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Abstract

In the present work, the problem of RANS (Reynolds-Averaged Navier–Stokes) turbulence
modeling is investigated from a novel angle by considering recently discovered constraints
arising from Lie symmetry analysis. In this context, symmetries are defined as variable transfor-
mations that leave invariant a given equation. For equations describing physical phenomena,
it is usually observed that their symmetries correspond to physical principles encoded in the
equations. The key idea behind using symmetry methods for modeling tasks is that the physical
principles encoded in an exact equation should also be present in a model for these equations.
Lie symmetry theory establishes a mathematical framework to formalize this notion.

The symmetries that govern turbulence fall into two main categories: Classical symmetries,
which are present in the Navier–Stokes equations as well as in all statistical descriptions of
turbulence, and statistical symmetries, which are found exclusively in statistical descriptions
of turbulence and have no counterpart in the unaveraged Navier–Stokes equations. Even
though the explicit use of symmetry methods in turbulence modeling is not yet prevalent, many
well-established constraints imposed on turbulence models to prevent physically unreasonable
behavior actually stem from symmetry arguments. This has led to a situation where the
constraints implied by classical symmetries, which correspond to fundamental principles found
throughout classical mechanics, have generally been taken into account when constructing
turbulence models since the 1970s. Roughly speaking, two-equation eddy viscosity models are
the simplest class of models to fulfill all of them. Statistical symmetries, on the other hand, are
connected to special properties of turbulent statistics, and are, therefore, not as intuitive as the
classical symmetries. As a result, they have so far been overlooked in turbulence modeling.

The main goal of the present work is to devise a turbulence model while taking these statistical
symmetries into account. This task turns out to be challenging because the combined set of
classical and statistical symmetries imposes considerable restrictions on the possible form of
the model equations. To overcome this challenge, a formal modeling algorithm is adapted
and applied to turbulence modeling. Its results hint at the necessity for auxiliary velocity-like
and pressure-like variables. With these model variables, possible model skeletons, both for an
eddy-viscosity type model and for a Reynolds stress model, are developed. Subsequently, these
simple base models are evolved into full turbulence models by applying them to canonical
flows. Due to the complexity of the resulting Reynolds stress model, the emphasis is placed on
developing a modified version of the k-ε-model that fulfills the statistical symmetries. This new
model is calibrated against a wide range of canonical flows, where it performs at least equally
well or better than the standard k-ε-model.

Furthermore, the implementation of the standard k-ω-model in the in-house DG (Discontinuous
Galerkin) solver BoSSS (Bounded Support Spectral Solver) is presented. Additionally, a special-
purpose solver is developed that allows efficient numerical calculations with the modified
k-ε-model for simple flows. The obtained results match well with experimental data.
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Zusammenfassung

In der vorliegenden Arbeit wird das Problem der Turbulenzmodellierung basierend auf den
reynoldsgemittelten Navier-Stokes-Gleichungen aus einem neuen Blickwinkel untersucht, in-
dem kürzlich entdeckte Bedingungen, die aus einer Lie-Symmetrie-Analyse hervorgehen, in
Betracht gezogen werden. In diesem Zusammenhang sind Symmetrien definiert als Varia-
blentransformationen, die eine gegebene Gleichung invariant lassen. Bei Gleichungen, die
physikalische Phänomene beschreiben, stellt man oftmals fest, dass ihre Symmetrien in die
Gleichungen eingebettete physikalische Prinzipien abbilden. Die zentrale Idee hinter der
Verwendung von Symmetriemethoden bei Modellierungsaufgaben besteht darin, dass die phy-
sikalischen Prinzipien, die in die exakte Gleichung eingebettet sind, auch in einem Modell
für diese Gleichungen vorhanden sein sollten. Die Theorie der Lie-Symmetrien bildet den
notwendigen mathematischen Rahmen, um diese Idee zu formalisieren.

Die Symmetrien, die für die Turbulenz bedeutsam sind, fallen in zwei Hauptkategorien: Klassi-
sche Symmetrien, die sowohl in den Navier-Stokes-Gleichungen als auch in allen statistischen
Beschreibungen von Turbulenz vorhanden sind, und statistische Symmetrien, die ausschließ-
lich in statistischen Beschreibungen von Turbulenz zu finden sind und keine Entsprechung
in den ungemittelten Navier-Stokes-Gleichungen haben. Obwohl die ausdrückliche Verwen-
dung von Symmetriemethoden in der Turbulenzmodellierung noch keine vorherrschende
Rolle einnimmt, basieren viele in ihrer Anwendung auf Turbulenzmodelle etablierte Bedin-
gungen, die unphysikalisches Modellverhalten verhindern sollen, auf Symmetrieargumenten.
Dies dazu geführt, dass die Bedingungen, die aus den klassischen Symmetrien hervorgehen
und Grundprinzipien der klassischen Mechanik abbilden, etwa seit den 1970er-Jahren bei der
Turbulenzmodellentwicklung in Betracht gezogen werden. Grob gesagt sind Zweigleichungs-
Wirbelviskositätsmodelle die einfachste Modellklasse, die alle klassischen Symmetrien erfüllt.
Andererseits stehen die statistischen Symmetrien in Verbindung mit speziellen statistischen
Eigenschaften der Turbulenz, was sie weniger intuitiv macht als die klassischen Symmetrien.
Aus diesem Grund wurden sie bisher in der Turbulenzmodellierung übersehen.

Das Hauptziel der vorliegenden Arbeit ist es, ein Turbulenzmodell unter Betrachtung der
statistischen Symmetrien zu entwickeln. Diese Aufgabe erweist sich als Herausforderung, da
aus der Kombination von klassischen und statistischen Symmetrien starke Einschränkungen an
mögliche Modellgleichungen hervorgehen. Um diese Herausforderung zu überwinden, wird ein
formaler Modellierungsalgorithmus an das Problem der Turbulenzmodellierung angepasst und
darauf angewendet. Die Ergebnisse weisen auf die Notwendigkeit von geschwindigkeitsartigen
und druckartigen Hilfsvariablen hin. Mit diesen Modellvariablen werden mögliche Modellskelet-
te sowohl für ein Wirbelviskositätsmodell als auch für ein Reynoldsspannungsmodell entwickelt.
Anschließend werden diese einfachen Grundmodelle zu vollwertigen Turbulenzmodellen wei-
terentwickelt, indem sie auf kanonische Strömungen angewendet werden. Aufgrund der hohen
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Komplexität des entstehenden Reynoldsspannungsmodells wird der Fokus auf die Entwick-
lung einer modifizierten Version des k-ε-Modells gelegt, das so angepasst wird, dass es die
statistischen Symmetrien erfüllt. Dieses neue Modell wird anhand einer Reihe kanonischer
Strömungen kalibriert, wobei es stets entweder gleich gut oder besser abschneidet als das
Standard-k-ε-Modell.

Außerdem wird die Implementierung des Standard-k-ω-Modells im institutseigenen DG (Dis-
kontinuierliche Galerkin) Löser BoSSS (Bounded Support Spectral Solver) präsentiert. Zudem
wird ein Speziallöser entwickelt, der effiziente numerische Berechnungen mit dem neuen
Modell für einfache Strömungen erlaubt. Die damit berechneten Ergebnisse stimmen gut mit
experimentellen Daten überein.
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1. Introduction to Turbulence

From our everyday experience, we know that air, water and other fluids can flow in a
very organized and calm manner under certain circumstances, but that this state, which is
known as laminar flow, is fragile. Often, a small change, such as a slight increase in flow
velocity or the presence of perturbations, can lead to the flow suddenly becoming irregular
and chaotic. This phenomenon of turbulent flow is ubiquitous in natural and technical fluid
systems. The presence of turbulence can alter the behavior of systems decisively and often
leads to unwanted effects. For instance, turbulence affects atmospheric flows, and, thus, global
and local weather phenomena, the flow around cars and airplanes, and it should be prevented
in our cardiovascular systems, which constrains the design of heart implants (e.g. Moin and
Kim, 1997; Pietrasanta et al., 2022).

Despite the high practical relevance arising from this, the chaotic nature of turbulence still
prohibits a universally accurate and efficient treatment. One of the earliest systematic studies
of turbulence was conducted by Reynolds (1883), who carried out a now famous experiment of
water flow in a transparent pipe in the middle of which he injected dye. By visually observing
whether the stream of dye remained concentrated in the center of the pipe or spread across the
entire pipe cross-section, he was able to distinguish between laminar and turbulent flow, and
to develop heuristics to determine when the flow transitions from laminar to turbulent state.

The best known quantitative model describing laminar and turbulent incompressible flow are
the Navier–Stokes equations, which directly result from the axioms of mass and momentum
conservation and read

∂Ui

∂xi
= 0, (1.1)

Ni =
∂U i

∂t
+ U j

∂U i

∂xj
+
∂P

∂xi
− ν

∂2U i

∂xj∂xj
= 0, (1.2)

where t and xi stand for the temporal and spatial coordinates, respectively, U i represents
the velocity, P is the pressure divided by the density and ν denotes the kinematic viscosity.
Here and in the following, the Einstein summation convention of repeated indices is implied.
Equations (1.1) and (1.2) are notorious for their mathematical complexity, and except for
some laminar flows with simple geometries, they cannot be solved analytically. Resorting to
the numerical solution of Eqs. (1.1) and (1.2) is possible, but such DNS (direct numerical
simulation) quickly becomes unfeasible due to the tendency of turbulence to generate small
structures, resolving which often requires a prohibitively fine numerical resolution in time and
space. Moin and Kim (1997) estimated that calculating a single second of aircraft flight would
take several thousand years on the fastest computers of that time. Even though computational
power has increased since then, DNS calculations of such technical applications can still require
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years or decades of runtime depending on the flow problem. Clearly, this is not feasible in
industrial applications, but note that DNS is a valuable tool in turbulence research, where
calculating canonical flows with simple geometries can yield important insights into the physics
of turbulence.

In many applications, however, one is not interested in the stochastic fluctuations of velocity
and pressure, but only in their mean values. Therefore, a natural idea is to solve for these mean
quantities directly. An equation for the mean velocity and mean pressure can be obtained by
averaging Eqs. (1.1) and (1.2), resulting in

∂Ū i

∂xi
= 0, (1.3)

Ni =
∂Ū i

∂t
+
∂H

(0)
ij

∂xj
+
∂P̄

∂xi
− ν

∂2Ū i

∂xj∂xj
= 0, (1.4)

where the bar denotes averaging, and H(0)
ij = U iU j . The superscript (0) indicates that both

velocities are evaluated at the same point in space, which is discussed further in Section 3.1.
Reynolds (1895) suggested decomposing velocity and pressure into a mean and a fluctuation
value, which we denote using lowercase letters, i.e.

Ui = Ū i + ui, P = P̄ + p, (1.5)

which, inserted into (1.4), then yields

Ni =
∂Ū i

∂t
+ Ū j

∂Ū i

∂xj
+
∂P̄

∂xi
− ν

∂2Ū i

∂xj∂xj
+
∂R

(0)
ij

∂xj
= 0. (1.6)

The mathematical rules of averaging needed to obtain Eq. (1.6) are presented more extensively
in Section 3.1.1. Here, it must be noted that the average of a fluctuation value is zero, but this is
not necessarily true for the product of two fluctuating values. This gives rise to R(0)

ij = uiuj , the
so-called Reynolds stress tensor. A comparison of the averaged system (1.3) and (1.6), known
as the RANS (Reynolds-Averaged Navier–Stokes) equations, with the original Navier–Stokes
equations (1.1) and (1.2) reveals that the equations are structurally similar, with the only
difference being the additional unknown term R

(0)
ij in Eq. (1.6). This situation, where the

number of unknowns is larger than the number of equations, is known as the closure problem
of turbulence. To overcome it, empirical closure relations for the unknown terms have to be
established, a process referred to as turbulence modeling. Numerous turbulence models of
different complexity have been proposed, and the most important ideas to the present work
are discussed in Section 3.4.

Note that a compromise between DNS and RANS is provided by LES (large-eddy simulation).
It relies on the insight that on the one hand, in DNS, as discussed above, the smallest turbulent
structures are the main problem, but, on the other hand, in RANS, issues in model accuracy
are often caused by the largest turbulent structures. These large structures usually depend on
the problem-specific geometry and are, therefore, difficult to model in a universal way. The
main idea of LES is, therefore, to resolve only the large scales, and to account for the small
turbulent scales using model terms. However, since LES calculations can still take weeks or
months depending on the problem, they have so far not been able to replace RANS, where a
typical calculation only takes hours or days, and the results, depending on the problem, are
often good enough. Therefore, the need for accurate and reliable RANS models still remains,
which motivates the present work.
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1.1. Motivation for the Use of Symmetries in Turbulence

A fundamental guiding concept used in this work is that of symmetries. Even though the use of
the mathematical theory of Lie symmetries, which is discussed in Chapter 2, is not widespread
in turbulence research, the intuition behind symmetries is simple and well-known in the
field. In fact, the successful application of symmetries in physics predates the mathematical
developments by Sophus Lie in the 19th century, andmany fundamental ideas in fluidmechanics
are essentially symmetry arguments. As an early example for ingenious use of symmetry
arguments, we may turn to an anecdote discussed by Mach (1883) about Christian Huygens
analyzing an early and flawed theory of collisions by René Descartes. Among other postulates,
Descartes asserted that in elastic collisions, the absolute value of what is now called the
momentum vector is conserved. Today we know that this is correct for the one-dimensional
case, but not for higher dimensions and that indeed each component of the momentum vector
is conserved individually. Christian Huygens discovered an elegant argument to show this. He
proposed a thought experiment in which the collision takes place on a boat moving linearly at
constant velocity, and is observed by someone on the boat and by someone else at the shore.
Huygens’s crucial insight was that the movement of the boat, as long as it moves at a constant
velocity, does not have any effect on the collision experiment. Today, this principle is known as
Galilean invariance. As a result, both the observer on the boat and the observer on land should
be able to use the same formula to get the correct results for their respective frame of reference,
even though all appearing velocities are shifted. It is straightforward to see that this does not
work when using the absolute value of the momentum vector, which disproves Descartes’s
initial proposal. Huygens’s key insight—that invariance principles observed in reality must
manifest themselves in the equations—is an important foundational principle for the present
work.

To a certain extent, this insight is naturally applied in turbulence modeling in the form of
invariant modeling (Donaldson and Rosenbaum, 1968). Invariant modeling is based on the
principle that the equations of any universal turbulence model must be (i) dimensionally
correct, (ii) in correct tensorial formulation, (iii) Galilean invariant, and (iv) fulfill all relevant
conservation laws. Points (i)–(iii) can be directly connected to symmetry theory. Dimensional
correctness is equivalent to the principle that equations must not depend on the unit system used.
In other words, it must be possible to change the unit system—which is the same as rescaling all
appearing variables in a certain way—while leaving the equations invariant. Correct tensorial
formulation ensures that the equations are not affected by the orientation of the coordinate
system, i.e. that they are invariant under a rotation of the coordinate system, and Galilean
invariance has already been discussed in the above example of momentum conservation. In a
certain sense, point (iv) is also linked to symmetries via Noether’s theorem (Noether, 1918),
but since this connection is more subtle than for the first three points, we do not discuss it in
more detail here.

There are additional, less obvious examples for symmetry arguments giving rise to well-known
results in fluid mechanics. As is discussed in Section 3.3, the concept of self-similarity, which is
crucial for quantitatively describing boundary layer flows and many free-stream flows such
as jets, wakes and mixing layers, is intimately connected with the scaling symmetries of the
governing equations (Sadeghi et al., 2018). Moreover, turbulent scaling laws, i.e. special-case
solutions, can usually be constructed using symmetries, the most famous example probably
being the logarithmic law of the wall (Oberlack, 2001; Oberlack et al., 2022).
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In recent years, applying the mathematical framework of Lie symmetries in turbulence model-
ing has been gaining significant traction. An early example is the contribution by Oberlack
(1997), who applied symmetry methods in the context of LES models. Popovich and Bihlo
(2012) made use of symmetries to systematically generate invariant models for meteorological
problems, though their method is general enough to be applied to other modeling challenges
as well. Later, Bihlo and Bluman (2013) further developed this method by also incorporating
constraints arising from conservation laws. Schaefer-Rolffs et al. (2015) presented a scale
invariance criterion for LES and subsequently applied it to geophysical flows in Schaefer-Rolffs
(2019). Therein, it was highlighted that some scaling symmetries, unlike symmetries which are
connected to conservation laws and therefore generally accounted for in models and numerical
schemes, are frequently overlooked. All of these works, however, only take into account the
symmetries of the Navier–Stokes equations (1.1) and (1.2). The main new development of the
present work is the inclusion of additional symmetry constraints which arise when analyzing a
statistical representation of turbulence. These symmetries are further discussed in Section 3.2.

1.2. The Role of Numerics in Turbulence

As has probably become clear in the beginning of the introduction, numerical methods play
a central role in turbulence research. This is particularly true for the development of RANS
models, because one not only relies on numerical data to design the model, but applying the
model to moderately complicated flows also requires the numerical solution of its equations.

In this work, we use the open-source code framework BoSSS (Bounded Support Spectral
Solver) (Kummer and Oberlack, 2013), which is under active development at the Chair of Fluid
Dynamics at TU Darmstadt, and, notably, uses a DG (Discontinuous Galerkin) discretization in
space. It is implemented in the object-oriented and easy-to-use programming language C#,
which at the same time offers high performance. For the most performance-critical parts such
as the linear equation solver, BoSSS relies on well-established external packages such as BLAS
(basic linear algebra subprograms) and LAPACK (linear algebra package). It can also run in
parallel by using the MPI (message-passing interface) standard, which, in conjunction with the
relative simplicity of the language makes it possible to use BoSSS for a wide range of tasks, from
simple prototyping to calculations on high-performance supercomputers. In recent years, many
different physical problems have been investigated using BoSSS, including incompressible flows
with the SIMPLE (semi-implicit method for pressure-linked equation) method (Klein et al.,
2013; Klein et al., 2015), compressible flows (Müller et al., 2016; Geisenhofer et al., 2019),
multiphase flows (Kummer, 2016; Gründing et al., 2020), and, perhaps most similar to the
problem discussed in this work, viscoelastic flows (Kikker and Kummer, 2018) and combustion
problems (Gutiérrez-Jorquera and Kummer, 2021). The present work, in a sense, is an outlier
in that the main focus here is not the development or improvement of new numerical methods
and techniques, but on applying the already existing methods to a new physical problem.

Within the present work, both a well-established and a newly developed turbulence model
have been implemented in BoSSS. However, the numerical solution of the new model, which
significantly differs from previously existing models and for which no reasonable model param-
eters were known, turned out to be too difficult to be feasible. Therefore, a special-purpose
solver for a simplified version of the new model was also developed and implemented in the
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programming language Python (Python Software Foundation, 2016). For this solver, a simple
FDS (Finite Differencing Scheme) discretization was chosen and found to be sufficient.

1.3. Outline of This Work

This work is structured as follows: In Chapter 2, we introduce the concept of Lie symmetries
more formally and discuss the mathematical background necessary for the later sections.
In Chapter 3, the relevant ideas from turbulence research are presented. We show different
statistical descriptions of turbulence in Section 3.1, the significance of Lie symmetries governing
turbulence in Section 3.2, and discuss how Lie symmetries can be used to find turbulent scaling
laws in Section 3.3. A non-exhaustive review of existing turbulencemodels follows in Section 3.4,
and their application to self-similar flows is the topic of Section 3.5.

Chapter 4 discusses the main numerical developments of the present work and introduces the
necessary theoretical background. The DG method, which is employed by BoSSS for spatial
discretization, is presented in Section 4.1, and a discussion of the temporal discretization
follows in Section 4.2. In Section 4.3, the implementation of the classical k-ω-model in BoSSS,
the challenges arising in the process and some numerical results are presented. A discussion of
simpler special-purpose numerical solvers is found in Section 4.4, which became necessary to
efficiently obtain results for the newly developed turbulence models.

Having established all of these foundations, the main results are then presented in Chapter 5.
First, a formal and algorithmic approach for finding turbulence models is employed in Sec-
tion 5.1, the results of which suggest some useful modifications to existing turbulence models.
This idea is further detailed in Section 5.2, where modified versions of the classical k-ε-model,
the classical k-ω-model and RSMs (Reynolds stress models) are developed and applied to
canonical flows. The gained insights are used to calibrate the model constants appearing in
the modified k-ε-model. Finally, the numerical implementation of the novel k-ε-model and
numerical results are discussed in Section 5.3. We close with a conclusion in Chapter 6.
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2. Lie Point Symmetries

Most people are intuitively familiar with the concept of symmetries as special properties of
certain geometric objects. More precisely, symmetries can be defined as transformations, e.g.
rotation, that leave said object, e.g. a sphere, unchanged. This concept can be extended to
algebraic and differential equations, where it has proven useful not only as a mathematical
tool, but also as a concept to better understand physics. For a deeper introduction into the
subject, the interested reader is referred to Bluman and Anco (2002) and Bluman et al. (2010),
on which the following discussion is based.

In the present context, a symmetry is defined as a variable transformation

T : x∗ = ϕ(x, a) (2.1)

that leaves an equation F depending on the vector of variables x invariant, i.e.

F (x) = 0 ⇔ F (x∗) = 0. (2.2)

Therein, a ∈ R is an arbitrary constant referred to as the group parameter. Within the scope
of this work, we can always assume that this symmetry admits group properties and that,
furthermore, it is a Lie group as defined in Appendix A.1. With these prerequisites, it is possible
without loss of generality to write ϕ in such a way that a = 0 is the identity element, i.e.

x∗ = ϕ(x, a = 0) = x, (2.3)

and that the composition operation is addition,

ϕ(ϕ(x; a1); a2) = ϕ(x; a1 + a2). (2.4)

Under these assumptions, we can expand (2.1) as a Taylor series around a = 0, leading to

x∗i = ϕi(x, a = 0) + a
∂ϕi

∂a

∣∣∣∣
a=0

+ O(a2) (2.5)

= xi + a
∂ϕi

∂a

∣∣∣∣
a=0

+ O(a2). (2.6)

A crucial result of Lie group theory is Lie’s first theorem, which states that the term linear in a
in Eq. (2.6) is sufficient to uniquely define the entire action of the transformation (2.1). This
insight naturally motivates the definition of the infinitesimal generator

X = ξi
∂

∂xi
, (2.7)
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where the infinitesimals ξi are given by

ξi =
∂ϕi

∂a

∣∣∣∣
a=0

. (2.8)

Then, instead of using the global form of the symmetry as given by Eq. (2.2), we can equivalently
state that F is invariant under a symmetry with infinitesimal generator X if

XF |F=0 = 0. (2.9)

So far, strictly speaking, we have only considered algebraic equations. However, the extension to
differential equations is straightforward. The main idea is to, for the most part, treat derivatives
as new variables that are completely unrelated to the other dependent and independent
variables. From this perspective, a differential equation is nothing but an algebraic equation
with many dependent variables. The only question we must address is how the derivatives
transform under a given symmetry, and it is exclusively in this context that the connection
between derivatives and the original dependent and independent variables is important. In
concrete terms, we now distinguish among the arguments of F between independent variables
x, dependent variables z, and the derivatives z,x1 ; · · · ; z,xn , and assume that the transformations

T : x∗ = ϕ(x, z, a), z∗ = ψ(x, z, a) (2.10)

are given. Note that the notation of writing derivation in the index, which is known as jet
notation, serves to highlight that unless explicitly stated otherwise, we treat these deriva-
tives as new variables without any connection to x and z. Equivalently, we can express the
transformation (2.10) using its infinitesimal generator

X = ξi
∂

∂xi
+ ηi

∂

∂zi
, (2.11)

where

ηi =
∂ψi

∂a

∣∣∣∣
a=0

. (2.12)

The effect of the transformation (2.10) on the first derivatives can then be calculated using

zi
∗
,xj

= ψi,xj =
Dψi

Dxk
[A−1]kj , (2.13)

where A−1 is the inverse of the Jacobian matrix

Aij =
Dϕi

Dxj
, (2.14)

with the total differentiation operator

D

Dxi
=

∂

∂xi
+ zk,i

∂

∂zk
+ · · · . (2.15)
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In Eq. (2.13) and in the following, the index ij after a matrix refers to its element in the ith
row and jth column. Also note that we denote vectors and matrices using bold letters, and
their elements using the same letter in non-boldface.

It can be shown that Eq. (2.13) follows from the chain rule of differentiation if we do take
the connection between derivatives z,x1 ; · · · ; z,xn and original dependent variables z and
independent variables x into account. The action on higher-order derivatives can be inferred
by recursively applying (2.13),

zi
∗
,xm1 ···xmp−1xj

= ψi,xm1 ···xmp−1xj =
Dψi,xm1 ···xmp−1

Dxk
[A−1]kj , (2.16)

where we assume that there are p independent variables. In practice, this method of extending
symmetries to act on derivatives can quickly become cumbersome. A simpler method is often to
use the infinitesimal generators, which, when extended to also include derivatives, are referred
to as prolonged operators. Again using the chain rule of differentiation, the nth prolonged
operator can be calculated to be

X(n) = ξi
∂

∂xi
+ ηi

∂

∂zi
+ηi;xj1

∂

∂zi,xj1

+ ηi;xj1
;xj2

∂

∂zi,xj1
xj2

+ · · ·︸ ︷︷ ︸
n terms

, (2.17)

where

ηi;xj1
...xjs

=
Dηi;xj1

...xjs−1

Dxjs
−

s−1∑
m=1

zi,xj1
...xjs−1

xjm

Dξjm
Dxjs

. (2.18)

For the purposes of the present work, this method of calculating prolongations suffices because
we usually restrict ourselves to first derivatives, however, if higher derivatives are to be taken
into account, using the characteristic (or evolutionary) form of symmetries is often more
efficient. The main idea is that instead of using Eq. (2.11), the form

X̂ = η̂i
∂

∂zi
(2.19)

is used, where, crucially, , unlike ξi and ηi in Eq. (2.11), η̂i is allowed to depend on derivatives.
In concrete terms, η̂i is given by

η̂i = ηi − ξjzi,xj . (2.20)

Then, the prolongations simply follow from application of the total derivative,

X̂
(n)

= X̂ +
Dη̂i

Dxj

∂

∂zi,xj

+ · · · . (2.21)

To make the preceding discussion clearer, we now discuss as an example the Euler momentum
equation, i.e. (1.2) with ν = 0, which, written in jet notation, reads

Fi = Ui,t + UjUi,xj + P,xi = 0, (2.22)

and the transformation

T Sc,I : t∗ = t, x∗i = xie
aSc,I , U∗

i = Uie
aSc,I , P ∗ = Pe2aSc,I , (2.23)
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is considered as an example. Observe that writing the scaling factor in exponential form ensures
that conditions (2.3) and (2.4) are fulfilled. We now show that (2.23) is a symmetry of (2.22).
To this end, we first have to establish how the derivatives appearing in (2.22) transform under
(2.23). In order to apply (2.13), we first calculate the matrix A using (2.14). Assuming the
two-dimensional case, we use

x∗ =

x∗1x∗2
t∗

 =

ϕ1ϕ2
ϕ3

 =

x1eaSc,Ix2e
aSc,I

t

 , (2.24)

and

z∗ =

U∗
1

U∗
2

P ∗

 =

ψ1

ψ2

ψ3

 =

U1e
aSc,I

U2e
aSc,I

Pe2aSc,I

 . (2.25)

Then, for the transformation (2.23), A becomes

Aij =



Dϕ1

Dx1

Dϕ1

Dx2

Dϕ1

Dt
Dϕ2

Dx1

Dϕ2

Dx2

Dϕ2

Dt
Dϕ3

Dx1

Dϕ3

Dx2

Dϕ3

Dt


ij

=



D (x1e
aSc,I )

Dx1

D (x1e
aSc,I )

Dx2

D (x1e
aSc,I )

Dt
D (x2e

aSc,I )

Dx1

D (x2e
aSc,I )

Dx2

D (x2e
aSc,I )

Dt
Dt

Dx1

Dt

Dx2

Dt

Dt


ij

=

eaSc,I 0 0
0 eaSc,I 0
0 0 1


ij

. (2.26)

The inverse of Aij is easy to calculate and reads

[A−1]ij =

e−aSc,I 0 0
0 e−aSc,I 0
0 0 1


ij

. (2.27)

Next, we turn to the matrix Dψi/Dxj appearing in Eq. (2.13). Here, the definition of the total
derivative (2.15) becomes important, and, for example,

Dψ1

Dx2
=

D (U1e
aSc,I )

Dx2
= eaSc,I

DU1

Dx2

= eaSc,I

(
�
�
�∂U1

∂x2
+ U1,x2

∂U1

∂U1
+ U2,x2

�
�
�∂U1

∂U2
+ · · ·

)
= eaSc,IU1,x2 . (2.28)

Hopefully, this example also makes the use of jet notation clearer. In particular, note that the
fact that e.g. ∂U1/∂x2 = 0, which we have used above, only implies that the expression U1

does not contain the expression x2. If we wanted to express a vanishing (1, 2)-component of
the velocity gradient in the current setting, we would have to write U1,x2 = 0. Repeating the
calculation detailed in (2.28) for all components yields

Dψi

Dxj
=

U1,x1e
aSc,I U1,x2e

aSc,I U1,te
aSc,I

U2,x1e
aSc,I U2,x2e

aSc,I U2,te
aSc,I

P,x1e
2aSc,I P,x2e

2aSc,I P,te
2aSc,I


ij

. (2.29)

10



We now invoke Eq. (2.13) with the results from Eqs. (2.27) and (2.29) to obtainU∗
1,x∗

1
U∗
1,x∗

2
U∗
1,t∗

U∗
2,x∗

1
U∗
2,x∗

2
U∗
2,t∗

P ∗
,x∗

1
P ∗

,x∗
2

P ∗
,t∗

 =

U1,x1e
aSc,I U1,x2e

aSc,I U1,te
aSc,I

U2,x1e
aSc,I U2,x2e

aSc,I U2,te
aSc,I

P,x1e
2aSc,I P,x2e

2aSc,I P,te
2aSc,I

e−aSc,I 0 0
0 e−aSc,I 0
0 0 1


=

 U1,x1 U1,x2 U1,te
aSc,I

U2,x1 U2,x2 U2,te
aSc,I

P,x1e
aSc,I P,x2e

aSc,I P,te
2aSc,I

 , (2.30)

which we can finally insert into (2.22), leading to

U∗
i ,t∗ + U∗

j U
∗
i ,x∗

j
+ P ∗

,x∗
i
= 0 ⇔ Ui,te

aSc,I + Uje
aSc,IUi,xj + P,xie

aSc,I = 0. (2.31)

Since eaSc,I can be canceled, we conclude that (2.23) is indeed a symmetry of (2.22).

The above analysis usually becomes easier if we work with the infinitesimal generator of (2.23).
Employing (2.8) and (2.12), we obtain

ξt =
∂t∗

∂aSc,I

∣∣∣∣
aSc,I=0

= 0,

ξxi =
∂x∗i
∂aSc,I

∣∣∣∣
aSc,I=0

= [xie
aSc,I ]aSc,I=0 = xi,

ηUi =
∂U∗

i

∂aSc,I

∣∣∣∣
aSc,I=0

= [Uie
aSc,I ]aSc,I=0 = Ui,

ηP =
∂P ∗

∂aSc,I

∣∣∣∣
aSc,I=0

=
[
2Pe2aSc,I

]
aSc,I=0

= 2P, (2.32)

which, using (2.11), leads to the infinitesimal generator

XSc,I = ξt
∂

∂t
+ ξxi

∂

∂xi
+ ηUi

∂

∂Ui
+ ηP

∂

∂P
= xi

∂

∂xi
+ Ui

∂

∂Ui
+ 2P

∂

∂P
. (2.33)

We can now use (2.17) together with (2.18) to infer the action of (2.33) on the derivatives
appearing in (2.22), i.e. Ui,t, Ui,xj and P,xi . Using (2.18), we obtain

ηUi;t =
DηUi

Dt
− Ui,t

�
�
�Dξt

Dt
− Ui,xk

�
�
�Dξxk

Dt
=

�
�
�∂Ui

∂t
+ Uk,t

∂Ui

∂Uk
+ P,t

�
�
�∂ηUi

∂P
= Uk,tδik,= Ui,t, (2.34)

ηUi;xj =
DηUi

Dxj
− Ui,t

�
�
��Dξt

Dxj
− Ui,xk

Dξxk

Dxj
=
�
�
��∂Ui

∂xj
+ Uk,xj

∂Ui

∂Uk
+ P,xj

�
�
�∂Ui

∂P
− Ui,xk

∂xk

∂xj

= Uk,xjδik − Ui,xk
δjk = Ui,xj − Ui,xj = 0, (2.35)

ηP ;xi =
DηP

Dxi
− P,t

�
�
�Dξt

Dxi
− P,xk

Dξxk

Dxi
=

�
�
��

2
∂P

∂xj
+ Uk,xi

�
�
�

2
∂P

∂Uk
+ P,xi2

∂P

∂P
− P,xk

δik

= 2P,xi − P,xi = P,xi , (2.36)

where

δij =

{
1 for i = j

0 for i ̸= j
(2.37)

11



denotes the Kronecker delta. Putting everything together, we can then obtain the first prolon-
gation according to Eq. (2.17)

X
(1)
Sc,I = xi

∂

∂xi
+ Ui

∂

∂Ui
+ 2P

∂

∂P
+ ηUi;t

∂

∂Ui,t
+ ηUi;xj

∂

∂Ui,xj

+ ηP ;xi

∂

∂P,xi

= xi
∂

∂xi
+ Ui

∂

∂Ui
+ 2P

∂

∂P
+ Ui,t

∂

∂Ui,t
+ P,xi

∂

∂P,xi

, (2.38)

where we have omitted the action on P,t because this variable does not occur in (2.22). Using

XFi = X
(1)
Sc,I(Ui,t + UjUi,xj + P,xi) (2.39)

= X
(1)
Sc,IUi,t +X

(1)
Sc,I(UjUi,xj ) +X

(1)
Sc,IP,xi

= X
(1)
Sc,IUi,t + Uj�����

X
(1)
Sc,IUi,xj + Ui,xjX

(1)
Sc,IUj +X

(1)
Sc,IP,xi

= Uk,t
∂Ui,t

∂Uk,t
+ Ui,xjUk

∂Uj

∂Uk
+ P,xk

∂P,xi

∂P,xk

= Uk,tδik + Ui,xjUkδik + P,xk
δik

= Ui,t + UjUi,xj + P,xi ,

we can then insert into Eq. (2.9),

X
(1)
Sc,IFi|Fi=0 =

[
Ui,t + UjUi,xj + P,xi

]
Ui,t+UjUi,xj+P,xi=0

= 0, (2.40)

which confirms that (2.38) is indeed a symmetry of (2.22).

Without going into much detail, we note that the theory introduced here also allows one
to algorithmically calculate the symmetries of any given equation. This is accomplished
by assuming a general form of X, calculating the prolongation as needed following (2.17),
inserting into (2.9) and solving the arising PDE (partial differential equation) system for the
infinitesimals ξi and ηi. Depending on the problem, such a calculation can require significant
effort when done manually, but in recent years, the advent of CASs (computer algebra systems)
has greatly simplified the use of symmetry methods. It must be emphasized that there is no
need to rely on educated guesses to obtain symmetries such as Eq. (2.33), but that they can
be calculated algorithmically from the respective equation, i.e. (2.22) in the above example.
In the present work, this aspect of symmetry theory only plays a minor role, because we are
concerned with equations that have already been thoroughly studied and whose symmetries
are, therefore, already known.

Conversely, an analogous line of reasoning also allows constructing equations that are invariant
under a certain symmetry or a set of symmetries. This problem is also known as the inverse
problem of group classification. To solve it, one assumes a general form of F and solves the
PDE system arising from (2.9) to obtain a constrained form for F that is guaranteed to be
invariant under the selected symmetry or symmetries. This method for constructing equations
based on symmetries is crucial to the present work because it lies at the heart of the discussion
in Section 5.1, where it is also discussed in more detail.

An alternative approach for finding equations that are invariant under a certain set of sym-
metries is provided by the method of moving frames pioneered by Olver (2000). Unlike the
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method described in the previous paragraph, the method of moving frames operates on the
level of global transformations (2.10). The main idea is that given some symmetry, or some
combination of multiple symmetries, i.e. a so-called multi-parameter group, one sets the x∗

and z∗ to some convenient fixed value (usually 0 or 1) and solves the arising equation system
for the group parameter(s). Then, one calculates the transformed derivatives and inserts the
results for the group parameters to obtain the differential invariants. As an example, consider
the multi-parameter group consisting of a translation in time and a scaling in space and time

t∗ = aSc,IIt+ aT , x
∗ = aSc,Ix, z

∗ =
aSc,I
aSc,II

z, (2.41)

where t and x are the independent coordinates, and z is the dependent coordinate. Setting
t∗ = 0 and x∗ = z∗ = 1, i.e.

t∗ = aSc,IIt+ aT = 0, x∗ = aSc,Ix = 1, z∗ =
aSc,I
aSc,II

z = 1, (2.42)

then yields
aT = −zt

x
, aSc,II =

z

x
, aSc,I =

1

x
. (2.43)

The transformed derivatives read

z∗x =
∂z∗

∂x∗
=

1

aSc,II

∂z

∂x
=
xzx
z
, (2.44)

z∗t =
∂z∗

∂t∗
=

aSc,I
a2Sc,II

∂z

∂t
=
xzt
z2
, (2.45)

which gives rise to the differential invariants xzx/z and xzt/z2. Note that a deeper explanation
of why this method works requires considerable understanding in differential geometry and is
hence beyond the scope of this discussion. The interested reader is referred to Olver (2000) for
more details. A crucial observation is that whereas the method based on infinitesimal generators
gives rise to a linear PDE system from which to calculate the invariants, the moving frames
method requires the solution of a nonlinear algebraic equation system, i.e. (2.42) in the above
example. This system has to be solved fully coupled, which can be complicated depending on
the problem. Since the infinitesimal-based method allows for a decoupled solution of the linear
PDE system, it was found to work better for our present purposes.

This concludes the short discussion of the mathematical prerequisites. We are now equipped to
apply Lie symmetry theory to the equations governing fluid mechanics, which we address in
Section 3.2.
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3. Turbulence Theory and Modeling

In this chapter, the relevant ideas from turbulence research that the present work builds upon
are introduced. In particular, we first establish the statistical framework in which turbulence is
described, then discuss the Lie symmetries of the governing equations in this setting and some
turbulent scaling laws that can be derived from them, and give a short introduction to RANS
turbulence modeling. The application of turbulence models to a class of simple self-similar
flows is also shown.

3.1. Statistical Moment Description of Turbulence

Generally, a natural way to describe stochastic processes is in terms of their statistical moments.
In turbulence, this is the most common framework in which flow statistics are investigated.
Differences arise from the choice of the statistical moments in which to write the equations, and
we discuss several choices in the following. Note that there are other statistical descriptions of
turbulence such as the LMN (Lundgren–Monin–Novikov) hierarchy based on PDFs (probability-
density functions) (Lundgren, 1967) or on characteristic functionals (Hopf, 1952), but since
these approaches are only tangentially relevant to the present work, we do not discuss them
further here. For a discussion of Lie symmetries in these settings, we refer to Waclawczyk et al.
(2014).

3.1.1. The Mathematical Rules of Averaging

The averaging operation we have used without much discussion in deriving (1.3), (1.4) and (1.6)
is now discussed in more detail following Pope (2000). We denote the flow velocity at some
point in space and time with U i, and assume that the same flow experiment is repeated many
times. If the velocity in the nth realization of the experiment is denoted by U (n)

i , this allows
defining the average as

Ū i = lim
N→∞

1

N

N∑
n=1

U
(n)
i , (3.1)

where N is the number of repetitions. In a turbulent flow, generally, all U (n)
i are independent

random variables.

From (3.1), some properties of the averaging operation can be inferred. First, averaging is
idempotent, which means that repeatedly applying it to an already averaged property has
no effect, i.e. ¯̄Ui = Ū i. Second, since averaging is essentially a summation, it is linear, i.e.
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aU i + bU j = aŪ i + bŪ j for any constants a and b. By the same token, it also commutates with
derivation, i.e. (

∂U i

∂t

)
=
∂Ū i

∂t
.

By averaging the decomposition of velocity and pressure (though this obviously works for any
statistical variable) given by Eq. (1.5) and using idempotence, it can also be seen that the
average of a fluctuating value vanishes, i.e. ūi = 0. Intuitively, this makes sense because ui
fluctuates around the mean value, so that positive and negative contributions cancel out on
average. However, this is not generally true for the average of the product of two fluctuating
variables. This might seem counterintuitive at first, but becomes obvious if one considers the
case where a fluctuating variable is squared before the average is taken. Clearly, the square
is always positive, so that positive and negative contributions are no longer in balance. This
also extends to the general case of averages of the product of two possibly different fluctuating
variables provided that the two variables are correlated, which is generally the case in the
context of turbulence.

3.1.2. One-Point Moment Description

For the unknown terms in (1.4) and (1.6), exact equations can be derived. It was probably
Chou (1945) who first derived the equation for the unknown Reynolds stress tensor R(0)

ij

appearing in (1.6). Using the momentum equation for the fluctuating velocity,

N′
i = Ni −Ni =

∂ui

∂t
+ Uj

∂Ui

∂xj
− Ū j

∂Ū i

∂xj
−
∂R

(0)
ij

∂xj
+
∂p

∂xi
− ν

∂2ui

∂xj∂xj
= 0, (3.2)

and evaluating the expression
uiN′

j + ujN′
i = 0

while using the rules discussed in Section 3.1.1 leads to a transport equation for the Reynolds
stress tensor,

∂R
(0)
ij

∂t
+ Ūk

∂R
(0)
ij

∂xk
+R

(0)
ik

∂Ū j

∂xk
+R

(0)
jk

∂Ū i

∂xk
− p

(
∂ui

∂xj
+
∂uj

∂xi

)(0)

+ 2ν
∂ui

∂xk

∂uj

∂xk

(0)

+
∂

∂xk

(
R

(0)
ijk + (δjkui + δikuj)p

(0) − ν
∂R

(0)
ij

∂xk

)
= 0, (3.3)

where the Kronecker delta defined by Eq. (2.37) appears again. The superscript “(0)” indicates
that the respective property is a one-point moment, in contrast to multipoint moments to be
discussed in Section 3.1.3. In analogy to R(0)

ij , the triple correlation R
(0)
ijk equals uiujuk. No

additional physical information is employed in deriving Eq. (3.3), so that, obviously, this does
not solve the closure problem of turbulence, because new unknown correlations appear in (3.3).
However, we note that since it is possible to obtain transport equations for these unknown
quantities (which again contain further unknown correlations), turbulent statistics can be fully
described using this infinite hierarchy of equations.
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Thanks to the intuitive interpretation of R(0)
ij as an additional turbulent stress tensor, the

framework given by (1.3), (1.6) and (3.3) and infinitely many additional equations is the most
commonly used one in turbulence modeling. However, a major drawback is the complicated
form of the arising equations, as evidenced by (3.3). Oberlack and Rosteck (2010) and
Rosteck and Oberlack (2011) put forward the idea to omit the Reynolds decomposition given
by Eq. (1.5), and to treat the moment based on instantaneous velocities H(0)

ij in (1.4) as a
single unknown variable. Then, in an analogous fashion to the derivation of (3.3), a transport
equation for H(0)

ij can be derived. This time, we evaluate

U iNj + U jNi = 0,

leading to

∂H
(0)
ij

∂t
+
∂H

(0)
ijk

∂xk
+
∂PUi

(0)

∂xj
+
∂PUj

(0)

∂xi
− P

(
∂Ui

∂xj
+
∂Uj

∂xi

)(0)

− ν
∂2H

(0)
ij

∂xk∂xk
+ 2ν

∂Ui

∂xk

∂Uj

∂xk

(0)

= 0, (3.4)

where again, the averaging rules shown in Section 3.1.1 are applied. Here, the triple correlation
H

(0)
ijk is a compact notation for U iU jUk. Evidently, this equation is simpler than (3.3) in the
sense that it has fewer terms and, crucially, it is linear. This linearity is also present in the
infinite hierarchy of equations that would arise from successively deriving equations for the
unknown quantities in (3.4). Obviously, since (3.3) and (3.4) are mathematically equivalent,
the complexity of Eq. (3.3) is, in a sense, still present in (3.4), but it is hidden inside the
variables appearing in (3.4). Thus, the relative simplicity of Eq. (3.4) comes at the cost of
it being written in terms of more complicated variables that are more difficult to interpret
intuitively. Therefore, it strongly depends on the context whether fluctuation moments or
instantaneous moments are more useful.

3.1.3. Multipoint Moment Description

An even simpler equation system can be found by considering multipoint moments. While
one-point moments such as R(0)

ij = uiuj are formed by evaluating ui and uj at the same spatial
location, multipoint moments are more general, because they are defined by evaluating ui and
uj at different points in space. This comes at the cost of increasing the number of independent
variables, because on top of the three spatial coordinates, the distance vectors between the
points of evaluation appear as additional variables.

Considering first the fluctuation moment approach, a transport equation for Rij = ui(x)uj(y)
is obtained by evaluating

N′
i(x)uj(y) +N′

j(y)ui(x) = 0,

and, using the averaging rules as discussed in Section 3.1.1, reads

∂Rij

∂t
+ Ūk

∂Rij

∂xk
+ Ūk

∂Rij

∂yk
+Rik

∂Ū j

∂yk
+Rkj

∂Ū i

∂xk

+
∂puj

∂xi
+
∂uip

∂yj
− ν

∂2Rij

∂xk∂xk
− ν

∂2Rij

∂yk∂yk
+
∂R(ik)j

∂xk
+
∂Ri(jk)

∂yk
= 0, (3.5)
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where we have used the notation introduced by Rotta (1975), which uses parentheses in the
index to indicate that the corresponding velocities are evaluated at the same point in space,
e.g. R(ik)j = ui(x)uk(x)uj(y), and assumes Rij··· = ui(x)uj(y) · · · otherwise. In (3.5), the
only unknown term is the triple correlation of the form R(ik)j = ui(x)uk(x)uj(y). Note that
the pressure-velocity correlations puj and uip are not new unknown terms because for them, a
Poisson equation can be derived.

Similarly, a transport equation for the instantaneous two-point moment H ij is obtained by
considering

Ni(x)Uj(y) +Nj(y)Ui(x) = 0,

leading to the concise equation (Oberlack and Rosteck, 2010)

∂H ij

∂t
+
∂H(ik)j

∂xk
+
∂H i(jk)

∂yk
+
∂PUj

∂xi
+
∂UiP

∂yj
− ν

∂2H ij

∂xk∂xk
− ν

∂2H ij

∂yk∂yk
= 0, (3.6)

where we once again have to invoke the averaging rules as presented in Section 3.1.1. In
fact, this equation is so structurally simple that it becomes straightforward to generalize
it to arbitrary moments, allowing for mathematical insights to be discussed in Section 3.2
(Rosteck, 2013). The only trade-off is that the statistical moments appearing in it are a bit more
complicated to interpret intuitively compared to the central one-point moments appearing in
the classical approach.

In the remainder of the present work, we only rely on the instantaneous one-point approach
given by (3.4) and the classical fluctuation one-point approach given by (3.3). Since both of
these approaches are mathematically equivalent, it is easily possible to switch between the two
as needed. Note that since we only consider one-point moments from now on, we omit the
superscript (0).

3.2. Lie Symmetries and Turbulence

As has been discussed in Chapter 2, the symmetries of any given equation can be calculated
algorithmically. For the incompressible Navier–Stokes equations (1.1) and (1.2), this calculation
was first carried out by Bytev (1972). For the case of vanishing viscosity (ν = 0), the symmetries
of Eqs. (1.1) and (1.2) read

T t : t∗ = t+ aT , x∗i = xi,

U∗
i = Ui, P ∗ = P ; (3.7)

T rotα : t∗ = t, x∗i = xjQ
[α]
ij ,

U∗
i = UjQ

[α]
ij , P ∗ = P ; (3.8)

TGali : t∗ = t, x∗i = xi + fGali(t),

U∗
i = Ui + f ′Gali(t), P ∗ = P − xjf

′′
Galj (t); (3.9)

TP : t∗ = t, x∗i = xi,

U∗
i = Ui, P ∗ = P + fP (t); (3.10)
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T Sc,I : t∗ = t, x∗i = xie
aSc,I ,

U∗
i = Uie

aSc,I , P ∗ = Pe2aSc,I ; (3.11)
T Sc,II : t∗ = teaSc,II , x∗i = xi,

U∗
i = Uie

−aSc,II , P ∗ = Pe−2aSc,II ; (3.12)

where the constant rotational matrices Q[α] are given by

Q[1] =

1 0 0
0 cos arot1 − sin arot1
0 sin arot1 cos arot1

 ; (3.13)

Q[2] =

cos arot2 0 − sin arot2
0 1 0

sin arot2 0 cos arot2

 ; (3.14)

Q[3] =

 cos arot3 sin arot3 0
− sin arot3 cos arot3 0

0 0 1

 , (3.15)

respectively. Therein, the ai stand for arbitrary real-valued constants, and fP (t) and fGali(t)
are free time-dependent functions. Notice that in (3.11) and (3.12), we write the scaling factor
in exponential form to ensure that (2.3) and (2.4) are fulfilled.

In the viscous case (i.e. ν ̸= 0), due to the appearance of the kinematic viscosity, further discus-
sion is necessary. We view the viscosity as an externally imposed constant which, therefore,
cannot be affected by any of the symmetries (3.7)–(3.12). Note that by contrast, additional
field variables one might consider, such as the temperature or the scalar variables introduced
by turbulence models discussed in Section 3.4.1, could be transformed by these symmetries.
Therefore, the presence of ν has an important implication for the scaling symmetries (3.11)
and (3.12), which can be observed by inserting them into Eq. (1.2),(

∂U∗
i

∂t∗
+ U∗

j

∂U∗
i

∂x∗j
+
∂P ∗

∂x∗i

)
e−aSc,I+2aSc,II − ν

∂2U∗
i

∂x∗j∂x
∗
j

eaSc,I+aSc,II = 0, (3.16)

where Eq. (2.13) is employed to infer the transformation behavior of the appearing derivatives.
Apparently, the viscous term scales differently than the three others. In order for the e-
terms to cancel, their exponents have to match, leading to the symmetry-breaking constraint
2aSc,I = aSc,II . In other words, (3.11) and (3.12) combine to a single scaling symmetry

T Sc,ns : t∗ = te2aSc,ns , x∗i = xie
aSc,ns , U∗

i = Uie
−aSc,ns , P ∗ = Pe−2aSc,ns , (3.17)

where we denote the group parameter differently in order to avoid confusion. Evidently, the
kinematic viscosity acts as a symmetry-breaking property.

Note that a concept closely related to symmetries is that of equivalence transformations. A
notable difference is that equivalence transformations do allow transformations of external
parameters such as ν (Bluman et al., 2010).

Equivalently, symmetries (3.7)–(3.12) and (3.17) can also be expressed using their infinitesimal
generators, which can be calculated by invoking (2.17), and, using the same naming convention
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in the indices as before, read

Xt =
∂

∂t
, (3.18)

Xrotα = ϵjkαxj
∂

∂xk
+ ϵjkαUj

∂

∂Uk
, (3.19)

XGal = fGali(t)
∂

∂xi
+ f ′Gali(t)

∂

∂Ui
− xif

′′
Gali(t)

∂

∂P
, (3.20)

XP = fP (t)
∂

∂P
, (3.21)

XSc,I = xi
∂

∂xi
+ Ui

∂

∂Ui
+ 2P

∂

∂P
, (3.22)

XSc,II = t
∂

∂t
− Ui

∂

∂Ui
− 2P

∂

∂P
, (3.23)

XSc,ns = 2t
∂

∂t
+ xi

∂

∂xi
− Ui

∂

∂Ui
− 2P

∂

∂P
. (3.24)

In (3.19), ϵijk stands for the Levi-Civita permutation symbol.

All Navier–Stokes symmetries have fundamental physical implications. The time translation
symmetry (3.7) allows arbitrarily shifting the temporal coordinate without affecting the physics
of the flow, which makes intuitive sense because there is no absolute origin of time. A similar
principle concerning the spatial coordinates is encoded in (3.9) with constant fGali(t). The
rotational symmetry (3.8) implies that the orientation of a physical system in space is not
relevant, because rotations by an arbitrary fixed angle do not affect the equations. This
symmetry is directly connected to the principle of correct tensor formulation, that is, roughly
speaking, a set of mathematical rules that must be observed in tensor calculus to ensure that
tensorial expressions do not depend on the orientation of the coordinate system. Note that
aroti must not depend on time, because time-dependent rotation does affect physics, at least in
systems where inertial effects play a role, which is generally the case in fluid mechanics. The
Galilean symmetry (3.9) with constant f ′Gali(t) is also found throughout classical mechanics,
and states that physics are not affected by a linear movement of the entire system at a constant
velocity. For incompressible flows, even accelerations are possible, provided that the effect on
the pressure field is absorbed by transforming it accordingly. Another symmetry that is specific
to incompressible flow is the pressure translation symmetry (3.10), because only pressure
differences matter, and, therefore, shifting the absolute value of the pressure by some constant
does not have any effect. More precisely, this shifting value only has to be constant in space,
but it may change over time, which manifests itself by the appearance of the free function
fP (t). Lastly, the two scaling symmetries (3.11) and (3.12) indicate a particular rescaling
of space and time that leaves the equations invariant. We may directly connect this to the
principle of dimensional correctness if we realize that changing the system of measurement is
an example for such a rescaling, and that equations have to be dimensionally correct precisely
because the system of measurement must be arbitrary. On a technical note, the analogy
between dimensional correctness and the scaling symmetries (3.11) and (3.12) is not perfect,
because the way in which the appearance of external parameters such as ν are handled differs
slightly. As has been discussed above, in the context of symmetries, we assume such constants
to not be affected by any symmetry transformations, which in turn leads to them acting as
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symmetry-breaking. On the other hand, ν does have dimensional units, so that its value would
change when changing the unit system. As a consequence, its appearance does not lead to the
Navier–Stokes equations being considered dimensionally incorrect. Note that both points of
view ultimately lead to the same conclusions, and the differences discussed here at most lead
to a difference in terminology.

This discussion clearly shows how fundamental the implications of these symmetries are. Indeed,
they are so intuitive that it becomes obvious why the mathematical possibilities of symmetry
theory are so rarely used exhaustively in fluid mechanics and in turbulence modeling: In many
cases, physical understanding and intuition suffice. This may explain why, roughly speaking,
all complete turbulence models, i.e. models striving for general applicability without the need
for flow-specific a priori assumptions, are in agreement with the Navier–Stokes-symmetries in
that they fulfill the symmetries (3.7)–(3.10) and (3.17), and, in the limit ν = 0, also (3.11)
and (3.12). Examples of symmetry breaking in turbulence models can most prominently be
found in simple, flow-specific models such as the mixing length model to be discussed in
Section 3.4. Firstly, this model assumes shear flow and an accordingly oriented coordinate
system, which renders its equations in violation of the principle of tensorial correctness, or, in
terms of the previously described symmetries, they break the rotational symmetry given by
Eq. (3.8). Secondly, the introduction of an external length scale breaks the scaling symmetry
in space (3.11) (or (3.17) if we assume the viscous case). Both of these symmetry violations
are hence connected with well-known limitations of this model. It must be emphasized that
symmetry breaking in turbulence models does not automatically lead to bad and physically
unreasonable results, but simply restricts the universality of the model, often in ways already
foreseen and accepted by the modeler.

When adopting a statistical description of turbulence as given by (1.3) and (1.4), all symmetries
of the unaveraged system, i.e. (3.7)–(3.12) and (3.17), which we also refer to as classical
symmetries in this work, are preserved. Averaging commutates with applying any of the
symmetry transformations (3.7)–(3.12) and (3.17), which makes it straightforward to calculate
the transformation behavior of any statistical moment under any of the symmetries. For example,
averaging (3.9) leads to

TGali : t∗ = t, x∗i = xi + fGali(t), Ū
∗
i = Ū i + f ′Gali(t), P̄

∗ = P̄ − xjf
′′
Galj (t). (3.25)

To infer the transformation of, say, H ij , we apply (3.9) inside the averaging operator, i.e.

H∗
ij = U∗

i U
∗
j = (Ui + fGali(t))(Uj + fGalj (t))

= U iU j + Ū ifGalj (t) + Ū jfGali(t) + fGali(t)fGalj (t)

= H ij + Ū ifGalj (t) + Ū jfGali(t) + fGali(t)fGalj (t). (3.26)

Here, we have used the fact that a group parameter, or in this case, the free function fGali(t), is
externally imposed. As a result, it is deterministic and unaffected by the averaging operation.
To summarize, the classical symmetries (3.7)–(3.12) and (3.17) written in averaged variables
are given by

T t : t
∗ = t+ aT , x

∗
i = xi, Ū

∗
i = Ū i, P̄

∗ = P̄ , H∗
ij = H ij , PUi

∗
= PUi; (3.27)

T rotα : t∗ = t, x∗i = xjQ
[α]
ij , Ū i

∗
= Ū jQ

[α]
ij , P̄

∗ = P̄ ,

H ij
∗ = HklQ

[α]
ik Q

[α]
jl , PUi

∗
= PUjQ

[α]
ij ; (3.28)
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TGali : t
∗ = t, x∗i = xi + fGali(t), Ū

∗
i = Ū i + f ′Gali(t), P̄

∗ = P̄ − xjf
′′
Galj (t),

H∗
ij = H ij + f ′Gali(t)Ū j + f ′Galj (t)Ū i + f ′Gali(t)f

′
Galj (t)

PUi
∗
= PUi + P̄ f ′Gali(t)− Ū ixjf

′′
Galj (t)− f ′Gali(t)xjf

′′
Galj (t); (3.29)

TP : t∗ = t, x∗i = xi, Ū
∗
i = Ū i, P̄

∗ = P̄ + fP (t),

H∗
ij = H ij , PUi

∗
= PUi + Ū ifP (t); (3.30)

T Sc,I : t∗ = t, x∗i = xie
aSc,I , Ū∗

i = Ū ie
aSc,I , P̄ ∗ = P̄ e2aSc,I ,

H∗
ij = H ije

2aSc,I , PUi
∗
= PUie

3aSc,I ; (3.31)
T Sc,II : t∗ = teaSc,II , x∗i = xi, Ū

∗
i = Ū ie

−aSc,II , P̄ ∗ = P̄ e−2aSc,II ,

H∗
ij = H ije

−2aSc,II , PUi
∗
= PUie

−3aSc,II ; (3.32)
T Sc,ns : t

∗ = te2aSc,ns , x∗i = xie
aSc,ns , Ū∗

i = Ū ie
−aSc,nsP̄ ∗ = P̄ e−2aSc,ns ,

H∗
ij = H ije

−2aSc,ns , PUi
∗
= PUie

−3aSc,I , (3.33)

or, in infinitesimal form,

Xt =
∂

∂t
, (3.34)

Xrotα = ϵjkαxj
∂

∂xk
+ ϵjkαŪ j

∂

∂Ūk

+ (ϵkiαHkj + ϵkjαH ik)
∂

∂H ij
+ ϵjkαPUj

∂

∂PUk

, (3.35)

XGal = fGali(t)
∂

∂xi
+ f ′Gali(t)

∂

∂Ū i
− xif

′′
Gali(t)

∂

∂P̄

+
(
f ′Gali(t)Ū j + f ′Galj (t)Ū i

) ∂

∂H ij
,+
(
f ′Gali(t)P̄ − Ū ixjf

′′
Galj (t)

) ∂

∂PUi

, (3.36)

XP = fP (t)
∂

∂P̄
+ fP (t)Ū i

∂

∂PUi

, (3.37)

XSc,I = xi
∂

∂xi
+ Ū i

∂

∂Ū i
+ 2P̄

∂

∂P̄
+ 2H ij

∂

∂H ij
+ 3PUi

∂

∂PUi

, (3.38)

XSc,II = t
∂

∂t
− Ū i

∂

∂Ū i
− 2P̄

∂

∂P̄
− 2H ij

∂

∂H ij
− 3PUi

∂

∂PUi

, (3.39)

XSc,ns = 2t
∂

∂t
+ xi

∂

∂xi
− Ū i

∂

∂Ū i
− 2P̄

∂

∂P̄
− 2H ij

∂

∂H ij
− 3PUi

∂

∂PUi

. (3.40)

Note that there are infinitely many statistical moments, and we have only written out the
symmetries for those appearing in the analysis in Section 5.1. The action of any of the above
symmetries on other statistical moments can be calculated as shown in the example (3.26) or
found in Rosteck (2013). In particular, the actions of (3.27)–(3.33) on the moments based on
velocity fluctuations are given by

T t : t
∗ = t+ aT , x

∗
i = xi, Ū

∗
i = Ū i, P̄

∗ = P̄ , R∗
ij = Rij , pui

∗ = pui; (3.41)

T rotα : t∗ = t, x∗i = xjQ
[α]
ij , Ū i

∗
= Ū jQ

[α]
ij , P̄

∗ = P̄ ,

Rij
∗ = RklQ

[α]
ik Q

[α]
jl , pui

∗ = pujQ
[α]
ij ; (3.42)
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TGali : t
∗ = t, x∗i = xi + fGali(t), Ū

∗
i = Ū i + f ′Gali(t), P̄

∗ = P̄ − xjf
′′
Galj (t),

R∗
ij = Rij , pui

∗ = pui; (3.43)
TP : t∗ = t, x∗i = xi, Ū

∗
i = Ū i, P̄

∗ = P̄ + fP (t);

R∗
ij = Rij , pui

∗ = pui; (3.44)
T Sc,I : t∗ = t, x∗i = xie

aSc,I , Ū∗
i = Ū ie

aSc,I , P̄ ∗ = P̄ e2aSc,I ;

R∗
ij = Rije

2aSc,I , pui
∗ = puie

3aSc,I ; (3.45)
T Sc,II : t∗ = teaSc,II , x∗i = xi, Ū

∗
i = Ū ie

−aSc,II , P̄ ∗ = P̄ e−2aSc,II ,

R∗
ij = Rije

−2aSc,II , pui
∗ = puie

−3aSc,II ; (3.46)
T Sc,ns : t

∗ = te2aSc,ns , x∗i = xie
aSc,ns , Ū∗

i = Ū ie
−aSc,nsP̄ ∗ = P̄ e−2aSc,ns ;

R∗
ij = Rije

−2aSc,ns , pui
∗ = puie

−3aSc,ns , (3.47)

and in infinitesimal form by

Xt =
∂

∂t
, (3.48)

Xrotα = ϵjkαxj
∂

∂xk
+ ϵjkαŪ j

∂

∂Ūk

+ (ϵkiαRkj + ϵkjαRik)
∂

∂Rij
+ ϵjkαpuj

∂

∂puk
, (3.49)

XGal = fGali(t)
∂

∂xi
+ f ′Gali(t)

∂

∂Ū i
− xif

′′
Gali(t)

∂

∂P̄
, (3.50)

XP = fP (t)
∂

∂P̄
, (3.51)

XSc,I = xi
∂

∂xi
+ Ū i

∂

∂Ū i
+ 2P̄

∂

∂P̄
+ 2Rij

∂

∂Rij
+ 3pui

∂

∂pui
, (3.52)

XSc,II = t
∂

∂t
− Ū i

∂

∂Ū i
− 2P̄

∂

∂P̄
− 2Rij

∂

∂Rij
− 3pui

∂

∂pui
, (3.53)

XSc,ns = 2t
∂

∂t
+ xi

∂

∂xi
− Ū i

∂

∂Ū i
− 2P̄

∂

∂P̄
− 2Rij

∂

∂Rij
− 3pui

∂

∂pui
. (3.54)

So far, the discussion of Lie symmetries in fluid mechanics has revealed little beyond what
would already be intuitively known to anyone with a decent understanding of classical physics.
However, a seminal result by Oberlack and Rosteck (2010) and Rosteck and Oberlack (2011)
is that the averaged system given by (1.3), (1.4) and (3.4) and an infinite hierarchy of
equations for the higher moments contains additional symmetries that have no counterpart
in the original Navier–Stokes system (1.1) and (1.2). As these symmetries are connected to
statistical properties of turbulence, we refer to them as statistical symmetries. They are given
by the transformations

T Sc,stat : t
∗ = t, x∗i = xi, Ū

∗
i = Ū ie

aSc,stat , P̄ ∗ = P̄ eaSc,stat ,

H∗
ij = H ije

aSc,stat , · · · ; (3.55)
T Tr,stat,1 : t

∗ = t, x∗i = xi, Ū
∗
i = Ū i + aTr,stat,I,i, P̄

∗ = P̄ ,

H∗
ij = H ij , · · · ; (3.56)
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T Tr,stat,2 : t
∗ = t, x∗i = xi, Ū

∗
i = Ū i, P̄

∗ = P̄ ,

H∗
ij = H ij + aTr,stat,II,ij , · · · ; (3.57)

T Tr,stat,3 : t
∗ = t, x∗i = xi, Ū

∗
i = Ū i, P̄

∗ = P̄ ,

H∗
ij = H ij , PUi

∗
= PUi + aTr,stat,III,i, (3.58)

· · · .
Again, we can also express these symmetries in infinitesimal form, leading to

XSc,stat = Ū i
∂

∂Ū i
+ P̄

∂

∂P̄
+H ij

∂

∂H ij
+ PUi

∂

∂PUi

+ · · · , (3.59)

XTr,stat,1 =
∂

∂Ū i
, (3.60)

XTr,stat,2 =
∂

∂H ij
, (3.61)

XTr,stat,3 =
∂

∂PUi

, (3.62)

· · · .
In the instantaneous mean Navier–Stokes equations (1.3) and (1.4), both the statistical scal-
ing symmetry (3.55) and the statistical translations symmetries (3.56)–(3.58) can easily be
confirmed to be symmetries.

Inserting the transformation (3.55) into (1.4) leads to

∂Ū∗
i

∂t
e−aSc,stat +

∂H∗
ij

∂xj
e−aSc,stat +

∂P̄ ∗

∂xi
e−aSc,stat − ν

∂2Ū∗
i

∂xj∂xj
e−aSc,stat = 0. (3.63)

Clearly, all terms contain the same factor e−aSc,stat , which cancels out. This also holds for the
infinite hierarchy of equations that can be derived for higher moments, which is most clearly
observed when using multipoint moments as discussed in Section 3.1.3. For example, after
(3.55) is inserted into (3.6), it reads

∂H∗
ij

∂t
e−aSc,stat +

∂H∗
(ik)j

∂xk
e−aSc,stat +

∂H∗
i(jk)

∂yk
e−aSc,stat +

∂PUj
∗

∂xi
e−aSc,stat +

∂UiP
∗

∂yj
e−aSc,stat

− ν
∂2H∗

ij

∂xk∂xk
e−aSc,stat − ν

∂2H∗
ij

∂yk∂yk
e−aSc,stat = 0, (3.64)

where e−aSc,stat again cancels out.

Furthermore, all statistical moments in the instantaneous formulation appear under a deriva-
tive and can, therefore, be shifted by some arbitrary constant as expressed in the statistical
translation symmetries (3.56)–(3.58). For example, inserting (3.56) into (1.4) leads to

∂(Ū∗
i − aTr,stat,I,i)

∂t
+
∂H∗

ij

∂xj
+
∂P̄ ∗

∂xi
− ν

∂2(Ū∗
i − aTr,stat,I,i)

∂xj∂xj
=

∂Ū∗
i

∂t
− ∂aTr,stat,I,i

∂t
+
∂H∗

ij

∂xj
+
∂P̄ ∗

∂xi
− ν

∂2Ū∗
i

∂xj∂xj
+ ν

∂2aTr,stat,I,i

∂xj∂xj
=

∂Ū∗
i

∂t
+
∂H∗

ij

∂xj
+
∂P̄ ∗

∂xi
− ν

∂2Ū∗
i

∂xj∂xj
= 0, (3.65)
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which is obviously equivalent to (1.4). Owing to the simple structure of Eq. (3.6), a generaliza-
tion to arbitrary moments is possible, which allows verifying that the statistical symmetries
(3.55)–(3.58) are symmetries of the entire infinite-dimensional hierarchy of statistical moment
equations (Rosteck and Oberlack, 2011). Note that these symmetries can also be found in
other statistical descriptions of turbulence, including the one-point moment approach, but also
the LMN hierarchy and the Hopf functional approach (Waclawczyk et al., 2014).

In the context of turbulence modeling, it is often useful to write the statistical symmetries in
terms of the fluctuating one-point moments, e.g. Rij . The statistical scaling symmetry (3.55)
for the fluctuating variables can be inferred from the identities arising from application of the
averaging rules. For H ij , it holds that

H ij = U iU j = (Ū i + ui)(Ū j + uj) = Ū iŪ j + Ū iuj + uiŪ j + uiuj

= Ū iŪ j + Ū i��uj +��uiŪ j + uiuj = Ū iŪ j +Rij . (3.66)

Here, we have used the fact that the average of an already averaged value can be omitted, i.e.
¯̄Ui = Ū i, and that the average of a fluctuation value vanishes, i.e. ūi = 0, as has already been
discussed in Section 3.1.1. Then, the transformation of Rij under e.g. (3.55) can be found to
be

R∗
ij = H∗

ij − Ū∗
i Ū

∗
j = H ije

aSc,stat − Ū iŪ je
2aSc,stat = (Rij + Ū iŪ j)e

aSc,stat − Ū iŪ je
2aSc,stat . (3.67)

Similarly, the transformation behavior of all moments under all statistical symmetries can be
inferred, but we only write out (3.59)–(3.62) for the moments relevant to the present work,

T Sc,stat : t
∗ = t, x∗i = xi, Ū

∗
i = Ū ie

aSc,stat , P̄ ∗ = P̄ eaSc,stat ,

R∗
ij = (Rij + Ū iŪ j)e

aSc,stat − Ū iŪ je
2aSc,stat ,

uip
∗ = (uip+ Ū iP̄ )e

aSc,stat − Ū iP̄ e
2aSc,stat , (3.68)

and the translation symmetries (3.56)–(3.58) become

T Tr,stat,1 : t
∗ = t, x∗i = xi, Ū

∗
i = Ū i + aTr,stat,I,i, P̄

∗ = P̄ ,

R∗
ij = Rij − Ū iaTr,stat,I,j − Ū jaTr,stat,I,i − aTr,stat,I,iaTr,stat,I,j ,

uip
∗ = uip− P̄ aTr,stat,I,i; (3.69)

T Tr,stat,2 : t
∗ = t, x∗i = xi, Ū

∗
i = Ū i, P̄

∗ = P̄ ,

R∗
ij = Rij + aTr,stat,II,ij , uip

∗ = uip; (3.70)
T Tr,stat,3 : t

∗ = t, x∗i = xi, Ū
∗
i = Ū i, P̄

∗ = P̄ , R∗
ij = Rij ,

uip
∗ = uip+ aTr,stat,III,i. (3.71)

The infinitesimal form of these symmetries is given by

XSc,stat = Ū i
∂

∂Ū i
+ P̄

∂

∂P̄
+
(
Rij − Ū iŪ j

) ∂

∂Rij
+
(
pui − Ū iP̄

) ∂

∂pui
, (3.72)

XTr,stat,1,i =
∂

∂Ū i
−
(
δijŪk + δikŪ j

) ∂

∂Rjk
− P̄

∂

∂pui
, (3.73)

XTr,stat,2,ij =
∂

∂Rij
, (3.74)

XTr,stat,3,i =
∂

∂uip
. (3.75)
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The physical interpretation of these symmetries is more difficult compared to the classical ones,
and apart from the models to be presented later in this work (first published in Klingenberg
et al., 2020; Klingenberg and Oberlack, 2022), they have so far not been implemented into
turbulence models. While an interpretation in the framework of statistical moments remains
difficult, Waclawczyk et al. (2014) were able to establish a connection to intermittency and
non-Gaussianity—two frequently observed phenomena of turbulent statistics—by considering
the statistical symmetries in the PDF framework. A second important indicator for the physical
relevance of these symmetries is found in a number of turbulent scaling laws in whose derivation
these symmetries are crucial. An example for such a scaling law is the famous logarithmic
law of the wall. This aspect is further discussed in Section 3.3. Therefore, we may expect
turbulence models which fulfill not only the classical, but also the statistical symmetries, to
be significantly more reliable and general. The development of such models is pursued in
Chapter 5.

3.3. Turbulent Scaling Laws

Universal theoretical results are rare in turbulence, but the closest approximation to something
of this kind are probably turbulent scaling laws. These usually semi-empirical laws are functional
dependencies between statistical flow quantities and coordinates that are observed in certain
regions of particular flows. The most prominent example for a turbulent scaling law is certainly
the logarithmic law of the wall (or log law for short), which originally is valid in a region
close to the wall in parallel shear flows such as channel and pipe flow (Kármán, 1930), but is
sometimes also considered applicable to other wall-bounded flows such as boundary layers. A
fundamental problem with the log law and other scaling laws is that they cannot be derived
from the Navier–Stokes equations or other first principles, which can lead to controversy about
the question whether they are valid at all, or if different functional dependencies describe the
same flow regions better (Barenblatt, 1993; Barenblatt and Prostokishin, 1993; Barenblatt
et al., 2014).

Symmetry theory offers a way to mitigate this issue at least to some degree. Instead of relying
purely on guesswork and curve-fits, the concept of invariant solutions of symmetries may be
employed to find new scaling laws which can in a second step be calibrated and validated
using empirical flow data. As we see in the following subsections, some arbitrariness still
remains in the choice of symmetries used to generate the invariant solution and more research
and a deeper understanding is needed to make the process rigorous, however, in many cases,
intuitive arguments can be made to motivate a particular choice.

Fundamentally, some function z = Θ(x) that is (i) invariant under a (possibly multi-parameter)
symmetry generator X and is (ii) a solution of the underlying differential equation is defined
to be an invariant solution (Bluman et al., 2010). Provided that the symmetry X is given, then,
using the invariance condition (2.9), which can now be written as

X(zi −Θi(x))|zi=Θi(x)
= 0, (3.76)

26



or, inserting the definition of the infinitesimal generator (2.11),

ξj
∂(zi −Θi(x))

∂xj

∣∣∣∣
zi=Θi(x)

+ ηj
∂(zi −Θi(x))

∂zj

∣∣∣∣
zi=Θi(x)

= ξj
∂(−Θi(x))

∂xj

∣∣∣∣
zi=Θi(x)

+ ηi = −ξj
∂zi

∂xj
+ ηi = 0. (3.77)

In other words, we are looking for a solution of the quasilinear PDE

ξj
∂zi

∂xj
= ηi, (3.78)

which can be found using the method of characteristics. An introduction to this method can be
found in John (1978). The main idea is that using the characteristic variable τ , (3.78) can be
written as the ODE (ordinary differential equation) system

dxi

dτ
= ξi,

dzi

dτ
= ηi. (3.79)

By eliminating τ , one in turn obtains the system

dx1
ξ1

=
dx2
ξ2

= · · · =
dx[n]

ξ[n]
=
dz1
η1

=
dz2
η2

= · · · =
dz[m]

η[m]
, (3.80)

where n and m are the number of independent and dependent variables, respectively, and
brackets denote that the Einstein summation over repeated indices is suppressed. The solutions
z = Θ(x) of this system are invariant under the symmetry generator X, and it still has to be
ensured that they are also solutions of the given differential equation. In the next subsections,
we apply this theory to obtain some turbulent scaling laws.

3.3.1. The Logarithmic Law of the Wall

As an example, we consider how to derive the log law from symmetries, following Oberlack et al.
(2022). The symmetry generator is a linear combination of (3.38), (3.39) and (3.59)–(3.61)
and reads

X = aSc,Ixi
∂

∂xi
+ ((aSc,I − aSc,II + aSc,stat)Ū i + aTr,stat,I,1)

∂

∂Ū i

+ ((2(aSc,I − aSc,II) + aSc,stat)H ij + aTr,stat,II,ij)
∂

∂H ij
· · · , (3.81)

where we have omitted some variables whose scaling behavior is not relevant to this analysis.
The resulting invariant surface condition for the moments and components we are interested
in then reads

dx2
aSc,Ix2

=
dŪ1

(aSc,I − aSc,II + aSc,stat)Ū1 + aTr,stat,I,1

=
dH [ij]

(2(aSc,I − aSc,II) + aSc,stat)H [ij] + aTr,stat,II,[ij]

=
dH [i{n}]

(n(aSc,I − aSc,II) + aSc,stat)H [i{n}] + aTr,stat,II,[i{n}]
. (3.82)
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Here, we have adopted the notation introduced in Rosteck (2013), where

H i{n} = UiUj · · ·︸ ︷︷ ︸
n times

(3.83)

denotes the nth instantaneous velocity moment. Evidently, depending on the values of the
group parameters in (3.82), both a power law and a logarithmic law would be possible for the
mean velocity and the second instantaneous moment. However, if we assume that the presence
of the wall enters the problem through the wall friction velocity uτ , then this velocity scale
must act as symmetry-breaking. This leads to the constraint aSc,I − aSc,II + aSc,stat = 0 and,
thus, the logarithmic law of the wall

Ū1 =
aTr,stat,I,1
aSc,I

lnx2 + C1, (3.84)

where C1 is a constant of integration. It is an important advantage of this method that this
immediately also implies scaling laws for the second and all higher moments. From (3.82), it
follows that the second moment must scale as

H ij = Cijx
1−aSc,II

aSc,I
2 − aTr,stat,II,ij

aSc,I − aSc,II
, (3.85)

where Cij are also constants of integration. In general, for the nth velocity moment, we obtain

H i(n)
= Ci{n}x

(n−1)

(
1−aSc,II

aSc,I

)
2 −

aTr,stat,II,i{n}

(n− 1)(aSc,I − aSc,II)
. (3.86)

Evidently, (3.85) is a special case of (3.86). Crucially, the appearing group parameters, which
must be fitted to experimental or numerical data, are the same in (3.84) as in (3.85), and they
obviously also appear in all scaling laws for higher moments given by (3.86). In concrete terms,
this implies that the exponents in Eqs. (3.85) and (3.86) are not independent. Therefore,
as we increase the number of statistical moments considered in the fit, the relative freedom
introduced by the fitting parameters decreases. As is discussed in Oberlack et al. (2022), the
fact that the scaling behavior matches very well with numerical data for the first six statistical
moments increases the trustworthiness of this scaling law compared to scaling laws that have
not been obtained with symmetry methods and can, therefore, only be compared with a single
variable, e.g. the mean velocity. One of the main results of Oberlack et al. (2022) is shown in
Fig. 3.1, in which the good agreement of Eq. (3.86) with DNS data in the logarithmic region
can be observed. Note that Oberlack et al. (2022) also verify that Eq. (3.84) holds, and the
corresponding plot can be found in that publication. Following Marusic et al. (2013), the range
of validity for the scaling law is assumed to be 3Re1/2τ < x2uτ/ν < 0.15Reτ , though it appears
that the fit could even be extended further to the left.

3.3.2. Core Region Deficit Law

If we consider (3.82) in the central region of a channel flow, the absence of an external
symmetry-breaking velocity scale such as uτ implies that aSc,I − aSc,II + aSc,stat ̸= 0. Thus, a
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Figure 3.1.: Scaling law given by Eq. (3.86) (solid lines) fitted to numerical Poiseuille flow data
(dashed lines; Hoyas et al., 2022). Note that the coordinate system is anchored
at the wall, so that the wall is on the left-hand side and the channel center on
the right-hand side. The wall-normal coordinate x2 and the velocity moments are
nondimensionalized using the kinematic viscosity ν and the wall friction velocity
uτ . This plot is adapted from Oberlack et al. (2022), and was, like all plots in this
work, created using the Python library Matplotlib (Hunter, 2007).

power law for all statistical moments including the first one (i.e. the mean velocity) results,

Ū1 = c1x2

aSc,I−aSc,II−aSc,stat
aSc,I − aTr,stat,I,1

aSc,I − aSc,II
, (3.87)

H ij = cijx

2(aSc,I−aSc,II )−aSc,stat
aSc,I

2 − aTr,stat,II,ij
aSc,I − aSc,II

, (3.88)

H i{n} = ci{n}x

n(aSc,I−aSc,II )−aSc,stat
aSc,I

2 −
aTr,stat,II,i{n}

aSc,I − aSc,II
, (3.89)

where we again note that (3.87) and (3.88) are special cases of (3.89), but we write them
out for convenience. Note that again, the exponents for arbitrary moments only contain the
two free parameters aSc,II/aSc,I and aSc,stat/aSc,I . Nevertheless, Oberlack et al. (2022) find
excellent agreement with DNS data for up to n = 6 in a large central region of the flow, as is
shown in Fig. 3.2.

Details on the fitting procedure used for obtaining Figs. 3.1 and 3.2 can be found in Laux
(2020) and Oberlack et al. (2022).
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Figure 3.2.: Scaling law given by Eq. (3.89) (solid lines) fitted to numerical Poiseuille flow data
(dashed lines; Hoyas et al., 2022). Note that the coordinate system is anchored
at the channel center, so that the channel center is on the left-hand side and the
wall on the right-hand side, and h stands for the channel half-width. This plot is
adapted from Oberlack et al. (2022).

3.3.3. Plane Turbulent Jet Flow

We now turn our attention to self-similar plane jets, where the classical theory, which is further
detailed in Section 3.5, can be recovered using invariant solutions, and, more interestingly, a
generalized theory can be developed by including additional statistical symmetries.

Classical Scaling Law

We first show how to obtain the classical scaling laws using symmetry methods. By considering
the two scaling symmetries XSc,I and XSc,II given by Eqs. (3.52) and (3.53), i.e.

X = aSc,Ixi
∂

∂xi
+ (aSc,I − aSc,II)Ū i

∂

∂Ū i
+ 2(aSc,I − aSc,II)Rij

∂

∂Rij
· · · , (3.90)

we obtain for the invariant surface condition

dx1
aSc,Ix1

=
dx2

aSc,Ix2
=

dŪ1

(aSc,I − aSc,II)Ū1
=

R[ij]

2(aSc,I − aSc,II)R[ij]
, (3.91)

where we have omitted moments and components in which we are not interested. Integrating
the first part of these equations,

dx1
aSc,Ix1

=
dx2

aSc,Ix2
, (3.92)
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directly leads to
x2
x1

= c1. (3.93)

The constants of integration, mathematically speaking, are the invariants with respect to the
considered symmetries, and, in the context of scaling laws, are referred to as similarity variables.
Hence, (3.93) is equivalent to the definition of the classical similarity variable η to be discussed
in Section 3.5, where it is given by (3.168). Further, the relation

dx1
aSc,Ix1

=
dŪ1

(aSc,I − aSc,II)Ū1
, (3.94)

can be integrated to read

Ū1 = c21x
1−aSc,II

aSc,I
1 . (3.95)

This is equivalent to the classical result given by (3.169), where, as is also shown in Section 3.5,
the exponent 1− aSc,II/aSc,I can be constrained to −1/2. Last, for the Reynolds stresses, we
have

dx1
aSc,Ix1

=
dR[ij]

2(aSc,I − aSc,II)R[ij]
, (3.96)

where the square brackets again indicate that the Einstein summation convention is suppressed.
Integration of (3.96) leads to

Rij = c3ijx

2(aSc,I−aSc,II )
aSc,I

1 . (3.97)
As the exponent in Eq. (3.97) is fixed to be twice as large as the exponent in Eq. (3.95), this is
also equivalent to the classical proposition.

However, many publications have found that this classical theory for jets, which can similarly
also be applied to other free shear flows, does not always agree well with data, especially for
second and higher moments (e.g. George, 1989; Johansson et al., 2003; Uddin and Pollard,
2007). This is often explained by small differences in the experimental or numerical setup,
e.g. in the inlet profiles. Having derived these scaling laws from symmetries, a generalization
to cover more setups is straightforward, because it simply requires taking into account more
symmetries in the first step given by Eq. (3.90). This is discussed in the next section.

Generalized Jet Scaling Law

We now show that by including additional symmetries, we can generalize the classical results
to potentially cover more experimental and numerical jet setups. The subsequent analysis is
more conveniently conducted in the H-Formulation, but we convert the results back into the
more commonly used R-Formulation.

In addition to the two classical scaling symmetries (3.38) and (3.39), we now also consider the
statistical scaling symmetry (3.59) and the statistical translation symmetries (3.60) and (3.61).
In concrete terms, instead of (3.90), we use

X = aSc,Ixi
∂

∂xi
+
(
(aSc,I − aSc,II + aSc,stat) Ū i + aTr,stat,I,i

) ∂

∂Ū i

+ ((2 (aSc,I − aSc,II) + aSc,stat)H ij + aTr,stat,II,ij)
∂

∂H ij
· · · . (3.98)
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As a result, instead of (3.91), we now obtain the invariant surface condition
dx1

aSc,Ix1
=

dx2
aSc,Ix2

=
dŪ1

(aSc,I − aSc,II + aSc,stat) Ū1 + aTr,stat,I,1

=
H [ij]

(2 (aSc,I − aSc,II) + aSc,stat)H [ij] + aTr,stat,II,[ij]
. (3.99)

Clearly, the similarity variable as given by (3.93) can again be obtained from the first identity
in (3.99). However, for the mean velocity, integrating

dx1
aSc,Ix1

=
dŪ1

(aSc,I − aSc,II + aSc,stat) Ū1 + aTr,stat,I,1
(3.100)

leads to the more general result

Ū1 = c21x

aSc,I−aSc,II+aSc,stat
aSc,I

1 − aTr,stat,I,1
aSc,I − aSc,II + aSc,stat

. (3.101)

Evidently, Eq. (3.95) constitutes the special case of aSc,stat = aTr,stat,I,1 = 0. Last, for the second
instantaneous velocity moments, we integrate

dx1
aSc,Ix1

=
H [ij]

(2 (aSc,I − aSc,II) + aSc,stat)H [ij] + aTr,stat,II,[ij]
. (3.102)

which yields

H ij = c3ijx

2(aSc,I−aSc,II )+aSc,stat
aSc,I

1 − aTr,stat,II,ij
2 (aSc,I − aSc,II) + aSc,stat

, (3.103)

or, in R-Formulation,

Rij = c3ijx

2(aSc,I−aSc,II )+aSc,stat
aSc,I

1 − c2ic2jx
2
aSc,I−aSc,II+aSc,stat

aSc,I
1

+

(
c2i

aTr,stat,I,j
aSc,I − aSc,II + aSc,stat

+ c2j
aTr,stat,I,i

aSc,I − aSc,II + aSc,stat

)
x

aSc,I−aSc,II+aSc,stat
aSc,I

1

− aTr,stat,I,iaTr,stat,I,j
2(aSc,I − aSc,II + aSc,stat)

− aTr,stat,II,ij
2 (aSc,I − aSc,II) + aSc,stat

. (3.104)

We note again that from (3.104), Eq. (3.97) can be recovered by setting aSc,stat = aTr,stat,I,1 =
aTr,stat,II,ij = 0.

Apparently, the scaling law for the mean velocity (3.101) is slightly generalized compared
to (3.95) by now allowing some constant to be added to the mean velocity profile. For the
classical jet, such a constant would naturally be zero, as the velocity has to vanish for large
x1 and x2, but for jets with coflow, the constant would be important. Even for the classical
jet, however, the scaling law for the Reynolds stresses takes an interesting form. The second
term captures the classical behavior, while the first term introduces additional freedom to
account for e.g. a sensitivity on initial conditions. The third term vanishes in the absence of a
coflow, and in the presence of a coflow, only affects components in the first row and column of
the Reynolds stress tensor. Eventually, one of the terms will dominate, but if the exponents
take values close to each other, such a classical self-similar behavior is only observed very far
downstream, which is indeed often found in experiments (see e.g. Wygnanski and Fiedler,
1969). Using the H-Formulation, self-similarity would be observed much earlier. So far, this
behavior has not been confirmed by experiments or simulations, but these results motivate
further research into this.
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3.4. Turbulence Models

The usefulness of all known exact statistical descriptions of turbulence is limited by the closure
problem, i.e. such descriptions cannot in general be used to calculate solutions because the
number of unknowns always exceeds the number of equations. In order to obtain results, e.g.
in a numerical simulation, it is necessary to break the infinite hierarchy at some point and to
introduce empirical closure relations for the unknown terms on that level. Usually, turbulence
models are based on the statistical one-point fluctuation moment description introduced in
Section 3.1.2, but other approaches based on two-point moments (e.g. Oberlack and Peters,
1993) or on PDFs (e.g. Pope, 1994; Pope, 2011) also exist, though a discussion of such models
is beyond the scope of the present work.

The most widely used turbulence models introduce a model for Rij in the mean momentum
equation (1.6), i.e. they use

DŪ i

Dt
=
∂Ū i

∂t
+ Ū j

∂Ū i

∂xj
= − ∂P̄

∂xi
+ ν

∂2Ū i

∂xj∂xj
− ∂R̃ij

∂xj
, (3.105)

where we denote the model term for the Reynolds stress tensor with R̃ij to highlight the
distinction from the exact expression, and DŪ i/Dt denotes the material derivative. Since this
term is interpreted as an additional stress, and, therefore, modeled in analogy to the molecular
stress, such models are also referred to as EVMs (Eddy-viscosity models). These model are
discussed in more detail in Section 3.4.1.

Models that introduce modeling assumptions one level higher, i.e. for the unknown terms in
(3.3), are known as RSMs. Typical modeling assumptions used in models of this class are
discussed in Section 3.4.2.

In principle, it would be possible to retain (3.3) exactly and only introduce model assumptions
in the equations of the unclosed terms appearing therein. However, due to the fast increase of
the number of unknown terms, this is not practically feasible.

In the following review, we mostly restrict ourselves to models that are relevant to the present
work. For a broader review, the reader is referred to the article by Leschziner and Drikakis
(2002) and the textbooks by Wilcox (1994) and Pope (2000).

3.4.1. Eddy-Viscosity Models

A fundamental idea used for first-order closure was introduced by Boussinesq (1877), who
suggested modeling the Reynolds stress tensor in analogy to the molecular stress, leading to

R̃ij = −νt
(
∂Ū i

∂xj
+
∂Ū j

∂xi

)
+

2

3
kδij . (3.106)

This so-called Boussinesq approximation reduces the task of modeling the six independent
components of Rij to modeling the turbulent viscosity, or eddy viscosity, νt and the turbulent
kinetic energy k. One of the simplest models for νt is the Prandtl mixing length model (Prandtl,
1925), which is designed for simple, statistically planar shear flows. By assumption, the fluid
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primarily flows along the x1-direction and is sheared mainly along the x2-direction, so that the
second right-hand side term in (3.106) either vanishes exactly or can be neglected when inserted
into the mean momentum equation (3.105). Then, further invoking an analogy between
Reynolds stresses and molecular stresses, Prandtl (1925) makes dimensional arguments to
reformulate νt in terms of a mixing length Lm,

νt = L2
m

∣∣∣∣∣∂Ū1

∂x2

∣∣∣∣∣ . (3.107)

This model works well for simple shear flows, provided that a suitable value for the mixing
length is chosen. Unfortunately, it is not possible to know this value a priori, so that this model
has to be calibrated for every new flow it is applied to. Some authors refer to such a model as
incomplete (Wilcox, 1994). For many canonical flows, where an appropriate value for Lm is
already known, this model is nevertheless popular due to its simplicity. Improved versions of
the mixing length model were suggested by Smith and Cebeci (1967) and Baldwin and Lomax
(1978).

The special-purpose nature of this simple model, which is also observed in other algebraic
models, can readily be understood by analyzing it through the lens of Lie symmetries. Notably,
Eq. (3.107) breaks the rotational symmetry (3.28) and the scaling symmetry in space (3.31).
To observe the breaking of the rotational symmetry, we have to establish how νt, Lm and the
velocity gradient ∂Ū i/∂xj transform under it. Since νt and Lm are scalars, it is clear that they
are not affected by a rotation of the coordinate system. The transformation of the velocity
gradient under rotation can be calculated from Eq. (3.28) using Eq. (2.13) and reads

∂Ū∗
i

∂x∗j
=
∂Ūk

∂xl
Q

[α]
ik Q

[α]
jl . (3.108)

For example, assuming α = 3, insertion into (3.107) then leads to

νt
∗ = L∗

m
2

∣∣∣∣∣∂Ū∗
2

∂x∗1

∣∣∣∣∣ , (3.109)

which is obviously not the same as Eq. (3.107). Evidently, Eq. (3.107) breaks the rotational
symmetry because of the restriction to shear flows, and the associated fixed choice of the
coordinate system orientation. The practical implication of this somewhat technical discussion
is that it is unclear how to apply (3.107) to general flows, because then, it would not be obvious
which component of the velocity gradient to use.

The breaking of the scaling symmetry in space can best be observed if we insert (3.107) into
(3.106), which, due to the abovementioned restriction to shear flows only makes sense for the
(1, 2)-component and leads to

R̃12 = −L2
m

∣∣∣∣∣∂Ū1

∂x2

∣∣∣∣∣ ∂Ū1

∂x2
. (3.110)

As has been discussed in Section 3.2 in the context of the kinematic viscosity, an externally
imposed variable such as Lm cannot be affected by any of the symmetries. Thus, inserting the
scaling symmetry in space (3.31) into (3.110) yields

R̃∗
12e

−2aSc,I = −L∗
m

2

∣∣∣∣∣∂Ū∗
1

∂x∗2

∣∣∣∣∣ ∂Ū∗
1

∂x∗2
. (3.111)
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Since the e−2aSc,I cannot be cancelled, it is clear that (3.110) breaks the scaling symmetry
(3.31). This symmetry breaking due to the appearance of an external dimensional scale Lm is
intimately connected with the observation that the appropriate value for Lm differs in every
flow.

Interestingly, one of the perhaps most widely used turbulence models, the Spalart–Allmaras
model (Spalart and Allmaras, 1992), is also incomplete. Its focus on shear flows already
manifests itself in the model for R̃ij , for which it uses Eq. (3.106) but without the k-term,
because, as discussed above, this term is not important in such flows. The modeling efforts are
entirely focused on νt, which is formulated in terms of an auxiliary variable ν̃, whose entirely
empirical transport equation reads

Dν̃

Dt
= Cb1(1− ft2)S̃ν̃ −

(
Cw1fw − Cb1

κ2
ft2

)(
ν̃

d

)2

+
1

σ̃

(
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ Cb2

∂ν̃

∂xj

∂ν̃

∂xj

)
+ ft1

∂2(Ū iŪ i)

∂xj∂xj
. (3.112)

Therein,

ν̃ =
νt
fv1

, S̃ = 2

√√√√(∂Ū i

∂xj
− ∂Ū j

∂xi

)(
∂Ū i

∂xj
− ∂Ū j

∂xi

)
+

ν̃

κ2d2
ft2, (3.113)

where κ is the von Kármán constant, d the distance from the wall, all Ci are empirical model
constants and the fi are empirical functions whose form can be found in Spalart and Allmaras
(1992). Without going into further detail, the specialized nature of this model should already
be apparent. As is made clear in the original publication, the main goal of this model is to yield
good results in shear flows with minimal computational effort, while sacrificing general validity
of the model. From an industrial perspective, this makes the model attractive, especially in
fields such as airplane engineering, where only a few particular flow types are of interest.
Therefore, it should not be surprising that the Spalart–Allmaras model does not fulfill all
classical symmetries, and, in particular, breaks the scaling symmetry in space (3.31) due to the
appearance of the dimensional property d. This again shows that symmetry breaking does not
allow any conclusions about the usefulness of a model, but only about its generality.

Nevertheless, there are many practical flow problems that are not well-investigated, and for
which no special-purpose turbulence model is available. Therefore, in order to overcome the
limitations associated with such relatively simple models and to obtain a complete model, i.e. a
model that can reasonably be expected to generalize to flows without any a priori calibration, it
is necessary to find more sophisticated and robust ways to calculate k and νt. Since k is defined
as R̃ii/2, an exact but unclosed equation for it can be obtained by contracting the indices in
(3.3). In order to form dimensionally correct expressions from which to obtain νt, a transport
equation for a second scale-providing variable has to be formulated as well. Two-equation
models are primarily different in this choice. In contrast to algebraic models such as the mixing
length model, which introduce almost no computational overhead compared to a laminar
flow simulation, two-equation models do require moderately more computational effort. The
probably most well-known turbulence model is the k-ε-model (Jones and Launder, 1972),
which employs the turbulent dissipation ε as the second variable. Dimensional arguments then
lead to

νt = Cµ
k2

ε
, (3.114)
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where Cµ is a dimensionless model parameter. In the exact equation for k, the production
term appears in closed form, and dissipation and two other unknown correlations that are
generally interpreted as diffusion terms have to modeled. Since the k-ε-model already contains
the dissipation as the second model variable, this term is taken care of. The diffusion is then
modeled using a gradient-diffusion hypothesis, leading to

Dk

Dt
= −R̃ij

∂Ū i

∂xj
− ε+

∂

∂xj

((
ν +

νt
σk

)
∂k

∂xj

)
. (3.115)

Even though an exact equation for ε can be derived, it did not prove useful as a starting point
from which to develop its model equation. Two reasons are typically invoked for this: First,
the exact ε-equation is very complicated, with many unknown and difficult to measure terms,
and, second, the ε appearing in the k-ε-model primarily acts as a scale-providing variable that
is best interpreted as the energy flow rate of the turbulent cascade, and as such is determined
by large-scale motion. On the other hand, the exact equation for ε is closely related to viscous
effects that are only relevant for small-scale motion (Pope, 2000). Therefore, a purely empirical
equation whose structure is based on the k-equation (3.115),

Dε

Dt
= −Cε,1

ε

k
R̃ij

∂Ū i

∂xj
− Cε,2

ε2

k
+

∂

∂xj

((
ν +

νt
σε

)
∂ε

∂xj

)
, (3.116)

is used. The appearing model parameters Cε,1, Cε,2 and σε (together with the parameters Cµ

and σk) offer enough flexibility to calibrate this model against a wide range of canonical flows,
resulting in a model that can be expected to yield reasonably accurate results for many simple
and moderately complex flows, though it must be mentioned that the generality of this model
is still restricted by factors unrelated to the classical symmetries (3.27)–(3.33). The arguments
used in the calibration process are discussed in Section 3.4.1.

Another popular choice for the second scale-providing variable is the turbulent dissipation
rate ω. Two-equation models were thus formulated as early as Kolmogorov (1942) and later
by Saffmann (1970) and Launder and Spalding (1972). However, when talking about the
standard k-ω-model, one today typically refers to the work of Wilcox (1988) and Wilcox (2007).
Using analogous arguments as those leading to the k-ε-model, the k-ω-model reads

νt = Cω
k

ω
, (3.117)

Dk

Dt
= −α∗R̃ij

∂Ū i

∂xj
− β∗kω +

∂

∂xj

(
(ν + νtσ

∗)
∂k

∂xj

)
, (3.118)

Dω

Dt
= −αω

k
R̃ij

∂Ū i

∂xj
− βω2 +

∂

∂xj

(
(ν + νtσ)

∂ω

∂xj

)
, (3.119)

where again, a model calibration is possible using the free constants α, β, σ, β∗ and σ∗. Note
that the model constants Cω and α∗ are equal to unity and, therefore, usually not introduced in
the literature. The reason why we introduce them here lies in their relevance to the numerical
solution method discussed in Section 4.3.3.

Generally speaking, the choice of the second scale-providing variable matters relatively little,
which also helps explain why other two-equation models that have been proposed have not seen
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widespread adoption. Since, for example, ω can be expressed in terms of k and ε, Eq. (3.119)
can be turned into a transport equation for ε that only differs slightly from Eq. (3.116). The
main difference is that the diffusion term gives rise to an additional so-called cross-diffusion
term. Note, however, that this term can be crucial in some situations, for example in free shear
flows, where it ensures that the results of the k-ε-model, unlike those of the k-ω-model, do not
depend on the arbitrary free-stream boundary conditions. In fact, in an effort to obtain a model
that combines the advantages of the k-ε-model and the k-ω-model, Menter (1994) proposed
his k-ω SST (shear-stress transport) model, which is a k-ω-model that uses such cross-diffusion
terms in conjunction with an adaptation of the model parameters to blend between k-ω-model
behavior and k-ε-model behavior depending on the circumstances. Another difference between
the k-ε-model and the k-ω-model lies in the behavior of the second scale-providing variable
in the vicinity of solid boundaries. Here, ε behaves more reasonably than ω, which becomes
singular close to walls. However, since typically the near-wall region is not resolved, but
calculated using wall-functions, this is not as big an issue in practice as it might seem at
first glance. Boundary conditions for ω in the context of high-order codes are discussed in
Section 4.3.

Historically, each new generation of turbulence models fulfilled more symmetries than the
previous one, with two-equation models being the first class to fulfill all classical symmetries
given by (3.27)–(3.32) (the last two of which combine to (3.33) in the viscous case), which is
deeply connected to their completeness. Interestingly, the perhaps most prominent shortcoming
of linear EVMs—their inability to predict rotating or high streamline curvature flows accurately
(Hirai et al., 1988; Rubinstein and Zhou, 2004)—is also connected to symmetries. Here,
however, the issue arises from Eq. (3.106) admitting too many symmetries (Oberlack, 2000),
because its right-hand side is invariant under a time-dependent rotation of the system, i.e.
(3.28) with time-dependent arotα . Whereas this property, which is also known as objectivity,
makes sense for the molecular stress tensor, it does not apply to Reynolds stresses, because they
are affected by inertial effects. The simplest way to overcome this issue is by extending (3.106)
with additional terms that include not only the symmetric, but also the antisymmetric part of
the velocity gradient. Such NLEVMs (nonlinear Eddy-viscosity models) replace Eq. (3.106)
with an equation of the form

R̃ij =
2

3
kδij +

∑
k

F k
ij , (3.120)

where the F k
ij are functions of tensor products of the symmetric part of the velocity gradient

Sij given by

Sij =
1

2

(
∂Ū i

∂xj
+
∂Ū j

∂xi

)
(3.121)

and the antisymmetric part of the velocity gradientWij

Wij =
1

2

(
∂Ū i

∂xj
− ∂Ū j

∂xi

)
. (3.122)

Obviously, Eq. (3.106) is a special case of Eq. (3.120), which only uses F 1
ij = 2Sij . Crucially,

unlike Sij , Wij is sensitive to a time-dependent rotation of the system. This means that in
contrast to Eq. (3.106), Eq. (3.120) can be formulated such that the effect of system rotation
on the Reynolds stresses R̃ij is properly incorporated into the model. Note that by virtue of
the Cayley-Hamilton theorem, it can be shown that there are only ten independent symmetric
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tensor products that could appear in (3.120), though NLEVMs rarely use more than six terms.
Interestingly, (3.120) can also be obtained by invoking a number of simplifying approximations
to RSMs. Models arising from such arguments are also known as EARSMs (explicit algebraic
Reynolds stress models) and are further discussed in Section 3.4.3.

Examples for NLEVMs and EARSMs include those developed in Shih and Zhu (1993), Wallin
and Johansson (2000), Yoshizawa (1984), Gatski and Speziale (1993), Rubinstein and Barton
(1990), and Craft et al. (1996). Like the class of RSMs discussed in Section 3.4.2, these models
are in complete agreement with the classical symmetries (3.27)–(3.33).

Calibration of Two-Equation Eddy-Viscosity Models

We now address the question of how to assign appropriate values to the model parameters
appearing in Eqs. (3.114)–(3.119). As is discussed in the textbooks by Wilcox (1994) and
Pope (2000), most two-equation models follow more or less the same systematic approach. In
the following, the primary focus lies on the k-ε-model.

Homogeneous Turbulence First, the arguably simplest nontrivial turbulent flow case is
considered. In homogeneous turbulence, by assumption, all spatial gradients vanish, so that
Eqs. (3.115) and (3.116) simplify to

dk

dt
= −ε, (3.123)

dε

dt
= −Cε,2

ε2

k
, (3.124)

whose solution reads
k(t) ∝ t

1
1−Cε,2 , ε(t) ∝ t

Cε,2
1−Cε,2 . (3.125)

Due to the absence of mean velocity gradients, we expect k and ε to decay over time. Such
homogeneous, isotropic turbulence is difficult to study experimentally, but, due to its significance
for turbulence model calibration, the exponent of k in (3.125) has been determined to lie in
the range from −1.15 to −1.45 (Pope, 2000), though the standard choice of Cε,2 = 1.92 leads
to an exponent slightly below this observed range. For the k-ω-model, analogous arguments
lead to the constraint that the ratio β∗/β must be around 1.2 (Wilcox, 1994).

Homogeneous Shear Turbulence Having thus constrained the dissipation term in the ε-
equation, the next step is to fix the relative magnitude of the production term. This is accom-
plished by considering homogeneous shear turbulence. Like in homogeneous turbulence, the
spatial gradients of k and ε vanish, but one component of the velocity gradient takes a nonzero
value of 2S12. The model equations then read

dk

dt
= 4Cµ

k2

ε
S2
12 − ε, (3.126)

dε

dt
= 4Cε,1CµkS

2
12 − Cε,2

ε2

k
, (3.127)
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from which the temporal evolution of the ratio k/ε can be determined to be

d

dt

(
k

ε

)
=
dk

dt

1

ε
− dε

dt

k

ε2
= 4CµS

2
12

k2

ε2
(1− Cε,1)− (1− Cε,2). (3.128)

For large times, experimental data suggests an exponential growth according to

k = k0e
λkt, (3.129)

ε = ε0e
λεt, (3.130)

which, inserted into (3.126) and (3.127), leads to the relation

S2k
2
0

ε20
=

1

Cµ

Cε,2 − 1

Cε,1 − 1
, (3.131)

and the constraint that all exponents must be the same, i.e. λ = λk = λε. From this, λ can be
determined to be

λ = S12

√
Cµ

Cε,1 − 1

Cε,2 − 1

(
Cε,2 − 1

Cε,1 − 1
− 1

)
. (3.132)

During this exponential growth of k and ε, in the limit of large times, the ratio k/ε and the
ratio of production to dissipation 4CµS

2
12k

2/ε2 eventually becomes constant, with the latter
assuming a value around 1.7 (e.g. Pope, 2000). This leads to a vanishing left-hand side of
Eq. (3.128), so that the ratio 4CµS

2
12k

2/ε2 is determined by Cε,1 and Cε,2. Note that inserting
the standard value of Cε,1 = 1.44 into (3.128) yields a significantly higher ratio of production
to dissipation of approximately 2.1 (Pope, 2000). According to Wilcox (1994), the standard
k-ω-model does not invoke this test case and instead determines α from the log layer, which
we consider next.

The Log Region Turning again to the k-ε-model, we assume parallel channel flow along the
x1-direction, with x2 denoting the wall-normal coordinate. Further, we assume viscous effects
to be negligible. Then, the mean momentum equation (3.105) simplifies to

0 =
∂

∂x2

(
νt
∂Ū1

∂x2

)
, (3.133)

and the equations for k and ε become

0 = Cµ
k2

ε

(
∂Ū1

∂x2

)2

− ε+
∂

∂x2

(
νt
σk

∂k

∂x2

)
, (3.134)

0 = Cε,1Cµk

(
∂Ū1

∂x2

)2

− Cε,2
ε2

k
+

∂

∂x2

(
νt
σε

∂ε

∂x2

)
. (3.135)

To find a solution of Eqs. (3.133)–(3.135), we insert the famous logarithmic law for the
velocity and make a power-law ansatz for k and ε using ν and the wall friction velocity uτ for
nondimensionalization

Ū1 =
uτ
κ

lnx2+ +B, k = Ckuτ
2xnk

2+
, ε = Cε

uτ
4

ν
xnε

2+
, (3.136)
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where x2+ = x2uτ/ν, and κ is the famous von Kármán constant. Insertion of this ansatz into
(3.133) leads to the constraint 2nk−nε = 1. At the same time, the requirement that the scaling
exponents of the production and dissipation terms in Eq. (3.134) must match yields nk−nε = 1.
In order for these two constraints to be fulfilled simultaneously, nk = 0 and nε = −1must hold.
Indeed, k is usually assumed to be constant in the log layer. Further inspection of Eq. (3.134)
also reveals that due to the constancy of k, the diffusion term vanishes, so that production and
dissipation are in balance. Using this equality leads to the classical result that

ε =
uτ

3

κx2
, (3.137)

or, equivalently, Cε = 1/κ, so that the k-equation gives the relation

k =
uτ

2√
Cµ

, (3.138)

which, inserted into the ε-equation, then yields

σε =
κ2√

Cµ(Cε,2 − Cε,1)
. (3.139)

Additionally, the ratio of R̃12 and k, by virtue of the Boussinesq approximation (3.106) together
with (3.114), (3.137) and (3.138), can be shown to be

R̃12

k
=
√
Cµ. (3.140)

Experimental data implies that this ratio is around 0.3, leading to the choice of Cµ = 0.09.
With all variables of the right-hand side of Eq. (3.139) thus known, this equation can be used to
yield σε = 1.3. The only remaining model parameter σk is set to unity in the standard model.

For the k-ω-model, the analog of (3.140) constrains β∗ to 0.09, and the analog of (3.139) is
used to set α to 5/9. This choice of α requires a value for σ, which Wilcox (1994) infers from a
numerical investigation of the defect region of a boundary layer flow. In conclusion, the model
parameters of the standard k-ε-model are (Jones and Launder, 1972)

Cµ = 0.09, σk = 1.0, Cε,1 = 1.44, Cε,2 = 1.92, σε = 1.3, (3.141)

and for the standard k-ω-model (Wilcox, 1988)

Cω = 1.0, α∗ = 1.0, β∗ = 0.09, σ∗ = 0.5, α = 5/9, β = 3/40, σ = 0.5. (3.142)

This concludes the discussion of common canonical flows used for the calibration of model
parameters in EVMs. As we see in Section 5.2.1, the range of flows that can be used to set the
model parameters is somewhat narrow compared to the models to be developed in Chapter 5.
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Modifications for Increased Numerical Stability

As things stand, the equations of the k-ε-model and the k-ω-model are notorious for their
associated numerical difficulties. In the context of classical numerical schemes, which tend to
use an FVM (Finite Volume Method) discretization associated with a high numerical diffusion,
this issue usually manifests itself less strongly. Moreover, such implementations typically rely
on a segregated solution approach, so that even in the worst case, convergence will usually be
accomplished, though possibly slow.

Even in such traditional solvers, one minor tweak is often used that concerns some of the
source terms in the equations for the turbulent scalars, which can have an adverse effect on the
diagonal dominance of the matrix. Therefore, in the context of steady-state calculations, for
example, the dissipation term in the k-equation is often multiplied with the ratio of kn+1/kn,
where kn denotes the value from the current iteration, and kn+1 that from the previous one
(Schäfer, 2006). Obviously, in the limit of a stationary solution, kn = kn+1, so that this
modification does not affect the final result.

In the context of higher-order schemes such as the DG method to be discussed in Section 4.1,
however, numerical problemsmanifest themselves so strongly as to require further consideration.
Much of the pioneering work on this has been carried out in the context of the k-ω-model
(Bassi et al., 2005; Bassi et al., 2014), but the results can be applied to other two-equation
models as well (e.g. Tiberga et al., 2020). One important problem results from the fact that ω
appears in the denominator in Eqs. (3.117)–(3.119). In theory, this is not an issue, because
ω has to be strictly positive. However, in the context of high-order numerical schemes, it is
common for an intermediate solution to contain areas where ω becomes zero or negative,
often near walls. Without special treatment, such areas will obviously lead to immediate
numerical problems and inhibit further convergence. Therefore, Bassi et al. (2005) suggest
an approach first introduced by Ilinca and Pelletier (1998) in the context of an FEM (Finite
Element Method) implementation of the k-ε-model. The main idea is that instead of ω, an
equation for ω̃ = lnω is solved. Since this means that ω = exp ω̃, it is ensured that ω is always
strictly positive, regardless of the value of ω̃. The resulting equation for ω̃ is structurally similar
to the ω-equation (3.119) and reads

Dω̃

Dt
= −α

k
R̃ij

∂Ū i

∂xj
− βeω̃ + (ν + νtσ)

∂ω̃

∂xj

∂ω̃

∂xj
+

∂

∂xj

(
(ν + νtσ)

∂ω̃

∂xj

)
. (3.143)

Additionally, Bassi et al. (2005) advocate for the use of realizability conditions to impose a
stronger lower bound for ω, which improves numerical stability even more. In concrete terms,
the realizability conditions (Lumley, 1979) for the modeled Reynolds stress tensor are R̃ij

R̃[ii] ≥ 0 ∀i = 1, 2, 3; (3.144)
R̃2

[ij]

R̃[ii] R̃[jj]

≤ 1 ∀i, j = 1, 2, 3, (3.145)

which follow from the fact that squares of real numbers cannot be negative, and the Cauchy–
Schwarz inequality, respectively. The Boussinesq approximation (3.106) with (3.117), however,
does not guarantee that (3.144) and (3.145) are fulfilled in general. It turns out that inserting
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the Boussinesq approximation into the realizability conditions (3.144) and (3.145) gives rise
to constraints on the lower bound ωmin which read

ωmin − Sii = 0 ∀i = 1, 2, 3, (3.146)
ω2
min − 3 (Sii + Sjj)ωmin + 9 (SiiSjj − SijSij) = 0 ∀i, j = 1, 2, 3; i ̸= j, (3.147)

where Sij represents the symmetric part of the velocity gradient as defined by Eq. (3.121). For
k, a simple limiting in the form k′ = max(0, k) can be used, because in the k-ω-model, k never
appears in the denominator.

As a final remark, the use of DG and other high-order methods for turbulence models is often
criticized on the grounds that the model error dominates the numerical error anyway, so that
the increased complexity and effort associated with a more sophisticated numerical scheme
cannot be justified. However, the discussion in this section shows that making the numerical
issues of turbulence models visible by using more sensitive schemes can lead to these issues
being addressed. In turn, the modifications discussed here are also advantageous in the context
of classical FVM schemes, even though they might not be as crucial. Therefore, it is difficult
to dispute the usefulness of high-order methods for model development, even if the resulting
model might be better solved using more traditional numerical schemes.

3.4.2. Reynolds Stress Models

Instead of inserting modeling assumptions for Rij directly into Eq. (1.6), it is also possible to
only introduce such approximations one level higher, i.e. in Eq. (3.3). This naturally leads to a
more general model into which more physical effects can be incorporated, though this comes
at the cost of an increased model complexity, because (3.3) alone consists of six independent
equation components. This approach was pioneered by Rotta (1951), who, without the ability
to perform numerical simulations, managed to develop closure relations that still form the basis
of modern RSMs. Interestingly, some of the most important ideas to improve upon these early
models include invariant modeling (Donaldson and Rosenbaum, 1968), which has already been
discussed in Chapter 1, and realizability (Lumley, 1979) as mentioned in Section 3.4.1. Both
of these concepts fundamentally rely on the insight that properties of the exact equations—be
it invariance properties or the positive definiteness of the Reynolds stress tensor—must be
preserved by the model, which is very much in the spirit of the present work, although we also
seek to take into account additional constraints that have not been considered before. Today,
some of the most widely used RSMs include those of Launder et al. (1975) and Speziale et al.
(1991). More details on the main ideas behind these models can be found in the textbooks
by Pope (2000) and Wilcox (1994) as well as the review article by Leschziner and Drikakis
(2002), on which the following discussion is based.

In (3.3), the unknown terms to be modeled are the pressure-strain correlation

Πij = p

(
∂ui

∂xj
+
∂uj

∂xi

)
,

the dissipation

εij = 2ν
∂ui

∂xk

∂uj

∂xk
,
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and the diffusion terms
Dijk =

(
Rijk + (δjkui + δikuj)p

)
.

We discuss the most common modeling ideas for these terms in the following.

Pressure-Strain Correlation

Generally speaking, the pressure-strain correlation is probably the most important unknown
term, because it is this term that is primarily responsible for the redistribution between the
different components of Rij . In terms of its magnitude, it is also comparable to the production
term in many engineering applications. Motivated by the finding of Chou (1945) that Πij can
be expressed exactly in terms of two-point velocity correlations, Πij is usually split into a slow
part Π(s)

ij and a rapid part Π
(r)
ij . This terminology stems from the idea that the rapid part is

directly affected by the mean velocity gradient, whereas the slow part is not.

In homogeneous anisotropic decaying turbulence, the rapid part vanishes, and the slow part is
responsible for the return to isotropy that is observed in such a flow. The simplest model for
this was proposed by Rotta (1951), who suggested

Π
(s)
ij = −CR

ε

k

(
Rij −

2

3
kδij

)
, (3.148)

where the appearing constant CR is named after him. However, it later turned out that the
true behavior is more complicated, and that (3.148) should be generalized. The theory of
tensor invariants together with dimensional analysis and invoking Galilean invariance allow
narrowing down this general form to

Π
(s)
ij

ε
=
∑
n

fnT
(n)
ij , (3.149)

where T (n)
ij are the symmetric deviatoric tensors that can be formed from the normalized

anisotropy tensor
bij =

Rij

Rkk
− 1

3
δij , (3.150)

and the free functions fn determine the precise form of the model. They can be found in the
respective publications and in the textbook by Pope (2000). Within this framework, more
sophisticated models were suggested by Sarkar and Speziale (1990) and Chung and Kim
(1995).

The rapid part Π(r)
ij is usually investigated using RDT (rapid distortion theory), which considers

the limit of high mean velocity gradients. In this regime, the rapid term dominates, allowing
one to investigate its effect in isolation. The simplest model for the rapid term is given by the
linear relation due to Gibson and Launder (1978)

Π
(r)
ij = −C2

(
Γij −

1

3
Γkkδij

)
, (3.151)

where

Γij = −Rik

∂Ū j

∂xk
−Rjk

∂Ū i

∂xk
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denotes the production term, and C2 is another empirical constant.

In between the two extreme states of vanishing velocity gradients as described by homogeneous
turbulence and large velocity gradients as described by RDT, a basic model (Launder et al.,
1975) is given by

Πij = −CR
ε

k

(
Rij −

2

3
kδij

)
− C2

(
Γij −

1

3
Γkkδij

)
, (3.152)

where the first term is Rotta’s model given by Eq. (3.148), and the second term corresponds
to Eq. (3.151). Many generalizations exist, and most pressure-rate-of-strain models can be
represented using the form

Πij

ε
=
∑
n

fnT̃
(n)
ij , (3.153)

where the T̃ (n)
ij , similar to T

(n)
ij in (3.149), represent symmetric deviatoric tensors that include

bij , but, additionally, also include the symmetric and asymmetric velocity gradients Sij and
Wij , which are normalized using the turbulent timescale k/ε. The most prominent models in
this framework probably include two variants of the LRR model (Launder et al., 1975) and the
SSG model (Speziale et al., 1991).

Dissipation

For the dissipation, most models invoke the hypothesis of local isotropy (Kolmogorov, 1941),
leading to

εij =
2

3
εδij . (3.154)

Having thus reduced the six unknown components of the dissipation to the scalar ε, an equation
analogous to that used in two-equation models such as Eq. (3.116) is formulated,

Dε

Dt
= −Cε,1

ε

k
Rij

∂Ū i

∂xj
− Cε,2

ε2

k
+

∂

∂xj

(
Cε
k

ε
Rij

∂ε

∂xi

)
, (3.155)

though note that the availability of the full Reynolds stress tensor allows formulating the
production term and the diffusion term sensitive to anisotropy. Obviously, it is also possible to
use an equation for a different variable, such as ω, and infer ε from that.

Even though the hypothesis of local isotropy is usually reasonable, it is violated in the vicinity
of solid walls. In the limit of low local Reynolds numbers, Rotta (1951) assumed that the
energy-containing motion given by Rij and the dissipation motion characterized by εij overlap,
leading to the approximation

εij = ε
Rij

2k/3
. (3.156)

Therefore, Hanjalić and Launder (1976) use as a general expression

εij =
2

3
ε

(
(1− fs) δij +

Rij

2k/3
fs,

)
(3.157)

where fs, a function of the turbulent Reynolds number k2/(νε) whose values range from zero
to unity, blends between the two regimes characterized by Eq. (3.154) and Eq. (3.156). As
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better numerical results became available in the late 1980s and 1990s, Hanjalić and Jakirlić
(1993) and Jakirlić and Hanjalić (2002) developed complicated extensions to (3.157), the
precise form of which is beyond the scope of this review.

Diffusion

The remaining unclosed terms Dijk can be interpreted as diffusion terms, and have received
relatively little attention. Models for them are generally based on simple arguments relating to
dimensional and tensorial correctness, where it must be noted that Dijk is symmetric in the
indices i and j, but not in k. Based on these considerations, the simplest model was suggested
by Shir (1973) and reads

Dijk = −2

3
Cs
k2

ε

∂Rij

∂xk
, (3.158)

whereas the slightly more complicated model by Daly and Harlow (1970)

Dijk = −Cs
k

ε
Rkm

∂Rij

∂xm
(3.159)

is used more widely.

Some authors model Rijk separately, in which case (3.158) and (3.159) have to be extended
in such a way that the resulting expression is symmetric in all three indices. Extending (3.158),
Donaldson (1972) and Mellor and Herring (1973) postulate

Rijk = −2

3
Cs
k2

ε

(
∂Rjk

∂xi
+
∂Rik

∂xj
+
∂Rij

∂xk

)
. (3.160)

Hanjalić and Launder (1972) also suggest an alternative approximation of the form

Rijk = −Cs
k

ε

(
Rim

∂Rjk

∂xm
+Rjm

∂Rik

∂xm
+Rkm

∂Rij

∂xm

)
, (3.161)

which is based on Eq. (3.159). In Eqs. (3.158)–(3.161), Cs denotes an empirical constant
whose numerical value differs between models.

3.4.3. Explicit Algebraic Reynolds Stress Models

The numerical difficulties associated with solving the equations of RSMs have given rise to
EARSMs, a class of models that can be viewed as a compromise between EVMs and RSMs.
As mentioned in Section 3.4.1, these models are structurally similar to NLEVMs, but they are
derived in a very different way, namely by inserting simplifying assumptions into RSMs.

In particular, in the transport equation for Rij (3.3), convective and diffusive stress transport
are modeled algebraically using (Rodi, 1976)

dRij

dt
− ∂Dijk

∂xk
≈ Rij

k

(
dk

dt
− ∂Dllk

∂xk

)
=
Rij

k
(Γkk − ε) , (3.162)
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If Γkk and ε are known from the equations of a classical two-equation model such as the
k-ε-model, the latter equality in (3.162) is an algebraic relation for the stresses. As shown by
Pope (1975), inserting this relation into the model LRR-model (Launder et al., 1975) gives
rise to an equation of the form (3.120).

This concludes our discussion of the main ideas in turbulence modeling.

3.5. Simplifications for Free Shear Flows

An important class of flows to study in the context of turbulence modeling is that of free shear
flows, in which similarity solutions greatly simplify the numerical calculation. At the same
time, unlike e.g. in parallel shear flows, all important terms, including the convective term, are
present. Examples for free shear flows include the plane and round jet, the far wake and the
mixing layer. Following Wilcox (1994), the starting point for this investigation are Eqs. (1.3)
and (3.105) with the standard boundary layer type simplifications,

∂Ū1

∂x1
+
∂Ū2

∂x2
= 0, (3.163)

Ū1
∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2
= −∂R̃12

∂x2
, (3.164)

where

R̃12 = −νt
∂Ū1

∂x2
, (3.165)

and we are assuming Cartesian coordinates, though analogous arguments can be made for
rotationally symmetric flows using cylindrical coordinates. Similar simplifications also apply
to the equations of the turbulence model, and, for example, the equations of the k-ε-model
(3.115) and (3.116) simplify to

Ū1
∂k

∂x1
+ Ū2

∂k

∂x2
= −R̃12

∂Ū1

∂x2
− ε+

∂

∂x2

(
νt
σk

∂k

∂x2

)
, (3.166)

Ū1
∂ε

∂x1
+ Ū2

∂ε

∂x2
= −Cε,1

ε

k
R̃12

∂Ū1

∂x2
− Cε,2

ε2

k
+

∂

∂x2

(
νt
σε

∂ε

∂x2

)
. (3.167)

At this point, a crucial simplification can be made by introducing similarity variables. This
relies on the key insight that beyond a developing region, the shape of the velocity profiles
does not change, so that a single function, if scaled appropriately, can represent the entire
two-dimensional velocity field. We assume here that this self-similarity is also observed for the
other turbulent quantities appearing in the model. The form of the similarity variables differs
between the types of free shear flows. For the plane jet, experimental evidence shows that it
spreads linearly, so that the similarity variable

η =
x2
x1

(3.168)
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can be introduced. Further, we assume

Ū1 =
ũ(η)

xnu
1

, Ū2 =
ṽ(η)

xnu
1

, k =
k̃(η)

xnk
1

, ε =
ε̃(η)

xnε
1

. (3.169)

Note that this similarity ansatz can also be obtained as an invariant solution using symme-
tries, which is shown in Section 3.3. As discussed in textbooks (e.g. Pope, 2000), nu can be
constrained by integrating (3.164) from −∞ to∞, leading to

d

dx1

∫ ∞

−∞
Ū2

1dx2 = 0, (3.170)

because Ū1 and R̃12 vanish as the absolute value of x2 tends to infinity. Inserting (3.168)
and (3.169), one obtains

d

dx1

∫ ∞

−∞

(
ũ(η)2

x2nu
1

x1

)
dη = 0. (3.171)

Since ũ(η) does not depend on x1, this can only be fulfilled if x1 cancels in the integrand, i.e.
nu = 1/2. Then, in order for Eqs. (3.163)–(3.167) to be self-similar, it is necessary that nk = 1
and nε = 5/2, in which case they become independent of x1 and reduce to an ODE system. In
order to simplify the notation slightly, it makes sense to introduce the velocity-like function
Ṽ (η) defined as

Ṽ (η) = ṽ(η)− ηũ(η). (3.172)

Then, (3.163)–(3.167) can be written as

Ṽ (η) = −
∫ η

0

1

2
ũ(η̂)dη̂, (3.173)

Ṽ (η)ũ′(η)− 1

2
ũ(η)2 = Cµ

(
k̃(η)2

ε̃(η)
ũ′(η)

)′

, (3.174)

Ṽ (η)k̃′(η)− ũ(η)k̃(η) = Cµ
k̃(η)2

ε̃(η)
ũ′(η)2

− ε̃(η) +
Cµ

σk

(
k̃(η)2

ε̃(η)
k̃′(η)

)′

, (3.175)

Ṽ (η)ε̃′(η)− 5

2
ũ(η)ε̃(η) = CµCε,1k̃(η)ũ

′(η)2

− Cε,2
ε̃(η)ε̃(η)

k̃(η)
+
Cµ

σε

(
k̃(η)2

ε̃(η)
ε̃′(η)

)′

, (3.176)

where primes denote derivation with respect to η. Note that (3.173) is written in integral form
to reduce the effort needed to calculate Ṽ (η), and also because using it in differential form
was found to lead to numerical instabilities. For the plane jet, the boundary conditions are

ũ(η → ∞) = k̃(η → ∞) = ε̃(η → ∞) = 0, (3.177)
ũ′(η = 0) = k̃′(η = 0) = ε̃′(η = 0) = 0, (3.178)

though note that in practice, one would use small nonzero values in (3.177) for those variables
that appear in the denominator. These boundary conditions have the flaw that they do
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not prevent the trivial solution of all variables becoming zero everywhere. Therefore, some
symmetry-breaking constraint such as

ũ(η = 0) = 1 (3.179)

has to also be enforced. The resulting BVP (boundary value problem) can be solved numerically
with relatively little effort compared to a full two-dimensional PDE solution, which makes it
feasible to use such flows for model calibration, as is done in Section 5.3.1.

Note that the numerical solution of this system can still be a bit difficult because the outer
region of the jet, where the mean velocity tends to zero, is of course laminar. Due to the
appearance of k in the denominator in some terms, laminar flow areas, where k is zero, can be
a source of instability for two-equation models. The numerics become much more stable when
a transformation first suggested by Rubel and Melnik (1984) is introduced, which reads

dη = Cµ
k̃2

ε̃
dξ. (3.180)

Its effect is to map the turbulent-nonturbulent interface to infinite values of ξ. In the ξ-domain,
Eqs. (3.173)–(3.176) become

Ṽ (ξ) = −
∫ ξ

0

1

2
ũ(ξ̂)Cµ

k̃(ξ)2

ε̃(ξ)
dξ̂, (3.181)

Ṽ (ξ)ũ′(ξ)− 1

2
ũ(ξ)2Cµ

k̃(ξ)2

ε̃(ξ)
= ũ′′(ξ), (3.182)

Ṽ (ξ)k̃′(ξ)− ũ(ξ)k̃(ξ)Cµ
k̃(ξ)2

ε̃(ξ)
= ũ′(ξ)2 − k̃(ξ)2 +

1

σk
k̃′′(ξ), (3.183)

Ṽ (ξ)ε̃′(ξ)− 5

2
ũ(ξ)ε̃(ξ)Cµ

k̃(ξ)2

ε̃(ξ)
= Cε,1

ε̃(ξ)

k̃(ξ)
ũ′(ξ)2 − Cε,2ε̃(ξ)k̃(ξ)

+
1

σε
ε̃′′(ξ), (3.184)

where primes now denote derivation with respect to ξ. The only drawback of this formulation
is that it is unclear how far the numerical domain should extend in ξ-direction. For the plane
jet, a value of ξmax = 150 was found to work well. Results of the system (3.181)–(3.184) using
the numerical scheme discussed in Section 4.4 are presented in Section 5.3.1.

This concludes the discussion of the theoretical background from turbulence research. In
particular, the review of turbulence models in light of Lie symmetries lays an important
foundation for the developments in Chapter 5. Before that, the necessary numerical aspects
are discussed in the next chapter.
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4. Numerical Aspects

The main purpose of turbulence models is to facilitate the numerical simulation of turbulent
flows. Therefore, it is necessary to discretize their equations and implement them into a
numerical solver. The background needed to understand the work done to this end is discussed
in this chapter.

4.1. The Discontinuous Galerkin Method

For the numerical implementation of the classical k-ω-model discussed in Section 3.4.1, we use
the solver framework BoSSS (Kummer and Oberlack, 2013), which employs a DG discretization.
Since the use of DG is not yet widespread, we give a brief introduction into the method in the
following.

In recent years, the DG method has attracted growing interest because it can be seen as a
generalization of both FVM and FEM, thus combining the advantages of these two methods.
Like FVM, but unlike FEM, it allows for a conservative discretization, which guarantees that
locally, numerical errors can never lead to a violation of the conservation laws underlying the
equations being solved. In the present context of an incompressible flow solver, this means that
mass and momentum conservation are locally ensured. Since numerical errors are inevitable
and could otherwise accumulate in long-running simulations to render the results physically
unreasonable, this property is crucial in the context of CFD (computational fluid dynamics).
At the same time, an attractive property of FEM—arbitrarily high convergence order without
increasing the stencil—is also present in DG. In contrast to FVM, this allows for high-order
accuracy on unstructured grids and with minimal communication overhead across cells. This
latter aspect is particularly relevant in parallel calculations.

Several introductions into DG exist, including Cockburn (2003) and the textbook by Hesthaven
and Warburton (2008). To illustrate the method, we loosely follow Bassi et al. (2005) and
consider the general transport equation for a scalar quantity ϕ

∂ϕ

∂t
+
∂(ϕUj)

∂xj
− S = 0, (4.1)

in which Ui is the convection velocity and S represents a general source term. Using the
divergence-free property of the velocity (1.1), Eq. (4.1) could represent e.g. Eqs. (3.115)
and (3.116) or any component of Eq. (1.6) with vanishing viscosity. The goal is to find a
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function ϕh that approximates the solution ϕ of Eq. (4.1). Since ϕh does not solve Eq. (4.1)
exactly, inserting it into Eq. (4.1) leads to the residual

r =
∂ϕh

∂t
+
∂(ϕhUh;j)

∂xj
− S, (4.2)

where Uh;i is an approximation for the velocity. In order to minimize this residual, the Galerkin
orthogonality condition is invoked. In concrete terms, r is required to be orthogonal to the
space of test functions v in the domain Ωh, leading to the weak form of Eq. (4.1)∫

Ωh

rvdV =

∫
Ωh

(
v
∂ϕh

∂t
+ v

∂(ϕhUh;j)

∂xj
− vS

)
dV = 0. (4.3)

It is understood that (4.3) must hold for arbitrary v. Using integration by parts and Stokes’s
theorem, we can rewrite the convective term into a volume integral and a surface integral,
yielding ∫

Ωh

v
∂ϕh

∂t
dV +

∫
∂Ωh

vϕhUh;jnjdS −
∫
Ωh

∂v

∂xj
ϕhUh;jdV −

∫
Ωh

vSdV = 0, (4.4)

where ∂Ωh denotes the boundary of the domain Ωh and ni is the normal vector pointing
outward from the domain. The next step is the actual discretization, i.e. we divide Ωh into
non-overlapping subdomains (or cells) Ωk,∑

k

∫
Ωk

vk
∂ϕk

∂t
dV +

∑
k

∫
∂Ωk

vkϕkUk;jnk;jdS −
∑
k

∫
Ωk

∂vk

∂xj
Uk;jϕkdV

−
∑
k

∫
Ωk

vkSdV = 0, (4.5)

where the approximate solution ϕk, the approximate velocity Uk;i, the test function vk and the
outward-pointing normal vector nk;i are now specific to each cell. Here, we restrict ϕk and
vk to be piecewise polynomials inside a cell Ωk. Crucially, this means that we do not enforce
continuity across cell boundaries, which forces us to pay special attention to the surface integral,
because at the interior edges of the domain, ϕk is double-valued. In order to ensure that the
expression inside the surface integral in (4.5) is meaningful, we introduce the numerical flux

fc(ϕ
in
k , ϕ

out
k , nΓ;i) ≈ ϕkUk;jnk;j , (4.6)

which not only depends on ϕink , i.e. the edge value when approaching an edge from the inside
of the kth cell, but also on ϕoutk , which denotes the value on the edge when approaching an
edge from the outside of the cell. Here, nΓ;i denotes a normal field that uniquely assigns a
normal vector to each edge. On boundary edges, nΓ;i is chosen such that it points outward.
The precise form of fc is addressed later, though we note here that any suitable flux function
must fulfill the symmetry condition fc(ϕink , ϕoutk , nΓ;i) = −fc(ϕoutk , ϕink ,−nΓ;i). Also note that fc
is responsible for the coupling between cells, which is obviously a prerequisite for a meaningful
discretization.

A natural question at this stage is why one would allow discontinuities when the exact solution
for ϕ can be expected to be continuous. The answer is that allowing for discontinuities introduces
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additional freedom that can be used to ensure that the conservation laws are locally fulfilled. As
has been alluded to at the beginning of this section, any numerical and discretization error will
not lead to a violation of conservation laws, but instead cause discontinuities at cell boundaries.
This is preferable because this kind of error does not accumulate over time, and, furthermore,
is obviously visible in the numerical solution. The additional freedom also helps with ensuring
the stability of the discretization.

Equation (4.5) can be written in a global form. First, the sums of the volume integrals over cells
Ωk are written as integrals over the entire discretized domain Ωh. Second, if we distinguish
between inner edges Σh and boundary edges Γh, the sum of the surface integrals can be
rewritten, leading to∫

Ωh

v
∂ϕh

∂t
dV +

∫
Σh

(vin − vout)fc(ϕ
in
h , ϕ

out
h , nΓ;i))dS +

∫
Γh

vinfc(ϕ
in
h , ϕ

∗
h, nΓ,i)dS

−
∫
Ωh

∂v

∂xj
ϕhUh;jdV −

∫
Ωh

vSdV = 0. (4.7)

The state ϕ∗h is used to weakly prescribe boundary conditions. At the inflow, where Dirichlet
boundary conditions are enforced, ϕ∗h is set to the boundary value, and at the outflow, it is
set equal to the inner value at the respective edge ϕinh . A more general discussion about the
implementation of boundary conditions is found in Hesthaven and Warburton (2008).

We now address the choice of the numerical flux function fc, which serves to reconcile the two
values of ϕh at inner edges, where discontinuities are allowed. In addition to the symmetry
condition already mentioned above, the numerical flux function fc also has to fulfill the
consistency condition

fc(ϕh, ϕh, ni) = ϕhUh;jnj , (4.8)

and, furthermore, it must be Lipschitz continuous (Pietro and Ern, 2012). The simplest choice
is an upwind flux, i.e. we select one of the two values depending on the local direction of the
flow velocity, leading to

fc(ϕ
in
h , ϕ

out
h , nj) =

{
ϕinh U

in
h;jnj for Uh;jnj > 0

ϕouth Uouth;j nj for Uh;jnj < 0.
(4.9)

The main disadvantage is that the upwind flux has a high numerical diffusion, though this
leads to a very stable discretization. By contrast, the perhaps most straightforward idea of
taking the average of both values leads to the central flux

fc(ϕ
in
h , ϕ

out
h , nj) =

(
ϕinh U

in
h;j + ϕouth Uouth;j

2

)
nj , (4.10)

which has no numerical diffusion, rendering it unstable in many cases. However, for some
terms, like the pressure gradient, using the central flux does not cause instability, in which case
it makes sense to use it. For other terms where this is not the case, a compromise between lower
numerical diffusivity and stability can be achieved by extending (4.10) such that discontinuities
are penalized. This is known as the Lax–Friedrichs flux, which reads

fc(ϕ
in
h , ϕ

out
h , nj) =

(
ϕinh U

in
h;j + ϕouth Uouth;j

2

)
nj + C(ϕinh U

in
h;j − ϕouth Uouth;j )nj , (4.11)
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where the factor C can be chosen large enough to ensure stability, but not so large as to
introduce excessive numerical diffusivity. This is generally used in BoSSS for convective terms,
and C is chosen locally in each cell.

Some discussion is also necessary for the treatment of diffusion terms. Considering a pure
diffusion equation with diffusion coefficient ν

∂

∂xj

(
ν
∂ϕ

∂xj

)
= 0, (4.12)

we again approximate ϕ with ϕh. The same arguments as before give rise to the weak form∫
∂Ωh

v

(
ν
∂ϕh

∂xj

)
njdS −

∫
Ωh

∂v

∂xj

(
ν
∂ϕh

∂xj

)
dV = 0. (4.13)

On the discretized domain, the global form of Eq. (4.13) reads∫
Γh∪Σh

fd(ϕ
in
h , ϕ

out
h , nΓ;i)(v

in − vout)dS −
∫
Ωh

∂v

∂xj

(
ν
∂ϕh

∂xj

)
dV = 0. (4.14)

Note that we again have to introduce a flux function fd to ensure a reasonable expression
despite the discontinuous nature of ϕh and v. Similarly to what we observe in the context of
the convective term, the most straightforward idea

fd(ϕ
in
h , ϕ

out
h , nj)(v

in − vout) =
1

2

(∂ϕh
∂xj

)in
+

(
∂ϕh

∂xj

)outnj(v
in − vout) (4.15)

fails to adequately penalize jumps across cells, which can again lead to instability. Therefore,
BoSSS instead uses the SIP (symmetric interior penalty) flux, which reads (Shahbazi, 2005)

fd(ϕ
in
h , ϕ

out
h , nj)(v

in − vout) =
1

2

(∂ϕh
∂xj

)in
+

(
∂ϕh

∂xj

)outnj(v
in − vout)

+
1

2

( ∂v

∂xj

)in
+

(
∂v

∂xj

)outnj(ϕ
in
h − ϕouth )

− Cη(ϕ
in
h − ϕouth )(vin − vout). (4.16)

Here, the last term serves to penalize jumps across cells, and Cη must be again chosen large
enough to ensure stability, but too large a value would introduce unnecessary numerical
diffusion. The optimal value varies across cells and is heuristically calculated in BoSSS. The
first term is known as the consistency term, and the second term, or symmetry term, ensures
that the expression does not change when exchanging ϕh and v, which is also true for the
original weak formulation of (4.12).

The last question to be addressed concerns the choice of the trial function ϕh and the test
function v. For ϕh, cell-local polynomials are used, i.e. for the cell with index k,

ϕk(x, t) =

Nk∑
i=0

ϕ̂k;i(t)ψk;i(x), (4.17)
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where ψk;i(x) is the polynomial basis, and ϕ̂k;i are the degrees of freedom in the cell. In the
one-dimensional case, one might e.g. choose monomials, i.e. ψk;i = xi. While the choice of the
polynomial basis does not affect the final solution, it does have an influence on the properties of
the numerical method, e.g. in terms of stability and efficiency. BoSSS uses modal polynomials
as a basis. Note that by definition, ψk;i is zero everywhere outside the cell k. The global solution
ϕh is then given by the sum of all ϕk. The characteristic feature of a Galerkin method is that
the same basis functions are used for the test function v as for the trial function ϕh,

vk;i(x) = ψk;i(x). (4.18)

Inserting (4.17) and (4.18) into (4.7) or (4.14) (or a combination of both) while using
appropriate flux functions then leads to an algebraic equation system which has to be solved
for the ϕ̂k;i using a suitable numerical algorithm. Note that we can essentially recover an FVM
discretization by restricting ourselves to zero-degree polynomials in (4.17) and (4.18). On the
other hand, an FEM-like discretization would have emerged if we had excluded the possibility
of discontinuities early in the derivation.

4.2. Temporal Discretization

Having discussed the spatial discretization, we now briefly demonstrate the temporal discretiza-
tion following Ferziger et al. (2020). To this end, we write (4.1) as

dϕh

dt
= F (t, ϕh), (4.19)

where we assume that ϕh is already spatially discretized, either using the DG discretization
shown in Section 4.1 or another discretization technique such as FVM or FDS. Integration of
Eq. (4.19) with respect to time leads to

ϕn+1
h = ϕnh +

∫ t+∆t

t
F (τ, ϕh)dτ, (4.20)

where ∆t is the time step size, ϕnh represents the solution of the nth time step, which we
assume to be the current time step, and ϕn+1

h is the solution of the next time step. Different
approximations for this integral then lead to various time discretization schemes with different
properties. The simplest idea is to use the current values of t and ϕh to approximate the entire
interval, i.e. ∫ t+∆t

t
F (τ, ϕh)dτ ≈ F (t, ϕnh)∆t, (4.21)

which leads to the explicit Euler scheme. Notably, as is the defining feature of explicit methods,
Eq. (4.21) together with Eq. (4.20) allows calculating the solution of the new time step
based entirely on information of the current time step, which makes obtaining ϕn+1

h simple to
implement and computationally inexpensive. However, explicit methods have the drawback
that for too large a time step, they become unstable. The largest stable time step size is
constrained by the CFL-condition (Courant et al., 1928), which can often lead to prohibitively
small required time steps. Moreover, in the context of incompressible flows, since the continuity
equation (1.1) does not contain a temporal derivative, the resulting spatially discretized system
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is a DAE (differential-algebraic equation) problem. For such stiff systems, implicit schemes are
necessary (e.g. Hairer and Wanner, 1996). The simplest implicit method is the implicit Euler
scheme, which is given by ∫ t+∆t

t
F (τ, ϕh)dτ ≈ F (t+∆t, ϕn+1

h )∆t, (4.22)

where the right-hand side of (4.22) contains the unknown solution of the new time step, so
that (4.20) with (4.22) inserted must be solved using either a nonlinear solver or, if F is
linear or has been linearized, a linear solver. However, this additional effort compared to using
(4.21) is often compensated by the possibility to use larger time steps, because the implicit
Euler method is stable for arbitrarily large time steps. Of course, if an accurate resolution of
transient effects is desired, this does introduce a constraint on the time step. An improvement
over the first-order accurate implicit Euler method is provided by the second-order accurate
Crank–Nicolson method given by∫ t+∆t

t
F (τ, ϕh)dτ ≈ F (t, ϕnh) + F (t+∆t, ϕn+1

h )

2
∆t, (4.23)

which we use for the pseudo-time stepping solution of the system discussed in Section 5.3.1.

All of these methods shown up to here fall into the category of two-level methods, because
only information at the nth and the (n+ 1)st time step are taken into account. In the solver
implemented in BoSSS, implicit BDF (backward differentiation formula) schemes are used.
The main idea is to increase the accuracy by using information of the k last time steps. Their
general form reads

ϕn+1
h −∆ta0F (t+∆t, ϕn+1

h ) =

k∑
j=1

ajϕ
n+1−j
h , (4.24)

where the coefficients aj are given up to k = 4 in Table 4.1. Note that for k = 1, the implicit
Euler method given by (4.22) is recovered.

k a0 a1 a2 a3 a4
1 1 1
2 2/3 4/3 −1/3
3 6/11 18/11 −9/11 2/11
4 12/25 48/25 −36/25 16/25 −3/25

Table 4.1.: The values of the coefficients appearing in Eq. (4.24) for up to k = 4.

4.3. Implementation of the Classical k-ω-Model in BoSSS

The implementation of classical turbulence models such as the k-ω-model is intended to be
an intermediate step toward using BoSSS as a testing ground for novel turbulence models,
whose development is discussed in Chapter 5. However, this goal proved to be more ambitious
than originally anticipated, because (i) even well-established models require significant effort
to run reliably in DG, and (ii) the novel turbulence models proved even more numerically
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difficult. Therefore, a better path for the present purposes turned out to be to implement the
new models for simple flows, in which the governing equations can be reduced to ODEs, and to
discretize these equations using very simple numerical schemes to be discussed in Section 4.4.
This special-purpose implementation is presented in Section 5.3.1. In conclusion, it should be
kept in mind that the focus of the present section does not lie on reproducing experimental
results with the k-ω-model, but rather to obtain qualitatively reasonable results in a robust
way.

Solving two-equation RANS turbulence models using a DG discretization introduces an array of
issues not as prominently encountered in a typical FVM context. A major challenge arises from
the nonlinearity of the model equations, which obviously also carries over to the discretized
system. Its solution, therefore, requires a nonlinear solver, which is always a potential point
of failure, because no existing algorithm is guaranteed to converge to the correct solution.
In fact, it is not even generally clear if a unique solution exists at all. This issue is neither
specific to DG nor turbulence model calculations, because even a simple laminar Navier–Stokes
FVM calculation requires some nonlinear solution algorithm due to the nonlinearity in the
convective term of Eq. (1.2). However, convergence issues of the nonlinear solver are usually
less pronounced for such relatively simple equations and diffusive schemes. On the other hand,
in DG, more care must often be taken to prevent convergence issues, especially in the context
of RANS calculations, but also in viscoelastic flows (Kikker and Kummer, 2018) or combustion
calculations (Gutiérrez-Jorquera and Kummer, 2021).

For any incompressible flow solver, an issue that has to be addressed is that of velocity-pressure
coupling. In BoSSS, the straightforward approach of solving the entire set of equations in a
coupled way is employed. Care must be taken to prevent physically unreasonable fluctuations
of the pressure, i.e. the analog of the checkerboard instability observed in many numerical
methods for incompressible flows (Schäfer, 2006). To this end, a mixed-order discretization is
used, in which the polynomial degree of the pressure field is chosen to be smaller by one than
the polynomial degree of the velocity and the other variables. This is intended to ensure that
the Ladyženskaja-Babuška-Brezzi condition (Babuška, 1973; Brezzi, 1974) is fulfilled, even
though, strictly speaking, no rigorous proof for this in the general setting discussed here exists.
Note that this fully-coupled solution approach, while conceptually simple, is very demanding
of the nonlinear solver, and can easily lead to convergence issues. We discuss some measures
that address these challenges in Sections 4.3.2–4.3.4.

In the context of the k-ω-model, care must also be taken with respect to the boundary conditions
for ω. In theory, ω has the disadvantageous property of becoming infinitely large at solid walls.
Numerical codes employ heuristics to obtain suitable wall boundary conditions ωwall, however,
these heuristics must be adapted for DG codes, because the appropriate value of ωwall depends
on the degreem of the polynomial used to approximate the solution for ω. Following Schoenawa
(2014), we use

ωwall =
6ν

β∗(amxwall)2
, (4.25)

where xwall denotes the distance of the wall-adjacent cell center from the wall, and the factors
am can be calculated using a recursion formula. We give values for up to m = 3 in Table 4.2,
and values for up to m = 10 as well as details on their calculation can be found in Schoenawa
(2014).
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DG-degree m am
0 0.37
1 0.0821
2 0.0357
3 0.0199

Table 4.2.: The parameter am appearing in Eq. (4.25).

In the following, we first present a boundary layer test case in Section 4.3.1. Since this test
case is particularly difficult in terms of convergence, it serves as a case study with which the
various measures to support the convergence of the nonlinear solver can be presented. These
measures are discussed in Sections 4.3.2–4.3.4. A preliminary solver validation is discussed in
Appendix A.2.

4.3.1. Results for a Boundary Layer Test Case

Since the implementation of the classical k-ω-model is an intermediate step on the path
to implementing one of the new models discussed in Chapter 5, relatively few calculations
were performed with it. Here, we present the results of a simple boundary layer flow. The
primary purpose of this calculation was not to obtain accurate results, but to act as a proof of
concept for a turbulence model in BoSSS. The simulation of the boundary layer, in particular,
proved difficult, and, therefore, requires numerous tweaks to the solution algorithm, which are
discussed in Sections 4.3.2–4.3.4. More information on these modifications can also be found
in Gutiérrez-Jorquera and Kummer (2021), who discuss them in the context of combustion
simulations.

The boundary layer test case consists of a rectangular domain with an impermeable, no-slip
wall at the bottom, a velocity inlet on the left, and pressure outlets at the top and on the right.
A schematic view is shown in Fig. 4.1. An important observation is that we cannot simply

Figure 4.1.: Schematic view of the boundary layer setup.

impose a block profile for the velocity at the inlet, because this would lead to a contradiction in
the lower left corner, where the velocity inlet meets the wall. Whereas more diffusive numerical
methods might be able to smooth out such a singular point and obtain good results in the
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rest of the domain, high-order discretization schemes such as DG tend to be very sensitive to
such points. Therefore, we have to impose an inlet velocity profile that qualitatively already
resembles a very thin boundary layer profile. It is given by the function

Ū inlet1 (x2) = Ū0
1

(
1− ex2/λ

)
, (4.26)

where Ū0
1 denotes the characteristic velocity, and for the length scale λ a value of 0.001h is

chosen. Similarly, for k and ω̃, the functions

kinlet(x2) =
(
k0 − kwall

)(
1− ex2/λ

)
+ kwall, (4.27)

ω̃inlet(x2) =
(
ω̃0 − ω̃wall

)(
1− ex2/λ

)
+ ω̃wall (4.28)

are used, where the characteristic values k0 and ω̃0 are difficult to estimate directly, and are
hence calculated from estimates for the turbulent intensity I and the turbulent length scale L
using

k0 =
3

2

(
Ū0

1I
)2
, (4.29)

ω̃0 =
k0

4
√
0.09L

. (4.30)

Here, the turbulent intensity I is chosen to be 10−4 and the length scale L is assumed to be
0.1h. At the wall, the velocity has to be zero. The turbulent kinetic energy k also becomes zero
at the wall, however, for numerical reasons, we assume a small nonzero value of 10−9 here.
For the transformed turbulent dissipation rate ω̃, we use Eq. (4.25) to calculate an appropriate
wall value. At the pressure outlet, homogeneous Neumann boundary conditions for k and ω̃ are
assumed. The molecular viscosity is chosen to be 10−4. All variables are nondimensionalized
using the domain height h and the characteristic velocity Ū0

1.

The numerical mesh is shown in Fig. 4.2. Obviously, the resolution is much finer close to the
wall, where we expect the highest gradients, and the expectation that gradients in x2-direction
are higher than in x1-direction leads to the rectangular shape of the cells. Note that we use a
simple hanging-node refinement, which makes it straightforward to ensure a similar aspect
ratio in all cells. The ability of DG to work with such grids is one of its most prominent
advantages (Cockburn, 2003). For the mean velocity Ū i, the turbulent kinetic energy k and the
transformed specific turbulent dissipation rate ω̃, we use a DG-degree of two, and a DG-degree
of one is used for the pressure P̄ . This leads to a third-order discretization in Ū i, k and ω̃ and
second-order discretization in P̄ .

The results for all quantities are shown in Fig. 4.3. For the mean velocity, the typical boundary
layer profile can be observed. Note that close to the outlet, results for the turbulent kinetic
energy k show a peak near the wall, which is expected and can be explained by the high velocity
gradients causing turbulent production in this area. The turbulent dissipation rate ω becomes
very large in a thin area close to the wall, so that it is better visualized using the transformed
ω̃. In a post-processing step, the original ω was also calculated, and a close-up of the lower
right corner is shown in Fig. 4.4. We stress again that these results were only obtained as a
proof of concept for a converging solver, and no claims to quantitative accuracy are made. The
calculations were in part performed on the Lichtenberg high performance computer, which is
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Figure 4.2.: The numerical mesh used for the boundary layer calculation.

funded by the Federal Ministry of Education and Research (BMBF) and the state of Hesse as
part of the NHR Program.

Apart from the modifications to the implemented equations discussed in Section 3.4.1, BoSSS
also features a number of important tweaks at a lower level, e.g. the nonlinear solver. We
discuss these aspects in the following.

4.3.2. Globalization for the Nonlinear Solver

Evidently, the nonlinear nature of the governing equations requires some iterative solution
approach for the discretized system. In principle, for stationary calculations, it would be
possible to use a pseudo-time stepping approach, i.e. to treat the problem as time-dependent
and apply one of the time discretization methods discussed in Section 4.2 until a stationary
state is reached. In each time step, an ad-hoc linearization using values from the previous
pseudo-time step can then be used. This technique was found to be very robust in the context
of the FDS calculations of the self-similar turbulent plane jet to be discussed in Sections 4.4
and 5.3. However, another possibility is to use a Newton-type nonlinear solver. Note that such
solvers do not always perform well when applied to numerically problematic equations such as
those of two-equation turbulence models. The nonlinear solver implemented in BoSSS employs
a globalization method to be described in this section, making its use feasible in this context. A
thorough treatise of this subject is found in Pawlowski et al. (2006) and Deuflhard (2011).

The fundamental idea of Newton-type solvers for nonlinear equations is to find the roots of the
equation through iteratively improved guesses while using gradient information to speed up
convergence. In turn, this can also be applied to optimization problems, in which case we can
use the Newton method to find local minima or maxima, i.e. roots of the first derivative. Note
that in the following, we assume that we are interested in finding minima. In concrete terms,
given a possibly nonlinear function f(x), finding its minimum x∗ is equivalent to finding the
root of its derivative, i.e. f ′(x∗) = 0. For some point xn, which we can interpret as our current
guess for x∗, we express f ′(x∗) using its Taylor expansion

f ′(x∗) = f ′(xn) + f ′′(xn)(x∗ − xn) + O(x∗2) = 0, (4.31)

where we have used the fact that f ′(x∗) is zero, because x∗ is a local minimum. We also assume
that f is sufficiently smooth, so that this Taylor expansion is valid. Neglecting second-order
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(a) Mean velocity Ū1.

(b) Mean velocity Ū2.

(c) Turbulent kinetic energy k.

(d) Transformed turbulent dissipation rate ω̃.

Figure 4.3.: Boundary layer results for the classical k-ω-model.

terms in (4.31) and solving for x∗ then leads to

x∗ ≈ xn − f ′′(xn)
−1
f ′(xn), (4.32)
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Figure 4.4.: Turbulent dissipation rate ω (close-up of the lower right corner).

where we cannot use an equal sign because we are dealing with an approximation. However,
assuming that the error is small, we can interpret the right-hand side of (4.32) as an improved
guess for x∗, leading to the recursion formula

xn+1 = xn − f ′′(xn)
−1
f ′(xn). (4.33)

This can be generalized to equation systems by understanding that f ′ then refers to the Jacobian
matrix of f , f ′′ to its Hessian matrix and the operation ()−1 to matrix inversion.

Clearly, the success of this method hinges on whether the linear approximation given by
(4.32) is sufficiently accurate. Roughly speaking, if the current guess xn is already close to
the correct minimum x∗, this approximation is reasonable, and a fast convergence can be
achieved. However, far away from the correct minimum x∗, this linear approximation should
not be trusted. In its classical form, the Newton algorithm includes no such notion of trust and
always directly descends to approximated minimum xn+1, which can cause seemingly random
behavior under some circumstances. In other words, the classical Newton method has poor
global convergence properties.

Note that there is not always a need to solve (4.33) exactly, especially in the early steps of the
iteration, when the guess xn+1 is probably far from the correct minimum x∗ anyway. Methods
that only use an approximation for (4.33) are known as inexact Newton methods.

For guesses xn far away from the correct minimum x∗, a more reasonable approach would
be to descend along the direction of the steepest descent, but only as far as we can trust the
linear approximation. This is precisely the idea behind gradient descent methods, which can
be expressed by the recursion formula

xn+1 = xn − δf ′(xn), (4.34)

where δ determines the step size. The main challenge of these algorithms is to select an
appropriate value for δ. If it is too large, the same issues as those observed with the Newton
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method can arise, but too small a value leads to unnecessarily slow convergence. Note that in
the one-dimensional case, as a comparison of Eq. (4.34) and Eq. (4.33) reveals, the Newton
method for optimization can be viewed as the special case of a gradient descend method in
which the step size is determined using curvature information, i.e. f ′′.

In BoSSS, where we deal with high-dimensional equation systems, the nonlinear solution
algorithm that proved to work best for the k-ω-model is the so-called Dogleg method (Powell,
1970), which falls into the category of trust region methods. Since it improves the global
convergence properties of the Newton algorithm, the Dogleg method and similar algorithms
are known in the literature as globalization methods. Apart from the current guess xn (now
typeset in bold because we are dealing with vectors) and the new, possibly inexact Newton
guess xN

n+1 given by (4.33), this method also takes into account the so called Cauchy point
xC
n+1, which is defined to be the point where |f | has its local minimum along the direction of
steepest descent. We also assume that in a region of radius ∆ around xn, the approximation
of f can be trusted. The choice of the next guess xn+1 depends on the location of xN

n+1 and
xC
n+1. Three cases can be distinguished:

(i) If the Newton guess xN
n+1 lies inside the trust region, we accept it as the next guess, i.e.

xn+1 = x
N
n+1.

(ii) If the Newton guess xN
n+1 and the Cauchy point xC

n+1 both lie outside the trust region,
we go toward the Cauchy point until the edge of the trust region, i.e.

xn+1 = xn +
∆∣∣xC

n+1 − xn

∣∣ (xC
n+1 − xn

)
.

(iii) Otherwise, i.e. if the Newton guess xN
n+1 lies outside the trust region, but the Cauchy

point xC
n+1 lies inside the trust region, we take as the new guess the point where the line

from xC
n+1 to xN

n+1 intersects the boundary of the trust region. We can write this as

xn+1 = xn + (1− τ)
(
xC
n+1 − xn

)
+ τ

(
xN
n+1 − xn

)
,

where τ is chosen such that |xn+1 − xn| = ∆.

These three cases are illustrated for the two-dimensional case in Fig. 4.5. Note that this method
behaves like the classical Newton method close to the correct minimum x∗, where, provided
that the trust region is suitably chosen, case (i) will be invoked. On the other hand, far away
from the correct minimum, case (ii) will occur, making the algorithm behave like a gradient
descent method, with the step size given by the trust region radius ∆. Also note that in each
iteration, measures are taken to ensure that the trust region radius ∆ is not too large. This
is accomplished by comparing the approximation for f(xn+1) with its correct value. If the
discrepancy is too large, instead of accepting xn+1 as the new guess, the iteration is repeated
using a smaller trust region. For details on the heuristics used for the choice and the adaptation
of the trust region, we refer to Pawlowski et al. (2006).
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(a) Case (i) (b) Case (ii) (c) Case (iii)

Figure 4.5.: The three possible cases of the trust region algorithm. The selected next step xn+1

is highlighted in red.

4.3.3. Homotopy Approach to Improve the Initial Guess

In cases where the above modifications still do not lead to convergence, it may be helpful to
improve the initial guess for the nonlinear solver. An obvious way of accomplishing this is by
using one’s intuition, or, if available, an analytical solution for a similar setup, to initialize
the calculation in a reasonable way. However, this only works for relatively simple setups.
More generally, one may employ homotopy methods, in which one first solves a simplified
equation system for which the solver will converge even with a poor initial guess, and then
gradually fades to the full equation system. In the case of the k-ω-model, one could set all
model constants to zero. This relatively simple system, which essentially consists of the laminar
Navier–Stokes equations coupled with two scalar convection-diffusion equations, is likely to
converge in most cases. If necessary, one could also raise the molecular viscosity for this early
step, thus further increasing the numerical stability. Of course, the molecular viscosity would
have to be decreased to its target value throughout the following homotopy steps. This was,
however, not found to be needed for the boundary layer test case. The solution of such a
simplified equation system, while quantitatively quite different from the result of the full
system, can nonetheless be used as a reasonable initial guess for the full system. If necessary,
intermediate steps, in which the aforementioned terms are scaled down by some factor, can be
taken.

Such a homotopy method has been implemented and successfully applied to a turbulent
boundary layer case, the details of which are discussed in Section 4.3.1. It was found that this
test case does not converge if a solution of the full model equations given by (1.3), (3.105),
(3.106), (3.117), (3.118) and (3.143) is attempted directly. If, instead, the homotopy path
whose steps are shown in Table 4.3 is followed, the solver converges successfully. The rationale
for this particular homotopy path is that the first step, which consists of a weakly-coupled
system of the Navier–Stokes equations and two scalar convection-diffusion equations, is likely
to converge without problems for most test cases. The subsequent activation of the turbulent
viscosity in all equations by setting Cω, σ and σ∗ to unity increases the coupling, but, due to its
diffusive nature, is also unlikely to cause major convergence issues. However, switching on the
production and dissipation terms by increasing α, α∗, β and β∗ can quickly lead to convergence
issues and, therefore, these terms are faded in slowly. The intermediate results for Ū1 and k in
the various homotopy steps are shown in Figs. 4.6 and 4.7. It is clear that whereas the changes
of the mean velocity are hardly visible, the effects of the turbulence source terms on k are
drastic, to the point where we even have to adapt the color map for the different k-plots. Note
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that the convergence criterion for the intermediate steps need not be too strict, which manifests
itself in the visible artifacts in the intermediate solutions for k. Clearly, the final result for k
is very different from the initial guess, which helps explain the observed convergence issues
when not using the homotopy approach described here.

As an alternative to this manual homotopy mode, in which the user has to specify each of the
homotopy steps taken, an automatic mode, which is less flexible, but requires no configuration
by the user, is also available. The latter mode tightly integrates with the nonlinear solver
algorithm discussed in Section 4.3.2, and aims to move along the homotopy path sufficiently
slowly that the Newton step never lies outside the trust region. Preliminary tests indicate that
the manual homotopy mode works more reliably for this test case.

homotopy step i α∗
i /α

∗
end β∗i /β

∗
end σ∗i /σ

∗
end αi/αend βi/βend σi/σend Cω,i/Cω,end

1 0 0 0 0 0 0 0
2 0.001 0.001 1 0.001 0.001 1 1
3 0.1 0.1 1 0.1 0.1 1 1
4 0.5 0.5 1 0.5 0.5 1 1
5 0.8 0.8 1 0.8 0.8 1 1
6 1 1 1 1 1 1 1

Table 4.3.: Homotopy steps for the calculation of a turbulent boundary layer.

4.3.4. Adaptive Mesh Refinement

The fact that we have to limit k and ω̃ to physically reasonable values is usually due to poor
local spatial resolution of the numerical grid. Therefore, in addition to applying the limiting as
described in Section 3.4.1, it is sensible to also dynamically refine the mesh in these areas. For
the numerical test case of the boundary layer presented in Section 4.3.1, AMR (adaptive mesh
refinement) proved pivotal to achieve convergence, even though the initial mesh was already
finer close to the wall. In combination with the homotopy method discussed in Section 4.3.3,
it is particularly powerful, because problematic areas emerge slowly in early homotopy steps,
where they are less likely to cause serious issues, and AMR ensures a suitable grid for the
later homotopy steps, where the grid quality becomes more critical. AMR is already available
in BoSSS, and we only have to specify the refinement criterion. Early tests using physically
impossible (i.e. negative) values for k as a refinement criterion have been quite successful,
though we note that other criteria, such as the local condition number of the matrix, may
alternatively be considered.

As an example, Fig. 4.8 shows a close-up of the near-wall region of the boundary layer calculation
discussed in Section 4.3.1, which makes visible the effect of AMR.
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(a) Mean velocity Ū i, 1st homotopy step i = 1.

(b) Mean velocity Ū i, 3rd homotopy step i = 3.

(c) Mean velocity Ū i, 4th homotopy step i = 4.

(d) Mean velocity Ū i, 5th homotopy step i = 5.

Figure 4.6.: Boundary layer: Results for Ū1 from intermediate homotopy steps. The final result
is shown in Fig. 4.3.

64



4.4. Approaches for the Numerical Solution of One-Dimensional
Boundary-Value Problems

As discussed in Section 3.5, for many flows of intermediate complexity, the governing equations
can be simplified to ODEs. The numerical solution of these ODE systems offers a robust and
efficient alternative to full calculations as presented in the preceding sections. For the new
models developed in Section 5.2.1, a full solution is difficult, whereas an ODE solution is
feasible. More details on these calculations are found in Section 5.3. In the following, we
discuss the necessary background from a numerics point of view.

Depending on the nature of their boundary conditions, ODEs can be distinguished into IVPs
(initial value problems), where all boundary conditions are specified on one side of the domain,
and BVPs, where there is a mix between conditions given on one side and conditions given on
the other side. Generally speaking, BVPs require more computational effort to solve numerically
than IVPs. Examples for flows that can be simplified to BVPs include self-similar flows such as
the boundary layer and free shear flows such as the jet, wake or mixing layer. For the purpose
of this section, we consider a FDS discretization.

A very simple idea to solve BVPs is the shooting method, which relies on treating the problem
as an IVP, and adjusting the missing initial conditions in an iterative process until the solution
matches the boundary condition on the other side. The term “shooting method” derives from
the idea that one repeatedly “aims” by adjusting the initial conditions until the target end
conditions are hit. However, in the present context, this turned out to work poorly, probably
because of the complexity of the considered ODE systems.

The straightforward approach of discretizing the ODE system in space and using a nonlinear
solver to find the solution works to some degree, however, the complexity of the equations
makes the convergence of the nonlinear solver somewhat difficult. The convergence of the
classical models is unreliable and requires some sophistication such as a suitable initial guess,
but for the modified models, convergence issues are even more pronounced.

Therefore, the much more robust method of pseudo-time stepping is used to obtain the results
shown in Section 5.2.1, and we describe the method in more detail here. For a deeper
introduction into the subject, the reader is referred to Olver (2013).

In the following, we consider the second-order ODE system

F (x,u,u′,u′′) = 0, (4.35)

where x is the independent variable, u the vector of N dependent variable and primes denote
derivatives with respect to x subject to the general boundary conditions

Cmin,1u(xmin) +Cmin,2u
′(xmin) = amin,

Cmax,1u(xmax) +Cmax,2u
′(xmax) = amax, (4.36)

where the domain extends from xmin to xmax. In (4.36), the C are N ×N -matrices and the a
are N -dimensional vectors. In practice, the boundary conditions are often simple and can be
written as

u(xmin) = umin, or u′(xmin) = u
′
min,

u(xmax) = umax, or u′(xmax) = u′
max. (4.37)
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Note that we need two boundary conditions for each component of u in order for the problem
to be well-posed. If, as in (4.37), boundary conditions on both sides of the domain are given,
the problem is referred to as a BVP. On the other hand, if only conditions on one side (typically
xmin) are provided, this leads to an IVP. Generally speaking, IVPs are easier to solve, because
starting from the known initial state at xmin, the solution can be evolved forward in x using a
time-stepping scheme as discussed in Section 4.2. In a BVP, this is not possible, because the
initial state is not fully known. For its solution, a numerical grid which places n nodes in the
domain [xmin, xmax] has to be introduced. Instead of looking for a continuous solution u, we
now solve for the discrete values of u at each node. Derivatives can then be approximated
using finite differences between the nodal values. For example, a simple idea to approximate
the first derivative at the ith node u′

i would be to use the backward difference formula

u′
i =

ui − ui−1

h
. (4.38)

As a Taylor expansion reveals, this is first-order accurate with the grid spacing h = xi − xi−1,
i.e. a grid twice as fine will lead to a halving of the discretization error. This can be improved
by using the central difference, which, assuming an equidistant grid, reads

u′
i =

ui+1 − ui−1

2h
. (4.39)

This approximation is second-order accurate, so that doubling the number of grid points leads to
a quartering of the discretization error. However, depending on the ODE, such a discretization
can become unstable. In the context of solving the self-similar flows discussed in Section 5.3.1,
the second-order backward difference formula

u′
i =

ui−2 − 4ui−1 + 3ui

2h
(4.40)

was found to yield better results. In the first interior node close to the left edge, where no ui−2

exists, the first-order backward difference formula (4.38) is instead used. Second derivatives
are approximated using the second-order accurate central difference formula

u′′
i =

ui+1 − 2ui + ui−1

h2
. (4.41)

Inserting these approximations into (4.35) for each interior node turns the differential equation
system into an algebraic equation system, which we can write

F disc(xi,ui) = 0. (4.42)

In general, F disc can be nonlinear, as is the case for the equations considered in Section 5.3.1. A
common method for solving such nonlinear equation systems are Newton methods, which are
used in the context of the DG solver and are discussed in more detail in Section 4.3.2. While
Newton-type methods work well for a large class of problems, they can exhibit convergence
issues when applied to the complicated equation systems arising from discretized turbulence
model equations. In this context, a more robust approach is often that of pseudo-time stepping,
which exploits the physical structure of the underlying ODE. If we assume that the system
(4.35) was obtained by simplifying a PDE that contains time as one of its independent variables,
pseudo-time stepping relies on reintroducing the temporal derivatives that were originally
cancelled by assuming a stationary solution, leading to

F (x,u,u′,u′′) =
∂u

∂t
. (4.43)
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Both sides of this equation are then discretized in space, and, starting from some initial guess,
the solution is evolved forward in time until a steady state is reached. This problem is already
easier to solve for a nonlinear solver, because convergence issues can be mitigated by decreasing
the time step, thus also decreasing the difference between the current state, which can be used
as the initial guess, and the target solution, i.e. the state in the next pseudo-time step. Moreover,
one can eliminate the need for a nonlinear solver altogether by linearizing the equation system
using values from the previous time step. Obviously, the closer one approaches the steady-state
solution, the smaller the error introduced by this linearization becomes.

In order to evolve the solution forward in time, a temporal discretization as discussed in
Section 4.2 has to be introduced.

Having discussed the numerical aspects relevant for the present work, we now turn to the
question of symmetry-based turbulence modeling.
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(a) Turb. kin. energy k, 1st homotopy step i = 1.

(b) Turb. kin. energy k, 3rd homotopy step i = 3.

(c) Turb. kin. energy k, 4th homotopy step i = 4.

(d) Turb. kin. energy k, 5th homotopy step i = 5.

Figure 4.7.: Boundary layer: Results for k from intermediate homotopy steps. Note the different
color ranges, which are needed for visibility. The final result is shown in Fig. 4.3.
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(a) Original grid.

(b) Grid after AMR.

Figure 4.8.: Boundary layer: numerical grid showing the effect of AMR (adaptive mesh refine-
ment), close-up view of the near-wall region close to the inlet.
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5. Symmetry-Based Turbulence Modeling

In this section, the main results of the present work are discussed. The key question to be
addressed is how to develop turbulence models that are not only invariant under the classical
symmetries (3.27)–(3.32) (with the last two combining to (3.33) in the viscous case), but
also under the statistical symmetries (3.55)–(3.58). In the following, we refer to such models
as statistically invariant for short. Whereas the classical symmetries have generally been
incorporated into two-equation models and more complicated ones, the statistical symmetries
have only been taken into account as recently as Klingenberg et al. (2020) and Klingenberg and
Oberlack (2022). Formulating reasonable model equations that fulfill this requirement turns
out to be difficult. Therefore, to gain a general idea of what such a model could look like, we first
employ an algorithmic modeling approach to develop a model skeleton in Section 5.1. Using the
insights obtained there, we then turn to a more conventional modeling strategy in Section 5.2
to develop full turbulence models based on existing modeling ideas. One representative of
these newly developed models is applied to some simple flow cases. Due to their relative
simplicity, we mostly focus on EVMs, in particular the k-ε-model and the k-ω-model, but some
ideas how to formulate statistically invariant RSMs are also developed. Note that early results
on this subject already appear in the present author’s Master’s thesis (Klingenberg, 2017).

5.1. Constructing Model Equations from Symmetries

As has been discussed in Chapter 2, the perhaps most typical usage of Lie theory is to find
the symmetries of a given equation system. However, in the context of modeling challenges,
the inverse problem is often of interest, i.e. finding equations that are invariant under a given
set of symmetries. The key idea is to use the symmetries one would like to embed into the
model as the starting point, and to construct model equations that are invariant under these
symmetries. In the context of turbulence modeling, the symmetries that should be present in
a model are those of the RANS system given by (1.3) and (1.4) and an infinite hierarchy of
equations for higher moments. These symmetries were already discussed in Section 3.2 and
are given by (3.27)–(3.32) and (3.55)–(3.58), where (3.31) and (3.32) combine to (3.33) in
the viscous case. Popovich and Bihlo (2012) employ this so-called inverse problem of group
classification to constrain turbulence models for atmospheric calculations, although only the
classical symmetries were taken into account in this work. As an alternative to the algorithm
used in the present work, we note that there is the equivalent method of equivariant moving
frames developed by Olver (2000), which Bihlo et al. (2014) applied to turbulence modeling.
The developments discussed in this section is one of the main contributions of Klingenberg et al.
(2020), and, to the best of the author’s knowledge, are the first example of using statistical
symmetry constraints for turbulence models.
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Developing new model equations from symmetries follows a similar logic as creating symmetry
invariant solutions, which is discussed in Section 3.3. In both cases, invariant functions are
calculated, although when deriving equations, we also include physical derivatives as possible
variables.

5.1.1. Introductory Example: Constructing the Euler Equations from Their
Symmetries

A simple example that not only illustrates the method, but also gives rise to an interesting result
is found in the Euler equations, which are given by (1.1) and (1.2) with ν = 0. Supposing
for the purpose of this demonstration that we did not know the form of the Euler equations,
but we did know their symmetries and the variables appearing in them, we write them as the
general function

F

(
t;xi;Ui;P ;

∂Ui

∂t
;
∂Ui

∂xj
;
∂P

∂t
;
∂P

∂xi

)
= 0, (5.1)

or, using jet notation,
F
(
t;xi;Ui;P ;Ui,t;Ui,xj ;P,t;P,xi

)
= 0. (5.2)

This switch to jet notation is not purely intended to be more compact, but is also meant
to indicate that the physical derivatives appearing in F are treated just like the other, non-
derivative variables. A similar shift in perspective has also been discussed in Chapter 2, and,
here, it reverts the present problem to the problem of finding invariant solutions.

As a side comment, even though the assumption that we know the Euler symmetries but not
the Euler equations may seem a bit contrived, note that all classical Euler symmetries are
connected to fundamental physical principles. Therefore, it is not that unreasonable to envision
a scenario in which someone correctly postulates all Euler symmetries without knowing the
equations themselves.

One might also object that the decision to only include first derivatives in (5.2) requires a
priori knowledge of the result by invoking the only slightly different Navier–Stokes case, in
which the second spatial velocity derivative appears. However, it makes more sense to think
of the Navier–Stokes equations as a first-order system consisting of mass and momentum
conservation and a material law. Then, extending the Euler case to the Navier–Stokes case
can be achieved by adding the molecular stress tensor and its first derivatives to the list of
variables, which directly corresponds to the additional physics encoded by the Navier–Stokes
equations and is not as arbitrary as increasing the order of derivatives to two. This approach
is also necessary because the symmetries to be fulfilled by a material law are different from
those of momentum conservation. For example, a material law has to be invariant under
time-dependent rotation—a principle referred to as objectivity in material modeling—whereas
the momentum equation, in which inertial effects are important, must not have this particular
symmetry. We may, therefore, conclude that first derivatives in the argument list of F in (5.2)
should always suffice, and note that the choice of variables impacts the physical effects that
the resulting equations can represent.

After this preliminary discussion, we can start with the derivation of the Euler equations. Since
we are considering the unaveraged system, only the classical symmetries and no statistical
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symmetries are taken into account. In concrete terms, using the invariant surface condition
(2.9), demanding invariance of F with respect to (3.18)–(3.23) gives rise to the PDE system

X
(1)
t F |F=0 = 0 ∧X(1)

xi
F |F=0 = 0 ∧ · · · ∧X(1)

Sc,IIF |F=0 = 0, (5.3)

the solution of which is a constrained form of F which is guaranteed to be invariant under all
considered symmetries. Note that we omit the arguments of F (t;xi;Ui;P ;Ui,t;Ui,xj ;P,t;P,xi)
for the sake of brevity. Since F contains first derivatives as its arguments, the first prolongations
of all symmetries have to be calculated using Eqs. (2.17) and (2.18) to account for their action
on these first derivatives.

Instead of treating (5.3) as a coupled system, it is possible to apply the symmetries one by one
and see the effect of each individual symmetry, which makes for a simpler and more insightful
discussion. Note that this is generally not possible when using the moving frames method,
which operates on the level of global transformations and, hence, gives rise to a generally
nonlinear algebraic coupled equation system instead of a linear PDE system. It is sensible
to start with the arguably simpler symmetries, therefore, we begin with the time translation
symmetry given by Eq. (3.18). As can be seen by invoking Eq. (2.17) with (2.18), its first
prolongation is trivial, leading to

X
(1)
t F = XtF =

∂F

∂t
= 0. (5.4)

Equation (5.4) can only be fulfilled if F does not depend on t explicitly, which implies that t
has to be removed from the list of possible arguments. Hence, the form of the Euler equations
has been constrained to

F
(
xi;Ui;P ;Ui,t;Ui,xj ;P,t;P,xi

)
= 0. (5.5)

Here, we may point out the distinction we intend to highlight with the use of jet notation:
Only t, but not the temporal derivatives, are affected by Xt, which is indeed correct. The next
symmetry to consider is the similarly simple translation symmetry in space, i.e. (3.20) with
fGali(t) = const. Note that the free function fGali(t) is arbitrary, so that we can simplify the
application of the symmetry (3.20) by first setting fGali(t) to a constant before turning to the
general case later. This leads to

X(1)
xi
F = XxiF =

∂F

∂xi
= 0, (5.6)

implying that xi also has to be removed as a possible variable. An analogous conclusion can be
obtained from the pressure translation symmetry (3.21), whose first prolongation reads

X
(1)
P = fP (t)

∂

∂P
+ f ′P (t)

∂

∂P,t
. (5.7)

We note again that the free function is arbitrary, so we can simplify the discussion by first
setting fP (t) = aP = constant. Then, in analogy to the two previously invoked symmetries,
this leads to

X
(1)
P ;fP (t)=aP

F = aP
∂F

∂P
= 0, (5.8)

eliminating P from the list of variables,

F
(
Ui;Ui,t;Ui,xj ;P,t;P,xi

)
= 0. (5.9)
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Now, we set f ′P (t) = a
(1)
P = constant. Equation (5.9) implies ∂F /∂P = 0, so that

X
(1)

P ;f ′
P (t)=a

(1)
P

F = a
(1)
P

∂F

∂P,t
= 0. (5.10)

This is again a symmetry as simple as the ones invoked before, and we can conclude that P,t

has to be eliminated from the list of possible arguments. Note that by considering higher
prolongations and carrying on in this way, all temporal derivatives of P could successively be
eliminated, but we only assumed first derivatives anyway. Clearly, spatial derivatives of the
pressure can never be affected by this symmetry.

At this point, we have applied all translation symmetries, and the form of the Euler equations
is narrowed down to

F
(
Ui;Ui,t;Ui,xj ;P,xi

)
= 0. (5.11)

In concrete terms, any equation containing only expressions of these variables automatically
fulfills the symmetries considered so far. Having thus simplified the problem, we can apply the
significantly more complicated generalized Galilean symmetry (3.20) with arbitrary fGali(t).
Unlike the simple translation symmetries considered above, the Galilean symmetry has a
nontrivial first prolongation, which is calculated according to Eq. (2.17). The resulting system

X
(1)
GalF = f ′Gali(t)

∂F

∂Ui
+ (f ′′Gali(t)− Ui,xjf

′
Galj (t))

∂F

∂Ui,t
− f ′′Gali(t)

∂F

∂P,xi

= 0 (5.12)

is solved using the method of characteristics, an introduction to which can be found in the
textbook by John (1978). The fundamental idea of this method is that the PDE (5.12) can be
written as an ODE system in the characteristic variables τ and s, which, in this case, reads

dF

dτ
= 0, (5.13)

dUi

dτ
= f ′Gali(t), (5.14)

dUi,t

dτ
= f ′′Gali(t)− Ui,xjf

′
Galj (t), (5.15)

dUi,xj

dτ
= 0, (5.16)

dP,xi

dτ
= −f ′′Gali(t). (5.17)

Equation (5.13) can directly be integrated to yield F = c1(s), and Eq. (5.16), which essentially
states that Ui,xj is Galilean invariant, yields Ui,xj = c2ij (s). Equations (5.14), (5.15) and (5.17)
can be combined to

dUi,t

dτ
+
dUj

dτ
Ui,xj +

dP,xi

dτ
= 0, (5.18)

which is integrated to
Ui,t + UjUi,xj + P,xi = c3i(s). (5.19)

Note that Ui,xj does not depend on τ , making this integration very simple. Since all constants
of integration c1, c2ij and c3i depend only on s, we can equivalently write c1 (i.e. F ) as a
function of c2ij and c3i . In other words, we have further reduced the form of F to

F
(
Ui,xj ;Ui,t + UjUi,xj + P,xi

)
= 0. (5.20)
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Interestingly, the form (5.20) already resembles the final Euler equations closely. A final
constraint is found in the rotational symmetry (3.19), leading to

Ui,t + UjUi,xj + P,xi = 0, (5.21)
F
(
Ui,xi ;Ui,xjUj,xi ;Ui,xjUj,xk

Uk,xi

)
= 0. (5.22)

At this point, no further symmetry constraints can bemade use of. Evidently, the reasonwhy only
the first invariant of the velocity gradient Ui,xi appears in the final form cannot be explained by
symmetries alone. Nevertheless, this analysis clearly demonstrates how tightly the symmetries
constrain the Euler equations, and, in other words, how much of the physics expressed by
the Euler equations apparently are encoded in its symmetries. This result, therefore, further
motivates the use of symmetry-based modeling approaches.

5.1.2. Application to Turbulence Modeling

Adapting the rationale demonstrated in the previous section to the challenge of developing a
turbulence model is straightforward. We start with the infinite hierarchy of moment equations
and their symmetries, which can be calculated algorithmically and are already known, as
discussed in Chapter 2 and Section 3.2. They are given by Eqs. (3.34)–(3.39) and (3.59)–
(3.62), with (3.38) and (3.39) combining to (3.40) in the viscous case. Additionally, we select
a finite set of model variables that the final model may depend on. Then, following the steps
shown in the previous section, we can derive the general possible form of the model equations.
In this framework, most of the freedom one has as a modeler lies in the step of selecting possible
model variables, after which the process is mostly algorithmic. Therefore, the process does not
lead to one particular new model, but to a new class of models.

To a certain degree, existing turbulence models already follow this logic. A selection of variables
is made based on physical arguments, and the form of the equations is then constrained using,
among other things, the arguments of invariant modeling. However, the process through which
the invariance constraints are invoked is not rigorous, which might work for the relatively
simple classical symmetries, but does not remain feasible once the statistical symmetries are
taken into account. This motivates the developments of the present work, where we extend
the invariant modeling approach in two crucial ways: First, by also taking into account the
statistical symmetries (3.59)–(3.62) and, second, by following an algorithmic approach to
generate possible model equations.

An important resulting feature of this approach is that instead of starting with an equation
system in which only a few unclosed terms have to be modeled, we start with a completely
general equation form, rendering the distinction between the closed and the unclosed part
obsolete. Therefore, in the present context, the term turbulence model refers to the full set
of model equations, not only the unclosed part. This approach is made necessary by the fact
that the closed part of the RANS equations, i.e. (1.3) and (1.6) without the Reynolds stress
tensor Rij , by itself, does not fulfill the statistical symmetries (3.59)–(3.62). Therefore, it is
not enough to ensure that any closure relations fulfill all symmetries, and instead, the whole
equation has to be taken into consideration. The situation is different when only considers the
classical symmetries, because those the closed part does fulfill by itself. The same arguments
analogously also hold for RSMs.

75



Failure of the Algorithm with No Additional Model Variables

In this section, we investigate what the symmetry constraints resulting from classical and
statistical symmetries imply if we do not introduce any additional model variables. As can be
seen, the symmetries reduce the possible form of the model equations to a point where no
meaningful model is possible.

Eddy-Viscosity Model We first discuss what happens when we try to develop an EVM that is
invariant under the classical symmetries given by Eqs. (3.34)–(3.40) and the first statistical
translation symmetry given by Eq. (3.60). Note that the latter symmetry expresses that without
the presence of the Reynolds stress tensor, the mean velocity Ū i cannot appear explicitly, Its
derivatives, however, are allowed to appear. The exact, unclosed RANS equation (1.6) obviously
fulfills this symmetry, which is mainly because of the quite complicated transformation of the
Reynolds stress tensor given by (3.72), while invariance is better observed in the equations
of the instantaneous approach defined by (1.3) and (1.4). However, as soon as the Reynolds
stress tensor is replaced by a turbulence model, i.e. some function of the mean velocities, the
nonlinear term inevitably breaks the translation symmetry due to the explicitly appearing
mean velocity. This complicated situation motivates the idea to start with a completely generic
equation of the form

F
(
t;xi; Ū i; P̄ ; Ū i,t; Ū i,xj ; P̄ ,t; P̄ ,xi

)
= 0. (5.23)

For this analysis, we ignore viscous effects and hence omit the molecular stress tensor. According
to Eq. (2.9), F is invariant under a set of symmetries if the condition

X
(1)
t F |F=0 = 0 ∧X(1)

GaliF |F=0 = 0 ∧ · · · ∧X(1)
Sc,statF |F=0 = 0, (5.24)

holds, where the X(1)
i refer to the first prolongations of the considered symmetries in infinitesi-

mal form given by Eqs. (3.34)–(3.39), (3.59) and (3.60). Equation (5.24) is a system of partial
differential equations that can be solved using the method of characteristics, the result of which
is a reduced set of variables. These variables are invariant under the employed symmetries.

To illustrate the implication of each symmetry, we apply them one at a time. As derivatives
appear in the general form (5.23), we have to compute the prolongations of all symmetries
using Eq. (2.17). These prolongations yield the effect of the respective symmetry on derivatives.
In the case of translation symmetries without free functions, the prolongations are equal
to the non-prolonged symmetries. The time translation symmetry (3.34), the translation
symmetry in space given by the Galilean symmetry (3.36) with f ′Gali(t) = 0, the statistical
translation symmetry (3.60) and the translation symmetry of pressure given by Eq. (3.37) have
an analogous effect as in Section 5.1.1, eliminating respectively t, xi, Ū i, P̄ and P̄,t, and, thus,
reducing F to

F
(
Ū i,t; Ū i,xj ; P̄ ,xi

)
= 0. (5.25)

Note that due to the statistical symmetry (3.60), the mean velocity Ū i is removed from the list
of arguments, creating a different situation compared to the derivation of the non-averaged
Euler equations shown in Section 5.1.1, where the statistical symmetries did not play any role.
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At this point, we invoke the Galilean symmetry given by Eq. (3.36) with no restrictions on the
free function. This symmetry also has a nontrivial prolongation, which reads

X
(1)
Gal = fGali(t)

∂

∂xi
+ f ′Gali(t)

∂

∂Ū i
− xif

′′
Gali(t)

∂

∂P̄

+ (f ′′Gali(t)− Ū i,xjf
′
Galj (t))

∂

∂Ū i,t
− f ′′Gali(t)

∂

∂P̄,xi

. (5.26)

Applying this operator to the reduced form of the equation F given by Eq. (5.25), we obtain

X
(1)
GalF = (f ′′Gali(t)− Ū i,xjf

′
Galj (t))

∂F

∂Ū i,t
− f ′′Gali(t)

∂F

∂P̄,xi

= 0. (5.27)

Since this must hold for any fGali(t), we may simplify the solution process by first considering
the special case f ′′Gali(t) = 0, for which (5.27) reduces to

∂F

∂Ū j,t
= 0. (5.28)

The time derivative of the velocity thus also has to vanish, leaving only

F
(
Ū i,xj , P̄,xi

)
= 0. (5.29)

Applying the prolonged Galilean symmetry generator (5.26) with no restrictions on the free
function to the reduced form (5.29) then leads to

X
(1)
GalF = −f ′′Gali(t)

∂F

∂P̄,xi

= 0, (5.30)

eliminating the pressure gradient from the list of possible variables. In conclusion, this means
that in order for an equation of the assumed form (5.23) to fulfill the classical and statistical
symmetries at the same time, it can only contain the velocity gradient. Obviously, there is no
hope that any meaningful set of equations generally describing turbulent flows can be built on
that basis. Note that without the statistical translation symmetry (3.60), which eliminates the
mean velocity from the generic form, these problems would not exist. With the velocity still
present, the Galilean symmetry would have allowed the generic form

F
(
Ū i,xj ; Ū i,t + Ū jŪ i,xj + P̄,xi

)
= 0, (5.31)

in which the averaged Navier–Stokes equations (1.3) and (1.6) with vanishing viscosity and
Rij = 0 can be found. If the statistical symmetries are also included, however, the above
procedure proves that the assumed form (5.23) is too restrictive, and some additional freedom
is needed.

Reynolds Stress Model Before exploring which model variables to introduce in order to gain
such additional freedom, we first attempt to derive an RSM that is invariant under the classical
symmetries (3.34)–(3.39), where (3.38) and (3.39) combine to (3.40) in the viscous case, and
the statistical symmetries (3.59)–(3.62). The generic equation form this time also contains
second moments, leading to

F
(
t;xi; Ū i; P̄ ; Ū i,t; Ū i,xj ; P̄ ,t; P̄ ,xi ;H ij ;H ij,t;H ij,xk

;UiP,xj ;UiP,xj,t;UiP,xj,xk

)
= 0. (5.32)
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The list of arguments is almost equivalent to the set of closed variables present in the first and
secondmoment equations, i.e. (1.4) and (3.4), though it turns out thatUiP,xj and its derivatives
are also needed. Viscous effects are still excluded for simplicity. Following the same steps as
before, the classical and statistical translation symmetries (3.34), (3.37) and (3.56)–(3.58) as
well as (3.36) with f ′Gali(t) = 0 reduce the possible form of the model to

F
(
Ū i,t; Ū i,xj ; P̄ ,xi ;H ij,t;H ij,xk

;UiP,xj ;UiP,xj,xk

)
= 0. (5.33)

This time, the action of the Galilean symmetry (3.36) also has to be extended to the second
moments and their derivatives. The first prolongation of its infinitesimal generator then reads

X
(1)
Gal = fGali(t)

∂

∂xi
+ f ′Gali(t)

∂

∂Ū i
+
(
f ′Gali(t)Ū j + f ′Galj (t)Ū i

) ∂

∂H ij

− xif
′′
Gali(t)

∂

∂P̄
+
(
f ′Gali(t)P̄ − Ū ixjf

′′
Galj (t)

) ∂

∂PUi

,

+ (f ′′Gali(t)− Ū i,xjf
′
Galj (t))

∂

∂Ū i,t

− f ′′Gali(t)
∂

∂P̄,xi

+
(
Ū i,tf

′
Galj (t) + Ū j,tf

′
Gali(t) + Ū if

′′
Galj (t) + Ū jf

′′
Gali(t)−H ij,xk

f ′Galk(t)
) ∂

∂H ij,t

+ (Ū i,xk
f ′Galj (t) + Ū j,xk

f ′Gali(t))
∂

∂H ij,xk

+ (P̄,xjf
′
Gali(t)− Ū if

′′
Galj (t))

∂

∂UiP,xj

+ (P̄,xjxk
f ′Gali(t)− Ū i,xk

f ′′Galj (t))
∂

∂UiP,xj,xk

. (5.34)

Inserting (5.34) and (5.33) into the invariant surface condition (2.9) then leads to the compli-
cated PDE system

X
(1)
GalF = (f ′′Gali(t)− Ū i,xjf

′
Galj (t))

∂F

∂Ū i,t
− f ′′Gali(t)

∂F

∂P̄,xi

+
(
Ū i,tf

′
Galj (t) + Ū j,tf

′
Gali(t) + Ū if

′′
Galj (t) + Ū jf

′′
Gali(t)−H ij,xk

f ′Galk(t)
) ∂F

∂H ij,t

+ (Ū i,xk
f ′Galj (t) + Ū j,xk

f ′Gali(t))
∂F

∂H ij,xk

+ (P̄,xjf
′
Gali(t)− Ū if

′′
Galj (t))

∂F

∂UiP,xj

+ (P̄,xjxk
f ′Gali(t)− Ū i,xk

f ′′Galj (t))
∂F

∂UiP,xj,xk

= 0. (5.35)

The details of the solution, which was initially performed using the CAS Maple (Waterloo
Maple Inc., 2017) and subsequently verified manually using the method of characteristics, are
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given in Appendix A.3.1. Due to its complexity, care must be taken not to overlook any of the
solutions of this system. The full solution reads

F
(
Ū i,t +H ij,xj + P̄ ,xi ; Ū i,xj ;H ij,t +H ij,xk

γk + UiP,xj + UjP,xi

)
= 0, (5.36)

where γi is implicitly defined by

Ū i,t + Ū i,xjγj + P̄ ,xi = 0. (5.37)

At first glance, it looks like we have enough variables to construct meaningful equations for
the considered first and the second moments. Unsurprisingly, the exact RANS momentum
equation (1.4) (with ν = 0) and continuity equation (1.3) can be constructed from the first
two variables in (5.36). Moreover, it seems like a model equation for H ij could be built from
the last variable in (5.36). This expression resembles a material derivative, though in place of
the mean velocity, the variable γi appears. However, this variable is defined by (5.37), which is
only unique if the velocity gradient can be inverted. Since this is generally not the case, the
whole result is not physically meaningful, and we again have to conclude that (5.32) is too
narrow a form to fulfill all classical and statistical symmetries in the final model. However, the
result is still interesting because it offers an insight into how to remedy this problem. The main
question arising after the application of the statistical translation symmetry (3.60) is how to
formulate the convective term of the model equation. The exact equations in instantaneous
formulation (3.4) offer no insight here, because in them, the convective term is not closed.
In a sense, our algorithm circumvents this issue by introducing the expression γi to replace
the mean velocity in the convective term. Using (5.37) to determine the behavior of γi under
the considered symmetries, it can be seen that it behaves like the mean velocity Ū i under all
classical symmetries (3.34)–(3.40), but unlike Ū i, it is invariant under the statistical symmetries
(3.59) and (3.60). In other words, its symmetry behavior is similar enough to that of the
mean velocity that γi can appear in the material derivative without violating any classical
symmetries, but crucially differs in its behavior under the statistical symmetries such that its
appearance does not break them. Evidently, from the list of variables included in (5.32), only
the physically dubious and mathematically problematic variable γi can be formed with this
particular symmetry behavior. However, since we are completely free to add additional model
variables to (5.32), this issue can be addressed by introducing a variable with the symmetry
behavior of γi as a new model variable. In the next section, the algorithm presented here is
repeated with such an additional model variable.

5.1.3. Successful New Invariant Modeling Approach with Additional Model
Variables

To summarize, we have gained two important insights from the failed attempts in Section 5.1.2:
First, when trying to construct EVMs or RSMs, the form (5.23) or, respectively, (5.32), is not
general enough to allow for meaningful equations subject to all invoked symmetry constraints.
Second, this can be rectified by introducing an additional model variable that behaves like the
mean velocity under all classical symmetries (3.34)–(3.40), while being invariant under the
statistical symmetries (3.59)–(3.62).

At this point, an analogy to the step from classical one-equation models to two-equation
models as discussed in Section 3.4.1 can be made. With too few model variables to form a
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dimensionally correct expression for the turbulent viscosity νt, or, in other words, to fulfill the
classical scaling symmetries, an additional scale-providing variable such as ε is introduced to
ensure the necessary freedom. In the present context, as suggested by γi in (5.37), we extend
the generic form assumed in Eq. (5.23) by a new model variable denoted here with Û i, and
a corresponding pressure P̂ , which respectively transform like Ū i and P̄ under all classical
symmetries (3.34)–(3.40), but are invariant under the statistical symmetries (3.59)–(3.62).
In concrete terms, the classical symmetries (3.34)–(3.40) extended with Û i and P̂ read in
infinitesimal form

Xt =
∂

∂t
, (5.38)

Xrotα = ϵjkαxj
∂

∂xk
+ ϵjkαŪ j

∂

∂Ūk
+ ϵjkαÛ j

∂

∂Ûk

+ (ϵkiαHkj + ϵkjαH ik)
∂

∂H ij
+ ϵjkαPUj

∂

∂PUk

, (5.39)

XGal = fGali(t)
∂

∂xi
+ f ′Gali(t)

∂

∂Ū i
+ f ′Gali(t)

∂

∂Û i

− xif
′′
Gali(t)

∂

∂P̄
− xif

′′
Gali(t)

∂

∂P̂

+
(
f ′Gali(t)Ū j + f ′Galj (t)Ū i

) ∂

∂H ij

+
(
f ′Gali(t)P̄ − Ū ixjf

′′
Galj (t)

) ∂

∂PUi

, (5.40)

XP = fP (t)
∂

∂P̄
+ fP̂ (t)

∂

∂P̂
+ fP (t)Ū i

∂

∂PUi

, (5.41)

XSc,I = xi
∂

∂xi
+ Ū i

∂

∂Ū i
+ Û i

∂

∂Û i

+ 2P̄
∂

∂P̄
+ 2P̂

∂

∂P̂

+ 2H ij
∂

∂H ij
+ 3PUi

∂

∂PUi

, (5.42)

XSc,II = t
∂

∂t
− Ū i

∂

∂Ū i
− Û i

∂

∂Û i

− 2P̄
∂

∂P̄
− 2P̂

∂

∂P̂

− 2H ij
∂

∂H ij
− 3PUi

∂

∂PUi

, (5.43)

XSc,ns = 2t
∂

∂t
+ xi

∂

∂xi
− Ū i

∂

∂Ū i
− Û i

∂

∂Û i

− 2P̄
∂

∂P̄
− 2P̂

∂

∂P̂

− 2H ij
∂

∂H ij
− 3PUi

∂

∂PUi

. (5.44)

Since Û i and P̂ are invariant under the statistical symmetries, we can still use (3.59)–(3.62).
The symmetries (5.38)–(5.44) in global form are given by Eqs. (A.42)–(A.52).
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Eddy-Viscosity Model

Turning first to the question of how to make use of these additional model variables in order to
construct a statistically invariant EVM, we assume as the general form

F
(
t;xi; Ū i; Û i; P̄ ; P̂ ; Ū i,t; Ū i,xj ; Û i,t; Û i,xj ; P̄ ,t; P̄ ,xi ; P̂ ,t; P̂ ,xi

)
= 0. (5.45)

It is a remarkable feature of the modeling algorithm that it is not necessary to specify anything
about these new variables apart from their behavior under the symmetry transformations we
are going to use. The application of the translation symmetries, i.e. (3.60), (5.38) and (5.41)
as well as (5.40) with f ′Gali(t) = 0, is as straightforward as before, reducing Eq. (5.45) to

F
(
Û i; Ū i,t; Ū i,xj ; Û i,t; Û i,xj ; P̄ ,xi ; P̂ ,xi

)
= 0. (5.46)

Unlike Ū i, Û i is not affected by the statistical translation symmetry (3.60) and, therefore,
remains in (5.46) after the application of these symmetries. Similar to the discussion in the
previous sections, we now apply the Galilean symmetry (5.40), whose first prolongation is

X
(1)
Gal = fGali(t)

∂

∂xi
+ f ′Gali(t)

∂

∂Ū i
+ f ′Gali(t)

∂

∂Û i

+ (f ′′Gali(t)− Ū i,xjf
′
Galj (t))

∂

∂Ū i,t
+ (f ′′Gali(t)− Û i,xjf

′
Galj (t))

∂

∂Û i,t

− xif
′′
Gali(t)

∂

∂P̄
− xif

′′
Gali(t)

∂

∂P̂
− f ′′Gali(t)

∂

∂P̄,xi

− f ′′Gali(t)
∂

∂P̂,xi

, (5.47)

where we restrict ourselves to derivatives appearing in (5.46). Applying (5.47) to (5.46) yields
the invariant surface condition

X
(1)
GalF = f ′Gali(t)

∂F

∂Û i

+ (f ′′Gali(t)− Ū i,xjf
′
Galj (t))

∂F

∂Ū i,t
+ (f ′′Gali(t)− Û i,xjf

′
Galj (t))

∂F

∂Û i,t

− f ′′Gali(t)
∂F

∂P̄,xi

− f ′′Gali(t)
∂F

∂P̂,xi

= 0, (5.48)

resulting in the characteristic system

dF

dτ
= 0, (5.49)

dÛ i

dτ
= f ′Gali(t), (5.50)

dŪ i,t

dτ
= f ′′Gali(t)− Ū i,xjf

′
Galj (t), (5.51)

dÛ i,t

dτ
= f ′′Gali(t)− Û i,xjf

′
Galj (t), (5.52)

dŪ i,xj

dτ
= 0, (5.53)

dÛ i,xj

dτ
= 0, (5.54)
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dP̄,xi

dτ
= −f ′′Gali(t), (5.55)

dP̂,xi

dτ
= −f ′′Gali(t). (5.56)

Eqs. (5.49), (5.53) and (5.54) are integrated directly, yielding F = c1(s), Ū i,xj = c2ij (s) and
Û i,xj = c3ij (s), respectively. Combining (5.50), (5.51) and (5.55) to

dŪ i,t

dτ
+
dÛ j

dτ
Ū i,xj +

dP̄,xi

dτ
= 0,

and integrating leads to
Ū i,t + Û jŪ i,xj + P̄,xi = c4i(s),

where we have again used the result that Ū i,xj is constant in τ , as implied by (5.53). Similarly,
Eqs. (5.50), (5.52) and (5.56) can be combined to

dÛ i,t

dτ
+
dÛ j

dτ
Û i,xj +

dP̂,xi

dτ
= 0,

which, when integrated, gives rise to

Û i,t + Û jÛ i,xj + P̂,xi = c5i(s).

As has been discussed in Section 5.1.1, saying that all of these constants of integration depend
on s is the same as stating that one constant of integration depends on all the others. Expressing
the dependency as c1 = c1(c2ij , c3ij , c4i , c5i) is then equivalent to

F
(
Ū i,xj ; Û i,xj ; Ū i,t + Û jŪ i,xj + P̄,xj ; Û i,t + Û jÛ i,xj + P̂,xj

)
= 0. (5.57)

Next, the rotational symmetries (3.35) are invoked. The invariance condition

X
(1)
rotαF = 0 (5.58)

is fulfilled if

Ū i,t + Û jŪ i,xj + P̄,xi = 0, (5.59)
Û i,t + Û jÛ i,xj + P̂,xi = 0, (5.60)

F
(
Ū i,xi ; Û i,xi ; Ū i,xj Ū j,xi ; Û i,xj Û j,xi ; Ū i,xj Ū j,xk

Ūk,xi ; Û i,xj Û j,xk
Ûk,xi

)
= 0. (5.61)

If we disregard the second and third tensor invariants of Ū i,xj and Û i,xj , i.e. variables three to
six, the scaling symmetries uniquely yield

Ū i,xi = 0, (5.62)
Û i,xi + Sconti = 0, (5.63)

where a source term Sconti could, in principle, appear in (5.63). As far as symmetry constraints
are concerned, a source term could also appear in (5.62), however, we dismiss this possibility
on physical grounds, i.e. we obviously expect the mean velocity field to be divergence-free
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because of mass conservation. The system (5.59), (5.60), (5.62) and (5.63) is apparently
closed and invariant under all classical and statistical symmetries.

From a theoretical point of view, we have now solved the problem that this section is concerned
with. However, in practice, it seems unlikely that Eqs. (5.59), (5.60), (5.62) and (5.63) can
actually predict turbulent flows accurately, but this is only due to the minimalistic form of the
assumed general form (5.45). Nevertheless, this rigorous algorithmic approach has put us in
a position more similar to classical turbulence modeling, in which we can and must rely on
heuristic arguments to evolve (5.59), (5.60), (5.62) and (5.63) into a proper turbulence model.
Introducing Û i and P̂ increases the solution space, i.e. it now becomes possible to formulate
numerous terms that are invariant under all considered symmetries, especially if additional
model variables such as k and ε are introduced. The resulting combinatorial explosion of
possible model equations renders the algorithmic approach used up to here highly inefficient.
For the task of developing a practically useful statistically invariant turbulence model, it is,
therefore, easier to disregard the rigorous approach used up to this point and instead focus on
formulating equations that intuitively appear sensible and resemble existing models.

From experience, we can formulate a number of expectations that the new model equations
should fulfill. First, viscous effects need to be incorporated into the equations if near-wall
effects are to be considered. This could be done rigorously by including the molecular stress
tensor and the viscosity in the generic form (5.45) and then repeating the process, or simply
by adding viscous terms to Eqs. (5.59) and (5.60), yielding

∂Ū i

∂t
+ Û j

∂Ū i

∂xj
+
∂P̄

∂xi
− ν

∂2Ū i

∂xj∂xj
= 0, (5.64)

∂Û i

∂t
+ Û j

∂Û i

∂xj
+
∂P̂

∂xi
− ν

∂2Û i

∂xj∂xj
= 0. (5.65)

Note that the inclusion of viscous terms does not break any symmetries, except that the two
scaling symmetries (5.42) and (5.43) combine to (5.44), which is expected. Second, as in every
classical turbulence model, we would expect a term accounting for the effect of the turbulent
stresses on the mean velocity. Again, at least two possibilities for incorporating such a term
into Eqs. (5.64) and (5.65) exist. The more general one would be to (i) select additional model
variables such as k, ε, etc., (ii) propose how they transform under the above given symmetries
and (iii) repeat the process starting at Eq. (5.45) with these additional variables. The simpler
one is to append an additional source term, which represents closure relations to be specified
later, to Eqs. (5.64) and (5.65), leading to

∂Ū i

∂t
+ Û j

∂Ū i

∂xj
+
∂P̄

∂xi
− ν

∂2Ū i

∂xj∂xj
+
∂R̃ij

∂xj
= 0, (5.66)

∂Û i

∂t
+ Û j

∂Û i

∂xj
+
∂P̂

∂xi
− ν

∂2Û i

∂xj∂xj
− Smom,i = 0. (5.67)

The closed part of the system (5.62), (5.63), (5.66) and (5.67), which consists of all terms
except R̃ij , Smom,i and Sconti, fulfills the classical symmetries (5.38)–(5.43), where the last
two combine to (5.44) in the viscous case, and the statistical symmetries (3.59)–(3.62). This
allows us to focus on finding a model for the unclosed part R̃ij and Smom,i, which is further
addressed in Section 5.2.1.
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Reynolds Stress Model

Similar steps can also be followed to obtain a statistically invariant RSM. We again extend
the generic form assumed in Eq. (5.32) by Û i, P̂ , and their derivatives, which respectively
transform like Ū i and P̄ under all classical symmetries (5.38)–(5.44), but are invariant under
the statistical symmetries (3.59)–(3.62). In concrete terms, our starting point is

F (xi, t, Ū i, P̄ ,H ij , Û i, P̂ , Ū i,xj , Ū i,t, P̄,xi , P̄,t, Û i,xj , Û i,t, P̂,xj , P̂,t,

H ij,xk
, H ij,t, UiP,xj , UiP,xj,xk

, UiP,xj,t) = 0. (5.68)

As we have already seen in the previous sections, the first step is to invoke the classical and
statistical translation symmetries, i.e. (3.56)–(3.58), (5.38) and (5.41) as well as (5.40) with
f ′Gali(t) = 0, narrowing down the form of F to

F (Û i, Ū i,xj , Ū i,t, P̄,xi , Û i,xj , Û i,t, P̂,xj , H ij,xk
, H ij,t, UiP,xj , UiP,xj,xk

) = 0. (5.69)

Like before, a crucial part in the derivation is demanding invariance with respect to the Galilean
symmetry (5.40), which now reads in prolonged form

X
(1)
Gal = fGali(t)

∂

∂xi
+ f ′Gali(t)

∂

∂Ū i
+ f ′Gali(t)

∂

∂Û i

+
(
f ′Gali(t)Ū j + f ′Galj (t)Ū i

) ∂

∂H ij

− xif
′′
Gali(t)

∂

∂P̄
− xif

′′
Gali(t)

∂

∂P̂
+
(
f ′Gali(t)P̄ − Ū ixjf

′′
Galj (t)

) ∂

∂PUi

,

+ (f ′′Gali(t)− Ū i,xjf
′
Galj (t))

∂

∂Ū i,t
+ (f ′′Gali(t)− Û i,xjf

′
Galj (t))

∂

∂Û i,t

− f ′′Gali(t)
∂

∂P̄,xi

− f ′′Gali(t)
∂

∂P̂,xi

+
(
Ū i,tf

′
Galj (t) + Ū j,tf

′
Gali(t) + Ū if

′′
Galj (t) + Ū jf

′′
Gali(t)−H ij,xk

f ′Galk(t)
) ∂

∂H ij,t

+ (Ū i,xk
f ′Galj (t) + Ū j,xk

f ′Gali(t))
∂

∂H ij,xk

+ (P̄,xjf
′
Gali(t)− Ū if

′′
Galj (t))

∂

∂UiP,xj

+ (P̄,xjxk
f ′Gali(t)− Ū i,xk

f ′′Galj (t))
∂

∂UiP,xj,xk

. (5.70)

Solving the equation arising from inserting (5.69) and (5.70) into the invariant surface
condition (2.9), i.e.

X
(1)
GalF = f ′Gali(t)

∂F

∂Û i

+ (f ′′Gali(t)− Ū i,xjf
′
Galj (t))

∂F

∂Ū i,t
+ (f ′′Gali(t)− Û i,xjf

′
Galj (t))

∂F

∂Û i,t

− f ′′Gali(t)
∂F

∂P̄,xi

− f ′′Gali(t)
∂F

∂P̂,xi

+
(
Ū i,tf

′
Galj (t) + Ū j,tf

′
Gali(t) + Ū if

′′
Galj (t) + Ū jf

′′
Gali(t)−H ij,xk

f ′Galk(t)
) ∂F

∂H ij,t

+ (Ū i,xk
f ′Galj (t) + Ū j,xk

f ′Gali(t))
∂F

∂H ij,xk

+ (P̄,xjf
′
Gali(t)− Ū if

′′
Galj (t))

∂F

∂UiP,xj

84



+ (P̄,xjxk
f ′Gali(t)− Ū i,xk

f ′′Galj (t))
∂F

∂UiP,xj,xk

= 0, (5.71)

again requires a somewhat lengthy calculation, which is detailed in Appendix A.3.2. Unsur-
prisingly, Eqs. (1.3) and (1.4) without the viscous term can again be obtained. Furthermore,
we now also need to find equations for the newly introduced model variables Û i and P̂ . From
the results of (5.71), we can, like in Section 5.1.3, construct (5.60) and (5.63). This time,
unlike in Section 5.1.2, we are also able to find a meaningful transport equation for the second
velocity moment, which reads

∂H ij

∂t
+ Ûk

∂H ij

∂xk
+ UiP,xj + UjP,xi

+ Û i
∂Hjk

∂xk
+ Û j

∂H ik

∂xk
− ∂Ū i

∂xk
Û jÛk −

∂Ū j

∂xk
Û iÛk = 0. (5.72)

Interestingly enough, an independent equation for the velocity-pressure-gradient terms can
also be obtained and reads

∂UiP,xj

∂xk
− Û i

∂2P̄

∂xj∂xk
− ∂P̂

∂xj

∂Ū i

∂xk
= 0. (5.73)

In summary, Eqs. (1.3), (1.4), (5.60), (5.63), (5.72) and (5.73) form a closed system that
fulfills all considered classical and statistical symmetries, which successfully concludes the
discussion in this section. Nevertheless, it must be strongly emphasized that these equations
only constitute a minimal model, and that additional terms are needed to develop a practically
useful model. The most obvious example are the viscous terms, but also effects like turbulent
dissipation and redistribution are not yet adequately accounted for. Crucially, however, many of
the terms corresponding to these effects have a relatively simple behavior under all considered
symmetries, which makes it possible to use Eqs. (1.3), (1.4), (5.60), (5.63), (5.72) and (5.73) as
a foundation to which more terms can be added. We further explore this path in Section 5.2.2.

As a prerequisite, it makes sense to rewrite (5.72) in the more common fluctuation formulation,
which turns it into a model equation for the Reynolds stress tensor,

∂Rij

∂t
+ Ûk

∂Rij

∂xk
=
∂Ū j

∂xk
(Ū i − Û i)(Ūk − Ûk) +

∂Ū i

∂xk
(Ū j − Û j)(Ūk − Ûk)

+
∂Rik

∂xk
(Ū j − Û j) +

∂Rjk

∂xk
(Ū i − Û i)− ui

∂p

∂xj
− uj

∂p

∂xi
. (5.74)

Note that unlike in (3.3), we do not use the decomposition

ui
∂p

∂xj
+ uj

∂p

∂xi
=
∂(δjkui + δikuj)p

∂xk
− p

(
∂ui

∂xj
+
∂uj

∂xi

)
,

with which the last two terms of (5.74) could be written differently. Again, we can see the
recurring theme of Û i replacing Ū i in the convective term. Interestingly, the first right-hand
side terms loosely resemble the production terms of the exact equation given by (3.3). Finally,
Eq. (5.73) in fluctuation variables reads

∂

∂xk

(
ui
∂p

∂xj

)
+

∂2P̄

∂xj∂xk
(Ū i − Û i) +

∂Ū i

∂xk

(
∂P̄

∂xj
− ∂P̂

∂xj

)
= 0. (5.75)
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A major question remaining is that concerning the physical interpretation of the new model
variables Û i and P̂ . Unfortunately, the mathematical formalism cannot shed much light on
this question. To the best of our knowledge, no model with the exact form developed here
has so far been suggested. However, looking at the literature, at least two ideas have led
to similar modifications of the convective term. The first example is the Navier–Stokes-α
model (Foias et al., 2001), which deviates from the classical derivation leading to the RANS
equations (1.3) and (1.6) by performing the averaging on the level of Lagrangian trajectories
and only then shifting into the Eulerian picture. Perhaps unsurprisingly, this order of steps leads
to final equations with a different-looking convective term than the one appearing in (1.6).
Second, ideas developed by Libby (1975) and Byggstoyl and Kollmann (1986), who proposed
a conditional averaging of turbulent and laminar flow fields to better predict the otherwise
complicated statistics of intermittent flow, lead to a second velocity field and a modified
convective term. Two interesting connections from their work to the present investigation can
be made. Firstly, the idea of the second velocity field corresponding to a laminar flow field
is congruent with the symmetry behavior of transforming like a velocity under all classical
symmetries while being invariant under the statistical symmetries. Similarly, the auxiliary
velocity field Û i appearing in our models could also be interpreted as the most likely value of
the velocity, which would usually be equal to the mean velocity, but correspond to the laminar
velocity in an intermittent region. Secondly, their focus on intermittent flow links back to
the discovery of Waclawczyk et al. (2014), who establish a connection between the statistical
scaling symmetry (3.55) and intermittency. Unfortunately, however, the equations of Libby
(1975) and Byggstoyl and Kollmann (1986) do not agree with the statistical symmetries, which
makes it difficult to develop the analogy any further. A different, more practical interpretation
could be to interpret Û i and P̂ as the results of some classical turbulence model, which would
fulfill with the classical symmetries (3.27)–(3.33) while violating the statistical symmetries
(3.55)–(3.58). Note that this would be consistent with the assertion that Û i and P̂ behave
like their classical counterparts Ū i and P̄ under all classical symmetries while being invariant
under the statistical symmetries. In turn, the newly developed models could then be viewed as
a correction algorithm that, if necessary, accounts for the effects of the statistical symmetries.
However, we conclude that in order to further improve our understanding of these variables,
numerical tests of the model equations are necessary, which we discuss in Sections 5.2.1
and 5.3.

5.2. Modifying existing turbulence models

In principle, we could take the approach developed in Section 5.1 even further and employ it
for constructing not only model skeletons, but full-fledged models. This could be accomplished
by further adding model variables such as k or ε to the general form of the model, for example
(5.45). However, the formalism works best in situations with strong constraints and little
modeling freedom, as was the case in Section 5.1.2. After introducing Û i, P̂ and possibly further
model variables, it again becomes feasible to follow a more traditional modeling approach and
build upon existing models. The formalism, on the other hand, becomes intractable due to
numerous possible terms remaining even after all symmetry constraints are invoked. Many of
these terms do not make sense in a model for reasons unrelated to invariance considerations,
e.g. simply because they do not correspond to a physical effect that is observed in practice.
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5.2.1. Eddy-Viscosity Models

When developing new statistically invariant models based on existing ones, a sensible minimal
requirement for the base model is that it already fulfills all classical symmetries (3.27)–(3.32),
the last two of which combine to (3.33) in the viscous case, so that we only have to introduce
modifications addressed at fulfilling constraints resulting from the statistical symmetries (3.55)–
(3.57). The simplest class of models to fulfill this requirement is that of two-equation models,
which motivates our choice of considering the k-ε-model and the k-ω-model. Clearly, the
modified models should be expected to inherit some of the flaws found in the base models,
but any observed improvements can more clearly highlight the benefits of considering the
statistical symmetries in turbulence modeling.

Development of the Model Equations

Let us first consider the classical k-ε-model (Jones and Launder, 1972; Launder and Sharma,
1974), which already has the desired behavior under all classical symmetries in the sense that
it fulfills (3.27)–(3.32) in the limit ν = 0, with the last two symmetries (3.31) and (3.32)
combining to (3.33) when ν ̸= 0. At the same time, it violates the statistical symmetries
(3.55)–(3.57) in two ways.

Firstly, the issue thoroughly discussed in Section 5.1.2 of the explicitly appearing mean velocity
in the convective term is clearly evident in the model equations (3.115) and (3.116). In
Section 5.1.3, we have already shown that this can be addressed by introducing auxiliary
velocity and pressure fields, for example using (5.63) and (5.67). It is not clear what the best
choice of the model term appearing in these equations is, but the general assumption that Û i

should behave similarly to Ū i leads to Sconti = 0 and

Smom,i =
∂

∂xj

(
ινt

(
∂Û i

∂xj
+
∂Û j

∂xi

))
− 2

3
ι
ε̂

ε

∂k

∂xi
, (5.76)

where ι is a model constant to be determined by calibration of canonical flows, and ε̂ is an
auxiliary model variable to be discussed later. This velocity field can in turn be used to define
a material derivative that is invariant under all statistical symmetries and reads

D̂

D̂t
=

∂

∂t
+ Û j

∂

∂xj
. (5.77)

Note that a comparison between the model equation for the mean velocity given by (5.66)
and the exact equation given by (1.6) reveals that (5.66) effectively implies a non-symmetric
model for the Reynolds stress tensor. However, since the rotational symmetries are fulfilled by
the equations, we do not expect this to be a problem in practice. If one intends to rectify this,
the only possibility seems to be to use

D̂Ū i

D̂t
=
∂Ū i

∂t
+ Û j

∂Ū i

∂xj
+ Ū j

∂Û i

∂xj
(5.78)

as the material derivative in (5.66). This form is closer to the Navier–Stokes–α model (Foias
et al., 2001) and the models developed by Libby (1975) and Byggstoyl and Kollmann (1986),
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which, as discussed in Section 5.1.3, resemble the present model because they also contain
an additional velocity field. However, the explicit appearance of the mean velocity in the last
term of (5.78) breaks the statistical translation symmetry (3.56), though the other statistical
symmetries (3.55) and (3.57) can still be fulfilled. Nonetheless, in an effort to include the
statistical symmetry (3.56), we do not use (5.78) in the present work.

Secondly, the scaling of some of the source terms in (3.115) and (3.116) cannot be reconciled
with the statistical scaling symmetry (3.55). To overcome this, a third scale-providing variable
can be introduced. Before developing these ideas any further, however, a comment must be
made about the behavior of k and ε under the statistical symmetries (3.55)–(3.57). In classical
modeling, the line between model variables (such as k) and the properties they are originally
based on (the turbulent kinetic energy), is often blurred. However, in the present context, this
leads to problems, because the exact k and ε fields that could be measured in a real flow have
very complicated symmetry transformations under all statistical symmetries we cannot attempt
to fulfill in a turbulence model. Therefore, we realize that the primary purpose of the model
variables k and ε is not to reproduce the exact fields in the most precise possible way, but rather
to enter the Boussinesq approximation (3.106) such that the mean velocity is predicted as
accurately as possible. This perspective makes it obvious that we have the freedom to assign
to k and ε any behavior under the symmetries, as long as the model equations reflect this
behavior adequately. There is no good reason to change the behavior of k and ε under any of
the classical symmetries, but we assume that they are invariant under the statistical translation
symmetries (3.56) and (3.57), and that they scale under the statistical scaling symmetry (3.55)
in such a way that a correct scaling of the Boussinesq approximation (3.106) is ensured. In
order to see what this means in concrete terms, we extend (3.55) with the general ansatz

T Sc,stat : t
∗ = t, x∗i = xi, Ū

∗
i = Ū ie

aSc,stat , Û∗
i = Û i, P̄

∗ = P̄ eaSc,stat , P̂ ∗ = P̂ ,

R̃∗
ij = R̃ije

aR , k∗ = keak , ε∗ = εeaε . (5.79)

Inserting this into Eq. (5.66) yields

∂Ū∗
i

∂t∗
e−aSc,stat + Û∗

j

∂Ū∗
i

∂x∗j
e−aSc,stat

= −∂P̄
∗

∂x∗i
e−aSc,stat + ν

∂2Ū∗
i

∂x∗j∂x
∗
j

e−aSc,stat −
∂R̃∗

ij

∂x∗j
e−aR . (5.80)

It is apparent that all terms whose scaling behavior we know scale with e−aSc,stat . This implies that
themodel for the Reynolds stress tensor, R̃ij , also has to scale linearly, i.e. aR = aSc,stat. Similarly,
we infer the behavior of k and ε by insertion of (5.79) into the Boussinesq approximation
(3.106), which leads to

R̃∗
ije

−aR = R̃∗
ije

−aSc,stat

= −Cµ
k∗2

ε∗

(
∂Ū∗

i

∂x∗j
+
∂Ū∗

j

∂x∗i

)
e−aSc,stat−2ak+aε +

2

3
k∗δije−ak . (5.81)

In order for (5.81) to fulfill the statistical scaling symmetry, all eai-terms have to cancel. This
allows us to infer that k must scale linearly, i.e. ak = aSc,stat, and ε scales quadratically, i.e.
aε = 2aSc,stat.
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After this prerequisite discussion, we may now take a closer look at the production and
dissipation terms in (3.115) and (3.116). Inserting the statistical scaling symmetry (5.79)
using aR, ak and aε as determined above into (3.115) and (3.116) with the material derivative
modified according to the preceding discussion yields

D̂k∗

D̂t∗
e−aSc,stat = −R̃∗

ij

∂Ū∗
i

∂x∗j
e−2aSc,stat − ε∗e−2aSc,stat

+
∂

∂x∗j

((
ν +

Cµ

σk

k∗2

ε∗

)
∂k∗

∂x∗j

)
e−aSc,stat , (5.82)

D̂ε∗

D̂t∗
e−2aSc,stat = −Cε,1

ε∗

k∗
R̃∗

ij

∂Ū∗
i

∂x∗j
e−3aSc,stat − Cε,2

ε∗2

k∗
e−3aSc,stat

+
∂

∂x∗j

((
ν +

Cµ

σε

k∗2

ε∗

)
∂ε∗

∂x∗j

)
e−2aSc,stat . (5.83)

Clearly, the scaling behavior of the production and dissipation terms under the statistical scaling
symmetry (5.79) is different from the other terms in the equation. In order to remedy this
issue while still keeping in mind the classical scaling symmetries (3.31) and (3.32), which
effectively enforce dimensional correctness, we introduce a third scale-providing variable we
call ε̂. By assumption, this variable transforms just like ε under all classical symmetries, is
also invariant under the statistical translation symmetries, but scales linearly (rather than
quadratically) under the statistical scaling symmetry. This then allows using the dimensionless
expression ε̂/ε to correct the scaling behavior of any given term. In summary, the symmetries
(3.31), (3.32) and (3.55) taking into account these new model variables now read

T Sc,I : t∗ = t, x∗i = xie
aSc,I ,

Ū∗
i = Ū ie

aSc,I , P̄ ∗ = P̄ e2aSc,I ,

k∗ = ke2aSc,I , ε∗ = εe2aSc,I , ε̂∗ = ε̂e2aSc,I ; (5.84)
T Sc,II : t∗ = teaSc,II , x∗i = xi,

Ū∗
i = Ū ie

−aSc,II , P̄ ∗ = P̄ e−2aSc,II ,

k∗ = ke2aSc,II , ε∗ = εe3aSc,II , ε̂∗ = ε̂e3aSc,II ; (5.85)
T Sc,stat : t

∗ = t, x∗i = xi, Ū
∗
i = Ū ie

aSc,stat , P̄ ∗ = P̄ eaSc,stat ,

k∗ = keaSc,stat , ε∗ = εe2aSc,stat , ε̂∗ = ε̂eaSc,stat . (5.86)

All other symmetries (3.27)–(3.30), (3.56) and (3.57) are not repeated here because k, ε and
ε̂ are invariant under them.

As a side note, the above discussion is predicated on the modeling decision not to alter the
Boussinesq approximation (3.106). We make this decision only because we do not see a reason
to change the form of Eq. (3.106), and note that in principle, altering Eq. (3.106) would be
perfectly valid. For example, if we had a reason to prefer, say, ε scaling linearly and ε̂ being
invariant under (3.55), we could accommodate this by modifying the definition of the turbulent
viscosity appearing in the Boussinesq approximation (3.106) to νt = Cµk

2ε̂/ε2.

For the newly introduced variable ε̂, a transport equation has to be defined. Similar to the
construction of the ε-equation (3.116) in the classical k-ε-model, for which Jones and Launder
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(1972) essentially used the k-equation (3.115) as a template, we propose an equation with the
same structure that reads

D̂ε̂

D̂t
= −Ĉε,1

(
ε̂2

kε
R̃ij

∂Ū i

∂xj
+ γ

ε

k
R̂ij

∂Û i

∂xj

)
− Ĉε,2

ε̂2

k
+

∂

∂xj

((
ν +

νt
σ̂ε

)
∂ε̂

∂xj

)
, (5.87)

where the additional model parameters Ĉε,1, γ, Ĉε,2 and σ̂ε arise, and

R̂ij = −νt
(
∂Û i

∂xj
+
∂Û j

∂xi

)
. (5.88)

Note that unlike in Eq. (3.106), we do not require a δij-term in (5.88) because R̂ij only appears
in the production term of Eq. (5.87) where such a δij-term would vanish anyway due to the
multiplication with the divergence-free ∂Û i/∂xj . The γ-term was found to significantly improve
the numerical properties of the model, because all other production and dissipation terms
contain ε̂. This leads to the possibility that areas with low values of ε̂ expand due to a lack of
production of all turbulent scalars. Even with small values for γ, this can be prevented. The
new model variable ε̂ now introduces enough freedom to make the equations for the other two
variables k and ε invariant under the statistical scaling symmetry (3.55), leading to

D̂k

D̂t
= − ε̂

ε
R̃ij

∂Ū i

∂xj
− ε̂+

∂

∂xj

((
ν +

νt
σk

)
∂k

∂xj

)
, (5.89)

D̂ε

D̂t
= −Cε,1

ε̂

k
R̃ij

∂Ū i

∂xj
− Cε,2

εε̂

k
+

∂

∂xj

((
ν +

νt
σε

)
∂ε

∂xj

)
. (5.90)

Note that ε̂ never appears in the denominator, which is advantageous from a numerical point
of view. The modified k-ε-model consisting of Eqs. (3.106), (3.114), (5.62), (5.63), (5.66),
(5.67) and (5.87)–(5.90) is invariant under not only the classical symmetries (3.27)–(3.33),
but also the statistical symmetries (3.55)–(3.57). The only remaining question is which values
to choose for the model parameters ι, Cµ, σk, Cε,1, Cε,2, σε, Ĉε,1, γ, Ĉε,2 and σ̂ε. Constraints
on these parameters are found by applying the model to canonical flows, as is discussed in
detail in the next section.

In order to show the general applicability of the steps followed above, we now discuss another
widely used turbulence model, the k-ω-model (Wilcox, 1988) introduced in Section 3.4.1,
which is given by Eqs. (1.3), (3.105), (3.106) and (3.117)–(3.119).

Again, the first step is to determine the scaling behavior of k and ω under the statistical scaling
symmetry (3.55). To this end, we make the general ansatz

T Sc,stat : t
∗ = t, x∗i = xi, Ū

∗
i = Ū ie

aSc,stat , Û∗
i = Û i, P̄

∗ = P̄ eaSc,stat , P̂ ∗ = P̂ ,

R̃∗
ij = R̃ije

aR , k∗ = keak , ω∗ = ωeaω . (5.91)

Equation (5.66) is the same as for the k-ε-model, so the conclusion aR = aSc,stat still holds.
However, the definition of the turbulent viscosity νt in the Boussinesq assumption (3.106) is
different, so that inserting (5.91) into (3.106) with (3.117) now yields

R̃∗
ije

−aR = R̃∗
ije

−aSc,stat

= −Cω
k∗

ω∗

(
∂Ū∗

i

∂x∗j
+
∂Ū j

∂xi

)
e−aSc,stat−ak+aω +

2

3
k∗δije−ak . (5.92)
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Clearly, in order for all eai-terms to cancel, k still has to scale linearly, i.e. ak = aSc,stat, and ω
also has to scale linearly, i.e. aω = aSc,stat. Using these insights, we next turn to the equations
for k and ω. If (5.91) is inserted into Eqs. (3.118) and (3.119) with the modified material
derivative (5.77), they become

D̂k∗

D̂t∗
e−aSc,stat = −α∗R̃∗

ij

∂Ū∗
i

∂x∗j
e−2aSc,stat − β∗k∗ω∗e−2aSc,stat

+
∂

∂x∗j

((
ν + Cωσ

∗ k
∗

ω∗

)
∂k∗

∂x∗j

)
e−aSc,stat , (5.93)

Dω∗

Dt∗
e−aSc,stat = −αω

∗

k∗
R̃∗

ij

∂Ū∗
i

∂x∗j
e−2aSc,stat − βω∗2e−2aSc,stat

+
∂

∂x∗j

((
ν + Cωσ

k∗

ω∗

)
∂ω∗

∂x∗j

)
e−aSc,stat . (5.94)

As an inspection of the production and dissipation terms in (5.93) and (5.94) reveals, they
break the statistical scaling symmetry (5.91). In order to make possible the necessary modifi-
cations, we again introduce a third variable denoted with ω̂, which, by assumption, has the
same dimensional units as ω, thus ensuring that it behaves like ω under the classical scaling
symmetries (3.31) and (3.32), but is invariant under the statistical scaling symmetry (5.91).
This choice allows using the dimensionless ratio ω̂/ω to adequately modify the source terms of
the model equations. We summarize the above discussion by giving (3.31), (3.32) and (3.55)
while including the model variables,

T Sc,I : t∗ = t, x∗i = xie
aSc,I ,

Ū∗
i = Ū ie

aSc,I , P̄ ∗ = P̄ e2aSc,I ,

k∗ = ke2aSc,I , ω∗ = ω, ω̂∗ = ω̂; (5.95)
T Sc,II : t∗ = teaSc,II , x∗i = xi,

Ū∗
i = Ū ie

−aSc,II , P̄ ∗ = P̄ e−2aSc,II ,

k∗ = ke2aSc,II , ω∗ = ωe−aSc,II , ω̂∗ = ω̂e−aSc,II ; (5.96)
T Sc,stat : t

∗ = t, x∗i = xi, Ū
∗
i = Ū ie

aSc,stat , P̄ ∗ = P̄ eaSc,stat ,

k∗ = keaSc,stat , ω∗ = ωeaSc,stat , ω̂∗ = ω̂. (5.97)

Note that k, ω and ω̂ are invariant under the other symmetries (3.27)–(3.30), (3.56) and (3.57).

The model equation for ω̂ is again formulated in analogy to the ω-equation. Taking into account
the statistical scaling behavior of ω̂, a simple form of the three scale-providing equations reads

D̂k

D̂t
=− α∗ ω̂

ω
R̃ij

∂Ū i

∂xj
− β∗kω̂ +

∂

∂xj

(
(ν + σ∗νt)

∂k

∂xj

)
, (5.98)

D̂ω

D̂t
=− α

ω̂

k
R̃ij

∂Ū i

∂xj
− βωω̂ +

∂

∂xj

(
(ν + σνt)

∂ω

∂xj

)
, (5.99)

D̂ω̂

D̂t
=− α∗∗

(
ω̂2

ωk
R̃ij

∂Ū i

∂xj
+ γ∗

ω

k
R̂ij

∂Û i

∂xj

)
− β∗∗ω̂2 +

∂

∂xj

(
(ν + σ∗∗νt)

∂ω̂

∂xj

)
, (5.100)
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where we have again introduced an additional small production term in (5.100).

Note that for both the modified k-ε-model and the modified k-ω-model shown here, it could
make sense to include additional source terms in the equations. Cross-diffusion terms, like in
classical two-equation models, could be especially sensible, because we introduce three instead
of only two scale-providing variables here, and the decision which particular scale-providing
variables to select is always associated with a certain arbitrariness. Apart from the diffusion
terms, this decision does not really matter, because e.g. ω can be expressed in terms of k
and ε, and, therefore, it is possible to transform e.g. the ω-equation (5.99) into a transport
equation for ε, which differs from Eq. (5.90) only by additional terms arising from the diffusion
term. In turn, one can use the model parameters to blend between k-ε-model and k-ω-model
behavior, which is the main idea of Menter’s SST model as discussed in Section 3.4.1. Therefore,
cross-diffusion terms, in some sense, allow postponing the decision in which turbulent variables
we formulate our model until the parameter calibration phase.

Model Calibration

In the following, we apply the modified k-ε-model developed in the previous section, which
is given by (3.106), (3.114), (5.62), (5.63), (5.66), (5.67), (5.87), (5.89) and (5.90), to a
number of canonical flows. The purpose of this is twofold: First, it allows us to demonstrate
that this model is able to incorporate a wide variety of physical effects because it can make
reasonable predictions for a broad range of flow types. To some degree, this is to be expected
simply because the modified model contains more free parameters than the original one, but
the increased generality can also be explained by the additional symmetries built into it. This
latter aspect becomes important when the model is applied to flows that it was not calibrated
against. Clearly, not all shortcomings of the classical k-ε-model are related to the statistical
symmetries, so that some are also inherited by the modified model. Second, it enables inferring
appropriate values for the model parameters. The selection of flows to be considered here is
guided by the arguments used for classical models (see Section 3.4.1), though, as it turns out,
we are able to incorporate additional flows here.

Homogeneous Turbulence Like in Section 3.4.1, we start with the perhaps simplest possible
test case, namely that of homogeneous turbulence. As the term implies, all spatial gradients
vanish, so that the scale-providing equations (5.87), (5.89) and (5.90) reduce to

∂k

∂t
=
dk

dt
= −ε̂, (5.101)

∂ε

∂t
=
dε

dt
= −Cε,2

εε̂

k
, (5.102)

∂ε̂

∂t
=
dε̂

dt
= −Ĉε,2

ε̂2

k
. (5.103)

The solution to this system is given by the power law

k(t) ∝ t
1

1−Ĉε,2 , ε(t) ∝ t

Cε,2

1−Ĉε,2 , ε̂(t) ∝ t

Ĉε,2

1−Ĉε,2 . (5.104)
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Evidently, the evolution for k is analogous to that in the classical model given by (3.125), except
Ĉε,2 appears in the exponent instead of Cε,2. This leads to the choice of Ĉε,2 = 1.92. In order
to also predict the classical evolution of ε given by Eq. (3.125), we select Cε,2 = Ĉε,2 = 1.92.

Homogeneous Shear Turbulence Having thus established the contribution of dissipation,
the next step is to investigate that of production by considering homogeneous shear turbulence.
Again, the spatial gradients of the scalars vanish, but one component of the velocity gradient
takes a nonvanishing value, ∂Ū1/∂x2 = 2S12. If we assume that Û i behaves analogously, and
all components except for ∂Û1/∂x2 = 2Ŝ12 vanish, this leads to

∂k

∂t
=
dk

dt
= 4CµS

2
12

k2ε̂

ε2
− ε̂, (5.105)

∂ε

∂t
=
dε

dt
= 4Cε,1CµS

2
12

kε̂

ε
− Cε,2

εε̂

k
, (5.106)

∂ε̂

∂t
=
dε̂

dt
= 4Ĉε,1Cµ

(
S2
12

kε̂2

ε2
+ γŜ2

12k

)
− Ĉε,2

ε̂2

k
. (5.107)

Experimental evidence shows that k and ε grow approximately exponentially. Inserting the
corresponding ansatz

k = k0e
λkt, (5.108)

ε = ε0e
λεt, (5.109)

ε̂ = ε̂0e
λ̂εt, (5.110)

into (5.105)–(5.107) leads to the relation (3.131), which was already observed for the classical
model. However, unlike the classical model, the eigenvalue λ = λk = λε = λ̂ε is given by

λ = Ŝ12

√
γCµ

Cε,1 − Ĉε,1

Cε,1 − 1

Cε,2 − 1
. (5.111)

For the limit of large times, the effect of the initial conditions becomes negligible, and the ratio
of k/ε approaches an equilibrium value (Pope, 2000). From (5.105) and (5.106), it follows
that

d

dt

(
k

ε

)
=
dk

dt

1

ε
− dε

dt

k

ε2
= 4CµS

2
12

k2

ε2
(1− Cε,1)− (1− Cε,2) = 0, (5.112)

where, notably, ε̂ cancels out, so that (5.107) does not enter this part of the discussion at all.
Thus, Eq. (5.112) is the same as the equation arising for the classical model (3.128), so that
the following arguments carry over directly. The ratio of production to dissipation 4CµS

2
12k

2/ε2

in (5.112) can be measured experimentally to be around 1.8, introducing a constraint on Cε,1

and Cε,2. Though this is not required, using the same values as in the classical k-ε-model of
Cε,1 = 1.44 and Cε,2 = 1.92 was found to produce reasonable results. Note, however, that like
for the classical model, this choice leads to a slightly too high CµS

2
12k

2/ε2 of around 2.1.
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The Log Region Further constraints can be inferred from the logarithmic law of the wall.
Inserting the famous log law for the velocity, assuming a vanishing pressure gradient and
making a power-law ansatz for the scalar quantities, i.e.

Ū1 =
uτ
κ

log x2+ +B, Û1 = Ĉ1uτ log x2+ + B̂,

k = Ckuτ
2xnk

2+
, ε = Cε

uτ
4

ν
xnε

2+
, ε̂ = Ĉε

uτ
4

ν
xn̂ε

2+
, (5.113)

greatly simplifies the model equations (5.66), (5.87), (5.89) and (5.90), leading to

0 =
d

dx2+

(
Cµ

C2
k

Cε

1

κ
x2nk−nε−1
2+

)
, (5.114)

0 = Cµ
C2
kĈε

C2
ε

1

κ2
x2nk+n̂ε−2nε−2
2+

− Ĉεx
n̂ε

2+

+
Cµ

σk

C3
k

Cε
nk(3nk − nε − 1)x3nk−nε−2

2+
, (5.115)

0 = CµCε,1
CkĈε

Cε

1

κ2
xnk+n̂ε−nε−2
2+

− Cε,2
CεĈε

Ck
xnε+n̂ε−nk

2+

+
Cµ

σε
C2
knε(2nk − 1)x2nk−2

2+
, (5.116)

0 = CµĈε,1

(
CkĈ

2
ε

C2
ε

1

κ2
xnk+n̂ε−nε−2
2+

+ γCkĈ
2
1x

nk−2
2+

)
− Ĉε,2

Ĉ2
ε

Ck
x2n̂ε−nk

2+

+
Cµ

σ̂ε

C2
kĈε

Cε
nε(2nk + n̂ε − nε − 1)x2nk+n̂ε−nε−2

2+
. (5.117)

From Eq. (5.114), since the coefficient cannot reasonably vanish, we infer that the exponent
2nk − nε − 1 must be equal to zero. Further constraints on the exponents can be inferred from
the requirement that the x2-factors must cancel in Eqs. (5.115)–(5.117), leading to

2nk − 2nε − 2 = 0, (5.118)
3nk − nε − n̂ε − 2 = 0, (5.119)

from which it follows that nk = 0, nε = n̂ε = −1, similar to the classical k-ε-model. This leads
to the vanishing of the diffusion term in (5.115), and, thus, the constraint

Cε

Ck
=

√
Cµ

κ
. (5.120)

Note that in analogy to the classical model, Eq. (5.115) also implies Ĉε = 1/κ , which, together
with (5.120), yields

Ck =
1

κ

√
1√
Cµ

(Cε,2 − Cε,1), Cε =
1

κ2

√
1√
Cµ

(Cε,2 − Cε,1). (5.121)

In turn, two model parameter constraints can be inferred from this: First, k is constant in the
log layer, and its ratio to the Reynolds stress component R̃12 is determined by Cµ. Comparison
to experimental data leads to the choice Cµ = 0.09, like in the classical model. Second, and
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in contrast to the classical model, instead of a concrete value for σε, inserting (5.120) into
(5.116) and (5.117) only yields a relation between σε, σ̂ε and other model parameters, which,
if we neglect the contribution from the γ-term, reads

Cε,1 − Cε,2

Ĉε,1 − Ĉε,2

=
σ̂ε
σε
, (5.122)

providing additional freedom compared to the classical model. Evidently, if we do not neglect
the γ-term, the assumed solution (5.113) still works, but the slightly more complicated form
of (5.117) prevents us from obtaining a simple constraint on the model parameters.

Core-Region Deficit Law At this point, we deviate from the classical model calibration
procedure for the first time by considering a test case not usually taken into account, the core
region scaling law recently discovered by Oberlack et al. (2022). It appears in the central
region of channel and pipe flow, and spans a significantly larger area than the log law. The fact
that it results from an invariant solution is convenient, because we can extend the invariant
surface condition (3.82) to also include the model variables, leading to

dx2
aSc,Ix2

=
dŪ1

(aSc,I − aSc,II + aSc,stat)Ū1 + aTr,stat,I,1

=
dÛ1

(aSc,I − aSc,II)Û1

=
dk

(2(aSc,I − aSc,II) + aSc,stat)k

=
dε

(2aSc,I − 3aSc,II + 2aSc,stat)ε
=

dε̂

(2aSc,I − 3aSc,II + aSc,stat)ε̂
. (5.123)

This implies the result that they also follow a power law, which we write in compact form by
renaming the appearing integration constants and group parameters, yielding

Û1 = Ĉ1x
σ̂1
2 , Ū1 = C1x

σ1
2 + C, k = Ckx

nk
2 , ε = Cεx

nε
2 , ε̂ = Ĉεx

n̂ε
2 . (5.124)

Note that the Ci and ni appearing here are different from the coefficients and exponents
appearing in (5.113).

Since this is not one of the classical test cases discussed in Section 3.4.1, we first examine
what the classical k-ε-model predicts here. Inserting (5.124) into its model equations (3.105),
(3.115) and (3.116) yields

0 = − ∂P̄

∂x1
+

d

dx2

(
Cµ

C2
k

Cε
C1σ1x

2nk−nε+σ1−1
2

)
, (5.125)

0 = Cµ
C2
kσ

2
1

Cε
C2
1x

2nk−nε+2σ1−2
2 − Cεx

nε
2

+
Cµ

σk

C3
k

Cε
nk(3nk − nε − 1)x3nk−nε−2

2 , (5.126)

0 = CµCε,1Ckσ
2
1C

2
1x

nk+2σ1−2
2 − Cε,2

C2
ε

Ck
x2nε−nk
2

+
Cµ

σε
C2
knε(2nk − 1)x2nk−2

2 . (5.127)
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The pressure gradient ∂P̄ /∂x1 is constant and nonzero, so that (5.125) implies 2nk−nε+σ1 = 2.
Then, the requirement that x2 must cancel out in (5.126) and (5.127) yields

2nk − 2nε + 2σ1 − 2 = 0, (5.128)
3nk − 2nε − 2 = 0, (5.129)

resulting in nk = 1, nε = σ1, and, further, σ1 = 1/2. However, this is quite far off from
experimental and numerical data (Oberlack et al., 2022), which indicates σ1 ≈ 1.95. As a side
note, the classical k-ω-model does a better job by predicting σ1 = 2, which is more accurate
and has, moreover, been conjectured to be the asymptotic value for infinite Reynolds number.
However, the modified model is far more flexible, allowing for arbitrary values of σ1, depending
on the choice of model parameters.

We show this by inserting (5.124) into the modified model equations (5.66), (5.67), (5.87),
(5.89) and (5.90), leading to

0 = − ∂P̂

∂x1
+

d

dx2

(
ιCµ

C2
k

Cε
Ĉ1σ̂1x

2nk−nε+σ̂1−1
2

)
, (5.130)

0 = − ∂P̄

∂x1
+

d

dx2

(
Cµ

C2
k

Cε
C1σ1x

2nk−nε+σ1−1
2

)
, (5.131)

0 = Cµ
C2
kĈεσ

2
1

C2
ε

C2
1x

2nk+n̂ε−2nε+2σ1−2
2 − Ĉεx

n̂ε
2

+
Cµ

σk

C3
k

Cε
nk(3nk − nε − 1)x3nk−nε+2σ1−2

2 , (5.132)

0 = CµCε,1
CkĈεσ

2
1

Cε
C2
1x

nk+n̂ε+2σ1−nε−2
2 − Cε,2

CεĈε

Ck
xnε+n̂ε−nk
2

+
Cµ

σε
C2
knε(2nk − 1)x2nk−2

2 , (5.133)

0 = CµĈε,1

(
CkĈ

2
ε

C2
εσ

2
1

C2
1x

nk+n̂ε−nε+2σ1−2
2 + γCkĈ

2
1 σ̂

2
1x

nk+2σ̂1−2
2

)
− Ĉε,2

Ĉ2
ε

Ck
x2n̂ε−nk
2

+
Cµ

σ̂ε

C2
kĈε

Cε
nε(2nk + n̂ε − nε − 1)x2nk+n̂ε−nε−2

2 . (5.134)

Again, (5.131) implies 2nk − nε + σ1 = 2, and comparison of the x2-exponents in (5.132)–
(5.134) yields

2nk − 2nε + 2σ1 − 2 = 0, (5.135)
3nk − nε − n̂ε + 2σ1 − 2 = 0, (5.136)

so that nk = 1, nε = σ1, and n̂ε = −σ1 + 1. For σ̂1, (5.134) only leaves two options: Either,
σ̂1 = −σ1 + 1, or σ̂1 = 0. In the latter case, the γ-term would simply vanish. Only this second
option is compatible with (5.130), from which, in turn, we can infer that the gradient ∂P̂ /∂x1
must vanish. Note that thanks to the additional scaling symmetry (3.59) present in the model,
the concrete value for σ1 does not follow from comparison of the exponents, but is instead
determined by the model parameters. Assuming the conjectured exact value of σ1 = 2 again
leads to a vanishing diffusion term in the k-equation (5.132), though, in contrast to the log
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layer, this is because 3nk − nε − 1 = 0, not because k is constant. In any event, this yields

CµCkC1σ1
Cε

= 1, (5.137)

which greatly simplifies (5.133) and (5.134). In fact, these two equations again lead to the
constraint that already arose from the log layer, Eq. (5.122). The fact that no additional
constraint arises from this test case clearly exemplifies the superior ability of the modified
model to generalize to flows against which it is not originally calibrated. We attribute this to
the additional symmetries (3.59) and (3.60) built into the model, because both the log law and
the core region scaling law, when obtained as an invariant solution as discussed in Section 3.3,
result from the statistical symmetries. Therefore, our new model only has to be calibrated
against one to automatically also predict the other one accurately. A minor weakness observed
for this test case is that the exponents for k and ε̂ do not make sense on the centerline position,
so that we have to exclude this point from the range of validity. In practice, we do not expect
this to cause any problems because of the regularizing effect of viscosity.

Shear-Free One-Dimensional Turbulence Next, we consider a test case that is also not
part of the traditional model calibration as discussed in Section 3.4.1, but that is nonetheless
theoretically interesting and practically relevant. Shear-free one-dimensional turbulence occurs
when velocity gradients vanish, but the turbulent scalars do have a gradient in one direction.
Then, the model equations (5.87), (5.89) and (5.90) simplify to

0 = −ε̂+ ∂

∂x1

(
νt
σk

∂k

∂x1

)
, (5.138)

0 = −Cε,2
εε̂

k
+

∂

∂x1

(
νt
σε

∂ε

∂x1

)
, (5.139)

0 = −Ĉε,2
ε̂2

k
+

∂

∂x1

(
νt
σ̂ε

∂ε̂

∂x1

)
. (5.140)

From a theoretical point of view, this setting allows one to study the model for a balance of
dissipation and diffusion, which nicely complements the study for a balance of production and
dissipation in the context of homogeneous shear. Moreover, this flow is also practically relevant
in the context of oceanography, where it serves as a simple model for turbulence in resting
bodies of water into which turbulent energy is injected by surface waves (Umlauf et al., 2003).

Numerical tests (Umlauf et al., 2003) in the context of classical two-equation models suggest a
power law for the scalar quantities, which we also extend to ε̂, i.e.

k = Ckx
nk
2 , ε = Cεx

nε
2 , ε̂ = Ĉεx

n̂ε
2 , (5.141)

leading to the system of nonlinear algebraic equations

3nk − nε − n̂ε = 2, (5.142)
σk

σεCε,2
=
nk(3nk − nε − 1)

nε(2nk − 1)
, (5.143)

σk

σ̂εĈε,2

=
nk(3nk − nε − 1)

n̂ε(2nk + n̂ε − nε − 1)
. (5.144)
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The solution of (5.142)–(5.144) is so complicated that it is better to solve it numerically. The
choice of model parameters that works well for all considered flows and is summarized in
Eq. (5.197) predicts a decay exponent for k of −3.7, a value reasonably close to the measured
range of −1.7 . . .− 3 (Nokes, 1988). By contrast, inserting (5.141) into the classical k-ε-model
leads to

3nk − 2nε = 2, (5.145)
σk

σεCε,2
=
nk(3nk − nε − 1)

nε(2nk − 1)
, (5.146)

which can be solved for nk to yield

nk = − 7σk
6(σε − 2σk)

−
√

49σk2

36(σε − 2σk)2
+

2σk
3(σε − 2σk)

. (5.147)

For standard model parameters, this leads to −4.97, which is quite far from the observed range.
Changing σε in order to achieve a better value is possible, but this comes at the expense of no
longer being able to predict the log region accurately. On the other hand, the modified model
is capable of accommodating both test cases. Note that a different problematic property of the
k-ε-model, namely that the exponent nk is very sensitive to the choice of model parameters,
is inherited and even somewhat amplified by the modified model. However, for a fixed set of
model parameters, this is not an issue. Also, other choices of scale-providing variables could
likely mitigate this drawback (Umlauf, 2001).

Unlike the classical k-ε-model, the modified model can be calibrated in such a way as to
correctly predict all flows considered in this section. However, so far, no constraints on the
parameters γ and ι could be inferred. This also means that the auxiliary velocity field Û i has
not entered the discussion so far. To investigate these aspects further and to test the model in
a slightly more complicated setting, we have to take into account flows such as the plane jet.
The numerical investigation of this flow is discussed in Section 5.3.1.

5.2.2. Reynolds Stress Models

The results in this section have largely been obtained in collaboration with Nils Benedikt,
who discusses them in his Bachelor’s thesis (Benedikt, 2022). Even though developing a
statistically invariant RSM is considerably more complicated than the modeling ideas presented
in Section 5.2.1, early steps toward extending the model framework presented in Section 5.1.3,
which gives rise to the simplistic model given by Eqs. (1.3), (1.4), (5.60), (5.63), (5.72)
and (5.73), to a physically reasonable and statistically invariant RSM have been taken as part
of the present work. The central challenge is introduced by the complicated transformation
behavior of the Reynolds stresses under the statistical symmetries (3.59)–(3.61), which makes
it difficult to make use of existing modeling ideas as discussed in Section 3.4.2. In many
cases, it is possible to circumvent these difficulties by using instantaneous moments instead of
fluctuating ones, however, since they are not Galilean invariant, in the present context, one
would only trade complications associated with the statistical symmetries with complications
arising from the Galilean symmetry (3.36). Therefore, a crucial idea developed in Benedikt
(2022) is the introduction of an additional Reynolds stress tensor-like variable we call R̂ij ,
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which, in analogy to Û i, transforms like Rij under all classical symmetries (3.41)–(3.47), but
has a simple behavior under the statistical symmetries (3.68)–(3.70). Thanks to the assumed
simple behavior of R̂ij under the statistical symmetries, which is given by Eqs. (5.159)–(5.162),
we can easily adapt any classical RSM or EARSM to define it. Benedikt (2022) uses Eqs. (3.148),
(3.151), (3.154) and (3.159) to suggest

D̂R̂ij

D̂t
= −R̂ik

∂Û j

∂xk
− R̂jk

∂Û i

∂xk
− C1

ε̂

k̂

(
R̂ij −

1

3
R̂kkδij

)
+ C2

(
R̂ik

∂Û j

∂xk
+ R̂jk

∂Û i

∂xk
− 2

3
R̂lk

∂Û l

∂xk
δij

)
− 2

3
ε̂δij

+
∂

∂xk

(
ĉRR̂lk

k̂

ε̂

∂R̂ij

∂xl

)
, (5.148)

where, analogous to the definition of k, k̂ = R̂kk/2. Note that the introduction of R̂ij directly
suggests using it in (5.67), which would lead to

Smom,i =
∂R̂ij

∂xj
. (5.149)

Like with classical RSMs, it is also useful to introduce an equation for the scalar dissipation ε,

D̂ε

D̂t
= −Cε,1

ε̂

k̂
R̂ij

∂Ū i

∂xj
− Cε,2

εε̂

k̂
+

∂

∂xl

(
cεR̂lk

k̂

ε̂

∂ε

∂xk

)
. (5.150)

Furthermore, in order to be able to adapt the statistical scaling behavior of model terms as
needed, a statistically invariant version ε̂ is also introduced, similarly to the EVMs discussed in
Section 5.2.1. By adapting Eq. (5.150), a possible equation for ε̂ is

D̂ε̂

D̂t
= −Ĉε,1

ε̂

k̂
R̂ij

∂Û i

∂xj
− Ĉε,2

ε̂2

k̂
+

∂

∂xl

(
ĉεR̂lk

k̂

ε̂

∂ε̂

∂xk

)
. (5.151)

With these newly introduced variables, the classical and statistical symmetries (3.27)–(3.33)
and (3.55)–(3.58) then become

T t : t
∗ = t+ aT , x

∗
i = xi, Ū

∗
i = Ū i, Û

∗
i = Û i, , P̄

∗ = P̄ , P̂ ∗ = P̂

R∗
ij = Rij , R̂

∗
ij = R̂ij , pui

∗ = pui, ε
∗ = ε, ε̂∗ = ε̂; (5.152)

T rotα : t∗ = t, x∗i = xjQ
[α]
ij , Ū

∗
i = Ū jQ

[α]
ij , Û

∗
i = Û jQ

[α]
ij ,

P̄ ∗ = P̄ , P̂ ∗ = P̂ , R∗
ij = RklQ

[α]
ik Q

[α]
jl , R̂

∗
ij = R̂klQ

[α]
ik Q

[α]
jl ,

pui
∗ = pujQ

[α]
ij , ε

∗ = ε, ε̂∗ = ε̂; (5.153)

TGali : t
∗ = t, x∗i = xi + fGali(t), Ū

∗
i = Ū i + f ′Gali(t), Û

∗
i = Û i + f ′Gali(t),

P̄ ∗ = P̄ − xjf
′′
Galj (t), P̂

∗ = P̂ − xjf
′′
Galj (t), R

∗
ij = Rij , R̂

∗
ij = R̂ij ,

pui
∗ = pui, ε

∗ = ε, ε̂∗ = ε̂; (5.154)
TP : t∗ = t, x∗i = xi, Ū

∗
i = Ū i, Û

∗
i = Û i, P̄

∗ = P̄ + fP (t), P̂
∗ = P̂ + fP (t),

R∗
ij = Rij , R̂

∗
ij = R̂ij , pui

∗ = pui, ε
∗ = ε, ε̂∗ = ε̂; (5.155)
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T Sc,I : t∗ = t, x∗i = xie
aSc,I , Ū∗

i = Ū ie
aSc,I , Û∗

i = Û ie
aSc,I ,

P̄ ∗ = P̄ e2aSc,I , P̂ ∗ = P̂ e2aSc,I , R∗
ij = Rije

2aSc,I , R̂∗
ij = R̂ije

2aSc,I ,

puij
∗ = puije

3aSc,I , ε∗ = εe2aSc,I , ε̂∗ = ε̂e2aSc,I ; (5.156)
T Sc,II : t∗ = teaSc,II , x∗i = xi, Ū

∗
i = Ū ie

−aSc,II , Û∗
i = Û ie

−aSc,II ,

P̄ ∗ = P̄ e−2aSc,II , P̂ ∗ = P̂ e−2aSc,II , R∗
ij = Rije

−2aSc,II , R̂∗
ij = R̂ije

−2aSc,II ,

pui
∗ = puie

−3aSc,II , ε∗ = εe−3aSc,II , ε̂∗ = ε̂e−3aSc,II ; (5.157)

T Sc,ns : t
∗ = te2aSc,ns , x∗i = xie

aSc,ns , Ū∗
i = Ū ie

−aSc,ns , Û∗
i = Û ie

−aSc,ns ,

P̄ ∗ = P̄ e−2aSc,ns , P̂ ∗ = P̂ e−2aSc,ns , R∗
ij = Rije

−2aSc,ns , R̂∗
ij = R̂ije

−2aSc,ns ,

pui
∗ = puie

−3aSc,ns , ε∗ = εe−4aSc,ns , ε̂∗ = ε̂e−4aSc,ns ; (5.158)
T Sc,stat : t

∗ = t, x∗i = xi, Ū
∗
i = Ū ie

aSc,stat , Û∗
i = Û i,

R∗
ij = (Rij + Ū iŪ j)e

aSc,stat − Ū iŪ je
2aSc,stat , R̂∗

ij = R̂ij , P̄
∗ = P̄ eaSc,stat , P̂ ∗ = P̂ ,

uip
∗ = (uip+ Ū iP̄ )e

aSc,stat − Ū iP̄ e
2aSc,stat , ε∗ = εeaSc,stat , ε̂∗ = ε̂; (5.159)

T Tr,stat,1 : t
∗ = t, x∗i = xi, Ū

∗
i = Ū i + aTr,stat,I,i, Û

∗
i = Û i, P̄

∗ = P̄ , P̂ ∗ = P̂ ,

R∗
ij = Rij − Ū iaTr,stat,I,j − Ū jaTr,stat,I,i − aTr,stat,I,iaTr,stat,I,j ,

R̂∗
ij = R̂ij , uip

∗ = uip− P̄ aTr,stat,I,i, ε
∗ = ε, ε̂∗ = ε̂; (5.160)

T Tr,stat,2 : t
∗ = t, x∗i = xi, Ū

∗
i = Ū i, Û

∗
i = Û i, P̄

∗ = P̄ , P̂ ∗ = P̂ ,

R∗
ij = Rij + aTr,stat,II,ij , R̂

∗
ij = R̂ij , pui

∗ = pui,

ε∗ = ε, ε̂∗ = ε̂; (5.161)
T Tr,stat,3 : t

∗ = t, x∗i = xi, Ū
∗
i = Ū i, Û

∗
i = Û i, P̄

∗ = P̄ , P̂ ∗ = P̂ ,

R∗
ij = Rij , R̂

∗
ij = R̂ij , pui

∗ = pui + aTr,stat,III,i,

ε∗ = ε, ε̂∗ = ε̂, (5.162)

or, in infinitesimal form,

Xt =
∂

∂t
, (5.163)

Xrotα = ϵjkαxj
∂

∂xk
+ ϵjkαŪ j

∂

∂Ūk
+ ϵjkαÛ j

∂

∂Ûk

+ (ϵkiαRkj + ϵkjαRik)
∂

∂Rij
+ (ϵkiαR̂kj + ϵkjαR̂ik)

∂

∂R̂ij

+ ϵjkαpuj
∂

∂puk
, (5.164)

XGal = fGali(t)
∂

∂xi
+ f ′Gali(t)

∂

∂Ū i
+ f ′Gali(t)

∂

∂Û i

− xif
′′
Gali(t)

∂

∂P̄
− xif

′′
Gali(t)

∂

∂P̂
(5.165)

XP = fP (t)
∂

∂P̄
+ fP̂ (t)

∂

∂P̂
, (5.166)
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XSc,I = xi
∂

∂xi
+ Ū i

∂

∂Ū i
+ Û i

∂

∂Û i

+ 2P̄
∂

∂P̄
+ 2P̂

∂

∂P̂

+ 2Rij
∂

∂Rij
+ 2R̂ij

∂

∂R̂ij

+ 3pui
∂

∂pui
+ 2ε

∂

∂ε
+ 2ε̂

∂

∂ε̂
, (5.167)

XSc,II = t
∂

∂t
− Ū i

∂

∂Ū i
− Û i

∂

∂Û i

− 2P̄
∂

∂P̄
− 2P̂

∂

∂P̂

− 2Rij
∂

∂Rij
− 2R̂ij

∂

∂R̂ij

− 3pui
∂

∂pui
− 3ε

∂

∂ε
− 3ε̂

∂

∂ε̂
, (5.168)

XSc,ns = 2t
∂

∂t
+ xi

∂

∂xi
− Ū i

∂

∂Ū i
− Û i

∂

∂Û i

− 2P̄
∂

∂P̄
− 2P̂

∂

∂P̂

− 2Rij
∂

∂Rij
− 2R̂ij

∂

∂R̂ij

− 3pui
∂

∂pui
− 4ε

∂

∂ε
− 4ε̂

∂

∂ε̂
, (5.169)

XSc,stat = Ū i
∂

∂Ū i
+ P̄

∂

∂P̄
+
(
Rij − Ū iŪ j

) ∂

∂Rij
+
(
pui − Ū iP̄

) ∂

∂pui
+ ε

∂

∂ε
, (5.170)

XTr,stat,1 =
∂

∂Ū i
−
(
δijŪk + δikŪ j

) ∂

∂Rjk
− P̄

∂

∂pui
, (5.171)

XTr,stat,2 =
∂

∂Rij
, (5.172)

XTr,stat,3 =
∂

∂pui
. (5.173)

It is difficult to rigorously prove that the addition of all of these model variables is mathematically
necessary. The main reason for this is that it is not possible to encode the requirement for
the model to be physically accurate in a mathematical language that would allow for such a
proof. However, Benedikt (2022) motivates this decision by considering very simple canonical
flows such as homogeneous turbulence and homogeneous shear. In both cases, unsurprisingly,
the model skeleton presented in Section 5.1.3 simplifies so much as to no longer allow for
the inclusion of very basic physical effects, such as the decay of the turbulent kinetic energy
due to dissipation and the return to isotropy of the Reynolds stress tensor. Moreover, due to
the absence of gradients in these test cases, it can clearly be shown that from the available
variables, no terms capable of accounting for these effects can be formed. This justifies the
introduction of the new model variables, which is also supported by an investigation carried
out by Schäfer (2021), who investigated the usefulness of including second derivatives in order
to gain more freedom for formulating an RSM.

Having introduced the previously discussed model variables then allows formulating the
statistically invariant RSM given by Eqs. (5.148), (5.150) and (5.151) together with (1.3)
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and (1.6), the transport equation for Rij , which is an extended version of Eq. (5.74) and reads

∂Rij

∂t
+ Ûk

∂Rij

∂xk
=
∂Ū j

∂xk
(Ū i − Û i)(Ūk − Ûk) +

∂Ū i

∂xk
(Ū j − Û j)(Ūk − Ûk)

+
∂Rik

∂xk
(Ū j − Û j) +

∂Rjk

∂xk
(Ū i − Û i)− ui

∂p

∂xj
− uj

∂p

∂xi

+ ν

(
∂2Rij

∂xk∂xk
+ Ū i

∂2Ū j

∂xk∂xk
+ Ū j

∂2Ū i

∂xk∂xk
+ 2

∂Ū i

∂xk

∂Ū j

∂xk

)

+ 2νC1

(
∂Ū i

∂xk

∂Û j

∂xk
+
∂Û i

∂xk

∂Ū j

∂xk

)
, (5.174)

and an extended version of Eq. (5.75) given by

∂

∂xk

(
ui
∂p

∂xj

)
+

∂2P̄

∂xj∂xk
(Ū i − Û i) +

∂Ū j

∂xk

(
∂P̄

∂xj
− ∂P̂

∂xj

)

=
∂Û i

∂xk

(
C2

((
Ū l − Û l

) ∂Ū j

∂xl
+
∂Rij

∂xl

)
− C3ν

∂2Ū j

∂xl∂xl

)
. (5.175)

This model is able to represent the decay of turbulent kinetic energy in homogeneous turbulence,
however, more work is needed to properly accommodate the return to isotropy and the model
performance in homogeneous shear.

Evidently, due to the considerable model complexity, the numerical implementation and the
calibration for more complicated flows remains an open challenge to be addressed in future
work. It is reasonable to assume that a further development of simpler models, such as those
discussed in Section 5.2.1, which could yield deeper insights into the physical interpretation of
Û i and P̂ , is a prerequisite before one can address the further development of such complicated
models as presented in this section.

As a final note, even though the modifications leading to the models developed in this work
lead to a considerable increase in equations, the structure of the equation systems suggests
some potential for optimizations. In particular, the observation that the equations for Ū i and
Û i, like the equations for Rij and R̂ij , have the same general structure, hints at solving one
first and then using the results as an initial guess for the other one. This could vastly improve
the convergence of the numerical solver. At the same time, from a theoretical point of view,
this suggests an interpretation of the model modifications as an improvement algorithm. If Û i

and R̂ij are viewed as the results of a classical model, then the equations leading to Ū i and
Rij can be interpreted as a correction algorithm accounting for the statistical symmetries.

5.3. Numerical Implementation

Due to the convergence issues of the classical k-ω-model discussed in Section 4.3, the modified
k-ε-model was first implemented for the special case of self-similar flows, where the model
equations can be simplified to an ODE. The resulting BVP is then solved using very simple
and well-established numerical schemes discussed in Section 4.4 and further detailed in the
following.
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5.3.1. Finite-Difference Implementation for Self-Similar Flow

An important class of flows to consider for model calibration is that of free shear flows, such as
the plane jet, the round jet, the wake and the mixing layer. These flows are two-dimensional
in space and, therefore, unlike parallel shear flows, contain nonvanishing convective terms.
However, through the introduction of a suitable similarity variable, the equations can be reduced
to an ODE. This makes them suitable for understanding the modifications to the convective
terms discussed in Section 5.1.3 and Section 5.2.1, because they are complex enough to contain
the relevant convective terms, but still simple enough to allow for a relatively cheap and robust
numerical solution.

In the following, we consider the plane jet. Adapting the line of argumentation presented in
Wilcox (1994) to the modified model, we make the classical similarity ansatz

Ū1 =
ũ(η)

xnu
1

, Û1 =
˜̂u(η)

xn̂u
1

, Û2 =
˜̂v(η)

xn̂u
1

, k =
k̃(η)

xnk
1

, ε =
ε̃(η)

xnε
1

, ε̂ =
˜̂ε(η)

xn̂ε
1

, (5.176)

where the similarity variables denoted with a tilde only depend on the similarity coordinate

η =
x2
x1
. (5.177)

Classical scaling arguments as discussed in Sections 3.3 and 3.5 lead to

nu = n̂u =
1

2
, nk = 1, nε = n̂ε =

5

2
. (5.178)

Note that the modified model, unlike the original model, can also accommodate the more
general scaling behavior developed in Section 3.3. However, we restrict ourselves to the classical
jet here. Then, the model equations (5.62), (5.63), (5.66), (5.67), (5.87), (5.89) and (5.90)
become

˜̂
V (η) = −

∫ η

0

1

2
˜̂u(η̂)dη̂, (5.179)

˜̂
V (η)˜̂u′(η)− 1

2
˜̂u(η)2 = ιCµ

(
k̃(η)2

ε̃(η)
˜̂u′(η)

)′

, (5.180)

˜̂
V (η)ũ′(η)− 1

2
˜̂u(η)ũ(η) = Cµ

(
k̃(η)2

ε̃(η)
ũ′(η)

)′

, (5.181)

˜̂
V (η)k̃′(η)− ˜̂u(η)k̃(η) = Cµ

k̃(η)2 ˜̂ε(η)

ε̃(η)2
ũ′(η)2

− ˜̂ε(η) +
Cµ

σk

(
k̃(η)2

ε̃(η)
k̃′(η)

)′

, (5.182)

˜̂
V (η)ε̃′(η)− 5

2
˜̂u(η)ε̃(η) = CµCε,1

k̃(η)˜̂ε(η)

ε̃(η)
ũ′(η)2

− Cε,2
ε̃(η)˜̂ε(η)

k̃(η)
+
Cµ

σε

(
k̃(η)2

ε̃(η)
ε̃′(η)

)′

, (5.183)
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˜̂
V (η)˜̂ε′(η)− 5

2
˜̂u(η)˜̂ε(η) = CµĈε,1

(
k̃(η)˜̂ε(η)2

ε̃(η)2
ũ′(η)2 + γk̃(η)˜̂u′(η)2

)

− Ĉε,2

˜̂ε(η)2

k̃(η)
+
Cµ

σ̂ε

(
k̃(η)2

ε̃(η)
˜̂ε′(η)

)′

, (5.184)

where primes denote derivation with respect to η, and the normal velocity-like function ˜̂
V (η)

is defined as

˜̂
V (η) = ˜̂v(η)− η ˜̂u(η). (5.185)

˜̂
V (η) is calculated in every time step using the integral relation (5.179), which is derived from
the continuity equation (5.63) with Sconti = 0. Note that using this relation in differential
form was found to lead to numerical instabilities, probably not dissimilar to the issues related
to pressure-velocity coupling in full Navier–Stokes solvers. Since ˜̂

V (η) is calculated from an
integral relation, no boundary conditions have to be specified for it, though note that Eq. (5.179)
obviously implies ˜̂V (η = 0) = 0. For the other variables, we impose that they approach zero as
η → ∞, and that their gradients vanish at the centerline, i.e.

˜̂u(η → ∞) = ũ(η → ∞) = k̃(η → ∞) = ε̃(η → ∞) = ˜̂ε(η → ∞) = 0,

˜̂u′(η = 0) = ũ′(η = 0) = k̃′(η = 0) = ε̃′(η = 0) = ˜̂ε(η = 0) = 0. (5.186)

Since these boundary conditions are fully homogeneous, the trivial solution of all variables
becoming zero globally is still possible, which is a commonly encountered issue of such self-
similar jet simulations. This can be addressed by imposing an additional symmetry-breaking
constraint such as

ũ(η = 0) = 1, (5.187)

which breaks the scaling symmetry in time given by Eq. (5.96). Note that the scaling symmetry
in space (5.95) is already broken by the similarity ansatz (5.176). In the modified model, we
have the additional statistical scaling symmetry (5.97), so that we require a second constraint,
for which we select

˜̂u(η = 0) = 1. (5.188)

It is important to note that the constraints (5.187) and (5.188) are arbitrary, and do not affect
the final result beyond a normalization factor.

For improved numerical stability, it was found helpful to use the transformation (3.180)
proposed by Rubel and Melnik (1984) and already discussed in Section 3.5, which effectively
moves the turbulent-nonturbulent interface to infinity in the ξ-domain. Equations (5.179)–
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(5.184) then become

˜̂
V (ξ) = −

∫ ξ

0

1

2
˜̂u(ξ̂)Cµ

k̃(ξ)2

ε̃(ξ)
dξ̂, (5.189)

˜̂
V (ξ)˜̂u′(ξ)− 1

2
˜̂u(ξ)2Cµ

k̃(ξ)2

ε̃(ξ)
= ι˜̂u′′(ξ), (5.190)

˜̂
V (ξ)ũ′(ξ)− 1

2
˜̂u(ξ)ũ(ξ)Cµ

k̃(ξ)2

ε̃(ξ)
= ũ′′(ξ), (5.191)

˜̂
V (ξ)k̃′(ξ)− ˜̂u(ξ)k̃(ξ)Cµ

k̃(ξ)2

ε̃(ξ)
=

˜̂ε(ξ)

ε̃(ξ)
ũ′(ξ)2

− Cµ
k̃(ξ)2

ε̃(ξ)
˜̂ε(ξ) +

1

σk
k̃′′(ξ), (5.192)

˜̂
V (ξ)ε̃′(ξ)− 5

2
˜̂u(ξ)ε̃(ξ)Cµ

k̃(ξ)2

ε̃(ξ)
= Cε,1

˜̂ε(ξ)

k̃(ξ)
ũ′(ξ)2

− CµCε,2k̃(ξ)˜̂ε(ξ) +
1

σε
ε̃′′(ξ), (5.193)

˜̂
V (ξ)˜̂ε′(ξ)− 5

2
˜̂u(ξ)˜̂ε(ξ)Cµ

k̃(ξ)2

ε̃(ξ)
= Ĉε,1

(
˜̂ε(ξ)2

ε̃(ξ)k̃(ξ)
ũ′(ξ)2 + γ

ε̃(ξ)

k̃(ξ)
˜̂u′(ξ)2

)

− CµĈε,2
k̃(ξ)˜̂ε(ξ)2

ε̃(ξ)
+

1

σ̂ε
˜̂ε′′(ξ), (5.194)

where primes now denote derivation with respect to ξ, and η is calculated using the integral
form of (3.180),

η(ξ) =

∫ ξ

0
Cµ

k̃(ξ̂)2

ε̃(ξ̂)
dξ̂. (5.195)

This BVP is solved using a finite-difference discretization in space as discussed in Section 4.4.
First spatial derivatives are discretized using the second-order accurate backward difference
formula (4.40), and second spatial derivatives are discretized with second-order accurate
central differences as given by (4.41). Due to the complicated source terms, the resulting
discretized system proved difficult to solve using a nonlinear solver. Therefore, following Wilcox
(1994), a pseudo-time stepping approach, which has already been discussed in Section 4.4, is
employed. To this end, the temporal terms that were eliminated from (5.190)–(5.194) because
of assumed stationarity are added back in, allowing the system to be evolved in time until a
steady state is reached. For the temporal discretization, we use the Crank–Nicolson scheme
shown in Section 4.2. In each pseudo-time step, the equations can then be linearized by using
the state of the previous pseudo-time step. A numerically disadvantageous property in some of
the source terms of the k and ε equations (5.192) and (5.193) is that they do not contain k
and ε, respectively. This negatively impacts the diagonal dominance of the resulting matrix, or,
in other words, its condition number. A remedy for this is to multiply these source terms with
the ratios k̃(ξ)n/k̃(ξ)n−1 or, respectively, ε̃(ξ)n/ε̃(ξ)n−1, where we denote values of the current
nth time step with the superscript n, and values of the previous time step with the superscript
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n− 1. In concrete terms, e.g. the time-discretized k-equation (5.192) then reads

k̃(ξ)n − k̃(ξ)n−1

∆t
+

˜̂
V (ξ)n−1k̃′(ξ)n − ˜̂u(ξ)n−1k̃(ξ)nCµ

(
k̃(ξ)n−1

)2
ε̃(ξ)n−1

=
˜̂ε(ξ)n−1

ε̃(ξ)n−1

k̃(ξ)n

k̃(ξ)n−1

(
ũ′(ξ)n−1

)2 − Cµ
k̃(ξ)n−1k̃(ξ)n

ε̃(ξ)n−1
˜̂ε(ξ)n−1 +

1

σk
k̃′′(ξ)n, (5.196)

where the production and dissipation terms have been multiplied with k̃(ξ)n/k̃(ξ)n−1. Evidently,
this does not affect the converged solution. The numerical solver is implemented in the free
and open-source programming language Python (Python Software Foundation, 2016), and its
source code has been published to www.gitlab.com/dakling/python-k-eps-jet-fds.
In order to validate the solver, the results for the classical k-ε-model found in Wilcox (1994)
were successfully reproduced.

As model parameters for the modified k-ε-model, the choice

σk = 0.91, ι = 2.0

Cε,1 = 1.44, Cε,2 = 1.92, σε = 1.3,

Ĉε,1 = 1.42, γ = 0.05, Ĉε,2 = 1.92, σ̂ε = 1.25 (5.197)

not only fulfills all constraints derived in Section 5.2.1, but also provides excellent agreement
for the plane jet, as is shown in Fig. 5.1. For completeness, the profiles of the other model
variables are also shown in Fig. 5.2, even though no reference against which to reasonably
compare them to is available. Interestingly, the performance at the intermittent edge of the jet is
slightly superior to the classical k-ε-model. There could be a link between this observation and
the fulfilling of the statistical scaling symmetry (3.55), which, as mentioned in Section 3.2, has
also been linked to intermittency. However, more research is needed before such a conclusion
can be drawn with confidence.

This concludes the presentation of the main developments in this work. It is important to
emphasize that this discussion should not be reduced to the resulting model, but that the
rationale presented here gives rise to an entire class of models.
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Figure 5.1.: Plane jet experimental data (Wygnanski and Fiedler, 1969) compared with classical
and modified, statistically invariant k-ε-model
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(c) Turbulent dissipation ε̃(ξ).
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Figure 5.2.: Results for the other fields.
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6. Conclusion

In this work, the concept of Lie symmetries is applied to the problem of turbulence modeling.
After introducing symmetries and exact statistical descriptions of turbulence in a general
way, turbulence is analyzed through the lens of symmetries. Subsequently, existing RANS
(Reynolds-Averaged Navier–Stokes) modeling approaches are presented and examined with
regard to their symmetries. This discussion reveals a number of shortcomings of existing models,
which we seek to overcome by developing a completely novel class of statistically invariant
turbulence models with enhanced symmetry properties. The development of these models
and the calibration and numerical implementation of a specific representative, a modified
k-ε-model, is the main contribution of this work.

Furthermore, the present work contains a discussion of the numerical implementation of
existing and novel turbulence models as well as the theoretical background underlying these
implementations. In particular, the implementation of the classical k-ω-model in the DG
(Discontinuous Galerkin) solver framework BoSSS (Bounded Support Spectral Solver) is
presented. Results for a boundary layer flow are shown, though the focus of the discussion lies
on the measures needed to obtain a numerically robust solver. For the classical k-ε-model and
a statistically invariant version of it, we also discuss a special-purpose FDS (Finite Differencing
Scheme) solver that efficiently performs calculations of certain simple flows. Such a lightweight
solver is crucial when optimizing model parameters, because this requires many successive
numerical calculations.

As a formal model development algorithm presented in this work reveals, a key ingredient
necessary for formulating statistically invariant models are auxiliary velocity-like and pressure-
like fields. Furthermore, depending on the model type, the introduction of additional auxiliary
fields is required. Even though some existing turbulence models introduce additional velocity
fields, the statistically invariant models developed in this work differ significantly from any
existing turbulence model. This both represents a challenge and an opportunity: On the one
hand, it is more difficult to incorporate well-established aspects of existing models and to
interpret the auxiliary variables physically, but, on the other hand, the symmetry arguments
presented in this work lead to a completely new class of models with tremendous potential.
Among other things, these new models offer the possibility to naturally incorporate more
physical effects of turbulence, such as intermittency and non-Gaussianity.

Among all statistically invariant models presented in this work, the one whose development
has been taken the furthest is a modified k-ε-model. Even though this new model is still in an
early development stage, its performance for canonical flows already shows great promise. It is
clear that the new model is more general, because it can be calibrated against a broader range
of flows when compared to the classical k-ε-model. In conjunction with its enhanced symmetry
properties, this leads to the expectation that it can also more reliably be applied to flows it

109



was not calibrated against, which is something classical two-equation models tend to struggle
with. In the future, now that reasonable values for the parameters of the model are known, the
implementation of the full model in BoSSS or a similar solver framework should be revisited.

The modified k-ε-model is intended to be a relatively simple representative of the class of
statistically invariant turbulencemodels, and, therefore, inherits some limitations of the classical
k-ε-model. Most notably, we cannot expect it to perform well in rotating flows or flows with
high streamline curvature due to the incorrect invariance of the Boussinesq approximation
under time-dependent rotation. In order to overcome this issue, future modeling efforts could
be directed at extending the Boussinesq approximation with additional rotation-sensitive terms,
which is the idea behind NLEVMs (nonlinear Eddy-viscosity models) and EARSMs (explicit
algebraic Reynolds stress models). To include even more of the physics of turbulence, the class
of statistically invariant RSMs (Reynolds stress models) could be developed further. Additionally,
the symmetry-based modeling approach presented here could be further enhanced by allowing
it to algorithmically incorporate constraints arising from conservation laws or other constraints
such as the condition of realizability.

However, another important question that should possibly be addressed prior to those devel-
opments concerns the physical interpretation of the newly introduced model variables. The
symmetry-based modeling strategy has the unusual feature that auxiliary model variables
for which we do not yet have a physical intuition can be built into the model. Since we can
derive a general form of possible model equations for these variables, which we can in turn
calibrate against canonical flows, this is less of an issue than one might expect. Nonetheless,
this becomes increasingly problematic as the model complexity grows, which is the primary
reason why we have mostly focused on the development of relatively simple linear EVMs
(Eddy-viscosity models). We expect that from these simple models, further insights into the
physical significance of the auxiliary velocity and pressure fields can be extracted by applying
them to an even broader range of flows, especially to more complicated ones.
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A. Appendix

A.1. Definitions of Groups and Lie Groups

The content of this section is discussed in more detail in Bluman and Anco (2002).

Groups are formed by a set G and a binary operation f(x, y) provided that the following four
properties are met:

1. G is closed with respect to f(x, y), i.e. if x, y ∈ G, then f(x, y) ∈ G holds as well.

2. f is associative, i.e. f(f(x, y), z) = f(x, f(y, z)),

3. G contains an identity element e such that f(x, e) = x, and

4. for every x ∈ G, there exists an inverse element x−1 such that f(x, x−1) = f(x−1, x) = e.

Symmetries are variable transformations that, when inserted into an equation, leave the
equation form invariant. Given a set of variables x, the transformation

x∗ = ϕ(x, a), (A.1)
(A.2)

is called a symmetry of equation F (x) = 0 if

F (x) = 0 ⇔ F (x∗) = 0, (A.3)

where a is an arbitrary constant referred to as the group parameter.

Groups and symmetry transformations are intimately connected, because if we consider the
variable space the transformation acts on as the set G and the subsequent application of the
transformation, possibly with different values for a, as the operation f , transformations admit
group properties in the following sense: Given x = (x1, x2, · · · , xn) ∈ G ⊂ Rn, a ∈ S ⊂ R, and
a law of composition f(a1, a2) (where a1, a2 ∈ S), the transformation (A.1) is a one-parameter
group of transformations if

1. all x∗ lie in G,

2. S with the law of composition f(a1, a2) forms a group as defined above,

3. there exists an identity element e such that for all x ∈ G, x∗ = ϕ(x, e) = x, and

4. the repeated application of the transformation can be expressed using the law of compo-
sition, i.e. ϕ(ϕ(x, a1), a2) = ϕ(x, f(a1, a2)).
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In order for a symmetry to form a one-parameter Lie group of transformations, three additional
conditions have to be met:

5. a is a continuous parameter,

6. ϕ and ψ are indefinitely often differentiable, and

7. the concatenation operation f is an analytical function.

A.2. Validation of the BoSSS Implementation of the Classical
k-ω-Model

The implementation of the classical k-ω-model in BoSSS is validated by repeatedly solving the
same problem on different meshes with increasing resolution and for different DG-degrees.
Then, by using the finest solution as a reference, the cumulative error of each of the coarser
solutions is computed using the L2-norm. For a DG-degree m, a convergence order of m+ 1
can be expected. Note that due to the mixed-order discretization, the polynomial degree used
for the pressure is smaller by one than that for the other fields. As a result, the convergence
order expected for the pressure is also smaller by one compared to the other fields.

Since the grid resolution has to span a sufficiently wide range in order for the results to be
meaningful, a test case that converges quickly and robustly on both coarse and fine grids should
be chosen. For the k-ω-model, it turns out to be somewhat challenging to find a test case that
fulfills these requirements, because even the simplest canonical flows are quite unreliable in
their convergence, as is further discussed in Section 4.3.1. Here, we make use of a setting
consisting of a rectangular domain on [0, l]× [0, l], which is discretized using equally spaced
n× n grids. Dirichlet boundary conditions for the velocity fields are imposed on all four sides.
The functions used read

Ū inlet1 = Ū0 sin
(x2π

2l

)
, (A.4)

Ū inlet2 = Ū0 sin
(x1π

2l

)
, (A.5)

where Ū0 is the reference velocity. The nonpolynomial functions for Ū inlet1 and Ū inlet2 are
intended to make the velocity fields sufficiently complicated, because too simple a velocity field
could potentially already be represented accurately using a coarse grid, which would make
it impossible to observe improvements upon grid refinement. For k and ω̃, the solutions are
sufficiently complicated anyway, so that simple Dirichlet boundary conditions with constant
values of kinlet = 1.35 · 10−3 and ω̃inlet = −0.399 can be prescribed on the left and the bottom
side of the domain. These values roughly correspond to a turbulent intensity of 10−2 for the
parameters of this setup. On the other two sides, we use homogeneous Neumann conditions.
It was found that if Dirichlet conditions for k and ω are enforced on all four sides, convergence
is negatively affected, especially on coarser grids. The setup is shown in Fig. A.1. Note
that these boundary conditions do not set a reference value for the pressure, so that some
arbitrariness associated with the pressure translation symmetry (3.30) remains. In such cases,
BoSSS automatically takes care to set a pressure reference value in order to ensure a stable
computation, however, this reference value may vary across calculations. Therefore, when
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Figure A.1.: Schematic view of the validation case setup.

calculating the pressure field errors, each pressure field must be shifted in order to ensure that
all pressure fields have the same reference value.

An important measure to improve convergence is to set the production and dissipation terms
in (3.118) and (3.119) to one tenth their usual value. The fact that this produces physically
inaccurate results is not important in the present context, because we are only interested
in the validation of the numerical method. If any of the terms was implemented incorrectly,
this would still be visible in the final result. The viscosity is chosen to be 10−4. Note that all
variables are nondimensionalized using the domain size l and the maximum velocity Ū0.

To give an impression of the setup, the numerical solution obtained with a resolution of 96× 96
cells and m = 2 is shown in Fig. A.2.

Figure A.3 shows the errors plotted against the grid spacing for m = 1, 2, and the orders
of convergence are summarized in Table A.1. Note that since the coarser grids clearly lie
outside the range of convergence, we only include the three finest grids (with the finest one
serving as the reference) in the calculation of the EOC (experimental order of convergence)
in Table A.1. Since we restrict ourselves to calculations with m = 2 in Section 4.3.1, and
calculations with higher polynomial degrees become increasingly computationally expensive,
no higher polynomial degrees are considered. The coarsest grid consists of 12× 12 cells. The
finest grid form = 1 contains 768× 768 cells, while the finest grid form = 2 consists of 96× 96
cells. It can be seen that whereas the results for m = 1 exceed expectations, the resolutions
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(a) Mean velocity Ū1. (b) Mean velocity Ū2.

(c) Mean pressure P̄ . (d) Turbulent kinetic energy k.

(e) Transformed turbulent dissipation rate ω̃.

Figure A.2.: Numerical solutions for Ū1, Ū2, P̄ , k and ω̃ in the setup used for the convergence
study.

used form = 2 lie somewhat outside the area of convergence, which is especially visible for the
pressure. However, since the overall results are sufficient for this preliminary solver validation,
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m
EOC

Ū1 Ū2 P̄ k ω̃

1 2.33 2.33 1.13 2.17 2.17

2 2.72 2.72 0.59 2.56 2.49

Table A.1.: Experimental order of convergence for Ū1, Ū2, k and ω̃ determined using only the
three finest grids. Due to the mixed-order discretization, we expect a convergence
order of m for the pressure P̄ , and for all other fields, we expect a convergence
order of m+ 1.

it is decided not to carry out further calculations, which would be computationally expensive.

A.3. Deriving a Reynolds Stress Transport Model from Symmetries

In the following, we detail the derivation of a RSM from symmetries as discussed in Section 5.1.

A.3.1. Using No Additional Model Variables

First, we discuss the derivation shown in Section 5.1.2 in greater detail. We start by assuming
the general form for the model equations to be

F
(
xi, t, Ū i, P̄ ,H ij , UiP,xj , Ū i,xj , Ū i,t, P̄,xi , P̄,t,

H ij,xk
, H ij,t, UiP,xj,xk

, UiP,xj,t

)
= 0. (A.6)

We demand that this equation system remain invariant under all classical symmetries (3.34)–
(3.39) and the statistical symmetries (3.59)–(3.61). As discussed in Chapter 2, this leads to
the linear PDE (partial differential equation) system

XtF |F=0 = 0 ∧XrotαF |F=0 = 0 ∧ · · · ∧XTr,stat,2F |F=0 = 0. (A.7)

Note that the system (A.7) does not need to be solved as a whole, but instead, we can make
the solution procedure simpler to follow by invoking one symmetry at a time. If we start with
the time translation symmetry (3.34), the corresponding constraint

XtF =
∂F

∂t
= 0 (A.8)

immediately eliminates t as a possible variable in (A.6), which is thus reduced to

F
(
xi, Ū i, P̄ ,H ij , UiP,xj , Ū i,xj , Ū i,t, P̄,xi , P̄,t,

H ij,xk
, H ij,t, UiP,xj,xk

, UiP,xj,t

)
= 0. (A.9)

Analogous results are obtained from the other translation symmetries: The Galilean symmetry
(3.36) with fGali(t) = const. i.e. translation invariance in space, eliminates xi, the pressure
translation symmetry (3.37) with fP (t) = const. eliminates P̄ , and the same symmetry with
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(a) Error of the mean velocity Ū1. (b) Error of the mean velocity Ū2.

(c) Error of the mean pressure P̄ . (d) Error of the turbulent kinetic energy k.

(e) Error of the transformed turbulent dissipation
rate ω̃.

Figure A.3.: Errors obtained by comparison with the finest grid results plotted against the grid
spacing. For the pressure, a convergence order of m can be expected, whereas for
the other fields, a convergence order of m+ 1 can be expected.

f ′P (t) = const. eliminates P̄,t and UiP,xj,t. This is shown in more detail in Section 5.1.1. The
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statistical translation symmetries (3.60)–(3.62) eliminate Ū i, H ij and UiP,xj , respectively,
leaving only

F
(
UiP,xj , Ū i,xj , Ū i,t, P̄,xi , H ij,xk

, H ij,t, UiP,xj,xk

)
= 0. (A.10)

Having invoked all relatively simple symmetries, we now demand invariance with respect to
the full Galilean symmetry (3.36) for arbitrary functions fGali(t). Its first prolongation reads

X
(1)
Gal = (f ′′Gali(t)− Ū i,xjf

′
Galj (t))

∂

∂Ū i,t
− f ′′Gali(t)

∂

∂P̄,xi

+
(
Ū i,tf

′
Galj (t) + Ū j,tf

′
Gali(t) + Ū if

′′
Galj (t) + Ū jf

′′
Gali(t)−H ij,xk

f ′Galk(t)
) ∂

∂H ij,t

+ (Ū i,xk
f ′Galj (t) + Ū j,xk

f ′Gali(t))
∂

∂H ij,xk

+ (P̄,xjf
′
Gali(t)− Ū if

′′
Galj (t))

∂

∂UiP,xj

+ (P̄,xjxk
f ′Gali(t)− Ū i,xk

f ′′Galj (t))
∂

∂UiP,xj,xk

, (A.11)

where we omitted all terms acting on variables that have already been eliminated from the
generic form of the equation, i.e. do not appear in (A.10). In turn, the invariance condition
X

(1)
GalF = 0 yields the scalar PDE

X
(1)
GalF = (f ′′Gali(t)− Ū i,xjf

′
Galj (t))

∂F

∂Ū i,t
− f ′′Gali(t)

∂F

∂P̄,xi

+
(
Ū i,tf

′
Galj (t) + Ū j,tf

′
Gali(t) + Ū if

′′
Galj (t) + Ū jf

′′
Gali(t)−H ij,xk

f ′Galk(t)
) ∂F

∂H ij,t

+ (Ū i,xk
f ′Galj (t) + Ū j,xk

f ′Gali(t))
∂F

∂H ij,xk

+ (P̄,xjf
′
Gali(t)− Ū if

′′
Galj (t))

∂F

∂UiP,xj

+ (P̄,xjxk
f ′Gali(t)− Ū i,xk

f ′′Galj (t))
∂F

∂UiP,xj,xk

= 0. (A.12)

Like shown in Section 5.1.1, we now apply the method of characteristics (for more background,
we refer to the textbook by John, 1978) to obtain the ODE (ordinary differential equation)
system

dF

dτ
= 0, (A.13)

dŪ i,xj

dτ
= 0, (A.14)

dŪ i,t

dτ
= f ′′Gali(t)− Ū i,xjf

′
Galj (t), (A.15)

dP̄,xi

dτ
= −f ′′Gali(t), (A.16)
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dH ij,t

dτ
= Ū i,tf

′
Galj (t) + Ū j,tf

′
Gali(t)

+ Ū if
′′
Galj (t) + Ū jf

′′
Gali(t)−H ij,xk

f ′Galk(t), (A.17)

dH ij,xk

dτ
= Ū i,xk

f ′Galj (t) + Ū j,xk
f ′Gali(t), (A.18)

dUiP,xj

dτ
= P̄,xjf

′
Gali(t)− Ū if

′′
Galj (t), (A.19)

dUiP,xj,xk

dτ
= P̄,xjxk

f ′Gali(t)− Ū i,xk
f ′′Galj (t). (A.20)

Equations (A.13)–(A.16) and (A.18) can be integrated directly, yielding

F = c1(s), (A.21)
Ū i,xj = c2ij (s), (A.22)
Ū i,t = f ′′Gali(t)τ − Ū i,xjf

′
Galj (t)τ + c3i(s), (A.23)

P̄,xi = −f ′′Gali(t)τ + c4i(s), (A.24)
H ij,xk

= Ū i,xk
f ′Galj (t)τ + Ū j,xk

f ′Gali(t)τ + c5ijk(s), (A.25)

Here, all constants of integration may still depend on s, i.e. the other coordinate in the
characteristic τ, s-system. The solution of Eq. (A.12) is found by eliminating τ , s and all
constants of integration from the system (A.13)–(A.20). Note that in order to find a general
solution, this must be accomplished without imposing any constraints on the constants of
integration. We proceed by adding (A.23) and (A.24), which yields

Ū i,t + P̄,xi = −Ū i,xjf
′
Galj (t)τ + ci3(s) + ci4(s). (A.26)

Thus,
Ū i,xjf

′
Galj (t)τ = −Ū i,t − P̄,xi + ci3(s) + ci4(s), (A.27)

and, equivalently,
f ′Gali(t)τ = Ū i

−1
,xj

(−Ū j,t − P̄,xj + cj3(s) + cj4(s)). (A.28)

Now, by contracting j = k in (A.25) and using the divergence-free property of the velocity, i.e.
Ū j,xj = 0, we find

H ij,xj = Ū i,xjf
′
Galj (t)τ + cijj5(s). (A.29)

Then, adding Eqs. (A.27) and (A.29) leads to

Ū i,t + P̄,xi +H ij,xj = ci3(s) + ci4(s) + cijj5(s). (A.30)

Recall that since by virtue of (A.21), F does not depend on τ , any expression constant in τ
can appear as its argument. Clearly, since the right-hand side of (A.30) does not depend on τ ,
neither does the left-hand side. Therefore, we can conclude that Ū i,t + P̄,xi +H ij,xj , which we
recognize as one side of the inviscid momentum equation, i.e. Eq. (1.4) with ν = 0, may appear
as an argument of F . In other words, and as expected, this expression is Galilean invariant.

While the preceding discussion nicely illustrates how the method works, in the context of
turbulence modeling, we are obviously primarily interested in the equations that require closure
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assumptions, such as the transport equation for H ij . To obtain it, we proceed by adding (A.17)
and (A.19), thus eliminating Ū i and Ū j . We then obtain

dH ij,t

dτ
+
dUiP,xj

dτ
+
dUjP,xi

dτ
= Ū i,tf

′
Galj (t) + Ū j,tf

′
Gali(t)

+ P̄,xjf
′
Gali(t) + P̄,xif

′
Galj (t)−H ij,xk

f ′Galk(t). (A.31)

Further, using (A.26), we find

dH ij,t

dτ
+
dUiP,xj

dτ
+
dUjP,xi

dτ
= f ′Gali(t)(−Ū j,xk

f ′Galk(t)τ + cj3(s) + cj4(s))

+ f ′Galj (t)(−Ū i,xk
f ′Galk(t)τ + ci3(s) + ci4(s))

−H ij,xk
f ′Galk(t). (A.32)

Before integrating this equation, we replaceH ij,xk
(which depends on τ) using (A.25), yielding

dH ij,t

dτ
+
dUiP,xj

dτ
+
dUjP,xi

dτ
= f ′Gali(t)(−Ū j,xk

f ′Galk(t)τ + cj3(s) + cj4(s))

+ f ′Galj (t)(−Ū i,xk
f ′Galk(t)τ + ci3(s) + ci4(s))

− Ū i,xk
f ′Galj (t)τf

′
Galk(t)− Ū j,xk

f ′Gali(t)τf
′
Galk(t)

− cijk5(s)f
′
Galk(t)

= 2f ′Gali(t)(−Ū j,xk
f ′Galk(t)τ) + f ′Gali(t)(cj3(s) + cj4(s))

+ 2f ′Galj (t)(−Ū i,xk
f ′Galk(t)τ) + f ′Galj (t)(ci3(s) + ci4(s))

− cijk5(s)f
′
Galk(t). (A.33)

Carrying out the integration yields

H ij,t + UiP,xj + UjP,xi

= −f ′Gali(t)τŪ j,xk
f ′Galk(t)τ + f ′Gali(t)τ(cj3(s) + cj4(s))

− f ′Galj (t)τŪ i,xk
f ′Galk(t)τ + f ′Galj (t)τ(ci3(s) + ci4(s))

− cijk5(s)f
′
Galk(t)τ + cij6(s). (A.34)

Some of the τ -terms still appearing here can be eliminated using Eq. (A.25). We also introduce
as an abbreviation the constant ci7(s) = ci3(s) + ci4(s). Then, we may use (A.27), or, where
necessary, the inverse form (A.28) to eliminate the remaining f ′Gali(t)τ -terms, which results in

H ij,t + UiP,xj + UjP,xi

= −H ij,xk
Ūk

−1
,xl

(−Ūn,t − P̄,xl
+ cl7(s))

− Ū i
−1
,xk

(−Ūk,t − P̄,xk
+ ck7(s))cj7(s)

− Ū j
−1
,xk

(−Ūk,t − P̄,xk
+ ck7(s))ci7(s)

+ cij6(s). (A.35)
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At this stage, recognizing that the expression Ū i
−1
,xk

(−Ūk,t − P̄,xk
) appears repeatedly, we

introduce the abbreviation
γi = Ū i

−1
,xk

(−Ūk,t − P̄,xk
). (A.36)

From its definition, we can infer the interesting observation that γi transforms like Ū i under
all classical symmetries (3.34)–(3.39), but is invariant under all statistical symmetries (3.59)–
(3.62).

Furthermore, using the momentum equation (1.4) to replace

Ū i,t + P̄,xi = −H ik,xk
, (A.37)

we write (A.35) as

H ij,t +H ij,xk
γk + UiP,xj + UjP,xi

= −H ij,xk
Ūk

−1
,xn
cn7(s)

− γicj7(s)− γjci7(s)

+ cij6(s). (A.38)

Without any hope of simplifying the right-hand side any further, we observe that by setting
ci7(s) = 0, the left-hand side of (A.38) becomes Galilean invariant. However, we must note
that setting ci7(s) = 0 directly implies that

Ū i,t + γkŪ i,xk
+ P̄,xi = 0, (A.39)

i.e. the definition of γi (A.36). This can cause problems if we attempt to define γi differently,
e.g. by formulating a transport equation for it, which is further discussed in Appendix A.3.2.
In the present context, however, we may conclude that

H ij,t +H ij,xk
γk + UiP,xj + UjP,xi = 0 (A.40)

is a viable model equation for the second velocity moment. In principle, further invariants
could be added to the right-hand side, and (A.40) should be understood to be a minimal form
in a certain sense.

As a last step, we obtain an equation form UiP,xj by integrating (A.20) and eliminating the
τ -terms using (A.16) and (A.28), which yields

∂UiP,xj

∂xk
− γi

∂2P̄

∂xj∂xk
− ∂P̄

∂xj

∂Ū i

∂xk
= 0. (A.41)

Note, however, that the last term violates the statistical scaling symmetry (3.59), which we
have not invoked yet. There are other, even more severe practical problems with this model, in
particular with the definition of γi (A.36), which are discussed in Section 5.1.2. The derivation
of a model without such shortcomings is discussed next.
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A.3.2. Using Auxiliary Velocity and Pressure Fields

The derivation in Appendix A.3.1 already shows the general structure of a statistically invariant
RSM, but the resulting equations have a number of serious drawbacks. Most significantly,
depending on the velocity gradient, Eq. (A.36) may not uniquely determine γi. Therefore,
we conclude that it is necessary to obtain additional freedom by introducing a new model
variable we denote Û i, for which we also have to develop a transport equation. Like γi, this
model velocity is defined to behave like Ū i under all classical symmetries (3.34)–(3.40), while
being invariant under the statistical symmetries (3.59)–(3.62). It turns out to be necessary
to also introduce a corresponding pressure field P̂ . In analogy to Û i, it behaves like P̄ under
the classical symmetries, but is also invariant under the statistical ones. In concrete terms, the
symmetries (3.27)–(3.33) and (3.55)–(3.57) extended with Û i and P̂ read

T t : t
∗ = t+ aT , x

∗
i = xi, Ū

∗
i = Ū i, Û

∗
i = Û i,

P̄ ∗ = P̄ , P̂ ∗ = P̂ , H∗
ij = H ij , PUi

∗
= PUi; (A.42)

T rotα : t∗ = t, x∗i = xjQ
[α]
ij , Ū i

∗
= Ū jQ

[α]
ij , Û i

∗
= Û jQ

[α]
ij ,

P̄ ∗ = P̄ , P̂ ∗ = P̂ , H ij
∗ = HklQ

[α]
ik Q

[α]
jl , PUi

∗
= PUjQ

[α]
ij ; (A.43)

TGali : t
∗ = t, x∗i = xi + fGali(t), Ū

∗
i = Ū i + f ′Gali(t), Û

∗
i = Û i + f ′Gali(t),

P̄ ∗ = P̄ − xjf
′′
Galj (t), P̂

∗ = P̂ − xjf
′′
Galj (t),

H∗
ij = H ij + f ′Gali(t)Ū j + f ′Galj (t)Ū i + f ′Gali(t)f

′
Galj (t),

PUi
∗
= PUi + P̄ f ′Gali(t)− Ū ixjf

′′
Galj (t)− f ′Gali(t)xjf

′′
Galj (t); (A.44)

TP : t∗ = t, x∗i = xi, Ū
∗
i = Ū i, Û

∗
i = Û i, P̄

∗ = P̄ + fP (t), P̂
∗ = P̂ + fP (t),

H∗
ij = H ij , PUi

∗
= PUi + Ū ifP (t); (A.45)

T Sc,I : t∗ = t, x∗i = xie
aSc,I , Ū∗

i = Ū ie
aSc,I , Û∗

i = Û ie
aSc,I ,

P̄ ∗ = P̄ e2aSc,I , P̂ ∗ = P̂ e2aSc,I ,

H∗
ij = H ije

2aSc,I , PUij
∗
= PUije

3aSc,I ; (A.46)

T Sc,II : t∗ = teaSc,II , x∗i = xi, Ū
∗
i = Ū ie

−aSc,II , Û∗
i = Û ie

−aSc,II ,

P̄ ∗ = P̄ e−2aSc,II , P̂ ∗ = P̂ e−2aSc,II ,

H∗
ij = H ije

−2aSc,II , PUi
∗
= PUie

−3aSc,II , ; (A.47)

T Sc,ns : t
∗ = te2aSc,ns , x∗i = xie

aSc,ns , Ū∗
i = Ū ie

−aSc,ns , Û∗
i = Û ie

−aSc,ns ,

P̄ ∗ = P̄ e−2aSc,ns , P̂ ∗ = P̂ e−2aSc,ns ,

H∗
ij = H ije

−2aSc,ns , PUi
∗
= PUie

−3aSc,ns ; (A.48)

T Sc,stat : t
∗ = t, x∗i = xi, Ū

∗
i = Ū ie

aSc,stat , Û∗
i = Û i,

P̄ ∗ = P̄ eaSc,stat , P̂ ∗ = P̂ , H∗
ij = H ije

aSc,stat , PUi
∗
= PUie

aSc,stat ; (A.49)

T Tr,stat,1 : t
∗ = t, x∗i = xi, Ū

∗
i = Ū i + aTr,stat,I,i, Û

∗
i = Û i, P̄

∗ = P̄ , P̂ ∗ = P̂ ,

H∗
ij = H ij , PUi

∗
= PUi; (A.50)

T Tr,stat,2 : t
∗ = t, x∗i = xi, Ū

∗
i = Ū i, Û

∗
i = Û i, P̄

∗ = P̄ , P̂ ∗ = P̂ ,

H∗
ij = H ij + aTr,stat,II,ij , PUi

∗
= PUi; (A.51)

129



T Tr,stat,3 : t
∗ = t, x∗i = xi, Ū

∗
i = Ū i,

H∗
ij = H ij , PUi

∗
= PUi + aTr,stat,III,i, (A.52)

· · ·
We mostly need the infinitesimal form of (A.42)–(A.52), which reads

Xt =
∂

∂t
, (A.53)

Xrotα = ϵjkαxj
∂

∂xk
+ ϵjkαŪ j

∂

∂Ūk
+ ϵjkαÛ j

∂

∂Ûk

+ (ϵkiαHkj + ϵkjαH ik)
∂

∂H ij
+ ϵjkαPUj

∂

∂PUk

, (A.54)

XGal = fGali(t)
∂

∂xi
+ f ′Gali(t)

∂

∂Ū i
+ f ′Gali(t)

∂

∂Û i

− xif
′′
Gali(t)

∂

∂P̄
− xif

′′
Gali(t)

∂

∂P̂

+
(
f ′Gali(t)Ū j + f ′Galj (t)Ū i

) ∂

∂H ij
,

XP = fP (t)
∂

∂P̄
+ fP̂ (t)

∂

∂P̂
+ fP (t)Ū i

∂

∂PUi

, (A.55)

+
(
f ′Gali(t)P̄ − Ū ixjf

′′
Galj (t)

) ∂

∂PUi

, (A.56)

XSc,I = xi
∂

∂xi
+ Ū i

∂

∂Ū i
+ Û i

∂

∂Û i

+ 2P̄
∂

∂P̄
+ 2P̂

∂

∂P̂

+ 2H ij
∂

∂H ij
+ 3PUi

∂

∂PUi

, (A.57)

XSc,II = t
∂

∂t
− Ū i

∂

∂Ū i
− Û i

∂

∂Û i

− 2P̄
∂

∂P̄
− 2P̂

∂

∂P̂

− 2H ij
∂

∂H ij
− 3PUi

∂

∂PUi

, (A.58)

XSc,ns = 2t
∂

∂t
+ xi

∂

∂xi
− Ū i

∂

∂Ū i
− Û i

∂

∂Û i

− 2P̄
∂

∂P̄
− 2P̂

∂

∂P̂

− 2H ij
∂

∂H ij
− 3PUi

∂

∂PUi

, (A.59)

XSc,stat = Ū i
∂

∂Ū i
+ P̄

∂

∂P̄
+H ij

∂

∂H ij
+ PUi

∂

∂PUi

+ · · · , (A.60)

XTr,stat,1 =
∂

∂Ū i
, (A.61)

XTr,stat,2 =
∂

∂H ij
, (A.62)

XTr,stat,3 =
∂

∂PUi

, · · · . (A.63)
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Returning now to the actual model development, we assume as the general form of the model

F
(
xi, t, Ū i, P̄ ,H ij , Û i, P̂ , Ū i,xj , Ū i,t, P̄,xi , P̄,t, Û i,xj , Û i,t, P̂,xj , P̂,t,

H ij,xk
, H ij,t, UiP,xj , UiP,xj,xk

, UiP,xj,t

)
= 0. (A.64)

Invoking the translation symmetries (A.53), (A.56) with fGal=(t)const., (A.55) with fP (t) =
const. and with f ′P (t) = const., has a similar effect as in Appendix A.3.1 and reduces the
possible form of the model to

F
(
Û i, Ū i,xj , Ū i,t, P̄,xi , Û i,xj , Û i,t, P̂,xj , H ij,xk

, H ij,t,

UiP,xj , UiP,xj,xk

)
= 0. (A.65)

The most crucial part is again invoking the generalized Galilean symmetry, i.e. Eq. (A.53) with
arbitrary fGali(t). Taking into account the new model variables Û i and P̂ , its first prolongation
reads

X
(1)
Gal = f ′Gali(t)

∂

∂Û i

+ (f ′′Gali(t)− Ū i,xjf
′
Galj (t))

∂

∂Ū i,t

+ (f ′′Gali(t)− Û i,xjf
′
Galj (t))

∂

∂Û i,t

− f ′′Gali(t)
∂

∂P̄,xi

− f ′′Gali(t)
∂

∂P̂,xi

+
(
Ū i,tf

′
Galj (t) + Ū j,tf

′
Gali(t) + Ū if

′′
Galj (t) + Ū jf

′′
Gali(t)−H ij,xk

f ′Galk(t)
) ∂

∂H ij,t

+ (Ū i,xk
f ′Galj (t) + Ū j,xk

f ′Gali(t))
∂

∂H ij,xk

+ (P̄,xjf
′
Gali(t)− Ū if

′′
Galj (t))

∂

∂UiP,xj

+ (P̄,xjxk
f ′Gali(t)− Ū i,xk

f ′′Galj (t))
∂

∂UiP,xj,xk

, (A.66)

where we have again omitted its action on variables already eliminated from Eq. (A.65).
Applying it to F yields the PDE

X
(1)
GalF = f ′Gali(t)

∂F

∂Û i

+ (f ′′Gali(t)− Ū i,xjf
′
Galj (t))

∂F

∂Ū i,t

+ (f ′′Gali(t)− Û i,xjf
′
Galj (t))

∂F

∂Û i,t

− f ′′Gali(t)
∂F

∂P̄,xi

− f ′′Gali(t)
∂F

∂P̂,xi

+
(
Ū i,tf

′
Galj (t) + Ū j,tf

′
Gali(t) + Ū if

′′
Galj (t) + Ū jf

′′
Gali(t)−H ij,xk

f ′Galk(t)
) ∂F

∂H ij,t

+ (Ū i,xk
f ′Galj (t) + Ū j,xk

f ′Gali(t))
∂F

∂H ij,xk

+ (P̄,xjf
′
Gali(t)− Ū if

′′
Galj (t))

∂F

∂UiP,xj

+ (P̄,xjxk
f ′Gali(t)− Ū i,xk

f ′′Galj (t))
∂F

∂UiP,xj,xk

= 0, (A.67)
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whose characteristic system reads

dF

dτ
= 0, (A.68)

dÛ i

dτ
= f ′Gali(t), (A.69)

dŪ i,xj

dτ
= 0, (A.70)

dÛ i,xj

dτ
= 0, (A.71)

dŪ i,t

dτ
= f ′′Gali(t)− Ū i,xjf

′
Galj (t), (A.72)

dÛ i,t

dτ
= f ′′Gali(t)− Û i,xjf

′
Galj (t), (A.73)

dP̄,xi

dτ
= −f ′′Gali(t), (A.74)

dP̂,xi

dτ
= −f ′′Gali(t), (A.75)

dH ij,t

dτ
= Ū i,tf

′
Galj (t) + Ū j,tf

′
Gali(t)

+ Ū if
′′
Galj (t) + Ū jf

′′
Gali(t)−H ij,xk

f ′Galk(t), (A.76)

dH ij,xk

dτ
= Ū i,xk

f ′Galj (t) + Ū j,xk
f ′Gali(t), (A.77)

dUiP,xj

dτ
= P̄,xjf

′
Gali(t)− Ū if

′′
Galj (t), (A.78)

dUiP,xj,xk

dτ
= P̄,xjxk

f ′Gali(t)− Ū i,xk
f ′′Galj (t). (A.79)

Combining (A.69), (A.71), (A.73) and (A.75) yields the variable

ci1(s) =
∂Û i

∂t
+ Û j

∂Û i

∂xj
+
∂P̂

∂xi
, (A.80)

from which we can derive a transport equation for Û i,

∂Û i

∂t
+ Û j

∂Û i

∂xj
+
∂P̂

∂xi
= 0. (A.81)

We may now proceed in a similar way as in Appendix A.3.1 to integrate (A.76), again yielding

H ij,t + UiP,xj + UjP,xi

= −H ijxkf
′
Galk(t)τ + f ′Gali(t)τcj7(s)

+ f ′Galj (t)τci7(s)

+ cij6(s), (A.82)
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where we are using the same indices for integration constants as in Appendix A.3.1, which
allows us to omit writing out steps that were already shown there. Next, we integrate (A.69)
to obtain

Û i = f ′Gali(t)τ + ci8(s). (A.83)

Furthermore, it follows from (A.26) that

ci7(s) = Ū i,t + Ū i,xk
f ′Galk(t)τ + P̄,xi . (A.84)

Then, combining (A.82)–(A.84) yields

H ij,t + ÛkH ij,xk
+ UiP,xj + UjP,xi

+ Û iHjk,xk
+ Û jH ik,xk

− Ū i,xk
Û jÛk − Ū j,xk

Û iÛk

= H ij,xk
ck8(s) + Û iŪ j,xk

ck8(s) + ÛkŪ j,xk
ci8(s) + ÛkŪ i,xk

cj8(s)

−Hjk,xk
ci8(s)−H ik,xk

cj8(s)

+ ci8(s)ck8(s)Ū j,xk
+ cij6(s) (A.85)

Note that unlike in the derivation in Appendix A.3.1, there is now no need to set ci7(s) = 0.
Instead, we set ci8(s) = 0, which does not lead to any complications. A possible transport
equation for H ij is then given by the left-hand side of Eq. (A.85), i.e.

∂H ij

∂t
+ Ûk

∂H ij

∂xk
+ UiP,xj + UjP,xi

+ Û i
∂Hjk

∂xk
+ Û j

∂H ik

∂xk
− ∂Ū i

∂xk
Û jÛk −

∂Ū j

∂xk
Û iÛk = 0. (A.86)

Note that the equation for the velocity-pressure term can now be constructed in such a way
as to also fulfill the statistical scaling symmetry (A.53). To this end, we integrate (A.79) and
eliminate the τ -terms using (A.28) and (A.75) to obtain

∂UiP,xj

∂xk
− Û i

∂2P̄

∂xj∂xk
− ∂P̂

∂xj

∂Ū i

∂xk
= 0. (A.87)

In conclusion, Eqs. (5.72), (5.73) and (A.81) in combination with continuity equations for
the two velocity fields Ū i and Û i and the classical momentum equation (A.30) constitute
a closed set of model equations. This model fulfills all classical and statistical symmetries
(A.53)–(A.63), allowing it to serve as a foundation for further modeling efforts. These are
discussed in Sections 5.1.3 and 5.2.
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