As the popularity of the item grows, client cache hits are more likely to
occur. In this case, the request rate λ can be computed as the average over the time gaps between eviction
of an item (assuming that the last request took place shortly before), and the next time the item is inserted
into the cache. The authors show that it is sufficient to probe the cache once every authoritative TTL.
Non-recursive queries are preferred as they directly reveal whether the data was cached, and because
they do not modify the state of the cache. Because the sum of Poisson processes is a Poisson process, the
number of clients can be computed if the per-client request rate is known.

Felten and Schneider [24] show how malicious web sites can probe client-side caches, such as the
web browser’s cache, to find out if the user has recently visited another, unrelated web site. The authors
discuss the following countermeasures:

1. Disable caching. Due to the obvious performance penalties, they discard this solution.

4.1 Related Work 25

2. Alter the hit/miss performance of the cache. Cache hits can be made slower, or random, in an attempt
to conceal them. However, the authors dismiss this possibility: “If we make hits as slow as misses,
then attackers will be handcuffed; but in that case we might as well have turned off caching.”
However, this statement seems to ignore the bandwidth savings that could still be made.

3. Compartmentalisation. Every domain would have its own virtual cache, so that web sites cannot
probe the state of other sites. Yet, this countermeasure would considerably decrease the cache hit
rate, and provide only small efficiency gains.

4.2 System Model

We use the following network model and assumptions in our discussion:

• Caches are arranged in a tree-like hierarchy, where the leaves correspond to DSLAMs. All users are
connected directly to one leaf cache. Requests are routed upwards in the hierarchy; there is no
collaboration between neighbouring caches. If no cache hit occurs, the root cache forwards the
request to the corresponding content source.

• Every cache is limited in size, using LRU as replacement policy.

• If a cache hit occurs, the memory read latency is the same for all caches, no matter where in the
hierarchy the hit occurs. That is, all caches are implemented in the same technology (using either
main memory or disk), but not a combination of both.

• Attackers are interested in the best possible bound on the number of users who might have requested
data, i.e. they will always target the first cache that the attacker and the victim have in common.

An attacker can use either recursive or non-recursive queries to implement his attacks. This choice is
orthogonal to the attack type, and depends on what mechanisms the system under attack makes available.
We simplify our discussion by assuming that the attacker and the victim are directly connected to the
same cache1.

There are two ways of discovering the presence of an object in the cache:

client cache

Interest

Interest

taaD
1. data cached

2. data not cached

timeout(non-recursive)

(a) Non-recursive: After a cache miss, the
client does not receive any reply.

client cache

Interest

taaD

Interest

taaD
1. data cached

2. data not cached

timeout(recursive)

(b) Recursive: Client receives a reply after
a cache miss.

Figure 4.1: CCN message exchange in different request modes.

1 Alternatively, the attacker can connect to the victim’s leaf cache by tunnelling CCN in direct UDP packets.

26 4 Cache Snooping

• A non-recursive query to a cache, as shown in Figure 4.1(a), is answered with local knowledge only.
It times out if the data item is not contained in the cache.

In CCN, non-recursive queries are possible by sending an Interest message with the scope field set
to 0. However, this functionality might be deactivated for security reasons.

• A recursive query (Figure 4.1(b)) always returns the queried data, as long as it can be found
somewhere in the system. The attacker exploits the timing side channel to infer from the response
delay which cache in the system had the item stored. The assumption behind this is that the
(distribution of) response delays of caches at different levels of the hierarchy is significantly
different, so that the attacker can tell them apart.

Recursive queries are the normal behaviour of CCN. Therefore, it is much harder to develop
countermeasures against this type of attack.

A non-recursive query is less intrusive than a recursive query: After a non-recursive cache miss, the
cache remains unmodified, while a recursive query would insert the missing item. Both methods behave
in the same way for a cache hit: The lifetime of the object in the cache will be increased2. This means
that with any query type, if repeated queries are necessary, special measures have to be taken to make
sure that the attacker does not incorrectly observe a state that he caused himself.

A clear advantage of non-recursive queries is that the result is always exact. With recursive queries,
there is some remaining probability that the attacker makes a wrong guess because of variations in the
response delays.

If the attacker cannot directly connect to the victim’s cache, he can target the first common cache.
However, this approach makes the attack more difficult to carry out: The attacker needs more precise
latency estimates and must enhance the algorithms to take into account a multi-cache hierarchy.

4.3 Attack Goals

Before an attacker can start the actual attack, he has to define his goals. In particular, the attacker needs
to decide on who the potential victim is going to be, and which application or content is to be targeted.
The output of this preparatory step is a list with the names of interesting, potentially sensitive content
objects.

When it comes to selecting victims, the attacker can either try to gather aggregate information about
the neighbourhood in general, without identifying any individual. For instance, he could be interested in
knowing if someone in the neighbourhood downloads a video with, say, instructions on how to build a
bomb, or if anyone is looking for information about a given disease. In this case, the attacker searches for
the content himself and compiles a list with the names of the objects that he found.

Alternatively, the attacker can target a specific person in the neighbourhood. Examples include knowing
when a given user has last connected to some web site, what data he entered into that web site, or when
he has last received a phone call. To do this, the attacker needs knowledge about the naming schemes
used by the protocols of the respective applications. For instance, if an application’s data always carries
the prefix /application-name/user-name/, then the attacker can add this prefix to his list.

The privacy impact of the attacker finding out about content present in the cache depends largely on the
content’s popularity. Static, popular content such as the latest music video carries little information that
might be of interest for an attacker; it has low entropy. Static, but rare content such as a terrorist training
video leaks some more information about the neighbourhood, although it might not be possible for the
attacker to attribute the video to the person who downloaded it. Dynamic content, such as individual web
browsing sessions or phone calls, are not usually shared between users. If the attacker can retrieve some

2 This is an important difference between LRU caches as used in CCN, and the related work about DNS caches. We will
come back to the cache lifetime in Section 4.4.2.

4.3 Attack Goals 27

information from the content itself (if it is unencrypted) or from a side channel (such as the name, or the
size), then the entropy is probably highest, because the information is highly individual.

While the cases described above assumed that the attacker needs to know interesting names prior to
the attack, it might even be possible for the attacker to gain complete knowledge of a cache’s contents.
This type of attack is the most powerful one: The attacker would be unconstrained in the heuristics that
he can apply to analyse the data.

4.4 Topology Intelligence

Before an attacker can start the actual attack, he must find out some basic information about the cache
topology that is required by the attack algorithms:

• The latency to a cache can be used to tell if a data item requested by the attacker is cached there, or
somewhere else in the hierarchy.

• The characteristic time of a LRU cache [17] is the time that an object remains in the cache, given
that it is not accessed any more after its initial request.

As discussed in Section 4.2, probes to LRU caches can modify the state of the cache. This metric
indicates how long the effect of probing persists on average, and gives the minimum sensible probing
interval.

In the following, we describe two algorithms to measure these characteristics. At a first time, we
consider only the leaf cache, i.e. the cache at the DSLAM level.

4.4.1 Latency Measurement

Latency estimates are required if the attacker wants to exploit the timing side channel to attribute a
response to the cache that most likely delivered it. The algorithm depicted in Figure 4.2 measures the
latency of the attacker’s leaf cache and works in two phases:

measurement
client

cache
content
source

Interest
Interest

taaD
taaD

Interest

taaDdi

0. insert data into cache

i. request & time data

(i = 1..n)

Figure 4.2: Measuring the latency of the first CCN cache.

1. Before the measurements begin, the attacker must identify an arbitrary data item that is contained
in the cache under measurement. Alternatively, he can insert one into the cache as shown in Step 0
in Figure 4.2.

2. The attacker now requests this data item, and measures the time difference between the Interest
message and the incoming response. The attacker can repeat this step n times and calculate the
mean and standard deviation to obtain a better estimate.

28 4 Cache Snooping

The delay between two successive probes should be low enough to make sure that the data has not
been evicted from the cache in the meantime. At the same time, the delay should be high enough so that
a representative sample is taken (with respect to background traffic in the cache’s queues).

Using this latency estimate, the attacker can guess if data he requested was delivered from the local
cache or fetched elsewhere: Let d =mean{d1, ..., dn} the mean latency of the first cache measured with
the algorithm above, σ its standard deviation, drequest the latency of the request of unknown origin, and α

a parameter to influence the weight of the probe variation. If drequest � d +α ·σ, then it can be assumed
that the request has been answered by a cache other than the local one.

4.4.2 Cache Lifetime Measurement

The goal of this section is to measure how long an item that is requested only once remains in a cache,
as shown in Figure 4.3(a). Che et al. [17] call this the characteristic time of the (LRU) cache, because it
defines the minimum access frequency that an item needs to have in order to be served from the cache.
Items with a lower access frequency (i.e., requests in time intervals longer than the characteristic time)
will not be found in the cache and have to be served from caches or content sources further up in the
hierarchy. The authors show that for a LRU cache with a Zipf-like item popularity distribution and a
Poisson request arrival process, the characteristic time can be approximated to be constant for each item,
and to be the same for all items.

In the context of cache snooping attacks, the characteristic time implies the minimum time that an
attacker has to wait before he can use the same probe item again. If the attacker reuses a probe item
before the characteristic time has passed, he risks measuring a state that he has caused himself with his
previous request.

To measure the lifetime of an object in the cache, the attacker uses items that are guaranteed to be
used only by him. This can be achieved by using a colluding content source, or by otherwise generating
items with unique names. To verify a given lifetime guess, the attacker first requests the item to insert it
into the cache, and subsequently verifies after some time if the item is still contained in the cache.

The measurement algorithm that we propose works in two phases: First, exponentially increasing
guesses are used to find an upper bound on the cache lifetime. Then, the technique of nested intervals is
used to refine the guess.

In detail, the algorithm works as follows:

• Initialisation: Set tmin = 0, tmax →∞, and i = 0. Use t0 > 0, β > 1, 0 < γ < 1 and n ∈ N+ as
fixed, but tuneable parameters of the algorithm (as explained below).

• Find upper bound: Insert a new item into the cache, and request it after time t i. If the item is not
contained in the cache any more, set tmax = t i, i = i+ 1 and jump to the next step of the algorithm.
Else, set tmin = t i, t i+1 = β · t i, i = i + 1 and repeat this step. This process is illustrated in Figure
4.3(b).

• Refine estimate: Insert a new item into the cache, and request it after time t i = tmin+γ·(tmax−tmin).
If the item is not contained in the cache any more, set tmax = t i. Else, set tmin = t i. Increase i, and
repeat this step until a predefined number n of iterations has been performed. Figure 4.3(c) shows
two iterations.

The start value t0 can be set to a rough estimate of the characteristic time, if known. β defines how fast
the guesses in the initial phase increase. γ defines which point of the interval will be probed next. Because
the goal of the algorithm is to find an upper bound, we use γ= 0.75. For the other parameters, we use
t0 = 1 second and β = 2. The number of iterations n can be determined experimentally. Alternatively, this
stopping condition could be replaced by a minimum change in the interval borders between iterations.

4.4 Topology Intelligence 29

There are several ways how this algorithm could be improved. Firstly, it could be speeded up by not
inserting a new item after a cache hit—because of the properties of LRU, it would be sufficient to view
the hit time as equivalent to the insertion time. Secondly, this sequential algorithm can be speeded
up even more by parallelising probes for several guesses. This might be useful especially for very long
characteristic times.

t
t = 0min t → ∞max

insertion eviction

(a) The life cycle of an item inserted into
the cache. The time between insertion and
eviction is called the characteristic time.

t
t = 0min t → ∞max

t0

t
t = tmin 0 t → ∞max

t = β·t1 0

0

t
t = tmin 1 t → ∞max

t = β·t2 1

0

(b) Finding an upper bound on the charac-
teristic time.

t
t = tmin 3 t = tmax 2

t = t + γ·(t - t)4 min max min

0

t
t = tmin 1 t = tmax 2

t = t + γ·(t - t)3 min max min

0

(c) Refining the interval around the char-
acteristic time.

Figure 4.3: Estimating the characteristic time of a cache.

Both the latency and characteristic time estimation algorithm could be enhanced to target caches
further up in the hierarchy: If caches use LRU, a hierarchy makes sense only if the characteristic time
of the higher-level caches is higher than the characteristic time of the lower caches [17]. Under this
assumption, once an item has been evicted from the leaf cache, it will still be available for some time in
the higher-level caches, thus the probing algorithms can target the next cache in the hierarchy. Different
caches can be differentiated by observing their response latencies. We leave this enhancement for future
work.

4.5 Attack I: List Cache Contents

This attack allows an attacker to reveal what items are being requested by the client population of a cache.
The attacker can use this information in various ways:

• He can infer than someone from the cache population requested a potentially sensitive item. This
can be achieved by either manually inspecting the requested objects, or by comparing them to a
previously established list of sensitive content. For instance, such a list could contain pages or videos
that reveal political views or health conditions.

• The attacker can analyse what protocols are being used by the clients to prepare subsequent attacks.
For instance, he could be looking for communication that is vulnerable to side channel attacks to
prepare the conversation cloning attack of Section 4.7.

30 4 Cache Snooping

CCN defines a name enumeration protocol, which however seems to be aimed at persistent content
stores (repositories), but not caches. For that reason, this protocol is very unlikely to be implemented in
router caches. In the following, we describe an alternative algorithm that enumerates the contents of a
CCN cache by recursively excluding previously seen names.

CCN uses prefix matching, which means that an attacker does not have to guess a full item name in
order to obtain a response from a cache. Furthermore, CCN Interests allow to specify a list (or bloom
filter) for name components that may not be contained in the item returned by the cache. Taken in
combination, these two characteristics permit an attacker to recursively explore the contents of a cache:
First, the attacker requests an arbitrary item, and then he successively sends further requests that have
the previously delivered items on the exclude list. In detail, the algorithm works as follows:

• Input p = /p0/p1/.../pi/, the prefix of the name space to be explored, and initially set E = ; as the
set of excluded name components.

• Send an Interest with p and E to the cache. In case of a cache miss, the algorithm terminates. For a
data response, let n= /n0/n1/.../n j the name of the response. Then j ≥ i and p0 = n0, p1 = n1, ...,
pi = ni. If j > i, ∀e ∈ E : ni+1 6= e. In other words, the response is an arbitrary cached item that has
p as prefix, and none of the elements of E as the (i + 1)th name component. The attacker now sets
E = E ∪ {ni+1} and repeats this step.

After the algorithm has terminated, E contains all name components that are available in the cache at
level i+1 with prefix p. The attacker can further explore the cache by repeating the algorithm with prefix
p = /p0/p1/.../pi/e/, for one specific (or all) e ∈ E. For instance, to explore the entire cache, the attacker
starts with p = / and recursively repeats the algorithm for all e ∈ E found in the respective instances of
the algorithm. (A similar version of this algorithm is implemented in the command ccnls provided with
the CCNx prototype.)

A drawback of this algorithm is that it has to download the data objects, thus the attack might be too
slow to obtain a consistent snapshot of a large cache. However, it might prove useful to explore limited
subspaces.

4.6 Attack II: Probe Specific Name

The attack outlined in this section assumes that the attacker knows the name that he wants to observe.
We first describe an algorithm that allows to detect cache insertion and eviction times of an item with
arbitrary precision (Section 4.6.1): Periodic probing of the cache can be used to timely detect accesses to
a given item. For instance, an attacker could be interested in logging all the voice call events of one user,
or all the log-in events of a user on, say, Facebook. Additionally, this information allows an attacker to
infer the request rate of the observed item (Section 4.6.2).

4.6.1 Insertion & Eviction Time Detection

A single probing request to a cache reveals whether the item is currently cached. However, with a single
probe, an attacker can only look into the past for at most the characteristic time tc: If the item is currently
cached (or not cached), the attacker only knows that there has been at least one request (or no request)
during the past tc time units. In particular, the attacker does not know when exactly an item was added
to the cache, or when it was evicted.

Periodic probing of the same item is limited in accuracy by a probe interval of at least tc time units
because an attacker’s probe can alter the state of the cache during tc time units. In disk-based caches,
tc can grow to the order of hours or days, which would make the attack impractical. Additionally,
the uncertainty in measuring a cache’s characteristic time might be high, which would have the same
consequences.

4.6 Attack II: Probe Specific Name 31

However, CCN splits large files into smaller, numbered chunks3. It is very likely that a client who
accesses the first chunk of a file will also access the subsequent chunks. Similarly, an attacker might
be able to identify distinct items that are always requested together, such as images embedded into a
web page. (For simplicity, we assume that all such chunks are requested at exactly the same time.) The
attacker can leverage the existence of these items to increase the probing frequency by requesting the
chunks in parallel and shifted by the desired probing interval.

tc ε

tc ε

tc ε

tp

tp

tc

time

chunk

Figure 4.4: Parallel probing involving three chunks.

Let tc be the characteristic time of the cache, ε the uncertainty of the measured characteristic time, and
tp the probe interval desired by the attacker. Then the number of chunks necessary to carry out the attack
is d tc+ε

tp
e. Figure 4.4 illustrates the attack. It lets the attacker trade off lack in tc precision (and timeliness

of detection, if at most one access occurs during tc) versus the amount of attack traffic and chunks that
are necessary.

For caches with small tc and with a large number of chunks, an attacker can set tp to small values to
obtain a precise estimate of the cache insertion and eviction times of an item. As we show in the next
section, this data can then be used to infer the request rate of the observed item.

4.6.2 Infer Access Rate

The related work discussed in Section 4.1 proposed algorithms to infer the access rate of a DNS item from
the gaps where the item is not cached. There are several differences between DNS and CCN caches that
require these algorithms to be modified:

• The cache lifetime of a DNS item is always constant, while in a LRU cache the lifetime depends on
the number of hits.

• No assumptions can be made about the number of accesses to a DNS item while it is cached, whereas
in a LRU cache, a lower bound can be given by dividing the item’s lifetime by the characteristic
time of the cache. Furthermore, if a LRU cache evicts an item, it is clear that this item has not been
accessed for at least the characteristic time.

• It is possible to infer the exact cache insertion time of a DNS object from any cache hit, while this is
not possible in CCN.

Because of these characteristics, this kind of attack is possible in CCN only if a parallel probing algorithm
similar to the one described in the previous section can be executed. Furthermore, the attack is feasible
only if the gaps where the items are absent from the cache are sufficiently long compared to the precision
of the probing algorithm. This implies that the access frequency of the probed items may not be too
high. In particular, the attack is impossible if the access frequency is higher than t−1

c , where tc is the

3 The default chunk size is 4 KB.

32 4 Cache Snooping

characteristic time of the cache. (To overcome a very low access frequency, several instances of the
measurement algorithms could be executed in parallel, using separate sets of chunks, to obtain a sufficient
number of samples in reasonable time.)

In the following, we assume that the cache insertion and eviction times have already been measured.

t
tins,0 tev,0 tins,1 tev,1 tins,2

tc tc tc

tev,2

Figure 4.5: Measuring the request rate in a LRU cache.

Figure 4.5 shows the timeline of an object cached in a LRU cache. Every cached instance of the object is
inserted at t ins,i, and evicted at time tev ,i. These are the only times known to the attacker.

Every request delays the eviction time by tc from the request time. However, from t ins,i and tev ,i alone,
an attacker cannot infer exactly how many requests occurred during this time span: The lower bound is
d tev ,i−tins,i

tc
e, but there is no upper bound. Yet, an attacker can infer the time span between two successive

requests if the object is evicted between them: t gap,i = t ins,i+1 − tev ,i + tc. If there is a large number of
such gaps, the attacker can compute the overall request rate as follows: λ≈mean(t gap,i).

In this discussion, we neglected the effect of chunks not being requested at exactly the same time, and
possible imprecisions in measuring the insertion and eviction times. Future work should study how these
impact the accuracy of the request rate estimate.

4.7 Attack III: Clone Conversation

Caches keep a copy of all content exchanged by their users for at least some short time period. Because
caches do not enforce any access control policies, any user that knows the name of a data item can retrieve
it from the cache.

A data exchange, or conversation, between two users can be copied and reassembled by an attacker
if he finds out the names of the items belonging to the same exchange, and if he can determine their
sequence in the conversation. For instance, the Voice-over-CCN prototype [7] uses the naming scheme
/domain/user/call-id/rtp/sequence-number for the voice data exchanged during a call. Once an
attacker knows the prefix of a specific call instance, such as /telefonica/alice/1234/rtp/, the attacker
can request these names with an increasing sequence number to obtain and reassemble a copy of the
voice data stream.

CCN implements access control with encryption. That is, everyone can obtain a copy of the cipher text,
but only the authorised parties possess the keys that are necessary to decrypt it. However, even encrypted
data payload might leak information through side channels. One side channel is meta-data such as an
item’s name. The cloning attack described above is made easy because VoCCN does not encrypt the name
and sequence numbers.

In [18], Wright et al. describe how to check an encrypted VoIP conversation for occurrence of a set of
phrases. The attack is possible if the conversation is encoded with a variable bit rate codec together with
a length-preserving stream cipher. The result of this is that the encrypted packet size depends on the
speech input (the phonemes) during the sampled time interval. Using the packet sizes resulting from
encoding the diphones/triphones of the pronunciation of a target phrase, the authors train a profile
Hidden Markov Model to generate a speaker-independent model of the phrase. When trying to match an
observed conversation with the model, they detect instances of the phrase with 50 % precision and recall
on average. As a countermeasure, the authors suggest padding the packets to a constant size as a very
promising approach.

4.7 Attack III: Clone Conversation 33

The VoCCN prototype [7] uses constant-size data messages. It is not clear whether this behaviour comes
from padding, or from sending data messages only if enough data has been accumulated in the outgoing
buffer to fill up an entire message. In the latter case, an inter-message delay side channel would remain.
However, such a side channel would be very challenging to exploit in the scenario assumed in this chapter,
where messages have to be extracted from a cache. The reason is that an item retrieved from a cache
does not reveal when it has been inserted. An attacker would have to find out this information in real
time by periodic probing. However, the precision required to carry out a successful side-channel attack is
likely in the order of milliseconds, and it is unclear whether such a precision could be reached in practice.

S. Chen et al. [19] describe a similar attack on SSL- or WPA/WPA2-encrypted web traffic. Both protocols
use stream ciphers that do not pad packets, so that the encrypted messages differ in size. With technologies
such as Ajax, web applications often respond to a single user input such as a mouse click or a single
keystroke. Because this user input has low entropy, the attacker can enumerate all possible inputs, test
directly with the application the size of the response packets for every input possibility, and compare
with the actual response received by the victim. There might remain some ambiguity in this comparison
because some messages might have the same size. However, communication with the web application
is stateful, which means that this ambiguity can be reduced in a later step of the conversation: One
observed state of the application restricts the set of possible past states. The authors show how a health
service leaks medical conditions, a search engine the keywords, a tax form the range of income, and an
investment application the fund allocation made by the user. The authors argue that countermeasures
must be application-specific. Padding as a generalised countermeasure does not seem attractive as it
would need packet sizes of 512 B to drastically reduce the entropy (and utility) for the attacker. At the
same time, the network overhead of this countermeasure would reach almost 33 %.

As there are no proposals yet as to the communication protocols over CCN to be used for web-like
applications, it is impossible to state whether such implementations would be vulnerable to this type
of attack. Rather, we see this as an opportunity to design such protocols in a secure way by identifying
potential attacks beforehand.

4.8 Countermeasures

Countermeasures against this cache snooping attack fall into two categories: The attack should be
prevented by technical measures, and it should be detected once it happens so that measures in the real
world can be taken.

Prevention

Attackers should be prevented from discovering the contents of a cache by adopting the following measures:

• CCN’s built-in cache enumeration protocol should not be implemented in caches.

• To prevent listing the cache contents using prefix matching and the exclude functionality, the
protocol specification should be changed to make data objects specify on which parts of their name
the exclude function may operate (none by default). In this way, content objects (and more generally
communication protocols on top of CCN) implicitly define which parts of the name contain sensitive
information and must be known in advance.

Alternatively, the exclude functionality could be disabled and the responsibility for content discovery
could be shifted to another layer of the protocol stack where it can be better secured.

• Furthermore, prefix matching could be restricted to a maximum number of unmatched components,
which would imply that the attacker has to know a large part of the name.

34 4 Cache Snooping

• If cache space in routers is compartmentalised based on a per-user basis, attackers cannot easily gain
information about data retrieved by other users because every user can access only their own cache
compartment. However, the overall hit rate would greatly suffer from such a design, and practical
aspects such as user identification and additional state in routers make this countermeasure very
unlikely to be adopted.

Attacks that probe the cache for a given name can be made more difficult in the following ways:

• First of all, non-recursive queries should be ignored by access routers.

• If CCN is tunnelled over UDP, routers should admit queries only from their direct neighbours. That
is, users should be able to access only their own access router, but not intermediate or root caches.

• To avoid timing-based attacks, CCN access routers could enforce a minimum response delay. This
delay should correspond to the round-trip time to a router in the hierarchy that has a sufficiently
large number of users behind it so that the privacy implications of detecting a hit in this cache are
low. In other words, if the attacker detects a hit in this cache, at least k users could have requested
the item. Because the CCN access router enforces a delay threshold that corresponds to a hit in this
cache, the attacker cannot refine his approximation to less than k users. (This corresponds to the
concept of k-anonymity [26].) However, this approach can only work if all other side channels in
content objects have been closed, i.e. the object itself leaks no information as to who might have
requested it. This requirement is difficult to satisfy in general because the list of side channels is
potentially open-ended.

Enforcing a minimum request delay maintains the bandwidth savings that can be obtained with
caching, but it trades off the potential delay reduction against a higher level of privacy. Furthermore,
there will be additional state in access routers to maintain the timers. Care has to be taken that the
implementation of this countermeasure in routers does not introduce new side channels or attack
opportunities.

Applications on top of CCN should impede cloning of conversations:

• Conversation-oriented protocols need sequence numbers to retrieve the next item in the conversation.
If the numbering scheme is unknown to the attacker, for example because the sequence number
part of the name is encrypted with a secret key, reconstructing the conversation retrospectively will
be more difficult or even impossible.

• If the privacy-relevant part of a name cannot be encrypted, the naming scheme should at least
make it difficult for an attacker to guess names. For instance, names could follow the scheme
/application-prefix/random-number/further-parameters/. If the exclude and prefix matching
functionalities are disallowed on the random number component, the attacker must find out the
random number from other sources in order to retrieve the data item.

• Content exchanged in dynamic sessions should carry a very low expiry time. Currently, CCN caches
are allowed to return stale content. This behaviour should be forbidden to reduce the time frame
during which attackers can carry out their attacks. If dynamic, individual data is quickly evicted
from caches, retroactive attacks become much more difficult because the attacker must carry out
the attack simultaneously with the victim’s session.

• Finally, caching of content that is unlikely to be shared could be disabled. Individual web browsing
sessions and phone calls lose much of their value once they have ended. If caching is disabled
entirely, attackers cannot retrieve the content from the cache any more and must fall back to classical
sniffing attacks. To this end, content objects might set a do-not-cache bit. A router should evict such
an item from its buffers immediately after all processing and forwarding has completed.

4.8 Countermeasures 35

Detection

If an attack cannot be prevented, it should at least be detected. The attacks described in this chapter have
typical characteristics:

• An access router might observe periodic polling from the same access link when an attacker is
probing for a known name.

• Similarly, obtaining a snapshot of the cache involves querying for a large number of items in very
short time, with a very high hit rate, and with high coverage of the corresponding name space in
the cache.

• Cloning conversations results in a sequence of packets that arrive at the router being forwarded
to two destinations (incoming content: from the uplink to two access links, and outgoing content:
from one access link to the uplink and the attacker’s access link).

However, detection needs to rely on heuristics. In this context, we see a large potential for false
positives: Downloading a large, cached file with many chunks might be mistaken for a cache snapshot
attack, and multicast protocols such as multi-party video conferences look similar to the cloning attack.
Furthermore, we argue that heuristics can be evaded by very stealthy attacks that simply stay below the
detection thresholds. We leave concrete detection algorithms for future work.

4.9 Conclusion

In this section, we discussed

• how characteristics of the cache topology can be measured: The latency and characteristic time of
caches are necessary to prepare the following attacks.

• How attackers can obtain a snapshot of the cache’s contents.

• How attackers can monitor access to content by their neighbours.

• How conversations can be cloned to carry out side channel attacks on them.

We proposed the following countermeasures:

• Make CCN queries less expressive.

• Tweak the privacy–efficiency tradeoff: We suggest to maintain the bandwidth savings provided by
caching, but to restrict the latency gain by enforcing an artificial lower latency bound to hide which
cache answered a query.

Future work should show that the above attacks are feasible with reasonable attack traffic requirements
and investigate the accuracy of the algorithms. Our work could be extended to support caches at distinct
layers in the hierarchy and to support caches that are implemented with a combination of fast random-
access memory and slower disks. Finally, the impact and efficiency of our countermeasures should be
investigated.

In the next chapter, we evaluate the algorithm to measure a cache’s characteristic time.

36 4 Cache Snooping

5 Evaluation
In this chapter, we summarise our first results of an evaluation of the cache snooping attacks. All types of
attacks discussed in the previous chapter are based on at least approximate knowledge of the characteristic
time tc: The characteristic time defines how long communication traces “survive” in the cache, i. e., how
far the attacker can look back in time, and consequently how often he has to probe. Therefore, as a first
step, we centre our evaluation around the characteristic time.

In the previous section, we assumed that the characteristic time of a LRU cache is constant. However,
this assumption does not hold true if the workload changes, and even for stationary workload, it holds
true only on the long term [27, 17]. The goal of this evaluation is to determine the order of magnitude of
the characteristic time, and to find out to what extent it varies. Once the characteristic time is known,
we can deduce the amount of traffic that an attacker needs to send in order to monitor all accesses to a
given content object. Furthermore, we would like to evaluate how long the algorithm to measure the
characteristic time (Section 4.4.2) takes to converge, and how precise its estimates are. Both results taken
together show the feasibility of the cache snooping attacks.

As the evaluation scenario, we chose a DSLAM with a cache for Youtube-like video traffic. We assume
that the attacker is interested in monitoring all accesses to one particular video. Section 5.2 contains the
details of this scenario and the workload that we are using.

For our evaluation, we decided to implement a simplified version of CCN in a simulation environment.
While a real-world testbed would provide us with more realistic results, it would be difficult to get hold of
hardware and a corresponding software implementation that is able to execute CCN with a main-memory
cache of several gigabytes and to operate at speeds of several hundred megabits per second. Section 5.1
describes our CCN simulator and the abstractions that we made.

After having discussed the results of our simulation in Section 5.3, we derive the amount of attack
traffic that is necessary to carry out the attack in Section 5.4.

This should by no means been taken as a complete evaluation, but rather as a hint at what we plan to
investigate in future work. Indeed, we intend to quantify the amount of privacy loss that an architecture
such as CCN imposes on its users compared to other architectures or CDNs. We will elaborate more on
future work in Section 5.5.

5.1 CCN Simulator

Our CCN simulator has been written in Python. It models the following components:

• Clients request and receive data. They are used to generate background traffic or to carry out
measurement algorithms.

• Interests and data chunks are implemented as individual, independent units. That is, prefix matching
or queries are not implemented; clients must know the exact name of the data to be retrieved, and
they must know which chunks belong together to form a single file. Interests and data chunks are
assumed to have a constant size of 100 B and 4 KB, respectively: This corresponds to an Interest
with a medium-length name, and to a chunk with the default size used in the CCNx prototype.

• Links impose transmission delay on all Interests and data chunks transmitted over them as a function
of their size. However, links do not implement propagation delay or loss: These can be neglected
for the ISP-local scenarios that we envision.

37

• Routers have a cache of limited size with a LRU replacement policy. Routers also use a PIT to
aggregate Interests. Each link has a separate and infinite queue, and links can operate concurrently.
Routing has not been implemented; instead each Interest is forwarded on a default uplink path.
That is, routers always form a tree-like hierarchy.

• The content source is at the top of the router hierarchy. It is assumed to have all content available
and therefore answers every incoming Interest with the corresponding data chunk.

5.2 Scenario

For this evaluation, we assume the scenario of a DSLAM with a CCN cache for video content. A DSLAM
typically has around 1,000 users (e.g. Free in France [28]). We assume that during the “rush hours” of
the video service, 10 % of the users are simultaneously watching videos: They download the entire video
at 2 Mbit/s and watch the video while downloading (or longer if the download finishes earlier than the
video playback). Users start downloading the next video once they have finished watching the first one.

The videos downloaded by the clients correspond to the Youtube Science & Technology Category as
retrieved on January 15, 2007 [29] and analysed in more detail in [30]. The trace includes a video ID,
the length of the video in seconds, and the number of views. We exclude 6 videos that are longer than
one day, and keep the remaining 252,249 videos. We transform the number of views per video into a
relative popularity, and compute the file size by assuming a constant bit-rate encoding of 384 kbit/s1.
Figure 5.1(a) shows the CCDF of the views per video on a log-log scale. As [30] notes, the straight part
over some orders of magnitude indicates a power law popularity. Figure 5.1(b) shows the CCDF of the
video length in seconds on a simple log scale; the distribution appears to be light-tailed. Because each
client requests a new video as soon as the old one has been watched, the video length distribution is
equivalent to the inter-arrival time distribution of the client request arrival process.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

P
(v

ie
w

s
>

 x
)

Video views

Youtube Sci

(a) Video popularity CCDF.

 0.0001

 0.001

 0.01

 0.1

 1

00:00:00 00:30:00 01:00:00 01:30:00

P
(l
e

n
g

th
 >

 x
)

Video length [hours:minutes:seconds]

Youtube Sci

(b) Video length CCDF.

Figure 5.1: The popularity and length of videos in the Youtube Science & Technology Category.

For the simulation, we assume that there are no bottlenecks, i. e. the DSL lines and DSLAM uplink have
sufficient bandwidth (3 Mbit/s and 500 Mbit/s, respectively), and there is no cross traffic on the lines, but
only the video traffic. Each DSL line has direct memory access to the cache and an individual queue on
the respective line card. The cache has a capacity of 2,500,000 chunks (of 4 KB each), which results in a
cache size of approximately 9.5 GB.

During the simulation, all 100 clients continuously download and watch videos. After 6 hours of
warm-up time to populate the cache, we start our measurements during a period of additional 10 hours.
We repeated the entire experiment 5 times to calculate the 95 % confidence intervals.

1 As measured by [31] for some types of Youtube content.

38 5 Evaluation

5.3 Evaluation Results

During the measurement period, the router could satisfy a mean of 19.63 % of all received Interests with
the local cache (±0.64 points for the 95 % confidence interval). Accordingly, out of the 38 Mbit/s of data
transferred to the clients, only 30.54 Mbit/s were fetched from the content source.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 10 100

P
(h

its
 >

 x
)

Cache hits

cache hits

Figure 5.2: CCDF of the number of cache hits per object evicted from the cache.

For all data items evicted from the cache, we studied how many read accesses they experienced after
their insertion: 89.39 % (±0.36 points) of all items were evicted without any hit, whereas 10.61 % had at
least one hit2. 7.08 % (±0.18 points) of all evicted items had exactly one cache hit. Figure 5.2 plots the
hit rate CCDF for evicted items of one simulation trace; the other traces are highly similar.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2200 2300 2400 2500 2600 2700 2800 2900 3000

P
(l
ife

tim
e

 <
=

 x
)

Cache lifetime (in seconds)

mean (5 runs)
95% confidence

Figure 5.3: CDF of the characteristic time of the cache.

To determine the characteristic time of the cache, we analyse the length of the time span between
the last read access and eviction of an item from the cache3. Figure 5.3 plots the CDF of this time span
averaged over 5 simulation runs as well as the 95 % confidence intervals. Ideally, the curve would have
the shape of a straight vertical line at the characteristic time. The actually observed sample differs from
this expectation in two ways:

• The curve has an s-shape (the difference between the third and first quartile is 149 s). This means
that the characteristic time was not constant over time. The median characteristic time was 2544 s
or 42.4 minutes.

• The confidence intervals show that even the CDF curves for (slightly) different workloads differ. For
instance, the 95 % confidence interval around the median is ±94 s (3.7 % of the median).

2 The hit rate per item differs significantly from the cache hit rate computed above because the cache hit rate is expressed in
terms of requests (workload in Interests) whereas the hit rate per item is relative to the cache object population. The
difference means that a few objects accumulate a high number of hits.

3 For items with no cache hit, the time span is from insertion to eviction.

5.3 Evaluation Results 39

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10 12 14 16 18
C

h
a

ra
ct

e
ri
st

ic
 t
im

e
 e

st
im

a
te

 (
in

 s
e

c
)

Iteration

characteristic time
lower bound
upper bound

Figure 5.4: Progress of the measurement algorithm for the characteristic time.

We executed our algorithm to measure the characteristic time as defined in Section 4.4.2 to find out
how it behaves if the characteristic time is not constant. Figure 5.4 shows the 17 iterations that could
be completed during the 10 hours of measurement in one particular simulation run. During the first 6
iterations, the algorithm used a slow-start-like mechanism to find an upper bound on the characteristic
time. The initial guess was 60 s, and this value was doubled in each iteration. In round 7, after 2.1 hours
of execution time, an upper bound had been found. From there on, the next probes sent by the algorithm
were at γ= 75 % of the currently known interval width. The reason for this behaviour is that in the cache
snooping attacks, only the upper bound is of interest.

As Figure 5.4 shows, the algorithm converged to an estimated characteristic time that lies 4.4 % above
the median of that simulation run (it also lies outside the 95 % confidence interval). We explain this
behaviour with the temporal variation of the characteristic time.

A second observation is that the algorithm took very long to complete: Round 12 completed after a
total of 6.1 hours of execution time, round 15 after 8.3 hours, and round 17 after 9.8 hours. This is a
consequence of the high characteristic time, and of the algorithm working strictly sequentially.

Following these two observations, the measurement algorithm can be improved in two ways: First, it
can be speeded up by parallelising steps, i. e. by inserting many items at the same time and by requesting
them in increasing time intervals to obtain a larger range of samples in less time. A close first guess of the
characteristic time can also speed up execution. Second, the attacks only need an estimate of an upper
bound of the characteristic time. Therefore, the value of γ could be increased even further to favour the
upper bound. Furthermore, during the course of the attack, the attacker should constantly monitor if his
value for the upper bound is still valid, and increase it if necessary.

5.4 Attack Traffic

A consequence of the high characteristic time is that the attack traffic required by an attacker to constantly
monitor all accesses to a given object is quite low. Under ideal conditions, i. e. a constant characteristic
time tc, the attacker would need to probe once every tc + ε seconds, where ε > 0 is to be chosen such
that the attacker does not hit on a probe previously inserted by him. The probability of not detecting an
access is 1− tc

tc+ε
.

Under real conditions, the situation is more complex. As seen in Figure 5.3, the characteristic time is
not constant; it might vary over time. This fact complicates the choice of the probing interval: Assume
that the attacker has measured the instantaneous characteristic time tc at time t1 and sends probes at
time t2 � t1. By probing once every tc, the attacker might miss items that are evicted from the cache
before tc has elapsed if the actual characteristic time has decreased in the meantime (false negative). If
the probing interval is shorter than the characteristic time, an item might still be cached because of a
previous probing request sent by the attacker (false positive).

40 5 Evaluation

As we have described in Section 4.6.1, an attacker can probe for several chunks in parallel to overcome
imprecise measurements of the characteristic time. In the same way, parallel probing can be used to
tolerate variations of the characteristic time. For the algorithm to succeed, it is necessary to have an upper
bound on the characteristic time, i. e. a delay after which the attacker can be sure that a requested item
without any further request will have been evicted from the cache. Furthermore, the attacker needs a
number of chunks of the same file that are requested at the same time. Their number depends on the
imprecision in measuring the characteristic time (or on its variation).

For the video payload that we assume in this evaluation, the chosen encoding corresponds to 96 chunks
per second. For a a low number of consecutive chunks, the chunks’ request time will be approximately
the same, and the parallel probing attack can be carried out. For instance, if the attacker assumes an
upper bound on the characteristic time of 60 minutes and uses the first four chunks of a video for parallel
probing, the resulting probing frequency is one request every 15 minutes. From Figure 5.3, it can be seen
that no item without subsequent requests remained cached after 60 minutes, and no item was evicted
within 15 minutes of its last read access. Assuming that this distribution does not change significantly,
both the false negative and the false positive rate will be zero. The attack traffic corresponds to at most
4 · (100 B+ 4096 B)/1 h= 37.3 bit/s if every Interest is answered with a maximum-size chunk. We argue
that the attack traffic required by this attack is so low that it is perfectly feasible for an attacker to
constantly monitor accesses to a large number of different objects.

5.5 Conclusion & Future Work

In this chapter, we have shown that it is feasible to estimate the characteristic time of a cache. However, if
the characteristic time is high, the measurement can take a long time to complete. Future work should
aim at decreasing the measurement algorithm’s execution time. Furthermore, a mechanism to constantly
monitor and update the estimate of the characteristic time is required due to temporal variations of the
characteristic time.

Using a scenario of videos on Youtube, we have evaluated how much traffic an attacker needs to
constantly monitor and detect if anyone out of 100 active users watches a particular movie: For videos
with a minimum length of 4

96
s, the attack traffic is at most 37.3 bit/s with no false positives and no false

negatives.
In future work, we are planning to compare different architectures such as CCN and CDNs. We would

like to quantify the privacy loss that arises when caches are placed closer to the end users. For instance, a
hit detected in a CDN node could be caused by a request of any user in the whole city, whereas a hit in a
DSLAM cache indicates that one out of thousand neighbours requested the data.

5.5 Conclusion & Future Work 41

42 5 Evaluation

6 Conclusion
In this thesis, we analysed the impact of CCN’s architecture on network security. We identified several
attacks related to caches, and we evaluated how often an attacker needs to probe the cache if he wants
to detect every client access to a particular content object. Our work permits us to draw the following
conclusions:

1. CCN provides better content security than the current Internet, and denial-of-service attacks against
content providers are more difficult to carry out.

2. While CCN improves traditional security concerns of the Internet, its more advanced architecture
introduces novel attack opportunities:

• Routers are more powerful in terms of per-communication state and computation. This
characteristic enables new denial-of-service attacks against routers.

• General-purpose caches can be deployed in every network device. Ubiquitous caching jeopard-
ises users’ privacy because their communication leaves behind (ephemeral) traces.

3. The cache snooping attack enables attackers to monitor with very little attack traffic which content
objects their neighbours are retrieving (37.3 bit/s in the Youtube-DSLAM scenario).

4. Caching implies a tradeoff between network efficiency and communication privacy.

Countermeasures against cache snooping are challenging to develop because they need to carefully
explore this tradeoff: Perfect protection of users’ privacy would prohibit caching. As a compromise, we
suggested introducing an artificial minimum query delay in access routers. More research is required to
determine how effective this countermeasure is, both in terms of efficiency and privacy. We believe that
this tradeoff is an important concern in the design of future Internet architectures.

Having reported on the attack opportunity as such, we plan to quantify in future work the amount
of privacy loss that an architecture such as CCN imposes on its users, and to compare it with other
architectures and CDNs.

43

Glossary
Botnet A network of compromised machines that are controlled by a botmaster and that can be used for

coordinated attacks.

Characteristic Time The time between the last access to an item in a LRU cache and its eviction from the
cache. See [17].

Content Distribution Network (CDN) A set of machines used to serve content that are located close to
the users, for instance in an access provider’s network. Used for load balancing, and to speed up
content delivery.

Denial-of-Service (DoS) An attack that aims at making the victim unavailable for requests, or to slow
responses down considerably. Potential victims include content providers, network links, and routers.
A Distributed Denial-of-Service (DDoS) attack leverages the aggregate bandwidth of a number of
machines under the attacker’s control, for instance a botnet.

Dictionary Attack Images of a function are given, and the function cannot easily be inverted. Precompute
a list of (interesting) values and their corresponding images (the dictionary). Compare the observed
images with those from the list to find out the preimages.

Forward Interest Base (FIB) Data structure on CCN nodes to make forwarding decisions; similar to a
routing table. See Section 2.1 on Page 3.

ISP Internet Service Provider. In this work, mostly used to refer to Internet access providers for end users.

LRU Least Recently Used cache replacement policy. The item that has not been requested for the longest
time is evicted from the cache.

Pending Interest Table (PIT) Data structure on CCN nodes to keep track of Interests that have been
forwarded in the past. See Section 2.1 on Page 3.

Replay attack An attacker records data sent by an authorised source, and sends this data again at a later
point in time. For instance, if a content source replies with “content not available” at time t0, the
attacker might replay this message at time t1� t0 to make the victim believe that the content is
still not available, although this might not be the case any more.

RTT Round-trip time.

Sniffing Listen in on a conversation, for instance capture all traffic on a wireless link.

Snooping Send requests to a cache to find out information about its contents.

Spoofing Provide fake information, for instance a wrong sender address in an IP packet.

45

46 Glossary

Bibliography
[1] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel, L. G. Roberts,

and S. Wolff, “A brief history of the Internet,” SIGCOMM Computer Communication Review, vol. 39,
no. 5, pp. 22–31, 2009.

[2] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jahanian, “Internet inter-domain
traffic,” in SIGCOMM, S. Kalyanaraman, V. N. Padmanabhan, K. K. Ramakrishnan, R. Shorey, and
G. M. Voelker, Eds. ACM, 2010, pp. 75–86.

[3] Cisco Systems, Inc. (2010, Jun.) Cisco visual networking index: Forecast and methodology,
2009–2014. White Paper. [Online]. Available: http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

[4] J. Rexford and C. Dovrolis, “Future Internet architecture: clean-slate versus evolutionary research,”
Communications of the ACM, vol. 53, no. 9, pp. 36–40, 2010.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard, “Network-
ing named content,” in CoNEXT ’09: Proceedings of the 5th international conference on Emerging
networking experiments and technologies. New York, NY, USA: ACM, 2009, pp. 1–12.

[6] Project CCNx. [Online]. Available: http://www.ccnx.org/

[7] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart, J. D. Thornton, and R. L. Braynard,
“VoCCN: voice-over content-centric networks,” in ReArch ’09: Proceedings of the 2009 workshop on
Re-architecting the internet. New York, NY, USA: ACM, 2009, pp. 1–6.

[8] S. Barber. (2010, Jun.) Dynamic-content oriented applications. CCNx-Dev Mailing List. [Online].
Available: http://www.ccnx.org/pipermail/ccnx-dev/2010-June/000234.html

[9] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet caches on routers: the implications
of universal redundant traffic elimination,” in SIGCOMM, V. Bahl, D. Wetherall, S. Savage, and
I. Stoica, Eds. ACM, 2008, pp. 219–230.

[10] A. Anand, V. Sekar, and A. Akella, “SmartRE: an architecture for coordinated network-wide redund-
ancy elimination,” in SIGCOMM, P. Rodriguez, E. W. Biersack, K. Papagiannaki, and L. Rizzo, Eds.
ACM, 2009, pp. 87–98.

[11] M. Dobrescu, N. Egi, K. J. Argyraki, B.-G. Chun, K. R. Fall, G. Iannaccone, A. Knies, M. Manesh,
and S. Ratnasamy, “RouteBricks: exploiting parallelism to scale software routers,” in SOSP, J. N.
Matthews and T. E. Anderson, Eds. ACM, 2009, pp. 15–28.

[12] U. Lee, I. Rimac, and V. Hilt, “Greening the internet with content-centric networking,” in e-Energy
’10: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking.
New York, NY, USA: ACM, 2010, pp. 179–182.

[13] D. Smetters and V. Jacobson, “Securing network content,” PARC, Tech. Rep., Oct. 2009.

[14] CCNx mailing lists. [Online]. Available: http://www.ccnx.org/content/community#mailing-lists

[15] L. Deng, Y. Gao, Y. Chen, and A. Kuzmanovic, “Pollution attacks and defenses for Internet caching
systems,” Computer Networks, vol. 52, no. 5, pp. 935–956, 2008.

47

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.ccnx.org/
http://www.ccnx.org/pipermail/ccnx-dev/2010-June/000234.html
http://www.ccnx.org/content/community#mailing-lists

[16] Y. Gao, L. Deng, A. Kuzmanovic, and Y. Chen, “Internet cache pollution attacks and countermeasures,”
in ICNP. IEEE Computer Society, 2006, pp. 54–64.

[17] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems: modeling, design and experimental
results,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 7, pp. 1305 – 1314, Sep.
2002.

[18] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson, “Spot me if you can: Uncovering
spoken phrases in encrypted VoIP conversations,” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2008, pp. 35–49.

[19] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web applications: A reality today,
a challenge tomorrow,” in IEEE Symposium on Security and Privacy. IEEE Computer Society, 2010,
pp. 191–206.

[20] L. Grangeia, “DNS cache snooping,” Feb. 2004.

[21] C. E. Wills, M. Mikhailov, and H. Shang, “Inferring relative popularity of Internet applications by
actively querying DNS caches,” in Internet Measurement Conference. ACM, 2003, pp. 78–90.

[22] H. Akcan, T. Suel, and H. Brönnimann, “Geographic web usage estimation by monitoring DNS
caches,” in LocWeb, ser. ACM International Conference Proceeding Series, S. Boll, C. Jones, E. Kansa,
P. Kishor, M. Naaman, R. Purves, A. Scharl, and E. Wilde, Eds., vol. 300. ACM, 2008, pp. 85–92.

[23] M. A. Rajab, F. Monrose, A. Terzis, and N. Provos, “Peeking through the cloud: DNS-based estimation
and its applications,” in ACNS, ser. Lecture Notes in Computer Science, S. M. Bellovin, R. Gennaro,
A. D. Keromytis, and M. Yung, Eds., vol. 5037, 2008, pp. 21–38.

[24] E. W. Felten and M. A. Schneider, “Timing attacks on web privacy,” in ACM Conference on Computer
and Communications Security, 2000, pp. 25–32.

[25] S. Krishnan and F. Monrose, “DNS prefetching and its privacy implications: When good things go
bad,” in LEET ’10: Proceedings of the 3rd Usenix workshop on large-scale exploits and emergent threats.
Usenix, 2010.

[26] L. Sweeney, “k-anonymity: A model for protecting privacy,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 10, no. 5, pp. 557–570, 2002.

[27] N. Laoutaris, G. Zervas, A. Bestavros, and G. Kollios, “The cache inference problem and its application
to content and request routing,” in INFOCOM. IEEE, 2007, pp. 848–856.

[28] Dégroupage Free. [Online]. Available: http://francois04.free.fr/liste_dslam.php

[29] Youtube science & technology category traces. [Online]. Available: http://an.kaist.ac.kr/traces/
IMC2007.html

[30] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. B. Moon, “I tube, you tube, everybody tubes: ana-
lyzing the world’s largest user generated content video system,” in Internet Measurement Comference,
C. Dovrolis and M. Roughan, Eds. ACM, 2007, pp. 1–14.

[31] P. McFarland. Approximate youtube bitrates. [Online]. Available: http://adterrasperaspera.com/
blog/2010/05/24/approximate-youtube-bitrates

48 Bibliography

http://francois04.free.fr/liste_dslam.php
http://an.kaist.ac.kr/traces/IMC2007.html
http://an.kaist.ac.kr/traces/IMC2007.html
http://adterrasperaspera.com/blog/2010/05/24/approximate-youtube-bitrates
http://adterrasperaspera.com/blog/2010/05/24/approximate-youtube-bitrates

	Abstract
	List of Figures
	List of Tables
	Introduction
	Content-Centric Networking
	State-of-the-Art of CCN
	Research Agenda for CCN
	Scalability Research Topics
	Security-Related Research Topics

	Conclusion

	Security of CCN
	System Model
	Threat Analysis
	Architectural Risks & Comparison to TCP/IP
	Attack Tree for Denial-of-Service Attacks

	Known Attacks
	DoS by Forcing Expensive Computations
	DoS Against Content Sources
	DoS with Special Bits

	New Attacks
	Keeping Unwanted Data Available in the Caches
	DoS by Decreasing the Efficiency of Caching
	DoS by Filling Available Memory of a Router
	Cache Snooping: List Cache Contents, Monitor Object Access, Copy Conversations

	Conclusion

	Cache Snooping
	Related Work
	System Model
	Attack Goals
	Topology Intelligence
	Latency Measurement
	Cache Lifetime Measurement

	Attack I: List Cache Contents
	Attack II: Probe Specific Name
	Insertion & Eviction Time Detection
	Infer Access Rate

	Attack III: Clone Conversation
	Countermeasures
	Conclusion

	Evaluation
	CCN Simulator
	Scenario
	Evaluation Results
	Attack Traffic
	Conclusion & Future Work

	Conclusion
	Glossary
	Bibliography

