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Abstract

One of the unsolved problems of fluid mechanics revolves around the prediction and description
of large-scale turbulent structures, so-called turbulent superstructures, in various wall-bounded
shear flows such as the asymptotic suction boundary layer (ASBL) or plane Couette flow (PCF).
It is assumed that the origin of such superstructures is to be sought in the laminar-turbulent
transition phenomenon.
In the present dissertation, linear stability theory (LST) is therefore revisited for aforemen-
tioned ASBL and PCF with the goal of disclosing phenomena describing and influencing the
formation of large-scale structures. In the context of the ASBL, the present understanding
of linear stability is extended by investigating the analytical solution of the underlying Orr–
Sommerfeld equation (OSE). One of the key results in the present work is the establishment of
a clear interrelation between Reynolds number and streamwise wavelength of perturbations
through asymptotic analyses, which demonstrably is of universal nature and, thus, applicable
to any wall-bounded shear flow. Furthermore, continuous modes are derived and examined
for the ASBL, where in the spatial stability problem one solution branch gives novel unstable
continuous modes.
A curiosity of PCF is that LST predicts linear stability exclusively, whereas experiments and nu-
merical simulations provide evidence of laminar-turbulent transition leading to fully turbulent
PCF. It is shown in this work that, in contrast to suction boundary layers, transpiration destabi-
lizes PCF and above a minimal transpiration rate yields PCF linearly unstable. It is additionally
demonstrated that in the infinite limit of the transpiration rate, PCF can be converted to the
ASBL via specific parameter and coordinate transformations.
The final part of this thesis revolves around the discovery of novel unstable three-dimensional
(3D) spatial modes. An extension of Squire’s transformation to the spatial stability frame-
work discloses the mathematical necessity of additionally introducing complex spanwise wave
numbers and, thus, possible growth in the spanwise direction, which in previous research was
neglected in view of Squire’s theorem. Thereof, it is demonstrated that these novel modes
with oblique growth may lead to subcritical transition in potentially linearly unstable two-
dimensional (2D) flows. Linearly stable 2D flows in turn experience growth of the perturbation
velocity field in spanwise direction, which is reminiscent of large-scale laminar-turbulent pat-
terns known from numerical simulations of transitioning PCF. Therefore, 3D PCF superposed
by such oblique modes is studied in conclusion through a direct numerical simulation (DNS)
with a spectral element solver.
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Zusammenfassung

Ein ungelöstes Problem der Strömungsmechanik dreht sich um die Vorhersage und Beschrei-
bung von großskaligen turbulenten Strukturen, sogenannten turbulenten Superstrukturen, in
verschiedenen wandgebundenen Scherströmungen wie der asymptotisch abgesaugten Grenz-
schichströmung (engl. asymptotic suction boundary layer (ASBL)) oder der ebenen Couette-
Strömung (engl. plane Couette flow (PCF)). Vermutet wird, dass der Ursprung solcher Super-
strukturen im laminar-turbulenten Umschlagsphänomen zu suchen ist.
In der vorliegenden Dissertation wird infolgedessen die lineare Stabilitätstheorie (engl. linear
stability theory (LST)) für die ASBL und PCF neu aufgegriffen mit dem Ziel, Phänomene ausfin-
dig zu machen, welche die Entstehung großskaliger Strukturen bedingen und beeinflussen. Im
Kontext der ASBL wird hierfür das gegenwärtige Verständnis der linearen Stabilität erweitert,
indem die analytische Lösung der Orr-Sommerfeld Gleichung (engl. Orr–Sommerfeld equation
(OSE)) eingehend untersucht wird. Ein zentrales Ergebnis der vorliegenden Arbeit ist die
Herstellung eines klaren Zusammenhangs zwischen Reynolds-Zahl und Störwellenlänge in
Strömungsrichtung durch asymptotischen Analysen, welcher überdies nachweislich universeller
Natur ist und daher auf beliebige wandgebundene Scherströmungen übertragen werden kann.
Ferner werden kontinuierliche Moden für die ASBL hergeleitet und untersucht. Ein wesentliches
Ergebnis besteht in der Existenz eines Lösungszweiges im räumlichen Stabilitätsproblem, durch
welches neuartige instabile kontinuierliche Moden auftreten.
Eine Besonderheit der PCF besteht darin, dass die LST ausschließlich lineare Stabilität vor-
hersagt, wohingegen Experimente und numerische Simulationen nachweisen, dass laminar-
turbulenter Umschlag möglich ist. In der vorliegenden Arbeit wird gezeigt, dass, im Gegensatz
zur ASBL, Transpiration einen destabilisierenden Effekt auf die PCF hat und schließlich zu
linearer Instabilität für ausreichend große Transpirationsraten führt. Außerdem wird gezeigt,
dass für unendlich große Transpirationsraten die ebene Couette-Strömung durch geeignete
Koordinaten- und Parametertransformationen in die ASBL überführt werden kann.
Im finalen Teil dieser Thesis wird die Entdeckung neuartiger 3DModenmit schrägemWachstum
thematisiert. Eine Erweiterung der Squire-Transformation für das räumliche Stabilitätsproblem
legt die mathematische Notwendigkeit offen, zusätzlich komplexe Spannweitenwellenzahlen
einzuführen und damit das Wachstum von Störungen in Spannweitenrichtung zu ermöglichen,
was in einschlägiger Literatur in Anbetracht des Squire-Theorems vernachlässigt wurde. Ein
zentrales Ergebnis besteht darin, dass diese neuartigen Moden mit schrägen Wachstumsme-
chanismen zu subkritischem Umschlag von potentiell linear instabilen 2D-Strömungen führen
können. Für linear stabile 2D-Strömungen hingegen ergibt sich, dass das entstehende Stör-
geschwindigkeitsfeld in Spannweitenrichtung anwächst, was Ähnlichkeiten zu großskaligen
laminar-turbulenten schrägen Strukturen in umschlagender PCF aufweist, die aus einschlägi-
gen numerischen Simulationen bekannt sind. Aus diesem Grund wird die 3D PCF überlagert
mit derartigen schrägen Moden abschließend in einer direkten numerischen Simulation (engl.
direct numerical simulation (DNS)), durchgeführt mit einem Spektralelementlöser, untersucht.
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1 Introduction

Mankind’s interaction with the environment has always constituted a desire to first comprehend,
then describe quantitatively and finally control the entirety of all existing physical phenomena.
The goals of such control may be manifold and are generally dictated by the spirit of the
respective era. As the situation presents itself in the present times, the pressing challenge of
the prevailing century is the anthropogenic climate change and its disastrous effects on the
environment, humans and nature in its entirety. It is certainly not exaggerated to declare that
limiting global warmth preferably to 1.5◦ C or 2◦ C at most compared to the pre-industrial era
is crucial to maintain a habitable planet Earth and prevent extreme climates (UN, 2015).
A trivial way out of the dilemma of an ever-increasing demand for energy and the necessity of
reducing the emission of CO2 clearly would be the emergence of novel inexhaustible methods of
green energy production, such as nuclear fusion, in order to satisfy the global energy demand
and halt climate change. In the foreseeable future, however, humanity must rely on more
conventional methods of tackling climate change, that is, increasing the usage of conventional
green energy production, limiting the usage of fossil fuels by law, for instance by capping
CO2-emissions by specific thresholds, and improving the efficiency of traditional technologies.
In almost all aspects of energy production, fluid mechanics plays a significant role in achieving
higher degrees of efficiency. In this aspect, the understanding of turbulence as one of the main
reasons of energy loss due to increased friction is indispensable. For this, one must be able
to correctly predict turbulence and describe the structures emerging in a turbulent flow. The
present dissertation attempts to contribute to these specific points with the following chapters.

1.1 Large-scale structures in laminar and turbulent flows

The scientific research of the present dissertation is embedded in the priority programme
SPP1881: Turbulent Superstructures, funded by the German Research Foundation (DFG).
The goal of this research program is to thoroughly describe, understand and control large-
scale turbulent structures, so called turbulent superstructures. This term was first coined by
Hutchins and Marusic (2007) in a seminal paper, in which the authors both experimentally
and numerically verified the existence of clustered structures aligned in streamwise direction
in the near-wall region. These results are quite remarkable, as turbulent flows are generally
thought of as chaotic and rather arbitrary. Certain statistical turbulent flow features, such as
the mean velocity U , classically represent the very few ordered and regular features of an
otherwise chaotic phenomenon. However, the mechanisms leading to the formation of such
large-scale structures are not yet understood thoroughly to date.
Despite the novel terminology, the presence of large-scale motions in turbulent boundary layer
(TBL) was described decades ago by Kovasznay et al. (1970), made possible by the emergence
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of conditional sampling and conditional averaging methods in experimental fluid mechanics.
In the elaborations a clear interrelation between the motion of the interface separating the
turbulent and non-turbulent regimes in intermittent turbulence and the clustering of large-scale
motions in the turbulent patches could be deduced. It is quite fascinating how the forming
and movement of exclusively turbulent features, specifically persisting large-scale turbulent
motions, are influenced by intermittency, which in itself outlines the presence or non-presence
of turbulence in a spatiotemporal regime. Observations of this sort are invaluable for the
quantitative and structural understanding of turbulence, which otherwise is confined by the
infamous closure problem. Similar observations of turbulent superstructures were also made
by Nakagawa and Nezu (1981), who in an open-channel flow could extract bursting large-scale
motions in experiments via new sampling analysis methods.
In all of these results resides the question: from where do these large-scale persisting turbulent
superstructures originate? In this context, it is convenient to consider turbulent Rayleigh–
Bénard convection (RBC), which represents the convective flow forming between two plates,
the lower heated and the upper cooled. While laminar RBC features ordered convection cells
both in two-dimensional (2D) and three-dimensional (3D), these ordered structures break up
in turbulent RBC and seemingly distort into chaotic patterns. It was shown, however, that the
instantaneous chaos in turbulent RBC possesses large-scale dynamics classifiable as turbulent
superstructures (Getling, 1998; Bodenschatz et al., 2000; Ahlers et al., 2009). Remarkably, in
a recent work by Pandey et al. (2018) weakly turbulent RBC fields were found to yield cell-like
structures reminiscent of the convection patterns occurring at much smaller Rayleigh numbers
and thus in linear or weakly non-linear regimes. The laminar convection patterns, in turn, are
results of linear instabilities in the non-convective state, i.e. when viscous forces dominate
buoyancy and heat is transferred via conduction rather than convection. Thus, these results
strongly hint at a link between large-scale motions in turbulent flows and linear instabilities in
the laminar base state.
Throughout this thesis, the asymptotic suction boundary layer (ASBL) is discussed extensively,
for which fluctuations with large-scale streamwise wavelengths were found to be the most
energetic in pre-multiplied energy spectra by Khapko et al. (2016). Time-averaged turbulent
superstructures in the form of large and wide streamwise rolls were further discovered by
Kraheberger et al. (2018) for plane Couette flow (PCF), which is the other canonical flow
examined in this dissertation. For sufficiently large Reynolds numbers, counter-rotating rolls
covering the entire spanwise direction of the computational boxes are uncovered via time-
averaging of the turbulent velocity field. Curiously, the rolls persist even for increasingly large
transpiration rates and seem to be of universal nature rather than spontaneous occurrences.
The diameter of these counter-rotating rolls are as large as the characteristic length scale, i.e.
the distance between both walls, similar to the aforementioned large-scale motions in TBL.
Furthermore, these rolls effectively outlive all transient phenomena in the flow, proving to be
long-lived enough to classify as turbulent superstructures. There is a strong suspicion that
their origin also lies in the laminar regime, wherein linear modes seem to persist transition to
turbulence and thereof evolve into large-scale turbulent structures.

To sum up the hitherto available insights, two important pieces of information may be extracted
from these results:
(i) While instantaneous small-scaled transient turbulent fluctuations serve little to no role in
global transportation phenomena, large-scale persisting turbulent superstructures are essential
for global mass and heat transfer in a flow, as was demonstrated for RBC by Bodenschatz et al.
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(2000) and Pandey et al. (2018). This implies that the understanding of the forming as well
as the temporal development of these structures are vital in order to reasonably predict the
mass and heat transfer not only of canonical flows but also of technical fluid applications or
atmospheric motions.
(ii) The results of Pandey et al. (2018) and Kraheberger et al. (2018) strongly hint that the
origin of turbulent superstructures are to be discovered in the laminar base states of respective
flow problems. Classical linear stability analysis (LSA) can be used to analyze flows superposed
by small perturbations in order to predict the growth of respective perturbation modes. As
will be demonstrated throughout the present dissertation, LSA utilized on canonical shear
flows addressed in the present thesis, namely PCF and the ASBL, as well as multiple other
flow problems gives rise to numerous novel insights on the emergence and growth mechanics
of infinitesimal perturbations. The respective results may be extended by employing weakly
non-linear methods, which for aforementioned RBC was utilized by Schlüter et al. (1965)
in order to predict the dynamics of finite amplitude perturbations. As the title of this thesis
indicates, attention hereafter shall be focused to the ASBL and PCF.

1.2 Revisiting linear stability analysis for wall-bounded canonical
shear flows examplified by plane Couette flow and the
asymptotic suction boundary layer

One of the key results of the research established in the present thesis emerged from the analyt-
ical study of the linear stability problem of the ASBL. It could be shown via asymptotic methods
that very long streamwise perturbations are limited in their length by the corresponding
Reynolds number of the problem. Even more remarkable is a distinct functional interrelation of
this length-threshold and the Reynolds number of the problem. These results coincide with the
aforementioned work by Khapko et al. (2016) as well as very recent experimental observations
made for the turbulent ASBL by Ferro et al. (2021), who both uncovered energy maxima in
pre-multiplied power density spectra at large streamwise wavelengths, i.e. corresponding
to turbulent superstructures, for Reynolds numbers of same order in the near-wall region.
Evidently, this was worked out analytically in Yalcin et al. (2021) as elaborated. In this work
the present author also derived continuous spectra for the temporal stability problem of the
2D ASBL, which proved to be stable regardless of the flow parameters. However, a shift of
framework to the spatial stability problem disclosed spatial continuous spectra which for very
specific parameters do in fact become unstable. To the best knowledge of the author unstable
continuous spectra were not detected for other classically examined canonical shear flows.
Additionally, the existence of novel ansatz functions for the linearized Navier-Stokes equations
were analyzed based on derivations by Mirzayev (2016) in an unpublished bachelor thesis.
These analyses in turn are based on group theoretical examinations by Nold et al. (2015),
where optimal systems of symmetries of the inviscid linearized Navier-Stokes equations yielded
aforementioned novel ansatz functions for plane shear flows in general. The application of
the presented techniques gave rise to double-exponential and alternative exponential ansatz
functions for the ASBL.
The effect of transpiration was studied further in both a temporal and spatial LSA for plane
Couette flow with transpiration (PCFT) in a supervised unpublished master thesis by Sun
(2020). While conventional PCF is known to be linearly stable for all Reynolds numbers, as was
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proven by Romanov (1973), the same setup with constant wall-transpiration turns unstable at
a specific transpiration Reynolds number. It could be shown that transpiration, in contrast to
stabilization of boundary layer (BL) via suction, leads to destabilization of PCF. Floryan (2003)
showed previously how harmonic transpiration at the lower-wall of PCF induce instabilities.
These results were complemented in the present research by considering the case of global
and constant wall-transpiration, which evidently also induces instabilities at large enough
transpiration rates. Remarkably, PCFT is demonstrated to be mathematically equivalent to
the ASBL for the infinite limit of the transpiration Reynolds number. This yields the stability
analysis of PCFT with large transpiration Reynolds numbers superfluous, which is then covered
by the ASBL.
The last major topic of this thesis is the discussion of novel oblique modes for wall-bounded
shear flows. The respective results are discussed in chapter 5. Via extension of the classical
Squire’s transformation for the temporal stability problem to the spatial framework, novel
modes with oblique growth mechanics are derived. Where conventional linear modes are
globally stable for PCF, the inclusion of spanwise growth rates induce a perturbation field which
quite possibly experiences growth for certain angles in the wall-parallel plane. The framework
was also applied to the ASBL, which upon assumption of spanwise growth rates yield linear
modes with subcritical Reynolds numbers. The stabilizing effect of suction for BL may, based
on the present results, be subjected to a misconception. A distinction is therefore necessary,
as suction clearly does stabilize BLs flows when assuming purely streamwise growth rates, as
was also proven experimentally by Fransson and Alfredsson (2003). Oblique modes, however,
seem to bypass the self-evident stabilization of suction. Bypass transition was observed for
the ASBL at Reynolds numbers as low as Re = 333 in large-eddy simulations by Schlatter and
Örlü (2011). It is well within the realms of possibility that bypass transition is triggered by the
presence of oblique modes such as the ones discussed in this thesis.
Finally, the results in chapter 5 are backed by direct numerical simulation (DNS) conducted
with the open-source code nek5000 by Fischer et al. (2008) in chapter 6, which employs a
high-order spectral element method (SEM) scheme implemented by nodal Lagrange polynomial
basis functions interpolated on Gauss–Lobatto–Legendre (GLL) points. The simulations verify
the validity of the derived oblique modes for PCF and prove that oblique patterns similar to
known laminar-turbulent stripe patterns emerge (Barkley and Tuckerman, 1999; Barkley and
Tuckerman, 2005; Tuckerman and Barkley, 2011).

1.3 Outline

The following chapters of the present doctoral thesis are inaugurated by chapter 2, in which
theoretical backgrounds all succeeding chapters have in common, i.e. a derivation of the
Navier-Stokes equation, its linearization and non-dimensionalization as well as the derivation
of equations of linear stability and corresponding equations and transformations are presented.
Chapter 3 revisits temporal and spatial linear stability analysis for the ASBL and introduces
novel unstable spatial continuous modes. The destabilizing effect of transpiration on PCF is
studied in chapter 4, where additionally for large transpiration rates a unique transformation
to the ASBL is presented. An extension of the framework of linear stability in terms of modes
with oblique growth is introduced in chapter 5. These modes are verified in direct numerical
simulations presented in chapter 6. A conclusion and outlook based on the present results is
lastly presented in chapter 7. Several chapters are backed by the appendix.
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2 Basic equations of linear stability theory

Stability theory represents the mathematical framework that is employed to predict the tem-
poral or spatial evolution of perturbations introduced into or emerging in a system. The idea
itself is not restricted to fluid dynamics, but may be applied to different fields of physics,
such as thermodynamics or structural mechanics. Correspondingly, a thermodynamic system
may become unstable due to a perturbation in temperature while a mechanical structure may
feature instabilities due to harmonic or quasi-harmonic displacements. As the focus in the
following chapter is going to be on plane shear flows, the governing equations will be restricted
to the introduction of hydrodynamic stability theory. For this, the basic conservation laws, for
momentum and mass in particular, are discussed in the framework of continuum mechanics
and extended to the famous Navier–Stokes equations (NSE) by the inclusion of material laws.
Thereof, the linearized Navier–Stokes equations (LNSE) are derived by a perturbation ansatz,
which then are transformed to two partial differential equation (PDE) for the wall-normal
perturbation velocity and vorticity, respectively.
Classical stability theory then is commenced in form of the Orr–Sommerfeld equation (OSE)
and Squire equation (SE), which are obtained from the LNSE by employing the normal mode
ansatz (NMA), which mathematically represents a Fourier-Laplace transformation. The OSE
and SE framework is supplemented by the Squire’s transformation, which represent symmetry
transformations between the respective two-dimensional (2D) and three-dimensional (3D)
spectral parameters arising due to the Fourier-Laplace transformation. This theoretical frame-
work will form the basis for the analyses conducted and discussed in the subsequent chapters
on the linear stability analysis (LSA) of the asymptotic suction boundary layer (ASBL) and
plane Couette flow (PCF) with and without wall-transpiration, respectively.

2.1 Continuum mechanics

A gas or liquid is ideally described in field theory by assuming all field quantities to be defined
at every point of the domain via local spatial and statistical averaging at a molecular level.
Naturally, however, not every infinitesimally small point in a domain is occupied by gas
molecules and thus defining fluid velocity, for instance, as an averaged field quantity may be
erroneous. In such cases, it would be more sensible to describe the statistical behavior of such
thermodynamic systems, for instance by the Boltzmann equation (Boltzmann, 1872). The
corresponding equations and ensuing statistical descriptions of fluid behavior on a molecular
level, however, are unnecessarily complex for most flows and fluid applications. It is more
convenient, if applicable without grave errors in all field points, to regard the flow domain as a
continuum, in which above mentioned field quantities are spatially averaged in a continuous
field, allowing for the calculation of local gradients of such fields.
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The justification of such approach is given if the mean free path λ, denoting the mean length
of particle collisions, is sufficiently small in relation to a problem specific length scale L, i.e.

Kn :=
λ

L
≪ 1, (2.1)

where Kn denotes the Knudsen number. Figure 2.1 conceptually depicts the mean free path
λ and a problem specific length scale, here a circular flow domain of diameter L, which
could be the inside of a balloon. The molecules in the domain both oscillate and have the
instantaneous velocity v. The thermodynamics state of the medium inside the domain is
described by the pressure p of the gas as well as the temperature T , which correlates to the
intensity of oscillations and the molecular velocity. As such, the mean free path is dependent
on these molecular phenomena as well as the size of the molecules, expressed by the mean
molecule diameter d. For ideal gases the mean free path thus is given by

λ =
kBT

2
1
2πd2p

, (2.2)

where kB additionally denotes the Boltzmann constant, one of the fundamental constants of
statistical mechanics. Karniadakis et al. (2006) specifies the range in which the continuum

Figure 2.1: Molecules of diameter d in a domain with the characteristic length L, the pressure p and
temperature T oscillate and have the instantaneous velocity v. The likelihood of collisions
is quantified by the mean free path λ(p, T, d).

hypothesis applies as
Kn ≤ 0.01, (2.3)

whereas the later described NSE already apply for

Kn ≤ 0.1. (2.4)

The Knudsen number range in between, i.e. 0.01 < Kn < 0.1, is called the slip flow region,
for which the classical no-slip boundary condition (BC) must be replaced by a slip BC. In
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order to explain the use of the continuum hypothesis hereafter, a short calculation discussed in
Pope and Pope (2000) is depicted. For air under atmospheric conditions, the mean free path
between the molecules is approximately λ = 6 × 10−8 m. Typical length scales in common
fluid applications are rarely smaller than L = 10−4 m = 0.1 mm. Employing these lengths into
(2.1) gives Kn = 0.0006 ≪ 1 and thus justifies the assumption of continuum mechanics. The
following flow problems are assumed to generally combine characteristic lengths scales and
mean free paths such that the Knudsen numbers are not entering the slip flow region, which
would demand refined BC. Instead, no-slip BC are employed for wall-bounded shear flows.

2.2 Conservation laws

The assumption of continuum mechanics due to the prevalence of sufficiently low Knudsen
numbers as defined in (2.1) gives rise to one of the central and most powerful concepts of field
theory, i.e. conservation laws. They state that certain quantities in a closed domain may not
appear from nowhere or disappear into the void and are therefore conserved. An increase or
decrease of the corresponding quantity is only possible via production or annihilation of the
same inside the domain or via flux over the boundaries. It shall be noted that, in addition to
the now discussed conservation laws of mass and momentum, there exist conservation laws for
energy, angular momentum or vorticity, among numerous others for incompressible fluids (see
e.g. Caviglia and Morro (1989)). The notation and following presentation of basic equations in
continuum mechanics are based on derivations given in Spurk and Aksel (2010). A thorough
in-depth derivation of the now following principles shall be referred to there.

2.2.1 Continuity equation

Certainly, conservation of mass represents the most comprehensible and plausible conservation
law. Upon considering a time-dependent material surface, the mass without production or
destruction (e.g. via matter-antimatter annihilation) and flux over the boundaries is a conserved
quantity, which translates to

D
Dt

∫︂∫︂∫︂
V (t)

ρdV = 0, (2.5)

where
D
Dt

:=
∂

∂t
+ ui

∂

∂xi
, (2.6)

denotes the material derivative. Notice that the Einstein index notation is introduced here,
where i ∈ [1, 2, 3] describes the three principal directions in a Cartesian coordinate system.
Moreover, the Einstein summation convention

aiai = a21 + a22 + a33, (2.7)

is employed throughout the present thesis.
At any given instance t, the time-dependent volume V (t) in (2.5) is equal to a constant volume
V , which enables drawing the total derivative under the integral, yielding∫︂∫︂∫︂

V

(︃
∂ρ

∂t
+

∂

∂xi
(ρui)

)︃
dV = 0, (2.8)
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where ui denotes the convective velocity. Reintroducing (2.6) and applying the chain rule of
differentiation to (2.8) yields ∫︂∫︂∫︂

V

(︃
Dρ
Dt

+ ρ

(︃
∂ui
∂xi

)︃)︃
dV = 0. (2.9)

Now, (2.8) as well as (2.9) must hold for any integral bound and thus must be zero regardless
of the volume chosen. This is always the case for vanishing integrands

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (2.10a)

Dρ
Dt

+ ρ

(︃
∂ui
∂xi

)︃
= 0. (2.10b)

Both equations are equivalent, but (2.10b) is more useful in order to discuss incompressibility.
A fluid is usually considered incompressible for low enough Mach numbersM ≪ 1, whereM
is defined as

M :=
u

c
, (2.11)

with u describing the local velocity and c denoting the speed of sound (Acheson, 1990). In
turn, an incompressible fluid by definition is one of constant density ρ. Employing a constant
ρ into (2.10b) gives

∂ui
∂xi

= 0, (2.12)

or
∇ · u = 0, (2.13)

where

u = (u1, u2, u3)
T , (2.14a)

∇ =

(︃
∂

∂x1
,
∂

∂x2
,
∂

∂x1

)︃T

, (2.14b)

which states that the divergence of the velocity field is zero. In other words, an incompressible
fluid corresponds to a divergence-free velocity field. The corresponding continuity equation is
given by (2.12). The entirety of results in this thesis is based on the assumption of incompress-
ibility of the examined flows. For this reason, divergence-free velocity fields are going to be
presupposed in the upcoming sections and chapters.

2.2.2 Momentum equation

The central equations of fluid mechanics, the NSE, embody both the conservation of mass as
well as the momentum equation. The momentum Ii of a particle of mass m is defined as

Ii := mui, (2.15)
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where ui denotes the velocity of the particle in the direction xi. In continuum mechanics,
rather than considering the momentum of a particle, the concept is extended to a fluid body of
volume V (t), where the momentum is then given by

Ii =

∫︂∫︂∫︂
V (t)

ρuidV, (2.16)

with ui = ui(x1, x2, x3, t) now instead representing the local velocity of a specific field point.
Conservation of momentum now states that in absence of forces on the volume the momentum
of the material volume V (t) is conserved, i.e.∫︂∫︂∫︂

V

Dui
Dt

ρdV = 0. (2.17)

A change of momentum, according to Newton’s second axiom, occurs via surface forces ti
on the boundary S or volume forces ki across the entire volume V , giving the momentum
equation ∫︂∫︂∫︂

V

Dui
Dt

ρdV =

∫︂∫︂
S

tiρdS +

∫︂∫︂∫︂
V

kiρdV. (2.18)

The surface force vector ti may be expressed as a linear map of the surface normal vector ni
through the Cauchy stress tensor τij , expressing itself as

ti = τjinj . (2.19)

Utilizing Gauss’s theorem makes it possible to transform the surface integral in (2.18) after
employing (2.19) into a volume integral, yielding∫︂∫︂∫︂

V

(︃
ρ
Dui
Dt

− ρki −
∂τji
∂xj

)︃
dV = 0. (2.20)

Analogous to arguments used to derive the differential form of the conservation of mass, the
integral in (2.20) yields zero regardless of the integration boundaries if its integrand disappears,
i.e.

ρ
Dui
Dt

= ρki +
∂τji
∂xj

. (2.21)

This momentum equation is famously called Cauchy’s momentum equation and together with
(2.12) forms the basis for deriving the NSE. It shall be noted, before introducing material laws,
that (2.21) may be extended to an accelerated frame of reference. As such accelerated systems
are of no interest for the upcoming results, the interested reader is referred to respective
literature (see e.g. Spurk and Aksel (2010)).

2.3 Navier-Stokes equations

The following derivation is based on Batchelor and Batchelor (2000) and Spurk and Aksel
(2010) and is by no means as elaborate. For a more in-depth derivation, the reader is referred
to these books in good conscience. The first step towards the Navier-Stokes equations of motion
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is to regard the stress tensor τij as the sum of an isotropic part −pδij and the deviatoric stress
tensor dij . It would be of great convenience to express dij in terms of quantities formed by the
fluid velocity ui. According to Batchelor and Batchelor (2000), for isotropic Newtonian fluids
the deviatoric stress may readily be expressed by

dij = 2µeij + µ′′ekkδij , (2.22)

where µ and µ′′ are scalars, δij describes the Kronecker delta and eij denotes the rate-of-strain
tensor given by

eij =
1

2

(︃
∂ui
∂xj

+
∂uj
∂xi

)︃
. (2.23)

Employing
τij = −pδij + dij = −pδij + 2µeij + µ′′ekkδij , (2.24)

into (2.21) gives

ρ
Dui
Dt

= ρki +
∂

∂xi

(︃
−p+ µ′′

∂uk
∂xk

)︃
+

∂

∂xj

(︃
µ

[︃
∂ui
∂xj

+
∂uj
∂xi

]︃)︃
. (2.25)

As the problems analyzed in this work neglect temperature, and thus spatial or temporal,
dependence of µ and µ′′, the r.h.s. of (2.25) can be rewritten so that

ρ
Dui
Dt

= ρki −
∂p

∂xi
+ (µ+ µ′′)

∂uk
∂xk

+ µ
∂2ui
∂xj∂xk

. (2.26)

Assuming incompressibility as per (2.12) now yields the divergence terms zero, which finally
gives the incompressible Navier-Stokes equations of motion

Dui
Dt

= ki −
∂p∗

∂xi
+ ν

∂2ui
∂xj∂xk

, (2.27)

where p∗ = p/ρ is the pressure re-scaled by the constant density and ν = µ/ρ denotes the
kinematic viscosity of the considered fluid. The incompressible NSE are complemented by the
continuity equation (2.12) to form a set of four PDE, of which the three NSE of motion are
non-linear.
In many flow problems it is furthermore justified to neglect the body forces if gravitational
forces are small compared to inertial forces and shear stress. This gives the form of the NSE
which is used throughout this thesis, i.e.

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂x2j

, (2.28a)

∂ui
∂xi

= 0, (2.28b)

where the star notation for p will be omitted hereafter for the sake of readability.
For problems with rotational symmetry, such as Hagen-Poiseuille flow, i.e. the flow driven
through a circular pipe due to a pressure gradient, it is convenient and possible to rewrite
these equations in polar coordinates. There are all sorts of specific flow problems, for which a
change of coordinate system may prove to be useful. For spirally developing flows, for instance,
a helical coordinate system proves to be handy to derive new conservation laws, as was shown
by Kelbin et al. (2013). As no such flow is analyzed in the present dissertation, the listing of
other representations of the NSE shall be referred to in respective literature, e.g. Batchelor
and Batchelor (2000).
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2.3.1 Non-dimensional Navier-Stokes equations

A powerful concept in fluid dynamics in particular and in physics generally is similitude. Every
system must be independent of the unit system. Whether a physical quantity is expressed in
imperial or metric units must not have any influence on the actual physics of the respective
system. In conclusion, a system is unequivocally described if all dependents and independents
are dimensionless. The ultimate goal in similitude is to extract the essential dimensionless
numbers describing the behavior of the underlying physics of the respective system. In engi-
neering applications, this relates to the question, which quantities need to be adjusted so that
two independently conducted model experiments may become comparable despite differences
in size, velocity or viscosity of the fluid.
The first notion of dimensional analysis in fluid mechanics was published by Reynolds (1883),
after whom the famous Reynolds number is named. To understand the concept, consider
the NSE (2.28). The first goal is to non-dimensionalize the variables for space, time, velocity
and pressure. In a typical flow problem, convenient quantities for non-dimensionalization are
the characteristic length scale Lc, such as the diameter of a pipe, as well as the characteristic
velocity scale Uc, e.g. the free-stream velocity U∞ for a boundary layer flow. The corresponding
non-dimensional quantities then are

x+i =
xi
Lc
, u+i =

ui
Uc
, t+ = t

Uc

Lc
, p+ =

p

U2
c

, (2.29)

where the plus sign in the superscript indicates that the corresponding quantity is dimensionless.
Substituting (2.29) into the NSE (2.28) yields

∂u+i
∂t+

+ u+j
∂u+i
∂x+j

= −∂p
+

∂x+i
+

1

Re

∂2u+i

∂x+j
2 , (2.30a)

∂u+i
∂x+i

= 0, (2.30b)

where
Re =

UcLc

ν
, (2.31)

represents the Reynolds number, which symbolizes the relation of inertial forces to friction
forces. This is the aforementioned dimensionless number, which represents similarity between
systems and experiments. If a model with the characteristic length scale Lc is experimented on
in a wind tunnel with the characteristic velocity scaleUc is compared to a similarly shaped object
of half the size in a wind tunnel with twice the characteristic velocity Uc, then both Reynolds
numbers are identical and the experiments are representative of one another. Comparability of
analyses, experiments and numerical studies is highly important in the field of science, and
establishes a framework, in which the actual physics are in the foreground rather than the unit
system. Further literature on the topic of dimensional analysis in fluid applications may be
referred to in Simon et al. (2017) and Chemloul (2020).
Henceforth, the non-dimensional form of the NSE (2.30) is employed throughout this thesis.
Furthermore, for the sake of brevity the plus superscripts are omitted hereafter. With the
non-dimensional equations, the equations of linear stability theory (LST) are finally introduced
hereafter.
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2.4 Equations of linear stability theory

The theory of linear stability is, by definition, a framework employing the simplifications
achieved by the linearization of differential equations. For this, the fluid is assumed to be
superposed by perturbations of lower order of magnitude, which allows for a separation of
the NSE in (2.28) into leading order and lower orders, which may be solved hierarchically.
The success of perturbation methods in fluid mechanics is manifold, with LST forming a
mere subset of many successful analyses, which may be referred to in full detail in Van Dyke
(1975). Applying perturbation theory to the NSE gives rise to a set of four linear PDE, which is
easier to acquire solutions from than the non-linear NSE (2.28). Via cross-differentiation it is
then possible to obtain a single PDE of fourth order for the wall-normal velocity. Finally, the
employment of the NMA yields an ordinary differential equation (ODE) of four order, which in
a few special cases provide analytical solutions. Two such cases are the ASBL and PCF with or
without transpiration, which are analyzed throughout this dissertation.

2.4.1 Linearized Navier-Stokes equations

Linear stability theory commences where a laminar base state {Ui(x, y, z, t), P (x, y, z, t)} of
the NSE (2.28) is superposed by perturbation terms {u′i(x, y, z, t), p′(x, y, z, t)} of lower order
O(ϵ), i.e.

ui(x, y, z, t) = Ui(x, y, z, t) + ϵu′i(x, y, z, t) +O(ϵ2), (2.32a)
p(x, y, z, t) = P (x, y, z, t) + ϵp′(x, y, z, t) +O(ϵ2). (2.32b)

Employing (2.32) into the NSE in (2.28) yields

∂

∂t

(︁
Ui + ϵu′i

)︁
+
(︁
Ui + ϵu′i

)︁ ∂

∂xj

(︁
Ui + ϵu′i

)︁
=

∂

∂xi

(︁
P + ϵp′

)︁
+ ν

∂2

∂x2j

(︁
Ui + ϵu′i

)︁
, (2.33a)

∂

∂xi

(︁
Ui + ϵu′i

)︁
= 0. (2.33b)

As is evident, there are terms scaling with various orders of ϵ. It is now possible to categorize
the terms in (2.33) depending on their scaling factor ϵn with n = {0, 1}. This gives

O(ϵ0) :

∂Ui

∂t
+ Uj

∂Ui

∂xj
=
∂P

∂xi
+ ν

∂2Ui

∂x2j
,

∂Ui

∂xi
= 0,

(2.34a)

O(ϵ1) :

∂u′i
∂t

+ Uj
∂u′i
∂xj

+ u′j
∂Ui

∂xj
=
∂p′

∂xi
+ ν

∂2u′i
∂x2j

,

∂u′i
∂xi

= 0.

(2.34b)

The base state {Ui, P} solves the 0th order equation identically. Thereupon, the first order
equation is comprised of a set of four linear PDE in the sought perturbation quantities u′i and p′.
Evidently, (2.34b) must be solved after (2.34a) due to {Ui, P} appearing therein. Equations
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(2.34b) form the LNSE, which represent the starting point of LST. One usually is now interested
in exact solutions for the perturbation quantities {u′i, p′}. As the equations at hand are a set of
four PDE with the four unknowns {u′1, u′2, u′3, p′}, further simplifications are required to yield
these equations analytically accessible.

2.4.2 Orr-Sommerfeld and Squire equations

In order to obtain the famous OSE and SE of LST, it is necessary to assume the base flows to
be wall-normal parallel shear flows only dependent on the wall-normal coordinate y, i.e.

Ui = (U(y), 0, 0)T . (2.35)

Employing (2.35) into (2.34b) yields

∂u

∂t
+ U

∂u

∂x
+ v

dU
dy

= −∂p
∂x

+
1

Re
∆u, (2.36a)

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+

1

Re
∆v, (2.36b)

∂w

∂t
+ U

∂w

∂x
= −∂p

∂z
+

1

Re
∆w, (2.36c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.36d)

where from now on (u, v, w, p)T = (u′1, u
′
2, u

′
3, p

′)T as well as (x, y, z, t)T = (x1, x2, x3, t)
T is

adopted as the notation for the sought quantities in LST and

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (2.37)

represents the Laplacian differential operator. Taking the divergence of equations (2.36a) -
(2.36c) yields

2
dU
dy

∂v

∂x
= −∆p, (2.38)

where, implicitly, the continuity equation for the perturbation velocities (2.36d) was used to
eliminate the divergence terms. With (2.38) the pressure in (2.36b) can now be eliminated as
per

∆(2.36b)− ∂

∂y
(2.38), (2.39)

which finally yields [︃(︃
∂

∂t
+ U

∂

∂x

)︃
∆− d2U

dy2
∂

∂x
− 1

Re
∆2

]︃
v = 0, (2.40)

with the biharmonic operator

∆2 =
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4
+ 2

∂4

∂x2∂y2
+ 2

∂4

∂x2∂z2
+ 2

∂4

∂y2∂z2
. (2.41)

As a consequence, the set of four linear PDE (2.36a) - (2.36d) is reduced to a single fourth
order PDE for the wall-normal velocity v. Due to (2.40) still being multivariate and in general
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terms unsolvable, further simplifications are necessary if analytical solutions are to be obtained.
One classical approach to find solutions for PDE in general is to employ ansatz functions,
which assume the concrete structure of the sought solution. One famous problem, in which
an ansatz function is successfully applied to deliver the desired eigenvalues and -functions,
is the Bethe ansatz, a many-body wave function named after Bethe (1931), applied on the
one-dimensional (1D)-Heisenberg model to describe the behavior of ferromagnetism. Similar
success was achieved for the examination of instabilities in fluid mechanics as the famous
NMA was first employed by Orr (1907) and Sommerfeld (1908) to simplify (2.40). The ansatz
function mathematically represents a Fourier-Laplace transformation of the variables in space
and time. Concretely, it is given by

v(x, y, z, t) = ṽ(y) ei(αx+βz−ωt), (2.42)

where α and β denote the wave numbers in stream- and spanwise direction, respectively, ω
gives the wave frequency and ṽ(y) is the amplitude function. In the most general case, all wave
parameters as well as ṽ(y) are complex. It shall be noted that by employing Lie symmetry
analysis on the LNSE (2.36), other ansatz functions may be obtained, as was elaborated by
Nold and Oberlack (2013) and Nold et al. (2015). The analysis of such symmetry-induced
ansatz functions in the context of the ASBL is presented in chapter 3.
The mathematical representation of the NMA implies that a perturbation is harmonic in stream-
and spanwise direction as well as in time, grows or decays in these directions and experiences
a varying amplitude based on the wall-normal distance y. The insertion of (2.42) into (2.40)
consequently yields

LOS(ṽ(y)) ≡
[︁
iRe(αU(y)− ω)(D2 − k2)− iReαU ′′(y)− (D2 − k2)2

]︁
ṽ(y) = 0, (2.43)

where LOS denotes the Orr–Sommerfeld (OS) differential operator, Dn = dn/dyn abbreviates
the differentiation with respect to y and

k =
√︁
α2 + β2, (2.44)

gives the magnitude of the wave vector k. Whether equation (2.43) is solvable depends on the
base solution U0(y). In fact, for various famous flow problems, such as plane Poiseuille flow,
which describes the parabolic flow between two plates driven by a constant pressure gradient,
i.e. U0(y) = 1− y2 in non-dimensional variables, the OSE (2.43) is unsolvable analytically. In
those cases, numerical methods, such as proposed by Orszag (1971), Schmid et al. (2002),
and Canuto et al. (2012) are employed, which depending on their effectiveness, may yield
solutions with grave errors. For plane Poiseuille flow, Thomas (1953) proposed replacing the
OSE by a difference system of same order, for which a critical Reynolds number of Recr = 5780
was computed. Orszag (1971) improved on this result via Chebyshev collocation methods,
which will be employed in chapters 3 and 4, to yield Recr = 5772.22. It will be proven in
chapter 3, however, that the computation of eigenvalues based on the analytical solution of the
(2.43) leads to considerably refined critical Reynolds numbers.
Now, given that a solution for (2.43) was obtained, the challenge prevails how to quantitatively
describe the remaining perturbation velocity components u and w. In the case of 2D flows in
the x-y plane, the answer is straightforward. The continuity equation (2.12) then reduces to

∂u

∂x
+
∂v

∂y
= 0. (2.45)
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Assuming the NMA was also employed for the streamwise velocity component, reading

u(x, y, t) = ũ(y) ei(αx−ωt), (2.46)

equation (2.45) then yields
iαũ(y) + ṽ′(y) = 0, (2.47)

where v′(y) denotes the derivative of ṽ(y) with respect to y. Solving (2.47) for ũ(y) gives

ũ(y) =
i

α
ṽ(y), (2.48)

where the first derivative ṽ′(y) is acquired from the solution of the OSE (2.43). In the more
general case, the 3D case with β ̸= 0, a third equation is necessary to obtain the remaining
perturbation velocity component w. It would be ideal to simply utilize the LNSE in spanwise
direction given in (2.36c). Unfortunately, the pressure perturbation p is unknown and ideally
kept out of the system of unknowns, as was accomplished in the derivation of the OSE. Hence,
an additional equation is required which both must include the spanwise perturbation velocity
w as well as exclude the pressure perturbation p. This may be achieved via cross-differentiation
of the stream- and spanwise components of the LNSE, i.e.

∂

∂z
(2.36a)− ∂

∂x
(2.36c). (2.49)

In the ensuing equation the difference of the cross-differentiated velocity components in fact
form the wall-normal vorticity, i.e.

η =
∂u

∂z
− ∂w

∂x
. (2.50)

As a result, the emerging second order PDE is given by[︃
∂

∂t
+ U0

∂

∂x
− 1

Re
∆

]︃
η = −U ′

0

∂v

∂z
. (2.51)

Employing the NMA for the wall-normal perturbation vorticity η with identical wave parameters,
concretely

η(x, y, z, t) = η̃(y) ei(αx+βz−ωt), (2.52)

and substituting (2.52) into (2.51) gives rise to the Squire equation

LSE(η̃(y)) ≡
[︁
iRe(αU0(y)− ω)− (D2 − k2)

]︁
η̃(y) = −iReβU ′

0(y)ṽ(y), (2.53)

with LSE denoting the Squire differential operator, where the solution of the OSE ṽ(y) rep-
resents an inhomogeneity in the newly obtained second order ODE for η. As such, a clear
hierarchy is established in which solving the OSE first is mandatory. Lastly, the utilization of
the NMA is extended to all velocity components, thus

{u, v, w}(x, y, z, t) = {ũ, ṽ, w̃}(y) ei(αx+βz−ωt). (2.54)

In summary, the OSE (2.43), the SE (2.53), the continuity equation for the perturbation
velocities (2.36d) as well as the definition of the wall-normal vorticity (2.50) form a set of four
equations capable of providing well-defined solutions for the four unknowns u, v, w and η.
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2.4.3 Temporal and spatial stability

Before introducing the Squire’s transformation, the concept of temporal and spatial stability is
introduced. So far, the spatial and temporal wave parameters α, β and ω were generalized to be
complex. As is going to be demonstrated, the notion of more than one complex wave parameter
yields the classical eigenvalue problem (EVP) for the OSE underdetermined. Generally, the
OSE (2.43) is solved by a linear solution space of the form

ṽ(y) = C1ṽ1(y) + C2ṽ2(y) + C3ṽ3(y) + C4ṽ4(y), (2.55)

where C1 to C4 are integration constants and ṽ1 to ṽ4 are linearly independent solutions
of (2.43). The corresponding BC depend on the domain, which is classically wall-bounded,
semi-infinite or infinite, as well as the condition at the boundaries, e.g. homogeneous or
inhomogeneous Dirichlet-BC or Neumann-BC. For most stability problems, the flows are either
wall-bounded or exist in a semi-infinite domain, both for which homogeneous Dirichlet- and
Neumann-BC are given. Assume the flow problem is restricted by two rigid walls, located at
y = 0 and y = 1. Furthermore, no-slip and rigid wall BC are assumed. The corresponding BC
then are

ṽ(y = 0) = 0, (2.56a)
ṽ(y = 1) = 0, (2.56b)

Dṽ(y = 0) = 0, (2.56c)
Dṽ(y = 1) = 0. (2.56d)

Substituting all four BC in (2.56) into (2.55) then yields

C1A11 + C2A12 + C3A13 + C4A14 = 0, (2.57a)
C1A21 + C2A22 + C3A23 + C4A24 = 0, (2.57b)
C1A31 + C2A32 + C3A33 + C4A34 = 0, (2.57c)
C1A41 + C2A42 + C3A43 + C4A44 = 0, (2.57d)

where A11 = ṽ1(0) and analogously for all Aij . This establishes a linear system of equations
for C1 to C4 of the form

AijCj = [0, 0, 0, 0]T . (2.58)

In fact, more specifically Aij are now functions of the spectral wave parameters and the
Reynolds number, i.e.

Aij(α, β, ω,Re)Cj = [0, 0, 0, 0]T . (2.59)

Equation (2.59) only yields a non-trivial solution if the determinant of Aij is equal to zero, i.e.

D(α, β, ω,Re) := det(A(α, β, ω,Re)) = 0. (2.60)

Notice that the determinant in (2.60) in general is calculated for a 4x4 matrix as given in
(2.57). The conditional equation (2.60) is commonly called dispersion relation as well as
algebraic EVP. Despite D(α, β, ω,Re) potentially being a rather long expression, it nevertheless
is an algebraic equation in the complex space and can therefore be rewritten as

D(α, β, ω,Re) = Dr(α, β, ω,Re) + iDi(α, β, ω,Re) = 0, (2.61)
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where Dr(α, β, ω,Re) and Di(α, β, ω,Re) denote the real and imaginary part of the dispersion
relation. Hence, the stability problem was reduced to two single conditions

Dr(α, β, ω,Re) = 0, (2.62a)
Di(α, β, ω,Re) = 0. (2.62b)

This system now consists of generally six unknowns and consists of two equations. The six
unknowns are αr, αi, βr, βi, ωr and ωi. If α ∈ C is regarded as the solution of (2.62), it is
required to appoint rather arbitrary values to the five presumable parameters βr, βi, ωr, ωi

and Re in order to be able to solve for the two unknowns αr and αi. The result would be
a five-dimensional parameter space, which would be impossible to analyze rationally and
presumably the results would be impossible to illustrate in a meaningful manner. It therefore
proved to be more convenient and practical to reduce the stability problem such that only one
parameter is complex and the other two are real. In those cases, only one parameter (2D flow)
or two parameters (3D flow) would need to be predetermined.
In this context, the temporal stability framework is established when assuming

{α, β} ∈ R, ω ∈ C, (2.63)

which employed into the NMA (2.42) gives

v(x, y, z, t) = ṽ(y) ei(αx+βz−ωrt) eωit. (2.64)

Evidently, the real valued wave parameters α, β and ωr quantitatively describe the harmonics
in space and time while ωi is representative for the growth or decay of the perturbation in
time, depending on which sign and value it takes. The real exponential function also explains,
why in the NMA (2.42) a minus sign was adopted in front of ω, as then a positive valued ωi

induces growth, which aligns with what one would intuitively expect.
As the essential stability mechanisms are expressed by ω, it is plausible to regard it as the
sought solution of (2.62) and thus assign it to be the eigenvalue of interest. As such, the spatial
wave numbers α and β as well as the Reynolds number Re merely represent parameters in the
stability problem. Equation (2.60) can adequately be rewritten as

D(ω)α,β,Re = 0. (2.65)

The principal approach to solving (2.65) is straightforward. For the parameters α, β and Re
values of interest are assumed, which in turn are substituted into (2.65). Lastly, the dispersion
relation is solved for its complex roots ω, which is generally done numerically with suitable non-
linear complex root-finders. In the context of LSA, one is generally interested in the least stable
or most unstable eigenvalue, which is called the Tollmien–Schlichting (TS) mode (Tollmien,
1930; Schlichting, 1933). One decisive advantage of utilizing the analytical dispersion relation
(2.65) over numerical methods applied on the OSE is the possibility of employing homotopy
methods, as is elaborated e.g. in Liao (2003) for nonlinear PDE. In order to understand the
concept, consider figure 2.2. The initial challenge is to find the TS mode for α0 at a fixed
Reynolds number. This can be done rigorously by brute-force computation of all complex roots
by altering the initial guesses, via employment of other numerical methods such as Chebyshev
collocation schemes or extracting values from literature. Either way, once the TS mode {α0, ω0}
is discovered, it may be extrapolated linearly to obtain the subsequent initial guess ω∗

1 for the
corresponding αk = α1. The smaller the interval ∆α = αk − αk−1 is, the higher the chance
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that the complex root solver converges the guess towards the sought TS mode ωk. The order
of extrapolation can be increased with increasing αk, as then an increasing number of already
computed TS modes can be used to extrapolate the subsequent initial guess. The goal always
is to compute the entire TS mode curve without the solution curve jumping to the secondary
or tertiary curve, for example, which are also visualized in figure 2.2. Once the range α0 − αn

of interest is finished, the Reynolds number Re, and in 3D computations the spanwise wave
number β, may be extrapolated analogously. It is, however, quite tedious to perform these
computations additionally in 3D, i.e. for β ̸= 0. Fortunately, the 3D temporal stability problem
can be bypassed by the Squire’s transformation, which is discussed in the following section.

Figure 2.2: Visualization of a typical set of solution curves in a temporal stability problem for a given
Reynolds number. Only the TS mode curve yields unstable modes in the vicinity of αcr ,
which therefore is the curve of interest. The higher mode curves are not visualized.

Analogously, the spatial stability problem is examined when assuming

{β, ω} ∈ R, α ∈ C, (2.66)

which again substituted into (2.42) yields

v(x, y, z, t) = ṽ(y) ei(αrx+βz−ωt) e−αix. (2.67)

While admittedly the sign in front of α contradicts the previous justifications, it is held consistent
with common literature (see e.g. Schmid et al. (2002)). Thus, in opposition to the temporal
framework, a positive αi now leads to decay in positive streamwise direction whereas a negative
αi induces growth. Consequently, the dispersion relation (2.60) in analogy to the temporal
framework is rewritten as

D(α)β,ω,Re = 0. (2.68)

The general procedure of computing solutions for the eigenvalue α is identical to the afore-
mentioned described steps for the temporal framework and therefore requires no further
explanation. With this, the two relevant frameworks have been established for LST.
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2.4.4 Squire’s transformation

As was elaborated before, considering the spanwise direction in a stability problem adds an
additional dimension to the parameter space and therefore greatly increases computational
costs. In the case of temporal stability, for example, three parameter arrays {α, β,Re} need to
be iterated through in order to capture the global stability characteristics. It was Squire (1933)
who realized that in fact the 3D problem in the temporal case is dispensable and is accessible
through the 2D problem via a remarkable set of transformations, henceforth called by their
name in literature, i.e. Squire’s transformation. The transformation becomes most apparent
upon comparing the 2D and 3D OSE[︁

iRe2D(α2DU0(y)− ω2D)(D2 − α2
2D)− iReα2DU

′′
0 (y)− (D2 − α2

2D)
2
]︁
ṽ(y) = 0, (2.69a)[︁

iRe3D(α3DU0(y)− ω3D)(D2 − k2)− iRe3Dα3DU
′′
0 (y)− (D2 − k2)2

]︁
ṽ(y) = 0, (2.69b)

where the subscripts determine in which dimension the parameter is defined. Notice that
k = α as β = 0. Comparing all parameter factors in (2.69) reveals that indeed (2.69a) and
(2.69b) are equal if the invariance conditions

α2
2D = α2

3D + β2, (2.70a)
Re2Dα2D = Re3Dα3D, (2.70b)
Re2Dω2D = Re3Dω3D, (2.70c)

are satisfied. Equations (2.70a) – (2.70c) solved for the 3D parameters give

α3D =
√︂
α2
2D − β2, (2.71a)

ω3D,r = ω2D,r

√︂
α2
2D − β2

α2D
, (2.71b)

ω3D,i = ω2D,i

√︂
α2
2D − β2

α2D
, (2.71c)

Re3D = Re2D
α2D√︂
α2
2D − β2

, (2.71d)

where the temporal eigenvalue ω is readily split into real and imaginary part. Hence, one may
take the set of 2D wave parameters and the 2D Reynolds number, transform them according to
(2.71) by deciding on a non-zero β and obtains the corresponding set of 3D parameters which
readily satisfy the dispersion relation (2.65) that would arise for the 3D case. Of particular
interest is (2.71d). Due to the denominator on the r.h.s. always being lower or as large as
unity, Squire’s theorem may be deduced, which states that regardless of the temporal wave
parameters

Re2D ≤ Re3D. (2.72)

More importantly, this result states that in case a critical Reynolds numbers exists in 2D, it is
always lower than the corresponding 3D critical Reynolds number, i.e.

Re2D,cr ≤ Re3D,cr. (2.73)

This generally serves as justification to omit the analysis of the 3D stability problem in search
for the most critical Reynolds number, at which onset of transition is predicted in the temporal

19



framework. Now, things are different in the spatial case. It can be shown that the Squire
transformations cannot be derived for the spatial stability problem. The corresponding proof
will be delivered in chapter 5. Moreover, on the basis of symmetry theory an extension of the
Squire’s transformation will be presented therein, in order to match the demands of the spatial
stability framework.
At this point, it shall not remain unmentioned that due to shortcomings of LST regarding
the correct prediction of laminar-turbulent transition in wall-bounded shear flows (Schmid,
2007), it was discovered that transient growth mechanisms induced by the non-orthogonality
of the eigenvector basis play an important role in the transition process, which is extensively
discussed by Reddy et al. (1993). In certain cases, the superposition of n > 1 eigenvectors
may in turn lead to a transient growth of the maximum amplification energy G(t) even if every
single eigenvector decays in the framework of modal stability theory. Non-linear extensions to
nonmodal stability theory are discussed extensively by Kerswell (2018), where the interested
reader is referred to.
With this, the theoretical groundwork is laid for the subsequent chapters. In chapter 3, the
LSA of the ASBL is presented, mostly based on the methods presented in this chapter. The
superiority of analytical solutions over numerical solutions of the OSE (2.43) is demonstrated by
means of asymptotic expansions of the underlying EVP. Moreover, the existence of continuous
modes in both the temporal and spatial framework are discussed for the ASBL. Chapter 4
revolves around PCF and its behavior in the presence of transpiration. A thorough temporal
and spatial stability analysis is presented, showing how transpiration in fact destabilizes the
flow when large enough. The extension of Squire’s transformation is applied on classical PCF
in chapter 5, where novel modes with oblique growth are derived and numerically verified.
In summary, the previously presented classical methods of LST are revisited and extended
significantly. It will be shown that linear modal stability theory has not been exhausted yet
and offers new theoretical grounds, which may and should be applied to other flows in order
to enhance the understanding of linear stability in general.
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3 Revisiting linear stability of the asymptotic
suction boundary

Essential parts of the following chapter are heavily based on the peer-reviewed publication
Yalcin et al. (2021), in particular the results presented in section 3.2.

It was Prandtl (1904) who first discussed the stabilizing effect of suction on flows around bodies.
He reported a reduced pressure drag on a body, which was equipped with suction slits. The
consequential question is how any kind of throughflow, whether it is suction or injection, alters
the stability of a plane wall-bounded shear flow. The delay of laminar-turbulent transition
on airfoils has been known ever since early experiments and design studies by Richards and
Burge (1943), who reported that by virtue of well-engineered suction slits a laminar flow
is maintained on an airfoil all the way to the trailing edge while separation is suppressed
simultaneously. Based on this, a thorough understanding of the linear stability of boundary
layer (BL) suction should be aimed for. In the context of turbulent superstructures, it is also of
particular interest in what sense the linear stability of suction boundary layers is connected to
large-scale persisting structures in turbulent suction boundary layer flows.
Linear stability theory in fluid mechanics has celebrated many successes ever since it was
formally established by Orr (1907) and Sommerfeld (1908). One flow of particular interest
until today has been the BL flow establishing itself over a flat plate. The understanding of
laminar to turbulent transition in a BL is of highest interest for technical applications, as in
principal any surface exposed to a inflow witnesses the emergence of a BL on its surface. A
turbulent boundary layer (TBL) has larger streamwise velocity gradients at the wall than
laminar BL. The wall shear stress is defined by

τw ≡ τ(y = 0) = µ
∂U(x, y)

∂y

⃓⃓⃓⃓
⃓
y=0

, (3.1)

due to which TBL entail larger wall shear stress and, thus, energy loss due to friction. One of
the mathematical challenges of analyzing BL in the framework of linear stability theory (LST)
is BL growth, where, due to no-slip at the surface, the BL becomes thicker and the velocity
field inside the BL is altered with increasing distance from the leading edge. If additionally a
negative pressure gradient is present, i.e. dp/dx < 0, the flow may even experience separation
from the surface, which especially in technical applications is highly unfavorable due to the
kinetic energy loss via dissipation as well as the ensuing transient instabilities a flight vehicle,
for instance, experiences.
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Boundary layer theory and the Blasius boundary layer

One principal challenge of LST for boundary layers lies in the aforementioned growth of the
boundary layer thickness δ(x) as well as the change of the two-dimensional (2D) velocity
profile {U(x, y), V (x, y)} in streamwise and wall-normal direction. In the case of uniform
inflow U∞, Blasius (1907) found self-similarity solutions for the velocity profile as well as the
displacement thickness δ1(x). The displacement thickness describes the distance from the wall,
at which a uniform velocity profile U∞ entails the same mass flow as the original BL flow, i.e.
it quantifies the velocity defect due to the presence of the BL. It is therefore defined by

δ1(x) =

∞∫︂
0

(︃
1− U(x, y)

U∞

)︃
dy. (3.2)

Blasius now realized that Prandtl’s dimensional 2D BL equations

U
∂U

∂x
+ V

∂U

∂y
= ν

∂2U

∂y2
, (3.3a)

∂U

∂x
+
∂V

∂y
= 0, (3.3b)

may be reduced to the self-similar Blasius equation

2f ′′′(η) + f(η)f ′′(η) = 0, (3.4)

where

η = y

√︃
U∞
νx

, (3.5)

and f(η) is defined so that the stream function ψ(x, y) follows as

ψ =
√︁
νxU∞f(η), (3.6a)

U(x, y) =
∂ψ

∂y
= U∞f

′, (3.6b)

V (x, y) = −∂ψ
∂x

=
1

2

√︃
νU∞
x

(︁
ηf ′ − f

)︁
, (3.6c)

where the definition of the stream function ψ satisfies the continuity equation (2.12) identically.
These results are essential to understand the challenges the Blasius boundary layer (BBL) poses
to LST. As the base velocity in streamwise direction (3.6b) is not given explicitly but rather
in terms of the solution of the Blasius equation (3.4), which may only be solved numerically,
the Orr–Sommerfeld equation (OSE) (2.43), as a result, must be solved numerically. As is
discussed by Grosch and Salwen (1978) in the context continuous spectra, analytical access to
the OSE for a BBL is possible via asymptotic expansion of the OSE (2.43) for y → ∞. In this
case limy→∞ U → U∞ applies, which used in the expanded OSE yields the asymptotic solution

ṽ(y) = C1e
σy + C2e

−σy + C3e
αy + C4e

−αy, (3.7)

with
σ =

√︁
α2 + iRe(α− ω). (3.8)

The linear stability of the BBL has been discussed extensively, see e.g. Mack (1984) for a
thorough overview regarding LST for boundary layers or Bertolotti et al. (1992) for a discussion
of linear and non-linear stability in the context of the BBL.
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Figure 3.1: Schematic depiction of the three-dimensional (3D) asymptotic suction boundary layer
(adapted from Yalcin et al. (2021))

3.1 Linear stability equations for the asymptotic suction boundary
layer

The focus of the present chapter lies on the analytical LST of the asymptotic suction boundary
layer (ASBL), which has been neglected in common literature to date. While common flat-plate
boundary layers were thoroughly discussed after the establishment of Prandtl’s BL theory, the
presence of suction initially was not discussed. It was Thwaites (1946) who first showed that
the presence of suction at the wall does not alter the structure of the Blasius solution principally
when considering the BL very close to the leading edge. Already a decade before, Griffith
and Meredith (1936) showed that for distances far enough away from the leading edge, the
BL thickness asymptotically becomes constant, while the velocity profile Ui simultaneously
becomes solely dependent on the wall-normal coordinate y. When assuming Ui = Ui(y) and
V = −V0, the Prandtl BL equations reduce to

−V0
dU
dy

= ν
d2U
dy2

, (3.9)

when the continuity equation is trivially satisfied.
The boundary conditions for (3.9) are

U(y = 0) = 0, U(y → ∞) → U∞. (3.10)

Solving (3.9) with (3.10) gives the velocity profile for the ASBL

(U, V,W )T =
(︂
U∞

(︂
1− e−

V0
ν
y
)︂
,−V0, 0

)︂T
. (3.11)

The ensuing velocity profile (3.11) is depicted in figure 3.1. The displacement thickness δ1(x)
(2.60) correspondingly asymptotically grows towards a constant value given by

δ1 =

∞∫︂
0

(︃
1− U(y)

U∞

)︃
dy =

ν

V0
. (3.12)
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Thus, the displacement thickness readily provides a length scale for non-dimensionalization,
which transforms U(y) in (3.11) to

U(y) = U∞

(︂
1− e

− y
δ1

)︂
. (3.13)

In order to non-dimensionalize the flow problem, the characteristic scales (2.29) are readily
chosen as

Lc = δ1, (3.14a)
Uc = U∞, (3.14b)

which employed into (3.11) yields the non-dimensional profile

(︁
U+, V +,W+

)︁T
(y+) =

(U, V,W )T

U∞

(︃
y

δ1

)︃
=

(︃
U∞

(︂
1− e−y+

)︂
,− 1

Re
, 0

)︃T

, (3.15)

where the pluses as mentioned previously will be omitted hereafter for the sake of brevity. The
definition of the Reynolds number (2.31) therefore gives the unique expression

Re =
U∞δ1
ν

=
U∞
V0

. (3.16)

Hence, the Reynolds number for the ASBL is defined purely by the two velocity quantities
in the flow problem. A high free-stream velocity to suction velocity ratio would yield the
inertial forces superior whereas a relatively large suction velocity would imply shift towards
dominating friction forces.
The base state (3.11) is two-dimensional in contrast to the profile assumed in section 2.4,
which featured V = 0. As such, the OSE (2.43) is slightly modified by an additional term
induced by the constant wall-normal suction velocity V0. Taking this into account, (2.43) turns
into

LmOS(ṽ(y)) ≡
[︁
(iRe(αU(y)− ω)− D) (D2 − k2)− iReαU ′′(y)− (D2 − k2)2

]︁
ṽ(y) = 0,

(3.17)
where LmOS denotes the modified Orr–Sommerfeld (OS) operator and (3.17) is hereafter re-
ferred to as modified Orr–Sommerfeld equation (mOSE). Correspondingly, the Squire equation
(SE) (2.53) is modified to

LmSE(η̃(y)) ≡
[︁
(iRe(αU(y)− ω)− D)− (D2 − k2)

]︁
η̃(y) = −iReβU ′(y)ṽ(y), (3.18)

where analogously LmSE denotes the modified Squire operator and (3.18) from now on is
called modified Squire equation (mSE).
For the linearized Navier–Stokes equations (LNSE), novel ansatz functions in addition to (2.54)
may be obtained via Lie symmetry analysis, as was elaborated by Nold and Oberlack (2013)
and Nold et al. (2015) for plane canonical shear flows. For the inviscid LNSE (2.36) modified
by the aforementioned suction term V = −V0, an analysis was performed for the ASBL and
details are provided in section 3.2.4.
The analytical solution for the inviscid ASBL was derived in Chiarulli and Freeman (1948),
who demonstrated that the presence of constant suction modifies the OSE in such way that it
can be transformed to the ordinary hypergeometric differential equation solved by Gaussian
hypergeometric functions. This result was later corrected by Hughes and Reid (1965), who
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despite the existence of analytical solutions preferred numerical studies of the inviscid equation
with asymptotic methods, which yielded a critical Reynolds number of Recr ≈ 47000. The
solution to the viscous formulation was provided by Baldwin (1970) in terms of 2F3 generalized
hypergeometric functions. Analogous to the inviscid case, the study of stability in the viscous
case was conducted numerically by Hocking (1975) via transformation of the underlying
equations to a non-linear Schrödinger equation, which in turn yielded Recr = 54370. A more
precise transition Reynolds number could be obtained by employing Chebyshev collocation
methods popularized incidentally by Orszag (1971) in the context of hydrodynamic stability
analysis. The first to employ these methods for the ASBL were Fransson and Alfredsson (2003),
obtaining a more refined critical Reynolds number reading Recr = 54382.
As will be demonstrated hereafter, the analytical solution of the mOSE (3.17) for the ASBL is
superior to numerical methods both in the accuracy of the computed critical Reynolds number
as well as with regard to physical information included in the analytical eigenvalue problem
(EVP) (2.60) later derived for the ASBL. As Baldwin (1970) showed for the stability problem of
the viscous formulation of the ASBL, the mOSE (3.17) is in fact a generalized hypergeometric
differential equation, which according to Olver et al. (2010) is defined by

(ϑ(ϑ+ b1 − 1) · · · (ϑ+ bq − 1)− y(ϑ+ a1) · · · (ϑ+ ap))w(y) = 0, (3.19)

where ai and bi denote parameters and

ϑ = y
d
dy
. (3.20)

Equation (3.19) is in turn solved by the generalized hypergeometric functionw(y) = pFq(a, b; y),
where

pFq

(︃
a1, . . . , ap
b1, . . . , bq

; y

)︃
=

∞∑︂
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

yk

k!
. (3.21)

It can now be shown that the mOSE (3.17) concretely represents a 2F3 generalized hypergeo-
metric differential equation with p = 2 and q = 3 as given in (3.21) solved by the corresponding
2F3 generalized hypergeometric function

2F3

(︃
a1, a2
b1, b2, b3

; y

)︃
=

∞∑︂
k=0

(a1)k(a2)k
(b1)k(b2)k(b3)k

yk

k!
, (3.22)

where the Pochhammer symbol (a)n is defined as

(a)0 = 1, (3.23a)
(a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1), (3.23b)
(a)k = Γ (a+ k) /Γ (a) , (3.23c)

in which Γ(a) denotes the Gamma function with the argument a and k /∈ Z−. Solving the
mOSE (3.17) consequently yields the solution space

ṽ(y) =C1 e
ky

2F3

(︃
a1

b1
;−iReα e−y

)︃
+ C2 e

−ky
2F3

(︃
a2

b2
;−iReα e−y

)︃
+C3 e

σ−1
2

y
2F3

(︃
a3

b3
;−iReα e−y

)︃
+ C4 e

−σ+1
2

y
2F3

(︃
a4

b4
;−iReα e−y

)︃
,

(3.24)
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with

a1 =

(︃
−k̃ − k

k̃ − k

)︃
, a2 =

(︃
k̃ + k

−k̃ + k

)︃
, a3 =

(︃
1
2 − σ

2 + k̃
1
2 − σ

2 − k̃

)︃
, a4 =

(︃
1
2 + σ

2 + k̃
1
2 + σ

2 − k̃

)︃
, (3.25a)

b1 =

⎛⎝ 1− 2k
1
2 + σ

2 − k
1
2 − σ

2 − k

⎞⎠ , b2 =

⎛⎝ 1 + 2k
1
2 − σ

2 + k
1
2 + σ

2 + k

⎞⎠ , b3 =

⎛⎝ 1− σ
3
2 − σ

2 + k
3
2 − σ

2 − k

⎞⎠ , b4 =

⎛⎝ 1 + σ
3
2 + σ

2 + k
3
2 + σ

2 − k

⎞⎠ ,

(3.25b)

where

k̃ =
√︁
k2 + 1, (3.26a)

σ = σASBL =
√︁

4k2 + 1 + 4iRe(α− ω), (3.26b)
(3.26c)

in which σASBL indicates a clear distinction when compared to the corresponding parameter
occurring for the BBL as given in (3.8) and hereafter is called viscous parameter. This naming
stems from the fact that the sub-solutions in (3.24) are classically called viscous modes, whereas
the modes accompanied with the exponential functions e±ky are called inviscid solutions in
the BBL, as is discussed by Grosch and Salwen (1978). As is further apparent from (3.24) and
(3.25), the solutions ṽ1(y) and ṽ2(y) share a reflection symmetry in k, whereas similarly ṽ3(y)
and ṽ4(y) have a reflection symmetry in σ. The solution to the mOSE (3.24) is complemented
by the boundary condition (BC) set

ṽ(y = 0) =0, Dṽ(y)|y=0 = 0, (3.27a)
ṽ(y → ∞) = 0, Dṽ(y)|y→∞ = 0. (3.27b)

The BC at infinity (3.27b) concretely read

ṽ(y → ∞) = lim
y→∞

[︂
C1 e

ky + C2 e
−ky + C3 e

σ−1
2

y + C4 e
−σ+1

2
y
]︂
= 0, (3.28a)

Dṽ(y)|y→∞ = lim
y→∞

[︃
C1 k e

ky − C2 k e
−ky + C3

(︃
σ − 1

2

)︃
e

σ−1
2

y − C4

(︃
σ + 1

2

)︃
e−

σ+1
2

y

]︃
= 0,

(3.28b)

where the rather simple structure is due to the fact that in general

lim
y→0

pFq

(︃
a1, . . . , ap
b1, . . . , bq

; y

)︃
→ 1, (3.29)

applies for generalized hypergeometric functions. Moreover, the derivative of a generalized
hypergeometric function, with an argument z(y) instead of y, w.r.t y is given as

d
dy pFq

(︃
a1, . . . , ap
b1, . . . , bq

; z(y)

)︃
=
a

b
z′(y) pFq

(︃
a1 + 1, . . . , ap + 1

b1 + 1, . . . , bq + 1
; z(y)

)︃
, (3.30)

where in turn

a =

p∏︂
i=1

ai, (3.31a)

b =

q∏︂
i=1

bi, (3.31b)
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gives the product over all elements of the parameter vectors a and b, respectively.
Since by definition k > 0, the solution v1(y) = C1 e

ky diverges for y → ∞, while v2(y) = C2 e
−ky

converges. Therefore, C1 = 0. The handling of the two remaining solutions depend solely
on the real part of σ ∈ C. In principle, σ = ±(σr + iσi) as σ is the root of a complex number
(see 3.26b). Due to the reflection symmetry of ṽ3(y) and ṽ4(y) in σ, it is sufficient to focus on
σ = σr + iσi solely. For any value of k and Re, the real part σr is always greater than zero, for
which ṽ4(y) = C4 e

−σ+1
2

y converges.
It can be shown that only the case σr > 1 is relevant, whereupon C3 = 0. The remaining BC
(3.27a) at the wall then reduce to

ṽ(y = 0) = C2 2F3

(︃
a2

b2
;−iReα

)︃
⏞ ⏟⏟ ⏞

A1(α,β,ω,Re)

+C4 2F3

(︃
a4

b4
;−iReα

)︃
⏞ ⏟⏟ ⏞

A2(α,β,ω,Re)

= 0,
(3.32a)

Dṽ(y)|y=0 = C2

[︃
a2

b2
2F3

(︃
a2+1
b2+1

;−iReα
)︃
iReα− k 2F3

(︃
a2

b2
;−iReα

)︃]︃
⏞ ⏟⏟ ⏞

A3(α,β,ω,Re)

+ C4

[︃
a4

b4
2F3

(︃
a4+1
b4+1

;−iReα
)︃
iReα−

(︃
σ + 1

2

)︃
2F3

(︃
a4

b4
;−iReα

)︃]︃
⏞ ⏟⏟ ⏞

A4(α,β,ω,Re)

= 0.

(3.32b)

It is now, in principal, possible to solve for one of the constants and substitute them together
with C1 = C3 = 0 into the solution (3.24). Thus, solving for C2 in (3.32a) gives

C2 = −C4

2F3

(︃
a4

b4
; z(0)

)︃
2F3

(︃
a2

b2
; z(0)

)︃ 2F3

(︃
a2

b2
; z(y)

)︃
, (3.33)

with z(y) = −iReαe−y, which substituted into (3.24) gives the eigenfunction

ṽ(y) = C4

⎡⎢⎢⎣e− 1
2
(σ+1)y

2F3

(︃
a4

b4
; z(y)

)︃
− e−ky

2F3

(︃
a4

b4
; z(0)

)︃
2F3

(︃
a2

b2
; z(0)

)︃ 2F3

(︃
a2

b2
; z(y)

)︃⎤⎥⎥⎦ , (3.34)

where the arbitrary constant C4 accounts for the fact that (3.35) is a homogeneous linearly
independent equation system. Moreover, physically C4 implies that any magnitude of the
eigenfunction (3.34) solves the mOSE (3.17).
The two conditions in (3.32) further establish a matrix equation of the type(︃

A1(α, β, ω,Re) A2(α, β, ω,Re)
A3(α, β, ω,Re) A4(α, β, ω,Re)

)︃(︃
C2

C4

)︃
=

(︃
0
0

)︃
, (3.35)

for which non-trivial solutions for C2 and C4 only exist for

D(α, β,Re, ω) = det (A(α, β, ω,Re)) = 0, (3.36)
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which establishes the dispersion relation already presented in (2.60). In fact, the determinant
in (3.36) defines an algebraic EVP of the form

D(α, β,Re, ω)

= 2F3

(︃
a2

b2
;−iReα

)︃[︃
iReα

a4

b4
2F3

(︃
a4+1
b4+1

;−iReα
)︃
−
(︃
σ + 1

2

)︃
2F3

(︃
a4

b4
;−iReα

)︃]︃
− 2F3

(︃
a4

b4
;−iReα

)︃[︃
iReα

a2

b2
2F3

(︃
a2+1
b2+1

;−iReα
)︃
− k 2F3

(︃
a2

b2
;−iReα

)︃]︃
= 0,

(3.37)

in which the eigenvalue is yet to be decided and decides whether the temporal or spatial EVP
as discussed in section 2.4.3 is examined.

The mSE (3.18) is in fact a modified Bessel’s equation of the form

y2
d2w(y)
dy2

+ y
dw
dy

− (y2 + ν2)w(y) = 0, (3.38)

where ν denotes a parameter of the second order ordinary differential equation (ODE) and
w(y) is the sought solution. Equation (3.38) is solved by functions of the type

Iν(y) = (12y)
ν

∞∑︂
k=0

(14y
2)k

k!Γ (ν + k + 1)
, (3.39a)

Kν(y) =
π

2

I−ν(y)− Iν(y)

sin νπ
, (3.39b)

where Iν(y) and Kν(y) are called modified Bessel functions of first and second kind. With this,
the inhomogeneous mSE (3.18) yields the solutions

η̃(y) = 2iRe β e−
y
2

[︃
−I−σ

(︂
(i− 1)

√
2Reα e−

y
2

)︂∫︂
e−

y
2Kσ

(︂
(i− 1)

√
2Reα e−

y
2

)︂
ṽ(y)dy

+ Kσ

(︂
(i− 1)

√
2Reα e−

y
2

)︂∫︂
e−

y
2 I−σ

(︂
(i− 1)

√
2Reα e−

y
2

)︂
ṽ(y)dy

]︃
+C5 e

− y
2 I−σ

(︂
(i− 1)

√
2Reα e−

y
2

)︂
+ C6 e

− y
2 Kσ

(︂
(i− 1)

√
2Reα e−

y
2

)︂
,

(3.40)

with the BC at wall and at infinity

η̃(y = 0) = 0, η(y → ∞) = 0. (3.41)

The results of the mOSE and mSE (3.24) and (3.40) with eigenvalues satisfying the EVP (3.36)
now make it possible to derive the entire 3D perturbation field by virtue of the continuity
equation and the definition of the wall-normal vorticity

iαũ(y) +
dṽ(y)
dy

+ iβw̃(y) = 0, (3.42a)

η̃(y) = iβũ(y)− iαw̃(y). (3.42b)

With this, the governing equations for a linear stability analysis (LSA) of the ASBL is laid,
which is categorized into the temporal stability problem, discussed in the subsequent section,
and the spatial stability problem, which follows afterwards in section 3.3.
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3.2 Temporal stability analysis of the asymptotic suction boundary
layer

For reasons unknown to the author, the thorough stability analysis of the ASBL has been
neglected in literature. Thus, the results in Yalcin et al. (2021) fill a void in this regard and
bring forth unique insights into the temporal algebraic EVP (3.36) via asymptotic analysis of
the respective parameters. Furthermore, the existence of continuous modes as introduced by
Grosch and Salwen (1978) is demonstrated and lastly a classical stability analysis with focus
on the Tollmien–Schlichting (TS) modes is presented. This entire section is reproduced from
Yalcin et al. (2021), with the permission of AIP Publishing.

3.2.1 Continuous temporal linear modes

It was shown by Grosch and Salwen (1978) that the classical linear modes acquired through
the homogeneous BC set (3.27a) and (3.27b) are not necessarily the only physically plausible
linear modes. Therein it was questioned, if the BC at infinity, demanding vanishing perturbation
velocities therein, are adequate. A counter-proposal instead were so called relaxed BC of the
type

ṽ(y),Dṽ(y) bounded for y → ∞, (3.43)

which effectively relaxes the rather restrictive condition on the exponents in (3.24) such that
the exponent a of an exponential function eay needs not to be strictly zero, but rather can take
values in the number set

a ∈ Z−
0 for any y ∈ R+

0 . (3.44)

Hence, the entire solution ṽ(y) stay bounded if the exponential functions in each sub-solution
ṽi(y) stays bounded. For the ASBL, regardless of the relaxed BC (3.43)

C1 = 0, (3.45)

must apply, since ṽ1(y) → ∞ as y → ∞. It was shown previously that the solutions ṽ2(y) and
ṽ4(y) are always bounded and, in fact, disappear at infinity due to their real exponents always
being negative. This leaves the novel relaxed BC

σr − 1 = 0 as y → ∞, (3.46)

induced by the demanded boundedness of solution ṽ3(y). As was elaborated in 2.4.4, the
3D temporal problem is superfluous in that it may be obtained readily via the LST of the 2D
temporal problem through Squire’s transformation (5.9). Thus, hereafter the 2D temporal
stability problem is assumed with β = 0. Subsequently, the real and imaginary parts of the
viscous parameter σ will be required for the derivation of the continuous modes as well as for
assessing the eigenfunctions in section 3.2.3. Assuming

σ =
√
a+ bi = ±(σr + σi), (3.47)
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one obtains for σr and σi

σr =
1√
2

√︂√︁
(4α2 + 4Reωi + 1)2 + 16Re2(α− ωr)2 + (4α2 + 4Reωi + 1),

(3.48a)

σi = sgn(∆)
1√
2

√︂√︁
(4α2 + 4Reωi + 1)2 + (4Reα− 4Reωr)2 − (4α2 + 4Reωi + 1),

(3.48b)

with ∆ = α− ωr. Hence, the condition (3.46) is now given as

1√
2

√︂√︁
(4α2 + 4Reωi + 1)2 + 16Re2(α− ωr)2 + (4α2 + 4Reωi + 1) = 1, (3.49)

where the l.h.s. in (3.49) is the expanded real part of σ as defined in (3.26b). It is now possible
to solve (3.49) for the designated growth rate ωi = ωi(ωr, α,Re), i.e.

ωi = −
(︃
α2

Re
+Re(α− ωr)

2

)︃
, (3.50)

due to which ωi is parabolic w.r.t. its argument ωr. Employing ωi into the definition of the
complex number

ω = ωr + iωi, (3.51)

gives

ω = ωr − i

(︃
α2

Re
+Re(α− ωr)

2

)︃
. (3.52)

As per (3.52), the ωr-ωi-spectrum is continuous. For a given streamwise wave number α and
Reynolds number Re, the temporal growth rate ωi is parabolic w.r.t. ωr and always opened
downwards.
An exemplary temporal continuous spectrum is given in figure 3.2 for α = 1 and Re = 500.
The spectrum is compared to the one obtained for the BBL in dashed lines, which is derived in
Grosch and Salwen (1978). The parameters are identical in both cases. As can be deduced,
both spectra are maximal at ωr = 1, where the imaginary part yields

ωi = −α2/Re. (3.53)

Thus, for Re → ∞ or α → 0 the temporal growth rate ωi tends towards zero. Despite
the damping character of these modes, they might nevertheless be very relevant to laminar-
turbulence transition. The relaxed BC (3.43) implies that continuous modes do not decay in
wall-normal direction but rather oscillate harmoniously into infinity with a specific wall-normal
wavelength. In contrast, the classical linear modes computed from the EVP (3.36) decay
naturally as per the BC at infinity (3.27b). And if the continuous modes persist long enough
in time, i.e. ωi in (3.53) tends towards zero, they may modulate the BL such that additional
transition mechanisms are triggered. The phenomenon of disturbances induced by free-stream
turbulence (FST) is well known to be a possible explanation for bypass transition at Reynolds
numbers below the critical Reynolds number predicted by LST. An experimental notion of
disturbances induced in a BL by FST was published by Kendall (1985). This phenomenon
was further examined experimentally for suction boundary layers in detail by Yoshioka et al.
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Figure 3.2: Temporal continuous spectrum for the ASBL (line) and the BBL (dashed line) with α = 1 and
Re = 500. For both spectra a maximum is located at ωr = 1 and ωi = −α2/Re. (adapted
from Yalcin et al. (2021))

(2004). They observed a transition to turbulence at Reynolds numbers as low as Re ≈ 344 at
the presence of FST. Moreover, they confirmed a streaky structure of disturbances in streamwise
direction. Transferred to modal disturbances, elongation of perturbations into the streamwise
direction would in fact correspond to comparatively small streamwise wave numbers α, which
in fact would coincide with (3.53), where small α induce temporal modes with minimal
decay rates ωi. At this point, this is not confirmed by experiments or simulations, but further
investigations in this direction are certainly motivated by the present author. Furthermore,
such persisting continuous modes with large wavelengths λx in streamwise direction might
contribute to the introductory goals of understanding the formation of large-scale persisting
superstructures.

3.2.2 Asymptotic analysis of the parameters in the temporal eigenvalue problem

One of the decisive advantages of solving the mOSE (3.17) analytically, rather than discretely
via numerical methods, is the possibility to apply analytical methods on the arising solutions.
One such analysis was demonstrated in the previous section by deriving continuous modes
based on the analytical solution (3.24). Another powerful and insightful mathematical tool is
asymptotic analysis. In this mathematical framework, the behavior of a solution is investigated
in asymptotic limits. In the context of LST, the goal is basically to understand, how the
designated eigenvalue, here ω ∈ C, behaves for asymptotic limits of the parameters of the
algebraic EVP (3.36), concretely α and Re. Notice that the inclusion of β is discarded in view
of Squire’s theorem explained in detail in 2.4.4, which states that the 2D stability problem
provides the most critical Reynolds number and any 2D modes may be transformed to a
corresponding 3D mode by variation of β. As such, the following asymptotic analysis is reduced
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to the 2D case, for which the zero and infinite limits of α and Re are considered. The 3D EVP
(3.36) then becomes

D(ω)α,β,Re

= 2F3

(︃
a2

b2
;−iReα

)︃[︃
iReα

a4

b4
2F3

(︃
a4+1
b4+1

;−iReα
)︃
−
(︃
σ + 1

2

)︃
2F3

(︃
a4

b4
;−iReα

)︃]︃
− 2F3

(︃
a4

b4
;−iReα

)︃[︃
iReα

a2

b2
2F3

(︃
a2+1
b2+1

;−iReα
)︃
− α 2F3

(︃
a2

b2
;−iReα

)︃]︃
= 0,

(3.54)

where for the parameters {ai, bi} of the 2F3 generalized hypergeometric functions k = α applies
as β = 0. This 2D EVP now forms the basis for the subsequent analyses.

Asymptotic analysis for small streamwise wave numbers and large Re

In the context of turbulent superstructures, it is most interesting to first focus on the zero limit
of α, as in this case very large streamwise wavelengths are analyzed as per λx = 2π/α. The
general approach is sketched briefly:

• Declare a limit for a parameter, i.e. α→ 0

• Assume a Laurent series for the designated eigenvalue ω(α), i.e.

ω(α) =

n=∞∑︂
n=−∞

ωn α
n, (3.55)

in which ωn denotes the coefficient of the nth power of α in the series

• Substitute ω(α) into the algebraic EVP (3.54) and asymptotically expand the equation

• Sort all terms in the ensuing equation from leading order to lower orders

• Hierarchically solve for the coefficients ωn to obtain the entire series (3.55)

If successful, the result for ω(α) thoroughly describes how the eigenvalue ω behaves, in the
present case, for α→ 0. It could for instance tend towards an insignificantly low value, obtain a
positive imaginary part and thus become unstable or change its asymptotic behavior depending
on choice of the arbitrary parameter Re.
The asymptotic expansion for the zero limit of α has been conducted and logged in appendix
A.1. In summary, the expansion of the EVP for α→ 0 is not feasible for any choice of ansatz,
regardless of whether a Laurent series ansatz is assumed for ω(α) or any other possible ansatz
function in fact. This result was confirmed numerically by unsuccessfully trying to solve (3.54)
for ω in the presence of very small α and arbitrary Re. The conclusion therefore is that for
α → 0 there exists no solution for the eigenvalue and, thus, ω = ∅. Physically, this result is
more than remarkable as it would imply that perturbations with large streamwise wavelength
λx are not admitted by the flow.
This seemingly implausible result is resolved by extending the asymptotic analysis not only
to the streamwise wave number α but simultaneously also to the Reynolds number Re. In
fact, it is apparent that products of Re and α appear in multiple terms, both in the solution
of the mOSE (3.24) as well as in the viscous parameter σ in (3.26b). This provides a direct
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hint that both parameters should be treated together rather than individually in the context of
asymptotic analyses. Thus, a novel expansion is proposed, with the assumption that

α→ 0, and Re→ ∞, (3.56)

where α is of inverse order of Re, i.e. the product is of O(1). This, in turn, leads to a
distinguished limit Reα of the form

Reα := Reα,= O(1). (3.57)

If now solutions ω(Re, α) exist for the EVP (3.54), this would in turn imply that perturbations
with large streamwise wavelengths λx do in fact exist, but only in the large Re limit. These
results would furthermore coincide with observations made by Hutchins and Marusic (2007),
who reported a clear interdependence of large Reynolds numbers and large streamwise struc-
tures in a turbulent channel-flow. Corresponding results for the ASBL are thoroughly discussed
in Khapko et al. (2016) and Ferro et al. (2021). This finding represents an important step
towards explaining where turbulent superstructures originate from.
Now, wherever a pair Reα appears in the 2D EVP (3.54), as per (3.57) this product is replaced
by Reα. An ansatz of the form (3.55) once again is employed for ω. A first observation is that
when (3.57) and (3.55) are employed into (3.54), subsequently expanding the EVP yields

ωn = 0 for n ≤ 0, (3.58)

which reduces the Laurent series (3.55) to

ω(α) =

n=∞∑︂
n=1

ωn α
n. (3.59)

It seems that the viscous parameter σ given in (3.26b) is of central importance for the expansion.
Using (3.57) and (3.59) into (3.26b) yields

σ(ω(α)) =
√︁
1 + 4iReα (1− ω1)−

2iReα ω2√︁
1 + 4iReα (1− ω1)

α+O(α2), (3.60)

in which now the leading order is O(1), due to which σ is not singular, which would be the
case for n ≤ 0 in (3.59).
The next step is to expand the 2D EVP (3.54) with (3.57), (3.59) and (3.60). The detailed
expansion is given in A.2. Considering only the leading order of the expanded 2D EVP now
gives

D(ω1, Reα)
O(1) =

ω1

ω1 − 1

[︃
iReα(σ0 − 1)

(1 + σ0)(3 + σ0)
1F2

(︃
1
2(1 + σ0)

(2 + σ0),
1
2(5 + σ0)

;−iReα
)︃

+
1

2
(1 + σ0) 1F2

(︃
1
2(−1 + σ0)

(1 + σ0),
1
2(3 + σ0)

;−iReα
)︃]︃

− 1

1− ω1
1F2

(︃
1
2(−1 + σ0)

(1 + σ0),
1
2(3 + σ0)

;−iReα
)︃

= 0,

(3.61)

where σ0 =
√︁

1 + 4i Reα (1− ω1) and the superscript O(1) denotes that the leading order of
the expansion is considered. The result is an expanded EVP for the eigenvalue ω1(Reα), in
which the only parameter is Reα. Consequently, the leading order behavior of the eigenvalue
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(a) (b)

Figure 3.3: (a) The Laurent-series coefficient ω1 in (3.59) is plotted vs. Reα = Reα as defined in
(3.57). The lower threshold below which ω1(Reα) yields no solutions isReα,min ≈ 0.84191.
(b) Employing ω1 into (3.59) and Reα with a fixed Re into (3.57) gives the actual physical
parameters ω and α, which is concretely plotted for Re = 1.0× 105. (adapted from Yalcin
et al. (2021))

ω is dependent not only of a single parameter but rather of the interplay between Re and α. In
figure 3.3a, the Laurent series coefficient ω1 is plotted versus the distinguished limit Reα. As is
visible, for these limits, i.e. α→ 0 and Re→ ∞, only a single solution curve exists. While at
first it looks like the solution becomes singular for decreasing Reα, it in fact reaches a lower
limit at Reα ≈ 0.84191, below which the expanded EVP (3.61) has no solution. Thus, for a
given large Reynolds number, there is an upper bound for the streamwise wavelength λx of
a perturbation. If larger perturbation shall be admitted to the system, the Reynolds number
correspondingly needs to increase.
The computed solutions ω1(Reα) should be converted to the desired eigenvalue ω and the
actual parameter α. For this, first the range Reα, which is analyzed in figure 3.3a must be
employed into (3.57) to give a corresponding range of α by defining a fixed Reynolds number,
which in figure 3.3b has been set to Re = 1.0× 105. Then, ω is obtained by substituting the
acquired range α and the Laurent series coefficient ω1 into (3.59). The resulting plot is given
for the real and imaginary part of ω in figure 3.3b. As can be seen, the eigenvalue ω reaches an
absolute minimum for αmin = 0.84191× 10−5, which by definition of Reα (3.57) is of order
O(Re−1). Figure 3.4a shows the corresponding results for ω when solving the original EVP
(3.54). The resulting eigenvalue curve shows that indeed αmin = 0.84191× 10−5 represents a
cutoff wave number, below which no solutions are found. The employed solver was re-adjusted
to residual tolerances as low as O(10−200). It shows that the lack of solutions is not a numerical
problem but rather a mathematical consequence of the actual EVP. Figure 3.4a also shows
that the lower threshold is not a product of the asymptotic expansion but deeply engraved
into the original EVP (3.54). The accuracy of the eigenvalues obtained from the expanded
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(a) (b)

Figure 3.4: (a) Computations of solutions ω in the original EVP (3.54) forRe = 1.0×105 in surrounding
of the lower threshold αmin = 0.84191× 10−5, which is seemingly identical to the results
obtained for the expanded EVP in figure 3.3b. (b) Visualization of the semi-logarithmic error
of the eigenvalues computed from the expanded EVP (3.61) relative to the eigenvalues
obtained from the full EVP (3.54). (adapted from Yalcin et al. (2021))

EVP (3.61) in relation to the eigenvalues from the original EVP are illustrated in figure 3.4b
semi-logarithmically. Logically, the error for the smallest α is minimal and in the order of
O(10−10) whereas the error increases due to α gradually moving away from the zero limit
assumed for the expanded EVP, where nevertheless good agreement between asymptotic and
actual eigenvalues is observed.
A legitimization of the distinguished limit approach (3.57)may, in fact, be obtained by analyzing
the underlying ODE, i.e. the mOSE (3.17). Therein, for α→ 0, the terms scaling with the base
velocity profile U(y) = 1− e−y and its second derivative U ′′(y) would be of negligible order
compared to the remaining terms. As such, all information about the base flow would be lost
in the zero limit of α. This occurrence is not restricted to the mOSE but also applies for the
original OSE (2.43). In the context of stability theory, the information about the underlying
base flow is naturally important. Conveniently, the terms scaling with the velocity profile U(y)
and its second derivative U ′′(y) are accompanied by the Reynolds number Re. It is therefore
possible to keep these terms in the leading order, if in addition to α→ 0 the aforementioned
limit Re→ ∞ is assumed. Reintroducing the distinguished limit Reα as defined in (3.57) and
expanding the mOSE (3.17) finally gives

d4ṽ(y)
dy4

+
d3ṽ(y)
dy3

−
(︂
iReα − iReα

ω

α
− iReα e

−y
)︂ d2ṽ(y)

dy2
− iReα e−y ṽ(y)+O(α) = 0, (3.62)

for the 2D case. Additionally, in order to retain the eigenvalue ω in (3.62), ω must be of the
same order as α. This is the case if the reduced Laurent series (3.59) is assumed for ω, i.e.

ω(α) = ω1α+O(α2). (3.63)

Therefore, the distinguished limit (3.57) as well as the leading order of the Laurent series
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(3.59) are reconfirmed by asymptotic expansion of the mOSE (3.17).
In summary, the 2D EVP (3.54) may only be expanded in the zero limit of α if simultaneously
the infinite limit of Re is assumed. It was shown that the ensuing expanded EVP (3.61) yields
a lower threshold Reα,min ≈ 0.84191 below which there are no solutions for ω1 and, thus, for
ω. This in turn implies that for a given large Reynolds number, there is a cutoff streamwise
wave number α or wavelength λx, which defines the size of the largest structures in streamwise
direction. This finding corresponds to famous results in open channel-flow and the ASBL
(Hutchins and Marusic, 2007; Khapko et al., 2016; Ferro et al., 2021). To the best knowledge
of the present author, these results obtained via asymptotic analyses are unprecedented and
mark an important milestone in linking turbulent superstructures and linear modes in the
laminar base state of a wall-bounded shear flow.

Asymptotic analysis of the inviscid limit Re→ ∞

The thorough analysis of the inviscid case, i.e. Re → ∞, has been treated in detail for the
analytical solution of the mOSE in Baldwin (1970) and in a more recent study based on the
triple-deck theory published by Dempsey and Walton (2017) based on the LNSE (2.36) for the
ASBL. Baldwin’s results are purely mathematical and discarded at this point due to a lack of
replicability. In the more recent work by Dempsey and Walton (2017), a triple-deck behavior
was introduced for the perturbed ASBL in the limit of large Reynolds numbers for the lower
branch of the neutral stability curve, as shown later in 3.5. Incidentally, the theory of triple
decks was developed to better understand BL separation Stewartson and Williams (1969),
Messiter (1970), and Neiland (1970), but the theory can also be used to derive the asymptotic
behavior of the lower neutral branch. For this case, the stationary ASBL is decomposed into
three physically distinct parts, namely the lower, main, and upper decks. In the corresponding
analysis, asymptotic expansions in each deck combined with the BC for the perturbation
velocities as well as fitting conditions in the transition regions yield that the lower branch in
the limiting case of large Reynolds number is given asymptotically by α = O(Re−1/4). The
asymptote is plotted in a point-dashed line in 3.5 and qualitatively seem to replicate the actual
lower branch computed in the following section.

3.2.3 Temporal stability characteristics of the asymptotic suction boundary layer

To the author’s knowledge, neither the temporal nor the spatial stability map for the ASBL
have been fully published and thoroughly analyzed. Both for the following computations
of the temporal 2D EVP (3.54) as well as for the spatial computations presented in section
3.3, Muller’s algorithm, a second order secant method, was used to compute the solutions
ω parametrized by α and Re. The critical value triple [αcr, ωcr, Recr] is compared with the
value obtained by a numerical solutions of the mOSE by Hocking (1975) and Fransson and
Alfredsson (2003).

The remaining asymptotic analyses for α→ ∞ and Re→ 0 are to be found in the appendix in
the sections A.3 and A.4.
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Figure 3.5: Depiction of the 2D temporal stability map presenting the temporal growth rate of the
least stable TS modes as discussed in figure 2.2. The colored shades represent unstable
modes whereas blank areas are areas of stability. The Reynolds number axis is given
logarithmically. The point-dashed line gives the asymptote derived by Dempsey and Walton
(2017) via the triple-deck theory for large Re. (adapted from Yalcin et al. (2021))

Computations of the temporal Tollmien-Schlichting modes of the asymptotic suction
boundary layer

The principal goal of LSA is to find the least stable modes, the TS modes, for a given set of
parameters {α,Re} and discern at which Reynolds number the temporal growth rate becomes
positive for the first time, which would in turn correspond to modes growing for t→ ∞. The
respective parameter set is called critical parameter set {αcr, ωcr, Recr}, where ωi = 0. The
visualization is typically done in a temporal stability map, which represents a contour plot,
where ωi is plotted vs. Re and α. The temporal stability map showing only the TS modes for the
ASBL is shown in figure 3.5 and was computed up for Reynolds numbers betweenRe = 1.0×104

– 6.0× 106 and streamwise wave numbers between α = 0.001− 0.2. Larger streamwise wave
numbers were examined for sample supercritical Reynolds numbers Re > Recr and were
found to yield stable modes with ωi exclusively. Based on the asymptotic analysis conducted
for large α (see section A.3) extensive computations were not performed globally for larger
streamwise wave numbers, as expanding the EVP (3.54) α→ ∞ gives ωi < 0, i.e. stable modes
without exception. The stabilizing effect of suction on BL stability is best studied by comparing
the critical value triple of the ASBL profile to the BBL. Critical values were first calculated by
Hocking (1975), who gave {αcr,ASBL = 0.1555, ωcr,ASBL = 0.023325, Recr,ASBL = 54370} by
solving the LNSE in streamfunction formulation with methods first employed in Stewartson
and Stuart (1971), in which a plane Poiseuille profile was examined. The initial-value problem
is investigated with asymptotic and multi-scale methods. For a detailed approach, the reader
is referred to the cited papers. In more recent years, a different critical value triple was
obtained by Fransson and Alfredsson (2003), who employed a Chebyshev collocation method

37



in wall-normal direction. The triple computed in this work was given as {αcr,ASBL = 0.1555,
ωcr,ASBL = 0.02331,Recr,ASBL = 54382}. Due to the approximating nature of both approaches,
the true critical value triple remained unknown. In this work we use the EVP (3.54) based on
the analytical solution (3.24) to accurately calculate the critical value triple up to O(10−22) and
with high decimal accuracy even for the Reynolds number. For this, a 2D bisection method was
employed to narrow down the critical point systematically. Such a method is highly dependent
on the starting point, the computations were tracked manually to adjust the parameter range
when necessary. The critical value triple computed in this work based on (3.54) is

αcr = 0.15546, (3.64a)
ωcr = 0.023297, (3.64b)
Recr = 54378.62032, (3.64c)

of which the Recr is in fact located between the previously given critical Reynolds numbers
provided by Hocking (1975) and Fransson and Alfredsson (2003). The residuum of the EVP
(3.54) with the critical values in (3.64c) is of order O(10−22), while the positive imaginary
part ωcr,i is of order O(10−14). It should be mentioned that due to the analytical nature of
the EVP (3.54), the residuum as well as the decimals in (3.64c) can be refined further, with
computation time being the only limiting factor. The point to be made is that numerical
schemes, such as Chebyshev collocation schemes, provide results which are highly dependant
on factors such as the used mappings, the number of collocation points or the cut-off length L.
The form of the stability map in figure 3.5 is reminiscent of a stability map for the BBL. For
increasing Reynolds numbers the upper and lower branch of the neutrally stable curve relocate
to lower streamwise wave numbers. Simultaneously, both branches move closer to each other
as the Reynolds number increases. It is worth noticing that global stability is ensured for
any streamwise wave number α ≥ 0.178, regardless of the Reynolds number and this is also
validated by the asymptotic analysis for α→ ∞.

Temporal eigenvalue spectra and the corresponding wall-normal eigenfunctions ṽ(y)

For each parameter combination of Re and α there exists a spectrum consisting of the TS mode
as well as additional modes representing further solutions of the EVP (3.54). We aim to answer
two questions about these temporal spectra:
(i) How do the spectra behave for varying Re and α?
(ii) How do the TS waves behave for varying Re and α?
With the multiple eigenvalues admitted by (3.54) computation strongly depends on an initial
guess and also delivers only one value at a time. Hence, a two-step scheme is employed. First,
all spectra were estimated using a Chebyshev collocation scheme. For the computation, the
semi-infinite domain normal to the wall was truncated at L = 500 and mapped to η ∈ [−1, 1]
using an algebraic linear mapping of the form

y =
L

2
(η + 1), (3.65)

where η denotes the resulting mapped wall-normal coordinate. The number of collocation
points were set to n = 600. We note that the emerging spectra were strongly influenced by the
truncation length L as well as the number of collocation points n.
It is important to notice that the sole employment of Chebyshev schemes is not sufficient to
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acquire physically correct spectra due to the existence of spurious modes. Hence, in in order to
filter out spurious modes as well as drastically increase the accuracy of higher modes in the
spectra, all resulting modes were reiterated on account of the analytical EVP (3.54). For this
purpose, all modes obtained by the Chebyshev method were employed as starting points into
the non-linear root finder described in section 3.2.3. The residuals for the EVP (3.54) were set
to a very low threshold, until the iteration was halted. It proved necessary to set this threshold
to tol = 10−80, except for the case Re = 500000, where a tolerated residual of tol = 10−100

had to be taken. The reason for these very low residuals was the persistence of some spurious
modes, which did not disappear for lower residuals. For this reason the number of digits had
to be increased to 100 and 120 respectively.
The resulting spectra are shown in figures 3.6 and 3.7. In figure 3.6 the spectra were computed
for a fixed Re = Recr and varying α. Branches of unfiltered eigenspectra for plane Poiseuille
flow were classified in Mack (1976) as an A-branch when cr → 0, a P-branch when cr → 1 or
an S-branch when cr → 2/3, with cr denoting the real part of the phase velocity. Even though
inherently different, the eigenvalue spectra for the BBL (Schmid et al., 2002) were in fact
classified analogously, in which the continuous spectrum was described as a hybrid P-S-mode
family, whereas the scattered modes made up the A-mode family. Due to the conceptual
similarity to the eigenspectrum of the BBL, the seemingly scattered modes computed and
visualized in figures 3.6 and 3.7 are identified as modes in the A-mode family.
In figure 3.6 the eigensprectra in Recr are compared for varying orders of α. For very small
α = 0.001 (see figure 3.6a) the spectrum is sparse, while already showing a behavior that
is maintained for other α, i.e. the spectrum in most cases maintains a mode very close to
the continuous spectrum with the remaining modes sparsely connecting TS mode and the
mode in the vicinity of the continuous spectrum. In figure 3.6b the amount of modes increase,
seemingly forming an arch-like structure. For the critical α = αcr, however, an additional
second quasi-branch seems to emerge (see figure 3.6c), featuring two ”off-track” modes, while
the far right mode is separated from the rest of the spectrum. Finally, the gap between the far
right mode and the rest of the modes appears to widen towards the largest α = 1, given in
figure 3.6d.
Comparison of various orders of Re at the critical wave number αcr curiously reveals a similar
behavior of the spectrum. The smallest Reynolds number Re = 500 (see figure 3.7a) features a
rather sparse spectrum, again containing a TS mode, a far right mode and modes in between.
The number of modes increases at first with increasing Reynolds numbers (Re = 5000, see
figure 3.7b). Increasing the orders then again unveils the aforementioned second branch,
which for the largest Reynolds number Re = 500000 gains additional modes (see figure 3.7d).
Interesting enough, for this Reynolds number the far right mode seems to disappear, which
could be verified by reducing the tolerated residual of the EVP (3.54) as well as increasing the
number of digits in Maple.
For the critical point (3.64c), selected eigenfunctions vr(y) are plotted in figures 3.8a - 3.8d by
substituting the parameters α and Re as well as the eigenvalue ω of interest, taken from figure
3.7c, into (3.34). In general, a trend can be observed in the evolution of the eigenfunctions with
increasing proximity to the continuous spectrum. While the TS eigenfunction shows typical
behavior in figure 3.8a, the modes very close to the continuous spectrum induce oscillatory
wall-normal eigenfunctions (see figures 3.8c and 3.8d). Interesting enough, these oscillatory
eigenfunctions seemingly form a symmetric band with respect to some mid-point in y, in which
they are non-zero with some distance to the wall.
Due to their relevance for the stability of the flow, it remains to be examined which factors
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(a) (b)

(c) (d)

Figure 3.6: Temporal spectra are displayed at fixed Recr = 54378.62032 and varying α: (a) α = 0.001;
(b) α = 0.01; (c) αcr = 0.15546; (d) α = 1. Here and in figure 6 the red parabola denote the
temporal continuous spectra given by (3.52). (adapted from Yalcin et al. (2021))
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(a) (b)

(c) (d)

Figure 3.7: Temporal spectra are displayed at fixed αcr = 0.15546 and varying Re: (a) Re = 500; (b)
Re = 5000; (c)Recr = 54378.62032; (d)Re = 500000. The spectra were obtained analogous
to figure 3.6. Eigenfunctions of the eigenvalues 1− 4 in figure (c) are shown in figure 3.8.
(adapted from Yalcin et al. (2021))
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(a) (b)

(c) (d)

Figure 3.8: Eigenfunctions of the wall-normal disturbance vr(y) vs. y are plotted for the critical param-
eters Recr and αcr given in (3.64c). The corresponding ω are given in figure 3.7c where
eigenfunctions for selected ω are shown: (a) ω1 = 0.023296, (b) ω2 = 0.050041− 0.021402i,
(c) ω3 = 0.073523 − 0.036063i, (d) ω4 = 0.14120 − 0.043418i. (adapted from Yalcin et al.
(2021))
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(a) (b)

Figure 3.9: TS eigenfunctions ṽr(y) parametrized by Re at fixed α = αcr (a) and α at fixed Re = Recr
(b). The critical parameters can be taken from (3.64c). For comparison we have displayed
the laminar base solution in the form 1− U(y). (adapted from Yalcin et al. (2021))

influence the reach of the possibly unstable TS modes into the far-field. For this, the magnitude
of the eigenfunctions |ṽ(y)| is plotted vs. y for varying Re and fixed αcr (see figure 3.9a) and
for varying α and fixed Recr (see figure 3.9b). It is quite remarkable that varying the orders
of Re hardly affects the decay of |ṽ(y)| in wall-normal direction while varying α influences
the reach of |ṽ(y)| into the far-field decisively. This finding describes quantitatively how the
magnitude of the eigenfunction ṽ(y) behaves for varying Re and α. In comparison to the
laminar base flow, especially such TS waves comprised by small α, severely outreach the BL
thickness δ by many factors. The investigation of |ṽ(y)| therefore indicates that the inviscid part
of the eigenfunction, i.e. the term decaying with e−αy in ṽ(y) as given in (3.34), dominates.
It is quite enlightening, however, to extend the analysis to the perturbation velocity v(x, y, t) =
ṽ(y) ei(αx−ωt). When employing the eigenfunction ṽ(y), given in (3.34), into the normal mode
ansatz (NMA) (2.54), one gets

v(x, y, t) = ṽ(y) ei(αx−ωrt) eωit

= ei(αx−
σi
2
y−ωrt) e−

σr+1
2

y+ωit
2F3

(︃
a4

b4
;−iReα e−y

)︃
− ĉ ei(αx−ωrt) e−αy+ωit

2F3

(︃
a2

b2
;−iReα e−y

)︃
,

(3.66)

with ĉ = 2F3 (a4, b4;−iReα) / 2F3 (a2, b2;−iReα) and σr and σi as defined in (3.48a) and
(3.48b). It becomes apparent that each wall-normal velocity perturbation is comprised by two
waves, one wave due to the viscous part of the solution moving in the x − y plane, i.e. the
first addend in (3.66), and the inviscid part moving purely in streamwise direction which
is comprised by the second addend in (3.66). In the limit y → ∞ the 2F3 hypergeometric
functions asymptotically converge to 1, which gives

lim
y→∞

v(x, y, t) = ei(αx−
σi
2
y−ωrt) e−

σr+1
2

y+ωit − c̃ ei(αx−ωrt) e−αy+ωit. (3.67)
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Comparison with Mack (1976) unveils that in the limit of large y two analogous wave compo-
nents also exists in the BBL of the form

lim
y→∞

vBBL(x, y, t) = ei(αx−σBBL,R y−ωrt)e−σBBL,I y+ωit + c̃ ei(αx−ωrt)e−αy+ωit. (3.68)

Now, clearly for the ASBL two specific decay mechanisms occur in y - direction:

(i) The viscous wave propagating in the x-y-plane decays with e−
σr+1

2
y.

(ii) The inviscid wave propagating in x-direction which decays with e−αy.

In order to capture the full dynamics, we will conduct a separate analysis of each respective
wave as both wave parts have different propagation directions. An analysis of the inviscid waves
was already conducted in figures 3.9a and 3.9b, as the inviscid waves seemingly dominate the
magnitude of ṽ(y), which as we will see in section 3.2.3 is true for any combination of α and
Re. However, an analysis of the viscous waves needs to be conducted still. For this purpose, the
propagation angle as well as the decay rate of the viscous waves are examined in the following
section.

Directional wave-propagation of viscous waves and their spatial y-decay

From (3.66), the viscous wave part of the wall-normal perturbation velocity v(x, y, t) is given
by

vvis(x, y, t) = ei(αx−
σi
2
y−ωrt) e−

σr+1
2

y+ωit
2F3

(︃
a4

b4
;−iReα e−y

)︃
. (3.69)

There are two essential pieces of information that can be extracted from (3.69), the wave
propagation angle θ as well as a measure of length characterizing the spatial decaying behavior
for large y.
On top of the already known streamwise wave number α, we may define a wall-normal wave
number σi

2 . The comparison of the signs of α and σi determines whether the viscous waves
move towards or away from the wall. The sign of σi is determined by sgn(α− ωr), as is given
in (3.48b). For the domain 1.0× 104 ≤ Re ≤ 1.0× 106 and 1.0× 10−4 ≤ α ≤ 1.0 it turns out
that α − ωr > 0 and ωr > 0. Thus, α and −σi

2 without exception bear opposing signs while
ωr > 0, due to which the viscous waves defined in (3.69) in all cases move towards the wall at
a propagation angle

θ = arctan
(︂
− σi
2α

)︂
. (3.70)

The magnitude of σr+1
2 on the other hand determines at what rate the viscous waves (3.69)

decay in wall-normal direction. In this sense, the inverse

δσ =
2

σr + 1
, (3.71)

defines a characteristic length scale, which describes how far into the far-field the viscous
waves persist. Further, if transformed back to dimensional quantities, we observe that δσ is a
multiple of the BL displacement thickness δ1 = ν/V0. Hence, this quantity hereafter is called
wave decay-rate length (WDRL).
Now, σr in (3.48a) by definition is always positive. Hence, δσ reaches a maximum when σr
becomes minimal (or ideally zero). Close examination of (3.48a) reveals that σr in fact becomes
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(a) (b)

Figure 3.10: (a) WDRL δσ as given in (3.71) as a function of α andRe. (b) Wave propagation angleΘ as
given in (3.70) as a function of α and Re (in degrees) (adapted from Yalcin et al. (2021))

minimal when α = ωr and ωi is negative. While negative ωi are quite common, the question is
pending whether or not there is a point at which α is indeed equal to ωr. If such a case occurs,
it would have great effect on the longevity of the viscous modes into the far-field. And indeed,
there is a very specific point at which α is equal to ωr! Such an occurrence was witnessed in
section 3.2.2 when the necessity of a distinguished limit emerged in order to expand the EVP
(3.54) for very small wave numbers. It became apparent that only for Reα = Reα = O(1) do
solutions for ω exist in the zero limit of α. A computation of the expanded EVP (3.61) revealed
a lower threshold for Reα,min ≈ 0.84191, below which no solutions exist for ω. In the limit
Reα → Reα,min, however, the eigenvalue ω converges towards ωmin = α− i23α. Thus, for the
lower threshold of Reα does the extraordinary case ωr = α occur. In this point, σr becomes
minimal and gets very close to zero.
This result may be verified in figure 3.10a. In this figure, the WDRL δσ is calculated and

visualized for the given parameters. In almost the entire parameter range is δσ < 1, which
means that the WDRL is smaller than the displacement thickness δ1. However, atRe = 1.0×104

and α = 1.0× 10−4 a maximum for δσ can be witnessed, clearly approaching the theoretical
maximum δσ,max = 2. In this point, the WDRL becomes larger than δ1. In other words, the
viscous waves clearly reach well into the far-field. It is quite remarkable that the distinguished
limit theorized in section 3.2.2 eventually plays a key role for the WDRL. This shows that this
limit indeed has an actual physical significance for the perturbation waves.
The wave propagation angle θ defined in (3.70) is additionally plotted for the same parameter
range in figure 3.10b. It is important to notice that the wave propagation angle θ remains close
to 90 degrees throughout the entirety of the analyzed parameter region [α,Re]. The viscous
part of the wave (3.66) as a result has almost no streamwise variation for the Reynolds numbers
investigated in figure 3.10b, being emitted perpendicular to the wall into the far-field, where
the viscous wave eventually decays. An exemplary viscous TS wave is given in figure 3.11.
The wave characteristics are calculated by (3.69) with the given parameters Re = 1.0× 104

and α = 1.0× 10−4 giving Reα = 1.0 as per (3.57). Hence, the parameters are very close to
the minimum of the distinguished limit Reα,min ≈ 0.84191, for which due to the explanations
regarding figure 3.10a theWDRL is almost maximal and via (3.71) is calculated to δσ = 1.82360.
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Figure 3.11: Viscous part of the harmonic wall-normal perturbation velocity (3.66) rescaled to unity
at Re = 1.0 × 104 and α = 1.0 × 10−4, accounting for Reα = 1.0. The black-dashed
line represents the WDRL (3.71), which for the present wave gives δσ = 1.82360. The
propagation angle yields θ = 89.99064◦.

As such, the viscous wave persists well into the free-stream. A striking feature of the wave is an
extreme elongation into the streamwise direction with λx = 2π × 104 as well as a propagation
angle of θ = 89.99064◦, i.e. approximately a right angle. In the context of large-scale structures,
further investigation of modes very close to the distinguished limit are motivated due to this
streamwise elongation and persistence into the far-field.

3.2.4 Symmetry-induced ansatz modes

Throughout this work the ansatz of choice for transform the LNSE to a system of ODE, namely the
coupled OSE and SE, was the classical NMA, leading to the mOSE as given in (3.17). However,
it was shown previously in Nold and Oberlack (2013) that for linear plane shear flows a specific
symmetry induces the Kelvin mode as well as a merging of Kelvin and normal modes. Also, for
shear flows of algebraic, exponential and logarithmic form additional symmetries exist, which
induce other alternative ansatz functions for the eigenfunctions (Nold and Oberlack, 2013;
Nold et al., 2015). Very recently, the existence of such symmetry-induced ansatz functions were
derived on analyzed for rotational shear flows by Gebler et al. (2021), who discovered novel
alternative modes with algebraic growth mechanisms and subsequently conducted numerical
simulations visualizing remarkable large-scale patterns in the 2D plane. Based on the methods
presented in these works, two new invariant ansatz functions were derived for the ASBL by
Mirzayev (2016). The analysis was conducted for the 2D inviscid LNSE with a ASBL base
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profile, which in stream function formulation is given as[︃
∂

∂t
+ (1− e−y)

∂

∂x
− 1

Re

∂

∂y

]︃
∆Ψ+ e−y ∂Ψ

∂x
= 0. (3.72)

The underlying Lie algebra is then given by

X1 =
∂

∂t
X2 =

∂

∂x
X3 = Ψ

∂

∂Ψ
X4 = e

1
Re

[︃
∂

∂t
+

∂

∂x
− 1

Re

∂

∂y

]︃
,

Xθ = θ(x, y, t)
∂

∂Ψ
.

(3.73)

The symmetries X1 and X2 stand for translations in time and space while X3 stands for a
scaling symmetry in the stream function. These symmetries would also arise in the viscous
LNSE. However, the fourth symmetry X4 - only present in the inviscid case - is novel and lays
the ground for the derivation of new invariant ansatz function. The detailed derivation of the
now presented Lie algebra as well as the ansatz functions can be found in Mirzayev (2016).
Notice that that results here are different, as Nold only considered the case V0 = 0.

Double-exponential ansatz function

Employing the symmetries X2, X3 and X4 and following the procedure given in detail in Nold
et al. (2015) we arrive at the ansatz function

Ψ(x, y, t) = Φ(Re y + t) eReω e
t

Re+αx+Reαy. (3.74)

Evidently, the streamfunction would then be comprised of a traveling wave solution Φ(Re y+ t)
and an exponential part in which the temporal growth or decay due to ω is of double-exponential
type. It is immediately apparent that the wave-type behavior is not consistent with the BC at
the wall, as for y = 0 the time t remains as a variable. An attempt is made to instead introduce
a generic set of homogeneous BC at negative and positive infinity. The solution satisfying these
BC shall than be superposed to achieve an additional satisfaction of the wall BC.
A variable transformation of the form

x̃ = x, ỹ = Re y + t, t̃ = t, (3.75)

then gives

Ψ(x̃, ỹ, t̃) = Φ(ỹ) eReω e
t̃

Re+α x̃+α (ỹ−t̃). (3.76)

Substituting (3.76) into (3.72) indeed leads to a variable reduction and the ensuing ODE is
then given as

(ω e
ỹ
Re − α)Φ′′(ỹ) + (2αω e

ỹ
Re − 2α2)Φ′(ỹ) +

(︃
α2

(︃
1 +

1

Re2

)︃
(1 + e

ỹ
Re )− 1

)︃
Φ(ỹ) = 0.

(3.77)
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This second order ODE can be solved in terms of Gaussian hypergeometric functions of the
form

Φ(ỹ) = C1

[︃(︃
α e

(︂
−α+ i

Re

√
α2−1

)︂
ỹ − ω e

(︂
1
Re

−α+ i
Re

√
α2−1

)︂
ỹ
)︃

2F1

(︃
1 + i(α+

√
α2 − 1), 1 + i(−α+

√
α2 − 1)

1 + 2i
√
α2 − 1

;
ω

α
e

ỹ
Re

)︃]︃
+C2

[︃(︃
α e

(︂
−α− i

Re

√
α2−1

)︂
ỹ − ω e

(︂
1
Re

−α− i
Re

√
α2−1

)︂
ỹ
)︃

2F1

(︃
1 + i(α−

√
α2 − 1), 1 + i(−α−

√
α2 − 1)

1− 2i
√
α2 − 1

;
ω

α
e

ỹ
Re

)︃]︃
(3.78)

Demanding vanishing wall-normal velocity perturbations at positive infinity in the original
variable space, i.e.

−∂Ψ(x, y, t)

∂x

⃓⃓⃓⃓
y→∞

= −
[︃
αΦ(Rey + t) eReω e

t
Re+αx+Reαy

]︃
y→∞

= 0, (3.79)

requires an expansion of (3.76) at large ỹ = Re y + t. Asymptotic expansions of Gaussian
hypergeometric functions are taken from Olver et al. (2010) in the case of large arguments.
The rather lengthy calculations are omitted at this point for the sake of clarity whereupon BC
(3.79) is expanded as

∂Ψ(x, y, t)

∂x

⃓⃓⃓⃓
y→∞

=C1

(︃
ω1

Γ1
e

(︂
−iRe

α

)︂
ỹ − ω2

Γ2
e

(︂
iRe

α

)︂
ỹ
)︃

+C2

(︃
ω3

Γ3
e

(︂
−iRe

α

)︂
ỹ − ω4

Γ4
e

(︂
iRe

α

)︂
ỹ
)︃

= 0,

(3.80)

where

ω1 = −ω
(︂ω
α

)︂−(1+i(
√
α2−1+α))

, (3.81a)

ω2 = −ω
(︂ω
α

)︂−(1+i(
√
α2−1−α))

, (3.81b)

ω3 = −ω
(︂ω
α

)︂−(1+i(−
√
α2−1+α))

, (3.81c)

ω4 = −ω
(︂ω
α

)︂−(1+i(−
√
α2−1−α))

, (3.81d)

and

Γ1 = Γ(1 + i(
√︁
α2 − 1− α)) Γ(i(

√︁
α2 − 1− α)), (3.82a)

Γ2 = Γ(1 + i(
√︁
α2 − 1 + α)) Γ(i(

√︁
α2 − 1 + α)), (3.82b)

Γ3 = Γ(1 + i(−
√︁
α2 − 1− α)) Γ(i(−

√︁
α2 − 1− α)), (3.82c)

Γ4 = Γ(1 + i(−
√︁
α2 − 1 + α)) Γ(i(−

√︁
α2 − 1 + α)), (3.82d)

with Γ(z) denoting the gamma function.
The expanded BC (3.80) yields non-trivial solutions for C1 and C2 only if

ω1

Γ1

ω4

Γ4
− ω2

Γ2

ω3

Γ3
= 0. (3.83)
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Closer examination of (3.81) reveals that

ω1 ω4 = ω2 ω3, (3.84)

so that (3.83) reduces to
Γ1 Γ4 = Γ2 Γ3. (3.85)

Lastly, two identities of gamma functions are utilized:

Γ(z + 1) = z Γ(z), (3.86a)

Γ(i z)2 =
π

y sinh (π y)
, (3.86b)

which employed into (3.85) yields

sinh
(︂
π
(︂
−
√
α2 − 1− α

)︂)︂
sinh

(︂
π
(︂√

α2 − 1− α
)︂)︂ =

sinh
(︂
π
(︂
−
√
α2 − 1 + α

)︂)︂
sinh

(︂
π
(︂√

α2 − 1 + α
)︂)︂ , (3.87)

which is satisfied only if
α = ±1. (3.88)

Obviously, this result is too restricting in the sense of a proper stability analysis, especially as
no further information on the actual eigenvalue ω is encapsulated. Hence, further analysis of
this ansatz is omitted and declared not expedient in the context of LSA.

Alternative exponential ansatz function

Upon utilization of all symmetries X1 to X4, a second new ansatz function occurs for the 2D
inviscid ASBL given by

Ψ(x, y, t) = ϕ(y(1− λ)Re+ t− λx) eα(Rey+x), (3.89)

where α and Re denote the wave number in streamwise direction and the Reynolds number
respectively, while λ consists of the group parameters generated in the Lie symmetry analysis.
In analogy with the previous example, the variables are transformed to simplify the argument
of the amplitude function so that

x̃ = x ỹ = y(1− λ)Re+ t− λx t̃ = t, (3.90)

trasnforms (3.89) to
Ψ(x̃, ỹ, t̃) = ϕ(ỹ) e

α
ỹ−t̃+(1+λ)x̃

(1−λ)Re . (3.91)

Employing (3.91) into (3.72) and solving for ϕ(ỹ) in the arising ODE gives

ϕ(ỹ) = C1 e
(κ1+κ2)ỹ + C2 e

(κ1−κ2)ỹ + C3 e
α
λ
ỹ, (3.92)

where

κ1 = α
(λ− 1)Re2 + λ

(λ− 1)2Re2 + λ2
, κ2 =

√︁
(Re2 + 1)λ2 − 2Re2λ+ (1− α2)Re2

(λ− 1)2Re2 + λ2
. (3.93)
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Employing (3.92) into (3.91) and transforming the variables back into the original coordinate
system gives

Ψ(x, y, t) = C1 e
Re([1−λ](κ1+κ2)+α)y e(α−λ(κ1+κ2))x e(κ1+κ2)t

+ C2 e
Re([1−λ](κ1−κ2)+α)y e(α−λ(κ1−κ2))x e(κ1−κ2)t

+ C3 e
Re([1−λ]α

λ
+α)y e

α
λ
t.

(3.94)

In order to analyze the BC at infinity, it is convenient to introduce parameter transformations
of the form

α− λ(κ1 + κ2) = iα1, κ1 + κ2 = β1

α− λ(κ1 − κ2) = iα2, κ1 − κ2 = β2,
(3.95)

where α1 and α2 are assumed to be real. The remaining solution needs to be rejected as the
dependence with respect to x is lost in the process of retransformation. Employing (3.95) into
(3.94) then gives rise to

Ψ(x, y, t) = C1 e
Re(κ1+iα1)y eiα1x eκ1t + C2 e

Re(κ2+iα2)y eiα2x eκ2t. (3.96)

Finally, the BC at infinity can be evaluated. We have

u(x, y → ∞, t) =
∂Ψ(x, y, t)

∂y

⃓⃓⃓⃓
y→∞

= C1Re(κ1 + iα1) e
Re(κ1+iα1)y eiα1x eκ1t

+ C2Re(κ2 + iα2) e
Re(κ2+iα2)y eiα2x eκ2t = 0,

(3.97)

and

v(x, y → ∞, t) = −∂Ψ(x, y, t)

∂x

⃓⃓⃓⃓
y→∞

= C1 iα1 e
Re(κ1+iα1)y eiα1x eκ1t

+ C2 iα2 e
Re(κ2+iα2)y eiα2x eκ2t = 0.

(3.98)

The only way to satisfy both BC is to demand κ1,r < 0 and κ2,r < 0, after which immedi-
ately temporal decay can be concluded. Hence, temporal stability may be concluded for the
alternative exponential ansatz function.

3.3 Spatial stability analysis of the asymptotic suction boundary layer

Analytical studies of the spatial stability problem for the ASBL are surprisingly scarce. The
aforementioned studies of Fransson and Alfredsson (2003) are primarily experimental and
numerical. Several questions regarding the spatial 2D and 3D development of linear modes for
the ASBL remain unanswered until today. This section therefore aims to examine the spatial
stability problem classically via computation of the spatial TS modes. The emerging spatial
stability map gives a clearer picture on how spatial amplification rates scale with the Reynolds
number and the wave frequency. Analogous to section 3.2.1, the spatial continuous spectra for
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Figure 3.12: 2D spatial stability map with spatial amplification rate αi plotted semilogarithmically with
4.0× 104 ≤ Re ≤ 5.0× 105. Blank areas describe linearly stable modes. The critical triplet
is given in (3.64c).

the ASBL are derived, which aims to yield bounded solutions for the eigenfunctions ṽ(y) at
positive infinity. Surprisingly, due to the occurrence of quadratic αi in the ensuing BC v(y →
∞) bounded, two solution branches occur for the spatial amplification rate. Furthermore,
it turns out that one of the branches may provide continuous modes with αi < 0, leading
to growth in the streamwise direction and thus giving rise a new class of unstable spatial
eigenvalues. To the knowledge of the present author, spatial continuous modes were not
correctly derived in previous works on the ASBL.

3.3.1 Computation of the spatial Tollmien-Schlichting modes of the asymptotic
suction boundary

The methodology of computing spatial eigenvalues of the algebraic EVP (3.54) is analogous
to the temporal computations, which is why for the methods employed the reader is referred
to section 3.2. Figure 3.12 shows the stability map computed from Remin = 4.0 × 104 to
Remax = 5.0× 105 and from ωmin = 0.001 to ωmax = 0.025. The colored area illustrates the
unstable TS modes whereas the blank areas are regions of stability. The upper limit of ω was
chosen such that the uppermost unstable point of the stability map is included in the figure.
When comparing the map with the spatial BBL (see e.g. Mack (1984)) similarities are striking,
with a major difference being the critical Reynolds number Recr = 54378.62032, which is two
orders of magnitude larger than for the BBL, for which Fransson and Alfredsson (2003) give
Recr,BBL = 518.7. For the limit Re→ ∞ it appears that both the upper and lower branch of
neutral stability decline towards lower ω. An asymptotic expansion for large Re is difficult to
conduct as for this case not only the argument of the 2F3-functions in (2.60) diverge but also
the parameters. Expanding a generalized hypergeometric functions asymptotically with this
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premise was attempted by Baldwin (1970) for the viscous ASBL, but the ensuing expansion is
hardly utilisable and comprehensible. The critical triple was previously given in (3.64c).

3.3.2 Continuous spatial linear modes

In analogy to the continuous modes derived in the temporal case, spatially developing continu-
ous modes are derived in this section for the ASBL. Again, the viscous parameter σ given in
(3.26b) must be split into real and imaginary part giving

σ =
√
s+ i sr = ±(σr + i σi), (3.99)

with

sr = 4α2
r + 4β2 − 4α2

i + 1− 4Reαi, (3.100a)
si = 8αrαi+ 4Reαr − 4Reω, (3.100b)

so that

σr =
1√
2

√︃√︂
s2r + s2i + sr, (3.101a)

σi = sgn(si)
1√
2

√︃√︂
s2r + s2i − sr. (3.101b)

Due to the aforementioned reflection symmetry in σ, it is sufficient to only consider the plus
sign in (3.99). The relaxed BC (3.43) for the ASBL once again reads

σr − 1 = 0. (3.102)

Now, employing (3.101a) into (3.102) gives the parameter equation

1√
2

√︃√︂
s2r + s2i + sr = 1, (3.103)

which needs to be satisfied to yield bounded amplitudes ṽ(y → ∞). As spatial stability is
examined, (3.103) is correspondingly solved for αi(αr, β, ω,Re). Doing so yields a quadratic
equation of the form(︁

4α2
r − 1

)︁⏞ ⏟⏟ ⏞
a2

α2
i +Re

(︁
4α2

r − 4ωαr − 1
)︁⏞ ⏟⏟ ⏞

a1

αi + α2
r +Re2 (αr − ω)2 + β2⏞ ⏟⏟ ⏞

a0

= 0, (3.104)

which gives the solution pair

αi,[+,−] =
1

2a2

(︃
−a1 ±

√︂
a21 − 4a2a0

)︃
. (3.105)

This result in itself is quite remarkable, as it implies a duality in αi for every given parameter
set {αr, β, ω,Re}. The interesting cases are surely those where αi < 0, which re-employed
into the NMA (2.54) would lead to growth of the continuous modes in streamwise direction.
As can be taken from (3.105), the sign of αi depends on the sign of a2, which in turn solely
depends on αr as well as the sum or difference inside the bracket. Notice that a0 > 0 regardless
of which parameters are chosen as every term is quadratic. Also, for sufficiently large Re the
absolute values for αi,[+,−] take a minimum for αr = ω, as then the term scaling with Re2 in a0
disappears. In the following, the three cases αr < 1/2, αr = 1/2 and αr > 1/2 are examined
due to their implications for the sign of a2.
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Figure 3.13: The complex limit ωcl, below which αi yields complex values and thus no continuous
modes exist, is plotted for αcr = 1 and various orders of Re. The asymptotics for large
Re as given in (3.111) is visualized in dashed lines.

Case 1: αr <
1
2

The first case to be considered is αr <
1
2 , which leads to a2 < 0. Since a0 > 0, it can be followed

that
√︁
a21 − 4a2a0 > |a1|. Additionally, as ω > 0, the linear coefficient a1 < 0. The condition

for αi < 0 therefore is

αi,[+,−] < 0 → |a1| ±
√︂
a21 − 4a2a0 > 0. (3.106)

As the root is larger than a1, only the plus sign needs to be considered. Therefore, since both
addends in (3.106) are larger than zero, the solution αi,+ is always negative, i.e.

αi,+ =
1

2a2

(︃
−a1 +

√︂
a21 − 4a2a0

)︃
< 0. (3.107)

As a result, this case reveals a set of unstable spatial 3D continuous modes. Substituting (3.107)
into (3.102) will reveal that indeed σr = 1 applies for this case, thus meeting the condition of
boundedness at infinity. An exemplary amplification map is shown in figure 3.14 for αr = 0.1
and β = 0. It clearly becomes visible how the solution set αi,+ is purely negative and thus
unstable with (2.54) whereas αi,− is without exception positive and therefore stable. The most
unstable αi,+, shown in figure 3.14a, occur in those cases where both Re and ω are large,
while the least unstable modes are to be found for low Re. On the other hand, the least stable
αi,− in figure 3.14b take a clear minimum at ω = αr = 0.1, which corresponds to the least
stable modes. Likewise, there is a tendency for the modes to get more stable the larger Re and
ω are.
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(a) (b)

Figure 3.14: The 2D amplification map (β = 0) for (a) the positive solution αi,+ and (b) the negative
solution αi,− is plotted vs ω and Re with αr = 0.1. The lines indicate isolevels of amplifi-
cation. All positive solutions are amplified while the negative solutions are damped. A
minimum in αi is clearly visible at ω = αr = 0.1.

Case 2: αr =
1
2

This case is rather trivial, as the quadratic equation (3.104) degenerates into a linear equation
for a2 = 0, leading to

αi = −a0
a1
. (3.108)

It can easily be seen from (3.104) that a1 < 0 and a0 > 0 regardless of the parameters ar, β, ω
and Re. Therefore, in this case all existing continuous modes are positive and stable.

Case 3: αr >
1
2

The last case to be analyzed is the one producing a2 > 0. Now, the sign of a1 depends on the
chosen ω. Moreover, since the term 4a2a0 in (3.105) is now always positive, certain parameter
combinations may lead to the radicand being negative, whereupon complex αi would emerge,
which clearly contradicts the assumption that αi ∈ R. The condition to yield a negative radicand
is

a21 − 4a2a0 < 0. (3.109)

which lets a condition arise for ω, namely

ω <

√︃
α2
r +

4α4
r

Re2
− α2

r

Re2
− 1

4
= ωcl, (3.110)

where the r.h.s. is the limit ωcl below which αi takes complex values. For Re → ∞ this
expression simplifies to

lim
Re→∞

ωcl =

√︃
α2
r −

1

4
. (3.111)
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(a) (b)

Figure 3.15: The spatial growth rate αi plotted for (a) its positive solution and (b) its negative solution
according to (3.105) for αr = 1 and Re = 1000. As can be seen, αi adopts complex
values for ω ⪅ 0.866, which is the value arising for the threshold in (3.110). Above this
thresholds αi is purely positive with a global minimum for αi,− at ω = αr = 1.

This complex limit ωcl and its large Reynolds number asymptotic is visualized for αcr = 1 in
figure 3.13. For sufficiently large Re this condition simplifies to

ω ⪅

√︃
α2
r −

1

4
. (3.112)

If this condition is satisfied, αi is complex. This implies that in this parameter region no
continuous modes exist capable of satisfying the relaxed BC (3.43), i.e. σr = 1. However, there
still exist the classical linear modes presented in the previous section. And yet, it is interesting
that there are certain parameter combination for which only classical linear modes and no
continuous modes exist.
What still remains is the question whether for the case αr >

1
2 unstable spatial modes may be

obtained. The corresponding condition is

−a1 +
√︂
a21 − 4a2a0 < 0. (3.113)

First, the sign of a1 needs to be clarified. As a2 > 0 and
√︁
a21 − 4a2a0 < |a1| due to a0 > 0, a

negative ai may only arise if a1 > 0. This means for ω that

ω < αr −
1

4αr
, (3.114)

while simultaneously in order for αi to stay real

ω ≥

√︄
4α4

r

Re2
+ α2

r

(︃
1− 1

Re2

)︃
− 1

4
, (3.115)
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has to apply. However, it can be shown that the expression on the r.h.s. of (3.114) is always
smaller than the r.h.s. of (3.115) regardless ofRe, thus making it impossible for both conditions
to apply simultaneously. Thus, only for the cases where αr < 1/2 may unstable modes possibly
arise. Figure 3.15 shows an exemplary visualization for purely stable spatial continuous modes
at αr = 1.

Due to the relaxed BC (3.43), the eigenfunctions for the spatial continuous modes are different
than the ones for the classical linear modes as the sub-solution ṽ3(y) in (3.24) is retained. In
order to obtain a specific eigenfunction, it is necessary to specify (3.43) so that the solution at
infinity takes a specific, albeit oscillating, value. For the sake of simplicity, the BC is set as

ṽ(y → ∞) = 1, (3.116)

which together with the wall BC ṽ(y = 0) = Dṽ(y = 0) = 0 complements the BC set necessary
to obtain the eigenfunction ṽ(y). The result is given by

ṽ(y) = C3

⎡⎢⎢⎣e−ky
2F3

(︃
a2

b2
;−iReαe−y

)︃⎛⎜⎜⎝ 2F3

(︃
a4

b4
;−iReα

)︃
2F3

(︃
a2

b2
;−iReα

)︃ ρ1
ρ2

−
2F3

(︃
a3

b3
;−iReα

)︃
2F3

(︃
a2

b2
;−iReα

)︃
⎞⎟⎟⎠

+ e
σ−1
2

y
2F3

(︃
a3

b3
;−iReαe−y

)︃
+ e−

σ+1
2

y
2F3

(︃
a4

b4
;−iReαe−y

)︃
ρ1
ρ2

⎤⎥⎥⎦ ,
(3.117)

where the parameter vectors ai and bi are defined in (3.25) and ρ1 and ρ2 are constants
comprised of generalized hypergeometric functions given as

ρ1 =
a3

b3
iReα 2F3

(︃
a3 + 1
b3 + 1

;−iReα
)︃
+
σ − 1

2
2F3

(︃
a3

b3
;−iReα

)︃

− a2

b2
iReα

2F3

(︃
a3

b3
;−iReα

)︃
2F3

(︃
a2 + 1
b2 + 1

;−iReα
)︃

2F3

(︃
a2

b2
;−iReα

)︃ + k 2F3

(︃
a3

b3
;−iReα

)︃
,

(3.118a)

ρ2 =
a4

b4
iReα 2F3

(︃
a4 + 1
b4 + 1

;−iReα
)︃
− σ + 1

2
2F3

(︃
a3

b3
;−iReα

)︃

− a2

b2
iReα

2F3

(︃
a4

b4
;−iReα

)︃
2F3

(︃
a2 + 1
b2 + 1

;−iReα
)︃

2F3

(︃
a2

b2
;−iReα

)︃ + k 2F3

(︃
a4

b4
;−iReα

)︃
.

(3.118b)

Admittedly, the eigenfunctions are formed by a quite long expression, for which it seems difficult
to evaluate the numerous 2F3 generalized hypergeometric functions in (3.117). However,
owing to modern computer algebra systems, it is possible to evaluate such terms in reasonable
computation times with sufficient resolution in wall-normal direction. The remaining constant
C3 must be chosen upon quantifying the relaxed BC (3.43) at infinity. Instead of demanding
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(a) (b)

Figure 3.16: (a) Computation of the real part of the eigenfunction ṽr(y) as given in (3.117) forRe = 100
and αr = ω = 0.1, which in figure 3.14b contributed to a maximum amplification rate αi.
Two window plots for the range y ∈ [0, 1] and y ∈ [99, 100] are displayed, respectively.
(b) Single-sided power spectrum of the eigenfunction acquired from the fast Fourier
transformation (FFT) of ṽr(y), where the amplitude |P (f)| is plotted versus the wave
numbers f . A local maximum corresponding to the wall-normal wave number ky defined
in (3.121) at f ≈ 20.8 and a global maximum at f ≈ 104.2 can be observed.

(3.117) merely to be bounded, one must instead assume a concrete value to be adapted at
infinity, for instance

ṽ(y → ∞) = 1, (3.119)

which would give
C3 = 1. (3.120)

Strictly speaking though, (3.119) is not correct as σ is complex and therefore (3.117) expands
towards

ṽ(y → ∞) → C3 e
ikyy, (3.121)

where ky = σi/2 denoting the wall-normal wave number defined with σi given in (3.101b).
Thus, the eigenfunction ṽ(y) oscillates at infinity and (3.119) must be stated more precisely as

max (ṽ(y → ∞)) = 1, (3.122)

where instead the maximum of ṽ(y) at infinity is required to be unity. The constant C3

for this case would adapt (3.120) nevertheless. An exemplary depiction of the wall-normal
eigenfunction ṽ(y) corresponding to a spatial continuous mode with α = ω = 0.1 and Re = 100
may be referred to in figure 3.16a. As defined in (3.121), the wall-normal wave number ky
is half the imaginary part of the viscous parameter σi given in (3.101b), which scales with
O(

√
Re). For the concrete parameters, the viscous parameter σ yields

σ(αr = ω = 0.1, Re = 100) ≈ 1− 41.66671i, ⇒ ky ≈ 20.83336. (3.123)
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The wall-normal wavelength in turn reads

λy =
2π

ky
≈ 0.30159. (3.124)

Considering the upper window plot in figure 3.16a, which shows the eigenfunction at large
distances from the wall with y ∈ [99, 100], the wavelength qualitatively corresponds to (3.124).
Moreover, the amplitude is correctly adapting to the demanded amplitude induced by C3 = 1.
In the near wall region y ∈ [0, 1] one discerns a more diverse oscillation with superposed wave
elements of high and low wave numbers. A wave number analysis obtained via FFT is given in
figure 3.16b, where the amplitude |P (f)| scaled by the number of sample points N = 1.0× 105

is plotted vs the wave numbers f . The qualitative observations from figure 3.16a are now
quantified. Evidently, the frequencies range from a minimal wave number equalling ky as given
in (3.123) to a maximum wave number of approximately f ≈ 160. A second distinct, global
maximum is located at f ≈ 104.2. The wide range of wave numbers have their origin in the
generalized hypergeometric functions given in the eigenfunction (3.117), which in the near
wall region are at their maximum amplitude and thereof gradually decay in magnitude towards
the free-stream. As was mentioned, the mode is selected such that maximal amplification is
achieved. Concretely, the selected wave parameters employed into (3.107) gives

αi,+ = −104.16677, (3.125)

which corresponds to enormous growth rates in the streamwise direction. The streamwise
wavelength in turn yields

λx =
2π

αr
≈ 62.83185, (3.126)

i.e. considerable elongation in the streamwise direction. If such modes turn out to physically
exist and indeed grow rapidly, they would surely evolve into large-scale streamwise structures.
As was further claimed in section 3.2.1, the eigenfunctions emerging for continuous modes
strongly resemble turbulent fluctuations in the free-stream, which similarly are manifold in
their respective wall-normal wave numbers. As such, continuous modes of the ASBL provide an
interesting physical model for FST, which in turn could shed new light on the transition process
in view of free-stream induced transition in the ASBL (Yoshioka et al., 2004). A yet-to-be
proven assumption is that even if the classical linear modes computed from (3.37) are stable,
as is evidently the case for the considered Reynolds number Re = 100, the present spatial
continuous modes could positively contribute to triggering transition in the flow. Whether this
is actually the case is left for future numerical studies.

3.4 Conclusive remarks

The theory of linear stability was revisited for the temporal and spatial stability problem of the
ASBL, representing a BL flow existing on a semi-infinite domain.
For the ASBL, the point was attempted to be made that although eigenvalue spectra may be
obtained rather effortlessly via discretizing the mOSE with Chebyshev collocation schemes,
several aspects of linear stability are neglected by not employing the known analytical solution.
Asymptotic analysis, for instance, is made possible by the presence of analytical solution, which
allows for insightful analyses of the underlying EVP with regard to its parameters. As is known
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for other wall-bounded shear flows, in the infinite limit for streamwise wave numbers α, all
modes are inevitably stable whereas small streamwise wave numbers curiously did not yield
asymptotic solutions for the temporal eigenvalue ω. Instead it could be shown that only in the
distinguished limit Reα = Reα with Re→ ∞, α→ 0 and Re = O(α−1) asymptotic solutions
exist for the eigenvalue ω. In fact, solutions are proved to only exist for Reα > 0.84191, which
therefore provides a measure for the largest possible elongation in streamwise direction of
perturbation velocities. It further was demonstrated that the distinguished limit via analysis of
the OSE is in fact a common feature of wall-bounded shear flows in general. Previous numerical
simulations by Hutchins and Marusic (2007), Khapko et al. (2016), and Ferro et al. (2021)
on wall-bounded shear flows showed how in the near-wall region the pre-multiplied energy
spectra have energy maxima at streamwise wave numbers of order O(Re), which seems to be
connected to the aforementioned distinguished limit. Thus, a remarkable link was established
in this chapter between linear modes in the laminar base state and large-scale streamwise
structures in turbulent flows.
In addition, a thorough linear and spatial stability analysis was conducted for the ASBL,
resulting in detailed stability maps for both cases. The temporal stability map revealed a
region of maximal amplification at Re ≈ 5.0× 105. The critical triplet {αcr, ωcr, Recr} could
be computed to five significant digits. This represents a genuine advantage of analytical
solutions over discrete methods as the critical Reynolds number can be computed up to arbitrary
accuracies simply by increasing the number of digits in the employed solver. Previously in the
literature, the critical Reynolds number was given as Recr = 54382 by Fransson and Alfredsson
(2003), who employed Chebyshev collocation schemes. This value was significantly improved
to Recr = 54378.62032 in the present chapter.
Another invaluable benefit of analytical solutions is the possibility of filtering discrete temporal
and spatial spectra, where the spurious modes employed as initial guesses into the non-linear
root solver of the analytical EVP are quickly identified as false solutions. The result are corrected
temporal and spatial spectra, including only those modes which actually represent physical
solutions. The analysis of the respective wall-normal eigenfunctions ṽ(y) of four different
modes for Recr and αcr showed how the eigenfunctions increasingly oscillate in wall-normal
direction the further away modes are from the most critical TS mode in the ωr-ωi-spectra.
Furthermore, a measure for the persistence of perturbations in wall-normal direction was
derived, i.e. the WDRL δσ defined as the inverse of the wall-normal wave number. It turns out
that the viscous parts of the eigenfunction persist furthest into the far field in aforementioned
distinguished limit Reα. Thus, the distinguished limit not only provides an upper bound for the
elongation in streamwise direction for large Reynolds numbers but also modes parametrized
in the distinguished limit Reα also have the largest WDRL δσ,max = 2, equal to twice the
displacement thickness δ1. These modes therefore resemble superstructures, which were
initially characterized to have length scales in the order of the characteristic length of the flow
problem, which for the ASBL is given as δ1.
Furthermore, novel symmetry-induced ansatz functions were examined for the inviscid stability
problem of the ASBL, based on seminal works by Nold and Oberlack (2013), Nold et al.
(2015), and Mirzayev (2016). In addition to the NMA, a double-exponential ansatz function
and alternative exponential ansatz function arises for the ASBL. Due to their travelling wave
character in the x-y-plane, the classical BC at the wall cannot be satisfied. The attempt was
made to introduce an artificial BC at negative infinity instead. Unfortunately, this BC proved
to be too restrictive on the solutions of the reduced ODE. Further research in this direction is
motivated as the employed BC surely can and should be improved upon.
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Lastly, temporal and continuous spectra for derived for the ASBL. The more interesting case
was given by the continuous spatial modes, which revealed a solution branching for which the
positive branch gave rise to unstable modes when αr < 0.5. The maximum amplification rates
αi for these cases are adopted for αr = ω, regardless of Re. One such continuous mode was
visualized for α = ω = 0.1, which is characterized by small wall-normal wavelengths of the
eigenfunction ṽ(y) as well as the presence of multiple wave numbers in wall-normal direction.
The corresponding signal is reminiscent of turbulent fluctuations in FST and could therefore
prove to be a useful physical model for investigating FST induced bypass transition. The actual
existence of these modes as well as their implications for bypass transition is left for future
studies.
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4 Destabilization of plane Couette flow via
wall-normal constant transpiration

The following section is based on an unpublished manuscript by Sun et al. (2022) I co-authored,
which in turn is derived from a master thesis I supervised written by Sun (2020). The linear
stability analysis (LSA) of the plane Couette flow with transpiration (PCFT) was conducted with
the same methods employed in the previous chapter for the asymptotic suction boundary layer
(ASBL). The results of the stability analysis are elaborated in a joint effort, where specifically
the computation of eigenvalues was conducted by Weihang Sun based on Maple scripts written
and provided by me as well as on open source collocation schemes by Schmid et al. (2002).
The transformation of PCFT to the ASBL was solely elaborated by me.

In the field of hydrodynamic stability it is well-known that classical linear stability theory
(LST) fails to correctly predict laminar-turbulent transition in wall-bounded shear flows. It was
discovered by Orszag and Kells (1980) that plane Couette flow (PCF) transitions in the presence
of finite-amplitude disturbances despite PCF being linearly stable both in two-dimensional
(2D) and three-dimensional (3D).
As indicated, LST fails for PCF and, furthermore, it exhibits linear stability for any Reynolds
number (Romanov, 1973). This, however, is in stark contrast to the fact that transition occurs
in direct numerical simulation (DNS) at Reynolds numbers of order Re = O(103) (Orszag
and Kells, 1980), which was further specified to a Reynolds number of Re ≈ 375, at which
turbulent spots can be sustained, in DNS performed by Lundbladh and Johansson (1991). In
the numerical work of Orszag and Kells (1980), it is further discovered that 3D finite-amplitude
disturbances are responsible for transition to turbulence whereas no 2D finite-amplitude
disturbances occurred in the corresponding DNS. Nagata (1990) further found a lower bound
at Re = 125 for the existence of turbulence driving 3D finite-amplitude disturbance, below
which instability may not occur. Transition to turbulence of PCF was experimentally studied by
Tillmark and Alfredsson (1992) and Daviaud et al. (1992), who found transition to occur at
Re ≈ 360 and Re ≈ 370 respectively, which is close to the numerically determined transitional
Reynolds number. What remained was an in-depth description of the transitional process and
the corresponding formation of patterns.
Now, non-modal stability analysis has contributed greatly to understanding the phenomenon of
transition due to transient growth arising from non-orthogonal eigenfunctions for PCF, which
is thoroughly discussed by Trefethen et al. (1993). The success of non-modal stability theory
by no means implies, however, that modal LST is exhausted entirely. In fact, it is one of the key
results in this chapter that the presence of transpiration destabilizes PCF and for large enough
transpiration rates leads to instabilities. It was shown by Floryan (2003) how in laminar PCF
with sinusoidal transpiration at the lower wall large-scale streamwise vortices arise. They
further reported that the threshold amplitude of transpiration needed for onset scales with
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Re−1.15. Thus, transpiration seemingly destabilizes PCF in contrast to stabilization via suction
in boundary layers. The destabilizing nature of transpiration on certain wall-bounded shear
flows is not new and has, for instance, been reported for Taylor-Couette flow by Gallet et al.
(2010). A more generalized view of destabilization via wall permeability in channel flows is
further discussed by Tilton and Cortelezzi (2006). The present chapter extends these results
to PCF.
As for the numerical investigation of PCFT, a DNS was conducted by Kraheberger et al. (2018),
who discovered that characteristic turbulent stationary rolls known to exist in classical PCF
are maintained in the present of transpiration and move towards the wall where suction is
exhibited.
In section 4.1, the governing stability equations for PCFT are established. Incidentally, a
remarkable transformation from PCFT to the ASBL when assuming infinitely large transpiration
rates is derived in section 4.2. Then, in section 4.3 in analogy to the stability analysis of the
ASBL in chapter 3 a classical LSA is presented for varying transpiration rates and Reynolds
numbers both for the temporal and spatial stability problem. Finally, discrete spectra and
eigenfunctions are examined for PCFT and presented in 4.4.

4.1 Governing stability equations for plane Couette flow with
transpiration

The base flow discussed in this chapter is the 2D PCF, i.e. a lower stationary wall with U(0) = 0
and an upper wall moving at constant velocity with U(y) = Uw, where both walls are parallel
at a distance h. Additionally, constant transpiration moving in positive wall-normal direction
y is assumed, yielding V = V0 in the entire field. Before actually deriving the laminar base
state, the dimensionless Navier–Stokes equations (NSE) are acquired by performing non-
dimensionalization as defined in (2.29). In contrast to the ASBL, two independent Reynolds
numbers must be defined, representing both velocity scales Uw and V0, respectively, which
gives

Re =
Uwh

ν
, ReV =

V0h

ν
, (4.1)

where Re is the classical Reynolds number and ReV denotes the transpiration Reynolds number,
which is a non-dimensional number representing the transpiration rate. Solving the NSE (2.28)
after non-dimensionalization gives the non-dimensional laminar base profile

U(y) =
eReV y − 1

eReV − 1
, V (y) =

ReV
Re

, (4.2)

where the wall-normal coordinate has additionally been non-dimensionalized by the wall-
distance h. Figure 4.1 depicts the velocity profile corresponding to (4.2) for varying ReV .
For increasingly large transpiration Reynolds numbers ReV , a boundary layer (BL) effect is
observed, squeezing the profile towards the upper wall. This BL effect becomes relevant for the
distribution of collocation points for the Chebyshev collocation schema employed in section
4.3. In analogy to the LSA presented in chapter 3, a normal mode ansatz (NMA) is assumed
for the 2D PCFT with β = 0, which is given by

v(x, y, t) = ṽ(y) ei(αx−ωt). (4.3)
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Figure 4.1: The non-dimensional velocity profile of PCF with wall-transpiration rates from ReV = 0
(classical PCF) to ReV = 50. (adapted from Sun et al. (2022))

The derivation of the modified Orr–Sommerfeld equation (mOSE) for PCFT is conducted in
analogy to section 2.4.2. With (4.3) the mOSE for PCFT resultantly reads[︃(︃

−iω + iαU(y) +
ReV
Re

D
)︃(︁

D2 − α2
)︁
− iαD2U(y)− 1

Re

(︁
D2 − α2

)︁2]︃
ṽ(y) = 0, (4.4)

where D denotes the derivative with respect to y. Each boundary condition (BC) at both walls,
respectively, is correspondingly given by

ṽ(y = 0) =0, Dṽ(y)|y=0 = 0, (4.5a)
ṽ(y = 1) =0, Dṽ(y)|y=1 = 0. (4.5b)

Analogous to the mOSE of the ASBL (3.17), the solution of (4.4) is based on 2F3 generalized
hypergeometric functions equivalent to (3.24) of the form

ṽ(y) = C1 e
αy

2F3

(︃
a1
b1

; z(y)

)︃
+ C2 e

−αy
2F3

(︃
a2
b2

; z(y)

)︃
+ C3 e

ReV
1−σ
2

y
2F3

(︃
a3
b3

; z(y)

)︃
+ C4 e

ReV
1+σ
2

y
2F3

(︃
a4
b4

; z(y)

)︃
,

(4.6)

where the viscous parameter σ and z(y) read

σ =

√︂
(Re2V + 4α2)(eReV − 1) + 4i(−α+ ω − ωeReV )Re

ReV
√
eReV − 1

, (4.7a)

z(y) =
iαReeReV y

Re2V (eReV − 1)
. (4.7b)

The parameters of the generalized hypergeometric functions aij and bij in turn are given by

a1 =

[︃
−κ+ α̃
κ+ α̃

]︃
, a2 =

[︃
−κ− α̃
κ− α̃

]︃
, a3 =

[︃
1−σ
2 − κ

1−σ
2 + κ

]︃
, a4 =

[︃
1+σ
2 + κ

1+σ
2 − κ

]︃
;

b1 =

⎡⎣ 1 + 2α̃
1+2α̃+σ

2
1+2α̃−σ

2

⎤⎦ , b2 =

⎡⎣ 1− 2α̃
1−2α̃−σ

2
1−2α̃+σ

2

⎤⎦ , b3 =

⎡⎣ 1− σ
3+2α̃−σ

2
3−2α̃−σ

2

⎤⎦ , b4 =

⎡⎣ 1 + σ
3+2α̃+σ

2
3−2α̃+σ

2

⎤⎦ , (4.8)
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with α̃ = α/ReV and κ =
√︁
α̃2 + 1. The derivative of ṽ(y) later evaluated at y = 0 and y = 1

in (4.5) is given by

dṽ(y)
dy

= C1

[︃
α 2F3

(︃
a1
b1

; z(y)

)︃
+ReV z(y)

a1

b1
2F3

(︃
a1 + 1
b1 + 1

; z(y)

)︃]︃
+ C2

[︃
−α 2F3

(︃
a2
b2

; z(y)

)︃
+ReV z(y)

a2

b2
2F3

(︃
a2 + 1
b2 + 1

; z(y)

)︃]︃
+ C3ReV

[︃
1− σ

2
2F3

(︃
a3
b3

; z(y)

)︃
+ z(y)

a3

b3
2F3

(︃
a3 + 1
b3 + 1

; z(y)

)︃]︃
+ C4ReV

[︃
1 + σ

2
2F3

(︃
a4
b4

; z(y)

)︃
+ z(y)

a4

b4
2F3

(︃
a4 + 1
b4 + 1

; z(y)

)︃]︃
.

(4.9)

where ai and bi are given in (3.31) and the derivative of the generalized hypergeometric
functions (3.30) is employed. The four BC (4.5) in combination with the derivative of the
eigenfunction now give rise to the homogeneous matrix equation

Aij(α, ω,ReV , Re)Cj = [0, 0, 0, 0]T , (4.10)

where the {i, j} ∈ [1, 4]. For a non-trivial solution the determinant of the coefficient matrix A
has to vanish, yielding the dispersion relation

D(α, ω,ReV , Re) := det (A(α, ω,ReV , Re)) = 0, (4.11)

which essentially states an algebraic eigenvalue problem (EVP) for PCFT. Before proceeding to
the analyses of the temporal and spatial stability problems, the asymptotic limit ReV → ∞
is examined. As will be demonstrated, for this limit PCFT can be transformed into the ASBL.
Thus, for large ReV , the stability equations derived for the ASBL in section 3.2 may readily be
used for stability analyses for PCFT, which is advantageous as the corresponding EVP of the
ASBL (3.35) consists of the determinant of a 2x2 matrix rather than a matrix 4x4 as derived
for PCFT in (4.10).

4.2 Transformation to the asymptotic suction boundary layer in the
large ReV limit

As was elaborated in the context of figure 4.1, PCFT essentially evolves from a linear shear flow
into an exponential flow with BL characteristics with increasing transpiration rates. Physically
speaking, an increasing V0 leads to flow blockage in the entire bulk and squeezes the flow profile
to the upper wall. Albeit being an entirely different flow, the ASBL shares striking similarities
with PCFT, both in the physical manifestation as well as in the mathematical representation of
the solved Orr–Sommerfeld equation (OSE). By virtue of its definition, the ASBL also features
BL characteristics. Thus, both laminar base profiles are characterized by exponential functions,
concretely reading

PCFT: U(y) =
eReV y − 1

eReV − 1
, V (y) =

ReV
Re

, (4.12a)

ASBL: U(y) = 1− e−y, V (y) = − 1

Re
, (4.12b)
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Figure 4.2: The dimensionless velocity profile of the ASBL with the displacement thickness δ1 and
wall-normal constant suction V0. (adapted from Sun et al. (2022))

where Re = U∞/V0 for the ASBL, which is obtained by taking the displacement thickness
δ1 as the characteristic length scale. Upon comparing PCFT at high ReV and the ASBL, as
depicted in figure 4.2, the velocity profiles turn out to be complementary. For PCFT, at the
upper wall, where the BL is observed, the velocity reaches its maximum from where it decays
exponentially towards the lower wall. In contrast, the ASBL reaches its minimum at the lower
wall and recovers towards the free-stream velocity U∞ for increasing distances from the wall.
What essentially separates both flow profiles is a velocity shift. This discrepancy is resolved by
employing the Galileo invariance of Newtonian mechanics, i.e. adding a negative velocity shift
to PCFT of the form

∆U∗ = −Uw, (4.13)

in dimensional variables or
∆U = −1, (4.14)

after non-dimensionalization. Adding the velocity shift (4.14) to (4.2) gives

Ũ(y) = U(y) + ∆U =
eReV y − 1

eReV − 1
− 1 =

eReV y − eReV

eReV − 1
. (4.15)

Naturally, the velocity profiles would not yet be identical. The velocity profile of PCFT exposed
to (4.13) is mirrored around the y-axis when compared to the ASBL, as may easily be deduced
from figure 4.1. Furthermore, the flow is still locked up by the both walls whereas the ASBL is
defined on a semi-infinite domain. The latter difference may be accounted for via a coordinate
transformation of the form

ỹ = (1− y)ReV , (4.16)

where ReV → ∞ is assumed since the BL phenomena for PCFT occur for large transpiration
rates. A transformation as given in (4.16) has two effects. Firstly, the domain is mirrored
around the x-axis, mapping the upper wall to the lower wall and vice versa. Secondly, by
scaling with ReV the formerly lower wall is mapped to infinity, i.e.

y = 0 ⇒ ỹ → ∞, (4.17a)
y = 1 ⇒ ỹ = 0, (4.17b)
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which as a result maps the domain between the two walls to a semi-infinite domain as given
for the ASBL. Employing transformation (4.16) into (4.15) gives

Ũ(ỹ) =
eReV

(︁
e−ỹ − 1

)︁
eReV − 1

. (4.18)

The large ReV limit then induces

lim
ReV →∞

Ũ(ỹ) = e−ỹ − 1, (4.19)

which equals the profile of the ASBL given in (4.12b) mirrored around the y-axis.
Now, the usefulness of such transformation in the context of LST is not yet established. After all
transforming U(y) and y in the mOSE (4.4) would not lead to any noteworthy simplifications.
What may be attempted, though, is a transformation of the mOSE of PCFT (4.4) to the mOSE of
the ASBL, which is given in (3.17), where a striking similarity is obvious. Both equations differ
in the velocity profiles U(y) as well as in the terms scaling inversely with the Reynolds number
Re−1. In fact, as will be demonstrated subsequently, the mOSE of PCFT can be transformed
such that the base flow U(y) is replaced by (4.19). For this, transformations of the wave
parameters ω and α are going to be necessary. Once the mOSE of the ASBL is obtained, the
extensive stability analyses performed for the ASBL in chapter 3 may be readily used for PCFT
in the large ReV limit.
First, a transformation of the wall-normal coordinate is necessary, given by

Dn = (ReV )
nD̃n

, (4.20)

where D̃n is the nth derivative with respect to ỹ. Considering (4.4), it becomes apparent
that α must also be transformed so that later on the appearing powers of ReV due to the
transformation of the derivatives are cancelled out globally, i.e.

α = −ReV α̃, (4.21)

where the minus sign is readily explained upon comparing the transformed velocity profile
(4.18) and the velocity profile of the ASBL:

PCFT: Ũ(ỹ) = e−ỹ − 1, (4.22a)
ASBL: U(y) = 1− e−y. (4.22b)

Subsequently, the velocity shift ∆U = −1 is obtained via

ω = ReV (ω̃ − α̃). (4.23)

One central problem remains, which are the terms scaling with Re−1. These terms will remain
with a fourth power of ReV , while all other terms will scale with a 3rd power of ReV . This last
hurdle is overcome by comparing the definitions of the Reynolds numbers for PCFT and the
ASBL:

PCFT: Re =
Uwh

ν
, ReV =

V0h

ν
, (4.24a)

ASBL: Re =
U∞δ1
ν

=
U∞
V0

. (4.24b)
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If one now assumes that Uw = U∞, a novel Reynolds number analogous to the Reynolds number
for the ASBL must be defined for PCFT, which gives

PCFT: Rẽ :=
Re

ReV
=
Uw

V0
. (4.25)

With this, all necessary transformations are established. Employing all tilde quantities into the
mOSE for PCFT (4.4) gives[︃(︃

−iω̃ + iα̃(−Ũ(ỹ))− 1

Rẽ
D̃
)︃(︂

D̃2 − α̃2
)︂
− iα̃D̃2

(︂
−Ũ(ỹ)

)︂
− 1

Rẽ

(︂
D̃2 − α̃2

)︂2]︃
ṽ

(︃
1− ỹ

ReV

)︃
= 0,

(4.26)

which is mathematically equivalent to the mOSE of the ASBL given by (3.17). The four BC
after transformation are lastly given by

ṽ(y = 0) = 0 ⇒ ṽ(ỹ = ReV ) = 0, (4.27a)
ṽ(y = 1) = 0 ⇒ ṽ(ỹ = 0) = 0, (4.27b)
Dṽ|y=0 = 0 ⇒ D̃ṽ|ỹ=ReV = 0, (4.27c)
Dṽ|y=1 = 0 ⇒ D̃ṽ|ỹ=0 = 0, (4.27d)

which completes the boundary value problem. After this point, the reader is referred to chapter
3, which presents a thorough temporal LST based on the analytical solution of the mOSE
(3.17). One therefore saves the effort of examining PCFT for large ReV in terms of the rather
intricate solutions of (4.4) derived in section 4.1 and computed in the subsequent section 4.3.
Moreover, a steep rise of computation time is observed when solving for eigenvalues at large
ReV . Thus, obtaining solutions via the ASBL is evidently more economic as well as arguably
quite elegant.

4.3 Stability characteristics of plane Couette flow with transpiration

In this section, the stability characteristics of PCFT analogous to the ASBL are discussed. Due to
the additional parameterReV , the parameter space automatically is increased by one dimension,
due to which the 2D stability map is replaced by a 3D stability surface. The focus shall be laid
on how the transpiration Reynolds number ReV influences the stability of PCF, which without
transpiration is known to be linearly stable, as was shown by Romanov (1973). Naturally,
the critical quadruplet {αcr, ωcr, ReV,cr, Recr} is sought. Finally, spectra and eigenfunctions of
PCFT are analyzed and compared to those of classical PCF.

4.3.1 Neutral stability surfaces, curves and critical parameters

The stability analysis presented here is reduced to the temporal case. The exclusion of the
spatial stability case is justified in view of negligible knowledge gain obtained by including
spatial stability analysis. The stability surfaces and maps presented for the temporal case
hereafter are almost identical to the spatial case and therefore left undiscussed. In principal,
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(a) (b)

Figure 4.3: (a) Temporal stability surface for PCFT parametrized by α, ReV and Re, where every point
on the surface corresponds to a neutrally stable mode and points within correspond to
unstable modes. (b) Temporal stability surface displayed with a maximum Reynolds
number Remax = 2.0 × 106, where the surface is projected onto the α-Re-plane and the
ReV -Re-plane, respectively. The critical quadruplet may be referred to in (4.28d). (adapted
from Sun et al. (2022))

the results in this chapter could be acquired in analogy to the ASBL, i.e. numerically solving
the algebraic EVP (4.11) for its most unstable roots ω ∈ C. Due to the dispersion relation for
PCFT being comprised by the determinant of a 4x4 matrix A, the corresponding algebraic
EVP is comprised of 24 non-zero terms containing products of 2F3 generalized hypergeometric
functions and their parameters. Computing an eigenvalue for such an extensive EVP in itself is
computationally costly. This problem is amplified by the fact that ReV increases the parameter
space by one dimension. Thus, employing the homotopy method described in section 2.4.3
proved to be impractical. Therefore, the computation of the temporal eigenvalue spectra are
conducted with Chebyshev collocation schemes published by Schmid et al. (2002). The code
was adjusted to correctly solve the mOSE of PCFT (4.4). Further information of the code may
be referred to in (Schmid et al., 2002).
The eigenvalue spectra were computed for α ∈ [0, 4.0], ReV ∈ [0, 20.0] and Re ∈ [0, 3.0× 107].
The analysis of large ReV was omitted in view of increasingly costly and unreliable results.
Fortunately, this case can be bypassed by exploitation of the transformations presented in
section 4.2, thanks to which the analysis can in principal be performed with the stability
equations of the ASBL.
Figure 4.3a displays the neutral stability surface obtained for above mentioned parameter
space. This in itself is already a remarkable results, as it proves that PCF indeed becomes
unstable in the presence of transpiration. The minimal transpiration Reynolds number, above
which instability is possible, was quantified as ReV,min ≈ 6.71, as the asymptote in figure 4.4
indicates. All modes up to a Reynolds number of Re = 3.0 × 107 with ReV < ReV,min are
calculated to be stable. It is assumed that this minimal transpiration Reynolds number holds
for all Re so that all modes below this threshold should be stable, as is PCF representing the
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Figure 4.4: Projection of the temporal stability surface from figure 4.3b onto the Re-ReV -plane in 2D.
The critical parameters are given in (4.28d). The red-dashed line marks a threshold at
ReV ≈ 6.71 below which all modes are stable regardless of Re and α. (adapted from Sun
et al. (2022))

case ReV = 0.
The lowest critical Reynolds number amounts to Recr = 668350.49152 and is displaced in
figures 4.3b and 4.4. The corresponding critical quadruplet is given by

αcr = 1.32052, (4.28a)
ωcr = 1.12311, (4.28b)

ReV,cr = 9.79923, (4.28c)
Recr = 668350.49152, (4.28d)

where all critical parameters are computed up to the fifth significant decimal in analogy to the
critical triplet of the ASBL given in (3.64c). Notice that direct comparability of the parameters
defined for the ASBL and for PCFT, respectively, is not quite possible due to the utilization
of different characteristic length and velocity scales. Figure 4.3b shows projections of the
neutral stability curve onto the α-Re- and ReV -Re-planes. Of particular interest is the Re-ReV -
plane, which is depicted in figure 4.4. The projection of the neutral stability surface reveals a
distinctive slope for the upper branch. The slope m is defined by

m :=
∆ReV
∆Re

, (4.29)

for large enough ReV . In section 4.2 it was shown that PCFT may be transformed to the ASBL
in the limit ReV → ∞, which shall be referred to as ASBL-limit. For this transformation, the
two Reynolds numbers in PCFT had to be redefined to a novel single Reynolds number Rẽ
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Figure 4.5: Temporal stability map given at the critical transpiration Reynolds numberReV,cr = 9.79923.
Shaded areas indicate unstable modes with maximum growth rates of ωi,max ≈ 2.5× 10−3.
The shape of the thumb curve is similar to the corresponding stability map for the ASBL
displayed in figure 3.5 (adapted from Sun et al. (2022))

defined in (4.25). Quite remarkably, this definition is inverse to the slope m given in (4.29).
Even more remarkable is the valuem−1 adapts for large ReV , which in figure 4.4 roughly reads

m−1 =
∆Re

∆ReV
≈ 55000. (4.30)

Notice that the critical Reynolds number in the ASBL is given by Recr,ASBL = 54378.62032. The
inverse of slope of the asymptote pointing towards the ASBL-limit shares the definition with
Rẽ, which in turn was introduced to transform PCFT to the ASBL for large ReV . Furthermore,
the inverse of the slope not only adapts roughly the same value as Recr,ASBL, the asymptote
itself serves as a boundary between stable and unstable modes. These results together with the
transformations in section 4.2 establish a remarkable unification of two initially very different
wall-bounded shear flows in the limit ReV → ∞. Whether this unification can be expanded to
other wall-bounded shear flows with transpiration is yet to be answered. The author motivates
further investigations in this direction, e.g. examining plane Poiseuille flow with transpiration.
Finally, the temporal stability map at the critical transpiration Reynolds number ReV,cr ≈
9.79923 is displayed in figure 4.5. Comparison to figure 3.5 immediately reveals similarities
of the temporal stability maps of ASBL and PCFT. Not only is the shape of the thumb curve
similar, but even an area of maximum amplification is present in both stability maps.
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(a) (b)

Figure 4.6: Temporal (a) and spatial (b) spectrum of PCFT for the critical parameters αcr or ωcr ,
respectively, as well as ReV,cr and Recr as given in (4.28d). The neutrally stable Tollmien–
Schlichting (TS) mode is encircled in blue. In the temporal spectrum, the A-, P - and
S-branches are discernible. (adapted from Sun et al. (2022))

4.4 Spectra and eigenfunctions

Similar to the spectra computed for the ASBL, the spectra of PCFT were first obtained with
the adjusted Chebyshev collocation scheme of Schmid et al. (2002) and subsequently all
spectra are filtered with the analytical EVP (4.11) by substituting all modes as initial guesses,
which iteratively combs out spurious modes. This method combines the speed of Chebyshev
collocation schemes with the physical correctness of the analytical solution of the mOSE (4.4).
This method is highly suggested by the present author, as in many works in common literature,
authors usually plot the spectra obtained by Chebyshev collocation schemes without questioning
whether subsequently discussed modes are actually physical solutions of the mOSE or rather
numerical artifacts. For the present spectra, the residual tolerance for filtering was set to
tol = 10−100, implying that a mode employed into the algebraic EVP must be reiterable to this
precision in order to be regarded as a physical mode. Spurious modes generally are relocated
to physical modes so that eventually the spectra contain physical modes exclusively. Figure
4.6a displays the temporal spectrum in the critical point with the respective parameters given
in (4.28d). The TS mode is prominently located at the line of neutral stability and encircled
in blue. The y-shaped temporal spectrum PCF is known for is quite discernible, albeit being
distorted towards the vertical axis at ωr = 0. The A-, P - and S-branches were introduced
for plane Poiseuille flow by Mack (1976), who extensively studied the respective temporal
eigenvalue spectra. The branch going towards ωr → 0 therein is called the A-branch, ωr → α is
the direction the P -branch is classically evolving towards whereas the S-branch forms a vertical
line at ωr ≈ 2/3α. While the A- and P -branches are clearly following these categorizations,
the S-branch is very sparse and shifted towards ωr ≈ 0.1.
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(a) (b)

Figure 4.7: Two additional temporal spectra are depicted for (a) ReV = 15 and (b) ReV = 20. In
contrast to figure 4.6a, the S− branch is clearly visible and similarly distorted towards
ωr ≈ 0.1. (adapted from Sun et al. (2022))

(a) (b)

Figure 4.8: Streamwise (a) and wall-normal (b) eigenfunctions ũ(y) and ṽ(y), respectively, rescaled by
the maximum of the streamwise eigenfunction ũ(y)max for ReV = ReV,cr , ReV = 15 and
ReV = 20. (adapted from Sun et al. (2022))
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A similar branching is visible for the spatial spectrum in the critical point illustrated in figure
4.6b. The TS mode correctly is located at αcr ≈ 1.32052 as given in (4.28d).
Additional temporal spectra for ReV = 15 and ReV = 20 at αcr and Recr may be referred to
in figures 4.7a and 4.7b. The branch-structure is similar to the spectra in the critical point,
whereas the S− branch for these cases are clearly visible and clearly relocated towards ωr ≈ 0.1.
Lastly, the eigenfunctions in streamwise and wall-normal functions rescaled by ũ(y)max are
displayed in figures 4.8a and 4.8b, respectively. The streamwise eigenfunction ũ(y) is strongly
squeezed towards the upper-wall, which is reminiscent of the laminar base profile shown in
figure 4.1. Curiously, for all ReV one can observe a clear local minimum at y ≈ 0.8. The
wall-normal eigenfunction ṽ(y) is an order of magnitude lower than its streamwise equivalent
and much more present in the bulk. The shape of ṽ(y) is similar to analogous eigenfunctions
in figure 3.8a for the ASBL. It is possible, although not demonstrated at this point, that both
eigenfunctions may be transformed into one another with the transformation framework
presented in section 4.2.

4.5 Summary and conclusions

The effect of transpiration on PCF was studied in a classical LSA based on methods already
employed successfully in the chapter 3 for the ASBL. One key result is the onset of instability
due to transpiration starting from transpiration Reynolds numbers ReV > ReV,min ≈ 6.71. It
seems that considerable cross-flow in the wall-normal direction destabilizes PCF. The critical
quadruplet was computed precisely up to the fifth decimal place. The critical Reynolds number
resulted as Recr = 668350.49152.
It was further shown that PCFT can be transformed to the ASBL for ReV → ∞ via specific
coordinate and parameter transformations. This transformation is rediscovered by comparing
the inverted slope of the asymptote discernible in the Re-ReV -plane for large enough ReV ,
which incidentally equalled the critical Reynolds number of the ASBL, further hinting at a
universality wall-bounded shear flows with transpiration seem to share. The similarity of both
flows is further manifested by comparing the temporal stability maps depicted for PCFT for
the critical transpiration Reynolds number.
The temporal and spatial spectra were additionally plotted in the critical point, revealing a
branch structure, which especially for the temporal spectra resembles a branching nomenclature
coined by Mack (1976). The respective spectra for PCFT are similar to the ones known for
PCF. However, the vertical S-branch is distorted at the presence of transpiration and shifted
towards lower ωr ≈ 0.1. Lastly, the eigenfunctions in streamwise and wall-normal direction
were examined. The streamwise eigenfunctions ũ(y) seem to be influenced by the BL effect
revealed for PCFT for large ReV at the upper-wall. The wall-normal eigenfunctions ṽ(y) in
turn are strong in the bulk and resemble similar eigenfunctions for the ASBL, further hinting
at a universality of wall-bounded shear flows with transpiration. From this point on, it would
be interesting to see how instabilities in PCFT evolve structurally in the laminar-turbulent
transition process. It remains to be answered if the famous turbulent stationary rolls numerically
proven by Kraheberger et al. (2018) can be tracked down to modes of instability in PCFT. Still,
transpiration proved to be one possible reason for transitioning PCF. Another phenomenon
possibly inducing transition is presented in the last two chapters.
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5 Extension of Squire’s transformation to spatial
stability and novel unstable oblique modes

This chapter is based on a soon-to-be submitted manuscript authored by Oberlack, Turkac and
Yalcin (2022) named in alphabetical order with the provisional title On a new set of unstable
three-dimensional (3D) oblique modes examplified by plane Couette flow. The order of authors
is still in discussion and the disagreement is not yet resolved at the time this dissertation is
handed in. The theory presented in this chapter is based on a systematization and subsequent
extension of the Squire’s transformation introduced in section 2.4.4 in terms of Lie symmetry
theory. This idea was introduced by Oberlack, who among other theories notably employed Lie
group analysis to unify solution sets for the mean velocity of stationary parallel turbulent shear
flows (Oberlack, 2001), co-authored works introducing a systematization of ansatz functions in
linear stability theory (LST) (Nold and Oberlack, 2013; Nold et al., 2015), discussed in section
3.2.4, and very recently expanded the understanding of how scaling laws for arbitrary moments
in turbulent wall-bounded shear flows may be derived in first principles thinking through Lie
symmetry theory (Oberlack et al., 2022). The application of Lie symmetry theory on the
parameter set of the Orr–Sommerfeld equation (OSE) therefore is a logical continuation of the
successful application of Lie symmetry theory in hydrodynamic stability theory and turbulence.
The arising equations are discussed later in section 5.2, where the algebraic set of invariance
conditions (5.19) arising from aforementioned exploitation of symmetry theory was partly
solved by Turkac (2019) and later corrected and completed by the present author, who applied
the theory on plane Couette flow (PCF) in the present chapter and verified the legitimacy of
ensuing results in chapter 6 through a direct numerical simulation (DNS) conducted with the
open source spectral element code nek5000 (Fischer et al., 2008).

As was summarized in the introductory words of chapter 4, PCF is known to be linearly
stable for any Reynolds number. Today it is known that PCF in fact undergoes transition
when finite-amplitude disturbances are present in the flow as was elaborated by Orszag and
Kells (1980). These finite-amplitude disturbances in turn are assumed to be footprints of
the large-scale turbulent superstructures forming in laminar-turbulent PCF. Closely related
to PCF is the flow forming between two counter-rotating cylinders, i.e. Taylor-Couette flow
(TCF). Due to its relatively simple experimental setup, TCF was early examined in detail with
regard to its transition to turbulence. Coles (1965) discovered the occurrence of spiral-shaped
intermittent turbulent structures in TCF, which fittingly are sometimes referred to as barber
pole turbulence. Naturally, the question presented itself whether similar inclined persisting
structures could also be observed in PCF. Indeed, in the aforementioned works of Daviaud
et al. (1992) inclined laminar-turbulent stripe patterns were presented, albeit only one or two
turbulent spots could be visualized. It was later specified that these rather singular spots are
due to the large wavelengths – roughly 40 times the half-gap width in PCF – and consequently
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by increasing dimensions in stream- and spanwise directions with respect to the half-gap width,
Prigent et al. (2002) could successfully resolve the laminar-turbulent patterns fully. Thereafter,
numerical studies by Barkley and Tuckerman (2005) were capable of reproducing these results
by accounting for the large spanwise wavelengths of the patterns and employing domains of
L′
x × L′

y × L′
z = 10× 2× 120, where the x-z-plane is tilted by varying angles θ. The emerging

laminar-turbulent oblique patterns ranged from θmin = 15◦ to θmax = 66◦ at Re = 350. Duguet
and Schlatter (2013) investigated the obliqueness of these patterns analytically by means of a
clear scale separation and came to the conclusion that they are induced by the incompressibility
of the large-scale flows. It is yet to be answered, however, where the oblique structures originate
from and which phenomenon defines the distinct inclination angles. Against this background,
the present goal is to provide a new link to the 3D spatial stability problem.
In view of Squire’s theorem (Squire, 1933), the investigation of 3D modes was neglected as
two-dimensional (2D) modes are most critical in the temporal framework, which was naively
assumed for the spatial stability problem as well. Squire showed for the temporal case that the
investigation of the 3D temporal eigenvalue problem can in fact be omitted entirely by making
use of the Squire’s transformation, which can be stated in a modern form as an equivalence
transformation (see e.g Bluman and Kumei 2013). This is a special form of the symmetry
transformations, in which the parameters appearing in the equation, such as the wave numbers
α and β, are also part of the transformation. Essentially identical to symmetry transformations,
equivalence transformations seek a transformation under the condition that the underlying
equation does not change under the transformation, i.e. remains invariant. Squire discovered
that the OSE for 2D and 3D perturbations are identical in form if one takes into account
the occurring parameters, i.e. α, β, Re and ω in the transformation. Although it was easy
to conclude from this that 2D modes are always the most unstable modes, LST did not give
satisfactory results for a number of the above flows, i.e. the critical Reynolds number was not
calculated correctly.
Squire’s theorem was originally derived for the temporal stability problem, i.e. α and β are
real numbers whereas ω is the complex eigenvalue, and in fact it does not hold for the spatial
problem where α is complex. Indeed, Mack (1977) stated that the utility of Squire’s theorem
is lost if complex α and β are assumed, reinforcing the idea that the theorem must be applied
only in the temporal framework. However, Benjamin (1961) remarked in a side note the
theorem of Squire should also hold for complex values of β. He even went further and stated
that critical Reynolds numbers below the 2D critical value subsequently become a possibility.
To the present author’s surprise, the suggestion of complex β in the context of Squire’s theorem
has not been subject of further analysis since then.
In the present chapter, the modification of the spatial stability problem by a complex spanwise
wave number β is investigated with respect to Squire’s theorem. First hints towards the
potential existence of oblique modes investigated hereafter are given in Turkac (2019). We will
show that assuming β ∈ C is necessary to extend Squire’s transformation to spatially developing
disturbances. Thus, the perturbations may now witness spanwise growth or decay, leading to
novel 3D modes with oblique amplification. At the same time these modes naturally give rise to
a symmetry breaking of the spanwise reflection symmetry. A result is the negation of Squire’s
theorem for the spatial case, as the 3D Reynolds numbers arising from the transformation of
2D to 3D modes may in fact be lower than the initial 2D Reynolds numbers.
As was demonstrated in previous research, symmetry breaking in PCF due to laminar-turbulent
structures is a common occurrence and hardly a singular observation. In addition to the
mentioned works of Daviaud et al. (1992), Barkley and Tuckerman (2005), Tuckerman and
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Barkley (2011), which analyze oblique laminar-turbulent patterns in PCF, similar oblique
patterns have been discovered in PCF with a heated upper and cooled lower plate (Fukudome et
al., 2018). In the context of turbulent flow control of PCF, imposing seed velocity perturbations
that are non-symmetric in the spanwise direction led to a symmetry breaking of the turbulence
spanwise reflection symmetry in Chagelishvili et al. (2014). The occurrence of symmetry
breaking is discussed in more detail in section 5.2, where non-zero spanwise amplification
rates are derived by the proposed extension of Squire’s transformation.
The idea of extending Squire’s transformation has been previously discussed in the literature,
albeit in different contexts. As an example, Jerome and Chomaz (2014) have discussed
the validity of the classical Squire’s transformation when transient growth mechanisms are
considered. They extended the framework to the entire eigenfunction structure of Orr–
Sommerfeld (OS) and Squire modes. In contrast to the extensions presented in this chapter,
however, they consider the temporal stability problem and assume α and β to be real valued.
To the best knowledge of the author the theory presented hereafter has not yet been discussed
in the literature and therefore should represent an important addition to the theory of linear
stability.

5.1 Revisiting Squire’s transformation as an equivalence
transformation

Squire’s famous transformation (Squire, 1933) constitutes a central achievement in LST in that
it essentially renders the analysis of the 3D temporal eigenvalue problem (EVP) superfluous
by means of transforming the 2D parameter set of OSE (2.43) to 3D so that the underlying
ordinary differential equation (ODE) itself is kept invariant. This represents what in group
theory is called a symmetry transformation. The idea of symmetries in the context of differential
equations is swiftly understood when considering the one-dimensional (1D) heat equation

∂u

∂t
− ∂2u

∂x2
= 0, (5.1)

which is a second order partial differential equation (PDE) for the temperature u(x, t). Now, a
symmetry essentially describes a point transformation T = (x̂, t̂, û) with

x̂ = x̂(x, t, u; ϵ), t̂ = t̂(x, t, u; ϵ), û = û(x, t, u; ϵ), (5.2)

where ϵ denotes the group parameter, which, applied to the quantities in (5.1), leaves the
original differential equation form-invariant, i.e.

∂û

∂t̂
− ∂2û

∂x̂2
= 0. (5.3)

One example for a symmetry of (5.1) or (5.3) is the two-parameter scaling group

x̂ = eϵ1x, t̂ = e2ϵ1t, û = eϵ2u, (5.4)

where ϵ1, ϵ2 ∈ R represent the respective continuous group parameters. Subsequently em-
ploying (5.4) into (5.1) evidently yields (5.3), as the scaling factors cancel identically on both
sides.
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Evidently, (5.1) is left invariant by the two-parameter scaling transformation (5.4).
Now, the Squire’s transformation (Squire, 1933) is a special type of symmetry transformation,
where the original 2D OSE is left form-invariant upon a symmetry transformation of the pa-
rameters (α2D, ω2D, Re2D), which in the literature is typically referred to as an equivalence
transformation (see e.g. Bluman and Kumei 2013). The classical approach rewritten as an
equivalence transformation is to declare the spanwise wave number β, which generates 3D
disturbances, as the group parameter and find a point transformation in analogy to (5.2) for
the parameter set of the form

α3D = Φα(α2D, ω2D, Re;β), (5.5a)
ω3D = Φω(α2D, ω2D, Re;β), (5.5b)
Re3D = ΦRe(α2D, ω2D, Re;β), (5.5c)

so that the 2D OSE

LOS,2D(ṽ(y);α2D, ω2D, Re2D) = 0, (5.6)

is kept invariant by means of the equivalence transformation (5.5c). Here, LOS,2D denotes the
OS differential operator in 2D. Employing (5.5c) into the 3D OSE (2.43) then yields

LOS,3D(ṽ(y);α3D(β), ω3D(β), Re3D(β)) = 0. (5.7)

Squire found an equivalence transformation upon comparison of the parameter terms in
equation (2.43) in both the 2D and 3D OSE, which reveals that

α2
2D = α2

3D + β2, (5.8a)
Re2Dα2D = Re3Dα3D, (5.8b)
Re2Dω2D = Re3Dω3D, (5.8c)

must hold. Squire’s original transformation is conducted in the framework of temporal stability,
i.e. ω ∈ C and α, β ∈ R. Upon employing (5.8) one may obtain any 3D parameter set from
the 2D parameter set via

α3D =
√︂
α2
2D − β2, (5.9a)

ω3D,r = ω2D,r

√︂
α2
2D − β2

α2D
, (5.9b)

ω3D,i = ω2D,i

√︂
α2
2D − β2

α2D
, (5.9c)

Re3D = Re2D
α2D√︂
α2
2D − β2

, (5.9d)

which is the well-known classical Squire’s transformation. Once again, if compared to (5.1) –
(5.3) it becomes evident that (5.9) is a point transformation of the OSE in parameter space
{α, β, ω,Re} with β as the group parameter. From Squire’s transformation follows Squire’s
theorem (5.9d) which states that after transformations (5.9) of a 2D mode the corresponding
3D mode always has a higher 3D Reynolds number. In particular, given a shear flow has a
critical parameter set {α2D,cr, ω2D,cr, Recr}, the corresponding critical 3D mode is given at a
higher Reynolds number. Hence, in the temporal framework of LST the most critical mode is
always the 2D mode.
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5.2 Extended Squire’s transformation for spatially developing
instabilities and oblique modes

In analogy with the approach presented for the temporal case, the idea is to derive transfor-
mations similar to (5.9) for the OSE describing spatial instabilities. The classical spatial LST
features a complex streamwise wave number, i.e. ω, β ∈ R and α = αr + iαi ∈ C, due to which
(5.8) yields

α2
2D,r − α2

2D,i = α2
3D,r − α2

3D,i + β2, (5.10a)
α2D,rα2D,i = α3D,rα3D,i, (5.10b)
Re2Dα2D = Re3Dα3D, (5.10c)
Re2Dω2D = Re3Dω3D. (5.10d)

Solving (5.10c) for α3D gives
α3D = α2D

Re2D
Re3D

. (5.11)

Substituting (5.11) into (5.10b) gives

α2D,rα2D,i = α3D,rα3D,i

(︃
Re2D
Re3D

)︃2

, (5.12)

which is obviously a contradiction unless the trivial case Re2D = Re3D applies. This contradic-
tion can be elegantly resolved by assuming the more general case α, β ∈ C. As will be shown,
a complex spanwise wave number β alters (5.10b), which allows to resolve (5.12). With β
being complex, it cannot serve as a group parameter anymore, which requires a new group
parameter in order to keep the 2D OSE (2.43) invariant. A physically intuitive and logical
candidate for the new group parameter is the ratio of 2D and 3D Reynolds numbers

φ :=
Re2D
Re3D

, (5.13)

so that instead of (5.7) we now use

LOS,3D(ṽ(y);α3D(φ), ω3D(φ), Re3D(φ), β(φ)) = 0, (5.14)

where β(φ) now is not a parameter but rather a solution parametrized by φ arising from the
invariance conditions (5.8).
Analogous to the temporal OSE, the symmetry of the spatial OSE is investigated by employing
a complex spanwise wave number (ω ∈ R and α, β ∈ C). One can directly start with (5.8a) -
(5.8c), where now instead of the frequency the streamwise wave number α is split into real
and imaginary parts

α2D = α2D,r + iα2D,i, (5.15)
α3D = α3D,r + iα3D,i. (5.16)

From the argument above additionally the spanwise wave number β can be split into its real
and imaginary parts

β = βr + iβi. (5.17)
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The resulting eigenfunction thus is given by

v(x, y, z, t) = ṽ(y) ei(α3Dx+βz−ωt)

= ṽ(y) ei
(︁
α3D,rx+βrz−ωt

)︁
e−α3D,ix−βiz,

(5.18)

which corresponds to a wave with oblique growth in the x-z-plane and a propagation vector
with both stream- and spanwise components. The invariant conditions (5.8a) - (5.8c) in turn
are altered due to the presence of complex spanwise wave numbers α, β ∈ C, giving

α2
2D,r − α2

2D,i = α2
3D,r − α2

3D,i + β2r − β2i , (5.19a)
α2D,rα2D,i = α3D,rα3D,i + 2βrβi, (5.19b)
Re2Dα2D = Re3Dα3D, (5.19c)
Re2Dω2D = Re3Dω3D. (5.19d)

Similar to the classical Squire approach, we intend to solve for the 3D quantities when the 2D
quantities are given.
The ultimate goal is to identify oblique modes with 3D Reynolds numbers which are lower
than the 2D Reynolds numbers, i.e. with (5.13) φ < 1. Equations (5.13) and (5.19c) - (5.19d)
lead to

Re3D = φRe2D, α3D,r =
α2D,r

φ
, α3D,i =

α2D,i

φ
, ω3D =

ω2D

φ
. (5.20)

In the upcoming discussion, in (5.18) αr > 0 is assumed, i.e. perturbation waves exclusively
propagate in downstream direction.
Inserting the transformations (5.20) in (5.19b) one finds

βi =

(︃
1− 1

φ2

)︃
α2D,rα2D,i

βr
. (5.21)

Equation (5.21) represents a key result. For φ ̸= 1 and α2D,i ̸= 0, i.e. off the neutral stability
curve, one obtains βi ̸= 0. This implies growth or decay is observed in one direction of
the spanwise coordinate, complemented by opposing decay or growth in converse spanwise
direction. This gives rise to novel perturbation waves with 3D oblique growth mechanisms in
the x-z-plane. Furthermore, a non-zero spanwise amplification rate βi immediately leads to
a symmetry breaking in spanwise direction. Reflection symmetry is generally maintained in
classical LST due to real valued spanwise wave numbers β.
Now, substituting βi into (5.19a) gives

β4r − (α2
2D,r − α2

2D,i)

(︃
1− 1

φ2

)︃
β2r − (α2D,rα2D,i)

2

(︃
1− 1

φ2

)︃2

= 0, (5.22)

which is solved by

βr = ±

√︄
1

2

(︃
1− 1

φ2

)︃(︂
α2
2D,r − α2

2D,i ±
(︂
α2
2D,r + α2

2D,i

)︂)︂
, (5.23)

where the inner and outer plus-minus signs lead to four distinct solutions. Employing (5.23)
into (5.21) and reconstructing β = βr + iβi concretely gives

β1,2 = ±
√︃
1− 1

φ2
(α2D,r + i α2D,i) , (5.24a)

β3,4 = ±
√︃

1

φ2
− 1 (α2D,i − i α2D,r) , (5.24b)
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Figure 5.1: Flow domain with upper wall velocity Uw , the laminar base profile and a perturbation ũ.
The wave and growth mechanics are described with the corresponding angles θp and θcr
respectively as defined in (5.26) and (5.28) for oblique 3D modes as defined in equation
(5.18) and induced by φ < 1.

where the first two solutions arise when taking the inner plus sign and the latter two solutions
emerge for an inner minus sign.
In fact, for φ > 1 both (5.24a) and (5.24b) are equivalent, i.e. β1,2 = β3,4, whereas if φ < 1 the
outer signs are flipped so that β1,2 = −β3,4. Swapping the outer signs in (5.24a) and (5.24b),
however, merely mirrors the perturbations along the x-y-plane, which, from a physical point of
view, does not make a difference. Hence, it is sufficient to only consider the outer plus sign,
which leaves one unique solution

β =

√︃
1− 1

φ2
(α2D,r + i α2D,i) for φ > 1,

β =

√︃
1

φ2
− 1 (α2D,r − i α2D,i) for φ < 1.

(5.25)

The intrinsically interesting case arises when φ < 1, since this implies unstable subcritical
modes or even unstable 3D modes for originally stable 2D modes.
For the case of stable 2D flows, i.e., α2D,i > 0, βr and βi have opposite signs, resulting in the 3D
wave propagating in the spanwise direction in which the perturbation field experiences growth.
However, since according to (5.20) the wave continues to decay in the pure flow direction even
in the 3D case, the question arises whether the wave is fanned in the propagation direction
in the x-z-plane or decays, as in the 2D case. In the case of unstable 2D flows, i.e., α2D,i < 0,
exactly the opposite case presents itself. Examining (5.25) for φ < 1, i.e., for potentially
subcritical 3D modes, we notice that for this case βr and βi have the same sign. Thus, after
transformation, the 3D wave propagates in that spanwise direction in which the field decays.
Analogously, in the 3D case according to (5.20), an amplification of the wave in the pure flow
direction occurs, which is why there is again the question of whether the wave in the 3D case
is amplified in the propagation direction or decays. In particular, for this case, fanning in the
3D case would mean that subcritical 3D modes could be constructed, which would be in clear
contradiction to Squire’s theorem.

These questions are straightforwardly answered by comparing the propagation angle θp and
critical angle θcr visible in figure 5.1. These angles may be derived upon considering the
exponent of the wall-normal eigenfunction (5.18). The imaginary part of the exponent gives
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rise to the propagation angle θp of waves in the x-z-plane, which in conjunction with (5.20) is
determined by

θp = arctan
(︃

βr
α3D,r

)︃
= arctan

(︄
βr

1
φα2D,r

)︄
. (5.26)

Additionally, a critical angle θcr may be defined from the real part in the exponent of (5.18) at
which spanwise growth as well as streamwise decay neutralize one another, i.e. α3D,i x+βi z =
0. Thus, the condition for the neutral stability line is given by

α3D,i + βi tan(θcr) = 0, (5.27)

which for θcr together with (5.20) and (5.21) yields

θcr = arctan
(︃
−
α3D,i

βi

)︃
= arctan

⎛⎝ βr(︂
1
φ − φ

)︂
α2D,r

⎞⎠. (5.28)

The 3D modes for linearly stable 2D flows, such as 2D PCF, would now be unstable in the
propagation direction if θp > θcr, as then the spanwise growth component is larger than the
spanwise decay component. When linearly unstable 2D flows are transformed, φ > 1 always
generate unstable 3D modes, as according to (5.20) and (5.25) both α3D,i < 0 as well as βi < 0,
leading to growth in stream- and spanwise directions. In contrast, φ < 1 demands yet again a
comparison of θp and θcr, when specifically θp < θcr represents the instability condition, since
α3D,i < 0 and βi > 0 by virtue of the transformations (5.20) and (5.25).
Comparison of the respective arguments of the arc tangent in (5.26) and (5.28) reveals that for
φ < 1 it follows that θp < θcr, independent of the selected 2D parameter set. Correspondingly,
we conclude that linearly stable 2D modes remain stable in 3D regardless of φ, whereas linearly
unstable 2D modes in fact always transform into linearly unstable 3D modes for both φ > 1 and
φ < 1. This result is quite remarkable, as then the critical point Re2D,cr may be transformed to
a subcritical 3D Reynolds number with φ < 1. Consequently, in the spatial framework Squire’s
theorem does not hold, which embodies another key result of the present chapter. It is thereby
possible to construct unstable subcritical 3D oblique modes for linearly unstable 2D flows.
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6 Direct numerical simulations of oblique
modes in plane Couette flow

In the following chapter, the attempt is made to verify the existence of three-dimensional (3D)
oblique modes in plane Couette flow (PCF). For this, firstly the spatial stability problem for
two-dimensional (2D) PCF is solved for 2D modes, which in turn are transformed to 3D modes
in accordance with the transformation rules (5.20) and (5.25). Afterwards, these modes are
introduced into an unperturbed 3D PCF over the stream- and spanwise boundaries in a direct
numerical simulation (DNS). Thereupon the ensuing flow fields are investigated regarding
whether the perturbation field predicted analytically is replicated in the entire field by the flow
solver for large enough turnover times.

6.1 Spatial stability problem of plane Couette flow and generation of
3D modes with oblique growth

In this subsection the existence of 3D modes with spatial oblique amplification, i.e. αi ̸= 0 and
βi ̸= 0, is discussed for PCF and verified via DNS of the Navier–Stokes equations (NSE) (2.30).
For PCF, an analytical solution of the 2D Orr–Sommerfeld equation (OSE) (2.43) of the form
ṽ(y) =

∑︁4
n=1Cnṽn(y) may be derived in terms of exponential and Airy functions (Reid, 1979)

and is given in full detail in Appendix B. Demanding non-trivial solutions for the coefficient
vector C in (B.2) yields the dispersion relation

D(α, β, ω,Re) := det(A) = 0, (6.1)

where A is the coefficient matrix arising from the boundary condition (BC) (2.56) and is
given in detail in (B.2). This establishes an algebraic eigenvalue problem (EVP) for whichever
parameter is chosen to be complex. The 2D spatial EVP of interest arises for the case β = 0 ,
ω ∈ R and α ∈ C. In order to obtain the 2D eigenvalues, which are then to be transformed
to 3D modes with oblique growth mechanics according to (5.20) and (5.25), we could in
principle numerically solve equation (6.1). However, it turned out to be more time-efficient
to get estimates for the eigenvalues using a collocation scheme and reiterate on (6.1) to a
given very small residuum instead of computing eigenvalues from (6.1) directly. For this, a
Chebyshev collocation MATLAB code by Schmid et al. (2002) was employed. The number of
modes was set to m = 200, which provides 2D spatial eigenvalues leaving a comparatively
small residuum when substituted into the algebraic EVP (6.1). As any solution obtained by
the Chebyshev collocation method must be iterable to arbitrarily small residua, the computed
eigenvalues were then used in (6.1) as starting points in a non-linear complex root finding
algorithm (Muller, 1956) and reiterated to residua of O(10−10), which was smaller than any
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Figure 6.1: A part of the 2D spatial eigenvalue spectrum of PCF with ω2D = 0.1 and Re2D = 1000 is
displayed for modes with α2D,i < 5. All modes employed into (6.1) yield a residuum smaller
than r = 10−10. The TS mode is encircled in blue.

2D parameters 3D parameters
Reynolds number Re 1000 350

streamwise wave number α 0.19983 + 0.074993 i 0.57094 + 0.21427 i

spanwise wave number β 0 0.20071− 0.53483 i

wave frequency ω 0.1 0.28571

Table 6.1: Transformation of 2D to 3D parameters with Reynolds number ratio φ = 0.35 as transforma-
tion parameter according to (5.20) and (5.25).

residua of the initial set of eigenvalues. Non-iterable modes, on the other hand, were discarded
as spurious modes. The reiterated set of eigenvalues for ω2D = 0.1 and Re2D = 1000 may be
taken from figure 6.1, where only eigenvalues with α2D,i < 5 are shown in order to distinguish
the Tollmien–Schlichting (TS) α2D,TS = 0.19983 + 0.074993 i visually.
The goal now is to obtain a 3D mode with oblique growth mechanics as derived in (5.20)
and (5.25). For this, the TS mode is chosen as the least stable of the set in figure 6.1. The
2D parameters ω2D = 0.1 and Re2D = 1000 are selected carefully to obtain 3D modes with
moderate growth rates in spanwise direction. As can be deduced from (5.25), βi in general
changes signs depending on whether φ is larger or smaller than unity. The interesting case
certainly occurs for φ < 1, as then the sign of βi is negative, which corresponds to modes

3D wave characteristics
streamwise wavelength λx 11.00

spanwise wavelength λz 31.12

propagation angle θp 19.47◦

critical angle θcr 21.94◦

Table 6.2: 3D wave characteristics for transformed 3D mode given in table 6.1
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(a)
(b)

(c)

Figure 6.2: Amplitudes of eigenfunctions ũ(y) (a), ṽ(y) (b) and w̃(y) (c) arising for a transformation of
the 2D parameter set in table 6.1, separated into real and imaginary parts.
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growing in spanwise direction, whereas decay in streamwise direction is maintained as α
scales inversely with φ and does not change its sign. This becomes apparent in numbers
when transforming the presented 2D mode according to (5.20) and (5.25) to yield the 3D
parameter set given in table 6.1. The Reynolds number ratio φ = 0.35 is chosen to produce
moderate spanwise growth rates βi and a sufficiently small spanwise wavelength λz = 2π/βr.
Furthermore, the resulting 3D Reynolds number Re3D = 350 is roughly at which PCF is capable
of transitioning, featuring remarkable oblique laminar-turbulent patterns as was laid out in the
introduction chapter. Specific 3D wave characteristics may be taken from table 6.2 and will be
discussed in subsection 6.2.
The 3D eigenfunctions corresponding to the transformed 3D mode in table 6.1 are given in
figure 6.2. As can be seen, the eigenfunctions satisfy the BC in (2.56) perfectly, which in turn
legitimates the novel transformation performed with a Reynolds number ratio φ < 1. With this,
the novel oblique modes are formally derived and will be validated below.

6.2 Numerical method and boundary conditions

In the now following subsections the attempt is made to validate that the oblique modes in PCF
are maintained in the entire flow field when solving the dimensionless NSE (2.30) in a DNS
upon introducing the 3D perturbations into the flow domain over the respective boundaries
in stream- and spanwise directions. For this, the highly parallel nek5000 code (Fischer et al.,
2008) based on spectral element method (SEM) is employed. SEM based codes unite low
numerical dissipation and dispersion, which spectral methods are known for, with geometric
advantages of finite element method (FEM). As such, SEM codes are commonly used for
performing DNS of stability simulations.
The numerical domain consists of E hexahedral elements with [Lx, Ly, Lz] labeling the box
dimensions. The solutions are computed in terms of tensor products of Lagrange polynomials
with order N . In the present chapter, the order was set to N = 7 providing a good compromise
between numerical precision and computing expenses. The polynomials are based on N +
1 Gauss–Lobatto–Legendre (GLL) quadrature points in every element and every Cartesian
direction, equalling to a total number of E · (N + 1)3 nodal points for the entire domain.
The implemented PN − PN solver, which represents approaches for the discretization and
decoupling of the velocity-pressure system in the NSE described by Otero et al. (2019), is used as
recommended by the developers. Time integration of themomentum equation is conducted with
a semi-implicit second order backward differentiation formula and extrapolation (BDF2/EXT2)
scheme, which is chosen for its numerical stability.

The physical domain ranges from Lx = 10h, Ly = h and Lz = 15h, where the dimensions of the
domain are tailored around the wavelength of the mode described in tables 6.1 and 6.2 as well
as the spanwise growth rate of the respective perturbation modes. In order to account for the
required accuracy of stability calculations, the residual tolerance for both velocity and pressure
computation were set to machine accuracy, i.e. δ = 10−15. The simulations were performed
non-dimensionally, where non-dimensionalization is conducted with the upper wall-velocity
Uw and the channel height h. The target Courant–-Friedrichs–-Lewy (CFL) number is set to
0.5 to ensure a good time resolution.
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The initial condition is given as the non-dimensional unperturbed PCF

(U, V,W )Tt=0 = (y, 0, 0)T . (6.2)

The BC deserve extended discussion due to focus on spatially developing perturbations in both
the stream- and the spanwise direction. Where usually periodic BC are set on the boundaries
facing in spanwise direction, time-dependent Dirichlet BC need to be set to account for growth
in spanwise direction as described in (5.25).
At y = 0 no-slip rigid wall BC were employed, while at y = 1 the upper wall-velocity was set
as a Dirichlet BC. In order to introduce perturbations over the boundaries, a time-dependent
Dirichlet BC is used at x = 0 as well as z = Lz for the velocities, where the BC read

(U(y), 0, 0)T + ϵ(u, v, w)T |x=0 =(y, 0, 0) + ϵ
[︁
(ũr, ṽr, w̃r)

T (y) cos(βiz − ωt)

− (ũi, ṽi, w̃i)
T (y) sin(βiz − ωt) e−βrz

]︂
,

(U(y), 0, 0)T + ϵ(u, v, w)T |z=Lz =(y, 0, 0) + ϵ
[︁
(ũr, ṽr, w̃r)

T (y) cos(αix+ βiLz − ωt)

− (ũi, ṽi, w̃i)
T (y) sin(αix+ βiLz − ωt) e−αrx−βrLz

]︂
,

(6.3)

where (u, v, w)T denote the perturbation velocities while (ũ, ṽ, w̃)T stand for the eigenfunctions
calculated and depicted in figure 6.2. Furthermore, ϵ denotes the maximum amplitude of the
perturbation velocity field, where ϵ = 1 yields the maximum amplitude to be equal to the
non-dimensional upper wall-velocity u(y = Ly) = 1.
For the remaining two boundaries at x = Lx and z = 0, open BC of the type

[−pI + ν(∆u)] · n = 0, (6.4)

are utilized.
The motivation to employ time-dependent Dirichlet BC at z = Lx, and not at z = 0, as done
in streamwise direction, stems from the growth mechanics of modes as derived in section
5.2, specifically the spanwise growth rate βi derived in (5.21). As elaborated, the sign of the
spanwise growth rate βi depends on the choice of the Reynolds number ratio φ as well as the
sign of α2D,i. For PCF, the 2D spatial eigenvalue problem yields stable modes exclusively and
therefore provide positive signs to (5.21). Hence, when applying φ < 1, modes will grow in
pure spanwise direction after transformation to 3D whereas decay in streamwise direction is
maintained nevertheless. In order to resolve the wave nature in spanwise direction, the box
dimension Lz should be sufficiently large, which in turn yields a growth in spanwise direction
of

Γ =
e−βiLz

e−βi0
, (6.5)

where Γ denotes the amplification factor across the entire spanwise direction. If the pertur-
bations at z = Lz are to remain in the linear regime, i.e. (v(x, y, z)) ≪ 1, the respective
perturbation field consequently will be multiple magnitudes of order smaller at z = 0. Setting
Dirichlet BC at z = Lz therefore ensures sufficiently large values at the boundary while also
giving insight to an interesting physical question:
(i) do we observe the emergence of modes in the entire flow field, which experience exponential
growth exp(−βrz) in spanwise direction such that the BC at z = Lz are matched?
(ii) do we observe the emergence of modes in the entire flow field, which in a broader sense
adopt the 3D parameters ensuing from the extended Squire’s transformation in section 5.2?

87



6.3 DNS Results

In this section, the DNS results verifying oblique modes for PCF is presented in accordance
with the method and computational box described in the previous section. Relevant wave char-
acteristics may be taken from table 6.2. The spanwise wavelength is λz = 31.12, corresponding
to roughly twice the length of the computational box in spanwise direction. As can be deduced,
the perturbation wave propagates at an angle of θp = 19.47◦ in the x-z-plane relative to pure
streamwise direction.
The direction of neutral stability is given by θcr = 21.94◦. As the wave propagates at a subcrit-
ical angle, dampening in streamwise direction outweighs growth in spanwise direction due
to which the wave decays in the direction of propagation, as is visualized in figure 5.1. Yet,
it is interesting to study the decay and growth mechanics of these new oblique modes. The
negative βi signifies that the global perturbation mode grows in its spanwise direction and this
for any angle θ > θcr. Therefore, it depends on the angle of view whether the observer sees
growth or decay. It appears entirely plausible according to this that formerly 2D stable modes
become unstable in 3D when moving in directions θ > θcr.
Figure 6.3 displays the three perturbation velocity components u(x), v(x) and w(x) at fixed
wall-normal coordinate y = 0.5 = Ly/2 and spanwise coordinate z = 5 = Lz/3 both from
DNS and analytical results. The z-coordinate in particular is chosen to be far away from the
boundary at z = Lz, as there the analytically derived eigenfunctions are set as the BC. The
motivation, thus, is to show that even at large distance from this particular boundary, the flow
adapts to the solution elsewhere in the flow as well. The analytical results are plotted alongside
the results obtained from the DNS. It can be seen that the DNS results match the theoretical
eigenfunctions almost perfectly. Slight deviations can be observed at the outflow boundary at
x = 20 = Lx, which is due to the natural BC (6.4). Nevertheless, the numerical results plotted
in streamwise directions suggest validates the predicted novel oblique 3D perturbations.
The results in spanwise direction are plotted in figures 6.4 - 6.6, in (a) linear and in (b) semi-
logarithmic scaling. While the results in Cartesian coordinates show good agreement for all
three perturbation velocity components at large z, the actual growth rate is best extracted from
figures 6.4b, 6.5b and 6.6b. Close to the boundary z = Lz, where the analytical eigenfunctions
are set as a BC in accordance with (6.3), the DNS results agree very well both in slope as
well as in phase with the theorized new oblique modes. For u(z), the analytical perturbation
field suggests change of sign at z ≈ 10.45, which is also replicated by the DNS. Only in the
vicinity of the natural BC (6.4) at z = 0 do the numerical results deviate from the analytical
prediction, which is likely due to non-ideal outflow at this boundary. As described in (6.3),
the upper BC at z = Lz is a time-dependent Dirichlet BC where the analytical solutions for
the temporal development of the perturbation velocity field is assumed. In figure 6.7, the flow
quickly adjusts itself so that the theoretically predicted perturbation velocity field is adapted
and, importantly, the BC z = Lz is matched equally once the simulation becomes stationary.
Despite being linearly stable at all Reynolds numbers, the oblique growth mechanism notably
induces global growth of the perturbation field in spanwise direction, despite perturbation
waves in PCF decaying in the direction of propagation. Thus, with the presently derived modes,
linear stability theory (LST) must be reassessed by taking into account those modes, which are
not only 3D in their direction of propagation but also in their growth vector.
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(a) (b)

(c)

Figure 6.3: Perturbation velocity components u(x, y = 0.5, z = 5) (a), v(x, y = 0.5, z = 5) (b) and
w(x, y = 0.5, z = 5) (c) displayed in streamwise direction at y = 0.5 and z = 5 after
t = 200 ≈ 9T , where T = 2π/ω, i.e. one period. The index ’a’ gives the analytical results,
the index ’DNS’ gives the results simulated with the nek5000 SEM code.
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(a)
(b)

Figure 6.4: Streamwise velocity component u′(x = 15, y = 0.5, z) in Cartesian (a) and semi-logarithmic
coordinates (b) displayed in spanwise direction at y = 0.5 and x = 15 after t = 200 ≈ 9T ,
where T = 2π/ω, i.e. one period. The index ’a’ gives the analytical results, the index ’DNS’
gives the results simulated with the nek5000 SEM code.

(a)
(b)

Figure 6.5: Wall-normal velocity component v(x = 15, y = 0.5, z) in (a) linear and (b) semi-logarithmic
scaling displayed in spanwise direction at y = 0.5 and x = 15 after t = 200 ≈ 9T , where
T = 2π/ω, i.e. one period. The index ’a’ gives the analytical results, the index ’DNS’ gives
the result simulated with the nek5000 SEM code.
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(a)
(b)

Figure 6.6: Spanwise velocity component w′(x = 15, y = 0.5, z) in (a) linear and (b) semi-logarithmic
scaling displayed in spanwise direction at y = 0.5 and x = 15 after t = 200 ≈ 9T , where
T = 2π/ω, i.e. one period. The index ’a’ gives the analytical results, the index ’DNS’ gives
the result simulated with the nek5000 SEM code.

Figure 6.7: 2D contour plot of the wall-normal perturbation velocity component v(x, y = 0.5, z) at half
channel height y = 0.5 after t = 200 ≈ 9T , where T = 2π/ω, i.e. one period, with the
propagation angle θp and critical angle θcr as defined in (5.26) and (5.28).
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6.4 Summary

In chapter 5, Squire’s transformation for parallel flows is extended by a transformation for 3D
spatial oblique modes with spanwise amplification. For this, the invariance transformation of
the 2D OSE to 3D OSE is not performed with β as the group parameter, as is done classically
in Squire’s transformation, but with the 3D to 2D Reynolds number ratio φ. Importantly, β is
now complex, which was proven to be a necessity in order to allow for a non-trivial symmetry
transformation of the OSE parameters. As such, growth of modes in spanwise direction is now a
possibility by yielding φ < 1, even when decay is exhibited in streamwise direction. These new
oblique 3D modes were then investigated for PCF in the present chapter 6. First, 2D modes
at Re2D = 1000 were transformed with the newly derived transformation schemes to a lower
3D Reynolds number of Re3D = 350, which indeed yielded spanwise growth of the ensuing
3D modes. The neutral stability line is at an angle of θcr = 21.94◦. Though their simulations
were conducted with finite amplitude perturbations, a similar angle of θ = 24◦ at the same 3D
Reynolds number is observed in Tuckerman and Barkley (2011). Moreover, they observe a
distance between successive turbulent bands of λ = 40, which is not too far off the spanwise
wavelength of λz = 31.12 calculated for the 3D oblique wave presented in table 6.2.
We thus obtain a new set of oblique modes with growth and decay mechanisms not only in
stream- but also in spanwise direction. In the context of replicating these modes in a numerical
experiment, a complex β prohibits periodic BC in spanwise direction. To deal with this, the
BC usually applied in spatial stability DNS in streamwise directions, i.e. setting the derived
eigenfunctions for the perturbations velocity u′(x, y, z, t) as time-dependent Dirichlet BC at
x = 0, were also set in streamwise direction at z = Lz. At the opposite boundaries, natural BC
were implemented to allow for a smooth outflow at x = Lx and inflow at z = 0 respectively.
The corresponding DNS of PCF superposed by the derived novel 3D oblique mode revealed
that the flow field emerging is exactly the one required to match the time-dependent Dirichlet
BC at x = 0 and z = Lz. The natural BC led to slight errors in the vicinity of the respective
boundaries, which implies that possibly a different class of BC is required to reduce the errors
at the respective in- and outflow.
In the present chapter, it was shown that indeed modifying Squire’s transformation by a new
group parameter φ leads to a new class of oblique 3D modes with growth in spanwise direction
even for flow that classically see decay in streamwise direction at any Reynolds number. This
result raises the question on the applicability of Squire’s theorem on spatial stability problems.
In classical LST, the critical Reynolds number does not depend on whether the temporal or
the spatial problem is investigated. The current new theory, however, suggests that in the
spatial stability problem 2D modes may be transformed with φ < 1, i.e. to Re3D < Re2D, thus
allowing for the possibility of a lower critical 3D Reynolds number.
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7 Conclusion

In the introductory words of this dissertation, the goal was set out to uncover links between
large-scale turbulent structures and the laminar-turbulent transition process by revisiting linear
stability analysis (LSA) for the asymptotic suction boundary layer (ASBL) and plane Couette
flow (PCF). Until today the origin of such turbulent superstructures is not clarified satisfactorily,
while it appears quite plausible that prominent structures in turbulent flows could originate
from distinctive modes in the linear stability problem, which share features of superstructures
such as elongation in streamwise direction and an extent in the order of the characteristic
length scales of the flow problem.

The dissertation is commenced by a classical LSA of the ASBL, for which the modified Orr–
Sommerfeld equation (mOSE) is solvable in terms of generalized hypergeometric functions. A
first important result is the correction of the critical Reynolds number to Recr ≈ 54378.62032,
which is a sizable improvement when compared to the previously accepted critical Reynolds
number Recr,old = 54382. The asymptotic analysis of the ensuing algebraic eigenvalue prob-
lem (EVP) for temporal stability, which in common literature has been primarily omitted for
discrete methods, further disclosed a remarkable dependence of streamwise elongation on the
Reynolds number in the zero limit of the streamwise wave number α and the infinite limit
of the Reynolds number Re, in that perturbations of small wave numbers may only exist in
the distinguished limit Reα = Reα, where α→ 0 and Re→ ∞ with Re = O(α−1). It turned
out that Reα ≈ 0.81491 represents a lower bound below which the algebraic EVP yields no
solutions, thus representing an upper bound for the streamwise elongation of perturbations.
Remarkably, this finding coincides with observations in turbulent wall-bounded shear flows,
such as channel flow, and could even be generalized to any wall-bounded shear flow via
asymptotic analysis of the Orr–Sommerfeld equation (OSE) performed in above mentioned
distinguished limit. It further became apparent that for waves corresponding to modes in
the distinguished limit, the viscous part of the perturbation velocity component vvis persists
furthest into the far-field. Correspondingly, these waves by virtue of small streamwise wave
numbers α have very large streamwise wavelengths λx, which further attributes to possible
links between the distinguished limit and large-scale structures in the ASBL.
The spatial stability analysis revealed a unique solution branching for continuous modes, yield-
ing a positive and negative branch. Interestingly, the positive solution branch yields unstable
modes for α < 0.5, which seems to be the first case of unstable continuous modes existing
in wall-bounded shear flows to date. These relatively low streamwise wave numbers again
correspond to comparatively large λx and strongly resemble free-stream turbulence (FST),
which is supported by the fast Fourier transformation (FFT) of a typical unstable continuous
eigenfunction in wall-normal direction.
While transpiration in form of suction stabilizes the ASBL, there are notions in literature of
transpiration leading to destabilization, in particular for flows bounded between two walls.
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Hence, a classical flow bounded by two walls, PCF, is investigated regarding the influence
of transpiration on linear stability, which is exceptionally interesting as PCF is known to be
linearly stable for all Reynolds numbers. Indeed, a minimal transpiration Reynolds number
of roughly ReV,min ≈ 6.71 seems to be the threshold above which instabilities begin to occur.
The critical Reynolds number Recr = 668350.49152, however, corresponds to a transpiration
Reynolds number of ReV,cr = 9.79923.
A surprising discovery again is contributed to asymptotic analysis, concretely in the infinite
limit for ReV . It is found that by redefining the Reynolds number and introducing specific
coordinate and parameter transformations, plane Couette flow with transpiration (PCFT) may
be transformed to the ASBL. This is convenient, as the corresponding algebraic EVP for the
ASBL is simpler than the corresponding equations for PCFT, which enables stability analysis
for ReV → ∞ by rigorous transformation to the ASBL and subsequent utilization of the readily
derived stability equations. The projection of the neutral stability surface to the ReV -Re-plane
shows that the inverted slope of the projected surface for large ReV takes a value very close
to the previously mentioned critical Reynolds number for the ASBL, which by its definition
corresponds to the newly introduced Reynolds number of PCFT for the transformation.
Lastly, a novel extension of Squire’s transformation for the spatial stability problem thematically
stemming from applying Lie symmetry theory to the parameter space of the OSE reveals the
necessity of introducing complex spanwise wave number βinC in addition to the complex
streamwise wave number αinC, which in turn corresponds to oblique growth mechanisms in
the x-z-plane in view of the spatial growth rates αi and βi. It is derived that linearly stable
two-dimensional (2D) flows are transformed to three-dimensional (3D) flows with decay
in streamwise direction and growth in spanwise direction of the perturbation velocity field.
For linearly unstable 2D flows, in turn, it is shown that subcritical 3D oblique modes can be
constructed with Re3D,cr < Re2D,cr, contradicting Squire’s theorem. The novel framework
is applied to PCF subsequently and PCF superposed by oblique 3D modes obtained by the
extended Squire’s transformation is finally simulated numerically with a spectral element solver.
The numerical results disclosed very good agreement with the predicted theoretical velocity
fields. Moreover, the stripe patterns arising for such superposition grow in spanwise direction
and are indeed reminiscent of laminar-turbulent stripe patterns in transitional PCF. With this,
yet another link between linear modes and large-scale structures is possibly established.

The results presented in this dissertation certainly do not conclude the potential linear stability
theory (LST) offers for seeking the origins of turbulent superstructures. It remains interesting
to see if the modes derived for the distinguished limit for the ASBL indeed form the skeleton
of structures evolving into large-scale turbulent structures elongated in streamwise direction.
Whether unstable spatial continuous modes in fact provide a plausible model for FST also
remains to be seen and should certainly be studied with suitable numerical experiments.
It is shown that transpiration destabilizes PCF, which is bounded by two parallel walls. One
can imagine that perturbations in classical PCF, for which the velocity vector points in the
wall-normal direction, represent wall-normal cross-flows and possibly shed new light on the
transitional process of PCF. Certainly, PCF with transpiration should be studied both numeri-
cally and experimentally in order to further understand how transition and transpiration are
connected.
The extension of Squire’s transformation represents a remarkable addition to LST, accounting
for modes which grow or decay not only in stream- but also in spanwise direction. Intuitively, it
seems plausible that such modes should exist, but LST to date has not provided a framework to
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analyze the implications of oblique modes for laminar-turbulent transition and oblique stripe
patterns, which for instance demonstrably exist for transitioning LST. While as a start the
validity of oblique modes were verified in numerical simulations for PCF, it remains interesting
how the oblique modes evolve into weakly non-linear and non-linear regimes and whether
they indeed could be responsible for superstructures occurring for PCF.
In summary, it should not remain unmentioned that the framework of modal LST is not yet
exhausted at all and should never be entirely neglected in view of nonmodal and nonlinear
theories. The present author motivates further research in the direction this dissertation
attempted to sketch and establish. While numerical and experimental fluid mechanics increas-
ingly overshadow analytical methods, the present dissertation shall also demonstrate that fluid
mechanics is still governed by equations and theoretical principles. Ultimately, the extension
and comprehension of the existing set of stability equations are guaranteed to further expand
the understanding of laminar-turbulent transition and turbulent superstructures.
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A Appendix

A.1 Asymptotic expansion for small streamwise wave numbers

The influence of large wavelength perturbations in the streamwise direction is attempted to
be understood by an asymptotic analysis for small streamwise wave numbers α. For this we
introduce a formal Poincaré-expansion for the eigenvalue ω of the form

ω =

∞∑︂
k=0

ωk α
k, (A.1)

to be employed into the EVP (3.54).
With this, the viscous parameter σ(ω)α,Re may be expanded to

σ(ω(α)) =
√︁

1− 4iReω0 +
2iRe(1− ω1)√
1− 4iReω0

α+O(α2). (A.2)

Expanding the parameters of the 2F3 generalized hypergeometric function constituting the
EVP (3.54) yields

a2 =

(︃ √
α2 + 1 + α

−
√
α2 + 1 + α

)︃
=

(︃
1 + α+O(α2)
−1 + α+O(α2)

)︃
,

b2 =

⎛⎝ 1 + 2α
−σ

2 + 1
2 + α

σ
2 + 1

2 + α

⎞⎠ =

⎛⎜⎜⎝
1 + 2α

−1
2

√
1− 4iReω0 +

1
2 +

(︂
iRe(ω1−1)√
1−4iReω0

+ 1
)︂
α+O(α2)

1
2

√
1− 4iReω0 +

1
2 +

(︂
− iRe(ω1−1)√

1−4iReω0
+ 1
)︂
α+O(α2)

⎞⎟⎟⎠ ,

a4 =

(︃ √
α2 + 1 + 1

2 + σ
2

−
√
α2 + 1 + 1

2 + σ
2

)︃
=

(︄
1
2
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3 +

√
1− 4iReω0

)︁
+ iRe(1−ω1)√
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α+O(α2)

1
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1− 4iReω0
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+ iRe(1−ω1)√

1−4iReω0
α+O(α2)

)︄
,
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3
2 + σ

2 + α
3
2 + σ

2 − α
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√
1− 4iReω0 +

2iRe(1−ω1)√
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⎞⎟⎟⎠ .

(A.3)

Now, only the leading order terms are considered. The first 2F3-function then expands into

2F3

(︃
a2

b2
;−iReα

)︃
=

∞∑︂
n=0

(1)n (−1 + α)n

(1)n
(︁
1
2(1− σ0)
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n

(︁
1
2(1 + σ0)

)︁
n

(−iReα)n

n!
+O(α2)

= 1 +
1

ω0
α+O(α2),

(A.4)
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with σ0 =
√
1− 4iReω0.

Clearly, 2F3 (a2, b2;−iReα) asymptotically strives towards unity in the leading order.
Substituting the parameters a4i and b4i into 2F3 (a4, b4;−iReα) yields

2F3

(︃
a4

b4
;−iReα

)︃
=

∞∑︂
n=0

(12 (3 + σ0))n (
1
2 (−1 + σ0))n

(1 + σ0)n
(︁
1
2(3 + σ0)

)︁
n

(︁
1
2(3 + σ0)

)︁
n

(−iReα)n

n!
+O(α)

= 1 +O(α).

(A.5)

Analogously, the differentiated hypergeometric functions expand into

2F3

(︃
a2+1
b2+1

;−iReα
)︃

=
∞∑︂
n=0

(2)n (α)n

(2)n
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1
2(3− σ0)

)︁
n

(︁
1
2(3 + σ0)
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n

(−iReα)n

n!
+O(α2)

= 1 +O(α2),

(A.6)

2F3

(︃
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;−iReα
)︃

=

∞∑︂
n=0

(12 (5 + σ0))n (
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2(5 + σ0)
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(A.7)

Substituting the leading order of all expansions into the eigenvalue problem in (3.54) results
in

D(ω(α)) = −1

2

(︂
1 +

√︁
1− 4iReω0

)︂
+O(α) = 0, (A.8)

which apparently yields no solution for ω0. As a consequence, the leading order D(ω(α))O(1)

is not equal to zero. An ansatz as suggested in (A.1) therefore is not viable for α→ 0. In fact
it can be shown analogously that any power series ω =

∑︁P
p ωp α

p with p ≥ 0 ∈ R fails.

A.2 Asymptotic expansion for distinguished limit Reα

In order to expand (3.54) asymptotically in the distinguished limit (3.57), it is necessary to
expand each parameter of the 2F3 generalized hypergeometric functions given in (3.25):
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,
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1
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(A.9)
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with σ0 =
√︁
1 + 4i Reα (1− ω1). Furthermore, the argument of the 2F3-functions is expanded

as
z(y = 0) = −iReα = −iReα, (A.10)

which in the distinguished limit is now constant.
We observe that for all 2F3-functions, the expansions of their parameters as well as their
respective arguments are constant to leading order. Further, the 2F3-functions constituted by
a4 and b4 will be reduced to 1F2-functions as the leading orders of a41 and b42 are equal, due
to which they cancel each other out. Lastly, as a22 = −1 + α, the Pochhammer term (a22)n =
(−1 + α) (α) (1 + α)..., i.e. the second factor is of order O(α). Hence, for n ≥ 2 all series terms
of 2F3(a2, b2, z(y = 0)) are of order (α). The same applies for 2F3(a2+1, b2+1, z(y = 0)),
where for n ≥ 1 the series terms are of order O(α). With this, we can now formally expand
the 2F3-function whereupon we obtain

2F3

(︃
a2

b2
;−iReα

)︃
=

∞∑︂
n=0

(1)n (−1 + α)n

(1)n
(︁
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2(1− σ0)

)︁
n

(︁
1
2(1 + σ0)

)︁
n

(−iReα)n

n!
+O(α)

=
ω1

ω1 − 1
+O(α),

(A.11)

where the series terms for n ≥ 2 are of order O(α). The same applies for the generalized
hypergeometric function 2F3 (a2+1, b2+1;−iReα), with the only difference being that due
to the increment of 1 on all parameters, all series terms for n ≥ 1 are of order O(α), which
gives

2F3

(︃
a2 + 1
b2 + 1

;−iReα
)︃

=
∞∑︂
n=0

(2)n (α)n

(2)n
(︁
1
2(3− σ0)

)︁
n

(︁
1
2(3 + σ0)

)︁
n

(−iReα)n

n!
+O(α)

= 1 +O(α).

(A.12)

2F3
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1
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n
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n
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=
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n!
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= 1F2
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+O(α),

(A.13)

where a42,0, b41,0 and b43,0 denote the leading orders of the corresponding parameters expanded
in (A.9). As is displayed in (A.13) the leading orders of a41 and b42 cancel each other out,
yielding a 1F2 generalized hypergeometric function to leading order. An analogous expan-
sion is conducted for the last generalized hypergeometric function 2F3 (a4+1, b4+1;−iReα)
resulting in

2F3

(︃
a4 + 1
b4 + 1

;−iReα
)︃
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1
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n
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n!
+O(α)

= 1F2
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;−iReα

)︃
+O(α).

(A.14)
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Employing all expansions derived above into the EVP (3.54) gives the degenerated EVP (3.61),
for which results are computed and discussed in section 3.2.2. It is noteworthy that the results
of (3.61) agree perfectly with numerical computations of (3.54) conducted in the distinguished
limit.

A.3 Asymptotic expansion for large streamwise wave numbers
(α → ∞)

The asymptotic analysis for the case α → ∞ is rather straightforward. The EVP (3.54) is
transformed by redefining

αT :=
1

α
, (A.15)

which now for the examined limit yields αT → 0, allowing us to employ classical tools of
asymptotic theory. The EVP then is written as

D(α, β,Re, ω)

= 2F3

(︃
a2

b2
;−iRe 1

αT

)︃[︃
a4

b4
i
1

αT
Re 2F3

(︃
a4+1
b4+1

;−iRe 1

αT

)︃
−
(︃
σ + 1

2

)︃
2F3

(︃
a4

b4
;−iRe 1

αT

)︃]︃
− 2F3

(︃
a4

b4
;−iRe 1

αT

)︃[︃
a2

b2
i
1

αT
Re 2F3

(︃
a2+1
b2+1

;−iRe 1

αT

)︃
− 1

αT
2F3

(︃
a2

b2
;−iRe 1

αT

)︃]︃
= 0,

(A.16)

with the parameters

a2 =

(︄
α̃T + 1

αT

−α̃T + 1
αT

)︄
, a4 =

(︃
1
2 + σ

2 + α̃T
1
2 + σ

2 − α̃T

)︃
, (A.17)

b2 =

⎛⎜⎝ 1 + 2 1
αT

1
2 − σ

2 + 1
αT

1
2 + σ

2 + 1
αT

⎞⎟⎠ , b4 =

⎛⎝ 1 + σ
3
2 + σ

2 + 1
αT

3
2 + σ

2 − 1
αT

⎞⎠ , (A.18)

with α̃T =
√︂

(1/αT )
2 + 1 and σ =

√︁
4/αT + 1 + 4iRe (1/αT − ω). Asymptotic theories are

now used to derive a leading order solution for ω(αT ). For this, we assume a Laurent-series of
the form

ω(αT ) =

∞∑︂
n=−∞

ωnα
n
T . (A.19)

Without going into detail, the following can be observed:
(i) In the above series, for n ≥ −1 the parameter quotients ai/bi are of order O(αT ) regardless
of the series count of the corresponding hypergeometric series. Together with the argument of
the series, each term of these series is of O(1). For n < 1, however, these series diverge heavily
as then each term of the series is at least of order O(α−1

T ). Hence the leading order of (A.19)
must be

ω(αT ) = ω(−1)
1

αT
+O(1), (A.20)
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which yields

σ(αT ) =
2

αT
+ iRe

(︁
1− ω(−1)

)︁
+O(αT ) (A.21)

(ii) The order of the dispersion relation (A.16) with (A.20) purely depends on the factors of
each series product. Concretely, we need to compare the leading orders of:

T1 =
a4

b4
iRe

1

αT
(A.22)

T2 =
1

αT
−
(︃
σ + 1

2

)︃
=

1

2

(︁
iRe

(︁
1− ω(−1)

)︁
− 1
)︁
+O(αT ) (A.23)

T3 =
a2

b2
iRe

1

αT
. (A.24)

As already pointed out, the leading orders of the parameter quotients respectively is O(αT ).
Hence, T2 embodies the leading order term and has to disappear in order to yield (A.16) zero
in the leading order. This results in

ω(−1) = 1− i

Re
, (A.25)

which substituted into (A.19) gives

ω(α) =

(︃
1− i

Re

)︃
α+O(1). (A.26)

The real part of the eigenvalue thus is equal to the wave number, while the imaginary part is
always negative, regardless of the Reynolds number. The flow therefore is stable at the infinity
limit α→ ∞ for arbitrary Reynolds numbers.

A.4 Asymptotic expansion for the Stokes-limit (Re → 0)

The Stokes-limit can be treated qualitatively, claiming that flows at very small Reynolds numbers
are naturally globally stable. For the ASBL, it is still possible to demonstrate this with the
already employed asymptotic methods rather rigorously. First, we assume a Laurent-series of
the form

ω(Re) =

∞∑︂
n=−∞

ωnRe
n, (A.27)

In analogy to the large α case, we examine the hypergeometric series with regard to their
asymptotic behavior. To be specific, it is generally necessary for the series terms to not diverge,
as then the series surely diverges. Since all four series in (3.54) should not be equivalent in
the Stokes-limit, it is obligatory to prevent any of these series from diverging. The parameter
quotients ai

bi
must therefore at least be of order O(Re−1) in order to cancel out with the

argument of each respective series. With this, the Laurent-series (A.27) reduces to

ω(Re) =

∞∑︂
n=−2

ωnRe
n. (A.28)
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In fact, with this reduction every term in (3.54) is of order O(1), except

σ(Re) = 2ω(−2)
1√
Re

+O(1), (A.29)

which in conclusion constitutes the leading order of the EVP (3.54), which must be zero. This
demands

ω(−2) = 0, (A.30)

which further reduces the Laurent-series to

ω(Re) = ω(−1)
1

Re
+O(1). (A.31)

So far the considerations helped to determine the leading order of the ansatz (A.27). It is
still necessary, however, to determine the coefficient of the leading order ω(−1). This is also
achieved by doing a leading order consideration. All series are now of order O(1). It can even
be shown that all hypergeometric series 2F3(·) = 1 +O(

√
Re). Again, the leading order of the

EVP comes down to evaluating the three pre-factor terms T1, T2 and T3 given in (A.24). With
(A.29), the terms T1 and T3 are of order O(

√
Re). Consequently, the leading order of (3.54) is

given by

D(Re)O(1) = α−
(︃
σ + 1

2

)︃
= α− 1

2

(︂
1 +

√︂
4α2 + 1− 4iω(−1)

)︂
= 0, (A.32)

which gives
ω(−1) = −iα. (A.33)

Substituted into (A.31) we obtain

ω(Re) = −iα 1

Re
+O(1). (A.34)

As was claimed at the beginning of this analysis, the flow is globally stable in the Stokes-limit
for any α ≥ 0.
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B Solution to Orr-Sommerfeld equation for
plane Couette flow

The solution of (2.43) for plane Couette flow, i.e. U(y) = y, is given by

ṽ(y) = C1e
ky + C2e

ky

∫︂ y

0
e−2kydy

+
C3

2k

(︄
eky
∫︂ y

0
e−kyAi

(︄
(−iαRe)

1
3 (ik2 − αRey + ωRe)

αRe

)︄
dy

− e−ky

∫︂ y

0
ekyAi

(︄
(−iαRe)

1
3 (ik2 − αRey + ωRe)

αRe

)︄
dy

)︄

+
C4

2k

(︄
eky
∫︂ y

0
e−kyBi

(︄
(−iαRe)

1
3 (ik2 − αRey + ωRe)

αRe

)︄
dy

− e−ky

∫︂ y

0
ekyBi

(︄
(−iαRe)

1
3 (ik2 − αRey + ωRe)

αRe

)︄
dy

)︄
.

(B.1)

Due to the fluid domain being bounded by two parallel plates, the BC (4.5) lead to⎛⎜⎜⎜⎝
1 − 1

2k 0 0

ek − e−k

2k
−e−kI1(1)+ekI2(1)

2k
−e−kI3(1)+ekI4(1)

2k
k 1

2 0 0

kek e−k

2
e−kI1(1)+ekI2(1)

2
e−kI3(1)+ekI4(1)

2

⎞⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

A

⎛⎜⎜⎝
C1

C2

C3

C4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ ,
(B.2)

with

I1(y) =

∫︂ y

0
ekyAi

(︄
(−iαRe)

1
3 (ik2 − αRey + ωRe)

αRe

)︄
dy,

I2(y) =

∫︂ y

0
e−kyAi

(︄
(−iαRe)

1
3 (ik2 − αRey + ωRe)

αRe

)︄
dy,

I3(y) =

∫︂ y

0
ekyBi

(︄
(−iαRe)

1
3 (ik2 − αRey + ωRe)

αRe

)︄
dy,

I4(y) =

∫︂ y

0
e−kyBi

(︄
(−iαRe)

1
3 (ik2 − αRey + ωRe)

αRe

)︄
dy.

(B.3)
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