
benjamin hilprecht

D ATA - E F F I C I E N T L E A R N E D D ATA B A S E
C O M P O N E N T S

D ATA - E F F I C I E N T L E A R N E D D ATA B A S E C O M P O N E N T S

Doctoral thesis by
Benjamin Hilprecht, M.sc.

submitted in fulfillment of the requirements for the
degree of Doctor rerum naturalium (Dr. rer. nat.)

Reviewers
Prof. Dr. rer. nat. Carsten Binnig

Prof. Dr ès sc. Immanuel Trummer

Computer Science Department
Technical University Darmstadt

August 18, 2022

Benjamin Hilprecht
Data-Efficient Learned Database Components
Darmstadt, Technical University of Darmstadt, 2022

Viva voce: 18.10.2022

Please cite this work as
URN: urn:nbn:de:tuda-tuprints-225311
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/22531

This document is provided by TUprints, the publication service of the
Technical University of Darmstadt
https://tuprints.ulb.tu-darmstadt.de

This work is licensed under a CC-BY 4.0 International.
http://creativecommons.org/licenses/by/4.0/

urn:nbn:de:tuda-tuprints-225311
https://tuprints.ulb.tu-darmstadt.de/id/eprint/22531
https://tuprints.ulb.tu-darmstadt.de
http://creativecommons.org/licenses/by/4.0/

E R K L Ä R U N G L AU T P R O M O T I O N S O R D N U N G

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Disserta-
tion mit der schriftlichen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch
keine Promotion versucht wurde. In diesem Fall sind nähere Angaben
über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses
Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig
und nur unter Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 18.08.2022

Benjamin Hilprecht

v

Intelligence is based on how efficient a species became at doing the
things they need to survive.

— Charles Darwin

A B S T R A C T

While databases are the backbone of many software systems, database
components such as query optimizers often have to be redesigned to
meet the increasing variety in workloads, data and hardware designs,
which incurs significant engineering efforts to adapt their design.
Recently, it was thus proposed to replace Database Management Sys-
tem (DBMS) components such as optimizers, cardinality estimators,
etc. by Machine Learning (ML) models, which not only eliminates the
engineering efforts but also provides superior performance for many
components.

The predominant approach to derive such learned components is
workload-driven learning where ten thousands of queries have to be
executed first to derive the necessary training data. Unfortunately,
the training data collection, which can take days even for medium-
sized datasets, has to be repeated for every new database (i.e., the
combination of dataset, schema and workload) a component should
be deployed for. This is especially problematic for cloud databases
such as Snowflake or Redshift since this effort has to be incurred for
every customer.

This dissertation thus proposes data-efficient learned database com-
ponents, which either reduce or fully eliminate the high costs of
training data collection for learned database components. In particular,
three directions are proposed in this dissertation, namely (i) we first
aim to reduce the number of training queries needed for workload-
driven components before we (ii) propose data-driven learning, which
uses the data stored in the database as training data instead of queries,
and (iii) introduce zero-shot learned components, which can general-
ize to new databases out-of-the-box, s.t. no training data collection is
required.

First, we strive to reduce the number of training queries required for
workload-driven components by using simulation models to convey
the basic tradeoffs of the underlying problem, e.g., that in database
partitioning the network costs of shuffling tuples over the network
for joins is the dominating factor. This substantially reduces the num-
ber of training queries since the basic principles are already covered
by the simulation model and thus only subtleties not covered in the
simulation model have to be learned by observing query executions,
which we will demonstrate for the problem of database partitioning.
An alternative direction is to incorporate domain knowledge (e.g., in
a cost model we could encode that scan costs increase linearly with
the number of tuples) into components by designing them using dif-
ferentiable programming. This significantly reduces the number of

ix

learnable parameters and thus also the number of required training
queries. We demonstrate the feasibility of the approach for the prob-
lem of cost estimation in databases. While both approaches reduce
the number of training queries, there is still a significant number of
training queries required for unseen databases.

This motivates our second approach of data-driven learning. In
particular, we propose to train the database component by learning
the data distribution present in a database instead of observing query
executions. This not only completely eliminates the need to collect
training data queries but can even improve the state-of-the-art in
problems such as cardinality estimation or Approximate Query Pro-
cessing (AQP). While we demonstrate the applicability to a wide range
of additional database tasks such as the completion of incomplete rela-
tional datasets, data-driven learning is only useful for problems where
the data distribution provides sufficient information for the underlying
database task. However, for tasks where observations of query execu-
tions are indispensable such as cost estimation, data-driven learning
cannot be leveraged.

In a third direction, we thus propose zero-shot learned database
components, which are applicable to a broader set of tasks including
those that require observations of queries. In particular, motivated by
recent advances in transfer learning, we propose to pretrain a model
once on a variety of databases and workloads and thus allow the
component to generalize to unseen databases out-of-the-box. Hence,
similar to data-driven learning no training queries have to be collected.
In this dissertation, we demonstrate that zero-shot learning can in-
deed yield learned cost models which can predict query latencies
on entirely unseen databases more accurately than state-of-the-art
workload-driven approaches, which require ten thousands of query
executions on every unseen database.

Overall, the proposed techniques yield state-of-the-art performance
for many database tasks while significantly reducing or completely
eliminating the expensive training data collection for unseen databases.
However, while the proposed directions address the prevalent data-
inefficiency of learned database components, there are still many
opportunities to improve learned components in the future. First,
the robustness and debuggability of learned components should be
improved since as of today they do not offer the same transparency
as standard code in databases, which can render the components less
attractive to be deployed in production systems. Moreover, to increase
the applicability of data-driven models it is desirable to increase
the coverage of supported queries, e.g., queries involving wildcard
predicates on string columns, which are currently not supported
by data-driven learning. Finally, we envision that a broader set of
tasks should be supported in the future by zero-shot models (e.g.,

x

query optimization) potentially converging towards complete zero-
shot learned systems.

xi

Z U S A M M E N FA S S U N G

Während Datenbanken das Fundament vieler Softwaresysteme bilden,
müssen Datenbankkomponenten wie Anfrageoptimierer häufig neu
entworfen werden, um der zunehmenden Vielfalt an Arbeitslasten,
Daten und Hardwaredesigns gerecht zu werden, was einen erhebli-
chen technischen Aufwand für die Anpassung ihres Designs bedeutet.
Vor kurzem wurde daher vorgeschlagen, DBMS-Komponenten wie
Optimierer, Kardinalitätsschätzer etc. durch ML-Modelle zu ersetzen,
wodurch nicht nur der Entwicklungsaufwand entfällt, sondern auch
eine bessere Leistung für viele Komponenten erzielt wird.

Der vorherrschende Ansatz zur Erstellung solcher gelernten Kom-
ponenten ist das Workload-getriebene Lernen, bei dem zunächst zehn-
tausende Abfragen ausgeführt werden müssen, um die erforderli-
chen Trainingsdaten zu erhalten. Leider muss die Erhebung von Trai-
ningsdaten, die selbst für mittelgroße Datensätze Tage dauern kann,
für jede neue Datenbank (d. h. Kombination aus Datensatz, Schema
und Arbeitslast) wiederholt werden. Dies ist vor allem bei Cloud-
Datenbanken wie Snowflake oder Redshift problematisch, da dieser
Aufwand für jeden Kunden anfällt.

In dieser Dissertation werden daher dateneffiziente gelernte Da-
tenbankkomponenten vorgeschlagen, die die hohen Kosten der Trai-
ningsdatenerhebung für gelernte Datenbankkomponenten entweder
reduzieren oder ganz eliminieren. Insbesondere werden in dieser
Dissertation drei Richtungen vorgeschlagen, nämlich zielen wir (i)
zunächst darauf ab, die Anzahl der benötigten Trainingsabfragen
für Workload-getrieben Komponenten zu reduzieren, bevor wir (ii)
datengetriebenes Lernen vorschlagen, das die in der Datenbank ge-
speicherten Daten als Trainingsdaten anstelle von Abfragen verwendet,
und (iii) gelernte Zero-Shot-Komponenten einführen, die out-of-the-
Box auf neue Datenbanken verallgemeinert werden können, d.h. bei
denen keine Trainingsdatenerfassung erforderlich ist.

Zunächst haben wir als Ziel, die Anzahl der für Workload-getriebene
Komponenten erforderlichen Trainingsabfragen zu reduzieren, indem
wir Simulationsmodelle verwenden, um die grundlegenden Effekte
des zugrunde liegenden Problems zu vermitteln, z.B. dass bei der
Datenbankpartitionierung die Netzwerkkosten für das Verteilen von
Tupeln über das Netzwerk für Joins der dominierende Faktor sind.
Dies reduziert die Anzahl der Trainingsabfragen erheblich, da die
grundlegenden Prinzipien bereits durch das Simulationsmodell ab-
gedeckt sind und somit nur noch die Feinheiten, die nicht durch
das Simulationsmodell erfasst sind, durch Beobachtung von Abfra-
geausführungen erlernt werden müssen, was wir für das Problem
der Datenbankpartitionierung demonstrieren werden. Eine alternative

xii

Richtung ist, Domänenwissen (z.B. könnten wir in einem Kostenmo-
dell kodieren, dass die Scankosten linear mit der Anzahl der Tupel
ansteigen) in die Komponenten einzubauen, indem wir sie mit diffe-
renzierbarer Programmierung entwerfen. Dies reduziert die Anzahl
der lernbaren Parameter und damit auch die Anzahl der erforderli-
chen Trainingsabfragen erheblich. Wir demonstrieren die Machbarkeit
des Ansatzes für das Problem der Kostenabschätzung in Datenbanken.
Obwohl beide Ansätze die Anzahl der Trainingsabfragen reduzieren,
ist immer noch eine erhebliche Anzahl von Trainingsabfragen für
ungesehene Datenbanken erforderlich.

Dies motiviert unseren zweiten Ansatz des datengetriebenen Ler-
nens. Wir schlagen insbesondere vor, die Datenbankkomponente zu
trainieren, indem wir die Datenverteilung in einer Datenbank lernen,
anstatt die Ausführung von Abfragen zu beobachten. Dies macht
nicht nur das Sammeln von Trainingsdaten überflüssig, sondern kann
sogar den Stand der Technik bei Problemen wie der Kardinalitäts-
schätzung oder AQP verbessern. Während wir die Anwendbarkeit
auf eine breite Auswahl zusätzlicher Datenbankaufgaben wie die Ver-
vollständigung unvollständiger relationaler Datensätze demonstrieren,
ist datengetriebenes Lernen nur für Probleme nützlich, bei denen
die Datenverteilung ausreichende Informationen für die zugrunde
liegende Datenbankaufgabe liefert. Für Aufgaben, bei denen Beobach-
tungen von Abfrageausführungen unverzichtbar sind, wie z.B. bei der
Kostenschätzung, kann datengetriebenes Lernen jedoch nicht genutzt
werden.

In einer dritten Richtung schlagen wir daher Zero-Shot-gelernte
Datenbankkomponenten vor, die auf eine breitere Palette von Auf-
gaben anwendbar sind, einschließlich solcher, die Beobachtungen
von Abfragen erfordern. Motiviert durch die jüngsten Fortschritte
im Transfer-Lernen schlagen wir vor, ein Modell einmalig auf einer
Vielzahl von Datenbanken und Arbeitslasten vorzutrainieren und so
der Komponente zu ermöglichen, sofort auf unbekannte Datenbanken
zu generalisieren. Ähnlich wie beim datengesteuerten Lernen müssen
also keine Trainingsabfragen gesammelt werden. In dieser Dissertation
zeigen wir, dass Zero-Shot-Learning tatsächlich gelernte Kostenmodel-
le hervorbringen kann, die Abfragelatenzen auf gänzlich unbekannten
Datenbanken genauer vorhersagen können als moderne Workload-
getriebene Ansätze, die zehntausende von Abfrageausführungen auf
jeder unbekannten Datenbank erfordern.

Insgesamt liefern die vorgeschlagenen Verfahren für viele Daten-
bankaufgaben eine Leistung auf dem neuesten Stand der Technik,
während die teure Erhebung von Trainingsdaten für unbekannte Da-
tenbanken erheblich reduziert oder ganz vermieden wird. Während
die vorgeschlagenen Richtungen die vorherrschende Datenineffizienz
von gelernten Datenbankkomponenten adressieren, gibt es jedoch
noch viele Möglichkeiten, gelernte Komponenten in Zukunft zu ver-

xiii

bessern. Erstens sollten die Robustheit und die Debugging-Fähigkeit
der gelernten Komponenten verbessert werden, da sie derzeit nicht
die gleiche Transparenz wie Standardcode in Datenbanken bieten, was
die Komponenten für den Einsatz in Produktionssystemen weniger
attraktiv machen kann. Um die Anwendbarkeit von datengetriebenen
Modellen zu erhöhen, ist es außerdem wünschenswert, die Abdeckung
der unterstützten Abfragen zu erhöhen, z.B. Abfragen mit Wildcard-
Prädikaten auf String-Spalten, die derzeit nicht von datengetriebe-
nem Lernen unterstützt werden. Schließlich könnten in Zukunft viele
weitere Aufgaben durch Zero-Shot-Modelle unterstützt werden (z.B.
Abfrageoptimierung), was vollständige Zero-Shot-gelernte Systemen
ermöglichen könnte.

xiv

P U B L I C AT I O N S

The following peer-reviewed publications are part of this cumulative
dissertation. Their content is printed in Part ii, Chapters 7 to 12.

[1] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. “Learning
a Partitioning Advisor for Cloud Databases.” In: Proceedings
of the 2020 International Conference on Management of Data, SIG-
MOD Conference 2020, online conference [Portland, OR, USA], June
14-19, 2020. Ed. by David Maier, Rachel Pottinger, AnHai Doan,
Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo.
ACM, 2020, pp. 143–157. doi: 10.1145/3318464.3389704. url:
https://doi.org/10.1145/3318464.3389704.

[2] Benjamin Hilprecht, Carsten Binnig, Tiemo Bang, Muhammad
El-Hindi, Benjamin Hättasch, Aditya Khanna, Robin Rehrmann,
Uwe Röhm, Andreas Schmidt, Lasse Thostrup, and Tobias
Ziegler. “DBMS Fitting: Why should we learn what we already
know?” In: 10th Conference on Innovative Data Systems Research,
CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020,
Online Proceedings. www.cidrdb.org, 2020. url: http://cidrdb.
org/cidr2020/papers/p34-hilprecht-cidr20.pdf.

[3] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejan-
dro Molina, Kristian Kersting, and Carsten Binnig. “DeepDB:
Learn from Data, not from Queries!” In: Proc. VLDB Endow.
13.7 (2020), pp. 992–1005. doi: 10.14778/3384345.3384349. url:
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf.

[4] Benjamin Hilprecht and Carsten Binnig. “ReStore - Neural
Data Completion for Relational Databases.” In: SIGMOD ’21:
International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021. Ed. by Guoliang Li, Zhanhuai Li, Stratos
Idreos, and Divesh Srivastava. ACM, 2021, pp. 710–722. doi:
10.1145/3448016.3457264. url: https://doi.org/10.1145/
3448016.3457264.

[5] Benjamin Hilprecht and Carsten Binnig. “One Model to Rule
them All: Towards Zero-Shot Learning for Databases.” In: 12th
Conference on Innovative Data Systems Research, CIDR 2022, Cham-
inade, CA, USA, January 9-12, 2022. www.cidrdb.org, 2022. url:
https://www.cidrdb.org/cidr2022/papers/p16-hilprecht.

pdf.

[6] Benjamin Hilprecht and Carsten Binnig. “Zero-Shot Cost Mod-
els for Out-of-the-box Learned Cost Prediction.” In: Proc. VLDB
Endow. 15.11 (2022), pp. 2361–2374. doi: 10.14778/3551793.

xv

https://doi.org/10.1145/3318464.3389704
https://doi.org/10.1145/3318464.3389704
http://cidrdb.org/cidr2020/papers/p34-hilprecht-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p34-hilprecht-cidr20.pdf
https://doi.org/10.14778/3384345.3384349
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf
https://doi.org/10.1145/3448016.3457264
https://doi.org/10.1145/3448016.3457264
https://doi.org/10.1145/3448016.3457264
https://www.cidrdb.org/cidr2022/papers/p16-hilprecht.pdf
https://www.cidrdb.org/cidr2022/papers/p16-hilprecht.pdf
https://doi.org/10.14778/3551793.3551799
https://doi.org/10.14778/3551793.3551799

3551799. url: http://www.vldb.org/pvldb/vol15/p2483-
hilprecht.pdf.

Further co-authored peer-reviewed publications are:

[1] Moritz Kulessa, Benjamin Hilprecht, Alejandro Molina, Kristian
Kersting, and Carsten Binnig. “Towards Model-based Approxi-
mate Query Processing.” In: AIDB@VLDB 2019, 1st International
Workshop on Applied AI for Database Systems and Applications,
Held with VLDB 2019. Ed. by Berthold Reinwald and Bingsheng
He. 2019.

[2] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. “Towards
learning a partitioning advisor with deep reinforcement learn-
ing.” In: Proceedings of the Second International Workshop on Ex-
ploiting Artificial Intelligence Techniques for Data Management,
aiDM@SIGMOD 2019, Amsterdam, The Netherlands, July 5, 2019.
Ed. by Rajesh Bordawekar and Oded Shmueli. ACM, 2019, 6:1–
6:4. doi: 10.1145/3329859.3329876. url: https://doi.org/
10.1145/3329859.3329876.

[3] Marius Gassen, Benjamin Hättasch, Benjamin Hilprecht, Nadja
Geisler, Alexander Fraser, and Carsten Binnig. “Demonstrat-
ing CAT: Synthesizing Data-Aware Conversational Agents for
Transactional Databases.” In: Proc. VLDB Endow. 15.12 (2022),
pp. 3586–3589. doi: 10.14778/3554821.3554850. url: http:
//www.vldb.org/pvldb/vol15/p2335-gassen.pdf.

[4] Johannes Wehrstein, Benjamin Hilprecht, Benjamin Olt, Man-
isha Luthra, and Carsten Binnig. “The Case for Multi-Task
Zero-Shot Learning for Databases.” In: AIDB@VLDB 2022, 4th
International Workshop on Applied AI for Database Systems and
Applications, Held with VLDB 2022, Monday, September 5, 2022,
Sydney, Australia. Ed. by Umar Farooq Minhas and Yingjun Wu.
2022.

Due to the nature of the synopsis and for better readability, se-
lected paragraphs from these publications were transferred verbatim
throughout the synopsis without explicit labeling as suggested in the
department regulations “Kumulative Dissertation und Eigenzitate in
Dissertationen” (21.09.2021) §1.

xvi

https://doi.org/10.14778/3551793.3551799
https://doi.org/10.14778/3551793.3551799
http://www.vldb.org/pvldb/vol15/p2483-hilprecht.pdf
http://www.vldb.org/pvldb/vol15/p2483-hilprecht.pdf
https://doi.org/10.1145/3329859.3329876
https://doi.org/10.1145/3329859.3329876
https://doi.org/10.1145/3329859.3329876
https://doi.org/10.14778/3554821.3554850
http://www.vldb.org/pvldb/vol15/p2335-gassen.pdf
http://www.vldb.org/pvldb/vol15/p2335-gassen.pdf

A C K N O W L E D G M E N T S

First and foremost, I would like to express my gratitude to Prof.
Dr. Carsten Binnig for being an incredible advisor who has always
inspired me to grow both personally and academically. He has been a
truly ambitious, ingenious, motivating, and supportive mentor over
the years.

I would also like to thank Prof. Dr. Immanuel Trummer for readily
taking the time to review this dissertation.

My colleagues at the Data Management Lab at TU Darmstadt have
made the last years very enjoyable for me. I am sincerely grateful
for the supportive atmosphere, the feedback on ideas and work, and
the excellent discussions we had, as well as the numerous after-work
events. My thanks also go to Mona, who has always helped me with
hurdles big and small during my time in the lab.

Fortunately, in the past years, I had the chance to work with great
people on many projects, including Prof. Dr. Andreas Schmidt, Prof.
Dr. Kristian Kersting, Prof. Dr. Uwe Röhm, Patrick Schramowski, Dr.
Alejandro Molina and Dr. Moritz Kulessa, from whom I could learn
a lot. I would also like to thank my colleagues, including Lasse, Nils,
and Matthias for the many nice evenings after work.

I am also very grateful to my parents, brother, and friends for their
constant support. Finally, I would like to thank Laura for not only
helping me through the downs of this time but also celebrating the
ups with me.

xvii

C O N T E N T S

i synopsis

1 introduction 3

1.1 The Need for Database Adaption 3

1.2 Towards Learned Database Components 4

1.3 Limitations of Workload-Driven Learning 6

1.4 Data-Efficient Learned Database Components 7

2 data-efficient learned database components 11

2.1 Data-Efficient Workload-Driven Learning 11

2.2 Data-Driven Learning 15

2.3 Zero-Shot Learned Components 18

3 data-efficient workload-driven learning 21

3.1 Simulation for Data-Efficient Learned Partitioning 21

3.1.1 Partitioning as a Physical Design Problem 22

3.1.2 Towards a Learned Partitioning Advisor 23

3.1.3 Partitioning as an RL Problem 24

3.1.4 Key Findings 28

3.2 Differentiable Databases 29

3.2.1 FITable DBMSs 30

3.2.2 Key Findings for Fittable Cost Models 32

3.3 Discussion 33

4 data-driven learning 35

4.1 DeepDB: Data-Driven Learning for Cardinality Estima-
tion and AQP 35

4.1.1 Overview and Applications 36

4.1.2 Learning a Deep Data Model 38

4.1.3 Key Findings 41

4.2 ReStore: Data-Driven Completion of Incomplete Rela-
tional Datasets 43

4.2.1 Overview 43

4.2.2 Our Approach 45

4.2.3 Key Findings 47

4.3 Discussion 49

5 zero-shot learned components 51

5.1 Zero-Shot Learned Database Components 52

5.1.1 Overview 52

5.1.2 Key Challenges 53

5.2 Zero-Shot Learned Cost Estimation 55

5.2.1 Problem Statement 55

5.2.2 Our Approach 55

5.2.3 Assumptions and Limitations 57

5.3 Key Findings 58

xix

xx contents

5.4 Discussion 61

6 conclusion and outlook 63

6.1 Data-Efficient Learned Database Components 63

6.2 Outlook 64

6.2.1 End-to-End Zero-Shot Databases 65

6.2.2 Practical Data-Driven Learning 66

6.2.3 Robustness and Debuggability 67

ii peer-reviewed publications

7 learning a partitioning advisor for cloud databases 71

7.1 Introduction 72

7.2 Overview 74

7.3 Partitioning as a DRL Problem 76

7.3.1 Background on DRL 77

7.3.2 Problem Modeling 79

7.4 Training Procedure 82

7.4.1 Phase 1: Offline Training 82

7.4.2 Phase 2: Online Training 83

7.5 Optimizations for Workload Changes 85

7.6 Model Inference 87

7.7 Experimental Evaluation 88

7.7.1 Workloads, Setup and Baselines 88

7.7.2 Exp. 1: Offline Training 91

7.7.3 Exp. 2: Online Training 93

7.7.4 Exp. 3: Adaptivity to Data & Workload 94

7.7.5 Exp. 4: Other Learned Approaches 96

7.7.6 Exp. 5: Adaptivity to Deployment 98

7.8 Related Work 99

7.9 Conclusion and Future Work 100

7.10 Acknowledgments 101

8 dbms fitting : why should we learn what we al-
ready know? 103

8.1 Introduction 104

8.2 Vision: A FITable DBMS 107

8.2.1 Basic Idea of Fitting 107

8.2.2 The Bigger Picture 108

8.3 Case Study: A fittable Cost Model 109

8.3.1 The Need for better Cost Models 110

8.3.2 Fitting a Cost Model 111

8.3.3 Initial Results 113

8.4 Conclusion 117

9 deepdb : learn from data , not from queries! 119

9.1 Introduction 120

9.2 Overview and Applications 121

9.3 Learning a Deep Data Model 123

9.3.1 Sum Product Networks 123

contents xxi

9.3.2 Relational Sum-Product Networks 125

9.3.3 Learning Ensembles of RSPNs 127

9.4 Query Compilation 128

9.4.1 Simple COUNT Queries 129

9.4.2 Other Aggregate Queries 133

9.5 DeepDB Extensions 134

9.5.1 Support for Confidence Intervals 134

9.5.2 Support for Updates 135

9.5.3 Ensemble Optimization 136

9.6 Experimental Evaluation 136

9.6.1 Experiment 1: Cardinality Estimation 137

9.6.2 Experiment 2: AQP 143

9.7 Related Work 147

9.8 Conclusion and Future work 148

9.9 Acknowledgments 148

10 restore- neural data completion for relational

databases 149

10.1 Introduction 150

10.2 Overview 152

10.2.1 Problem Statement 153

10.2.2 Our Approach 153

10.2.3 Discussion 155

10.3 Learned Completion Models 157

10.3.1 Background on Autoregressive Models 157

10.3.2 Simple Completion Models 157

10.3.3 Schema-Structured Completion Models 159

10.3.4 Learning on Complex Schemata 160

10.4 Query-Driven Data Completion 161

10.4.1 Overview of Query Processing 161

10.4.2 Single Incomplete Table in a Query 162

10.4.3 Multiple Incomplete Tables in a Query 164

10.4.4 Additional Cases for Data Completion 165

10.4.5 Further Optimizations 166

10.5 Model and Path Selection 166

10.6 Completion Confidence 168

10.6.1 Simple Case 168

10.6.2 General Case 169

10.7 Experimental Evaluation 170

10.7.1 Datasets and Implementation 170

10.7.2 Exp. 1: Data Completion on Synthetic Data 172

10.7.3 Exp. 2: Data Completion on Real Data 174

10.7.4 Exp. 3: Query Processing 177

10.7.5 Exp. 4: Accuracy and Performance Aspects 177

10.8 Related Work 180

10.9 Conclusion and Future Work 181

xxii contents

11 one model to rule them all : towards zero-shot

learning for databases 183

11.1 Introduction 184

11.2 Zero-Shot Learning for Databases 186

11.2.1 Overview of the Approach 186

11.2.2 Key Challenges 187

11.3 Case Study: Cost Estimation 190

11.3.1 Zero-Shot Cost Estimation 190

11.3.2 Initial Evaluation 191

11.4 Beyond Cost Estimation 194

11.4.1 Physical Design and Knob Tuning 194

11.4.2 Query Optimization 195

11.4.3 Discussion 196

11.5 Looking into the Future 197

11.6 Acknowledgments 198

12 zero-shot cost models for out-of-the-box learned

cost prediction 199

12.1 Introduction 200

12.2 Overview 202

12.2.1 Problem Statement 203

12.2.2 Our Approach 203

12.2.3 Assumptions and Limitations 205

12.3 Zero-Shot Cost Models 206

12.3.1 Query Representation 206

12.3.2 Inference on Zero-Shot Models 209

12.3.3 Training Zero-Shot Models 211

12.3.4 Deriving Data Characteristics 211

12.4 Robustness of Zero-Shot Models 212

12.4.1 Estimating the Generalization Performance 213

12.4.2 Tackling Workload and Data Drifts 214

12.5 A New Benchmark 214

12.5.1 Design Decisions 214

12.5.2 Datasets 215

12.5.3 Workloads and Traces 215

12.6 Experimental Evaluation 216

12.6.1 Exp 1: Zero-Shot Accuracy on Unseen Databases 217

12.6.2 Exp 2: Zero-Shot vs. Workload-Driven 219

12.6.3 Exp 3: Generalization 221

12.6.4 Exp 4: Efficiency of Training and Inference 224

12.6.5 Exp. 5: Ablation Study 225

12.7 Related Work 228

12.8 Conclusion and Future Work 229

12.9 Acknowledgments 229

bibliography 231

A C R O N Y M S

ML Machine Learning

DBMS Database Management System

RL Reinforcement Learning

UDF User-defined Function

AQP Approximate Query Processing

DNN Deep Neural Network

SPN Sum-product Network

RSPN Relational Sum-product Network

xxiii

Part I

S Y N O P S I S

1
I N T R O D U C T I O N

Databases are the backbone for managing data in many software
systems deployed today. However, due to the increasing variety in
workloads, data and hardware designs, significant manual and en-
gineering efforts are required to adapt their design. Hence, it was
recently proposed to instead learn the design of database components,
which reduces the efforts to adapt databases and can even improve the
end-to-end system performance. However, state-of-the-art approaches
require a costly training data collection for every new database1 they
should be trained for.

In the following, we will first discuss how the diversity in workloads,
data and hardware deployments can be addressed in the database
design and afterwards discuss how learned database components
can be leveraged to address this challenge. We will then describe the
fundamental limitations of such approaches today and introduce the
concrete contributions of this dissertation.

1.1 the need for database adaption

In particular due to the widespread adoption of cloud databases [8, 30,
122, 189], there is an increasing diversity both in the observed data and
workloads [155, 174] but also in the different hardware configurations.
There are two main directions to address this increasing complexity
in the design of DBMSs: (i) configurable databases, which allow the user
to adapt and tune the system and (ii) specialization, where database
components are tailored to a particular deployment. However, both
approaches incur significant manual or engineering efforts and yet do
not always enable an optimal system performance.

First, many databases today offer configurability by introducing
tuning knobs [3, 18, 37] such as the buffer pool size and allowing
users to decide on the physical design, e.g., by creating indexes [171]
or materialized views [4]. While this enables the specialization of the
database to some extent, it comes with two major downsides: the
tuning itself is non-trivial due to the complex interactions of tuning
knobs, workloads and the physical design and thus a significant man-
ual effort is often required to tune the knobs. While there have been
approaches to alleviate this problem using automated configuration
[4, 6, 134], even with automation the end-to-end system performance

1 Throughout this dissertation, we will refer to a new schema along with the data and
workload as database. Hence, we explicitly do not refer to different database systems
using this term.

3

4 introduction

might still be suboptimal. The reason is that the underlying database
components but also automation approaches heavily rely on heuristics
inherently in their design. For instance, automated physical design
advisors often propose designs, which are far from optimal and could
be improved significantly [4, 81, 99].

A second approach to cope with the increasing complexity is the
specialization of database components to specific deployment condi-
tions such as new types of hardware. This however incurs a significant
engineering overhead. For instance, query optimizers frequently have
to be adapted by engineers to reflect novel hardware setups with
different network or storage costs [93], new physical layouts such
as column stores [159] or optimizations such as materialized views
[55], all of which have a significant impact on which physical plans
are suitable for a particular query. Over the years, this resulted in
highly complex code that could only be maintained by a few experts
[112]. However, despite all the engineering efforts worth thousands of
person-engineering-hours [112], query optimizers still frequently do
not come up with efficient physical execution plans [91, 93].

Hence, both specialization and configuration incur significant man-
ual or engineering overheads but still cannot guarantee an optimal
system performance due to the reliance on heuristics.

1.2 towards learned database components

In contrast to database configuration or manual specialization, the idea
of learned database components is to leverage ML to tailor a component
to particular hardware, dataset and workload [83]. The core idea is
to replace previously manually designed parts of a database by a
ML model and thus learn a suitable design automatically. This not
only allows for automatic adaption of database components but also
often yields superior components. This is due to the fact that ML can
typically cope with the underlying complexity of the problem (e.g.,
the before mentioned interactions of physical design and workloads)
while not relying on heuristics. Hence, the search space of possible
designs is captured more holistically and thus the performance can
often be further improved.

In fact, many DBMS components have successfully been replaced
by learned counterparts including query optimizers [109, 112, 184],
cardinality [79, 185, 186] and cost estimators [113, 161] and even
indexes [34, 35, 48, 80, 84] or schedulers [107, 153]. In addition, ML-
based approaches have been devised to optimize the physical design
of databases, e.g., by selecting materialized views [59, 99, 188] or
indexes [33, 82, 140, 193]. We will now first describe the advantages of
learned DBMS components before we introduce the main paradigm
today, namely workload-driven learning.

1.2 towards learned database components 5

DB

Training
On the same database

1) Execute workload 2) Collect results
(e.g., cardinalities)

SELECT...

SELECT...

1M

1.8M

Inference
Based on observing representative workload

3) Train model

SELECT... 1.2M

Unseen query Prediction (e.g.,
cardinality estimate)

Figure 1.1: Training and Inference of Workload-driven Models. For the train-
ing, we first have to observe a representative workload (e.g.,
queries along with their cardinalities). At inference time, the
model can be used on the same database to obtain predictions
(e.g., cardinalities for unseen queries).

The resulting learned DBMS components have several advantages
compared with manually designed ones. First, they reduce the en-
gineering effort to adapt the respective component. In particular, in
many cases, novel workloads, data distributions or hardware charac-
teristics, which have previously required to manually redesign the
component, can now be handled by simply retraining the respective
ML model. This significantly reduces the engineering efforts for such
adaptions.

Second, in some cases the learned counterparts can even outperform
existing DBMS components. The reason is that the latter are usually
based on general-purpose heuristics and hence not optimized for a
specific database instance that comes with a particular combination of
data, workload and hardware. In contrast, learned components can be
tailored to the peculiarities of a particular instance and are thus more
specialized. For instance, a learned query optimizer could observe
typical User-defined Functions (UDFs) that are used and observe their
selectivities which are useful for query optimization [155]. While it
is hard to reason about general UDFs, in the case of a single DBMS
instance, there are typical patterns that can be exploited, which a
specialized learned component can leverage. In general, it was shown
that in many cases such instance-optimized components outperform
classical designs [79, 83, 109].

The predominant approach of designing such learned DBMS com-
ponents today is workload-driven learning, where the main idea is to
first observe a representative set of queries executed on a database and
afterwards use these as training data for an ML model (cf. Figure 1.1).
For instance, for a learned cardinality estimator [79], we would run
thousands of queries with different join paths and predicates and
observe the result size (i.e., the cardinality). These pairs of queries and
cardinalities would then serve as training data for an ML model. If we
now want to estimate the cardinality of an unseen query at runtime,
we would feed it into the trained model, which would in turn output
a cardinality estimate. Since the model has internalized potential cor-
relations in the data by observing cardinalities of previously executed

6 introduction

training queries, the result will likely be more accurate than those of
classical histogram-based approaches, which assume independence.

While a large class of the learned database components are based
on Reinforcement Learning (RL) [59, 82, 89, 99, 112, 184, 192], the
approaches generally still follow the workload-driven paradigm. In
particular, in RL, the idea is to solve a task by allowing an agent
to repeatedly interact with an environment by taking actions [148].
During training, the agent observes rewards and consequently learns
which actions likely result in high rewards. Over time, the agent will
thus be able to effectively solve the task at hand. To demonstrate how
RL can be leveraged for learning DBMS components, let us consider
the task of query optimization [112]. In this example, the environment
is a particular database, the state could be a partial physical query
plan and actions are to add a particular operator to the current plan.
Hence, the agent can incrementally add physical operations to the
current plan to derive the final execution plan. Our goal is to find
efficient execution plans and thus the reward is the negated execution
latency of the final resulting plan. During the training, the agent learns
to suggest efficient physical plans for the given queries by trial and
error. Importantly, the training data in such approaches is thus still
comprised of queries, which are executed on the database at hand,
and thus the resulting approaches are similarly workload-driven.

1.3 limitations of workload-driven learning

While workload-driven learned DBMS components have successfully
been applied to a large set of database tasks, they cause repeated high
costs for training data collection. We will next provide more details
on this fundamental limitation.

First, workload-driven learned DBMS components typically require
ten thousands of query executions as training data on the database
they should be used for. For instance, learned cardinality estimators
[79, 161] use approximately 100,000 training queries, i.e., pairs of
queries associated with their observed output cardinalities. Training
workloads of this size already take approximately 34 hours to be exe-
cuted on a medium-sized database of just several GBs using Postgres
[72]. These costs, of course, increase significantly for large databases
and can easily be a barrier to the use of learned database components.
For instance, it was reported that the training data collection of just
ten thousand queries for a database size of 1 TB would require more
than six months [173]. Such immense costs for training data collection
are unacceptable in many cases and render workload-driven learning
impractical especially for large-scale databases.

Second, these high costs of training data collection are repeated
every time the underlying database is updated [72]. For instance,
due to inserts the cardinalities of the training queries will no longer

1.4 data-efficient learned database components 7

be valid and thus the output cardinalities of the trained model will
become inaccurate since they are based on stale training data. The
only way to refresh the underlying model is to retrain it using queries
that reflect the new data in the database and thus we again have to
run many queries on the updated database and use these to train the
model.

Finally, the resulting models are tied to a single database [62], i.e.,
a single schema, dataset and workload. As soon as we encounter a
new database, we will not be able to reuse the workload-driven model
and thus have to again incur the high costs of training data collection.
The reason is that the architectures of workload-driven models come
with the inherent assumption that the underlying database is fixed
and thus they will either not be usable at all for a new database or
the predictions will be very inaccurate since the model quality will
degrade heavily.

Overall, workload-driven models are thus not data-efficient since
they (i) require thousands of training data samples in the form of
query executions, which is costly for larger databases, and (ii) since
the training data becomes unusable in case of updates of the same
database or a new database. This renders workload-driven models
especially unusable for cloud database providers (e.g., Snowflake and
Redshift) since the high costs of training data collection are incurred
for every new customer that typically comes with a new schema,
dataset and workload.

1.4 data-efficient learned database components

The dissertation proposes data-efficient learned database components
that reduce or completely eliminate the previously described high
costs of training data collection. We believe this has the potential to
increase the traction of using learned components in practical systems -
especially for cloud databases, where costs can be significantly reduced
for new customers.

In this dissertation, instead of showing how the data-efficiency of
individual components can be improved, we will introduce three
conceptual approaches, that are applicable to a broad set of learned
components. To validate the feasibility, we will also demonstrate how
these can be used to instantiate learned approaches for concrete DBMS
tasks that outperform the state-of-the-art with significantly less or no
training queries at all for an unseen database. In particular, we have
intentionally chosen tasks that have are central in a DBMS system but
difficult to solve today such as cardinality estimation, cost estimation
or physical design tuning.

contributions We propose three different directions to enable
data-efficient learned DBMS components: (i) improving the data-

8 introduction

efficiency of workload-driven approaches, (ii) data-driven learning and
(iii) zero-shot learned components. For each direction, the underlying
conceptual ideas are validated by solving particular database tasks as
additional individual contributions.

1. The first direction of this dissertation is to improve the data-
efficiency of workload-driven models. Specifically, we propose
to bootstrap learned components using simulation [69], which
allows the models to learn the basic principles of the underlying
database problem by interacting with a simulation instead of a
real system. This can already significantly reduce the necessary
number of training queries. Moreover, we suggest models that
explicitly encode domain knowledge about databases [67]. Since
this reduces the number of parameters, we can train such models
with orders of magnitude fewer training queries.

2. The second direction of this dissertation is to introduce a paradigm
called data-driven learning, where the idea is to completely
avoid the use of queries as training data. Instead, we aim to
learn the data distribution present in a concrete database, which
is used at runtime to solve the task at hand. Specifically, we
show how the tasks of cardinality estimation and AQP can be
solved with data-driven models, which outperform the state-of-
the-art without requiring any training queries [72]. Moreover,
we demonstrate that the underlying ability to learn the data
distribution of relational schemas also helps to correct the error
induced by incomplete datasets in analytics [63]. While the need
for training queries is eliminated, data-driven learning is only
applicable to a subset of tasks where it is sufficient to know the
data distribution.

3. The third direction of this dissertation is thus to suggest zero-shot
learned database components [62] that can be used also for tasks
where the data distribution alone is insufficient. The main idea
is to pretrain a learned component on a diverse set of databases
and workloads, which allows the model to generalize to unseen
databases and workloads out-of-the-box, i.e., without observing
additional training queries.

outline The synopsis continues in Chapter 2, where the three
directions along with the corresponding key ideas are set into per-
spective. Afterwards, we provide more details on each individual
direction in Chapters 3 to 5, which correspond to the publications
in Part ii. In particular, Chapter 3 introduces approaches to improve
the data-efficiency of workload-driven models using simulation and
incorporating domain knowledge. Chapter 4 introduces the idea of
data-driven learning along with the applications for cardinality esti-
mation, AQP and analytics over incomplete data. In Chapter 5, the

1.4 data-efficient learned database components 9

contributions towards zero-shot learned database components are
summarized. Finally, Chapter 6 concludes the synopsis with a per-
spective about the contributions towards data-efficient learned DBMS
components and proposes future research directions and open chal-
lenges.

2
D ATA - E F F I C I E N T L E A R N E D D ATA B A S E
C O M P O N E N T S

In the following chapter, we will provide an overview of the direc-
tions proposed in this dissertation to enable data-efficient learned
database components. The general structure follows the three direc-
tions previously introduced in Section 1.4, namely (i) improving the
data-efficiency of workload-driven learning, (ii) data-driven learning
and (iii) zero-shot learned components.

As depicted in Figure 2.1, in the first direction, the main criticism
of workload-driven learning of expensive training data collection is
already alleviated since the number of required training queries is
reduced significantly. In contrast, the latter two directions completely
eliminate the need to collect training data for unseen databases by
refraining from using queries as training data (data-driven learning) or
enabling models that generalize to unseen databases (zero-shot learned
components). While data-driven learning and zero-shot learning could
be seen as alternative paradigms for efficient data-driven learning, we
will demonstrate that depending on the concrete task, one or the other
approach should be applied and they can even be used in combination.

To validate each of the three directions, we implemented the ideas
for a concrete set of database tasks. This yielded data-efficient learned
database components that outperform the state-of-the-art approaches
while requiring fewer or no training queries at all. In this chapter, we
will similarly introduce the concrete database tasks that we tackled.

2.1 data-efficient workload-driven learning

In the first direction, we propose to alleviate the repeated high costs of
workload-driven learning by reducing the number of training queries
that have to be observed in order to train a model. In general, we
thus still rely on the paradigm of workload-driven models that are
specialized for a single database but reduce the costs of training data
collection.

In particular, we follow two approaches: simulation to bootstrap the
learned components for a new database, which reduces the number of
required training queries and differentiable programming where domain
knowledge about the component is incorporated. The two approaches
are validated on the important tasks of partitioning design as part of
the physical design tuning and the cost estimation task, respectively.

11

12 data-efficient learned database components

DB1

Training
Workload1

(10K+ queries)
+

Learned
Component1

DB2

Training
Workload2

(10K+ queries)
+

Learned
Component2

DB1

Training
Workload1

(fewer queries)
+

Learned
Component1

DB2

Training
Workload2

(fewer queries)
+

Learned
Component2

DB1

Learned
Component1

DB

Zero-Shot
Component

DB

DB + Queries

pretrain (once) reuse (any unseen DB)

DB1

DB2

Workload-Driven Learning I. Data-Efficient Workload-Driven Learning

II. Data-Driven Learning III. Zero-Shot Learning

sample

DB2

Learned
Component2

sample

Expensive training data collection Reduce number of training data queries

Learn data distribution (avoid training queries) Generalize to unseen DBs without additional training

+ Queries

+ Queries

Figure 2.1: Proposed Directions towards Data-Efficient Learned Database
Components. (i) We first aim at improving the data-efficiency of
workload-driven learning, which however merely alleviates the
need for training queries for every new database. We thus propose
the paradigms of (ii) data-driven learning where we learn from the
data distribution instead and (iii) zero-shot learned components,
which generalize to unseen databases out-of-the-box.

Simulation for Data-efficient Learned Partitioning

In workload-driven learning, a new model has to be trained for ev-
ery single database [79, 161]. Consequently, the general principles of
the database task have to be learned for every new database from
scratch. For instance, for database partitioning we have to observe
for every new database that network shuffles for joining large tables
are expensive [134]. This makes workload-driven learning particularly
costly since even basic principles of the underlying problem have to be
learned by observing many training queries for every new database.

Hence, the idea of simulation is to bootstrap the learned compo-
nent using a simplified model that reflects the basic principles of the
underlying database task, e.g., that a partitioning that requires many
large tables to be shuffled over the network is not optimal. In partic-
ular, the simulation model is used to generate training examples for
an unseen database without actually executing queries. While these
training samples cannot possibly convey all subtle trade-offs of the
underlying problem, they can reflect the basic principles. The learned
component will thus first be trained on this artificial training data to
learn the basic principles and afterwards on queries executed in the
real database to further learn the trade-offs, which are not reflected in
the simulation model. This can help to reduce the number of training
queries, which are required in total.

2.1 data-efficient workload-driven learning 13

In the context of this dissertation, we aimed at designing a learned
model to decide on the database partitioning. In this task, we are
interested in how tuples of tables should be distributed among nodes
in a distributed cluster (e.g., by replicating all tuples or sharding based
on some key column). This task is typically decided manually by users
in the cloud but is non-trivial and has a significant impact on the
overall performance of the system. The reason is that the partitioning
determines how many network shuffles of tuples are required in order
to execute distributed joins, which is a costly operation. Previous work
on automated partitioning [3, 127, 145] formalizes the problem as
an optimization problem and thus relies on cost models to estimate
the runtime of queries for different partitionings. Unfortunately, cost
estimators are often largely under- or overestimating the true query
runtime [91] and thus such approaches are prone to select suboptimal
partitionings.

In contrast, we propose to train a RL agent for partitioning, where
the agent explores different partitionings and their impact on the
workload runtime by trial-and-error. Hence, our approach is not af-
fected by inaccurate cost estimates. Over time, it will learn, which
partitionings are suitable for a particular workload. However, this
requires that many training queries are executed for various parti-
tionings, which is costly. Hence, we designed a simplified cost model
that approximates the query runtime by estimating the network cost
for a particular workload, which we then use to bootstrap the agent.
As we have shown, this can reduce the number of required training
queries. Overall, the agent was able to suggest partitionings, which
improve the system performance while outperforming state-of-the-art
approaches and heuristics. More details are presented in Section 3.1
and the corresponding publication in Chapter 7.

Incorporating Domain Knowledge using Differentiable Programming

In addition, we suggest including domain knowledge about the spe-
cific database task to be solved. This can significantly reduce the
number of parameters of the ML model and in turn the number of
required training queries. We will first describe the basic idea of differ-
entiable programs in databases and afterwards provide more details
on the concrete use case of cost estimation.

The approach is inspired by a recent shift in ML called differentiable
programming towards simpler white-box models [176] as opposed to
Deep Neural Networks (DNNs) with increasingly many parameters.
For instance, differentiable programming has successfully been used
in computer vision [98] to include domain knowledge about image
features (e.g., edge detectors) or to learn a physics engine where the
laws of physics are encoded [9].

14 data-efficient learned database components

The idea for deriving data-efficient learned database components
is that database developers sketch the design of the component by
implementing a differentiable program, i.e., a program that already
encodes the basic behavior of a component but with learnable param-
eters to specialize the code to a particular database, hardware and
workload. As such, the domain knowledge about the component is
already encoded. The parameters of the differentiable program are
then learned via backpropagation using training queries just like in
workload-driven models. However, since there are fewer parameters,
we only need to observe a fraction of queries required for workload-
driven learning.

As a concrete use case, we consider cost estimation, i.e., predicting
the latency of a query. In particular, we modeled the general run-
time complexity of different operators (e.g., by modeling the runtime
of a scan operation as a linear function) by defining differentiable
programs. We then used query latencies as training data to fit the
parameters and could afterwards predict the costs for other queries.
We could demonstrate that for simple queries we could predict the
latencies as accurately as workload-driven models [113, 161] but using
orders of magnitude fewer training queries. We provide more details
in Section 3.2 and the corresponding publication in Chapter 8.

Discussion

Both directions can significantly improve the data-efficiency of workload-
driven models for new databases. However, they still do not fully
eliminate the need for training queries on every new database. In
addition, simulation and in particular differentiable programming can
introduce a major engineering overhead.

In particular, the simulation approach requires a simplified model
that captures the basic trade-offs of the underlying database task,
which can be challenging to design. The reason is that ML is often
applied for database tasks with complex interactions, which are hard
to model explicitly even in a simplified model. However, even when
the simulation model is overly simplistic, the ML model can still learn
the more involved effects by observing training data. This is different
in the differentiable programming approach. Here, the general logic
has to be completely defined in the program which is challenging for
more complex problems. For instance in cost estimation, operators
are known to have complex interactions such as caching effects. Mod-
eling all such effects explicitly (which is necessary for differentiable
programming) is challenging.

Hence, the costly training data collection of workload-driven learn-
ing is not completely eliminated and additional complexity in the
development process of learned database components is introduced.

2.2 data-driven learning 15

2.2 data-driven learning

The main drawback of workload-driven training is the expensive
training data collection. While the previously introduced approaches
reduce the number of required query executions and thus improve the
data-efficiency, this effort is still a burden if models should be trained
for new databases. We thus propose a radically different approach,
where we only learn from the data in the database itself instead
of query executions, which completely eliminates the high costs of
training data collection.

In particular, in our approach of data-driven learning, which is the
second direction proposed in this dissertation, the idea is to instead
learn the data distribution to solve a database task, which completely
eliminates the need for training queries. We will now introduce two
concrete learned components based on this paradigm: DeepDB, which
enables cardinality estimation and AQP, as well as ReStore, which
tackles analytics over incomplete relational data.

DeepDB: Data-Driven Learning for Cardinality Estimation and AQP

In DeepDB, the idea is to learn generative ML models over the rela-
tional schema of a database to capture the data distribution. Hence,
the models only require samples of the data to be trained and no
training queries at all. We can then exploit this knowledge about the
data distribution at inference time to solve the tasks such as cardinality
estimation or AQP. We will now first introduce both tasks that are
tackled using DeepDB before we highlight the main contributions.

In cardinality estimation, the goal is to estimate the result size of
intermediate joins with predicates and it is crucial for join ordering
and query optimization [91]. Traditionally, cardinalities are estimated
using simple histogram-based methods that assume independence.
However, due to correlations in the data, which are not captured in
histograms, the cardinalities are orders of magnitude off in practice
[93]. Hence, workload-driven models [79, 126, 154, 161] were sug-
gested that observe ten thousands of different queries along with their
cardinalities to predict the cardinalities for unseen queries at runtime,
which can provide more accurate estimates but are costly due to the
training data gathering.

In contrast, in DeepDB, we only require samples of the database
to train the ML models. For instance, if we want to estimate how
many customers in our database are from Europe and younger than
thirty, we can approximate this query by estimating the probability
of the joint event (younger than thirty and from Europe) using the
generative model and multiplying it with the number of tuples in the
database to obtain an estimate. While this basic technique of reducing
the problem to probability estimation was previously suggested, prior

16 data-efficient learned database components

approaches [60, 186] do not allow cardinality estimates for arbitrary
ad-hoc joins in the schema. In particular, the approaches do not scale
to larger schemas since all potential join paths of queries require a
different model and thus for larger schemas the number of models to
support different join paths grows combinatorically. In DeepDB, we
instead propose a method to support arbitrary equi-joins with a linear
number of models.

In AQP [22], the goal is to approximate the result of a potentially
long-running query quickly, which is in particular interesting for
interactive applications [2]. Analogously to cardinality estimation,
capturing the data distribution using generative models is sufficient to
approximate many queries. For instance, if we are now interested in
the average age of customers in Europe, we could query our generative
model for the conditional expectation of the age given that a customer
is from Europe. In contrast to DeepDB, prior approaches suffer heavily
from the curse of dimensionality and thus do not scale to larger
schemas or wider tables [20, 105].

DeepDB introduces two main contributions: Relational Sum-product
Networks (RSPNs) and probabilistic query compilation. RSPNs are
Sum-product Networks (SPNs) [118, 141] optimized for relational data,
i.e., generative models that model the probability distribution of joins.
Importantly, RSPNs can also be updated efficiently, which makes it
cheaper to adapt them to inserts, updates and deletes of the underlying
database. However, if used naively, we would require a single RSPN
for every possible join path in the schema (e.g., customer./order,
order./orderline, customer./order./orderline,. . .) similar to prior
work [60, 186], which does not scale to larger schemas. Instead, we
introduce probabilistic query compilation, which enables arbitrary
equi-joins since we are able to combine RSPNs to approximate a
larger join and are also able to approximate a subjoin of an RSPN. In
the experimental evaluation, we demonstrate that DeepDB provides
cardinality estimates, which are orders of magnitude more accurate
than those of both traditional approaches based on histograms as well
as workload-driven models while requiring no training queries at all.
In addition, DeepDB also supports accurate AQP results for a large
class of analytical queries outperforming the state-of-the-art. DeepDB
is discussed in more detail in Section 4.1 and the corresponding
publication in Chapter 9.

ReStore: Data-Driven Completion of Incomplete Relational Datasets

In fact, learning the data distribution of a relational database is also
useful for other tasks beyond cardinality estimation and AQP. In par-
ticular, we also considered analytical queries over incomplete datasets,
where capturing the data distribution can help to compensate for

2.2 data-driven learning 17

errors due to incompleteness. We will now first provide an intuition
on the problem and afterwards discuss the concrete contributions.

Classically, databases for analytical query processing come with the
implicit assumption that the data in all tables is complete, i.e., that
no tuples are missing. Traditionally, this assumption often held since
the data mostly came from well-curated internal sources. However,
for analytics it is common to augment the datasets with open data,
which can quickly result in incomplete datasets. Consequently, the
query results can deviate significantly in incomplete datasets and
result in erroneous conclusions. For instance, let us assume we want
to derive a housing database in the US and have all neighborhoods
listed in the corresponding table but in the apartments table we only
have all entries for some states. The missing apartments could mainly
be located in neighborhoods with high average rents and thus if we
computed the average rent in a SQL query the result will be biased.

The only way to deal with missing tuples in a relational database
today is to manually complete the data, which is very time-consuming
and often not even possible. While there has been already signifi-
cant work to impute missing values (e.g., replace a missing attribute)
including learned approaches [146, 181, 187] or approaches to com-
pensate for missing tuples in a single table [131], there is no system
that can handle incomplete tables in a relational schema where tuples
are missing and might introduce a bias.

This task can be tackled using ReStore, which follows a data-driven
approach. The main idea is to use the complete tables in a database
as evidence to synthesize the missing tuples even if the missing data
introduces a bias in the incomplete table. For instance, in the housing
database example, we would synthesize apartment tuples for the
neighborhoods with potentially higher rents. Importantly, we exploit
the data distribution in this synthesis process. For instance, if we
know that in neighborhoods with a higher population density the
rents tend to be higher, we will also synthesize apartment tuples
with higher rents for such neighborhoods and thus compensate for
the bias. Hence, we can again leverage the data distribution in the
database to solve the database task. Specifically, we introduce neural
completion models which are tailored to the completion of relational
datasets. In the evaluation, we demonstrate that this helps to reduce
the error of aggregate queries by up to 390% on real-world data. We
detail the presentation of ReStore in Section 4.2 and the corresponding
publication in Chapter 10.

Discussion

Overall, data-driven learning realizes the vision of solving database
tasks without the expensive training data collection of workload-
driven learning. Interestingly, the results are often even superior to

18 data-efficient learned database components

workload-driven alternatives, e.g., in cardinality estimation. To achieve
this, in fact we only have to train models on samples of the database
to capture the data distribution.

However, data-driven learning can only be applied to tasks where
knowledge about the data distribution is sufficient. Most importantly,
tasks that require information about the workload are not supported
since it is crucial to observe query executions for such tasks (e.g., to
solve cost estimation we have to observe queries to capture runtime
characteristics of operators). Note that while data-driven learning
cannot solve such tasks in isolation, it might still provide informative
features. For instance, the intermediate cardinalities of a query are an
important signal for cost predictions since they determine the size of
intermediate joins, which often dominate the runtime. We will provide
more details about this approach in the following chapter.

2.3 zero-shot learned components

As a third contribution, we propose so-called zero-shot learned database
components. As mentioned before, data-driven models eliminate the
costly training data collection in the form of query executions but are
not applicable to tasks that require information about the workload.
In contrast, workload-driven models support a broader range of tasks
(e.g., cost estimation) but are tied to a single database and thus the
costly training data collection is repeated frequently. As such, with
zero-shot learned components we strive to combine the benefits of
data-driven learning and the broad applicability of workload-driven
learning. We will first describe the general idea and discuss why
workload-driven models cannot simply be adapted to obtain zero-shot
models before we finally introduce our application of zero-shot cost
estimation.

The general idea behind zero-shot learning for databases is moti-
vated by recent advances in transfer learning such as GPT-3 [17]. In
particular, zero-shot database components are pretrained once on a va-
riety of different databases and thus allow the models to generalize to
unseen databases out-of-the-box, i.e., without having to run additional
training queries.

Unfortunately, it is not straightforward to derive zero-shot learned
components from workload-driven counterparts. The reason is that the
underlying assumption that the database is fixed is deeply embedded
in such model architectures and it is thus not sufficient to pretrain such
a model on several databases to obtain a zero-shot model. For instance,
to featurize that a certain column is queried, workload-driven models
typically one-hot encode the involved columns (by assigning a fixed
position in a binary vector to each column) [79, 112, 161]. However,
this featurization is inconsistent if applied to a different database since
the columns, which are assigned the same position in the vector, could

2.3 zero-shot learned components 19

have completely different data distributions or even data types. Hence,
even though the featurization seems to be identical to the model, the
actual encoded database is vastly different and thus the performance
of the model will deteriorate. Hence, to design zero-shot models, we
have to derive a representation of the database that is both informative
enough to solve the problem at hand but still has similar semantics
for different databases.

In our initial approach, we considered the task of cost estimation, i.e.,
predicting the query latency, which is important for query optimiza-
tion, physical design tuning, etc. Traditionally, this task is approached
using simplified cost models in the query optimizer [93]. However,
these are known to be a bad proxy for actual execution time. Moreover,
this task is non-trivial to solve due to complex interactions of operators
in the physical execution plan such as caching effects [113]. While
there has previously been research on learned cost estimation, exist-
ing approaches [112, 161] are workload-driven and thus the resulting
models cannot be generalized across databases.

As a core contribution to enable zero-shot cost estimation, we thus
introduce a model architecture that uses a representation of queries,
which generalizes across databases. Specifically, we suggest modeling
the query, for which we want to predict the costs along with the
involved tables, columns and predicates as a graph, where the graph
nodes are annotated with transferable features that can be derived from
any database. This enables a consistent representation across databases
and is the main prerequisite to enable a pretraining and generalization
across databases. In the experimental evaluation, we demonstrate
that zero-shot cost estimation enables accurate cost predictions for
unseen databases without any training queries on the test database.
In particular, workload-driven models require thousands of query
executions as training data to provide a similar performance.

As mentioned before, data-driven models provide the intermedi-
ate cardinalities as additional features for the graph representation,
which is an important signal to estimate the costs of potentially large
joins. Hence, rather than providing an alternative, we believe that in
many cases it can be beneficial to combine both zero-shot and data-
driven learning. We provide more details on our zero-shot learning in
Chapter 5 and the corresponding publication in Chapter 11.

3
D ATA - E F F I C I E N T W O R K L O A D - D R I V E N L E A R N I N G

In this chapter, we summarize the first steps of this dissertation to
alleviate the high costs of training queries for workload-driven models.
Specifically, we suggest reducing the number of required training
queries by (i) bootstrapping the components using simulation-based
approaches and (ii) incorporating domain knowledge.

As the first contribution in Section 3.1, we introduce a simulation-
based approach where in the first step a component learns the basic
concepts by interacting with a simplified simulation model and is
only afterwards further trained on actual query executions to learn
effects not captured in the simulation. This requires fewer actually
executed training queries since the model can already learn the basic
tradeoffs from the simulation model. As a concrete task, we consider
the database partitioning problem, which we will tackle using the
derived data-efficient models.

As a second contribution, we propose to incorporate domain knowl-
edge into the design of workload-driven components in Section 3.2.
Specifically, we suggest implementing database components using
differentiable programs with parameters that are learned by observ-
ing queries. Since differentiable programs come with significantly
fewer learnable parameters compared to workload-driven models, less
training data is required and thus fewer queries need to be observed.

Finally, we discuss the key findings in Section 3.3. The full details
of the corresponding publications can be found in Chapters 7 and 8.

3.1 simulation for data-efficient learned partitioning

As the first contribution of this dissertation, we suggest bootstrapping
learned components using simulations to alleviate the high costs of
training data collection. In particular, we will focus on the task of
database partitioning, which is an important design problem for cloud
data warehouses. We will first provide details on the problem of
database partitioning in Section 3.1.1, which we will tackle using a
data-efficient workload-driven approach (cf. Section 3.1.2), before we
discuss the key findings in Section 3.1.4.

publication The work on data-efficient learned partitioning is
published in the peer-reviewed publication “Learning a Partitioning
Advisor for Cloud Databases” in the Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020 [69], cf. Chapter 7.

21

22 data-efficient workload-driven learning

contributions of the author The contributions to the above
publication by Benjamin Hilprecht, the author of this dissertation, are
as follows. Benjamin Hilprecht is the leading author and was thus
responsible for the proposed approach for the learned partitioning ad-
visor, the experimental evaluation, and the manuscript. The co-authors
Uwe Röhm and Carsten Binnig contributed invaluable feedback. All
authors agree with the use of the publication for this dissertation.

3.1.1 Partitioning as a Physical Design Problem

We now first provide details on the problem of cloud database parti-
tioning. As previously mentioned, software-as-a-service offerings in
the cloud for data warehousing are becoming more and more popular.
Using these services, customers can easily deploy a database, define
their database schema, upload their data and then query the database
using a cluster of machines. While most steps of the provisioning are
automated, the partitioning, i.e., how tuples are physically distributed
to nodes in a distributed database, often has to be chosen manually
by customers in the cloud. For instance, in Azure’s Data Warehouse
but also in Amazon Redshift customers have to choose a partitioning
attribute of a table to split large tables horizontally across multiple
machines.

While optimally partitioning a database is a non-trivial task it has a
significant impact on the overall performance. For example, analytical
queries typically involve multiple joins over potentially large tables. If
two tables are co-partitioned on the join attributes they can be joined
locally on each node avoiding costly network transfers. Deciding for
complex schemata with many tables and possible join paths which
tables should be co-partitioned is a non-trivial task since this not only
depends on the schema but also on other factors such as table sizes,
the query workload (i.e., which joins are actually important and how
often tables are joined), or hardware characteristics such as network
speed and of course the database implementation itself.

There already exists a larger body of work to automate the physical
design of distributed DBMSs including the data partitioning [3, 127,
145]. These advisors formalize the problem as an optimization problem
and thus rely on cost models to estimate the runtime of queries
for different partitionings. However, this approach is unsuitable for
cloud providers: First, cloud providers typically allow customers to
deploy their DBMS solutions on various hardware platforms which
renders the problem of acquiring exact cost models a challenge on its
own. Second, even if the cost model is tuned for a given hardware
platform, optimizer cost estimates are still notoriously inaccurate [91]
resulting in non-optimal partitioning designs if existing automated
design approaches are used as we show in our experiments.

3.1 simulation for data-efficient learned partitioning 23

RL Agent

Action
Change Partitioning

Reward
Estimated Costs

(Custom Cost Model)

Environment: Simulation
Sampled WorkloadSimulated Partitioning

Environment: Sampled Database

Sampled Database
Customer

Partitioned
by c_key

Date

Replicated

ALTER TABLE
Customer_Sample
DISTRIBUTE BY

HASH(c_key);

RL Agent

Trained RL Agent

ALTER TABLE Customer
DISTRIBUTE BY HASH(c_key);

Optimized Partitioning

1 Offline Training 2 Online Training

3 Inference

Reward
Runtime on sampled DB

Q1:SELECT ...Q1:SELECT ...
Q1:SELECT ...

Sampled Workload

Q1:SELECT ...Q1:SELECT ...
Q1:SELECT ...

Observed Workload

Q1:SELECT ...Q1:SELECT ...
Q1:SELECT ...

Action
Change Partitioning

Figure 3.1: Overview of RL-based approach to Learn a Cloud Partitioning
Advisor. First, the advisor is bootstrapped using a simulation
model (1). In an optional online training phase (2), the RL-agent is
fine-tuned using actual query executions on different partitioning.
Finally, at inference time (3), the advisor can be used to suggest
partitionings for unseen workload mixes.

3.1.2 Towards a Learned Partitioning Advisor

The basic idea of our approach is thus to train an RL agent for each
cloud customer that learns the tradeoffs of different partitioning de-
signs for a given database schema and different workloads by trial
and error. Learning these tradeoffs is appealing since cost models are
known to be notoriously inaccurate [91] and would thus over- or un-
derestimate the benefits of certain partitionings. In contrast, RL agents
learn by choosing actions and observing rewards, which they seek to
maximize. In our setup, the environment is the DBMS which the agent
manipulates with actions that change the partitioning of individual
tables. During the training phase, the agent learns to minimize the
runtime of a given workload consisting of a mix of representative
queries. The agents thus learns the effects of different partitionings on
individual query latencies.

Naïvely, we could train the agent on the customer database directly
but this would require a high effort to collect the training data. For
instance, repartitioning a large database table can take several min-
utes to complete. Unfortunately, during the training phase, the agent
requires several of these actions to learn the effects. We therefore
separate the training process into two phases: (1) offline and (2) online
training. An overview of our approach is depicted in Figure 3.1. In the
offline training phase, the agent solely interacts with a “simulation”
of the customer database. Since the network is typically the bottleneck
of distributed joins, we developed a simple yet generic cost model

24 data-efficient workload-driven learning

focused on the network overhead required to answer a query given a
certain partitioning. In combination with the metadata (schema and
table sizes) about the customer database, we can estimate the query
costs given a partitioning in our simulation. These estimates are used
as rewards for the agent. Though not precise, this bootstraps the agent
and enables it to already find a reasonable partitioning given a pro-
duction workload (i.e., a mix of SQL queries). In our experiments,
we show that an RL agent using this approach is already able to
find partitionings that are on par with traditional optimization-based
partitioning advisors that rely on DBMS internal cost models.

In an optional online training phase, the agent then does not just
interact with a simulation but with a real database. However, instead
of using the complete database we only use a sample of the data to
speed-up this step of the training phase. The benefit of this phase is
that it does not depend on the accuracy of our simple network-centric
cost model anymore. Instead, we can simply measure the runtimes
of queries on the sampled database to compute the rewards of the
agent. Consequently, the agent learns the effects of partitionings more
accurately.

Once the training is completed, we finally use the agent to make
actual partitioning decisions. As input, it requires a workload, i.e.,
which queries were submitted in a certain time window. Based on this
workload, the agent suggests partitionings, which we deploy on the
actual customer database.

3.1.3 Partitioning as an RL Problem

We now show how the partitioning problem can be formulated as
an RL problem including how we featurize the DBMS schema and a
SQL workload. In order to formulate the partitioning problem as an
RL problem, we model the database and the workload as state and
possible changes in the partitioning as actions. Rewards correspond
to the gain in performance for a given workload. During training,
the agent thus learns the impact of different partitionings on the
workload. Figure 3.2 shows an example of our encoding for a simple
database with three tables and a workload with two queries. Before
we introduce the details of our representation for the partitioning
problem, we provide a short overview of Q-learning, which we use to
realize the RL agent.

q-learning . A popular approach for RL is Deep Q-learning [115],
where we strive to learn a function Q(s, a) that approximates the
future rewards if we choose the action a in state s. Intuitively, if
we approximate the function correctly, we can in each state choose
an optimal action by selecting argmaxa∈A Q(s, a). However, during
training, we also have to select random actions such that there is a
tradeoff between exploration and exploitation of what we have learned

3.1 simulation for data-efficient learned partitioning 25

lineorder
a11:lo_key

a12:lo_custkey

a13:lo_partkey part
a31:p_partkey

customer
a21:c_custkey

e1

e2

q1: SELECT * FROM customer c, lineorder l
 WHERE l.lo_custkey=c.c_custkey;
q2: SELECT * FROM part p, lineorder l
 WHERE l.lo_partkey=p.p_partkey;

(a) Database and Workload
Foreign-Key Edges:
Edge e1 for lo_custkey→ c_custkey: active
Edge e2 for lo_partkey→ c_partkey: inactive

s(E) =
(

e1, e2

)
=
(

1, 0
)

Table States:
lineorder partitioned by lo_custkey

s(lineorder) =
(

r1, a11, a12, a13

)
=
(

0, 0, 1, 0
)

customer partitioned by c_custkey

s(customer) =
(

r2, a21

)
=
(

0, 1
)

part replicated

s(part) =
(

r3, a31

)
=
(

1, 0
)

Query Frequencies:
q2 occurs twice as frequently as q1

s(Q) =
(

f1, f2

)
=
(

0.5, 1
)

(b) State Representation

[0 0 1 0 0 1 0 1]
[1 0]

[0.5 1]

Appended
Table
States

Foreign-Key
Edges

Query
Frequencies

Action
Encoding

[...]
Q(s,a)

Feed-
Forward-
Neural-
Network

(c) Q-Network with Encoded State

Figure 3.2: State Representation of Simplified SSB Schema and Workload.
The current partitioning (a) is encoded by representing the cur-
rent partitioning state for each table and binary edges denoting
whether two tables are copartitioned for a particular join (b),
while the workload is represented as the frequencies of each
query in the workload mix. This representation is fed along with
a potential action into a Q-network that predicts the Q-value,
which can be used to decide on partitioning actions at inference
time.

so far. Usually, exploration is realized by picking a random action with
probability ε, which is decreased over time [164].

partitioning state . The most important part of the state is to
model a partitioning for a given database. For simplicity, we assume
that only one partitioning scheme is used (e.g., hash-partitioning)
that horizontally splits a table into a fixed number of shards (which
is equal to the number of nodes in the database cluster). Moreover,
replicated tables are also copied to all nodes in the cluster. In fact,
these are the partitioning/replication options supported by the two
DBMSs we used in our evaluation. However, in general, our approach
can easily be extended to more complex partitioning schemes as well.
Following the assumptions that a table Ti can either be replicated
or alternatively partitioned by one of its attributes ai1, ai2, . . . , ain, we
can encode the state as a binary vector using a one-hot encoding
s(Ti) =

(
ri, ai1, ai2, . . . , ain

)
, where ri encodes whether a table is repli-

cated and the remaining bits indicate whether an attribute is used for

26 data-efficient workload-driven learning

partitioning. For instance, if the part table in Figure 3.2a is replicated,
its state vector is (r3, a31) = (1, 0) whereas the customer table is parti-
tioned by the attribute a21 and the resulting vector is (r2, a21) = (0, 1)
(as shown in in Figure 3.2b).

To reduce the exploration of sub-optimal partitionings, we further
extend the state representation making it explicit which tables are
co-partitioned, i.e., the partitioning attributes of the tables match their
join attributes. For instance, if the customer and lineorder table in
Figure 3.2 are partitioned by the attributes lo_custkey and c_custkey

respectively, we can join them locally on each node without shuffling.
To explicitly encode co-partitioning we introduce the concept of edges;
i.e., if an edge between a pair of join attributes air and ajs of the corre-
sponding tables Ti and Tj is activated, it guarantees co-partitioning.
For instance, since the edge e1 in Figure 3.2b is active the customer and
lineorder tables are co-partitioned. The fixed set of possible edges E
can easily be extracted from the given schema and workload (i.e., all
possible join paths). Since every edge can either be active or inactive,
the edge states can be represented as a fixed-size binary vector. To
represent the features for the partitioning of a database with multiple
tables as input for our Q-Network, we append the state vectors of all
tables. For instance, the edge vectors and individual table vectors of
Figure 3.2b are appended in Figure 3.2c and fed into the Q-network.
Since this input is of fixed length, we are able to use a feed-forward
neural network to predict the Q-value.

workload state . Moreover, we need to model the workload
as part of the state since for the same database schema, different
workloads result in different partitioning strategies that should be
selected. Formally, a workload is a set of SQL queries Q1, Q2, . . . , Qn.
One way to model the workload is to encode each query using different
one-hot encoded vectors, i.e., one vector for the set of tables, join
predicates, where conditions, etc., similar to [79, 161]. However, this
modeling approach assumes that only queries of a typical pattern
occur (e.g., queries without nesting) and thus this approach is not
suited for our approach since a partitioning advisor should be trained
on arbitrary workloads where the query patterns are not known in
advance and complex queries involving nested queries and complex
predicate conditions appear.

Encoding nested queries with the featurization as proposed in [79,
161] would be in general possible but result in an overly complex en-
coding with many more input vectors and a neural network structure,
which requires extensive training. However, a more complex encod-
ing is still only able to represent a fixed class of queries. Moreover,
more complex encodings typically require orders of magnitude more
training data.

3.1 simulation for data-efficient learned partitioning 27

We thus take a different route to featurize the workload based on the
observation that OLAP workloads are typically composed of complex
but recurring queries. We assume that a representative set of possible
queries qi in a workload of queries Q is known in advance which is not
uncommon in OLAP workloads. To encode a specific workload, we
use a vector where an entry encodes the current normalized frequency
fi of a query qi: s(Q) =

(
f1, . . . , fm

)
. That way, the input state can

represent different query mixes. For example, since the query q2 occurs
twice as often as the query q1 the frequency vector becomes (0.5, 1) in
Figure 3.2b.

Moreover, completely new queries can be supported in our state
encoding without the need to train a new RL agent from scratch. One
case that we typically see in analytical workloads is that the same
query is used with different parameter values resulting in different
selectivities. In order to support this case, we bucketize queries into
classes with different selectivity ranges and use different entries in
s(Q); i.e., one for each bucket. That way, if a query is used with a new
set of parameter values, it is supported by finding the corresponding
entry in s(Q) and increasing the query frequency fi. For supporting
completely new SQL queries and not just new parameter values of
existing queries in the workload, we provide entries in s(Q) that are
initially set to 0 (i.e., no query of this type occurs in the workload) and
use those entries for new queries if they occur.

actions . A small state space is essential to apply Q-learning be-
cause we have to compute the Q-values for all possible actions to
decide which action to execute in a state. We designed the actions to
affect at most the partitioning of a single table. More precisely, we
support two types of actions: (1) partitioning a table by an attribute or
(2) replicating a table. During training, the RL agent can only select
one of these actions at each step. This reduces the repartitioning costs
during training since similar partitionings are observed successively.

In addition, we provide an action for (de-)activating edges as a
shortcut to change the partitioning. Intuitively, activating an edge co-
partitions two tables while the de-activation of edges allows follow-up
actions to choose a new strategy (e.g., replication discussed above).
It is important that the set of edges to be activated is conflict-free.
For this, we solely allow activating an edge if there are no two edges,
which requires a table Ti to be partitioned by different attributes air
and air′ . For example, edge e2 cannot be activated in Figure 3.2 because
e1 is already active. First, the conflicting edge e1 would have to be
deactivated.

An action a is encoded similarly to the partitioning and workload
state: we use appended one-hot encoded vectors to capture the in-
formation required for an action, i.e., the kind of action (replicate,
partition, (de-) activate an edge, etc.), the affected table and attribute

28 data-efficient workload-driven learning

as well as the (de-)activated edge. Both the state s and an action a
are then used as input for the neural network to predict the Q-value
Q(s, a).

rewards . The overall goal of the learned advisor is to find a
partitioning that minimizes the runtime for the workload mix (queries
and their frequencies) modeled as part of the input state. This objective
has to be minimized by the RL agent and can be used as a reward.
Estimates of the simple network-centric cost model cm(P, qi) for the
queries qi given a partitioning P are used for the offline training and
actual runtimes cr(P, qi) for the online training. Since the RL agents
seeks to maximize the reward, we use negative costs in the reward
definition resulting in r = −∑m

j=1 f jc(P, qj).
We decided to exclude the costs of repartitioning the database as

rewards in our learning procedure since we aim for setups where
we expect that repartitioning does not happen that often and can
be executed in the background, especially for OLAP workloads and
thus does not have a negative effect on the actual workload execution.
In case repartitionings should be used more frequently, these costs
should be included in the rewards to prefer repartitionings that can
be applied with less cost.

3.1.4 Key Findings

We now present the key findings of the experimental evaluation. In
particular, we will study whether (i) the RL-based approach suggests
competitive partitionings and (ii) whether the offline phase using the
simulation model indeed reduces the number of required training
queries. Note that more details on the proposed RL approach as
well as a more extensive empirical evaluation including additional
benchmarks (SSB and TPC-DS) can be found in Chapter 7.

For the evaluation, we first trained the RL agent in the offline
training phase using our simplified cost model before we further
fine-tuned it using actual workload executions on actual partitionings
in the online training phase. We then use both the trained RL agent
as well as the baselines to suggest a partitioning and compare the
total workload runtime. As dataset and workload, we utilized the
challenging analytical queries of the TPC-CH benchmark [47]. As
baselines, we first evaluate heuristics, which are commonly used in
practice to select a suitable partitioning. In addition, we also select the
partitioning that minimizes the optimizer cost estimates, which would
be chosen by state-of-the-art automated approaches [3, 127, 145]. To
also quantify the benefit of the online phase, we in addition evaluate
the partitioning that is suggested by an RL agent that is only trained
offline, i.e., with the simulation model only.

As we can see in Figure 3.3, the partitioning suggested by the online-
trained agent is 20% superior to the partitioning of the offline-trained

3.2 differentiable databases 29

H
eu

ri
st

ic
(a

)

H
eu

ri
st

ic
(b

)

M
in

im
um

O
pt

im
iz

er

R
L

offl
in

e

R
L

on
lin

e0

5000

10000

W
or

kl
oa

d
R

un
ti

m
e

(s
)

Figure 3.3: TPC-CH Runtimes for Partitionings found by both our RL Ap-
proach and Baselines. The RL-approaches outperform the base-
lines as well as the optimal partitioning suggested by the opti-
mizer cost model. The optional online phase further improves
the RL-agent, which suggests an even more suitable partitioning
afterwards.

agent and also significantly outperforms both the heuristics and the
partitioning identified by minimizing the optimizer costs. The reason
is that the baselines either rely on heuristics or optimizer costs, which
cannot tradeoff the impact of different partitionings accurately enough.
Analogously, the offline trained RL agent is affected by inaccuracies
of our simple network-centric cost model and thus does not select the
optimal partitioning. In contrast, the online phase is not affected by
the inaccuracy of our simulation model.

Finally, we want to quantify the data-efficiency of the proposed RL
approach for partitioning. The online-phase with all optimizations and
for a model that was bootstrapped offline took 13.3 hours of executed
workloads. In contrast, training an agent from scratch without the
offline phase (but all remaining optimizations suggested in Chapter 7)
would require 33.4 hours. Hence, the simulation-based approach in-
deed improves the data-efficiency of workload-driven models. We
believe that a training time of several hours is acceptable since the
model has to be trained only once for different workload mixes and
can afterwards be used as a partitioning advisor if the workload
changes. Moreover, especially in cloud setups, we can easily clone the
instances. Hence, setting up a similar cluster to retrain the agent for
several hours to obtain a refined model should be feasible considering
that customers usually have one cluster provisioned all the time to do
analytics.

We can thus conclude that simulation can indeed improve the data-
efficiency of workload-driven models while still solving the database
task of the component effectively.

3.2 differentiable databases

As a second contribution of this dissertation, we suggest incorporating
domain knowledge into workload-driven components to reduce the

30 data-efficient workload-driven learning

high costs of training queries. Specifically, we propose to implement
database components as differentiable programs with free parameters
that can be optimized for a specific database instance. This yields
so-called FITable DBMSs, which we will introduce in Section 3.2.1. We
will then present the key findings in Section 3.2.2.

publication The work on FITable DBMSs is published in the
peer-reviewed publication “DBMS Fitting: Why should we learn what
we already know?” in the 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020,
Online Proceedings [67], cf. Chapter 8. The source code and data [68]
are publicly accessible for reproducibility and future research.

contributions of the author The contributions to the above
publication by Benjamin Hilprecht, the author of this dissertation, are
as follows. Benjamin Hilprecht is the leading author and was thus
responsible for the idea of the proposed approach as well as the imple-
mentation and evaluation of the fittable cost models, and the respective
parts of the manuscript. The co-authors Carsten Binnig, Tiemo Bang,
Muhammad El-Hindi, Benjamin Hättasch, Aditya Khanna, Robin
Rehrmann, Uwe Röhm, Andreas Schmidt, Lasse Thostrup, and Tobias
Ziegler contributed the implementation of the actual pipelines, for
which the costs were modeled in the experiments, the remaining parts
of the manuscript, as well as invaluable feedback and discussions. All
authors agree with the use of the publication for this dissertation.

Listing 3.1: Fittable Function for Simple Cost Model

table-size = size in Byte / no-tuples = number of tuple in table

def cost_scan_op(params, table_size, no_tuples):

piecewise linear model

if table_size< params[’cache-size’]:

slope = params[’a_in’]

intercept = params[’b_in’]

cost_per_tuple = slope * table_size + intercept

else:

slope = params[’a_out’]

intercept = params[’b_out’]

cost_per_tuple = slope * table_size + intercept

return no_tuples * cost_per_tuple

3.2.1 FITable DBMSs

The vision of a FITable DBMSs is that DBMS components (or parts of
them) are implemented as differentiable functions that allow us to adapt
the behavior of the component to optimally support a concrete work-
load and hardware. For instance, a simplified cost model to estimate
the execution time of a scan operator in a main-memory DBMS can
be modeled as a differentiable function cost_scan_op as shown in

3.2 differentiable databases 31

Listing 3.1. The main idea of this function is that the costs for read-
ing a tuple depend on the table size which can be represented by a
piece-wise linear function using two segments for tables that fit into
the cache and for those, which spill out of the cache.

The main benefit of fittable code is that it not only leverages the
domain knowledge of the developer (e.g., that the tuple-access cost can
be modeled as a piece-wise linear function in our example) but more
importantly that the concrete behavior can be fitted automatically to
the actual behavior.

The fittable part of the code is captured by parameters that can
be learned from concrete behavior. In our example, the learnable pa-
rameters are the slope (i.e., params[’a_in’] and params[’a_out’])
and intercept (i.e., params[’b_in’] and params[’b_out’]) of both seg-
ments. For fitting the cost model, the actual costs of running the scan
operator on different table sizes need to be collected. Since functions
are differentiable, normal gradient-based optimization can be used to
fit the parameters (i.e., minimizing the error of the cost function) as
shown in Figure 8.2. Once the parameters are fitted they can be used
at runtime of a DBMS, just like fully specified source code.

The power of differentiable programming stems from the fact that
the database developer does not have to come up with the gradients
herself. Instead, frameworks such as Autograd1 support automatic
differentiation [176] of ordinary code, which may contain all the usual
control structures, including loops, if statements, recursion, and clo-
sures. In our example, the code for the cost function in Listing 3.1 is
implemented using a normal if-else control flow that can be differenti-
ated automatically.

Overall, fittable code in contrast to black-box DNN models thus
provides many advantages: First, fittable code is more data-efficient, i.e.
we require much less training data since the differentiable function
already defines the basic shape of a function that needs to be learned.
Furthermore, fitting a differentiable function does not always need
to rely on gradient-based methods that typically require multiple
passes over the training data. Instead, it can often be implemented
by computationally much simpler approaches that only require a
single pass [48]. Second, fittable functions typically generalize better
and are less susceptible to small changes in the input, since they
already define a reasonable behavior based on their shape. Finally,
fitted code is explainable and debuggable. If the behavior is unexpected,
the developer can debug the DBMS code (as usual) since the general
code structure reflecting the domain knowledge is still interpretable
and remains unchanged.

1 https://github.com/HIPS/autogradr

32 data-efficient workload-driven learning

build-pipe

build-pipe

probe-p
ipe

R S
sc

an
-op

s

sc
an

-op
t

T

build
ht-

op
(HT s)

build
ht-

op
(HT T)

filt
er-

op R
prob

eh
t-o

p(HT s)
prob

eh
t-o

p(HT T) Total Cost: cbuild-pipe(S) + cbuild-pipe(T) + cprobe-pipe(R)
Fitted cost model cbuild-pipe:

Cost
Estimation

Figure 3.4: Basic idea of our fittable cost model - The total cost of a query
plan is estimated based on fitted cost models for each pipeline
type. In this example, the build-pipeline type is used in two
instantiations over tables S and T and the probe-pipeline type
is used in one instantiation over table R, which probes into the
hash tables HTS and HTT , created by the other two pipelines. The
cost models for each pipeline type are based on general features
of a pipeline, such as the size of the input table, tuple-width,
selectivity of operators, etc.

3.2.2 Key Findings for Fittable Cost Models

As a concrete use case to validate the vision of FITable DBMSs, we
consider the task of cost estimation, i.e., predicting the query latency.
The main idea of fittable cost models is to encode knowledge about the
general shape of cost functions for individual operators. We will now
provide more details on the evaluation with a particular emphasis
on the data-efficiency of the approach. A more extensive description
of the approach, as well as additional experiments, can be found in
Chapter 8.

The model is targeted towards DBMSs that execute SQL queries in a
pipelined manner, which is the case for most commercial DBMSs that
either implement a classical iterator model (for individual tuples or
blocks of tuples) or DBMSs that rely on pipeline-based code generation
for query execution, such as Hyper. In order to estimate the execution
time of complete query plans, the model estimates the costs of each
pipeline and then aggregates the cost to compute the total cost of that
query plan. The core components of our model are thus fitted cost
models that we use to estimate the costs of individual pipelines (cf.
Figure 3.4). For the actual fitting of the cost models of the different
pipeline types, we collect the actual runtime for a variety of pipeline
instances for a given hardware platform. We use this collected training
data for gradient-based optimization to fit the cost model and learn
the parameters of pipelines end-to-end.

In an initial experiment, we now demonstrate the data-efficiency
of fittable cost models. In particular, we train both our fittable cost
model as well as a state-of-the-art workload-driven approach for cost

3.3 discussion 33

Figure 3.5: Exp. 2 - Data-efficiency of our fittable cost model. This plot shows
the result for the scan-pipeline comparing the median q-error of
our model-based (white-box) to a DNN-based model (black-box)
based on [161], when using only x% of the original training data.

estimation [161] with a varying number of training queries for a
scan-pipeline. Note that we conducted more extensive experiments on
additional pipelines in Chapter 8. We then compare how accurately the
models can predict the actual latencies for the pipeline using unseen
configurations, i.e., on different datasets. In particular, we report the
commonly used median q-error [79], which denotes the factor the
estimation differs from the actual runtime in the median, i.e., a q-error
of one would be a perfect estimation and more inaccurate estimates
yield higher q-errors.

The results for learning the cost model for simple query plans on a
single table are shown in Figure 3.5. We can see that our white-box
model can already achieve a low q-error with only 5% of the training
data. In contrast, the black-box model requires much more training
data to achieve a low q-error even for these simple queries. More
interestingly, if we provide the full training data to the black-box
model, it is not able to reach the same accuracy that our white-box
model achieves with only 5% of the training data.

Finally, we can thus conclude that differentiable programming can
indeed significantly reduce the number of required training data
queries of workload-driven models and still provide a competitive
accuracy.

3.3 discussion

As demonstrated in the previous sections, the proposed contribu-
tions can in fact reduce the required number of training queries for
workload-driven learning significantly. In particular, for the simulation-
based approach, we required 2.5x fewer training query executions
and orders of magnitude less training data for the differentiable
programming-based approach for cost estimation.

34 data-efficient workload-driven learning

However, these savings come at the cost of an increased engineering
effort since the basic effects of the tasks have to be explicitly encoded
by developers either in the simulation model (for the simulation-based
approach) or in the differentiable program (in FITable DBMSs). While
in the first case, an imprecise simulation can still be compensated by
more query executions at the cost of a more expensive online training
phase, for FITable DBMSs the complete behavior of the component
has to be explicitly encoded. For instance, for more broadly applicable
fittable cost models we would also have to manually encode complex
caching effects or interactions among queries for inter-query paral-
lelism which is hard to model explicitly. Hence, overall the savings
for a new unseen database depend on the nature of the underlying
task, i.e., whether the basic tradeoffs are known and can be encoded.
For some problems, it might even be impossible to explicitly model
all underlying effects and thus differentiable programming would not
even be applicable.

Finally, while the training queries can be reduced, we still require
query executions to gather training data for an unseen database. For
instance, for the learned partitioning advisor, we still required 13.3
hours of observed workload to train a model for the TPC-CH bench-
mark. In the case of cloud vendors, these might still be unacceptably
high costs since the query executions would be incurred not only
for every new customer but even in case of significant updates for a
single customer. This motivates the further directions proposed in this
dissertation.

4
D ATA - D R I V E N L E A R N I N G

Data-efficient workload-driven learning does not fully eliminate the
need for training queries for unseen databases. This motivates the
second direction of this dissertation of data-driven learning, which
is a new paradigm for learned database components. In particular,
the idea is to only learn the data distribution by training on samples
of the original database instead of running a representative training
workload. The data distribution is then used at runtime for the task at
hand.

This chapter summarizes the contributions of this dissertation to-
wards data-driven learning. First, in Section 4.1, we will introduce our
system DeepDB, which outperforms the state-of-the-art for cardinality
estimation and AQP without requiring any training queries. Second,
in Section 4.2, we will demonstrate that data-driven learning is more
broadly applicable. In particular, we will consider analytical queries
over incomplete relational datasets, which can be biased due to in-
completeness. We will introduce our system ReStore that leverages
the data distribution to compensate for this bias.

Finally, we discuss our results in Section 4.3. The full details on the
corresponding publications can be found in Chapters 9 and 10.

4.1 deepdb : data-driven learning for cardinality esti-
mation and aqp

As a first contribution towards data-driven learning, we introduce
our system DeepDB, which supports both cardinality estimation and
AQP solely by learning from the data instead of a representative work-
load. We will first provide an overview of the system and discuss
applications in Section 4.1.1 before we discuss details on the model ar-
chitecture in Section 4.1.2 and present the key findings in Section 4.1.3.
We provide more details as well as more experiments on updates and
AQP in Chapter 9.

publication The work on data-efficient learned partitioning is
published in the peer-reviewed publication “DeepDB: Learn from Data,
not from Queries!” in the Proc. VLDB Endow. [72], cf. Chapter 9. The
source code and data [71] are publicly accessible for reproducibility
and future research.

contributions of the author The contributions to the above
publication by Benjamin Hilprecht, the author of this dissertation, are

35

36 data-driven learning

Ad-hoc
AQP Query

Regression/
Classification Task

N⋅P(C)⋅E(X)⋅E(Y)
RSPN

Ensemble DeepDB
Learning

T2⟗T4

RSPN2

DeepDB

RSPN1

T1⟗T2⟗T3

+

x x

T5

+

x x

RSPN3 +

x x

Runtime
Offline

DBMS

SQL Query

Query
Optimizer

Data

Cardinality
QueryProbabilistic Query

Compilation

Figure 4.1: Overview of DeepDB. RSPNs capture the data distribution
present in the database at hand. At runtime, these can be used to
solve tasks such as cardinality estimation or AQP. Probabilistic
query compilation allows to flexibly combine several models at
runtime to handle such queries for ad-hoc join paths.

as follows. Benjamin Hilprecht is the leading author and was thus
responsible for the proposed approach for data-driven learning for
cardinality estimation and AQP, the experimental evaluation, and
the manuscript. Andreas Schmidt contributed the implementation
of updates of RSPNs. Note that preliminary version work covering
only AQP on a single table was published as a workshop paper [86].
Hence, the author of this dissertation had to introduce significant
new contributions to support arbitrary joins over relational datasets,
cardinality estimation and also extensions of SPNs yielding RSPNs,
which are the main contributions of the full paper. The co-authors
Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting,
and Carsten Binnig contributed invaluable feedback. All authors agree
with the use of the publication for this dissertation.

4.1.1 Overview and Applications

overview As shown in Figure 4.1, the main idea of DeepDB is
to learn a representation of the data offline. An important aspect of
DeepDB is that we do not aim to replace the original data with a model.
Instead, a model in DeepDB augments a database similar to indexes
to speed-up queries and to provide additional query capabilities while
we can still run standard SQL queries over the original database.

To optimally capture relevant characteristics of relational data in
DeepDB, we developed a new class of models called Relational Sum
Product Networks (RSPNs). In a nutshell, RSPNs are a class of deep
probabilistic models that capture the joint probability distribution over
all attributes in a database that can then be used at runtime to provide
the answer for different user tasks.

While RSPNs are based on Sum Product Networks (SPNs) [117, 141],
there are significant differences: (1) While SPNs support only single
tables and simple queries (i.e., no joins and no aggregation functions),

4.1 deepdb : data-driven learning for cardinality estimation and aqp 37

RSPNs can be built on arbitrary schemata and support complex queries
with multi-way joins and different aggregations (COUNT, SUM, AVG).
Moreover, RSPNs also go beyond the idea of other recent learned
data models that need to know join paths a priori such as [105, 186]
since RSPNs allow true ad-hoc joins by combining RSPN models. (2)
Another major difference is that RSPNs support direct updates, i.e.,
if the underlying database changes the RSPN can directly ingest the
updates without the need to retrain the model. (3) RSPNs also include
a set of database-specific extensions such as NULL-value handling
and support for functional dependencies.

Once the RSPNs are created offline, they can be leveraged at runtime
for a wide variety of different applications, ranging from user-facing
tasks (e.g., to provide fast approximate answers for SQL queries) to
system-internal tasks (e.g., to provide estimates for cardinalities).

In order to support these tasks, DeepDB provides a new so-called
probabilistic query compilation procedure that translates a given task
into evaluations of expectations and probabilities on RSPNs. A key
difference of DeepDB in contrast to previous approaches, which model
the data distribution [105, 186], is that it supports ad-hoc joins in
the schema, i.e., we do not require a single model per join path
but can combine models flexibly at runtime. Our probabilistic query
compilation is thus crucial to support larger schemas and was used by
many follow-up publications [185, 195]. We now give a brief overview
of the applications currently supported by the query compilation
engine of DeepDB.

cardinality estimation The first task DeepDB supports is
cardinality estimation for a query optimizer. Cardinality estimation is
needed to provide cost estimates but also to find the correct join order
during query optimization. A particular advantage of DeepDB over
existing learned approaches for cardinality estimation [79, 161] is that
we do not have to create dedicated training data, i.e. pairs of queries
and cardinalities. Instead, since RSPNs capture the characteristics of
the data independent of a workload, we can support arbitrary join
queries without the need to train a model for a particular workload.
Moreover, RSPNs can be kept up to date at low costs similar to
traditional histogram-based approaches, which is different from other
workload-driven learned approaches for cardinality estimation such
as [79, 161] which require retraining.

approximate query processing (aqp) The second task we
currently support in DeepDB is AQP. AQP aims to provide approxi-
mate answers to support faster query response times on large datasets.
The basic idea of how a query on a single table is executed inside
DeepDB is simple: for example, an aggregate query AVG(X) with a
where condition C is equal to the conditional expectation E(X | C)
which can be approximated with RSPNs. In DeepDB, we implement a

38 data-driven learning

c_id c_age c_region

1 80 EU

2 70 EU

3 60 ASIA

4 20 EU

...

998 20 ASIA

998 25 EU

999 30 ASIA

1000 70 ASIA

(a) Example Table

c_age c_region

80 EU

70 EU

60 ASIA

20 EU

... ...

... ...

20 ASIA

25 EU

30 ASIA

70 ASIA

(b) Learning with Row/
Column Clustering

+

x x

EU ASIA 20 100

P(cregion, cage)

0.3 0.7

EUASIA 20 100

(c) Resulting SPN

+

x x

EUASIA 20 100

15%

EUASIA 20 100

80%

12%

20%

2%

5%
0.3 0.7

10%

(d) Probability of European Customers
younger than 30

Figure 4.2: Customer Table and corresponding SPN. Recursive row and col-
umn clusterings (b) yield sum and product nodes in the resulting
SPN (c), which can afterwards be used to compute probabilities
and expectations over predicates on arbitrary columns.

more general AQP procedure that leverages the fact that RSPNs can
support joins of multiple tables. A major difference to other learned
approaches for AQP such as [105, 167] is again that DeepDB supports
ad-hoc queries and is thus not limited to the query types covered by
the training set.

4.1.2 Learning a Deep Data Model

In this section, we introduce Relational Sum Product Networks (RSPNs),
which we use to learn a representation of a database and, in turn, to
answer queries using our query engine explained in the next section.
We first review Sum Product Networks (SPNs) and then introduce
RSPNs. Afterwards, we describe how an ensemble of RSPNs can be
created to encode a given database multiple tables.

4.1.2.1 Sum Product Networks

Sum-Product Networks (SPNs) [141] learn the joint probability distri-
bution P(X1, X2, . . . , Xn) of the variables X1, X2, . . . , Xn in the dataset.

4.1 deepdb : data-driven learning for cardinality estimation and aqp 39

They are an appealing choice because probabilities for arbitrary condi-
tions can be computed very efficiently. We will later make use of these
probabilities for our applications like AQP and cardinality estimation.

For the sake of simplicity, we restrict our attention to Tree-SPNs, i.e.,
trees with sum and product nodes as internal nodes and leaves. Intu-
itively, sum nodes split the population (i.e., the rows of dataset) into
clusters and product nodes split independent variables of a population
(i.e., the columns of a dataset). Leaf nodes represent a single attribute
and approximate in the present paper the distribution of that attribute
either using histograms for discrete domains or piecewise linear func-
tions for continuous domains [118]. For instance, in Figure 4.2c, an
SPN was learned over the variables region and age of the corresponding
customer table in Figure 4.2a. The top sum node splits the data into
two groups: The left group contains 30% of the population, which is
dominated by older European customers (corresponding to the first
rows of the table), and the right group contains 70% of the population
with younger Asian customers (corresponding to the last rows of the
table). In both groups, region and age are independent and thus split
by a product node each. The leaf nodes determine the probability
distributions of the variables region and age for every group.

Learning SPNs [50, 118] works by recursively splitting the data
into different clusters of rows (introducing a sum node) or clusters of
independent columns (introducing a product node). For the clustering
of rows, a standard algorithm such as KMeans can be used or the data
can be split according to a random hyperplane. To make no strong
assumptions about the underlying distribution, Randomized Depen-
dency Coefficients (RDCs) are used for testing the independence of
different columns [101]. Moreover, independence between all columns
is assumed as soon as the number of rows in a cluster falls below a
threshold nmin. As stated in [117, 141], SPNs in general have a polyno-
mial size and allow inference in linear time w.r.t. the number of nodes.
However, for the configurations we use in our experiments, we can
even bound the size of the SPNs to linear complexity w.r.t. the number
of columns in a dataset since we set nmin = ns/100 (i.e. relative to the
sample size), which turned out to be a robust configuration.

With an SPN at hand, one can compute probabilities for conditions
on arbitrary columns. Intuitively, the conditions are first evaluated
on every relevant leaf. Afterwards, the SPN is evaluated bottom up.
For instance in Figure 4.2d, to estimate how many customers are
from Europe and younger than 30, we compute the probability of
European customers in the corresponding blue region leaf nodes (80%
and 10%) and the probability of a customer being younger than 30

(15% and 20%) in the green age leaf nodes. These probabilities are then
multiplied at the product node level above, resulting in probabilities
of 12% and 2%, respectively. Finally, at the root level (sum node), we
have to consider the weights of the clusters, which leads to 12% · 0.3 +

40 data-driven learning

2% · 0.7 = 5%. Multiplied by the number of rows in the table, we get
an approximation of 50 European customers who are younger than
30.

4.1.2.2 Relational Sum-Product Networks

One important issue with SPNs is that they can only capture the data
of single tables but they also lack other important features needed for
DeepDB. To alleviate these problems, we now introduce RSPNs.

extended inference algorithms The first and most important
extension is that for many queries such as AVG and SUM expectations
are required (e.g., to answer a SQL aggregate query, which computes
an average over a column). In order to answer these queries, RSPNs
allow computing expectations over the variables on the leaves to
answer those aggregates. To additionally apply a filter predicate, we
still compute probabilities on the leaves for the filter attribute and
propagate both values up in the tree. At product nodes, we multiply
the expectations and probabilities coming from child nodes whereas
on sum nodes the weighted average is computed. In Figure 4.3, we
show an example of how the average age of European customers
is computed. The ratio of both terms yields the correct conditional
expectation. A related problem is that SPNs do not provide confidence
intervals. We also developed corresponding extensions on SPNs.

database-specifics Finally, SPNs lack support for important
database specifics: (1) First, SPNs do not provide mechanisms for
handling NULL values. Hence, we developed an extension where
NULL values are represented as a dedicated value for both discrete
and continuous columns at the leaves during learning. Furthermore,
when computing conditional probabilities and expectations, NULL
values must be handled according to the three-valued logic of SQL.
(2) Second, SPNs aim to generalize the data distribution and thus
approximate the leaf distribution, abstracting away specifics of the
dataset to generalize. For instance, in the leaf nodes for the age in Fig-
ure 4.2c, a piecewise linear function would be used to approximate the
distribution [118]. Instead, we want to represent the data as accurately
as possible. Hence, for continuous values, we store each individual
value and its frequency. If the number of distinct values exceeds a
given limit, we also use binning for continuous domains. (3) Third,
functional dependencies between non-key attributes A → B are not
well captured by SPNs. We could simply ignore these and learn the
RSPN with both attributes A and B, but this often leads to large SPNs
since the data would be split into many small clusters (to achieve
independence of A and B). Hence, we allow users to define functional
dependencies along with a table schema. If a functional dependency
A→ B is defined, we store the mapping from values of A to values of
B in a separate dictionary of the RSPN and omit the column B when

4.1 deepdb : data-driven learning for cardinality estimation and aqp 41

+

x x

EUASIA 20 100

60

EUASIA 20 100

80%

48

3010%

3

16.5
0.3 0.7

(a) E(c_age · 1c_region=’EU’)

+

x x

EUASIA 20 100 EUASIA 20 100

80%

80%

10%

10%

31%
0.3 0.7

(b) P(c_region=’EU’)

Figure 4.3: Process of computing E(c_age | c_region=’EU’). The predicates
are pushed down to the leaf nodes and in a bottom-up pass prob-
abilities are either combined by multiplication (product nodes) or
weighted summation (sum nodes).

learning the RSPN. At runtime, queries with filter predicates for B are
translated to queries with filter predicates for A.

updatability Finally, a last important extension of RSPNs over
SPNs is the direct updatability of the model. If the underlying database
tables are updated, the model might become inaccurate. For instance,
if we insert more young European customers in the table in Figure 4.2a,
the probability computed in Figure 4.2d is too low and thus the RSPN
needs to be updated. As described before, an RSPN consists of product
and sum nodes, as well as leaf nodes, which represent probability
distributions for individual variables. The key idea to support direct
updates of an existing RSPN is to traverse the RSPN tree top-down
and update the value distribution of the weights of the sum-nodes
during this traversal. For instance, the weight of a sum node for a
subtree of younger European customers could be increased to account
for updates. Finally, the distributions in the leaf-nodes are adjusted.

4.1.3 Key Findings

We now present the key findings of the experimental evaluation. In
particular, we will demonstrate that DeepDB outperforms the state-
of-the-art cardinality estimation approaches while at the same time
not requiring any training queries. Note that an extensive evaluation
including update, generalization, and AQP experiments can be found
along with more details on our approach in Chapter 9.

To evaluate the cardinality estimation performance, we chose the
JOB-light benchmark [79, 91], which is more challenging than tradi-
tional benchmarks such as TPC-H since the underlying dataset comes
with complex correlations, which also make cardinality estimation
hard in practice. As baselines, we used the following learned and
traditional approaches: First, we trained a Multi-Set Convolutional
Network (MSCN) [79] as a learned baseline, which is a state-of-the-art
workload-driven approach. As a representative of a synopsis-based
technique, we implemented an approach based on wavelets [21]. Fi-

42 data-driven learning

Table 4.1: Estimation Errors for the JOB-light Benchmark. DeepDB offers
orders of magnitude more accurate cardinality estimates both in
the median but also in the tail performance.

median 90th 95th max

DeepDB 1.34 2.50 3.16 39.63

MCSN 3.22 65 143 717

Wavelets 7.64 9839 15332 564549

Postgres 6.84 162 817 3477

IBJS 1.67 72 333 6949

Random Sampling 5.05 73 10371 49187

nally, we use the standard cardinality estimation of Postgres 11.5 as
well as online random sampling and Index-Based Join Sampling (IBJS)
[92] as non-learned baselines.

estimation quality The resulting cardinality estimation accu-
racies are depicted in Table 4.1. The prediction quality of cardinality
estimators is usually evaluated using the q-error [79, 116], which is
the factor by which an estimate differs from the real execution join
size. For example, if the real result size of a join is 100, the estimates
of 10 or 1k tuples both have a q-error of 10. In Table 4.1, we depict the
median, 90-th and 95-th percentile and max q-errors for the JOB-light
benchmark of our approach compared to the other baselines. As we
can see DeepDB outperforms the best competitors often by orders
of magnitude. While IBJS provides a low q-error in the median, the
advantage of learned MCSNs is that they outperform traditional ap-
proaches by orders of magnitude for the higher percentiles and are
thus more robust. DeepDB not only outperforms IBJS in the median,
but provides additional robustness having a 95-th percentile for the
q-errors of 3.16 vs. 143 (MCSN). The q-errors of both Postgres and
random sampling are significantly larger both for the medians and
the higher percentiles. Finally, wavelets have the highest error since
they suffer from the curse of dimensionality.

training overhead In contrast to other learned approaches for
cardinality estimation [79, 161], no dedicated training data is required
for DeepDB. Instead, we just learn a representation of the data. The
training of the base ensemble including all data preparation steps takes
48 minutes. In contrast, for the MCSN [79] approach, 100k queries
need to be executed to collect cardinalities resulting in 34 hours of
training data preparation time (when using Postgres). Moreover, the
training of the neural network takes only about 15 minutes on a
Nvidia V100 GPU. As we can see, our training time is much lower
since we do not need to collect any training data for the workload.
Another advantage is that we do not have to re-run the queries once
the database is modified.

4.2 restore : data-driven completion of incomplete relational datasets 43

Finally, we can conclude that DeepDB indeed eliminates the high
costs for training data collection of workload-driven approaches and
still provides more accurate cardinality estimates. In Chapter 9, we
will demonstrate that a similar observation holds for AQP and that
DeepDB supports efficient updates in addition.

4.2 restore : data-driven completion of incomplete re-
lational datasets

As a second application of data-driven learning, we tackle the problem
of data completion for incomplete relational datasets. Our goal is
to alleviate potential biases due to the incompleteness of the data
to enable users to still draw conclusions if only incomplete data is
available. The idea is to again only exploit the data distribution to
solve this task yielding a data-driven learned component. We will
first provide a detailed problem statement for the underlying task
and afterwards give an overview of our system called ReStore in
Section 4.2.1.1. We will finally discuss the key findings in Section 4.2.3.

publication The work on data-driven completion of incomplete
relational datasets is published in the peer-reviewed publication “Re-
Store - Neural Data Completion for Relational Databases” in SIGMOD
’21: International Conference on Management of Data, Virtual Event, China,
June 20-25, 2021 [63], cf. Chapter 10. The source code and data [64] are
publicly accessible for reproducibility and future research.

contributions of the author The contributions to the above
publication by Benjamin Hilprecht, the author of this dissertation, are
as follows. Benjamin Hilprecht is the leading author and was thus
responsible for the proposed approach for relational data comple-
tion, the experimental evaluation, and the manuscript. The co-author
Carsten Binnig contributed invaluable feedback and agrees with the
use of the publication for this dissertation.

4.2.1 Overview

In this section, we introduce the problem statement before we give an
overview of our approach and discuss the general assumptions.

4.2.1.1 Problem Statement

We are given an incomplete database Di that consists of complete
tables T1, T2, . . . and incomplete tables Tj, Tj+1, The goal is to gen-
erate data for the incomplete tables Tj, Tj+1, . . . based on the available
data that allows us to answer a query workload Q1, Q2, . . . , Qn of
aggregate queries such that query results on the completed database
Qi(Dc) are close to the query results on the true (complete) database

44 data-driven learning

Landlord [Complete]

id age TFApartments

1 50 1

2 60 ?

...

Apartment [Incomplete]

neighborhood_id landlord_id rent

1 1 2000$

1 2 3000$

Systematically missing: All
apartments available for NYC

Neighborhood [Complete]

id state pop_density TFApartments

1 NYC 27,000 2

2 CA 254 ?

...

(a) Annotated Example Schema.

Output: Missing Tuple

Input: Evidence Tuple Output: Missing Tuple

Landlord Tuple

id age TFApartments

2 60 3

Completion Model (Neighborhood→Apartment)

Completion Model (Landlord→Apartment)

Input: Evidence Tuple

Neighborhood Tuple

id state pop_density TFApartments

2 CA 254 3

Apartment Tuple

neighborhood_id rent

2 3200$

Apartment Tuple

landlord_id rent

2 2000$

(b) Models Synthesize Missing Tuples.

SELECT AVG(rent) FROM neighborhood
 NATURAL JOIN apartment
 GROUP BY state;

Query on completed Join:

Neighborhood ⋈ Apartment [Completed]

neighborhood_id state pop_density apartment_id rent

1 NYC 27,000 1 2000$

1 NYC 27,000 2 3000$

2 CA 254 3 3200$

2 CA 254 4 2000$

2 CA 254 5 1000$

(c) Incompleteness Join.

Figure 4.4: Overview of ReStore to synthesize missing data (green) from
existing data (blue and red). (a) Based on the annotated schema
and the available data, the completion models are learned. (b)
The learned schema-structured model can be used to synthesize
a missing apartment tuple using a complete neighborhood tuple
as input. (c) The model generates missing data for a given user
query at runtime to answer queries over incomplete tables. The
generated tuple factors (TFs) allow us to estimate the number of
missing tuples.

4.2 restore : data-driven completion of incomplete relational datasets 45

Qi(D). Note that this formulation allows us to generate missing data
individually for each query to answer the given query as accurately
as possible. However, we can still cache generated data such that we
do not need to generate new data for every query individually as we
discuss later.

An important question for this problem is how to measure success.
Based on our problem definition, a natural metric is how much the
relative error of a query result on the incomplete database can be
reduced by completing the data; i.e., how much more accurate the
query results are after the completion. The relative error reduction for
a given query Qi can thus be defined as follows:

Rel. Error Reduction = Er(Qi(Di), Qi(D))− Er(Qi(Dc), Qi(D)) (4.1)

where the relative error Er is the difference between the two query re-
sults normalized by the true query result. While for aggregate queries
without a group-by, the relative error is trivial, for group-by queries
we use the average relative error over all result tuples [72].

A limitation of the relative error reduction metric is that it does not
show how well the bias of the incomplete database can be reduced
independent of a given workload. We thus use a second metric called
bias reduction to measure the success of data completion. This metric
shows how well the true data distribution of a given attribute could
be restored. For continuous attributes X, the bias reduction is defined
as follows:

Bias Reduction = 1− |AVGc(X)−AVG(X)|
|AVG(X)−AVGi(X)| (4.2)

where AVGc(X), AVGi(X), AVG(X) are the averages of attribute X on
Dc, Di and D, respectively. Hence, the bias reduction is normalized in
the interval [0, 1] where larger values are preferable. For categorical
attributes, we use the fraction of the biased attribute value since an
average cannot be computed.

4.2.2 Our Approach

Our approach called ReStore to tackle this problem consists of the
two steps depicted in Figure 4.4: First, a user has to (once) annotate a
database schema before we train neural completion models that can
be used to generate the missing data required to execute aggregate
queries over the completed database.

schema annotation. In the annotation step, a user must indi-
cate for a given incomplete database which tables are complete and
which ones are incomplete. An example for an annotated schema is
depicted in Figure 4.4a which consists of three tables of a housing
database where two tables are marked as complete (landlord and
neighborhood) and one table (apartment) is marked as incomplete.

46 data-driven learning

In addition, information about the relationships between tables
needs to be annotated. Here, the user has to provide information
on whether there are any complete foreign-key relationships between
tuples from a complete table and an incomplete table. For example, in
Figure 4.4a all apartments of neighborhoods in NYC are available but
not those for CA. In many of the application scenarios, the information,
which relationships are complete, is known a priori and thus does not
cause additional manual annotation overhead. For example, often a
complete subset of data (e.g., apartments of a certain state) is available.

Based on the annotation, so-called tuple factors (TF) [72] can now be
automatically computed to capture information about the relationships
across complete and incomplete tables as shown in Figure 4.4a (e.g.,
how many apartments a complete neighborhood has). Based on the
available data and the computed tuple factors, we then learn our
completion models.

The user might also have other additional information, which can
help to further enhance the quality of the synthesized data. Among
these are table sizes for incomplete tables or aggregate statistics (e.g.,
average rental prices in certain states). Using techniques like iterative
proportional fitting [131], this information can be used to improve our
generated data. These techniques are orthogonal to our approach and
we thus exclude those in the remainder.

model training and data completion. Given an annotated
schema, we can now learn the completion models. As depicted in
Figure 4.4b, two completion models have been learned that can ei-
ther take data from the complete neighborhood table or the complete
landlord table to synthesize missing apartment tuples. By taking com-
plete tables as evidence our models synthesize missing tuples even
if there is a bias in the missing data since we capture correlations
across tables (e.g., which types of apartments are expected based on
the characteristics of the neighborhoods).

These completion models can now be used at runtime to complete
the missing data for a given user query. For instance, if a user wants to
know the average rent per state, we first compute the completed join
neighborhood ./ apartment. More precisely, we introduce a new oper-
ator called incompleteness join to join complete and incomplete tables
that generate the missing tuples needed to make the join complete.
In our example, the incompleteness join would generate apartments
for neighborhoods where the data is missing using the appropriate
completion model of Figure 4.4b. Once the missing tuples for the
join are generated (i.e., the incompleteness join produced its output),
we can compute the aggregated result using a normal aggregation
operator.

We decided to complete data on a per-query basis at runtime since
completing the full database might be too expensive (and actually not

4.2 restore : data-driven completion of incomplete relational datasets 47

needed) for large datasets. However, it is important to note that the
models are not query-dependent and only have to be learned once for
an incomplete schema and can be reused across queries. Moreover,
the generated data can still be materialized or even generated a priori.

supported schema and queries . In general, our approach
supports any relational schema where tables are connected via foreign-
key relationships. For the workload, we currently limit ourselves to
acyclic Select-Project-Aggregate-Join (SPJA) queries where joins are
equi-joins along foreign-key relationships which are typical queries for
decision making. An important aspect is that we can support arbitrary
filter predicates or aggregate functions as well as any number of group-
by attributes. The reason is that once data is completed for a join,
we use normal query operators (e.g., filter or aggregate operators) to
compute the query results. Supporting other types of queries, however,
is indeed possible. For example, other join types (e.g., non-equi joins)
could be added by deriving tuple factors that represent these join
conditions.

4.2.2.1 Discussion

The central assumption of our approach is that both missing and
available tuples have consistent correlations; i.e., while there can be
a bias in the available tuples, it is required that the missing tuples
have the same correlations between attributes as the remaining tuples.
This is not a requirement specifically for ReStore but for any system
that uses ML to complete a dataset since otherwise the available
tuples cannot be used as evidence to predict the missing tuples. More
technically, the conditional distributions of missing tuples tm given
an evidence tuple te should be equivalent for remaining and missing
tuple distributions, i.e., Pm(tm | te) ≈ Pr(tm | te). If this assumption
holds the main factor determining how accurately the original query
result can be restored is the predictability of the query attributes as we
will later show in our experimental evaluation. If the attributes are not
predictable given the evidence tuples, our models will complete the
data with lower confidence.

4.2.3 Key Findings

We now present the key findings, where we will demonstrate that
ReStore can significantly reduce the bias in incomplete real-world
datasets. Additional experiments on synthetic data that study which
characteristics determine the extent to which the data can be debiased
as well as accuracy and performance aspects and experiments on full
analytical queries can be found in Chapter 10.

We now analyze how well ReStore can debias two real-world
datasets, namely a housing and a movies dataset with different in-

48 data-driven learning

0%

50%

B
ia

s
R

ed
uc

ti
on

Setup H1 Setup H2 Setup H3 Setup H4 Setup H5

20% 40% 60% 80%
Removal Correlation

0%

100%

B
ia

s
R

ed
uc

ti
on

Setup M1

20% 40% 60% 80%
Removal Correlation

Setup M2

20% 40% 60% 80%
Removal Correlation

Setup M3

20% 40% 60% 80%
Removal Correlation

Setup M4

20% 40% 60% 80%
Removal Correlation

Setup M5

Keep Rate: 20% Keep Rate: 40% Keep Rate: 60% Keep Rate: 80%

Figure 4.5: Bias Reductions for Real-World Data using the Setups of the
Housing (Hi) and Movies (Mi) Datasets.

complete setups. In particular, we vary which tables are incomplete
and which attribute is biased due to the incompleteness: we use five
different setups denoted as Hi and Mi for the housing and movie
data, respectively (cf. Chapter 10). In addition, we vary how much
data is removed (i.e., varying the keep_rate parameter) as well as
how much bias is introduced by the removed tuples (i.e., varying the
removal_correlation). We then report the bias reduction as defined in
Eq. 4.2 that expresses how well the original dataset could be restored
and how much bias could be removed.

The results are shown in Figure 4.5 for all five setups given a variety
of keep rates (between 20% and 80%) and removal correlations. As
we see, the bias can significantly be reduced for all setups indicating
the high quality of our completion models. This especially holds for
the setups of the movies dataset where up to 100% of the bias can
be removed. In general, a lower removal correlation is beneficial for
our approach. The reason is that the lower the correlation, the more
examples of high attribute values (for continuous attributes) remain
in the training set and thus the model can learn more precisely what
leads to those higher values. During the completion, it can then predict
more accurately whether larger values are likely to occur. The keep
rates do not seem to have a significant impact. The reason is that
there are two opposing effects. On the one hand, a larger keep rate
leads to a larger training dataset and the model can thus learn the
distribution more accurately. On the other hand, the absolute error
|AVGcomplete(X)−AVGincomplete(X)| becomes smaller and the model has
to predict more extreme values to correct the bias. Consequently, we
do not see more accurate completions for larger keep rates.

Finally, we can conclude that ReStore can in fact reduce the bias
in incomplete relational datasets by exploiting the data distribution.
As we will show in Chapter 10, ReStore can also compensate errors
due to incompleteness in analytical query results while providing
confidence estimates on how accurate the completion likely is. Since
ReStore is also a data-driven approach, we again do not require any
query executions to train the models.

4.3 discussion 49

4.3 discussion

As demonstrated in this chapter, data-driven learning indeed fulfills
the promise of state-of-the-art performance for many database tasks
(cardinality estimation, AQP and relational dataset completion) while
fully eliminating the high costs of training data collection for an
unseen database. We have shown that for solving these tasks a learned
representation of the data distribution is in fact sufficient. In the
subsequent paragraphs, we will highlight the challenges one has to
solve to leverage data-driven learning for a particular database task.
Finally, we will discuss why data-driven learning is no silver bullet
for all database tasks.

It is in general not straightforward to use a model that has learned
the data distribution to solve a concrete task. In fact, both DeepDB and
ReStore require extensive algorithms to determine how the models
should be queried to support a particular task. For instance, DeepDB
requires probabilistic query compilation to support arbitrary ad-hoc
cardinality and AQP queries in the schema, i.e., without knowing
all join paths beforehand. In contrast, ReStore requires specialized
completion algorithms that determine what combination of models
are used to complete the data for a specific query.

Another aspect is that for data-driven learning we typically cannot
use off-the-shelf ML models but have to extend the models signifi-
cantly to be a good fit for the learned component. For instance, for
DeepDB it is crucial to be able to update the underlying models ef-
ficiently. Analogously, for ReStore we had to modify autoregressive
models to also incorporate the entire relational schema as evidence.
Hence, while it is appealing to realize a learned database component
using data-driven learning, it is often not straightforward, which ML
techniques should be used and how they have to be extended to
support the particular task.

Finally, data-driven learning is not applicable to every database task,
most importantly tasks that require knowledge about the executed
workloads. For instance, for cost estimation, we have to observe query
executions to learn about the operator characteristics. Merely knowing
the data distribution is not sufficient for such tasks since it does
not provide sufficient information. This motivates the third direction
proposed in this dissertation. As mentioned before, while data-driven
learning cannot solve such tasks in isolation, it might still provide
useful features as we will discuss in the next chapter.

5
Z E R O - S H O T L E A R N E D C O M P O N E N T S

While data-driven learning eliminates the need to collect training
queries for unseen databases, it is not applicable to database tasks that
require knowledge about query executions. This motivates the third
proposed direction of this dissertation - zero-shot learned database
components. In contrast to data-driven learning, zero-shot learned
components are applicable to a broader set of database tasks including
those that require knowledge about workload executions such as cost
estimation. The general idea is to first pretrain a model on a diverse
set of databases and workloads to then allow the model to generalize
to unseen databases out-of-the-box. Hence, zero-shot learned com-
ponents avoid the high costs of training data collection similarly to
data-driven learning.

In the following, we will first reference the two publications intro-
ducing zero-shot learned components and describe the contributions
of the author of this dissertation. Thereafter, in Section 5.1, we will
provide an overview of zero-shot learning in general and the key
challenges before we provide an overview of our proposed zero-shot
model for cost estimation (cf. Section 5.2). We will then present the
key findings in Section 5.3 and finally discuss the contributions in Sec-
tion 5.4. For full details on the publications, we refer to the Chapters 11

and 12.

publications The work on zero-shot learned database compo-
nents is published in two peer-reviewed publications. A broader vision
paper outlining potential use cases and key challenges is published
as “One Model to Rule them All: Towards Zero-Shot Learning for
Databases” in the 12th Conference on Innovative Data Systems Research,
CIDR 2022, Chaminade, CA, USA, January 9-12, 2022 [62], cf. Chap-
ter 11. A significantly extended full paper that focuses on zero-shot
cost estimation exclusively is published as “Zero-Shot Cost Models
for Out-of-the-box Learned Cost Prediction” in the Proc. VLDB En-
dow. [66], cf. Chapter 12. The source code and data [65] are publicly
accessible for reproducibility and future research.

contributions of the author The contributions to the above
publications by Benjamin Hilprecht, the author of this dissertation,
are as follows. Benjamin Hilprecht is the leading author of both pub-
lications and was thus responsible for the proposed approach for
zero-shot learning, the experimental evaluation, and the manuscript
for both publications. The co-author Carsten Binnig contributed in-

51

52 zero-shot learned components

DB1

DB2

...

DBn

+ Workload1

+ Workload2

+ Workloadn

Runtimes, Ressources, ...

Training
Data

Runtimes, Ressources, ...

Runtimes, Ressources, ...

Training a Zero-Shot Model

Features Labels Zero-Shot Model

DBx
+ Workloadx Runtimes, Ressources, ...

Features Predictions

(one-time-effort)

Inference on Unseen Database
(for every new database)

Zero-Shot Model

Figure 5.1: Overview of zero-shot learning for databases. In line with other
zero-shot approaches such as GPT-3 which enables zero-shot
learning for NLP, a zero-shot model for databases can generalize
to a completely new database and workload without the need to
be trained on that particular database.

valuable feedback and agrees with the use of the publications for this
dissertation.

5.1 zero-shot learned database components

In this section, we introduce the general idea behind zero-shot learned
database components before we discuss the key challenges associated
with it.

5.1.1 Overview

Figure 5.1 shows the high-level idea that is behind the general paradigm
of zero-shot learning for databases. During the learning phase, sim-
ilar to workload-driven learning, for zero-shot learning, we have to
execute a representative workload and collect training data.

The main difference to workload-driven learning though, which
makes our approach attractive, is that zero-shot models generalize to
unseen databases out-of-the-box. To allow a zero-shot model to make pre-
dictions about unseen databases without the need to retrain the model
for this particular database, we require a new method of representing
queries as we discuss below (cf. Key Challenges). A transferable repre-
sentation is at the core of learning zero-shot models in a generalizable
way and thus enables them to make predictions for queries on a new
database (e.g., for physical cost estimation) that the model has never
seen before.

Moreover, for being able to generalize to new databases, a zero-shot
model is trained on different databases. While this might seem to
cause high upfront costs before a zero-shot model can be used, it is

5.1 zero-shot learned database components 53

important to note that the training data collection is a one-time-effort
which is very different from workload-driven learning that needs
to collect training data for every new database a model should sup-
port. Moreover, cloud database providers such as AWS, Microsoft, or
Google, typically already have significant amounts of such information
available since they keep logs of their customer workloads and could
thus apply zero-shot learning right away without the need to collect
training data in the first place.

Finally, a last important aspect is that zero-shot learning is not only
generalizable across databases but is a new learning approach that
can be applied to a variety of database tasks that range from physical
cost estimation, design tuning or knob tuning to query optimization
and scheduling. To enable zero-shot models to generalize to different
tasks though, the models need to be capable of capturing not only
information about query plans and their runtimes but also information
about other aspects (e.g., how indexes or changes in the database
configuration influence the query runtime) as we discuss later.

5.1.2 Key Challenges

In the following, we discuss the key challenges that we think are at the
core to make zero-shot learning for databases efficient and accurate.

transferable representation of database and queries .
State-of-the-art workload-driven models [79, 161] can only leverage
training data from a single database and thus they cannot simply
be trained on a variety of databases to obtain zero-shot models. The
reason is that the query representation is not transferable to an unseen
database. For instance, attributes names (e.g., those used in filter
predicates) are typically encoded using a one-hot encoding assigning
each column present in the database a specific position in a feature
vector. Hence, the column production_year of the IMDB dataset might
be encoded using the vector (0, 1, 0) (assuming that there are only three
columns in total). If the same model is now used to predict query
costs for the SSB dataset, the second column in the database might be
region, which has very different semantics (i.e., very different data
distributions or even a different data type). As such, cost models based
on non-transferable representations will produce estimates that are
most likely way off. In fact, such non-transferable feature encodings
are used in various places of query representations such as table
names as part of plan operators or literals in filter predicates. Hence,
for zero-shot models, we require a novel representation of queries that
is transferable across databases while still being expressive enough to
enable accurate estimations. The specific representation depends on
the concrete task at hand. In the subsequent Section 5.2 we will derive
such an architecture for the task of cost estimation.

54 zero-shot learned components

training data collection and robustness . A second key
challenge to enable zero-shot learning is clearly the training data col-
lection for learning a zero-shot cost model. An important question is
how many and which databases and workloads a zero-shot model
needs to observe during training to make robust decisions on unseen
databases. As we show in our initial experiments for zero-shot cost
estimation in Section 5.3, for example, already a relatively small num-
ber of databases along with the respective workload information (e.g.,
the featurized query plans and runtimes) is sufficient to generalize
robustly and even outperform existing workload-driven approaches.

In Chapter 12, we also provide theoretical arguments to recognize
cases when a zero-shot model has seen sufficiently many databases
to generalize robustly. Intuitively, we evaluate the model on test
databases that have not been used during training similar to the
common practice in ML to evaluate a model on a holdout set.

separation of concerns . Finally, a last important aspect of
zero-shot models is to decide what should be learned by the model to
fulfill its core promise and when to separate concerns. For example,
workload-driven approaches often prefer end-to-end learning, i.e., to
make predictions for a query plan (e.g., the runtime), they internalize
both the data characteristics (e.g., the data size and distributions) as
well as the system characteristics (e.g., the runtime complexity of
database operators) in one model.

However, since the data characteristics can be entirely different for
a new database, such an end-to-end approach will not work for zero-
shot learning. Hence, we suggest that data characteristics for zero-shot
learning should be captured by separate data-driven models (such as
[72, 185]). For example, a feature that can be captured by a data-driven
model are the input- and output-cardinalities of operators in a query
plan. That way, when using cardinalities as input features for the
zero-shot models, these models learn to predict the runtime behavior
of operators based on input/output sizes that can be derived for any
database which again enables a transferable representation of queries
that does not depend on the concrete data distribution of a single
database. In particular, for the task of cost estimation (cf. Section 5.2)
we will demonstrate that leveraging data-driven models to predict
intermediate cardinalities as features yields more precise zero-shot
cost estimation models.

One could now argue that this violates the core promise of zero-
shot learning since data-driven models need to be learned for each
new database. However, data-driven models can be derived from a
database without running any training query and typically a sample of
the database is enough to train these models. Moreover, for cardinality
estimation, we could even use simple non-learned estimators (e.g.,
histograms) as input for the zero-shot models. As we show in our
initial results in Chapter 12 and the subsequent Section 5.2, even those

5.2 zero-shot learned cost estimation 55

simple estimators often provide sufficient evidence for our zero-shot
cost models to produce accurate estimates.

To summarize, a key question in this context is to decide what a
zero-shot model should learn and which aspects should be treated
separately. Clearly, a guide for this question is to think about what is
tied to a particular data distribution and which aspects hold in general
which should then be included in the zero-shot model. Moreover, as
we discuss in more detail in Chapter 11, for design tuning or query
optimization another question is how to combine zero-shot models
with optimization procedures or other learning approaches (e.g., value
networks) to implement efficient search strategies.

5.2 zero-shot learned cost estimation

In this section, we specifically focus on the problem of cost estima-
tion, which we tackle using zero-shot learning. We first introduce the
problem of zero-shot cost estimation and then present an overview
of our approach before we discuss the underlying assumptions and
limitations.

5.2.1 Problem Statement

The overall goal of zero-shot cost estimation is to predict query laten-
cies (i.e., runtimes) on an unseen database without having observed
any query on this unseen database. As before we use the term database
to refer to a particular dataset (i.e., a set of tables with a given data dis-
tribution). Note that the problem of zero-shot cost estimation is thus in
sharp contrast to the problem addressed by state-of-the-art workload-
driven cost models, which train a model per database. Finally, while
we believe that zero-shot learning for DBMSs is more generally appli-
cable, we restrict ourselves to cost estimations for relational DBMSs
(both single-node and distributed). In particular, zero-shot cost mod-
els for other types of systems such as graph-databases or streaming
systems are interesting avenues for future work.

5.2.2 Our Approach

A key challenge for developing zero-shot cost models is the question
how to design a model that generalizes across databases. Here, we
draw inspiration from the way classical cost models in DBMSs are
designed. Typically, these consist of two models: a database-agnostic
model to estimate the runtime cost and a database-dependent model
(e.g., histograms) to capture data characteristics. When predicting the
cost of a query, the estimated cardinalities and other characteristics
(i.e., outputs of the database-dependent models) serve as input to
the general database-agnostic cost model, which captures the general

56 zero-shot learned components

Join

Scan T1 Scan T2
DB1

DB2

2100ms

Join

Scan T1

420ms

Join

Scan T1 Scan T2

270ms

Transferable Representation

Training a Zero-Shot Cost Model
(one-time-effort)

Variety of Databases Queries and Runtimes

Training
Data

annotate

Data
Characteristics

... ...

DBx

Data
Characteristics

Zero-Shot
Cost Model

Inference on Unseen Database
(for every new database)

PredictionUnseen Database and Query

Figure 5.2: Overview of Zero-Shot Cost Estimation. The zero-shot cost model
is trained once using a variety of queries and databases. At in-
ference time, the model can then provide cost estimates for an
unseen database and queries without requiring additional train-
ing queries. Enabling zero-shot cost estimation is based on two
key ideas: (1) a new transferable query representation and model
architecture is used to enable cost predictions on unseen databases
and (2) we separate concerns, i.e., a zero-shot model learns a gen-
eral database-agnostic cost model, which takes database-specific
characteristics as input.

system behavior (e.g., the costs of a sequential scan grows linearly
w.r.t. the number of rows). While the classical models are lightweight,
they often largely under- or overestimate the true costs of a query
since models are too simple to capture complex interactions in the
query plan and data.

Hence, in our approach, we also separate concerns but use a much
richer learned model, which similarly takes data characteristics of the
unseen database as input to predict query runtimes in a database-
agnostic manner. As depicted in Figure 5.2 (upper part), for training
such a zero-shot cost model we provide different query plans along
with the runtime as well as the data characteristics of the plan (such
as tuple width as well as intermediate cardinalities) to the zero-shot
cost model. Once trained, the model can be used on unseen databases
to predict the query runtime as shown in Figure 5.2 (lower part).

As mentioned before, to predict the runtime of a query plan on a
new (unseen) database, we feed the query plan together with its data
characteristics into a zero-shot model. While data characteristics such
as the tuple width can be derived from the database catalogs, other
characteristics such as intermediate cardinalities require more complex
techniques. To derive intermediate cardinalities of a query plan in

5.2 zero-shot learned cost estimation 57

our approach we thus make use of previously proposed data-driven
learning [72, 185] that can provide exact estimates on a given database.
Note that this does not contradict our main promise of zero-shot
learning since data-driven models to capture data characteristics can
be learned without queries as training data.

Another core challenge of enabling zero-shot cost models that can
estimate the runtime of a plan given its data characteristics is how to
represent query plans, which serve as input to the model. While along
with workload-driven cost models, particular representation methods
for query plans have already been proposed, those are not applicable
for zero-shot learning. The reason is that the representations are not
transferable across databases as discussed in Section 5.1.2. For instance,
literals in filter predicates are provided as input to the model (e.g.,
2021 for the predicate movie.production_year=2021). However, the
selectivity of literals will vary largely per database since the data
distribution will likely be different (e.g., there might not even exist
movies produced in 2021 in the test database).

Hence, as a second technique, we propose a new representation for
queries that completely relies on features that can be derived from any
database to allow the model to generalize to unseen databases. For
example, predicates for filter operations in a query are encoded by the
general predicate structure (e.g., which data types and comparison
operators are used in a predicate) instead of encoding the literals.
In addition, data characteristics of a filter operator (e.g., input and
output cardinality to express the selectivity) are provided as additional
input to a zero-shot model. That way, a zero-shot model can learn
the runtime overhead of a filter operation based on database-agnostic
characteristics.

Finally, a last important aspect of zero-shot cost models is that they
can easily be extended to few-shot learning. Hence, instead of using
the zero-shot model out-of-the box (which already can provide good
performance), one can fine-tune the model with only a few training
queries on an unseen database.

5.2.3 Assumptions and Limitations

While we expect zero-shot cost models to support a variety of dif-
ferent databases and workloads out-of-the-box, we next discuss the
assumptions for a successful generalization.

Our main assumption is that we only focus on the transfer of
learned cost models across databases for a single database system on a
fixed hardware. We think that this is already challenging and allows for
many interesting use cases. For instance, with zero-shot cost models
cloud DBMSs (such as Redshift or Snowflake) can use learned cost
models for new customer databases and workloads with significantly
lower training overhead compared to the existing workload-driven

58 zero-shot learned components

models that require that a model is trained per new database. While
we believe that zero-shot cost models can be extended to support
also the transfer of cost models between different hardware setups
and DBMSs by adding additional transferable features, we leave this
to future work and assume a fixed hardware and DBMSs in this
dissertation.

Furthermore, while zero-shot cost models can generalize to unseen
query patterns as we show in our experiments, it is clearly required
that the training queries have a certain coverage, i.e., come with a
diverse set of workloads and databases. For instance, it is a minimum
requirement that every physical operator is observed in the training
data s.t. the model can internalize the overall characteristics. Moreover,
if there are extreme differences between training and test workloads,
we expect the zero-shot model accuracy to degrade. We discuss how
to detect and mitigate such cases by fine-tuning a zero-shot model in
Chapter 12.

5.3 key findings

We now present the key findings of the evaluation of zero-shot cost
models. In particular, we will demonstrate that our approach provides
accurate cost estimates on entirely unseen databases and state-of-
the-art workload-driven approaches require ten thousands of query
executions for a similar accuracy on an unseen database. Note that
an extensive evaluation including generalization experiments and
ablation studies can be found along with more details in Chapter 12.

generalization to unseen databases . To evaluate zero-shot
cost models, we first require a benchmark that includes a variety of
databases and workloads to pretrain the zero-shot models. We provide
more details on the benchmark in Chapter 12. Note that the benchmark
also encompasses established datasets and workloads such as JOB
on IMDB, TPC-H and SSB, which are commonly used to evaluate
learned cost estimation approaches. To validate that zero-shot cost
models generalize to unseen databases, we trained a zero-shot model
using workloads on 19 out of these 20 datasets of the benchmark
as training data and evaluated the model on the workload of the
unseen (remaining) database. In particular, we use the trained model
to predict the runtimes of the queries on the unseen database and
report the median q-error [79, 116].

As described in Section 5.2, zero-shot cost models require interme-
diate cardinalities as features as a result of the separation of concerns.
In this experiment, we either used predictions of data-driven cardi-
nality estimators or the actual cardinalities, which are not available in
practice prior to execution but serve as an interesting upper baseline
for zero-shot learning (i.e., how accurate the predictions become with

5.3 key findings 59

A
cc

id
en

ts
A

ir
lin

e
B

as
eb

al
l

B
as

ke
tb

al
l

C
ar

ci
no

ge
ne

si
s

C
on

su
m

er
C

re
di

t
E

m
pl

oy
ee

F
hn

k
F

in
an

ci
al

G
en

ee
a

G
en

om
e

H
ep

at
it

is
IM

D
B

M
ov

ie
le

ns
S

S
B

S
ez

na
m

T
P

C
-H

T
ou

rn
am

en
t

W
al

m
ar

t

0

5
M

ed
ia

n
q-

er
ro

r

S
S

B
(O

ri
g.

W
or

kl
oa

d)
T

P
C

-H
(O

ri
g.

W
or

kl
oa

d)

Scaled Optimizer Costs (Postgres)

Zero-Shot
(Est. Cardinalities)

Zero-Shot
(DeepDB Est. Cardinalities)

Zero-Shot
(Exact Cardinalities)

Figure 5.3: Zero-Shot Generalization across Databases. The zero-shot models
are trained using workloads on 19/20 databases and tested on
the remaining unseen database. Overall, zero-shot models are
significantly more accurate than the scaled estimates of the opti-
mizer cost model. In addition to using workloads as defined by
our benchmark (left), we repeated this experiment with standard
benchmark workloads (SSB and TPC-H on the right) to further
show the generalization potentials of zero-shot cost models.

perfect cardinality estimates). For the data-driven cardinality estimator,
we trained DeepDB [72] models, which worked best in preliminary
experiments. To the best of our knowledge, we are the first to propose
zero-shot cost estimation and thus no other learned approaches are
included as a direct baseline in this first experiment where we aim to
analyze the accuracy on unseen databases.

The results can be seen in Figure 5.3. In general, the zero-shot
models offer robust performances for all of the databases despite
the varying complexity. In fact, all median q-errors are below 1.54
for the version using DeepDB cardinality estimates (vs. 8.62 in the
worst case for the Scaled Optimizer cost). Finally, we can see that zero-
shot cost models using DeepDB cardinalities are almost matching the
performance with perfect cardinalities. This suggests that the models
can cope with partially inaccurate cardinalities.

Overall, we can see that the zero-shot cost models are significantly
more accurate than the scaled optimizer estimates outperforming
these on 18 out of 19 datasets and being on par for the last remaining
dataset (Airline). The reason is that zero-shot cost models capture
subtleties in operator performance and interactions of operators in
the plan more accurately than simplistic cost models. The results are
just on par for the remaining database since the optimizer costs are
relatively accurate because it is merely a star schema, i.e., a relatively
simple schema structure.

comparison with workload-driven learning . In the fol-
lowing, we contrast the performance of zero-shot cost models with
workload-driven approaches. An interesting question is how many

60 zero-shot learned components

102 103 104

1.25

1.50

2.00

3.00

q-
er

ro
r

(M
ed

ia
n)

Scale

102 103 104

1.25

1.50

2.00

3.00
Synthetic

102 103 104

1.25

1.50

2.00

3.00
JOB-light

102 103 104

2.00

5.00

10.00
15.00

q-
er

ro
r

(p
95

)

102 103 104

2.00

5.00

10.00
15.00

102 103 104

2.00

5.00

10.00
15.00

102 103 104

Training Queries

0

25

50

E
xe

cu
ti

on
T

im
e

(h
)Scaled Optimizer Costs (Postgres)

MSCN (Workload-Driven)

E2E (Workload-Driven)

Zero-Shot (DeepDB Est. Cardinalities)

Zero-Shot (Exact Cardinalities)

Few-Shot (DeepDB Est. Cardinalities)

Few-Shot (Exact Cardinalities)

Figure 5.4: Estimation Errors of Workload-Driven Models for a varying Num-
ber of Training Queries compared with Zero-Shot Cost Models.
Even the most accurate workload-driven model (E2E) requires
approximately 50k query executions on an unseen database for a
comparable performance with zero-shot models, which is roughly
equivalent to 66 hours of executed workload. Since zero-shot mod-
els do not require any additional queries it is significantly cheaper
to deploy them for a new database.

training queries are required for workload-driven learning on an un-
seen database to match the performance of zero-shot learning, which
we will study next. In particular, in this experiment, we evaluate the
q-errors for the scale, synthetic, and JOB-light workloads (IMDB). As
before zero-shot models are not trained on IMDB at all (but on the
other 19 databases) while workload-driven models are trained on a
varying number of training queries on IMDB.

As baselines, we use the state-of-the-art models for workload-driven
cost estimation, namely the E2E model proposed by Sun and Li [161]
as well as the MSCN model by Kipf et al. [79]. Furthermore, as the
last baseline, we again employ the scaled costs of the Postgres query
optimizer.

In Figure 5.4, we depict the median q-error of comparing our zero-
shot performance to the baselines as discussed before for the IMDB
benchmark workloads for a varying number of training queries. As we
can see, the zero-shot cost models can estimate the runtimes accurately
even though queries on the IMDB dataset were not observed in the
training data. In particular, E2E requires about 50k training queries on
the IMDB database to be on par with zero-shot cost models. As we
can see in the lower right plot in Figure 5.4, this amount of queries
takes approximately 66 hours to run, which is a significant effort given

5.4 discussion 61

that it has to be repeated for every new database. Another interesting
comparison is to use the training queries also to fine-tune the zero-shot
models on the IMDB database; i.e., we use zero-shot models in the
few-shot mode discussed in the paper. As we can see, few-shot cost
models that are fine-tuned on the IMDB database can further improve
the cost estimation accuracy of zero-shot models. It is thus beneficial
to also leverage fine-tuning in case training queries for the unseen
database are available.

Finally, we can see that the MSCN models are not equally accurate,
which is likely due to the fact that they do not consider the physical
plan that was run to execute a given query. Still, all learned approaches
are more accurate than the scaled optimizer in the median after only
a few queries. Furthermore, we can observe that zero-shot and few-
shot cost models not only outperform workload-driven models in the
median but also in the tail performance, i.e., on the 95th percentile
q-error. We can observe similar effects for the maximum q-error.

5.4 discussion

Our above results indicate that zero-shot learned database components
can indeed generalize to unseen databases out-of-the-box without
requiring additional training data. In particular, for cost estimation,
comparable workload-driven approaches require 50k query executions
on the unseen database for a comparable performance with zero-shot
models, which is roughly equivalent to 66 hours of executed workload.
Hence, when deployed for cloud vendors, zero-shot models have the
potential to significantly reduce the costs for training data collection -
potentially no training data has to be collected at all since query logs
are available and sufficient for training.

As mentioned above, we believe that data-driven learning and zero-
shot learning can be combined effectively. In fact, we have demon-
strated that the intermediate cardinalities predicted by data-driven
models can serve as informative features for zero-shot cost models.
However, this requires that a data-driven model is available for an
unseen database. In cases where this additional cost of training a
data-driven model per database is not acceptable, we can fall back to
using optimizer cardinality estimates as features, which we have also
shown to yield competitive accuracies.

While we believe that our initial results on zero-shot cost estimation
are promising, there are many open research questions to derive zero-
shot models for other database tasks. We will provide a discussion in
Section 6.2.1.

6
C O N C L U S I O N A N D O U T L O O K

We now conclude with the contributions of this dissertation towards
data-efficient learned database components in Section 6.1. Afterwards,
we will provide an outlook on the open challenges for learned database
components in Section 6.2, which further motivates future research in
this field.

6.1 data-efficient learned database components

This dissertation addresses the problem of the high costs of training
data collection for state-of-the-art learned database components. In
particular, for each unseen database that should be supported ten
thousands of queries have to be executed to gather sufficient training
data for the underlying models. This dissertation thus introduced
three directions to alleviate this problem: (i) data-efficient workload-
driven learning, (ii) data-driven learning and (iii) zero-shot learned
database components.

First, in Chapter 3, we introduced two techniques to reduce the
number of required training queries for workload-driven models -
simulation models to bootstrap the components without query exe-
cutions and differentiable programming, which allows incorporating
domain knowledge in the design. While these techniques reduced the
cost of workload-driven learning, the need for training queries for
unseen databases is still not completely eliminated. In addition, both
the simulation model and the differentiable programming require an
explicit modeling of the underlying task, which can be hard to achieve.

Hence, we proposed two alternative paradigms of learned com-
ponents throughout this dissertation. First, in Chapter 4, we intro-
duced data-driven learning where the learned components leverage
the data distribution instead of a representative workload. This in fact
completely eliminates the need for training queries and can achieve
state-of-the-art performance in cardinality estimation, AQP and com-
pletion of relational datasets. However, data-driven approaches are
not as broadly applicable as workload-driven models since they only
leverage the data distribution as a signal and cannot solve tasks that
require knowledge about workload executions.

We thus proposed zero-shot learned database components in Chap-
ter 5. The idea is to pretrain the models on a variety of databases
and workloads to enable those to generalize to unseen databases
out-of-the-box, i.e., without observing an additional training work-
load. We have demonstrated that the key challenge of such models

63

64 conclusion and outlook

is to derive a transferable representation and have thus proposed
such a novel architecture for the task of cost estimation. In fact, we
have demonstrated that zero-shot cost models can predict costs on
unseen databases out-of-the-box and comparable workload-driven
models require ten thousands of query executions as training data for
a comparable performance.

Overall, we can thus conclude that the proposed techniques substan-
tially improve the data-efficiency of learned database components. In
particular, for data-driven learning training, a model on a sample of the
database is sufficient to support an unseen database whereas for zero-
shot learning the same model can be used for a variety of databases,
and thus no additional effort is incurred. Hence, the high costs of
supporting unseen databases, which are required for workload-driven
models, are completely eliminated, which we believe could be crucial
for cloud DBMS vendors since this significantly reduces the effort to
support a large number of customers.

We have validated the directions by solving individual database
tasks such as cardinality estimation. Importantly, we were not only able
to achieve a comparable performance but outperformed the state-of-
the-art workload-driven models even if a large set of training queries
is provided for training such models. While the individual tasks
are providing evidence that the proposed directions are viable, we
believe that our ideas are general and could be used for many learned
database components for a variety of tasks. For instance, we expect
that the applicability of zero-shot learning is not limited to the cost
estimation task but is a broader concept that could also be used
for tasks such as query optimization, scheduling or physical design
advisors.

6.2 outlook

While the contributions of this dissertation significantly improve the
data-efficiency of learned database components, there are many more
challenges and interesting research directions that have to be solved be-
fore learned components can be broadly adopted in database systems.
We see several research challenges in the areas of (i) a broader coverage
of tasks for zero-shot learning eventually resulting in full zero-shot
databases (cf. Section 6.2.1), (ii) improvements for data-driven models
to support a broader set of query classes and an increased efficiency (cf.
Section 6.2.2) and (iii) robustness and debugability, which is especially
important for the use in production systems (cf. Section 6.2.3).

6.2 outlook 65

6.2.1 End-to-End Zero-Shot Databases

While we have demonstrated that cost estimation can be solved with
zero-shot learning, we believe that many more tasks can be supported
in the future finally yielding full zero-shot database systems.

The first step towards this vision should be to support tasks, which
are commonly required in cloud databases, where zero-shot learning
is particularly interesting since training data in the form of query logs
is already available. Important tasks include physical design decisions
such as materialized view or index selection, which have a significant
impact on the workload runtime but are non-trivial to automate due
to the complex interactions of physical design and query executions.
In addition, zero-shot query optimizers are particularly interesting
since workload-driven learned optimizers have already been shown
to yield more efficient query plans [109, 112, 184] while reducing the
immense engineering efforts required to maintain and improve query
optimizers.

An important question is how the search space is represented for
such zero-shot tasks and how the data distribution can be encoded.
For instance, for query optimization, there is an immense design space
of physical plans for a particular logical plan. Analogously, there are
many possible materialized views that can potentially speed up a
workload. While there have already been initial works to represent
this search space for workload-driven models as an RL problem [59, 99,
112], it is not straightforward to implement this as zero-shot models
since a key requirement is that the underlying representation is trans-
ferable. We believe that the transferable graph encoding suggested
for cost estimation can already be a good starting point for additional
tasks.

Another interesting question is how the data distribution should be
encoded. For the cost estimation problem, we have used intermediate
cardinalities as features and were thus able to logically separate the
general cost estimation model from a particular data distribution of a
single database. However, this technique is not generally applicable.
For instance, for query optimization, selecting the right join ordering
is an important subproblem, which depends on complex correlations
that determine the result sizes of subjoins. It is not viable to provide
the expected cardinalities for all subjoins as features to the model.
However, again workload-driven solutions to this problem cannot
directly be leveraged for zero-shot models since these implicitly also
learn the data distribution of the training database and would thus not
be transferable. One solution could be generally to provide the data
distribution and correlations in the dataset as features for the zero-
shot optimization model. Both traditional histogram-based approaches
that capture the distribution of a single attribute or a set of attributes

66 conclusion and outlook

or modern representations that have been suggested for pretrained
cardinality estimation models [102] could be useful for this problem.

Finally, we believe that the zero-shot components could be com-
bined to obtain an entire database system that automatically adapts
to a particular database and workload with none or only a few ob-
served queries. This could potentially allow significant speedups since
state-of-the-art systems are typically one-size-fits-it-all solutions based
on heuristics that can be specialized heavily for a particular database.
However, this not only requires that more components can be ex-
pressed as a zero-shot component but also architectural approaches
that ensure that the components jointly yield a robust system that
offers a sufficient performance.

6.2.2 Practical Data-Driven Learning

As demonstrated for cost estimation, we believe that zero-shot learned
components can often make use of data-driven models that provide
informative features based on the data distribution. However, in order
to be practically applicable, we see two main research challenges
regarding training efficiency and query coverage.

First, while data-driven models do not require observing any train-
ing queries, we still have to train a single model for every database.
This means that we do not incur the cost of running a representative
workload for every customer as for workload-driven learning but
the cost of training a data-driven model. Since especially for cloud
database vendors this cost has to be incurred for every customer, this
motivates further research on efficient data-driven models. In par-
ticular, generating statistics in the form of histograms in traditional
systems is usually very efficient. In contrast, data-driven learning
requires training times in the order of minutes as demonstrated for
the DeepDB system and thus leaves a potential for optimizations. Of
particular interest could again be initial work on pretrained models for
cardinality estimation [102] that allows to efficiently obtain a represen-
tation of the data distribution of a single table that can afterwards be
used to predict selectivities. An additional direction could be to com-
bine more traditional approaches (e.g., synopsis such as histograms)
with ML to obtain both efficient to construct and accurate estimators.
For instance, such classical statistics could serve as a feature for ML-
based techniques. In these cases, the distinction between data-driven
learning and zero-shot learning is less clear since pretraining might
also play an important role.

Second, as of today data-driven models only support a subset of all
possible queries and are thus inferior to workload-driven models in
this regard. For instance, predicates including wildcards on strings,
nested queries or acyclic joins are typically not directly supported.
While we could fall back to more traditional techniques for queries that

6.2 outlook 67

come with such predicates, broader coverage of data-driven models
would enable a broader set of workloads to benefit and also justify the
cost of creating the models in the first place.

6.2.3 Robustness and Debuggability

Finally, it is crucial for database developers and vendors to have a cer-
tain robustness and debuggability in case the learned component does
not behave as expected. Specifically, the derived components should
also provide a sufficient and predictable performance for previously
unseen data and workload characteristics. Moreover, in cases where
problems occur, it should be possible for developers to reason about
the learned component to eventually stabilize the system.

This is challenging to achieve with state-of-the-art learned com-
ponents since these rely on ML models, in particular in many cases
DNNs, which are black boxes and often do not enable a closer inspec-
tion of the inner workings of the models. While explainable ML [19]
has seen some progress in recent years, it is still hard to reason why
a particular model output came to be. We believe that there are two
main strategies to alleviate this problem.

First, a major design question is what parts of the learned compo-
nent have to be learned. In general, while an end-to-end formulation
is appealing since the model has more degrees of freedom to solve
the problem, it will be harder to reason about individual decisions.
For instance, for materialized view selection, we could formulate the
entire problem as a single RL problem solved by a single DNN. This
would make it very hard to explain why a particular materialized view
was preferred over another one. In contrast, we could also formulate
the problem as an optimization problem and only estimate the benefit
of a particular materialized view (i.e., how much the performance of
a single query can be improved) using a learned model. If an unex-
pected materialized view is selected in the end, we would be able to
inspect whether the benefit was overestimated or the optimization
problem was the root cause - for instance, due to a budget that did
not allow other materialized view candidates to be chosen.

Second, the class of ML models has a significant impact on the ex-
plainability and predictability of the learned component. For instance,
for linear models, it is straightforward to examine the impact of a
single feature on the model output and the behavior is less brittle
w.r.t. minor perturbations of the input. This robustness could be very
desirable for learned components. In contrast, while a DNN can po-
tentially achieve superior results, it is harder to reason about it and
more prone to unpredictable behavior. Hence, in the design of learned
database components, explainability, robustness and performance are
a tradeoff, where the choice of models can have a significant impact.

68 conclusion and outlook

Overall, we believe that the robustness and debuggability of learned
components is a particularly challenging research direction and at the
same time of high importance for practitioners.

Part II

P E E R - R E V I E W E D P U B L I C AT I O N S

7
L E A R N I N G A PA RT I T I O N I N G A D V I S O R F O R C L O U D
D ATA B A S E S

abstract

Cloud vendors provide ready-to-use distributed DBMS solutions as a
service. While the provisioning of a DBMS is usually fully automated,
customers typically still have to make important design decisions
which were traditionally made by the database administrator such as
finding an optimal partitioning scheme for a given database schema
and workload. In this paper, we introduce a new learned partitioning
advisor based on Deep Reinforcement Learning (DRL) for OLAP-
style workloads. The main idea is that a DRL agent learns the cost
tradeoffs of different partitioning schemes and can thus automate the
partitioning decision. In the evaluation, we show that our advisor is
able to find non-trivial partitionings for a wide range of workloads
and outperforms more classical approaches for automated partitioning
design.

bibliographic information

The content of this chapter was previously published in the peer-
reviewed work Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm.
“Learning a Partitioning Advisor for Cloud Databases.” In: Proceedings
of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020.
Ed. by David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan,
Abdussalam Alawini, and Hung Q. Ngo. ACM, 2020, pp. 143–157.
doi: 10.1145/3318464.3389704. url: https://doi.org/10.1145/
3318464.3389704. The contributions of the author of this dissertation
are summarized in Section 3.1.

© 2020 Copyright held by the owner/author(s). Publication rights
licensed to ACM. This is the author’s version of the work. It is posted
here for personal use. Not for redistribution. The definitive version
of record was published in in the Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020.

71

https://doi.org/10.1145/3318464.3389704
https://doi.org/10.1145/3318464.3389704
https://doi.org/10.1145/3318464.3389704

72 learning a partitioning advisor for cloud databases

7.1 introduction

motivation : Providing data solutions as a service is a growing
field in the cloud industry. Cloud platforms such as Amazon Web
Services or Microsoft Azure provide multiple ready-to-use scale-out
DBMS solutions for OLAP-style workloads as a service. Using these
services, customers can easily deploy a database, define their database
schema, upload their data and then query the database using a clus-
ter of machines. While the provisioning is usually fully automated,
many design decisions which were traditionally made by the database
administrator remain a manual effort. For example, in Azure’s Data
Warehouse but also in Amazon Redshift customers have to choose
a partitioning attribute of a table to split large tables horizontally
across multiple machines. Partitioning the database can dramatically
improve the performance of analytical workloads since data-intensive
SQL queries can be farmed out to multiple machines.

While partitioning a database in an optimal manner is a non-trivial
task it has a significant impact on the overall performance. For exam-
ple, analytical queries typically involve multiple joins over potentially
large tables. If two tables are co-partitioned on the join attributes they
can be joined locally on each node avoiding costly network transfers.
Deciding for complex schemata with many tables and possible join
paths which tables should be co-partitioned is a non-trivial task since
this not only depends on the schema but also other factors such as
table sizes, the query workload (i.e., which joins are actually important
and how often tables are joined), or hardware characteristics such as
network speed and of course the database implementation itself.

There exists already a larger body of work to automate the physical
design of distributed DBMSs including the data partitioning [3, 127,
145]. These advisors formalize the problem as an optimization problem
and thus rely on cost models to estimate the runtime of queries for
different partitionings. However, this approach is unsuitable for a
cloud providers: First, cloud providers typically allow customers to
deploy their DBMS solutions on various hardware platforms which
renders the problem of acquiring exact cost models a challenge on its
own. Secondly, even if the cost model is tuned for a given hardware
platform, optimizer cost estimates are still often notoriously inaccurate
[91] resulting in non-optimal partitioning designs if existing automated
design approaches are used as we show in our experiments.

contributions : In this paper, we propose a different route and
make the case to use Deep Reinforcement Learning (DRL) to realize a
cloud partitioning advisor as a service that can be used for internal
and external DBMS solutions. The advantage for DRL is that a DRL
agent learns by trial and error, and thus they do not rely on the
fact that an accurate cost model is available. Instead, by deploying

7.1 introduction 73

different partitionings and observing query runtimes, they learn the
tradeoffs for varying workloads. Once trained, our learned advisor
can be queried to obtain a partitioning for the observed workload.

One could now argue that instead of learning a DRL agent, we
could simply learn a neural cost model that predicts the runtime for
different partitionings and then use an optimization procedure similar
to [127] to select a suitable partitioning. Recently, learned cost models
have also been used for query optimization [112] or cardinality esti-
mation [79]. The main reason why we use DRL for the partitioning
problem is that it inherently addresses the exploitation vs. exploration
tradeoff (i.e., it efficiently navigates the space of possible partitionings
instead of relying, for example, on naïve random sampling from the
space of possible solutions to collect training data). This is especially
important for learned cost models, where collecting training data can
be immensely expensive since a representative set of queries has to be
executed over a potentially large database. In our case, the high train-
ing costs are amplified since we need to run the same set of queries
over a representative set of different partitionings of the database
where repartitioning itself is a costly operation. The exploration/ex-
ploitation behavior of DRL thus helps us concentrating on “promising”
partitionings by exploitation and repartitioning intelligently if we ex-
plore (i.e., we try out promising partitions in the neighborhood first).
This general advantage of RL was exploited in the data management
community for similar problems as well [110, 192].

To summarize, we make the following contributions:

1. We first formalize a framework that translates the partitioning
problem to a DRL problem.

2. We present a two-step learning procedure to efficiently reduce
the training time of our DRL agent that first bootstraps a DRL
agent offline (with a simple network-centric cost model) and
then refines the agent online by actually running real workloads.

3. Moreover, we propose an extension that makes use of a commit-
tee of DRL agents to improve the adaptivity of our approach for
dynamic workloads. This also allows us to extend the advisor
using an incremental approach if new queries are added to the
workload or the database schema changes.

4. In our evaluation, we show that our approach can handle a vari-
ety of different database schemata and workloads. We also com-
pare our approach to classical optimization-based approaches
and show that our approach is able to find non-obvious solutions
that outperform classical optimization-based approaches even if
accurate cost estimates would be available.

outline : The remainder of this paper is organized as follows:
First, in Section 7.2 we provide an overview of our approach to use

74 learning a partitioning advisor for cloud databases

DRL to learn a partitioning advisor. In Section 7.3, we formalize
the partitioning problem as a DRL problem before we introduce our
training procedures in Section 7.4. We then explain how to obtain
partitionings at inference time in Section 7.6, explain optimizations
for workload changes in Section 7.5 and present the results of our
experimental evaluation in Section 7.7. Finally, we conclude with
related work in Section 7.8 and a summary in Section 7.9.

7.2 overview

The basic idea of this paper is to train a Reinforcement Learning (RL)
agent for each cloud customer that learns the tradeoffs of using differ-
ent partitionings for a given database schema for different workloads.
Learning these tradeoffs is appealing since cost models are known to
be notoriously inaccurate [91] and would thus over- or underestimate
the benefits of certain partitionings. To this end, we propose to train
a DRL agent that learns the tradeoffs of using different partitionings
and thus can be used to suggest a partitioning for a given customer
workload. An overview of our approach is depicted in Figure 7.1.

In order to make use of our learned partitioning approach, the
customer only needs to provide the DBMS (schema and data) and a
sample workload that reflects the set of typical queries in a production
workload. Based on this information, we train a DRL agent in an
offline- and online phase (step 1 and 2). After training, the DRL
agent can then be used in the production DBMS to decide which
partitionings to deploy by monitoring the actual workload (observed
workload). Changes in the workload might then trigger the DRL agent
to suggest new partitionings that are more suited for a given workload
(without retraining the agent).

In the following, we describe the high-level design of our training
procedure for the DRL agent which is the core contribution of this
paper. A detailed discussion about the training procedure can be
found in Section 7.4. In general, DRL agents learn by interacting with
an environment by choosing actions and observing rewards which
they seek to maximize. In our setup, the environment is the DBMS
which the agent manipulates with actions that change the partitioning
of individual tables. During the training phase, the agent learns to
minimize the runtime of a given workload consisting of a mix of
representative queries. In the training phase, the agents thus learns
the effects of different partitionings on individual query latencies.

Naïvely, we could train the agent on the customer database directly
but this would require a high effort to collect the training data. For in-
stance, repartitioning a large database table can take several minutes to
complete. During the training phase the agent requires several of these
actions to learn the effects. We therefore separate the training process
into two phases: (1) offline and (2) online training. In the offline training
phase, the agent solely interacts with a “simulation” of the customer

7.2 overview 75

R
L

A
ge

nt

A
ct

io
n

C
ha

ng
e

Pa
rti

tio
ni

ng

R
ew

ar
d

Es
tim

at
ed

 C
os

ts

(C
us

to
m

 C
os

t M
od

el
)

En
vi

ro
nm

en
t:

Si
m

ul
at

io
n

S
am

pl
ed

 W
or

kl
oa

d
S
im
ul
at
ed

 P
ar

tit
io

ni
ng

En
vi

ro
nm

en
t:

Sa
m

pl
ed

 D
at

ab
as

e

S
am

pl
ed

 D
at

ab
as

e
C

us
to

m
er

Pa
rti

tio
ne

d
by

 c
_k

ey

D
at

e

R
ep

lic
at

ed

AL
TE

R
 T

AB
LE

C
us

to
m

er
_S

am
pl

e

D
IS

TR
IB

U
TE

 B
Y

H
AS

H
(c

_k
ey

); R
L

A
ge

nt

Tr
ai

ne
d

R
L

A
ge

nt

AL
TE

R
 T

AB
LE

 C
us

to
m

er
D

IS
TR

IB
U

TE
 B

Y
H

AS
H

(c
_k

ey
);

O
pt

im
iz

ed
 P

ar
tit

io
ni

ng

1
O

ffl
in

e
Tr

ai
ni

ng
2

O
nl

in
e

Tr
ai

ni
ng

3
In

fe
re

nc
e

R
ew

ar
d

R
un

tim
e

on
 s

am
pl

ed
 D

B

Q
1:

SE
LE

C
T

...
Q

1:
SE

LE
C

T
...

Q
1:

SE
LE

C
T

...

S
am

pl
ed

 W
or

kl
oa

d

Q
1:

SE
LE

C
T

...
Q

1:
SE

LE
C

T
...

Q
1:

SE
LE

C
T

...

O
bs
er
ve
d

W
or

kl
oa

d

Q
1:

SE
LE

C
T

...
Q

1:
SE

LE
C

T
...

Q
1:

SE
LE

C
T

...

A
ct

io
n

C
ha

ng
e

Pa
rti

tio
ni

ng

Fi
gu

re
7
.1

:O
ve

rv
ie

w
of

D
R

L-
ba

se
d

ap
pr

oa
ch

to
Le

ar
n

a
C

lo
ud

Pa
rt

it
io

ni
ng

A
dv

is
or

.

76 learning a partitioning advisor for cloud databases

database. Since the network is typically the bottleneck of distributed
joins, we developed a simple yet generic cost model focused on the
network overhead required to answer a query given a certain parti-
tioning. In combination with the metadata (schema and table sizes)
about the customer database, we can estimate the query costs given a
partitioning in our simulation. These estimates are used as rewards for
the agent. Though not precise, this bootstraps the agent and enables it
to already find a reasonable partitioning given a production workload
(i.e., a mix of SQL queries). In our experiment, we show that a DRL
agent using this approach is already able to find partitionings that are
on par with traditional optimization-based partitioning advisors that
rely on DBMS internal cost models.

In an optional online training phase, the agent then does not just
interact with a simulation but with a real database. However, instead
of using the complete database we only use a sample of the data to
speed-up this step of the training phase. The benefit of this phase is
that it does not depend on the accuracy of our simple network-centric
cost model anymore. Instead, we can simply measure the runtimes
of queries on the sampled database to compute the rewards of the
agent. Consequently, the agent learns the effects of partitionings more
accurately.

Once the training is completed, we finally use the agent to make
actual partitioning decisions. As input, it requires a workload, i.e.
which queries were submitted in a certain time window. Based on
this workload, the agent suggests partitionings which we deploy on
the actual customer database. In many cases, the agent can be used
directly to suggest an optimized partitioning without any further
training. However, in case the database schema changes or completely
new classes of queries occur in a workload our advisor needs to be
retrained. In order to optimize for this case, we provide an incremental
training procedure that we discuss in Section 7.5.

7.3 partitioning as a drl problem

As discussed before, in this paper we use DRL to tackle the partition-
ing problem of databases. While DRL is typically used for sequential
decision making, it has successfully been applied to solve classical
combinatorial optimization problems [12, 78, 132] as well. The intu-
ition of this paper is similar since the partitioning problem is indeed
a combinatorial optimization problem. The main reason why RL has
proven to be beneficial when applied to optimization problems is that
it efficiently tackles the exploitation vs. exploration tradeoff (i.e., it
more efficiently navigates the space of possible solutions instead of
relying, for example, on naïve greedy search). This is especially impor-
tant in our domain where collecting training data can be extremely
expensive since a representative set of queries has to be executed over
a potentially large database. We now discuss the required background

7.3 partitioning as a drl problem 77

on Deep Reinforcement Learning (DRL) before we show how the
partitioning problem can be formulated as a DRL problem including
how we featurize the DBMS schema and a SQL workload.

7.3.1 Background on DRL

In Reinforcement Learning (RL), an agent interacts with an environ-
ment by choosing actions. Specifically, at each discrete time step t, the
agent observes a state st. By choosing an action a ∈ A, it transitions
to a new state st+1 and obtains a reward rt. Mathematically, this can
be modeled as Markov decision process. The way the agent picks the
actions depending on the state is called policy π. The goal of the agent
is to maximize the rewards over time. However, the greedy policy, i.e.
selecting the action with the highest immediate reward, might not be
the best strategy. Instead, the agent might select an action that enables
higher rewards in the future. Consequently, when selecting actions
the agent should always keep the long-term rewards in mind [164].

One approach to solving this problem is Q-learning. With the Q-
function, the expected discounted future rewards are approximated
as follows if we pick action a at state s:

Q(s, a) = E

(
∞

∑
t=0

rt(st, at)γ
t|s0 = s, a0 = a

)
.

In Q-learning, the rewards are discounted with a factor γ < 1 to
account for a higher degree of uncertainty for future states. The Q-
function is learned during training. Note that if the approximation
is good enough we can choose an optimal action for a state s as
argmaxa∈A Q(s, a).

During training we also have to select random actions such that
there is a tradeoff between exploration and exploitation what we have
learned so far. Usually, exploration is realized by picking a random
action with probability ε. This probability is decreased over time [164]
by multiplication with a factor called epsilon decay.

There are different ways of realizing the Q-function. For Deep Q-
learning [115] (or Deep Reinforcement Learning), a neural network
Qθ(s, a) with weights θ is used for the approximation. Having ob-
served a state st and an action at, the corresponding immediate re-
ward rt and the future state st+1 the network is updated via Stochastic
Gradient Descent (SGD) and the squared error loss

(rt + γ argmaxa∈A Q(st+1, at)−Q(st, at))
2.

The intuition is that the expected discounted future rewards when
selecting action at in step t should be the immediate reward rt to-
gether with the maximum expected discounted future rewards when
selecting the best action a in the next step t + 1 discounted by γ, i.e.
argmaxa∈A Q(st+1, at).

78 learning a partitioning advisor for cloud databases

lineorder
a11:lo_key
a12:lo_custkey
a13:lo_partkey

part
a31:p_partkey

customer
a21:c_custkey

e1

e2

q1: SELECT * FROM customer c, lineorder l
 WHERE l.lo_custkey=c.c_custkey;
q2: SELECT * FROM part p, lineorder l
 WHERE l.lo_partkey=p.p_partkey;

(a) Database and Workload
Foreign-Key Edges:
Edge e1 for lo_custkey→ c_custkey: active
Edge e2 for lo_partkey→ c_partkey: inactive

s(E) =
(

e1, e2

)
=
(

1, 0
)

Table States:
lineorder partitioned by lo_custkey

s(lineorder) =
(

r1, a11, a12, a13

)
=
(

0, 0, 1, 0
)

customer partitioned by c_custkey

s(customer) =
(

r2, a21

)
=
(

0, 1
)

part replicated

s(part) =
(

r3, a31

)
=
(

1, 0
)

Query Frequencies:
q2 occurs twice as frequently as q1

s(Q) =
(

f1, f2

)
=
(

0.5, 1
)

(b) State Representation

[0 0 1 0 0 1 0 1]
[1 0]

[0.5 1]

Appended
Table
States

Foreign-Key
Edges

Query
Frequencies

Action
Encoding

[...]

Q(s,a)

Feed-
Forward-
Neural-
Network

(c) Q-Network with Encoded State

Figure 7.2: State Representation of Simplified SSB Schema and Workload.

7.3 partitioning as a drl problem 79

7.3.2 Problem Modeling

In order to formulate the partitioning problem as a DRL problem we
model the database and the workload as state and possible changes
in the partitioning as actions. Rewards correspond to the gain in
performance for a given workload. During training, the agent thus
learns the impact of different partitionings on the workload. Figure 7.2
shows an example of our encoding for a simple database with three
tables and a workload with two queries.

partitioning state : The most important part of the state is to
model a partitioning for a given database. For simplicity, we assume
that only one partitioning scheme is used (e.g., hash-partitioning)
that horizontally splits a table into a fixed number of shards (which
is equal to the number of nodes in the database cluster). Moreover,
replicated tables are also copied to all nodes in the cluster. In fact,
these are the partitioning / replication options supported by the two
DBMSs we used in our evaluation. However, in general our approach
can easily be extended to more complex partitioning schemes as well.
Following the assumptions that a table Ti can either be replicated
or alternatively partitioned by one of its attributes ai1, ai2, . . . , ain, we
can encode the state as a binary vector using an one-hot encoding
s(Ti) =

(
ri, ai1, ai2, . . . , ain

)
, where ri encodes whether a table is repli-

cated and the remaining bits indicate whether an attribute is used for
partitioning. For instance, if the part table in Figure 7.2a is replicated,
its state vector is (r3, a31) = (1, 0) whereas the customer table is parti-
tioned by the attribute a21 and the resulting vector is (r2, a21) = (0, 1)
(as shown in in Figure 7.2b).

To reduce the exploration of sub-optimal partitionings, we further
extend the state representation making it explicit which tables are
co-partitioned, i.e., the partitioning attributes of the tables match their
join attributes. For instance, if the customer and lineorder table in
Figure 7.2 are partitioned by the attributes lo_custkey and c_custkey

respectively, we can join them locally on each node without shuffling.
To explicitly encode co-partitioning we introduce the concept of edges;
i.e., if an edge between a pair of join attributes air and ajs of the corre-
sponding tables Ti and Tj is activated, it guarantees co-partitioning.
For instance, since the edge e1 in Figure 7.2b is active the customer and
lineorder tables are co-partitioned. The fixed set of possible edges E
can easily be extracted from the given schema and workload (i.e., all
possible join paths). Since every edge can either be active or inactive,
the edge states can be represented as a fixed-size binary vector. To
represent the features for the partitioning of a database with multiple
tables as input for our Q-Network, we append the state vectors of all
tables. For instance, the edge vectors and individual table vectors of
Figure 7.2b are appended in Figure 7.2c and fed into the Q-network.

80 learning a partitioning advisor for cloud databases

Since this input is of fixed length, we are able to use a feed-forward
neural network to predict the Q-value.

workload state : Moreover, we need to model the workload
as part of the state since for the same database schema, different
workloads result in different partitioning strategies that should be
selected. Formally, a workload is a set of SQL queries Q1, Q2, . . . , Qn.
One way to model the workload is to encode each query using different
one hot encoded vectors, i.e., one vector for the set of tables, join
predicates, where conditions etc., similar to [79, 161]. However, this
modeling approach assumes that only queries of a typical pattern
occur (e.g., queries without nesting) and thus this approach is not
suited for our approach since a partitioning advisor should be trained
on arbitrary workloads where the query patterns are not known in
advance and complex queries involving nested queries and complex
predicate conditions appear.

Encoding nested queries with the featurization as proposed in [79,
161] would be in general possible but result in an overly complex en-
coding with many more input vectors and a neural network structure
which requires an extensive training. However, a more complex en-
coding is still only able to represent a fixed class of queries. Moreover,
more complex encodings typically require orders of magnitude more
training data.

We thus take a different route to featurize the workload based on the
observation that OLAP workloads are typically composed of complex
but recurring queries. We assume that a representative set of possible
queries qi in a workload of queries Q is known in advance which is not
uncommon in OLAP workloads. To encode a specific workload, we
use a vector where an entry encodes the current normalized frequency
fi of a query qi: s(Q) =

(
f1, . . . , fm

)
. That way, the input state can

represent different query mixes. For example, since the query q2 occurs
twice as often as the query q1 the frequency vector becomes (0.5, 1) in
Figure 7.2b.

Moreover, completely new queries can be supported in our state
encoding without the need to train a new DRL agent from scratch.
One case that we typically see in analytical workloads is that the same
query is used with different parameter values resulting in different
selectivities. In order to support this case, we bucketize queries into
classes with different selectivity ranges and use different entries in
s(Q); i.e., one for each bucket. That way, if a query is used with a new
set of parameter values, it is supported by finding the corresponding
entry in s(Q) and increasing the query frequency fi. For supporting
completely new SQL queries and not just new parameter values of
existing queries in the workload, we provide entries in s(Q) that are
initially set to 0 (i.e., no query of this type occurs in the workload) and
use those entries for new queries if they occur. We support this case in

7.3 partitioning as a drl problem 81

our approach by using a committee of DRL agents that we can extend
incrementally. As we show in our experiment in Section 7.7, the time
required for this is only a small fraction of the original training time.

actions : A small state space is essential to apply Q-learning be-
cause we have to compute the Q-values for all possible actions to
decide which action to execute in a state. We designed the actions to
affect at most the partitioning of a single table. More precisely, we
support two types of actions: (1) partitioning a table by an attribute
or (2) replicate a table. During training, the RL agent can only select
one of these actions at each step. This reduces the repartitioning costs
during training since similar partitionings are observed successively.

In addition, we provide an action for (de-)activating edges as a
short-cut to change the partitioning. Intuitively, activating an edge co-
partitions two tables while the de-activation of edges allows follow-up
actions to choose a new strategy (e.g., replication discussed above). It
is important that the set of edges to be activated is conflict-free. For
this, we solely allow to activate an edge if there are no two edges
which require a table Ti to be partitioned by different attributes air and
air′ . For example, edge e2 cannot be activated in Figure 7.2 because
e1 is already active. First, the conflicting edge e1 would have to be
deactivated.

An action a is encoded similarly to the partitioning and workload
state: we use appended one-hot encoded vectors to capture the in-
formation required for an action, i.e., the kind of action (replicate,
partition, (de-) activate an edge etc.), the affected table and attribute
as well as the (de-)activated edge. Both the state s and an action a
are then used as input for the neural network to predict the Q-value
Q(s, a).

rewards : The overall goal of the learned advisor is to find a
partitioning that minimizes the runtime for the workload mix (queries
and their frequencies) modeled as part of the input state. This objective
has to be minimized by the DRL agent and can be used as a reward.
Estimates of the simple network-centric cost model cm(P, qi) for the
queries qi given a partitioning P are used for the offline training and
actual runtimes cr(P, qi) for the online training. Since the DRL agents
seeks to maximize the reward, we use negative costs in the reward
definition resulting in r = −∑m

j=1 f jc(P, qj).
We decided to exclude the costs of repartitioning the database as

rewards into our learning procedure since we aim for setups where
we expect that repartitioning does not happen that often and can be
executed in the background especially for OLAP workloads and thus
does not have a negative effect on the actual workload execution. In
case repartitionings should be used more frequently, these cost should

82 learning a partitioning advisor for cloud databases

be included into the rewards to prefer repartitionings that can be
applied with less cost.

7.4 training procedure

In the following, we discuss the details of the offline and the online
phase of our DRL-based training procedure. At the end of this section,
we further discuss optimizations of our approach that allow us to
provide a higher accuracy for changing workloads (i.e., if the frequency
of queries change) and to incrementally add new unseen queries (and
tables).

7.4.1 Phase 1: Offline Training

For training a partitioning advisor, the DRL agent interacts with the
state reflecting the current partitioning by selecting different actions
and observing rewards as described before in Section 7.3. During
the offline training phase, the database partitioning is simulated and
the runtimes are estimated using our network-centric cost model
cm(P, qi) approximating computation and network transfer costs of
a given query qi for a partitioning strategy P. In particular, similar
to an optimizer the cost model enumerates different join orderings.
For each individual join in the plan, it estimates the optimal join
strategy (symmetric repartitioning join, symmetric repartitioning join,
broadcast single table or co-located join) and the resulting network
and computation costs. The sum of the costs is finally returned as cost
estimate for the query. In our experiments, we show that based on
this simple network-centric cost model, we can already train an DRL
agent that is able to suggest reasonable partitionings.

Using our simple network-centric cost model as well as the state/ac-
tion representation introduced before, we can train the DRL agent as
described in Algorithm 1. The training is divided into sequences of
states and actions of length tmax called episodes. The selected actions
change the partitioning used for the cost estimation cm(P, qi). Similar
to typical RL implementations, the DRL agent returns to the state s0 at
the end of every episode. To guarantee that the DRL agent can find a
suitable partitioning we have to make sure that it can reach any other
partitioning within tmax steps starting from the initial partitioning s0.
Since for every table we need just one action to partition it by any
attribute or to replicate it, any state can be reached within at most |T|
actions (where |T| denotes the number of tables in the schema). Hence,
we need to set tmax ≥ |T|. However, as tmax influences the training
time it is also a hyperparameter and can similarly be tuned.

7.4 training procedure 83

Algorithm 1 Offline Training
1: Randomly initialize Q-network Qθ

2: Randomly initialize target network Qθ′

3: for e in 0, 1, . . . , emax do . Episodes
4: Reset to state s0
5: for t in 0, 1, . . . , tmax do . Steps in Episode
6: Choose at = argmaxa Qθ(st+1, a) with

probability 1− ε, otherwise random action
7: Execute action at (i.e., simulate what the next

state st+1 and partitioning Pt+1 would be)
8: Compute reward with cost model cm:

rt = ∑m
j=1 f jcm(Pt+1, qj)

9: Store transition (st, at, rt, st+1) in B
10: Sample minibatch (si, ai, ri, si+1) from B
11: Train Q-network with SGD and loss

∑b
i=1(ri + γ argmaxa∈A Qθ′(si+1, a)−Qθ(si, ai))

2

12: Decrease ε
13: Update weights of target model: θ′ = (1− τ)θ′ + τθ

7.4.2 Phase 2: Online Training

In contrast to offline training, the idea of online training is to de-
ploy the partitionings Pi on a database cluster and measure the true
runtimes cr(Pi, qi) to compute the reward. However, the naïve ap-
proach is way too expensive to be used in practice. Imagine for exam-
ple that we need 1200 episodes for training each having tmax = 100
steps. Assume we have just a few queries and a small schema such
that the total workload takes around 20 minutes and the reparti-
tioning takes another 20 minutes on average. If we simply executed
every action, i.e., we repartition the tables and measure the work-
load runtimes on a cluster, we would end up with a runtime of
(20mins + 20mins) ∗ 1200 ∗ 100 ≈ 9years.

Therefore, online training is intended to (only) serve as refinement
in addition to offline training. This has no effect if we use the same
degree of exploration, i.e. if we choose random actions with the same
probabilities 1− ε. Note that ε is multiplied with a certain factor called
epsilon decay after every episode to decrease it over time. For online
training, we start with the ε value that we would reach after 600

episodes (i.e. half of the usual amount of episodes) in the offline phase.
This already significantly reduces the training costs as we will show in
our experiments. However, this does not suffice to effectively reduce
the time of the online phase in practice. We therefore use further
optimizations which aim to minimize the online training time of the
DRL agent as discussed next.

sampling : Instead of using all tuples of a database, we just use
a sample for every table. This speeds up both the runtime of the

84 learning a partitioning advisor for cloud databases

queries and the time needed to repartition or replicate any table. In
addition, we found it useful not to use the runtimes of a query cr(P, qi)

directly but to multiply this with a certain factor for every query. The
intuition is that some queries scale better than others on the full dataset.
Hence, runtime improvements of queries that scale better and thus also
run fast on the full dataset should weigh lower than improvements
of queries which are very slow on the full dataset. To this end, we
measure the runtimes of each query qi for the partitioning Poffline found
in the offline phase once for the full dataset cfull(Poffline, qi) and once for
the sample csample(Poffline, qi). Afterwards, we scale the costs for each

query qi with the corresponding factor Si =
cfull(Poffline,qi)

csample(Poffline,qi)
.

One question is how many tuples have to be sampled per table, i.e.
how the sampling rate is chosen. Higher sampling rates result in a
longer runtime of the online phase since both the query runtimes as
well the repartitioning times will increase. In contrast, smaller sam-
pling rates might lead to suboptimal partitionings. This can happen
if partitionings P′ have shorter weighted runtimes Sicsample(P′, qi) on
the sample than a superior partitioning P∗ for the full dataset. We
can account for these cases by selecting several partitionings P1, . . . , Pn

and measure their runtime both for the sample and for the full dataset.
If partitionings with shorter weighted runtimes on the sample also
lead to shorter runtimes on the full dataset size the sampling rate
is sufficient. If not, the sample size has to be increased. As a simple
heuristic one can empirically determine a threshold below which table
sizes should not fall below after sampling. This guarantees that tables
have a certain minimum size. If this threshold is large enough, optimal
partitionings on the samples will also be optimal on the full dataset
with high probability. A cloud provider could empirically determine
this threshold for every database and hardware setup.

query runtime caching : If the DRL agent visits two states si
and sj during training which have the same corresponding partition-
ing P, the runtimes do not have to be measured twice. Hence, we
can cache query runtimes to faster compute recurring reward values.
Additionally, if the partitionings of the states si and sj differ only for a
certain set of tables {Ti1, Ti2, . . . , Tin} we only have to measure the run-
times of queries qi that contain at least one of these tables. In particular,
the runtime of every query qi containing the tables {Ti1, Ti2, . . . , Tin}
depends only on the states of these tables, i.e. s(Ti1), s(Ti2), . . . , s(Tin).
Hence, for every query we can maintain a table containing the differ-
ent state combinations s(Ti1), s(Ti2), . . . , s(Tin) and the runtime of the
query on the sample dataset. In summary, when visiting a new state
we examine the state of every table s(Ti); i.e. whether it is replicated
or hash-partitioned by a certain attribute, and run only the queries qi
for which we do not have a runtime entry for the state combination of
relevant tables s(Ti1), s(Ti2), . . . , s(Tin).

7.5 optimizations for workload changes 85

lazy repartitioning : The approach of lazy repartitioning is to
keep track of the partitioning deployed on the database Pactual and the
partitioning Pt of the state st the agent is currently at. Every time the
agent chooses an action and we reach a new state we first check which
queries {qj1, . . . , qjn} have to be executed on the database. Especially
in later phases of training this will be significantly fewer queries than
the full set Q since many runtimes will be in the Query Runtime
Cache. For this set we determine the set of tables {Ti1, . . . , Tim} which
are contained in these queries. Only if Pactual and Pt do not match for
one of the tables, we actually repartition the table.

timeouts : The idea of this optimization is that a partitioning
where a single query exceeds a certain time limit cannot be optimal.
Hence, we can safely abort the query execution and move on with
training. Recall that the reward for a partitioning P for online training
is defined to be r = −∑m

j=1 f jSjcsample(P, qj). We can similarly compute
the (online) reward roffline of the partitioning Poffline found in the offline
phase. If a query qi takes longer than −roffline/(Si · fi) we can safely
abort it since the corresponding partitioning will definitely result in a
lower reward. If we are aware of a partitioning with an even higher
reward r′, the timeout can further be reduced to −r′/(Si · fi).

7.5 optimizations for workload changes

In the following, we discuss two enhancements for training the parti-
tioning advisor: (1) using a committee of experts rather than a single
agent to further increase the capacity for workloads with many tables
and queries, (2) using incremental training to adjust a learned advisor
if new queries occur in the workload.

committee of experts : The main goal of our approach is to
train a DRL agent just once such that it generalizes over different
workload mixes (i.e., different query frequencies). If the workload mix
changes, we want to use inference of the trained DRL agent and obtain
a new partitioning that works better for the new workload mix.

A more advanced approach enabling more accurate results for a
wide variety of workloads (i.e., large query sets) is not to train only
a single RL agent to suggest partitionings for all possible frequency
vectors but to use several expert models for subsets of all possible
workload mixes. Using more models allows experts to specialize on
certain aspects of the problem and moreover increases the overall
capacity of the model. The related ensemble approach is a common
optimization in machine learning to optimize the model performance.
The question is how the workload space can be partitioned efficiently
into different expert models. In the following, we explain our approach
called DRL subspace experts.

86 learning a partitioning advisor for cloud databases

The main idea of DRL subspace experts is to first obtain so called
reference partitionings P̃1, · · · P̃n which are optimized for certain work-
loads. To find these, we use the inference procedure of the naïve model
(i.e., the RL agent which was trained for the whole workload space)
and ask this agent for the optimal partitioning using m frequency vec-
tors where one query qi is over-represented: f1, . . . , fi−1, fi, fi+1, . . . , fm

with f j = flow for j ∈ {0, 1, . . . , i− 1, i + 1, . . . , m} and fi = fhigh. The
main intuition is that individual queries might favor opposing par-
titioning strategies that we aim to simulate by “extreme” frequency
vectors. Since many queries share the same reference partitioning, the
number of distinct partitionings n is much smaller than the number
of queries m (i.e., n << m). The distinct partitionings resulting from
this step is the set of reference partitionings P̃1, · · · P̃n.

For example, for a given workload with 10 queries we would sample
10 frequency vectors each representing a workload were one query
is over-represented. We then use these to obtain the reference par-
titionings from a naïve model with only one agent. Based on these
10 frequency vectors, we might end up having just three different
reference partitions P̃1, P̃2 and P̃3.

Once we determined the reference partitionings, we can separate
the workload space, i.e. the set of different frequency vectors. We say
that a frequency vector (f1, . . . , fm) belongs to the frequency subspace
of one of these reference partitionings P̃i if

P̃i = argmaxP̃∈{P̃1,···P̃n}−
m

∑
j=1

f jSjcsample(P̃, qj),

i.e., if the reward of the naïve RL agent is the maximum among
P̃1, · · · P̃n for this frequency vector. Afterwards, we then train one
DRL agent for each of these subspaces. The resulting DRL agents
can be considered experts for their frequency subspace. For each of
the frequency subspaces the training is similar to training the DRL
agent for the naïve approach. The only difference is that the DRL
agents are only trained for frequencies of their dedicated subspace.
One problem is how to sample more frequency vectors from the same
subspace. To obtain frequency vectors for different subspaces, we
sample frequencies uniformly and assign each frequency vector to the
DRL agent for the respective reference partitioning P̃i.

An important aspect is that the training of these subspace expert
models does typically not require any actual execution of queries on
the database cluster since we can reuse query runtimes in the Query
Runtime Cache of the naïve approach. When training the subspace
expert models, however, we might encounter partitionings that were
not seen when training the naïve model. For these cases, we have
no entries in the Query Runtime Cache and the queries need to be
actually executed. However, these cases are rare since the naïve agent
visits all optimal or near-optimal partitionings with high probabilities
already.

7.6 model inference 87

incremental training : A final interesting aspect of our online
approach is that we can easily support new queries by incremental
training. The main idea is that if new queries are added to a workload,
we do not have to train a new model from scratch. Instead, we add
new inputs representing the query frequencies to the input state of the
naïve model and retrain it only with frequency vectors that include the
new queries. Again, the Query Runtime Cache can be reused and we
only require actual runtimes for the new queries. Afterwards the naïve
model can be used again to obtain the new reference partitionings.
Only if a new reference partitioning is found, we have to train a new
expert agent for that subspace. Otherwise, it is sufficient to refine the
existing subspace experts with the cached query runtimes.

7.6 model inference

Having trained the learned partitioning advisor, we now describe how
it can be used to suggest a partitioning. This can either be the case
if an initial partitioning of the database should be suggested or the
workload changes. We first assume that only one DRL agent is trained
before we explain how the inference works if a committee of experts
is used.

inference with one drl agent : We assume that a frequency
vector is given that represents the current workload mix. The intuition
is to fully exploit the knowledge of the trained agent by always select-
ing the partitioning action with maximum expected future rewards,
i.e. the highest Q-value.

When applying the inference procedure, we always start with the
same initial state s0 also used during training. From the initial state
s0, we iteratively choose the action that maximizes the Q-function,
i.e., at = argmaxa Qθ(st+1, a). For this, we enumerate all possible
actions in that state and evaluate the neural network for each action.
Since we designed the action space to be small, this is very efficient.
Every time we choose an action, this changes the state s and thus the
partitioning. Note that we do not have to deploy every state in this
sequence. Instead, we use the same simulation that is also used in the
offline phase. Consequently, we execute tmax actions and thus obtain a
sequence of actions (s0, a0, r0, s1, . . . , stmax , atmax , rtmax). Afterwards, we
do not simply suggest the partitioning represented by the last state
stmax , since the DRL agent tends to oscillate around the best partitioning
P∗ (i.e, the partitioning with the highest reward is not necessarily
represented by the last state). Instead, we identify the state st in the
sequence above with a maximum reward and return the corresponding
partitioning P∗.

inference with a committee of drl agents : If we want to
obtain a new partitioning when a committee of experts was trained,

88 learning a partitioning advisor for cloud databases

we first determine which subspace P̃i of the frequency space the
vector belongs to: P̃i = argmaxP̃∈{P̃1,···P̃n} −∑m

j=1 f jSjcsample(P̃, qj). The
DRL agent is selected by choosing the DRL agent for the reference
partitioning with the lowest estimated runtime (which is the same
procedure we use when training the expert models). Afterwards, we
use the inference procedure discussed before with the corresponding
expert model for P̃i.

7.7 experimental evaluation

In the following, we evaluate the benefits of using learned partitioning
advisors for databases with schemas of varying complexity. We study
the following aspects of our approach:

1. Performance after Offline Training. In the first experiment (Sec-
tion 7.7.2), we validate that DRL agents that are trained purely
offline find partitionings outperforming typical heuristics and
are competitive with those found by state-of-the-art partitioning
advisors.

2. Improvement due to Online Training. Furthermore, if addition-
ally trained online, the DRL agent clearly outperforms state-
of-the-art systems and finds non-obvious partitionings with su-
perior runtime as we demonstrate in our second experiment
(Section 7.7.3). We moreover study the isolated runtime savings
of our suggested optimizations of the online phase.

3. Adaptivity to Data and Workload. Another benefit of our ap-
proach is the flexibility w.r.t. changes in the workload (Section
7.7.4). Hence, in the third experiment we first show that the com-
mittee of experts can suggest partitionings that improve over the
naïve model for changing workloads. Furthermore, we examine
the additional training time required if new queries are added
to a workload and the effect of database updates.

4. Other Learned Approaches. We empirically validate that using
DRL for the partitioning problem is superior to learning a neu-
ral cost model (Section 7.7.5) which is minimized for a given
workload to find suitable partitionings.

5. Adaptivity to Hardware Characteristics. Finally, in the last ex-
periment (Section 7.7.6) we show that our agent can also adapt
to changes in the deployment (i.e., if hardware characteristics
change) which is not trivial with existing approaches.

7.7.1 Workloads, Setup and Baselines

For the experiments, we used different databases and workloads that
we explain in the following. Moreover, we also discuss the learning

7.7 experimental evaluation 89

Parameter Value

Learning Rate 5 · 10−4

τ (Target network update) 10−3

Optimizer Adam

Experience Replay Buffer Size 10000

Batch Size for Experience Replay 32

Epsilon Decay 0.997

tmax (Max Stepsize) 100

Episodes 600/1200

Network Layout 128-64

γ (Reward Discount) 0.99

Table 7.1: Hyperparameters used for DRL training.

setup that we used for training the partitioning advisors as well as the
baselines.

data and workloads : We evaluated the partitioning advisor on
three different database schemas and workloads varying in complexity:
(1) As the simplest case, we used the Star Schema Benchmark (SSB)
and its workload [129]. SSB is based on TPC-H and re-organizes the
database in a pure star schema with 5 tables (1 fact and 4 dimension
tables) and 13 queries. (2) The second database and workload we used
was TPC-DS [168]. TPC-DS comes with a much more complex schema
of 24 tables (7 fact and 17 dimensions tables) and 99 queries (including
complex nested queries). For Postgres-XL, which is one of the systems
used in the evaluation, only 60 of the 99 queries could be executed
due to restrictions in which queries it supports. (3) In cloud data
warehouses such as Amazon Redshift, customers are not required to
use a star schema but can design an arbitrary schema for their database.
To test how well our learned advisor can cope with more complex
schemata which are not based on a star-schema, we additionally
used the TPC-CH benchmark [47], which is the combination of the
schema of the TPC-C benchmark with analytical queries of the TPC-
H schema (adopted for the TPC-C schema). Originally, the TPC-CH
benchmark combines analytical queries and transactions in a mixed
workload. For the purpose of this paper, we only used the analytical
queries to represent the workload in our evaluation. Furthermore, in
the standard version of TPC-CH all tables can be co-partitioned by
the warehouse-id. While our DRL agents also propose this solution
when using the original TPC-CH schema, we do not think that such a
trivial solution is realistic for many real-world schemata. Hence, we
further added complexity and decided to restrict possible partitionings
such that tables cannot be partitioned by warehouse-id only. For all
benchmarks (SSB, TPC-DS, and TPC-CH), we used the scaling factor
SF=100.

90 learning a partitioning advisor for cloud databases

setup : The partitionings for different analytical schemas were eval-
uated on two database systems. To show that our learned approach
is in general applicable to both disk-based and memory-based dis-
tributed databases, we used Postgres-XL 10R1.1 (a popular open-
source distributed disk-based database) [142] and System-X (a com-
mercial distributed in-memory database). For running the databases in
a distributed setup, we used CloudLab [28], a scientific infrastructure
for cloud computing research. For our experiments, we provisioned
clusters of different sizes ranging from 4 to 6 nodes. Each node was
configured to use 128GB of DDR4 main memory, two Intel Xeon Silver
4114 10-core CPUs and a 10Gbps interconnect. The partitioning advi-
sor is built using neural networks implemented in Keras. In particular,
the neural network to approximate the Q-functions used 2 hidden
layers with 128 and 64 neurons, respectively. We used the standard
ReLU activation function in every layer and a linear function for the
output (to represent the Q-value) which is a common combination for
DRL. An overview of all hyperparameters which we found to work
best for training can be seen in Table 7.1. The only hyperparameter we
changed for the different databases was the amount of episodes we
used to train the model. Since SSB has a significantly lower amount of
tables and queries we only trained the DRL agents for 600 episodes
instead of 1200 episodes for TPC-DS and TPC-CH.

baselines : Previous approaches typically use the optimizer cost
estimates or heuristics to optimize the partitioning design [3, 127, 145].
We additionally compared the partitionings found by our approaches
to heuristics that are typically used by a database administrator [191].
For both simple and more complex star schemata (SSB and TPC-DS)
this means that usually fact tables are co-partitioned with either the
most frequently joined dimension table (Heuristic (a)) or the largest
dimension table (Heuristic (b)). For the more complex schema TPC-CH,
we either naïvely replicated small tables and partitioned larger tables
by primary key (Heuristic (a)) or greedily co-partitioned the largest
pairs of tables while still replicating smaller tables (Heuristic (b)).

Automated partition designers [3, 127, 145] usually make use of the
optimizer cost estimates, i.e. they enumerate different physical designs,
let the optimizer estimate the costs for all queries in the workload and
choose the partitioning candidate with minimal costs. While several
optimizations exist that make the integration of the optimization and
the database cost estimation tighter (e.g., Nehme et al. [127] make
use of the MEMO data structure in Microsoft SQL server), they still
suggest the partitioning with minimal query optimizer cost estimates.
As a second baseline, we thus implemented a similar optimization
algorithm enumerating candidate solutions and minimizing the opti-
mizer cost estimates for Postgres-XL. However, for System-X this was
not possible because the optimizer cost estimates are not accessible.

7.7 experimental evaluation 91

Heuristic
(a)

Heuristic
(b)

Minimum
Optimizer

RL
0

100

200

300

400

W
or

kl
oa

d
R

un
ti

m
e

(s
)

(a) SSB (Postgres-XL)

Heuristic
(a)

Heuristic
(b)

Minimum
Optimizer

RL
0

25

50

75

100

W
or

kl
oa

d
R

un
ti

m
e

(s
)

N
ot

av
ai

la
bl

e

(b) SSB (System-X)

40000

50000

60000

Heuristic
(a)

Heuristic
(b)

Minimum
Optimizer

RL
0

5000

10000

W
or

kl
oa

d
R

un
ti

m
e

(s
)

(c) TPC-DS (Postgres-XL)

Heuristic
(a)

Heuristic
(b)

Minimum
Optimizer

RL
0

200

400

600

W
or

kl
oa

d
R

un
ti

m
e

(s
)

N
ot

av
ai

la
bl

e

(d) TPC-DS (System-X)

Heuristic
(a)

Heuristic
(b)

Minimum
Optimizer

RL
0

2500

5000

7500

10000

W
or

kl
oa

d
R

un
ti

m
e

(s
)

(e) TPC-CH (Postgres-XL)

Heuristic
(a)

Heuristic
(b)

Minimum
Optimizer

RL
0

250

500

750

1000

W
or

kl
oa

d
R

un
ti

m
e

(s
)

N
ot

av
ai

la
bl

e

(f) TPC-CH (System-X)

Figure 7.3: Offline RL vs. Baselines.

Cloud providers offering multiple commercial DBMS systems face
similar problems and thus this approach is not available for System-X.

7.7.2 Exp. 1: Offline Training

For each database mentioned before in the setup, we trained a dedi-
cated DRL agent with offline training, i.e. using our simple network-
centric cost model. We report the averaged total runtime of all queries
for five runs for the partitionings suggested by our advisor and the
baselines in Figure 7.3.

results for ssb : For the SSB benchmark, the two heuristics co-
partition the fact table with either the most frequently joined dimen-

92 learning a partitioning advisor for cloud databases

H
eu

ri
st

ic
(a

)

H
eu

ri
st

ic
(b

)

M
in

im
um

O
pt

im
iz

er

R
L

offl
in

e

R
L

on
lin

e0

5000

10000

W
or

kl
oa

d
R

un
ti

m
e

(s
)

(a) TPC-CH

+0% +20% +40% +60%
Updates

4000

6000

8000

10000

(b) TPC-CH with Updates

Figure 7.4: Online RL vs. Baselines.

sion table (Date) or the largest dimension table (Customer). The opti-
mizer predicts minimal costs when partitioning the lineorder table by
primary key and replicating all dimension tables. Our learned advisor
also suggests to co-partition the fact table with the largest dimension
table for Postgres-XL (same as Heuristic (b)). For System-X our learned
advisor additionally suggests to partition the Part dimension table by
its primary key leading to a minimal runtime improvement.

results for tpc-ds : For TPC-DS, which is a more complex
schema composed of several fact tables with shared dimensions, the
DRL agents finds superior solutions that are non-obvious. Here, the
improvements are more significant reducing the runtime over Heuris-
tic (a) by approximately 50%. For both Postgres-XL and System-X, the
DRL agents propose to co-partition the fact tables with a medium-
sized dimension table, i.e. Item. This has the advantage that local
joins are possible if two fact tables are joined, e.g. the fact tables for
StoreSales and StoreReturns. Moreover, for System-X the Customer

table is co-partitioned with the CustomerAddress table allowing local
joins. In contrast, the partitioning with the minimal optimizer costs
for Postgres-XL leads to a suboptimal partitioning. This is due to the
high query complexity resulting in erroneous cost estimates.

results for tpc-ch : As discussed before, TPC-CH uses a sig-
nificantly more complex schema than SSB and TPC-DS since it is
not similar to a star schema. While Heuristic (b) has better runtimes
than Heuristic (a) on Postgres-XL, Heuristic (a) outperforms Heuris-
tic (b) on System-X. This counter-intuitive result is due to the fact that
partitioning a table by district-id (as Heuristic (b) does) results in
skewed partition sizes in System-X. Compared to the two heuristics,
the DRL-agent proposes improved partitionings. For Postgres-XL it
proposes to co-partition the Customer, Order, NewOrder and addition-
ally the Orderline table by district-id but to replicate the Stock

table. This avoids that Orderline has to be shuffled over the network
for a join. For System-X, the DRL agent additionally partitioned the

7.7 experimental evaluation 93

Optimizations Training Time Speedup

None 4621h -

+ Runtime Cache 1160.4h 4.0

+ Lazy Repartitioning 60h 19.3

+ Timeouts 33.4h 1.8

+ Offline Phase 13.3h 2.5

Table 7.2: Training Time Reduction of Optimizations.

Stock table but also used a compound key combining warehouse-id

and district-id to mitigate the skew (which was reflected in the
simple network-centric cost model).

7.7.3 Exp. 2: Online Training

In this experiment we evaluate whether DRL agents trained online are
superior over purely offline-trained agents. We focus on the most com-
plex schema, i.e. TPC-CH, and Postgres-XL to analyze the additional
online phase that leverages actual runtimes instead of cost estimates.
For the online training we refine the DRL agent that was already
bootstrapped with our simple network-centric cost model offline.

The runtime of the benchmark queries using the suggested par-
titionings on the full TPC-CH database are shown in Figure 7.4a.
The partitioning suggested by the online-trained agent is 20% su-
perior to the partitioning of the offline-trained agent. The online-
trained DRL agent suggests a new partitioning where the NewOrder,
Order and Orderline table are co-partitioned by Order-Id and the
Customer table is replicated in addition. Interestingly, this partitioning
has higher costs according to our simple network-centric cost model.
However, the online phase is not affected by the inaccuracy of our
simple network-centric cost model and was thus able to improve over
the offline-trained agent.

If executed naïvely, the online training phase is time-consuming.
We thus want to examine the effect of different optimizations. For
this experiment, we were only running the training with all optimiza-
tions (except timeouts) activated. By keeping track of the queries that
would be executed twice without Runtime Caching, as well as how
often a table would be repartitioned without Lazy Repartitioning and
how much time could be saved with a particular Timeout, we could
determine the savings of the optimizations. As we can see in Table 7.2
every optimization significantly reduces the runtime and the largest
improvement can be obtained with Lazy Repartitioning. The last opti-
mization compares the training time of an agent that was bootstrapped
in an offline phase with a randomly initialized agent.

The online-phase with all optimizations and for a model that was
bootstrapped offline took 13.3 hours. We believe that a training time
of several hours is acceptable since the model has to be trained only

94 learning a partitioning advisor for cloud databases

once for different workload mixes and can afterwards be used as a
partitioning advisor if the workload changes (as we show in the next
experiment). Moreover, especially in cloud setups, we can easily clone
the instances. Hence, setting up a similar cluster to retrain the agent for
several hours to obtain a refined model should be feasible considering
that customers usually have one cluster provisioned all the time to do
analytics. The cloning is especially efficient for our setup since we do
not have to clone the entire data but only a sample of each table.

7.7.4 Exp. 3: Adaptivity to Data & Workload

The following experiments validate the adaptivity of a DRL agent to
changing data and workloads. We first demonstrate that our approach
can still find optimal partitionings without additional training even if
the data and the mix of queries changes. Moreover, in a last experiment
we examine the additional training time required if completely new
queries are added to the workload.

exp. 3a : changing data : First, we evaluated how robust the
trained RL agent is if the data changes. In this experiment, we use
the TPC-CH schema as before and train the RL advisor on the full
database (100%). Afterwards, we update the DBMS and bulk load up
to 60 % of new data into the TPC-CH schema. We use the bulk update
procedure of TPC-H and transform the data to the TPC-CH schema
since our main focus is on warehousing and the TPC-CH benchmark
does not support bulk updates. Figure 7.4b shows the results of using
our online-trained RL advisor (without any retraining) compared to
all other baselines. The large deterioration of the “minimal optimizer”
baseline in the measurement is due to different query plans chosen
by the PGXL optimizer after updates are applied. As we can see, the
partitioning found by the RL advisor constantly performs best even
for relatively large update rates of up to 60%. However, if the database
significantly changes, we need to retrain our advisor (which is not
needed in this experiment though). A helpful indicator to decide when
retraining is needed might be a change of the query plan. Moreover,
there exists a huge body of work in ML to detect drifts in training data
(which is related to this problem). Developing techniques to robustly
detect when to retrain is an interesting avenue for future work though.

exp. 3b : changing workload mix : In this experiment we show
that our learned advisor finds optimal partitionings for different query
mixes. To this end, we trained an DRL agent with the naïve approach
for different workload frequencies for the TPC-CH schema. Moreover,
we additionally trained a committee of experts for the subspace experts
approach as described in Section 7.5. In any case, the advisor only has
to be trained once and generalizes to different workloads as we will

7.7 experimental evaluation 95

RL Naive RL Subspace
Experts

Heuristic
(a)

Heuristic
(b)

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

Workload A

Workload B

Figure 7.5: Best Partitioning found by Different Approaches for Varying
Workloads (higher is better).

show in this experiments. For the naïve model and the committee of
experts, we both used an online training phase on Postgres-XL. Note
that we can apply all optimizations for the online training as well.
Moreover, we can reuse the Query Runtime Cache of the previous
experiments if we train multiple experts.

After training both approaches, we report the percentage of correct
partitionings for two different workloads clusters in Figure 7.5. Each
cluster is a set of different frequency vectors (i.e., workload mixes):
for cluster A the frequencies were sampled uniformly and for cluster
B queries joining the Stock and the Item tables are more likely to
occur. If the partitioning found by either approach is best for the
respective cluster, we say that the approach has found the optimal
partitioning for this workload mix. We compare the naïve approach
and the subspace experts approach with two heuristics. Heuristic (a)
always chooses the optimal partitioning found after online training in
the previous Section. Heuristic (b) always chooses a partitioning where
the Stock and Item tables are co-partitioned. The results are given in
Figure 7.5. As we can see, the accuracy can significantly be improved
when using subspace experts outperforming all other approaches.
We conclude that is beneficial to divide the problem of finding an
optimal partitioning for a given workload into subproblems which
are then solved by the dedicated expert model. This is due to the well
known technique of using ensembles of ML models to improve the
performance.

exp. 3c : new queries : In our formulation of the problem we
decided not to encode the complex nested queries typically occur-
ring in OLAP-workloads to avoid an overly complex neural network
architecture requiring too much training data. Instead, we represent
the workload as frequencies of a representative set of queries. Once
trained, our learned partitioning advisor can suggest partitionings for
any of those workloads. However, if completely new queries occur
that have a significant impact on the workload runtime and do not
have a similar query in the set of representative queries we need incre-

96 learning a partitioning advisor for cloud databases

2 4 6 8 10 12 14 16
Additional Queries

0%

20%

40%

60%

80%

T
ra

in
in

g
T

im
e

(w
.r

.t
.

F
ul

l
R

et
ra

in
in

g)
Figure 7.6: Training Time of Additional Training (relative to Full Retraining)

with 25% and 75% Quantiles.

mental training, i.e. we train the agent for workloads where these new
queries occur which is significantly faster than training a new agent
from scratch. In this experiment, we evaluate the additional training
overhead if such new queries are introduced. In particular, it proves
that additional training is much cheaper than training the agent from
scratch if new queries occur.

We again trained a committee of experts for TPC-CH on top of
Postgres-XL as the underlying database. However, in contrast to the
previous experiment, we first randomly removed a fraction of the
queries of the TPC-CH benchmark. We then retrained the advisor
for the additional queries and calculated, with the help of already
measured runtimes, how long such an additional training takes on
average if part of the workload is not known initially.

Figure 7.6 shows the time for incremental training relative to the
time required to train an DRL agent from scratch, depending on how
many additional TPC-CH queries were added after the initial training.
As we can see, the overhead of incremental training is much lower than
training a partitioning advisor from scratch. This is because, similar
to exploiting a bootstrapped DRL agent using the offline phase, we
can start with a lower ε-value in the incremental training of the new
naïve model resulting in fewer explorations. In addition, incremental
training can also make use of the Query Runtime Cache, which keeps
actual query execution to a minimum as many queries are already
known.

7.7.5 Exp. 4: Other Learned Approaches

An alternative to using RL is to learn an ML model to predict the
costs of a partitioning and use a classical optimization procedure to
select the best partitioning for a given workload. Recently, learned
cost models have been used for query optimization [112] or cardinality
estimation [79]. For instance, [112] iteratively choose optimal query
plans according to their neural cost model. In the following, we explain
how we implemented the neural cost model for partitioning.

7.7 experimental evaluation 97

RL RL onlineLearned
Costs

(Exploit)

Learned
Costs

(Explore)

0

2000

4000

W
or

kl
oa

d
R

un
ti

m
e

(s
)

(a) TPC-CH Schema

RL Naive RL
Subspace
Experts

Learned
Costs

(Exploit)

Learned
Costs

(Explore)

0%

50%

100%

A
cc

ur
ac

y

Workload A

Workload B

(b) Workload Adaptivity

Figure 7.7: RL vs. Neural Baselines.

Similar to our offline phase, we first use an offline bootstrapping
step where the neural cost model is trained using runtime estimates
based on our simple network-centric cost model. We use 100k work-
load/partitioning pairs for the offline phase since this is equivalent
to the number of workload/partitioning pairs that our RL agent sees
in its offline phase. Afterwards, analogous to our online training, we
then run a workload mix on a real DBMS to improve the neural cost
model using actual runtimes.

For the online training, we use multiple iterations, where we reparti-
tion the database to minimize the current cost model in every iteration.
We then retrain the neural cost model with the runtimes collected
on the partitionings observed during the iteration and then start the
next iteration (i.e., sample a new workload and again minimize the
cost model). To be fair, we allow the same overall training time for
both approaches in the online phase (RL and the neural cost models)
and also enable all optimizations we also use for our RL agent (e.g.,
runtime caching etc.). To simulate a more exploration-driven variant
in contrast to the exploitation-driven variant above which selects the
best partitioning in each iteration, we also implemented a variant that
starts with a random partitioning in every iteration.

To show the efficiency we compare the runtime of the partitioning
schemes suggested by the online-trained neural cost models, our
online-trained RL agent and the RL agent that was only trained offline.
In this experiment, we use the same workload (i.e., TPC-CH) as in Exp.
2. As a result, we can see in Figure 7.7a that the online-trained neural
cost models (i.e., both the exploitation- and the exploration-driven
variant) improve the offline-trained RL agent by only 6% while our
online-trained RL shows an improvement of 20% compared to the
offline-trained RL agent. Moreover, we also tested how well the neural
cost model generalizes to new (unseen) workloads by using the same
setup as in Exp. 3 where we sample new workloads uniformly. As we
can see in Figure 7.7b the online-trained neural cost model only finds
the optimal partitioning in 5% of the cases (vs. 91% for online-RL) for

98 learning a partitioning advisor for cloud databases

workload A and 7% of the cases (vs. 82% for online-RL) for workload
B.

We investigated why the neural cost model approach does not
perform as well as our RL agent in both experiments above. The
reason is that our RL agent observed three times as many different
partitionings as the learned cost model in the same training time. This
effectively means that our RL agent explores partitionings with a lower
average runtime and shows that the exploration/exploitation strategy
of our RL agent actually leads to a more efficient navigation through
the solution space.

7.7.6 Exp. 5: Adaptivity to Deployment

Another advantage of using an DRL agent as partitioning advisor is
that it can adapt the partitioning for different deployments which is
an important scenario for cloud providers that allow customers to
migrate their cluster to a new set of virtual machines with different
characteristics. For showing the adaptivity of our learned advisor,
we created a simple microbenchmark to empirically validate this. It
consists of three relations A, B and C where A is a fact table and B

and C are dimension tables. The relation sizes are inspired by the
relation sizes of the Lineorder, Order and Partsupp table of the TPC-
H benchmark. The workload consists of just two queries joining the
fact table A with one of the dimension tables B or C with selectivities
between 2% and 5%.

In the optimal partitioning, table A and C have to be co-partitioned
because C is significantly larger than B. Depending on the network
bandwidth, however, it might be optimal to either partition or repli-
cate table B. For example, for a high-bandwidth network it might be
beneficial to partition B, say, on its primary key. When joined with
table A the scan of table B can be distributed among all cluster nodes (if
the table is partitioned) and the remaining tuples have to be shuffled
over the network. If table B, however, is replicated we do not have to
send tuples over the network for the join but the scan is also not dis-
tributed across nodes. Hence, the question whether or not partitioning
is beneficial depends on the speed of the network compared to the
scan speed of the table. As network costs are more significant if one
does not need costly disk accesses we decided to use System-X for the
evaluation which is an in-memory database.

To show the effect, we used two different hardware deployments
for System-X. One time, we used the usual 10 Gbps interconnect, one
time we only used 0.6 Gbps interconnects. This is also the bandwidth
offered for the basic deployment of Amazon Redshift. We trained one
DRL agent on the full dataset (approx. 100 GB) for the two hardware
deployments. In Figure 7.8 the effects of partitioning or replicating
table B can be seen for both the slow and the fast network. In the

7.8 related work 99

10 Gpbs 0.6 Gbps
0x

2x

4x

S
p

ee
du

p

B replicated

B partitioned

RL online

(a) Standard HW

10 Gpbs 0.6 Gbps
0x

1x

2x

3x

4x

S
p

ee
du

p

B replicated

B partitioned

RL online

(b) Slower Compute

Figure 7.8: Adaptivity to Deployment.

Figure, we use the slowest approach of both as reference and show
the speed-up of the others (i.e., higher is better). As we can see, for
the slow network it is optimal to replicate table B, while for the fast
network it is better to partition it.

We repeated the experiment on less powerful hardware (nodes
with a 32-core AMD 7452 CPU and 128GB ECC Memory (8x 16 GB
3200MT/s RDIMMs)) in Figure 7.8b. In this case, the benefit of repli-
cating table B is less significant for the slow network since the scan
costs are more dominant. However, in all cases the DRL agent (after
retraining the model on the hardware setup) suggests the optimal
solution.

7.8 related work

partitioning for oltp and olap : Many approaches focus
on transactional workloads [25, 29, 45, 139, 143]. In general, these
approaches partition the data such that distributed transactions across
nodes occur less frequently. For example, SCHISM [29] defines a
graph consisting of tuples as nodes and transactions as edges and
uses a min-cut to partition the tuples. Pavlo et al. [139] developed an
alternative approach that is also capable of stored procedure routing
and replicated secondary indexes. Fetai et al. focus especially on cloud
environments [45].

For OLAP-workloads Eadon et al. [40] proposed REF-partitioning,
i.e., to co-partition chains of tables linked via foreign key relation-
ships. Since this technique can be exploited if a system supports
hash-partitioning by any attribute most partitioning advisors and also
our technique indirectly make use of REF-partitioning. Zamanian et
al. [191] extend this approach such that even more locality can be ob-
tained but at the cost of higher replication. For this, the database has
to support predicate-based reference partitioning. In contrast, [103]
iteratively improves the partitioning and relies on hyper-partitioning
and hyperjoins. However, these features are currently not supported
by Postgres-XL or System-X and could thus not be evaluated.

100 learning a partitioning advisor for cloud databases

automated database design : Automatic design advisors are
an active area of research [3, 127, 144, 145, 196]. However, many
of these approaches [145, 196] focus only on single-node systems
while only a few advisors for distributed databases are specialized
on partitioning design [3, 127, 145]. These approaches, however, rely
only on the cost model of the optimizer which is often inaccurate
[91]. As in query optimization, this can result in wrong decisions
[93] since the benefit of some query plans (partitionings) is over- or
underestimated. Different from these approaches we developed a
simple network-centric cost model and a dedicated online phase that
is able to cope with inaccuracies of the cost model.

Even worse, some databases do not provide access to the cost es-
timates of the query optimizer at all such as System-X in our exper-
iments. However, even databases offering cost estimates for query
plans might not be suited for automated cost-based partitioning de-
sign since they do not provide a what-if mode for partitioning, i.e. the
partitioning has to be actually deployed to obtain an estimate. This
was the motivation for us to develop a simple network-centric cost
model for partitionings to be used in the offline phase.

Another approach [144] optimizes both analytical and transactional
workloads by partially allocating already partitioned tables in an opti-
mal manner to minimize runtime or maximize throughput. Different
from this approach, which is only focusing on the allocation, in this
paper we provide a new solution to find a partitioning scheme which
is an orthogonal problem to data allocation. Furthermore, the paper
relies on an allocation heuristic which cannot take the actual execution
cost into account. Marcus et al. [111] fragment tables and decide on
replication and placement based on the how often they are queried.
This strategy results in a custom partitioning scheme that is not sup-
ported by many databases and hence inapplicable for an automatic
cloud partitioning advisor like ours. Moreover, it does not minimize
network costs by leveraging local joins.

Recently, many approaches suggest to use machine learning to
automate database administration and tuning [83, 138] and improve
internal database components like join ordering [85] or cardinality
estimation [79]. In particular, DRL [115, 156] was often used to tackle
data management problems. For example Li et al. [97] focus on the
scheduling problem for distributed stream data processing systems,
Durand et al. [38] optimize the physical table layout or Zhang et al.
[192] automate database configuration tuning. Different from those
papers, we focus on data partitioning in distributed databases which
was not yet considered.

7.9 conclusion and future work

In this paper, we introduced a new approach for learning a cloud
partitioning advisor based on DRL. The main idea is that a DRL agent

7.10 acknowledgments 101

learns its decisions based on experience by monitoring the rewards
for different workloads and partitioning schemes. The agent is first
bootstrapped using a simple network-centric cost model to make
the training phase more efficient and afterwards refined with actual
runtimes. In the evaluation, we showed that our approach is not only
able to find partitionings that outperform existing approaches for
automated partitioning design but that it can also adjust to different
workloads and new queries. In the future, we plan to combine our
approach with systems that predict future workloads to pro-actively
re-partition the database as well as to decide whether the costs for
repartitioning pay off in the long run.

7.10 acknowledgments

The authors thank the anonymous reviewers for their helpful feedback.
This research is supported by gifts from Huawei, Oracle, and SAP as
well as the Collaborative Research Center 1053 (MAKI) of the German
Research Foundation (DFG).

8
D B M S F I T T I N G : W H Y S H O U L D W E L E A R N W H AT
W E A L R E A D Y K N O W ?

abstract

Deep Neural Networks (DNNs) have successfully been used to replace
classical DBMS components such as indexes or query optimizers with
learned counterparts. However, commercial vendors are still hesitating
to put DNNs into their DBMS stack since these models not only lack
explainability but also have other significant downsides such as the
requirement for high amounts of training data resulting from the need
to learn all behavior from data.

In this paper, we propose an alternative approach to learn DBMS
components. Instead of relying on DNNs, we propose to leverage the
idea of differentiable programming to fit DBMS components instead
of learning their behavior from scratch. Differentiable programming is
a recent shift in machine learning away from the direction taken by
DNNs towards simpler models that take advantage of the problem
structure. In a case study we analyze and discuss how to fit a model
to estimate the cost of a query plan and present initial experimental
results that show the potential of our approach.

bibliographic information

The content of this chapter was previously published in the peer-
reviewed work Benjamin Hilprecht, Carsten Binnig, Tiemo Bang,
Muhammad El-Hindi, Benjamin Hättasch, Aditya Khanna, Robin
Rehrmann, Uwe Röhm, Andreas Schmidt, Lasse Thostrup, and To-
bias Ziegler. “DBMS Fitting: Why should we learn what we already
know?” In: 10th Conference on Innovative Data Systems Research, CIDR
2020, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceed-
ings. www.cidrdb.org, 2020. url: http://cidrdb.org/cidr2020/
papers/p34-hilprecht-cidr20.pdf. The contributions of the author
of this dissertation are summarized in Section 3.2.

This work is licensed under CC-BY version 4.0 https://

creativecommons.org/licenses/by/4.0 © 2020, Benjamin Hilprecht,
Carsten Binnig, Tiemo Bang, Muhammad El-Hindi, Benjamin Hät-
tasch, Aditya Khanna, Robin Rehrmann, Uwe Röhm, Andreas
Schmidt, Lasse Thostrup and Tobias Ziegler. It was published in
the 10th Conference on Innovative Data Systems Research, CIDR 2020,
Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings
and reformatted for the use in the dissertation.

103

http://cidrdb.org/cidr2020/papers/p34-hilprecht-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p34-hilprecht-cidr20.pdf
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

104 dbms fitting : why should we learn what we already know?

Fi
tte

d
D

BM
Ss

DBMS Fitting

DBMS Fitting

Fittable DBMS
(Source Code)

DBMS Fitting

Normal Code

Fittable Code

Hardware

Workload

Fi
tte

d
D

BM
Ss

Fi
tte

d
D

BM
Ss

Component A
Component B

Component C

Hardware

Workload

Hardware

Workload

Figure 8.1: A FITable DBMS - The idea is that the code base of a DBMS
consists of fittable code that allows a DBMS to adjust its behavior
to hardware and workload characteristics.

8.1 introduction

motivation Deep Neural Networks (DNNs) have not only shown
to solve many complex problems such as image classification or ma-
chine translation, but are applied in many other domains, too. This is
also the case for DBMSs, where DNNs have been successfully used
not only for automatic database tuning [6, 192], but also to replace
existing components with learned counterparts such as learned cost
models [79, 161] as well as learned query optimizers [110, 112], learned
indexes [48, 84], and learned scheduling or query processing schemes
[105, 153].

The power of using DNNs results from the fact that DNNs repre-
sent heavily parameterized models that can approximate arbitrary
functions. However, the black-box nature makes DNNs hard to explain;
i.e., decisions of DNNs cannot really be inspected to understand how
the learned algorithm is accomplishing its goals. For example, in the
case of a learned cost model such as [161] that predicts the execution
costs for a given query plan using black-box DNNs, a database ad-
ministrator would not be able understand why the model produced a
certain cost estimate. This is very different from classical cost models
that estimate the costs of a plan by combining different factors such as
cost of data accesses as well as processing costs. While these models
are explainable and allow a database administrator to understand
the decisions of the model they are hard to tune and often provide
inaccurate estimates [91].

Moreover, explainability is not the only reason why commercial
vendors are hesitating to put DNNs into their DBMS stack[34]:

• First, DNNs are data-hungry since they have to learn even basic
system behavior (that might be well known by a DBMS devel-
oper) purely from training data. For example, when learning
a cost model, large training corpora are required which need
significant time and resources to be constructed since each query

8.1 introduction 105

in the training corpora needs to be executed and the execution
time needs to be collected. Even worse, this is not a one-time
effort, since the same procedure needs to be repeated for every
new database that needs to be supported by the optimizer or
if the current database is not static (i.e., the schema or data is
changing).

• Second, it has been shown that DNNs are susceptible to small
changes in the input; i.e., already a small change for one input
feature can cause the DNN to produce erroneous predictions
with high confidence. This is an effect that has also been shown
by adversarial attacks. For DBMS, this problem cannot be ig-
nored since it shows the general lack of DNNs to generalize to
unseen input in a stable manner and to provide a robustness for
DBMS components.

• Third, DNNs are expensive to update. In DBMSs, a learned compo-
nent might need to be updated if the database or the workload
changes. However, updating a learned component often requires
collecting new training data and an expensive retraining of the
DNN. While this might be acceptable in some cases (e.g., the re-
training of a learned cost model might eventually be acceptable
since it can be done offline), retraining might be too expensive
for other components such as learned indexes that require online
updates [84] if the database is dynamically changing as for OLTP
workloads.

contributions In this paper, we propose a different route for
learned DBMSs to tackle the aforementioned issues of black-box based
approaches. Instead of relying on DNNs to replace classical DBMS
components, we propose to leverage the idea of differentiable pro-
gramming1 to implement FITable DBMSs. In a nutshell, differentiable
programming is a recent shift in machine learning, away from the
direction taken by DNNs that increasingly use heavily parameterized
models and towards simpler white-box models that take more advan-
tage of the problem structure [176]. Recently, differential programming
has been used successfully to fit models in domains such as computer
vision [98] to encode knowledge on how basic image processing prim-
itives (e.g., edge detectors) work or to learn a physics engine [9] where
differentiable functions encode the basic laws of physics that are then
fitted.

The main idea of FITable DBMSs goes in the same direction where
DBMS components (or parts) are implemented using differentiable
functions as shown in Figure 8.1: Similar to normal code, differentiable
functions implement logic inside a DBMS that already encodes the
basic behavior of a component, but unlike normal code these functions

1 https://www.facebook.com/yann.lecun/posts/10155003011462143

https://www.facebook.com/yann.lecun/posts/10155003011462143

106 dbms fitting : why should we learn what we already know?

 a_out∙s+b_out if s ≥ cache-size

a_in∙s+b_in if s < cache-size
c(s) =

Fittable Function

Fitting
(Gradient-

Based)

Pe
r-t

up
le

 C
os

t c

 1.2∙s-35.5 if s ≥ 30MB

0.0∙s+0.5 if s < 30MB
c(s) =

Fitted Function

Training
Data

Table-Size s Table-Size s

Pe
r-t

up
le

 C
os

t c

Figure 8.2: Fitting a simple cost model for a scan operator to predict the
per-tuple access cost - The example shows how the piecewise
linear function can be fitted based on training data by learning
the slope and intercept of each segment. For fitting we can use a
gradient-based optimization method such as gradient descent.

in addition contain learnable parameters that allow to fit their behavior
to a concrete workload and hardware. For example, query optimizers
need to be able to estimate the physical cost (i.e., the total execution
time) of query plans. Here, fittable functions could be used to describe
the basic shape of cost functions for operators that could then be fitted
to the behavior of the underlying hardware. While cost functions are a
natural candidate for fitting, we believe that other components inside
a DBMS such as data structures or execution strategies can benefit
from fitting as we will discuss later.

FITable DBMSs are thus different from current approaches for
learned DBMS components that purely rely on DNNs [83], since
the behavior of a fittable component does not need to be learned from
scratch. As a result, fittable functions not only need much less training
data compared to training a DNN (which captures the same behav-
ior) but also provide other benefits regarding the explainability and
generalization as we show later in this paper. Another direction that
is related to FITable DBMSs is the idea of synthesizing data structures
[73] from known building blocks such as lists, dense arrays, zone maps,
etc. to optimally support a given workload and hardware. Similar to
fitting DBMS components, synthesizing data structures also generates
explainable DBMS code. However, a major difference to fitting is that
while synthesizing only targets the design of data structures, fitting is
applicable to a broader set of DBMS components.

outline The remainder of the paper is organized as follows. In
Section 8.2, we present our vision towards so called FITable DBMSs.
Afterwards, in Section 8.3 we show by a concrete use case how the
idea of fittable DBMS components could be used for cost estimation

8.2 vision : a fitable dbms 107

and present initial experimental results that show the benefits of our
approach. Finally, we conclude in Section 8.4.

8.2 vision : a fitable dbms

8.2.1 Basic Idea of Fitting

The vision of a FITable DBMSs is that DBMS components (or parts of
them) are implemented as differentiable functions that allow us to adapt
the behavior of the component to optimally support a concrete work-
load and hardware. For instance, a simplified cost model to estimate
the execution time of a scan operator in a main-memory DBMS can
be modelled as a differentiable function cost_scan_op as shown in
Listing 8.1. The main idea of this function is that the costs for read-
ing a tuple depend on the table size which can be represented by a
piece-wise linear function using two segments for tables that fit into
the cache and for those which spill out of the cache.

Listing 8.1: Fittable Function for Simple Cost Model

table-size = size in Byte / no-tuples = number of tuple in table

def cost_scan_op(params, table_size, no_tuples):

piecewise linear model

if table_size< params[’cache-size’]:

slope = params[’a_in’]

intercept = params[’b_in’]

cost_per_tuple = slope * table_size + intercept

else:

slope = params[’a_out’]

intercept = params[’b_out’]

cost_per_tuple = slope * table_size + intercept

return no_tuples * cost_per_tuple

The main benefit of fittable code is that it not only leverages the
domain knowledge of the developer (e.g., that the tuple-access cost can
be modelled as a piece-wise linear function in our example) but more
importantly that the concrete behavior can be fitted automatically to
the actual behavior.

The fittable part of the code is captured by parameters that can
be learned from concrete behavior. In our example, the learnable pa-
rameters are the slope (i.e., params[’a_in’] and params[’a_out’])
and intercept (i.e., params[’b_in’] and params[’b_out’]) of both seg-
ments. For fitting the cost model, the actual costs of running the scan
operator on different table sizes need to be collected. Since functions
are differentiable, normal gradient-based optimization can be used
to fit the parameters (i.e., minimize the error of the cost function) as
shown in Figure 8.2. Once the parameters are fitted they can be used
at runtime of a DBMS, just like fully specified source code.

The power of differentiable programming stems from the fact that
the database developer does not have to come up with the gradients

108 dbms fitting : why should we learn what we already know?

herself. Instead, frameworks such as Autograd2 support automatic
differentiation [176] of ordinary code, which may contain all the
usual control structures, including loops, if statements, recursion,
and closures. In our example, the code for the cost function in Listing
8.1 is implemented using a normal if-else control flow that can be
differentiated automatically.

Overall, fittable code in contrast to black-box DNN models thus
provides many advantages: First, fittable code is more data-efficient, i.e.
we require much less training data since the differentiable function
already defines the basic shape of a function that needs to be learned.
Furthermore, fitting a differentiable function does not always need
to rely on gradient-based methods that typically require multiple
passes over the training data. Instead, it can often be implemented
by computationally much simpler approaches that only require a
single pass [48]. Second, fittable functions typically generalize better
and are less susceptible to small changes in the input, since they
already define a reasonable behavior based on their shape. Finally,
fitted code is explainable and debuggable. If the behavior is unexpected,
the developer can debug the DBMS code (as usual) since the general
code structure reflecting the domain knowledge is still interpretable
and remains unchanged.

8.2.2 The Bigger Picture

There are many different directions the research community can inves-
tigate how fitting can be used to adapt DBMS components to a given
hardware and workload. In the following, we discuss several DBMS
components that are candidates for fitting but also propose directions
regarding the general learning setup.

analytical models In general, ideal candidates for fitting are
DBMS components where (parametrizable) analytical models already
exist. For example, transaction scheduling relies on models for conflict
probability. While recent papers aim to learn the conflict probabil-
ity using end-to-end ML models [153] there already exist analytical
models [13] that define the conflict probability based on number of
concurrent transactions, the database size, etc. However, these models
typically rely on parameters that reflect the latency of lock requests as
well as reads/writes. Fitting could be used to learn these parameters
from the actual behavior of running these operations on a concrete
hardware. Other ideas for which analytical models exist that can be
fitted are software-prefetching or caching strategies that all rely on
similar parameters to predict access costs.

2 https://github.com/HIPS/autogradr

8.3 case study : a fittable cost model 109

data structures and algorithms While all the before-men-
tioned applications target the fitting of functions that model different
notions of analytical models used in DBMSs for query optimization
and scheduling (e.g., execution cost operations, conflict probability),
we believe that fitting can be used also for other data structures and al-
gorithms of a DBMS. For example, indexes such as B-trees can be seen
as a function that predict the position of a key in a sorted array. While
existing papers [84] use black-box DNNs to approximate this mapping
function, in [48] we already showed that the idea of fittable white-box
functions can be used to learn the mapping. Similar ideas for fitting
that learn the data distribution can be used for learning algorithms of
database operators such as sorting which is again in contrast to [83]
which proposes to use black-box DNNs also for learning algorithms.

end-to-end learning Another interesting route that needs to
be explored is how more complex models can be fitted end-to-end
when using white-box fittable functions. End-to-end learning is typi-
cally seen as a major advantage of black-box DNNs which can com-
bine several layers (e.g., fully-connected vs. convolutional) to capture
complex behaviors. Differentiable programming makes the composi-
tion of complex models and end-to-end training also applicable for
white-box models. The main idea is that similar to DNNS, white-box
functions can also be combined into more complex models and auto-
differentiation can then be applied to fit the composed models directly.
For example, we will show later in this paper how a cost model to
estimate the query execution cost of a complete plan is composed
of cost models for individual operators that can be fitted end-to-end
based on the monitored execution time of complete query plans.

grey-box learning Finally, while fittable (i.e. white-box) func-
tions provide many advantages over black-box DNNs, we still think
that there is a need to combine both. The combination enables a DBMS
to learn parts of components where the behavior can not easily be
modeled as a fittable function or where the behavior is not known in
advance. For example, it is hard to define fittable functions for cost
models of operations that are allowed to call user-defined functions,
since the complexity of the user-defined code can vary significantly.
In this case, a normal DNN can be used to estimate the cost of the
user-defined operation and still be combined with the fitted parts
of the optimizer. Since fittable functions as well as DNNs are both
differentiable, the composed model is still differentiable (due to the
chain rule) and can be trained end-to-end.

8.3 case study : a fittable cost model

In this section, we discuss the potentials of fitting by presenting a
case study with a fittable cost model. In the following, we first dis-

110 dbms fitting : why should we learn what we already know?

build-pipe

build-pipe

probe-p
ipe

R S
sc

an
-op

s

sc
an

-op
t

T

build
ht-

op
(HT s)

build
ht-

op
(HT T)

filt
er-

op R
prob

eh
t-o

p(HT s)
prob

eh
t-o

p(HT T) Total Cost: cbuild-pipe(S) + cbuild-pipe(T) + cprobe-pipe(R)
Fitted cost model cbuild-pipe:

Cost
Estimation

Figure 8.3: Basic idea of our fittable cost model - The total cost of a query
plan is estimated based on fitted cost models for each pipeline
type. In this example, the build-pipeline type is used in two
instantiations over tables S and T and the probe-pipeline type
is used in one instantiation over table R, which probes into the
hash tables HTS and HTT , created by the other two pipelines. The
cost models for each pipeline type are based on general features
of a pipeline, such as the size of the input table, tuple-width,
selectivity of operators etc.

cuss pitfalls of today’s approaches for cost models, before we discuss
how fitting can be applied to cost models to mitigate these issues.
Afterwards, we show initial experimental results of our fitted cost
model.

8.3.1 The Need for better Cost Models

Models that predict the execution cost of SQL queries are essential
components of DBMSs. Query optimizers are the most well-known
component that rely on cost models to choose between different alter-
native query plans based on cost estimations. However, this is not the
only component in a DBMS that relies on cost models. More recently,
papers have suggested to use cost models for self-driving databases
[104] that automate physical design choices.

Traditionally, cost models are handcrafted in a DBMS and thus
rely on detailed knowledge about the complexity of the underlying
algorithm and data structures. However, these models are typically
non-trivial to tune and often provide inaccurate estimates even when
using automatic calibration tools [91]. And this is not the only obstacle
of existing cost models. Other issues are that these models are also
hard to extend since a new model needs to be handcrafted for every
new operator implementation. Moreover, today’s models do not cover
complex operations that allow users to call user-defined functions.

Recent approaches thus suggest to learn cost models by using
DNNs instead of handcrafting them [161]. While these approaches
can estimate the execution costs more accurately even for complex
operations, they suffer from the general problems of using DNNs

8.3 case study : a fittable cost model 111

not only regarding high training cost but also explainability and
robustness of DNNs plus missing update capabilities, as discussed
before.

8.3.2 Fitting a Cost Model

In the following, we present a fittable cost model that combines (1) the
ability of differentiable programming to encode knowledge about the
general shape of cost functions for individual operators with (2) the
capabilities to capture important effects of the underlying hardware
by learning important parameters of the model by fitting. Figure 8.3
shows the basic idea of our fittable cost model.

The model is targeted towards DBMSs that execute SQL queries in a
pipelined manner, which is the case for most commercial DBMSs that
either implement a classical iterator model (for individual tuples or
blocks of tuples) or DBMSs that rely on pipeline-based code generation
for query execution, such as Hyper. In order to estimate the execution
time of complete query plans, the model estimates the costs of each
pipeline and then aggregates the cost to compute the total cost of that
query plan. The core components of our model are thus fitted cost
models that we use to estimate the costs of individual pipelines.

An important aspect is that a fitted cost model can be used to esti-
mate the execution costs for a wide variety of different instantiations
of the same type of pipeline; i.e., we learn the general behavior of a
pipeline type that can be applied to different tables, rather than learn-
ing a cost model for each particular instantiation of a pipeline over a
given table. For example, the cost model shown in Figure 8.3 (right-
hand-side) can be used to estimate the costs for both build-pipelines
that are executed over two different tables S and T by providing the
features of the pipeline as input to the model. In order to enable that
the same cost model can be used for different instantiations of the
same pipeline type, our cost models take general features of a pipeline
(such as the base table size, tuple-width, etc.) as input to estimate the
execution time.

The currently supported pipeline types in our cost model are shown
in Table 8.1 (as the first three rows). The cost model for each of these
pipeline types is composed of one or multiple differentiable functions
that capture the cost for each operator used in that pipeline. For ex-
ample, the cost model cbuild−pipe is composed of two differentiable
functions: one function cscan−op that captures the cost for a filter op-
erator and one function cbuildht−op that captures the cost of building
a hash table. The fittable cost models for the operators that we use
for the different pipeline types are shown in Table 8.1 (as the last four
rows).

Another aspect of our fittable cost model is that the cost models for
pipeline types, such as cbuild−pipe, define weights (e.g., w f and wb) that

112 dbms fitting : why should we learn what we already know?

N
am

e
Ty

pe
C

os
t

fu
nc

ti
on

Le
ar

ne
d

Pa
ra

m
et

er
s

an
d

C
om

m
en

ts

sc
an

-p
ip

e
pi

pe
lin

e
c s

ca
n−

pi
pe

=
w

f
·c

sc
an
−

op
(T

)
+

w
m
·c

m
at
−

op
(a

pp
ly

pi
pe
(T

))
w

f
an

d
w

m
.

bu
ild

-p
ip

e
pi

pe
lin

e
c b

ui
ld
−

pi
pe

=
w

f
·c

sc
an
−

op
(T

)
+

w
b
·c

bu
il

dh
t−

op
(a

pp
ly

pi
pe
(T

)
w

f
an

d
w

b.

pr
ob

e-
pi

pe
pi

pe
lin

e
c p

ro
be
−

pi
pe

=
w

f
·c

sc
an
−

op
(T

)
+

w
p
· ∑

n i=
1

c p
ro

be
ht
−

op
(H

T
i ,a

pp
ly

pi
pe
(T

)+
w

f,
w

p
an

d
w

m
.T

he
pi

pe
lin

e
ca

n
pr

ob
e

in
to

m
ul

ti
pl

e
ha

sh
-t

ab
le

s

w
m
·c

m
at
−

op
(a

pp
ly

pi
pe
(T

))
de

no
te

d
as

H
T

i
fo

r
th

e
i-

th
jo

in
to

im
pl

em
en

t
m

ul
ti

-w
ay

jo
in

s.

sc
an

-o
p

op
er

at
or

c s
ca

n−
op
(T

)
=

 ro
w

s(
T
)
·(

a 1
·|

T
|+

b 1
)
|T
|<

L1
-c

ac
he

ro
w

s(
T
)
·(

a 2
·|

T
|+

b 2
)

L1
-c

ac
he
≤
|T
|<

L2
-c

ac
he

ro
w

s(
T
)
·(

a 3
·|

T
|+

b 3
)

L2
-c

ac
he
≤
|T
|<

L3
-c

ac
he

ro
w

s(
T
)
·(

a 4
·|

T
|+

b 4
)

L3
-c

ac
he
≤
|T
|

a i
an

d
b i

w
he

re
a i

an
d

b i
ar

e
lin

ea
r

co
m

bi
na

ti
on

s
of

tu
pl

e-
w

id
th

an
d

nu
m

be
r

of
at

tr
ib

ut
es

in
th

e
fil

te
r

pr
ed

ic
at

e
ea

ch
ha

vi
ng

it
s

ow
n

fit
ta

bl
e

pa
ra

m
et

er
.

M
or

eo
ve

r,
w

e
no

t
on

ly
us

e
di

ff
er

en
t

pa
ra

m
et

er
s

a i
an

d
b i

(i
.e

.,
se

gm
en

ts
)

fo
r

di
ff

er
en

t
ta

bl
e

si
ze

s
bu

t
al

so
fo

r
se

le
ct

iv
it

ie
s
<

0.
5

an
d
≥

0.
5

as
w

el
l

as
fo

r
nu

m
be

r
of

at
tr

ib
ut

es
in

se
le

ct
io

n
pr

ed
ic

at
es

to
m

od
el

ef
fe

ct
s

su
ch

as
br

an
ch

-m
is

pr
ed

ic
ti

on
s

an
d

ef
fe

ct
s

of
ca

ch
e-

lin
e

si
ze

s.
H

ow
ev

er
,s

ho
w

in
g

th
e

pa
ra

m
et

er
s

fo
r

al
lc

as
es

in
th

is
ta

bl
e

w
ou

ld
de

cr
ea

se
th

e
re

ad
ab

ili
ty

an
d

th
us

w
e

om
it

th
em

.

bu
ild

ht
-o

p
op

er
at

or
c b

ui
ld

ht
−

op
(T

)
=

w
b
·t

w
·r

ow
s(

T
)

w
b.

C
os

t
fo

r
in

se
rt

in
g

a
tu

pl
e

lin
ea

rl
y

de
pe

nd
in

g
on

tu
pl

e-
w

id
th

(t
w

).

pr
ob

eh
t-

op
op

er
at

or
c p

ro
be

ht
−

op
(H

T
,T

)
=

 w
p1
·t

w
·r

ow
s(

T
)

ht
−

si
ze

<
L1

-c
ac

he

w
p2
·t

w
·r

ow
s(

T
)

L1
-c

ac
he
≤
|H

T
|<

L2
-c

ac
he

w
p3
·t

w
·r

ow
s(

T
)

L2
-c

ac
he
≤
|H

T
|<

L3
-c

ac
he

w
p4
·t

w
·r

ow
s(

T
)

L3
-c

ac
he
≤
|H

T
|

w
p1

,w
p2

,a
nd

w
p3

.W
e

us
e

di
ff

er
en

t
pa

ra
m

et
er

s
to

re
fle

ct
th

e
di

ff
er

en
t

co
st

de
pe

nd
-

in
g

on
th

e
fa

ct
w

he
th

er
th

e
H

T
fit

s
in

to
on

e
le

ve
l

of
th

e
ca

ch
es

.M
or

eo
ve

r,
th

e
co

st
of

pr
ob

in
g

a
si

ng
le

tu
pl

e
in

to
a

H
T

lin
ea

rl
y

de
pe

nd
s

on
th

e
tu

pl
e-

w
id

th
(t

w
)

of
th

e
pr

ob
ed

tu
pl

e.

m
at

-o
p

op
er

at
or

c m
at
−

op
(T

)
=

w
m
·|

T
|

w
m

.C
os

t
fo

r
m

at
er

ia
liz

in
g

a
si

ng
le

tu
pl

e
ar

e
co

ns
ta

nt
.

Ta
bl

e
8
.1

:F
it

ta
bl

e
co

st
m

od
el

s
fo

r
pi

pe
lin

e
ty

pe
s

an
d

op
er

at
or

s
-

T
is

th
e

in
pu

t
ta

bl
e

of
a

pi
pe

lin
e,
|T
|i

s
th

e
si

ze
of

th
e

in
pu

t
ta

bl
e

in
By

te
an

d
ro

w
s(

T)
th

e
nu

m
be

r
of

ro
w

s
in

T,
ap

pl
y p

ip
e(

T
)

is
th

e
re

su
lt

in
g

ta
bl

e
T

af
te

r
ap

pl
yi

ng
al

ld
ow

ns
tr

ea
m

op
er

at
or

s
on

T
,H

T
is

a
ha

sh
-t

ab
le

th
at

is
ei

th
er

bu
ild

or
pr

ob
ed

an
d
|H

T
|i

s
th

e
si

ze
of

th
e

ha
sh

-t
ab

le
in

By
te

.

8.3 case study : a fittable cost model 113

reflect the influence of a particular operator on the overall cost, when
executed in that pipeline. These parameters are fitted individually for
each pipeline type, since the same operator (when used in different
pipeline types) can have a different influence on the overall cost. For
example, the cost of materializing the output might be more dominant
in a scan-pipeline than in a probe-pipeline, where the overall cost is
dominated by random memory accesses resulting from probing into
the hash table(s).

Finally, for the actual fitting of the cost models of the different
pipeline types, we collect the actual runtime for a variety of pipeline
instances for a given hardware platform. We use this collected training
data for gradient-based optimization to fit the cost model and learn
the parameters of pipelines end-to-end, as indicated in Table 8.1. The
pipeline types we currently support already allow us to estimate the
execution time for a wide variety of query plans ranging from simple
query plans over a single table to complex query plans with multi-
way hash joins over multiple tables consisting of multiple build- and
probe-pipelines. In the future, we plan to extend the pipeline types to
cover also other operations such as aggregations.

8.3.3 Initial Results

In the following, we show the initial results of fitting our cost model
and compare the results also to recent learned cost models that purely
rely on DNNs [161]. The aim of our experiments is to show that (1)
white-box model can provide high accuracy for cost estimates, (2)
white-box models need less training data than black-box models and
(3) white-box models can generalize.

For the experiments, we implemented our fittable cost model based
on the Autograd3 framework in Python and a prototypical main-
memory based execution engine in C++ to run SQL queries to col-
lect training data. The code of our implementation is available open-
source4.

For running all experiments, we used a server with two Intel Gold
5120 Skylake CPUs (2.2 GHz, 19.25 MiB L3 cache) and 384GB of DDR4

RAM. For collecting training data, all SQL queries were executed
single-threaded inside our execution engine. We make use of the
Adam optimizer inside the Autograd framework for fitting our cost
model.

exp. 1 - accuracy of model In this experiment, we report the
accuracy of our fittable cost model to show their potential to provide
high quality estimates. To measure the quality of cost estimates in
this experiment, we use the q-error, which is the factor by which an

3 https://github.com/HIPS/autograd

4 https://github.com/DataManagementLab/cidr-cost-model/

https://github.com/HIPS/autograd
https://github.com/DataManagementLab/cidr-cost-model/

114 dbms fitting : why should we learn what we already know?

Attributes in predicate 111111222222444444
888888

161616161616

Table siz
e

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

Tu
pl

e
ac

ce
ss

 ti
m

e
(n

s)

40

50

60

70

80

Measured - tuple_widths=16, selectivity=0.5

(a) Real execution time

Attributes in predicate 111111222222444444
888888

161616161616

Table siz
e

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

Tu
pl

e
ac

ce
ss

 ti
m

e
(n

s)

40

50

60

70

80

Estimated - tuple_widths=16, selectivity=0.5

(b) Estimated execution time

Figure 8.4: Exp. 1 - Real and estimated execution time for the scan-pipeline
type for table sizes larger than L3 cache. The plots show the real
and estimated execution time for the different tables sizes and
number of attributes used in the selection predicate. We see that
for one attribute in the selection predicate the tuple-access time
is much lower since the attribute to be evaluated fits into one L1

cache line. Our cost model for the scan-pipeline captures this by
using different segments in a piecewise-linear function for the
filter-op as discussed in Table 8.1 (last column).

8.3 case study : a fittable cost model 115

Name Median q-error 90th-percentile

scan-pipe 1.0148 1.0287

build-pipe 1.0355 1.0663

probe-pipe 1.0403 1.0735

Table 8.2: Q-error of different pipelines when trained on 100% of the training
data on all table sizes. We see that the median q-error for the
different pipelines is maximum 1.0403.

estimate differs from the real execution time. For example, if the real
execution time of a pipeline is 100ms, the estimates of 10ms or 1000ms
both have a q-error of 10. Using the ratio instead of an absolute or
quadratic error captures the intuition that for making optimization
decisions only relative differences matter.

For collecting training and testing data, we created tables of differ-
ent sizes (from 32 kB to 1.28 GB) with a varying tuple-width from 1

attribute (4 Byte) up to 16 attributes (64 Byte). For these tables we then
executed query plans (single table and join queries) composed of the
pipeline types supported by our cost model. In total, we thus collected
the execution time for 56, 730 pipeline instances, evenly spread across
the different pipeline types. Afterwards, we randomly split the data
into 90% for training and 10% for testing.

The q-error (median and 90th percentile) for all table sizes are shown
in Table 8.2. We can see that our fittable cost models can provide
accurate estimates for the different pipeline types with a median q-
error of less than 1.0403. While in this experiment, we used the full
training data, in the next experiment (Exp. 2) we see that already 5%
of the training data is enough to achieve a similarly low q-error for
our model. Additionally, compared to a black-box DNN, which we
also show in the next experiment, the q-error of our fitted cost model
is lower and requires less training data.

We also visualize the results of the estimated costs of our model and
the real execution times in Figure 8.4 to see that our model precisely
captures the tuple access cost.

exp. 2 - data efficiency of model In this experiment, we show
the data efficiency of our fittable cost model. For this experiment, we
use the same testing set as before but vary the size of the training data
used for fitting our model. Moreover, in order to show that our model
is more data efficient than a black-box model for cost estimation,
we implemented the approach suggested in [161] that uses a tree-
based DNN to estimate the cost of a query plan. A tree-based DNN
uses a separate DNN for each operator in a query plan that can be
stacked together and trained end-to-end. Our implementation of their
approach based on the Autograd framework is also available in our
open-source repository.

The results for learning the cost model for simple query plans on a
single table are shown in Figure 8.5. We can see that our white-box

116 dbms fitting : why should we learn what we already know?

Figure 8.5: Exp. 2 - Data efficiency of our fittable cost model. This plot shows
the result for the scan-pipeline comparing the median q-error of
our model based (white-box) to a DNN-based model (black-box)
based on [161], when using only x% of the original training data.

model can already achieve a low q-error with only 5% of the training
data. In contrast, the black-box model requires much more training
data to achieve a low q-error even for these simple queries. More
interestingly, if we provide the full training data to the black-box
model, it is not able to reach the same accuracy that our white-box
model achieves with only 5% of the training data.

We also executed the same experiment for more complex query
plans that include joins over two tables. The results (which we do not
plot due to space restrictions in this paper) show a similar trend as for
the scan-pipeline only.

exp. 3 - generalizability of model Finally, in the last experi-
ment we show the capability of our cost model to generalize queries
over new tables. In order to show that our fitted cost model can gener-
alize to new unseen tables, we excluded tables sizes larger than 320MB
from the training data. For testing, we used tables of sizes that the
model had not seen before including table sizes that are in the range
of those the model had seen before (e.g., 256MB) as well as table sizes
larger than the model had seen (e.g. 512 and 1024MB). The results
for estimating the cost of the scan-pipeline is depicted in Figure 8.6
showing the real execution time as well as the estimated execution
time for these unseen tables.

As we can see, the model generalizes to these new tables. The
median q-error and 90th percentile are similar to the results of Exp. 2.
We do not show results of the black-box model that we used in Exp. 2

since this model cannot generalize to new unseen table sizes. The
reason is that tables in this model are encoded using one-hot vectors;
i.e., the model learns the cost estimation individually for a particular

8.4 conclusion 117

0.0 0.2 0.4 0.6 0.8 1.0

Selectivity

0.25

0.50

0.75

1.00

1.25

1.50

Ru
nt

im
e

(s
)

White Box Generalization - 8 attr. in tuple, 8 attr. in predicate
Table 256 MB
Table 512 MB
Table 1024 MB
Real runtime
Estimated runtime

Figure 8.6: Exp. 3 - Generalizability of our fittable model to unseen tables.
Results show the real and estimated execution time for table
sizes of 256 MB, 512 MB, and 1 GB that have not been used in the
training set.

table rather than learning a cost model that is based on general features
such as table-sizes as we do.

8.4 conclusion

In this paper, we have presented our vision towards FITable DBMSs.
Based on our initial case study with a fitted cost model, we have
shown that fitting not only needs much less training data but also
generalizes, since the model itself captures the general shape of how
the cost of operators in a DBMS typically behave.

While cost modeling is a natural candidate for fitting, we believe
that fitting can be used for many other DBMS components. Further-
more, since differential programming enables end-to-end learning
by composing white-box and black box models, we believe that this
allows us to build holistic models that span across different DBMS
components; e.g., to combine a fittable model for caching with a fit-
table cost model for query optimization to enable better decisions in a
DBMS system.

9
D E E P D B : L E A R N F R O M D ATA , N O T F R O M Q U E R I E S !

abstract

The typical approach for learned DBMS components is to capture
the behavior by running a representative set of queries and use the
observations to train a machine learning model. This workload-driven
approach, however, has two major downsides. First, collecting the
training data can be very expensive, since all queries need to be
executed on potentially large databases. Second, training data has
to be recollected when the workload or the database changes. To
overcome these limitations, we take a different route and propose
a new data-driven approach for learned DBMS components which
directly supports changes of the workload and data without the need
of retraining. Indeed, one may now expect that this comes at a price
of lower accuracy since workload-driven approaches can make use
of more information. However, this is not the case. The results of our
empirical evaluation demonstrate that our data-driven approach not
only provides better accuracy than state-of-the-art learned components
but also generalizes better to unseen queries.

bibliographic information

The content of this chapter was previously published in the peer-
reviewed work Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa,
Alejandro Molina, Kristian Kersting, and Carsten Binnig. “DeepDB:
Learn from Data, not from Queries!” In: Proc. VLDB Endow. 13.7 (2020),
pp. 992–1005. doi: 10.14778/3384345.3384349. url: http://www.
vldb.org/pvldb/vol13/p992-hilprecht.pdf. The contributions of
the author of this dissertation are summarized in Section 4.1.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License http://

creativecommons.org/licenses/by-nc-nd/4.0/ © 2020, Benjamin
Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting and Carsten Binnig. It was previously published in the
Proc. VLDB Endow. and reformatted for the use in this dissertation.
Copyright is held by the owner/author(s). Publication rights licensed
to the VLDB Endowment.

119

https://doi.org/10.14778/3384345.3384349
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

120 deepdb : learn from data , not from queries!

9.1 introduction

motivation Deep Neural Networks (DNNs) have not only been
shown to solve many complex problems such as image classification or
machine translation, but are applied in many other domains, too. This
is also the case for DBMSs, where DNNs have successfully been used
to replace existing DBMS components with learned counterparts such
as learned cost models [79, 161] as well as learned query optimizers
[112], or even learned indexes [84] or query scheduling and query
processing schemes [105, 153].

The predominant approach for learned DBMS components is that
they capture the behavior of a component by running a representative
set of queries over a given database and use the observations to train
the model. For example, for learned cost models such as [79, 161]
different query plans need to be executed to collect the training data,
which captures the runtime (or cardinalities), to then learn a model
that can estimate costs for new query plans. This observation also
holds for the other approaches such as learned query optimizers or the
learned query processing schemes, which are also based on collected
training data that requires the execution of a representative workload.

A major obstacle of this workload-driven approach is that collecting
the training data is typically very expensive since many queries need to
be executed to gather enough training data. For example, approaches
like [79, 161] have shown that the runtime of hundreds of thousands of
query plans is needed for the model to provide a high accuracy. Still,
the training corpora often only cover a limited set of query patterns to
avoid even higher training costs. For example, in [79] the training data
covers only queries up to two joins (three tables) and filter predicates
with a limited number of attributes.

Moreover, the training data collection is not a one-time effort since
the same procedure needs to be repeated over and over if the work-
load changes or if the current database is not static and the data is
constantly being updated as it is typical for OLTP. Otherwise, without
collecting new training data and retraining the models for the char-
acteristics of the changing workload or data, the accuracies of these
models degrade with time.

contributions In this paper, we take a different route. Instead of
learning a model over the workload, we propose to learn a purely data-
driven model that captures the joint probability distribution of the
data and reflects important characteristics such as correlations across
attributes but also the data distribution of single attributes. Another
important difference to existing approaches is that our data-driven
approach supports direct updates; i.e., inserts, updates, and deletes
on the underlying database can be absorbed by the model without the
need to retrain the model.

9.2 overview and applications 121

As a result, since our model captures information of the data it can
not only be used for one particular task but supports many different
tasks ranging from query answering, over cardinality estimation to
potential other more sophisticated tasks such as in-DBMS machine
learning inference. One could now think that this all comes at a
price and that the accuracy of our approach must be lower since the
workload-driven approaches get more information than a pure data-
driven approach. However, as we demonstrate in our experiments,
this is not the case. Our approach actually outperforms many state-of-
the-art workload-driven approaches and even generalizes better.

However, we do not argue that data-driven models are a silver bullet
to solve all possible tasks in a DBMS. Instead, we think that data-driven
models should be combined with workload-driven models when it
makes sense. For example, a workload-driven model for a learned
query optimizer might use the cardinally estimates of our model as
input features. This combination of data-driven and workload-driven
models provides an interesting avenue for future work but is beyond
the scope of this paper.

To summarize, the main contributions of this paper are:(1) We
developed a new class of deep probabilistic models over databases:
Relational Sum Product Networks (RSPNs), that can capture important
characteristics of a database. (2) To support different tasks, we devise
a probabilistic query compilation approach that translates incoming
database queries into probabilities and expectations for RSPNs. (3)
We implemented our data-driven approach in a prototypical DBMS
architecture, called DeepDB, and evaluated it against state-of-the-art
learned and non-learned approaches.

outline The remainder of the paper is organized as follows. In
Section 9.2 we first present an overview of DeepDB and then discuss
details of our models and the query compilation in Sections 9.3 and 9.4.
Afterwards, we explain further extensions of DeepDB in Section 9.5
before we show an extensive evaluation comparing DeepDB against
state-of-the art approaches for various tasks. Finally, we iterate over
related work in Section 9.7 before concluding in Section 9.8.

9.2 overview and applications

overview As shown in Figure 9.1, the main idea of DeepDB is
to learn a representation of the data offline. An important aspect of
DeepDB is that we do not aim to replace the original data with a model.
Instead, a model in DeepDB augments a database similar to indexes
to speed-up queries and to provide additional query capabilities while
we can still run standard SQL queries over the original database.

To optimally capture relevant characteristics of relational data in
DeepDB, we developed a new class of models called Relational Sum
Product Networks (RSPNs). In a nutshell, RSPNs are a class of deep

122 deepdb : learn from data , not from queries!

Ad-hoc
AQP Query

Regression/
Classification Task

N⋅P(C)⋅E(X)⋅E(Y)
RSPN

Ensemble DeepDB
Learning

T2⟗T4

RSPN2

DeepDB

RSPN1

T1⟗T2⟗T3

+

x x

T5

+

x x

RSPN3 +

x x

Runtime
Offline

DBMS

SQL Query

Query
Optimizer

Data

Cardinality
QueryProbabilistic Query

Compilation

Figure 9.1: Overview of DeepDB.

probabilistic models that capture the joint probability distribution over
all attributes in a database that can then be used at runtime to provide
the answer for different user tasks.

While RSPNs are based on Sum Product Networks (SPNs) [117, 141],
there are significant differences: (1) While SPNs support only single
tables and simple queries (i.e., no joins and no aggregation functions),
RSPNs can be built on arbitrary schemata and support complex queries
with multi-way joins and different aggregations (COUNT, SUM, AVG).
Moreover, RSPNs also go beyond the idea of other recent learned
data models that need to know join paths a priori such as [105, 186]
since RSPNs allow true ad-hoc joins by combining RSPN models. (2)
Another major difference is that RSPNs support direct updates, i.e.,
if the underlying database changes the RSPN can directly ingest the
updates without the need to retrain the model. (3) RSPNs also include
a set of database-specific extensions such as NULL-value handling
and support for functional dependencies.

Once the RSPNs are created offline, they can be leveraged at runtime
for a wide variety of different applications, ranging from user-facing
tasks (e.g., to provide fast approximate answers for SQL queries)
to system-internal tasks (e.g., to provide estimates for cardinalities).
In order to support these tasks, DeepDB provides a new so called
probabilistic query compilation procedure that translates a given task into
evaluations of expectations and probabilities on RSPNs. We now give
a brief overview of the applications currently supported by the query
compilation engine of DeepDB.

cardinality estimation The first task DeepDB supports is
cardinality estimation for a query optimizer. Cardinality estimation is
needed to provide cost estimates but also to find the correct join order
during query optimization. A particular advantage of DeepDB over
existing learned approaches for cardinality estimation [79, 161] is that
we do not have to create dedicated training data, i.e. pairs of queries
and cardinalities. Instead, since RSPNs capture the characteristics of
the data independent of a workload, we can support arbitrary join
queries without the need to train a model for a particular workload.

9.3 learning a deep data model 123

Moreover, RSPNs can be kept up to date at low costs similar to
traditional histogram-based approaches, which is different from other
workload-driven learned approaches for cardinality estimation such
as [79, 161] which require retraining.

approximate query processing (aqp) The second task we
currently support in DeepDB is AQP. AQP aims to provide approxi-
mate answers to support faster query response times on large datasets.
The basic idea of how a query on a single table is executed inside
DeepDB is simple: for example, an aggregate query AVG(X) with a
where condition C is equal to the conditional expectation E(X | C)
which can be approximated with RSPNs. In DeepDB, we implement a
more general AQP procedure that leverages the fact that RSPNs can
support joins of multiple tables. A major difference to other learned
approaches for AQP such as [105, 167] is again that DeepDB supports
ad-hoc queries and is thus not limited to the query types covered by
the training set.

other applications While the applications above show the
potential of DeepDB, we believe DeepDB is not limited to those ap-
plications. For example, machine learning inference tasks such as
regression and classification can be answered by RSPNs. However,
discussing these opportunities in detail is beyond the scope of this
paper.

9.3 learning a deep data model

In this section, we introduce Relational Sum Product Networks (RSPNs),
which we use to learn a representation of a database and, in turn, to
answer queries using our query engine explained in the next section.
We first review Sum Product Networks (SPNs) and then introduce
RSPNs. Afterwards, we describe how an ensemble of RSPNs can be
created to encode a given database multiple tables.

9.3.1 Sum Product Networks

Sum-Product Networks (SPNs) [141] learn the joint probability distri-
bution P(X1, X2, . . . , Xn) of the variables X1, X2, . . . , Xn in the dataset.
They are an appealing choice because probabilities for arbitrary condi-
tions can be computed very efficiently. We will later make use of these
probabilities for our applications like AQP and cardinality estimation.

For the sake of simplicity, we restrict our attention to Tree-SPNs, i.e.,
trees with sum and product nodes as internal nodes and leaves. Intu-
itively, sum nodes split the population (i.e., the rows of dataset) into
clusters and product nodes split independent variables of a population
(i.e., the columns of a dataset). Leaf nodes represent a single attribute
and approximate in the present paper the distribution of that attribute

124 deepdb : learn from data , not from queries!

c_id c_age c_region

1 80 EU

2 70 EU

3 60 ASIA

4 20 EU

...

998 20 ASIA

998 25 EU

999 30 ASIA

1000 70 ASIA

(a) Example Table

c_age c_region

80 EU

70 EU

60 ASIA

20 EU

... ...

... ...

20 ASIA

25 EU

30 ASIA

70 ASIA

(b) Learning with Row/
Column Clustering

+

x x

EU ASIA 20 100

P(cregion, cage)

0.3 0.7

EUASIA 20 100

(c) Resulting SPN

+

x x

EUASIA 20 100

15%

EUASIA 20 100

80%

12%

20%

2%

5%
0.3 0.7

10%

(d) Probability of European Customers
younger than 30

Figure 9.2: Customer Table and corresponding SPN.

9.3 learning a deep data model 125

either using histograms for discrete domains or piecewise linear func-
tions for continuous domains [118]. For instance, in Figure 9.2c, an
SPN was learned over the variables region and age of the corresponding
customer table in Figure 9.2a. The top sum node splits the data into
two groups: The left group contains 30% of the population, which is
dominated by older European customers (corresponding to the first
rows of the table), and the right group contains 70% of the population
with younger Asian customers (corresponding to the last rows of the
table). In both groups, region and age are independent and thus split
by a product node each. The leaf nodes determine the probability
distributions of the variables region and age for every group.

Learning SPNs [50, 118] works by recursively splitting the data
in different clusters of rows (introducing a sum node) or clusters of
independent columns (introducing a product node). For the clustering
of rows, a standard algorithm such as KMeans can be used or the
data can be split according to a random hyperplane. To make no
strong assumptions about the underlying distribution, Randomized
Dependency Coefficients (RDC) are used for testing independence of
different columns [101]. Moreover, independence between all columns
is assumed as soon as the number of rows in a cluster falls below a
threshold nmin. As stated in [117, 141], SPNs in general have polyno-
mial size and allow inference in linear time w.r.t. the number of nodes.
However, for the configurations we use in our experiments, we can
even bound the size of the SPNs to linear complexity w.r.t. the number
of columns in a dataset since we set nmin = ns/100 (i.e. relative to the
sample size), which turned out to be a robust configuration.

With an SPN at hand, one can compute probabilities for conditions
on arbitrary columns. Intuitively, the conditions are first evaluated
on every relevant leaf. Afterwards, the SPN is evaluated bottom up.
For instance in Figure 9.2d, to estimate how many customers are
from Europe and younger than 30, we compute the probability of
European customers in the corresponding blue region leaf nodes (80%
and 10%) and the probability of a customer being younger than 30

(15% and 20%) in the green age leaf nodes. These probabilities are then
multiplied at the product node level above, resulting in probabilities
of 12% and 2%, respectively. Finally, at the root level (sum node), we
have to consider the weights of the clusters, which leads to 12% · 0.3 +
2% · 0.7 = 5%. Multiplied by the number of rows in the table, we get
an approximation of 50 European customers who are younger than
30.

9.3.2 Relational Sum-Product Networks

One important issue with SPNs is that they can only capture the data
of single tables but they also lack other important features needed for
DeepDB. To alleviate these problems, we now introduce RSPNs.

126 deepdb : learn from data , not from queries!

extended inference algorithms The first and most important
extension is that for many queries such as AVG and SUM expectations
are required (e.g., to answer a SQL aggregate query which computes
an average over a column). In order to answer these queries, RSPNs
allows computing expectations over the variables on the leaves to
answer those aggregates. To additionally apply a filter predicate, we
still compute probabilities on the leaves for the filter attribute and
propagate both values up in the tree. At product nodes, we multiply
the expectations and probabilities coming from child nodes whereas on
sum nodes the weighted average is computed. In Figure 9.3, we show
an example how the average age of European customers is computed.
The ratio of both terms yields the correct conditional expectation. A
related problem is that SPNs do not provide confidence intervals. We
also developed corresponding extensions on SPNs in Section 9.5.1.

database-specifics Finally, SPNs lack support for important
database specifics: (1) First, SPNs do not provide mechanisms for
handling NULL values. Hence, we developed an extension where
NULL values are represented as a dedicated value for both discrete
and continuous columns at the leaves during learning. Furthermore,
when computing conditional probabilities and expectations, NULL
values must be handled according to the three-valued logic of SQL.
(2) Second, SPNs aim to generalize the data distribution and thus
approximate the leaf distribution, abstracting away specifics of the
dataset to generalize. For instance, in the leaf nodes for the age in Fig-
ure 9.2c, a piecewise linear function would be used to approximate the
distribution [118]. Instead, we want to represent the data as accurate
as possible. Hence, for continuous values, we store each individual
value and its frequency. If the number of distinct values exceeds a
given limit, we also use binning for continuous domains. (3) Third,
functional dependencies between non-key attributes A → B are not
well captured by SPNs. We could simply ignore these and learn the
RSPN with both attributes A and B, but this often leads to large SPNs
since the data would be split into many small clusters (to achieve
independence of A and B). Hence, we allow users to define functional
dependencies along with a table schema. If a functional dependency
A→ B is defined, we store the mapping from values of A to values of
B in a separate dictionary of the RSPN and omit the column B when
learning the RSPN. At runtime, queries with filter predicates for B are
translated to queries with filter predicates for A.

updatability Finally, a last important extensions of RSPNs over
SPNs is the direct updatability of the model. If the underlying database
tables are updated, the model might become inaccurate. For instance,
if we insert more young European customers in the table in Figure 9.2a,
the probability computed in Figure 9.2d is too low and thus the RSPN
needs to be updated. As described before, an RSPN consists of product

9.3 learning a deep data model 127

+

x x

EUASIA 20 100

60

EUASIA 20 100

80%

48

3010%

3

16.5
0.3 0.7

(a) E(c_age · 1c_region=’EU’)

+

x x

EUASIA 20 100 EUASIA 20 100

80%

80%

10%

10%

31%
0.3 0.7

(b) P(c_region=’EU’)

Figure 9.3: Process of computing E(c_age | c_region=’EU’).

and sum nodes, as well as leaf nodes, which represent probability
distributions for individual variables. The key-idea to support direct
updates of an existing RSPN is to traverse the RSPN tree top-down
and update the value distribution of the weights of the sum-nodes
during this traversal. For instance, the weight of a sum node for a
subtree of younger European customers could be increased to account
for updates. Finally, the distributions in the leaf-nodes are adjusted.
The detailed algorithm of how to directly update RSPNs is discussed
in Section 9.5.2.

9.3.3 Learning Ensembles of RSPNs

In order to support ad-hoc join queries one could naively learn a
single RSPN per table as we discuss in Section 9.4. However, in this
case potential correlations between tables might be lost and lead to
inaccurate approximations. For learning an ensemble of RSPNs for
a given database with multiple tables, we thus take into account if
tables of a schema are correlated.

In the following, we describe our procedure that constructs a so
called base ensemble for a given database scheme. In this procedure,
for every foreign key→primary key relationship we learn an RSPN over
the corresponding full outer join of two tables if there is a correlation
between attributes of these two tables. Otherwise, RSPNs for the
single tables will be learned. For instance, if the schema consists of a
Customer and an Order table as shown in Figure 9.4, we could either
learn two independent RSPNs (one for each table) or a joint RSPN
(over the full outer join).

In order to test independence of two tables and thus to decide if
one or two RSPNs are more appropriate, we check for every pair of
attributes from these tables if they can be considered independent
or not. In order to enable an efficient computation, this test can be
done on a small random sample. As a correlation measure that does
not make major distributional assumptions, we compute RDC values
[101] between two attributes, which are also used in the SPN learning
algorithm [118]. If the maximum pairwise RDC value between all
attributes of two tables exceeds a threshold (where we use the standard

128 deepdb : learn from data , not from queries!

+

x x

Customer

+

x x

Order

Customer

c_id c_age c_region FC←O

1 20 EU 2

2 50 EU 0

3 80 ASIA 2

Order

o_id c_id o_channel

1 1 ONLINE

2 1 STORE

3 3 ONLINE

4 3 STORE

(a) Ensemble with Single Tables
+

x x

OrderCustomer

Customerd|><|dOrder

NC c_id c_age c_region F ′C←O NO o_id o_channel

1 1 20 EU 2 1 1 ONLINE

1 1 20 EU 2 1 2 STORE

1 2 50 EU 1 0 NULL NULL

1 3 80 ASIA 2 1 3 ONLINE

1 3 80 ASIA 2 1 4 STORE

(b) Ensemble with Full Outer Join

Figure 9.4: Two RSPN Ensembles for the same Schema. Additional (blue)
columns are also learned by the RSPNs.

thresholds of SPNs), we assume that two tables are correlated and
learn an RSPN over the join.

In the base ensemble only correlations between two tables are cap-
tured. While in our experiments, we see that this already leads to
highly accurate answers, there might also be correlations not only
between directly neighboring tables. Learning these correlations helps
to further improve the accuracy of queries that span more than two
tables. For instance, if there was an additional Product table that can
be joined with the Orders table and the product prize is correlated
with the customers region, this would not be taken into account in the
base ensemble. In Section 9.5.3, we thus extend our basic procedure for
ensemble creation to take dependencies among multiple tables into
account.

9.4 query compilation

The main challenge of probabilistic query compilation is to translate
an incoming query into an inference procedure against an ensemble
of RSPNs. The class of SQL queries that DeepDB currently supports
are of the form:

QD: SELECT AGG

9.4 query compilation 129

FROM T1 JOIN T2 ON . . . JOIN Tn ON . . .
WHERE Ti.a OP LITERAL AND/OR . . .
(GROUP BY . . .);

where AGG is one of the aggregations COUNT, SUM, or AVG over a numeri-
cal attribute, the joins are acyclic equi-joins and the filter in the WHERE

clause are either a conjunction of filters or a disjunction. While con-
junctions are supported natively by RSPNs, disjunctions are realized
using the principle of inclusion and exclusion. In the filters, OP is one
of the operators <,>,=, <=,>=,IN. Finally, there is an optional GROUP
BY clause on one or several attributes.

Most importantly, in DeepDB the queries are supported ad-hoc,
i.e. an RSPN ensemble is learned once and then arbitrary queries
of the above form can be answered using our probabilistic query
compilation procedure. In the following, we first describe how this
procedure works for COUNT queries without grouping which is
sufficient for cardinality estimation. We then show the extensions to
support a broader set of aggregate queries for AQP including other
aggregates (AVG and SUM) as well as grouping.

9.4.1 Simple COUNT Queries

In this section, we explain how we can translate COUNT queries
with and without filter predicates over single tables or over joins of
multiple tables using inner joins (equi-joins). These types of queries
can be used already for cardinality estimation but also cover some
cases of aggregate queries for AQP. For answering the simple COUNT
queries, we distinguish three cases of how queries can be mapped to
RSPNs: (1) an RSPN exists that exactly matches the tables of the query,
(2) the RSPN is larger and covers more tables, and (3) we need to
combine multiple RSPNs since there is no single RSPN that contains
all tables of the query.

case 1 : exact matching rspn available The simplest case is
a single table COUNT query with (or without) a filter predicate. If an
RSPN is available for this table and N denotes the number of rows in
the table, the result is simply N · P(C). For instance, the query

Q1: SELECT COUNT(*) FROM CUSTOMER C

WHERE c_region=’EU’;

can be answered with the CUSTOMER RSPN in Figure 9.4a. The result
is |C| ·E(1c_region=’EU’) = 3 · 2

3 = 2. Note that 1C denotes the random
variable being one if the condition C is fulfilled and thus E(1C) =

P(C). While a conjunction in a filter predicates is directly supported, a
disjunction could be realized using the inclusion-exclusion principle.

A natural extension for COUNT queries over joins could be to learn
an RSPN for the underlying join and use the formula |J| · P(C) where

130 deepdb : learn from data , not from queries!

the size of the joined tables without applying a filter predicate is |J|.
For instance, the query

Q2: SELECT COUNT(*) FROM CUSTOMER C

NATURAL JOIN ORDER O

WHERE c_region=’EU’ AND

o_channel=’ONLINE’;

could be represented as

|C ./ O| · P(o_channel=’ONLINE’∩ c_region=’EU’)

which is 4 · 1
4 = 1.

However, joint RSPNs over multiple tables are learned over the
full outer join. By using full outer joins we preserve all tuples of the
original tables and not only those that have one or more join partner in
the corresponding table(s). This way we are able for example to answer
also single table queries from a joint RSPN, as we will see in Case 2.
The additional NULL tuples that result from a full outer join must be
taken into account when answering an inner join query. For instance,
the second customer in Figure 9.4b does not have any orders and thus
should not be counted for query Q2. To make it explicit which tuples
have no join partner and thus would not be in the result of an inner
join, we add an additional column NT for every table such as in the
ensemble in Figure 9.4b. This column is also learned by the RSPN and
can be used as an additional filter column to eliminate tuples that do
not have a join partner for the join query given. Hence, the complete
translation of query Q2 for the RSPN learned over the full outer join
in Figure 9.4b is |C d|><|d O| · P(o_channel=’ONLINE’ ∩ c_region=’EU’ ∩
NO = 1∩NC = 1) = 5 · 1

5 = 1.

case 2 : larger rspn available The second case is that we have
to use an RSPN that was created on a set of joined tables, however, the
query only needs a subset of those tables. For example, let us assume
that the query Q1 asking for European customers is approximated
using an RSPN learned over a full outer join of customers and orders
such as the one in Figure 9.4b. The problem here is that customers with
multiple orders would appear several times in the join and thus be
counted multiple times. For instance, the ratio of European customers
in the full outer join is 3/5 though two out of three customers in the
dataset are European.

To address this issue, for each foreign key relationship S ← P
between tables P and S we add a column FS←P to table S denoting
how many corresponding join partners a tuple has. We call these tuple
factors and later use them as correction factor. For instance, in the
customer table in Figure 9.4a for the first customer the tuple factor is
two since there are two tuples in the order table for this customer. It is
important to note that tuple factors have to be computed only once per
pair of tables that can be joined via a foreign key. In DeepDB, we do

9.4 query compilation 131

this when the RSPNs for a given database are created and our update
procedure changes those values as well. Tuple factors are included as
additional column and learned by the RSPNs just as usual columns.
When used in a join, we denote them as F ′S←P. Since we are working
with outer joins, the value of F ′ is at least 1.

We can now express the query counting European customers as
|C d|><|d O| ·E(1/F ′C←O · 1c_region=’EU’ ·NC) which results in 5 · 1/2+1/2+1

5 =

2. First, this query both includes the first customer (who has no orders)
because the RSPN was learned on the full outer join. Second, the query
also takes into account that the second and third customer have two
orders each by normalizing them with their tuple factor F ′C←O. In
general, we can define the procedure to compile a query requiring
only a part of an RSPN as follows:

Theorem 1 Let Q be a COUNT query with a filter predicate C which only
queries a subset of the tables of a full outer join J. Let F ′(Q, J) denote the
product of all tuple factors that cause result tuples of Q to appear multiple
times in J. The result of the query is equal to:

|J| ·E
(

1
F ′(Q, J)

· 1C · ∏
T∈Q
NT

)

For an easier notation, we write the required factors of query Q as
F(Q). The expectation E(F(Q)) of theorem 1 can be computed with
an RSPN because all columns are learned.

case 3 : combination of multiple rspns As the last case, we
handle a COUNT query that needs to span over multiple RSPNs. We first
handle the case of two RSPNs and extend the procedure to n RSPNs
later. In this case, the query can be split into two subqueries QL and
QR, one for each RSPN. There can also be an overlap between QL and
QR which we denote as QO (i.e., a join over the shared common tables).
The idea is first to estimate the result of QL using the first RSPN. We
then multiply this result by the ratio of tuples in QR vs. tuples in the
overlap QO. Intuitively, this expresses how much the missing tables
not in QL increase the COUNT value of the query result.

For instance, there is a separate RSPN available for the Customer

and the Order table in Figure 9.4a. The query Q2, as shown before,
would be split into two queries QL and QR, one against the RSPN
built over the Customer table and the other one over the RSPN for the
Order table. QO is empty in this case. The query result of Q2 can thus
be expressed using all these sub-queries as:

|C| ·E(1c_region=’EU’ · FC←O)︸ ︷︷ ︸
QL

·E(1o_channel=’ONLINE’)︸ ︷︷ ︸
QR

which results in 3 · 2+0
3 · 2

4 = 1. The intuition of this query is that
the left-hand side that uses QL computes the orders of European

132 deepdb : learn from data , not from queries!

customers while the right-hand side computes the fraction of orders
that are ordered online out of all orders.

We now handle the more general case that the overlap is not empty
and that there is a foreign key relationship S← T between a table S
in QO (and QL) and a table T in QR (but not in QL). In this case, we
exploit the tuple factor FS←T in the left RSPN. We now do not just
estimate the result of QL but of QL joined with the table T. Of course
this increases the overlap which we now denote as Q′O. As a general
formula for this case, we obtain Theorem 2:

Theorem 2 Let the filter predicates and tuple factors of QL \QO and QR \
QO be conditionally independent given the filter predicates of QO. Let S← T
be the foreign key relationship between a table S in QL and a table T in QR

that we want to join. The result of Q is equal to

|JL| ·E (F(QL) · FS←T) ·
E (F(QR))

E
(
F(Q′O)

) .

Independence across RSPNs is often given since our ensemble cre-
ation procedure preferably learns RSPNs over correlated tables as
discussed in Section 9.3.

Alternatively, we can start the execution with QR. In our example
query Q2 where QR is the query over the orders table, we can remove
the corresponding tuple factor FC←O from the left expectation. How-
ever, we then need to normalize QL by the tuple factors to correctly
compute the fraction of customers who come from Europe. To that
end, the query Q2 can alternatively be computed using:

|O| ·E(1o_channel=’ONLINE’) ·
E (1c_region=’EU’ · FC←O | FC←O)

E (FC←O | FC←O > 0)

execution strategy If multiple RSPNs are required to answer a
query, we have several possible execution strategies. Our goal should
be to handle as many correlations between filter predicates as possible
because predicates across RSPNs are considered independent. For in-
stance, assume we have both the Customer, Order and Customer-Order

RSPNs of Figure 9.4 in our ensemble, and a join of customers and
orders would have filter predicates on c_region, c_age and o_channel.
In this case, we would prefer the Customer-Order RSPN because it
can handle all pairwise correlations between filter columns (c_region-
c_age, c_region-o_channel, c_age-c_channel). Hence, at runtime we
greedily use the RSPN that currently handles the filter predicates with
the highest sum of pairwise RDC values. We also experimented with
strategies enumerating several probabilistic query compilations and
using the median of their predictions. However, this was not superior
to our RDC-based strategy. Moreover, the RDC values have already
been computed to decide which RSPNs to learn. Hence, at runtime
this strategy is very compute-efficient.

The final aspect is how to handle joins spanning over more than
two RSPNs. To support this, we can apply Theorem 2 several times.

9.4 query compilation 133

9.4.2 Other Aggregate Queries

So far, we only looked into COUNT queries without group-by state-
ments. In the following, we first discuss how we extend our query
compilation to also support AVG and SUM queries before we finally
explain group-by statements as well as outer joins.

avg queries We again start with the case that we have an RSPN
that exactly matches the tables of a query and later discuss the other
cases. For this case, queries with AVG aggregates can be expressed as
conditional expectations. For instance, the query

Q3: SELECT AVG(c_age) FROM CUSTOMER C

WHERE c_region=’EU’;

can be formulated as |C| ·E(c_age | c_region=’EU’) with the ensem-
ble in Figure 9.4a.

However, for the case that an RSPNs spans more tables than re-
quired, we cannot directly use this conditional expectation because
otherwise customers with several orders would be weighted higher.
Again, normalization by the tuple factors is required. For instance, if
the RSPN spans customers and orders as in Figure 9.4b for query Q3

we use

E
(

c_age
F ′C←O

| c_region=’EU’
)

E
(

1
F ′C←O

| c_region=’EU’
) =

20/2 + 20/2 + 50
1/2 + 1/2 + 1

= 35.

In general, if an average query for the attribute A should be com-
puted for a join query Q with filter predicates C on an RSPN on a full
outer join J, we use the following expectation to answer the average
query:

E

(
A

F ′(Q, J)
| C
)

/E

(
1

F ′(Q, J)
| C
)

.

The last case is where the query needs more than one RSPN to
answer the query. In this case, we only use one RSPN that contains
A and ignore some of the filter predicates that are not in the RSPN.
As long as A is independent of these attributes, the result is correct.
Otherwise, this is just an approximation. For selecting which RSPN
should be used, we again prefer RSPNs handling stronger correlations
between A and P quantified by the RDC values. The RCDs can also
be used to detect cases where the approximation would ignore strong
correlations with the missing attributes in P.

sum queries For handling SUM queries we run two queries: one
for the COUNT and AVG queries. Multiplying them yields the correct
result for the SUM query.

134 deepdb : learn from data , not from queries!

group-by queries Finally, a group by query can be handled also
by several individual queries with additional filter predicates for every
group. This means that for n groups we have to compute n times
more expectations than for the corresponding query without grouping.
In our experimental evaluation, we show that this does not cause
performance issues in practice if we compute the query on the model.

outer joins Query compilation can be easily extended to support
outer joins as well (left/right/full). The idea is that we only filter out
tuples that have no join partner for all inner joins (case 1 and 2 in
Section 9.4.1) but not for outer joins (depending on the semantics of
the outer join). Moreover, in case 3, the tuple factors F with value
zero have to be handled as value one to support the semantics of the
corresponding outer join.

9.5 deepdb extensions

We now describe important extensions of our basic framework pre-
sented before.

9.5.1 Support for Confidence Intervals

Especially for AQP confidence intervals are important. However, SPNs
do not provide those. After the probabilistic query compilation the
query is expressed as a product of expectations. We first describe how
to estimate the uncertainty for each of those factors and eventually
how a confidence interval for the final estimate can be derived.

First, we split up expectations as a product of probabilities and con-
ditional expectations. For instance, the expectation E(X · 1C) would
be turned into E(X | C) · P(C). This allows us to treat all probabilities
for filter predicates C as a single binomial variable with probability
p = ∏ P(Ci) and the amount of training data of the RSPN as nsamples.

Hence, the variance is
√

nsamples p(1− p). For the conditional expec-

tations, we use the Koenig-Huygens formula V(X | C) = E(X2 |
C)−E(X | C)2. Note that also squared factors can be computed with
RSPNs since the square can be pushed down to the leaf nodes. We
now have a variance for each factor in the result.

For the combination we need two simplifying assumptions: (i) the
estimates for the expectations and probabilities are independent, and
(ii) the resulting estimate is normally distributed. In our experimental
evaluation, we show that despite these assumptions our confidence
intervals match those of typical sample-based approaches.

We can now approximate the variance of the product using the
independence assumption by recursively applying the standard equa-
tion for the product of independent random variables: V(XY) =

V(X)V(Y) + V(X)E(Y)2 + V(Y)E(X)2. Since we know the variance

9.5 deepdb extensions 135

of the entire probabilistic query compilation and we assume that this
estimate is normally distributed we can provide confidence intervals.

9.5.2 Support for Updates

The intuition of our update algorithm is to regard RSPNs as indexes.
Similar to these, insertions and deletions only affect subtrees and
can be performed recursively. Hence, the updated tuples recursively
traverse the tree and passed weights of sum nodes and the leaf distribu-
tions are adapted. Our approach supports insert and delete operations,
where an update-operation is mapped to a pair of delete and insert
operations.

Algorithm 2 Incremental Update
1: procedure update_tuple(node, tuple)
2: if leaf-node then
3: update_leaf_distribution(node, tuple)
4: else if sum-node then
5: nearest_child← get_nearest_cluster(node, tuple)
6: adapt_weights(node, nearest_child)
7: update_tuple(nearest_child, tuple)
8: else if product-node then
9: for child in child_nodes do

10: tuple_proj← project_to_child_scope(tuple)
11: update_tuple(child, tuple_proj)

The update algorithm is depicted in Algorithm 2. Since it is recursive,
we have to handle sum, product and leaf nodes. At sum nodes (line 4)
we have to identify to which child node the inserted (deleted) tuple
belongs to determine which weight has to be increased (decreased).
Since children of sum nodes represent row clusters found by KMeans
during learning [118], we can compute the closest cluster center (line 5),
increase (decrease) its weight (line 6) and propagate the tuple to this
subtree (line 7). In contrast, product nodes (line 8) split the set of
columns. Hence, we do not propagate the tuple to one of the children
but split it and propagate each tuple fragment to the corresponding
child node (lines 9-11). Arriving at a leaf node, only a single column of
the tuple is remaining. We now update the leaf distribution according
to the column value (line 2).

This approach does not change the structure of the RSPN, but only
adapts the weights and the histogram values. If there are new depen-
dencies as a result of inserts they are not represented in the RSPN. As
we show in Section 9.6.1 on a real-word dataset, this typically does not
happen, even for high incremental learning rates of 40%. Nevertheless,
in case of new dependencies the RSPNs have to be rebuilt. This is
solved by checking the database cyclically for changed dependencies
by calculating the pairwise RDC values as explained in Section 9.5.3
on column splits of product nodes. If changes are detected in the
dependencies, the affected RSPNs are regenerated. As for traditional
indexes, this can be done in the background.

136 deepdb : learn from data , not from queries!

9.5.3 Ensemble Optimization

As mentioned before, we create an ensemble of RSPNs for a given
database. The base ensemble contains either RSPNs for single tables
or they span over two tables connected by a foreign key relationship if
they are correlated. Correlations occurring over more than two tables
are ignored so far since they lead to larger models and higher training
times. In the following, we thus discuss an extension of our ensemble
creation procedure that allows a user to specify a training budget
(in terms of time or space) and DeepDB selects the additional larger
RSPNs that should be created.

To quantify the correlations between tables, as mentioned already be-
fore, we compute the pairwise RDC values for every pair of attributes
in the schema. For every pair of tables, we define the maximum RDC
value between two columns maxc∈Ti ,c′∈Tj rdc(c, c′) as the dependency
value. The dependency value indicates which tables should appear in
the same RSPN and which not. For every RSPN the goal is to achieve
a high mean of these pairwise maximal RDC values. This ensures that
only tables with high pairwise correlation are merged in an RSPN.

The limiting factor (i.e., the constraint) for the additional RSPN
ensemble selection should be the budget (i.e., extra time compared
to the base ensemble) we allow for the learning of additional RSPNs.
For the optimization procedure, we define the maximum learning
costs as a factor B relative to the learning costs of the base ensemble
CBase. Hence, a budget factor B = 0 means that only the base ensemble
would be created. For higher budget factors B > 0, additional RSPNs
over more tables are learned in addition. If we assume that an RSPN
r among the set of all possible unique RSPNs R has a cost C(r),
then we could formulate the optimization problem as a minimization
of ∑r∈E {maxc∈Ti ,c′∈Tj rdc(c, c′) | Ti, Tj ∈ r} subject to ∑r∈E C(r) ≤ B ·
CBase.

However, estimating the real cost C(r) (i.e., time) to build an RSPN r
is hard and thus we can not directly solve the optimization procedure.
Instead, we estimate the relative cost to select the RSPN r that has
the highest mean RDC value and the lowest relative creation cost.
To model the relative creation cost, we assume that the costs grow
quadratic with the number of columns cols(r) since the RDC values
are created pairwise and linear in the number of rows rows(r). Con-
sequently, we pick the RSPN r with highest mean RDC and lowest
cost which is cols(r)2 · rows(r) as long as the maximum training time
is not exceeded.

9.6 experimental evaluation

In this Section, we show that DeepDB outperforms state-of-the-art
systems for both cardinality estimation and AQP. The RSPNs we used

9.6 experimental evaluation 137

in all experiment were implemented in Python as extensions of SPFlow
[119]. As hyperparameters, we used an RDC threshold of 0.3 and a
minimum instance slice of 1% of the input data, which determines
the granularity of clustering. Moreover, we used a budget factor of
0.5, i.e. the training of the larger RSPNs takes approximately 50%
more training time than the base ensemble. We determined these
hyperparameters using a grid-search, which gave us the best results
across different datasets.

9.6.1 Experiment 1: Cardinality Estimation

workload and setup As in [79, 91], we use the JOB-light bench-
mark as workload for all approaches (DeepDB and baselines). The
benchmark uses the real-world IMDb database and defines 70 queries.
Furthermore, we additionally defined a synthetic query set of 200

queries were joins from three to six tables and one to five filter predi-
cates appear uniformly on the IMDb dataset. We use this query set to
compare the generalization capabilities of the learned approaches.

As baselines, we used the following learned and traditional ap-
proaches: First we trained a Multi-Set Convolutional Network (MCSN)
[79] as a learned baseline. MCSNs are specialized deep neural net-
works using the join paths, tables and filter predicates as inputs. As
representative of a synopsis-based technique, we implemented an
approach based on wavelets [21]. The main idea of [21] is that one
wavelet is built per table. Moreover, query operators (e.g., joins) can
be executed directly on the wavelet representation. We have chosen
this approach because it is similar to DeepDB since the tables that
are joined by queries do not have to be known beforehand. We also
implemented an approach called Perfect Selectivities. In this approach,
we use an oracle that returns the true cardinalities for single tables.
This approach can be seen as the best case for any synopsis-based ap-
proach that supports ad-hoc queries by combining “perfect” synopsis
on single tables. Finally, we use the standard cardinality estimation of
Postgres 11.5 as well as online random sampling and Index-Based Join
Sampling (IBJS) [92] as a non-learned baselines. Similar to DeepDB,
IBJS considers potential correlations across tables when sampling. For
DeepDB, we use the hyper-parameters discussed before and a sample
size of 10M samples for constructing RSPNs if not noted otherwise.

training time and storage overhead In contrast to other
learned approaches for cardinality estimation [79, 161], no dedicated
training data is required for DeepDB. Instead, we just learn a represen-
tation of the data. The training of the base ensemble takes 48 minutes.
The creation time includes the data preparation time to sample and
compute the tuple factors as introduced in Section 9.4.1. In contrast,
for the MCSN [79] approach, 100k queries need to be executed to
collect cardinalities resulting in 34 hours of training data preparation

138 deepdb : learn from data , not from queries!

Table 9.1: Estimation Errors for the JOB-light Benchmark

median 90th 95th max

DeepDB 1.34 2.50 3.16 39.63

DeepDB (Storage Opt.) 1.32 4.14 5.74 72.00

Perfect Selectivities 2.08 9 11 33

MCSN 3.22 65 143 717

Wavelets 7.64 9839 15332 564549

Postgres 6.84 162 817 3477

IBJS 1.67 72 333 6949

Random Sampling 5.05 73 10371 49187

time (when using Postgres). Moreover, the training of the neural net-
work takes only about 15 minutes on a Nvidia V100 GPU. As we can
see, our training time is much lower since we do not need to collect
any training data for the workload. Another advantage is that we do
not have to re-run the queries once the database is modified. Instead,
we provide an efficient algorithm to update RSPNs in DeepDB as
discussed in Section 9.3.2.

Another dimension is the storage footprint needed for the different
approaches. While the sampling-based approaches, i.e., IBJS and ran-
dom sampling, do not incur a storage overhead, their limiting factor
is the number of samples which is´ determined by the latency. All
other approaches require only a few KB to MB of storage for the IMDb
database of the JOB-light benchmark (which uses 3.7 GB disk space).
The storage overhead of DeepDB is 28.9MB vs. 2.6 MB for MSCN and
just 60kB for Postgres that uses histograms with just 100 buckets by
default (however with the lowest accuracy as we show next). For the
wavelet approach we used 20k wavelet coefficients to allow as much
storage as the standard version of DeepDB requires. In addition, we
also created a storage-optimized version of DeepDB, which has a simi-
lar storage footprint as MCSNs by reducing the number of samples. In
contrast to DeepDB, allowing a larger storage overhead for MSCNs by
for instance adding hidden layers does not improve the performance
since we already use the optimized hyperparameters of [79]. As we
show next, the storage-optimized version of DeepDB can provide
accuracies that are still significantly better than all other baselines
including MCSN. Furthermore, while there has been a line of research
optimizing the storage footprint of DNNs there are no comparable
approaches for SPNs. We believe that future research will reduce the
storage requirements for DeepDB even further. However, we think
that even a few MB of storage for an entire database of several GB is
still acceptable for more accurate cardinality estimates.

estimation quality The prediction quality of cardinality estima-
tors is usually evaluated using the q-error, which is the factor by which
an estimate differs from the real execution join size. For example, if

9.6 experimental evaluation 139

Uniform/Ind. Skew/Zipf(2) Skew/Zipf(3) Skew/Zipf(4)
Skew

101

103

q-
er

ro
r

DeepDB

DeepDB Storage Opt.

MSCN

Perfect Selectivities

IBJS

Random Sampling

Postgres

Wavelets

20% 40% 60% 80% 100%
Correlated Attributes

101

103

q-
er

ro
r

Figure 9.5: Mean Estimation Errors for Synthetic Data.

the real result size of a join is 100, the estimates of 10 or 1k tuples both
have a q-error of 10. Using the ratio instead of an absolute or quadratic
error captures the intuition that for making optimization decisions
only relative differences matter. In Table 9.1, we depict the median, 90-
th and 95-th percentile and max q-errors for the JOB-light benchmark
of our approach compared to the other baselines. We additionally pro-
vide the q-errors for a storage-optimized version of DeepDB, which
relies only on a base ensemble and 100k samples per RSPN. As we can
see, both DeepDB and the storage-optimized version outperform the
best competitors often by orders of magnitude. While IBJS provides a
low q-error in the median, the advantage of learned MCSNs is that
they outperform traditional approaches by orders of magnitude for
the higher percentiles and are thus more robust. DeepDB not only
outperforms IBJS in the median, but provides additional robustness
having a 95-th percentile for the q-errors of 3.16 vs. 143 (MCSN). The
q-errors of both Postgres and random sampling are significantly larger
both for the medians and the higher percentiles. Finally, wavelets have
the highest error since they suffer from the curse of dimensionality (as
we show later in Figure 9.12). While Perfect Selectivities which is based
on an oracle provides errors better than wavelets it is still worse than
DeepDB since it does not take correlations across tables into account.

synthetic data In order to further investigate the tradeoffs of the
different approaches, we implemented a synthetic data generator for
the IMDb schema (such that we can then run the JOB-light benchmark).
First, we generated data with uniform distributions without any cor-
relations. Second, we varied the characteristics that make cardinality
estimation hard in reality; i.e., we used skewed distributions and corre-
lations between different columns. We then used the same approaches
as before to provide cardinality estimates for the original 70 JOB-light
queries and report the mean q-errors of queries not having a cardi-
nality of zero because otherwise the q-error is not defined. Figure 9.5

140 deepdb : learn from data , not from queries!

4-1 4-2 4-3 4-4 4-5 5-1 5-2 5-3 5-4 5-5 6-1 6-2 6-3 6-4 6-5
Tables and Predicates

101

102

q-
er

ro
r MCSN

DeepDB (ours)

Figure 9.6: Median q-errors (logarithmic Scale) for different Join Sizes (4,5,6)
and Number of Filter Predicates (1-5).

shows the mean q-errors (log-scale) for varying degrees of skew (up-
per plot) and varying degrees of correlation (lower plot). We can see
that DeepDB and the storage optimized version can both outperform
all other baselines. While on uniform/independent data, DeepDB
provides no significant advantage even over simple techniques such as
random sampling or Postgres (as expected), DeepDB outperforms the
other baselines for higher degrees of skew/correlation. For higher de-
grees of skew/correlation, the approaches based on sampling (random
sampling, IBJS) as well as Postgres all degrade significantly. Compared
to those approaches, MSCN can handle skew/correlation much better
but still degrades which we attribute again to the coverage of the
training queries. Finally, wavelets again provide the lowest accuracy
on all configurations since they suffer from the curse of dimensionality
similar to the real-world data in Figure 9.1.

generalization capabilities Especially for learned approaches,
the question of generalization is important, i.e., how well the models
perform on previously unseen queries. For instance, by default the
MCSN approach is only trained with queries up to three joins because
otherwise the training data generation would be too expensive [79].
Similarly in our approach, in the ensemble only few RSPNs with large
joins occur because otherwise the training would also be too expensive.
However, both approaches support cardinality estimates for unseen
queries.

To compare both learned approaches, we randomly generated
queries for joins with four to six tables and one to five selection
predicates for the IMDb dataset. In Figure 9.6, we plot the resulting
median q-errors for both learned approaches: DeepDB and MCSN [79].
The median q-errors of DeepDB are orders of magnitude lower for
larger joins. Additionally, we can observe that, for the MCSN approach,
the estimates tend to become less accurate for queries with fewer selec-
tion predicates. One possible explanation is that more tuples qualify
for such queries and thus higher cardinalities have to be estimated.
However, since there are at most three tables joined in the training
data such higher cardinality values are most likely not predicted. Thus,
using RSPNs leads to superior generalization capabilities.

updates In this experiment, we show the update capabilities of
RSPNs. The easy and efficient updateability is a clear advantage of

9.6 experimental evaluation 141

Table 9.2: Estimation Errors for JOB-light after Updates.

Temporal < 2019 < 2011 < 2009 < 2004 < 1991

Split (0%) (4.7%) (9.3%) (19.7%) (40.1%)

Median 1.22 1.28 1.31 1.34 1.41

90th 3.45 3.17 3.23 3.60 4.06

95th 4.77 4.30 3.83 4.07 4.35

105 107

Samples per RSPN (Base Ensemble)

2.0

2.2

2.4

q-
er

ro
r

1000

2000

T
ra

in
in

g
ti

m
e

(s
)q-error

Training time

0 1 2 3
Ensemble Learning Budget

1.85

1.90

q-
er

ro
r

5000

10000

T
ra

in
in

g
ti

m
e

(s
)q-error

Training time

Figure 9.7: Q-errors and Training Time (in s) for varying Budget Factors and
Sample Sizes.

DeepDB compared to deep-learning based approaches for cardinality
estimation [79, 161]. To show the effects of updates on the accuracy, we
first learn the base RSPN ensemble on a certain share of the full IMDb
dataset and then use the remaining tuples to update the database.

To ensure a realistic setup, we split the IMDb dataset based on the
production year (i.e., newer movies are inserted later). As depicted
in Table 9.2 the q-errors do not change significantly for updated
RSPNs even if the update fraction increases; i.e., if we split on earlier
production years. For building the RSPNs, we use zero as the budget
factor to demonstrate that even a base RSPN ensemble provides good
estimates after updates. This is also the reason why the estimation
errors slightly deviate from Table 9.1. Our results in Table 9.2 show that
with a higher fraction of updates, the accuracy drops only slightly. The
reason is that the structure of the RSPN tree is not changed by updates,
but only the parameters of the RSPNs which might not be the optimal
structure anymore if the data distributions/correlations change due to
the updates. In case the accuracy drops beyond a threshold, DeepDB
can still decide to recreate the RSPN offline based on the new data.

parameter exploration Finally, in the last experiment, we ex-
plore the tradeoff between ensemble training time and prediction
quality of DeepDB. We first vary the budget factor used in the en-
semble selection between zero (i.e. learning only the base ensemble
with one RSPN per join of two tables) and B=3 (i.e. the training of
the larger RSPNs takes approximately three times longer than the
base ensemble) while using 107 samples per RSPN. We then use the
resulting ensemble to evaluate 200 queries with three to six tables
and one to five selection predicates. The resulting median q-errors
are shown in Figure 9.7. For higher budget factors the means are
improving but already saturate at B = 0.5. This is because there are no

142 deepdb : learn from data , not from queries!

4-1 4-2 4-3 4-4 4-5 5-1 5-2 5-3 5-4 5-5 6-1 6-2 6-3 6-4 6-5
Tables and Predicates

0

1000

2000

3000

L
at

en
cy

(µ
s)

Total

RSPN Inference

Figure 9.8: Latencies of DeepDB for different Join Sizes (4,5,6) and Number
of Filter Attributes (1-5).

strong correlations in larger joins that have not already been captured
in the base ensemble.

Moreover, we evaluate the effect of the sampling to reduce the
training time. In this experiment we vary the sample size from 1000

to 10 million. We observe that while the training time increases, the
higher we choose this parameter, the prediction quality improves
(from 2.5 to 1.9 in the median). In summary, the training time can be
significantly reduced if slight compromises in prediction quality are
acceptable. When minimization of training time is the more important
objective we can also fall back and only learn RSPNs for all single
tables and no joins at all. This reduces the ensemble training time to
just five minutes. However, even this cheap strategy is still competitive.
For JOB-light this ensemble has a median q-error of 1.98, a 90-th
percentile of 5.32, a 95-th percentile of 8.54 and a maximum q-error
of 186.53. Setting this in perspective to the baselines, this ensemble
still outperforms state of the art for the higher percentiles and only
Index Based Join Sampling is slightly superior in the median. This
again proves the robustness of RSPNs.

latencies The estimation latencies for cardinalities using DeepDB
are currently in the order of µs to ms which suffices for complex join
queries that often run for multiple seconds on larger datasets. If more
complex predicates spanning over several columns are used or more
tables are involved in the join the latencies increase. In Figure 9.8
we investigate this effect in more detail. We report both the latency
required for the RSPN inference and the total time including the over-
head of translating the queries to expectations and probabilities using
our probabilistic query compilation procedure. The RSPN inference is
efficient because C++ code is compiled automatically for the trained
RSPNs similar to [158]. As we see, while the latencies increase for
more complex predicates and joins, they are still around 3ms in the
worst case and in the range of µs for easier queries. In future, we plan
to optimize not just RSPN inference but also the overhead of query
translation to bring the total latency even closer to only the RSPN
inference.

9.6 experimental evaluation 143

F1.1 F1.2 F2.1 F2.2 F2.3 F3.1 F3.2 F3.3 F4.1 F4.2 F5.1 F5.2
Query

0

10
R

el
at

iv
e

E
rr

or
(%

)

0.
00

%

0.
14

%

0.
28

%

0.
00

%

0.
20

%

0.
18

%

0.
00

%

0.
15

%

0.
46

%

0.
58

%

0.
77

%

0.
39

%

0.
02

%

0.
75

%

0.
27

%

Verdict DB Tablesample DeepDB (ours)

F1.1 F1.2 F2.1 F2.2 F2.3 F3.1 F3.2 F3.3 F4.1 F4.2 F5.1 F5.2
Query

0

2

L
at

en
cy

(s
)

6m
s

2m
s

3m
s

10
m

s

4m
s

7m
s

10
m

s

9m
s

20
m

s

9m
s

Verdict DB Tablesample DeepDB (ours)

Figure 9.9: Average Relative Error and Latencies for the Flights dataset.

S1.1 S1.2 S1.3 S2.1 S2.2 S2.3 S3.1 S3.2 S3.3 S3.4 S4.1 S4.2 S4.3
Query

10−1
100
101
102
103

R
el

at
iv

e
E

rr
or

(%
)

0.
80

%

5.
25

%

N
o

re
su

lt

9.
20

%

N
o

re
su

lt

N
o

re
su

lt

N
o

re
su

lt

N
o

re
su

lt

N
o

re
su

lt

N
o

re
su

lt

N
o

re
su

lt

N
o

re
su

lt

N
o

re
su

lt

0.
16

%
0.

05
% 0.
41

%

0.
37

%

2.
23

%

3.
57

%

0.
97

%

0.
90

%

1.
90

%

2.
42

%

5.
11

%

0.
52

%

0.
56

% 6.
27

%

VerdictDB XDB Tablesample DeepDB (ours)

Figure 9.10: Average Relative Error for SSB dataset. Note the logarithmic
Scale for the Errors.

9.6.2 Experiment 2: AQP

workload and setup We evaluated the approaches on both a
synthetic dataset and a real-world dataset. As synthetic dataset, we
used the Star Schema Benchmark (SSB) [128] with a scale factor of 500
with the standard queries (denoted by S1.1-S4.3). As the real-world
dataset, we used the Flights dataset [46] with queries ranging from
selectivities between 5% an 0.01% covering a variety of group by
attributes, AVG, SUM and COUNT queries (denoted by F1.1-F5.2). To scale
the dataset up to 1 billion records we used IDEBench [41].

As baselines we used VerdictDB [135], Wander Join/XDB [95] and
the Postgres TABLESAMPLE command (using random samples). Ver-
dictDB is a middleware that can be used with any database system. It
creates a stratified and a uniform sample for the fact tables to provide
approximate queries. For VerdictDB, we used the default sample size
(1% of the full dataset) for the Flights dataset. For the SSB benchmark,
this led to high query latencies and we thus decided to choose a sample
size such that the query processing time was two seconds on average.
Wander Join is a join sampling algorithm leveraging secondary indexes
to generate join samples quickly. We set the time bound also to two
seconds for a fair comparison and only evaluated this algorithm for
datasets with joins. To this end, we created all secondary indexes for
joins and predicates. For TABLESAMPLE we chose a sample size such
that the queries take two seconds on average. For DeepDB, we use a
sample size of 10M samples for the Flights dataset and 1M samples
for the SSB dataset to construct RSPNs.

144 deepdb : learn from data , not from queries!

training time and storage overhead The training took just
17 minutes for the SSB dataset and 3 minutes for the Flights dataset.
The shorter training times compared to the IMDb dataset are due to
fewer cross-table correlations and hence fewer large RSPN models
in the ensemble. For VerdictDB, uniform and stratified samples have
to be created from the dataset. This took 10 hours for the flights
dataset and 6 days for the SSB benchmark using the standard setup of
VerdictDB.For wander join, secondary indexes had to be created also
requiring several hours for the SSB dataset.

For the Flights dataset the model size of DeepDB is 2.2 MB (vs.
11.4 MB for VerdictDB) and for the SSB dataset DeepDB requires 34.4
MB (vs. 30.7 MB for VerdictDB). In contrast to DeepDB and VerdictDB,
XDB and Postgres TABLESAMPLE compute samples online and thus do
not have any additional (offline) storage overhead.

accuracy and latency For AQP two dimensions are of interest:
the quality of the approximation and the runtime of queries. For
reporting the quality of the approximation we use the relative error

which is defined as |atrue−apredicted|
atrue

where atrue and apredicted are the true
and predicted aggregate function, respectively. If the query is a group
by query, several aggregates have to be computed. In this case, the
relative error is averaged over all groups.

For the Flights dataset, as shown in Figure 9.9 we can observe
that DeepDB always has the lowest average relative error. This is
often the case for queries with lower selectivities where sample-based
approaches have few tuples that satisfy the selection predicates and
thus the approximations are very inaccurate. In contrast, DeepDB does
not rely on samples but models the data distribution and leverages the
learned representation to provide estimates. For instance, for query
11 with a selectivity of 0.5% VerdictDB and the TABLESAMPLE strategy
have an average relative error of 15.6% and 13.6%, respectively. In
contrast, the average relative error of DeepDB is just 2.6%.

Moreover, the latencies for both TABLESAMPLE and VerdictDB are
between one and two seconds on average. In contrast, DeepDB does
not rely on sampling but on evaluating the RSPNs. This is significantly
faster resulting in a maximum latency of 31ms. This even holds true
for queries with several groups where more expectations have to be
computed (at least one additional per different group).

The higher accuracies of DeepDB are even more severe for the
SSB benchmark. The queries have even lower selectivities between
3.42% and 0.0075% for queries 1 to 12 and 0.00007% for the very last
query. This results in very inaccurate predictions of the sample-based
approaches. Here, the average relative errors are orders of magnitude
lower for DeepDB always being less than 6%. In contrast, VerdictDB,
Wander Join and the TABLESAMPLE approach often have average relative
errors larger than 100%. Moreover, for some queries no estimate can
be given at all because no samples are drawn that satisfy the filter

9.6 experimental evaluation 145

F1.1 F1.2 F2.1 F2.2 F2.3 F3.1 F3.2 F3.3 F4.1 F4.2 F5.1 F5.2
Query

0

20

R
el

at
iv

e
C

I
(%

)

Sample-based

DeepDB (ours)

S1.1 S1.2 S1.3 S2.1 S2.2 S2.3 S3.1 S3.2 S3.3 S4.1 S4.2
Query

0

20

R
el

at
iv

e
C

I
(%

)

Sample-based

DeepDB (ours)

Figure 9.11: True and predicted relative length of the Confidence Intervals.

1 2 3
Filter Attributes

100

101

102

D
B

es
t

Q
ue

ry
L

at
en

cy
(s

)

DBEst

5 10
Wavelet Dimensions

10−1

100

101

102

103

104
A

ve
ra

ge
R

el
at

iv
e

E
rr

or
(%

)
Wavelets

DeepDB (ours)

Figure 9.12: Microbenchmarks for non ad-hoc Approaches.

predicates. However, while the other approaches take two seconds
to provide an estimate, DeepDB requires no more than 293ms in the
worst case. In general latencies are lower for queries with fewer groups
because less expectations have to be computed.

confidence intervals In this experiment, we evaluate how
accurate the confidence intervals predicted by DeepDB are. To this
end, we measure the relative confidence interval length defined as:
apredicted−alower

apredicted
, where apredicted is the prediction and alower is the lower

bound of the confidence interval. This relative confidence interval
length is compared to the confidence interval of a sample-based ap-
proach. For this we draw 10 million samples (as many samples as
our models use for learning in this experiment) and compute esti-
mates for the average, count and sum aggregates. We then compute
the confidence intervals of these estimates using standard statistical
methods. The resulting confidence interval lengths can be seen as
ground truth and are compared to the confidence intervals of our
system in Figure 9.11. Note that we excluded queries where less than
10 samples fulfilled the filter predicates. In these cases the estimation
of a standard deviation has itself a too high variance.

In all cases, the confidence intervals of DeepDB are very good ap-
proximations of the true confidence intervals. The only exception
is query F5.2 for the Flights dataset which is a difference of two
SUM aggregates. In this case, assumption (i) of Section 9.5.1 does not
hold: the probabilities and expectation estimates cannot be considered

146 deepdb : learn from data , not from queries!

F1.1 F1.2 F2.1 F2.2 F2.3 F3.1 F3.2 F3.3 F4.1 F4.2 F5.1 F5.2
10−4

10−1

102

105

R
el

at
iv

e
E

rr
or

(%
)

0.
00

% 0.
03

%

1.
24

%

0.
83

%

0.
94

%

1.
10

%

1.
82

%

0.
10

% 0.
84

% 6.
69

%

0.
11

%

0.
46

% 4.
69

%

10
%

0.
81

% 8.
17

%

N
ot

su
pp

or
te

d

0.
00

%

0.
05

%

0.
18

%

0.
27

%

0.
40

%

0.
60

%

0.
47

%

0.
25

% 1.
85

%

5.
08

%

0.
36

%

16
%

0.
00

%

0.
15

%

0.
46

%

0.
58

%

0.
77

%

0.
39

%

1.
88

%

0.
02

%

1.
24

%

0.
75

%

0.
27

% 2.
63

%

DBEst

Wavelets

Stratified Sample DeepDB (ours)

Figure 9.13: Relative Error for DeepDB vs. Approaches with a priori Knowl-
edge.

independent. This is the case because both SUM aggregates contain cor-
related attributes and thus the confidence intervals are overestimated.
However, note that in the special case of the difference of two sum
aggregates the AQP estimates are still very precise as shown in Figure
9.9 for the same query F5.2. Such cases can easily be identified and
only occur when arithmetic expressions of several aggregates should
be estimated.

non ad-hoc approaches We now compare the accuracy of
DeepDB against approaches that either require a priori information
about the workload or can make use of it to provide better accuracies.
The results of DeepDB and the other approaches on the Flights dataset
are shown in Figure 9.13.

First, we compared DeepDB to the wavelet approach [21] that we
used before. As discussed, this approach does not require a priori
information but a priori knowledge can be used to optimize wavelets
since they do not scale to a large number of dimensions. Thus, if the
required column combinations of all queries are known beforehand,
we can construct optimal (minimal-sized) wavelets on a per-query
basis. However, as shown in Figure 9.13, even when using a priori
information for wavelets, DeepDB still outperforms them. We inves-
tigated this effect further and found that the accuracy of wavelets
significantly drops even for a small number of dimensions as shown
in Figure 9.12 (right).

Second, we also compared DeepDB to other approaches that require
a priori information: (1) stratified sampling as used in BlinkDB [2]
which mitigates effects of skew and (2) a recent learned AQP approach
called DBEst [105]. It is important to note that different from DeepDB
these approaches cannot answer ad-hoc queries with column combi-
nations not covered in the a priori information which is possible in
DeepDB by combining multiple RSPNs using our probabilistic query
compilation approach as discussed in Section 9.4. In the following,
we discuss the results if a priori information for all queries on the
Flights dataset is available. As shown in Figure 9.13 for these queries,
stratified sampling can provide accuracies comparable to DeepDB.
However, interestingly if a query has highly selective filter conditions
on one of the stratification columns (as in query F5.2 or F4.2), DeepDB

9.7 related work 147

is still superior. Moreover, while for DBEst the accuracies are also com-
parable to DeepDB we noticed that for some queries it takes up to 20s
to provide an answer. We investigated this effect closer in Figure 9.12

(left) finding that the latency is exponential w.r.t. the number of filter
conditions on numeric columns. This is inevitable since the approach
relies on an integration over the domains of numeric columns.

9.7 related work

learned cardinality estimation The problem of selectivity
estimation for single tables is a special case of cardinality estimation.
There is a large body of work applying different ML approaches in-
cluding probabilistic graphical models [52, 53, 170], neural networks
[87, 100] and deep learning density models [61] to this problem. Re-
cently, Dutt et al. [39] suggested using lightweight tree-based models
in combination with log-transformed labels. The first works applying
ML to cardinality estimation including joins used simple regression
models [5, 106]. More recently, Deep Learning was specifically pro-
posed to solve cardinality estimation end-to-end [79, 161]. Woltmann
et al. [179] also separate the problem of cardinality estimation on a
large schema by learning models similar to [79] for certain schema sub-
parts. However, two models for schema sub-parts cannot be combined
to provide estimates for a larger join. Other techniques exploit learned
models for overlapping subgraph templates for recurring cloud work-
loads [180]. All these models need a workload to be executed and used
as training data which is different from our data-driven approach.

learned aqp Early work [152] suggests to approximate OLAP
cubes by mixture models based on clusters in the data. Though greatly
reducing the required storage, the approximation errors are relatively
high. FunctionDB [166] constructs piecewise linear functions as ap-
proximation. In contrast to DeepDB, only continuous variables are
supported. DBEst [105] builds models for popular queries. However, in
contrast to DeepDB slight variations of those popular queries and no
ad-hoc queries are supported. Park et al. suggested Database Learning
[136] which builds a model from query results that is leveraged to
provide approximate results for future queries. In contrast, DeepDB is
data-driven and does not require past query results. Moreover, spe-
cialized generative models were suggested to draw samples for AQP
[167]. However, this technique does not work for joins.

probabilistic databases Similar to our work, probabilistic
databases have used graphical models to represent joint probability
distributions [75, 147, 151, 175] to overcome the tuple-independence
assumption that early approaches relied on [31, 130, 160]. For instance,
Markov Logic Networks (MLNs) were used to explicitly specify corre-
lations in probabilistic databases [58, 75]. In contrast to DeepDB, cor-
relations need to be manually specified and are not learned. Moreover,

148 deepdb : learn from data , not from queries!

Rekatsinas et al. [147] instead use factor graphs to model correlations
in probabilistic databases and construct annotated arithmetic circuits
(AACs) which also encode a probability distribution with sum and
product nodes similar to SPNs. Different from DeepDB, additional
representations (lineage-AACs) have to be constructed on a per-query
basis whereas RSPNs are data-driven and thus workload-independent.
Finally, related to the idea of computing a data-driven model is gen-
erally the field of knowledge compilation where an expensive offline
phase creates a representation for instance for evaluating Boolean
formulas [14, 15, 32]. However, non of these approaches targets the
complexity of SQL queries supported in DeepDB.

9.8 conclusion and future work

In this work we have proposed DeepDB which is a data-driven ap-
proach for learned database components. We have shown that our
approach is general and can be used to support various tasks including
cardinality estimation and approximate query processing. We believe
our data-driven learning approach can also be used for other DBMS
components. For instance, it has already been shown that column
correlations can be exploited to improve indexing [182]. In addition,
SPNs naturally provide a notion of correlated clusters that can also be
used for suggesting using interesting patterns in data exploration.

9.9 acknowledgments

The authors thank the anonymous reviewers for their helpful feedback.
The work partly grew out of discussions within and support of the
missions “Federated Machine Learning” and “ML for Vulnerability
Detection” of the National Research Center ATHENE, the AI light-
house BMWi project SPAICER (01MK20015E), and the DFG Training
Group “Adaptive Preparation of Information from Heterogeneous
Sources” (AIPHES, GRK 1994/1).

10
R E S T O R E - N E U R A L D ATA C O M P L E T I O N F O R
R E L AT I O N A L D ATA B A S E S

abstract

Classical approaches for OLAP assume that the data of all tables is
complete. However, in case of incomplete tables with missing tuples,
classical approaches fail since the result of a SQL aggregate query
might significantly differ from the results computed on the full dataset.
Today, the only way to deal with missing data is to manually complete
the dataset which causes not only high efforts but also requires good
statistical skills to determine when a dataset is actually complete. In
this paper, we propose an automated approach for relational data com-
pletion called ReStore using a new class of (neural) schema-structured
completion models that are able to synthesize data which resembles
the missing tuples. As we show in our evaluation, this efficiently helps
to reduce the relative error of aggregate queries by up to 390% on
real-world data compared to using the incomplete data directly for
query answering.

bibliographic information

The content of this chapter was previously published in the peer-
reviewed work Benjamin Hilprecht and Carsten Binnig. “ReStore -
Neural Data Completion for Relational Databases.” In: SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China,
June 20-25, 2021. Ed. by Guoliang Li, Zhanhuai Li, Stratos Idreos, and
Divesh Srivastava. ACM, 2021, pp. 710–722. doi: 10.1145/3448016.
3457264. url: https://doi.org/10.1145/3448016.3457264. The
contributions of the author of this dissertation are summarized in
Section 4.2.

© 2021 Copyright held by the owner/author(s). Publication rights
licensed to ACM. This is the author’s version of the work. It is posted
here for personal use. Not for redistribution. The definitive version of
record was published in in the SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021.

149

https://doi.org/10.1145/3448016.3457264
https://doi.org/10.1145/3448016.3457264
https://doi.org/10.1145/3448016.3457264

150 restore- neural data completion for relational databases

10.1 introduction

motivation. OLAP and data warehousing play a significant role
today for many organizations and enterprises for decision making.
This is evident since many new scalable OLAP services are becoming
available in the cloud such as AWS Redshift [10], Snowflake [157], or
Azure data warehousing [11] that allow customers to analyze large
datasets using aggregate queries. A critical assumption for OLAP,
however, is that the data itself has to be complete before it can be
used for decision making, i.e., data in tables is complete and no tuples
are missing. Traditionally, this was achieved by loading data only
from well curated (internal) data sources into a data warehouse. In
enterprises, these are typically OLTP systems that store data about
customers, products, orders, etc. However, while data in this context
might still require data integration and cleaning [26, 36, 56, 177]
since it comes from multiple sources, the data is typically considered
complete and all relevant tuples were expected to be present in the
data warehouse.

However, this assumption does not hold anymore for many of the
more modern analytics scenarios. Instead of using only well curated
(internal) data sources in a data warehouse, more and more external
data sources are being used in OLAP scenarios. A problem of these
external data sources is that the data might be incomplete. For example,
to extend our warehouse we might want to use a CSV file from an open
data platform containing information about cities where customers
come from — however, data for some cities is missing. Moreover, in
addition to external data sources there are many more applications
where tables can be incomplete such as scenarios where data needs
to be collected manually and thus collecting a complete dataset is too
expensive or even impossible.

In case of incomplete tables, classical databases fail since the result
of a SQL aggregate query might significantly differ from the results
computed on the full dataset which in turn leads to erroneous con-
clusions in data analysis and decision making. Moreover, existing
techniques that can produce approximate aggregate query answers [2,
22] on samples might also fail since data is often missing systematically
(e.g., samples for some groups in the data are missing completely).
Even worse, the missing data might introduce a bias and hence the
data can not be seen as a uniform (random) sample.

For example, suppose we want to create a housing database of
rental apartments and their neighborhoods (covering all cities in the
US). While we have a complete neighborhoods table, the apartments
data is incomplete since not all states provide this information (i.e.,
apartments of individual states might be missing completely). How-
ever, this missing data might introduce a bias in the available data,
e.g., since most data comes from states with high population densities

10.1 introduction 151

where rents are higher. If we now use a SQL aggregate query on
the incomplete apartment table to determine the average rental price
of apartments across all states, we could obtain (highly) inaccurate
results due to the missing apartment tuples.

contributions . The only way to deal with missing tuples in
databases for OLAP today is to manually add the missing tuples
before using the database for decision making. The manual completion
of an incomplete database, however, causes an enormous effort in
data acquisition and in checking the completeness of the acquired
data. Moreover, in many situations it might not even be possible to
complete a database manually at all. In this paper, we thus propose a
new learned approach called ReStore for automatic data completion
for incomplete relational databases. While there has been already
significant work to impute missing values (e.g., replace a missing
attribute) including learned approaches [146, 181, 187], to the best of
our knowledge there is no work to synthesize data for incomplete
tables in a relational schema where tuples are missing and might
introduce a bias.

The main idea of our approach is that we use the complete tables
in a database as evidence to synthesize the missing data even if the
missing data introduces a bias in the incomplete table. For instance, in
the example above, we could use the complete neighborhoods table
to synthesize the apartment tuples for the missing states. One might
now wonder how the bias from the missing data can be removed. The
intuition is that our neural completion models learn from the available
data how typical apartments look like based on information from the
neighborhood table (e.g., rents will be higher in neighborhoods with
higher population density). During completion, we take this infor-
mation from neighborhoods into account to synthesize the missing
tuples.

To enable data completion our approach works in two steps (cf.
Figure 10.1): (1) in a first step, the user has to annotate the schema
and provide minimal information about the relational dataset once
for all queries (such as if a table is complete or incomplete). (2) Once
annotated, we learn so called completion models over the incomplete
dataset to capture the complex correlations and dependencies across
complete and incomplete tables. Using these models, we are then
able to synthesize data to complete the missing data for executing
aggregate queries. As we show in our evaluation, this efficiently helps
to reduce the relative error of aggregate queries by up to 390% on
real-world data compared to using the incomplete data directly for
decision making.

outline . The remainder of the paper is structured as follows. In
Section 10.2, we provide a more formal definition of the problem and

152 restore- neural data completion for relational databases

Landlord [Complete]

id age TFApartments

1 50 1

2 60 ?

...

Apartment [Incomplete]

neighborhood_id landlord_id rent

1 1 2000$

1 2 3000$

Systematically missing: All
apartments available for NYC

Neighborhood [Complete]

id state pop_density TFApartments

1 NYC 27,000 2

2 CA 254 ?

...

(a) Annotated Example Schema.

Output: Missing Tuple

Input: Evidence Tuple Output: Missing Tuple

Landlord Tuple

id age TFApartments

2 60 3

Completion Model (Neighborhood→Apartment)

Completion Model (Landlord→Apartment)

Input: Evidence Tuple

Neighborhood Tuple

id state pop_density TFApartments

2 CA 254 3

Apartment Tuple

neighborhood_id rent

2 3200$

Apartment Tuple

landlord_id rent

2 2000$

(b) Models Synthesize Missing Tuples.

SELECT AVG(rent) FROM neighborhood
 NATURAL JOIN apartment
 GROUP BY state;

Query on completed Join:

Neighborhood ⋈ Apartment [Completed]

neighborhood_id state pop_density apartment_id rent

1 NYC 27,000 1 2000$

1 NYC 27,000 2 3000$

2 CA 254 3 3200$

2 CA 254 4 2000$

2 CA 254 5 1000$

(c) Incompleteness Join.

Figure 10.1: Overview of ReStore to synthesize missing data (green) from
existing data (blue and red). (a) Based on the annotated schema
and the available data, the completion models are learned. (b)
The learned schema-structured model can be used to synthesize
a missing apartment tuple using a complete neighborhood tuple
as input. (c) The model generates missing data for a given user
query at runtime to answer queries over incomplete tables. The
generated tuple factors (TFs) allow us to estimate the number of
missing tuples.

present an overview of ReStore to tackle this problem. Afterwards, in
Section 10.3 we present the details of the neural completion models
before we then discuss in Section 10.4 how these models can be used
to generate the missing data for answering aggregate queries. Further-
more, Section 10.5 provides further important details on automatic
selection of completion models given a user query before we discuss a
technique to estimate the confidence of a completion in Section 10.6. In
Section 10.7, we discuss the results of our evaluation using synthetic
and real-world datasets. Finally, we present related work in Section
10.8 and then conclude in Section 10.9.

10.2 overview

In this section, we introduce the problem statement before we give an
overview of our approach and discuss the general assumptions.

10.2 overview 153

10.2.1 Problem Statement

In brief, the problem that we solve in this paper can be described
as follows. We are given an incomplete database Di that consists
of complete tables T1, T2, . . . and incomplete tables Tj, Tj+1, The
goal is to generate data for the incomplete tables Tj, Tj+1, . . . based
on the available data that allows us to answer a query workload
Q1, Q2, . . . , Qn of aggregate queries such that query results on the
completed database Qi(Dc) are close to the query results on the true
(complete) database Qi(D). Note that this formulation allows us to
generate missing data individually for each query to answer the given
query as accurately as possible. However, we can still cache generated
data such that we do not need to generate new data for every query
individually as we discuss later.

An important question for this problem is how to measure success.
Based on our problem definition, a natural metric is how much the
relative error of a query result on the incomplete database can be
reduced by completing the data; i.e., how much more accurate the
query results are after the completion. The relative error reduction for
a given query Qi can thus be defined as follows:

Rel. Error Reduction = Er(Qi(Di), Qi(D))− Er(Qi(Dc), Qi(D)) (10.1)

where the relative error Er is the difference of the two query results
normalized by the true query result. While for aggregate queries
without a group-by, the relative error is trivial, for group-by queries
we use the average relative error over all result tuples [72].

A limitation of the relative error reduction metric is that it does not
show how well the bias of the incomplete database can be reduced
independent of a given workload. We thus use a second metric called
bias reduction to measure the success of data completion. This metric
shows how well the true data distribution of a given attribute could
be restored. For continuous attributes X, the bias reduction is defined
as follows:

Bias Reduction = 1− |AVGc(X)−AVG(X)|
|AVG(X)−AVGi(X)| (10.2)

where AVGc(X), AVGi(X), AVG(X) are the averages of attribute X on
Dc, Di and D, respectively. Hence, the bias reduction is normalized in
the interval [0, 1] where larger values are preferable. For categorical
attributes, we use the fraction of the biased attribute value since an
average cannot be computed.

10.2.2 Our Approach

As mentioned before, our approach called ReStore to tackle this prob-
lem consists of the two steps depicted in Figure 10.1: First, a user has

154 restore- neural data completion for relational databases

to (once) annotate a database schema before we train neural comple-
tion models that can be used to generate the missing data required to
execute aggregate queries over the completed database.

schema annotation. In the annotation step, a user must indi-
cate for a given incomplete database which tables are complete and
which ones are incomplete. An example for an annotated schema is
depicted in Figure 10.1a which consists of three tables of a housing
database where two tables are marked as complete (landlord and
neighborhood) and one table (apartment) is marked as incomplete.

In addition, information about the relationships between tables
needs to be annotated. Here, the user has to provide information
whether there are any complete foreign-key relationships between
tuples from a complete table and an incomplete table. For example, in
Figure 10.1a all apartments of neighborhoods in NYC are available but
not those for CA. In many of the application scenarios, the information
which relationships are complete is known a priori and thus does not
cause additional manual annotation overhead. For example, often a
complete subset of data (e.g., apartments of a certain state) is available.

Based on the annotation, so called tuple factors (TF) [72] can now
be automatically computed step to capture information about the
relationships across complete and incomplete tables as shown in in
Figure 10.1a (e.g., how many apartments a complete neighborhood
has). Based on the available data and the computed tuple factors, we
then learn our completion models as discussed next.

The user might also have other additional information, which can
help to further enhance the quality of the synthesized data. Among
these are table sizes for incomplete tables or aggregate statistics (e.g.,
average rental prices in certain states). Using techniques like iterative
proportional fitting [131], this information can be used to improve our
generated data. These techniques are orthogonal to our approach and
we thus exclude them in the remainder.

model training and data completion. Given an annotated
schema, we can now learn the completion models. As depicted in
Figures 10.1b, two completion models have been learned that can
either take data from the complete neighborhood table or the complete
landlord table to synthesize missing apartment tuples. By taking
complete tables as evidence our models synthesize missing tuples
even if there is a bias in the missing data since we capture correlations
across tables (e.g., which types of apartments are expected based on
the characteristics of the neighborhoods).

These completion models can now be used at runtime to complete
the missing data for a given user query. For instance, if a user wants
to know the average rent per state, we first compute the completed
join neighborhood ./ apartment. More precisely, we introduce a new
operator called incompleteness join to join complete and incomplete

10.2 overview 155

tables that generates the missing tuples needed to make the join
complete. In our example, the incompleteness join would generate
apartments for neighborhoods where the data is missing using the
appropriate completion model of Figure 10.1b. Once the missing tuples
for the join are generated (i.e., the incompleteness join produced
its output), we can compute the aggregated result using a normal
aggregation operator.

We decided to complete data on a per-query basis at runtime since
completing the full database might be too expensive (and actually not
needed) for large datasets. However, it is important to note that the
models are not query-dependent and only have to be learned once for
an incomplete schema and can be reused across queries. Moreover,
the generated data can still be materialized or even generated a priori
as we will discuss in Section 10.4.

supported schema and queries . In general, our approach
supports any relational schema where tables are connected via foreign-
key relationships. For the workload, we currently limit ourselves to
acyclic Select-Project-Aggregate-Join (SPJA) queries where joins are
equi-joins along foreign-key relationships which are typical queries for
decision making. An important aspect is that we can support arbitrary
filter predicates or aggregate functions as well as any number of group-
by attributes. The reason is that once data is completed for a join,
we use normal query operators (e.g., filter or aggregate operators) to
compute the query results. Supporting other types of queries, however,
is indeed possible. For example, other join types (e.g., non-equi joins)
could be added by deriving tuple factors that represent these join
conditions.

10.2.3 Discussion

The central assumption of our approach is that both missing and
available tuples have consistent correlations; i.e., while there can be
a bias in the available tuples, it is required that the missing tuples
have the same correlations between attributes as the remaining tuples.
This is not a requirement specifically for ReStore but for any system
that uses machine learning to complete a dataset since otherwise the
available tuples cannot be used as evidence to predict the missing
tuples. More technically, the conditional distributions of missing tuples
tm given an evidence tuple te should be equivalent for remaining and
missing tuple distributions, i.e., Pm(tm | te) ≈ Pr(tm | te). If this
assumption holds, the main factor determining how accurately the
original query result can be restored is the predictability of the query
attributes as we will later show in our experimental evaluation. If the
attributes are not predictable given the evidence tuples, our models
will complete the data with lower confidence (cf. Section 10.6).

156 restore- neural data completion for relational databases

T1 ⋈ ... ⋈Tn ... ⋈Tm

Synthesize Missing
tm Tuples

Given: te∈T1 ⋈ ... ⋈Tn
Sample Tuple: tm

(a) Completion Task.

a1

a2

ai

ai+1

an

...

...

...
p(ai|a<i)

p(an|a<n)
...

Deep AR
Model

p(a1)
p(a2|a1)

p(ai+1|a<i+1)

te∈T1 ⋈ ... ⋈Tn

tm∈Tm

Conditional
Column

Distributions

(b) Simple Completion Model.

Deep AR
Model

Embedding

Fan-Out Tuples
for each

te∈T1 ⋈ ... ⋈Tn

Tj

Tk

Ti

te∈T1 ⋈ ... ⋈Tn

Conditional
Column

Distributionstm∈Tm

(c) Schema-Structured Completion Model.

Figure 10.2: Learned Completion Models in ReStore. (a) The goal is to com-
plete a table Tm using the join T1 .// Tn of complete tables
T1, . . . , Tn as evidence. (b) Simple completion models are based
on autoregressive models and learn conditional distributions
P(ai|a<i) over all attributes in T1 .// Tn ./ Tm (including
the incomplete table Tm). After learning, we can use conditional
sampling to synthesize missing tuples tm given an evidence tuple
te ∈ T1 .// Tn. (c) Schema−structured models incorporate
additional (so called fan-out) evidence of a tuple te using tree
embeddings.

10.3 learned completion models 157

10.3 learned completion models

A natural fit for the completion task of ReStore are so called deep
autoregressive (AR) models [51, 125, 133]. In the following, we first
discuss the relevant background on AR models and then present a first
class of simple completion models based on AR models. Afterwards,
we present schema-structured autoregressive (SSAR) models which
are more expressive than the simple completion models since they can
capture the structural information in complex relational schemas that
can be used as evidence for generating missing tuples.

10.3.1 Background on Autoregressive Models

Autoregressive models learn a probability distribution by approxi-
mating the density of observed variables p(x1, . . . , xn). These models
exploit that any density can be decomposed into a product of con-
ditional densities p(x) = ∏n

i=1 p(xi | x<i). The factors express the
conditional density of the i-th variable given its predecessors.

The popular MADE [51] models realize an autoregressive architec-
ture using deep learning techniques. The network obtains a vector
(x1, . . . , xn) as input and is trained to output the conditional densi-
ties (p(x1), p(x2|x1), . . . , p(xn|x<n)). It is ensured that the i-th output
p(xi | x<i) only depends on inputs with an index < i using masked
layers that prevent the flow of information from subsequent inputs.

Conditional sampling (and hence generating new data) can now eas-
ily be implemented using iterative forward sampling. Assume that we
are given a partial vector (x1, . . . , xi) and want to sample the remain-
ing entries (xi+1, . . . , xn) of the vector, i.e., sample from the conditional
distribution p(x≥i|x<i). By making use of the autoregressive model,
we can first predict the distribution p(xi+1|x≤i) and sample the next
variable xi+1. We can now repeat the procedure by feeding the vector
(x1, . . . , xi, xi+1) into the network to predict p(xi+2|x≤i+1) and so forth
until we have finally computed a conditional sample for all missing
variables of the input vector.

10.3.2 Simple Completion Models

As a first contribution, we present a simple class of completion models
based on AR models. The general idea of these models is to use
tuples of a complete table te ∈ T1 (or of a join of complete tables
te ∈ T1 .// Tn) as evidence to synthesize a missing tuple of one
incomplete table Tm. In other words, the completion models take a
tuple te as input and synthesize a missing tuple tm for the incomplete
table Tm.

To capture distributions and correlations present in the dataset and
eventually generate the missing Tm tuples, a completion model for one

158 restore- neural data completion for relational databases

incomplete table Tm is learned over the join of T1 .// Tn ./ Tm

(based on the available data). Clearly, for complex schemata with
potentially multiple incomplete tables we need to learn multiple com-
pletion models. An efficient learning procedure for complex schemata
is presented at the end of this Section. In the following, we focus on
the question how a single completion model for one incomplete table
is derived. We first consider the case of using a single complete table
as evidence to generate tuples of an incomplete table and later show
how joins of tables can be used as evidence.

single evidence table . Let us first consider the case of a single
complete table T1 which is connected via a foreign-key relationship to
the incomplete table Tm. Our goal is to synthesize the missing tuples
in Tm. To this end, a deep AR model is trained over the join T1 ./ Tm

(more precisely, all join attributes a1, . . . , an including tuple factors as
depicted in Figure 10.2b) using the available data. Afterwards, for ev-
ery tuple t1 of the complete table T1 we can synthesize an appropriate
tuple for the incomplete table Tm by sampling from the conditional
distribution tm ∼ P(tm|t1). For instance, in our example in Figure 10.1
we can synthesize an apartment tuple, given a neighborhood tuple.

Intuitively, a given neighborhood tuple tells us what a typical apart-
ment in that neighborhood looks like. Moreover, we can synthesize
tuple factors for a given neighborhood tuple if it is not already avail-
able. This tells us in addition how many apartments a neighborhood
(given its characteristics) has. Using the tuple factor, we can now
synthesize as many tuples as are missing; e.g., for a neighborhood
that should have three apartments but the dataset contains only one,
two new apartment tuples need to be synthesized. This also allows to
debias a dataset. For instance, the model might predict more missing
tuples for neighborhoods in areas with higher population density
and since population density and rental prices could be correlated,
it will synthesize more expensive apartments resulting in an overall
higher average rent. More details on how more complex queries can
be handled an debiased is given in Section 10.4. For now, we simply
focus on the data generation process for generating one missing tuple
tm from a given evidence tuple te.

additional evidence tables . Instead of using only a tuple
of table T1 as evidence, we can also use information from additional
tables T2, . . . , Tn as evidence. The condition for more than one complete
table to be used as evidence is that they are connected via foreign-key
relationships directly or indirectly to T1. This is necessary because
otherwise it is not clear which tuples of complete tables should be
combined to generate a tuple in the incomplete table.

For instance, in Figure 10.1, we cannot use the landlord and the
neighborhood tables as evidence in one model to synthesize an apartment

10.3 learned completion models 159

tuple. While this is technically possible, we do not know a priori
in which neighborhoods a landlord has apartments. Trying out all
possible combinations is computationally infeasible. Hence, in this
particular case, we have to decide whether to use a completion model
that uses neighborhoods as evidence or one that uses landlords as
input for the completion. This decision is discussed in Section 10.5
where we present an algorithm for automatically selecting which data
to use as evidence. However, as mentioned before, we can still use
additional evidence tables T2, . . . , Tn as long as they are connected
via foreign-key relationships to T1 (which itself is connected to the
incomplete table Tm). The idea is that we can use a tuple from the join
te ∈ T1 .// Tn as evidence to generate a tuple for Tm by sampling
from P(tm|te). For instance, if the state information of a neighbor-
hood would be represented in a separate table that was connected to
the neighborhood table via a foreign-key reference, we could use the
joined tuple ts ./ tn of the neighborhood and state tables as input to
more accurately predict a missing apartment tuple ta. The attributes
of the state table in this case serve as additional features for the deep
AR model.

fan-out evidence . However, even in the case that all additional
evidence tables T2, . . . , Tn are connected to T1 there are limits to which
evidence tables can be used. In case one of the tables in T2, . . . , Tn

introduces a fan-out (i.e., the evidence tuple t1 is connected to more
than one tuple directly or indirectly in the additional table) the table
cannot be used as additional evidence. We call this fan-out evidence.
The reason is that if a tuple t1 in T1 has several matching tuples (say
in T2), it is not clear which of these tuples should be provided as
additional input for the AR model to synthesize a tuple tm ∈ Tm. For
instance, if we had an additional school table in our example which
is connected to the neighborhood table, one tuple could have multiple
school tuples. To address this issue, we introduce Schema-Structured
Completion Models.

10.3.3 Schema-Structured Completion Models

As mentioned before, simple AR completion models cannot leverage
evidence of an additional complete table if it introduces a fan-out. This
motivates Schema-Structured Autoregressive (SSAR) models which are
capable of incorporating this information in the completion process.

supporting fan-out evidence . Similar to AR models, SSAR
models are learned over the join of evidence tables T1 .// Tn

(which do not introduce any fan-out evidence) and the incomplete
table Tm as shown in Figure 10.2c. In order to take the additional
tables which introduce a fan-out evidence into account, we perform

160 restore- neural data completion for relational databases

an acyclic walk on the schema graph. That means for a given evidence
tuple te ∈ T1 .// Tn, for which we want to generate the missing
tuple tm, we first additionally join tuples from fan-out tables (e.g., Ti
and Tj in Figure 10.2c). This can be done recursively for tables which
have an additional fan-out relationship to tables that are not directly
connected to te (such as Tk in Figure 10.2c). This results in a tree
structure of tuples representing the fan-out evidence, which is then
encoded and fed into the neural network in addition to the evidence
tuple te to predict appropriate tuples tm of the incomplete table Tm.
For instance, for a given neighborhood tuple tn we would feed the
tree with tn as root and all schools in this neighborhood as children
into the model. To use this tree structure as input to our SSAR models,
we encode the tree using a tree embedding architecture. In particular,
we use sum-pooling for the child embeddings which are fed into an
additional feed-forward network. This architecture was shown to be a
universal function approximator for permutation invariant functions
[190]. We additionally use weight sharing for tuples of the same table
to reduce the number of parameters.

self-evident data completion. In addition to using tree-
structured models to incorporate evidence from additional fan-out
tables, we can use tree models also for incorporating the already
available data of the incomplete table itself. For instance, let us again
consider the case that the apartment table is incomplete and we wish
to complete the join of neighborhood ./ apartment using a complete
neighborhood table. Given a neighborhood tuple, the SSAR model
has to predict an appropriate missing apartment tuple. As mentioned
before, some apartments of a given neighborhood might already be
available (but not all). Using tree embeddings, these apartment tuples
could also be fed into the SSAR model as additional (self-)evidence.
The intuition is that, if there are typical constellations of apartments
in a neighborhood (e.g., typically they have comparable prices), this
will be learned by the SSAR model and taken into account during the
completion further refining the synthesized data.

10.3.4 Learning on Complex Schemata

So far, we have focused on the question how one individual comple-
tion model works. However, given an annotated schema of a complex
database, we have to learn multiple models to potentially synthe-
size the data for arbitrary joins containing incomplete tables. More
precisely, unless otherwise specified by the user, we want to be able
generate tuples for any table Tx using any connected table Ty as evi-
dence. Naively, we would have to learn a single SSAR (or AR) model
for every every pair of tables Tx, Ty that are connected via a foreign-
key to complete Tx using Ty and potentially all other (non fan-out

10.4 query-driven data completion 161

and fan-out) tables connected to Ty that can be used as additional
evidence. However, this would lead to a high number of models and
consequently high training times. Instead, as we show next models
can be merged (before learning them) to reduce the number of models
and overall training time significantly.

merging example . For instance, if we want to complete T2 using
T3 and T1 using T2 ./ T3 both completions can be done using the same
model. We only have to make sure that attributes from T3 are first
and that the ones of T2 and T1 are second and third, respectively. This
is possible since the model provides both p(T1|T2, T3) and p(T2|T3).
However, because AR models require a fixed ordering of variables,
merging is not always possible. For instance, a model that has to learn
p(T2|T1) cannot be merged because we cannot find an ordering of
variables that allows to predict both p(T2|T1) and p(T1|T2, T3).

model merging . In our approach, we first require for two models
M1 and M2 to be merged that the set of tables of M1 is a subset of
the tables of M2 or vice versa. In addition, we have to check whether
there exists a consistent variable ordering. To this end, we construct
a directed graph that contains a node for every involved table. For
every table that should be completed, we add an arc from every
evidence table to this table. Only if the resulting graph is cycle-free
a valid ordering of tables can be derived and we merge the models.
In particular, we use the topological sorting as ordering. We merge
models until no more non-conflicting merges are available.

10.4 query-driven data completion

In this Section, we show how the completion models (AR and SSAR)
can be used to complete data for a given user query that might contain
joins over complete and incomplete tables.

10.4.1 Overview of Query Processing

Data completion using ReStore happens on a per-query basis at run-
time during query processing. We decided to do the completion on
a per-query basis because an offline completion of the full database
especially for larger databases is costly and might actually not be
required. As queries, we support SPJA-queries such as the one shown
in Figure 10.1c) that are typical for OLAP with acyclic equi-joins along
foreign-keys and arbitrary filters and aggregations (with and without
group-by).

In order to answer such a query, we first compute the join J =

Tu1 .// Tun over all tables (complete and incomplete) contained
in the user query. During the join computation, we complete the join
using our completion models such that J contains all data as if the

162 restore- neural data completion for relational databases

join would be executed on a complete database. Afterwards, we then
apply filter predicates, aggregations and groupings to answer the user
query over the completed join.

For efficiency, we push down filter predicates and generate only
missing data for the requested subset of tuples in the join of the query.
However, for simplicity of explanation, we assume in the following
that filters are executed after the join. Moreover, as we describe Sec-
tion 10.4.5, this also enables optimizations to reuse the generated data
for subsequent queries.

10.4.2 Single Incomplete Table in a Query

We now first consider the case where a single table Tm in the join
Tu1 .// Tun of the user query is incomplete (as it is the case
in Figure 10.1c) and discuss the case where multiple tables in the
user query are incomplete later. In principle, different models could
be available to synthesize data for the incomplete table Tm. We now
discuss how a completion works if a model M is already selected and
discuss in Section 10.5 how to select a completion model.

Moreover, we initially assume that the tables that are used as ev-
idence for generating missing data for Tm are among the complete
tables in the join Tu1 .// Tun−1 ./ Tun. To differentiate in the
sequel between the tables T1 .// Tn needed as evidence for the
completion model M and the user join Tu1 .// Tun, we use the
terms completion path and query path, respectively.

In the following, without loss of generality, we assume that Tm = Tun

is the incomplete table and Tm is connected to the complete (evidence)
table Tu1 via a foreign key or vice versa. The step of extending a join
of complete tables Tu1 .// Tun−1 with an incomplete table Tun to
Tu1 .// Tun−1 ./ Tun while generating the missing tuples is called
incompleteness join.

completion path equals query path . The simplest case for
an incompleteness join is where the query path is equal to the com-
pletion path. Imagine, there is one more state table in our example
of Figure 10.1 which has a reference to the neighborhood table and a
user requests a join of the complete state and neighborhood tables
with the incomplete apartment table. In this case, we could use a
completion model that uses states and neighborhoods as evidence to
synthesize apartments, the query path and completion path would be
both state ./ neighborhood ./ apartment.

For executing an incompleteness join in this case, we first join
the complete evidence tables Te = Tu1 .// Tun−1 (state and
neighborhood in our example). Afterwards, we iterate over all evi-
dence tuples te ∈ Te and synthesize the missing data for the user join.
In case of SSAR models additional fan-out evidence tables need to be

10.4 query-driven data completion 163

Neighborhood ⋈ Apartment ⋈ Landlord [Completed]

state pop_density apartment_id rent landlord_id landlord_age

NYC 27,000 1 2000$ 1 50

NYC 27,000 2 3000$ 2 60

CA 254 3 3200$ 59

CA 254 4 2000$ 59

CA 254 5 1000$ 59

Neighborhood ⋈ Apartment ⋈ Landlord [Completed]

state pop_density apartment_id rent landlord_id landlord_age

NYC 27,000 1 2000$ 1 50

NYC 27,000 2 3000$ 2 60

CA 254 3 3200$ 2 60

CA 254 4 2000$ 2 60

CA 254 5 1000$ 2 60

Figure 10.3: Nearest Neighbor Replacement. Foreign-keys are not synthe-
sized for the apartment table and thus the tuples cannot be
joined with the complete landlord table. Hence, landlord tu-
ples are first synthesized and afterwards replaced with “similar”
landlord tuples

joined separately to construct the query tree for each evidence tuple
te which is fed into the SSAR model. For generating the missing data
using the completion model, we have to differentiate whether the
relationship of te and tuples of the incomplete table Tm is a 1:n or n:1
relationship (i.e., if one evidence tuple te has multiple join partners or
one join partner in the incomplete table).

In case of a 1:n relationship, we first have to determine how many
tm tuples have to be generated per te tuple which can be estimated
using the tuple factors which are learned by the corresponding AR
or SSAR completion model. Moreover, we have to determine how
many tm-tuples already exist (since some might already be available
but not all) and synthesize only the missing number of tuples. This
can be done efficiently during joining by first creating a hash-map
on the incomplete table (which is needed for joining anyway) that
additionally counts the occurrences of tuples with the same foreign-
key in the Tm table. For instance, if we want to synthesize apartments
given the join neighborhood ./ states, we first have to predict how
many apartments we expect to see per neighborhood, i.e., the tuple
factor per neighborhood. Afterwards, we synthesize the appropriate
number of apartments using the join of state and neighborhood as
evidence. For the output of the incompleteness join, we then join te

with all the existing and synthesized tuples.
In case of a n:1 relationship, we can disregard tuple factors and only

need to generate one missing tuple tm per evidence tuple te if needed.
For example, for a join of the landlord table with the incomplete
apartment table, we synthesize a landlord only for apartments where
the landlord tuple is missing.

completion path contained in query path . We now con-
sider the case that the completion path is contained in the query path
(i.e., the query path contains more tables than the completion path).

In this case, we use a similar approach as before and use the
completion path tables as evidence for the model to generate the
missing tuples in Tm but then need to join the remaining complete
tables of the user query (not in the completion path). For instance,
assume a user wants to join all three tables in the example in Fig-

164 restore- neural data completion for relational databases

ure 10.1 (neighborhood, apartment, and landlord). To process such as
query, we could use a completion model which allows us to generate
apartment tuples from neighborhood tuples to produce a “completed”
join for those two tables. Afterwards, we then need to join this output
with the complete landlord table. However, our completion models
do not generate foreign keys (to the landlords) for the synthesized
apartment tuples since AR and SSAR models are not suited for gener-
ating such type of information.

Hence, we cannot use a normal join operator for joining the output
of an incompleteness join with the next complete table (e.g., with
landlord in our example) but have to process this join in a different
manner. In this case, we again use a completion model that allows us to
generate a new landlord tuple using apartments and a neighborhood
as evidence as depicted in Figure 10.3 (left). Since the landlord table,
however, is a complete table we then replace the synthesized tuple with
an existing tuple that has the highest similarity (i.e., lowest euclidean
distance) with the synthesized tuple. For instance in Figure 10.3, the
last three synthesized landlord tuples are replaced with the second
landlord from the complete table since they are very similar.

However, an exact nearest neighbor replacement of the generated
landlord tuple would come at a high cost of computing the pairwise
distances of all synthesized tuples and tuples of the complete table
during query processing. Hence, we employ approximate nearest
neighbor approaches and batching for the replacement. This is crucial
to achieve a competitive performance. In general, this join procedure
has to be used if foreign keys in an intermediate result are missing
but required for a join with a complete table. Otherwise, normal joins
can be used. Although the synthesized data is of high-quality the
replacement is required to fully comply with the user annotations - it
is unexpected to see new synthesized tuples for complete tables.

10.4.3 Multiple Incomplete Tables in a Query

We have now discussed all techniques required to complete a user
query where the query path includes only a single incomplete table.
The case of several incomplete tables can now easily be derived. In
particular, we again assume that the completion path is given and
repeatedly apply incompleteness joins as before and use the nearest
neighbor replacement where appropriate. The order which table to
complete first is determined using the techniques in Section 10.5 to
automatically select the best completion model.

There is only one difference compared to the single incomplete
table case since we have to apply the nearest neighbor replacement
also for incomplete tables. In particular, if we synthesize tuples for
an incomplete table, we might still synthesize too many tuples since
foreign-keys of previous tables might not be generated and thus even

10.4 query-driven data completion 165

Algorithm 3 Single Table Completion
Input: Requested Join Tables Jreq = Tu1, . . . , Tun
Input: T1, . . . , Tn (Path from complete Table T1 to Jreq)
Output: Approximated Complete Join Tu1 .// Tun
1: J← T1
2: for Ti in T1, . . . , Tn−1 do
3: // Incompleteness Join
4: Jincomplete ← J ./ Ti
5: if Ti ./ Ti+1 is Fan-Out then
6: Predict Tuple Factor FTi+1←Ti for every t ∈ J
7: FTi+1←Ti ← FTi+1←Ti - Current No of Join Partners in Ti+1
8: Jsyn ← Duplicate each t ∈ J FTi+1←Ti times
9: else

10: Jsyn Tuples in J without Join Partner in Ti+1

11:
12: // AR or SSAR Tuple Synthesis
13: M← Completion Model for Ti → Ti+1
14: Jsyn ← Synthesize Columns of Tn+1 in Jsyn using M
15:
16: // Euclidean Replacement
17: if Last Join or Next Join Fan-Out then
18: Jsyn ← euclidean_replace(Jsyn, Ti+1)

19: J← Jsyn ∪ Jincomplete

20: return J

though the tuples are still in the database, they would still not appear
in the resulting join. Hence, we have to estimate how often a tuple
of the incomplete table should appear in the full join and complete
accordingly.

The pseudocode for the general case which summarizes the discus-
sions in Sections 10.4.2 and 10.4.3 is shown in Algorithm 3.

10.4.4 Additional Cases for Data Completion

completion with additional tables . We have now consid-
ered the case of incomplete tables in a user query under the condition
that the completion path is a subset of the requested query path.
However, this is not necessarily the case since the completion path
can also contain additional tables: for instance, if the user queries
the landlord and the apartment table but for the completion of the
apartment table the lower model in Figure 10.1b is chosen which uses
neighborhoods as evidence. The high-level idea for query processing
in such a case is that we first use the join over all tables in the com-
pletion path to synthesize the missing data for the incomplete table
(e.g., the apartment table is completed using the neighborhood table)
and afterwards potentially have to reweight tuples according to the
introduced fan-out similar to [72].

multi-path completion. Another interesting case is that using
only a single path for the completion of one incomplete table can be
insufficient. For instance, let us consider a slightly modified schema of
a complete apartment table, an incomplete neighborhood table and an

166 restore- neural data completion for relational databases

additional complete school table which has a foreign-key relationship
to the neighborhoods. If a user now simply queries the neighborhood

table and we complete the neighborhoods via the school table, neigh-
borhoods that do not have any schools will be missing (since we
never generate them if we use a completion path from school to
neighborhood). In these cases, we use all paths to synthesize data and
combine data based on tuple factors.

10.4.5 Further Optimizations

While our data completion process synthesizes data at query runtime,
data which is synthesized for one query can be reused for related
queries. This allows for (i) caching of data synthesized at runtime or
(ii) an offline completion independently of the workload.

We first discuss how data for completed joins can be reused. In
particular, since aggregations and filters are applied after completing a
join to approximate a query Q in ReStore, the completed data of Q can
be reused for a query Q′ if they use the same join path J. Moreover, if a
query Q′ requires additional tables not covered in J, we can start from
J and generate additional data incrementally for further incomplete
tables. Finally, if Q′ only requires a sub-path of J, we can reuse the
data by projecting J to the tables required by Q.

Second, as mentioned before we can also generate missing data
prior to the query runtime. One way is to predict which queries will
occur at runtime and thus optimize which incompleteness joins to
create. However, if there is no knowledge about potential queries,
simple heuristics-driven strategies can be used. In particular, we can
create data for every pair of a joinable incomplete and complete table.
This would allow us to answer any query on a single incomplete
table or a join of a complete and incomplete table without the need to
generate data.

10.5 model and path selection

In the approach discussed so far there are some degrees of freedom.
In particular, whether we should rather learn AR or SSAR models and
which complete tables (i.e., which completion path) should be used
for the completion. Both decisions can have a significant impact on the
quality of the completion. Intuitively, while the first aspect determines
whether we learn a model that is fitting the data well, the second
aspect is important because different completion tables have a varying
significance for the join we want to complete.

basic selection. To decide whether a model should be used for
completion of an incomplete table (or not), it is important to check
the accuracy (i.e., test loss) of the models prior to using the model for
completion. If the accuracy is too low this means that the true attribute

10.5 model and path selection 167

N
ei

gh
bo

rh
oo

d
(≈

8K
 tu

pl
es

)

Ap
ar

tm
en

t
(≈

50
0K

 tu
pl

es
)

La
nd

lo
rd

(≈

36
0K

 tu
pl

es
)

(a
)

H
ou

si
ng

Sc
he

m
a.

C
om

pa
ny

(≈
24

0K
 tu

pl
es

)

M
ov

ie
_C

om
pa

ny
(≈

2.
6M

 tu
pl

es
)M

ov
ie

(≈

25
0K

 tu
pl

es
)

Ac
to

r
(≈

2.
7M

 tu
pl

es
)

M
ov

ie
_A

ct
or

(≈
20

M
 tu

pl
es

)

D
ire

ct
or

(≈
30

0K
 tu

pl
es

)

M
ov

ie
_D

ire
ct

or
(≈

1.
7M

 tu
pl

es
)

(b
)

M
ov

ie
Sc

he
m

a.

Tu
pl

e
Fa

ct
or

K
ee

p
R

at
es

Se
tu

p
Bi

as
ed

A
tt

ri
bu

te
K

ee
p

R
at

e
l
a
n
d
l
o
r
d

a
p
a
r
t
m
e
n
t

n
e
i
g
h
b
o
r
h
o
o
d

H
1

a
p
a
r
t
m
e
n
t
.
p
r
i
c
e

3
0
%

1
0
0
%

2
0
-8

0
%

1
0

0
%

H
2

a
p
a
r
t
m
e
n
t
.
r
o
o
m
_
t
y
p
e

3
0
%

1
0
0
%

2
0
-8

0
%

1
0

0
%

H
3

a
p
a
r
t
m
e
n
t
.
p
r
o
p
e
r
t
y
_
t
y
p
e

3
0
%

1
0

0
%

2
0
-8

0
%

1
0
0
%

H
4

l
a
n
d
l
o
r
d
.
l
a
n
d
l
o
r
d
_
s
i
n
c
e

3
0
%

2
0
-8

0
%

1
0

0
%

1
0

0
%

H
5

l
a
n
d
l
o
r
d
.
r
e
s
p
o
n
s
e
_
r
a
t
e

3
0
%

2
0
-8

0
%

1
0

0
%

1
0

0
%

Se
tu

p
Bi

as
ed

A
tt

ri
bu

te
m
o
v
i
e

d
i
r
e
c
t
o
r

a
c
t
o
r

c
o
m
p
a
n
y

M
1

m
o
v
i
e
.
p
r
o
d
u
c
t
i
o
n
_
y
e
a
r

2
0
%

2
0
-8

0
%

1
0

0
%

1
0

0
%

1
0

0
%

M
2

m
o
v
i
e
.
g
e
n
r
e

2
0
%

2
0
-8

0
%

1
0

0
%

1
0

0
%

1
0

0
%

M
3

m
o
v
i
e
.
c
o
u
n
t
r
y

2
0
%

2
0
-8

0
%

1
0

0
%

1
0

0
%

1
0

0
%

M
4

d
i
r
e
c
t
o
r
.
b
i
r
t
h
_
y
e
a
r

2
0
%

8
0
%

2
0
-8

0
%

1
0
0
%

1
0
0
%

M
5

c
o
m
p
a
n
y
.
c
o
u
n
t
r
y
_
c
o
d
e

2
0
%

8
0
%

1
0

0
%

1
0

0
%

2
0
-8

0
%

(c
)

C
om

pl
et

io
n

Se
tu

ps
.

Fi
gu

re
1

0
.4

:D
at

as
et

s
an

d
C

om
pl

et
io

n
Se

tu
ps

.

168 restore- neural data completion for relational databases

values can hardly be reconstructed since they are not predictable and
the bias is likely not reduced significantly.

advanced selection. For the remaining models we have to
estimate the quality of each completion model. To this end, we derive
additional incomplete scenarios with the given incomplete dataset
as ground truth to assess model and path quality. The underlying
assumption is that if the models and paths are able to reconstruct our
incomplete dataset they are also able to perform the actual completion
with high accuracy.

In practice, the user often suspects a bias in the data but the extent
of it is unclear. This information can additionally be provided by the
user and used for the model selection. For instance, an incomplete
table might cover more high-population neighborhoods and thus the
user expects an overestimation of the average rent. As we will show in
our experiments, this additional information can significantly improve
the quality of the synthesized data.

10.6 completion confidence

It is crucial for practitioners to be aware of the confidence of query
results after the data completion. For this, we provide confidence
interval estimations of the query results for how certain our models
are when synthesizing missing data. In the following, we start with
the simple case that involves only a single incomplete table and then
explain the more general case.

10.6.1 Simple Case

For the simple case, we assume that we have a similar housing
database as before but with only two tables: an incomplete apart-
ments table where apartments can have two types (large and small)
and a complete neighborhoods table. Furthermore, assume that a user
issues a count-query that joins these two tables to compute the fre-
quency of the two apartment types for which we want to compute
confidence intervals. Intuitively, if the neighborhood tuples do not
provide strong evidence about the types of missing apartments (i.e., if
there is a low correlation), the completion models will predict both
apartment types with equal probabilities for each missing tuple. In this
case, we should have a low confidence and predict wide confidence
intervals. In contrast, if the model predicts the apartment type with
high certainty, the confidence interval should be more tight.

In order to compute confidence intervals for a query over an in-
complete table, we use the following two-step procedure: (1) We first
compute the certainty C(te) of a prediction for an attribute of a missing
tuple given an evidence tuple te in ReStore. For this, we compare the

10.6 completion confidence 169

probability distribution of the predicted attribute value Pmodel for one
synthesized tuple with the distribution of the attribute values in the
training data Pincomplete. If the model is uncertain when synthesizing an
attribute value for one missing tuple tm, given the evidence tuple te, it
will simply predict the distribution of values in the training data (i.e.,
Pmodel ≈ Pincomplete). However, if the model is certain given an evidence
tuple, it will predict a particular attribute value (e.g., a large or a small
apartment type) with higher probability. Hence, for computing the
certainty of a prediction, we compute the similarity of the distribu-
tion Pmodel with Pincomplete using the KL-divergence and normalize it to
[0, 1] by 1− exp(−DKL). (2) Second, we compute confidence intervals
for each synthesized tuple as follows. For this, we introduce a lower
and upper bound distribution (Plower and Pupper). In our example, we
use a distribution for the upper bound Pupper where one particular
apartment type (e.g., the small apartments) occurs in 95% of the cases
(for a 95% confidence). The upper bound of our confidence intervals
can then be computed using C(te)Pmodel(te) + (1−C(te))Pupper. For the
lower confidence interval, we simply replace Pupper by Plower where
Plower represents the distribution where apartments only occur in 5%.

10.6.2 General Case

The procedure above can be generalized to queries that (1) involve
multiple incomplete tables and (2) other aggregate functions. In order
to support (1), we generate the missing tuples using the completion
models similar to the the normal completion process. However, for
every query attribute that has to be synthesized we define an individ-
ual distribution Plower and Pupper (based on the given confidence) and
compute the model confidence intervals as described before. Again, in-
stead of using Pmodel directly, we use C(te)Pmodel(te) + (1− C(te))Plower
for the synthesized attributes when computing the lower bound and
similarly Pupper for the upper bound. For this process, we assume that
attribute values of different tables are correlated to generate conserva-
tive (i.e., worst case) confidence bounds. (2) As mentioned before we
can also support other aggregate functions. For example, to support
average in addition to count aggregates we define Plower and Pupper

for continuous attributes. Moreover, sum aggregates can be treated
as a combination of average and count. Note that we currently only
support completion confidence intervals for query attributes used in
an aggregation (i.e., count, avg, sum). For other query types, we can
resort to per-query statistics that we show a user such as the ratio of
synthesized vs. existing tuples.

170 restore- neural data completion for relational databases

10.7 experimental evaluation

In this Section, we evaluate both the quality of the completed relational
datasets as well as several performance aspects of ReStore1: (Exp. 1 &
2) Data Completion: We first evaluate how well our models can correct
incomplete datasets given certain data characteristics. (Exp. 3) Query
Processing: In addition, we demonstrate the end-to-end accuracy of
our approach using aggregate queries on real-world datasets. (Exp. 4)
Accuracy and Performance: We finally discuss the accuracies of the
different models and the model selection as well as the time required
for model training and data completion. For further details on the
experiments, we plan to publish an extended technical report.

10.7.1 Datasets and Implementation

datasets . We first evaluate our approach on a synthetic dataset
to investigate which factors determine the quality of our completion
in isolation. However, restricting ourselves to synthetic datasets is
insufficient since they do not exhibit as complex distributions and
correlations as real-world datasets. We thus also evaluate our approach
on two real-world relational datasets with different complexity. The
first schema is a housing dataset derived from the Airbnb data2 which
we normalized to obtain different relations for landlords, neighbor-
hoods and apartments (Figure 10.4a). The movies schema is derived
from the popular IMDB3 dataset but with two important differen-
tiations. We first merged the movie_info table information into the
movie table to obtain more interesting attributes, i.e., genre and rating.
Moreover, we explicitly divided the person relation into actors and
directors exhibiting a more interesting relational structure as depicted
in Figure 10.4b. For both datasets we create incomplete versions by
removing a varying ratio of tuples to simulate different degrees of
incompleteness. Details on how we removed data will be given in our
experiments.

implementation. All models were implemented with PyTorch
[137]. For the AR models, we used the model in [186] as a starting
point.4 Similar to [186], we use learned embeddings to represent at-
tribute values in the AR and SSAR completion models. In particular,
we use the MADE [51] architecture for AR models with residual
connections and ReLU activation functions. For the neural tree archi-
tectures in the SSAR models we use a deep sets architecture [190].

1 Code is available online: https://github.com/DataManagementLab/restore
2 https://public.opendatasoft.com/explore/dataset/airbnb-listings

3 http://homepages.cwi.nl/~boncz/job/imdb.tgz

4 https://github.com/naru-project/naru

https://github.com/DataManagementLab/restore
https://public.opendatasoft.com/explore/dataset/airbnb-listings
http://homepages.cwi.nl/~boncz/job/imdb.tgz
https://github.com/naru-project/naru

10.7 experimental evaluation 171

0%

10
0%

BiasReduction

P
re

di
ct

ab
ili

ty
20

%
P

re
di

ct
ab

ili
ty

40
%

P
re

di
ct

ab
ili

ty
60

%
P

re
di

ct
ab

ili
ty

80
%

P
re

di
ct

ab
ili

ty
10

0%

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

0%50
%

BiasReduction
D

at
a

S
ke

w
zi

pf
(1

.0
)

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

D
at

a
S

ke
w

zi
pf

(1
.5

)

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

D
at

a
S

ke
w

zi
pf

(2
.0

)

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

D
at

a
S

ke
w

zi
pf

(2
.5

)

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

D
at

a
S

ke
w

zi
pf

(3
.0

)

K
ee

p
R

at
e:

20
%

K
ee

p
R

at
e:

40
%

K
ee

p
R

at
e:

60
%

K
ee

p
R

at
e:

80
%

(a
)

Bi
as

R
ed

uc
ti

on
s.

50
%

10
0%

P
re

di
ct

ab
ili

ty

3.
0

3.
5

4.
0

TrainingLoss

(b
)

Tr
ai

ni
ng

Lo
ss

.

50
%

10
0%

F
an

-o
ut

P
re

di
ct

ab
ili

ty

0%20
%

40
%

60
%

80
%

SSARvs.ARBias
ReductionImprovement (c

)
Fa

n-
ou

t
Pr

ed
ic

ta
bi

lit
y.

Fi
gu

re
1

0
.5

:B
ia

s
R

ed
uc

ti
on

s
fo

r
th

e
Sy

nt
he

ti
c

D
at

as
et

s.
(a

)
Pr

ed
ic

ta
bi

lit
y

af
fe

ct
s

re
co

ns
tr

uc
ta

bi
lit

y.
Sk

ew
ne

ss
ha

s
no

ef
fe

ct
on

da
ta

co
m

pl
et

io
n.

(b
)

Th
e

te
st

lo
ss

is
an

ef
fe

ct
iv

e
cr

it
er

io
n

fo
r

m
od

el
se

le
ct

io
n

as
di

sc
us

se
d

in
Se

ct
io

n
1

0
.5

.(
c)

SS
A

R
m

od
el

s
ar

e
su

pe
ri

or
ov

er
A

R
m

od
el

s
si

nc
e

th
ey

ca
n

ca
pt

ur
e

fa
n-

ou
t

ev
id

en
ce

(c
al

le
d

fa
n-

ou
t

pr
ed

ic
ta

bi
lit

y
in

th
e

Fi
gu

re
).

172 restore- neural data completion for relational databases

10.7.2 Exp. 1: Data Completion on Synthetic Data

In this experiment, we first study the factors that determine the quality
of our completions. For this, we generate different synthetic datasets
where we vary different data characteristics that might influence how
well the data is reconstructable. As an additional sanity check, we want
to investigate if our automatic model and path selection strategies
are able to identify cases that prevent the data completion. We first
introduce the metrics and setup before we discuss our results on
synthetic data.

completion setups . For this experiment we use a simple syn-
thetic dataset with only two tables: a complete table TA with a single
attribute A and an incomplete table TB with a single attribute B where
TB has a foreign-key relationship to TA. As main parameters which
might have an influence on how well a dataset is reconstructable we
vary the predictability (i.e., how well an attribute can be estimated)
and the skew. In particular, the categorical attribute B is generated
such that B can be perfectly predicted given A (i.e., B is functional
dependent on A) and we then incrementally add more noise to reduce
the predictability. Moreover, the attribute A is generated either using
a uniform or skewed distribution where the Zipf factor is varied (for
a fixed predictability of 80%). In addition, we not only vary the pre-
dictability of B given A but also the fan-out predictability (i.e., how well
a missing tuple in TA can be predicted given other TA tuples).

In order to derive an incomplete dataset from the synthetic dataset,
we systematically remove tuples using two parameters: removal correla-
tion and keep rate. The keep rate determines the percentage of tuples
which are not removed from table TB. In order to introduce a bias, we
correlate the probability of a tuple being removed with the value of
the attribute B. The corresponding parameter controls the strength
of this correlation. In particular, we correlate the removal probability
with the appearance of one attribute value of b ∈ B.

metrics and baselines . We use the metrics defined in Section
10.2.1. For evaluating the quality of data completion (Exp. 1 and Exp 2),
we show the bias reduction since it is independent of a given workload.
For experiments (Exp. 3) which involve a workload, we additionally
show the relative error. Unless otherwise stated, we report the metrics
for an optimal model and path selection. We provide a dedicated
analysis of the model and path selection in Exp. 4. Both metrics show
how well we can reconstruct the complete (true) dataset compared to
using the incomplete dataset. We do not compare to other baselines,
since to the best of our knowledge no approach exists that is capable
of completing relational datasets across tables.

10.7 experimental evaluation 173

results . As we see from Figure 10.5a (upper row) the predictability
is the key factor determining the success of the debiasing. Intuitively,
a high predictability allows our model to accurately estimate the
missing values of the attribute B for the missing tuples. However,
in cases where the attribute B cannot accurately be predicted given
attribute A, the test loss of the model is also higher as shown in
Figure 10.5b. This confirms that checking the model accuracy is an
effective criterion for model selection as discussed in Section 10.5.
In those cases, no automated approach could successfully debias
the dataset. As we will see in the subsequent experiments, while
predictability is a prerequisite for an accurate completion we can
largely reduce the bias for a wide set of real-world datasets. This is
the case since real-world data is often largely correlated which can be
exploited when predicting missing tuples.

Moreover, attribute skew as shown in Figure 10.5a (lower row) does
not seem to have a large influence on the performance of our approach.
The reason is that the model can still accurately predict the value of
attribute B as long as there is a sufficient amount of training data.
Finally, as we can see in Figure 10.5c SSAR models are superior over
AR models since they can capture fan-out evidence. For showing
this, we feed the tuples in TB that share the same tuple in TA as self-
evidence into the SSAR models (which is a type of fan-out evidence
as described in Section 10.3.3). As we see, if the coherence within the
group of tuples in TB that share a reference to the same tuple in TA
is higher (which we call fan-out predictability) the bias reduction of
SSAR compared to AR models improves.

confidence intervals . In addition to bias reduction, we next
evaluate the quality of our confidence intervals using synthetic data.
Similar as before, we use a setup with two tables: a complete table
TA with a single attribute A and an incomplete table TB with a single
attribute B where TB has a foreign-key relationship to TA. Moreover,
we vary the predictability as noted in the setup of this experiment.
Note that due to a bias, a certain attribute value b of B can appear
less/more frequently in the incomplete table compared to the complete
table.

We now compute the confidence intervals for a count-query over
B that reports how often a particular attribute value b occurs. We
have chosen the attribute value b with the highest deviation between
incomplete and complete data which is a challenging task for ReStore.
Hence, confidence intervals are particularly of interest. In Figure 10.6,
we report the fraction of the attribute value b in the true (i.e., original)
and the completed database using 95% confidence intervals for the
setup described before.

As we can see, the true fraction of the selected attribute value b on
the complete dataset is always within the predicted confidence bounds

174 restore- neural data completion for relational databases

25%

50%

75%

F
ra

ct
io

n
A

tt
ri

bu
te

V
al

ue

Keep Rate: 20% Keep Rate: 40%

25% 50% 75% 100%
Predictability

20.0%

40.0%

60.0%

F
ra

ct
io

n
A

tt
ri

bu
te

V
al

ue

Keep Rate: 60%

25% 50% 75% 100%
Predictability

Keep Rate: 80%

Complete Data

Theoretical Minimum

Theoretical Maximum

Confidence Interval

Figure 10.6: Predicted Confidence Intervals on the Synthetic Data for a Re-
moval Correlation of 40%. The bounds always capture the true
fraction of the attribute value and an increased predictability
results in tighter confidence intervals.

and a larger keep rate results in tighter confidence bounds. Moreover,
as expected an increased predictability (x-axis) results in more con-
fident completions and thus tighter confidence bounds. In addition
to the predicted confidence bounds, in Figure 10.6 we also plot the
theoretical minimum and maximum of the bounds. The theoretical
minimum and maximum of the bounds can be computed by replacing
all respectively none of the missing values with the given attribute
value b. As a sanity check, we see that our confidence bounds also fall
into the theoretical bounds.

10.7.3 Exp. 2: Data Completion on Real Data

In this experiment, we analyze how well our approach can com-
plete the two real-world datasets. This is more challenging since the
underlying schemas are significantly more complex as depicted in
Figures 10.4a and 10.4b. Additionally, the data distributions exhibit
more interesting correlations.

completion setups . Per dataset we have defined five setups as
depicted in Table 10.4c (denoted as Hi and Mi for the housing and
movie data, respectively). In each setup, we create an incomplete re-
lational dataset by systematically removing tuples using a particular
attribute resembling different data types (categorical and continu-
ous) and data distributions. Similar to the synthetic dataset, we vary
the following parameters: keep rate and removal correlation which are
varied from 20% to 80% for all setups. For categorical attributes, we
again correlate the removal with the appearance of an attribute value
whereas for continuous attributes we correlate it with the normalized
attribute value (i.e., to obtain a specific Pearson correlation coefficient).
Moreover, we only keep a small share of all tuple factors - 20% for
the movie dataset and 30% for the housing dataset to compensate for
an overall smaller dataset. In addition, to include some even more
challenging setups for the movies dataset we additionally remove all

10.7 experimental evaluation 175

tuples in the m : n relationship tables (i.e., movie_company etc.) which
do not have a matching tuple after the removal. For the setups M4

and M5 we additionally remove 20% of the movie tuples.

results . As discussed before, an interesting metric is how well
we could debias the incomplete data using our completion models
under the different setups. The results are shown Figure 10.7a for
all five setups given a variety of keep rates (between 20% and 80%)
and removal correlations. As we see, the bias can significantly be
reduced for all setups indicating the high quality of our completion
models. This especially holds for the setups of the movies dataset
where up to 100% of the bias can be removed. In general, a lower
removal correlation is beneficial for our approach. The reason is that
the lower the correlation, the more examples of high attribute values
(for continuous attributes) remain in the training set and thus the
model can learn more precisely what leads to those higher values.
During the completion it can then predict more accurately whether
larger values are likely to occur. The keep rates do not seem to have a
significant impact. The reason is that there are two opposing effects. On
the one hand, a larger keep rate leads to a larger training dataset and
the model can thus learn the distribution more accurately. On the other
hand, the absolute error |AVGcomplete(X)−AVGincomplete(X)| becomes
smaller and the model has to predict more extreme values to correct
the bias. Consequently, we do not see more accurate completions for
larger keep rates.

However, the quality of the completion varies for the different setups.
The reason is that the remaining evidence, i.e., the complete tables
in the schema are not equally useful. Some attributes of available
data are in general less predictable and if those are used for a biased
removal, it becomes harder to correct the bias. Interestingly, we do not
see the general trend that the completions become less accurate for
longer completion paths. Recall that for setups M4 and M5, all single
completion paths span at least five tables. However, the completions
are significantly more accurate than those of M2. This highlights
that the predictability of the biased attribute has the most significant
impact on the bias reduction. In general, for setups such as H2 and M2

where the evidence of the complete tables does not allow an accurate
prediction of the biased attribute, the models cannot correct the bias.
This is consistent with our findings on synthetic data.

count correction. We are also interested in how accurately
the table sizes are estimated using different ratios of available tuple
factors. Similarly to the bias reduction we define the cardinality correc-
tion as 1− |Completed Tuples|−|Complete Tuples|

|Incomplete Tuples|−|Complete Tuples| . As we can see in Figure 10.7b,
the cardinalities of the complete tables can relatively accurately be

176 restore- neural data completion for relational databases

0%50
%

Bias
Reduction

S
et

up
H

1
S

et
up

H
2

S
et

up
H

3
S

et
up

H
4

S
et

up
H

5

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

0%

10
0%

Bias
Reduction

S
et

up
M

1

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

2

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

3

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

4

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

5

K
ee

p
R

at
e:

20
%

K
ee

p
R

at
e:

40
%

K
ee

p
R

at
e:

60
%

K
ee

p
R

at
e:

80
%

(a
)

Bi
as

R
ed

uc
ti

on
s.

0%

10
0%

Cardinality
Correction

S
et

up
H

1
S

et
up

H
2

S
et

up
H

3
S

et
up

H
4

S
et

up
H

5

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

0%

10
0%

Cardinality
Correction

S
et

up
M

1

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

2

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

3

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

4

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

5

K
ee

p
R

at
e:

20
%

K
ee

p
R

at
e:

40
%

K
ee

p
R

at
e:

60
%

K
ee

p
R

at
e:

80
%

(b
)

C
ar

di
na

lit
y

C
or

re
ct

io
ns

.

Fi
gu

re
1

0
.7

:C
om

pl
et

io
n

R
es

ul
ts

fo
r

R
ea

l-
W

or
ld

D
at

a
us

in
g

th
e

Se
tu

ps
of

th
e

H
ou

si
ng

(H
i)

an
d

M
ov

ie
s

(M
i)

D
at

as
et

s.

10.7 experimental evaluation 177

predicted even though only 20− 30% of all tuple factors are kept in
the incomplete datasets.

10.7.4 Exp. 3: Query Processing

completion setups . We now investigate the end-to-end perfor-
mance of our approach for query processing. To this end, we use a
workload of both single table and join queries with aggregates and var-
ious filter predicates.5 We then derive incomplete datasets similar to
Exp. 1. and compare the relative error of the queries computed on the
incomplete dataset and our completed dataset (using the original com-
plete datasets as ground truth). We show the absolute improvement
for the relative error for the queries.

results . As we can see in Figure 10.8, we can achieve significant
improvements motivating the use of our approach for practical appli-
cations. We can see that COUNT and SUM queries are in general largely
improved while the improvements for the AVG queries are smaller. The
reason is that for AVG queries the improvement depends on the scaling
and translation of the attribute as well as the absolute error introduced
by the biased removal. This varies largely for the different attributes
in our datasets. This emphasizes the importance of the bias reduction
metric in the first experiment.

In addition, we noticed that for join queries on the smaller housing
dataset and low keep rates the predictions of our models tend to
be inferior to the incomplete dataset. In this case, the AR and SSAR
models cannot observe sufficient training data to make accurate pre-
dictions. We thus recommend not to use our approach if the number
of available tuples is very low. However, for larger datasets it is also
more time-consuming to complete them manually and in these cases
our approach achieves significantly more accurate query results as we
can see from Figure 10.8.

10.7.5 Exp. 4: Accuracy and Performance Aspects

model and path selection. We next investigate how reliable
our model and path selection works. To this end, we plot all bias
reductions and the performance of the model selection strategies in
Figure 10.9. If we provide the information which bias is suspected in
the data (red dots in Figure 10.9), we often pick the optimal path and
model. However, even if this information is not available (orange dots
in Figure 10.9), we select models that can effectively reduce bias.

training time . In Figure 10.10 we depict the average training
time of the AR and SSAR models for the different completion setups.

5 https://github.com/DataManagementLab/restore

https://github.com/DataManagementLab/restore

178 restore- neural data completion for relational databases

0.
0%

20
0.

0%

RelativeError
Improvment

H
ou

si
ng

:
Q

1

0.
0%

50
.0

%

H
ou

si
ng

:
Q

2

0.
0%

20
0.

0%

H
ou

si
ng

:
Q

3

0.
0%

20
0.

0%

H
ou

si
ng

:
Q

4

0.
0%

1.
0%

H
ou

si
ng

:
Q

5

0.
0%

20
.0

%

RelativeError
Improvment

H
ou

si
ng

:
Q

6

0.
0%

25
.0

%

H
ou

si
ng

:
Q

7

0.
0%

25
.0

%

H
ou

si
ng

:
Q

8

0.
0%

20
0.

0%

H
ou

si
ng

:
Q

9

0.
0%

1.
0%

H
ou

si
ng

:
Q

1
0

0.
0%

50
.0

%

RelativeError
Improvment

M
ov

ie
s:
Q

1

0.
0%

25
.0

%

M
ov

ie
s:
Q

2

0.
0%

20
.0

%

M
ov

ie
s:
Q

3

0.
0%

0.
2%

M
ov

ie
s:
Q

4

0.
0%

50
.0

%

M
ov

ie
s:
Q

5

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

0.
0%

20
.0

%

RelativeError
Improvment

M
ov

ie
s:
Q

6

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

0.
0%

20
.0

%

M
ov

ie
s:
Q

7

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

0.
0%

25
.0

%

M
ov

ie
s:
Q

8

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

0.
0%

25
0.

0%

M
ov

ie
s:
Q

9

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

0.
0%

25
.0

%

M
ov

ie
s:
Q

1
0

K
ee

p
R

at
e:

20
%

K
ee

p
R

at
e:

40
%

K
ee

p
R

at
e:

60
%

K
ee

p
R

at
e:

80
%

Fi
gu

re
1

0
.8

:I
m

pr
ov

em
en

to
f

A
ve

ra
ge

R
el

at
iv

e
Er

ro
r

du
e

th
e

C
om

pl
et

io
n

(i
.e

.,
hi

gh
er

is
be

tt
er

).
Im

pr
ov

em
en

ts
fo

r
in

di
vi

du
al

C
O
U
N
T

,A
V
G

an
d
S
U
M

qu
er

ie
s

ar
e

sh
ow

n
as

se
pa

ra
te

pl
ot

s.

10.7 experimental evaluation 179

-5
0%0%50

%

10
0%

BiasReduction

S
et

up
H

1
S

et
up

H
2

S
et

up
H

3
S

et
up

H
4

S
et

up
H

5

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

-5
0%0%50

%

10
0%

BiasReduction

S
et

up
M

1

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

2

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

3

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

4

20
%

40
%

60
%

80
%

R
em

ov
al

C
or

re
la

ti
on

S
et

up
M

5

A
ll

M
o

de
ls

M
o

de
l

S
el

ec
ti

on

M
o

de
l

S
el

ec
ti

on
(+

S
us

p
ec

te
d

B
ia

s)

Fi
gu

re
1

0
.9

:Q
ua

lit
y

of
M

od
el

s
se

le
ct

ed
by

ou
r

M
od

el
Se

le
ct

io
n

St
ra

te
gy

vs
.a

ll
M

od
el

s
fo

r
th

e
di

ff
er

en
t

H
ou

si
ng

Se
tu

ps
(H

1
to

H
5)

an
d

M
ov

ie
s

Se
tu

ps
(M

1
to

M
5)

.W
e

ca
n

se
le

ct
th

e
be

st
p

er
fo

rm
in

g
m

od
el

in
al

m
os

t
al

l
ca

se
s

if
a

bi
as

is
su

sp
ec

te
d

.I
f

th
is

in
fo

rm
at

io
n

is
no

t
av

ai
la

bl
e,

th
e

se
le

ct
ed

m
od

el
is

us
ua

lly
am

on
g

th
e

m
os

t
su

it
ab

le
m

od
el

s
fo

r
th

e
co

m
pl

et
io

n.

180 restore- neural data completion for relational databases

1 2 3 4 5
0

2

T
ra

in
in

g
T

im
e

p
er

M
o

de
l

(m
in

s)

Housing

1 2 3 4 5
0

5

10

Movies

AR

SSAR

Figure 10.10: Time required for Training.

1 2 3 4 5
0.0

0.2

0.4

C
om

pl
et

io
n

T
im

e
p

er
P

at
h

(m
in

s)

Housing

1 2 3 4 5
0

10

Movies

AR

AR + NN Replacement

SSAR

SSAR + NN Replacement

Figure 10.11: Time required for completing one Path.

As we can see in general, AR models require less training time (< 2
minutes for housing and < 6 minutes for the movies dataset). The
reason is twofold. First, the models do not require acyclic walks on
the schema which have to be performed to gather training data for
the SSAR models. Moreover, the models are not as complex since
the tree models for the schema walks are not required. While SSAR
models require a longer training time, this can be justified with a
better performance for some completion setups.

completion time . Finally, we discuss the time needed for data
completion. As we can see in Figure 10.11 the completion via one path
takes less than 30 seconds for all setups of the housing dataset. For
the larger movies dataset, however, the completion took less than two
minutes for the completion setups M1−M3. For the more challenging
setups with long-distance completion paths (distance of four) the
completion takes around 16 minutes. However, here millions of tuples
have to be synthesized. Moreover, we can see that the nearest neighbor
replacement increases the runtime of the completion. As mentioned
before, for those scenarios we can alternatively generate the data
offline.

10.8 related work

missing data in olap. Closest to our approach is probably the re-
cent Themis [131] system. Different from ReStore, Themis is restricted
to work for a single table and requires aggregate information. Themis
either reweights existing tuples or learns probabilistic models for miss-
ing groups. The techniques for leveraging aggregate knowledge such
as iterative proportional fitting could seamlessly be integrated in our
approach. Chung et al. [27] estimate the impact of missing tuples on
aggregate queries when several but overlapping data sources are inte-
grated. Moreover, only the single table case is discussed here. There
has also been work on determining when incomplete data still leads
to complete query results [94, 121] or which parts of the result are
complete [90] which is orthogonal to our work.

10.9 conclusion and future work 181

data generation. In order to compensate missing tuples, we
synthesize missing data using AR and SSAR models. This is related to
approaches that synthesize tuples [24, 42, 162, 183] using deep models
such as GANs [57, 149]. A main motivation is to synthesize data
satisfying data privacy. In contrast to ReStore, the models typically
only support individual tables instead of complex schemas.

uncertain and probabilistic databases . Another line of
work [43, 163] uses the possible world semantics [1] to handle un-
certain data, i.e., either tuple values or the inclusion of tuples in
the dataset are uncertain. The goal is to estimate possible results for
queries. Alternatively, uncertainty can be modeled using probabilistic
databases [31, 75, 130, 147, 151, 160, 175] where tuples or sets of tuples
are annotated with probabilities. In contrast to our work, missing
tuples cannot be handled directly. Possibly missing tuples would have
to be manually inserted in the database and annotated with a prob-
ability which is challenging since the user often does not have an
understanding of what data is missing.

data cleaning . Our approach is also related to data cleaning. A
major direction in data cleaning are approaches for value imputation
[26]. For value imputation, there exist many techniques that leverage
probabilistic graphical models [146], relational dependency networks
[114] or neural approaches [181, 187]. All these approaches, however,
cannot synthesize completely missing tuples as we do. Another inter-
esting direction is [177] which estimates the result of aggregate queries
by cleaning a sample of dirty data. However, again missing tuples are
not being compensated for.

10.9 conclusion and future work

In this paper, we have introduced ReStore— an approach that ap-
proximates queries over a relational database in cases where only
incomplete data is available (i.e., tuples in individual tables are miss-
ing). In our experimental evaluation, we have demonstrated that our
approach can synthesize missing data with high accuracy and thus
enables improved decision making on top of incomplete relational
databases. In future work, we also want to investigate how the models
devised can be used for tasks like missing data imputation or other
downstream tasks (e.g., learning a classification model) that can now
use the completed dataset as input. In addition, we believe that com-
bining our approach with probabilistic databases is also a promising
direction.

182 restore- neural data completion for relational databases

acknowledgments

This research was partly funded by the BMBF Project KompAKI, the
Hochtief project AICO (AI in Construction) as well as the HMWK
cluster project 3AI (The Third Wave of AI).

11
O N E M O D E L T O R U L E T H E M A L L : T O WA R D S
Z E R O - S H O T L E A R N I N G F O R D ATA B A S E S

abstract

In this paper, we present our vision of so called zero-shot learning for
databases which is a new learning approach for database components.
Zero-shot learning for databases is inspired by recent advances in
transfer learning of models such as GPT-3 and can support a new
database out-of-the box without the need to train a new model. Fur-
thermore, it can easily be extended to few-shot learning by further
retraining the model on the unseen database. As a first concrete con-
tribution in this paper, we show the feasibility of zero-shot learning
for the task of physical cost estimation and present very promising
initial results. Moreover, as a second contribution we discuss the core
challenges related to zero-shot learning for databases and present
a roadmap to extend zero-shot learning towards many other tasks
beyond cost estimation or even beyond classical database systems and
workloads.

bibliographic information

The content of this chapter was previously published in the peer-
reviewed work Benjamin Hilprecht and Carsten Binnig. “One Model
to Rule them All: Towards Zero-Shot Learning for Databases.” In: 12th
Conference on Innovative Data Systems Research, CIDR 2022, Chaminade,
CA, USA, January 9-12, 2022. www.cidrdb.org, 2022. url: https://www.
cidrdb.org/cidr2022/papers/p16-hilprecht.pdf. The contributions
of the author of this dissertation are summarized in Chapter 5.

This work is licensed under CC-BY version 4.0 https://

creativecommons.org/licenses/by/4.0 © 2022, Benjamin Hilprecht
and Carsten Binnig. It was published in the 12th Conference on Innova-
tive Data Systems Research, CIDR 2022, Chaminade, CA, USA, January
9-12, 2022 and reformatted for the use in the dissertation.

183

https://www.cidrdb.org/cidr2022/papers/p16-hilprecht.pdf
https://www.cidrdb.org/cidr2022/papers/p16-hilprecht.pdf
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

184 one model to rule them all : towards zero-shot learning for databases

11.1 introduction

motivation. Building computer systems often involves solving
complex problems in all layers of those systems. To reduce complexity
when building those computer systems and solve the problems in
a tractable manner, these systems have heavily relied on heuristics
or simplified analytical models in the past. Very recent work in the
systems community, however, has outlined a broad scope where ma-
chine learning vastly outperforms these traditional heuristics. This is
also the case for databases, where existing DBMS components have
been replaced with learned counterparts such as learned cost and
cardinality estimation models [67, 72, 79, 113, 161, 185] as well as
learned query optimizers [85, 108, 110, 112] or even learned indexes
[34, 35, 48, 84] and learned query scheduling strategies [107, 153].

The predominant approach that has been used in the past for
learned database components is workload-driven learning. The idea
of workload-driven learning is to capture the behavior of a DBMS
component by running a representative set of queries over a given
database and then use the observations to train the underlying model.
For example, for learned cardinality estimation models such as [79,
161] a set of queries must be executed to collect query plans and their
cardinalities, which serve as training data for learning a model that
can be used to estimate the cardinalities for new queries. The very
same procedure is applied if workload-driven learning is used for the
other DBMS components such as learned physical design advisors
(e.g., an advisor for index selection) [99, 192] or other components.

However, a major obstacle to these workload-driven approaches
is the collection of training data. For example, in [79, 161] it was
shown that thousands of query plans and their true cardinalities are
needed for training the model to achieve a high accuracy. Running
such a set of training queries on potentially very large databases to
collect the training data can take hours or even days while the actual
training of the underlying models often only takes a few minutes. And
unfortunately, the training data collection needs to be repeated for
every new database that needs to be supported.

To reduce the high cost of training data collection, reinforcement
learning (RL) has been used to execute training queries [70, 97, 99,
192] in a more targeted manner (i.e., letting the RL agent decide which
queries to execute next). However, even with reinforcement learning
still a large amount of training queries needs to be executed for
learning a model. Moreover, training the model is not a one-time effort
since similar to workload-driven approaches the learning procedure
needs to be repeated for every new database at hand.

A different direction that has thus been proposed to avoid the ex-
pensive training data collection by running queries on a new database
are so called data-driven approaches [72, 185, 186] that learn a model

11.1 introduction 185

purely from the underlying data. A prime example where data-driven
learning is a perfect fit is cardinality estimation. However, data-driven
learning is no silver bullet either since for some DBMS components
the information about the runtime behavior of queries is required. One
such example is learned physical cost estimation where the runtime
behavior of queries needs to be captured by a model to make predic-
tions. A similar observation holds for many other database tasks such
as physical design tuning or knob tuning where the effects of a certain
decision on the runtime of a workload need to be learned.

vision and contributions . In this paper, we thus present our
vision of so called zero-shot learning for databases which is a new learn-
ing approach for database components that can support a broad set
of tasks on the one hand but does not require to collect training data
for supporting a new database on the other hand. In that regard,
zero-shot learning for databases combines the benefits of data-driven
learning and workload-driven learning. The general idea behind zero-
shot learning for databases is motivated by recent advances in trans-
fer learning of models. Similar to other approaches such as GPT-3
[16] which enables zero-shot learning for NLP, a zero-shot model for
databases is trained on a wide collection of different databases and
workloads and can thus generalize to a completely new database and
workload without the need to be trained particularly on that database.

As a core contribution in this paper, we discuss how such an ap-
proach of zero-shot learning for databases could work and we also
show the feasibility of this approach for the task of physical cost es-
timation. In our initial results for physical cost estimation, we show
that zero-shot models can significantly outperform workload-driven
approaches even when providing workload-driven models with a
large number of training queries for a particular database at hand
whereas zero-shot models can support them out-of-the-box. Moreover,
we believe that the real power of zero-shot learning stems from the
fact that it is a general principle that can be used for various learned
database tasks. For example, we already have initial promising results
suggesting that zero-shot learning can not only be used for physical
cost estimation on a new database but also for physical design tuning
and, in particular, index selection on a database the model has not
seen before.

Finally, an important aspect of zero-shot models is that zero-shot
learning can easily be extended to few-shot learning. Hence, instead of
using the zero-shot model out-of-the box (which already can provide
good performance), one can fine-tune the model with only a few
training queries on an unseen database or task. Compared to workload-
driven learning, few-shot learning will require way fewer training
queries for adaptation since the general system behavior is already
internalized by the zero-shot model.

186 one model to rule them all : towards zero-shot learning for databases

outline . The remainder of this paper is structured as follows:
Section 11.2 first gives an overview of zero-shot learning for databases
and discusses the core challenges related to zero-shot learning. Sec-
tion 11.3 then discusses the case study of using our approach for
learning a zero-shot physical cost model. Moreover, in this section we
also present our initial experimental results. Afterwards, Section 11.4
discusses a research roadmap for zero-shot learning for databases
beyond cost estimation. Finally, we conclude with a peak into the
future in Section 11.5.

11.2 zero-shot learning for databases

In this section, we first give a brief overview of how zero-shot learning
for databases works in general and then discuss the core challenges
related to enable this approach in an efficient manner.

11.2.1 Overview of the Approach

Figure 11.1 shows the high-level idea that is behind our vision of
zero-shot learning for databases. During the learning phase, similar to
workload-driven learning, for zero-shot learning we have to execute a
representative workload and collect training data.

The main difference to workload-driven learning though, which
makes our approach attractive, is that zero-shot models generalize to
unseen databases out-of-the-box. To allow a zero-shot model to make
predictions about unseen databases without the need to retrain the
model for this particular database, we provide a new method of
representing queries as we discuss below (cf. Key Challenges). This
transferable representation is at the core of learning zero-shot models
in a generalizable way and thus enables them to make predictions for
queries on a new database (e.g., for physical cost estimation) that the
model has never seen before.

Moreover, for being able to generalize to new databases, a zero-shot
model is trained on different databases. While this might seem to
cause high upfront costs before a zero-shot model can be used, it is
important to note that the training data collection is a one-time-effort
which is very different from workload-driven learning that needs
to collect training data for every new database a model should sup-
port. Moreover, cloud database providers such as AWS, Microsoft, or
Google, typically already have significant amounts of such information
available since they keep logs of their customer workloads and could
thus apply zero-shot learning right away without the need to collect
training data in the first place.

Finally, a last important aspect is that zero-shot learning is not only
generalizable across databases but is a new learning approach that can
be applied to a variety of database tasks that range from physical cost

11.2 zero-shot learning for databases 187

DB1

DB2

...

DBn

+ Workload1

+ Workload2

+ Workloadn

Runtimes, Ressources, ...

Training
Data

Runtimes, Ressources, ...

Runtimes, Ressources, ...

Training a Zero-Shot Model

Features Labels Zero-Shot Model

DBx
+ Workloadx Runtimes, Ressources, ...

Features Predictions

(one-time-effort)

Inference on Unseen Database
(for every new database)

Zero-Shot Model

Figure 11.1: Overview of zero-shot learning for databases. In line with other
zero-shot approaches such as GPT-3 which enables zero-shot
learning for NLP, a zero-shot model for databases can generalize
to a completely new database and workload without the need
to be trained on that particular database.

estimation, design tuning or knob tuning to query optimization and
scheduling as we discuss in Section 11.3 and Section 11.4. To enable
zero-shot models to generalize to different tasks though, the models
need to be capable of capturing not only information about query
plans and their runtimes but also information about other aspects (e.g.,
how indexes or changes in the database configuration influence the
query runtime) as we discuss later.

11.2.2 Key Challenges

Enabling zero-shot learning for databases comes with various research
challenges. In the following, we discuss the key challenges that we
think are at the core to make zero-shot learning for databases efficient
and accurate.

transferable representation of database and queries .
State-of-the-art workload-driven models [79, 161] can only leverage
training data from a single database and thus they cannot simply
be trained on a variety of databases to obtain zero-shot models. The
reason is that the query representation is not transferable to an unseen
database. For instance, attributes names (e.g., those used in filter
predicates) are typically encoded using a one-hot encoding assigning
each column present in the database a specific position in a feature
vector. Hence, the column production_year of the IMDB dataset might
be encoded using the vector (0, 1, 0) (assuming that there are only three
columns in total). If the same model is now used to predict query
costs for the SSB dataset, the second column in the database might be
region, which has very different semantics (i.e., very different data
distributions or even a different data type). As such, cost models based

188 one model to rule them all : towards zero-shot learning for databases

Aggregate

Hash Join

Seq Scan
Hash

Seq Scan

title

movie_companies

 > ...

production_year

MIN(...)

 ...= ...

title_id

movie_id
 = ...

company_type_id

SELECT MIN(t.production_year) FROM movie_companies mc,title t
WHERE t.id=mc.movie_id AND t.production_year>1990 AND
mc.company_type_id=2;

Operator (One-Hot) Cardinality
Tuple
Width

Graph Encoding

Predicate Operator (One-Hot)

...

Data Type (One-Hot) Width ...

1 0 0 4 ...

No Tuples No Pages

21 21

1 0 0 1 4 ...

0 0 0 1 ...

...

0 0 1 230K 4 ...

0 1 0 550K 4 ...

Example Query

Encode Physical Plan Operators, Predicates
Tables and Columns as a Graph

Transferable Featurization
Node Featurization generalizes
across Databases

Zero-Shot Encoding
(Transferable Representation)

+

Figure 11.2: Graph encodings with transferable features as a zero-shot en-
coding. The query is represented as a graph with different node
types (for plan operators, predicates, tables, columns etc.) and
nodes are annotated with transferable features. The representation
allows the model to generalize across databases since features
remain consistent.

on non-transferable representations will produce estimates that are
most likely way off. In fact, such non-transferable feature encodings
are used in various places of query representations such as table
names as part of plan operators or literals in filter predicates. Hence,
for zero-shot models we require a novel representation of queries that
is transferable across databases while still being expressive enough to
enable accurate estimations.

We will now introduce query graph encodings with transferable features
(cf. Figure 11.2) which generalize across databases and have the poten-
tial to be applied in various zero-shot learned database components.
While graph-based encodings have already been used to represent
query plan operators and predicates [161], we in contrast encode
the entire query as a graph (including tables, columns etc.) and use
transferable features per node allowing models using this representa-
tion to generalize across databases. For instance, an involved column
production_year would now be represented using a graph node with
transferable features (e.g., the data type). If the same model is now
deployed for a different database such as SSB, the corresponding
columns would be represented using different graph nodes with their
corresponding data characteristics and thus the representation is not
inconsistent for different databases (in contrast to one-hot encodings
of columns).

11.2 zero-shot learning for databases 189

While the previously presented representation already allows to
represent queries in a very expressive way, extensions might be nec-
essary depending on the specific task that should be solved. When
designing a representation for a specific task, it is important that the
representation (i) captures all important aspects such that the models
are able to solve the task at hand and (ii) that the representation is
consistent for different databases (i.e., transferable).

training data collection and robustness . A second key
challenge to enable zero-shot learning is clearly the training data col-
lection for learning a zero-shot cost model. Here an important question
is how many and which databases and workloads a zero-shot model
needs to observe during training to make robust decisions on unseen
databases. As we show in our initial experiments for zero-shot cost
estimation in Section 11.3, for example, already a relatively small num-
ber of databases along with the respective workload information (e.g.,
the featurized query plans and runtimes) is sufficient to generalize
robustly and even outperform existing workload-driven approaches.
However, clearly we need to develop more theoretical foundations
to help guide us as to whether or not a zero-shot model has seen
sufficiently many databases and queries.

One way to address this could be to evaluate the model on test
databases that have not been used during training similar to the
common practice in machine learning to evaluate a model on a holdout
set. While this could provide an initial model validation, clearly more
theoretical foundations are needed depending on the concrete task. A
related question in this respect is how to create the training databases
and workloads if they are not yet available (as for cloud providers). An
interesting direction here is to use a synthetic approach and generate
databases / workloads with different characteristics.

separation of concerns . Finally, a last important aspect of
zero-shot models is to decide what should be learned by the model to
fulfill its core promise and when to separate concerns. For example,
workload-driven approaches often prefer end-to-end learning, i.e., to
make predictions for a query plan (e.g., the runtime), they internalize
both the data characteristics (e.g., the data size and distributions) as
well as the system characteristics (e.g., the runtime complexity of
database operators) in one model.

However, since the data characteristics can be entirely different
for a new database, such an end-to-end approach will not work for
zero-shot learning. Hence, we suggest that data characteristics for
zero-shot learning should be captured by separate data-driven models
(such as [72, 185]). For example, a feature that can be captured by a
data-driven model are the input- and output-cardinalities of operators
in a query plan. That way, when using cardinalities as input features
for the zero-shot models, these models learn to predict the runtime

190 one model to rule them all : towards zero-shot learning for databases

behavior of operators based on input/output sizes that can be derived
for any database which again enables a transferable representation of
queries that does not depend on the concrete data distribution of a
single database.

One could now argue that this violates the core promise of zero-
shot learning since data-driven models need to be learned for each
new database. However, data-driven models can be derived from a
database without running any training query and typically a sample
of the database is enough to train these models. Moreover, for cardi-
nality estimation we could even use simple non-learned estimators
(e.g., histograms) as input for the zero-shot models. As we show in
our initial results in Section 11.3, even those simple estimators often
provide sufficient evidence for our zero-shot cost models to produce
accurate estimates.

To summarize, a key question in this context is to decide what a
zero-shot model should learn and which aspects should be treated
separately. Clearly a guide for this question is to think about what is
tied to a particular data distribution and which aspects hold in general
which should then be included in the zero-shot model. Moreover, as we
discuss later, for design tuning or query optimization another question
is how to combine zero-shot models with optimization procedures or
other learning approaches (e.g., value networks) to implement efficient
search strategies.

11.3 case study : cost estimation

In this case study, we demonstrate how zero-shot learning can be used
for physical cost estimation. We envision this to be a potential core
building block for zero-shot models for many other DBMS tasks as we
discuss in the next section.

11.3.1 Zero-Shot Cost Estimation

The main promise of zero-shot cost estimation is that a trained model
can predict the query runtime on a new database out-of-the-box. In
the following, we give a brief overview of how we implemented our
initial prototype for zero-shot cost estimation for Postgres and contrast
it to recent workload-driven approaches for cost estimation using the
example query plan.

At the core, we use a transferable query representation as introduced
in Figure 11.2 and propose a new architecture to capture the graph
structure. As depicted in the figure, each node in this graph represents
a physical operator (as opposed to a logical operator) to capture the
differences in runtime complexity during learning. In addition, we
use nodes to represent involved tables, columns, aggregations and
predicates whereas for each node we use transferable features. For

11.3 case study : cost estimation 191

instance, the movie_companies table uses generalizable features such
as the number of tuples and pages. Note that for state-of-the-art
workload-driven learning, the table would instead be represented as a
one-hot encoded vector which does not enable generalization across
databases as discussed before.

Moreover, as mentioned before, for zero-shot models we want the
model to learn the general runtime behavior of operators in a DBMS
(i.e., system characteristics). Hence, the zero-shot model should learn
system characteristics separate from data characteristics. This is very
different from workload-driven models which learn both aspects end-
to-end in one model as mentioned before. For instance, workload-
driven models include the values involved in filter predicates (e.g.,
1990) in the featurization of a query and thus learn the selectivity of
the filter operation implicitly. In contrast, for zero-shot models we only
encode the predicate structure (to represent the general computational
complexity) and explicitly use estimated cardinalities from a data-
driven model or the query optimizer as input.

Finally, a last important aspect is our proposed model architecture
as well as the learning and inference procedure for a featurized plan.
Here, we exploit that the graph encoding results in DAGs where
the root node of the plan are also the root nodes of the DAGs. The
learning overall happens in three steps: we first encode the features of
the individual nodes in a fixed-size hidden vector (the initial hidden
states). The hidden states of the individual plan nodes are afterwards
combined using a bottom-up message passing phase in the DAG.
Finally, the hidden state of the root node is fed into a multilayer
perceptron (MLP) which predicts the final runtime. In particular in the
message passing phase, the DAG is traversed bottom up. The hidden
states of the children are summed up (similar to the DeepSets [190]
architecture) and combined with the hidden state of the parent node
using an MLP to update the hidden state. This process is repeated
until the root node is reached and the information of the entire tree
is combined. For inference to make a prediction for a query plan on
a new database, a new DAG is constructed using the node-specific
MLPs and the features are propagated through the tree up to the root
node which then predicts the runtime for the new query.

11.3.2 Initial Evaluation

setup and baselines In an initial experiment, we trained a zero-
shot cost estimation model on workloads we executed on a set of
publicly available datasets that cover a range of databases with a
different number of tables and database sizes. We then predicted the
runtimes for a workload on an entirely unseen database to validate
that zero-shot cost estimation can provide high accuracies.

As baselines, we used state-of-the-art workload-driven approaches
for cost estimation. In particular, we used the end-to-end model of

192 one model to rule them all : towards zero-shot learning for databases

10
2

10
3

10
4

N
um

b
er

of
T

ra
in

in
g

Q
ue

ri
es

1.
5

2.
0

2.
5

MedianQ-Error

S
ca

le

10
2

10
3

10
4

N
um

b
er

of
T

ra
in

in
g

Q
ue

ri
es

1.
5

2.
0

2.
5

S
yn

th
et

ic

10
2

10
3

10
4

N
um

b
er

of
T

ra
in

in
g

Q
ue

ri
es

23

JO
B

-l
ig

ht

10
2

10
3

10
4

N
um

b
er

of
T

ra
in

in
g

Q
ue

ri
es

02550 ExecutionTime(h)

M
S

C
N

(W
or

kl
oa

d-
D

ri
ve

n)

E
2E

(W
or

kl
oa

d-
D

ri
ve

n)

S
ca

le
d

O
pt

im
iz

er
C

os
ts

(P
os

tg
re

s)

Z
er

o-
S

ho
t

(E
xa

ct
C

ar
di

na
lit

ie
s)

Z
er

o-
S

ho
t

(E
st

.
C

ar
di

na
lit

ie
s)

Fi
gu

re
1

1
.3

:E
st

im
at

io
n

E
rr

or
s

of
W

or
kl

oa
d

-D
ri

ve
n

M
od

el
s

fo
r

a
va

ry
in

g
N

u
m

be
r

of
Tr

ai
ni

ng
Q

u
er

ie
s

co
m

p
ar

ed
w

it
h

Z
er

o-
Sh

ot
C

os
t

M
od

el
s.

T
he

ze
ro

-s
ho

t
m

od
el

s
w

er
e

tr
ai

ne
d

us
in

g
qu

er
y

ex
ec

ut
io

ns
on

en
ti

re
ly

d
if

fe
re

nt
d

at
ab

as
es

an
d

th
us

d
o

no
t

re
qu

ir
e

an
y

qu
er

ie
s

on
th

e
IM

D
B

d
at

ab
as

e.
In

co
nt

ra
st

,e
ve

n
th

e
m

os
t

ac
cu

ra
te

w
or

kl
oa

d
-d

ri
ve

n
m

od
el

(E
2
E

)
re

qu
ir

es
ap

p
ro

xi
m

at
el

y
10

4
qu

er
y

ex
ec

u
ti

on
s

on
an

u
ns

ee
n

d
at

ab
as

e
fo

r
a

co
m

p
ar

ab
le

p
er

fo
rm

an
ce

w
it

h
ze

ro
-s

ho
t

m
od

el
s

w
hi

ch
is

ro
u

gh
ly

eq
u

iv
al

en
t

to
13

ho
u

rs
of

ex
ec

u
te

d
w

or
kl

oa
d

.
Si

nc
e

ze
ro

-s
ho

t
m

od
el

s
do

no
t

re
qu

ir
e

an
y

ad
di

ti
on

al
qu

er
ie

s
it

is
si

gn
ifi

ca
nt

ly
ch

ea
pe

r
to

de
pl

oy
th

em
fo

r
a

ne
w

da
ta

ba
se

.

11.3 case study : cost estimation 193

[161] called E2E and the MSCN architecture [79] that was initially
proposed for cardinality estimation. In addition, we use a simple
linear model that obtains actual runtimes from the internal cost metric
of the Postgres optimizer (called Scaled Optimizer Cost).

training of baselines and zero-shot models For the work-
´load-driven models, we collected training data of different sizes
ranging from a small training set size of 100 queries up to very large
training sets with 50, 000 queries (similar to [161]). Note, that for
every new database such training queries need to be executed and the
runtimes need to be collected before a workload-driven model can be
trained. Moreover, if the database is updated and data characteristics
change, the training data collection needs to be repeated.

For training the zero-shot model, we also need to collect training
data. Overall, this gathering of the training data is clearly a significant
effort. However, as mentioned before this is a one-time effort and the
resulting model can be reused across different databases.

To decide which number of training databases and workloads is
sufficient, we evaluated the performance on a holdout test database
as we added additional training databases. For each of the training
databases we randomly generated 5, 000 training queries which we
used as training data. After 19 databases, the performance stagnated
and we can thus conclude that already a moderate number of training
databases is sufficient for zero-shot models to generalize. In total the
workload size for zero-shot learning was thus in a similar ballpark
compared to the maximum size we used for training the workload-
driven baselines. Moreover, the queries for zero-shot learning and
workload-driven learning were similar and covered up to five-way
joins with up to five numerical and categorical predicates and up to
three aggregates. However, different from a workload-driven model,
the zero-shot model was not trained on the database it should make a
prediction on.

initial results To evaluate the trained models, we used our
zero-shot model as well as the other baselines to predict the runtimes
of the commonly used scale, synthetic and job-light benchmarks [79]
on the IMDB database. For zero-shot models, we show two versions:
one that that uses the Postgres cardinalities as input as well as one
version, which uses exact cardinalities (as an upper baseline to show
how accurate zero-shot models can become).

As a result, we report the commonly used Q-error which is the factor
the predicted runtime deviates from the true runtime. The advantage
of zero-shot learning over workload-driven approaches is that no
queries on the test database are required for training. To demonstrate
this tradeoff, we vary the number of training queries that can be used
for the workload-driven baselines and compare the accuracy with zero-
shot learning in Figure 11.3. Overall, zero-shot learning can predict

194 one model to rule them all : towards zero-shot learning for databases

the runtimes very accurately. Since the IMDB dataset was never used
for one of the training queries this shows, that zero-shot learning can
generalize to unseen databases. Interestingly, even the zero-shot model
using only cardinality estimates of the Postgres optimizer is still very
accurate.

In contrast, the workload-driven E2E models [161] are less accurate
than zero-shot models even for a large set of training queries on
the IMDB database for the scale and synthetic benchmarks. For the
simpler job-light queries that rarely contain range predicates, the E2E
model is on par with the zero-shot model for the larger training sets.
However, still the E2E models cannot match the performance of zero-
shot learning with exact cardinalities. In addition, we note that the
MSCN models are significantly less accurate since they use a much
simpler featurization based on one-hot encodings (and not a tree-
based featurization). Moreover, note that even though we repeated all
measurements multiple times and report the median there are still
some peaks in the reported Q-errors of MSCN due to a particularly
high variance.

While our initial results are promising, in future we plan to conduct
more extensive experiments that show the robustness of zero-shot
learning in several dimensions (e.g., more complex queries but also
other databases).

11.4 beyond cost estimation

In the following, we will discuss how zero-shot models can be ex-
tended beyond cost estimation.

11.4.1 Physical Design and Knob Tuning

A first clear extension of zero-shot cost models as described in Section
11.3 is to allow them to support a so called “What-If” mode. This
enables zero-cost models to predict the runtime of a query given a
certain physical design or a database configuration (also called knob
configuration). For example, one could then ask the model how the
runtime of a query changes if a certain index would exist or how the
runtime changes if the buffer size would be increased.

Both these tasks — physical design and knob tuning — are classical
problems of DBMSs that have been addressed in the past already by
using optimization approaches [4, 18, 23, 124, 127]. However, the main
problem was that these approaches relied on inexact cost estimates
coming from classical optimizer cost models that were extended to
support a “What-If” mode. For that reason, recent approaches have
suggested to use workload-driven learning — in many cases reinforce-
ment learning [7, 70, 89, 99, 150, 178, 192]. While these approaches have
been shown to be more accurate than the more classical approaches,

11.4 beyond cost estimation 195

they again need to first run training queries under different physical
layouts or knob configurations for every new database.

Hence, to avoid these high-training costs for every new database
one could use a zero-shot cost model in a “What-If” mode. To show the
feasibility of this direction, we extended our zero-shot cost model to
support also decisions towards index tuning. At the core, the zero-shot
model for index tuning should be able to support predictions of the
runtime as if a certain index would exist in a database. For training a
zero-shot cost model that can answer such questions, we again used
the 19 databases as training data that we also used in Section 11.3.
However, we additionally created a random but fixed set of indexes
per database before running the training queries. The zero-shot cost
model could recognize for which training query an index was used
since the physical operators in a query plan change (e.g., an index
scan instead of a table scan was used). The zero-shot model could thus
learn how the runtime changes for query plans, which use an index
scan compared to query plans which do not use an index scan.

For showing that the learned model could estimate the runtime
of queries correctly given a certain index, we again use the IMDB
database for the evaluation that the zero-shot model had not seen
before. For testing, we asked the model to estimate the runtime of
queries if an index would exist again for randomly selected attributes
of queries. The estimation errors for zero-shot learning for this work-
load are given in Table 11.1 (last line). As we can see, the estimations
are still very accurate but clearly the maximum Q-error increases com-
pared to the results for zero-shot cost models in Section 11.3 before
(upper lines).

To further improve the quality of zero-shot cost models for index
tuning one might need to think about a more sophisticated workload
sampling or provide additional characteristics for indexes (e.g., ex-
pected index height) as input features to a zero-shot model that could
be derived with additional data-driven models. Furthermore, we think
that we could use zero-shot models to build other design advisors
(e.g., for materialized views) or support zero-shot knob tuning to
select an optimal database configuration for a given workload without
having seen the database for training. Finally, for knob tuning one
could also think about using zero-shot models to only guide the search
initially to a good start configuration (i.e., to narrow down the search
space) and then use online approaches for fine-tuning the knobs since
knobs can be changed easily compared to the high cost of changing a
physical layout.

11.4.2 Query Optimization

Another direction for zero-shot learning are end-to-end learned opti-
mizers and not just the learning of cost models. Recently, it was also

196 one model to rule them all : towards zero-shot learning for databases

Zero-Shot (Exact Card.) Zero-Shot (Estimated Card.)

Workload median 95th max median 95th max

Scale 1.19 1.93 3.93 1.26 2.46 4.70

Synthetic 1.17 1.90 4.40 1.21 2.17 6.88

JOB-light 1.18 1.85 2.47 1.33 2.56 4.00

Index 1.21 2.51 10.73 1.33 3.59 24.62

Table 11.1: Estimation errors (Q-errors) of zero-shot models for index tuning
(last line) compared to zero-shot cost models without What-if
support (upper lines).

proposed to replace query optimizers that typically rely on heuristics
(i.e., simple cost models) and manual engineering by machine learning
models [85, 108, 110, 112]. While initial results are promising and
even commercial optimizers can be outperformed by learned ones,
current approaches are also dominated by reinforcement leaning or
workload-driven learning in general. Again, all these approaches are
database-dependent and cannot generalize to unseen databases. More-
over, for learning an optimizer a huge number of queries has to be
executed to learn what is a good plan for a given query. We envision
that this overhead for unseen databases can be eliminated completely
using zero-shot learning.

An initial naïve approach for this could be to use the devised zero-
shot cost estimation model to evaluate candidate plans and thus better
guide the query optimizer to plans with low costs. For instance, zero-
shot cost estimation models could be used in conjunction with classical
dynamic programming or even approaches like Bao [108]. However,
with more sophisticated approaches, we think that zero-shot learning
could potentially replace classical heuristics like dynamic program-
ming entirely by devising zero-shot value networks to learn search
strategies for query optimization. Value networks [165] have shown
to learn policies that involve planning-based reasoning. This way,
zero-shot query optimizers could come up with plans that classical
optimizers would not have considered while avoiding the burden to
run thousands of queries to train the learned optimizer for every new
database.

11.4.3 Discussion

In addition to design advisors, knob tuning, or database optimiz-
ers there are many more DBMS components that could benefit from
zero-shot learning. For example, zero-shot cost models could be used
to predict not only the runtime but also other aspects such as re-
source consumption and thus be used also for runtime decisions (e.g.,
query scheduling). Moreover, by extending the features of the “What-
If” mode, we could also support hardware aspects and predict the

11.5 looking into the future 197

runtime of queries on an unseen hardware, e.g., to select an optimal
cloud instance for a given workload.

Another interesting question is how zero-shot learning should be
integrated into the overall DBMS architecture. Here we envision a
route where zero-shot cost models as presented in Section 11.3 form a
“kind-of” central brain in a DBMS that can be leveraged by various
DBMS components that complement such a central component with
more targeted models. These additional models could for example be
zero-shot models that focus on learning particular search strategies or
specific data-driven models to capture interesting data characteristics
as we discussed before.

Finally, as mentioned before it can be beneficial to fine-tune a
zero-shot model also on the unseen database. The resulting few-shot
models leverage the observed workload on the database similar to
workload-driven models and thus likely offer more accurate pre-
dictions. However, the main difference to workload-driven models
is that our approach also offers accurate out-of-the-box predictions
for unseen databases by using zero-shot models and also requires
fewer queries for adaptation on an unseen database since the general
system behavior is already internalized by the zero-shot model. As
such, it is significantly more efficient to fine-tune a model for unseen
databases than to train one from scratch every time as it is necessary
for workload-driven models.

11.5 looking into the future

In this paper, we have shown a new approach for learned database
components that can support new databases without running any
training query on that database. Moreover, zero-shot models can be
fine-tuned on the unseen database for more accurate predictions re-
sulting in few-shot models. While we have focused on single-node
databases and classical database workloads in the first place, we be-
lieve that zero-shot models can be applied more broadly. One direction
are distributed DBMSs where zero-shot models can be extended to
support tasks such as to optimize a distributed data layout. Another di-
rection is to extend zero-shot models for other types of data-intensive
workloads (e.g., data streaming).

Moreover, when thinking more broadly, zero-shot models seem to
also be an attractive model for any system builder and can be also
used at various levels of granularity to predict the performance of
individual components (e.g., very fine-grained on the data structure
and algorithm level) or very coarse-grained (at the system level). For
example, when being used for data structures and algorithms, zero-
shot models would be an efficient vehicle for self-designing data
structures [74]. To conclude, we think that zero-shot learning opens up
many avenues of research since it provides not only a more sustainable

198 one model to rule them all : towards zero-shot learning for databases

way to build learnable system components but it also seems to be a
general paradigm that can be applied more broadly and at different
levels.

11.6 acknowledgments

We thank the reviewers for their feedback and comments. This research
and development project is funded by the German Federal Ministry
of Education and Research (BMBF) within the “The Future of Value
Creation – Research on Production, Services and Work” program and
managed by the Project Management Agency Karlsruhe (PTKA). The
author is responsible for the content of this publication. In addition,
the research was partly funded by the Hochtief project AICO (AI in
Construction), the HMWK cluster project 3AI (The Third Wave of AI),
as well as the DFG Collaborative Research Center 1053 (MAKI). Finally,
we want to thank the Amazon Redshift team for valuable discussions.

12
Z E R O - S H O T C O S T M O D E L S F O R O U T- O F - T H E - B O X
L E A R N E D C O S T P R E D I C T I O N

abstract

In this paper, we introduce zero-shot cost models, which enable
learned cost estimation that generalizes to unseen databases. In con-
trast to state-of-the-art workload-driven approaches, which require
to execute a large set of training queries on every new database,
zero-shot cost models thus allow to instantiate a learned cost model
out-of-the-box without expensive training data collection. To enable
such zero-shot cost models, we suggest a new learning paradigm
based on pre-trained cost models. As core contributions to support
the transfer of such a pre-trained cost model to unseen databases,
we introduce a new model architecture and representation technique
for encoding query workloads as input to those models. As we will
show in our evaluation, zero-shot cost estimation can provide more
accurate cost estimates than state-of-the-art models for a wide range
of (real-world) databases without requiring any query executions on
unseen databases. Furthermore, we show that zero-shot cost models
can be used in a few-shot mode that further improves their quality
by retraining them just with a small number of additional training
queries on the unseen database.

bibliographic information

The content of this chapter was previously published in the peer-
reviewed work Benjamin Hilprecht and Carsten Binnig. “Zero-Shot
Cost Models for Out-of-the-box Learned Cost Prediction.” In: Proc.
VLDB Endow. 15.11 (2022), pp. 2361–2374. doi: 10.14778/3551793.
3551799. url: http://www.vldb.org/pvldb/vol15/p2483- hilpr
echt.pdf. The contributions of the author of this dissertation are
summarized in Chapter 5.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License http://

creativecommons.org/licenses/by-nc-nd/4.0/ © 2022, Benjamin
Hilprecht and Carsten Binnig. It was previously published in the
Proc. VLDB Endow. and reformatted for the use in this dissertation.
Copyright is held by the owner/author(s). Publication rights licensed
to the VLDB Endowment.

199

https://doi.org/10.14778/3551793.3551799
https://doi.org/10.14778/3551793.3551799
http://www.vldb.org/pvldb/vol15/p2483-hilprecht.pdf
http://www.vldb.org/pvldb/vol15/p2483-hilprecht.pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

200 zero-shot cost models for out-of-the-box learned cost prediction

0 20 40 60
Observed Workload Hours

1.25

1.50

1.75

C
os

t
E

st
im

at
io

n
E

rr
or

(M
ed

ia
n

Q
-E

rr
or

)

Workload-Driven

Zero-Shot

Few-Shot

Figure 12.1: Cost Estimation Errors on the IMDB database. While workload-
driven approaches [161] require many hours of workload ex-
ecutions as training data, our zero-shot cost model supports
the unseen IMDB database out-of-the-box and provides highly
accurate cost estimates. If a workload is observed however, the
zero-shot model can be fine-tuned, which further improves the
performance.

12.1 introduction

motivation. Accurate physical cost estimation (i.e., estimating
query latencies) is crucial for query optimization in DBMSs. Classically,
cost estimation is performed using models that make several simplify-
ing assumptions. As a result, such models often over- or underestimate
runtimes, leading to suboptimal planning decisions that degrade the
overall query performance [93]. Recently, machine learning (ML) has
thus been used for learned cost models that do not need to make such
simplifying assumptions [161].

While it was shown that the cost estimates of such learned cost
models are significantly more accurate than those of the traditional
cost models, the existing approaches rely on workload-driven learning
where models have to observe thousands of queries on the same
database1 for which the cost prediction should be performed. This
workload execution is required to gather the training data, which can
take hours (or days) since tens of thousands of queries need to be
executed on potentially large databases.

In Figure 12.1, we show the cost estimation accuracy depending
on how many hours we allow for gathering the training data for
a workload-driven model. As we can see, even for a medium-sized
database such as IMDB, it takes more than 5 hours of running queries
on this database to gather enough training data such that the cost
estimation model can provide a decent accuracy.

Unfortunately, collecting training data by running queries is not a
one-time effort. In fact, the training data collection has to be repeated
for every new database a learned model should be deployed for.
This is due to the fact that current model architectures for workload-
driven learning tie a trained model to a particular database instance.

1 Throughout this paper, we use the term database to refer to a particular dataset with
certain data characteristics.

12.1 introduction 201

Consequently, for every (new) unseen database we not only have to
train a model from scratch but also gather training data in the form
of queries. And even for the same database, in case of changed data
characteristics due to updates, training data collection needs to be
repeated. Overall, these repeated high costs for obtaining training data
for unseen databases render workload-driven learning unattractive
for many practical deployments.

contributions . In this paper, we thus suggest a new learning
paradigm for cost estimation called zero-shot cost models that reduces
these high efforts. The general idea behind zero-shot cost models is
motivated by recent advances in transfer learning of machine learning
models. While a wide spectrum of methods have been proposed
already to tackle zero-shot learning in domains such as NLP [16] or
computer vision [88], no approaches for zero-shot learning exist for
learned DBMS components and in particular also for cost models. To
enable this, as a core contribution in this paper, we propose a new
query and data representation that allows zero-shot cost models to be
pre-trained across databases and thus be used out-of-the-box (or with
minimal fine-tuning only) on unseen databases.

In fact, as depicted in Figure 12.1 zero-shot cost models can thus
provide a high accuracy and even outperform existing workload-
driven approaches that have been trained on large sets of training
queries. One could now argue that it might be a significant effort
to collect sufficient training data across databases for pre-training a
zero-shot model. However, in contrast to workload-driven models,
which require training data for every unseen database, training data
collection is a one-time effort; i.e., once trained the zero shot model
can be used for any new unseen database. In fact, in our evaluation
we show that zero-shot models can provide high accuracies for a wide
variety of real-world databases. Moreover, historical traces can be used,
which eliminates the need to collect any training data. For example,
cloud providers such as AWS, Microsoft, or Google, typically anyway
keep logs of their customer workloads, which could directly be used
as training data for zero-shot learning without collecting any further
training data.

A key aspect to enable zero-shot learning is that a cost model can
be transferred to new (unseen) databases, i.e., the models leverage
observed query executions on a variety of different databases to predict
runtimes on new (unseen) databases. However, state-of-the-art model
architectures used for workload-driven learning do not support this
training and inference mode since they are tied to a particular database.
As a core novel contribution for zero-shot cost models we thus devise
a new model architecture based on a representation of queries that
generalizes across databases using a transferable representation with
features such as the tuple width that can be derived from any database.
Moreover, zero-shot models separate concerns; i.e., data characteristics

202 zero-shot cost models for out-of-the-box learned cost prediction

of a new database (e.g., rows of tables) are not implicitly learned as in
classical workload-driven learning (which hinders generalization), but
are provided as input to the model.

Another core question for zero-shot models is at which point a
sufficient amount of different training databases and workloads was
observed to generalize robustly to unseen databases. To answer this
question, as a second contribution in this paper we derive a method
to estimate how accurate the runtime estimations of zero-shot models
will be for unseen databases. We also discuss how to address cases of
workload drifts where the zero-shot models are expected to generalize
less robustly. Furthermore, we also show that zero-shot models are
widely applicable beyond cost models for query optimizers for single-
node DBMSs, which is the main focus of this paper. For instance, we
have initial results that zero-shot cost models can be naturally ex-
tended to distributed DBMS or even other use cases such as providing
cost estimates for design advisors where the goal is to automatically
find a suitable database design (e.g., a set of indexes) for a given work-
load. Due to space constraints, we defer these results to an extended
technical report.

Finally, in our extensive experimental evaluation, we verify that
zero-shot cost models generalize robustly to unseen databases and
workloads while providing cost estimates which are more accurate
than those of workload-driven models. As part of this evaluation,
we also provide a new benchmark (beyond JOB), which is necessary
to evaluate cost estimation models more broadly on a variety of
(real-world) databases. We will make this benchmark including query
executions for training cost models publicly available and hope that it
will benefit future research in learned cost estimation and potentially
beyond.

outline In Section 12.2, we give an overview of our approach and
describe the model architecture in more detail in Section 12.3. We then
derive formal methods to recognize when sufficient training data is
available for the model to generalize in Section 12.4. Before discussing
the evaluation in Section 12.6, we describe the design decisions for
our proposed benchmark to evaluate cost models. Finally, we present
related work (Section 12.7) and conclude in Section 12.8.

12.2 overview

In this section, we introduce the problem of zero-shot cost estimation
and then present an overview of our approach.

12.2 overview 203

12.2.1 Problem Statement

The overall goal of zero-shot cost estimation is to predict query laten-
cies (i.e., runtimes) on an unseen database without having observed
any query on this unseen database. Throughout this paper we use
the term database to refer to a particular dataset (i.e., a set of tables
with a given data distribution). Note that the problem of zero-shot
cost estimation is thus in sharp contrast to the problem addressed by
state-of-the-art workload-driven cost models, which train a model per
database. Finally, while we believe that zero-shot learning for DBMSs
is more generally applicable, we restrict ourselves in this paper to cost
estimations for relational DBMSs. In particular, zero-shot cost mod-
els for other types of systems such as graph-databases or streaming
systems are interesting avenues of future work.

12.2.2 Our Approach

A key challenge for developing zero-shot cost models is the question
how to design a model that allows to generalize across databases. Here,
we draw inspiration from the way classical cost models in DBMSs are
designed. Typically, these consist of two models: a database-agnostic
model to estimate the runtime cost and a database-dependent model
(e.g., histograms) to capture data characteristics. When predicting the
cost of a query, the estimated cardinalities and other characteristics
(i.e., outputs of the database-dependent models) serve as input to
the general database-agnostic cost model, which captures the general
system behavior (e.g., the costs of a sequential scan grows linearly
w.r.t. the number of rows). While the classical models are lightweight,
they often largely under- or overestimates the true costs of a query
since models are too simple to capture complex interactions in the
query plan and data.

Hence, in our approach, we also separate concerns but use a much
richer learned model, which similarly takes data characteristics of the
unseen database as input to predict query runtimes in a database-
agnostic manner. As depicted in Figure 12.2 (upper part), for training
such a zero-shot cost model we provide different query plans along
with the runtime as well as the data characteristics of the plan (such
as tuple width as well as intermediate cardinalities) to the zero-shot
cost model. Once trained, the model can be used on unseen databases
to predict the query runtime as shown in Figure 12.2 (lower part).

As mentioned before, to predict the runtime of a query plan on a
new (unseen) database, we feed the query plan together with its data
characteristics into a zero-shot model. While data characteristics such
as the tuple width can be derived from the database catalogs, other
characteristics such as intermediate cardinalities require more complex
techniques. To derive intermediate cardinalities of a query plan in our

204 zero-shot cost models for out-of-the-box learned cost prediction

Join

Scan T1 Scan T2
DB1

DB2

2100ms

Join

Scan T1

420ms

Join

Scan T1 Scan T2

270ms

Transferable Representation

Training a Zero-Shot Cost Model
(one-time-effort)

Variety of Databases Queries and Runtimes

Training
Data

annotate

Data
Characteristics

... ...

DBx

Data
Characteristics

Zero-Shot
Cost Model

Inference on Unseen Database
(for every new database)

PredictionUnseen Database and Query

Figure 12.2: Overview of Zero-Shot Cost Estimation. The zero-shot cost
model is trained once using a variety of queries and databases.
At inference time, the model can then provide cost estimates for
an unseen database and queries without requiring additional
training queries. Enabling zero-shot cost estimation is based
on two key ideas: (1) a new transferable query representation
and model architecture is used to enable cost predictions on
unseen databases and (2) we separate concerns, i.e., a zero-shot
model learns a general database-agnostic cost model, which
takes database-specific characteristics as input.

12.2 overview 205

approach we thus make use of data-driven learning [72, 185] that can
provide exact estimates on a given database. Note that this does not
contradict our main promise of zero-shot learning since data-driven
models to capture data characteristics can be learned without queries
as training data.

Another core challenge of enabling zero-shot cost models that can
estimate the runtime of a plan given its data characteristics is how
to represent query plans, which serve as input to the model. While
along with workload-driven cost models, particular representation
methods for query plans have already been proposed, those are not
applicable for zero-shot learning. The reason is that the representations
are not transferable across databases. For instance, literals in filter
predicates are provided as input to the model (e.g., 2021 for the
predicate movie.production_year=2021). However, the selectivity of
literals will vary largely per database since the data distribution will
likely be different (e.g., there might not even exist movies produced in
2021 in the test database).

Hence, as a second technique in this paper, we propose a new
representation for queries that completely relies on features that can
be derived from any database to allow the model to generalize to
unseen databases. For example, predicates for filter operations in a
query are encoded by the general predicate structure (e.g., which
data types and comparison operators are used in a predicate) instead
of encoding the literals. In addition, data characteristics of a filter
operator (e.g., input and output cardinality to express the selectivity)
are provided as additional input to a zero-shot model. That way, a
zero-shot model can learn the runtime overhead of a filter operation
based on database-agnostic characteristics. We present details of our
query representation in Section 12.3.

Finally, a last important aspect of zero-shot cost models is that they
can easily be extended to few-shot learning. Hence, instead of using
the zero-shot model out-of-the box (which already can provide good
performance), one can fine-tune the model with only a few training
queries on an unseen database.

12.2.3 Assumptions and Limitations

While we expect zero-shot cost models to support a variety of dif-
ferent databases and workloads out-of-the-box, we next discuss the
assumptions for a successful generalization.

In this paper, the main assumption is that we only focus on the
transfer of learned cost models across databases for a single database
system on a fixed hardware. We think that this is already challenging
and allows for many interesting use cases. For instance, with zero-
shot cost models cloud DBMSs (such as Redshift or Snowflake) can
use learned cost models for new customer databases and workloads

206 zero-shot cost models for out-of-the-box learned cost prediction

with significantly lower training overhead compared to the existing
workload-driven models that require that a model is trained per new
database. While we believe that zero-shot cost models can be extended
to support also the transfer of cost models between different hardware
setups and DBMSs by adding additional transferable features, we
leave this to future work and assume a fixed hardware and DBMS in
this paper.

Furthermore, while zero-shot cost models can generalize to unseen
query patterns as we show in our experiments, it is clearly required
that the training queries have a certain coverage, i.e., come with a
diverse set of workloads and databases. For instance, it is a minimum
requirement that every physical operator is observed in the training
data s.t. the model can internalize the overall characteristics. Moreover,
if there are extreme differences between training and test workloads,
we expect the zero-shot model accuracy to degrade. We discuss how
to detect and mitigate such cases by fine-tuning a zero-shot model in
Section 12.4.

12.3 zero-shot cost models

As mentioned in Section 12.2, a zero-shot cost model (once trained)
is able to predict the runtime of a query on an entirely new database
without retraining. A core building block needed to enable a zero-shot
model is a new representation of queries that can generalize across
databases. In the following, we thus first explain how we devised such
a transferable query representation and then discuss how inference
and training of a zero-shot model that uses this representation works.

12.3.1 Query Representation

State-of-the-art workload-driven models [79, 161] for cost estimation
do not use a transferable query representations and can thus only be
used on the database they were trained on. To better understand why
current query representations are not transferable, we first explain
how they typically encode queries.

12.3.1.1 Query Representation for Workload-Driven Models.

At the core, query representations used for workload-driven ap-
proaches hard-code the model against a single database. For example,
column names (e.g., those used in filter predicates) are typically en-
coded using a one-hot encoding assigning each column present in
the database a specific position in a feature vector. For instance, the
column production_year of the IMDB dataset might be encoded us-
ing the vector (0, 1, 0) (assuming that there are only three columns in
total). If the same model should now be used to predict query costs for
the SSB dataset, some columns might not even exist or even worse they

12.3 zero-shot cost models 207

Ag
gr

eg
at

e

H
as

h
Jo

in

Se
q

Sc
an

H
as

h

Se
q

Sc
an

Ta
bl

e
Ta

bl
e

C
ol

um
nM

IN
(..

.)

=

C
ol

um
n

C
ol

um
n

C
ol

um
n

SE
LE
CT
 M
IN
(t
.p
ro
du
ct
io
n_
ye
ar
)
FR
OM
 t
it
le
 t
,
mo
vi
e_
co
mp
an
ie
s
mc
 W
HE
RE
 t
.i
d=
mc
.m
ov
ie
_i
d
AN
D
mc
.c
om
pa
ny
_t
yp
e_
id
=2
;

G
ra

ph
 E

nc
od

in
g

w
ith

 T
ra

ns
fe

ra
bl

e
Fe

at
ur

es

21
00

ms

M
es

sa
ge

 P
as

si
ng

In
pu

t Q
ue

ry

1
3

4
N

od
e

En
co

di
ng

2
R

un
tim

e
Pr

ed
ic

tio
n

Es
tim

at
io

n
M

LP

In
iti

al
iz

e
H

id
de

n
St

at
es

 u
si

ng
 M

LP
pe

r N
od

e
Ty

pe

=

fe
at
ur
es
 x

8
op
na
me
:
sc
an

ca
rd
ou
t:
 5
50
k*

wi
dt
h:
 4

*I
np

ut
 f

ro
m

Da
ta

-
Dr

iv
en

 M
od

el

fe
at
ur
es
 x

1
re
lp
ag
es
:
21

fe
at
ur
es
 x

5
da
ta
_t
yp
e:
 i
nt
eg
er

fe
at
ur
es
 x

7
op
er
at
or
:
=

h 1
3

h 1
1

h 8
→

h'
8

h 1
0

h 9

h'
0

h'
1

h'
2h 1

2

h'
6

h'
3

h'
4

h'
5

h'
7

C
om

bi
ne

 C
hi

ld
 H

id
de

n
St

at
es

 a
nd

 p
ro

pa
ga

te
 u

p
e.

g.
,

h'
8=

M
LP

' op
er

at
or

(h
8⊕

(h
' 1+

h'
7)

)

Bo
tto

m
-U

p
M

es
sa

ge
 P

as
si

ng

tit
le

m
ov

ie
_c

om
pa

ni
es

0

e.
g.

, h
8=

M
LP

op
er

at
or

(x
8)

=M

LP
op

er
at

or
([0

 1
 5

50
 4

]),

w
he

re
 o

pn
am

e=
sc

an
 is

en
co

de
d

as
 [0

 1
]

In
pu

t:
H

id
de

n
St

at
e

of
 R

oo
t

N
od

e
(C

ap
tu

re
s

en
tir

e
Pl

an
)

Jo
in

 P
re

di
ca

te
s

Ta
bl

e
N

od
e

w
ith

 T
ra

ns
f.

Fe
at

ur
es

 in
st

ea
d

of
 O

ne
-

H
ot

-E
nc

od
in

g

Fi
gu

re
1

2
.3

:U
si

ng
Z

er
o-

Sh
ot

M
od

el
s

fo
r

C
os

tE
st

im
at

io
n

(i.
e.

,f
or

In
fe

re
nc

e)
on

an
un

se
en

D
at

ab
as

e.
(1

)A
qu

er
y

is
re

pr
es

en
te

d
as

a
gr

ap
h

w
ith

di
ff

er
en

t
no

de
ty

pe
s

(t
o

re
pr

es
en

tp
la

n
op

er
at

or
s,

pr
ed

ic
at

es
,t

ab
le

s,
co

lu
m

ns
et

c.
)a

nd
no

de
s

ar
e

an
no

ta
te

d
w

ith
tr

an
sf

er
ab

le
fe

at
ur

es
,w

hi
ch

ge
ne

ra
liz

e
ac

ro
ss

da
ta

ba
se

s.
(2

)
A

ft
er

w
ar

ds
,t

he
re

su
lti

ng
fe

at
ur

e
ve

ct
or

s
of

th
e

no
de

s
ar

e
fe

d
in

to
no

de
-t

yp
e-

sp
ec

ifi
c

M
ul

ti-
La

ye
r-

Pe
rc

ep
tr

on
s

(M
LP

s)
to

ob
ta

in
a

hi
d

d
en

st
at

e,
w

hi
ch

is
(3

)
p

ro
p

ag
at

ed
th

ro
u

gh
th

e
qu

er
y-

tr
ee

u
si

ng
bo

tt
om

-u
p

m
es

sa
ge

p
as

si
ng

to
ac

co
u

nt
fo

r
in

te
ra

ct
io

ns
am

on
g

co
nn

ec
te

d
no

de
s.

(4
)

Fi
na

lly
,t

he
hi

dd
en

st
at

e
of

th
e

ro
ot

no
de

(e
nc

od
in

g
th

e
en

tir
e

gr
ap

h)
is

fe
d

in
to

a
fin

al
m

od
el

—
th

e
es

tim
at

io
n

M
LP

—
w

hi
ch

pr
ed

ic
ts

th
e

qu
er

y
ru

nt
im

e.

208 zero-shot cost models for out-of-the-box learned cost prediction

might exist but have very different data distributions or even a differ-
ent data type. In fact, non-transferable feature encodings are not only
used for columns but in various places of the query representation
such as encoding table names or literals in filter predicates.

12.3.1.2 Query Representation for Zero-Shot Cost Models.

Hence, for zero-shot cost models we require a new query represen-
tation that is transferable across databases. The main idea of the
transferable representation we suggest in this paper is shown in Fig-
ure 12.3. At the core, a query plan and the involved tables and columns
are represented using a graph where graph nodes use transferable fea-
tures (1) (i.e., features that provide meaningful information to predict
runtime on different databases). This representation then serves as
input for the training and inference process of zero-shot cost models
(2)-(4) that we explain in the subsequent sections. In the following, we
discuss the graph encoding of the transferable featurization in detail.

graph encoding of query plans . While graph-based repre-
sentations have been already used to represent query operators of a
query plan [161], our representation has significant differences. First,
as shown in Figure 12.3 (1), our representation not only encodes
physical plan operators as nodes (gray) in the graph as in previous
work [161], but it also covers all query plan information more holis-
tically using different nodes types for input columns (green), tables
(blue) as well as predicate information (red). Second, as discussed
before, previous approaches also covered such information, however,
they used one-hot-encodings (which are non-transferable) while our
representation captures the query complexity in a transferable way.

For instance, to encode filter predicates, different from previous
approaches we encode the predicate structure as nodes (red) without
literals. In particular, we encode information such as data types of
the columns and operators used for comparisons. For example, the
filter predicate company_type_id=2 for the query (0) in Figure 12.3, is
encoded using a column node (x5) with the comparison node = (x7). As
such, a zero-shot cost model provided with the transferable features
(e.g., intermediate cardinalities, which are given by the data-driven
models) can infer the complexity of the predicates to estimate the
query runtime.

transferable featurization. While our graph representation
allows to flexibly encode query plans across databases, we similarly
have to make sure that the features used to represent nodes in the
graph (1) (e.g., plan operators as shown in gray) are transferable.
In particular, when used on different databases, features should not
encode any implicit information that hinder the transfer of the model
to a new unseen database.

12.3 zero-shot cost models 209

The concrete set of such features used for the different node types
in our graph representation is depicted in Table 12.1 specifically for
zero-shot cost models on Postgres, which we use as DBMS in all our
experiments. For instance, input column nodes (green) use features
such as the data type or the width in bytes. Similarly, for tables (blue
nodes), we use other transferable features (e.g., the number of rows as
well as the number of pages on disk). However, note that the general
class of features allows cost predictions also for other single-node
DBMSs such as MySQL. The rationale for selecting these features
is to include transferable features that cover very different aspects
aspects regarding the query (e.g., involved operators, column types in
predicates) as well as the data (e.g., queried tables, data distribution).
As we will show in an ablation study in the evaluation, each such
aspect with the corresponding individual features improves the cost
estimation accuracy.

Importantly, transferable features can either characterize the query
plan (e.g., operator types) or represent the data characteristics (e.g.,
intermediate cardinalities) and together allow a zero-shot cost model
to generalize to an unseen database. For transferable features that
represent data characteristics many can be derived from the metadata
of a database (such as the the number of rows of a table node). How-
ever, some other features that represent data characteristics — e.g.,
the estimated output cardinality of an operator node — require more
involved techniques. In Section 12.3.4, we discuss alternatives of how
we provide estimated output cardinalities to zero-shot cost models.

12.3.2 Inference on Zero-Shot Models

Once a query graph with the transferable features on an unseen
database is constructed for a query plan, it can be used as input for a
(trained) zero-shot cost model to predict the runtime. Predicting the
runtime of a new query plan with a zero-shot cost model is executed
in three steps, which we depict as pseudocode in Algorithm 4: First,
we compute a hidden state for every node of the query graph (2) given
the node-wise input features. Second, the information of different
graph nodes is combined using message passing (3) before a Multi-
Layer-Perceptron (MLP) predicts the runtime of the query plan (4).
The same steps are also reflected in Figure 12.3 (2) to (4).

In particular, in step (2), the feature vectors xv of each graph node v
are encoded using a node-type specific MLP, i.e., nodes of the same
type (e.g., all plan operators) use the same MLP to initialize their hid-
den state hv (line 5). For instance, in Figure 12.3, the hidden state h8

of the node representing the sequential scan on the movie_companies

table is obtained by feeding the feature vector x8 (containing transfer-
able features) into an MLP, which is shared among all plan operators
(gray nodes).

210 zero-shot cost models for out-of-the-box learned cost prediction

Node Type/Category Feature Description

Operators/ workers Number of parallel workers

Data Distribution opname Name of physical operator

cardout Estimated output cardinality of op-
erator

width Tuple width

card_prod Estimated product of children out-
put cardinalities

Predicate operator Operator type (e.g., =)

literal_feat Feature capturing literal complex-
ity, e.g., number of values for IN

operator or regex complexity

Table relpages Number of pages

reltuples Number of rows

Input Column width Avg. number of bytes to represent
a value

correlation Attribute correlation with row
number

data_type Data type of column

ndistinct Number of distinct attribute val-
ues

null_frac Fraction of NULL values

Output Column aggregation Which aggregation type is used

Table 12.1: Zero-Shot Features. All features are transferable and have the
same semantics for different databases.

Afterwards, in step (3), a message passing scheme is applied, which
is prominently used in graph neural networks (GNNs) [54] to model
the interactions between nodes in graphs (i.e., to capture interactions
of query operators in the plan such as effects of a pipelined query
execution). Different from message passing schemes for general graph
encodings, for the message passing in zero-shot models we can exploit
the fact that queries can be represented as directed acyclic graphs
(DAGs) since query-plans are tree-structured. We thus use a novel
bottom-up message passing scheme through the graph (i.e., in topo-
logical ordering) to obtain an updated hidden state h′v of a node v that
contains all information of the child nodes. During this pass, the up-
dated hidden states h′u of the children u are combined by summation
[190] and concatenated with the initial hidden state hv of a node and
fed into a node-type-specific MLP (line 7). For instance, in Figure 12.3,
the updated hidden state h′8 of the scan node is obtained by summing
up the updated hidden states of the child nodes (representing the
table and predicate operator of the scan) concatenated with the initial
hidden state (capturing properties of the scan), which is then fed into
an MLP, which is again shared among all plan operators.

Finally, as a result of step (3) the updated hidden state h′r of the
root node r of a query plan captures the properties of the entire query.
For the cost prediction in step (4), we thus feed this hidden state into
a final estimation MLP to obtain the cost estimate ĉ = MLPest(hr)

12.3 zero-shot cost models 211

Algorithm 4 Inference on Zero-Shot Models
1: Input: Query graph encoding with nodes v and input features xv
2: Output: Cost estimate ĉ
3:
4: for v ∈ graph encoding do . Compute hidden state per node (2)
5: hv ← MLPT(v)(xv)

6: for v ∈ in topological ordering do . Bottom-up pass in graph (3)
7: h′v ← MLP′T(v)

(
∑u∈children(v) h′u ⊕ hv

)
8: ĉ← MLPest(h′r) . Estimate costs using root node state (4)
9: return ĉ

(line 8). Hence, in Figure 12.3 (4), the updated hidden state h′13 is
fed into the final estimation MLP to obtain the cost estimate since it
captures information of the entire plan.

12.3.3 Training Zero-Shot Models

As mentioned before, a zero-shot cost model is trained on several
databases and queries to learn the runtime complexity of query plans
given the input features. To be more precise, a zero-shot cost model is
trained in a supervised fashion using pairs (P, c) that consists of a plan
P with the respective features and the actual runtime cost c. Impor-
tantly, all steps described in the inference procedure (node encoding,
message passing and finally runtime estimation) are differentiable,
which allows us to train the model parameters of the MLPs used for
all zero-shot model components jointly in an end-to-end fashion. As
loss function to compare the actual costs c of a featurized query plan
P with the estimated costs ĉ, we use the Q-error loss max(c

ĉ , ĉ
c) [79,

161] since this worked best for zero-shot models compared to other
alternatives.

12.3.4 Deriving Data Characteristics

As discussed before, an important aspect of a zero-shot model is
that the model is not tied to a particular data distribution of a single
database. For enabling this, we provide data characteristics such as
column widths in bytes, number of pages and tuples of tables but also
output cardinalities of operators as input to those models. To be more
precise, given a particular query plan for which the runtime should
be estimated, those features have to be annotated for each graph node
in the query encoding.

While the majority of those features can simply be derived from
the database catalog, intermediate cardinalities in a query plan are
notoriously hard to predict and simple statistics are known to be
often imprecise [93]. Hence, learned approaches to tackle cardinality

212 zero-shot cost models for out-of-the-box learned cost prediction

estimation have been proposed to derive accurate intermediate cardi-
nalities. While in principle such learned approaches can be used to
predict intermediate cardinalities, which are then used as input for
the zero-shot models, there are important trade-offs when choosing
which techniques are suitable for zero-shot learning. In the following,
we discuss these aspects.

First, a zero-shot cost model should be able to predict query run-
times on databases that were not seen before without relying on an
observed workload on that database. Since workload-driven models
for cardinality estimation require such queries as training data, they
are not suited for our purpose of predicting cardinalities for zero-
shot models. Second, traditional histogram-based approaches have
the advantage that no additional efforts are required since the query
optimizers anyway have built-in techniques. However, they are often
imprecise. Third, data-driven models are more precise but also need
to be trained. However, the training does not rely on query executions
and is thus usually just in the order of minutes. Unfortunately, state-
of-the-art data-driven cardinality estimators do not yet support the
same variety of different queries as traditional approaches.

Hence, we have two options to supply zero-shot cost models with
intermediate cardinalities. First, we can train a data-driven model,
which results in more accurate cardinality as input to a zero-shot
model and thus also cost estimates. However, if the effort of training
a data-driven model for a new database is not acceptable or the
workload is not supported by data-driven learning, we can fall back to
the cardinality estimates of the query optimizer. In our evaluation, we
will demonstrate that zero-shot models can still produce reasonable
estimates even if only cardinalities estimates from traditional models
are available.

12.4 robustness of zero-shot models

An important question for zero-shot models is at which point a suf-
ficient amount of different training databases (and workloads) was
observed to generalize robustly to unseen databases. As discussed in
Section 12.2.3, a minimum requirement is to have sufficient coverage of
the training data for the expected queries in the evaluation workload.
For instance, all operators should be observed at least once and the
number of joins, group by attributes as well as databases used for
pre-training etc. should be representative as well. However, it is still
interesting to provide an estimate of how precise the zero-shot cost
models will be for unseen databases and what can be done in cases of
more severe workload drifts which we will discuss below.

12.4 robustness of zero-shot models 213

12.4.1 Estimating the Generalization Performance

We first formalize the problem, before we derive a method to estimate
the generalization error. For training a zero-shot model, we have
observed n databases and workloads. In particular, for each of the
databases Di we have access to training data Ti in the form of query
plans and their runtimes Ti = {(P1, c1), (P2, c2), . . . (Pm, cm)}. We are
now interested in how accurately the zero-shot cost model Z will
predict the runtimes for plans T∗ on some unseen database D∗. In
particular, if the expected error is acceptable, we have observed a
sufficient amount of databases and workloads. More formally, we will
define some error metric E(Ti) with which we can compare the true
runtimes and model predictions for some database Di. An example for
such a metric could be the prominently used median Q-error. We are
now interested in estimating this error metric for an unseen database
E(T∗), i.e., the expected generalization error.

We now make use of statistical techniques to estimate the generaliza-
tion error. For instance, in ML it is standard practice to train the model
on a subset of the data and then use the remaining samples to estimate
the error for future unseen datasets. Analogously, we can train the
zero-shot model on a subset of the training databases T1, T2, . . . , Ti
(i.e., for a subset of databases) and evaluate the trained model on
the remaining databases Ti+1, . . . , Tn. Similar to cross validation, we
can repeat this procedure with different splits and average the test
errors to estimate the generalization error E(T∗), i.e., how accurate
the model is expected to be on an unseen database. Interestingly, this
is an unbiased estimator of the test error E(T∗) under the indepen-
dent identically distributed (i.i.d.) assumption, which we will discuss
shortly. Hence, using only the observed databases and queries, we
can estimate how accurate the model predictions for unseen databases
will be.

In order to now evaluate whether the model has observed a suffi-
cient amount of databases and workloads, we can use two techniques.
First, we can simply estimate the generalization error as described
above and stop the training if it is sufficient. However, in this case
we have to decide which generalization error is acceptable. A second
technique (which we actually use in this paper) is to estimate if addi-
tional training databases will improve the generalization performance.
For this, we train the model on subsets of all training databases. If the
estimated generalization error E(T∗) does not improve significantly
for a larger number of training databases, we can conclude that addi-
tional databases will not improve the generalization capabilities of the
zero-shot cost model and thus stop the training data collection.

214 zero-shot cost models for out-of-the-box learned cost prediction

12.4.2 Tackling Workload and Data Drifts

The performance of zero-shot cost models will deteriorate if the new
database and workload is significantly different from the training data.
While data drifts can be handled by providing up-to-date cardinality
estimates (from simple or data-driven models) as we show in our
experiments, workload drifts need a more careful handling. For in-
stance, if there are significantly larger joins in the unseen database
than for the training databases, the zero-shot model might not be
able to predict the runtime with the same high accuracy. As we will
show in our experimental evaluation, however, zero-shot cost models
can often still generalize robustly in practice and can provide more
accurate estimates than other baselines in case of workload drifts. In
addition, we suggest a strategy to detect cases of workload drifts by
monitoring the test error and propose to tackle workload-drifts using
few-shot learning.

Note that in cases of workload drifts the i.i.d. assumption does not
hold and the Q-error on the unseen database is larger than implied
by the generalization error. More technically, the i.i.d. assumption is a
common assumption in ML that requires that the training datasets and
test datasets are independent samples of some distribution D. Due to
a workload drift, the samples are no longer independent and thus the
generalization error E(T∗) might be increased. A simple yet effective
strategy to recognize those cases is thus to monitor the error for unseen
databases during inference. In cases where the error exceeds a certain
threshold, one could decide to fine-tune the zero-shot model using
the additional observed queries as training data (resulting in few-shot
models). We will demonstrate in the experimental evaluation that
zero-shot cost models fine-tuned on a small number of additional
queries can significantly improve the accuracy on the unseen database
in such cases.

12.5 a new benchmark

In order to properly train and evaluate cost models, we require both a
diverse set of databases and executed workloads on these databases.
Since currently there is no suitable benchmark with such properties,
we created a new benchmark (that includes existing benchmarks such
as JOB), which we discuss in this section. Furthermore, we will make
this benchmark publicly available to foster future research in this area.

12.5.1 Design Decisions

For many years, DBMS systems were evaluated using synthetic bench-
marks such as TPC-H [169], TPC-DS [123] or SSB [128]. While such
benchmarks allow to evaluate the general system performance and

12.5 a new benchmark 215

scalability, they are in isolation insufficient to evaluate cost prediction
models since the predicted cardinalities of the query optimizer are
significantly more accurate than in practice. The reason is that the data
is synthetic and thus no interesting correlations have to be captured
making cardinality estimation challenging in practice. Hence, Leis et al.
[93] suggested the JOB-workload on the IMDB dataset that comes with
challenging correlations and has become the standard method (along
with the simplified JOB-light workload [79]) to evaluate learned cost
and cardinality models.

While the IMDB benchmark is useful to evaluate workload-driven
cost estimators that need to work on a single database only, it cannot
be used for the evaluation of zero-shot cost models since these have
to be trained on a variety of different databases. Moreover, even
for workload-driven cost estimators a benchmark that spans a more
diverse set of databases would definitively be helpful to evaluate the
prediction quality. Hence, we decided to create a new benchmark that
covers established datasets such as IMDB but also additional datasets
that have other characteristics.

12.5.2 Datasets

As discussed before, it is insufficient to just add synthetic datasets
since correlations hardly resemble data distributions found in the
real-world. We thus decided to leverage publicly available real-world
datasets [120] together with the datasets used in established benchmarks
such as JOB. Since certain databases were very small in size, we addi-
tionally scaled them to larger sizes to be interesting for cost estimation
(s.t. a sample of queries takes a predefined threshold of time). In
addition to the datasets mentioned before, we also include data and
workloads of existing benchmarks such as SSB and TPC-H. As these
benchmarks rely on synthetic data, this further increases the variety
of data characteristics our benchmark covers for testing learned cardi-
nality estimators. Overall, the benchmark comprises of 20 databases
that vary largely in the number of tables, columns and foreign-key
relationships.

12.5.3 Workloads and Traces

Furthermore, for benchmarking learned cost models, workloads are re-
quired for training and testing. To simplify the comparison with prior
work we first include predefined benchmark queries for databases
that come with such workloads (e.g., JOB for IMDB). However, since
for the majority of the databases mentioned before no workloads are
available, we implemented a workload generator that generates differ-
ent types of queries. For creating the workload, the generator supports
three modes: a standard mode where Select-Project-Aggregate-Join
(SPAJ) queries with conjunctive predicates on numeric and categorical

216 zero-shot cost models for out-of-the-box learned cost prediction

columns similar to the ones used by Kipf et al. [79] are generated, a
more complex mode, which includes predicates involving disjunctions,
string comparisons with regex predicates, IS (NOT) NULL comparisons
and IN operators (resembling the complexity of the JOB-workload)
and finally an index workload where random indexes (both foreign
key and for predicate columns) are created throughout the execution
of the standard workload, which is challenging due to the varying
physical designs. Since the benchmark will be publicly available it can
be easily extended in the future.

In addition to the datasets and the workload generator, the bench-
mark comes with workload traces (e.g., executions of the queries
and their runtime) for all 20 databases that can be used directly by
other researchers as training / testing data (which we also used in
our evaluation). To be more precise, we generated 15, 000 queries per
database and executed those queries on a Postgres DBMS (v12) on
c8220 nodes on the cloudlab platform. Overall, this also allows for
a better reproducibility since this platform can be used by other re-
searchers as well. To limit the already excessive resource consumption
required to produce this trace, we excluded queries running longer
than 30 seconds from the benchmark for all workloads. In total, the
execution of these more than 300k queries takes 10 days if executed on
a single node. As part of the traces, we not only provide the runtime
of the query but also the physical plan used to run the query along
with actual cardinalities.

12.6 experimental evaluation

In this Section, we evaluate zero-shot cost estimation with a set of
different experiments:

• Exp 1. Zero-Shot Accuracy on Unseen Databases. We evalu-
ate how accurately zero-shot cost models can predict costs for
unseen databases.

• Exp 2. Zero-Shot vs. Workload-Driven. In addition, we com-
pare the training overhead and accuracy with state-of-the-art
workload driven approaches.

• Exp 3. Generalization. In this experiment, we study how our
models generalize under workload drifts (i.e., under database
updates and larger unseen joins).

• Exp 4. Training and Inference Performance. Furthermore, we
evaluate the training and inference performance of zero-shot
cost models and compare training efforts to workload-driven
models.

• Exp 5. Ablation Studies. Finally, we show the effects of different
design alternatives of zero-shot models as well as a study where

12.6 experimental evaluation 217

A
cc

id
en

ts
A

ir
lin

e
B

as
eb

al
l

B
as

ke
tb

al
l

C
ar

ci
no

ge
ne

si
s

C
on

su
m

er
C

re
di

t
E

m
pl

oy
ee

F
hn

k
F

in
an

ci
al

G
en

ee
a

G
en

om
e

H
ep

at
it

is
IM

D
B

M
ov

ie
le

ns
S

S
B

S
ez

na
m

T
P

C
-H

T
ou

rn
am

en
t

W
al

m
ar

t

0

5
M

ed
ia

n
Q

-E
rr

or

S
S

B
(O

ri
g.

W
or

kl
oa

d)
T

P
C

-H
(O

ri
g.

W
or

kl
oa

d)

Scaled Optimizer Costs (Postgres)

Zero-Shot
(Est. Cardinalities)

Zero-Shot
(DeepDB Est. Cardinalities)

Zero-Shot
(Exact Cardinalities)

Figure 12.4: Zero-Shot Generalization across Databases. The zero-shot mod-
els are trained using workloads on 19/20 databases and tested
on the remaining unseen database. Overall, zero-shot models are
significantly more accurate than the scaled estimates of the opti-
mizer cost model. In addition to using workloads as defined by
our benchmark (left), we repeated this experiment with standard
benchmark workloads (SSB and TPC-H on the right) to further
show the generalization potentials of zero-shot cost models.

we determine how many database are sufficient for zero-shot
cost models to generalize.

For all experiments, we use the traces of the benchmark discussed
before (for training and testing).

12.6.1 Exp 1: Zero-Shot Accuracy on Unseen Databases

First, in order to evaluate the accuracy of zero-shot cost models, we
trained a zero-shot model using workloads on 19 out of the 20 datasets
of the benchmark as training data and evaluated the model on the
workload of the unseen (remaining) database. In particular, we use
the trained model to predict the runtimes of the queries on the unseen
database and report the median Q-error. In the first experiment, we
focus on the standard workloads and defer the results of the complex
and index workloads of our benchmark to follow-up experiments. For
this experiment, we ran each setup three times using different seeds
for the cost estimation for every unseen database.

For showing the performance of zero-shot cost models on unseen
databases, we used two variants of providing intermediate cardinal-
ities - we either used predictions of learned cardinality estimators
or the actual cardinalities, which are not available in practice prior
to execution but serve as an interesting upper baseline for zero-shot
learning (i.e., how accurate the predictions become with perfect cardi-
nality estimates). For the data-driven cardinality estimator, we trained
DeepDB [72] models, which worked best in preliminary experiments.
To the best of our knowledge, we are the first to propose zero-shot
cost estimation and thus no other learned approaches are included

218 zero-shot cost models for out-of-the-box learned cost prediction

as a direct baseline in this first experiment where we aim to analyze
the accuracy on unseen databases. For instance, workload-driven ap-
proaches would need query executions on the unseen database, which
we do not provide in the zero-shot setting. However, we compare our
approach with workload-driven models in Section 12.6.2.

As a sanity check that zero-shot models provide better performance
than classical cost estimation models that rely on simple (non-learned)
techniques (and as such could also count as zero-shot cost models),
we use cost estimates coming from the Postgres query optimizer as a
baseline similar to previous work [161]. Moreover, for the distributed
setup we later on also employ the cost estimates of a commercial
cloud DBMS. Since Postgres cost estimates are provided as abstract
cost units, we use a simple linear model on top of Postgres estimates
(and hence the results are called Scaled Optimizer), which provides
actual query runtimes. Different from [161], which directly take the
cost units as runtime (in ms), using a linear model on top results in a
much lower Q-error for Postgres. For training the simple linear model
we are using the same training data from the other 19 databases as for
zero-shot models to be fair.

The results can be seen in Figure 12.4. In general, the zero-shot
models offer robust performances for all of the databases despite
the varying complexity. In fact, all median Q-errors are below 1.54
for the version using DeepDB cardinality estimates (vs. 8.62 in the
worst case for the Scaled Optimizer cost). Finally, we can see that zero-
shot cost models using DeepDB cardinalities are almost matching the
performance with perfect cardinalities. This suggests that the models
can cope with partially inaccurate cardinalities. Indeed, as we will see
in a follow-up experiment, this even holds when we use potentially
inaccurate cardinality estimates coming from a classical optimizer
instead.

Overall, we can see that the zero-shot cost models are significantly
more accurate than the scaled optimizer estimates outperforming
these on 18 out of 19 datasets and being on par for the last remaining
dataset (Airline). The reason is that zero-shot cost models capture
subtleties in operator performance and interactions of operators in
the plan more accurately than simplistic cost models. The results are
just on par for the remaining database since the optimizer costs are
relatively accurate because it is merely a star schema, i.e., a relatively
simple schema structure.

To demonstrate that zero-shot cost models also improve the esti-
mates for workloads of traditional benchmarks, we repeat the previous
experiment with the original benchmark queries of SSB and TPC-H.2

Again we train on 19 out of 20 datasets (excluding either SSB or

2 For SSB, we used all queries as-is. For TPC-H, since our current implementation does
not support the subplan operator of Postgres, we rewrote subqueries using joins.
However, we believe that our approach can also be extended to support subqueries.

12.6 experimental evaluation 219

102 103 104

1.25

1.50

2.00

3.00

Q
-E

rr
or

(M
ed

ia
n)

Scale

102 103 104

1.25

1.50

2.00

3.00
Synthetic

102 103 104

1.25

1.50

2.00

3.00
JOB-light

102 103 104

2.00

5.00

10.00
15.00

Q
-E

rr
or

(p
95

)

102 103 104

2.00

5.00

10.00
15.00

102 103 104

2.00

5.00

10.00
15.00

102 103 104

Training Queries

0

25

50

E
xe

cu
ti

on
T

im
e

(h
)Scaled Optimizer Costs (Postgres)

MSCN (Workload-Driven)

E2E (Workload-Driven)

Zero-Shot (DeepDB Est. Cardinalities)

Zero-Shot (Exact Cardinalities)

Few-Shot (DeepDB Est. Cardinalities)

Few-Shot (Exact Cardinalities)

Figure 12.5: Estimation Errors of Workload-Driven Models for a varying
Number of Training Queries compared with Zero-Shot Cost
Models. Even the most accurate workload-driven model (E2E)
requires approximately 50k query executions on an unseen
database for a comparable performance with zero-shot models,
which is roughly equivalent to 66 hours of executed workload.
Since zero-shot models do not require any additional queries
it is significantly cheaper to deploy them for a new database.
However, zero-shot models can be fine-tuned to obtain few-shot
models, which further improve the accuracy.

TPC-H) and show the median Q-errors of both the baseline and our
approaches. Note that DeepDB does not support all operators in TPC-
H and thus we use Postgres cardinality estimates (orange bar in Figure
12.4) instead. As we can see, the results are very similar to the results
using our new benchmark for zero-shot cost estimation providing
additional evidence that zero-shot cost estimation can improve the
cost estimation accuracy on queries from standard benchmarks as
well.

12.6.2 Exp 2: Zero-Shot vs. Workload-Driven

In the following, we contrast the performance of zero-shot cost models
with workload-driven approaches.

training overhead. An interesting question is how many train-
ing queries are required for workload-driven learning on an unseen
database to match the performance of zero-shot learning, which we
will study next. In particular, in this experiment we evaluate the Q-
errors for the scale, synthetic, and JOB-light workloads (IMDB). As

220 zero-shot cost models for out-of-the-box learned cost prediction

before zero-shot models are not trained on IMDB at all (but on the
other 19 databases) while workload-driven models are trained on a
varying number of training queries on IMDB.

For the workload-driven approaches we use the E2E model pro-
posed by Sun and Li [161] as well as the MSCN model by Kipf et al.
[79]. The idea of the E2E models is to featurize the physical query plans
and feed them into a neural model to predict the runtime. However, in
contrast to zero-shot cost models the query plan representation is not
transferable and thus the train and test databases have to be identical.
The MSCN model, which was initially developed for cardinality esti-
mation uses a more high level representation and encodes the sets of
joins, predicates and tables of a query, which are then fed into a neural
architecture, which is thus oblivious of the physical plans used. Both
models are trained on a varying number of training queries, which are
generated for the IMDB dataset similar to the original training setup
used by Sun and Li [161]. Furthermore, as a last baseline, we again
employ the scaled costs of the Postgres query optimizer.

In Figure 12.5, we depict the median Q-error of comparing our zero-
shot performance to the baselines as discussed before for the IMDB
benchmark workloads for a varying number of training queries. As we
can see the zero-shot cost models can estimate the runtimes accurately
even though queries on the IMDB dataset were not observed in the
training data. In particular, E2E requires about 50k training queries on
the IMDB database to be on-par with zero-shot cost models. As we
can see in the lower right plot in Figure 12.5 this amount of queries
takes approximately 66 hours to run, which is a significant effort given
that it has to be repeated for every new database. Another interesting
comparison is to use the training queries also to fine-tune the zero-shot
models on the IMDB database; i.e., we use zero-shot models in the
few-shot mode discussed in the paper. As we can see, few-shot cost
models that are fine-tuned on the IMDB database can further improve
the cost estimation accuracy of zero-shot models. It is thus beneficial
to also leverage fine-tuning in case training queries for the unseen
database are available.

Finally, we can see that the MSCN models are not equally accurate,
which is likely due to the fact that they do not consider the physical
plan that was run to execute a given query. Still, all learned approaches
are more accurate than the scaled optimizer in the median after only
a few queries. Furthermore, we can observe that zero-shot and few-
shot cost models not only outperform workload-driven models in the
median but also in the tail performance, i.e., on the 95th percentile
Q-error. We can observe similar effects for the maximum Q-error.

complex queries . In this experiment, we next focus on the per-
formance for complex queries. For this, we again train on 19 datasets
and test on the IMDB database (this time using the complex benchmark
queries) using the JOB-Full benchmark, which (different from the

12.6 experimental evaluation 221

102 103 104

Number of Training Queries

1.25

1.50

2.00

4.00

M
ed

ia
n

Q
-E

rr
or

Scaled Optimizer Costs (Postgres)

E2E (Workload-Driven)

Zero-Shot
(Est. Cardinalities)

Zero-Shot
(Exact Cardinalities)

Few-Shot
(Est. Cardinalities)

Few-Shot
(Exact Cardinalities)

Figure 12.6: JOB-Full Workload. Zero-shot models are significantly more
accurate than the workload-driven model (E2E) and the scaled
optimizer estimates even for the complex JOB benchmark. Again
few-shot learning can further improve the performance of zero-
shot models.

other workloads on IMDB) contains also queries with a higher number
of joins and more complex predicates including pattern-matching
queries on strings. Note that data-driven models do not support com-
plex predicates and we thus resort to the cardinality estimates of the
query optimizer (Postgres) to inform the zero-shot model. As base-
lines, we again compare to the scaled optimizer costs and E2E, which
in contrast to MSCN supports complex predicates. To be fair, we use
training queries with complex predicates on IMDB for the workload-
driven models. In addition, we also report the accuracy of zero-shot
models fine-tuned on the IMDB database using the few-shot learning.

As we can see in Figure 12.6, again zero-shot models outperform
the other approaches. In particular, even the version using just op-
timizer cardinality estimates is more accurate than E2E using 50k
queries, which emphasizes that zero-shot cost models are robust w.r.t.
imprecise cardinality estimates. The E2E models in this case need
50k queries just to match the performance of the scaled optimizer
costs, which is inferior to the previous experiment with a lower query
complexity. The reason is that the E2E model has to learn the data dis-
tribution of strings as well and support complex predicates including
wildcards while only observing queries. We hope that in the future,
data-driven models support string predicates and disjunctions as well
to be used in conjunction with zero-shot cost models also for complex
queries. Similar to the previous experiment, few-shot learning can
further improve the accuracy.

12.6.3 Exp 3: Generalization

In this experiment, we investigate how robustly zero-shot cost models
react to changes in the data characteristics and workload.

generalization to updates . For the first aspect, we analyze
the effects of updates on the accuracy of cost estimation. For this, we
only train on a fraction of the full data and then update the database
(without retraining the prediction models). After the update of the

222 zero-shot cost models for out-of-the-box learned cost prediction

1x 2x 4x 8x
Database Size After Updates

2

4

M
ed

ia
n

Q
-E

rr
or

(S
yn

th
et

ic
)

Scaled Optimizer Costs (Postgres)

MSCN (Workload-Driven)

E2E (Workload-Driven)

Zero-Shot
(DeepDB Est. Cardinalities)

Zero-Shot
(Exact Cardinalities)

Figure 12.7: Zero-Shot Models are robust w.r.t. Updates. Without any retrain-
ing we do not see regressions in cost estimation accuracy even
for massive update rates (up to 8 times the size of the original
database using rescaling). In contrast, workload-driven models
require additional training queries.

Small
Joins

+50
Large

+100
Large

+1k
Large

Full

Training Data

1.0

1.5

2.0

2.5

Q
-E

rr
or

s

Train on 0-2 Way/
Test on 3+ Way Joins

Small
Joins

+50
Large

+100
Large

+1k
Large

Full

Training Data

1.0

1.5

2.0

Q
-E

rr
or

s

Train on 0-3 Way/
Test on 4+ Way Joins

Figure 12.8: Zero-shot cost models generalize robustly to larger Joins. Com-
pared to zero-shot models trained also on larger joins (Full), the
zero-shot models trained only on smaller joins (Small Joins) have
only minor regressions in accuracy. In addition, fine-tuning the
zero-shot cost models on a low number of additional queries
with larger joins (resulting in few-shot models) further improves
the performance.

12.6 experimental evaluation 223

database, we then predicted the query runtimes using zero-shot cost
models as well as the other baselines (workload-driven models and
the scaled optimizer). Note, that workload-driven models are expected
to result in inferior performance for a higher fraction of updates since
they cannot capture database updates without collecting new training
data. This is very different from zero-shot models that get informed by
data-driven models that can thus adjust to data updates without the
need to retrain. In particular, the data-driven models from DeepDB
[72] as well as classical statistics such as histograms that are compatible
with zero-shot cost models are directly updateable with low overhead
and hence can provide also accurate estimates after the update.

We depicted the results in Figure 12.7. As we can see, there is almost
no performance degradation for the zero-shot cost models with a
higher update fraction. Note that we did not retrain the zero-shot
cost models at all to achieve the performance but simply relied on
the ability to generalize to different data characteristics. In contrast,
for workload-driven models we observe a performance degradation
since those models would require additional training queries on the
updated database to be adapted. The reason is that the models also
internalize the data distribution (i.e., table sizes and correlations)
implicitly during the training and can only be informed about changes
by observing additional query runtimes. This is especially problematic
for more update-heavy workloads were frequently additional training
queries have to be run to update the models. Note that the scaled
optimizer costs do not experience such a degradation but are again
less accurate than zero-shot models.

generalization to workload drifts . In this experiment, we
investigate how zero-shot models react to workload drifts, in particular
to larger joins that appear after training a cost prediction model. To this
end, we trained the zero-shot models using only queries with up to 2

or 3-way joins on the 19 training datasets and evaluate the model using
3-way or 4-way joins (or larger) on the IMDB dataset, respectively.
Since we suggest to address workload-drifts using few-shot learning,
we also introduce variants that are fine-tuned on a small amount of
large joins on the IMDB database. As we can see in Figure 12.8, the
performance of the model with a training set constrained to small
joins does not degrade heavily compared to the model that was also
trained on larger joins on the remaining 19 datasets (Full) indicating a
robust generalization to larger joins. In addition, few-shot models fine-
tuned on a small amount of larger joins (≈ 50) observed on the IMDB
dataset is sufficient to achieve the same median Q-error. An even larger
amount of retraining queries allows to outperform the original zero-
shot model, which is consistent with previous experiments showing
that few-shot learning further improves the accuracy.

224 zero-shot cost models for out-of-the-box learned cost prediction

5 10 15 20

Number of Databases

250k

500k

750k

1M

T
ra

in
in

g
Q

ue
ri

es

MSCN (Workload-Driven)

E2E (Workload-Driven)

Zero-Shot

(a) Required Training Queries.

Training Inference
0

1000
T

hr
ou

gh
pu

t
(P

la
ns

/s
ec

) MSCN (Workload-Driven)

E2E (Workload-Driven)

Zero-Shot
(DeepDB Est. Cardinalities)

Zero-Shot
(Exact Cardinalities)

(b) Train and Test Throughput.

Figure 12.9: Training and Inference and Performance. Even though zero-shot
models generalize across databases they almost match the in-
ference and training throughput of the most accurate workload-
driven alternative (E2E) and quickly amortize in terms of re-
quired training queries.

12.6.4 Exp 4: Efficiency of Training and Inference

In this experiment, we evaluate the efficiency of training and inference
of zero-shot models compared to workload-driven models.

training overhead. In a first experiment, we compare the num-
ber of training queries required for zero-shot models as well as for
workload-driven models. Importantly, workload-driven models need
to be trained on every single database while zero-shot models can
(once trained) be applied to many different databases out-of-the-box.
For showing this effect we analyze how many training queries would
be required for supporting a varying number of unseen databases
for which new cost estimates are required The results are shown in
Figure 12.9a. As we can see since workload execution is a one-time
effort for zero-shot models (since they generalize across databases)
this quickly amortizes compared to workload-driven learning since
for workload-driven models, we need to collect training data for every
new database.

training and inference throughput. In a second experi-
ment, we compare the training and inference throughput of zero-shot
cost models with state-of-the-art workload-driven approaches. In this
experiment, we aim to show that zero-shot models are not impos-
ing higher overhead for training and inference and thus can be used
efficiently in real DBMSs. As we can see in Figure 12.9b, zero-shot
models achieve a comparable throughput and thus do not impose
higher overhead compared to workload-driven models. As we can see,
the MSCN models achieve higher throughput compared to all other
models (zero-shot and E2E). The reason is that these models featurize

12.6 experimental evaluation 225

Scale Synthetic JOB-light
Workload

1.0

1.5

M
ed

ia
n

Q
-E

rr
or Flattened Plans

Zero-Shot
(Est. Cardinalities)

Zero-Shot
(DeepDB Est. Cardinalities)

Zero-Shot
(Exact Cardinalities)

Figure 12.10: Ablation Study. Using a flattened representation of the plans in-
stead of our graph-based encoding yields less accurate models.
Zero-shot models using the cardinality estimates of the query
optimizer are still reasonably accurate.

0 1 2 3
Median Q-Error

Input/Output Column Features Only

+ Operator/Predicate Features

+ Table Features

+ Data Distribution Features
(All Features)

Figure 12.11: Feature Ablation Study. All groups of query graph features
used in zero-shot cost models individually improve the ac-
curacy. Table and data distribution features have the largest
impact since they determine the scan cost and size of interme-
diate joins, respectively.

the physical query plan resulting in larger graphs compared to MSCN
models, which only encode the joins, tables and predicates in a query.
However, this comes at the cost of an inferior predictive performance
as shown before.

12.6.5 Exp. 5: Ablation Study

In this experiment, we present the results of our ablation study show-
ing the effects of the different design choices as well as the efficiency of

5 10 15
Number of

Training Datasets

1.25

1.50

1.75

M
ed

ia
n

Q
-E

rr
or Scale

5 10 15
Number of

Training Datasets

1.5

2.0

Synthetic

5 10 15
Number of

Training Datasets

1.25

1.50

1.75

JOB-light

Zero-Shot
(DeepDB Est. Cardinalities)

Zero-Shot
(Exact Cardinalities)

Figure 12.12: Zero-Shot Generalization by Number of Training Databases.
If we use more than 15 training databases we start to see
diminishing returns in accuracy suggesting that the variety
of databases in the benchmark is sufficient.

226 zero-shot cost models for out-of-the-box learned cost prediction

our estimator to determine how many different databases are needed
for training a zero-shot model.

zero-shot design space . We first explore the different design
space options of zero-shot cost estimation. In particular, we focus on
the questions how different cardinality estimation techniques impact
the model accuracy and whether our new model architecture using
graph encodings is actually required or a simpler architecture suffices.

To address the latter question, we implemented a different version
of zero-shot cost estimation that represents a single query plan as
a flat vector (instead of using a graph). In particular, the chosen
representation is similar to Ganapathi et al. [49] that represents a
query plan using a vector where each physical operator corresponds
to two entries in the vector: one that counts how often the operator
appears in the plan and one that sums up the cardinality estimates
for that operator. For instance, if we only had sequential scans and
nested loop joins in the query plans and one plan would scan two
relations of 1M tuples each and join them resulting in 1M tuples, the
vector representing the query plan could be (2, 2M, 1, 1M). Given this
representation, we train a state-of-the-art regression model [77] to
predict the runtime given a vector. Similar to the zero-shot models, we
train on the remaining 19 datasets and evaluate the performance on
the IMDB benchmarks.

As we can see in Figure 12.10, the flattened version of zero-shot cost
models is significantly less accurate than our proposed transferable
graph-based representation. The reason is that the interactions of
physical operators in the plan can only be modeled approximately if
represented as a vector while our graph-based encoding allows the
neural model to capture such interactions more accurately. Second,
regarding cardinality estimates, we can see that data-driven cardinality
estimates improve the accuracy of zero-shot cost models compared to
models using optimizer cardinality estimates. However, the estimates
are still very accurate even if cardinality estimates are annotated from
simple cardinality estimation models that are used in DBMSs today.
This is especially useful for query types that data-driven models do
not support as of today and where the optimizer cardinality estimates
hence serve as a fallback.

query graph featurization. In addition, we also study the
impact of different featurizations of the query graph representations
used by zero-shot cost models. In particular, instead of training zero-
shot cost models using all the features introduced in Table 12.1, we will
gradually include more groups of features (e.g., all features related
to scanned tables). We then report the median Q-error achievable
with this set of features. As we can see in Figure 12.11, each group of
features individually improves the performance of the models. The
most significant improvement is due to features characterizing the

12.6 experimental evaluation 227

tables as well as the data distribution (e.g., cardinalities) as these
features influence the runtime overhead of a query most significantly.
However, we can conclude that all features are worth incorporating
in zero-shot models as long as they are transferable as described in
Section 12.3. The rationale is to include as many aspects that could
impact the query runtime as possible in the query representation.

number of training databases . As described in Section 12.4.1,
in order to assess whether a zero-shot cost model has seen a sufficient
number of training databases and workloads, we estimate the expected
generalization error for a varying number of training databases. The
generalization error is estimated by computing the test error on an
unseen holdout database. If the model performance plateaus for a
certain number of training databases, we can conclude that the number
of training databases is sufficient.

In this experiment, we show how the generalization error develops
for a growing number of training databases (i.e., from just using one
up to all 19 databases). For estimating the generalization error, we use
the standard benchmark queries as defined on the IMDB dataset (i.e.,
we use the synthetic, scale and JOB-light [79] workloads). As we can
observe in Figure 12.12, as expected the generalization errors reduce
with a growing number of databases. This is the case because with an
increased number of databases the model can observe a larger variety
of different data characteristics and can thus more robustly predict the
runtimes for an unseen database, i.e., IMDB in this case. Interestingly,
we can already achieve a reasonably small generalization error after
just five different databases indicating that a moderate number of
databases can be sufficient for zero-shot learning. Moreover, we clearly
observe diminishing returns between 15 to 19 databases.

We can thus conclude that the number of training datasets from
the benchmark is indeed sufficient to allow a zero-shot model to
generalize robustly to unseen databases from the benchmark and that
further datasets will likely not improve the model performance.
workload & data drifts . While zero-shot cost models general-
ize to some extent under workload and data drifts as demonstrated
in Section 12.6.3, there is clearly a point where the evaluation work-
load differs too severely from any workload observed at training time
by the model and where the performance will degrade as discussed
Section 12.2.3. In a final ablation study, we thus want to investigate
further how quickly the performance degrades in such cases and thus
intentionally create evaluation workloads that differ largely from the
training workload (due to significantly more joins, group by attributes,
number of predicates, aggregations or larger dataset sizes). As we can
see in Figure 12.13, the more different the test database and workload
is from the training workload and data, the more the performance
degrades. However, while the zero-shot model can still predict costs
relatively accurately for cases close to training data examples (e.g., five

228 zero-shot cost models for out-of-the-box learned cost prediction

0 10
No. of Joins

1.25

1.50

M
ed

ia
n

Q
-E

rr
or

0 5
No. of Group Bys

0 10
No. of Predicates

10 20
No. of Aggregations

1.25

1.50

M
ed

ia
n

Q
-E

rr
or

0 100
Database Size (GB)

Zero-Shot
(Est. Cardinalities)

Training Data
Coverage

Figure 12.13: Accuracy under Workload and Data Drifts. Training data cover-
age is shown in green (e.g., the training data contains 0-5-way
joins and we generalize up to 10-way joins). While zero-shot
cost models generalize reasonably well to unseen workload
and data characteristics, we see an increase in estimation errors
for more severe drifts as expected.

aggregates instead of one) the performance degrades as the charac-
teristics are further changed. Moreover, not all aspects have an equal
impact on the accuracy: for example, the number of joins seems to be
the most severe factor, which is expected, since more joins can result
in large intermediate join sizes the model has not experienced before.
Note, that in this experiment we report the results of zero-shot models
using cardinality estimates of the Postgres optimizer but we could
observe similar effects for the other methods as well.

12.7 related work

learned cost estimation. Closest to our work are workload-
driven approaches for cost estimation. Neural predictions models [113,
161] have been proposed for cost estimation by featurizing the physical
query plan as a tree. However, the models are workload-driven and
thus require thousands of query executions for an unseen database.
Recently, a framework has been proposed to efficiently gather this
training data [173]. In contrast, zero-shot learning completely alleviates
the need to run a representative workload for new databases. Moreover,
workload-driven models were extended by improving inference and
training performance [76] and to concurrent query latency prediction
[194]. These ideas are orthogonal and could potentially be applied
to zero-shot learning as well. An alternative to reduce the required
training queries for cost estimation is DBMS fitting [67] where the
idea is to model the operator complexity and adjust this basic model
by fitting the parameters using differentiable programming. However,
the operator complexity has to be modeled explicitly, which can be
impossible for complex queries.

Earlier work proposes to use statistical methods to predict the costs
of queries. For instance, it was proposed to learn models at a per-

12.8 conclusion and future work 229

operator level [5, 96] to predict the overall query runtime. However,
since interactions of operators cannot be learned and the models are
thus too simplistic, the performance is inferior to workload-driven
approaches [113]. An alternative idea is to represent query plans as
flat vectors [49] to treat cost estimation using supervised regression,
which we have shown to be less accurate than zero-shot cost esti-
mation (cf. Section 12.6.1). In addition, it was suggested to leverage
query executions on smaller data samples [44, 172] or queries sharing
common subexpressions [155, 180] for cost estimation. In both cases,
the test workload needs to closely resemble the train workload for the
models to be effective.

learned dbms components and design advisors Machine
learning has been applied more broadly to optimize DBMS systems by
replacing traditional approaches for tasks such as query optimization
[85, 109, 110, 112] or query scheduling [107, 153]. In addition, it was
applied to knob tuning [192], materialized view selection [59, 99],
index selection [89] or partitioning [70]. Note that all these approaches
are workload-driven since query executions on the test database are
required to train the models.

12.8 conclusion and future work

In this paper, we have demonstrated that it is possible to accurately
and robustly predict query runtimes on entirely unseen databases, i.e.,
in a zero-shot setting. In addition, fine-tuning the zero-shot models
to obtain few-shot models can further improve the performance if
training queries are available on the new database. We enabled this
by deriving a transferable representation of queries that generalizes
across databases and a specialized model architecture.

As a future direction, we argue that zero-shot learning even has
a much broader applicability and could be applied to a large set of
learned DBMS components including design advisors etc. Further-
more, we believe that the underlying principles can be applied to an
even broader set of data systems (e.g., data streaming systems).

12.9 acknowledgments

We thank the reviewers for their feedback. This research is funded by
the BMBF project within the “The Future of Value Creation – Research
on Production, Services and Work” program, the Hochtief project
AICO (AI in Construction), the HMWK cluster project 3AI (The Third
Wave of AI), as well as the DFG Collaborative Research Center 1053

(MAKI). Finally, we want to thank hessian.AI at TU Darmstadt as well
as DFKI Darmstadt.

B I B L I O G R A P H Y

[1] Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. “On
the Representation and Querying of Sets of Possible Worlds.”
In: Theor. Comput. Sci. 78.1 (1991), pp. 158–187. doi: 10.1016/
0304- 3975(51)90007- 2. url: https://doi.org/10.1016/
0304-3975(51)90007-2.

[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Mil-
ner, Samuel Madden, and Ion Stoica. “BlinkDB: queries with
bounded errors and bounded response times on very large
data.” In: Eighth Eurosys Conference 2013, EuroSys ’13, Prague,
Czech Republic, April 14-17, 2013. Ed. by Zdenek Hanzálek, Her-
mann Härtig, Miguel Castro, and M. Frans Kaashoek. ACM,
2013, pp. 29–42. doi: 10.1145/2465351.2465355. url: https:
//doi.org/10.1145/2465351.2465355.

[3] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollár, Arunprasad
P. Marathe, Vivek R. Narasayya, and Manoj Syamala. “Database
Tuning Advisor for Microsoft SQL Server 2005.” In: (e)Proceedings
of the Thirtieth International Conference on Very Large Data Bases,
VLDB 2004, Toronto, Canada, August 31 - September 3 2004. Ed.
by Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann,
Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer.
Morgan Kaufmann, 2004, pp. 1110–1121. doi: 10.1016/B978-
012088469-8.50097-8. url: https://doi.org/10.1016/B978-
012088469-8.50097-8.

[4] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya.
“Automated Selection of Materialized Views and Indexes in
SQL Databases.” In: VLDB 2000, Proceedings of 26th International
Conference on Very Large Data Bases, September 10-14, 2000, Cairo,
Egypt. Morgan Kaufmann, 2000, pp. 496–505. url: http://www.
vldb.org/conf/2000/P496.pdf.

[5] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal,
and Stanley B. Zdonik. “Learning-based Query Performance
Modeling and Prediction.” In: IEEE 28th International Conference
on Data Engineering (ICDE 2012), Washington, DC, USA (Arling-
ton, Virginia), 1-5 April, 2012. Ed. by Anastasios Kementsiet-
sidis and Marcos Antonio Vaz Salles. IEEE Computer Society,
2012, pp. 390–401. doi: 10.1109/ICDE.2012.64. url: https:
//doi.org/10.1109/ICDE.2012.64.

[6] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bo-
han Zhang. “Automatic Database Management System Tuning
Through Large-scale Machine Learning.” In: Proceedings of the

231

https://doi.org/10.1016/0304-3975(51)90007-2
https://doi.org/10.1016/0304-3975(51)90007-2
https://doi.org/10.1016/0304-3975(51)90007-2
https://doi.org/10.1016/0304-3975(51)90007-2
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1016/B978-012088469-8.50097-8
https://doi.org/10.1016/B978-012088469-8.50097-8
https://doi.org/10.1016/B978-012088469-8.50097-8
https://doi.org/10.1016/B978-012088469-8.50097-8
http://www.vldb.org/conf/2000/P496.pdf
http://www.vldb.org/conf/2000/P496.pdf
https://doi.org/10.1109/ICDE.2012.64
https://doi.org/10.1109/ICDE.2012.64
https://doi.org/10.1109/ICDE.2012.64

232 bibliography

2017 ACM International Conference on Management of Data, SIG-
MOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. Ed. by
Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and
Dan Suciu. ACM, 2017, pp. 1009–1024. doi: 10.1145/3035918.
3064029. url: https://doi.org/10.1145/3035918.3064029.

[7] Sami Alabed and Eiko Yoneki. “High-Dimensional Bayesian
Optimization with Multi-Task Learning for RocksDB.” In: Eu-
roMLSys@EuroSys 2021, Proceedings of the 1st Workshop on Ma-
chine Learning and Systemsg Virtual Event, Edinburgh, Scotland,
UK, 26 April, 2021. Ed. by Eiko Yoneki and Paul Patras. ACM,
2021, pp. 111–119. doi: 10.1145/3437984.3458841. url: https:
//doi.org/10.1145/3437984.3458841.

[8] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu
Cai, Naresh Chainani, Kiran Chinta, Venkatraman Govindaraju,
TJ Green, Monish Gupta, Sebastian Hillig, Eric Hotinger, Yan
Leshinksy, Jintian Liang, Michael McCreedy, Fabian Nagel,
Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Poly-
chroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundarara-
jan, Sriram Subramanian, and Doug Terry. “Amazon Redshift
re-invented.” In: SIGMOD/PODS 2022. 2022. url: https://
www.amazon.science/publications/amazon- redshift- re-

invented.

[9] Filipe de Avila Belbute-Peres, Kevin A. Smith, Kelsey R. Allen,
Josh Tenenbaum, and J. Zico Kolter. “End-to-End Differen-
tiable Physics for Learning and Control.” In: Advances in Neural
Information Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS 2018, Decem-
ber 3-8, 2018, Montréal, Canada. Ed. by Samy Bengio, Hanna
M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett. 2018, pp. 7178–7189. url: https:
//proceedings.neurips.cc/paper/2018/hash/842424a1d

0595b76ec4fa03c46e8d755-Abstract.html.

[10] AWS Redshift. https://aws.amazon.com/redshift. Accessed:
2020-09-12.

[11] Azure SQL Data Warehouse. https://azure.microsoft.com/
services/synapse-analytics/. Accessed: 2020-09-12.

[12] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi,
and Samy Bengio. “Neural Combinatorial Optimization with
Reinforcement Learning.” In: 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings. OpenReview.net, 2017. url:
https://openreview.net/forum?id=Bk9mxlSFx.

[13] Philip A. Bernstein and Eric Newcomer. Principles of Transaction
Processing for Systems Professionals. Morgan Kaufmann, 1996.
isbn: 1-55860-415-4.

https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/3437984.3458841
https://doi.org/10.1145/3437984.3458841
https://doi.org/10.1145/3437984.3458841
https://www.amazon.science/publications/amazon-redshift-re-invented
https://www.amazon.science/publications/amazon-redshift-re-invented
https://www.amazon.science/publications/amazon-redshift-re-invented
https://proceedings.neurips.cc/paper/2018/hash/842424a1d0595b76ec4fa03c46e8d755-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/842424a1d0595b76ec4fa03c46e8d755-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/842424a1d0595b76ec4fa03c46e8d755-Abstract.html
https://aws.amazon.com/redshift
https://azure.microsoft.com/services/synapse-analytics/
https://azure.microsoft.com/services/synapse-analytics/
https://openreview.net/forum?id=Bk9mxlSFx

bibliography 233

[14] Simone Bova. “SDDs Are Exponentially More Succinct than
OBDDs.” In: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA.
Ed. by Dale Schuurmans and Michael P. Wellman. AAAI Press,
2016, pp. 929–935. url: http://www.aaai.org/ocs/index.php/
AAAI/AAAI16/paper/view/12270.

[15] Guy Van den Broeck and Adnan Darwiche. “On the Role of
Canonicity in Knowledge Compilation.” In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA. Ed. by Blai Bonet and Sven
Koenig. AAAI Press, 2015, pp. 1641–1648. url: http://www.
aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9961.

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. “Language Models are Few-Shot Learners.” In: Ad-
vances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual. Ed. by Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin. 2020. url: https://proceedings.neurips.
cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-

Abstract.html.

[17] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. “Language Models are Few-Shot Learners.” In: CoRR
abs/2005.14165 (2020). arXiv: 2005.14165. url: https://arxiv.
org/abs/2005.14165.

[18] Nicolas Bruno and Surajit Chaudhuri. “Automatic Physical
Database Tuning: A Relaxation-based Approach.” In: Proceed-
ings of the ACM SIGMOD International Conference on Manage-
ment of Data, Baltimore, Maryland, USA, June 14-16, 2005. Ed. by
Fatma Özcan. ACM, 2005, pp. 227–238. doi: 10.1145/1066157.
1066184. url: https://doi.org/10.1145/1066157.1066184.

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12270
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12270
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9961
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9961
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/1066157.1066184
https://doi.org/10.1145/1066157.1066184
https://doi.org/10.1145/1066157.1066184

234 bibliography

[19] Nadia Burkart and Marco F. Huber. “A Survey on the Explain-
ability of Supervised Machine Learning.” In: J. Artif. Intell.
Res. 70 (2021), pp. 245–317. doi: 10.1613/jair.1.12228. url:
https://doi.org/10.1613/jair.1.12228.

[20] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi,
and Kyuseok Shim. “Approximate Query Processing Using
Wavelets.” In: VLDB 2000, Proceedings of 26th International Con-
ference on Very Large Data Bases, September 10-14, 2000, Cairo,
Egypt. Ed. by Amr El Abbadi, Michael L. Brodie, Sharma
Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter Schlageter,
and Kyu-Young Whang. Morgan Kaufmann, 2000, pp. 111–122.
url: http://www.vldb.org/conf/2000/P111.pdf.

[21] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi,
and Kyuseok Shim. “Approximate query processing using
wavelets.” In: VLDB J. 10.2-3 (2001), pp. 199–223. doi: 10 .

1007 / s007780100049. url: https : / / doi . org / 10 . 1007 / s

007780100049.

[22] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. “Ap-
proximate Query Processing: No Silver Bullet.” In: Proceedings
of the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. Ed.
by Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang,
and Dan Suciu. ACM, 2017, pp. 511–519. doi: 10.1145/3035918.
3056097. url: https://doi.org/10.1145/3035918.3056097.

[23] Surajit Chaudhuri and Vivek R. Narasayya. “An Efficient Cost-
Driven Index Selection Tool for Microsoft SQL Server.” In:
VLDB’97, Proceedings of 23rd International Conference on Very
Large Data Bases, August 25-29, 1997, Athens, Greece. Morgan
Kaufmann, 1997, pp. 146–155. url: http://www.vldb.org/
conf/1997/P146.PDF.

[24] Haipeng Chen, Sushil Jajodia, Jing Liu, Noseong Park, Vadim
Sokolov, and V. S. Subrahmanian. “FakeTables: Using GANs
to Generate Functional Dependency Preserving Tables with
Bounded Real Data.” In: Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019. Ed. by Sarit Kraus. ijcai.org,
2019, pp. 2074–2080. doi: 10.24963/ijcai.2019/287. url:
https://doi.org/10.24963/ijcai.2019/287.

[25] Kaiji Chen, Yongluan Zhou, and Yu Cao. “Online Data Parti-
tioning in Distributed Database Systems.” In: Proceedings of the
18th International Conference on Extending Database Technology,
EDBT 2015, Brussels, Belgium, March 23-27, 2015. Ed. by Gustavo
Alonso, Floris Geerts, Lucian Popa, Pablo Barceló, Jens Teub-
ner, Martin Ugarte, Jan Van den Bussche, and Jan Paredaens.

https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1613/jair.1.12228
http://www.vldb.org/conf/2000/P111.pdf
https://doi.org/10.1007/s007780100049
https://doi.org/10.1007/s007780100049
https://doi.org/10.1007/s007780100049
https://doi.org/10.1007/s007780100049
https://doi.org/10.1145/3035918.3056097
https://doi.org/10.1145/3035918.3056097
https://doi.org/10.1145/3035918.3056097
http://www.vldb.org/conf/1997/P146.PDF
http://www.vldb.org/conf/1997/P146.PDF
https://doi.org/10.24963/ijcai.2019/287
https://doi.org/10.24963/ijcai.2019/287

bibliography 235

OpenProceedings.org, 2015, pp. 1–12. doi: 10.5441/002/edbt.
2015.02. url: https://doi.org/10.5441/002/edbt.2015.02.

[26] Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang.
“Data Cleaning: Overview and Emerging Challenges.” In: Pro-
ceedings of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26
- July 01, 2016. Ed. by Fatma Özcan, Georgia Koutrika, and Sam
Madden. ACM, 2016, pp. 2201–2206. doi: 10.1145/2882903.
2912574. url: https://doi.org/10.1145/2882903.2912574.

[27] Yeounoh Chung, Michael Lind Mortensen, Carsten Binnig, and
Tim Kraska. “Estimating the Impact of Unknown Unknowns
on Aggregate Query Results.” In: ACM Trans. Database Syst.
43.1 (2018), 3:1–3:37. doi: 10.1145/3167970. url: https://doi.
org/10.1145/3167970.

[28] CloudLab. https://www.cloudlab.us/.

[29] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Mad-
den. “Schism: a Workload-Driven Approach to Database Repli-
cation and Partitioning.” In: Proc. VLDB Endow. 3.1 (2010),
pp. 48–57. doi: 10.14778/1920841.1920853. url: http://www.
vldb.org/pvldb/vldb2010/pvldb%5C_vol3/R04.pdf.

[30] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim
Antonov, Artin Avanes, Jon Bock, Jonathan Claybaugh, Daniel
Engovatov, Martin Hentschel, Jiansheng Huang, Allison W. Lee,
Ashish Motivala, Abdul Q. Munir, Steven Pelley, Peter Povinec,
Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner.
“The Snowflake Elastic Data Warehouse.” In: Proceedings of the
2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016.
Ed. by Fatma Özcan, Georgia Koutrika, and Sam Madden.
ACM, 2016, pp. 215–226. doi: 10.1145/2882903.2903741. url:
https://doi.org/10.1145/2882903.2903741.

[31] Nilesh N. Dalvi and Dan Suciu. “Efficient query evaluation on
probabilistic databases.” In: VLDB J. 16.4 (2007), pp. 523–544.
doi: 10.1007/s00778-006-0004-3. url: https://doi.org/10.
1007/s00778-006-0004-3.

[32] Adnan Darwiche and Pierre Marquis. “A Knowledge Compi-
lation Map.” In: J. Artif. Intell. Res. 17 (2002), pp. 229–264. doi:
10.1613/jair.989. url: https://doi.org/10.1613/jair.989.

[33] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit
Chaudhuri, and Vivek R. Narasayya. “AI Meets AI: Leveraging
Query Executions to Improve Index Recommendations.” In:
Proceedings of the 2019 International Conference on Management
of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019. ACM, 2019, pp. 1241–1258. doi: 10.1145/

https://doi.org/10.5441/002/edbt.2015.02
https://doi.org/10.5441/002/edbt.2015.02
https://doi.org/10.5441/002/edbt.2015.02
https://doi.org/10.1145/2882903.2912574
https://doi.org/10.1145/2882903.2912574
https://doi.org/10.1145/2882903.2912574
https://doi.org/10.1145/3167970
https://doi.org/10.1145/3167970
https://doi.org/10.1145/3167970
https://www.cloudlab.us/
https://doi.org/10.14778/1920841.1920853
http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/R04.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/R04.pdf
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1007/s00778-006-0004-3
https://doi.org/10.1007/s00778-006-0004-3
https://doi.org/10.1007/s00778-006-0004-3
https://doi.org/10.1613/jair.989
https://doi.org/10.1613/jair.989
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/3299869.3324957

236 bibliography

3299869.3324957. url: https://doi.org/10.1145/3299869.
3324957.

[34] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung
Do, Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes
Gehrke, Donald Kossmann, David B. Lomet, and Tim Kraska.
“ALEX: An Updatable Adaptive Learned Index.” In: Proceed-
ings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA],
June 14-19, 2020. Ed. by David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q.
Ngo. ACM, 2020, pp. 969–984. doi: 10.1145/3318464.3389711.
url: https://doi.org/10.1145/3318464.3389711.

[35] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim
Kraska. “Tsunami: A Learned Multi-dimensional Index for
Correlated Data and Skewed Workloads.” In: Proc. VLDB Endow.
14.2 (2020), pp. 74–86. doi: 10.14778/3425879.3425880. url:
http://www.vldb.org/pvldb/vol14/p74-ding.pdf.

[36] Xin Luna Dong and Theodoros Rekatsinas. “Data Integration
and Machine Learning: A Natural Synergy.” In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2019, Anchorage, AK, USA,
August 4-8, 2019. Ed. by Ankur Teredesai, Vipin Kumar, Ying
Li, Rómer Rosales, Evimaria Terzi, and George Karypis. ACM,
2019, pp. 3193–3194. doi: 10 . 1145 / 3292500 . 3332296. url:
https://doi.org/10.1145/3292500.3332296.

[37] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu.
“Tuning database configuration parameters with ituned.” In:
VLDB 2.1 (2009), pp. 1246–1257.

[38] Gabriel Campero Durand, Rufat Piriyev, Marcus Pinnecke,
David Broneske, Balasubramanian Gurumurthy, and Gunter
Saake. “Automated Vertical Partitioning with Deep Reinforce-
ment Learning.” In: New Trends in Databases and Information
Systems, ADBIS 2019 Short Papers, Workshops BBIGAP, QAUCA,
SemBDM, SIMPDA, M2P, MADEISD, and Doctoral Consortium,
Bled, Slovenia, September 8-11, 2019, Proceedings. Ed. by Tat-
jana Welzer, Johann Eder, Vili Podgorelec, Robert Wrembel,
Mirjana Ivanovic, Johann Gamper, Mikolaj Morzy, Theodoros
Tzouramanis, Jérôme Darmont, and Aida Kamisalic Latific.
Vol. 1064. Communications in Computer and Information Sci-
ence. Springer, 2019, pp. 126–134. doi: 10.1007/978-3-030-
30278-8_16. url: https://doi.org/10.1007/978-3-030-
30278-8%5C%5C_16.

[39] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula,
Vivek R. Narasayya, and Surajit Chaudhuri. “Selectivity Esti-
mation for Range Predicates using Lightweight Models.” In:

https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.14778/3425879.3425880
http://www.vldb.org/pvldb/vol14/p74-ding.pdf
https://doi.org/10.1145/3292500.3332296
https://doi.org/10.1145/3292500.3332296
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8%5C%5C_16
https://doi.org/10.1007/978-3-030-30278-8%5C%5C_16

bibliography 237

Proc. VLDB Endow. 12.9 (2019), pp. 1044–1057. doi: 10.14778/
3329772.3329780. url: http://www.vldb.org/pvldb/vol12/
p1044-dutt.pdf.

[40] George Eadon, Eugene Inseok Chong, Shrikanth Shankar, Ananth
Raghavan, Jagannathan Srinivasan, and Souripriya Das. “Sup-
porting table partitioning by reference in oracle.” In: Proceedings
of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008.
Ed. by Jason Tsong-Li Wang. ACM, 2008, pp. 1111–1122. doi:
10.1145/1376616.1376727. url: https://doi.org/10.1145/
1376616.1376727.

[41] Philipp Eichmann, Emanuel Zgraggen, Carsten Binnig, and
Tim Kraska. “IDEBench: A Benchmark for Interactive Data
Exploration.” In: Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online confer-
ence [Portland, OR, USA], June 14-19, 2020. Ed. by David Maier,
Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam
Alawini, and Hung Q. Ngo. ACM, 2020, pp. 1555–1569. doi:
10.1145/3318464.3380574. url: https://doi.org/10.1145/
3318464.3380574.

[42] Ju Fan, Tongyu Liu, Guoliang Li, Junyou Chen, Yuwei Shen,
and Xiaoyong Du. “Relational Data Synthesis using Generative
Adversarial Networks: A Design Space Exploration.” In: Proc.
VLDB Endow. 13.11 (2020), pp. 1962–1975. url: http://www.
vldb.org/pvldb/vol13/p1962-fan.pdf.

[43] Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. “Un-
certainty Annotated Databases - A Lightweight Approach for
Approximating Certain Answers.” In: Proceedings of the 2019
International Conference on Management of Data, SIGMOD Con-
ference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019.
Ed. by Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska. ACM, 2019, pp. 1313–1330.
doi: 10.1145/3299869.3319887. url: https://doi.org/10.
1145/3299869.3319887.

[44] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric
Boutin, and Rodrigo Fonseca. “Jockey: guaranteed job latency
in data parallel clusters.” In: European Conference on Computer
Systems, Proceedings of the Seventh EuroSys Conference 2012, Eu-
roSys ’12, Bern, Switzerland, April 10-13, 2012. Ed. by Pascal
Felber, Frank Bellosa, and Herbert Bos. ACM, 2012, pp. 99–112.
doi: 10.1145/2168836.2168847. url: https://doi.org/10.
1145/2168836.2168847.

[45] Ilir Fetai, Damian Murezzan, and Heiko Schuldt. “Workload-
driven adaptive data partitioning and distribution - The Cu-
mulus approach.” In: 2015 IEEE International Conference on Big

https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/3329772.3329780
http://www.vldb.org/pvldb/vol12/p1044-dutt.pdf
http://www.vldb.org/pvldb/vol12/p1044-dutt.pdf
https://doi.org/10.1145/1376616.1376727
https://doi.org/10.1145/1376616.1376727
https://doi.org/10.1145/1376616.1376727
https://doi.org/10.1145/3318464.3380574
https://doi.org/10.1145/3318464.3380574
https://doi.org/10.1145/3318464.3380574
http://www.vldb.org/pvldb/vol13/p1962-fan.pdf
http://www.vldb.org/pvldb/vol13/p1962-fan.pdf
https://doi.org/10.1145/3299869.3319887
https://doi.org/10.1145/3299869.3319887
https://doi.org/10.1145/3299869.3319887
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2168836.2168847

238 bibliography

Data (IEEE BigData 2015), Santa Clara, CA, USA, October 29 -
November 1, 2015. IEEE Computer Society, 2015, pp. 1688–1697.
doi: 10.1109/BigData.2015.7363940. url: https://doi.org/
10.1109/BigData.2015.7363940.

[46] Flights Dataset. https://www.kaggle.com/usdot/flight-delays.
Accessed: 2019-06-30.

[47] Florian Funke, Alfons Kemper, and Thomas Neumann. “Bench-
marking Hybrid OLTP and OLAP Database Systems.” In:
Datenbanksysteme für Business, Technologie und Web (BTW), 14.
Fachtagung des GI-Fachbereichs "Datenbanken und Informationssys-
teme" (DBIS), 2.-4.3.2011 in Kaiserslautern, Germany. Ed. by Theo
Härder, Wolfgang Lehner, Bernhard Mitschang, Harald Schön-
ing, and Holger Schwarz. Vol. P-180. LNI. GI, 2011, pp. 390–409.
url: https://dl.gi.de/20.500.12116/19591.

[48] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo
Fonseca, and Tim Kraska. “FITing-Tree: A Data-aware Index
Structure.” In: Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019. Ed. by Peter A. Boncz,
Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and
Tim Kraska. ACM, 2019, pp. 1189–1206. doi: 10.1145/3299869.
3319860. url: https://doi.org/10.1145/3299869.3319860.

[49] Archana Ganapathi, Harumi A. Kuno, Umeshwar Dayal, Janet
L. Wiener, Armando Fox, Michael I. Jordan, and David A.
Patterson. “Predicting Multiple Metrics for Queries: Better De-
cisions Enabled by Machine Learning.” In: Proceedings of the
25th International Conference on Data Engineering, ICDE 2009,
March 29 2009 - April 2 2009, Shanghai, China. Ed. by Yannis E.
Ioannidis, Dik Lun Lee, and Raymond T. Ng. IEEE Computer
Society, 2009, pp. 592–603. doi: 10.1109/ICDE.2009.130. url:
https://doi.org/10.1109/ICDE.2009.130.

[50] Robert Gens and Pedro M. Domingos. “Learning the Structure
of Sum-Product Networks.” In: Proceedings of the 30th Inter-
national Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013. Vol. 28. JMLR Workshop and Con-
ference Proceedings. JMLR.org, 2013, pp. 873–880. url: http:
//proceedings.mlr.press/v28/gens13.html.

[51] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle.
“MADE: Masked Autoencoder for Distribution Estimation.”
In: Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015. Ed. by Fran-
cis R. Bach and David M. Blei. Vol. 37. JMLR Workshop and
Conference Proceedings. JMLR.org, 2015, pp. 881–889. url:
http://proceedings.mlr.press/v37/germain15.html.

https://doi.org/10.1109/BigData.2015.7363940
https://doi.org/10.1109/BigData.2015.7363940
https://doi.org/10.1109/BigData.2015.7363940
https://dl.gi.de/20.500.12116/19591
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1109/ICDE.2009.130
https://doi.org/10.1109/ICDE.2009.130
http://proceedings.mlr.press/v28/gens13.html
http://proceedings.mlr.press/v28/gens13.html
http://proceedings.mlr.press/v37/germain15.html

bibliography 239

[52] Lise Getoor and Lilyana Mihalkova. “Learning statistical mod-
els from relational data.” In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2011,
Athens, Greece, June 12-16, 2011. Ed. by Timos K. Sellis, Renée
J. Miller, Anastasios Kementsietsidis, and Yannis Velegrakis.
ACM, 2011, pp. 1195–1198. doi: 10.1145/1989323.1989451.
url: https://doi.org/10.1145/1989323.1989451.

[53] Lise Getoor, Benjamin Taskar, and Daphne Koller. “Selectivity
Estimation using Probabilistic Models.” In: Proceedings of the
2001 ACM SIGMOD international conference on Management of
data, Santa Barbara, CA, USA, May 21-24, 2001. Ed. by Sharad
Mehrotra and Timos K. Sellis. ACM, 2001, pp. 461–472. doi:
10.1145/375663.375727. url: https://doi.org/10.1145/
375663.375727.

[54] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol
Vinyals, and George E. Dahl. “Neural Message Passing for
Quantum Chemistry.” In: Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017. Ed. by Doina Precup and Yee Whye
Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR,
2017, pp. 1263–1272. url: http://proceedings.mlr.press/
v70/gilmer17a.html.

[55] Jonathan Goldstein and Per-Åke Larson. “Optimizing Queries
Using Materialized Views: A practical, scalable solution.” In:
Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, Santa Barbara, CA, USA, May 21-24, 2001. Ed.
by Sharad Mehrotra and Timos K. Sellis. ACM, 2001, pp. 331–
342. doi: 10.1145/375663.375706. url: https://doi.org/10.
1145/375663.375706.

[56] Behzad Golshan, Alon Y. Halevy, George A. Mihaila, and Wang-
Chiew Tan. “Data Integration: After the Teenage Years.” In: Pro-
ceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2017, Chicago, IL, USA, May
14-19, 2017. Ed. by Emanuel Sallinger, Jan Van den Bussche, and
Floris Geerts. ACM, 2017, pp. 101–106. doi: 10.1145/3034786.
3056124. url: https://doi.org/10.1145/3034786.3056124.

[57] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron C. Courville, and
Yoshua Bengio. “Generative Adversarial Nets.” In: Advances
in Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada. Ed. by Zoubin Ghahramani,
Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger. 2014, pp. 2672–2680. url: https://proceedings.

https://doi.org/10.1145/1989323.1989451
https://doi.org/10.1145/1989323.1989451
https://doi.org/10.1145/375663.375727
https://doi.org/10.1145/375663.375727
https://doi.org/10.1145/375663.375727
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://doi.org/10.1145/375663.375706
https://doi.org/10.1145/375663.375706
https://doi.org/10.1145/375663.375706
https://doi.org/10.1145/3034786.3056124
https://doi.org/10.1145/3034786.3056124
https://doi.org/10.1145/3034786.3056124
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html

240 bibliography

neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b

1afccf3-Abstract.html.

[58] Eric Gribkoff and Dan Suciu. “SlimShot: In-Database Proba-
bilistic Inference for Knowledge Bases.” In: Proc. VLDB Endow.
9.7 (2016), pp. 552–563. doi: 10.14778/2904483.2904487. url:
http://www.vldb.org/pvldb/vol9/p552-gribkoff.pdf.

[59] Yue Han, Guoliang Li, Haitao Yuan, and Ji Sun. “An Au-
tonomous Materialized View Management System with Deep
Reinforcement Learning.” In: 37th IEEE International Confer-
ence on Data Engineering, ICDE 2021, Chania, Greece, April 19-22,
2021. IEEE, 2021, pp. 2159–2164. doi: 10.1109/ICDE51399.

2021.00217. url: https://doi.org/10.1109/ICDE51399.2021.
00217.

[60] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augus-
tine, Nick Koudas, and Gautam Das. “Deep Learning Mod-
els for Selectivity Estimation of Multi-Attribute Queries.” In:
Proceedings of the 2020 International Conference on Management
of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020. Ed. by David Maier, Rachel Pot-
tinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini,
and Hung Q. Ngo. ACM, 2020, pp. 1035–1050. doi: 10.1145/
3318464.3389741. url: https://doi.org/10.1145/3318464.
3389741.

[61] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augus-
tine, Nick Koudas, and Gautam Das. “Multi-Attribute Selectiv-
ity Estimation Using Deep Learning.” In: CoRR abs/1903.09999

(2019). arXiv: 1903.09999. url: http://arxiv.org/abs/1903.
09999.

[62] Benjamin Hilprecht and Carsten Binnig. “One Model to Rule
them All: Towards Zero-Shot Learning for Databases.” In: 12th
Conference on Innovative Data Systems Research, CIDR 2022, Cham-
inade, CA, USA, January 9-12, 2022. www.cidrdb.org, 2022. url:
https://www.cidrdb.org/cidr2022/papers/p16-hilprecht.

pdf.

[63] Benjamin Hilprecht and Carsten Binnig. “ReStore - Neural
Data Completion for Relational Databases.” In: SIGMOD ’21:
International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021. Ed. by Guoliang Li, Zhanhuai Li, Stratos
Idreos, and Divesh Srivastava. ACM, 2021, pp. 710–722. doi:
10.1145/3448016.3457264. url: https://doi.org/10.1145/
3448016.3457264.

[64] Benjamin Hilprecht and Carsten Binnig. ReStore - Neural Data
Completion for Relational Databases. https://github.com/Data
ManagementLab/restore. 2021.

https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.14778/2904483.2904487
http://www.vldb.org/pvldb/vol9/p552-gribkoff.pdf
https://doi.org/10.1109/ICDE51399.2021.00217
https://doi.org/10.1109/ICDE51399.2021.00217
https://doi.org/10.1109/ICDE51399.2021.00217
https://doi.org/10.1109/ICDE51399.2021.00217
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.1145/3318464.3389741
https://arxiv.org/abs/1903.09999
http://arxiv.org/abs/1903.09999
http://arxiv.org/abs/1903.09999
https://www.cidrdb.org/cidr2022/papers/p16-hilprecht.pdf
https://www.cidrdb.org/cidr2022/papers/p16-hilprecht.pdf
https://doi.org/10.1145/3448016.3457264
https://doi.org/10.1145/3448016.3457264
https://doi.org/10.1145/3448016.3457264
https://github.com/DataManagementLab/restore
https://github.com/DataManagementLab/restore

bibliography 241

[65] Benjamin Hilprecht and Carsten Binnig. Zero-Shot Cost Estima-
tion Models. https://github.com/DataManagementLab/zero-
shot-cost-estimation. 2022.

[66] Benjamin Hilprecht and Carsten Binnig. “Zero-Shot Cost Mod-
els for Out-of-the-box Learned Cost Prediction.” In: Proc. VLDB
Endow. 15.11 (2022), pp. 2361–2374. doi: 10.14778/3551793.
3551799. url: http://www.vldb.org/pvldb/vol15/p2483-
hilprecht.pdf.

[67] Benjamin Hilprecht, Carsten Binnig, Tiemo Bang, Muhammad
El-Hindi, Benjamin Hättasch, Aditya Khanna, Robin Rehrmann,
Uwe Röhm, Andreas Schmidt, Lasse Thostrup, and Tobias
Ziegler. “DBMS Fitting: Why should we learn what we already
know?” In: 10th Conference on Innovative Data Systems Research,
CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020,
Online Proceedings. www.cidrdb.org, 2020. url: http://cidrdb.
org/cidr2020/papers/p34-hilprecht-cidr20.pdf.

[68] Benjamin Hilprecht, Carsten Binnig, Tiemo Bang, Muhammad
El-Hindi, Benjamin Hättasch, Aditya Khanna, Robin Rehrmann,
Uwe Röhm, Andreas Schmidt, Lasse Thostrup, and Tobias
Ziegler. DBMS Fitting: Why should we learn what we already know?
https://github.com/DataManagementLab/cidr-cost-model.
2020.

[69] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. “Learning
a Partitioning Advisor for Cloud Databases.” In: Proceedings
of the 2020 International Conference on Management of Data, SIG-
MOD Conference 2020, online conference [Portland, OR, USA], June
14-19, 2020. Ed. by David Maier, Rachel Pottinger, AnHai Doan,
Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo.
ACM, 2020, pp. 143–157. doi: 10.1145/3318464.3389704. url:
https://doi.org/10.1145/3318464.3389704.

[70] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. “Learning
a Partitioning Advisor for Cloud Databases.” In: Proceedings
of the 2020 International Conference on Management of Data, SIG-
MOD Conference 2020, online conference [Portland, OR, USA], June
14-19, 2020. Ed. by David Maier, Rachel Pottinger, AnHai Doan,
Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo.
ACM, 2020, pp. 143–157. doi: 10.1145/3318464.3389704. url:
https://doi.org/10.1145/3318464.3389704.

[71] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejan-
dro Molina, Kristian Kersting, and Carsten Binnig. DeepDB:
Learn from Data, not from Queries! https://github.com/DataMa
nagementLab/deepdb-public. 2020.

https://github.com/DataManagementLab/zero-shot-cost-estimation
https://github.com/DataManagementLab/zero-shot-cost-estimation
https://doi.org/10.14778/3551793.3551799
https://doi.org/10.14778/3551793.3551799
http://www.vldb.org/pvldb/vol15/p2483-hilprecht.pdf
http://www.vldb.org/pvldb/vol15/p2483-hilprecht.pdf
http://cidrdb.org/cidr2020/papers/p34-hilprecht-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p34-hilprecht-cidr20.pdf
https://github.com/DataManagementLab/cidr-cost-model
https://doi.org/10.1145/3318464.3389704
https://doi.org/10.1145/3318464.3389704
https://doi.org/10.1145/3318464.3389704
https://doi.org/10.1145/3318464.3389704
https://github.com/DataManagementLab/deepdb-public
https://github.com/DataManagementLab/deepdb-public

242 bibliography

[72] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejan-
dro Molina, Kristian Kersting, and Carsten Binnig. “DeepDB:
Learn from Data, not from Queries!” In: Proc. VLDB Endow.
13.7 (2020), pp. 992–1005. doi: 10.14778/3384345.3384349. url:
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf.

[73] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie
Hilgard, Andrew Ross, James Lennon, Varun Jain, Harshita
Gupta, David Li, and Zichen Zhu. “Design Continuums and
the Path Toward Self-Designing Key-Value Stores that Know
and Learn.” In: 9th Biennial Conference on Innovative Data Systems
Research, CIDR 2019, Asilomar, CA, USA, January 13-16, 2019,
Online Proceedings. www.cidrdb.org, 2019. url: http://cidrdb.
org/cidr2019/papers/p143-idreos-cidr19.pdf.

[74] Stratos Idreos, Kostas Zoumpatianos, Subarna Chatterjee, Wil-
son Qin, Abdul Wasay, Brian Hentschel, Mike S. Kester, Niv
Dayan, Demi Guo, Minseo Kang, and Yiyou Sun. “Learning
Data Structure Alchemy.” In: IEEE Data Eng. Bull. 42.2 (2019),
pp. 47–58. url: http://sites.computer.org/debull/A19june/
p47.pdf.

[75] Abhay Kumar Jha and Dan Suciu. “Probabilistic Databases with
MarkoViews.” In: Proc. VLDB Endow. 5.11 (2012), pp. 1160–1171.
doi: 10.14778/2350229.2350236. url: http://vldb.org/
pvldb/vol5/p1160%5C%5C_abhayjha%5C%5C_vldb2012.pdf.

[76] Johan Kok Zhi Kang, Gaurav, Sien Yi Tan, Feng Cheng, Shixuan
Sun, and Bingsheng He. “Efficient Deep Learning Pipelines
for Accurate Cost Estimations Over Large Scale Query Work-
load.” In: SIGMOD ’21: International Conference on Management
of Data, Virtual Event, China, June 20-25, 2021. Ed. by Guoliang
Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava. ACM,
2021, pp. 1014–1022. doi: 10 . 1145 / 3448016 . 3457546. url:
https://doi.org/10.1145/3448016.3457546.

[77] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen,
Weidong Ma, Qiwei Ye, and Tie-Yan Liu. “LightGBM: A Highly
Efficient Gradient Boosting Decision Tree.” In: Advances in
Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA. Ed. by Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett. 2017, pp. 3146–
3154. url: https://proceedings.neurips.cc/paper/2017/
hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html.

[78] Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le
Song. “Learning Combinatorial Optimization Algorithms over
Graphs.” In: Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems

https://doi.org/10.14778/3384345.3384349
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf
http://cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf
http://sites.computer.org/debull/A19june/p47.pdf
http://sites.computer.org/debull/A19june/p47.pdf
https://doi.org/10.14778/2350229.2350236
http://vldb.org/pvldb/vol5/p1160%5C%5C_abhayjha%5C%5C_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1160%5C%5C_abhayjha%5C%5C_vldb2012.pdf
https://doi.org/10.1145/3448016.3457546
https://doi.org/10.1145/3448016.3457546
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html

bibliography 243

2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett. 2017,
pp. 6348–6358. url: https://proceedings.neurips.cc/pape
r/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.

html.

[79] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Pe-
ter A. Boncz, and Alfons Kemper. “Learned Cardinalities: Es-
timating Correlated Joins with Deep Learning.” In: 9th Bi-
ennial Conference on Innovative Data Systems Research, CIDR
2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.
www.cidrdb.org, 2019. url: http://cidrdb.org/cidr2019/
papers/p101-kipf-cidr19.pdf.

[80] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail
Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann.
“SOSD: A Benchmark for Learned Indexes.” In: CoRR abs/1911.13014

(2019). arXiv: 1911.13014. url: http://arxiv.org/abs/1911.
13014.

[81] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer
Schlosser. “Magic mirror in my hand, which is the best in
the land? An Experimental Evaluation of Index Selection Algo-
rithms.” In: Proc. VLDB Endow. 13.11 (2020), pp. 2382–2395. url:
http://www.vldb.org/pvldb/vol13/p2382-kossmann.pdf.

[82] Jan Kossmann, Alexander Kastius, and Rainer Schlosser. “SWIRL:
Selection of Workload-aware Indexes using Reinforcement
Learning.” In: Proceedings of the 25th International Conference on
Extending Database Technology, EDBT 2022, Edinburgh, UK, March
29 - April 1, 2022. Ed. by Julia Stoyanovich, Jens Teubner, Paolo
Guagliardo, Milos Nikolic, Andreas Pieris, Jan Mühlig, Fatma
Özcan, Sebastian Schelter, H. V. Jagadish, and Meihui Zhang.
OpenProceedings.org, 2022, 2:155–2:168. doi: 10.48786/edbt.
2022.06. url: https://doi.org/10.48786/edbt.2022.06.

[83] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi,
Ani Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao,
and Vikram Nathan. “SageDB: A Learned Database System.”
In: CIDR. www.cidrdb.org, 2019. url: http://cidrdb.org/
cidr2019/papers/p117-kraska-cidr19.pdf.

[84] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis
Polyzotis. “The Case for Learned Index Structures.” In: Proceed-
ings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.
Ed. by Gautam Das, Christopher M. Jermaine, and Philip A.
Bernstein. ACM, 2018, pp. 489–504. doi: 10.1145/3183713.
3196909. url: https://doi.org/10.1145/3183713.3196909.

https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
https://arxiv.org/abs/1911.13014
http://arxiv.org/abs/1911.13014
http://arxiv.org/abs/1911.13014
http://www.vldb.org/pvldb/vol13/p2382-kossmann.pdf
https://doi.org/10.48786/edbt.2022.06
https://doi.org/10.48786/edbt.2022.06
https://doi.org/10.48786/edbt.2022.06
http://cidrdb.org/cidr2019/papers/p117-kraska-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p117-kraska-cidr19.pdf
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909

244 bibliography

[85] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M.
Hellerstein, and Ion Stoica. “Learning to Optimize Join Queries
With Deep Reinforcement Learning.” In: CoRR abs/1808.03196

(2018). arXiv: 1808.03196. url: http://arxiv.org/abs/1808.
03196.

[86] Moritz Kulessa, Benjamin Hilprecht, Alejandro Molina, Kristian
Kersting, and Carsten Binnig. “Towards Model-based Approxi-
mate Query Processing.” In: AIDB@VLDB 2019, 1st International
Workshop on Applied AI for Database Systems and Applications,
Held with VLDB 2019. Ed. by Berthold Reinwald and Bingsheng
He. 2019.

[87] M. Seetha Lakshmi and Shaoyu Zhou. “Selectivity Estimation
in Extensible Databases - A Neural Network Approach.” In:
VLDB’98, Proceedings of 24rd International Conference on Very
Large Data Bases, August 24-27, 1998, New York City, New York,
USA. Ed. by Ashish Gupta, Oded Shmueli, and Jennifer Widom.
Morgan Kaufmann, 1998, pp. 623–627. url: http://www.vldb.
org/conf/1998/p623.pdf.

[88] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling.
“Learning to detect unseen object classes by between-class
attribute transfer.” In: 2009 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2009), 20-25
June 2009, Miami, Florida, USA. IEEE Computer Society, 2009,
pp. 951–958. doi: 10.1109/CVPR.2009.5206594. url: https:
//doi.org/10.1109/CVPR.2009.5206594.

[89] Hai Lan, Zhifeng Bao, and Yuwei Peng. “An Index Advisor
Using Deep Reinforcement Learning.” In: CIKM ’20: The 29th
ACM International Conference on Information and Knowledge Man-
agement, Virtual Event, Ireland, October 19-23, 2020. ACM, 2020,
pp. 2105–2108. doi: 10.1145/3340531.3412106. url: https:
//doi.org/10.1145/3340531.3412106.

[90] Willis Lang, Rimma V. Nehme, Eric Robinson, and Jeffrey F.
Naughton. “Partial results in database systems.” In: Interna-
tional Conference on Management of Data, SIGMOD 2014, Snow-
bird, UT, USA, June 22-27, 2014. Ed. by Curtis E. Dyreson,
Feifei Li, and M. Tamer Özsu. ACM, 2014, pp. 1275–1286. doi:
10.1145/2588555.2612176. url: https://doi.org/10.1145/
2588555.2612176.

[91] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,
Alfons Kemper, and Thomas Neumann. “How Good Are Query
Optimizers, Really?” In: Proc. VLDB Endow. 9.3 (2015), pp. 204–
215. doi: 10.14778/2850583.2850594. url: http://www.vldb.
org/pvldb/vol9/p204-leis.pdf.

https://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
http://www.vldb.org/conf/1998/p623.pdf
http://www.vldb.org/conf/1998/p623.pdf
https://doi.org/10.1109/CVPR.2009.5206594
https://doi.org/10.1109/CVPR.2009.5206594
https://doi.org/10.1109/CVPR.2009.5206594
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.1145/2588555.2612176
https://doi.org/10.1145/2588555.2612176
https://doi.org/10.1145/2588555.2612176
https://doi.org/10.14778/2850583.2850594
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
http://www.vldb.org/pvldb/vol9/p204-leis.pdf

bibliography 245

[92] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kem-
per, and Thomas Neumann. “Cardinality Estimation Done
Right: Index-Based Join Sampling.” In: 8th Biennial Conference
on Innovative Data Systems Research, CIDR 2017, Chaminade, CA,
USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org,
2017. url: http://cidrdb.org/cidr2017/papers/p9-leis-
cidr17.pdf.

[93] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev,
Peter A. Boncz, Alfons Kemper, and Thomas Neumann. “Query
optimization through the looking glass, and what we found
running the Join Order Benchmark.” In: VLDB J. 27.5 (2018),
pp. 643–668. doi: 10.1007/s00778-017-0480-7. url: https:
//doi.org/10.1007/s00778-017-0480-7.

[94] Alon Y. Levy. “Obtaining Complete Answers from Incomplete
Databases.” In: VLDB’96, Proceedings of 22th International Confer-
ence on Very Large Data Bases, September 3-6, 1996, Mumbai (Bom-
bay), India. Ed. by T. M. Vijayaraman, Alejandro P. Buchmann,
C. Mohan, and Nandlal L. Sarda. Morgan Kaufmann, 1996,
pp. 402–412. url: http://www.vldb.org/conf/1996/P402.PDF.

[95] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. “Wander Join:
Online Aggregation via Random Walks.” In: Proceedings of the
2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016.
2016, pp. 615–629. doi: 10.1145/2882903.2915235. url: https:
//doi.org/10.1145/2882903.2915235.

[96] Jiexing Li, Arnd Christian König, Vivek R. Narasayya, and Sura-
jit Chaudhuri. “Robust Estimation of Resource Consumption
for SQL Queries using Statistical Techniques.” In: Proc. VLDB
Endow. 5.11 (2012), pp. 1555–1566. doi: 10.14778/2350229.
2350269. url: http : / / vldb . org / pvldb / vol5 / p1555 % 5C _

jiexingli%5C_vldb2012.pdf.

[97] Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. “Model-
free Control for Distributed Stream Data Processing using
Deep Reinforcement Learning.” In: Proc. VLDB Endow. 11.6
(2018), pp. 705–718. doi: 10.14778/3184470.3184474. url:
http://www.vldb.org/pvldb/vol11/p705-li.pdf.

[98] Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand,
and Jonathan Ragan-Kelley. “Differentiable programming for
image processing and deep learning in halide.” In: ACM Trans.
Graph. 37.4 (2018), 139:1–139:13. doi: 10.1145/3197517.3201383.
url: https://doi.org/10.1145/3197517.3201383.

[99] Xi Liang, Aaron J. Elmore, and Sanjay Krishnan. “Opportunistic
View Materialization with Deep Reinforcement Learning.” In:
CoRR abs/1903.01363 (2019). arXiv: 1903.01363. url: http:
//arxiv.org/abs/1903.01363.

http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
https://doi.org/10.1007/s00778-017-0480-7
https://doi.org/10.1007/s00778-017-0480-7
https://doi.org/10.1007/s00778-017-0480-7
http://www.vldb.org/conf/1996/P402.PDF
https://doi.org/10.1145/2882903.2915235
https://doi.org/10.1145/2882903.2915235
https://doi.org/10.1145/2882903.2915235
https://doi.org/10.14778/2350229.2350269
https://doi.org/10.14778/2350229.2350269
http://vldb.org/pvldb/vol5/p1555%5C_jiexingli%5C_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1555%5C_jiexingli%5C_vldb2012.pdf
https://doi.org/10.14778/3184470.3184474
http://www.vldb.org/pvldb/vol11/p705-li.pdf
https://doi.org/10.1145/3197517.3201383
https://doi.org/10.1145/3197517.3201383
https://arxiv.org/abs/1903.01363
http://arxiv.org/abs/1903.01363
http://arxiv.org/abs/1903.01363

246 bibliography

[100] Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, and Cal-
isto Zuzarte. “Cardinality estimation using neural networks.”
In: Proceedings of 25th Annual International Conference on Com-
puter Science and Software Engineering, CASCON 2015, Markham,
Ontario, Canada, 2-4 November, 2015. Ed. by Jordan Gould, Marin
Litoiu, and Hanan Lutfiyya. IBM, 2015, pp. 53–59. url: http:
//dl.acm.org/citation.cfm?id=2886453.

[101] David López-Paz, Philipp Hennig, and Bernhard Schölkopf.
“The Randomized Dependence Coefficient.” In: Advances in
Neural Information Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013. Proceedings of
a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States. Ed. by Christopher J. C. Burges, Léon Bottou, Zoubin
Ghahramani, and Kilian Q. Weinberger. 2013, pp. 1–9. url:
https://proceedings.neurips.cc/paper/2013/hash/aab

3238922bcc25a6f606eb525ffdc56-Abstract.html.

[102] Yao Lu, Srikanth Kandula, Arnd Christian König, and Surajit
Chaudhuri. “Pre-training Summarization Models of Structured
Datasets for Cardinality Estimation.” In: Proc. VLDB Endow.
15.3 (2021), pp. 414–426. doi: 10.14778/3494124.3494127. url:
http://www.vldb.org/pvldb/vol15/p414-lu.pdf.

[103] Yi Lu, Anil Shanbhag, Alekh Jindal, and Samuel Madden.
“AdaptDB: Adaptive Partitioning for Distributed Joins.” In:
Proc. VLDB Endow. 10.5 (2017), pp. 589–600. doi: 10.14778/
3055540.3055551. url: http://www.vldb.org/pvldb/vol10/
p589-lu.pdf.

[104] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane,
Andrew Pavlo, and Geoffrey J. Gordon. “Query-based Work-
load Forecasting for Self-Driving Database Management Sys-
tems.” In: Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018. Ed. by Gautam Das, Christopher M. Jer-
maine, and Philip A. Bernstein. ACM, 2018, pp. 631–645. doi:
10.1145/3183713.3196908. url: https://doi.org/10.1145/
3183713.3196908.

[105] Qingzhi Ma and Peter Triantafillou. “DBEst: Revisiting Ap-
proximate Query Processing Engines with Machine Learning
Models.” In: Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019. Ed. by Peter A. Boncz, Stefan
Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim
Kraska. ACM, 2019, pp. 1553–1570. doi: 10.1145/3299869.
3324958. url: https://doi.org/10.1145/3299869.3324958.

http://dl.acm.org/citation.cfm?id=2886453
http://dl.acm.org/citation.cfm?id=2886453
https://proceedings.neurips.cc/paper/2013/hash/aab3238922bcc25a6f606eb525ffdc56-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/aab3238922bcc25a6f606eb525ffdc56-Abstract.html
https://doi.org/10.14778/3494124.3494127
http://www.vldb.org/pvldb/vol15/p414-lu.pdf
https://doi.org/10.14778/3055540.3055551
https://doi.org/10.14778/3055540.3055551
http://www.vldb.org/pvldb/vol10/p589-lu.pdf
http://www.vldb.org/pvldb/vol10/p589-lu.pdf
https://doi.org/10.1145/3183713.3196908
https://doi.org/10.1145/3183713.3196908
https://doi.org/10.1145/3183713.3196908
https://doi.org/10.1145/3299869.3324958
https://doi.org/10.1145/3299869.3324958
https://doi.org/10.1145/3299869.3324958

bibliography 247

[106] Tanu Malik, Randal C. Burns, and Nitesh V. Chawla. “A Black-
Box Approach to Query Cardinality Estimation.” In: Third
Biennial Conference on Innovative Data Systems Research, CIDR
2007, Asilomar, CA, USA, January 7-10, 2007, Online Proceedings.
www.cidrdb.org, 2007, pp. 56–67. url: http://cidrdb.org/
cidr2007/papers/cidr07p06.pdf.

[107] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrish-
nan, Zili Meng, and Mohammad Alizadeh. “Learning schedul-
ing algorithms for data processing clusters.” In: Proceedings
of the ACM Special Interest Group on Data Communication, SIG-
COMM 2019, Beijing, China, August 19-23, 2019. Ed. by Jianping
Wu and Wendy Hall. ACM, 2019, pp. 270–288. doi: 10.1145/
3341302.3342080. url: https://doi.org/10.1145/3341302.
3342080.

[108] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul,
Mohammad Alizadeh, and Tim Kraska. “Bao: Learning to Steer
Query Optimizers.” In: CoRR abs/2004.03814 (2020). arXiv:
2004.03814. url: https://arxiv.org/abs/2004.03814.

[109] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul,
Mohammad Alizadeh, and Tim Kraska. “Bao: Making Learned
Query Optimization Practical.” In: SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June 20-
25, 2021. Ed. by Guoliang Li, Zhanhuai Li, Stratos Idreos, and
Divesh Srivastava. ACM, 2021, pp. 1275–1288. doi: 10.1145/
3448016.3452838. url: https://doi.org/10.1145/3448016.
3452838.

[110] Ryan Marcus and Olga Papaemmanouil. “Deep Reinforcement
Learning for Join Order Enumeration.” In: Proceedings of the
First International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, aiDM@SIGMOD 2018, Houston,
TX, USA, June 10, 2018. Ed. by Rajesh Bordawekar and Oded
Shmueli. ACM, 2018, 3:1–3:4. doi: 10.1145/3211954.3211957.
url: https://doi.org/10.1145/3211954.3211957.

[111] Ryan Marcus, Olga Papaemmanouil, Sofiya Semenova, and
Solomon Garber. “NashDB: An End-to-End Economic Method
for Elastic Database Fragmentation, Replication, and Provi-
sioning.” In: Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018. Ed. by Gautam Das, Christopher M. Jer-
maine, and Philip A. Bernstein. ACM, 2018, pp. 1253–1267. doi:
10.1145/3183713.3196935. url: https://doi.org/10.1145/
3183713.3196935.

[112] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang,
Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil, and
Nesime Tatbul. “Neo: A Learned Query Optimizer.” In: Proc.

http://cidrdb.org/cidr2007/papers/cidr07p06.pdf
http://cidrdb.org/cidr2007/papers/cidr07p06.pdf
https://doi.org/10.1145/3341302.3342080
https://doi.org/10.1145/3341302.3342080
https://doi.org/10.1145/3341302.3342080
https://doi.org/10.1145/3341302.3342080
https://arxiv.org/abs/2004.03814
https://arxiv.org/abs/2004.03814
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145/3183713.3196935
https://doi.org/10.1145/3183713.3196935
https://doi.org/10.1145/3183713.3196935

248 bibliography

VLDB Endow. 12.11 (2019), pp. 1705–1718. doi: 10 . 14778 /

3342263.3342644. url: http://www.vldb.org/pvldb/vol12/
p1705-marcus.pdf.

[113] Ryan C. Marcus and Olga Papaemmanouil. “Plan-Structured
Deep Neural Network Models for Query Performance Pre-
diction.” In: Proc. VLDB Endow. 12.11 (2019), pp. 1733–1746.
doi: 10.14778/3342263.3342646. url: http://www.vldb.org/
pvldb/vol12/p1733-marcus.pdf.

[114] Chris Mayfield, Jennifer Neville, and Sunil Prabhakar. “ER-
ACER: a database approach for statistical inference and data
cleaning.” In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010. Ed. by Ahmed K. Elmagarmid
and Divyakant Agrawal. ACM, 2010, pp. 75–86. doi: 10.1145/
1807167.1807178. url: https://doi.org/10.1145/1807167.
1807178.

[115] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A.
Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin A.
Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. “Human-level control through deep reinforcement
learning.” In: Nat. 518.7540 (2015), pp. 529–533. doi: 10.1038/
nature14236. url: https://doi.org/10.1038/nature14236.

[116] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. “Pre-
venting Bad Plans by Bounding the Impact of Cardinality Esti-
mation Errors.” In: Proc. VLDB Endow. 2.1 (2009), pp. 982–993.
doi: 10.14778/1687627.1687738. url: http://www.vldb.org/
pvldb/vol2/vldb09-657.pdf.

[117] Alejandro Molina, Sriraam Natarajan, and Kristian Kersting.
“Poisson Sum-Product Networks: A Deep Architecture for
Tractable Multivariate Poisson Distributions.” In: Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA. Ed. by Satinder Singh
and Shaul Markovitch. AAAI Press, 2017, pp. 2357–2363. url:
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/

14530.

[118] Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam
Natarajan, Floriana Esposito, and Kristian Kersting. “Mixed
Sum-Product Networks: A Deep Architecture for Hybrid Do-
mains.” In: Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Or-
leans, Louisiana, USA, February 2-7, 2018. Ed. by Sheila A. McIl-

https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
http://www.vldb.org/pvldb/vol12/p1705-marcus.pdf
http://www.vldb.org/pvldb/vol12/p1705-marcus.pdf
https://doi.org/10.14778/3342263.3342646
http://www.vldb.org/pvldb/vol12/p1733-marcus.pdf
http://www.vldb.org/pvldb/vol12/p1733-marcus.pdf
https://doi.org/10.1145/1807167.1807178
https://doi.org/10.1145/1807167.1807178
https://doi.org/10.1145/1807167.1807178
https://doi.org/10.1145/1807167.1807178
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.14778/1687627.1687738
http://www.vldb.org/pvldb/vol2/vldb09-657.pdf
http://www.vldb.org/pvldb/vol2/vldb09-657.pdf
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14530
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14530

bibliography 249

raith and Kilian Q. Weinberger. AAAI Press, 2018, pp. 3828–
3835. url: https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/16865.

[119] Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Pe-
harz, Pranav Subramani, Nicola Di Mauro, Pascal Poupart, and
Kristian Kersting. “SPFlow: An Easy and Extensible Library for
Deep Probabilistic Learning using Sum-Product Networks.”
In: CoRR abs/1901.03704 (2019). arXiv: 1901.03704. url: http:
//arxiv.org/abs/1901.03704.

[120] Jan Motl and Oliver Schulte. “The CTU Prague Relational
Learning Repository.” In: CoRR abs/1511.03086 (2015). arXiv:
1511.03086. url: http://arxiv.org/abs/1511.03086.

[121] Amihai Motro. “Integrity = Validity + Completeness.” In: ACM
Trans. Database Syst. 14.4 (1989), pp. 480–502. doi: 10.1145/
76902.76904. url: https://doi.org/10.1145/76902.76904.

[122] Kunal Mukerjee, Tomas Talius, Ajay Kalhan, Nigel Ellis, and
Conor Cunningham. “SQL Azure as a Self-Managing Database
Service: Lessons Learned and Challenges Ahead.” In: IEEE
Data Eng. Bull. 34.4 (2011), pp. 61–70. url: http://sites.
computer.org/debull/A11dec/azure2.pdf.

[123] Raghunath Othayoth Nambiar and Meikel Poess. “The Making
of TPC-DS.” In: Proceedings of the 32nd International Conference
on Very Large Data Bases, Seoul, Korea, September 12-15, 2006.
Ed. by Umeshwar Dayal, Kyu-Young Whang, David B. Lomet,
Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang
Kyun Cha, and Young-Kuk Kim. ACM, 2006, pp. 1049–1058.
url: http://dl.acm.org/citation.cfm?id=1164217.

[124] Dushyanth Narayanan, Eno Thereska, and Anastassia Ailamaki.
“Continuous resource monitoring for self-predicting DBMS.”
In: 13th International Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS
2005), 27-29 September 2005, Atlanta, GA, USA. IEEE Computer
Society, 2005, pp. 239–248. doi: 10.1109/MASCOTS.2005.21.
url: https://doi.org/10.1109/MASCOTS.2005.21.

[125] Charlie Nash and Conor Durkan. “Autoregressive Energy Ma-
chines.” In: CoRR abs/1904.05626 (2019). arXiv: 1904.05626.
url: http://arxiv.org/abs/1904.05626.

[126] Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao,
Nesime Tatbul, Tim Kraska, and Mohammad Alizadeh. “Flow-
Loss: Learning Cardinality Estimates That Matter.” In: Proc.
VLDB Endow. 14.11 (2021), pp. 2019–2032. doi: 10 . 14778 /

3476249.3476259. url: http://www.vldb.org/pvldb/vol14/
p2019-negi.pdf.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16865
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16865
https://arxiv.org/abs/1901.03704
http://arxiv.org/abs/1901.03704
http://arxiv.org/abs/1901.03704
https://arxiv.org/abs/1511.03086
http://arxiv.org/abs/1511.03086
https://doi.org/10.1145/76902.76904
https://doi.org/10.1145/76902.76904
https://doi.org/10.1145/76902.76904
http://sites.computer.org/debull/A11dec/azure2.pdf
http://sites.computer.org/debull/A11dec/azure2.pdf
http://dl.acm.org/citation.cfm?id=1164217
https://doi.org/10.1109/MASCOTS.2005.21
https://doi.org/10.1109/MASCOTS.2005.21
https://arxiv.org/abs/1904.05626
http://arxiv.org/abs/1904.05626
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3476249.3476259
http://www.vldb.org/pvldb/vol14/p2019-negi.pdf
http://www.vldb.org/pvldb/vol14/p2019-negi.pdf

250 bibliography

[127] Rimma V. Nehme and Nicolas Bruno. “Automated partition-
ing design in parallel database systems.” In: Proceedings of the
ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, Athens, Greece, June 12-16, 2011. Ed. by Timos K.
Sellis, Renée J. Miller, Anastasios Kementsietsidis, and Yannis
Velegrakis. ACM, 2011, pp. 1137–1148. doi: 10.1145/1989323.
1989444. url: https://doi.org/10.1145/1989323.1989444.

[128] Patrick E. O’Neil, Elizabeth J. O’Neil, Xuedong Chen, and
Stephen Revilak. “The Star Schema Benchmark and Augmented
Fact Table Indexing.” In: Performance Evaluation and Bench-
marking, First TPC Technology Conference, TPCTC 2009, Lyon,
France, August 24-28, 2009, Revised Selected Papers. Ed. by Raghu-
nath Othayoth Nambiar and Meikel Poess. Vol. 5895. Lecture
Notes in Computer Science. Springer, 2009, pp. 237–252. doi:
10.1007/978-3-642-10424-4_17. url: https://doi.org/
10.1007/978-3-642-10424-4%5C%5C_17.

[129] Patrick E O’Neil, Elizabeth J O’Neil, and Xuedong Chen. “The
star schema benchmark (SSB).” In: Pat 200.0 (2007), p. 50.

[130] Dan Olteanu, Jiewen Huang, and Christoph Koch. “SPROUT:
Lazy vs. Eager Query Plans for Tuple-Independent Probabilistic
Databases.” In: Proceedings of the 25th International Conference
on Data Engineering, ICDE 2009, March 29 2009 - April 2 2009,
Shanghai, China. Ed. by Yannis E. Ioannidis, Dik Lun Lee, and
Raymond T. Ng. IEEE Computer Society, 2009, pp. 640–651.
doi: 10.1109/ICDE.2009.123. url: https://doi.org/10.
1109/ICDE.2009.123.

[131] Laurel J. Orr, Magdalena Balazinska, and Dan Suciu. “Sample
Debiasing in the Themis Open World Database System.” In:
Proceedings of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020. Ed. by David Maier, Rachel Pottinger,
AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and
Hung Q. Ngo. ACM, 2020, pp. 257–268. doi: 10.1145/3318464.
3380606. url: https://doi.org/10.1145/3318464.3380606.

[132] Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lu-
bin, Pushmeet Kohli, and Oriol Vinyals. “Reinforced Genetic
Algorithm Learning for Optimizing Computation Graphs.” In:
8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. url: https://openreview.net/forum?id=rkxDoJBYPB.

[133] George Papamakarios, Iain Murray, and Theo Pavlakou. “Masked
Autoregressive Flow for Density Estimation.” In: Advances
in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA. Ed. by Isabelle Guyon, Ulrike

https://doi.org/10.1145/1989323.1989444
https://doi.org/10.1145/1989323.1989444
https://doi.org/10.1145/1989323.1989444
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1007/978-3-642-10424-4%5C%5C_17
https://doi.org/10.1007/978-3-642-10424-4%5C%5C_17
https://doi.org/10.1109/ICDE.2009.123
https://doi.org/10.1109/ICDE.2009.123
https://doi.org/10.1109/ICDE.2009.123
https://doi.org/10.1145/3318464.3380606
https://doi.org/10.1145/3318464.3380606
https://doi.org/10.1145/3318464.3380606
https://openreview.net/forum?id=rkxDoJBYPB

bibliography 251

von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett. 2017, pp. 2338–
2347. url: https://proceedings.neurips.cc/paper/2017/
hash/6c1da886822c67822bcf3679d04369fa-Abstract.html.

[134] Panos Parchas, Yonatan Naamad, Peter Van Bouwel, Chris-
tos Faloutsos, and Michalis Petropoulos. “Fast and Effective
Distribution-Key Recommendation for Amazon Redshift.” In:
Proc. VLDB Endow. 13.11 (2020), pp. 2411–2423. url: http :

//www.vldb.org/pvldb/vol13/p2411-parchas.pdf.

[135] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao
Wang. “VerdictDB: Universalizing Approximate Query Pro-
cessing.” In: Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018. Ed. by Gautam Das, Christopher M. Jer-
maine, and Philip A. Bernstein. ACM, 2018, pp. 1461–1476. doi:
10.1145/3183713.3196905. url: https://doi.org/10.1145/
3183713.3196905.

[136] Yongjoo Park, Ahmad Shahab Tajik, Michael J. Cafarella, and
Barzan Mozafari. “Database Learning: Toward a Database that
Becomes Smarter Every Time.” In: Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Confer-
ence 2017, Chicago, IL, USA, May 14-19, 2017. Ed. by Semih Sali-
hoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Su-
ciu. ACM, 2017, pp. 587–602. doi: 10.1145/3035918.3064013.
url: https://doi.org/10.1145/3035918.3064013.

[137] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf,
Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library.” In: Advances in
Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett. 2019, pp. 8024–8035.
url: https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[138] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi
Lin, Lin Ma, Prashanth Menon, Todd C. Mowry, Matthew
Perron, Ian Quah, Siddharth Santurkar, Anthony Tomasic, Skye
Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu, Ran Xian, and
Tieying Zhang. “Self-Driving Database Management Systems.”
In: 8th Biennial Conference on Innovative Data Systems Research,

https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
http://www.vldb.org/pvldb/vol13/p2411-parchas.pdf
http://www.vldb.org/pvldb/vol13/p2411-parchas.pdf
https://doi.org/10.1145/3183713.3196905
https://doi.org/10.1145/3183713.3196905
https://doi.org/10.1145/3183713.3196905
https://doi.org/10.1145/3035918.3064013
https://doi.org/10.1145/3035918.3064013
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

252 bibliography

CIDR 2017, Chaminade, CA, USA, January 8-11, 2017, Online
Proceedings. www.cidrdb.org, 2017. url: http://cidrdb.org/
cidr2017/papers/p42-pavlo-cidr17.pdf.

[139] Andrew Pavlo, Carlo Curino, and Stanley B. Zdonik. “Skew-
aware automatic database partitioning in shared-nothing, par-
allel OLTP systems.” In: Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD 2012,
Scottsdale, AZ, USA, May 20-24, 2012. Ed. by K. Selçuk Candan,
Yi Chen, Richard T. Snodgrass, Luis Gravano, and Ariel Fux-
man. ACM, 2012, pp. 61–72. doi: 10.1145/2213836.2213844.
url: https://doi.org/10.1145/2213836.2213844.

[140] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein,
and Renata Borovica-Gajic. “DBA bandits: Self-driving index
tuning under ad-hoc, analytical workloads with safety guar-
antees.” In: 37th IEEE International Conference on Data Engineer-
ing, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 2021,
pp. 600–611. doi: 10.1109/ICDE51399.2021.00058. url: https:
//doi.org/10.1109/ICDE51399.2021.00058.

[141] Hoifung Poon and Pedro M. Domingos. “Sum-product net-
works: A new deep architecture.” In: IEEE International Con-
ference on Computer Vision Workshops, ICCV 2011 Workshops,
Barcelona, Spain, November 6-13, 2011. IEEE Computer Society,
2011, pp. 689–690. doi: 10.1109/ICCVW.2011.6130310. url:
https://doi.org/10.1109/ICCVW.2011.6130310.

[142] Postgres-XL database. https://www.postgres-xl.org/.

[143] Abdul Quamar, K. Ashwin Kumar, and Amol Deshpande.
“SWORD: scalable workload-aware data placement for transac-
tional workloads.” In: Joint 2013 EDBT/ICDT Conferences, EDBT
’13 Proceedings, Genoa, Italy, March 18-22, 2013. Ed. by Giovanna
Guerrini and Norman W. Paton. ACM, 2013, pp. 430–441. doi:
10.1145/2452376.2452427. url: https://doi.org/10.1145/
2452376.2452427.

[144] Tilmann Rabl and Hans-Arno Jacobsen. “Query Centric Parti-
tioning and Allocation for Partially Replicated Database Sys-
tems.” In: Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017. Ed. by Semih Salihoglu, Wenchao Zhou,
Rada Chirkova, Jun Yang, and Dan Suciu. ACM, 2017, pp. 315–
330. doi: 10.1145/3035918.3064052. url: https://doi.org/
10.1145/3035918.3064052.

[145] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy M. Lohman.
“Automating physical database design in a parallel database.”
In: Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, Madison, Wisconsin, USA, June 3-6, 2002.

http://cidrdb.org/cidr2017/papers/p42-pavlo-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p42-pavlo-cidr17.pdf
https://doi.org/10.1145/2213836.2213844
https://doi.org/10.1145/2213836.2213844
https://doi.org/10.1109/ICDE51399.2021.00058
https://doi.org/10.1109/ICDE51399.2021.00058
https://doi.org/10.1109/ICDE51399.2021.00058
https://doi.org/10.1109/ICCVW.2011.6130310
https://doi.org/10.1109/ICCVW.2011.6130310
https://www.postgres-xl.org/
https://doi.org/10.1145/2452376.2452427
https://doi.org/10.1145/2452376.2452427
https://doi.org/10.1145/2452376.2452427
https://doi.org/10.1145/3035918.3064052
https://doi.org/10.1145/3035918.3064052
https://doi.org/10.1145/3035918.3064052

bibliography 253

Ed. by Michael J. Franklin, Bongki Moon, and Anastassia Aila-
maki. ACM, 2002, pp. 558–569. doi: 10.1145/564691.564757.
url: https://doi.org/10.1145/564691.564757.

[146] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher
Ré. “HoloClean: Holistic Data Repairs with Probabilistic In-
ference.” In: Proc. VLDB Endow. 10.11 (2017), pp. 1190–1201.
doi: 10.14778/3137628.3137631. url: http://www.vldb.org/
pvldb/vol10/p1190-rekatsinas.pdf.

[147] Theodoros Rekatsinas, Amol Deshpande, and Lise Getoor. “Lo-
cal structure and determinism in probabilistic databases.” In:
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24,
2012. Ed. by K. Selçuk Candan, Yi Chen, Richard T. Snodgrass,
Luis Gravano, and Ariel Fuxman. ACM, 2012, pp. 373–384. doi:
10.1145/2213836.2213879. url: https://doi.org/10.1145/
2213836.2213879.

[148] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach (4th Edition). Pearson, 2020. isbn: 9780134610993. url:
http://aima.cs.berkeley.edu/.

[149] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Che-
ung, Alec Radford, and Xi Chen. “Improved Techniques for
Training GANs.” In: Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Process-
ing Systems 2016, December 5-10, 2016, Barcelona, Spain. Ed. by
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Is-
abelle Guyon, and Roman Garnett. 2016, pp. 2226–2234. url:
https://proceedings.neurips.cc/paper/2016/hash/8a

3363abe792db2d8761d6403605aeb7-Abstract.html.

[150] Thomas Schmied, Diego Didona, Andreas C. Döring, Thomas P.
Parnell, and Nikolas Ioannou. “Towards a General Framework
for ML-based Self-tuning Databases.” In: EuroMLSys@EuroSys
2021, Proceedings of the 1st Workshop on Machine Learning and
Systemsg Virtual Event, Edinburgh, Scotland, UK, 26 April, 2021.
Ed. by Eiko Yoneki and Paul Patras. ACM, 2021, pp. 24–30. doi:
10.1145/3437984.3458830. url: https://doi.org/10.1145/
3437984.3458830.

[151] Prithviraj Sen, Amol Deshpande, and Lise Getoor. “PrDB: man-
aging and exploiting rich correlations in probabilistic databases.”
In: VLDB J. 18.5 (2009), pp. 1065–1090. doi: 10.1007/s00778-
009-0153-2. url: https://doi.org/10.1007/s00778-009-
0153-2.

[152] Jayavel Shanmugasundaram, Usama M. Fayyad, and Paul S.
Bradley. “Compressed Data Cubes for OLAP Aggregate Query
Approximation on Continuous Dimensions.” In: Proceedings
of the Fifth ACM SIGKDD International Conference on Knowledge

https://doi.org/10.1145/564691.564757
https://doi.org/10.1145/564691.564757
https://doi.org/10.14778/3137628.3137631
http://www.vldb.org/pvldb/vol10/p1190-rekatsinas.pdf
http://www.vldb.org/pvldb/vol10/p1190-rekatsinas.pdf
https://doi.org/10.1145/2213836.2213879
https://doi.org/10.1145/2213836.2213879
https://doi.org/10.1145/2213836.2213879
http://aima.cs.berkeley.edu/
https://proceedings.neurips.cc/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7-Abstract.html
https://doi.org/10.1145/3437984.3458830
https://doi.org/10.1145/3437984.3458830
https://doi.org/10.1145/3437984.3458830
https://doi.org/10.1007/s00778-009-0153-2
https://doi.org/10.1007/s00778-009-0153-2
https://doi.org/10.1007/s00778-009-0153-2
https://doi.org/10.1007/s00778-009-0153-2

254 bibliography

Discovery and Data Mining, San Diego, CA, USA, August 15-
18, 1999. Ed. by Usama M. Fayyad, Surajit Chaudhuri, and
David Madigan. ACM, 1999, pp. 223–232. doi: 10.1145/312129.
312231. url: https://doi.org/10.1145/312129.312231.

[153] Yangjun Sheng, Anthony Tomasic, Tieying Zhang, and An-
drew Pavlo. “Scheduling OLTP transactions via learned abort
prediction.” In: Proceedings of the Second International Workshop
on Exploiting Artificial Intelligence Techniques for Data Manage-
ment, aiDM at SIGMOD 2019, Amsterdam, The Netherlands, July
5, 2019. Ed. by Rajesh Bordawekar and Oded Shmueli. ACM,
2019, 1:1–1:8. doi: 10.1145/3329859.3329871. url: https:
//doi.org/10.1145/3329859.3329871.

[154] Suraj Shetiya, Saravanan Thirumuruganathan, Nick Koudas,
and Gautam Das. “Astrid: Accurate Selectivity Estimation for
String Predicates using Deep Learning.” In: Proc. VLDB Endow.
14.4 (2020), pp. 471–484. doi: 10.14778/3436905.3436907. url:
http://www.vldb.org/pvldb/vol14/p471-shetiya.pdf.

[155] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and
Wangchao Le. “Cost Models for Big Data Query Processing:
Learning, Retrofitting, and Our Findings.” In: Proceedings of the
2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-
19, 2020. Ed. by David Maier, Rachel Pottinger, AnHai Doan,
Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo.
ACM, 2020, pp. 99–113. doi: 10.1145/3318464.3380584. url:
https://doi.org/10.1145/3318464.3380584.

[156] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez,
Laurent Sifre, George van den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbren-
ner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Ko-
ray Kavukcuoglu, Thore Graepel, and Demis Hassabis. “Mas-
tering the game of Go with deep neural networks and tree
search.” In: Nat. 529.7587 (2016), pp. 484–489. doi: 10.1038/
nature16961. url: https://doi.org/10.1038/nature16961.

[157] Snowflake Cloud Data Warehouse. https://www.snowflake.com/.
Accessed: 2020-09-12.

[158] Lukas Sommer, Julian Oppermann, Alejandro Molina, Carsten
Binnig, Kristian Kersting, and Andreas Koch. “Automatic Map-
ping of the Sum-Product Network Inference Problem to FPGA-
Based Accelerators.” In: 36th IEEE International Conference on
Computer Design, ICCD 2018, Orlando, FL, USA, October 7-10,
2018. IEEE Computer Society, 2018, pp. 350–357. doi: 10.1109/
ICCD.2018.00060. url: https://doi.org/10.1109/ICCD.2018.
00060.

https://doi.org/10.1145/312129.312231
https://doi.org/10.1145/312129.312231
https://doi.org/10.1145/312129.312231
https://doi.org/10.1145/3329859.3329871
https://doi.org/10.1145/3329859.3329871
https://doi.org/10.1145/3329859.3329871
https://doi.org/10.14778/3436905.3436907
http://www.vldb.org/pvldb/vol14/p471-shetiya.pdf
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://www.snowflake.com/
https://doi.org/10.1109/ICCD.2018.00060
https://doi.org/10.1109/ICCD.2018.00060
https://doi.org/10.1109/ICCD.2018.00060
https://doi.org/10.1109/ICCD.2018.00060

bibliography 255

[159] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong
Chen, Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amer-
son Lin, Samuel Madden, Elizabeth J. O’Neil, Patrick E. O’Neil,
Alex Rasin, Nga Tran, and Stanley B. Zdonik. “C-Store: A
Column-oriented DBMS.” In: Proceedings of the 31st Interna-
tional Conference on Very Large Data Bases, Trondheim, Norway,
August 30 - September 2, 2005. Ed. by Klemens Böhm, Christian
S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Larson,
and Beng Chin Ooi. ACM, 2005, pp. 553–564. url: http://www.
vldb.org/archives/website/2005/program/paper/thu/p553-

stonebraker.pdf.

[160] Dan Suciu and Christopher Re. Efficient top-K query evaluation
on probabilistic data. US Patent 7,814,113. Oct. 2010.

[161] Ji Sun and Guoliang Li. “An End-to-End Learning-based Cost
Estimator.” In: Proc. VLDB Endow. 13.3 (2019), pp. 307–319.
doi: 10.14778/3368289.3368296. url: http://www.vldb.org/
pvldb/vol13/p307-sun.pdf.

[162] Lijun Sun and Alexander Erath. “A Bayesian network approach
for population synthesis.” In: Transportation Research Part C:
Emerging Technologies 61 (2015), pp. 49–62.

[163] Bruhathi Sundarmurthy, Paraschos Koutris, Willis Lang, Jeffrey
F. Naughton, and Val Tannen. “m-tables: Representing Missing
Data.” In: 20th International Conference on Database Theory, ICDT
2017, March 21-24, 2017, Venice, Italy. Ed. by Michael Benedikt
and Giorgio Orsi. Vol. 68. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017, 21:1–21:20. doi: 10.4230/LIPIcs.
ICDT.2017.21. url: https://doi.org/10.4230/LIPIcs.ICDT.
2017.21.

[164] Richard S. Sutton and Andrew G. Barto. Reinforcement learning
- an introduction. Adaptive computation and machine learning.
MIT Press, 1998. isbn: 978-0-262-19398-6. url: https://www.
worldcat.org/oclc/37293240.

[165] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter
Abbeel. “Value Iteration Networks.” In: Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017. Ed. by Carles
Sierra. ijcai.org, 2017, pp. 4949–4953. doi: 10.24963/ijcai.
2017/700. url: https://doi.org/10.24963/ijcai.2017/700.

[166] Arvind Thiagarajan and Samuel Madden. “Querying contin-
uous functions in a database system.” In: Proceedings of the
ACM SIGMOD International Conference on Management of Data,
SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008. Ed. by
Jason Tsong-Li Wang. ACM, 2008, pp. 791–804. doi: 10.1145/
1376616.1376696. url: https://doi.org/10.1145/1376616.
1376696.

http://www.vldb.org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf
http://www.vldb.org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf
http://www.vldb.org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf
https://doi.org/10.14778/3368289.3368296
http://www.vldb.org/pvldb/vol13/p307-sun.pdf
http://www.vldb.org/pvldb/vol13/p307-sun.pdf
https://doi.org/10.4230/LIPIcs.ICDT.2017.21
https://doi.org/10.4230/LIPIcs.ICDT.2017.21
https://doi.org/10.4230/LIPIcs.ICDT.2017.21
https://doi.org/10.4230/LIPIcs.ICDT.2017.21
https://www.worldcat.org/oclc/37293240
https://www.worldcat.org/oclc/37293240
https://doi.org/10.24963/ijcai.2017/700
https://doi.org/10.24963/ijcai.2017/700
https://doi.org/10.24963/ijcai.2017/700
https://doi.org/10.1145/1376616.1376696
https://doi.org/10.1145/1376616.1376696
https://doi.org/10.1145/1376616.1376696
https://doi.org/10.1145/1376616.1376696

256 bibliography

[167] Saravanan Thirumuruganathan, Shohedul Hasan, Nick Koudas,
and Gautam Das. “Approximate Query Processing using Deep
Generative Models.” In: CoRR abs/1903.10000 (2019). arXiv:
1903.10000. url: http://arxiv.org/abs/1903.10000.

[168] TPC-DS benchmark. http://www.tpc.org/tpcds/.

[169] TPC-H benchmark. http://www.tpc.org/tpch/.

[170] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen.
“Efficiently adapting graphical models for selectivity estima-
tion.” In: VLDB J. 22.1 (2013), pp. 3–27. doi: 10.1007/s00778-
012-0293-7. url: https://doi.org/10.1007/s00778-012-
0293-7.

[171] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman,
and Alan Skelley. “DB2 Advisor: An Optimizer Smart Enough
to Recommend Its Own Indexes.” In: Proceedings of the 16th
International Conference on Data Engineering, San Diego, California,
USA, February 28 - March 3, 2000. IEEE Computer Society, 2000,
pp. 101–110. doi: 10.1109/ICDE.2000.839397. url: https:
//doi.org/10.1109/ICDE.2000.839397.

[172] Shivaram Venkataraman, Zongheng Yang, Michael J. Franklin,
Benjamin Recht, and Ion Stoica. “Ernest: Efficient Performance
Prediction for Large-Scale Advanced Analytics.” In: 13th USENIX
Symposium on Networked Systems Design and Implementation,
NSDI 2016, Santa Clara, CA, USA, March 16-18, 2016. Ed. by
Katerina J. Argyraki and Rebecca Isaacs. USENIX Association,
2016, pp. 363–378. url: https://www.usenix.org/conference/
nsdi16/technical-sessions/presentation/venkataraman.

[173] Francesco Ventura, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz,
and Volker Markl. “Expand your Training Limits! Generating
Training Data for ML-based Data Management.” In: SIGMOD
’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021. 2021, pp. 1865–1878. doi: 10.1145/
3448016.3457286. url: https://doi.org/10.1145/3448016.
3457286.

[174] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong,
Ashish Motivala, and Thierry Cruanes. “Building An Elastic
Query Engine on Disaggregated Storage.” In: 17th USENIX
Symposium on Networked Systems Design and Implementation,
NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020. Ed.
by Ranjita Bhagwan and George Porter. USENIX Association,
2020, pp. 449–462. url: https://www.usenix.org/conference/
nsdi20/presentation/vuppalapati.

[175] Daisy Zhe Wang, Eirinaios Michelakis, Minos N. Garofalakis,
and Joseph M. Hellerstein. “BayesStore: managing large, un-
certain data repositories with probabilistic graphical models.”

https://arxiv.org/abs/1903.10000
http://arxiv.org/abs/1903.10000
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/
https://doi.org/10.1007/s00778-012-0293-7
https://doi.org/10.1007/s00778-012-0293-7
https://doi.org/10.1007/s00778-012-0293-7
https://doi.org/10.1007/s00778-012-0293-7
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.1109/ICDE.2000.839397
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://doi.org/10.1145/3448016.3457286
https://doi.org/10.1145/3448016.3457286
https://doi.org/10.1145/3448016.3457286
https://doi.org/10.1145/3448016.3457286
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

bibliography 257

In: Proc. VLDB Endow. 1.1 (2008), pp. 340–351. doi: 10.14778/
1453856.1453896. url: http://www.vldb.org/pvldb/vol1/
1453896.pdf.

[176] Fei Wang, James M. Decker, Xilun Wu, Grégory M. Essertel, and
Tiark Rompf. “Backpropagation with Callbacks: Foundations
for Efficient and Expressive Differentiable Programming.” In:
Advances in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada. Ed. by Samy Ben-
gio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett. 2018, pp. 10201–
10212. url: https://proceedings.neurips.cc/paper/2018/
hash/34e157766f31db3d2099831d348a7933-Abstract.html.

[177] Jiannan Wang, Sanjay Krishnan, Michael J. Franklin, Ken Gold-
berg, Tim Kraska, and Tova Milo. “A sample-and-clean frame-
work for fast and accurate query processing on dirty data.” In:
International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014. Ed. by Curtis E. Dyreson,
Feifei Li, and M. Tamer Özsu. ACM, 2014, pp. 469–480. doi:
10.1145/2588555.2610505. url: https://doi.org/10.1145/
2588555.2610505.

[178] Thomas Wang, Simone Ferlin, and Marco Chiesa. “Predicting
CPU usage for proactive autoscaling.” In: EuroMLSys@EuroSys
2021, Proceedings of the 1st Workshop on Machine Learning and
Systemsg Virtual Event, Edinburgh, Scotland, UK, 26 April, 2021.
Ed. by Eiko Yoneki and Paul Patras. ACM, 2021, pp. 31–38. doi:
10.1145/3437984.3458831. url: https://doi.org/10.1145/
3437984.3458831.

[179] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich,
and Wolfgang Lehner. “Cardinality estimation with local deep
learning models.” In: Proceedings of the Second International Work-
shop on Exploiting Artificial Intelligence Techniques for Data Man-
agement, aiDM@SIGMOD 2019, Amsterdam, The Netherlands, July
5, 2019. Ed. by Rajesh Bordawekar and Oded Shmueli. ACM,
2019, 5:1–5:8. doi: 10.1145/3329859.3329875. url: https:
//doi.org/10.1145/3329859.3329875.

[180] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel,
Wangchao Le, Shi Qiao, and Sriram Rao. “Towards a Learning
Optimizer for Shared Clouds.” In: Proc. VLDB Endow. 12.3
(2018), pp. 210–222. doi: 10.14778/3291264.3291267. url:
http://www.vldb.org/pvldb/vol12/p210-wu.pdf.

[181] Richard Wu, Aoqian Zhang, Ihab F. Ilyas, and Theodoros
Rekatsinas. “Attention-based Learning for Missing Data Impu-
tation in HoloClean.” In: Proceedings of Machine Learning and
Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020.

https://doi.org/10.14778/1453856.1453896
https://doi.org/10.14778/1453856.1453896
http://www.vldb.org/pvldb/vol1/1453896.pdf
http://www.vldb.org/pvldb/vol1/1453896.pdf
https://proceedings.neurips.cc/paper/2018/hash/34e157766f31db3d2099831d348a7933-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/34e157766f31db3d2099831d348a7933-Abstract.html
https://doi.org/10.1145/2588555.2610505
https://doi.org/10.1145/2588555.2610505
https://doi.org/10.1145/2588555.2610505
https://doi.org/10.1145/3437984.3458831
https://doi.org/10.1145/3437984.3458831
https://doi.org/10.1145/3437984.3458831
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.14778/3291264.3291267
http://www.vldb.org/pvldb/vol12/p210-wu.pdf

258 bibliography

Ed. by Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivi-
enne Sze. mlsys.org, 2020. url: https://proceedings.mlsys.
org/book/307.pdf.

[182] Yingjun Wu, Jia Yu, Yuanyuan Tian, Richard Sidle, and Ronald
Barber. “Designing Succinct Secondary Indexing Mechanism
by Exploiting Column Correlations.” In: Proceedings of the 2019
International Conference on Management of Data, SIGMOD Con-
ference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019.
Ed. by Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska. ACM, 2019, pp. 1223–1240.
doi: 10.1145/3299869.3319861. url: https://doi.org/10.
1145/3299869.3319861.

[183] Lei Xu and Kalyan Veeramachaneni. “Synthesizing Tabular
Data using Generative Adversarial Networks.” In: CoRR abs/1811.11264

(2018). arXiv: 1811.11264. url: http://arxiv.org/abs/1811.
11264.

[184] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal,
Michael Luo, and Ion Stoica. “Balsa: Learning a Query Opti-
mizer Without Expert Demonstrations.” In: CoRR abs/2201.01441

(2022). arXiv: 2201.01441. url: https://arxiv.org/abs/2201.
01441.

[185] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan
Duan, Xi Chen, and Ion Stoica. “NeuroCard: One Cardinality
Estimator for All Tables.” In: Proc. VLDB Endow. 14.1 (2020),
pp. 61–73. doi: 10.14778/3421424.3421432. url: http://www.
vldb.org/pvldb/vol14/p61-yang.pdf.

[186] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu,
Yan Duan, Xi Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay
Krishnan, and Ion Stoica. “Deep Unsupervised Cardinality
Estimation.” In: Proc. VLDB Endow. 13.3 (2019), pp. 279–292.
doi: 10.14778/3368289.3368294. url: http://www.vldb.org/
pvldb/vol13/p279-yang.pdf.

[187] Jinsung Yoon, James Jordon, and Mihaela van der Schaar.
“GAIN: Missing Data Imputation using Generative Adversarial
Nets.” In: Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause.
Vol. 80. Proceedings of Machine Learning Research. PMLR,
2018, pp. 5675–5684. url: http://proceedings.mlr.press/
v80/yoon18a.html.

[188] Haitao Yuan, Guoliang Li, Ling Feng, Ji Sun, and Yue Han. “Au-
tomatic View Generation with Deep Learning and Reinforce-
ment Learning.” In: 36th IEEE International Conference on Data
Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020. IEEE,

https://proceedings.mlsys.org/book/307.pdf
https://proceedings.mlsys.org/book/307.pdf
https://doi.org/10.1145/3299869.3319861
https://doi.org/10.1145/3299869.3319861
https://doi.org/10.1145/3299869.3319861
https://arxiv.org/abs/1811.11264
http://arxiv.org/abs/1811.11264
http://arxiv.org/abs/1811.11264
https://arxiv.org/abs/2201.01441
https://arxiv.org/abs/2201.01441
https://arxiv.org/abs/2201.01441
https://doi.org/10.14778/3421424.3421432
http://www.vldb.org/pvldb/vol14/p61-yang.pdf
http://www.vldb.org/pvldb/vol14/p61-yang.pdf
https://doi.org/10.14778/3368289.3368294
http://www.vldb.org/pvldb/vol13/p279-yang.pdf
http://www.vldb.org/pvldb/vol13/p279-yang.pdf
http://proceedings.mlr.press/v80/yoon18a.html
http://proceedings.mlr.press/v80/yoon18a.html

bibliography 259

2020, pp. 1501–1512. doi: 10.1109/ICDE48307.2020.00133. url:
https://doi.org/10.1109/ICDE48307.2020.00133.

[189] Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust.
“Lakehouse: A New Generation of Open Platforms that Unify
Data Warehousing and Advanced Analytics.” In: 11th Confer-
ence on Innovative Data Systems Research, CIDR 2021, Virtual
Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org,
2021. url: http://cidrdb.org/cidr2021/papers/cidr2021%
5C_paper17.pdf.

[190] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás
Póczos, Ruslan Salakhutdinov, and Alexander J. Smola. “Deep
Sets.” In: Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fer-
gus, S. V. N. Vishwanathan, and Roman Garnett. 2017, pp. 3391–
3401. url: https://proceedings.neurips.cc/paper/2017/
hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html.

[191] Erfan Zamanian, Carsten Binnig, and Abdallah Salama. “Locality-
aware Partitioning in Parallel Database Systems.” In: Proceed-
ings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015. Ed. by Timos K. Sellis, Susan B. Davidson, and Zachary G.
Ives. ACM, 2015, pp. 17–30. doi: 10.1145/2723372.2723718.
url: https://doi.org/10.1145/2723372.2723718.

[192] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng,
Jiashu Xing, Yangtao Wang, Tianheng Cheng, Li Liu, et al. “An
end-to-end automatic cloud database tuning system using deep
reinforcement learning.” In: SIGMOD. 2019, pp. 415–432.

[193] Xuanhe Zhou, Luyang Liu, Wenbo Li, and et al. “AutoIndex:
An Incremental Index Management System for Dynamic Work-
loads.” In: ICDE. 2022.

[194] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. “Query
Performance Prediction for Concurrent Queries using Graph
Embedding.” In: Proc. VLDB Endow. 13.9 (2020), pp. 1416–1428.
doi: 10.14778/3397230.3397238. url: http://www.vldb.org/
pvldb/vol13/p1416-zhou.pdf.

[195] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler,
Zhengping Qian, Jingren Zhou, and Bin Cui. “FLAT: Fast,
Lightweight and Accurate Method for Cardinality Estima-
tion.” In: Proc. VLDB Endow. 14.9 (2021), pp. 1489–1502. doi:
10.14778/3461535.3461539. url: http://www.vldb.org/
pvldb/vol14/p1489-zhu.pdf.

https://doi.org/10.1109/ICDE48307.2020.00133
https://doi.org/10.1109/ICDE48307.2020.00133
http://cidrdb.org/cidr2021/papers/cidr2021%5C_paper17.pdf
http://cidrdb.org/cidr2021/papers/cidr2021%5C_paper17.pdf
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://doi.org/10.1145/2723372.2723718
https://doi.org/10.1145/2723372.2723718
https://doi.org/10.14778/3397230.3397238
http://www.vldb.org/pvldb/vol13/p1416-zhou.pdf
http://www.vldb.org/pvldb/vol13/p1416-zhou.pdf
https://doi.org/10.14778/3461535.3461539
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf

260 bibliography

[196] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman,
Adam J. Storm, Christian Garcia-Arellano, and Scott Fadden.
“DB2 Design Advisor: Integrated Automatic Physical Database
Design.” In: (e)Proceedings of the Thirtieth International Conference
on Very Large Data Bases, VLDB 2004, Toronto, Canada, August
31 - September 3 2004. Ed. by Mario A. Nascimento, M. Tamer
Özsu, Donald Kossmann, Renée J. Miller, José A. Blakeley,
and K. Bernhard Schiefer. Morgan Kaufmann, 2004, pp. 1087–
1097. doi: 10.1016/B978-012088469-8.50095-4. url: http:
//www.vldb.org/conf/2004/IND4P1.PDF.

https://doi.org/10.1016/B978-012088469-8.50095-4
http://www.vldb.org/conf/2004/IND4P1.PDF
http://www.vldb.org/conf/2004/IND4P1.PDF

	Abstract
	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	Acronyms
	 Synopsis
	1 Introduction
	1.1 The Need for Database Adaption
	1.2 Towards Learned Database Components
	1.3 Limitations of Workload-Driven Learning
	1.4 Data-Efficient Learned Database Components

	2 Data-Efficient Learned Database Components
	2.1 Data-Efficient Workload-Driven Learning
	2.2 Data-Driven Learning
	2.3 Zero-Shot Learned Components

	3 Data-Efficient Workload-Driven Learning
	3.1 Simulation for Data-Efficient Learned Partitioning
	3.1.1 Partitioning as a Physical Design Problem
	3.1.2 Towards a Learned Partitioning Advisor
	3.1.3 Partitioning as an RL Problem
	3.1.4 Key Findings

	3.2 Differentiable Databases
	3.2.1 FITable DBMSs
	3.2.2 Key Findings for Fittable Cost Models

	3.3 Discussion

	4 Data-Driven Learning
	4.1 DeepDB: Data-Driven Learning for Cardinality Estimation and AQP
	4.1.1 Overview and Applications
	4.1.2 Learning a Deep Data Model
	4.1.3 Key Findings

	4.2 ReStore: Data-Driven Completion of Incomplete Relational Datasets
	4.2.1 Overview
	4.2.2 Our Approach
	4.2.3 Key Findings

	4.3 Discussion

	5 Zero-Shot Learned Components
	5.1 Zero-Shot Learned Database Components
	5.1.1 Overview
	5.1.2 Key Challenges

	5.2 Zero-Shot Learned Cost Estimation
	5.2.1 Problem Statement
	5.2.2 Our Approach
	5.2.3 Assumptions and Limitations

	5.3 Key Findings
	5.4 Discussion

	6 Conclusion and Outlook
	6.1 Data-Efficient Learned Database Components
	6.2 Outlook
	6.2.1 End-to-End Zero-Shot Databases
	6.2.2 Practical Data-Driven Learning
	6.2.3 Robustness and Debuggability

	 Peer-Reviewed Publications
	7 Learning a Partitioning Advisor for Cloud Databases
	7.1 Introduction
	7.2 Overview
	7.3 Partitioning as a DRL Problem
	7.3.1 Background on DRL
	7.3.2 Problem Modeling

	7.4 Training Procedure
	7.4.1 Phase 1: Offline Training
	7.4.2 Phase 2: Online Training

	7.5 Optimizations for Workload Changes
	7.6 Model Inference
	7.7 Experimental Evaluation
	7.7.1 Workloads, Setup and Baselines
	7.7.2 Exp. 1: Offline Training
	7.7.3 Exp. 2: Online Training
	7.7.4 Exp. 3: Adaptivity to Data & Workload
	7.7.5 Exp. 4: Other Learned Approaches
	7.7.6 Exp. 5: Adaptivity to Deployment

	7.8 Related Work
	7.9 Conclusion and Future Work
	7.10 Acknowledgments

	8 DBMS Fitting: Why should we learn what we already know?
	8.1 Introduction
	8.2 Vision: A FITable DBMS
	8.2.1 Basic Idea of Fitting
	8.2.2 The Bigger Picture

	8.3 Case Study: A fittable Cost Model
	8.3.1 The Need for better Cost Models
	8.3.2 Fitting a Cost Model
	8.3.3 Initial Results

	8.4 Conclusion

	9 DeepDB: Learn from Data, not from Queries!
	9.1 Introduction
	9.2 Overview and Applications
	9.3 Learning a Deep Data Model
	9.3.1 Sum Product Networks
	9.3.2 Relational Sum-Product Networks
	9.3.3 Learning Ensembles of RSPNs

	9.4 Query Compilation
	9.4.1 Simple COUNT Queries
	9.4.2 Other Aggregate Queries

	9.5 DeepDB Extensions
	9.5.1 Support for Confidence Intervals
	9.5.2 Support for Updates
	9.5.3 Ensemble Optimization

	9.6 Experimental Evaluation
	9.6.1 Experiment 1: Cardinality Estimation
	9.6.2 Experiment 2: AQP

	9.7 Related Work
	9.8 Conclusion and Future work
	9.9 Acknowledgments

	10 ReStore- Neural Data Completion for Relational Databases
	10.1 Introduction
	10.2 Overview
	10.2.1 Problem Statement
	10.2.2 Our Approach
	10.2.3 Discussion

	10.3 Learned Completion Models
	10.3.1 Background on Autoregressive Models
	10.3.2 Simple Completion Models
	10.3.3 Schema-Structured Completion Models
	10.3.4 Learning on Complex Schemata

	10.4 Query-Driven Data Completion
	10.4.1 Overview of Query Processing
	10.4.2 Single Incomplete Table in a Query
	10.4.3 Multiple Incomplete Tables in a Query
	10.4.4 Additional Cases for Data Completion
	10.4.5 Further Optimizations

	10.5 Model and Path Selection
	10.6 Completion Confidence
	10.6.1 Simple Case
	10.6.2 General Case

	10.7 Experimental Evaluation
	10.7.1 Datasets and Implementation
	10.7.2 Exp. 1: Data Completion on Synthetic Data
	10.7.3 Exp. 2: Data Completion on Real Data
	10.7.4 Exp. 3: Query Processing
	10.7.5 Exp. 4: Accuracy and Performance Aspects

	10.8 Related Work
	10.9 Conclusion and Future Work

	11 One Model to Rule them All: Towards Zero-Shot Learning for Databases
	11.1 Introduction
	11.2 Zero-Shot Learning for Databases
	11.2.1 Overview of the Approach
	11.2.2 Key Challenges

	11.3 Case Study: Cost Estimation
	11.3.1 Zero-Shot Cost Estimation
	11.3.2 Initial Evaluation

	11.4 Beyond Cost Estimation
	11.4.1 Physical Design and Knob Tuning
	11.4.2 Query Optimization
	11.4.3 Discussion

	11.5 Looking into the Future
	11.6 Acknowledgments

	12 Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction
	12.1 Introduction
	12.2 Overview
	12.2.1 Problem Statement
	12.2.2 Our Approach
	12.2.3 Assumptions and Limitations

	12.3 Zero-Shot Cost Models
	12.3.1 Query Representation
	12.3.2 Inference on Zero-Shot Models
	12.3.3 Training Zero-Shot Models
	12.3.4 Deriving Data Characteristics

	12.4 Robustness of Zero-Shot Models
	12.4.1 Estimating the Generalization Performance
	12.4.2 Tackling Workload and Data Drifts

	12.5 A New Benchmark
	12.5.1 Design Decisions
	12.5.2 Datasets
	12.5.3 Workloads and Traces

	12.6 Experimental Evaluation
	12.6.1 Exp 1: Zero-Shot Accuracy on Unseen Databases
	12.6.2 Exp 2: Zero-Shot vs. Workload-Driven
	12.6.3 Exp 3: Generalization
	12.6.4 Exp 4: Efficiency of Training and Inference
	12.6.5 Exp. 5: Ablation Study

	12.7 Related Work
	12.8 Conclusion and Future Work
	12.9 Acknowledgments

	 Bibliography

