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We present impedance boundary conditions for the viscoacoustic equations for
approximative models that are in terms of the acoustic pressure or in terms of
the macroscropic acoustic velocity. The approximative models are derived by
the method of multiple scales up to order 2 in the boundary layer thickness.
The boundary conditions are stable and asymptotically exact, which is justified
by a complete mathematical analysis. The models can be discretized by finite
element methods without resolving boundary layers. In difference to an approx-
imation by asymptotic expansion for which for each order 1 PDE system has to
be solved, the proposed approximative are solutions to one PDE system only. The
impedance boundary conditions for the pressure of first and second orders are
of Wentzell type and include a second tangential derivative of the pressure pro-
portional to the square root of the viscosity and take thereby absorption inside
the viscosity boundary layer of the underlying velocity into account. The condi-
tions of second order incorporate with curvature the geometrical properties of
the wall. The velocity approximations are described by Helmholtz-like equations
for the velocity, where the Laplace operator is replaced by ∇div , and the local
boundary conditions relate the normal velocity component to its divergence.
The velocity approximations are for the so-called far field and do not exhibit
a boundary layer. Including a boundary corrector, the so-called near field, the
velocity approximation is accurate even up to the domain boundary. The results
of numerical experiments illustrate the theoretical foundations.
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1 INTRODUCTION

In this study, we are investigating the viscoacoustic equations in the framework of Landau and Lifschitz1 as a perturbation
of the Navier–Stokes equations around a stagnant uniform fluid, with mean density 𝜌0 and without heat flux. For gases
and many liquids, the (dynamic) viscosity 𝜂 is very small and leads to viscosity boundary layers close to walls2, Section 10.4 that
have been studied in previous studies3–5 and goes back to the boundary layer theory of Prandtl.6,7 To resolve the boundary
layers with (quasi-)uniform meshes, the mesh size has to be of the same order, which leads to very large linear systems
to be solved. This is especially the case for the very small boundary layers of acoustic waves. Finite difference schemes
or finite element meshes specially adapted close to walls have been proposed for various model problems with boundary
layers8–11 which regain the optimal convergence rate of the numerical schemes; see also the review papers.12,13 With
impedance boundary conditions, the boundary layers need not to be resolved at all as they are posed for the macroscopic
part of the solution. Impedance boundary conditions have been originally proposed for solid conductors by Shchukin14

and Leontovich15 and developed for several equations and geometrical setting; see, for example, Senior and Volakis16 and
Yuferev and Ida.17 Based on asymptotic expansion techniques,18 especially the method of multiscale expansions or the
method of matched asymptotic expansion, for many models, rigorous error estimates were shown; see, for example, for
conducting bodies19 or thin sheets.20,21

In acoustics, they are known as wall boundary conditions and derived at first order for viscothermal boundary lay-
ers2, Section 10.4 and for acoustic plane waves in presence of a shear flow of first order for planar3 and of higher order for the
guided modes in a cylindrical wave guide22,23 using the method of matched asymptotic expansions. Moreover, first-order
wall boundary conditions in a stagnant curvilinear coordinates were derived24 and for viscothermal boundary layers for
a flat wall,25 which can be written in terms of the acoustic pressure only. It is argued in Berggren et al25 that first-order
impedance boundary conditions for flat walls may be used for curved walls as the minimal radius of curvature is typically
much larger than boundary layer thicknesses. The first-order impedance conditions in terms of the pressure have been
shown to be well-posed25 for Lipschitz domain if on a part of the boundary radiation conditions are posed. Well-posedness
of the models with higher order impedance conditions and also an analysis of the error based on a stability analysis of
the singularly perturbed system is outstanding. In an earlier work,26 we derived a complete asymptotic expansion for the
viscoacoustic equations based on the technique of multiscale expansion in powers of

√
𝜂 which takes into account curva-

ture effects. The limit acoustic pressure or velocity and the correcting terms of different order can be defined and solved
iteratively after each other. This asymptotic expansion was rigorously justified with optimal error estimates.

In this article, we propose and rigorously justify, based on the multiscale expansion in Schmidt et al.,26 (effective)
impedance boundary conditions for the velocity and the pressure for possibly curved boundaries, where no boundary
layers need to be resolved and pressure or velocity approximations of orders 0, 1, and 2 are defined separately and can
be computed in one step. The boundary layers can be locally computed from the far-field approximation and added to
the far-field solution an uniform approximation of a particular order is obtained. The analysis of the modeling error
requires some smoothness of the domain and to exclude eigensolutions. The error analysis justifies that the effect due to
viscosity is dominant in relation to curvature for smooth curved walls. The approximative model of order 1 was stated
without derivation and justification already in Semin and Schmidt27 where semi-infinite wave guides were considered for
which Dirichlet-to-Neumann absorbing boundary conditions were introduced that take into account the absorption due
to viscosity on the infinite walls of the guide.

The article is subdivided as follows. In Section 2, we define the model problem of the viscous acoustic equations for
acoustic velocity and pressure and derive the approximative models with impedance boundary conditions for the velocity
and for the pressure on the basis of the asymptotic expansion presented in Schmidt et al26 and state the stability and
modeling error estimates. The well-posedness and estimates of the modeling error of the approximative models with the
impedance boundary conditions will be shown in Sections 3 and 4. Results of some numerical experiments in Section 5
shall emphasize the validity of the theoretical findings.

2 MODEL PROBLEM DEFINITION AND MAIN RESULTS

2.1 Geometry and model problem
Let Ω ⊂ R2 be a bounded Lipschitz domain with boundary 𝜕Ω, where n denotes the outer normalized normal vector. If
𝜕Ω is piecewise C2, then 𝜅 denotes the (signed) curvature a.e. on 𝜕Ω which is positive on convex parts of 𝜕Ω.
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We consider the time-harmonic acoustic velocity v and acoustic pressure p (the time regime is e−i𝜔t, 𝜔 ∈ R+) which
are described in the framework of Landau and Lifshitz1 by the coupled system:

−i𝜔𝜌0v + ∇p − 𝜂Δv − 𝜂′ ∇div v = f , in Ω, (2.1a)

−i𝜔p + 𝜌0c2 divv = 0, in Ω, (2.1b)

v = 0, on 𝜕Ω. (2.1c)

In the momentum equation (2.1a) with some known source term f , the viscous dissipation in the momentum is not
neglected as we consider near wall regions. Since in this study we are mainly interested in the viscous effects, we neglect
nonlinear convection. Here, 𝜌0 is the density of the media, c is the speed of sound, 𝜂 > 0 is the dynamic viscosity, and
𝜂′ = 1

3
𝜂 + 𝜁 with the second (volume) viscosity 𝜁 > 0. Both 𝜂 and 𝜂′ shall take small values, and we call 𝛾 ′ = 𝜂′∕𝜂

their quotient. The system is completed by no-slip boundary conditions and mathematically analyzed in Schmidt et al.26

Similar acoustic equations have been derived and studied in previous studies1,28,29 for a stagnant flow and in previous
studies3,5,28,30,31 for the case that a mean flow is present.

Note that with Δ = ∇div − curl2D curl2D, the momentum equation (2.1a) can be written with the two-dimensional
rotation operators curl2D = div(·⟂), curl2D = (∇·)⟂ where u⟂ ∶= (u2,−u1)⊤ denotes a vector rotated clockwise by 90◦.

It is well known that the acoustic velocity field exhibits a boundary layer of thickness O
(√

𝜂∕𝜔
)

, starting at the rigid
wall; see, for example, previous studies2–4,26 and the references therein. In the following, we propose definitions of far-field
velocities, which approximate the acoustic velocity outside the boundary layer, the correcting near-field velocities, and
approximative acoustic pressure in the whole domain.

In Schmidt et al,26 the stability was proven for the nonresonant case, which we consider here as well, that is, for van-
ishing viscosity and absorption the kernel of the system is empty—there is no eigensolution. The eigenvalues of the limit
problem coincide with the Neumann eigenvalue of −Δ.

Lemma 1 (Stability for the nonresonant case). For any f ∈ (H0(div,Ω)) ∩H(curl2D,Ω))′, the system (2.1) has a unique
solution (v𝜀, p𝜀) ∈ H0(div,Ω)∩H(curl2D,Ω)×L2(Ω). If 𝜔

2

c2 is not a Neumann eigenvalue of−Δ, then there exists a constant
C > 0 independent of 𝜀, such that

||v||H(div,Ω) +
√
𝜂 ||curl2Dv||L2(Ω) + ||p||L2(Ω) ≤ C ||f||(H0(div,Ω)∩H(curl2D,Ω))′ , (2.2a)

||∇p||L2(Ω) ≤ C ||f||L2(Ω). (2.2b)

A proof can be found in Schmidt et al.26, Lemma 2.2 Even so, in this work, C∞ was assumed, the proof of (2.2a) and (2.2b)
does not rely on a higher regularity assumption; see Marus%ić-Paloka.32

2.2 Asymptotic expansion for small viscosities
To investigate the solution of (2.1) for small viscosities, we introduce a small dimensionless parameter 𝜀 ≪ 1, 𝜀 ∈ R+ and
replace 𝜂, 𝜂′ by 𝜀2𝜔𝜌0∕2, 𝜀2𝛾 ′𝜔𝜌0∕2 (corresponding to 𝜂0 = 𝜔𝜌0∕2, 𝜂′0 = 𝛾 ′𝜔𝜌0∕2 in Schmidt et al.26), respectively. In this
way, the boundary layer thickness will become proportional to 𝜀.

Close to the boundary 𝜕Ω, we introduce a local coordinate system (t, s) that is uniquely defined by

x(t, s) = x𝜕Ω(t) − sn(t), (2.3)

where the boundary is described by the mapping x𝜕Ω(t) from an interval T ⊂ R and s is the distance from the boundary
(see Figure 1A). Without loss of generality, we assume an arc length parametrization, that is, |x′

𝜕Ω(t)| = 1 for all t ∈ T,
and the tangential derivative is given by 𝜕Γv(x) = 𝜕tv(x(t, s)).

Then, inspired by the framework of Vishik and Lyusternik,18 the solution of (2.1) can be written as

v =
∞∑
𝑗=0
𝜀𝑗

(
v𝑗 + 𝜀curl2D(𝜙𝑗𝜒)

)
, p =

∞∑
𝑗=0
𝜀𝑗p𝑗 , (2.4)
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FIGURE 1 (A) Definition of a general
domain with a local coordinate system (t, s)
close to the wall and (B) definition of a torus
domain for numerical simulations [Colour
figure can be viewed at wileyonlinelibrary.com]

where v𝑗(x, 𝑦) and p𝑗(x, 𝑦) are terms of the far-field expansion, the near-field terms 𝜙𝑗
(

t, s
𝜀

)
represent the boundary layer

close to the wall, and 𝜒 is an admissible cut-off function. We denote a monotone function 𝜒 ∈ C∞(Ω) as an admissible
cut-off function, if there exist constants 0 < s1 < s0 <

1
2
||𝜅||−1

L∞(Γ) such that 𝜒 ≡ 0 outside an s0-neighborhood of 𝜕Ω
and otherwise 𝜒(x) = 𝜒(s), where 𝜒(s) = 1 for s < s1. For an admissible cut-off function 𝜒 , we denote as supp(𝜒) the
𝜒-neighborhood of 𝜕Ω.

The method of multiscale expansion separates the far- and near-field terms. We restrict ourselves to 𝑗 = 0, 1, 2, as these
will be used for the derivation of the impedance boundary conditions where the equations for general 𝑗 ∈ N can be found
in Schmidt et al.26 The limit far-field velocity term v0 satisfies the PDE system

∇div v0 + 𝜔2

c2 v0 = i𝜔
𝜌0c2 f , in Ω, (2.5a)

v0 · n = 0, on 𝜕Ω, (2.5b)

the first-order corrector v1

∇div v1 + 𝜔2

c2 v1 = 0, in Ω, (2.6a)

v1 · n = (1 + i) c2

2𝜔2 𝜕
2
Γdiv v0 − (1 − i) 1

2𝜔𝜌0
𝜕Γ(f · n⟂), on 𝜕Ω, (2.6b)

and the second-order corrector v2

∇div v2 + 𝜔2

c2 v2 = i𝜔2

2c2 Δv0 + i𝛾 ′𝜔2

2c2 ∇div v0, in Ω, (2.7a)

v2 · n = (1 + i) c2

2𝜔2 𝜕
2
Γdiv v1 + c2

𝜔2

( i
4
𝜕Γ

(
𝜅𝜕Γdiv v0)) − 1

4𝜔𝜌0
𝜕Γ

(
𝜅 f · n⟂) , on 𝜕Ω. (2.7b)

The far-field pressure terms p𝑗 are then given for any 𝑗 ∈ N0 by

p𝑗 = − i𝜌0c2

𝜔
div v𝑗 , in Ω. (2.8)

2.3 Approximative models with impedance boundary conditions
In this section, we derive and state approximative models for the far-field velocity vappr,N of orders 0, 1, and 2 (Section 2.3.1)
and for the far-field pressure pappr,N of orders 0, 1, and 2 (Section 2.3.2), which include in particular impedance boundary
conditions. The approximative models will be derived from the asymptotic expansion of the solution of (2.1). While the
terms of the asymptotic expansion are defined order by order, we introduce approximative models that can be computed
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in one step and take into account all terms up to order N = 0, 1, or 2. Even so the governing equations couple velocity and
pressure and can not be written in terms of the pressure only, we present approximative models in terms of the acoustic
pressure or the acoustic velocity only. For both kinds of approximative models, the approximations to the respective other
quantity, acoustic velocity vappr,N or pressure pappr,N , result in a postprocessing step by algebraic equations from pappr,N or
vappr,N , respectively. Moreover, velocity boundary layer correctors vBL

appr,N can be computed from the far-field velocity.
They will be derived in Section 2.6 for smooth boundaries, but their (weak) formulations can be defined if the domain Ω
is Lipschitz, and piecewise C2 boundary is required for the models of order 2 that include the curvature.

Note that the approximative models incorporate only boundary conditions for the scalar acoustic pressure or normal
component of acoustic velocity in difference to the original viscoacoustic model (2.1) where with the no-slip boundary
conditions all acoustic velocity components are prescribed. With this, the approximative models are of different nature,
even so the no-slip boundary conditions is present in an effective way.

2.3.1 Approximative models for the acoustic velocity
We start with the far-field asymptotic expansions v𝜀,N ∶=

∑N
𝑗=0 𝜀

𝑗v𝑗 and p𝜀,N ∶=
∑N
𝑗=0 𝜀

𝑗p𝑗 of order N. For their
computation, N + 1 PDE systems have to be solved.

The far-field limit v0 is that solution of one system, namely, (2.5), which is the natural approximative model of order 0:

∇div vappr,0 +
𝜔2

c2 vappr,0 = i𝜔
𝜌0c2 f , in Ω, (2.9a)

vappr,0 · n = 0, on 𝜕Ω. (2.9b)

To obtain the approximative model of order N = 1

∇div vappr,1 +
𝜔2

c2 vappr,1 = i𝜔
𝜌0c2 f , in Ω, (2.10a)

vappr,1 · n − (1 + i) c2

𝜔2

√
𝜂

2𝜔𝜌0
𝜕2
Γ div vappr,1 = (i − 1)

𝜔𝜌0

√
𝜂

2𝜔𝜌0
𝜕Γ(f · n⟂), on 𝜕Ω, (2.10b)

which is only one system providing the approximation vappr,1, we consider the boundary conditions and PDEs that are
solved by v𝜀,1 and neglect the terms of order 𝜀2.

We find that v𝜀,1 satisfies the boundary condition

v𝜀,1 · n = 𝜀(1 + i) c2

2𝜔2 𝜕
2
Γ div v0 − 𝜀(1 − i) 1

2𝜔𝜌0
𝜕Γ(f · n⟂),

= 𝜀(1 + i) c2

2𝜔2 𝜕
2
Γ div v𝜀,N − 𝜀(1 − i) 1

2𝜔𝜌0
𝜕Γ(f · n⟂) − 𝜀2(1 + i) c2

2𝜔2 𝜕
2
Γdiv v1,

where we were using (2.5b) and (2.6b). Now, neglecting the term of order 𝜀2 on the right-hand side and using the equality
𝜂 = 𝜀2𝜔𝜌0∕2, we obtain the boundary condition (2.10b) for vappr,1. The PDE (2.10a) for vappr,1 follows in the same way
where no term has to be neglected as the right-hand side of the PDE (2.6a) for v1 does not depend on v0—it is even zero.

The approximative model of order N = 2

(
1 − i𝜔(𝜂 + 𝜂′)

𝜌0c2

)
∇div vappr,2 +

𝜔2

c2 vappr,2 = i𝜔
𝜌0c2 f + 𝜂

𝜌2
0c2

curl2D curl2D f , in Ω, (2.11a)

vappr,2 · n− c2

𝜔2

(
(1 + i)

√
𝜂

2𝜔𝜌0
𝜕2
Γdivvappr,2 +

i𝜂
2𝜔𝜌0

𝜕Γ
(
𝜅𝜕Γdiv vappr,2

))
= (i − 1)

𝜔𝜌0

√
𝜂

2𝜔𝜌0
𝜕Γ

(
f · n⟂) − 𝜂

2𝜔2𝜌2
0
𝜕Γ

(
𝜅 f · n⟂) , on 𝜕Ω,

(2.11b)

we obtain similarly to the first order one. Using (2.5b), (2.6b), and (2.7b), we find that v𝜀,2 satisfies
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v𝜀,2 · n = 𝜀(1 + i) c2

2𝜔2 𝜕
2
Γdiv v0 − 𝜀(1 − i) 1

2𝜔𝜌0
𝜕Γ

(
f · n⟂)

+ 𝜀2(1 + i) c2

2𝜔2 𝜕
2
Γdiv v1 + 𝜀2 c2

𝜔2

( i
4
𝜕Γ(𝜅𝜕Γdiv v0)

)
− 𝜀2 1

4𝜔𝜌0
𝜕Γ

(
𝜅 f · n⟂)

= 𝜀(1 + i) c2

2𝜔2 𝜕
2
Γdiv v𝜀,N + 𝜀2 c2

𝜔2

( i
4
𝜕Γ

(
𝜅𝜕Γdiv v𝜀,N

))
− 𝜀(1 − i) 1

2𝜔𝜌0
𝜕Γ

(
f · n⟂) − 𝜀2 1

4𝜔𝜌0
𝜕Γ

(
𝜅 f · n⟂)

− 𝜀3(1 + i) c2

2𝜔2 𝜕
2
Γdiv v2 − 𝜀3 c2

𝜔2

( i
4
𝜕Γ

(
𝜅𝜕Γdiv v1)) − 𝜀4 c2

𝜔2

( i
4
𝜕Γ

(
𝜅𝜕Γdiv v2))

Now, neglecting the terms of order 𝜀3 on the right-hand side and using the equality 𝜂 = 𝜀2𝜔𝜌0∕2, we obtain the boundary
condition (2.11b) for vappr,2. Using (2.5a), (2.6a), and (2.7a), we find that v𝜀,2 satisfies

∇div v𝜀,2 + 𝜔2

c2 v𝜀,2 = 𝜀2 i𝜔2

2c2 Δv0 + 𝜀2 i𝛾 ′𝜔2

2c2 ∇div v0 + i𝜔
𝜌0c2 f

= 𝜀2 i(1 + 𝛾 ′)𝜔2

2c2 ∇div v0 + i𝜔
𝜌0c2 f + 𝜀2 𝜔

2c2𝜌0
curl2D curl2D f

= 𝜀2 i(1 + 𝛾 ′)𝜔2

2c2 ∇div v𝜀,2 + i𝜔
𝜌0c2 f + 𝜀2 𝜔

2c2𝜌0
curl2D curl2D f − 𝜀3 i(1 + 𝛾 ′)𝜔2

2c2 ∇div (v1 + 𝜀v2) .

Now, neglecting the terms of order 𝜀3 on the right-hand side and with 𝜂 = 𝜀2𝜔𝜌0∕2, we obtain the PDE (2.11a) for vappr,2.
Using (2.8) for 𝑗 = 0, 1, 2, we find that p𝜀,N = − i𝜌0c2

𝜔
div v𝜀,N , and the pressure approximations

pappr,N = − i𝜌0c2

𝜔
div vappr,N (2.12)

of order 0, 1, and 2 follow that can be computed from the far-field velocity in an a posteriori step. Also, a near-field velocity
corrector vBL

appr,N close to the wall can be computed afterwards which will be derived and given in Section 2.6.
The impedance boundary conditions (2.10b) and (2.11b) have similarities with Wentzell's boundary conditions,33–36

where, however, the second tangential derivative applies to the Neumann trace div vappr,N , and not to the Dirichlet trace,
which is here vappr,N · n. The limit velocity model and the approximative models of higher order are of different kind as
the exact model (2.1) since the terms Δvappr,N and so curl2D curl2Dvappr,N are not present and—that is consistent—there
is no condition on the tangential component.

2.3.2 Approximative models for the pressure
The far-field pressure limit p0 is the solution of the Helmholtz equation with one boundary condition,26 which is again
the natural approximative model of order 0:

Δpappr,0 +
𝜔2

c2 pappr,0 = div f , in Ω, (2.13a)

∇pappr,0 · n = f · n , on 𝜕Ω. (2.13b)

The PDE results by taking the divergence of (2.9a) and using (2.12) for N = 0, and the boundary conditions follow
from (2.9) as

∇pappr,0 · n = − i𝜌0c2

𝜔
∇div vappr,0 · n = i𝜌0𝜔vappr,0 · n + f · n = f · n.

If the source f is localized away from the boundary 𝜕Ω, then the boundary conditions (2.13b) are homogeneous, likewise
the following impedance conditions of higher order.

In the same way, the approximative model of order N = 1 for the pressure

Δpappr,1 +
𝜔2

c2 pappr,1 = div f , in Ω, (2.14a)
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∇pappr,1 · n + (1 + i)
√

𝜂

2𝜔𝜌0
𝜕2
Γpappr,1 = f · n − (1 + i)

√
𝜂

2𝜔𝜌0
𝜕Γ

(
f · n⟂) , on 𝜕Ω, (2.14b)

follows where just the divergence of (2.10a) is taken to obtain the PDE. The boundary conditions results using (2.10) by

∇pappr,1 · n = i𝜌0𝜔vappr,1 · n + f · n = i𝜌0c2

𝜔
(1 + i)

√
𝜂

2𝜔𝜌0
𝜕2
Γdivvappr,1 · n + f · n − (1 + i)

√
𝜂

2𝜔𝜌0
𝜕
(
f · n⟂)

= −(1 + i)
√

𝜂

2𝜔𝜌0
𝜕2
Γdivpappr,1 · n + f · n − (1 + i)

√
𝜂

2𝜔𝜌0
𝜕Γ

(
f · n⟂) .

Similarly, the approximative model of order N = 2 for the pressure

(
1 − i𝜔(𝜂 + 𝜂′)

𝜌0c2

)
Δpappr,2 +

𝜔2

c2 pappr,2 = div f in Ω, (2.15a)

(
1 − i𝜔(𝜂 + 𝜂′)

𝜌0c2

)
∇pappr,2 · n + (1 + i)

√
𝜂

2𝜔𝜌0
𝜕2
Γpappr,2 +

i𝜂
2𝜔𝜌0

𝜕Γ(𝜅𝜕Γpappr,2)

=f · n − (1 + i)
√

𝜂

2𝜔𝜌0
𝜕Γ

(
f · n⟂) − i𝜂

2𝜔𝜌0
𝜕Γ

(
𝜅f · n⟂) − i𝜂

𝜔𝜌0
curl2D curl2D f · n, on 𝜕Ω,

(2.15b)

is obtained similarly, where for the PDE follows after applying the divergence to (2.11a) and using that div curl2D vanishes
for smooth enough functions. The boundary conditions follows using (2.11) and

(
1 − i𝜔(𝜂 + 𝜂′)

𝜌0c2

)
∇pappr,2 · n = −

(
1 − i𝜔(𝜂 + 𝜂′)

𝜌0c2

)
i𝜌0c2

𝜔
∇div vappr,2 · n

= i𝜌0𝜔vappr,2 · n + f · n − i𝜂
𝜌0𝜔

curl2D curl2D f · n

= i𝜌0c2

𝜔

(
(1 + i)

√
𝜂

2𝜔𝜌0
𝜕2
Γdivvappr,2 +

i𝜂
2𝜔𝜌0

𝜕Γ
(
𝜅𝜕Γdiv vappr,2

))
− i𝜌0𝜔

(
(i − 1)
𝜔𝜌0

√
𝜂

2𝜔𝜌0
𝜕Γ

(
f · n⟂) − 𝜂

2𝜔2𝜌2
0
𝜕Γ

(
𝜅 f · n⟂)) + f · n − i𝜂

𝜌0𝜔
curl2D curl2D f · n,

and using again (2.12).
When the approximative far-field pressure of orders 0, 1, or 2 is computed using (2.13), (2.14), or (2.15), we may obtain

a posteriori the approximative far-field velocity of order 0, 1, or 2 by

vappr,N = i
𝜌0𝜔

(f − ∇pappr,N), for N = 0, 1, in Ω, (2.16a)

vappr,2 = i
𝜌0𝜔

f − i
𝜌0𝜔

(
1 − i𝜔(𝜂 + 𝜂′)

𝜌0c2

)
∇pappr,2 +

𝜂

𝜌2
0𝜔

2
curl2D curl2D f , in Ω, (2.16b)

2.4 Weak formulations
The weak formulations for the approximative models of order 0, that is, (2.13) for the pressure and (2.9) for the velocity,
read: Seek pappr,0 ∈ H1(Ω) such that

∫Ω
∇pappr,0 · ∇q′ − 𝜔2

c2 pappr,0qdx = ∫Ω
f · ∇q′dx for all q′ ∈ H1(Ω) (2.17)
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and seek vappr,0 ∈ H0(div ,Ω) such that

∫Ω
div vappr,0div v′ − 𝜔2

c2 vappr,0 · v′dx = ∫Ω
f · v′dx for all v′ ∈ H0(div ,Ω). (2.18)

The impedance boundary conditions (2.14b) of order N = 1 and (2.15b) of order N = 2 are of Wentzell type; see
Bonnaillie-Noël et al37 and Schmidt and Heier38 for the functional framework. With the Sobolev space H1(Ω) ∩ H1(𝜕Ω)
with functions that are in H1(Ω) and whose traces are in H1(𝜕Ω), the weak formulations for the systems (2.14) and (2.15)
are given as

Seek pappr,N ∶= H1(Ω) ∩ H1(𝜕Ω) such that

∫Ω

(
1 − i𝜔(𝜂 + 𝜂′)𝛿N=2

𝜌0c2

)
∇pappr,N · ∇q′ − 𝜔2

c2 pappr,N q′ dx − ∫𝜕Ω
(
(1 + i)

√
𝜂

2𝜔𝜌0
+ i𝜂𝛿N=2

2𝜔𝜌0
𝜅

)
𝜕Γpappr,N𝜕Γq′ d𝜎(x)

=∫Ω
f · ∇q′dx − ∫𝜕Ω

(
(1 + i)

√
𝜂

2𝜔𝜌0
+ i𝜂𝛿N=2

2𝜔𝜌0
𝜅

)
f · n⟂𝜕Γq′ + i𝜂𝛿N=2

𝜔𝜌0
curl2D curl2D f · nq′ d𝜎(x)

for all q′ ∈ H1(Ω) ∩ H1(𝜕Ω).
(2.19)

Introducing the Lagrange multipliers 𝜆appr,N =
(

1 − i𝜔(𝜂+𝜂′)𝛿N=2
𝜌0c2

)
div vappr,N , N = 1, 2 on 𝜕Ω, we find the mixed vari-

ational formulations for the systems (2.10) and (2.11): Seek (vappr,N , 𝜆appr,N) ∈ H(div ,Ω) × H1(𝜕Ω) such that for all
(v′, 𝜆′) ∈ H(div,Ω) × H1(𝜕Ω),

∫Ω

(
1 − i𝜔(𝜂 + 𝜂′)𝛿N=2

𝜌0c2

)
div vappr,N div v′ − 𝜔2

c2 vappr,N · v′ dx

−∫𝜕Ω𝜆appr,N v′ · nd𝜎(x) = ∫Ω

(
f + 𝜂 𝛿N=2

𝜌2
0c2

curl2D curl2D f

)
· v′ dx,

(2.20a)

∫𝜕Ωvappr,N · n𝜆′ + c2

𝜔2

(1 + i)
√

𝜂

2𝜔𝜌0
+ i𝜂 𝛿N=2

2𝜔𝜌0
𝜅

1 − i𝜔(𝜂+𝜂′)𝛿N=2
𝜌0c2

𝜕Γ𝜆appr,N𝜕Γ𝜆
′ d𝜎(x) = ∫𝜕Ω

(
1 − i
𝜔𝜌0

√
𝜂

2𝜔𝜌0
+ 𝜂 𝛿N=2

2𝜔2𝜌2
0
𝜅

)
f · n⟂𝜕Γ𝜆

′ d𝜎(x).

(2.20b)

2.5 Well-posedness and modeling error

Obviously, the system for the limit pressure (2.13) has no unique solutions for frequencies 𝜔 > 0 for that 𝜔2

c2 is an eigen-
value of—Δ with Neumann boundary conditions—the eigenfrequencies. In Schmidt et al,26 we have shown that the limit
velocity system (2.9) has eigensolutions for the same frequencies, for which it does not provide a unique solution. If𝜔 takes
such a value by the Fredholm alternative,39 the systems provide solutions if the source is orthogonal to all eigenfunctions.
This is, however, in practise rather unlikely.

In the pressure and velocity systems of order 1, there is an additional dissipative term, which is, however, not sufficient
to guarantee uniqueness for all frequencies in general. There might be eigenfunctions of the pressure limit systems that
do not vary on 𝜕Ω such that they satisfy the first-order pressure system (2.14) with f = 0. Note that the eigenfunctions v
of the velocity limit systems whose Neumann trace div v is constant along on 𝜕Ω are also eigenfunctions of the first-order
velocity system (2.10).

Only the volumic dissipative term of the two systems of order 2 guarantee, as for the original model, for existence and
uniqueness for all frequencies𝜔 > 0. These properties will be shown and discussed by numerical experiments in Section 5.
However, in the analysis, we assume that 𝜔 is not an eigenfrequency of the limit system.

Theorem 1 (Stability, existence, and uniqueness of (vappr,N , pappr,N)). Let Ω be an open Lipschitz domain whose bound-
ary is piecewise C2 for N = 2, and let 𝜔2

c2 be distinct from the Neumann eigenvalues of −Δ of Ω and let f ∈ H(curl2D,Ω)
and curl2D curl2D f ∈ H(curl2D,Ω) for N = 2. Then, there exists a constant 𝜂0 > 0 such that for all 𝜂 ∈ (0, 𝜂0), each of
the systems (2.13)–(2.15) provides a unique solution pappr,N ∈ H1(Ω), N = 0, 1, 2 and each of the the systems (2.9)–(2.11)
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provide a unique solution vappr,N ∈ H(div ,Ω)∩H(curl,Ω), N = 0, 1, 2, respectively. Furthermore, there exists a constant
C independent of 𝜂 such that the stability estimates

||vappr,N ||H(div,Ω) + ||pappr,N ||H1(Ω) ≤ C
(||f||L2(Ω) + 𝜂 𝛿N=2||curl2D curl2D f||L2(Ω)

)
, (2.21a)

||curl2Dvappr,N ||L2(Ω) ≤ C
(||curl2D f||L2(Ω) + 𝜂 𝛿N=2||curl2Dcurl2D curl2D f||L2(Ω)

)
(2.21b)

hold. Moreover, the approximative models are equivalent as the identities (2.12) and (2.16) hold.

The proof will be given in Section 3. Note that the equivalent systems (2.15), (2.16b) and (2.11), (2.12) provide a unique
solution (vappr,2, pappr,2) ∈ H(div,Ω) ∩ H(curl2D,Ω) × H1(Ω) for any 𝜔 > 0, however, with a constant C = C(𝜂) that may
blow up for 𝜂 → 0. This is due to the factor (1 − i𝜔(𝜂 + 𝜂′)∕(𝜌0c2)) in front of Δpappr,2 or ∇div vappr,2, respectively, that has
a nonvanishing imaginary part and implies an elliptic bilinear form with ellipticity constant of order 1∕𝜂.

The approximative models were derived to be formally consistent with the asymptotic expansion to the respective
order, and the following lemma conditions are given under which the approximative solutions are close to the respective
asymptotic expansion.

Lemma 2 (Approximative solution is close to asymptotic expansion). Let Ω be an open smooth domain, and let 𝜔2

c2 be
distinct from the Neumann eigenvalues and let f ∈ (L2(Ω))2 where curl2D f ∈ Hm(Ω) for any m ∈ N and f ∈ Hm(ΩΓ))2

for any m ∈ N in some neighborhood ΩΓ ⊂ Ω of 𝜕Ω, that is, 𝜕Ω ⊂ 𝜕ΩΓ.
Then, it holds for the solution vappr,N of the approximative models (2.10) and (2.11) for N = 1, 2, respectively, that

curl2Dvappr,N −
N∑
𝑗=0

(
2𝜂
𝜔𝜌0

) 𝑗

2

curl2Dv𝑗 = 0,

and there exist constants 𝜂0 and C independent of 𝜂 such that for vappr,N and for pappr,N for N = 1, 2 given by (2.12) and
any 𝜂 ∈ (0, 𝜂0) it holds

‖‖‖‖‖‖vappr,N −
N∑
𝑗=0

(
2𝜂
𝜔𝜌0

) 𝑗

2

v𝑗
‖‖‖‖‖‖H(div,Ω)

+
‖‖‖‖‖‖pappr,N −

N∑
𝑗=0

(
2𝜂
𝜔𝜌0

) 𝑗

2

p𝑗
‖‖‖‖‖‖H1(Ω)

≤ C𝜂
N+1

2 . (2.22)

The lemma means in other words that the asymptotic expansions of the exact solution and the approximative solution
of the respective order coincide. The proof of the lemma that will be given in Section 4 is not straightforward due to the
singular perturbed nature of the equations.

As the error of the asymptotic expansion was shown in Schmidt et al.,26, Lemma 2.2 application of the triangle inequality
and Lemma 2 implies a bound of the modeling error as stated in the following.

Theorem 2 (Modeling error). Let the assumptions of Lemma 2 be fulfilled. Then, the approximative solution
(vappr,N , pappr,N) for N = 0, 1, 2 satisfies ||p − pappr,N ||H1(Ω) ≤ C𝜂

N+1
2 , (2.23a)

and for any 𝛿 > 0

||v − vappr,N ||(H1(Ω∖Ω̄𝛿 ))2 ≤ C𝛿,N 𝜂
N+1

2 , (2.23b)

whereΩ𝛿 is the original domain without a 𝛿-neighborhood of 𝜕Ω and where the constants C, C𝛿,N > 0 do not depend on 𝜂.

2.6 Approximative boundary layer correctors for the velocity
Close to the wall, the far-field velocities have to be corrected by an (approximative) boundary layer velocity field

vBL
appr,N =

√
2𝜂
𝜔𝜌0

curl2D(𝜙appr,N𝜒), (2.24)
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where 𝜒 is an admissible cut-off function. To define 𝜙appr,N , we take the near-field terms v𝑗BL =
√

2 𝜂
𝜔𝜌0

curl2D(𝜙𝑗𝜒) of the
asymptotic expansion26 with

𝜙0(x) = 1
2
(1 + i)e−(1−i) s

𝜀 v0 · n⟂, (2.25a)

𝜙1(x) = 1
2
(1 + i)e−(1−i) s

𝜀

(
v2 · n⟂ + 1

4
(3 + i)𝜅s

𝜀
v1 · n⟂

)
, (2.25b)

𝜙2(x) = 1
2
(1 + i)e−(1−i) s

𝜀

(
v2 · n⟂ + 1

4
(3 + i)𝜅s

𝜀
v1 · n⟂

+
(

i(1 + 𝛾 ′)𝜔2

2c2 + 3
16
𝜅2

(
i + (1 + i) s

𝜀
+ 2s2

𝜀2

))
v0 · n⟂ + 1

4

(
i + (1 + i) s

𝜀

)
𝜕2
Γv0 · n⟂

)
.

(2.25c)

Writing near-field terms for
∑N
𝑗=0 𝜀

𝑗v𝑗BL and so
∑N
𝑗=0 𝜀

𝑗𝜙𝑗 and neglecting the terms of order N + 1, we find

𝜙appr,0(x) =
1
2
(1 + i)e−(1−i)s

√
𝜔𝜌0
2 𝜂 (vappr,0 · n⟂)(x𝜕Ω), (2.26a)

𝜙appr,1(x) =
1
2
(1 + i)e−(1−i)s

√
𝜔𝜌0
2 𝜂

(
1 + 1

4
(3 + i)𝜅s

)
(vappr,1 · n⟂)(x𝜕Ω),

𝜙appr,2(x) =
1
2
(1 + i)e−(1−i)s

√
𝜔𝜌0
2 𝜂

((
1 + i

𝜔𝜌0

(
𝜔2

c2 (𝜂 + 𝜂
′) + 3

8
𝜅2𝜂

)
+ 𝜅s

4

(
(3 + i) + 3

4
𝜅

√
2𝜂
𝜔𝜌0

)

+3
8
𝜅2s2

)
(vappr,2 · n⟂)(x𝜕Ω) +

1
4

(
2𝜂 i
𝜔𝜌0

+ (1 + i)s
√

2𝜂
𝜔𝜌0

)
𝜕2
Γ(vappr,2 · n⟂)(x𝜕Ω)

)
.

The tangential component of the approximative velocity has to be evaluated for each point x close to the boundary
on its nearest point x𝜕Ω on the boundary. To be able to define the near-field velocity correctors, enough smoothness of
the boundary is required. Adding the near-field correction vBL

appr,N to the far-field velocity vappr,N for N = 0, 1, 2, the
tangential and the normal components of the sum vanish on the boundary up to terms of order N + 1 which follows from
the same properties of the multiscale expansion.26

3 STABILITY OF THE APPROXIMATIVE MODELS

In this section, we first define generalized approximative pressure and velocity systems that generalizes the derived
approximative models and show their well-posedness. Even so we derived the approximative models for smooth domains,
the analysis of the generalized approximative systems requires less regularity. Considering the generalized systems, we
will not only benefit from a more compact notation, but more general source terms will allow us to prove the bounds on
the modeling error in Section 4.

3.1 Well-posedness for a generalized approximative pressure system
In this section, we analyze the well-posedness of a class of generalized approximative pressure problems

div
(
𝛼𝜂∇p𝜂

)
+ 𝜔2

c2 p𝜂 = −divg𝜂, in Ω, (3.1a)

𝛼𝜂∇p𝜂 · n + 𝜕Γ
(
𝛽𝜂𝜕Γp𝜂

)
= g𝜂 · n + 𝜕Γh𝜂, on 𝜕Ω, (3.1b)
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with 𝛼𝜂, 𝛽𝜂 ∈ L∞(𝜕Ω). For Ω smooth enough, the weak formulation of (3.1) is given as follows: Seek p𝜂 ∈ H1
𝛽𝜂
∶= H1(Ω) ∩

H1(𝜕Ω) such that for all q′ ∈ H1(Ω) ∩ H1(𝜕Ω)

∫Ω
𝛼𝜂∇p𝜂 · ∇q′ − 𝜔2

c2 p𝜂q′ dx − ∫𝜕Ω𝛽𝜂𝜕Γp𝜂𝜕Γq′ d𝜎(x) = ∫Ω
g𝜂 · ∇q′ dx + ∫𝜕Ωh𝜂𝜕Γq′ d𝜎(x). (3.2)

The approximative pressure systems (2.14) and (2.15) of orders 1 or 2, respectively, belong to this generalized
approximative pressure system. If we indicate the respective functions for the system of order N with a superscript N, we
find that

𝛼1
𝜂 = 1, 𝛼2

𝜂 = 1 − i𝜔(𝜂 + 𝜂′)
𝜌0c2 , 𝛽1

𝜂 = (1 + i)
√

𝜂

2𝜔𝜌0
, 𝛽2
𝜂 = 𝛽1

𝜂 +
i𝜂

2𝜔𝜌0
𝜅,

g1
𝜂 = g2

𝜂 = f , h1
𝜂 = −1 + i

𝜔𝜌0

√
𝜂

2𝜔𝜌0
f · n⟂, h2

𝜂 = h1
𝜂 +

i𝜔(𝜂 + 𝜂′)
𝜌0c2 f · n − i𝜂

2𝜔𝜌0
𝜅f · n⟂.

Lemma 3 (Well-posedness of the generalized approximative pressure system). Let Ω be a Lipschitz domain and 𝜔2

c2

be distinct from the Neumann eigenvalues of −Δ in Ω. Moreover, let g𝜂 ∈ (L2(Ω))2, h𝜂 ∈ L2(𝜕Ω) for all 𝜂 ∈ 𝜂 > 0,
𝛼𝜂 ∈ L∞(Ω) with 𝛼𝜂 → 1 for 𝜂 → 0 and Im𝛼𝜂 ≤ 0, 𝛽𝜂 ∈ L∞(𝜕Ω) with 𝛽𝜂 → 0 for 𝜂 → 0 and Im𝛽𝜂 ≥ c|𝛽𝜂| for some c > 0
and invertible with 𝛽−1

𝜂 ∈ L∞(𝜕Ω). Then, there exists a constant 𝜂m > 0 such that for any 𝜂 ∈ (0, 𝜂m) the formulation (3.2)
has a unique solution p𝜂 ∈ H1(Ω). Furthermore, there exists a constant C = C(𝜂m) > 0 not depending on 𝜂 such that

||p𝜂||H1(Ω) +
√|𝛽𝜂||p𝜂|H1(𝜕Ω) ≤ C

(||g𝜂||(L2(Ω))2 + ||𝛽−1∕2
𝜂 h𝜂||L2(𝜕Ω)

)
. (3.3)

Proof. The proof is by contradiction and we suppose, contrary to our claim, that the estimate (3.3) is false. Then, there
exists a sequence {𝜂n}n∈N with 𝜂n → 0, a bounded sequence {pn}n∈N with ||pn||H1(Ω) + |pn|H1(𝜕Ω) = 1 and a sequence
{(gn, hn)}n∈N with

||gn||(L2(Ω))2 + ||𝛽−1∕2
𝜂n

hn||L2(𝜕Ω) → 0, (3.4)

such that pn is a solution of (3.2) where g𝜂, h𝜂 , and 𝜂 are replaced by gn, hn, and 𝜂n.
Then, there exists a weakly converging subsequence, again called {pn}n∈N, whose limit p for n → ∞ is with the

assumptions 𝛼𝜂n → 1 and 𝛽𝜂n → 0, the solution of the limit problem:

∫Ω
∇p · ∇q′ − 𝜔2

c2 pq′ dx = 0 ∀q′ ∈ H1(Ω).

By the assumption on 𝜔, it has a unique solution p = 0. Hence,

pn ⇀ 0 in H1(Ω).

As H1(Ω) is compactly embedded in L2(Ω), we have the strong convergence

pn → 0 in L2(Ω).

Now, testing the variational formulation for pn with q′ = −pn and taking the imaginary part, we obtain

En ∶= −∫Ω
Im𝛼𝜂n |pn|2dx + ∫𝜕ΩIm𝛽𝜂n |𝜕Γpn|2d𝜎(x) = −Im∫Ω

gn · ∇p̄ndx − Im∫𝜕Ωhn𝜕Γp̄nd𝜎(x).

With the assumption we have c|𝛽n| ≤ Im𝛽n for some c > 0 and using 0 ≤ −Im𝛼n we obtain a lower bound and using
the Cauchy-Schwarz inequality a upper bound and conclude that

c|𝛽𝜂n | |pn|2H1(𝜕Ω) ≤ En ≤ ||gn||(L2(Ω))2 |pn|H1(Ω) + ||hn||L2(𝜕Ω)|pn|H1(𝜕Ω).

SCHMIDT AND THÖNS-ZUEVA7414



Using the inequality 2ab ≤ 𝛿−1a2 + 𝛿b2 for all a, b ∈ R and 𝛿 > 0, we find for 𝛿 = c|𝛽𝜂n |
c
2
|𝛽𝜂n | |pn|2H1(𝜕Ω) ≤ ||gn||(L2(Ω))2 |pn|H1(Ω) +

1
2c|𝛽𝜂n | ||hn||2L2(𝜕Ω) = ||gn||(L2(Ω))2 |pn|H1(Ω) +

1
2c

||𝛽−1∕2
𝜂n

hn||2L2(𝜕Ω).

With |pn|H1(Ω) ≤ 1, ||gn||(L2(Ω))2 → 0 and ||𝛽−1∕2
𝜂n

hn||L2(𝜕Ω) → 0 by (3.4), we conclude that

√|𝛽𝜂n ||pn|H1(𝜕Ω) → 0, |pn|H1(Ω) → 1. (3.5)

Finally, testing the variational formulation for pn with q′ = pn, we find for n large enough

1
2
|pn|2H1(Ω) ≤ C

(||gn||L2(Ω)||pn||L2(Ω) + ||𝛽−1∕2
𝜂n

hn||L2(𝜕Ω)|√𝛽𝜂n pn|H1(𝜕Ω) +
𝜔2

c2 ||pn||2L2(Ω) + |√𝛽𝜂n pn|2H1(𝜕Ω)

)
→ 0 for n → ∞.

This contradicts (3.5), and hence, the assumption and (3.3) follow for 𝜂 small enough. The stability estimates the
uniqueness of a solution, and with the Fredholm alternative, its existence follows. This completes the proof.

3.2 Well-posedness for a generalized approximative velocity system
In this section, we analyze the well-posedness of a class of approximative velocity problems

∇
(
𝛼𝜂div w𝜂

)
+ 𝜔2

c2 w𝜂 = g𝜂, in Ω, (3.6a)

w𝜂 · n − 𝜕Γ
(
𝛽𝜂𝜕Γdivw𝜂

)
= 𝜕Γh𝜂, on 𝜕Ω, (3.6b)

with 𝛼𝜂, 𝛽𝜂 ∈ L∞(𝜕Ω), to which the approximative velocity systems (2.10) and (2.11) of orders 1 or 2, respectively, belong
to. If we indicate the respective functions for the system of order N with a superscript, we find that

𝛼1
𝜂 = 1, 𝛼2

𝜂 = 1 − i𝜔(𝜂 + 𝜂′)
𝜌0c2 , 𝛽1

𝜂 = (1 + i) c2

𝜔2

√
𝜂

2𝜔𝜌0
, 𝛽2
𝜂 = 𝛽1

𝜂 +
c2

𝜔2
i𝜂

2𝜔𝜌0
𝜅,

g1
𝜂 =

i𝜔
𝜌0c2 f , g2

𝜂 = g1
𝜂 +

𝜂

𝜌2
0c2

curl2D curl2D f , h1
𝜂 =

i − 1
𝜔𝜌0

√
𝜂

2𝜔𝜌0
f · n⟂, h2

𝜂 = 𝛼2
𝜂

(
h1
𝜂 −

𝜂

2𝜔2𝜌2
0
𝜅f · n⟂

)
.

Moreover, the system (3.6) will be useful for error estimates.
With 𝜆𝜂 = 𝛼𝜂divw𝜂 on 𝜕Ω the variational formulation for (3.6) is given by: Seek (w𝜂, 𝜆𝜂) ∈ H(div ,Ω) × H1(𝜕Ω) such

that

∫Ω
𝛼𝜂div w𝜂div v′ − 𝜔2

c2 w𝜂 · v′dx − ∫𝜕Ω𝜆𝜂v
′ · ndS = −∫Ω

g𝜂 · v′dx ∀v′ ∈ H(div ,Ω), (3.7a)

∫𝜕Ωw𝜂 · n𝜆′ + 𝛼−1
𝜂 𝛽𝜂𝜕Γ𝜆𝜂𝜕Γ𝜆

′dS = −∫𝜕Ωh𝜂𝜕Γ𝜆′dS ∀𝜆′ ∈ H1(𝜕Ω). (3.7b)

The system (3.7) is a saddle point problem with penalty term.40, Chapter III, §4 Note that due to integration by parts, we can
consider (3.7) with sources h𝜂 ∈ L2(𝜕Ω).

Lemma 4 (Well-posedness of the generalized approximative velocity system). Let the assumption of Lemma 3 be
fulfilled. Then, there exists a constant 𝜂m > 0 such that for any 𝜂 ∈ (0, 𝜂m), the system (3.7) has a unique solution
w𝜂 ∈ H(div ,Ω). Furthermore, there exists a constant C = C(𝜂m) > 0 not depending on 𝜂 such that

||w𝜂||H(div,Ω) ≤ C
(||g𝜂||(L2(Ω))2 + ||𝛽−1∕2

𝜂 h𝜂||L2(𝜕Ω)

)
. (3.8a)
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If, moreover, curl2Dg𝜂 ∈ L2(Ω), then it holds

||curl2Dw𝜂||L2(Ω) =
c2

𝜔2 ||curl2Dg𝜂||L2(Ω). (3.8b)

Proof. We start with the Helmholtz decomposition w𝜂 = ∇𝜓𝜂 + w𝜂,0 with the scalar potential 𝜓𝜂 ∈ H1
⋆(Ω) ∶= {𝜓 ∈

H1(Ω), ∫Ω𝜓 dx = 0} that is uniquely defined as the vanishing mean is prescribed and w𝜂,0 ∈ (∇H1
⋆(Ω))⟂ ∶= {w0 ∈

H(div ,Ω) ∶ ∫Ωw0 · ∇𝜓 dx = 0for all 𝜓 ∈ H1
⋆(Ω)} in the orthogonal complement. As by integration by parts

∫Ω
w0 · ∇𝜓 dx = −∫Ω

𝜓div w0 dx + ∫𝜕Ω𝜓w0 · nd𝜎(x) = 0,

it is indeed (∇H1
⋆(Ω))⟂ = H0(div 0,Ω) ∶= {w0 ∈ H(div,Ω) ∶ divw0 = 0,w0 · n = 0on 𝜕Ω}, that is, the functions w𝜂,0

are divergence free and vanish in its normal component on the boundary.
Now, testing (3.7a) with v′ ∈ H0(div0,Ω), we find that w𝜂,0 is uniquely defined as c2∕𝜔2 times the L2(Ω)-projection

of g𝜂 onto H0(div0,Ω). Hence, the estimates (3.8) hold for the component w𝜂,0.
Furthermore, let 𝜙𝜂 ∶= div w𝜂 = Δ𝜓𝜂 , and hence, 𝜆𝜂 = 𝛼𝜂div w𝜂 = 𝛼𝜂𝜙𝜂 on 𝜕Ω. Inserting 𝜙𝜂 in (3.6a), we obtain

𝛼𝜂∇𝜙𝜂 = g𝜂 −
𝜔2

c2

(
w𝜂,0 + ∇𝜓𝜂

)
∈ L2(Ω). (3.9a)

As we have a Poincaré inequality for functions in H1
⋆(Ω), we find ||𝜙𝜂||L2(Ω) ≤ C|𝜙𝜂|H1(Ω) for some C > 0 and so

𝜙𝜂 ∈ H1(Ω). Then, inserting 𝜙𝜂 in (3.6b), we find

𝜕Γ(𝛽𝜂𝜕Γ𝜙𝜂) = ∇𝜓𝜂 · n − 𝜕Γh𝜂 ∈ H−1(𝜕Ω), (3.9b)

and so 𝜙𝜂 ∈ H1(Ω) ∩ H1(𝜕Ω). Now, multiplying (3.9a) by ∇𝜙′ for 𝜙′ ∈ H1(Ω) ∩ H1(𝜕Ω) and integrating over Ω and
using integration by parts for the term with ∇𝜙𝜂 and inserting 𝜙𝜂 = Δ𝜓𝜂 , we find the equality

∫Ω
𝛼𝜂∇𝜙𝜂 · ∇𝜙′ − 𝜔2

c2 𝜙𝜂𝜙
′ dx + 𝜔2

c2 ∫𝜕Ω∇𝜓𝜂 · n𝜙′ d𝜎(x) = ∫Ω
g𝜂 · ∇𝜙′ dx. (3.10)

Then, inserting (3.9b) and using integration by parts, we obtain a variational formulation for 𝜙𝜂: Seek 𝜙𝜂 ∈ H1(Ω)∩
H1(𝜕Ω) such that for all 𝜙′ ∈ H1(Ω) ∩ H1(𝜕Ω)

∫Ω
𝛼𝜂∇𝜙𝜂 · ∇𝜙′ − 𝜔2

c2 𝜙𝜂𝜙
′ dx − 𝜔2

c2 ∫𝜕Ω𝛽𝜂𝜕Γ𝜙𝜂𝜕Γ𝜙
′ d𝜎(x) = ∫Ω

g𝜂 · ∇𝜙′ dx + 𝜔2

c2 ∫𝜕Ωh𝜂𝜕Γ𝜙′ d𝜎(x). (3.11)

Following the lines of the proof of Lemma 3, we see that this formulation provides a unique solution 𝜙𝜂 ∈ H1(Ω) ∩
H1(𝜕Ω) with

||div∇𝜓𝜂||L2(Ω) ≤ ||𝜙𝜂||H1(Ω) ≤ C
(||g𝜂||(L2(Ω))2 + ||𝛽−1∕2

𝜂 h𝜂||L2(𝜕Ω)

)
.

Now, applying the triangle inequality to (3.9a) and using the estimate above and the estimate on w𝜂,0, we find

||∇𝜓𝜂||L2(Ω) ≤ C
(||g𝜂||(L2(Ω))2 + ||𝛽−1∕2h𝜂||L2(𝜕Ω)

)
.

Hence, ∇𝜓𝜂 fulfills (3.8a) as well, and so w𝜂 = w𝜂,0 + ∇𝜓𝜂 . Finally, applying curl2D to (3.6a), we find that

curl2Dw𝜂 =
c2

𝜔2 curl2Dg𝜂

and so the second estimate. This completes the proof.
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3.3 Well-posedness and equivalence of approximative models for pressure and velocity
With the well-posedness of the generalized approximative models for pressure and velocity, we are in the position to prove
the well-posedness and the equivalence of the approximative models.

Proof of Theorem. The well-posedness of the approximative models (2.13) and (2.9) of order 0 was proven in Schmidt
et al.26

The well-posedness of the approximative models (2.14), (2.15) for pappr,N , N = 1, 2 and (2.10), (2.11) for vappr,N , N =
1, 2 follows from Lemmas 3 and 4, where the assumption on the smoothness of the boundary 𝜕Ω guarantees that
the curvature 𝜅 ∈ L∞(𝜕Ω). It remains to show the equivalence of the definitions (2.9)–(2.12) and (2.13)–(2.16) of
(vappr,N , pappr,N).

First, we take (vappr,N , pappr,N) defined by (2.9)–(2.12). With the assumption of f ∈ L2(Ω), it follows that
∇div vappr,N ∈ L2(Ω), and hence, div vappr,N ∈ H1(Ω). Then, pappr,N = −(i𝜌0c2)∕𝜔div vappr,N , see (2.12), fulfills with
the derivations in Section 2.3.2, the systems (2.13)–(2.15). Then, replacing ∇div vappr,N in (2.9a), (2.10a), and (2.11a)
by (i𝜔)∕(𝜌0c2)∇pappr,N and multiplying by c2∕𝜔2, we see that vappr,N fulfills (2.16).

Now, we take (vappr,N , pappr,N) defined by (2.13)–(2.16). Then, applying the divergence to vappr,N and insert-
ing (2.13)–(2.15), we find that

div vappr,N = i
𝜌0𝜔

div f − i
𝜌0𝜔

(
1 − i𝜔(𝜂 + 𝜂′)𝛿N=2

𝜌0c2

)
Δpappr,2 = i𝜔

𝜌0c2 pappr,N ∈ H1(Ω). (3.12)

Then, applying ∇, multiplying with
(

1 − i𝜔(𝜂+𝜂′)𝛿N=2
𝜌0c2

)
, and using (2.16), we obtain

(
1 − i𝜔(𝜂 + 𝜂′)𝛿N=2

𝜌0c2

)
∇div vappr,N = i𝜔

𝜌0c2

(
1 − i𝜔(𝜂 + 𝜂′)𝛿N=2

𝜌0c2

)
∇pappr,N

= 𝜔2

c2

(
−vappr,N + i

𝜌0𝜔
f + 𝜂

𝜌2
0𝜔

2
𝛿N=2curl2D curl2D f

)
,

which is (2.9a), (2.10a), or (2.11a), respectively.
Taking the normal trace of (2.16) on 𝜕Ω and inserting (2.13b), (2.14b), or (2.15b), respectively, we find

vappr,N · n = i
𝜌0𝜔

(
f · n −

(
1 − i𝜔(𝜂 + 𝜂′)𝛿N=2

𝜌0c2

)
∇pappr,N · n

)
+ 𝜂

𝜌2
0𝜔

2
𝛿N=2curl2D curl2D f · n

= i
𝜌0𝜔

(
(1 + i)

√
𝜂

2𝜔𝜌0
𝛿N≥1

(
𝜕2
Γpappr,N + 𝜕Γ

(
f · n⟂)) + i𝜂

2𝜔𝜌0
𝛿N=2

(
𝜕Γ(𝜅𝜕Γpappr,N) + 𝜕Γ

(
𝜅f · n⟂))) ∈ H−1∕2(𝜕Ω),

since with (2.14b), we have 𝜕2
Γpappr,1 ∈ H−1∕2(𝜕Ω) and with (2.15b), it follows 𝜕2

Γpappr,2 + 1+i
2

√
𝜂

2𝜔𝜌0
𝜕Γ(𝜅𝜕Γpappr,N) ∈

H−1∕2(𝜕Ω). Now, taking the trace of (2.16) on 𝜕Ω and inserting it in the previous identity, we find that

vappr,N · n = (1 + i)
√

𝜂

2𝜔𝜌0
𝛿N≥1

(
𝜔2

c2 𝜕
2
Γdivvappr,N + i

𝜌0𝜔
𝜕Γ

(
f · n⟂))

+ i𝜂
2𝜔𝜌0

𝛿N=2

(
𝜔2

c2 𝜕Γ(𝜅𝜕Γdivvappr,N) +
i
𝜌0𝜔

𝜕Γ
(
𝜅f · n⟂)) ,

which is (2.9b), (2.10b), or (2.11b), respectively. Finally, in view of (3.12), pappr,N fulfills (2.12). This finishes
the proof.

4 ASYMPTOTIC EXACTNESS OF THE APPROXIMATIVE MODELS

In this section, we give the proof of Lemma 2, and so the approximative solutions of order N are asymptotically close
to the asymptotic far-field expansions of the exact solution. As the asymptotic expansions are justified, the estimates
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for the modeling error in Theorem 2 follow immediately. The proof relies on the stability estimates for the generalized
approximative velocity system in Lemma 4. Due to the singular perturbed nature of the equations, half a order in

√
𝜂 is

lost. So just estimating the residual and a direct application of the stability estimates gives only nonoptimal estimates.
We follow therefore the idea in Schmidt and Tordeux20 with the asymptotic expansion of the approximative pressure

and velocity in terms of 𝜀 =
√

2𝜂∕(𝜔𝜌0), subtract the asymptotic expansion of the solution (v, p) of the exact model (2.1)
to obtain optimal error estimates. To prove these results together for the approximative models up to order 2, we rewrite
the PDE system for far-field velocity and pressure terms (v𝑗 , p𝑗) as

∇div v𝑗 + 𝜔2

c2 v𝑗 = i𝜔
𝜌0c2 f · 𝛿𝑗=0 +

i𝜔2

2c2 Δv𝑗−2 + i𝛾 ′𝜔2

2c2 ∇div v𝑗−2, in Ω, (4.1a)

v𝑗 · n =
𝑗∑

𝓁=1
G𝓁(𝜕Γdiv v𝑗−𝓁) + H𝑗(f), on 𝜕Ω, (4.1b)

p𝑗 = − i𝜌0c2

𝜔
div v𝑗 , in Ω, (4.1c)

where v−1 = v−2 = 0, G𝓁 ∶ C∞(Γ) → C∞(Γ), and H𝓁 ∶ C∞(Γ) → C∞(Γ) are tangential differential operators acting on
traces of terms of lower orders or the trace of f on 𝜕Ω, respectively. Furthermore, 𝛿𝑗=0 stands for the Kronecker symbol
which is 1 if 𝑗 = 0 and 0 otherwise. The operators G0 and H0 vanish, and the G𝓁 and H𝓁 for 𝓁 = 1, 2 are given by

G1(v) = (1 + i) c2

2𝜔2 𝜕Γv,H1(f) = −(1 − i) 1
2𝜔𝜌0

𝜕Γ
(
f · n⟂) , (4.2a)

G2(v) =
c2

𝜔2

( i
4
𝜕Γ(𝜅v)

)
,H2(f) = − 1

4𝜔𝜌0
𝜕Γ

(
𝜅 f · n⟂) . (4.2b)

For the proof, we need some higher regularity of the terms of the asymptotic expansion.

Lemma 4.1. Let the assumptions of Lemma 2 be fulfilled. Then, there exists a neighborhood ΩΓ of 𝜕Ω such that for all
𝑗 ∈ {0, 1, 2} and any m ∈ N0, it holds div v𝑗 ∈ H1(Ω) ∩ Hm(ΩΓ).

Proof. By Schmidt et al.,26, Lemma 2.3 all terms v𝑗 ∈ (H1(Ω))2, and by Schmidt et al.,26, Lemma 4.6 the terms v𝑗 have any
Sobolev regularity in any subdomain of ΩΓ. Applying curl2D to (4.1a), we obtain

curl2Dv𝑗 = i
𝜔𝜌0

curl2D f · 𝛿𝑗=0 −
i
2

curl2D curl2D curl2D v𝑗−2.

By recursion in 𝑗, we obtain an expression of curl2D curl2D v𝑗 in terms of f only (see (2.11) in Schmidt et al.26)

curl2D curl2Dv𝑗 = −2ic2

𝜔2
i𝜔
𝜌0c2

(
− i

2
curl2D curl2D

)( 𝑗+1)∕2
f · 𝛿𝑗=0. (4.3)

Using (4.1a) and (4.3), we find by induction in 𝑗

∇div v𝑗 = −𝜔
2

c2 v𝑗 + i𝜔
𝜌0c2 f · 𝛿𝑗=0 +

i(1 + 𝛾 ′)𝜔2

2c2 ∇div v𝑗−2 − i𝜔2

2c2 curl2D curl2Dv𝑗−2

= −𝜔
2

c2 v𝑗 + 𝛿𝑗is even
i𝜔
𝜌0c2

(
− i

2
curl2D curl2D

)𝑗∕2
f + i(1 + 𝛾 ′)𝜔2

2c2 ∇div v𝑗−2 ∈ (L2(Ω))2 ∩ (Hm−1(ΩΓ))2,

and so the statement of the lemma.

Now, we are prepared to prove the asymptotic exactness of the approximative models.

Proof of Lemma. As with the assumption of the lemma and, in particular, the assumptions of Theorem 1 are fulfilled,
the approximative solutions vappr,N and pappr,N , N = 0, 1, 2, exist and are uniquely defined. By Schmidt et al.,26, Lemma 2.3
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the same holds for the terms of the asymptotic expansions v𝑗 , p𝑗 , 𝑗 = 0, 1, 2. Throughout the proof, we use 𝜀 for√
2𝜂∕(𝜔𝜌0).
Using the operators G𝓁 and H𝓁 defined in (4.2), we find that (2.10b) and (2.11b) are equivalent to

vappr,N · n −
N∑

𝓁=1
𝜀𝓁G𝓁(𝜕Γdiv vappr,N) =

N∑
𝑗=1
𝜀𝑗H𝑗(f), (4.4)

for N = 1 or N = 2, respectively. The asymptotic expansion v𝜀,N =
∑N
𝑗=0 𝜀

𝑗v𝑗 fulfills

v𝜀,N · n =
N∑
𝑗=0
𝜀𝑗v𝑗 · n =

N∑
𝑗=0
𝜀𝑗

𝑗∑
𝓁=1

G𝓁(𝜕Γdiv v𝑗−𝓁) +
N∑
𝑗=1
𝜀𝑗H𝑗(f).

Resorting the sums in the second term on the right-hand side, we have

N∑
𝑗=0
𝜀𝑗

𝑗∑
𝓁=1

G𝓁(𝜕Γdiv v𝑗−𝓁) =
N∑

𝓁=1

N∑
𝑗=𝓁
𝜀𝑗G𝓁(𝜕Γdiv v𝑗−𝓁) =

N∑
𝓁=1
𝜀𝓁

N−𝓁∑
𝑗=0
𝜀𝑗G𝓁(𝜕Γdiv v𝑗)

=
N∑

𝓁=1
𝜀𝓁G𝓁(𝜕Γdiv v𝜀,N) − 𝜀N+1

N∑
𝓁=1

N−𝓁∑
𝑗=0
𝜀𝑗G𝓁(𝜕Γdiv vN+𝑗+1−𝓁).

The latter term simplifies for N = 1, 2 and therefore v𝜀,N , N = 1, 2 satisfies

v𝜀,1 · n − 𝜀G1(𝜕Γdiv v𝜀,1 = 𝜀H1(f) + 𝜀2G1(𝜕Γdiv v1), (4.5)

v𝜀,2 · n −
2∑

𝓁=1
𝜀𝓁G𝓁(𝜕Γdiv v𝜀,2) = 𝜀H1(f) + 𝜀2H2(f) − 𝜀3 (G1(𝜕Γdiv v2) + G2(𝜕Γdiv v1)

)
− 𝜀4G1(𝜕Γdiv v2). (4.6)

Hence, the difference 𝛿vappr,N = vappr,N − v𝜀,N fulfills for N = 1

∇div 𝛿vappr,1 +
𝜔2

c2 𝛿vappr,1 = 0, in Ω, (4.7a)

𝛿vappr,1 · n − 𝜀G1(𝜕Γdiv 𝛿vappr,1) = 𝜀2G1(𝜕Γdiv v1), on 𝜕Ω, (4.7b)

and for N = 2(
1 − i𝜔(1 + 𝛾 ′)

𝜌0c2 𝜀2
)
∇div 𝛿vappr,2 +

𝜔2

c2 𝛿vappr,2 = 𝜀3 i(1 + 𝛾 ′)𝜔2

2c2 ∇div (v1 + 𝜀v2), in Ω, (4.8a)

𝛿vappr,2 · n −
2∑

𝓁=1
𝜀𝓁G𝓁(𝜕Γdiv 𝛿vappr,2) = 𝜀3 (G1(𝜕Γdiv v2) + G2(𝜕Γdiv v1)

)
+ 𝜀4G1(𝜕Γdiv v2), on 𝜕Ω. (4.8b)

Since
∑N

𝓁=1 𝜀
𝓁G𝓁(𝜕Γdiv 𝛿vappr,N) = 𝜕Γ(𝛽N

𝜂 𝜕Γdiv𝛿vappr,N), N = 1, 2, we can apply Lemma 4 and obtain the estimate

‖‖𝛿vappr,N‖‖H(div ,Ω) ≤ C𝜀N+ 1
2 ,

with a constant C > 0 independent of 𝜀. The estimate is unfortunately not optimal as the consistency error is of order
N + 1, and with the stability estimate, we lose half an order in 𝜀.

To obtain an optimal estimate, we consider the asymptotic expansion of vappr,N , N = 1, 2, with a further term that
decreases the residual by one order. For this, we consider formally

vappr,1 = v0 + 𝜀v1 + 𝜀2ṽ1 + o(𝜀2),
vappr,2 = v0 + 𝜀v1 + 𝜀v2 + 𝜀3ṽ2 + o(𝜀3),
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and chose ṽ1 to solve

∇div ṽ1 +
𝜔2

c2 ṽ1 = 0,

ṽ1 · n = G1(𝜕Γdiv v1),

and ṽ2 to solve

∇div ṽ2 +
𝜔2

c2 ṽ2 = i(1 + 𝛾 ′)𝜔2

2c2 ∇div v1,

ṽ2 · n = G1(𝜕Γdiv v2) + G2(𝜕Γdiv v1).

With Lemma 4.1, the terms v1 and v2 of the asymptotic expansion have enough regularity that the right-hand side
of these systems and so its solution is well defined.

Now, we find that the difference 𝛿ṽappr,N = vappr,N − v𝜀,N − 𝜀N+1ṽN fulfills for N = 1

𝛿ṽappr,1 +
𝜔2

c2 𝛿ṽappr,1 = 0, in Ω,

𝛿ṽappr,1 · n − 𝜀G1(𝜕Γdiv 𝛿ṽappr,1) = 0, on 𝜕Ω,

and Lemma 4 implies 𝛿ṽappr,1 = 0 in Ω, and for N = 2,

(
1 − i𝜔(1 + 𝛾 ′)

𝜌0c2 𝜀2
)
𝛿ṽappr,2 +

𝜔2

c2 𝛿ṽappr,2 = 0, in Ω,

𝛿ṽappr,2 · n −
2∑

𝓁=1
𝜀𝓁G𝓁(𝜕Γdiv 𝛿ṽappr,2) = 𝜀4G1(𝜕Γdiv v2), on 𝜕Ω.

Applying Lemma 4, it holds 𝛿ṽappr,2 ≤ C𝜀
7
2 . As ṽN , N = 1, 2, do not depend on 𝜀 by definition, we find using the

triangle inequality

‖‖𝛿vappr,1‖‖H(div,Ω) ≤ ‖‖𝛿ṽappr,1‖‖H(div,Ω) + 𝜀
2‖ṽ1‖H(div,Ω) ≤ C𝜀2,‖‖𝛿vappr,2‖‖H(div,Ω) ≤ ‖‖𝛿ṽappr,2‖‖H(div,Ω) + 𝜀
3‖ṽ2‖H(div,Ω) ≤ C𝜀3,

and with 𝜀 =
√

2𝜂∕(𝜔𝜌0), this is the estimate (2.22) for the velocity.
Moreover, with the definition (2.12) of the pressure approximation and the definition (4.1c) of the terms of the

asymptotic expansion of the pressure, the same bound follows for the L2(Ω)-norm of the pressure. Finally, the
H1(Ω)-bound follows from the Equations (2.14) and (2.15) for the approximative pressure and respective equations
for the terms p𝑗 of the asymptotic pressure expansion that is derived using (4.1a) and (4.1c). That finishes the proof.

5 NUMERICAL RESULTS

For a torus domain with omitted disk, see Figure 1B, we have performed numerical simulations for the exact model (2.1)
and the approximative pressure models (2.13)–(2.16). We consider the problem in dimensionless quantities. The domain
is the rectangle [0, 1] × [0, 2], where the left and right sides are identified with each other, and the disk of diameter 0.30
is centered at (0.25, 1.5). As source f , we use the gradient of the Gaussian exp(−|x − x0|2∕0.005) with x0 = (0.75, 0.5)⊤.
The source is curl2D free, which has no influence to any of the numerical experiments. Furthermore, we choose for the
speed of sound c = 1, the (mean) air density as 𝜌0 = 1, and simplify by neglecting 𝜂′ that has a minor influence and is not
relevant when interpreting the result (despite it might be slightly unphysical).

For the simulation, we have used high-order finite elements within the numerical C++ library Concepts41 to push
the discretization error below the modeling error. We use C0-continuous finite elements for the (approximative)
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FIGURE 2 Comparison of the real part of the pressure offer the approximate models of order N = 0, 1, 2 to the exact pressure
(𝜂 = 4 · 10−6, 𝜔 = 15). For the approximate models, a FEM discretization on a coarse mesh can be used (second from right), where the
boundary layers of the exact model shall be resolved by a FEM mesh refined towards the boundary (right) [Colour figure can be viewed at
wileyonlinelibrary.com]

pressure and both components of the (exact) velocity. Note that the classical choice for the approximative velocity
models is H(div,Ω)-conforming finite elements like Raviart–Thomas elements. Here, we restrict the numerical
experiments to the models of the approximative pressure which provides the greatest simplification.

To resolve the boundary layers in the (exact) velocity, we refine the mesh geometrically towards the boundary; see the
right picture in Figure 2. The high gradients of the source term are considered in a further (geometric) mesh refinement
towards the point x0. We have chosen the polynomial degree to be 11 to obtain low enough discretization errors such that
the modeling errors become visible. The computation of the FE solution of the exact model for one frequency has taken
about 25 s on a Intel i7-7500U with 2.70 GHz, where it has taken about 3.5 s for the FE solution of one of approximative
models. The far-field solution of the approximative models could be computed to a high precision on a rather coarse
mesh (see Figure 2, second from right) as no boundary layer has to be resolved, which would lead to lower computation
times. Anyhow, we have computed the far-field solution on the mesh illustrated in Figure 2, which allowed us firstly a
straightforward evaluation of norms of the error functions and secondly a representation of the sum of far field and near
field on the same mesh.

For 𝜂 = 4 · 10−6 and 𝜔 = 15, we have illustrated the exact pressure and its approximations pappr,0, pappr,1, and pappr,2
of orders 0, 1, and 2, respectively, in the first four subfigures of Figure 2. The color scaling in all the four subfigures
matches to allow for a direct comparison. In this example, the approximations of order 0 and order 1 provide a coarse-field
description, where the pressure amplitude is overestimated. The approximation of order 2, however, predicts the exact
quite well. For this example, just with a viscosity 𝜂 = 1.6 · 10−3, we have illustrated the boundary layer in the tangential
velocity component in Figure 3, both for the exact model and the approximation of order 2. The boundary layer thickness
is dBL =

√
2𝜂∕𝜔𝜌0 = 1.46 · 10−2. Here, the approximative far-field velocity vappr,2 and the respective near field were

computed from the pressure approximation pappr,2. The representation of the velocity is in a side view for x1 = 0, for which
the first component is tangential to the lower boundary at x2 = 0. The approximate solution is the sum of the far field,
which does not fulfill a homogeneous Dirichlet boundary condition, and a correcting near field. The far-field solution
approximates the exact one away from the boundary very well; see Figure 3A. In its turn, Figure 3B shows the near-field
correction and the behavior of the solutions close to the wall.

To analyze the modeling error in dependence of the viscosity and, hence 𝜀, we have performed numerical simulations
on the simple rectangular torus domainΩ = [0, 1]×[0, 1] (i.e., without the hole of the previous problem), for which the left
and right sides are again identified with each other. The other parameters are identical to those of the previous problem.
The studied frequency 𝜔 = 15 is not a Neumann eigenfrequency of −Δ, the closest eigenfrequencies are

√
20𝜋 ≈ 14.05

and 5𝜋 ≈ 15.71. We compute the error functions on the subdomain Ω𝛿 = [0, 1]× [0.2, 0.8], which has a distance of 𝛿 = 0.2
to the boundary of Ω. This distance is large enough such that in Ω𝛿 for the studied viscosities, the contribution of the
exponentially decaying near fields can be neglected. In Figure 4A, we have shown the relative modeling error

||p − pappr,N ||H1(Ω𝛿 )∕||p||H1(Ω𝛿 ) + ||v − vappr,N ||H(div,Ω𝛿 )∕||v||H(div,Ω𝛿 )
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FIGURE 3 Imaginary part of first velocity component in side view for x1 = 0 with
√
𝜂 = 4 · 10−2, which is at x2 = 0 tangential to the bottom

wall. The exact solution v1 and the approximate (far field) solution (vappr,2)1 of order 2, the corresponding near field (vBL
appr,2)1, and the sum of

both are shown, in (A) for the whole line x1 = 0 and in (B) close to the wall [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 The relative modeling error ||p − qappr,N ||H1(Ω)∕||p||H1(Ω) + ||v − vappr,N ||H(div,Ω)∕||v||H(div,Ω) for N = 0, 1, 2 w.r.t. square root of
viscosity for (A) a dimensionless frequency value 𝜔 = 15 and (B) an eigenfrequency 𝜔 =

√
20𝜋 [Colour figure can be viewed at

wileyonlinelibrary.com]

for the approximative solutions of orders 0, 1, and 2 in dependence of the (square root of the) viscosity. We observe linear
convergence in

√
𝜂 for the approximative solution of order 0, quadratic convergence for that of order 1, and convergence

of order 3 for the approximative solution of order 2. These results verify that the estimates in Theorem 2 are sharp. The
error is computed on the above mesh with polynomial degree 14 and included indeed a small discretization error which
becomes visible for small viscosities (

√
𝜂 < 5 · 10−3) and the approximative model of order 2.

The theoretical estimates are for nonresonant frequencies, and the constants may blow up if the frequency tends to
a resonant one, that is, a Neumann eigenfrequency of −Δ. The eigenfrequencies for the studied example are 𝜔k,m =
𝜋
√

k2 + 4m2, for k ∈ N,m ∈ N0. In addition, we analyze the modeling error in dependence of the viscosity for an eigen-
frequency value 𝜔0 = 𝜔2,2 = 𝜔4,1 =

√
20𝜋; see Figure 4B. The convergence in this case looses in order, that is, linear

convergence in
√
𝜂 for the approximative solution of order 1, convergence of order 1.7 for order 2, and the approximative

solution of order 0 explodes and is not represented in the picture.
Furthermore, we analyze the modeling errors of the three approximative solutions in dependence of the frequency

for the rectangular domain and 𝜂 = 1.6 · 10−3; see Figure 5. The approximate solution of order 0 and so the modeling
error blows up close to the eigenfrequencies. However, the approximate solution of order 1 blows up only close to the
eigenfrequency values 𝜔k,0 = k𝜋 for k ∈ N. That could be explained by the fact that for m = 0 in this example, the
velocity and so its divergence are constant in x1, and the additional term in the boundary condition of order 1 disappears.
In this case, the order 1 approximation at that frequencies becomes identical to that of order 0. Conversely, the error of
the approximate solution of order 2, due to the additional term in the domain, always stays lower than 3 · 10−2 and, as it
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FIGURE 5
The modeling error||p−qappr,N ||H1(Ω)∕||p||H1(Ω)+||v−
vappr,N ||H(div,Ω)∕||v||H(div,Ω) for
N = 0, 1, 2 w.r.t. dimensionless
frequency 𝜔 for 𝜂 = 1.6 · 10−3

[Colour figure can be viewed at
wileyonlinelibrary.com]

was shown earlier, converges w.r.t. viscosity even at the resonance. Yet, in this work, we will leave that sentence without
a proof, and the numerical results are presented for illustration reason only.

Note that the above simulation corresponds for dimensionful quantities, for example, to a rectangular domain of size
4cm × 8cm, where the hole has a diameter of 1.2cm, a frequency 𝜔 = 5.146kHz, a speed of sound in air c = 343m∕s,
and a mean density of air 𝜌0 = 1.2kg∕m3. Then, a dynamic viscosity of air 𝜂 = 17.1mPas corresponds to a dimensionless
viscosity of 1.04 ·10−6 (dimensionless value of

√
𝜂 would be 1.02 ·10−3), which is close to the lowest viscosity value studied

in the above experiments.

6 CONCLUSION

In this article, the acoustic wave propagation in viscous gases inside a bounded two-dimensional domain has been studied
as a solution of the compressible linearized Navier–Stokes equation. In frequency domain, the governing equations are
decoupled in equations for the velocity and pressure, where the pressure equation lacks boundary conditions.

The velocity exhibits a boundary layer on rigid walls, whose extend scales with the square root of the viscosity and the
finite element discretization requires a heavy mesh refinement in the neighborhood of the wall. Using the technique of
multiscale expansion for small viscosities, impedance boundary conditions separately for acoustic velocity and acoustic
pressure are derived up to second order. The derivation and presented analysis is based on a previous work by the Schmidt
et al,26 where the complete asymptotic expansion of velocity and pressure has been derived. It has be shown that the veloc-
ity is represented as a sum of a far-field expansion, which does not exhibit a boundary layer, and a correcting near-field
expansion close to the wall. For the pressure, which does not exhibit a boundary layer, there is only a far-field expansion,
and a near-field expansion is absent.

Using boundary conditions for the pressure presented in this work and respective partial differential equations, pres-
sure approximations are defined independently of respective velocities. The zeroth-order boundary conditions are well
known to be of Neumann type for rigid walls, and the conditions of first or second order are of Wentzel type take into
account absorption inside the boundary layer. The velocity boundary condition is for a far-field approximation, whose
finite element discretization does not need a special mesh refinement close to walls. Here, a boundary layer contribution
depending on the far-field velocity can be added to obtain an overall highly accurate description of the velocity. The deriva-
tion of the boundary conditions for either pressure or velocity include curvature effects, where the curvature becomes
present in the boundary conditions of order 2.

The approximative models with their impedance boundary conditions are justified by a stability and error analysis.
The results of the numerical experiments have been provided to illustrate the stability and error estimates. Although
throughout the article the frequency is assumed to be not an eigenfrequency of the limit problem for vanishing viscosity,
we showed by numerical computations that the second-order model provides accurate approximations for all frequencies
and the first-order model except some of the above-mentioned eigenfrequencies. This results give a foundation for future
studies for the case of resonances of the limit problem in bounded domains.

Similarly to the presented study, approximative models with impedance boundary conditions might be derived and
mathematically justified for nonlinear acoustic models or acoustic models with viscothermal boundary layers25 and in
three dimensions.
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