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Abstract

Thermo-mechanical, functional, as well as processing related properties of ceramics are
typically tailored via defect engineering. While zero-, two-, and three-dimensional defects
are widely studied, the domain of one-dimensional defects, i.e., dislocations has hardly
been exploited to tailor ceramics. The reason is a lack of understanding of dislocations
in ceramic crystal structures. Furthermore, effective means of introducing and controlling
dislocations in brittle ceramics are not well explored. We expect that once dislocations
in ceramics are properly understood, they can also be controlled and finally employed as
an engineering framework to enhance mechanical properties such as crack resilience as
well as functional properties, such as ferro- and piezoelectricity. However, this requires a
fundamental understanding how dislocations work on the microscopic level. Here, we use
atomistic computer simulations to shed light on the microscopic structure and properties of
dislocations in SrTiO3 which is a prototype member of the important perovskite family.

In three consecutive sections we explore (I) the equilibrium structure and low temperature
configuration of dislocations that can be controlled by external mechanical stress; (II)
the behavior of these dislocations under applied load, their tendency to glide, and the
imperfections occurring during dislocation glide; (III) the implications of complex dislocation
arrangements for the macroscopic plastic behavior of SrTiO3.

(I) First, we classify the dislocations reported in literature into five groups and model each
of these types explicitly. We find that only dislocations with Burgers vector 〈11 0〉 and glide
plane {1 10} can dissociate into partial dislocations. With the help of analytic estimates we
show that this glide dissociation makes them good candidates for easy dislocation glide.
However, their structure is very sensitive to the dislocation line orientation as well as the
oxygen ion stoichiometry at the dislocation core.

(II) Second, stress is applied to the dislocation configurations identified in (I). We determine
the Peierls stress as a function of the dislocation core configuration and stoichiometry and
observe that the emission of defects from a gliding dislocation is a prominent feature for
certain dislocation configurations.

(III) Third, we study multiple dislocations and their interactions. In doing so, we combine in
silico observations of different dislocation arrangements with the results of ex situ electron
microscopic characterization. We determine that points of preferential dislocation nucle-
ation and opportunities for dislocation multiplication enable the plasticity of SrTiO3. This
understanding paves the way to design methods for creating and controlling dislocations.
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Zusammenfassung

Die thermo-mechanischen, funktionellen und Verarbeitungseigenschaften von Keramiken
werden gewöhnlich durch die Anpassung von Defekten gesteuert. Während null-, zwei-
und drei-dimensionale Defekte gut untersucht sind, wurden ein-dimensionale Defekte, d.h.
Versetzungen, bisher wenig genutzt, um Keramiken zu optimieren. Dies liegt an einem man-
gelnden Verständnis von Versetzungen in keramischen Kristallstrukturen. Außerdem sind
Mechanismen, um Versetzungen in spröden Keramiken zu erzeugen und zu kontrollieren,
bisher wenig untersucht. Mit einem besseren Verständnis von Versetzungen in Keramiken
erwarten wir verbesserte Kontrolle über Versetzung und schlussendlich ihre Anwendung, um
mechanische Eigenschaften wie z.B. Bruchzähigkeit, aber auch funktionale Eigenschaften
wie Piezo- und Ferroelektrizität zu verbessern. Hierfür müssen Versetzungen jedoch auf
mikroskopischer Ebene besser verstanden werden. Zu diesem Zweck verwenden wir atomis-
tische Computersimulationen, um die mikroskopische Struktur von Versetzungen und deren
Eigenschaften in SrTiO3, einem prototypischen Mitglied der wichtigen Perowskit-Familie, zu
untersuchen.

In drei konsekutiven Abschnitten untersuchen wir (I) die Gleichgewichtsstruktur und Kon-
figurationen derjenigen Versetzungen, die sich durch äußere mechanische Spannung bei
niedrigen Temperaturen kontrollieren lassen; (II) das Verhalten dieser Versetzungen unter
angelegter Spannung, ihre Tendenz zu gleiten und Fehler während der Gleitbewegung; (III)
den Einfluss von komplexen Strukturen mehrerer Versetzungen auf das makroskopische
plastische Verhalten von SrTiO3.

Als Erstes klassifizieren wir die in der Literatur gefundenen Versetzungen in fünf Gruppen
und modellieren diese atomistisch. Es stellt sich heraus, dass nur Versetzungen mit einem
〈11 0〉 Burgers Vektor und einer {1 10} Gleitebene in Partialversetzungen dissoziieren können.
Unter Berücksichtigung analytischer Abschätzungen zeigt sich, dass sie dadurch zu guten
Kandidaten für einfaches Versetzungsgleiten werden. Die Struktur dieser Versetzungen hängt
jedoch stark von der Orientierung der Versetzungslinie und der Sauerstoffstöchiometrie im
Versetzungskern ab.

Als Nächstes wird mechanische Spannung an jene Versetzungen angelegt, von denen eine
Gleitbewegung erwartet wird. Neben der Abhängigkeit der Peierls-Spannungen von der
Konfiguration des Versetzungskerns wird beobachtet, dass bestimmte Versetzungen während
der Gleitbewegung Kristalldefekte zurücklassen.
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Zuletzt untersuchen wir Strukturen vieler Versetzungen und deren Wechselwirkungen. Dafür
kombinieren wir in silico Beobachtungen verschiedener Versetzungsstrukturen mit den Er-
gebnissen von ex situ Elektronenmikroskopie an mechanisch verformten SrTiO3 Einkristallen.
Es wird gezeigt, dass Nukleationspunkte und Möglichkeiten für Versetzungsmultiplikation
entscheidende Faktoren sind, welche die Plastizität von SrTiO3 ermöglichen.

x



Danksagung

Mein Dank gilt an dieser Stelle all denjenigen Personen, die mich während meiner Promotion
sowohl akademisch als auch privat unterstützt haben.

Zunächst danke ich daher meinem Doktorvater Prof. Dr. Karsten Albe. Er hat diese Dissertati-
on nicht nur finanziell ermöglicht, sondern war auch ein engagierter Lehrer und weitsichtiger
akademischer Mentor während meines Studiums und meiner Promotion. Prof. Dr. Jürgen
Rödel und Prof. Dr. Anna Grünebohm bin ich zum einen für die Begutachtung dieser Disser-
tationsschrift bzw. ihren Einsatz in der Prüfungskommission meinen Dank schuldig. Zum
anderen hat es mir aber auch große Freude bereitet in gemeinsamen akademischen Projekten
mit ihnen zu arbeiten. Ebenfalls freut es mich sehr, dass Prof. Dr. Karsten Durst als Prüfer
diese Dissertation unterstützt.

Durch die Zeit meiner Promotion am Fachgebiet Materialmodellierung haben mich viele
Kollegen begleitet, deren Unterstützung sicherlich zum Erfolg dieser Promotion beigetra-
gen hat. Allen voran möchte ich Dr. Daniel Utt hervorheben, mit dem ich gemeinsam alle
Höhe- und Tiefpunkte während dieser Zeit teilen durfte und der mich nicht nur akademisch
unterstützt, sondern auch moralisch durch den Alltag begleitet hat. Meine Zeit unter den
Materialmodellierern wurde außerdem geprägt von Dr. Constanze Kalcher, Dr. Leonie Koch,
Marcel Sadowski, Lorenzo Villa und David Kasdorf, die mir mit Freundschaft und Hilfsbereit-
schaft stets zur Seite standen und mit denen ich viele freudige Erlebnisse teile. Auch unserer
unermüdlichen Unterstützung im Hintergrund Gabriele Rühl und allen weiteren namentlich
nicht genannten Kollegen gilt mein Dank, denn sie haben dazu beigetragen dieses Fachgebiet
zu einer abwechslungsreichen Arbeitsgruppe zu machen.

Weiterhin hervorheben möchte ich diejenigen, mit denen ich zwar hauptsächlich auf fach-
licher Ebene arbeiten durfte, mit denen die freundschaftliche Kooperation aber auch eine
wahre Bereicherung war. Hierzu haben in besonderemMaße Dr. Lukas Porz und Dr. Xufei Fang
vom Fachgebiet Nichtmetallisch-Anorganische Werkstoffe beigetragen. Des Weiteren danke
ich auch Dr. Ruben Khachaturyan vom ICAMS in Bochum, Dr. Till Frömling vom Fachgebiet
Nichtmetallisch-Anorganische Werkstoffe und Dr. Felix Diewald von der TU Kaiserslautern,
für die konstruktive gemeinsame Arbeit an wissenschaftlichen Veröffentlichungen.

Meinen Dank möchte ich außerdem an all diejenigen aussprechen, die mich freundschaftlich
begleitet haben. Nennenmöchte ich hier Anna-Maria Larem, An-Phuc Hoang, Markus Frericks,

xi



Nicole Bein, Alexander Kempf, aber auch viele weitere Kommilitonen und privaten Freunde,
deren Unterstützung ich mir stets sicher sein konnte.

Zu guter Letzt danke ich auch der Deutsche Forschungsgemeinschaft, dem Lichtenberg-
Hochleistungsrechner der TU Darmstadt und dem GCS Supercomputer SuperMUC des
Leibniz Supercomputing Centre in München für ihre finanzielle und technische Unterstüt-
zung.

xii



Contents

Abstract vii

Zusammenfassung ix

Danksagung xi

1 Introduction 1
1.1 Structural Properties of Perovskites . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 SrTiO3 as Model Perovskite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Doping and Alloying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Microstructure Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Dislocation Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Theory of Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Elastic Continuum Description of Dislocations . . . . . . . . . . . . . . . 12
1.3.2 Dislocation Glide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Overview of Dislocation Types in SrTiO3 . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Computational Methods 25
2.1 Modeling of Interatomic Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Density Functional Theory Simulations . . . . . . . . . . . . . . . . . . . 27
2.1.2 Classical Interatomic Potentials . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Modeling of Atomic Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Molecular Statics Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Software Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 LAMMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Abinit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.3 OVITO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Computer Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 DFT Stacking Fault Energy Calculation . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Setup of Dislocation Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.3 Mechanical Properties of Dislocation Pairs . . . . . . . . . . . . . . . . . 41
2.4.4 Simulations with Natural Dislocation Structures . . . . . . . . . . . . . . 42

xiii



3 Results 45
3.1 Equilibrium Dislocation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Elastic Energy of Full and Dissociated Dislocations . . . . . . . . . . . . 46
3.1.2 Analytic Considerations on Dislocation Mobility . . . . . . . . . . . . . . 49
3.1.3 Lattice Structure of Dislocations and Dislocation Splitting . . . . . . . . 50
3.1.4 Dislocation Type A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.5 Dislocation Type B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.6 Dislocation Type C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1.7 Dislocation Type D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1.8 Dislocation Type E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.1.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Dislocation Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2.1 Lessons From a Quasi-static Analysis . . . . . . . . . . . . . . . . . . . . . 85
3.2.2 Analytic Peierls Stress Calculation . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.3 Expectations Regarding Dislocation Motion and Limitations in Simu-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2.4 Dislocation Motion under the Influence of Periodic Images . . . . . . . 91
3.2.5 Dislocation Motion in Large Simulation Cells . . . . . . . . . . . . . . . . 98
3.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Dislocations in Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.3.1 Correlation of Lab Results and Modeling . . . . . . . . . . . . . . . . . . 107
3.3.2 Dislocations from a Stress Concentrator . . . . . . . . . . . . . . . . . . . 111
3.3.3 The Role of Pre-existing Dislocations . . . . . . . . . . . . . . . . . . . . . 118
3.3.4 The Role of Dislocation Type and Dislocation Interaction . . . . . . . . 126
3.3.5 Tensile Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4 Summary & Outlook 137
4.1 Equilibrium Dislocation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.2 Dislocation Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.3 Dislocations in Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

References and Notes 143

xiv



1 Introduction

SrTiO3 is an important member of the structural family of oxide perovskites that are of great
technological relevance. The importance of this family can only be understood in the light of its
basic crystal structure and its variations that enable many of this family’s intriguing properties.
We address this topic first in Section 1.1. Secondly, just like many metals, the properties of SrTiO3
can be tailored by defect engineering, which commonly consists of chemical and microstructural
approaches, see Section 1.2. However, dislocations add a further defect dimension to this portfolio
that has seen little attention thus far. Their understanding requires general knowledge about
dislocations, see Section 1.3, as well as the specifics of dislocation configurations in the SrTiO3
structure, see Section 1.4. These aspects reveal a knowledge gap to be closed and, thus, research
questions to be targeted in order to enable the exploitation of dislocations, see Section 1.5.

1.1 Structural Properties of Perovskites

Perovskites are a family of structures that derives its name from the mineral perovskite,
CaTiO3, which has an orthorhombic structure [1]. However, the term has become synonymous
for compounds of ABX3 stoichiometry that inherit their structure (hettotype) from the parent
Pm3̄m structure (aristotype) as shown in Figure 1. The structure is composed of B-site cations,
here Ti4+, that are surrounded by an octahedron of X-site ions, here O2– (nominal charges are
indicated). The A-site ions, here Ca2+, and the B-site ions, form a body-centered configuration
and the A-site is itself surrounded by twelve X-site ions. A large structural variety is possible
in perovskites due to the breaking of symmetry, e.g., by ordered substitution of A-site or
B-site positions [1] or octahedral tilting [2]. This breaking of symmetry explains the plethora
of functional properties found in this family, including high temperature superconductivity
[3–5], giant magnetoresistance (GMR) [4, 6], catalytic activity [4, 7], piezoelectricity [8, 9],
and ferroelectricity [10].

Among the many functional properties of perovskites, dielectric effects are probably most
widely used in technological applications, see Figure 2. Exploiting their dielectric properties,
perovskites enable applications in electric or micro-electromechanical components [4]. A
dielectric is a material that is electrically insulating up to a certain breakdown electric field
because charge carriers such as ions or electrons are immobile [11]. Instead, electric fields
cause ordering or re-orientation of local dipoles and a polarization that attenuates the electric
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Figure 1: The conventional unit cell of the cubic perovskite structure is the aristotype for
the family of perovskites displaying A-site cations (green), B-site cation (blue) and
oxygen anions (red). Operations breaking the symmetry of this structure lead to a
variety of related structures as shown for some simple cases. Atomic radii and
distortions are not to scale.

field which is measured by the material’s relative dielectric permittivity. This phenomenon
enables building capacitors of increased capacitance, or vice versa, decreased dimensions
compared to a plate capacitor in vacuum.

Special subgroups of dielectrics, see Figure 2, require restrictions on the crystallographic
symmetry [12]. Crystals that exhibit piezoelectricity, i.e., a linear coupling of mechanical
strain and polarization, must belong to one of 20 point groups where a center of symmetry
is absent. Because the crystal symmetry is reflected in the symmetry of crystal properties
[13], cubic Pm3̄m perovskites do not feature this piezoelectric effect.

Pyroelectricity, in turn, describes the phenomenon that a temperature-dependent sponta-
neous polarization appears in the crystal [14]. Within the non-centrosymmetric point groups
that enable the piezoelectric effect, we find the ten polar point groups necessary to create
the pyroelectric effect [12]. In addition to the absence of a center of symmetry these point
groups need to possess at least one axis “that is not repeated by any symmetry element” [14].
Put in other words, these are point groups where “every [symmetry] operation leaves more
than one common point unmoved” [15].
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dielectrics

piezoelectrics

pyroelectrics

ferroelectrics

Figure 2: Dielectric materials and their subgroups symbolizing the necessary conditions for
the subgroups.

Finally, a ferroelectric is simply a pyroelectric in the sense that it possesses a permanent
polarization. Additionally, a ferroelectric allows the polarization to be switched by the
application of an electric field. The switching of a spontaneous polarization has given
ferroelectrics their name due to an analogy to ferromagnets [16]. The ability to switch
polarization by application of an electric field cannot be determined from crystal structure
alone but usually has to be determined empirically. Switching of the polarization P under
electric field E in a ferroelectric typically follows a characteristic hysteresis loop P(E). It
accounts for the fact, that the material remains in a macroscopically polarized state even
after the removal of the electric field.

All of these effects are occurring in perovskites. In fact, ferroelectric perovskites often feature
strong pyroelectric and piezoelectric response, too [10, 11]. Therefore, many applications re-
quiring pyroelectrics or piezoelectrics make use of the smaller group of ferroelectric materials.
Historically, the use of ferroelectric BaTiO3 in capacitors for its high dielectric permittivity
made this class of crystals technologically relevant [4, 17, 18].

Perovskite structures can be formed by a variety of chemical compositions. This compositional
variation is another reason for the popularity of this structural family [4]. It is nicely
demonstrated by the structure field maps reported by Muller and Roy [1] showing ranges of
stability for different compositions, see Figure 3.

These observations inspired the definition of a tolerance factor TF that describes the tendency
of a ternary compound ABX3 to crystallize in a perovskite structure. Taking into account the
radii RA, RB, and RX of A-, B-, and X-site ions, respectively, the tolerance factor is defined as
[19]

TF =
RA+ RX⎷

2 · (RB + RX )
. (1)

TF is equal to unity when the ions, represented as hard spheres, are ideally packed in the
cubic perovskite structure. Deviations from this factor are allowed to some degree above

3



Figure 3: “Structure field map for A2+B4+O3”. Displays empirically found ranges of stability
for different perovskite materials. Re-printed from Ref. [1] with permission from
Springer-Verlag GmbH, Heidelberg, Germany.

and below the ideal value resulting in distortions of the crystal lattice and often intriguing
functionality [1, 19, 20].

1.2 SrTiO3 as Model Perovskite

Due to its good tolerance factor strontium titanate (SrTiO3) is an almost ideal representative
of the perovskite family [19]. It possesses a cubic structure that is stable over a wide range of
temperatures and pressures, see Figure 4 [21]. Compared to the technologically important
perovskite BaTiO3 it possesses a rather simple phase diagram [22, 23].

Because the crystallographic symmetry is reflected in the symmetry of crystal properties
[13], cubic Pm3̄m perovskites like SrTiO3 are not piezoelectric. This simple structure and its
stability make SrTiO3 the ideal ground to study complex defects and their interactions, since
the influence of defects is not obscured by piezo-, pyro-, and ferroelectricity. Additionally,
many relations found here can be transferred to more complicated perovskites such as BaTiO3
and PbTiO3. Consequently, it is probably the most well studied perovskite material [21, 24].

For most applications, however, ceramics need to be improved for easier processing and better
functional performance. This is allowed by the vast configurational space of perovskites,

4
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Figure 4: Schematic phase diagram of SrTiO3 and BaTiO3 at ambient pressure [21–23].

which is due to (i) doping and point defect engineering, (ii) the opportunity to form mixed
perovskites on the A-site, B-site or both, (iii) the possibility to form ordered and disordered
structures in these complex compositions, and (iv) a sometimes extremely large tolerance
for off-stoichiometry and structural vacancies [4]. In practice, their functional properties
are usually tailored by means of adjusting composition and microstructural features such as
grain boundaries. By giving an overview over important aspects of tailoring SrTiO3 via defect
engineering, see Figure 6, we will identify that the field of dislocation controlled properties
offers great prospects to further tailor the ceramic properties.

1.2.1 Doping and Alloying

A significant amount of research into defect engineering and doping of SrTiO3 make this
material a “model electroceramic” as highlighted in Refs. [24, 25]. Point defects are always
present in a crystal at finite temperature and the most common defect is a pair of strontium
and oxygen vacancies (Schottky-like) which is favored due to its low formation energy [24,
26, 27]. Also, oxygen vacancies and the corresponding formation of electron holes are a very
common defect reaction, despite some debate about the actual charge state of the vacancy
[28–34]. Because oxygen is part of the defect equilibria and oxygen vacancies are very
mobile, there is a strong dependence of conductivity on oxygen partial pressure [25, 35–38].
This results in n-type conductivity at low, and p-type conductivity at high oxygen partial
pressures [24].
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Nevertheless, conductivities of pure or lightly doped SrTiO3 are generally low and in the
range of 10−12 S cm−1 to 10−10 S cm−1 at ambient temperature [28, 39], reaching about
1 S cm−1 in the vicinity of 1000K [39]. Note, that low temperatures usually lead to lower
conductivity (semiconducting behavior) because ionic motion requires thermal activation and
defects tend to associate at low temperatures [24, 40–42]. Especially, the association of rather
mobile species like oxygen vacancies with less mobile species such as Fe- or Mn-dopants
has been investigated in detail because it can significantly reduce ionic conductivity at low
temperatures [28, 38, 43, 44].

The point defect equilibria determining conductivity can be very well controlled using
acceptor or donor doping which can occur by substitution on either the Sr- or the Ti-site
[24]. While the crystal reacts to the substitution with aliovalent ions by creating vacancies
or electronic charge carriers, the formation of interstitials is less common due to the good
packing of the perovskite lattice but can be observed, e.g., after irradiation [24, 26, 39,
45]. Thus, doping as well as oxygen partial pressure can be used to induce n- or p-type
semiconducting behavior. Nevertheless, as shown for example in the case of Fe-doped SrTiO3,
conductivity usually remains of ionic nature at ambient temperatures and becomes more
and more of electronic character at temperatures exceeding 400K [28, 40]. The precise
tailoring of conduction using, e.g., La-doping has been employed to produce oxygen partial
pressure sensors for exhaust gas with superior reaction time and simpler design compared to
conventional ZrO2-based λ-sensors [28, 46]. Further gases can be selectively detected using
various doping strategies as summarized by Szafraniak et al. [47]. Doped SrTiO3 has also
found use as photoelectrode in photocatalytic water splitting [48, 49] or even as a proton
conductor [50, 51].

Exceeding the regime of doping by adding larger amounts of substitutes on the Sr- or Ti-site,
a variety of solid solutions with different perovskites can be formed. As an example take
the random solid solution of SrTiO3 with BaTiO3, which forms a completely miscible system
[52–54]. Compared to BaTiO3 the addition of Sr lowers the Curie temperature until the
ferroelectric phase is fully suppressed around Sr0.96Ba0.04TiO3 [52, 53]. Just like doped
SrTiO3, the use of Sr1–xBaxTiO3 has been discussed as a gas sensor [47]. Moreover, it is
particularly popular as a lead-free dielectric for capacitors due to its high permittivity, low
dielectric loss and excellent tunability which is desired in microwave antenna applications
[47, 55, 56].

1.2.2 Microstructure Engineering

Adding to the opportunities of doping and alloying, the design of the ceramic microstructure
contributes another valuable engineering dimension, since microstructural features – encom-
passing grains and grain boundaries, inclusions, segregation, and space charge layers – are
decisive for many structural as well as functional ceramics [57].
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Figure 5: Space charge layers at grain boundaries allow to tailor the band structure spatially
and engineer the capacitor’s dielectric performance [77, 78]. There are different
length scales to this phenomenon: device level (left), grain boundary level (center),
and electronic structure (right).

In most applications polycrystalline SrTiO3 is used, thus, the engineering of grain boundaries
is applied extensively to enhance its electric and dielectric properties [24, 58–60]. Depending
on their symmetry and coherency, grain boundaries act as sinks for certain defects, especially
positive charges [61]. From a thermodynamic point of view, this segregation can be viewed
as an alteration of grain boundary energy by defects [62]. The variation of stoichiometry and
defect equilibria at grain boundaries can be enforced by doping of SrTiO3 before sintering or
during a separate firing procedure where dopants migrate from the material’s surface to its
interior along grain boundaries [61, 63–70]. Dopants segregated to grain boundaries hinder
electronic and ionic transport, leading to the creation of a space charge layer with oxygen ion
surplus [24, 40, 61, 71–76]. Therefore, grain boundaries exhibit p-type conductivity while
the grains, especially when reducing sintering conditions are used, exhibit n-type conductivity
[67, 70]. This results in Schottky barriers at the grain boundaries, see Figure 5 [77, 78].
By varying the size of the space charge layers the relative permittivity in SrTiO3 boundary
layer capacitors can be tailored in the range from 9400 to 65 000 while exhibiting high
resistivity and low dielectric losses [63, 67]. With the delicate interplay of grain boundaries,
surface, and space charges even a resistivity tuning by variation of applied voltage can
be produced [63, 70, 79]. This phenomenon is commonly employed in variable resistors,
so-called “varistors” [80].

Naturally, the control of microstructure is crucial for applications relying on grain boundary
dominated properties [64, 67]. Therefore, significant research has been put into understand-
ing grain growth and texture in various synthesis procedures [81–88]. An exceptionally
strong influence of grain boundaries is present in thin films and super-lattice structures
that have recently attracted significant interest [89]. There, the mechanical interaction of
different perovskites with SrTiO3 is exploited to induce strain and, thus, produce certain
dielectric effects or sub-structures inside functional perovskites such as BaTiO3, LaTiO3, and
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PbTiO3 [90–92]. Also, the use of SrTiO3 as a substrate for ferroelectric and superconduct-
ing thin films falls into this category [93, 94]. Such systems are not only used for their
ferroelectricity or superconductivity but also the use as capacitors, resistive switches, and
thermoelectrics have been demonstrated [95–97]. Another way to exploit the misfit strain of
different perovskites has been explored with ceramic core-shell structures where the core and
the shell of a particle are of different composition. The interplay of two different perovskites
has been suggested to be beneficial in the context of photochemistry [98], tailoring the
transition temperature of ferroelectrics [99], and piezoelectric hysteresis [100].

1.2.3 Dislocation Engineering

The engineering of chemical composition and microstructure as means of tailoring ceramics
are a well established field, see Figure 6. In metals the engineering of dislocations adds
a further dimension that is used to tailor, e.g., tensile strength [101]. Basically, the study
of dislocations in ceramics is as old as the topic of dislocations in metals [102]. Seminal
work has been published from the late 1950s to 1980s in crystal structures where single
crystals could be conveniently manufactured, e.g., many alkali halides, binary oxides, and few
ternary oxides [103–111]. It had already been recognized that dislocations have a strain field
associated but are also susceptible to charged dislocation cores enabling charge transport,
the interaction with electric fields and charged point defects [103, 106, 110, 112–114]. A
peculiarity of dislocations in ceramics is that they can possess charges at imperfect points of
the dislocation – e.g., jogs – but can also be “inherently charged” as a result of the Volterra
cut made in an ionic structure [103, 112, 115].

In these early works, dislocations were often seen as an artifact of imperfect crystal growth
during synthesis [116–120]. Rarely have dislocations been engineered systematically [104],
rather they were regarded as detrimental to, e.g., electronic properties [121–124]. Without
knowledge about dislocation engineering, a targeted tailoring is hardly feasible. Generally,
the literature over the past decades on dislocation engineering and subsequent tailoring of
ceramic properties is rather sparse, especially, when compared to chemical or microstructural
defect engineering, see Figure 6. We attribute this lack of interest to several reasons includ-
ing the restriction of dislocation mobility to high temperatures [104, 107, 111, 125], the
restriction to single crystals [107, 108], contradictory results about the effect of dislocations
on diffusion [110, 126], and the failure to recognize the impact of dislocations on functional
properties.

With the discovery of dislocation-based plastic deformation in SrTiO3 a method for the
controlled application of dislocations into (single) crystals became available for a family
of highly relevant crystals [127, 128]. On the one hand, it has been argued that the
plasticity in SrTiO3 single crystals marked the overcoming of the paradigm that “ductile
ceramics have remained an elusive and perhaps impossible goal, although toughened ceramics
have emerged as a reality” [111, 129]. Therefore, novel ceramic processing methods as
well as ceramics with improved resistance to fracture have been imagined [129–132]. On
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Figure 6: Defects with different dimensions and on various length scales along with some
examples of their prominent features. We focus on one-dimensional defects in
this thesis because they can be used to tailor a material by their elastic as well as
electrostatic fields.

the other hand, it was proposed that dislocations in perovskites could be used to tailor
functional effects like electrical conductivity and resistive switching [133–141], thermal
conductivity [142, 143], superconductivity [144, 145], and ferroelectric polarization [146–
151]. In principle, dislocations were regarded as means of “one-dimensional doping” [140],
“autobahns” for diffusion [137], sources of space charge regions [129], and a means of
“ferroelectric hardening” [152]. The concepts of considering dislocations as dopants and
creating space charge regions have, in fact, been borrowed from early research on dislocations
in semiconductors [121–123, 153]. However, these systems are hardly comparable to ceramics
due to their covalent bonding which creates the complication of dangling bonds at dislocation
cores.

Despite the great hopes, many of the ambitions have not been fulfilled so far. Ductility of
SrTiO3 is still largely limited to single crystals and could not be engineered into polycrys-
tals [132, 154]. Dislocations could hardly be exploited as channels of increased oxygen
ion conductivity and the contribution of dislocations to overall conductivity is still debated
[137–140]. The expected influence on phonon thermal conductivity could not be demon-
strated, probably due to too low dislocation density [143]. The interaction of ferroelectric
properties and dislocations in ferroelectric perovskites is still poorly understood [151]. As
many phenomena do not play out as expected, there is a demand for a solid theoretical
understanding of dislocations at their microscopic level to enable better understanding of the
experimentally observed processes as well as a more targeted employment of dislocations.
Although some atomistic studies regarding the atomic nature of dislocations in SrTiO3 are
available, see Refs. [137–139, 149, 150, 155, 156], none consistently compares dislocation
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structures and elucidates the relation of dislocations and SrTiO3 plasticity. Here we see the
room for improvement and the chance that theoretical studies can explain experimental
observations but also guide further theoretical and experimental efforts.

We choose to proceed into the study of the dislocation structure at an atomic level employing
atomistic computer simulations. With classical molecular dynamics simulations the elastic
as well as electrostatic fields of dislocations in ceramics can be conveniently studied while
retaining the discrete atomic nature of the crystal [137–139, 149, 150, 155–157]. A special
focus will be put on the relation of microscopic features of different dislocation configurations
– Burgers vector, line vector, and dislocation core charge – with the mechanical properties
of dislocations. Thereby, we create insights enabling better control over the mechanical
response of dislocations, especially at low temperature [141].

The subsequent parts of this thesis start out by addressing some fundamentals about dis-
locations that are required to understand the findings in literature, simulation setups, and
interpretation of simulation results. Then, we will come back to the literature knowledge
about dislocations in ceramics and more precisely identify the questions that will be ad-
dressed (Section 1.5). Before actually answering these questions, some simulation concepts
will be presented to explain why atomistic simulations are well suited for the study of dislo-
cations (Chapter 2). In the main part (Chapter 3), the equilibrium structure (Section 3.1),
mobility (Section 3.2), and interactions of dislocations (Section 3.3) in SrTiO3 will be studied.
Ultimately, some concluding remarks are in order to summarize the outcome of this work
and guide research to further advance in the field of mechanical control over dislocations in
perovskites (Chapter 4).

1.3 Theory of Dislocations

In most solids that exhibit appreciable plastic deformation dislocations are the carriers of this
plasticity [158]. Because most research on dislocations was conducted on metals or simple
crystal structures [159], we will adopt a general picture on dislocations here and refer to the
special case of dislocations in SrTiO3 in a later section. For now, we will present the typical
geometry of a dislocation and how it can be identified in a general crystal.

In their simplest form dislocations are line-like crystal defects that have a one-dimensional
periodicity [115]. Their line direction is given by the line vector t⃗. Each dislocation carriers a
quantum of deformation called Burgers vector b⃗ that describes the magnitude of the crystal
fault [160, 161]. When enclosing the dislocation line by connecting neighboring atoms,
the vector b⃗ describes the mismatch when a symmetric path around the dislocation line is
performed, see Figure 7. In essence, this so-called Burgers circuit method will be used by
the dislocation extraction algorithm (DXA) to locate dislocations in our atomistic simulations
[162, 163].

10



A b⃗A

a) b)

c) d)

Figure 7: Schematic models of dislocations in a primitive cubic lattice, adapted from
Ref. [164]. (a) and (b) show how the Burgers circuit in the dislocated (a) and
in the ideal lattice (b) can identify the Burgers vector. While (c) shows an edge
dislocation, (d) shows a screw dislocation in a three-dimensional representation.

As displayed in Figure 7, the Burgers vector can either be parallel or perpendicular to the
line direction. These two situations are termed screw and edge dislocations, respectively
[160, 161, 164, 165]. Theoretically, a screw dislocation can be constructed by partly cleaving
the crystal and shifting one half of the partially cleaved crystal with respect to the other
half [160, 161]. In contrast, an edge dislocation results when an extra crystal half-plane
is inserted in between two crystal planes [102]. Dislocations where b⃗ and t⃗ are neither
perpendicular nor parallel to each other are, consequently, called mixed dislocations [166].
The Burgers vectors in Figure 7 are conventional Burgers vectors, i.e., they correspond to a
linear combination of crystal lattice vectors. If that is not the case, so-called partial Burgers
vectors, at least the crystal to one side of the dislocation line must also be faulted [159]. All
these situations, i.e., edge, screw, mixed, and partial dislocations do appear in SrTiO3 and
their specific relation is discussed towards the end of this section.

11



For plastic deformation to occur, the dislocation has to move, e.g., as a result of applied
stress [102, 164, 167]. However, the mechanical response of a dislocation is anisotropic and
determined by its glide plane with normal s⃗. It describes the plane in which a dislocation
moves by dislocation glide and is simply the vector perpendicular to b⃗ and t⃗ in the case of
edge dislocations [168]. The case where edge dislocations do not move within glide plane is
referred to as climb or non-conservative motion and typically requires the diffusion of atoms
around the dislocation core [169]. For screw dislocations, there is no unique direction in
which a screw dislocation can move [169]. In a continuous medium it could in principle move
in any direction. Yet, slip is restricted by crystal symmetry along a few specific directions.
The modes of motion for a dislocation in SrTiO3 are investigated in Section 3.2.

1.3.1 Elastic Continuum Description of Dislocations

The construction of a dislocation produces a linear fault which, in turn, results in a mechanical
response of the crystal lattice to the defect [102]. Thus, in the next paragraphs, themechanical
fields of edge and screw dislocations will be described in the framework of linear elasticity.

After making the cut-and-shift procedure to create a dislocation, the crystal is left with a
discontinuity right at the dislocation line. This region and its immediate vicinity are referred
to as the dislocation core. The treatment in conventional continuum mechanics, thus, leads
to a technical problem because it entails discontinuous solutions for the displacement field ui,
the strain field εi j and the stress field σi j that are complicated to solve [170]. However, this
discontinuity is only a problem right at the dislocation core [169]. At some distance from the
dislocation core (commonly a distance of b =

|︁

|︁b⃗
|︁

|︁ is used) the displacement fields converge
to an elastic response. Here, we follow the approach that is presented in common textbooks,
for instance Ref. [171], where the continuum solution is restricted to a region outside the
dislocation core. Note, that the problem of the large discontinuous displacement at the
dislocation core can be circumvented in atomistic simulations where atomic interactions
dictate the actual arrangement at the dislocation core.

If we accept that the displacement field ui shows either a jump or a singularity at the
dislocation origin, it can be shown that the total deformation tensor β T

i j
can be obtained by

derivation, using Einstein notation [172, 173]:

ui, j = β
T
i j = βi j + β

P
i j . (2)

β T
i j
consists of an elastic βi j and a plastic contribution β P

i j
. As we are interested in the elastic

description, we continue with the definition of the elastic strain tensor εi j which is the
symmetric part of the elastic deformation βi j [173]:

εi j =
1

2

�

βi j + β ji

�

. (3)

To transition from the elastic strain tensor to the stress tensor, material parameters are
required. In principle the elastic parameters of any material are given by the fourth rank
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Table 1: Mechanical fields produced by screw and edge dislocations [171, 177]. The Burgers
vector with length b is pointing in z-direction for the screw and along x -direction
for the edge dislocation. The coordinates x and y are chosen with the dislocation
core at the origin and r =

p

x2 + y2 is the distance to the origin. In an isotropic
medium only the shear modulus µ and the Poisson’s ratio ν are needed as material
parameters.

screw dislocation edge dislocation

ux 0 b
2π

�

arctan
�

y
x

�

+ 1
2(1−ν)

x y

r2

�

uy 0 −b
8π(1−ν)
�

(1− 2ν) ln r2 +
x2−y2

r2

�

uz
b

2π arctan
�

y
x

�

0

εx x 0 −b
4π(1−ν)r2 y
�

(1− 2ν) + 2x2

r2

�

εy y 0 −b
4π(1−ν)r2 y
�

(1− 2ν)− 2x2

r2

�

εzz 0 0

εx y , εy x 0 b
4π(1−ν)r4 x(x2 − y2)

εxz, εzx
−b
2π

y

r2 0

εyz, εz y
b

2π
x
r2 0

σx x 0
−µb

2π(1−ν)r4 y(3x2 + y2)

σy y 0
µb

2π(1−ν)r4 y(x2 − y2)

σzz 0
−µb

π(1−ν)r2νy

σx y , σy x 0
µb

2π(1−ν)r4 x(x2 − y2)

σxz, σzx
−µb
2π

y

r2 0

σyz, σz y
µb
2π

x
r2 0

elasticity tensor Ci jkl or the inverse compliance tensor Si jkl [14, 174]. For simplicity, assume
an isotropic material with shear modulus µ and Poisson’s ratio ν. In the case of SrTiO3 the
condition of an isotropic material is fulfilled accurately enough such that we can describe
Hooke’s lawwith the two givenmaterial parameters [175] and bymaking use of the Kronecker
delta δi j [176]:

σi j = 2µ
�

εi j +
ν

1− 2ν
δi jεkk

�

. (4)

The list of solutions for ui, εi j, and σi j for pure edge and screw dislocations provided in
Table 1 is adapted from Cai and Nix [171]. By the application of displacement fields to the
atomic lattice, we have an alternative way of constructing dislocations in a simulation.
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In the solutions in Table 1 the discontinuity at the dislocation line as a result of the δ-
distribution-like dislocation core is apparent [171]. Additionally, note that the displacement
field ui decays with ln (r) and, thus, εi j and σi j are proportional to 1

r . Therefore, these fields
decay rather slowly with increasing distance from the dislocation core compared to, e.g.,
charge defects where Coulomb force decays proportional to 1

r2 . Consequently, the study of
dislocations in a computer simulation requires means to avoid finite size effects, such as
using realistic distances between dislocations, large simulation volumes or Green’s function
approaches [169].

The divergence at r close to zero and the slow convergence at large r are also a problem
when the excess defect energy of a dislocation shall be calculated because the integral in
Equation (5) does not converge. To alleviate this problem finite boundaries r0 and R are
chosen for the integration of the elastic self-energy Eel of a dislocation [171]:

Eel =
1

2

∫︂ L1

L0

∫︂ R

r0

σi jεi jdR′dl , (5)

Γ (R) =

⎧

⎨

⎩

µb2

4π(1−ν)
�

ln
�

R
r0

�

− 1
2

�

for edge dislocation,

µb2

4π

�

ln
�

R
r0

�

− 1
�

for screw dislocation.
(6)

Note that the first integral in Equation (5) runs along the line vector of the dislocation and
the second integral is orthogonal to it. For convenience Eel is usually normalized by the
dislocation length and sometimes referred to as the line energy Γ , see Equation (6) [159].
The elastic energy does neither converge for infinitely large crystals (large R) nor close to
the dislocation core (small r0). For the latter boundary r0 an energy contribution termed
“dislocation core energy” [159] is used to account for the energy in the inner core region,
where linear elasticity breaks down [169]. The extent of the upper integration boundary, R,
is limited by other dislocations or surfaces of the crystal [159].

1.3.2 Dislocation Glide

Deformation by dislocations occurs incrementally: Each dislocation carries a quantum of de-
formation, the Burgers vector. By motion of the dislocation through the crystal a deformation
of magnitude b is realized. The cumulative motion of many dislocations ultimately leads to
macroscopic plastic deformation.

Dislocations can either move within their glide plane (conservative motion) or out of their
glide plane (non-conservative motion). Glide motion is usually the easiest mode of dislocation
motion where the dislocation line moves step by step from one lattice plane to the next [102].
This motion is driven by mechanical load, i.e., stress and strain. The action f⃗

PK
of an external

applied stress σext on a dislocation line is connected to the orientation of the dislocation via
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the Peach-Koehler formula [168], given in Einstein and vector notation making use of the
Levi-Civita symbol εi jk:

f PKi = εi jkσ
ext
l j

bl tk , (7)

f⃗
PK
=
�

b⃗ · σ⃗

⃗

ext
�

× t⃗ . (8)

Equation (8), therefore, describes the geometry of optimal loading of a dislocation. In
the simulations of dislocation glide in Section 3.2 we will always use this optimal loading
geometry.

As f PK
i

is increased by raising σext
l j

there will be a stress level where the dislocation starts to
glide at 0 K. This stress level is commonly referred to as the Peierls stress τm [178]. Its origin
is the Peierls energy, i.e., the energy barrier that has to be overcome to move a dislocation on
its respective potential energy landscape, see Figure 8. In equilibrium a dislocation stays
in a minimum on this energy landscape (Peierls valley). During motion, it surmounts an
intermediate maximum (Peierls hill) and moves into the adjacent valley. By moving from
Peierls valley to Peierls valley the dislocation moves step-wise [179]. At finite temperature,
the motion of a dislocation line is also thermally activated reducing the average stress needed
to overcome the Peierls hill. Since information about the dislocation motion can be drawn
from the energetic configuration, we will make use of the stacking fault energy hypersurface
which describes the energetic relation of different displacement in the glide plane, thus,
allowing conclusions about the dislocation structure [180], see Section 3.1.

In any macroscopic crystal, a dislocation does not surmount the Peierls barrier as a straight
line [181]. This would require a large amount of activation energy. Instead, it is common that
only a segment of the dislocation surmounts the Peierls barrier and moves to the adjacent
Peierls valley, see Figure 8. This segment is bounded by two kinks which gives this process
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Figure 8: Schematic model of a simple energy landscape for an edge dislocation indicating
its important features.
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its name “kink pair formation”. Subsequently, these kinks move to the side and thereby drag
the full dislocation line over the Peierls barrier.

1.4 Overview of Dislocation Types in SrTiO3

So far dislocations have been discussed in a qualitative and quantitative framework for
general crystals. However, dislocations in ceramics such as SrTiO3 are especially interesting
and relevant for the improvement of ceramic properties. Different slip systems are available in
SrTiO3, which are commonly labeled by their Burgers vector in angular brackets and slip plane
in curly braces. On the one hand, the “soft” slip system 〈11 0〉{1 10} features easy dislocation
glide even at and below room temperature. On the other hand, the “hard” 〈10 0〉{00 1}
system can only be activated at high temperatures [127, 128, 132, 182–184]. This general
feature is known from other perovskites [185, 186]. Thus, we focus on dislocations of
〈11 0〉{1 10} orientation and only shortly discuss dislocations of other orientations that were
found experimentally at low temperatures. For conciseness, we classify the dislocations with
letters A to E ordered by their relative importance and not by their historic appearance.

The early works (before 1996) on dislocations in perovskites, including SrTiO3, have been
summarized by Mao and Knowles [114]. In their transmission electron microscopy (TEM)
studies of dislocations after high temperature synthesis they find 〈0 11〉{0 10} dislocations.
We will consider this to be dislocation type E , see Figure 9. It appears dissociated into
two equal and collinear partial dislocations, 1

2〈0 11〉{0 10}, either in the glide plane (glide
dissociation) or out of the glide plane (climb dissociation). This is in contradiction to the
then known dislocations in other perovskites [182, 185, 186], but no satisfactory explanation
could be given. We note that the dislocations observed in this study have experienced a strong
influence from the high temperatures of the synthesis procedure as well as heavy doping. Later,
however, this dislocation type was also reported in Nb-doped SrTiO3 after Vickers indentation
and investigated theoretically [187, 188]. None of the these studies, however, show notable
plastic deformation or expect to control the arrangement of dislocations mechanically.

As already mentioned, the revived interest into dislocations in SrTiO3 goes back to the studies
by Brunner et al. [127]. By compressing SrTiO3 single crystals along a crystallographic [00 1]

direction they produce the maximum shear stress on {1 10} planes. Dislocation formed on
these {1 10} planes possess a 〈110〉 Burgers vector and are seemingly dissociated. Details
of their line orientation and the type of splitting, however, have often been neglected in
literature [127, 128, 140, 189].

Despite the ductility itself, also the temperature-dependence of the yield strength was
surprising [127, 128, 184]. As displayed in Figure 10, the stress at which SrTiO3 either
yields in a ductile (τ0) or brittle fashion (τfr) is low at temperatures less than about 1000K.
Exceeding 1000K the material shows brittle fracture at increasing fracture stresses. Only
when temperature exceeds a certain threshold, the behavior is ductile and yield stress
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Figure 9: Crystallographic orientation of defining vectors for dislocation type E . Unit cell of
cubic SrTiO3 with Burgers vector b⃗ (orange), line vector t⃗ (blue), and slip plane n⃗

(purple).

decreases again. At first, there was no convincing explanation to this behavior. However,
the dependence on crystallographic orientation, see Figure 10, suggests that different glide
systems need to be involved in the different regimes.

Regarding the arrangement of these mechanically controlled dislocations in the 〈11 0〉{1 10}
system it was suggested by Taeri et al. [184] that they can be of edge or of screw character.
We will refer to the former edge type as type A dislocations and the screw type as type
B dislocations, see Figure 11. For the edge dislocation A, Sigle et al. [190] later specified
that they were predominantly found at temperatures of 1700K in a climb dissociated con-
figuration, i.e., with 1

2〈11 0〉 Burgers vector. At temperatures exceeding 1000K sufficient
activation energy for such a climb should be present. Note, that climb dissociated type A

dislocations are generally immobile at temperatures where not sufficient activation energy for
climb is available [190, 191]. The climb dissociation was also verified after low temperature
deformation but after the influence of ultra-high voltage TEM [156]. It is probable that
the sample preparation procedures for the microscope and its strong electron beam have a
similar activating influence as high thermal energy [192, 193]. Climb dissociated partials of
〈11 0〉{1 10} edge dislocations have also been constructed in bi-crystal experiments. It was
found that two corresponding partials feature different ratios of Sr and Ti at the dislocation
core suggesting that the two partial dislocations are actually not identical [194]. However,
the climb dissociation is not a natural feature but has been enforced by the way of construct-
ing the bi-crystal. The results are, therefore, of limited use in determining the equilibrium
structure of these dislocations.

In contrast, screw type B dislocations were present after deformation at room temperature
and below [190, 195, 196]. While this suggests a low mobility at low temperatures, there
is also evidence of type B dislocations to be more mobile at room temperature that type A

dislocations [197]. Also, the experimental results regarding the splitting of this dislocation
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Figure 10: Yield stress (τ0, filled symbols) and fracture stress (τfr, empty symbols) of SrTiO3
at different temperatures and loading directions (color coded) [184]. Regimes A
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the intermediate temperature regime B samples fail in a brittle fashion. Therefore,
not the yield stress but the fracture stress is given for these samples.

type into partial dislocations are contradictory [184, 190, 195, 197, 198]. Nevertheless, from
a theoretical standpoint it is expected that type A and B are both able to dissociate in their
glide plane [149, 188]. Hirel et al. [149] used the calculation of the stacking fault energy
hypersurface (γ-surface) to show that there is a metastable configuration that stabilizes the
stacking fault appearing between two equal and collinear partial dislocations.

The metastable stacking fault configuration could also enable climb dissociation of type A

dislocations, which was confirmed in MD simulations at extremely high temperatures and
pressures [149, 155]. The climb dissociation immobilizes type A dislocations. Therefore,
SrTiO3 might become brittle at elevated temperatures that are high enough for type A to
climb dissociate but too low to activate the hard slip system. Only when temperature is
increased even further the high temperature ductility regime is reached where dislocations
with 〈10 0〉 Burgers vector dominate [127, 128, 155, 184]. While so much evidence exists
on climb dissociated configurations of A dislocations, we, surprisingly, found hardly any
experimental proof of glide dissociated type A dislocations [199]. Rather full and climb
dissociated type A dislocations dominate the electron microscopic findings [156].

In the soft slip system 〈11 0〉{1 10} that hosts the edge and screw dislocations, i.e., types
A and B, a third dislocation line orientation was also observed. Instead of dislocation line
vectors perpendicular (〈00 1〉) or parallel (〈11 0〉) to the Burgers vector, the line vector of
this third dislocation type is 〈11 1〉 leading to the mixed type C dislocation, see Figure 12. It
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Figure 11: Crystallographic orientation of defining vectors for dislocation types A and B.
Unit cell of cubic SrTiO3 with Burgers vector b⃗ (orange), line vector t⃗ (blue), and
slip plane n⃗ (purple). The full Burgers vector has been split into two equal parts
to indicate glide dissociation.

was first mentioned in bulk compression of SrTiO3 [199] and described in more detail in
Refs. [129, 136, 156]. This dislocation type was also reported to glide dissociate into two
equal and collinear partials [136].

In addition to C-type dislocations, Jin et al. [136] also reported a type D dislocation that can
be formed from two type C dislocations, see Figure 13. Since it also has a 〈11 0〉 Burgers
vectors like dislocation types A, B, C, and E , we will include it into the list of dislocations
related to the soft slip system studied here.

We have now established that many types of dislocations have been proposed in literature.
Mainly, dislocations of Burgers vector 〈110〉 that are part of the soft 〈11 0〉{1 10} slip system
or related to it are found in experiments where dislocation-based plasticity was observed.
Therefore, the dislocation types summarized in Table 2 are the ones that are susceptible to
mechanical tailoring of dislocation arrangements in SrTiO3.

Table 2: Summary of the vectors corresponding to dislocation types A to E and the accord-
ing references.

b⃗ t⃗ n⃗ type configuration Refs.

A a〈11 0〉 〈00 1〉 {1 10} edge full/glide/climb [200]
B a〈11 0〉 〈11 0〉 {1 10} screw full/glide [201]
C a〈11 0〉 〈11 1〉 {1 10} mixed full/glide [202]
D a〈11 0〉 〈1 11〉 {1 1 2} edge full/climb [203]
E a〈11 0〉 〈10 0〉 {00 1} mixed full/glide/climb [204]
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Figure 12: Crystallographic orientation of defining vectors for dislocation type C. Unit cell of
cubic SrTiO3 with Burgers vector b⃗ (orange), line vector t⃗ (blue), and slip plane n⃗

(purple). The full Burgers vector has been split into two equal parts to indicate
glide dissociation.

Regarding the charge state of dislocations and dislocation cores with 〈11 0〉 Burgers vector,
information is very limited. Some indirect observations from the interaction with point
defects and interactions with electric and dielectric properties are available, but generally
the dislocation types have not been specified. Adepalli et al. [140] perform tracer diffusion
experiments in different atmospheres and find that 〈11 0〉 dislocations possess a positive
charge due to oxygen deficiency. The resulting negative space charge layers around the
dislocations overlap significantly at high dislocation densities strongly inhibiting oxygen
tracer diffusion. In addition to the interaction with oxygen vacancies, Refs. [205–207] find
that a slight stoichiometric imbalance in favor of Sr and reducing conditions, increasing the
oxygen vacancy concentration, ease dislocation nucleation. At the same time dislocation
mobility is reduced [206, 207].

With respect to the motion of 〈11 0〉 dislocations, theoretical investigation based on the
kink pair theory have been conducted [208–210]. They basically confirm that experimental
observations are the result of kink formation and migration, and that kink formation on
corresponding pairs of partial dislocations are probably correlated at low temperature.
Correlated formation of kinks has been discussed for a long time as a mechanism that
significantly reduces the required force to move a dislocation [211]. We note, that the
dislocation migration by kink formation for these dislocation types as visualized by electron
microscopy in Refs. [197, 199] leads to significantly reduced stresses required to actually
move the dislocation in a macroscopic crystal at finite temperature compared to microscopic
simulations at 0 K. Experimentally, Javaid et al. [212] estimated the stress required to
move a dislocation at 25 ◦C to 350 ◦C from dislocation pile-ups after nanoindentation. They
report the required stress level to be in the range of 89MPa to 36MPa. At 0K, however,
the Peierls stress for type A and B to rigidly overcome the Peierls hill was estimated from
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Figure 13: Crystallographic orientation of defining vectors for dislocation type D. Unit cell
of cubic SrTiO3 with Burgers vector b⃗ (orange), line vector t⃗ (blue), and slip plane
n⃗ (purple).

simulations of continuous straining of dislocation monopoles to be around 1.5GPa and
2.64GPa, respectively [150].

The presence of dislocations in the SrTiO3 crystals before mechanical load seems to be an
important factor to enable plastic deformation [198]. In general, feasible dislocation densities
in SrTiO3 vary by synthesis method and loading procedures. The upper limit in single crystal
compression seems to be around 1013m−2 as verified by various microscopy and diffraction
techniques [129, 189, 213]. Via rough polishing of single crystal surfaces, however, local
dislocation densities of 1015m−2 and higher can be achieved [129, 136].

In summary, experimental investigations have contributed great efforts to identify means
of mechanical dislocation control and measure the effect on microscopic and macroscopic
properties. However, the research community is well aware that, in order to understand the
transport, electronic, and mechanical properties of dislocations in more detail, more detailed
investigations of the relevant dislocations is required. Therefore, numerous publications are
requesting research on the atomistic structure of dislocations in SrTiO3, the ultimate goal
being to facilitate dislocation-based or -enhanced functionality [129, 141, 207].

1.5 Research Questions

The preceding literature review has revealed that even in a well investigated system like
SrTiO3, a conclusive understanding of dislocation structure and mechanics are lacking.
Without understanding their microscopic properties and the relation of dislocation structure
and mechanical properties, a targeted engineering of dislocations and, ultimately, tailoring of
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material properties is hardly possible. At the same time, we have identified that dislocations
in engineering ceramics have great potential. To leverage this potential, this thesis aims to
reduce this knowledge gap in three consecutive sections.

Section 3.1 aims to understand the dislocation structure in their equilibrium configuration by
performing static simulations and simulations at very low temperature. In these simulations
the relaxation of particles and structures as well as the atomic motion is easily controlled
and observed. The following questions are addressed:

1. Analytical and continuum theories of dislocations are mostly based on observations
made in metals or are deduced from mathematical models. Can these theories be
employed to predict the behavior of dislocations in perovskites?

2. TypeA dislocations are reported in literature as the prime carrier of plasticity in SrTiO3
[190]. What microscopic structure of this dislocation type is responsible for easy glide,
and how does it relate to the ductile-to-brittle transition [128, 155]?

3. Type B dislocations are the screw analog of type A edge dislocations. How does the
different alignment of dislocation line and Burgers vector affect the dislocation core
structure and its ability to glide?

4. Type C dislocations mark an important mixed type between type A and B dislocations
[136]. Do these mixed dislocations rather behave like edge or screw dislocations or do
they show entirely new characteristics?

5. It has been suggested that type D dislocations can form through a reaction of two type
C dislocations [136]. However, it differs from type C by the line direction. How does
this different line direction influence the structure of the dislocation and its core?

6. Type E dislocations have a 〈11 0〉 Burgers vector and {00 1} glide plane [114]. Despite
having a different glide plane than types A to C, can E type dislocations also glide
dissociate and contribute to plasticity?

Section 3.2 extends the static picture of dislocations towards the motion of dislocations. Based
on the equilibrium structure we make predictions about the mobility of the various dislocation
types. These predictions are then checked by application of stress to the dislocations. Our
studies will, thus, answer these questions:

1. What is the Peierls stress of dislocation types A, B, and C?

2. How does kink formation and migration affect the stress level required to move dislo-
cations?

3. What is the mode of motion of the dislocations, and how do they interact with point
defects?
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Finally, multiple dislocations are required for the macroscopic plastic deformation of crystals.
Therefore, Section 3.3 addresses the question if we can relate experimental observations to
simulations of large dislocation arrangements.

1. In bulk deformation experiments by Porz et al. [156] dislocations were created by
nucleation at a stress concentrator and dislocation multiplication. How does dislocation
multiplication occur when dislocations move through the sample over longer distances?

2. It has been shown, e.g., in Refs. [132, 198], that already existing dislocations strongly
influence the plasticity of SrTiO3 at a microscopic level. Does there need to be an
arrangement of pre-existing dislocations in order to facilitate macroscopic plasticity
up to high strain?
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2 Computational Methods

In order to study dislocations on an atomistic level we require three ingredients: (i) A model
for the physical interactions of the particles, (ii) methods using these interactions to simulate
the material’s response, and (iii) a proper setup of the atomic arrangements and boundary
conditions such that we can reveal the properties of interest. Therefore, we first discuss which
model of the microscopic interactions is appropriate and what parameters are used. Next, the
computational methods for static and dynamic simulations are explained shortly. Here, we add
a section on the software implementations that are actually used in executing the computations.
And last, the specific structures of our setups will be explained as they connect the observable
properties and their meaning, e.g., critical stress, to the atomic arrangement, e.g., a pair of
dislocations.

2.1 Modeling of Interatomic Interactions

In this thesis we want to study the static and dynamic behavior of dislocations in SrTiO3.
The behavior of any system we study is determined by its tendency to achieve a state of
minimum energy [214]. The type of energy relevant depends on the boundary conditions
of the system. More generally, the combination of a system with its constituents and the
applied boundary conditions are called “ensemble” [215].

In the easiest case, the energy under consideration is the potential part Epot of the inner
energy E [215]. Thus, we require a model that allows to calculate the potential energy
in dependence on the system’s configuration. Three models are commonly employed on
the length scales that are appropriate for studying the configuration of dislocations and
dislocation cores, see Figure 14.

At the lowest level are a group of models relying on density functional theory (DFT). The
energy Epot[n({r⃗k})] of an ensemble of atoms is obtained based on the electron density
n({r⃗k}), which in turn depends on the position of all atoms {r⃗k} [219, 220]. The electron
density is obtained by treating the valence electrons of the atoms explicitly [221]. Therefore,
they are computationally very demanding which currently restricts the number of atoms
N that can be treated simultaneously to a few hundred [216]. Nevertheless, they have the
advantage of requiring little a priori knowledge about the atomic interactions and providing

25



DFT classical potentials Heff

Epot[n({r⃗k})]

electron density

Å – nm
Abinit

Epot({r⃗k})

atomic interactions
nm – µm

LAMMPS

Epot
�

{e⃗k} ,
�

p⃗k

	�

unit cell description
nm – µm

feram

p⃗i p⃗ j

e⃗i e⃗ j

decreasing feature size, increasing level of detail

coarse-graining, increasing computational efficiency

Figure 14: Comparison of the ways to calculate potential energy Epot from different micro-
scopicmodels inmaterials science. The basic quantities described, typical length
scales, and an example for a software implementation are also given [216–218].

some of the most exact results in solid state physics [222]. We will use the DFT-approach for
the calculation of γ-surfaces where we desire results with as little as possible assumptions
about the atomic interaction while requiring the treatment of few atoms only. The γ-surface
is a useful descriptor for accessing the energetics of dislocation motion in a crystal [180, 223,
224].

At a coarser level the interactions between particles are described by analytic formulae called
classical interatomic potentials. The interatomic potential is a description of energy or force
that one atom exerts onto another atom allowing the calculation of Epot({r⃗k}) directly as a
function of the atomic positions [225]. Therefore, simulations using interatomic potentials
can currently be employed to study up to 109 atoms, although simulations up to a few million
atoms are more common [217]. Efficiency comes at the cost of generality of the interatomic
potentials. The study of a certain material usually requires the time-consuming design of a
new interatomic potential for each material and its applicability is often restricted to a range
of boundary conditions, such as certain crystal phases [225].

The most basic variant of interatomic potentials features only pair-wise interactions of
particles [226, 227]. While classical pair-wise potentials are easy to implement and analyze,
more complex alternatives have been developed for more accurate material descriptions.
Popular examples include potentials with fixed ionic charges (rigid ion potential) [157, 228],
separate core and shell particles for each ion [26, 27, 54, 229], variable ionic charge (charge
transfer models) [230], and embedding terms for electron density (embedded atom method)
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[231]. Recently, interatomic potentials derived from machine learning approaches have
gained popularity and demonstrated accurate results for a variety of materials [232–234].
Typically, these machine learning potentials such as the Gaussian Approximation Potentials
[235, 236], Moment Tensor Potentials [237], and Atomic Cluster Expansion [238] take into
account higher order interactions, i.e., interactions are derived from a group of neighboring
particles instead of pair-wise interactions.

Because we are concerned with one certain material, SrTiO3, and require samples of several
nanometers in size to capture the elastic fields of dislocations an interatomic potential is
the method of choice. For the study of SrTiO3 rigid ion [157, 228] as well as core-shell
potentials [26, 27, 54, 229] have been proposed. The selection of the model used in this
thesis is discussed in Section 2.1.2.

As an even more coarse-grained level the effective Hamiltonian framework neglects the
atomic nature of the crystal and represents the solid on a unit cell basis. The energy is
calculated based on effective quantities that are important for the phenomena of interest
such as phase transformations [239]. For studying ferroelectrics, for example, each unit cell
can be well described by one vector for strain e⃗k and one vector for the local optic mode p⃗k

which is responsible for the local polarization [240, 241]. Potential energy Epot
�

{e⃗k} ,
�

p⃗k

	�

is then a function of these two vectors. In the case of a perovskite this reduces the positional
degrees of freedom from 15 per formula unit in the interatomic potential (5 atoms with 3
positional coordinates) to 6 in the effective Hamiltonian approach (2 vectors with 3 entries
each). This increase in efficiency comes again at a trade-off: only systems where unit cells are
complete and on fixed positions can be evaluated. Therefore, this approach is not appropriate
for studying dislocations.

In the following sections we will elaborate on the models and methods employed in more
detail. First, we describe the models that are used to represent the physical behavior of
an ensemble of atoms, i.e., the DFT approach as well as interatomic potentials. Second we
focus on means to optimize, molecular statics, or sample the finite temperature behavior,
molecular dynamics, of our ensembles. Third, as an ensemble includes boundary conditions,
they will also be touched upon shortly. After a short note of the software employed for our
purposes, we finally discuss the construction of the simulated samples.

2.1.1 Density Functional Theory Simulations

The idea of applying density functional theory in materials science is based on the observation
that many quantities of physical systems are a consequence of their electronic structure [222].
If, therefore, we have a tool to reliably obtain a good approximation for the electronic structure
one can in principle derive many quantities of interest. Note, that exact solutions are not
available for any relevant physical system and numerical approximations need to be made
[219, 220].
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The name DFT derives from the theorem that for any system of interacting electrons with a
density n({r⃗k}) that is a function of the ionic positions, the minimum energy state – called
ground-state – has an energy that is described solely by the electron density. Electron density
n is described in terms of a set of electron wave functions {ψi(r⃗)}. Therefore, the ground-
state energy depends only on the functional Hamiltonian Ĥ of the electron wave functions
{ψi(r⃗)} [219]. In practice the Hamiltonian is evaluated by numerical integration on a grid
in reciprocal space [216].

At the core of DFT calculations is a method to obtain n({r⃗k}) for the ground state in a
self-consistent scheme [220]. The self-consistent scheme (also called self-consistent field
calculations, SCF) iteratively computes the electron density n({r⃗k}) from which all other
quantities are derived. This cycle requires some knowledge about the Hamiltonian Ĥ in order
to assess the energy of a certain electronic configuration. At this point the energy contributions
from the exchange interaction of paired electron, the correlation between electrons, and
the electronic self-interaction are not exactly known [220, 222, 242]. Different schemes
have been devised for an accurate description of this so-called exchange correlation energy
εxc, but its contribution still remains the main obstacle in modern DFT calculations [243].
Ultimately, the user has to decide on the trade-off between accuracy and computational
effort – a choice which may vary depending on the system under study.

In the following we use a specific variant of DFT that makes use of projector-augmented
electron wave functions (PAW) and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [244–246]. In practice, the use of PAW functions reduces the necessary energy
cut-offs of the wave functions that are needed to obtain accurate results, while the PBE
formulation of the exchange-correlation functional is a good compromise of computational
efficiency and accuracy.

Note, that DFT per se only results in the ground state’s electron density. Yet, energy and
forces on atomic nuclei can be readily derived with any modern software package, e.g.,
Refs. [216, 247, 248]. Following the Born-Oppenheimer approximation [249] the treatment
of the motion of atomic nuclei is separated from the distribution of the electron density. Once
the electron wave functions have been obtained, the forces on the nuclei can be calculated
directly [250, 251]. Therefore, the integration of DFT forces as the basis of molecular statics
and molecular dynamics calculations is possible, despite at large computational cost.

2.1.2 Classical Interatomic Potentials

In the particle description of classical potentials [215] atoms are represented as mathematical
mass points, see Figure 14. In the simplest form, a pair potential φi j describes the energy of
one particle i interacting with other particles j in a functional or tabulated form. For solids,
a potential typically defines the interactions between two particles such that it possesses
a large positive value at very close distances (repulsion), a small minimum at a close to
intermediate distance (equilibrium distance in a two particle system), and reduces to zero
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for very large distances. The potential energy of a system of atoms is then obtained by
summation over all pair-wise interaction,

Epot =
1

2

∑︂

i

∑︂

j

φi j

�

ri j

�

, (9)

where i encompasses all atoms, j runs over all neighbors of atom i, and ri j = |r⃗ i − r⃗ j | is the
absolute distance between atoms i and j at positions r⃗ i and r⃗ j, respectively. The factor 1

2

accounts for the double counting of each interaction. Because of the form of φi j, the largest
contributions to Epot for each atom come from the other atoms at close to intermediate
distances. Therefore, it is common practice to design and use potentials in a way that
truncates the interatomic interactions after a finite distance. This keeps the computational
effort limited, creates close-to-linear scaling of computational effort with number of atoms
N , enables efficient parallelization of the simulation over multiple processing units, and
ultimately is the reason why large ensembles of atoms can be studied using this approach.

Simple interatomic potentials that feature only simple functional forms of short-range in-
teraction, e.g., the Lennard-Jones potential [226, 227], are not sufficient to model more
complex materials like SrTiO3. In addition to the short-range interaction, the ionic charges
have been included by Thomas et al. [157] and Pedone et al. [228]. This adds long-range
electrostatic fields to the potential. The complete potential for SrTiO3 from Thomas et al.
[157], which we employ in this thesis, combines a Born-Mayer term with the electrostatic
interactions:

φi j = Ai j exp

�−ri j

ρi j

�

+
1

4πε0

qiq j

ri j

. (10)

Here ri j is the distance between two particles and qi is the ionic charge. Because the
electrostatic contributions decay only very slowly with distance, a cut-off can hardly be
chosen for the electrostatic part of the potential. In order to study large ionic systems, the
electrostatic interactions are only calculated up to a distance of 10Å in real space. Beyond
that a more efficient Fourier-space calculation is used [252].

This interatomic potential has been used in a variety of studies about point defects [45],
dislocations [138, 149, 150, 155, 253], and diffusion [138, 139], just to name a few. Its
reliability has, therefore, been shown in several cases. Such a formulation of an interatomic
potential is called rigid ion potential because atomic polarization and charge transfer are not
included [254]. For materials that exhibit more complex phenomena such as ferroelectricity,
the atomic polarizability may be required [255]. In this context core-shell interatomic
potentials as proposed by Mitchell and Fincham [256] have proven very useful. The added
degree of freedom comes from partly lifting the Born-Oppenheimer approximation. Each ion
is regarded as a couple of particles, one representing the positively charged ionic core and
one representing the negatively charged electronic shell. The charges of core as well as shell
particles are fit parameters, i.e., they do not correspond to the actual charges of the nuclei or
the valence electrons. Instead, they are usually adjusted to reproduce macroscopic material
characteristics [255, 257]. For SrTiO3 such potentials have been published in Refs. [26,
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27, 54, 229]. Despite their complexity it has been found that these models do not lead
to more accurate prediction of material characteristics, e.g., grain boundary energy [254,
258]. However, including shell particles creates a set of very light particles and reduces
the integration time step for molecular dynamics calculations. Thus, they would lead to an
unnecessary rise in computational effort for the scenario of dislocations in SrTiO3.

2.2 Modeling of Atomic Configurations

So far we have discussed the models that mathematically describe the interactions within
a material. Next, we need an approach that makes use of these interactions to extract the
material behavior for the desired situations [169]. To this end we distinguish three methods:
molecular statics, molecular dynamics, and Monte Carlo simulations. Molecular statics
are a way of optimizing the structural arrangement of the atoms without the influence of
temperature [169, 215]. In molecular dynamics, atoms move due to their thermal energy
while positions and interactions are calculated as they evolve over time [259, 260]. In
contrast, Monte Carlo simulations follow a statistical approach of optimizing an arrangement
of atoms. Monte Carlo simulations are a great method of finding optimum configurations but
are not suited for extended defects such as dislocations [169, 261]. Thus, in the following,
we will describe the principles of molecular statics and molecular dynamics simulations.

2.2.1 Molecular Statics Simulations

Molecular static (MS) simulations are a way of iteratively finding the local energy minimum
of a group of particles:

E =min Epot({r⃗k}) . (11)

As the name suggests, MS solves this problem without the regard of time, temperature, and
mass and, therefore, gives insights about the 0K structure of a material. To optimize the
structure, the particles are iteratively displaced from their initial arrangement towards an
arrangement of lower energy [169]. Therefore, as basic ingredients an initial arrangement
of particles, a way of obtaining the energy and forces of such a configuration, and a method
for propagating the system to a state of lower energy are needed.

The MS recipe works as follows [169]. Starting from an initial arrangement the energy of
this configuration is calculated. DFT and classical interatomic potentials for this purpose
have been discussed Sections 2.1.1 and 2.1.2. As the initial atomic arrangement is likely
not to be the system’s optimum it needs to be adjusted to come closer to the energetic
minimum. In its simplest form, one can now compute the gradient in energy with respect
to the displacement of each of the particles. In practice, this gradient might be calculated
directly if there is a functional form for the energy and the gradient [215] or can be obtained
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from the electron wave functions in DFT [250, 251]. When the particles are now moved
slightly along the direction of the negative gradient, one can expect the overall energy to be
reduced. Subsequently, the energy and gradients (equivalent to forces) are evaluated again,
and the process repeats. It is only aborted when a predefined stopping criterion (commonly
number of cycles, maximum force, minimum energy change) is met.

This so-called steepest descent algorithm has the disadvantage that it is usually not the most
efficient way of reaching the next energy minimum. A very popular and often much more
efficient strategy to attain a minimum is the conjugate gradient minimization scheme [262].
For a comprehensive introduction, see Ref. [263]. Note, that there are a variety of further
algorithms to (quasi-)statically move an ensemble of particles to its optimum, such as the
FIRE [264, 265] or the BFGS [266–269] algorithm, that each perform well in particular
situations.

It is important to keep in mind that all static methods rely on a continuous reduction of the
objective function (potential energy). Therefore, they continuously move the system towards
decreasing energy and never upwards in energy, i.e., activation barriers cannot be overcome.
Consequently, the initial configuration of particles decides which local minimum is found
by the minimization procedure. It is up to the user to decide if this local minimum is also
the physically sensible state. Other methods, such as molecular dynamics simulations can
overcome energy barriers and assist in finding the global minimum (ground state).

2.2.2 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations treat particles as classical point masses that move
over time according to their velocities and forces. The basic structure of the algorithm in MD
is shown in Figure 15.

It relies on describing the movement of an individual particle i by Newtonian equations of
motion [270]. The force on an atom is related to its gradient in energy,

mi

d2 r⃗ i

d t2
= f⃗ i = −∇⃗i E({r⃗k}) , (12)

which can be integrated to track a particles motion over time. It is assumed that the Born-
Oppenheimer approximation is valid [249] and the motion of particles can be described
by a single point mass mi per particle (e.g., atomic nucleus). Again, as initial conditions
an arrangement of particles needs to be chosen. Instead of just positional coordinates also
masses and momenta (or velocities) of the particles are required to propagate the system
in time. In practice positions and masses are usually assigned based on the desired setup
while velocities are initially assigned randomly in compliance with the desired temperature.
As a system of particles is described in terms of its dynamic properties, i.e., an ensemble of
positions {r⃗k} and velocities {v⃗k}, a procedure is required to obtain the temporal evolution
of these properties for all N particles in time. This trajectory is approximated by an iterative
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set particle properties
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set particle velocities
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integrate equations of motion
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Figure 15: Flow chart of an MD procedure adapted from Ref. [271]. After initialization the MD
loop is started and physical quantities are computed based on a physical model
and on boundary conditions. After each MD loop it is checked if a predefined
stopping criterion is met. If true, the simulation is stopped and results are output.

integration of the classical Newtonian equations of motion, see Equation (12). With each
iteration the positions and velocities are propagated (calculated) for an increment in time
∆t.

Time Integration The numerical integration of the trajectory is the central part of the
MD routine and several algorithms for integration have been proposed. Some prominent
examples are called Verlet [272], velocity-Verlet [273] or leap frog algorithm [252]. The
default integration scheme in the program LAMMPS (see Section 2.3) is the velocity-Verlet
algorithm.

32



The velocity-Verlet algorithm requires the calculation of the forces
�

f⃗ k

	

that act on each
particle as the only physical input that is calculated for each time step. Because the mass m

of a particle is fixed, the acceleration of a particle can be simply obtained by a⃗ = f⃗ /m. Based
on the velocity and the acceleration at time t the positions at a consecutive point in time
t +∆t are calculated for every particle (indices are dropped for readability):

r⃗(t +∆t) = r⃗ +∆t v⃗(t) +
1

2
∆t2a⃗(t) . (13)

Next, a⃗(t +∆t) is calculated with the new position r⃗(t +∆t) and velocity is updated using
the mean of the acceleration at point t and t +∆t:

v⃗(t +∆t) = v⃗(t) +
1

2
∆t [a⃗(t) + a⃗(t +∆t)] . (14)

If thermodynamic or average quantities are of interest, they need to be obtained from the
ensemble of positions and velocities, e.g., by means of statistical thermodynamics [215].
When these optional calculations are finished the stopping criteria (usually maximum number
of cycles or one of the physical quantities) are checked, and the next iteration can begin.
Outside this basic loop also several control procedures like thermostats can be added. A
multitude of such algorithms is implemented in common MD programs. The most basic ones
that allow for control of temperature and pressure are referenced below.

The choice of the time step ∆t is crucial for the accuracy of MD simulations. It should be as
large as possible for fast calculations but must be small enough to conserve energy during
integration. In practice, this is tested by simulations over many time steps (on the order of
105) by monitoring the total energy using the NV E ensemble (see below). If total energy
drifts, i.e., its average does not stay constant, the time step is too large.

Velocity Initialization For the very start of an MD simulation the choice of velocities is
somewhat arbitrary. Because of equipartition the initial kinetic energy will evenly distribute
among all degrees of freedom [274]. Also, the velocity distribution naturally assumes a
Maxwell-Boltzmann distribution in thermal equilibrium [275]. It should be kept in mind,
that the temperature will often shift dramatically in the initial simulation steps due to re-
distribution of the kinetic energy into potential energy. Sufficient time steps should, therefore,
be allowed to reach an equilibrated state [215]. Additionally, a thermostat can help to adjust
the temperature to a desired value.

Thermostat A thermostat in an MD simulation is a separate control loop that adjusts
the particles’ velocities to come closer to a target temperature. Here we use the so-called
Nosé-Hoover thermostat [276–279] for the MD simulations with the classical interatomic
potentials. It introduces a kind of damping parameter to the forces and therefore drives the
system to a target temperature (if the damping parameter is chosen appropriately). This
formulation, however, requires a modification of the equations of motion in order to correctly
include the damping parameter in the velocity-Verlet time integration scheme [279].
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Barostat A barostat – like a thermostat – is a control loop that takes care to keep the
stress tensor in a simulated cell at the target value [280]. It does so by comparing the inner
pressure tensor of the simulation cell with the external stress tensor (target value) and adjust
the system size if they do not match. Therefore, volume and shape of the simulation cell
may change. The barostat features a damping parameter, too. Again the equations of motion
are modified accordingly [279, 281]. A barostat can be applied as the only thermodynamic
control loop, but also the simultaneous application of a thermostat is possible. However, the
two damping parameters for thermostat and barostat are coupled and cannot be chosen
independently when both are applied to a system simultaneously [281].

Ensembles Ensembles classify the thermodynamic conditions of an arrangement of atoms.
There exist a variety of ensembles for a variety of physical situations to study but the most
important are the micro-canonic (NV E), canonic (NV T), isenthalpic (N pH), and isobaric-
isothermal (N pT) ensembles [280, 281]. The quantities in brackets indicate that these
quantities are controlled quantities, namely N for number of particles, V for volume and
shape, E for inner energy, T for temperature, p for pressure tensor, and H for enthalpy. Other
quantities result from the definition of the system using these quantities.

2.2.3 Boundary Conditions

Just like the thermodynamic conditions, the spatial boundary conditions (BC) are an impor-
tant practical ingredient to particle-based simulations. The particles under observation are
placed in a confined space called simulation cell. There are different ways this confinement
can behave. The simplest case are open boundaries in which case particles are surrounded by
vacuum. Thus, in case of the simulation of condensed matter, the boundaries act as surfaces.
If surfaces are to be avoided periodic boundaries can be used. A periodic simulation cell
now virtually repeats the system infinitely across the corresponding opposite boundary. For
example, if a particle were to cross the boundary it would simply re-appear at the opposite
boundary. Likewise, interactions are continued across a periodic boundary. Applying different
types of boundary conditions to different sides of the simulation cell is also possible. Note,
that the approach of periodic boundary conditions (PBC) only produces quasi-infinite systems.
As the system interacts with itself across a periodic boundary, the surface is eliminated, but
finite size effects will still occur.

Because a dislocation is a fault in the periodic arrangement of the crystal lattice it also affects
periodic boundaries. For the construction of dislocations in a fully periodic simulation cell,
care must be taken that the so-called Nye’s tensor β⃗ amounts to zero [172, 282]:

β⃗ =
1

V

∫︂

L

b⃗× t⃗ds ≡ 0 . (15)

Here the integral runs over the full dislocation line lengths L in the simulation cell volume V .
It basically ensures that there is no incompatible step at the surfaces of the cell violating the
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periodic boundaries. When we construct dislocations in simulation cells this means that there
must be an antagonistic dislocation for each dislocation we introduce. Therefore, we will
resort to dislocation dipoles in the following [283, 284]. In contrast, the study of dislocation
monopoles requires the breaking of periodicity, manual fixation of atoms at the surface of
the simulation cell, and can also introduce an electric field, see Ref. [150].

We note that the setup of dislocation dipoles in periodic simulation cells technically creates
an infinite array of dislocations. To avoid finite size effects due to the self interaction of
dislocations two approaches can be taken. On the one hand, the setup of a dislocation
quadrupole leads to a full cancellation of the mechanical fields inside the simulation cell
[285, 286]. However, it requires large simulation cells, and the application of shear stress
to the simulation cell for moving dislocations leads to a quick annihilation of the moving
dislocations. On the other hand, finite size effects can be studied systematically in a dipole
setup. Here, we take up this second approach and systematically vary the simulation cell
size until the results no longer depend on it. Further details on the setup are given in
Section 2.4.

2.3 Software Implementations

2.3.1 LAMMPS

For the MS and MD simulations based on classical potentials the Large-scale Atomic/Molec-
ular Massively Parallel Simulator (LAMMPS) is employed [217, 287]. Its main features
include very efficient time integration schemes for a large bandwidth of classical and more
elaborate interatomic potentials. The potential forms used here can be easily implemented
and the velocity-Verlet integration schemes for temporal evolution and Ewald summation for
long-range electrostatic interactions are already included. Also, the application of bound-
ary conditions, thermostats, barostats, and the calculation of thermodynamic quantities is
straightforward.

Another major advantage of this software package is its excellent scaling when calculations
are distributed over multiple processing units. The simulations performed in the context of
this thesis commonly use anything from two compute cores up to more than a thousand
individual CPUs simultaneously.

2.3.2 Abinit

The DFT calculations are performed using the software package Abinit [216, 247, 248].
It performs the SCF calculations based on the PAW method and also has basic structure
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optimization, i.e., MS capabilities. Besides these calculations it is also possible to obtain a
multitude of derivative quantities such as stresses, energies, and forces on atoms.

In addition to the atomic structure, DFT calculations require the input of per-atom basis
sets that contain the wave functions for the PAW method. They have been calculated using
ATOMPAW [288, 289]. Although it is claimed that the PAW functions are not very sensitive
to the exchange-correlation functional use, we take care to only use PAW data sets that use
the same exchange-correlation functional as in the actual calculations.

2.3.3 OVITO

As the major post-processing and visualization tool the algorithms implemented in the
software Open Visualization Tool (OVITO) are widely used. First, it allows the visualization
of structures containing large numbers of atoms like the ones that are contained in the output
of LAMMPS as well as the manipulation of these structures, e.g., to focus on certain regions
or quantities. Second, we make use of the common neighbor analysis (CNA) and polyhedral
template matching (PTM) as implemented in OVITO [290, 291]. These algorithms reliably
identify the local crystal structure of a group of particles. Third, the dislocation extraction
algorithm (DXA) that is used to identify dislocations is also part of this software package
[163].

The two latter algorithms require a trick to work with perovskite structures. In the current
implementation they are only able to handle simple structures like fcc, bcc, hcp, diamond,
and icosahedral motifs. To make the algorithm recognize the structural backbone of the
perovskite structure, we apply it only to the A-site and oxygen particles. Without the central
B-site particle and in ignorance of the species, the perovskite structure becomes an fcc
structure. So essentially, when identifying crystal structure and dislocations we rely on the
structural SrO3-backbone.

2.4 Computer Setups

2.4.1 DFT Stacking Fault Energy Calculation

We use DFT to calculate stacking fault energy hypersurfaces (γ-surfaces) of SrTiO3. The
γ-surface is an important parameter to judge if dislocations can dissociate into partial
dislocations [180]. When partial dislocations move or full dislocations split into partial
dislocations, they require the formation of a stacking fault, because the partial Burgers
vector does not replicate the lattice onto itself. A stacking fault is only feasible if the atomic
arrangement across the plane of the fault does not constitute an energetic maximum. Rather
it should be a (local) minimum if it is not to collapse immediately.
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Figure 16: (a) The two halves of the simulation cell are shifted along x⃗ and y⃗ in the stacking
fault plane with normal z⃗ (colored) to sample the stacking fault energy surface.
(b) Stacking fault plane for the {11 0} γ-surface, see Figure 20. Only strontium
(green) and titanium cations (blue) are schematically displayed. Particles in the
foremost layer are displayed as large and solid, while particles in the layer below
are small and light. The shift in the stacking fault plane only needs to be done for
one quarter of the unit cell (orange area) due to the twomirror planes intersecting
the central titanium ion.

The γ-surfaces are obtained from a simulation cell that is of size 1×1×6u.c.3 (unit cells)
for the {10 0} γ-surface with the long direction perpendicular to the stacking fault. For
the {11 0} γ-surface the dimensions are 1×

⎷
2×6
⎷

2u.c.3. Before production runs the unit
cell volume of the cubic cell, energy cut-off and reciprocal space mesh have been checked
for convergence. Although the distance between the two stacking faults is only 3 u.c. and
3
⎷

2u.c., respectively, due to the periodic boundaries along all axes, the general shape of the
γ-surface can be confidently reproduced [149]. The γ-surface is then sampled by shifting
one half of the simulation cell with respect to the other on a grid within the stacking fault
plane, see Figure 16. The cubic lattice parameter and ionic coordinates are fixed for the
in-plane directions, but the ionic positions and simulation cell size are relaxed perpendicular
to it using the BFGS procedure.

2.4.2 Setup of Dislocation Pairs

If not mentioned otherwise, the simulation cells for the dislocation simulations are stoi-
chiometric, i.e., we use only multiples of SrTiO3 formula units. This way we avoid creating
an infinite array of charged cells through periodic boundary conditions. Alternatively, one
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could adjust the ionic charges of certain ions to balance net charges in the simulation cell, as
discussed by Marrocchelli et al. [138].

Edge Dislocations Edge dislocations are defined by three linearly independent vectors:
Burgers vector b⃗, line vector t⃗, and slip plane normal s⃗. All three are orthogonal to each other
and suitable to define corresponding orthogonal simulation cells in an orthogonal crystal
class. Therefore, the three axes x⃗ , y⃗, and z⃗ of the simulation cells containing dislocation
pairs in SrTiO3 are oriented in such a way that t⃗ aligns with z⃗. Moreover, b⃗ aligns with y⃗

and s⃗ with x⃗ . A schematic representation of the simulation cell and the simulation cell axes
is shown in Figure 17.

To create the simulation cell, the simple cubic SrTiO3 unit cell is repeated periodically
in accordance with the crystallographic axes needed for the dislocation setup. While the
simulation cell is large along x⃗ and y⃗ (on the order of 80 nm to 110nm), direction z⃗ is initially
rather short. Because the dislocation line is periodic along z⃗ it is sufficient to only simulate
e.g. 3 u.c. along this direction for (quasi-)static simulations. As we will see in Section 3.2.4,
the finite size effects along z⃗ are, however, relevant for moving dislocations. Therefore, we
vary the thickness Lz for the loading simulations up to 60 u.c..

An edge dislocation can be thought of as the removal or insertion of a half-plane of atoms. We
choose to delete a half-plane of atoms in the center of the simulation cell, i.e., between the
two dislocations. The removed half-plane is stoichiometric and, therefore, also the simulation
cell without half-plane is charge neutral. Now, there is a ribbon of atoms missing in the
simulation cell.

x⃗

y⃗

z⃗

Figure 17: Schematic drawing of the simulation cell setup for simulations with dislocation
pairs [283, 284]. The directions x⃗ , y⃗ , and z⃗ are indicated and the positions of the
dislocations are represented by “T”-shaped symbols [159]. The dislocation line
vector t⃗ is always aligned with the z⃗-axis.
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Careful static and subsequent dynamic relaxation at low temperature (around 20K) is needed
to close this gap slowly without unphysical sudden displacements of atoms. For the static
relaxation we chose to constrain the atomic motion such that atoms relax into the gap first
before relaxing along x⃗ and z⃗ to avoid motion of ions along the surface of the gap. Once the
gap has closed and relaxed we are left with a simulation cell containing two dislocations
of identical type with opposite orientation of b⃗ (alternatively one could speak of oppositely
oriented t⃗).

The simulation cells are chosen large enough that the stress fields by the dislocations have
decayed significantly at the fully periodic boundaries of the simulation cell. Although the
setup technically creates an infinite array of evenly spaced dislocations, we can, thus, assume
that the dislocations are independent of each other. Finally, simulation cells containing
between 390000 and 800000 atoms of cubic SrTiO3 containing two antiparallel dislocations
are created.

Screw Dislocations The procedure for setting up dislocations of screw type differs slightly
from the recipe for edge dislocations. Since b⃗ and t⃗ are parallel for a screw dislocation, the
third axis for the simulation cell setup has to be constructed. This can be done by a simple
cross product from b⃗ and s⃗.

Instead of a cut-and-remove procedure to introduce the dislocation a cut-and-shift procedure
would be needed. In practice, we find it more simple to use the analytic displacement field
of a screw dislocation from Table 1 and apply it to the atomic positions [171]. Because
the anisotropy factor of SrTiO3 is close to unity the isotropic continuum solutions for the
mechanical fields are sufficient [292, 293].

Mixed Dislocations In mixed dislocations the angle between b⃗ and t⃗ is neither 0◦ nor 90◦.
However, by projection of b⃗ onto t⃗ the Burgers vector can be decomposed into a screw and
an edge contribution. Also, the construction of this dislocation type is a combination of
the procedures for screw and edge dislocation. The three axes of the simulation cell are
pre-defined by the edge part of dislocation. It is again created by a cut-and-remove procedure.
For the screw component the analytic displacement fields are applied with a center at the
exact location the half-plane terminates.

Climb Dissociated Edge Dislocations Dislocations can split into partial dislocations if
crystal structure and local energy landscape permit. For both edge and screw dislocations in
SrTiO3 dislocation splitting is possible, as we will show in Section 3.1.1. However, there are
two 〈11 0〉 directions that can serve as planes of dislocation splitting.

In the case of screw dislocations the displacement field is symmetric about the dislocation
line, and it is thus oblivious in which plane splitting occurs. However, in the case of edge
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Figure 18: (a) A full 〈11 0〉 layer is removed to create a full A-type dislocation. (b) The two
sub-layers of one 〈11 0〉 layer are removed in slightly shifted positions creating a
climb dissociated dislocation.

dislocations, one plane is the glide plane while the other is orthogonal to it. Splitting in the
glide plane is commonly called glide dissociation and splitting in the orthogonal plane is
called climb splitting. While the former requires dislocation glide to occur, the latter requires
diffusion-assisted dislocation climb. Therefore, it is typically associated with large activation
barriers only occurring at high temperatures or pressures [155].

We avoid annealing for very long times and extreme conditions by a priori creating this type
of climb dissociated edge dislocation, see Figure 18. In the construction of the full edge
dislocation we remove a half-plane with a〈11 0〉 thickness. Actually, an a〈11 0〉 half-plane
consists of two stoichiometric sub-layers, one terminating with SrO and one with TiO2. In the
climb dissociated configuration these sub-layers are shifted against each other. Consequently,
the climb dissociated configuration can be created by removing first one of the two sub-layers
and then removing an adjacent sub-layer of the half-plane at a location slightly shifted
orthogonal to the glide plane. Examples of this will be shown later in Section 3.1.4 on
dislocation type A.

Dislocation Types and Measurements Following the above recipes for the alignment of
dislocation vectors and simulation cell axes, we choose the crystallographic directions for the
simulation cells as given in Table 3.

Often, the static and low temperature properties of dislocations are measured using MS
calculations at 0 K. Due to the complex and shallow energy landscape the system may
be trapped in local energy minima, and the large number of degrees of freedom in the
dislocated system can lead to convergence issues of the conjugate gradient scheme. Thus,
we use MD instead of MS and allow the system to leave very shallow local energy minima
and avoid trapping the system in an unrealistic configuration with small energy barriers.
The thermodynamic quantities are measured as averages from dynamic simulations at very
low temperatures between 10K and 50K while the anisotropic pressure on the boundaries
is kept at zero. Additionally, to obtain reliable averages and check for consistency, each
dislocation configuration is simulated multiple times using independent random velocity
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Table 3: Crystallographic orientations for the simulation cell directions x⃗ , y⃗ , and z⃗ as de-
fined in Figure 17. Axis z⃗ is always aligned with the dislocation line vector t⃗ (or a
permutation thereof).

x⃗ y⃗ z⃗

A [1 10] [110] [00 1]

B [00 1] [1 10] [11 0]

C [1 10] [11 2] [11 1]

D [11 2] [110] [11 1]

E [10 0] [010] [00 1]

initializations. Finite-size effects perpendicular to the dislocation line have been excluded
by achieving convergence of structural features with respect to varying simulation cell size
[294].

2.4.3 Mechanical Properties of Dislocation Pairs

Testing for the stress necessary to move a dislocation is performed on the simulation cells with
dislocation pairs that have been relaxed in the quasi-static arrangement. We perform loading
for dislocation types A, B, and C because they are expected to be mobile. The exclusion of
other dislocation types will be justified in Section 3.1. These dislocation types include edge,
screw, and mixed dislocations in different configurations. For all dislocation types the glide
plane is well-defined. We use applied shear stress on the periodic boundaries in such a way
that the full stress acts on the dislocations as Peach-Koehler force. For the mixed dislocation
type we chose to study the two extreme scenarios where either the edge part or the screw
part experiences the loading.

As a first approximation we continuously ramp up the stress by modifying the barostat until
motion or de-pinning of the dislocations is observed. The continuous increase in load could
lead to an overestimation of the Peierls stress because loading is performed in a dynamic
setup. To confirm the results, we also keep the samples at a constant stress level for 24 ps
so that we are in a static equilibrium configuration. If the dislocation does not move, the
applied stress is less than the Peierls stress. If at least one dislocation moves the system
departs from static equilibrium and the Peierls barrier has been surpassed. The results are
carefully checked against observations from literature where applicable [150] confirming
the validity of our approach.

As detailed in Section 3.2.3, when simulation cells are very thin along the dislocation line
direction, the curvature on dislocations is constrained. This effect needs to be mitigated by
studying the dislocation motion in simulation cells of different length along z⃗, ranging from
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2u.c. to 60 u.c.. In comparison with experimental observations we expect this size to be
sufficient because it is larger than the typical wavelength of kinking in SrTiO3 [199].

2.4.4 Simulations with Natural Dislocation Structures

The simulation setups discussed so far are very valuable as they allow to study the properties
of isolated dislocations in very much detail. In a real crystal, however, the arrangement does
not necessarily follow these well-defined geometries. Therefore, we study large arrangements
of dislocations in setups that are closer to experiment; for an overview see Figure 19.

In the first setup from Porz et al. [156] a large simulation cell featuring a block of SrTiO3 with
360×720×5u.c.3 is chosen (approx. 6.5million atoms). The x-dimension is not periodic
and a (stoichiometric) sharp notch is introduced on one of the two surfaces of the crystal,
see Figure 19 left. The 〈10 0〉 crystal axes are aligned with the simulation cell axes and
compressive loading is applied along the long y-axis. Thus, the slip system for type A
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Figure 19: Representation of experimental and modeled samples for the notched samples
(left) and the micropillar scenario (right). All samples have been subjected to
uniaxial compression and typical length scales are indicated. Additionally, the
observed quantities reveal how experimental and theoretical investigations sup-
plement each other.
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dislocations lies at the optimal angle of 45◦ to the loading direction and experiences maximum
shear stress. With the notch a stress concentration is created such that type A dislocations
are forced to nucleate at the tip of the notch. The analog setup was tested in experiment
and led to very controlled arrangements of dislocations. However, the major difference is
the restriction to type A dislocations by the short z-dimension which is not applicable to
experiment.

In the second series of setups we intentionally lift the constraint on dislocation type by
expanding the simulated volume of SrTiO3. The goal is to explain the results from mechanical
compression testing of micro- and nanopillars of SrTiO3, see Figure 19 right. Therefore, we
also perform compression testing in MD simulations on slabs that resemble a cut through
such a pillar. These slabs contain more than 25million atoms and are prepared in two sizes
each with two configurations. For the two different sizes a thin and a thick slab are compared.
While the thin slabs restrict the dislocations to be predominantly of type A, there is more
variety of dislocation types in the thick slabs because of reduced image interactions. For
the two configurations, pristine samples without dislocations and samples with dislocations
are compared. These dislocations are introduced by homogeneous dislocation nucleation
during uniaxial compression of fully periodic simulation cells. In total this gives four different
combinations of scenarios (two sizes and two dislocation structures) which are subjected to
compressive as well as tensile loading.

During compression testing we use open boundaries along the x-axis such that dislocations
are able to leave the crystal and, thus, realize plastic deformation. Because of the ionic
structure, surfaces are usually charged and can create large electric fields inside the material.
The results of the simulations shown in Section 3.3 do indeed suffer from this effect. In order
to exclude that this alters the observed material behavior we conduct additional calculations
where surface charges are compensated. We do so by changing the ionic charges of the ions
at the surface prior to compression such that the electric field between the surfaces vanishes.
The implications are discussed below.
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3 Results

3.1 Equilibrium Dislocation Structure

Aiming for an in depth understanding of the behavior of dislocations in perovskites we start
with the most fundamental scenario: the static equilibrium configurations of dislocations.
Thus, we chose to first perform static simulations and simulations at very low temperature
of the perovskite SrTiO3. In these simulations the relaxation of particles and structures as
well as the atomic motion are easily controlled and observed. The following questions are
addressed:

1. Analytical and continuum theories of dislocations are mostly applied to describe
dislocation-based plasticity in metals. For ceramics these equations have found less
application because they are lacking electrostatic fields. Before diving into simulation,
we try to make predictions regarding the behavior of different dislocation types and
then validate them using simulations.

2. TypeA dislocations are reported in literature as the prime carrier of plasticity in SrTiO3
[190]. Their configuration is supposed to be a glide dissociated state that lowers
the Peierls barrier. However, the ductile-to-brittle transition found by Gumbsch et al.
[128] suggests a mechanism rendering these dislocations immobile, at least at elevated
temperatures. Therefore, we search for the glide dissociated structure as well as for
hints why this dislocation type may become sessile [155]. Additionally, the strong
impact of dislocation core charge on the dislocation structure will be revealed.

3. Type B dislocations are the screw analog of type A edge dislocations. Screw and edge
dislocations possess different stress fields, therefore, they are expected to behave dif-
ferently. Because screw dislocations do not have a terminated plane at their dislocation
core it is uncharged. Thus, we will investigate if this edge-screw analogy holds true in
the case of SrTiO3 crystals.

4. Type C dislocations mark an important combination of type A and B dislocations that
have been reported in TEM studies [136]. Because it is a mixed dislocation it is not
immediately clear if this dislocation can also form dissociated configurations and what
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role dislocation core charges play. Type C dislocations are also put into context as a
species competing with type A and B dislocations.

5. It has been suggested that type D dislocations can form through a reaction of two
type C dislocations [136]. However, type D dislocations differ from type C by the
line direction. How does this different line direction influence the structure of the
dislocation and its core?

6. Also, type E dislocations have a 〈11 0〉 Burgers vector and are of mixed type. However,
the glide plane is the more simple {00 1} plane. Since dislocation splitting has been
suggested for this dislocations type [114] we want to see if splitting is plausible and if
this dislocation type also contributes to plasticity.

3.1.1 Elastic Energy of Full and Dissociated Dislocations

A dislocation carries excess energy because it disturbs the perfect crystal lattice. According
to Equation (6) the elastic line energy in an isotropic continuous medium depends on the
magnitude of the Burgers vector [171]:

Γ ∝
|︁

|︁b⃗
|︁

|︁
2
= b2 . (16)

Possible Burgers vectors in a cubic crystal system are 〈10 0〉, 〈11 0〉, and 〈11 1〉. If we
compare the squared Burgers vectors, see Table 4, it is noted that the line energy doubles
for b⃗ = a〈110〉 and triples for b⃗ = a〈111〉 compared to the a〈10 0〉 Burgers vector. The high
energy of a dislocation with a 〈11 1〉 Burgers vector makes this type improbable. We have
performed separate calculations verifying that this type is unlikely and carries high elastic
energies [293].

Besides a short Burgers vector, a dislocation’s glide plane favorably resides on a close packed
plane [159]. The degree of packing in a solid with more than one species is not as obvious
to define as it is in crystals consisting only of one species in the glide plane. We estimate the
packing ρhkl of a lattice plane by normalization of the number of atoms in a unit cell nuc

atoms
(which is five for cubic SrTiO3) by the projected area of that unit cell onto the glide plane
Auc

hkl
,

ρhkl =
nuc
atoms

Auc
hkl

. (17)

Because the areas Auc
100, Auc

110, and Auc
111 are a2,

⎷
2a2, and

⎷
3a2, respectively, the loosest

packing is on the {11 1} plane. Thus, we also exclude this plane from further discussion. The
two available Burgers vectors 〈10 0〉 and 〈11 0〉 and the two glide planes {10 0} and {11 0}
can be combined in four different ways. We expect that these configurations are the most
favorable in cubic SrTiO3 [188].
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Table 4: Relevant slip systems in SrTiO3 with the Burgers vector in angular brackets and
the slip plane normal in curly braces. The square of the Burgers vector

|︁

|︁b⃗
|︁

|︁
2 is

computed using the unit cell parameter a. It is proportional to the elastic line
energy of a dislocation, see Equation (16). A 〈11 0〉{1 10} dislocation which is
split into two equal collinear partials has the same elastic line energy as a full
〈100〉{001} dislocation.

dislocation
|︁

|︁b⃗
|︁

|︁
2

〈10 0〉{00 1} a2

〈11 0〉{00 1} 2a2

〈00 1〉{1 10} a2

〈11 0〉{1 10} 2a2

2× 1
2〈11 0〉{1 10} 2× 1

2 a2

The actual behavior of a defect depends on its energy landscape. In the case of a dislocation
in a glide plane the relevant energy landscape is the γ-surface (stacking fault energy hyper-
surface) [180, 295, 296]. It relates the potential energy to a rigid shift of two surfaces in
the glide plane with respect to each other. Put in other words, it determines what energy is
needed to create a given displacement in the glide plane. The relevant glide planes here are
the {100} and {11 0} planes [149, 188].

The procedure for calculating an accurate shape of the γ-surface is explained in Section 2.4.1.
We use the analog procedure with the interatomic potential for SrTiO3 in order to check for
the correct reproduction of the γ-surface by the interatomic potential [157]. The γ-surfaces
for the interatomic model and from the DFT calculations are qualitatively identical, see
Figure 20. For the metastable stacking fault energy on the {11 0}-surface we find a value
of 0.795 Jm−2 from DFT while Hirel et al. [149] report 0.925 Jm−2. However, they did not
relax the atomic displacement normal to the stacking fault plane which naturally increases the
energy of the stacking fault. In fact, the experimentally reported value of 0.606±0.077 Jm−2

by Jin et al. [136] is in fair agreement to our theoretical values considering that the DFT
calculations are computed for the 0K configuration. It is, however, in contrast to results by
Ferré et al. [188] who do not show an intermediate minimum in their γ-surface calculated
by DFT.

Following the reasoning by Vítek [180] we deduce that the intermediateminimum (metastable
state) in the {11 0} γ-surface along the 〈11 0〉 direction could allow a full dislocation of
type 〈11 0〉{11 0} to split into two equal and collinear partial dislocations. Thus, dislocation
splitting is relevant for types A, B, and C. Their partial dislocations would be separated by a
stacking fault that corresponds exactly to the a

2 〈11 0〉 shift displayed in the γ-surface. For
other combinations of directions and slip planes the energy landscape is indicated as red
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Figure 20: Stacking fault energy hypersurfaces calculated using the empirical pair potential
by Thomas et al. [157] (left) and DFT with PBE GGA exchange correlation func-
tional (right). Top: {11 0} surface with a distinct local minimum for shifts along
the 〈11 0〉 direction. Bottom: {10 0} surface with shifts along 〈01 0〉 and 〈00 1〉
direction yield no metastable stacking faults. Although the numeric values differ
between the models the general features are very well re-produced.

lines in Figure 20. Such dislocations cannot split and motion of these dislocations requires
steps of full a〈00 1〉 vectors.

The full dislocation with 〈11 0〉 Burgers vector carries twice the elastic energy compared
to a 〈10 0〉 dislocation, see Equation (16). As a consequence of the γ-surface two partial
dislocations with a

2 〈11 0〉 Burgers vector that are connected by a stacking fault can be created
instead. Therefore, we need to re-consider the energy balance for this dislocation type
(corresponds to A, B, or C) [295, 296]. For clarity, we write the dislocation splitting as
[295]

〈11 0〉 → 1

2
〈11 0〉+ SF {1 10} +

1

2
〈11 0〉 , (18)
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and obtain for the energy of the full and the split configuration:

Γ
full = Γ

full
elast + Γ

full
core , (19)

Γ
split = 2Γ

partial
elast + 2Γ

partial
core + γd . (20)

The energy per unit length of dislocation line Γ i has been decomposed into its elastic, core,
and stacking fault energy contributions Γ i

elast, Γ
i
core, and γd, respectively. d is taken to be the

distance between the partial dislocation cores.

So far we implicitly assumed that the partial dislocations do not interact, i.e., the overlap of
their mechanical fields can be neglected because they are far apart. In fact, this assumption
will later be lifted in the atomistic simulations, see Section 3.1. Let us assume, for now, that
the elastic energy dominates Equations (19) and (20) [111, 297]. Again, we compare the
four dislocation types with respect to their line energy based on Burgers vector b⃗ and glide
plane n⃗, see Table 4.

The split dislocation has an elastic line energy in the same range as the 〈100〉{001} disloca-
tion. This is a reduction by a factor of two compared to the full dislocation. A splitting of a
full 〈11 0〉{1 10} dislocation into partials is, thus, expected for energetic reasons. Because
there is also the energy contribution γd by the stacking fault the dislocation splitting distance
is finite.

3.1.2 Analytic Considerations on Dislocation Mobility

Since we are interested in dislocations relevant to plastic deformation and introduced by
mechanical force, the dislocations need to be mobile. For the low energy dislocation types
〈10 0〉{00 1}, 〈00 1〉{1 10}, and split 〈11 0〉{1 10} we, therefore, compare their mobility
qualitatively.

The Peierls stress τm is the “minimum stress to keep a dislocation moving” [211]. It can be
estimated from analytical formulae based on mechanical and crystallographic characteristics
of a solid, as has been extensively discussed by Hull and Bacon [159] and references therein.
As we do not compare different materials but only different dislocation types in the same
material, we only consider the proportionality with regard to crystallographic parameters
[164]:

τm∝ exp

�−2πh

b

�

. (21)

Here b and h refer to the Burgers vector magnitude and distance between equivalent lattice
planes, respectively. This so-called Peierls-Nabarro formula is often used as a first approxima-
tion for τm [132, 164]. Strictly speaking Equation (21) is valid for screw dislocations, but
edge dislocations behave analog.
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Table 5: For the slip systems indicated in Table 4, the Burgers vector length b, the dis-
tance between glide planes h, the proportionality factor of the Peierls stress (see
Equation (21)) and the reduced Peierls stress τm/τ

0
m are given. Here τm has been

normalized to the Peierls stress of the 〈10 0〉{00 1} slip system. Dislocations with
glide dissociation (see last line) can have strongly reduced Peierls barriers.

dislocation b h exp
�−2πh

b

�

τm/τ
0
m

〈10 0〉{00 1} a a/2 0.043 1
〈11 0〉{00 1}

⎷
2a a/2 0.108 2.5

〈00 1〉{1 10} a a/
⎷

2 0.012 0.27
〈11 0〉{1 10}

⎷
2a a/

⎷
2 0.043 1

1
2〈11 0〉{1 10} a/

⎷
2 a/

⎷
2 0.002 0.043

The values for b and h for the relevant dislocation types are presented in Table 5. Also, the
exponent from Equation (21) has been evaluated and for clarity it has been normalized in
the last column labeled τm/τ

0
m (normalized Peierls stress). From Table 5 we see that it is the

split dislocation type that is most easily moved under applied load. Our considerations are
confirmed by experimental studies that have investigated and characterized dislocations in
plastically deformed SrTiO3, see Refs. [127, 128, 184] and our own work [156]. Note that
the dislocation nucleation does not necessarily follow the same trend [153, 298].

3.1.3 Lattice Structure of Dislocations and Dislocation Splitting

In classical homogeneous metals, Burgers vectors can be on the scale of next-neighbor
distances. However, in ionic structures such as perovskites, the ionic nature enlarges the unit
cell and limits possible Burgers vectors [111]. In Figure 21 this situation is illustrated by
two-dimensional lattices occupied with one or two species.

The large Burgers vector is often given as the reason why ceramics are brittle [299]. As we
have seen in Section 3.1.1, the Burgers vector may, however, be decreased by dislocation
splitting. An additional complication arises in ionic substances due to the charges on each
ion. In Figure 21 we see that it is easy to think of a crystal that has charged dislocation
cores despite being stoichiometric and macroscopically charge neutral. If such dislocations
arise simply from the way a dislocation is created in a cut-and-remove procedure they are
called “inherently charged” [112]. Because such a charge originates from the way an atomic
plane at the dislocation core terminates, it occurs only in edge or mixed dislocations. We
will discuss its implications in the corresponding sections on type A and C dislocations.

In ionic crystals anions and cations usually occupy different sub-lattices. Of course this
alternating ionic arrangement increases the Madelung sum because ions of equal sign would
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Figure 21: Edge dislocations in different materials. In metals, Burgers vectors are usually
short and dislocations cannot be charged in pure materials. Because of the ionic
structure, unit cells and Burgers vectors are often larger in ceramics. Due to the
termination at the dislocation core, dislocations in ceramics can be inherently
charged even if stoichiometry is preserved.

tend to repel each other. As a rule of thumb it has been established that at least one of
the sub-lattices of a cation or anion species should retain its periodicity across a stacking
fault [111]. This is exactly the case for the stacking fault in SrTiO3 that is responsible for
dislocation splitting as discussed Section 3.1.1. The intermediate minimum of the {11 0}
γ-surface in Figure 20 is commensurate with the anion sub-lattice. The atomic arrangement
of this stacking fault is displayed in Figure 22 (a). In Figure 22 (b) an example for a stacking
fault that is not stable is shown. Stability and instability have been checked with separate
atomistic simulations.

We have now consistently established that dislocations in SrTiO3 with a 〈11 0〉 Burgers vector
should be favored because they can dissociate into partial dislocations lowering elastic energy
as well as Peierls barrier. Also, we have addressed some basic concepts, for instance the
retained oxygen sub-lattice, that serve as general rules to judge dislocation configurations. In
Section 1.4 we have already reviewed literature and identified dislocation types with 〈110〉
Burgers vectors that might be relevant in SrTiO3. Next, we will study them one after another
from A through E .
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{1 10} stacking fault
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→ metastable
→ glide dissociation possible

{1 12} stacking fault

close cation spacing

→ unstable
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a) b)

Figure 22: Stacking faults in ceramics are usually only stable if at least one sub-lattice of
the ionic crystal is retained [111]. While the {1 10} stacking fault conserves the
oxygen sub-lattice (a), the hypothetical {1 12} stacking fault breaks the stacking
sequence completely (b). Thus, only the former variant is stable. Orientation
corresponds to the type C setup.

3.1.4 Dislocation Type A

The investigation of the A-type dislocations is structured as follows. First, we revisit some
essential literature that highlights the framework and relevance of this dislocation type.
Second, we make qualitative statements and analytical estimates about glide and climb dis-
sociated dislocations. Third, the charged configuration of this dislocation type is highlighted.
Finally, the type A dislocation is modeled with an interatomic potential to reveal a more
accurate picture of the dislocation splitting and the charge state at the dislocation core.

Literature on and Connection of Types A, B, and C We start with analyzing dislocation
typeA from Table 2. It possesses a Burgers vector b⃗ = a〈11 0〉, a dislocation line direction t⃗ =

〈00 1〉, and a slip plane normal n⃗= {1 10} which are illustrated in Figure 23. It is probably
the most investigated dislocation type in SrTiO3. This dislocation is of pure edge character
(the angle between b⃗ and t⃗ is 90◦) but with types B and C the screw and a mixed analog
also exist.

In several publications this dislocation type is described as the one that enables plasticity
[127, 128, 184]. These references compressed SrTiO3 single crystals along 〈10 0〉 at tem-
peratures between 110K and 1000K. The glide dissociated form was expected to be the
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t⃗

n⃗

Figure 23: Crystallographic orientation of defining vectors for dislocation type A. Unit cell
of cubic SrTiO3 with Burgers vector b⃗ (orange), line vector t⃗ (blue), and slip plane
n⃗ (purple). The full Burgers vector has been split into two equal parts to indicate
glide dissociation. Reproduced from Figure 11 for convenience.

most relevant dislocation type. Yet, a pure glide dissociated type A has rarely been observed
experimentally [199]. Only the climb dissociated configuration was created in experiments
where two crystals are joined in a bi-crystals setup designed to yield climb dissociated type
A grain boundary dislocations [194]. However, we note that we require the glide dissociated
configuration to enable plasticity in SrTiO3. It is, therefore, important to address if the glide
or the climb dissociated form is the equilibrium configuration of type A dislocations.

Besides the discussion about the dissociation, the edge character of the 〈11 0〉{1 10} disloca-
tion type is a matter of debate, too. Continued work by Sigle et al. [190] suggests that the
nature of the b⃗ = 〈11 0〉 dislocations varies strongly with temperature. Because types A and
B are interchangeable within the kink pair theory [197, 208, 209], they can easily convert
into each other. Possibly, type B (screw) dominates below room temperature while type
A exists above [190]. Also, an intermediate configuration (type C) was found in literature
without any account which dislocation type might be the most favorable [199].

As dislocation types A (edge), C (mixed), and B (screw) naturally form a group because
they have identical Burgers vectors and vary only by their line vector, we will start with the
limiting cases A and B, before turning to type C.

Glide vs. Climb Dissociation We discussed in Section 3.1.1 how glide dissociation can
reduce the elastic energy as well as the Peierls barrier of a dislocation. From the γ-surfaces we
found the glide dissociation feasible and explained its stability by an undisturbed anion-cation
stacking sequence. In fact, it is expected that the dissociation occurs spontaneously for type
A and B dislocations [149].
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The thermodynamic/entropic stability of this configuration is, however, in question. Under
the influence of extremely high temperatures and pressures, glide dissociated dislocations
studied by MD simulation re-associated into a full dislocation and subsequently showed
climb dissociation [155]. With nudged elastic band calculation this climb configuration was
found to be actually the energetically favorable configuration.

The climb dissociation has been used as a possible explanation for the loss of ductility that
occurs at high temperatures in SrTiO3 [184]. In that case embrittlement (ductile-brittle
transition) is the consequence of dislocations becoming sessile. This “glissile to sessile” [155]
transition is specific to an edge type dislocation, as pure screw dislocations (type B) cannot
show climb dissociation.

In essence, it is of fundamental interest to clarify the exact structure of this dislocation type
which was suggested to be the result of mechanical deformation. It is also not entirely clear
how the different dislocation configurations (full, glide dissociated, climb dissociated) are
related to each other, see the schematic drawing in Figure 24. A full dislocation can split
into either a glide dissociated or a climb dissociated configuration. Both paths will need
different activation energies. The transition from glide to climb dissociated configuration,
however, is not directly possible but requires the preceding constriction of the glide dissociated
configuration to a full dislocation.

glide

climb

constrict

Figure 24: Schematic representation of different dislocation configurations with the stress
fields of opposite sign symbolized by red and blue dumbbells. For glide (center)
and climb dissociated dislocations (right) the stacking fault is indicated by a
dotted line and the decreased size of the dumbbells represents a reduced magni-
tude of the elastic fields compared to the full dislocation (left). Glide dissociation
can be a spontaneous and/or a thermally activated process. In contrast, the
transition from the full or the glide dissociated to the climb dissociated variant
requires activation.
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Before we start with the actual simulation of the glide and climb dissociation of dislocation
type A we try to make some analytical prediction of the splitting distance. Since the energy
of a single dislocation in linear elasticity is divergent (Equation (5)), we need to consider
force balance criteria to estimate the splitting distance. Assume that the first partial in a
glide dissociated configuration is at a fixed position. Through its stress field, see Table 1, it
exerts a force on the second partial that tends to increase the distance between the partials.
However, an increase in stacking fault area is counteracting this force. We can write the
force f⃗ 2 that the second partial experiences as

f⃗ 2 = −γ+ f⃗
PK
2 , (22)

where f⃗
PK
2 is the Peach-Koehler force from Equation (8) caused by the stress field σ⃗

⃗

1 of the
first partial dislocation [168]:

f⃗
PK

2 =
�

b⃗2 · σ⃗

⃗

1

�

× t⃗2 . (23)

The index refers to either the first or the second partial dislocation. The first term in
Equation (22) is the force caused by the stacking fault which ties the partial dislocations
together. While we can take the stacking fault energy γ from Figure 20, the force f⃗

PK
2 acting

due to the linear elastic interaction of the partials can be adapted from common textbooks
[159, 171]. For the special dislocation orientation of two identical parallel edge dislocations
along z-direction with a Burgers vector along x-direction, we find:

fx =
µb2

2π (1− ν)
x
�

x2 − y2
�

(x2 + y2)2
, (24)

f y =
µb2

2π (1− ν)
y
�

3x2 − y2
�

(x2 + y2)2
, (25)

fz = 0 . (26)

fx , f y , and fz are the force components of f⃗
PK
2 along the three cartesian coordinates. For the

case of glide splitting into two equal partial dislocations y = 0. Thus, f y vanishes and fx

reduces to:

f ∗x =
µb2

2π (1− ν)
1

x
. (27)

In equilibrium f⃗ 2 ≡ 0 must be valid. By re-arranging we arrive at a solution for the dislocation
glide dissociation d in force equilibrium [176, p. 112]:

0= −γ+ f ∗x , (28)

d =
µb2

2π (1− ν)γ , (29)

d =
µa2

4π (1− ν)γ . (30)
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In the last step we used the condition b =

|︁

|︁

|︁b⃗
partial
|︁

|︁

|︁ =
|︁

|︁1
2〈11 0〉
|︁

|︁ = a⎷
2
. The equilibrium

distance can, however, only be realized if there is no Peierls barrier adding a periodic
force contribution to the equations and preventing the partial dislocations from gliding to
their equilibrium positions. We insert the values from the interatomic potential of SrTiO3,
a = 3.905Å, µ= 107GPa, ν= 0.26, and γ= 1.225J m−2 and obtain d = 1.43 nm≈ 3− 4u.c..
Compared to stacking faults in fcc metals this result is on the same order of magnitude which
appears reasonable, cf. e.g. Ref. [300] and references therein.

For the climb dissociation the situation is more complicated. The considerations about the
elastic self-energies of the dislocations are equally true for the climb splitting, therefore, we
expect that there is an energetic benefit from a climb dissociated dislocation compared to a
full dislocation. Moreover, from Figure 24 (right) we see that the regions of compressive (red)
and tensile (blue) stress and strain partly overlap when partial dislocations are in a climb
configuration. In a linear elasticity framework the strain/stress should, thus, be reduced
between the partials. Less strain results in decreased elastic energy which in turn affects the
splitting distance and complicates predictions about dclimb. However, the analytical treatment
based on the far-field solutions for the elastic forces, see Equations (24) to (26), contradicts
a climb dissociation. For climb splitting, the edge dislocations are at the same x coordinate,
i.e., x = 0 and fx vanishes. Because γ as well as f y have the same sign, they both tend to
collapse the two climb dissociated partial dislocations. In summary, while dislocations should
climb dissociate from the viewpoint of elastic energy of the dislocations, the linear elastic
solution of the forces seems to favor a full dislocation. We conclude that the linear elastic
solutions breaks down here and that non-linear effects of the dislocation core region might
be of considerable importance. Therefore, the self-consistent calculation of a numeric MS or
MD scheme are required to make predictions on dislocation climb splitting distances.

At this point we note that the stacking faults for glide and climb dissociated dislocations
are identical for this dislocation type. For illustration, we plot the γ-surface alongside the
quasi-statically relaxed glide dissociated dislocation as well as the manually created and
quasi-statically relaxed climb dissociated dislocation, see Figure 25. Only for the former case
the stacking fault is on the glide plane. The partials can, therefore, either move one by one,
i.e., by expanding and collapsing the stacking fault consecutively [150], or simultaneously in
a correlated fashion [297]. In the climb dissociated case the stacking fault is also in a {11 0}
plane with a shift of a

2 〈11 0〉. The crystallographic situation is, thus, almost identical but the
partials terminating the stacking fault have a glide plane different from the stacking fault
plane. If such a partial was to move by dislocation glide it would drag behind the stacking
fault, a process that generally is energetically unfeasible because it requires massive diffusion.
We expect that such a configuration cannot be moved by applied external stress and becomes
sessile.

Dislocation Core Charge After the analytic discussion of the glide and climb dissociation
there remains the issue about the dislocation core charge, which we will discuss qualitatively,
first. In Figure 26 excerpts from the simulation cell before relaxation without the atoms of
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Figure 25: As predicted by the γ-surface, there is a metastable stacking fault configuration
for a shift in the {11 0} plane along the 〈11 0〉 direction. This enables the glide
dissociation of the shown type A dislocation and holds equally true for type
B and C dislocations. Inside the stacking fault the Sr- and Ti-sub-lattices are
shifted with respect to each other. Thus, the stacking fault can be identified by
the connectivity of the blue oxygen octahedra. The crystallographic situation of
the stacking fault is identical for the climb dissociated type A dislocation.

the missing half-plane are shown. This is the setup for the creation of type A dislocations.
The subsequent relaxation of the atoms from the top and bottom into the void create the
desired edge dislocation at the end of the cut. In this representation the termination of the
dislocation can be most easily observed. As the cut has been made in a {1 10} plane, i.e.,
the glide plane, it always separates O2–-layers from (SrTiO)4+-layers. The dislocation with
oxygen surplus (Figure 26 left) is negatively charged. Correspondingly, at the other end
(Figure 26 right) there is a surplus of positively charged cations. As a result, any dislocation
that forms from such a cut-and-remove procedure will have a charged core, although overall
stoichiometry is preserved, see also Ref. [138].

For a quantitative picture refer to Figure 27 where the smoothed cumulated charge is
plotted along the x-direction of the simulation cell. Per unit cell dislocation line there is
an excess/deficit of one oxygen ion at each dislocation line. The insets have been added to
highlight that this is simply an effect of the termination of the dislocation cut.
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Figure 26: Center: Schematic drawing of the simulation cell viewed along the dislocation
line with indications of the regions for the shown atomic structure. Left/Right: A
layer of Burgers vector thickness has been cut out of a perfect and fully periodic
crystal. The length of the cut is half the length of the simulation cell (dotted line
in inset) such that the ends of the cut plane create an edge dislocation. The left
core terminated by oxygen ions while the right core has a cation surplus.

Simulation of Splitting Distance The void from the removed half-plane of the dislocation
construction slowly closes during the relaxation and the opposite faces of the cut re-associate.
In between the dislocations the ideal lattice is, thus, restored. Even though the relaxation only
requires MD runs at very low temperatures the dislocations glide dissociate. Consequently,
this is a spontaneous process without any relevant energy barrier and the as-created full
dislocations are not stable. The driving force for the splitting is the reduction of elastic
energy.

The splitting distance of the spontaneously dissociated dislocation is in the range of 1.56 nm−
2.05 nm and, thus, in good agreement with the value of 1.43 nm obtained by the analyti-
cal force-based approach. In multiple simulations with different minimization/relaxation
procedures and varying seed velocities for the low temperature dynamic relaxations, the
dislocations always glide dissociate but never climb dissociate. The latter is, therefore, not
a spontaneous process. This meets the expectations that thermally activated diffusion is
required for climb motion of a (partial) dislocation.

In literature, we find one example by Hirel et al. [155] where the problem of thermally
activated diffusion has been overcome by brute force calculations. Extremely high temper-
atures and presumably equally unrealistic stresses have been used to enable climb motion
of a type A dislocation. We circumvent this problem by a priori constructing dislocations
in their climb dissociated configuration. For illustration, refer to Figure 18 where the layer
sequence of the removed planes can be deduced. The removal of a layer of

⎷
2a thickness

corresponds to the removal of two stoichiometric sub-layers. Shifting one of these layers
incrementally to the right or the left creates the desired climb stacking fault because it shifts
the partial dislocations orthogonal to the glide plane. A relaxation of these cuts automatically
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Figure 27: Charge density in a simulation cell containing a typeA dislocation dipole. In order
to obtain a smooth charge density that can be binned along the x -direction, the
nominal ionic point charges have been smeared out be a Gaussian distribution.
Additionally, the integrated charges q for each dislocation and a representation
of the terminal layer of the dislocation cut are given.

generates to climb dissociated dislocations and the size of the climb stacking fault dclimb can
be adjusted by the size of the shift. The stability of the different configurations is judged
based on the simulation cell’s potential energy in Figure 28.

This plot confirms the expectations our expectations that climb splitting is indeed a favorable
configuration due to reduction of the burgers vector magnitude and the overlap of the
stress/strain fields for small climb splitting distances. An optimum appears at dclimb ≈
3u.c.− 4u.c. where the overlap of mechanical fields is large enough to cancel significant
portions of themselves reducing elastic energy and small enough to avoid large energy
contributions from the stacking fault. Even though the Peach-Koehler forces in the elastic
far-field tend to attract the partial dislocations, see Equation (25), the non-linear mechanical
effects in the dislocation core region stabilize a splitting of finite size.

It can be concluded that the glide dissociated dislocation is not thermodynamically stable but
kinetically favored. The stable configuration of type A dislocations is the climb dissociated
configuration when provided with enough thermal activation. These dislocations are then
sessile. With regard to experimental procedures we note, that besides thermal activation
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Figure 28: Comparison of energies of as-created type A dislocations for different climb
splitting distances. Each point represents the average of at least three inde-
pendent samples. A growing stacking fault and decreasing elastic interactions
increase energy at high splitting distances.

also other forms of activation energy must be considered. Especially in imaging techniques
such as high voltage TEM the samples under investigation are irradiated by high intensity
electron beams. These provide high amounts of activation energy that can possibly alter
the dislocation structure significantly [156, 192, 301]. Therefore, it might be difficult to
observe glide dissociated dislocations since the electron beam supplies sufficient activation
for dislocations to constrict and climb dissociate.

Simulation of Dislocation Core Charge The type A dislocation in the as-created state
is charged, see Figure 27. In fact, this has a direct consequence for the dislocation glide
dissociation. We observe that the splitting distance for the positively charged dislocation is
generally larger (about 5 u.c.) than at the negatively charged dislocation (about 4 u.c.).

It is known that the charge as well as the stress fields of dislocations alter the local defect
equilibria [138, 140, 293]. Variations of point defect concentrations around the dislocation
can either raise or lower the Peierls barrier [103]. Because oxygen vacancies are the mobile
species in SrTiO3, they can build up space charge layers and compensate the dislocation core
charge [129, 140]. Of course the removal of the electrostatic dipole goes hand in hand with
a reduction in energy and will, therefore, occur if activation energy for oxygen diffusion
is available. We mimic this process by manually shifting oxygen ions from the negatively
charged dislocation core to the positively charged dislocation core [138]. As indicated in
Figure 27 shifting one oxygen ion per unit cell dislocation line length balances the charges
completely. We do this charge balancing prior to relaxation and otherwise continue with the
procedure as before including the simulation of the climb dissociated configurations.
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Surprisingly, the dislocations do not show glide splitting when they are charge neutral.
Although splitting is very effectively suppressed, the potential energy is still lowered compared
to the charged state because of the reduced electrostatic contribution, see Figure 29. As
expected, the climb dissociation is still effective at further reducing energy.

The glide dissociated configuration of the dislocation is the one expected to make the major
contribution to the plastic deformation. So it is also the type of dislocation that is probably
introduced into SrTiO3 when it is plastically deformed. During glide motion, dislocations
move rather quickly. If they do not sweep up or leave behind any defects, this dislocation type
can be mobile. However, as soon as the charge on the dislocation is allowed to equilibrate, the
more favorable dislocation configuration is the full dislocation. Such a charge equilibration
could also just happen due to enhanced diffusion at elevated temperatures. Then the full
dislocation is more stable than the glide dissociated variant, but also less mobile because of
the larger Burgers vector. Only if it would be forced to dissociate into two partials at very
high stresses it could further contribute to plastic deformation.

Thus, the reason for the ductile-to-brittle transition between 1000K and 1500K is two-fold
[128]. Firstly, the constriction of the dislocation due to charge balancing raises the Peierls
barrier. Charge balancing in turn is enabled by diffusion which is facilitated by increasing
temperature. Secondly, a full dislocation can climb dissociate, which is also a process that
depends on thermal activation. During climb all species, i.e., Sr, Ti, and O need to diffuse.
A climb dissociated dislocation is not only thermodynamically the most stable form but
also expected to be permanently sessile. Our findings, thus, support earlier studies that
have suspected such a mechanism [128, 155, 184]. For easier reference Figure 30 shows a
schematic energy landscape for the type A dislocation.

Outlook As we will show in Section 3.3.2, the climb instability is closely related to processes
of dislocation multiplication [156]. Furthermore, it is one ingredient to a possible multiple
cross-glide dislocation multiplication that has been observed in other ceramics [104–106].
Experimental evidence for our findings in literature is indirect but promising. More indirect
experimental evidence could include the study of ductility in very pure SrTiO3 at varying
temperatures and oxygen partial pressures. Significant changes in ductility are expected when
pre-existing dislocations are treated in a way that allows charge balancing of dislocations.

Another aspect would be to revisit the importance of this dislocation type for the plastic
deformation of SrTiO3 altogether. As the glide dissociated state is not energetically stable
it should not appear in equilibrium. Indeed, close examination of the available published
experimental evidence suggests the presence of the climb dissociated configuration of type A
dislocations [184]. Climb dissociated type A dislocations can, however, also be the result of
a reaction of two type C dislocations that are discussed below [136]. This alternative route,
that explains the presence of climb dissociated type A dislocations and avoids the unstable
glide dissociated configuration, is, in fact, deemed probable.
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Figure 29: Comparison of energies of typeA dislocations with andwithout charge balancing
for different climb splitting distances. Each point represents the average of at
least three independent samples. The charged full dislocation spontaneously
decays into its glide dissociated configuration and is not (meta-)stable. By
balancing the charge on the dislocations the energy can be decreased. An
equilibrium climb splitting for charged and charge balanced dislocations of three
unit cells is evident. A growing stacking fault and decreasing elastic interaction
increases energy at high climb splitting distances.
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Figure 30: Schematic map for the relation of different configurations of typeA dislocations.
Dislocations with their symbolic elastic fields and possible charges are indicated
as well as possible paths between the configurations. The vertical ordering
is according to the potential energy as measured in simulation (not to scale).
The horizontal ordering is somewhat arbitrary and only used to depict relations
schematically. The configurational space may be either sampled by temperature
or by time, especially if activated processes are necessary.

3.1.5 Dislocation Type B

Next, we turn to type B dislocations which differ from type A dislocations by their line
orientation. Just like for the A-type dislocation we first review important aspects from
literature and make an analytic estimate of the splitting distance. Then we turn to the
atomistic study of dislocation core structure which is significantly more simple than the edge
dislocation core.

Literature Dislocations of type B represent the screw analog of type A dislocations. Thus,
they also possess a Burgers vector b⃗ = a〈11 0〉 and a glide plane n⃗ = {1 10}, but the line
vector t⃗ = 〈11 0〉 is aligned with b⃗, see Table 2. The defining vectors are illustrated in
Figure 31.

63



B

b⃗

t⃗
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Figure 31: Crystallographic orientation of defining vectors for dislocation type B. Unit cell
of cubic SrTiO3 with Burgers vector b⃗ (orange), line vector t⃗ (blue), and slip plane
n⃗ (purple). The full Burgers vector has been split into two equal parts to indicate
glide dissociation. Reproduced from Figure 11 for convenience.

Types A and B represent the pure edge and screw cases of 〈11 0〉{1 10} dislocations and
are interchangeable during dislocation motion [190, 197, 208]. Dislocations move by the
so-called kink mechanism, see Figure 8. A small segment is bowing-out and moving into
the adjacent Peierls valley where it is expanding. Eventually, the dislocation has moved by
on Burgers vector. If the dislocation is of edge type and the kinks form a 90◦ angle with the
dislocation line, the kink is of screw type. Vice versa, kinks in a B type dislocation are of A
type. This is why we regard A and B as limiting cases and type C as a special intermediate
case.

As mentioned before, the predominance of type B over A depends on temperature [190,
195, 209]. Experimentally type B is observed to be in a glide dissociated state with split-
ting distances of about 4.2 nm. Additionally, they appear in arrangements where two split
dislocations reside next to each other in parallel glide planes that are separated by several
nanometers at room temperature [195]. The screw dislocation type was also found in nanoin-
dentation experiments on {00 1} surfaces [196]. However, such experiments, especially
when observations rely on very thin samples that have been prepared for TEM, are strongly
influenced by surface effects as well as the electron beam [156, 192, 301].

Previous MD simulation studies on type B dislocations showed that this dislocation indeed
spontaneously glide dissociates in its {1 10} glide plane. Splitting distances are about 25%
less than for the edge type dislocation [150]. In fact, this difference was expected from
linear elasticity theory [176, pp. 59 & 110]. Adapting Equation (30) for type B dislocations
leads to:

d =
a2µ

4πγ
. (31)
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Figure 32: Charge density map for type B dislocations using nominal charges. Dislocation
cores are uncharged. See Figure 27 for comparison.

Because the elastic fields of the screw dislocations differ from the edge dislocation (see Table 1)
we need to modify these equations by omitting the factor (1− ν) [176, pp. 59 & 110]. With
ν = 0.26 the splitting distance reduces by 26% compared to the edge type dislocation.
Therefore, we expect a splitting distance of d ≈ 2− 3u.c.. Apparently, this is smaller than
the experimentally measured value since the stacking fault energy γ is overestimated by the
interatomic potential [150].

Furthermore, simulations have shown that type B dislocations have a lower mobility than
type A dislocations at low temperatures [150]. This explains the experimental observation
of screw dislocations at low temperatures [195]. The less mobile species remains in the
crystal after deformation while the mobile species migrates and easily reaches surfaces or
reacts with other dislocations.

Charge at Dislocation Core and Splitting Pure screw dislocations are not charged by
construction. Nevertheless, we check for charge imbalance in the same manner as for type
A dislocations, see Figure 32. The charge density map for a type B dislocation proves the
absence of charged dislocation cores.

Also, this dislocation type exhibits spontaneous glide dissociation, see Figure 33. While
the glide plane is a {1 10} plane, a climb dissociation would require a splitting in the
perpendicular {00 1} planes, see Table 3. Because there is no intermediate minimum in the
corresponding γ-surface (Figure 20) a climb dissociated configuration does not exist for
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Figure 33: Type B dislocation in its glide dissociated form. Sr is displayed in green, oxygen
octahedra around Ti in blue, and oxygen in red. The dislocation lines and Burgers
vectors are added as a guide to the eye.

the B-type dislocation. A motion along this direction can be excluded because a dislocation
would not move perpendicular to the plane of its glide dissociation.

Our calculations confirm the findings of other studies [149, 150]. Similar to type A the
splitting is into two collinear partial dislocations and the stacking fault is in a {1 10} plane. Be-
cause the dislocations are charge neutral the splitting distance is identical at both dislocations
in the simulation cell with an average of approx. 1.9 nm. Correcting for the overestimation of
the stacking fault energy in the interatomic potential compared to DFT [149], we obtain an
adjusted splitting distance of 2.5 nm which is lower than the 4.2 nm observed experimentally
[195]. In fact, we were expecting even lower values from the analytical estimate as well as
from the results of the edge dislocation. A direct comparison of types A and B, however, is
obscured by the dislocation core charge of the former type. Remember that glide dissociation
only occurred for the scenarios where charged type A dislocation cores were introduced.
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Just like for A-type dislocations, the Peierls stress for the type B dislocations is reduced by
the glide dissociation of the dislocation [159]. But because a re-association of the partial
dislocations is not initiated by charge balancing the dislocation core and climb dissociation
is not relevant either, this dislocation type is more robust in retaining its mobility under
varying conditions. Because they do not become sessile as easily, their impact on plasticity
and toughness may even be greater than that of type A dislocations.

Non-equilibrium Dislocation Splitting As we will discuss in Section 3.2.4, the screw dis-
location can move by dislocation glide when external load is applied. A peculiarity of this
glide motion is that the splitting distance between the partial dislocations increases during
loading (Figure 54), which was already noted but not explained by Hirel et al. [150]. In fact,
if we load the dislocation only the leading partial moves initially and the glide dissociation
distance increases before the trailing partial follows. However, after removal of the load the
pair of partial dislocations stays in the extended configuration. In short, there are multiple
force-free configuration with different glide dissociation distances. Comparing the energies
of simulation cells with different glide dissociation distances d we find that the lowest energy
is indeed found for the smallest splitting distance, see the 1.9 nm from above. For larger
metastable splitting distances of up to 5.6 nm the energy is increased.

In order to explain why several splitting distances can be observed, we schematically construct
the force balance for the situation at hand, see Figure 34. We take the first partial to be fixed
at position zero and then plot the repulsive and attractive forces acting on the second partial
dislocation. First, there is the elastic repulsion of the two partial dislocations displayed in red.
The repulsive forces have to be balanced by forces tieing the partial dislocations together, i.e.,
the force exerted by stacking fault. This force displayed in blue is independent of splitting
distance. For the edge dislocation type A this situation leads to a single point where forces
are in equilibrium and, thus, to a unique splitting distance as described by Equation (30). In
contrast, the Peierls stress for the screw dislocation is a significant contribution, and it has
to be added to Equation (22). The difference between the edge and the screw dislocations’
Peierls landscape is evident from the different energy landscapes for the respective glide
directions in Figure 20. For our graphic representation we add the sinusoidal course of the
Peierls stress (orange) to the attractive side of the force balance resulting in the black curve
combining the stacking fault energy forces and the Peierls stress landscape.

Now it is clear that there are multiple points where the repulsive (red) and attractive
forces (black) for the screw dislocation partials are in balance. Therefore, different splitting
distances can be realized where the forces acting on the partial dislocations exactly cancel.
Nevertheless, the energetically most favorable configuration is the smallest splitting distance,
since it has the smallest contribution from the stacking fault energy as revealed by the
atomistic simulation.
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Figure 34: Force f acting on the second partial dislocation segment of length l as a function
of splitting distance d between the two connected partial dislocations. At points
where the solid black curve (SF & Peierls) and the red curve (dislocation interac-
tion) intersect, the forces on the second partial dislocation are in equilibrium.

3.1.6 Dislocation Type C

Literature Type C dislocations are an intermediate variant between type A and type B

dislocations and, therefore, possess a mixed character. Despite identical Burgers vector
b⃗ = a〈11 0〉 and glide plane n⃗ = {1 10}, the line vector is t⃗ = 〈11 1〉, see Table 2. The
defining vectors are illustrated in Figure 35.

Any mixed dislocation can be decomposed into an edge and a screw component by pro-
jecting b⃗ onto t⃗. The total Burgers vector then simply is a linear combination of these two
contributions:

b⃗ = b⃗edge + b⃗screw , (32)

a〈11 0〉= a

3
〈11 2〉+ 2a

3
〈11 1〉. (33)

Actually, this dislocation type has only been investigated some time after the original discovery
of ductility in SrTiO3 [136]. However, a close re-examination of older studies reveals that
this dislocation type may also have played a role in many other compression experiments
of single crystals [127, 128, 184, 199]. Not many details are known about the nature of
type C dislocations and their connection to other dislocation types. However, it has been
proposed that the climb dissociated type A dislocations originate from a reaction of two type
C dislocations [136]. Moreover, stacking of dislocations and the arrangement of antiparallel
dislocation lines on parallel slip planes has been discussed for this configuration [136].
Evidence from nanoindentation experiments and MD simulations support the importance of
type C dislocations. Here also a preferential dislocation alignment along 〈11 1〉 directions
was found [198]. Yet, no dislocation dissociation was observed. Because there are hints
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Figure 35: Crystallographic orientation of defining vectors for dislocation type C. Unit cell
of cubic SrTiO3 with Burgers vector b⃗ (orange), line vector t⃗ (blue), and slip plane
n⃗ (purple). The full Burgers vector has been split into two equal parts to indicate
glide dissociation. Reproduced from Figure 12 for convenience.

that type C dislocations play an important role in SrTiO3 plasticity, they are modeled in the
following.

Dislocation Core Charge and Splitting The creation of this dislocation type is a combination
of the cut-and-remove procedure for the edge component and the application of the analytic
displacement field for the screw component. The cut for the edge contribution results in
a charged dislocation core. In Figure 36 the charge distribution is shown for the situation
where the cut is made exactly according to b⃗edge.

The simplest simulation cell investigated for type C dislocations is only 2 u.c. thick along the
dislocation line direction. Therefore, the oxygen terminated layer in Figure 36 (a) contains
4 oxygen ions in the periodic cell. A charge balanced configuration is achieved when half
of the oxygen ions in the terminal plane are shifted to the other dislocation. As a result,
each dislocation is terminated with a half-occupied layer of oxygen ions, see Figure 36 (b).
Note, that in principle also incomplete charge balancing is possible, e.g., by shifting only one
quarter of the oxygen ions from the negative to the positive dislocation.

Dislocations of type C in their as-created charged state spontaneously glide dissociate into
two equal and collinear partial dislocations with b⃗ = 1

2〈11 0〉 on a {1 10} plane. An example
for a glide dissociated dislocation is shown in Figure 37 (a). The stacking fault between
the partials is equivalent to the one between dissociated type A and B dislocations as the
shift along 〈1 10〉 is in an {11 0} plane, cf. local minimum in on the stacking fault energy
hypersurface in Figure 20. Also, the separation distance of the partials is of similar magnitude
of about 1.9 nm or 4u.c.−5u.c.. Correcting for the overestimation of the stacking fault energy
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Figure 36: Charge density in a simulation cell containing a type C dislocation dipole. In
order to obtain a smooth charge density that can be binned along the x -direction,
the ionic point charges have been smeared out be a Gaussian distribution. Ad-
ditionally, the integrated charges q for each dislocation and a representation of
the terminal layer of the dislocation cut are given. (a) Charge at the dislocation
core is high in the as-created dislocation. (b) The dislocation cores are charge
balanced when the oxygen ions of the terminal plane are equally distributed
among the two dislocations.

in the interatomic potential compared to DFT [149], we obtain an adjusted splitting distance
of 2.5 nm which compares well to the value of 2.5 nm reported in TEM studies [136].

For charge balanced dislocations we find a similar behavior: they also glide dissociate by the
same distance. Nevertheless, the total energy still depends on the presence of the dislocation
core charge. Generally, the uncharged glide dissociated dislocation is lower in energy than
the charged glide dissociated variant due to the absence of the electrostatic dipole.

However, comparing charged full dislocations with charged glide dissociated dislocations of
type C we find that the glide dissociated variant is favored by 1.18 eVÅ−1. In the case of
uncharged full versus uncharged glide dissociated dislocations the glide dissociated variant
is only favored by 0.52 eVÅ−1. Consequently, the splitting into glide dissociated partials is
less favorable when the dislocation cores are not charged. Thus, it is easier for an uncharged
dislocation to re-associate into a full dislocation. This trend is identical to the type A
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dislocation where charge balancing also destabilizes the split configuration. To sum up, the
energy reductions by charge balancing and by glide dissociation are counteracting each other:
both lead to a state of lower potential energy but a balanced charge reduces the stability of
the glide dissociation. At the moment the origin of this effect is not yet clear.

For the type A dislocations we found that this is exactly the point where interesting implica-
tions for the mechanical response may appear. Because glide dissociation does not occur for
the charge-balanced case, the road to climb dissociation was opened. So the question appears
if there is also a climb dissociated configuration that makes type C dislocations sessile.

Glide vs. Climb Splitting In the case of type C dislocations, the glide stacking fault is
identical to type A. However, a hypothetical climb stacking fault for type C would be located
on a {11 2} plane. In Figure 22 the observed glide stacking fault ({1 10} stacking fault) and
the hypothetical {11 2} stacking fault are shown next to each other.

For the {1 10} stacking fault the basic stacking sequence is conserved and cation containing
{1 10} planes are still separated by oxygen ion {1 10} planes. The {11 2} stacking fault, which
would correspond to climb dissociation, is not feasible. There, the cations and anions are
brought close to each other and electrostatic repulsion is strong. To the best of our knowledge
this stacking fault has neither been observed in any experiment nor in simulations.

We, therefore, conclude that climb dissociation does not occur for type C dislocations. Con-
sequently, the favored structure of this dislocation type is the glide dissociated configuration
which we expect to be mobile under mechanical loading. The role of this dislocation type is,
thus, more significant than that of type A dislocations.

Re-association of Partials The Peierls barrier is increased when going from the glide
dissociated to the full dislocation. Re-association (constriction) of the partial dislocations
into a full dislocation could, therefore, strongly affect the ability of this dislocation type to
carry plastic deformation. Because the full and the glide dissociated variants are close in
energy for type C dislocations, finite temperatures may supply sufficient activation energy to
enable a re-association of the two partial dislocations. We test this hypothesis with annealing
simulations at very high temperatures analog to Hirel et al. [155].

During annealing for more than 600 ps at 2500K all tested dislocations transition from a glide
dissociated configuration to a full dislocation configuration with an extended and disordered
dislocation core, see Figure 37. The full dislocations are always higher in energy than the glide
dissociated variants. For instance, in the case of the charge balanced dislocation the glide
dissociated configuration was favored by 0.52 eVÅ−1 over the full dislocation configuration
before annealing. After the annealing procedure, the full dislocation configuration possesses
a disordered dislocation core and carries 0.78 eVÅ−1 more potential energy than the glide
dissociated configuration. Why does the glide dissociated dislocation re-associate into a full
dislocation at high temperatures if this requires additional energy?
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low temperature after annealinga) b)

Figure 37: (a) Glide dissociated type C dislocation after low temperature quasi-static relax-
ation. (b) The same dislocation after long high temperature annealing where
the pair of partial dislocations has constricted to form a full dislocation with
disordered core structure. Dislocation lines and Burgers vectors are indicated.

We suggest that the reason is twofold: a change in the shear modulus reduces the splitting
distance and entropy stabilizes the disordered full dislocation core. Regarding the splitting
distance, we have made a force-based estimate of the equilibrium splitting distance in
Equations (30) and (31). Here, all material properties are temperature dependent. In fact,
temperature will have the strongest effect on the shear modulus µ, while lattice parameter a

and stacking fault energy γ are expected to be less sensitive to temperature. Especially, as
2500K is close to the experimental melting point of SrTiO3 [183], µ is decreased significantly.
The shear modulus is in the enumerator of Equation (31) and, thus, the dislocation splitting
distance in proportional to µ. Consequently, a reduced splitting distance d at elevated
temperatures is expected. At the same time effects of entropy S at the disordered full
dislocation core become more pronounced with increasing temperature T . Put in other
words, the contribution T∆S with ∆S = Sdisordered − Ssplit should in part compensate for
excess energy of the full dislocation compared to the glide dissociated configuration. Because
the ionic sub-lattices are ordered in the glide dissociated case (Figure 37 (a)) and disordered
after annealing (Figure 37 (b)) we estimate the magnitude of the entropy contribution
from the vibrational entropy of a more simple defect. Cazorla [302] has calculated a value
of T∆Svac ≈ 20 meV per formula unit for an oxygen vacancy in a perovskite at 400K. We
extrapolate this value linearly to 2500K, multiply by two for the two oxygen positions
within a dislocation line length of t⃗ = a〈11 1〉 and normalize it to eVÅ−1. The resulting
entropy contribution of 0.037 eVÅ−1 is lower that the energy penalty of the full dislocation of
0.52 eVÅ−1. However, this is only very rough estimate of the vibrational entropy contribution
of a single defect on the oxygen lattice, while, in fact, all sub-lattices are disordered, see
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Figure 37. Nevertheless, entropy certainly assists in the stabilization of the disordered core
of the full dislocation.

As expected from the considerations about the stacking fault, climb dissociation could not be
observed for type C dislocations. Nevertheless, we could confirm that the charge imbalance
acts a driving force to diffusion. In the case of strongly charged dislocations, oxygen vacancies
move from the dislocation into the crystal to reduce the charge at the positively charged
dislocation cores. An example of such a diffusion path is shown for type D dislocations
in Figure 41. The full C-type dislocation configuration is, therefore, stabilized by charge
balancing and entropic contributions at the dislocation core. In summary, we can expect that
partial dislocation re-association at high temperature leads to macroscopic embrittlement of
SrTiO3.

Outlook We conclude that an efficient immobilization of type C dislocations by climb
dissociation, like observed for type A, is unlikely. Thus, type B and C dislocations are carriers
of plasticity while type A easily becomes sessile. Nevertheless, the low energy difference
between the full and the glide dissociated variant renders type C prone to re-association
at elevated temperatures and, thus, a decrease in mobility. Figure 38 shows a schematic
landscape that summarizes the relation of the different dislocation configurations.

3.1.7 Dislocation Type D

Literature A D-type dislocation possesses a Burgers vector b⃗ = a〈11 0〉, glide plane n⃗ =

{1 12}, and the line vector t⃗ = 〈1 11〉, see Table 2. Therefore, it is a pure edge dislocation.
The defining vectors are illustrated in Figure 39. This dislocation type was proposed to be
the reaction product of two type C dislocations [136] and, therefore, contributes to plasticity.
Besides, type D dislocations have the same 〈11 0〉 Burgers vector like dislocation types A, B,
C, and E .

Inherent Dislocation Core Charge andAnnealing A dipole of dislocation typeD is composed
of an oxygen terminated dislocation core carrying negative charge and one dislocation core
that has a mixed termination carrying positive charged, see Figure 40. Again, the charge
can be easily compensated by shifting half of the oxygen layer from the negative dislocation
to the positive dislocation. This also lowers the potential energy because the electrostatic
dipole between the two dislocations is cancelled.

When this dislocation type is relaxed, it stays a full dislocation and shows no signs of splitting.
Even after the application of temperatures of 3000K for several hundred picoseconds, the
dislocation structure is stable. Analog to the charged variants of type C dislocations, the
charged type D dislocations try to reduce there charge in the annealing simulations. We
observe, that the positively charged dislocation emits oxygen vacancies reducing the inherent
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Figure 38: Schematic map for the relation of different configurations of type C dislocations.
Dislocations with their symbolic elastic fields and possible charges are indicated
as well as possible paths between the configurations. The vertical ordering is
according to the potential energy as measured in simulation (not to scale). The
horizontal ordering is somewhat arbitrary and only used to depict processes
schematically. The configurational space may be either sampled by temperature
or by time, especially if activated processes are necessary. Question marks
indicate that the process for re-association is not certain, but we suspect a
combination of lattice softening and entropic effects.

dislocation core charge. An example of oxygen vacancy diffusion is shown in Figure 41.
If annealing is continued, we expect a full charge equilibration of the dislocation cores.
Therefore, we continue the discussion with the charge balanced dislocation configuration,
only.

Glide vs. Climb Splitting D-type dislocations were found in TEM studies, and it has been
proposed that climb dissociation occurs frequently [136, 156]. Although it has the same
Burgers vector as the dislocation types discussed before, the glide plane of a typeD dislocation
would be a {1 1 2} plane. Climb dissociation, however, would be along a 〈1 1 2〉 direction in a
{110} plane.
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Figure 39: Crystallographic orientation of defining vectors for dislocation type D. Unit cell
of cubic SrTiO3 with Burgers vector b⃗ (orange), line vector t⃗ (blue), and slip plane
n⃗ (purple). Reproduced from Figure 13 for convenience.

For the discussion of the glide plane refer to the section on dislocation type C. A stable
stacking fault in the {1 1 2} plane is not possible and, thus, glide dissociation for type D

dislocations is not expected. This is confirmed by our annealing simulations. However, a
climb dissociation corresponds to a stacking fault in a {110} plane, which exhibits a local
minimum, see Figure 20. Climb dissociation will, therefore, be investigated explicitly.

The energy of climb dissociated typeD dislocations is shown as a function of splitting distance
in Figure 42. A stable splitting distance 5a

3 [1 12] is found. This corresponds to a distance of
1.59 nm, which compares well to the splitting distances of the other dislocation types. Given
that the stacking fault is crystallographically identical to the glide/climb stacking fault of the
type A to C dislocations this does not come as a surprise. The equivalence of the stacking
fault can be seen by the appearance of the same edge sharing oxygen octahedra (insets
Figure 42) for these stacking faults.

Dislocation Reaction From the analysis of the splitting behavior and the annealing sim-
ulations we do not expect that type D dislocations are particularly mobile. If they are not
mobile but appear in samples that have been plastically deformed, then we need to answer
the question of how this dislocation type is created. According to Jin et al. [136], type D

dislocations are the result of a dislocation reaction involving two type C dislocations. We
write the pseudo-reaction for these two dislocations explicitly. Consider a first dislocation of
type C,

b⃗
(1)

= b⃗
(1)

edge + b⃗
(1)

screw , (34)

a〈11 0〉= a

3
〈11 2〉+ 2a

3
〈11 1〉 , (35)
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Figure 40: Charge density in a simulation cell containing a type D dislocation dipole. In
order to obtain a smooth charge density that can be binned along the x -direction,
the ionic point charges have been smeared out be a Gaussian distribution. Addi-
tionally, the integrated charges q for each dislocation and a representation of the
terminal layer of the dislocation cut are given.

and a second dislocation of identical type but with opposite line direction:

b⃗
(2)

= b⃗
(2)

edge + b⃗
(2)

screw , (36)

a〈10 1〉= a

3
〈12 1〉+ 2a

3
〈1 1 1〉 . (37)

If these two dislocations interact a full edge dislocation of type D results because the screw
contributions cancel exactly:

b⃗
(new)
edge =

a

3
〈11 2〉 + a

3
〈12 1〉 = a〈01 1〉 , (38)

b⃗
(new)
screw =

2a

3
〈11 1〉+ 2a

3
〈1 1 1〉= 0⃗ . (39)

Note, that this procedure, first, requires the presence of two type C dislocations. Therefore,
we conclude that there must be a high density of dislocations, so such dislocations can
accidentally meet. In addition, the two reacting dislocations must originate from opposite
dislocation sources since they travel from opposite directions towards each other.
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Figure 41: TypeD dislocation after long annealing at high temperature. Only oxygen ions are
shown for clarity and color coding in red represents position where the oxygen
vacancy has visited. One oxygen vacancy has been emitted from the dislocation
core and diffused away which reduced the positive dislocation core charge. The
dislocation is still localized as a full dislocation.

The reactions result in a full D-type dislocation. The occurrence of climb dissociated disloca-
tions of this type, as for typeA, requires sufficient thermal activation. Such thermal activation
may be caused by the energy deposition of the TEM electron beam used for analyzing the
dislocation structures. The fact that we do not observe climb dissociation in the annealing
simulations at 3000K can either hint to a significant activation barrier or to an entropic
stabilization of the full dislocation core.

Outlook In summary, type D dislocations are a product of the interaction of two type C

dislocations. High dislocation densities and multiple dislocation sources are required for it
to form. As a product of two mobile dislocations, this dislocation type is rather immobile
because of the large Burgers vector and the absence of glide dissociation. The energetically
favorable climb dissociation renders it sessile. Consequently, the impact of typeD dislocations
on macroscopic plasticity is expected to be negligible. We, therefore, do not investigate its
behavior under applied load.
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Figure 42: Energies of typeD dislocations for different climb splitting distances. Each point
represents the average of at least three independent samples. Just the charge
balanced results are shown which behave analog to the non-charge balanced
case.

3.1.8 Dislocation Type E

Literature An E-type dislocation possesses also a Burgers vector of b⃗ = a〈11 0〉 but is
otherwise very different from the dislocation types discussed so far. With a line vector of
t⃗ = 〈10 0〉 it is a mixed dislocation residing on an n⃗= {00 1} glide plane. The defining vectors
are illustrated in Figure 43. Its special structure with the simple vectors can be expected to
lead to a compact dislocation structure. Moreover, this dislocation type is the only one that
is not related to some glide plane or climb plane of {11 0} orientation.

This dislocation type was found in nanoindentation experiments of polycrystalline SrTiO3
[114]. Supplementary theoretical work was provided by Yang et al. [187]. It has been
claimed that dislocations with b⃗ = a〈11 0〉 and n⃗ = {00 1} could be observed in several
variants, ranging from pure edge to screw, just like the 〈110〉{1 10} types A, B, and C.
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t⃗
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Figure 43: Crystallographic orientation of defining vectors for dislocation type E . Unit cell
of cubic SrTiO3 with Burgers vector b⃗ (orange), line vector t⃗ (blue), and slip plane
n⃗ (purple). Reproduced from Figure 9 for convenience.

It is of significant interest to discuss this additional slip system due to its implications for
arbitrary macroscopic ductility. If dislocations in this type E configuration were mobile,
there would be five slip systems (2× 〈11 0〉{1 10} and 3× 〈11 0〉{00 1}) available in SrTiO3.
Therefore, the Taylor criterion is satisfied and “significant plasticity in polycrystalline SrTiO3
ceramics can be expected” [187, 303].

However, in nanoindentation experiments complex stress states with very high applied
stresses can lead to all kinds of dislocations, since fracture is inhibited at the nanoscale
and the necessary Peierls stress can be overcome [198, 304–308]. Thus, the role of type E

dislocations needs to be revisited.

Charge at Dislocation Core and Dislocation Splitting Mixed type E dislocations feature
a screw component as well as an edge component. The edge component, is terminated by
SrO or TiO2 units, see insets in Figure 44. If the ions carried nominal charges, i.e., Sr2+,
Ti4+, and O2–, these terminating layers would be charge neutral and charge between the
two dislocations would be balanced. However, the interatomic potential by Thomas et al.
[157] uses the ionic charges as a fit parameter. While the full SrTiO3 formula unit is charge
neutral, the fractional charges on the ions create charged SrO0.44+ and TiO 0.44–

2 layers, see
Figure 44. Note that this observation does not invalidate the results of the other dislocation
types studied because there it is a true ionic imbalance that leads to charged dislocation
cores. If nominal charges were assumed in the cases A, C, and D, the charge imbalance
would be even more significant.

However, the electrostatic repulsion of equal sign charges being located opposite to each
other is important for a possible climb dissociated configuration. In Figure 45 we show

79



0 100 200 300 400 500 600 700 800 900 1000 1100
−6

−4

−2

0

2

4

6

×10
−2

x-position in Å

ch
ar
ge

de
ns
it
y
in

e
Å
−
1

effective charges
nominal charges

Figure 44: Charge density map for type E dislocations using the effective charges from
the interatomic potential versus nominal charges. Insets show the unrelaxed
dislocation structure where SrO and TiO2 termination is visible. The charge
imbalance comes from the use of effective charges in the interatomic potential.

the starting configuration for the study of climb dissociated E-type dislocations. Evidently,
there would be either SrO0.44+ or TiO 0.44–

2 layers directly adjacent to each other in a climb
stacking fault. This configuration cannot be stable due to its massive electrostatic repulsion.
Thus, the study of this climb stacking fault is prohibited in the framework of fixed charge
interatomic potentials. Such a stacking fault would require the use of a different potential or
elaborate DFT calculations that allow for charge transfer to adapt the ionic charges at the
climb stacking fault.

Although we cannot study this dislocation type atomistically with the desired accuracy, we
can still make some very relevant analytic considerations. First, we note that even when
charge balanced, the two differently terminated dislocation variants can be expected to
show slightly different behavior. Such a difference has also been encountered in studies of
dislocations with b⃗ = 〈10 0〉, t⃗ = 〈00 1〉, and n⃗= {01 0} [137].

Second, the glide dissociation suggested by Mao and Knowles [114] would only be possible
if the γ-surface in the glide plane had a metastable minimum in between full Burgers vector
shifts. The corresponding γ-surface for the {10 0} plane has been presented in Figure 20.
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a) b)

Figure 45: Different hypothetical configurations of climb dissociated type E dislocations. A
climb stacking fault is either constituted by two adjacent SrO layers (a) or by two
adjacent TiO2 layers (b). Connecting lines between cations are shown as a guide
to the eye.

While the local minimum in the {11 0} γ-surface has been related to the glide dissociation of
dislocations with {1 10} glide planes such a feature is absent in the {10 0} γ-surface. Glide
dissociation of type E dislocations is, thus, not feasible.

Full Dislocation Structure Despite the restrictions due to the nominal charges we try
to model the full native dislocations with SrO and TiO2 termination. When relaxed in
low temperature conditions dislocations of either termination show no rearrangement. As
expected, spontaneous dissociation into partial dislocations does not occur.

Even with sufficient thermal activation of 2500K over long time scales (analog to the anneal-
ing simulations in Section 3.1.6) the dislocation core structure is unchanged. Only slight
disordering of individual ions at the dislocation core is observed. We conclude that type
E dislocations cannot lower their Peierls barrier by splitting which is consistent with the
calculated γ-surfaces. This dislocation type, therefore, plays a minor role in the macroscopic
plastic behavior of SrTiO3. It may still be relevant in nanoindentation experiments, where
the loading scenario is very different.

3.1.9 Discussion

In this section we have carefully investigated the low temperature structure of dislocations
in SrTiO3 that were suggested in literature. A special focus is put on the dislocations that
can be introduced mechanically at low temperature, i.e., below 1000K. The different types
of dislocations possess a Burgers vector of a〈11 0〉 but differ with respect to dislocation line
vector and glide plane. A summary of the results is given in the overview of Figure 46.
Throughout this part we also found good agreement between analytical approximation and
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Figure 46: Summary of expected dislocation behavior based on quasi-static calculations.

simulations, e.g., for the splitting distance. We acknowledge, that our considerations only
target stoichiometric SrTiO3 and the interaction of dislocations with point defects or doping
is left to further studies.

Glide Dissociation Dislocation types A, B, and C belong to the subgroup of 〈11 0〉{1 10}
dislocations. They glide dissociate spontaneously into two equal and collinear partial disloca-
tions which reduces their elastic energy and potentially lowers their Peierls stress. The glide
dissociation is in line with the rule of thumb that stable stacking faults in ionic crystals require
that some basic stacking sequence is retained and atoms of equal sign charge do not come
too close to each other [111]. Glide planes other than {1 10} planes do not show metastable
stacking faults in SrTiO3. From this we conclude that dislocation types D and E are not
relevant for slip transfer, while types A, B, and C contribute to macroscopic plasticity.

Inherent Dislocation Core Charge Since dislocation type A, C, and D have a (partial) edge
character, the terminating layers of their dislocation cores are inherently charged because
they are either anion or cation dominated [112, 138]. This inherent charge is a decisive
factor regarding the tendency of type A and C dislocations to glide dissociate. Moreover,
these dislocation types and the state of their core are probably very sensitive to defect
equilibria that involve charged defects. Because dislocation mobility is expected to strongly
depend on the dislocation glide dissociation, the dislocation core charge has an indirect
and possibly significant impact on the plastic behavior of SrTiO3. Note that this effect is
qualitatively different from dislocation pinning by charged defect clouds that accumulate
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around dislocations [103]. In turn, one also has to recognize that the dislocation charge
influences the local defect equilibria in SrTiO3, e.g., via the emission of oxygen vacancies as
exemplarily shown for type D dislocations.

Climb Dissociation An important result concerns the most intensively studied dislocation
type A. The full dislocation is unstable and spontaneously glide dissociates into two equal
partials. However, by careful preparation of glide and climb dissociated dislocations of
this type we could show that the climb dissociated variant is the most stable configuration.
The reason is the destructive overlap of the mechanical stress fields in this configuration
that reduces the elastic dislocation self-energy. Dislocation climb dissociation is commonly
associated with sessile dislocations, as a motion in such a configuration would require massive
diffusion. The fact that a climb mechanism could be the reason for SrTiO3 becoming brittle at
elevated temperature, however, also opens the route to dislocation multiplication mechanisms
like the proposed multiple cross glide mechanism [106].

Conclusion In this section we have studied the (quasi-)static structure of dislocations in
SrTiO3. Next, we continue on the roadmap presented in Figure 47 and investigate the
behavior of the relevant dislocation types under external load. Ultimately, the aim of this
process is to gain a better understanding of the ingredients required for plasticity in SrTiO3
and possibly other materials of similar perovskite crystal structure.
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Figure 47: Summary of the main findings. In this section the equilibrium structure of dislo-
cations at low temperatures has been covered. The next section proceeds with
dislocation motion.
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3.2 Dislocation Motion

In the previous part we have investigated the quasi-static structure of several dislocation
types. This allowed identifying sessile and mobile dislocations. In this section we try to
validate these considerations by actually applying load to the dislocations. To this end, we
quasi-statically calculate the Peierls stress of various dislocations and observe their behavior
during applied load and motion. Specifically, we address the following questions:

1. What is the Peierls stress of dislocation types A, B, and C?

2. How does kink formation and migration affect the stress level required to move dislo-
cations?

3. What is the mode of motion of the dislocations, and how do they interact with point
defects?

3.2.1 Lessons From a Quasi-static Analysis

In our discussion of static equilibrium structures in the athermal regime we focused on
dislocations that have been proposed in literature. These dislocations were found in SrTiO3
after mechanical load has been applied in temperature regimes that are not too far from
room temperature. Importantly, it is known that the plastic behavior of SrTiO3 single crystals
changes around 1000K, so we have restricted the discussion to temperatures well below this
threshold [127].

A dislocation contributing to plastic deformation also needs to be mobile. First, the dislocation
itself must have a structure that allows a facile motion. Second, the loading conditions must
be appropriate to exert a force on the dislocation. Third, the motion of the dislocation should
not be impeded by defects in the material. Let us discuss the first point here, the second
point in the following paragraphs and lift the simplification of unhindered dislocation motion
in Section 3.3.

It was found that all dislocation types A to E are stable in single crystals of SrTiO3. All of
them possess the identical a〈11 0〉 Burgers vector. However, only dislocation types A, B, and
C feature configurations that exhibit glide dissociation.

We have noted that the presence of glide dissociation enables a dislocation to glide more
easily. The reason is the connection of the Peierls stress to the length of the Burgers vector.
In Equation (21) we used the classical Peierls-Nabarro formula and exploited its relation
between Peierls stress and ratio of Burgers vector and slip plane spacing [309]. This gave a
first approximation for the relative mobility of the different dislocation types. However, this
model was developed and mostly used for simple metals such as Al or Ag. Indeed, the problem

85



is not as simple in a structure like a perovskite and when two connected partial dislocations
are considered. The following paragraphs point to the difficulties in the calculation of the
Peierls stress using some well-known concepts of elasticity theory.

3.2.2 Analytic Peierls Stress Calculation

It was shown by Huntington [211] and comprehensively discussed in Refs. [179, 297] that
the Peierls stress in a mono-atomic metal depends on the stacking in the slip plane. Two
solutions have been derived for an alternating stacking and a facing stacking, see Figure 48.
Alternating stacking describes the situation where the atoms on two sides of the slip plane
are shifted by half of a Burgers vector. In a two-dimensional picture this is the situation
between two close packed planes in a close packed hexagonal lattice, see Figure 48 top left.
Here, the atoms are not on top of each other but the atoms in one row reside in the valleys
formed by the atoms of the row below it. That is the situation for the cation sub-lattice of
the perfect perovskite lattice. The Peierls stress of an isotropic and linear elastic material in
this Peierls-Nabarro approach is [297]:

τPNm =
µ

1− ν exp

� −πh

b(1− ν)

�

, (40)

where µ is the shear modulus, ν is the Poisson’s ratio, h is the distance between equivalent
lattice planes perpendicular to the glide plane, and b is the magnitude of the Burgers vector.
On the contrary, imagine the situation where the atoms across the slip plane face each other,
see Figure 48 bottom left. This situation appears, provided a 2-dimensional representation,
in a close packed slip plane of a simple square lattice. The Peierls stress for this situation
(Huntington approach) is estimated to be [297]

τHm =

�

0.15+ 0.06(1− ν) b
h

�

µ

1− ν exp

� −πh

b(1− ν)

�

. (41)

These values are valid for edge dislocations, screw dislocations can be treated by omitting
the factor (1− ν). Note, that there are actually older variants of the Peierls-Nabarro formula
for τm which have errors in the exponent as well as the prefactor [179, 211, 297]. Nabarro
[179] discusses the historic evolution of these formulae noting that, generally, Equation (21)
underestimates the Peierls stress. Here we use the more accurate formulae by Huntington
[211] which are discussed in detail by Nabarro [297].

The problem with the perovskite structure is that the definition of facing versus alternating
stacking depends on the choice of the sub-lattice as well as the configuration seen by the
leading versus trailing partial, see Figure 48. Additionally, ionic bonding is very different
from metallic bonding. Thus, it is unclear whether Equation (40) or Equation (41) holds true.
In Figure 48, we illustrate the problem of stacking: in the ideal perovskite crystal Sr- and
Ti-ions alternate while they face each other inside the {1 10} stacking fault that is relevant
for dislocation types A to C. What remains certain, however, is that the glide dissociated
dislocation has a reduced Peierls stress compared to the full dislocation.
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Figure 48: The stacking sequence inside the slip plane impacts the Peierls stress. While the
oxygen sub-lattice (red) is conserved inside and outside of the stacking fault, the
cation stacking sequence looks different to the leading and the trailing partial.
In the ideal crystal strontium (green) and titanium (blue) have an alternating
stacking; inside the stacking fault the species face themselves across the slip
plane.

As an example we explicitly evaluate τm for a type A dislocation using as input the values
shown in Table 5, shear modulus µ= 107GPa, Poisson’s ratio ν= 0.26, and the assumption
of isotropic elasticity. Using the Peierls-Nabarro approach from Equation (40) we obtain
17.3GPa for the full dislocation and 2.07GPa with half the Burgers vector. Instead, the
modified Huntington model from Equation (41) gives 4.13GPa and 403MPa, respectively.
Note, that the difference in τm between the full and the glide dissociated dislocations is
much smaller compared to the old Peierls-Nabarro formula Equation (21) which is presented
in standard textbooks like Ref. [164]. For reference, it gives 4.14GPa and 59MPa for the
full and glide dissociated dislocations, respectively. Thus, we expect that, e.g., Porz [132]
significantly underestimates the Peierls stress for the glide dissociated dislocations.

Based on this discussion we expect that only glide dissociated dislocations are mobile due
to their low Peierls stress compared to full dislocations. Additionally, because the partial
dislocations are tied together by a stacking fault, the Peierls stress could be reduced further
[179, 310] and be below our analytical predictions. Also, because dislocation types A, B,
and C have different dislocation core arrangements, we suggest that their Peierls barrier will
differ. Before turning to a fully atomistic calculation of the Peierls barrier a few considerations
on the setup and the mode of dislocation motion are in order.

3.2.3 Expectations Regarding Dislocation Motion and Limitations in Simulations

Dislocation motion can occur in different modes. So far, our estimates on the Peierls stress
have been regarding individual edge or screw dislocations [179]. However, for pairs of
partial dislocations the relative position of the two partials is of importance since they are
tied together by a stacking fault. As pointed out by Benoit et al. [310] the connection of two
partial dislocations alters the stress needed to move dislocations. And more generally, the
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Figure 49: Different models of dislocation propagation. Left: Kink formation and propaga-
tion due to applied stress can lead to an interchange of dislocation segments with
edge, screw, and mixed character. Top right: Two partial dislocations connected
by a stacking fault can possess a spacing which is an integer (commensurate)
or non-integer value (incommensurate) of the Burgers vector. Bottom right: If
connected partials move consecutively the motion can be driven by the leading
or the trailing partial. This increases or decreases the area A of the stacking fault,
respectively.

motion of dislocations by kink formation and migration is an important mechanism for them
to incrementally overcome the Peierls barrier instead of rigidly jumping from one Peierls
valley to another [181]. The two aspects are displayed in Figure 49.

Connected Partials For simplicity, we first assume dislocations that are straight parallel
partials and need to overcome the hill between two stable locations as a whole. If the
two connected partial dislocations move simultaneously their distance is constant and both
surmount the Peierls hill at the same time. The Peierls stress for this motion corresponds to
the case of an individual partial moving [311].

However, the two partial dislocations are not independent. They are connected by an
attractive force resulting from the stacking fault and a repulsive force resulting from their
stress fields, see Equation (22). The combination of these forces can be imagined like a spring
tieing the partial dislocations together. The higher the stacking fault energy and the stronger
the dislocation stress fields (i.e., the larger the Burgers vector), the stiffer the spring becomes.
It is quite probable that the equilibrium distance of the spring is not commensurate with
the periodicity of the Peierls landscape (“non-integer spacing” in Figure 49). For instance, if
the coupling between the partial dislocations pulls them closer together than dictated by
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the minima on the Peierls energy landscape, the stacking fault assists the dislocations in
climbing the Peierls hill. Therefore, the apparent Peierls stress is reduced [310]. Note, that
this argument is purely based on the forces between the partial dislocations and does not
entail activation energy transferred between the dislocations. While the coupling can lower
the apparent Peierls stress, a reduction of the lattice friction to zero as suggested by Benoit
et al. [310] seems unlikely. First, energy will still be dissipated when a dislocation moves
from a Peierls hill into an adjacent Peierls valley. Second, the equilibrium distance of the
repulsive and attractive forces between the partial dislocations (excluding the Peierls energy
landscape) would have to equal exactly 2n+1

2 bfull with integer n. And third, the absence of
Peierls stress would require that the connection between the partial dislocations is rigid and
not spring-like. This requires very high stacking fault energies. High stacking fault energies,
in turn, prevent glide dissociation altogether making the scenario of zero lattice friction
suggested by Benoit et al. [310] impossible.

A related scenario appears if the dislocations do not move at the same time or at the same
speed. The distance between the partials and, therefore, the area of the stacking fault can
either increase or decrease [150]. If the stacking fault area increases, the stress to initially
overcome the Peierls hill will be slightly increased since additional stacking fault area must
be created and vice versa if the trailing partial moves alone. It is a very plausible scenario that
the leading partial moves first, because the leading partial sees a shallower energy landscape
than the trailing partial, see Figure 20. Then the increased stacking fault area could drag
the trailing partial behind reducing its Peierls stress.

Which influence these effects have is not a priori obvious. MD simulations by Hirel et al.
[150] have shown that type A dislocations move by almost simultaneous motion of both
partials. Type B dislocations, however, first drastically increase the stacking fault area by
motion of the leading partial before the trailing partial follows. However, this study used
simulation cells with only 1 u.c. thickness, dislocation monopoles, and estimated the Peierls
stress based on shear strain (instead of direct calculation by material response).

Kinks In addition to the different modes of motion for straight partial dislocations, it is
known that dislocations usually bend under applied load and do not jump to their adjacent
Peierls valley as a whole. The process by which a dislocation surmounts its next Peierls hill
segment-wise is referred to as kink pair formation and consecutive migration of these kinks
[310, 312]. It is schematically shown in Figure 49 how the kinking process can avoid the
large energy cost that is required for a complete dislocation line to surmount the Peierls
hill. Instead, the dislocation only overcomes this barrier locally and assisted by thermal
fluctuations. The expansion of the kinked region ultimately leads to a situation where the
dislocation as a whole has moved into its adjacent Peierls valley [312].

To observe dislocation kinking or bow-out of dislocation lines a short simulation cell along
the dislocation line is inappropriate. Because periodic boundary conditions are in place
the dislocation is only quasi-infinitely long. The periodic boundaries restrict the dislocation
line to be connected across the boundary of the simulation cell. In fact, there are image
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Figure 50: The self-interaction of the dislocation line across the periodic z-boundaries cre-
ates image forces. They prevent large bow-outs in short simulation cells (small
Lz) or prevent kinking altogether. To investigate these processes large simulation
cells are required.

forces inversely proportional to the periodic dislocation line length Lz that tend to pull the
dislocation straight and counteract the bow-out [164, 294]. Any kink or bow-out of the
dislocation line immediately sees its periodic image across the boundary. Thus, a single pair
of kinks cannot nucleate independently. In effect, for very short dislocation lines, especially
the single u.c. length used in many studies [138, 150, 155], dislocation lines surmount the
Peierls barrier as a straight line. While this leads to the correct Peierls barrier of a dislocation
segment it does not give insights into the true motion of the dislocation in crystal. Therefore,
we extend the simulation of short dislocation lines (Section 3.2.4) with the simulation of
longer dislocation lines (Section 3.2.5), so we can observe kinking, see Figure 50. It is
expected that simulation cells with different lengths along z give different values for the
resolved shear stress. We also note that image forces due to the periodic dislocation array
should be negligible due to the large sizes along the x- and y-axis and the ratio of the
simulation cell sides [294].

The force that an externally applied shear stress exerts on a dislocation line can be calculated
using the Peach-Koehler formula (Equation (8)). We apply the shear stress by adjusting the
target values of the barostat while the temperature is fixed at 10K (athermal regime). By
holding each stress value for 40 ps we avoid dynamic effects of increasing the applied load
too quickly. For dislocation types A and B the shear stress is chosen such that the dislocation
experiences the full applied stress. The critical resolved shear stress when a dislocation starts
to move is, thus, equal to the outer applied shear stress at that moment. In the case of type C
dislocations, we choose the two extreme scenarios: an applied stress that either loads the
screw component (τxz) or the edge component (τx y) of the dislocation.
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3.2.4 Dislocation Motion under the Influence of Periodic Images

In this section, we turn to the actual atomistic simulation of dislocations under mechanical
load. First, we will discuss all three 〈110〉{1 10} dislocation types in thin simulation cells,
where image forces are significant. Relaxed constraints due to image forces are discussed in
Section 3.2.5.

Type A Type A dislocations exist in one of three different configurations: as-created glide
dissociated, charge balanced full, and charge balanced climb dissociated. For the case of
charged dislocations we further distinguish between as-created dislocations with positive
charge (oxygen deficient) and negative charge (oxygen surplus). All types are loaded by
a shear stress τx y at 10K. Note that the alignment of the crystallographic axes with the
simulation cell axes has been defined in Table 3 and the orientation of the shear loading is
shown in Figure 51. We expect only the glide dissociated variant to be mobile.

Indeed, we confirm that the charge balanced full dislocation cannot glide, see Figure 52 (a) –
(c). Instead, we observe that this dislocation acts as point for crack nucleation. Consequently,
the material ruptures around 6GPa, see Figure 52 (c). Likewise, the climb dissociated
dislocations, charged as well as neutral, do not exhibit dislocation glide (not shown).

The as-created simulation cell with the dislocation dipole features one positively charged
(oxygen deficient) and one negatively charged dislocation (oxygen surplus) maintaining
overall charge neutrality. Upon loading, the positive glide dissociated dislocation starts
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Figure 51: Schematic drawing of the simulation cell setup with shear stress for type A

dislocations. Analog loading scenarios apply to dislocation types B and C. For
details on the crystallographic orientations see Table 3.
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some nano-cracks and dislocation emission above 4GPa. (f) – (i) Positively
charged dislocations (oxygen deficient) glide easily (f) until they emit oxygen
vacancies balancing their charge (g). Charge balanced dislocations are sessile
and only when nano-cracks are formed at increased load they can act as nuclei
for new dislocations (h). When the load is removed from the sessile dislocation,
the partial dislocations re-associate into a full dislocation as long as they stay
charge neutral.
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moving between 1.20GPa and 1.25GPa, see Figure 52 (a) & (f), in line with published
MD simulations [150]. During motion the positive dislocation’s glide dissociation distance
increases slightly from 1.56 nm – 2.05 nm to around 2.3 nm – 2.5 nm. The motion of this
oxygen deficient dislocation is not perfect, see Figure 52 (g). As it is gliding, the positive
dislocation emits oxygen vacancies and becomes charge neutral. Once it has achieved charge
neutrality, the dislocation remains in its glide dissociated configuration but stops moving. So
after travelling only about 25 nm this dislocation has become sessile. If the load is increased
further, nano-cracks form at the sessile dislocation and new neutral dislocations may be
emitted, see Figure 52 (h). Instead, if we remove the stress, the neutral glide dissociated
dislocation re-associates into a full dislocation with slightly widened core, see Figure 52
(i). It only dissociates again into its partial dislocations if a vacancy is provided and the
dislocation becomes charged. This is exactly the behavior that was expected from the static
simulations in Section 3.1.4: The neutral dislocation is more stable in the full configuration
and immobile.

In order to see if the negatively charged dislocation could also move, we turned to charged
simulation cell, where both dislocations are either positively charged or negatively charged.
For the positively charged dislocation, we again observe easy glide confirming that their
mobility is not sensitive to the dislocation dipole configuration. The negatively charged
dislocations, however, do not glide easily, see Figure 52 (a) & (d). Only when τx y is raised
significantly beyond 4GPa nano-cracks form at the sessile dislocation and new dislocations
can be emitted, see Figure 52 (e).

We shortly summarize the intermediate results:

• Climb dissociated configurations of type A dislocations cannot contribute to plasticity.

• Full dislocations, as they appear for the charge balanced configurations, likewise,
cannot glide.

• Negatively charged and neutral glide dissociated dislocations are virtually immobile.

• Positively charged dislocations have a Peierls barrier on the order of 1.20GPa – 1.25GPa
and are mobile as long as they are charged. However, the emission of oxygen vacancies
occurs frequently and renders these dislocations sessile.

Why can only the oxygen deficient and positively charged dislocation glide easily? To
investigate this matter we test a couple of hypotheses.

First, we expected that there is simply an energy difference of an oxygen vacancy at the
dislocation and an oxygen vacancy positioned on a regular lattice site. If the latter energy
was lower, the dislocation would see a driving force to move through the crystal and bring the
oxygen vacancy which is initially located at its core to a more favorable position. Effectively
such a driving force would add to the external applied load and ease the glide of oxygen
deficient dislocations. In the dimensions chosen here there are two vacant sites at the
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positively charged dislocation. However, comparing the energy when the oxygen vacancies
are at the dislocation core and the energy of one or both of the vacancies manually placed
somewhere else on the glide plane, i.e., far from the dislocation core, we could falsify this
hypothesis, see Figure 53 (a). In fact, placing the vacancies at the dislocation is energetically
favorable albeit a very small energy difference on the magnitude of approx. 0.1 eVÅ−1 per
vacancy.

Second, we checked the stress tensor of the simulation cell. To this end, we measured
the average stress on each simulation cell side during an NV T simulation at 10K with
Nosé-Hoover thermostat. Indeed, especially the stress tensor along the dislocation line, i.e.,
the component related to the dislocation line tension varies with positioning of the oxygen
vacancies. Line tension is the energy change from a change in dislocation line length dEpot

dl

[159]. There is a clear trend of increased line tension when the two vacancies are not right
next to each other, see Figure 53 (b). Therefore, also this hypothesis can be negated, as it is
preferable to have the vacancies at the dislocation line from a line tension point of view.

In summary, there is no viable thermodynamic explanation why the positively charged and
oxygen deficient dislocation glides more easily and why it emits oxygen vacancies during
glide. Rather it seems that the emission of vacancies from the dislocation core requires
energy input that is supplied by the dislocation motion and the resulting dissipated energy.
Clarifying the origin of the peculiar difference between oppositely charged cores definitely
requires further investigations.
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Figure 53: (a) Potential energy Epot for different positioning of oxygen vacancies VO with
respect to an oxygen deficient type A dislocation core. Values are referenced to
the as-created configuration where both vacancies are at the dislocation core.
(b) Absolute of normal stressσzz on the boundary of the simulation cell along the
direction of the dislocation line z. Values are referenced to the lowest absolute
value.
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TypeB The scenarios of moving B-type dislocations have been discussed in depth by Hirel et
al. [150] who found that the screw splitting distance increases during glide and reported that
the first partial starts gliding at 2.64GPa. Since we are using the same interatomic potential,
we can essentially reproduce the published results. Our type B dislocations are loaded with
τyz and the Peierls stress is in the range of 2.50GPa to 2.75GPa at low temperature. Note
that the difference in the Peierls barrier between type A and B dislocations is due to the
stacking fault energy hypersurface. Because the edge dislocation type moves along another
〈11 0〉 direction it only has to overcome the relatively small energy barrier with a limited
slope and the intermediate minimum along that direction. The screw dislocation, however,
glides along a 〈10 0〉 direction. From Figure 20 it is apparent that the energy barrier is much
higher and steeper along this direction. The presence of a greatly increased Peierls barrier is,
thus, in line with our expectations.

However, Hirel et al. [150] did not give a conclusive explanation why the distance between
the leading and the trailing partial increases under applied load from an average of 1.9 nm
to as much as 3.7 nm – 5.6 nm, see Figure 54. At first glance, an increase in splitting distance
seems contradictory because both partial dislocations experience the same Peach-Koehler
force and should commence glide simultaneously. Yet, as we found in Section 3.1.5 there
are multiple meta-stable positions corresponding to different splitting distances where the
forces on the partial dislocations are balanced. From the equilibrium position of the smallest
observed splitting distance, the partial dislocations see an asymmetric landscape that differs if
they are the leading or the trailing partial. To move in glide direction the leading partial sees
a relatively low barrier which is a combination of repulsive force from dislocation interaction,
the Peierls stress, and the effect of the stacking fault. The trailing partial, however, sees a
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Figure 54: Type B dislocation without applied load (top) and while moving under applied
load (bottom). The distance between the partials, i.e., the stacking fault area, is
increased during motion because the leading partial starts moving first.
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relatively steep landscape because bringing the dislocations closer together results in more
repulsive force proportional to 1/d. Thus, the leading partial can already move at much lower
loads. Only when the leading partial has increased its distance to the trailing partial, the
trailing partial sits in a shallower landscape because there is less back-stress from the leading
partial. Thus, when the splitting distance has reached about 5 nm the trailing partials gets
virtually dragged along. Put in other words, the leading partial has moved out of the way
allowing the trailing partial to follow.

Type C We have shown in Section 3.1.6 that the glide dissociated configuration of type
C dislocations is favored in the charged as well as the uncharged state. Because of the
mixed character of this dislocation τx y can be applied to move the dislocation via its edge
component, and τxz can be applied to drive it via its screw component. The two scenarios of
loading with τx y and τxz are considered separately.

For the charge balanced dislocation at low temperature the Peierls stress for τx y is in the
range of 5.00GPa – 5.25GPa, and for τxz it is in the range of 2.75GPa – 3.00GPa. This is
surprisingly high, especially compared to type A dislocations. A closer look reveals that the
dislocations that glide actually possess a negative charge and leave behind a positive charge
at their initial position, see Figure 55. This positive charge is due to oxygen vacancies that are
left behind. Put in other words, we suspect that the negatively charged dislocation is actually
pinned by the oxygen vacancies at its core that were created to balance the dislocation core
charge. Thus, the high observed Peierls barrier is a result of a pinning by point defects at the
dislocation core. Interestingly, this is analog to type A dislocations that are also only mobile
in their charged state.

In order to confirm that the charge balancing pins the dislocation to its position and to
compare to the effect of charge in type A dislocations, we next apply shear stress to type C

dislocations with charged cores. The simulation setups with the charged cores feature one
negatively charged and one positively charged dislocation core. The negatively charged and
glide dissociated dislocation starts gliding at τx y ≈ 750MPa and τxz ≈ 400MPa− 450MPa,
respectively. During glide, the distance between the partial dislocations remains rather
constant at approximately 1.9 nm – 2.0 nm and the dislocations retain their charge, see
Figure 55. These observations confirm, that the neutral dislocations are, in fact, strongly
pinned by the additional or removed oxygen ions at their dislocation cores. The results are
summarized in Figure 56.

Moreover, we note that the Peierls barrier here is even lower than for dislocations of type
A or B. Additionally, it is intriguing that for type A dislocations the positively charged
dislocation was mobile while for type C dislocations only the negatively charged dislocations
are mobile. We confirmed this finding by studying simulation cells with only positively
charged dislocations and only negatively charged dislocations (simulation cells are charged
in that case). Again the C-type dislocations with negative core move easily while dislocations
with positive core require either very high loads (around τx y ≈ 4.55 GPa) or initiate fracture
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Figure 55: Static andmoving configurations of type C dislocations. Only atoms of the oxygen
sub-lattice is displayed and color coded when falsely coordinated. Neutral as
well as negatively charged dislocations look similar in their static configuration.
However, the charge neutral dislocation requires the emission of positive oxygen
vacancies at high stresses to commence glide. In contrast, the negatively charged
dislocation glides easily without the contribution of point defects.

(around τx y ≈ 7GPa). This behavior is basically inverse to the observation of type A

dislocations, see Figure 52.

For the edge type A, the positive charge on the dislocation line quickly balanced during
glide by emission of oxygen vacancies during motion. Once the dislocations were charge
neutral, they stopped moving. The situation is different for the mixed type C dislocation. A
balancing of the negative charge on the mobile dislocation would require the emission of
oxygen interstitials or the creation of vacancies on a cation site. Apparently, the energies
for the creation of such defects are large, such that they are not observed here [26, 27].
Consequently, the negatively charged glide dissociated dislocations of type C are more mobile
than their type A analog and can sustain their mobility over a longer distance. In a real
crystal, of course, the moving dislocation could also intercept and sweep-up other point
defects already present in the material, e.g., from a natural oxygen vacancy concentration or
dopants. Note, that this is in agreement with experimental findings from nanoindentation of
SrTiO3 under reducing conditions. Reduction increases the concentration of mobile oxygen
vacancies and lowers the dislocation mobility [207].
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Figure 56: Summary of the different responses of variants of type C dislocations.

Nevertheless, the reasons for the peculiar charge dependence and for the strong reduction of
the Peierls barrier is not clear at this point. While glide occurred along the 〈11 0〉 and 〈00 1〉
direction for the type A and B dislocations, respectively, glide follows the 〈11 2〉 direction for
the type C dislocation, see Table 3. It requires the surmounting of a rather steep barrier, see
Figure 20, but the energy landscape does feature intermediate minima. The relatively rigid
spacing between the partial dislocations compared to typesA and B suggests that the partials
are tied together rather strongly. This could enable a reduction of the Peierls stress because a
partial that moves down the local energy landscape can drag or push its corresponding partial
moving upwards the energy landscape [310]. At this point the calculation of γ-surfaces with
defects and charges could lead to further insights explaining the differences between the
edge and the mixed dislocation types. We suggest accurate DFT calculations to solve this
issue in the future.

3.2.5 Dislocation Motion in Large Simulation Cells

The short simulation cell dimension along the direction of the dislocation line (z-axis)
effectively prevents any kinking of dislocations [164, 294]. To allow for kinking of dislocations
the dislocation line between the periodic boundaries has to be longer. For all three dislocation
types we, therefore, increase the length of the z-axis from 2u.c. to 60 u.c.. Based on the TEM
images by Yang et al. [199] we expect that this size is sufficient to observe nucleation and
propagation of kinks. Apart from a replication of the simulation cell along z by a factor 30,
these simulations are identical to the ones presented in Section 3.2.4.

Type A For the larger dislocation line length (here 23.4 nm) we only study the glide disso-
ciated charged configuration of the A-type dislocation since it is the only mobile variant. The
critical resolved shear stress is slightly reduced from about 1.25GPa to the range of 1.05GPa –
1.10GPa. Again the positively charged dislocation glides easily, while the negatively charged
dislocation is sessile. The formation and propagation via kinks can be clearly observed
in Figure 57. In the simulation we start from the as-created partial dislocation which are
straight parallel lines, see Figure 57 (a). Kinks on the dislocation line form despite the low
temperature of only 10K, see Figure 57 (b). We note that kinks on the leading and trailing
partial preferentially occur at the same points which supports the statement that the partial
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dislocations are tied together rigidly by the coupling of their stress fields and the stacking
fault. Moreover, we notice that only in the initial stage of the dislocation motion, Figure 57
(c), kinks of double and triple height occur. Once the dislocation has started gliding, the
dislocation lines become straight again and kinks of double height are rarely observed, see
Figure 57 (d) & (e).

The reason for the strong waviness of the dislocation lines during the initial phase of dis-
location glide is the frequent emission of oxygen vacancies from the dislocation. For the
short dislocation segments we have observed that oxygen vacancies are emitted from the
positively charged dislocations ultimately leading to charge neutral and sessile dislocations,
see Section 3.2.4. The same process of oxygen vacancy creation is observed for long dislo-
cations, see Figure 58. In fact, the very high charge density on the as-created dislocations
results in an array of oxygen vacancies in the original position of the dislocation. Basically
they are created as the dislocation commences moving. The vacancy emission events pin the
dislocation such that it appears as if the dislocation line is forming kinks, see Figure 57 (c).
But also during motion of the dislocation, individual vacancies are left behind in the wake of
the dislocations. Nevertheless, because of the longer dislocation line with a larger number of
oxygen deficient sites at the dislocation core, it takes longer for the dislocation to equilibrate
its charge. Thus, the longer dislocation line can stay in its mobile configuration for longer
distances. This observation also raises the question, if there is an optimal dislocation core

a) b) c) d) e)

Figure 57: Propagation of a long typeA dislocation and kink formation. Only the dislocation
lines (orange) and oxygen octahedra (blue) are displayed for clarity. Kinks form
on the initially straight dislocation lines (a) in similar locations for leading and
trailing partial (b) – (e) indicating that the motion of the two partial dislocations
is correlated. During the initial phase of dislocation glide the dislocation lines
appear rough and have multiple kinks (c) while they are more straight once the
dislocations have left their initial positions (e).
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Figure 58: Oxygen vacancies emitted in the wake of a long type A dislocation. Dislocation
lines (orange) and falsely coordinated oxygen ions are indicated. Blue clusters
each enclose an oxygen vacancy. (a) Initial dislocation positions with the nega-
tively charged dislocation on the orange glide plane and the positively charged
dislocation on the green glide plane. (b) Only the latter moves leaving behind
oxygen vacancies.

charge enabling sustained glide and even lower Peierls stresses. However, addressing the
question is left to future investigations.

TypeB In the case of type B dislocations the τyz at which dislocations move is independent
of the system size, i.e., around 2.50GPa – 2.75GPa. Moreover, dislocations remain straight
and kinks of double height are never observed. Just like for typeA, we regard this as evidence
that the kink nucleation is the limiting step during dislocation motion. For short B-type
dislocation lines no emission of defects from the moving dislocation was observed, and the
dislocation moved smoothly. However, the long dislocation lines emit numerous point defects
during glide, see Figure 59.

In Figure 59, defects have been traced by highlighting falsely coordinated oxygen ions in
the oxygen sub-lattice. The defects are aligned on the glide plane of the dislocation, i.e., in
the wake of the dislocations and are restricted to the oxygen sub-lattice. Evidently, there
is a number of oxygen ions that are coordinated with too many other oxygen ions as well
as oxygen ions whose coordination number is lowered. Additionally, we observe that many
of the defects align in series along the x-direction, which is the direction the dislocation
has moved through the lattice. This indicates that oxygen ions are kicked out of their ideal
position as the dislocation passes. As a consequence associated oxygen Frenkel pairs are
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glide

Figure 59: Defects formed in the wake of a type B dislocation during glide from its initial
position in (a). Dislocation lines (orange) and falsely coordinated oxygen ions
are indicated. Green plane is the glide plane, particles in red are over-coordinated,
particles in blue are under-coordinated. Thus, blue clusters enclose oxygen
vacancies while red clusters enclose oxygen interstitials.

observed. Besides the aligned series of Frenkel pairs there are also individual vacancies and
interstitials that are separated by some distance, suggesting that the dislocation actually
picked up oxygen ions during glide and then left them behind at a later point creating first a
vacancy and then an interstitial. Overall, the stoichiometry of the dislocation line does not
change.

Frenkel pair formation in perovskite materials is known from high energy irradiation that
displaces oxygen ions off their lattice position [45, 313]. Among the other possible Frenkel
pairs it has the lowest energy, i.e., oxygen is more easily kicked out of its position than
strontium or titanium [45]. Still, significant amounts of energy, i.e., several electronvolts,
are required to form oxygen Frenkel pairs.

As we apply a constant shear stress of 2.75GPa to the samples, the B-type dislocations
move at a velocity of approx. 3300m s−1. At such high speeds dynamic effects can impede
the dislocation motion [314]. Additionally, the energy landscape for type B dislocations is
much steeper than for type A dislocations, see Figure 20. On the one hand, this results in
higher Peierls stresses of B-type dislocations compared to A-type dislocations as discussed
in Section 3.2.4. On the other hand, when the dislocation line has surmounted the Peierls
hill (Figure 8) and falls into the next Peierls valley, a larger amount of energy is dissipated.
Thus, we suspect that the large dislocation speed and the high energy dissipation rate are at
the core of the defect formation by dislocation glide.
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Similar observations have been nicely illustrated by Marian et al. [314] for the case of screw
dislocations in bcc iron. They note that dislocation motion at high stresses “becomes rough,
resulting in spontaneous self-pinning and production of large quantities of debris.” At low
temperatures single vacancies and interstitials are formed during dislocation propagation.
While they attribute the observation in bcc metals to frustrated kink formation, the process
is not yet clear for the case of SrTiO3. Notably, however, the formation of “debris” in the
wake of a screw dislocation in iron is likewise restricted to long dislocation lines and cannot
be observed when the dislocation line length is shorter than the kink mean-free path. For
short dislocation lines in our simulations of SrTiO3 in Section 3.2.4 we, additionally, point
out that point defects interact with themselves across periodic boundaries. In fact, it is very
plausible that the elastic self-interaction of point defects [315] prevents the point defect
formation altogether in the scenarios with short dislocation lines. Only in large simulation
cells sufficient space is created for point defects to form.

When the stress on the simulation cell is relaxed after the deformation and the material is
subsequently annealed, e.g., at 1000K formore than 20 ps, all defects that are in agglomerates
and that are connected as series are annihilated. This is, again, in line with literature on screw
dislocations in iron [314]. Vacancies and interstitials that are isolated remain. Nonetheless,
because the migration barrier for oxygen interstitials is much lower than for vacancies [45]
they diffuse around easily into the bulk. On the original glide plane a surplus of the oxygen
vacancies are left behind.

Type C For type C dislocations in the as-created configuration with charged dislocation
cores and increased line length the stress level drops to 600MPa – 650MPa for τx y and to
350MPa – 400MPa for τxz. These dislocations move as straight lines without the creation of
a single defect, see Figure 60 (a). This confirms, that the charged variant of this dislocation
is indeed very mobile. In fact, it is again the negative dislocation that moves, while the
positively charged dislocation core produces an immobile dislocation.

Analog to the situation with the short dislocation lines, the charge balanced dislocations can
only move at very high loads. Here τx y = 4.5GPa− 4.75 GPa and τxz = 3.0GPa− 3.25 GPa

are required. However, to start moving, the dislocations create arrays of defects at their
original location and also a few point defects while they move. Overall, they attain a partial
negative charge during this process, confirming that the mobile configuration should be
charged. In fact, many more point defects are created under application of τx y than τxz

and the dislocation line is very curvy and uneven in the former case. We attribute this to
the very high stresses applied. Once the dislocations have freed themselves from their initial
pinned position the load is actually much too high and the mode of motion changes from a
slow propagation to an extremely out of equilibrium process with rough motion similar to
the B-type dislocation [314, 316, 317]. Examples of the situations with and without charge
balancing are shown in Figure 60.

Again, the reason for the easy and smooth glide of only the negatively charged dislocation
requires further research.
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a) b)

Figure 60: Defects formed at and behind a type C dislocations after the dislocations have
moved some distance. (a) As-created negatively charged dislocation. (b) Charge
balanced dislocation. The dislocations (orange lines) start in the left part of each
figure and move to the right. Gray lines indicate the boundaries of the simulation
cell, the green plane is the plane where the dislocation has glided, particles in
red are over-coordinated, particles in blue are under-coordinated. Only oxygen
ions are shown.

3.2.6 Discussion

In a series of simulations we have studied three 〈11 0〉{1 10} dislocation types and their
relevant configurations with respect to their ability to glide under applied load. We also
varied the boundary conditions revealing the influence of finite size effects. The simulations
were conducted quasi-statically at 10K. In Figure 61 we summarize the response of the
tested configurations.

Dislocations of types A, B, and C possess configurations that are mobile. For the cases that
could be compared to literature, results were in excellent agreement [150]. Our initial
predictions, that only glide dissociated variants are mobile were confirmed. Thus, since
dislocations of types D and E do not possess any configurations that suggest easy glide, they
have not been explicitly tested.

Especially, charged type C dislocations are expected to contribute to macroscopic plasticity of
SrTiO3. They have the lowest Peierls stress and glide without the creation of additional point
defects. In fact, if a more complex loading state of a combination of τx y and τxz is used the
Peierls stress might be even lower. In contrast, one should keep in mind that the charge at
the dislocation cores is unfavorable from the viewpoint of electrostatic energy. Thus, when
dislocations are not moving and the conditions for sufficient diffusion are given, the charge
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at the dislocation core is likely to balance leading to more sessile dislocations. Experimental
evidence for this process, however, is not yet available.

With our simulations we also addressed the influence of finite simulation cell sizes by
comparing simulation cells with short and long dislocations line segments. The reason for
the finite size effects seems to be the elastic self-interaction of defects across the periodic
boundaries. This influences the dislocations themselves as well as point defect which interact
via their strain fields (defect dipole tensor). On the one hand, the reduction of the finite
size effects resulted in the possibility for dislocations to form kinks and propagate by kink
formation and motion. Thus, the resolved shear stress was reduced in some of these cases.
On the other hand, point defects were created much more extensively in the wake of moving
dislocations when they were having more space to accommodate their strain fields as well
as charges. In summary, we expect that the motion of dislocation types A and B is limited
by kink formation at low temperatures, and that many of the studied dislocation type leave
behind point defects, especially when moving swiftly.

type as-created charge balanced

A mobile sessile

B is charge balanced mobile

C mobile sessile

D sessile sessile

E sessile sessile
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Figure 61: Top: Behavior of dislocations under applied shear load for different dislocation
types and configurations. Bottom: Lowest measured Peierls stresses calculated
from short as well as long quasi-periodic dislocations.
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Having confirmed which dislocation types interact most favorably with applied stress, we
will next address the question if these are also the dislocation types that dominate in loading
scenarios that are closer to experimental conditions. A single dislocation moving in a solid
only carries the deformation of the magnitude of its Burgers vector. Thus, if macroscopic
plasticity is observed, it is the consequence of the motion of a large number of dislocations.
As macroscopic plasticity is indeed observed in SrTiO3 single crystals experimentally, the
next section of this thesis will focus on this very topic. We thereby will address the last step
of our roadmap formulated in Figure 62.
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Figure 62: Summary of themain findings. In this section the ability of individual dislocations
to move under applied load has been covered. The next section proceeds with
complex arrangements of dislocations.
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3.3 Dislocations in Experimental Setups

For the macroscopic plasticity observed in SrTiO3 single crystals, multiple dislocations are
required which form a complex and interacting arrangement. These interactions as well as
the processes during dislocation motion are essential for the macroscopic plasticity. They will
be the focus of this section. To this end, we relate experimental observations to simulations
of large arrangements of dislocations. The following scenarios are considered:

1. In bulk deformation experiments dislocations were heterogeneously nucleated at a stress
concentrator [156]. It was shown experimentally, however, that not all dislocations
could originate from this single stress concentration and the surrounding defects
[132]. Instead, there need to be alternative ways to nucleate and multiply dislocations.
However, such dynamic processes at the atomistic level are almost impossible to observe
experimentally. Here, MD simulations as presented in Section 3.3.2 are an indispensable
tool for revealing these dislocation-mediated processes.

2. It has been shown [132, 198] that pre-existing dislocations strongly influence the
plasticity of SrTiO3 at a microscopic level. We, therefore, address the question if there
needs to be a certain dislocation arrangement present in order to facilitate macroscopic
plasticity up to high strain, see Sections 3.3.3 and 3.3.4.

3. The experimental testing of plasticity in SrTiO3 is almost exclusively done under
compressive load. Yet, ceramics are generally very susceptible to brittle fracture under
tensile load [318]. Thus, we are interested in the question if dislocations in SrTiO3 can
also assist plastic deformation during tensile load, see Section 3.3.5.

We will first discuss, how our simulations connect experimental findings to atomistic obser-
vations and how we use experimental setups to guide the design of our simulations.

3.3.1 Correlation of Lab Results and Modeling

We extend the discussion about the type and configuration of individual dislocations from
Sections 3.1 and 3.2 to networks of dislocations. In large scale MD simulations more realistic
scenarios can be studied by allowing for a wide variety of dislocation interactions as they
occur in physical samples, see Figure 63. The virtual samples discussed here were inspired
by experimental work of our collaborators. Therefore, we will report experimental and
modelling results in parallel. Experimental methods, however, will only be discussed shortly,
but details can be found in the respective literature.

Notch Experiment In order to generate dislocations in SrTiO3 that can be accurately
investigated experimentally, it is desired to stimulate dislocation activity only on very select
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artifacts

〈11 0〉{1 10} dislocations

slip band

Figure 63: Dark-field x-ray image of a plastically deformed SrTiO3 single crystal. Bright
contrast indicates strain fields. Due to the high resolution with simultaneous
large field of view (here on the order of hundred micrometers) several individual
dislocations as well as the grouping of dislocation into slip bands are visible.
Evidently, there are numerous dislocation in experimental samples that can
have complicated interactions. Cross slip and jogs can be seen from bends of
individual dislocation lines. Image is a courtesy of Lukas Porz, for details see
Ref. [156].

glide planes. To this end, Dr. Lukas Porz [156] applied a notch to a single crystalline sample
before compression experiments, see Figures 65 and 66. In single crystals the orientations of
all glide planes with respect to the crystal geometry is known at all times. Therefore, applied
stress can address an exclusive group of glide planes, namely those with the largest Schmid
factor, and dislocation glide is restricted to these planes. Nevertheless, in SrTiO3 there are
four glide planes with equivalent Schmid factor for uniaxial compression along the [00 1]

direction. Here, the notch assists by breaking this symmetry creating a stress concentration
at its tip. At the same time, defects at the notch tip are created by the mechanical application
of the notch inside an otherwise almost dislocation-free crystal of exceptional purity. Thus,
this setup enforces that dislocations preferentially nucleate and start moving at the tip of the
notch and follow two well-defined glide planes, see Figure 66. Such well-ordered dislocation
structures, generally, ease the interpretation of experimental results.

Micropillar Experiment The experiments using the micropillar setup were conceived by Dr.
Xufei Fang (unpublished work). Round pillars with diameters of few micrometers are milled
from the surface of SrTiO3 using a focused ion beam (FIB), see Figure 64. With a flat punch
indenter the pillars can be compressed. Because the micropillars are milled from regions
close to the surface, treatments applied to the surface before milling of the pillars have a
strong influence on the behavior of the material.
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Figure 64: Uncompressed micropillar in three-dimensional view (left) and top view (right).
This unpublished work is a courtesy of Xufei Fang [319].

The compression testing of the micropillars was assisted by Christian Minnert and Dr. Sebas-
tian Bruns, both at TU Darmstadt. TEM images were taken by Prof. Wenjun Lu at Southern
University of Science and Technology, China.

Dislocations from Polishing and Ball-indenter While the notched samples give a very well
controlled geometry for creating dislocations, they are limited with respect to the attainable
dislocation density. Using a rough and unfinished polishing it is also possible to introduce
high dislocation densities in the surface-near regions of SrTiO3 single crystals [136].

An alternative method was designed by Xufei Fang. Here the gentle application of spherical
diamond indenters or the repeated application of a steel ball-indenter to the crystal surface
creates dislocations that emerge at the indenter position and extend from there into the
material in a star-shaped fashion [154, 213, 320]. Cracking is prevented by choosing the
correct indenter radius and limiting the load.

Transfer to Computer Model For the large scale MD models we seek to design scenarios
that allow a certain comparison to the experimental loading scenarios of the notched sample
and the micropillar compression. Both scenarios are shown in Figure 65.

In the former scenario a notched simulation sample at the nano-scale is used. It has a height
of 720 u.c. (z-direction) and a cross-section of Lx × L y = 360× 5u.c.2. The loading along
the long axis resembles the experimental scenario and ensures that dislocations originate
at the notch. We choose two-dimensional periodic boundary conditions while the side
with the notch features open boundaries. Due to the short L y this sample represents a
quasi-two-dimensional setup.
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Figure 65: Representation of experimental and modeled samples for the notched samples
(left) and the micropillar scenario (right). All samples have been subjected
to uniaxial compression and typical length scales are indicated. Additionally,
the observed quantities reveal how experimental and theoretical investigations
supplement each other. Reproduced from Figure 19 for convenience.

In the second scenario, simulating a full micro- or nanopillar exceeds the capabilities of
our MD simulations. Moreover, a simple down-scaled version of a pillar would likely result
in a lack of comparability because of the significantly increased influence of the surface.
Rather, we simulate a slice through a pillar similar to the electron microscopy specimen from
Figure 75. We compare two situations for two different sample geometries, a thin sample
(Lx × L y × Lz = 400× 16× 800u.c.3) and a thick sample (200×64×400u.c.3). In the first
situation the thin as well as the thick sample, both ideal single crystals, are compressed along
the z-axis with boundary conditions identical to the notched scenario. In the second situation,
the same samples are subjected to a similar loading with fully periodic boundary conditions.
This forces homogeneous nucleation of dislocations once the stress level is sufficient. After
stress removal, equilibration, and opening of the y-boundary these samples are also subjected
to compression testing.

Limitations As we cannot capture the size of experimental samples in the atomistic simu-
lations some limitations do apply. For the cases where the simulation cells are thin along
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one periodic direction, i.e., the notched sample and the thin single crystal slab, the periodic
boundaries tend to enforce straight dislocation lines along this direction, see discussion in
Section 3.2.5. In the large and thick samples the range of interaction of dislocations is signif-
icantly expanded. Furthermore, the loading rates in the MD simulations (engineering strain
rate ε̇eng = 1.42× 108 s−1) are high compared to most real world compression experiments
(ε̇eng = 10−5 s−1 to 10−1 s−1) [154, 205]. Nevertheless, the atomistic insights with extremely
high spatial and temporal resolution are an important complement to experiment. All of
these limitations will be discussed together with the results below.

3.3.2 Dislocations from a Stress Concentrator

Experimental Findings

Experimentally, a single crystal of SrTiO3, which was almost free of dislocations, was machined
with a notch and compressed along its [00 1] direction. The results are published in Refs. [129,
132, 156]. In Figure 66 (a) the setup and the schematic slip planes are shown. In Figure 66 (b)
the whole notched sample is shown as a visual light optical image. Here the dislocations
have been made visible by etching with hydrofluoric acid. It can be seen that the dislocations
are localized in slip bands that originate from the notch. From the main slip bands that
are located 45◦ to the loading direction (plane of maximum shear stress) secondary slip
bands originate; all are located on {01 1} slip planes. This is generally in line with the
dislocations of types A, B, and C. However, the fact that there are secondary slip bands
connected to the primary slip bands implies that there are either incidents where dislocations
from the primary slip band change glide direction or new dislocations form on a new slip
plane. In fact, the dislocation density inside the slip band is on the order of 2×1013m−2

while it is < 107 m−2 in the unaffected crystal [132]. Looking at the primary slip bands one
is tempted to think that all the dislocations originated at the notch and were then driven into
the more central regions of the specimen by applied stress. Because of the way the loading
was performed and the fact that etch pits at the crystal surface are visible, we know that the
dislocations must at least possess a partial edge character at the surface. If we assume for
simplicity that all dislocations visible in Figure 66 are edge dislocations that originated from
the notch, they must all possess identical Burgers and line directions. As a consequence of
the overlapping displacement fields of these edge dislocations, see Table 1, there would be
a significant rotation of the crystal lattice. This can be easily imagined if we think of edge
dislocations as inserted or removed crystal half-planes: On one side of the slip band there
would be significantly more crystal planes than on the opposite side. Such a configuration
would entail unrealistic stresses. Additionally, it was confirmed by dark-field x-ray imaging,
that there is negligible lattice rotation (mosaicity) in the slip bands [156].

Consequently, we conclude that there are basically negligible net strain fields created by the
slip band as a whole. The reason must be that the strain fields of dislocations cancel each
other. Thus, for any dislocation that originated at the notch there must be an equivalent
dislocation of opposite Burgers vector or line direction such that overall strain fields cancel.
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Figure 66: Left: Illustration of the experimental geometry for the compression testing of
the notched sample. Right: Visual light image of the notched sample after
compression showing the slip bands. Both images are adapted Ref. [132] with
permission from Lukas Porz.

Such a dislocation must necessarily travel in the opposite direction. In essence, there are
dislocations that originate at the notch and travel deeper into the crystal as well as dislocation
originating inside the crystal and travelling towards the notch. It is, therefore, inevitable that
dislocations are created inside the slip band. This could be the result of dislocation nucleation
inside the bulk, which is, however, rather unlikely due to the high barriers for homogeneous
dislocation nucleation. Rather, it is probable that the forward travelling dislocations multiply
in a form that constructs dislocations with opposite orientation. A similar process could
also explain the secondary slip planes that extend at a 90◦ angle to the original slip band
[105].

Explanation by Simulation

To check this hypothesis we constructed the notched simulation sample as described before.
Due to its one short dimension with the associated periodic boundaries, the dislocations are
expected to be straight type A dislocations aligned along the y-axis. And due to the loading
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condition along the z-axis they should travel at a 45◦ angle from the notch to the opposite
side of the sample, i.e., the glide plane is either (10 1) or (10 1).

In Figure 67 the material response as the result of the compression simulation is shown.
Note, that the free surfaces of the SrTiO3 slab are inherently charged because we have cut
the crystal along the {10 0} planes. We have checked that the general shape of the stress-
strain curve as well as the microscopic processes are independent of the surface charges, see
Section 2.4.4. However, the stress level, at which dislocation nucleation commences, very
strongly depends on the charges at the surface. In the unmodified case the notched surface
carries a strong negative charge and the opposite surface an equal amount of positive charge.
Here, the first dislocations nucleate at around 2.5GPa. For the case where surface charges
have been compensated, this value is raised to 12.8GPa. In fact, this could be a hint that
dislocations in this setup are also generally charged, because they react to the electric field
produced by the surface charges [103].

The dislocations that are gliding in the simulation are exclusivelyA-type in a glide dissociated
configuration. Yet, there are dislocations of different charge states: positively charged,
negatively charged, and even charge neutral dislocations are observed to glide. This is not
surprising because the stress level in the simulations is extremely high compared to our
earlier quasi-static loading of individual dislocations, see Section 3.2. The high stress level
(much higher than τm) also reveals that nucleation of dislocations at a surface fault is much
harder to achieve than simply moving an existing dislocation.
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Figure 67: Overview of the notched simulation sample with uncharged surfaces at different
levels of strain. Color coding shows regions of accumulated shear strain which
indicate where a dislocation has sheared layers of atoms with respect to each
other. Plots of stress and dislocation density during straining are shown on the
right.
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From the tracks of the dislocations during compression we find indications that the proposed
dislocation multiplication does indeed occur. First, dislocations do initiate from the notch
where a stress concentration is present. Second, they travel as type A dislocations at a
45◦ angle away from the notch until they reach the opposite face of the crystal. Third,
there are secondary slip planes that align at an angle of 90◦ to the glide direction of the
initial dislocations. And fourth, multiplication inside the slip plane on parallel planes can
be observed. The result are dislocations with opposite orientation that run in the opposite
direction to the original dislocation. As deformation progresses, more and more artifacts
appear such as the nucleation of dislocations at surface steps on the surface opposite of the
notch. We will discuss the instances and features that lead to dislocation multiplication in
detail in the following.

Parallel Change of Glide Plane In this instance of our simulation a dislocation changes its
glide plane without an apparent reason, see Figure 68. Basically, this is a very small segment
of dislocation climb. In Figure 68 we observe that the climb motion occurs in two steps.
The leading partial dislocation first changes its glide plane by 1

2〈110〉. When the trailing
partial arrives at the spot where the leading partial has climbed it follows the leading partial
onto the new glide plane. Because climb motion is non-conservative, there appear defects
(agglomerates of vacancies) at the location where the climb has occurred. These defects
can be non-stoichiometric and, thus, charged. By itself, this mechanism does neither lead
to multiplication nor nucleation of further dislocations in the material [105], but it nicely
illustrates the imperfection of dislocation glide. Note, that defects created by a dislocation
will interact with consecutive dislocations or other defects.

a) b) c)

Figure 68: Detailed view of climbing dislocation from the notched sample (charged sur-
faces). The coloring represents the shear strain that the atoms have experienced,
which reveals where dislocations have traveled. Dislocation lines and Burgers
vectors are also indicated. (a) Two partial typeA dislocations move from top left
to bottom right. (b) The leading partial dislocation has climbed one layer and the
second partial is still on its original plane. (c) The trailing partial dislocation has
also climbed leaving behind a step in their track and an agglomerate of vacancies
(shaded in gray). Adapted from Ref. [156].
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As there is negligible thermal activation in this simulation at 10K this process is somewhat
surprising. We suggest that the climb-instability discussed in Section 3.1.4, i.e., the fact that
the climb configuration is favored over the glide configuration and the degeneracy of glide
and climb stacking faults, are the reason for this effect. Marian et al. [314] showed in bcc
iron that the frustrated formation of kinks on screw dislocations creates point defect clusters
and leads to rugged dislocation motion. Replacing the cross glide of the screw dislocation
kinks in iron with the climb of the edge dislocation in SrTiO3 we have an analog scenario. In
fact, the A-type dislocation is in an energetically frustrated position. It can glide to relieve
the elastic energy of the crystal or climb to relieve the elastic energy of the dislocation itself.
Additionally, the climb as well as the glide plane experience identical Schmid factors. Thus,
the incremental climb and continued glide of type A dislocations is enabled by external load
as well as the climb instability of the dissociated dislocation. The result is non-conservative
motion of edge dislocations in SrTiO3 very similar to the “kinetic roughening” observed in
bcc metals [314].

Because the applied external load (Figure 67) is much higher here compared to the quasi-
static loading in Sections 3.2.4 and 3.2.5, the dislocations move at about 1/4 of the speed of
sound in SrTiO3 [214]. Clearly the observed processes are far from equilibrium. The strong
dynamic effects of the moving dislocations explain that we could not observe this process in
the gentle loading used to obtain the Peierls stress [314, 316, 317, 321].

Parallel Multiplication of Dislocations This instance of imperfect dislocation glide extends
the first scenario and an example is displayed in Figure 69. Like in the previous scenario,
the leading partial changes to a parallel glide plane first, see Figure 69 (a). However, the
trailing partial does not follow the leading partial but continuous glide on the original glide
plane, see Figure 69 (b). Now, there are two partials on parallel glide planes. On the original
glide plane a new trailing partial nucleates spontaneously, because any further motion of the
old partial on this glide plane would create an extended stacking fault, see Figure 69 (c).
Thus, there is again a complete set of leading and trailing partials on the original glide plane
which can travel as a whole. On the new glide plane, the climbed partial entails the creation
of an exactly opposite dislocation partial. Due to the continuously applied deformation the
two partials move in opposite directions extending the stacking fault in between them. At
some point the stacking fault becomes so large that two new partials spawn and complete
the partials traveling in opposite directions, see Figure 69 (e). Finally, there is a complete set
of partials on the original plane traveling in the original directions, and there are two sets of
partials on the new glide plane traveling in opposite directions. Effectively, the dislocation
has multiplied by a factor of three.

Now we have identified a possible mechanism for the nucleation of antiparallel dislocations
via natural multiplication of moving dislocations in SrTiO3 [105]. Next we turn to explain
how the slip bands 90◦ to the primary slip band can be formed.
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a) b) c)

d) e) f)

Figure 69: Detailed view of dislocation multiplication on a parallel glide plane. The coloring
represents the shear strain that the atoms have experienced, which reveals
where dislocations have traveled. Dislocation lines and Burgers vectors are also
indicated. (a) Moving pair of partial dislocations. (b) Leading partial has climbed,
analog to Figure 68. However, the trailing partial does not follow. (c) One partial
spawns completing the original leading trailing partial and a second partial forms
as antagonist to the climbed partial. (d) The two antagonistic partials on the new
plane are driven away from each other by applied stress and create an extended
stacking fault. (e) New partials spawn in the stacking fault. (f) All pairs of partial
dislocations are complete. Adapted from Ref. [156].

Perpendicular Nucleation of Dislocations In this instance a dislocation (heterogeneously)
nucleates anew. Figure 70 (a) shows a region of the crystal where a small agglomerate of
vacancies exists. This defect has been created by the cross glide/climb of a dislocation that
had passed this spot earlier in the simulation. Now there is not only a strong applied stress
to the sample from the outside, but also the dislocations moving inside the material create
additional stress fields. In the case shown here, a dislocation travels past the defect just a
few nanometers above, see Figure 70 (a). As the stress fields of the applied load and the
dislocation overlap, a dislocation nucleates from the agglomerate of vacancies, see Figure 70
(b). In principle such a new dislocation could nucleate on any of the possible glide planes.
Here, it is on a glide plane 90◦ to the original glide plane. After the first partial has nucleated,
a second partial follows soon and both move together through the crystal, see Figure 70 (c).
Note, that due to the loading condition and the crystal orientation, that were chosen as in
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a) b) c)

Figure 70: Detailed view of dislocation multiplication on an orthogonal glide plane. The
coloring represents the shear strain that the atoms have experienced, which
reveals where dislocations have traveled. Dislocation lines and Burgers vectors
are also indicated. (a) A defect cluster (shaded in gray) has been left behind by
another dislocation. (b) By the overlapping stresses of a passing dislocation and
applied load a partial dislocation is created from the agglomerate of vacancies.
Note that the stress intensity factor (Schmid factor) is identical on the diagonal
planes. (c) As the first partial is driven away from its nucleation point by applied
load a trailing partial spawns and follows in the same track. Adapted from
Ref. [156].

experiment, the Schmid factor and the resolved shear stress is identical on this new plane.
By many such processes, ultimately, a grid of dislocation tracks evolves. Of course, it can be
easily imagined that any other type of defect could act as a similar point of nucleation for
new dislocations.

Some Side Remarks In summary, we have seen how just very few dislocations gliding
in SrTiO3 produce situations where defects and other dislocations can be generated. Con-
sequently, even with few dislocations to start with, a cascade of multiplication and (het-
erogeneous) nucleation events enables macroscopic plasticity in a single crystal. The only
prerequisite identified so far is that there needs to be at least one mobile dislocation that
can facilitate the discussed processes. These initial dislocations were enabled by the stress
concentration at the notch and the defects in its vicinity. However, nucleation at the surface
required larger stresses compared to the Peierls stress.

Even with the limited size of the virtual samples used here (a dislocation can barely travel
200 nm before reaching the opposite surface) dislocations show a lot of interesting processes
and interactions that produce further defects. However, we must be reminded that the
dislocation type was restricted to type A dislocations due to setup constraints. Also, the
short dislocation line could ease the climb of the dislocation for the same reasons that have
been discussed in the context of kink motion.
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3.3.3 The Role of Pre-existing Dislocations

We have shown that dislocation cross-slip/climb and consecutive dislocation multiplication
occur readily in the crystal from defects during the motion of A-type edge dislocations in
SrTiO3. The presence of a few mobile dislocations alone seems to be sufficient to enable
plasticity. Now, we elaborate on this point further by considering two scenarios where there
is no stress concentrator in the form of a notch. In one scenario there is a perfect block of
single crystalline SrTiO3 with periodic boundaries along the y- and z-dimensions. It has
a geometry of 400×16×800u.c.3, so it again is very short along the y-direction forcing
dislocations to be predominantly of type A, see Section 3.3.2. Put in other words, it is a
quasi-two-dimensional setup. We compress the sample until failure along the z-direction.
In the other scenario, dislocations are first introduced via homogeneous nucleation during
the compression under three-dimensional periodic boundary conditions. Then this sample
is relaxed at zero stress with open boundaries along the x-direction before compression
testing analog to the pristine sample. The engineering strain rate is approx. 1.3×108 s−1 in
simulation.

Based on these results we evaluate the role of pre-existing dislocations by comparing the
behavior under compression of the pristine sample and the pre-compressed sample con-
taining dislocations and defects. The obtained results are compared to the micropillar
compression studies initiated by Xufei Fang. In these experiments micropillars with and
without dislocations created by surface grinding and polishing were compared [136]. Note
again, that there may be surface charges in the non-periodic setups of the SrTiO3 simulations.
As we confirmed in Section 3.3.2 they do not alter the microscopic processes but ease the
nucleation of dislocations at surfaces. In fact, this shortens computation time and creates
less overloading of the sample, so we will simply continue with samples where the surfaces
are charged.

Simulations With and Without Defects

In Figure 71 (a) we see that the pristine quasi-two-dimensional sample is initially defect-free
apart from the two open surfaces along the x-direction. In contrast, the sample with pre-
existing dislocations in Figure 71 (c) has been compressed to uniaxial strain of εzz ≈ 12 %

under fully periodic boundary conditions. After dislocations of the 〈11 0〉{11 0} family have
formed the sample is subsequently relaxed to zero stress with open surfaces along x achieving
a dislocation density of around 2×1016m−2. The resulting dislocations are almost exclusively
of edge character (indicated in blue in Figure 71) and possess either a 〈110〉 or 1

2〈11 0〉
Burgers vector. This is in line with the expectation that the short distance along the periodic
y-axis favors edge dislocations and the result that type A dislocations are in their glide
dissociated or undissociated state in the absence of thermal activation. For comparison
note that the dislocation density is about 1015m−2 in the surface regions probed by the
micropillar experiments. This is significantly more than the 2×1013m−2 in the slip bands of
the experimental notched samples [132, 136, 156]. In addition to a high dislocation density,
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the pre-compression has also created defects such as arrays of dislocations, small voids, short
cracks, and a multitude of point defects, indicated as gray shading in Figure 71 (c).

The dislocation-free sample and the pre-compressed sample are shown in Figure 71 (a) and
(c) before compression testing and in Figure 71 (b) and (d) after compression to 8% strain.
The corresponding stress-strain curves and the course of dislocation density over strain are
displayed in Figure 72.

For the pristine and defect-free crystal we initially observe an almost linear elastic behavior
up to 7.7% strain at 6.9GPa. Then a seemingly brittle failure occurs which is marked by
a sudden drop in stress as observed in Figure 72 (a). However, a closer look reveals that
A-type dislocations in their glide dissociated variant are nucleated from multiple points at
the surface. Therefore, we observe a non-zero dislocation density in Figure 72 (b). These
dislocations travel at velocities up to 9750m s−1 which is higher than the longitudinal speed
of sound vlong = 8022 m s−1 [214], see Figure 73. As the dislocations travel through the
material, their supersonic shock waves homogeneously create further dislocations in the
pristine bulk regions of the crystal. It is known that supersonic dislocations can theoretically
be created at very high strains but their relevance to the mechanics of a solid has seen
little investigation [176, 321–323]. To the best of our knowledge supersonic dislocations
have not been observed in any solid experimentally [164]. Rather they can be seen as the
carrier of an inelastic shift between two lattice planes. This pathological behavior is, thus,
evidence of a brittle failure, and we expect to see crack formation in an analog experimental
investigation.

In contrast, the pre-compressed sample, see Figure 71 (c), has a significant dislocation
density before the compression testing is performed. Even at low loads the first dislocations
start moving, and we observe an extended plastic regime in Figure 72 (a) between 2.7%
and approx. 10% strain. During this period the overall dislocation density in the sample
decreases. For one, it is an indication that the options for dislocation multiplication are
limited. For two, there was a very high dislocation density initially that was produced in
the homogeneous nucleation setup where there was no sink for dislocations. As there are
open boundaries during the compression testing and the dislocations can actually leave the
crystal towards the open surface, it is natural that dislocation density decreases. We also
tested straining the sample with doubled strain rate. The stress-strain curves are essentially
identical confirming that the ductile behavior is not very sensitive to strain rate [205].

At strains around 10% the maximum of the stress-strain curve is reached. This is where one
of the short cracks, which had formed as a result of the homogeneous dislocation nucleation,
extends through the material, see Figure 78 (a).

119



a) b)

c) d)

initial (at 0% strain) at 8% strain

w
it
h
o
u
t
p
re
-e
x
is
ti
n
g
d
is
lo
ca
ti
o
n
s

w
it
h
p
re
-e
x
is
ti
n
g
d
e
fe
ct
s

supersonic

brittle

decreasing ρd

ductile

Lx = 400u.c.

L
z
=

8
0
0

u
.c

.

Figure 71: Samples without (a) and with (c) pre-existing defects have been compressed to
8% strain in (b) & (d), respectively. Dislocations are displayed as colored lines
which are all straight and appear as dots due to the quasi-two-dimensional setup
of the simulation cell (y-dimension in only 16 u.c. long). Gray shading indicates
defective crystal structure which may be surfaces, interfaces, grain boundaries,
nano-cracks or point defects.
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Figure 72: Comparison of compressive stress −σzz (a) and dislocation density ρd (b) during
compression of the thin samples from Figure 71. The situations with and without
pre-existing dislocations are shown. If dislocations are absent, the sample shows
brittle failure and the only dislocation activity appears at the moment the fracture
occurs. With pre-existing dislocation the sample yields plastically at the expense
of dislocation density. At the maximum stress of the sample with pre-existing
dislocations a crack has formed, see Figure 78 (a).

Experimental Findings

The experimental analog to these simulations are micro-pillars of 3µm diameter that were
machined by FIB. These pillars are created from a surface near region of single crystalline
SrTiO3. Images of the whole samples taken by scanning electron microscopy (SEM) and
thin slices from the pillars imaged by weak beam low angle annular dark field scanning
transmission electron microscopy (WB-LAADF-STEM) are shown in Figure 74. The latter
can resolve the local presence of dislocations.

In Figure 74 (a) we see that there are indeed no dislocations in the micro-pillars machined
from pristine single crystalline SrTiO3. In contrast, Figure 74 (b) shows a significant amount
of dislocations in the surface near region which have been introduced by grinding/polishing
prior to machining of the pillar [132, 136].
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Figure 73: Groups of dislocations travelling at supersonic speed. Mach cones are visible
through color coding by von Mises shear strain.

During compression, the dislocation-free pillar exhibits brittle fracture at strains in the range
of 2.5% – 5.5% which corresponds to loads of 1.5GPa – 5.5GPa. However, the pillar with
surface dislocations transitions from the elastic to the plastic regime at less than 0.5GPa. In
the plastic regime, the samples exhibit ductile behavior up to strains in the range of 20%.
To confirm that this plasticity is indeed carried by dislocations, WB-LAADF-STEM pictures
are taken again after 10% compression, see Figure 75.

We can observe that the dislocation density in the surface region has increased. The regions
very close to the surface, i.e., the topmost micrometer, has a dense mesh of dislocations that
reside on different {11 0} planes. Several micrometers below the surface, however, there
appears to be a single dominant glide plane which also belongs to the {11 0} family and
carries less dislocation density.
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Figure 74: Micropillars without surface dislocations crack while micropillars having dis-
locations are ductile. (a) and (b) are WB-LAADF-STEM images of micropillars
slices without and with dislocations from surface treatment, respectively. Bright
contrast indicates the presence of dislocations. (c) and (d) show the micropillars
after compression. While the pristine sample cracked in a brittle fashion, the
pre-treated sample exhibits slip traces at the surface typical for ductile behavior.
This unpublished work is a courtesy of Xufei Fang [319].
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Figure 75: (a) Cross-section of the specimen from Figure 74 (d). After 10% compressive
strain a lot of dislocations are visible on {11 0} planeswith a gradient of increasing
dislocation density towards the surface. (b) Detailed view of the topmost layer
showing that individual dislocations can be discerned. This unpublished work is
a courtesy of Xufei Fang [319].
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Relevance of Pre-existing Dislocations and Defects

The brittle stress-strain curves from experiment and simulation for the dislocation-free
samples are matching very well. Different levels of stress and strain are most likely due
to the difference in loading rates as well as finite size effects in the atomistic simulations.
Additionally, because the theoretical γ-surfaces do not exactly reproduce experimental values,
the stress required for dislocation nucleation cannot be re-produced exactly [136, 149].

From the electron microscopy images it is clear that there are abundant dislocation sources
after the surface treatment. During deformation dislocations could be created by heteroge-
neous nucleation, e.g., at microscopic stress concentrators such as agglomerates of vacancies,
as well as dislocation multiplication processes like the ones identified in Section 3.3.2. In
contrast, the absence of plasticity in the pristine samples confirms the hypothesis that the
presence of dislocations and other imperfections enable the nucleation and multiplication of
dislocations [104, 105].

With our MD simulations we could indeed verify that ideal SrTiO3 single crystals are brittle.
Because of the controlled setup in simulation we can be absolutely sure that there are no
pre-existing defects. Plasticity, thus, hinges on the restriction, that there need to be means of
nucleating initial dislocations or multiplying pre-existing dislocations. We show, that having a
large amount of all kinds of defects including dislocations inside a SrTiO3 crystal immediately
leads to a much more compliant and ductile behavior. In simulation, plasticity is limited
to approx. 10% strain because dislocation density decreased and cracks appeared during
compression. Thus, nucleation and multiplication are not efficient enough to sustain larger
amounts of plastic deformation in our simulations.

Regarding the brittleness of the pristine samples, the obvious question appears, why plasticity
has also been observed in cases where there was no pre-treatment of SrTiO3 single crystals
without obvious stress concentrator, e.g., Refs. [127, 128, 154, 184, 199, 205]. All these
studies employed single crystals of millimeter size. While the micro-pillars are so small, that
finding a dislocation or imperfection in the SrTiO3 pillar in unlikely, the volume subjected
to load is much larger for macroscopic single crystals. Even at very low pristine dislocation
densities and with very careful preparation, one can always expect to find a defect that can
act as a suitable stress concentrator or a dislocation that can multiply/spawn new dislocations
[132].

To this end, the experiments on the microscale and the connection from experiment to
simulation are crucial. They unambiguously prove that there need to be imperfections
initially to avoid brittle fracture at the microscale.
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3.3.4 The Role of Dislocation Type and Dislocation Interaction

In the previous section we have identified the importance of pre-existing defects for the duc-
tility of SrTiO3. Because of the short y-dimension of the virtual sample, the dislocation types
were mainly restricted to variants of A-type dislocations. Since we expect that dislocations
of types B and C are more important to plasticity than type A dislocations (see Sections 3.1
and 3.2) we now compare their behavior in a macroscopic setup. Therefore, we take the
results from the previous Section 3.3.3 where we had thin slabs and were restricted to type
A dislocations and perform the analog experiments with thick slabs, see Section 3.3.1. Our
expectation is, that this allows for different dislocation types as well as more dislocation
interactions.

Differences in Initial Dislocation Structure

We construct a perfect single crystal and a pre-compressed sample that features pre-existing
dislocations. In the thin pre-compressed scenario, there is an initial dislocation density of
about 2×1016m−2 (shown in Figure 71 (c)), while it is about 4.4×1016m−2 for the thick
pre-compressed sample shown in Figure 76. Because the thin sample suffers from strong
image interaction across the periodic boundaries only type A dislocations are accessible
limiting the maximum dislocation density. In the thick sample the volume is accessible to
dislocations along all directions enabling also type B and C dislocations, thus, increasing
the maximum dislocation density. Additionally, the fraction of mobile dislocations is very
different. Again, the thin scenario featured almost exclusively 〈11 0〉{1 10} dislocations of
type A. Yet, only about 50% of the total dislocation line length has a 1

2〈11 0〉 Burgers vector,
i.e., they are partial dislocations expected to be mobile. The rest predominantly has a full
〈11 0〉 Burgers vector. In contrast, in the thick scenario 74% of the initial dislocation line
length is attributed to dislocations with a 1

2〈110〉 Burgers vector. Consequently, there is
a much larger fraction of possibly mobile dislocations for the thick sample. Figure 76 (a)
shows the dislocation structure before the compression testing where the local character of
the dislocation has been color coded, i.e., blue, red, and gray represent edge, screw, and
mixed character, respectively. Apparently, there is a mix of type A, B, and C dislocations.
The thin scenario exhibits almost exclusively edge dislocations, see Figure 71 for comparison.
Figure 76 (b) identifies the full and partial Burgers vectors.

Plasticity in Thin and Thick Scenarios

In Figure 77 we show the stress-strain curves of the thin as well as the thick sample alongside
the respective dislocation densities. Regarding the pristine samples that are initially free of
dislocations, the thin and the thick samples behave essentially identical. They show a clear
elastic regime up to several percent strain before brittle collapse occurs, see Figure 77 (a).
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a) b)

Figure 76: Initial dislocation configuration of the pre-compressed thick sample. (a) Dis-
location lines are color coded by their local character, i.e., edge (blue), screw
(red), and mixed (gray). (b) Same configuration as in (a) but color coding shows
dislocations with 1

2〈11 0〉 Burgers vector that can show easy glide in green and
other dislocations in dark gray. Other defects such as vacancies (see gray shaded
regions in Figure 71) are not shown for clarity.

This further confirms the hypothesis that pre-existing defects (notch, dislocations, etc.) are
required to facilitate plasticity in SrTiO3 macroscopically.

The behavior of pre-compressed samples, however, shows differences. Again, there is an
initial elastic regime up to 3.3% strain before plastic deformation sets in. During the plastic
deformation, the stress level in the thin sample continues to rise and the dislocation density
decreases. On the one hand, this indicates, that plastic deformation is really carried by
dislocations. On the other hand, it shows that the generation of new dislocations is insufficient
to sustain plasticity. This, finally, leads to the fracture of the thin sample around 10% strain
where the stress level drops. In Figure 78 (a) this percolated crack is highlighted.

The thick sample with the more complex dislocation structure, however, exhibits a fairly
constant stress level during its plastic deformation. In this scenario, the dislocation density
stays on a high level and even slightly increases during the first few percent of plastic strain.
In fact, we do not observe the formation of a crack at strains exceeding 30% strain. For
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Figure 77: Comparison of compressive stress −σzz (a) and dislocation density ρd (b) during
compression for four different scenarios. On the one side, samples without
pre-existing dislocations show brittle failure and no dislocation activity. On the
other side, the thin sample with pre-existing dislocations shows limited plasticity
while the thick sample shows an extended regime of plastic yield. The thick
sample also shows higher overall dislocation density compared to the thin quasi-
two-dimensional sample because here the dislocation type is not restricted by
the simulation cell geometry. For images of the samples with dislocations after
compression see Figure 78.

comparison, strains of about 19% have been reported experimentally [199]. However, we
note that due to the very high strain rate of the MD simulation, the crystal structure can
become severely damaged at higher strains. This damage becomes significant beyond 35%
strain. At higher values of strain the PTM structure identification is unable to classify 20%
of the material as a crystal structure using an RMSD= 0.2. Thus, we stop the deformation
here.

Dislocations at a Microscopic Level

The sustained high dislocation density of mobile dislocations in the thick sample (see Fig-
ure 77) suggests that there are mechanisms for dislocation nucleation or multiplication that
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Figure 78: Samples with pre-existing dislocations from the thin (a) and thick scenario (b)
after approx. the same compressive strain. Dislocations are displayed as colored
lines and defective crystal structure is shaded in gray. A crack has formed during
compression of the thin sample, which is highlighted in green.

are not available for the thin samples. However, it is very difficult to track individual events
of dislocation multiplication. Here, we focus exemplarily on three situations where we see
that (i) an individual dislocation gets pinned, (ii) two glide dissociated dislocations on the
same plane react, and (iii) a dislocation bows out between two pinning points.

Dislocation Pinning The situation depicted in Figure 79 shows the reaction of two dislo-
cations on different glide planes. While the first dislocation coming from the right side is
moving in the paper plane, a second glide dissociated dislocation has its dislocation line
parallel to the viewing direction and is highlighted in orange. In this particular instance the

dislocation in the paper plane has a partial Burgers vector of b⃗
(1)
= 1

2[01 1] and glides on
the (01 1) glide plane. The dislocation along the viewing direction marked in orange has

a partial Burgers vector of b⃗
(2)
= 1

2[0 1 1] and is glide dissociated on the (0 11) plane. By
reaction of the two partial Burgers vectors,

b⃗
(1)

+ b⃗
(2)

= b⃗ lock , (42)
1

2
[01 1] +

1

2
[0 1 1] = [00 1] , (43)
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Figure 79: A dislocation moves (a) & (b) and gets pinned (c) at another dislocation with
perpendicular line direction (highlighted in orange). After pinning, the dislocation
bows out and rotates around the pinning point (d) as the sample is continuously
compressed. The dislocation lines are color coded by their edge (blue) and screw
character (red).

a new dislocation with a Burgers vector b⃗ lock preventing glide is formed. Thus, when these
two dislocations meet each other in Figure 79 (c) they get pinned. The dislocation segment
to the left of the pinning point then continues to bow-out under the continuously applied
load.

Since there is a very high dislocation density in the pre-compressed samples, we observe many
such events and products of dislocation pinning. We also note, that simply by the pinning
and bowing of the dislocation around its pinning point, the total length of dislocation line
increases, compare Figure 79 (a) with (d). Therefore, this process increases the dislocation
density ρd. In the case of compressing the thin SrTiO3 slab, two glide planes were activated,
i.e., dislocations were allowed on the (10 1) and (10 1) planes only. On these planes only
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c) d)

Figure 80: Two dislocations with 〈11 0〉 Burgers vector (a) move towards each other (b) and
react (c) & (d). The dislocation lines are color coded by their edge (blue) and
screw character (red). Stacking fault area has been shaded magenta to indicate
corresponding partial dislocations.

edge type dislocations (see Figure 78) are present. In contrast, the interaction of the two
dislocations with orthogonal dislocation lines features a dislocation with edge character on a
(01 1) plane and a dislocation with screw character on a (0 11) plane. Therefore, this process
to increase ρd is not feasible in the scenario with the thin slab.

Dislocation Reaction The situation in Figure 80 features the reaction of dislocations on a
common glide plane. Initially there are two dislocations in the same glide plane, Figure 80
(a), that move towards each other, Figure 80 (b). The moment the two oppositely oriented
leading partial dislocations meet, they interact forming an extended stacking fault area
Figure 80 (c). This area then constricts locally and is pinched off into two regions by the
reaction of the trailing partials. Very quickly the trailing partials also meet and pinch off,
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Figure 80 (d). Effectively the two dislocations have realized plastic deformation by mutual
annihilation in a limited region.

Dislocation Bow-out The third situation in Figure 81 shows a very classic configuration
where a dislocation is pinned in between two pinning points (highlighted in orange). Such
a configuration has been studied intensively in literature and is, e.g., at the base of the
well-known Frank-Read dislocation source [164, 324]. Here, the dislocation pinned between
two obstacles bows-out under the applied stress. When it bows-out even further, one part
of the dislocation reaches the surface, Figure 81 (c). The surface acts as a sink for the
dislocation and the remaining segment continues to move by rotating around its pinning
point Figure 81 (d).

a) b)

c) d)

su
rf
a
c
e

Figure 81: A dislocation driven by external load (a) bows out between two pinning points,
highlighted in (b). A segment of the dislocation reaches the surface (d) and
the remaining segments continue to rotate around the pinning points (d). The
dislocation lines are color coded by their edge (blue) and screw character (red).
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We note again that this process realizes plastic deformation (dislocation reaches the surface),
extends the dislocation line length (compare Figure 81 (a) with (d)), and would not be
feasible in the simulation with the thin SrTiO3 slab. A full Frank-Read loop with multiplication
cannot be observed because the dimensions of the MD sample are limited to rather small
sized compared to experimental samples.

3.3.5 Tensile Load

Up to now we were concerned with subjecting SrTiO3 to compressive strain. This procedure
is in line with the testing that is commonly done in experimental setups. However, ceramics
usually possess a very low KI c, i.e., they have a low resistance to crack propagation under
tensile load [318]. This restricts their use and an engineer must take care to avoid tensile
loads on ceramics. Therefore, it is highly desired to improve the tensile properties of ceramics
as well [108].

Experimentally, the construction of samples for tensile testing can pose challenges [108].
In computer simulation the application of tensile load to our samples is trivial. Thus, we
want to know if the sample geometry and the presence of dislocations also influence the
mechanical behavior under tensile load. Apart from reversing the load direction we also
introduce a small notch into one surface like in Section 3.3.2 in order to provide a stress
concentrator. Additionally, we use samples with even higher initial dislocation density of
around 3×1016m−2 and 8×1016m−2 for the thin and thick samples, respectively.

The stress-strain curves and dislocation density curves for tensile testing are displayed in
Figure 82. For the samples without pre-existing dislocations we first observe an elastic regime
in the stress-strain curve followed by brittle fracture, Figure 82 (a). The fracture is easy to
identify, as there is not a single dislocation involved. Rather a crack perpendicular to the
loading direction cleaves the crystal.

In the case of the thin sample with pre-existing dislocations, the stress-strain curve is very
similar to the dislocation-free cases. There is little dislocation activity, which can also be
seen from the insignificant change in dislocation density, Figure 82 (b). The small notch,
that we introduced to see if dislocations could nucleate there, did not fulfil its purpose. No
extra dislocation activity was observed around the notch. Instead, cracking started at defects
that had been introduced by the pre-compressing procedure. Compared to the thin sample
without dislocations, no significant change in strain to rupture was observed, and the yield
stress even decreased slightly.

Just like the thin sample, the thick sample with pre-existing dislocations fails by cracking
randomly at defects. In Figure 83 the sample before application of tensile load shows a high
density of dislocations. Slightly above 6% strain a crack has formed, which is highlighted in
green in Figure 83 (b).
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Despite the brittle fracture, there appears to be a significant amount of dislocation activity
during straining. The strong decrease in dislocation density before brittle fraction (see
Figure 82 (b)) is evidence that some plastic deformation is carried by dislocations. At the
same time, efficient means of dislocation generation are lacking, and new dislocations cannot
be supplied. Going back to the compression stress-strain curve, Figure 77, we recognize that
plastic deformation occurred at stress level exceeding 1.5GPa. From the tension stress-strain
curve, Figure 82 (a), it is obvious that the percolation of defects and formation of a crack
occurs around 1.1GPa. Thus, the stress level is sufficient to move dislocations, but it is not
sufficient to generate new dislocations. Such a high stress level could only be reached under
compression when crack opening is suppressed [325].
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Figure 82: Comparison of stress (a) and dislocation density (b) during tension, analog to
Figure 77. All samples show brittle fracture. Only in the thick sample with pre-
existing dislocations the fracture is delayed by dislocation activity.
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a) b)

initial state at 7.2% tensile strain

Figure 83: Thick samples with pre-existing dislocations before (a) and after applying ten-
sile load (b). Dislocations are displayed as colored lines and defective crystal
structure is shaded in gray. A crack has formed and is highlighted in green.

3.3.6 Discussion

In this section we discussed dislocation multiplication and the effect of brittle versus ductile
micropillars that have been observed experimentally. Relating the results from simulation to
experiment extends the picture from individual dislocations (see Sections 3.1 and 3.2) to
complex and realistic arrangements of dislocations.

The first setup compared the nucleation of dislocations from a stress concentrator under
compressive load. We could confirm that the plastic deformation is indeed carried by glide
dissociated dislocations. They can possess different charge states but were restricted to be of
A-type by design of the simulation cell. Various interactions with defects and multiplication
mechanisms were observed showing that multiplication occurs naturally as long as mobile
dislocations exist.

Having established that moving dislocations are an essential ingredient for notable plas-
ticity, we compared samples without artificial stress concentrators either with or without
dislocations. These simulations supported experimental findings that SrTiO3 single crystals
are brittle if there are a priori no dislocation or defects in the material. However, even
with pre-existing dislocations, the plasticity in our simulations was limited suggesting that
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dislocation nucleation and multiplication were inefficient. Because the initial simulations
were restricting dislocations to be of predominantly type A, the possibilities of dislocation
interactions were limited. With a different setup we allowed for a mix of dislocation types A,
B, and C and also observed that a greater fraction of the dislocations were in glide dissociated
configurations. This is in line with our quasi-static simulations which showed that dislocation
of types B and C are most likely to stay glide dissociated. Additionally, we observed that
allowing for all kinds of dislocations improved plasticity and allowed for sustainable high
dislocation densities.

Finally, tensile load poses a significant problem to ceramics because the fracture toughness
is typically low. We observed that plasticity under compression was enabled by dislocations.
Meanwhile, plasticity under tension is still limited. Significant dislocation generation could
not be achieved, rather brittle fracture occurred.

In Figure 84 we conclude the study of dislocations in SrTiO3 by completing the third part of
our investigations. After the dislocation equilibrium structure and dislocation motion, the
behavior of more complex dislocation arrangements has delivered valuable insights into the
microscopic and dynamic processes at play.
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Figure 84: Summary of the main findings. This last section concluded with the investigation
of dislocation-based plasticity in samples featuring complex arrangements of
dislocations.

136



4 Summary & Outlook

4.1 Equilibrium Dislocation Structure

In the first part of this thesis the equilibrium structures of various dislocations in SrTiO3 were
investigated and classified into groups A to E . By comparing possible dislocation structures
with analytic descriptions of dislocations [111, 112, 168, 176, 211, 297] we found that
dislocation splitting and the order of magnitude of glide dissociation distance are correctly
predicted, while analytic considerations regarding the Peierls stress remain ambiguous. We
used DFT calculations to obtain the stacking fault energy hypersurfaces and evaluated that
only the {110} plane features a stacking fault configuration that allows for glide dissociation.
This is in line with geometric considerations using nominal ionic charges [112].

For dislocation types A, B, and C, which all share a common Burgers vector a〈11 0〉 and glide
plane {1 10}, we determined that they can all glide dissociate in similar ways. These glide
dissociated configurations are expected to possess much lower Peierls barriers and be the
enablers of plasticity in SrTiO3. However, by careful design of the simulation setups we could
show that the glide dissociation of dislocation typesA and C is highly sensitive to the charge at
the dislocation core. Changing of oxygen stoichiometry at the dislocation core, which could be
enabled by diffusion at finite temperature, prevents glide dissociation in type A dislocations
and makes it less favorable for type C dislocations. Importantly, the glide dissociated form
of the A-type dislocation is never stable. Due to the crystallographic orientation of Burgers
vector and glide plane, the plane for dislocation climb is crystallographically identical to
the glide plane. Thus, there is the opportunity for a climb analog to the glide dissociation.
Because of the symmetry of edge dislocation stress fields, the elastic fields of A-type partial
dislocations interact destructively in the climb dissociated configuration. Therefore, as our
calculation show, the glide dissociated variant is metastable, while the climb dissociated
configuration is the equilibrium state. However, climb dissociated dislocations cannot glide
limiting the mobility of type A dislocations.

In contrast, dislocations of type D and E cannot glide dissociate for crystallographic reasons.
Thus, they cannot contribute to SrTiO3 plasticity. However, for D-type dislocations a climb
dissociation is favored. Climb dissociation might also be possible for E-type dislocations but
could not be tested due to limitations with the interatomic potential in use.
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In summary, we found that dislocations of the 〈11 0〉{1 10} orientation with different line
orientations are the only ones susceptible to dislocation glide at low to moderate temperatures.
Thus, it is these dislocation types which should be targeted during dislocation engineering
of SrTiO3. Depending on the conditions, especially the dislocation core dissociation and
stoichiometry, different variants of these dislocations could dominate leading to different
responses to external stress. To enable mechanical control over dislocations in SrTiO3, we
addressed their response to external load in the next section.

4.2 Dislocation Motion

Theory predicts that only the glide dissociated dislocations are mobile [179, 211, 297].
However, the applicability of classical theories for ionic crystal lattices such as the perovskite
structure remains to be shown. Additionally, the motion of two partial dislocations connected
by a high energy stacking fault may be significantly different from the motion of an isolated
dislocation [150, 310].

Thus, we probed our molecular dynamics models for the stress required to move a dislocation
of type A, B or C under conditions with and without strong image interaction created by
periodic boundary conditions. In the simulations with short simulation cells and strong
image interactions we found that the Peierls stress strongly depends on the charge at the
dislocation core of the glide dissociated dislocations. The lowest Peierls stress was found for
the negatively charged variant of dislocation type C. These results underline that tailoring the
charge state of dislocations, e.g., by doping or processing conditions, is a crucial ingredient
to enable dislocation motion and, ultimately, mechanical control over the structure and
arrangement of dislocations in a perovskite. Moreover, positively charged A-type dislocations
tend to relieve their high charge density at the dislocation core by emission of oxygen
vacancies. We could show that this process reduces their mobility. The emission of vacancies
holds true even for longer segments of A-type dislocations.

In contrast, B-type dislocations with screw character behave differently when they see
strong image interactions compared to long dislocation segments. For short dislocation line
length they glide smoothly. In contrast, when long dislocations lines are studied moving
screw dislocations create oxygen Frenkel pairs in their wake without changing the overall
stoichiometry at the dislocation core. The reasons for this rough dislocation motion most
probably are the high dislocation velocities and the concurrent high energy dissipation rate
during glide. We note that this behavior has resemblance with screw dislocations in bcc iron
which also create defects in the crystal lattice when moving swiftly [314].

C-type mixed dislocations showed yet a different behavior. Their glide was ideal when
negatively charged. When trying to move charge neutral dislocations, however, the dislocation
is collecting negative charge by emission of oxygen vacancies during its glide and, thus, tends
to change its core stoichiometry.
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After all, the investigation of the gliding dislocations revealed that, generally, the stress
required to move a dislocation as well as the smoothness of its motion are strongly influenced
by the dislocation core charge. The negatively charged dislocation of type C glides most
easily and ideally. In contrast, gliding A- and B-type dislocations can have a tendency to
create point defects on the oxygen sub-lattice during glide.

Knowing that the various dislocation types react differently to dislocation core charge and
that dislocation glide is often imperfect, the behavior and interaction of dislocations in larger
arrangements is the next step in understanding how to mechanically engineer dislocations.
This topic is addressed in the last section.

4.3 Dislocations in Experimental Setups

In the last section we compare experimental experiments of SrTiO3 compression with large
scale MD simulations. The first scenario addresses the emission and multiplication of dislo-
cations from a notched single crystal. The second scenario, micropillars with and without
pre-existing dislocations were mechanically tested [319].

In the first case, the initial nucleation of dislocations was enabled by a stress concentrator
in the form of surface notch. Our simulations exhibited very good qualitative agreement
with the experimental observations. At high stresses and high dislocation velocities we
observed a dynamic instability of the glide motion of type A dislocations. Because the energy
landscape for edge dislocation motion has one branch for glide motion and one branch for
climb dissociation, the behavior of the dislocation is frustrated. Enabled by the high load and
swift dislocation motion type A dislocations switch their glide plane spontaneously similar
to a cross glide mechanism. Again this process resembles the frustrated kink formation for
screw dislocations in bcc iron that similarly results in crystal defects and “debris” created by
the dislocation [314]. Ultimately, this instability with respect to dislocation climb enabled
multiplication of type A dislocations. In addition to climb and multiplication events, the
nucleation of dislocations at agglomerates of vacancies by the superposition of external and
internal stresses could be witnessed.

When no stress concentrators or inhomogeneities offer themselves as points of easy dislocation
nucleation, a brittle failure of the single crystalline SrTiO3 samples was observed. In contrast,
when samples contained a high density of pre-existing defects significant plasticity occurred.
Taking the full bandwidth of interactions and dislocation types into account by choosing
simulation cell volumes of sufficient size is crucial to reproduce this experimental behavior.
Nevertheless, the existence of mobile defects did little to improve the response of the ceramic
under tensile load where brittle fracture still dominated.

Concluding, note that our investigations have been limited with respect to the temperature
range as well as the magnitude and speed with which external load was applied. It is left for
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future work to verify the observed mechanism for further boundary conditions. Moreover,
the energetic situation of the different defects created during dislocations motion warrants
further studies.

4.4 Outlook

With this research we have contributed to the understanding of dislocations in the model
perovskite ceramic SrTiO3. In particular, we have revisited the structure of the low tempera-
ture dislocation types in cubic SrTiO3. Using a systematic approach we classified the relevant
dislocation types into five groups and subsequently calculated their structure, energetic
hierarchy, Peierls stress, as well as interactions between dislocations.

Several unexpected observations have opened the view on unconventional mechanisms at
play in dislocations and their glide motion. First, there is a static and dynamic instability
of edge dislocations with respect to climb motion. This effect gives rise to rich and complex
interactions with other defects during glide and could ultimately be an important ingredient
in enabling macroscopic plasticity in SrTiO3. The sensitivity of the dislocation configuration
and the Peierls barrier to the charge of the edge dislocation core, however, are puzzling and
require further investigations. Second, screw dislocations exhibit a dynamic instability as well.
During dislocation motion at high velocities, their glide is disturbed by the emission of defects.
These observations bear striking resemblance to the glide of screw dislocations in bcc iron
which show an instability creating significant amounts of debris in the crystal lattice. Since the
cation sub-lattice of SrTiO3 forms a bcc lattice this analogy is not too far-fetched but definitely
warrants closer examination. Third, mixed dislocations also exhibit the glide dissociated con-
figuration required for easy dislocation glide. They do not show a climb instability like their
edge counterpart. Nevertheless, analog to the edge dislocation only charged dislocation cores
enable easy glide. A closer look revealed, however, that the sensitivity to dislocation core sto-
ichiometry is inverted, i.e., while the oxygen deficient edge dislocations glide easily, only the
oxygen rich dislocations of the mixed dislocations glide. This yet to be explained peculiarity
hints to a complex energy landscape that is sensitive to localized charges. Accurate nudged
elastic band calculations of moving dislocations with varying stoichiometry and independent
models taking into account charge transfers could reveal the multi-dimensional energy land-
scape at the heart of these dislocation glide processes. Fourth, the remaining two dislocation
types did not exhibit configurations susceptible to easy dislocation glide. Despite being stud-
ied in literature, their relevance for macroscopic plastic deformation of SrTiO3 is negligible.

Many of the observed mechanism are at least partly related to non-stoichiometry and charge
localization. In this aspect, the use of rigid ion interatomic potentials is obviously limited.
Supplementing and verifying our efforts with independent models including DFT calculation
or other models that allow charge transfer as well as novel machine learning approaches are
promising routes to an even better understanding of dislocations in SrTiO3 and improved
predictive power.
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Regarding the ultimate transformation of dislocations into an engineering framework, signif-
icant work has to be put into clarifying the behavior of dislocations with different external
boundary conditions. In this study we have limited ourselves to ideal SrTiO3 at low tempera-
ture. It remains to be shown if our observations hold true in different temperature regimes,
more gentle loading conditions and when extrinsic defects are considered.
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