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Abstract

The modified nodal analysis (MNA) is probably the most widely used formula-

tion for the modeling and simulation of electric circuits. Its conventional form

uses electric node potentials and currents across inductors and voltage sources

as unknowns, thus taking an electric viewpoint. In this paper, we propose an

alternative magnetic oriented nodal analysis (MONA) for electric circuits,

which is based on magnetic node potentials and charges across capacitors and

voltage sources as the primary degrees of freedom, thus giving direct access to

these quantities. The resulting system has the structure of a generalized gradi-

ent system which immediately ensures passivity in the absence of sources. A

complete index analysis is presented showing regularity of the magnetic ori-

ented formulation under standard topological conditions on the network inter-

connection. In comparison to conventional MNA, the differential-algebraic

index of MONA is smaller by one in most cases which facilitates the numerical

solution. Some preliminary numerical experiments are presented for illustra-

tion of the feasibility and stability of the new approach.

KEYWORD S

charge-flux oriented formulation, differential-algebraic equations, electrical circuits, index
analysis, modified nodal analysis

1 | INTRODUCTION

The modeling and simulation of electric devices is one of the fundamental problems in electrical engineering. Very
often the system dynamics can be described as an electric interconnection network,1–4 by equivalent electric or
magnetic circuit models,5–7 or by combinations of circuit and field equations.8–12 Since its introduction in the mid
1970s,13 the modified nodal analysis (MNA) has become the industry standard for electric circuit design and the
simulation. For an overview and further references, we refer to previous studies.2,4,14,15 In compact form, the governing
equations read

AC
d
dt
qðA >

C eÞþARgðA >
R eÞþALiLþAViV ¼�AIisrc, ð1Þ
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d
dt
ϕðiLÞ�A >

L e¼ 0, ð2Þ

�A >
V e¼�vsrc: ð3Þ

Here, e denotes the vector of electric node potentials, iL, iV are the currents through inductors and voltage sources,
and isrc, vsrc are prescribed source terms. The interconnection of the individual devices is encoded in the partial inci-
dence matrices Ax , with x characterizing the type of the circuit element. The characteristics of capacitors, inductors and
resistors are described by the nonlinear device functions qðvCÞ,ϕðiLÞ, gðvRÞ with vx ¼A >

x e denoting the voltages across
elements. See, for example, previous studies,2,4,14 for details of the modeling and notation.

The nonlinear relations for inductors and capacitors may also be expressed as

d
dt
qðvCÞ¼CðvcÞ ddt vc,

d
dt
ϕðiLÞ¼LðiLÞ ddt iL, ð4Þ

with CðvCÞ and LðiLÞ denoting the more common differential capacitance and inductance matrices, respectively. These
matrices are related to the Hessians of corresponding electric and magnetic energy functionals and, consequently, they
can be assumed symmetric and positive definite; see Sections 2 and 3 for details. The device functions for resistors, on
the other hand, are assumed to satisfy

gðvRÞ¼ ðg1ðvR,1Þ,…,gmðvR,mÞÞ > with g0jðvjÞ>0, gð0Þ¼ 0: ð5Þ

This means that the current iR,j ¼ gjðvR,jÞ in the jth resistor depends monotonically on the applied voltage and fur-
ther implies that the Jacobian ∂gðvRÞ=∂vR is positive definite; see previous studies.4,16 For our analysis later on, we will
utilize the slightly more general condition

gðvRÞ¼GðvRÞvR ð6Þ

with generalized conductivity matrix GðvRÞ assumed to be symmetric and positive semi-definite and smoothly
depending on its arguments. Substituting the identities (4) into (1)–(3) leads to the conventional form of the MNA which
has the formal structure of a port-Hamiltonian system.17 Together with (5) or (6) this automatically guarantees passivity
of the system; see, for example, previous studies18,19 and Section 2.

A mathematical subtelty arising in the context of circuit modeling is the differential-algebraic nature of the governing
systems.20,21 In fact, the research in differential-algebraic equations and their numerical solution has been stimulated sub-
stantially for many years by applications in electronic circuits; see previous studies22–24 for an introduction and further ref-
erences. It is now well understood that for consistent initial conditions and appropriate device characteristics

(a1) the system (1)–(4) is well-posed and has index ν≤ 2 if the circuit contains neither loops of voltage sources nor
cutsets of current sources.

Moreover, one can show that

(a2) the index is ν≤ 1 if the circuit contains neither loops of capacitors and voltage sources nor cutsets of inductors and
current sources;

see previous work3,25–27 for details and proofs. The condition in (a2) could in fact be slightly relaxed, for example, loops
consisting of capacitors only could be allowed; cf. Günther et al.18 (Remark 20) for details. Let us note that the condi-
tions in (a1) and (a2) are purely topological, that is, concerning only the interconnection of components, and they can
therefore be formulated as algebraic conditions on the partial incidence matrices Ax , as worked out in previous stud-
ies.2,25,27 This allows for a systematic projection-based analysis20,28 and different index concepts have been successfully
employed to prove (a1)–(a2) and generalizations; we refer to previous studies14,16,28 for further results and references.

2998 SHASHKOV ET AL.



Besides their analytical peculiarities, electric circuit equations also pose various challenges for the numerical solu-
tion. Due to the differential-algebraic nature, implicit time stepping schemes have to be used.22–24 While passivity on
the discrete level can be proven rigorously for the implicit Euler method and related variational time discretization
schemes of higher order,29 strict passivity may in general be lost through discretization by standard single or multistep
schemes. In the presence of strong nonlinearities, even well-established second order schemes, like the trapezoidal rule
or BDF-2 method may run into stability problems. A common practice in industry therefore is to use low order time
integration schemes in general and eventually fall back to the implicit Euler method in case of stability issues; we refer
to Günther et al.4 (Ch. 10,11) for details.

Another somehow related difficulty is that the nonlinear differential relations (4) for device characteristics, which
were employed in the derivation of the conventional form of the MNA, can in general not be reproduced exactly on the
discrete level. As a consequence, charge conservation may be lost after discretization and simulated magnetic fluxes
may be inconsistent. A possible remedy is to introduce extra variables

qC ¼ qðvCÞ, ϕL ¼ϕðiLÞ ð7Þ

for the electric charges and magnetic fluxes which together with (1)–(3) leads to the charge/flux oriented MNA; see4 for
an overview. The assertions (a1) and (a2) can be verified also for this extended formulation,25 but some additional mod-
ifications are required to reveal the port-Hamiltonian structure.18 Such extensions typically involve substantially more
unknowns than the conventional MNA, in particular, if many capacitative or inductive devices are present.

Let us emphasize that all formulations mentioned so far involve the electric node potentials e as the primary
unkowns and could therefore be called electric oriented nodal analyses. In this paper, we take an alternative magnetic
viewpoint and introduce a magnetic oriented nodal analysis (MONA) for the modeling and simulation of electric circuits.
In its compact form, the resulting formulation reads

ARg A >
R

d
dt
ψ

� �
þAC

d
dt
qCþAV

d
dt
qV þALiðA >

L ψÞ¼�AIisrc, ð8Þ

�A >
C

d
dt
ψþ vðqCÞ¼ 0, ð9Þ

�A >
V

d
dt
ψ ¼�vsrc: ð10Þ

Here, ψ denotes a vector of magnetic node potentials and qC,qV are the displaced charges at capacitors and voltage
sources. The formulation clearly has a great similarity with the MNA, allowing to reuse available implementations, but
it also has some subtle differences. Access to the magnetic flux linkages and electric node potentials is now available
through

ϕL ¼ALψ , e¼ d
dt
ψ , ð11Þ

from which voltages and currents can be derived like in the electric based nodal analysis above. While the conductance
relation gðvCÞ¼GðvCÞvC is the same as in (1), the device characteristics of inductors and capacitors are now described
by

iðϕLÞ¼rϵLðϕLÞ, vðqCÞ¼rϵCðϕCÞ ð12Þ

with ϵLð�Þ, ϵCð�Þ denoting magnetic and electric energy functionals, respectively. To draw the connection with the previ-
ous models, we may differentiate Equation (12) to see that

d
dt
iðϕLÞ¼r2ϵLðϕLÞ

d
dt
ϕL,

d
dt
vðqCÞ¼r2ϵCðqCÞ

d
dt
qC: ð13Þ
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A quick comparison with the relations (4) reveals that the Hessians r2ϵLðϕLÞ¼LðiðϕLÞÞ�1 and r2ϵCðqCÞ¼
CðvðqCÞÞ�1 are directly linked to the differential inductance and capacitance matrices employed before. The derivation
of the system (1)–(3) is based on the very same principles as the new model (8)–(10), and the electric and magnetic
viewpoints are therefore mutually equivalent allowing to model the same circuits.

Let us also note that in the magnetic oriented formulation (8)–(11), the resistive terms and the interconnection
structure affect the time derivatives, in contrast to (1)–(3), where they involve only the lowest order terms. The sys-
tem (8)–(11) therefore has a different geometric structure as the MNA, namely that of a generalized gradient system,
which however immediately allows to guarantee again passivity of the system; see previous studies30,31 and Section 3
below. We will further show that for consistent initial conditions and under appropriate assumptions on the device
characteristics

(b1) the system (8)–(10) is well-posed and has index ν≤ 1 if the circuit contains neither loops of voltage sources nor
cutsets of current sources;

(b2) the index is ν¼ 0 if the circuit contains neither loops of capacitors and voltage sources nor cutsets of inductors
and current sources.

Note that the conditions in (b1) and (b2) are exactly the same as those employed in the assertions (a1) and
(a2) before, that is, the new magnetic oriented formulation is as flexible and general as the electric one. In comparison
to the conventional MNA, the proposed magnetic oriented formulation leads to a system of a smaller index in most
cases, which alleviates the numerical solution to some extent. Apart from this numerical advantage, a benefit of our
approach is the direct access to the charges qC , qV and flux linkages ϕL ¼A >

L ψ , which might be of particular interest in
certain applications, for example, if many energy storing elements are present in the circuit. A disadvantage of the mag-
netic oriented formulation, on the other hand, seems to be that access to electric quantities, like electric potentials and
branch currents, is somewhat indirect, for example, via e¼ d

dtψ , which however can be realized exactly also on the dis-
crete level, if appropriate time stepping is applied.30 Before the introduction, let us mention that an alternative branch-
based formulation using charges and fluxes across capacitors and inductors was recently proposed in Nedialkov et al32

and shown to always lead to an index ≤ 1. This approach however requires some additional algebraic pre-processing
not needed in our method.

The remainder of the manuscript is organized as follows: in Section 2, we introduce our notation and recall some
basic facts about the conventional electric oriented nodal analysis. The new magnetic oriented formulation is then
derived in Section 3 and a short proof of its passivity is provided. Section 4 is concerned with the index analysis of
MONA and contains the proof of assertions (b1) and (b2). Some preliminary numerical results for our method and a
brief comparison with the conventional MNA are presented in Section 5.

2 | BASIC NOTATION AND A REVIEW OF MNA

We consider a directed and connected graph with Nn nodes and Nb branches. Its interconnection structure is described
by the incidence matrixA�ℝNn�Nb defined as

Aij ¼
1 if  branch j leaves node i,
�1 if  branch j enters node i,
0 else:

8><
>:

We use the same letter A to denote the reduced incidence matrix which results from eliminating one row corresponding
to a grounded node. Kirchhoff's current law and the definition of the voltages across elements can then be expressed as

Ai¼ 0 and v¼A > e, ð14Þ

with i, v, and e denoting the vectors of branch currents, branch voltages, and node potentials, respectively. We consider
circuits consisting of resistors, inductors, capacitors, and independent current and voltage sources. This allow to split
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A¼ ½AC, AL, AR, AV , AI �

with Ax representing the partial incidence matrix of the elements of type x. In a similar manner, we split the vectors of
currents and voltages and denote by ix and vx the corresponding sub-vectors. The system (14) is complemented by con-
stitutive relations

iC ¼CðvCÞ ddt vC, vL ¼LðiLÞ ddt iL, and iR ¼GðvRÞvR, ð15Þ

which describe the device characteristics of capacitors, inductors, and resistors, respectively. The matrices CðvCÞ,LðiLÞ,
and GðvRÞ are the differential capacitance, differential inductance, and the generalized conductance, respectively, and
they are assumed to be symmetric positive definite and to depend smoothly on their arguments. The currents iI ¼ isrc
and voltages vV ¼ vsrc denote the input to the system. Substituting (15) into (14) leads to the system

ACCðA >
C eÞA >

C
d
dt
eþARGðA >

R eÞA >
R eþALiLþAViV ¼�AIisrc ð16Þ

LðiLÞ ddt iL�A >
L e¼ 0 ð17Þ

�A >
V e¼�vsrc ð18Þ

which is the conventional form of the modified nodal analysis13; also see previous studies.2,4,25 In the following, we
briefly recall the most important results of its analysis.

Energy balance and passivity. We start with deriving the basic energy–dissipation identity. To this end, let ϵLðϕLÞ
and ϵCðqCÞ denote the energy stored in inductors and capacitors, respectively, and recall4,25 that

rϵLðϕLÞ¼ iL, rϵCðqCÞ¼ vC:

With these identities and expressing ϕL ¼ϕðiLÞ and qC ¼ qðvCÞ, we immediately obtain

d
dt

ϵCðqðvCÞÞþϵLðϕðiLÞÞð Þ ¼ ⟨rϵCðqðvCÞÞ, ddtqðvCÞ⟩þ ⟨rϵLðϕðiLÞÞ, ddtϕðiLÞ⟩

¼ ⟨vC,CðvCÞ ddt vC⟩þ ⟨iL,LðiLÞ ddt iL⟩,

where we used (4) in the second step. Here and below, ⟨a,b⟩¼ b > a is the Euclidean inner product. After substituting
vC ¼A >

V e, one can see that the result amounts to the first terms in (16)–(17) multiplied by e > and i >L from the left.
Inserting these equations and rearranging the terms thus leads to

d
dt

ϵCðqðvCÞÞþϵLðϕðiLÞÞð Þ ¼�⟨e,A >
R GðvRÞA >

R eþALiLþAViV þAIisrc⟩þ ⟨iL,A >
L e⟩

¼�⟨e,ARGðvRÞA >
R e⟩� ⟨A >

I e, isrc⟩� ⟨iV ,vsrc⟩,

where we used (18) and some elementary algebraic manipulations in the last step. This identity states that the energy of
the system changes only by dissipation in resistors and supply or loss through voltage and current sources. In particular,
when isrc ¼ vsrc ¼ 0, we obtain passivity of the system.

Index analysis. As a second step, let us recall some basic facts about the index analysis of the MNA
equations. Recall that LðiLÞ and CðvCÞ are assumed symmetric and positive definite matrices that depend smoothly on
their arguments. Moreover, ∂gðvRÞ=∂vR was assumed positive definite. Under these assumptions, one has the following
result.
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Lemma 1. Assume that

Nð½AR,AC,AV ,AL� > Þ¼ 0 and NðAV Þ¼ 0: ðA1Þ

Then (16)–(18) is a regular system of DAEs with index ν≤ 2. If additionally

Nð½AR,AC ,AV � > Þ¼ 0 and Nð½AC,AV �Þ ¼ 0: ðA2Þ

Then the system is again regular and of index ν≤ 1.

Detailed proofs can be found, for example, in previous studies.16,25,27 Let us note that the algebraic conditions (A1)–
(A2) are equivalent to the topological conditions in (a1)–(a2) mentioned in the introduction; for details, see
Estévez Schwarz and Tischendorf (Theorem 2.2)25 and Günther et al. (Remark 17).18 Similar to assertion (a2) the condi-
tion (A2) could again be slightly relaxed for the second statement.

3 | THE MAGNETIC ORIENTED NODAL ANALYSIS

By Faraday's law, the voltage induced by a time varying magnetic flux through a wire loop is given by vL ¼ d
dtϕL. Inte-

grating this expression and using vL ¼A >
L e leads to ϕLðtÞ¼A >

L

R t
0eðτÞdτþϕLð0Þ. We now introduce a magnetic node

potential by ψðtÞ¼ψ0þ
R t
0eðτÞdτ, with initial value satisfying ϕLð0Þ¼A >

L ψ0. This construction implies

e¼ d
dt
ψ , ϕL ¼A >

L ψ : ð19Þ

In addition, we consider an integral form of charge conservation by introducing generalized charges
qxðtÞ¼ qx,0þ

R t
0ixðτÞdτ. This allows us to compute the currents and voltages

iC ¼ d
dt
qC, iV ¼ d

dt
qV and vC ¼A >

C
d
dt
ψ , vV ¼A >

V
d
dt
ψ ð20Þ

across capacitors and voltage sources, respectively. Inserting these expressions in Kirchhoff's current law (14) and
adding equations vC ¼ vðqCÞ and vV ¼ vsrc for the voltages across capacitors and voltage sources now immediately leads
to the Equations 8–(10). Employing the relations gðvRÞ¼GðvRÞvR and (12) for the device characteristics, we arrive at

ARG A >
R

d
dt
ψ

� �
A >
R

d
dt
ψþAC

d
dt
qCþAV

d
dt
qV ¼�ALrϵLðA >

L ψÞ�AIisrc ð21Þ

�A >
C

d
dt
ψ ¼�rϵCðqCÞ ð22Þ

�A >
V

d
dt
ψ ¼�vsrc, ð23Þ

which can be considered as the magnetic oriented formulation of (16)–(18). Let us note that the electric and magnetic
oriented formulations are derived on the basis of the same physical principles and they can be transformed into each
other.

Energy balance and passivity. As a first step of our analysis, we derive a basic energy-dissipation identity. By for-
mal differentiation and noting that ϕL ¼A >

L ψ , we see that
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d
dt

ϵLðϕLÞþϵCðqCÞð Þ¼ ⟨rϵLðϕLÞ,A >
L

d
dt
ψ⟩þ ⟨rϵCðqCÞ,

d
dt
qC⟩:

Apart from the source current, this amounts to the right hand sides of (21)–(22) multiplied by d
dtψ

> and d
dt q

>
C from the

left. Inserting the equations therefore gives

d
dt

ϵLðϕLÞþϵCðqCÞð Þ ¼�⟨ARG A >
R

d
dt
ψ

� �
A >
R

d
dt
ψþAC

d
dt
qCþAV

d
dt
qV þAIisrc,

d
dt
ψ⟩

þ⟨A >
C

d
dt
ψ ,

d
dt
qC⟩¼�⟨ARG A >

R
d
dt
ψ

� �
A >
R

d
dt
ψ ,

d
dt
ψ⟩� ⟨isrc,vI⟩� ⟨iV ,vsrc⟩,

where we used (23) and some elementary algebraic manipulations in the last step. The energy of the system can there-
fore again only change due to dissipation in the resistors and power supplied or drawn through current and voltage
sources. In particular, the system is passive in the absence of source terms.

4 | INDEX ANALYSIS

As a second step of our analysis, we now consider in detail the differential-algebraic index of the system under consider-
ation. For ease of notation, we choose isrc ¼ vsrc ¼ 0 and then rewrite the system (21)–(23) in compact form

ARGψA >
R AC AV

�A >
C

�A >
V

0
B@

1
CA d
dt

ψ

qC
qV

0
B@

1
CA¼�

ALrϵLðA >
L ψÞ

rϵCðqCÞ
0

0
B@

1
CA ð24Þ

We use Gψ ¼G A >
R

d
dtψ

� �
to abbreviate the solution dependent conductivity matrix in the following. In addition, we

assume regular device characteristics, which can be stated as

Gψ symmetric and positive definite and ϵL, ϵC are strictly convex; ðA0Þ

with all functions depending smoothly on their arguments. Let us note that these were the standard assumptions also
for the investigation of the MNA summarized in the previous section. Under the algebraic conditions of Lemma 1, we
then obtain the following result.

Theorem 1. Let (A0) hold and assume that

Nð½AR,AC,AV ,AL� > Þ¼ 0 and NðAV Þ¼ 0: ðA1Þ

Then the system (24) is a regular DAE of index ν¼ 1. If in addition to (A1) also

Nð½AR,AC,AV � > Þ¼ 0 and Nð½AC,AV �Þ ¼ 0 ðA2Þ

holds, then (24) is a regular DAE of index ν¼ 0, that is, an ordinary differential equation.

For the proof of this theorem, we utilize the following basic result of linear algebra.

Lemma 2: Brezzi's splitting lemma33. A matrix
K B >

�B 0

 !
is regular, if and only if
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NðB > Þ¼ 0 and NðKÞ\NðBÞ¼ 0:

Proof of Theorem 1. We start with the second assertion, for which we show that the matrix in front of the time
derivative in (24) is regular. This matrix has the structure of the previous lemma with B¼ ½AC ,AV �> and K ¼ARGψA >

R .
By assumption (A2), we see that

NðB > Þ¼Nð½AC,AV �Þ ¼ 0,

which is the first condition of Breezi's splitting lemma. Furthermore

⟨Kψ ,ψ⟩¼ ⟨GψA >
R ψ ,A >

R ψ⟩≥ γkA >
R ψk2

with some γ>0, since Gψ is positive definite by assumption (A0). By assumption (A2), we further see that
NðA >

R Þ\Nð½AC,AV � > Þ¼Nð½AR,AC ,AV � > Þ¼ 0 and hence

⟨Kψ ,ψ⟩≠ 0 for allψ �NðBÞ,ψ ≠ 0,

which proves the second assertion of Brezzi's splitting lemma. Hence, the system (24) is an implicit ODE, that is, a regu-
lar DAE with index ν¼ 0.

We now turn to the first assertion of the lemma, for which we use a typical projection-based analysis.28 If the
conditions (A2) are not valid, we simply split the vector spaces of magnetic potentials ψ and charges q¼ðqC,qV Þ into

Vψ ¼Nð½AR,AC,AV � > Þ⊕Nð½AR,AC,AV � > Þ ⊥

Vq ¼Nð½AC,AV �Þ⊕Nð½AC,AV �Þ ⊥ :

By choosing orthogonal bases for the corresponding subspaces, we can thus decompose

ψ ¼Q1ψ1þQ2ψ2 and q¼ P1q1þP2q2:

with Q¼ ½Q1,Q2� and P¼ ½P1,P2� orthonormal matrices. Moreover, ½AR,AC,AV � > Q1 ¼ 0 and ½AC ,AV �P1 ¼ 0, while
½AR,AC ,AV � > Q2 and ½AC ,AV �P2 have trivial nullspace. The second splitting can also be written component-wise as

qC
qV

� �
¼ P1,C

P1,V

� �
q1þ

P2,C

P2,V

� �
q2:

We now multiply the system (24) from left by blkdiagðQ > ,P > Þ and use the above expansions for ψ and q¼ðqc,qvÞ,
which leads to the equvivalent form

0 0 0 0

0 ~K 0 ~B
>

0 0 0 0

0 �~B 0 0

0
BBB@

1
CCCA d
dt

ψ1

ψ2

q1
q2

0
BBB@

1
CCCA¼�

Q >
1 ALrϵLðA >

L ðQ1ψ1þQ2ψ2ÞÞ
Q >

2 ALrϵLðA >
L Q1ψ1þQ2ψ2ÞÞ

P >
1,CrϵCðP1,Cq1þP2,Cq2Þ

P >
2,CrϵCðP1,Cq1þP2,Cq2Þ

0
BBBB@

1
CCCCA ð25Þ

with ~K ¼Q >
2 ARGψA >

R Q2 and ~B
> ¼ ðQ >

2 ½AC,AV �P2Þ. By rearrangement of variables and equations, the system can then
be written compactly as a Hessenberg system
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Mψ d
dt
y¼ f ðy,zÞ ð26Þ

0¼ gðy,zÞ ð27Þ

with differential and algebraic variables y¼ðψ2,q2Þ and z¼ðψ1,q1Þ, and leading matrix

Mψ ¼ ~K ~B
>

�~B 0

 !
:

We first show that this matrix is regular. By construction Nð~B > Þ¼ 0, which already yields the first condition of Brezzi's
splitting lemma. Next observe that

Nð~BÞ¼NðP >
2 ½AC,AV � > Q2Þ¼Nð½AC,AV � > Q2Þ:

Since Gψ is regular by assumption (A0), we can thus deduce that

Nð ~KÞ \ Nð~BÞ¼NðA >
R Q2Þ \ Nð½AC,A >

V �Q2Þ¼Nð½AR,AC,AV � > Q2Þ¼ 0,

by definition of Q2, which yields the second assertion of Breezi's splitting lemma. Thus the matrix Mψ is regular. Let us
now have a closer look on the algebraic constraint

0¼ gðy,zÞ :¼ Q >
1 ALrϵLðA >

L ðQ1ψ1þQ2ψ2ÞÞ
P >
1,CrϵCðP1,Cq1þP2,Cq2Þ

 !

Using the chain rule, we see that

Dzgðy,zÞ¼
Q >
1 ALr2ϵLðvLÞA >

L Q1 0

0 P >
1,Cr2ϵCðqCÞP1,C

 !
ð28Þ

with vL ¼A >
L ðQ1ψ1þQ2ψ2Þ and qC ¼ P1,Cq1þP2,Cq2. Using assumption (A0), the two Hessians L�1 ¼r2ϵLðvLÞ and

C�1 ¼r2ϵϵCðqCÞ of the energy functionals can be seen to be symmetric and positive definite. Since Q1 spans
Nð½AR,AC,AV � > Þ, we further conclude from condition (A1) that NðA >

L Q1Þ¼ 0, and hence, the upper left matrix in (28)
is symmetric and positive definite. From the condition NðAV Þ¼ 0, we further deduce that ð0,qV Þ�Nð½AC,AV �Þ already
implies qV ¼ 0. This shows that the matrix P1,C is injective, and hence, the lower right matrix is again symmetric and
positive definite. Therefore, the Jacobian Dzgðy,zÞ is regular, and as a consequence, the above Hessenberg system is a
regular DAE of index ν¼ 1. Since this system was obtained from (24) by algebraic equivalence transformation, the same
is true for the original system.

Summary. Let us briefly summarize the theoretical observations of this section: under standard assumptions, the pro-
posed magnetic oriented nodal analysis (MONA) is passive and a regular system of differential-algebraic equations. In
comparison to conventional MNA or the charge-flux based formulations of Günther et al,18 the index is typically
smaller by one.

5 | NUMERICAL ILLUSTRATION

We now present numerical results for two simple test problems which demonstrate the stability and performance of
MONA and highlight some possible advantages in comparison with the conventional modified nodal analysis.
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Example 1: An Index-2 problem. In our first example, which is taken from Günther et al. (Ch. 10),4 we consider
an electric circuit containing a CV-loop; see Figure 1 for an illustration. The conventional MNA therefore leads to an
index-2 problem, while according to Theorem 1 the MONA approach results in a system with index 1. The circuit con-
tains only capacitors, resistors and one voltage source, and the network topology is described by following partial inci-
dence matrices

AC ¼
1 0 0

�1 1 0

0 0 1

0
B@

1
CA, AR ¼

1 0 0

0 1 1

0 0 �1

0
B@

1
CA and AV ¼

1

0

0

0
B@

1
CA:

For ease of presentation, we consider linear constitutive equations with Ci ¼ 1 and Ri ¼ 1 for i¼ 1,2,3 and denote by
C¼G¼ I3 the identity matrices of dimension 3. The conventional MNA formulation then leads to the following system

ACCAT
C 0

0 0

 !
d
dt

e

iV

� �
þ ARGAT

R AV

�AT
V 0

 !
e

iV

� �
¼ 0

�vsrcðtÞ

� �

while the magnetic oriented scheme obtained by MONA reads

ARGAT
R AC AV

�AT
C 0 0

�AT
V 0 0

0
B@

1
CA d
dt

ψ

qC
qV

0
B@

1
CAþ

0 0 0

0 C�1 0

0 0 0

0
B@

1
CA

ψ

qC
qV

0
B@

1
CA¼

0

0

�vsrcðtÞ

0
B@

1
CA:

Due to our choice of the constitutive equations, both systems are linear and time-invariant.
In Figure 2, we display the electric solution components obtained by numerical solution of the two equations by the

trapezoidal rule (TR) with a fixed time step τ¼ 0:1 and for vsrcðtÞ¼ sinðπtÞ. For our simulations, we chose trivial initial
conditions, which are consistent with the algebraic constraint caused by the voltage source. This suffices to guarantee
stability for the index-1 formulation obtained by MONA. The MNA system, on the other hand, has index 2 and a hidden
constraint arises, which is not satisfied by our choice of initial conditions and causes large oscillations in the algebraic
solution component. Let us note that this weak instability could be cured by an appropriate initialization phase, for
example, by performing the first time step with the implicit Euler method. If we choose the source term vsrcðtÞ¼ cosðtÞ
inconsistent with the trivial initial values, then the TR-discretization of the MNA formulation leads to strong instabil-
ities, which require a longer initialization phase. The MONA, on the other hand, shows a weak instability which can be
cured by a single initialization step.

Example 2: An index-1 circuit with discontinuous sources. As a second example, we consider a full wave recti-
fier, see Figure 3, which is one of the classical components in electric and electronic devices used, for example, in an
AC-DC converters. The purpose of this circuit is rectification of the input voltage denoted by the vsrc. Thus, the main
quantity of interest is the rectified voltage at the load modeled by the resistor R and denoted by vout .

In the present example, the topology of the circuit is described by the following partial incidence matrices

FIGURE 1 Index-2 circuit example from Figure 10.2 of Günther et al4 containing a CV-loop marked with red dots
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AL ¼

1 0

0 1

0 0

0 0

0
BBB@

1
CCCA, AR ¼

0 0 0 0 0

�1 1 0 0 0

1 0 1 0 �1

0 �1 0 �1 1

0
BBB@

1
CCCA and AV ¼

1

0

0

0

0
BBB@

1
CCCA

The circuit contains four diodes, which are modeled as resistors with a nonlinear voltage-current relation
jD ¼ 2:5ðexpð4vDÞþ1Þ corresponding to the Shockley diode model. The nonlinear conductance matrix is then defined as

G : ℝ5 !ℝ5

vi 7! jDðviÞ, i¼ 1,…,4,
v5 7! v5=R:

For simplicity, we choose R¼ 1 for the remaining resistor. Like in Waltrich et al,34 the magnetic coupling through the
transformer is modeled by the inductance matrix

L¼ L1 K12

K12 L2

� �
¼ 27:46 27:57

27:57 27:75

� �
�10�6:

The conventianal MNA formulation here leads to an index-1 system which reads

0 0 0

0 L 0

0 0 0

0
B@

1
CA d
dt

e

iL
iV

0
B@

1
CAþ

ARGðAR
TeÞAR

T AL AV

�AT
L 0 0

�AT
V 0 0

0
B@

1
CA

e

iL
iV

0
B@

1
CA¼

0

0

�vsrcðtÞ

0
B@

1
CA

FIGURE 2 Numerical solutions obtained by the trapezoidal rule applied to the MNA and MONA formulations. Left: potentials (MNA:

dotted; MONA: solid); right: current through voltage source

FIGURE 3 Schematic sketch of a full wave rectifier
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and the MONA formulation yields a corresponding index-0 problem given by

ARG AR
T d
dt
ψ

� �
AR

T AV

�AT
V 0

0
B@

1
CA d
dt

ψ

qV

� �
þ ALL�1AT

L 0

0 0

 !
ψ

qV

� �
¼ 0

�vsrcðtÞ

� �
:

Like in the previous test case, we used the trapezoidal rule with a fixed time step τ¼ 0:1. For solving the nonlinear sys-
tems arising in each time step, we employed Newton's method with tolerance 10�10 and the solution of the previous
time step as initial guess. In the top row of Figure 4, we display the rectified voltage vout for a smooth input
vsrcðtÞ¼ sinðπtÞ, which is consistent with trivial initial conditions. Both formulations are perfectly stable and yield sec-
ond order convergence. In the second row of Figure 4, we display the corresponding results for the non-smooth digital
input vsrc ¼ signðsinðπtÞÞ. Similar to an inconsistent initial condition, the discontinuities in the source term lead to a
weak instability in the MNA formulation. The MONA system, on the other hand, which here is an ordinary differential
equation, is not affected by the discontinuities in the source term.

Example 3: A larger test circuit. In our third example, we illustrate the applicability to larger problems and
briefly comment on the choice of consistent initial values. As a test case, we consider the circuit illustrated in Figure 5.
For our computations, the model parameters are set to Ci ¼ 1 for i¼ 1,…,9 and Rj ¼ Lj ¼ 1 for j¼ 1,…,7, while the
mutual inductances for the coupled coil pairs are chosen as K14 ¼K25 ¼K36 ¼ 0:1. The voltage sources are prescribed as
vsrc,1ðtÞ¼ sinð4tÞþ cosð2tÞ and vsrc,2ðtÞ¼ sinð3tÞþ cosðtÞ.

This circuit represents a special case where both MNA and MONA formulations are of index-1. For MONA, this fol-
lows directly from Theorem 1, since (A1) holds but (A2) is not satisfied. From the assertions of Lemma 1, we further
deduce that the MNA formulation is of index ≤ 2. Note that the circuit here contains CV-loops consisting of capacitors
only, in which case one can still show that it is of index-1; see Estévez Schwarz and Tischendorf25 for details.

Construction of consistent initial values. We use this example to also discuss the consistent choice of initial con-
ditions. By transformation to Hessenberg form, which can be achieved by algebraic manipulations, the differential and
algebraic components of the solution and the equations can be separated. Then initial conditions for the differential
variables can be prescribed freely, while the starting values for the algebraic variables are obtained by solving the alge-
braic equation. For the problem under consideration, both formulations lead to a linear time-invariant DAE system

FIGURE 4 Numerical solutions for the AC-DC converter depicted in Figure 3 obtained with the trapezoidal. Top: vscr ¼ sinðπtÞ; bottom:

vscr ¼ signðsinðπtÞÞ; left: MONA; right: MNA
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E d
dt xþAx¼ f of index ν¼ 1 and the transformation to Hessenberg form can simply be realized using the singular value

decomposition of the matrix E. For nonlinear systems arising from the MONA formulation, the transformation was car-
ried out explicitly in the proof of Theorem 1. A similar projection-based analysis can done for nonlinear MNA systems;
see, for example, previous studies.36 In Estévez Schwarz,37 an alternative step-by-step construction of initial values for
MNA systems was presented based on topological arguments. This circumvents the computation of the singular value
decomposition, which may become prohibitive for very large circuits.

For our numerical tests, we set the differential variables to zero at initial time, and compute the algebraic variables
as described above. For the MNA formulation, the number of unknowns is 25, with 14 differential and 11 algebraic.
Proceeding as described above, we get e1ð0Þ¼ e2ð0Þ¼ 1 and e8ð0Þ¼ e9ð0Þ¼�1, while all other initial values are zero.
The MONA formulation here leads to a system with a total of 27 unknowns, 25 of which are differential and only 2 are
algebraic. Again, all differential variables are set to zero at initial time. Solving the algebraic constraints shows that also
the remaining initial values should be chosen zero here.

Numerical results. In Figure 6, we compare the numerical solutions obtained by the trapezoidal rule with fixed
time step τ¼ 0:1. As mentioned above, both formulations here lead to an index-1 system, and after consistent specifica-
tion of initial values, both methods perform very similar and lead to almost identical results.

6 | DISCUSSIONS AND OPEN TOPICS

In this paper we proposed a novel magnetic oriented formulation for electrical circuits, called MONA, which is based
on magnetic node potentials and charges across capacitors as the primary unknowns. In contrast to that, standard
approaches, like the conventional MNA and charge-flux based variants of it, use electric node potential and some of the
branch currents and thus take an electric oriented viewpoint. Despite the different modeling perspective, MONA is
applicable to the same general class of circuits and leads to a regular systems of differential-algebraic equations under
the same topological conditions as required for MNA. Based on the particular geometric structure, passivity can again
be established under general conditions on the device characteristics.

While the MNA yields an index ν≤ 2 for admissible circuits, we could prove that MONA leads to an index ν≤ 1, and
apart from exceptional cases, the index of MONA is strictly smaller than that of MNA. Since the numerical difficulty of
solving DAEs, in general, increases with the index,23,24 this may be considered a key benefit of the MONA framework.
Note that MONA is not based on an index-reduction of MNA, but is a completely different modeling approach. Another
advantage of MONA is that fluxes and charges are directly accessible. On the other hand, electric quantities, like the
node potentials and branch currents, have to be determined by differentiation, which seems to be disadvantageous. If
Runge-Kutta collocation methods are used for time integration, this information is directly available and full conver-
gence orders are retained.

The general algebraic structure of the linear or nonlinear systems that have to be solved in every time step are rather
similar for MNA and MONA, but not the same. While MNA requires additional variables for the currents through
inductors, MONA uses additional charges across capacitors. Therefore, the system size of MONA is larger than that of

FIGURE 5 Test circuit from Shi et al.35 (Section 10.2)
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MNA, if there are many capacitors but only few inductors. However, for circuits with many inductors and few capaci-
tors, MONA leads to smaller systems than MNA. For VLSI circuits, both formulations require the iterated solution of
large, typically sparse linear systems. State of the art algorithms are discussed, for example, in previous studies.35,38,39 In
summary, the computational effort for solving MNA and MONA formulations is very similar.

Conventional MNA in general leads to nonlinear dynamical systems of a dissipative Hamiltonian structure; also see
Günther et al18 for charge-flux based variants. Following Egger,29 a passivity preserving time discretization can then
always be achieved by discontinuous Galerkin methods. In contrast to that, MONA leads to systems with a generalized
gradient structure and Petrov-Galerkin schemes or variants thereof should be used for a structure preserving
discretization.30,31

The focus of this paper was on proposing MONA as an alternative modeling framework for electric circuits
and establishing a complete index analysis. Before closing, let us also mention some topics for future research:
Symbolic analysis has been applied successfully for MNA formulations of electric circuits.35,40 In principle, the
extension of such approaches to MONA seems possible but yet to be investigated. Also the incorporation of com-
plex devices, like transistors, switches, etc. should be considered. Another aspect is the efficient computation of
consistent initial conditions. Similar as in the context of MNA, we expect that this can again be done based on
topological arguments,37 thus avoiding the computation singular value decompositions which may become
prohibitive for very large circuits. We expect that the smaller index ν≤ 1 of MONA may actually simplify the
constructions.

The magnetic oriented viewpoint can also be applied to derive a corresponding magnetic oriented loop analysis
(MOLA). Details will be worked out in a forthcoming publication. Such magnetic oriented formulations seem particu-
larly well-suited for the formulation of discretized magneto-quasistatic and equivalent circuit models applied in electric
machine simulation and their coupling to electric power-supply circuits. Further field-circuit coupled problems arise
when considering thermal effects.41 The application of the MONA framework in this context is again yet to be
considered.
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