1,3,5,7-Tetra-tert-butyl-4-aza- and 1,3,5,7-Tetra-tert-butyl-4-phospha-s-indacene**

Teodor Silviu Balaban, Stefan Schardt, Volker Sturm, and Klaus Hafner*

Dedicated to Professor Wolfgang Lüttke on the occasion of his 75th birthday

s-Indacene (1), ${ }^{[1]}$ a tricyclic, nonalternating [4n] π system, has been the subject of repeated theoretical and experimental investigations. Formally, 1 may be regarded as a [12]annulene perturbed by two σ bonds, and can therefore be considered as an antiaromatic compound. According to calculations carried out previously for $1,{ }^{[2-4]}$ a ground state structure with localized double bonds and the $C_{2 h}$-symmetrical π-bonding was suggested for isomers $\mathbf{1 A}$ and $\mathbf{1 B}$.

A

1: $\mathrm{R}=\mathrm{H}$
2: $R=t B u$

In contrast to 1, which could not be isolated, the kinetically stabilized 1,3,5,7-tetra-tert-butyl-s-indacene $\mathbf{2}$ has been found to be a stable compound. The $D_{2 h}$ structure with equidistant bond lengths established for 2 by an X-ray structure analysis ${ }^{[5,6]}$ was attributed to an unusually strong electronic influence of the tertbutyl groups. ${ }^{[7]}$ On the other hand, according to recent quantum chemical calculations by Koch et al., ${ }^{[8]} 1$ is also expected to exist in the ground state as a delocalized π system with a $D_{2 h}$ structure. The limited stability of $\mathbf{1}$ is a consequence of the considerable singlet-diradical character of the s-indacene system.

Only a few investigations of hetero-s-indacenes have been carried out so far. Owing to the electronically stabilizing substituents, the donor-substituted 1,3,5,7-tetrakis(diethylamino)-2,6-diaza- s-indacene synthesized by Gompper et al. ${ }^{[9]}$ is not suitable for obtaining information about the influence of the nitrogen atoms on the π perimeter. The introduction of one nitrogen atom or a different heteroatom into the fully conjugated s-indacene system has not been described hitherto. Herein we report on the syntheses of 1,3,5,7-tetra-tert-butyl-4-aza-s-indacene (3) and its phospha-analogue (4) as well as on their bonding in comparison to that of the carbocycle 2.
For the synthesis of 3, (E)-1,3-di-tert-butyl-5-(2,4-di-tert-bu-tylcyclopenta-1,3-dienylmethylidene)cyclopenta-1,3-diene (6) was prepared by reaction of lithium 1,3-di-tert-butylcyclopentadienide (5) with half an equivalent of 1,1 -dichloromethyl methyl ether. ${ }^{[10-12]}$ This could be transformed by deprotonation with

[^0]

4: $X=P$
n-butyllithium in the presence of TMEDA and subsequent treatment with isoamyl nitrite into 1,3,5,7-tetra-tert-butyl-4-aza-s-indacene- N -oxide (7), which was obtained in 42% yield as a dark blue, fine crystalline powder (m.p. $261-263^{\circ} \mathrm{C}$ (decomp.). . ${ }^{[13]}$ Deoxygenation of 7 to give the 4 -aza-s-indacene 3 was achieved with trimethyl phosphite in boiling benzene. This afforded the tricycle $\mathbf{3}$ in 75% yield as an extremely unstable, dark red solid (m.p. $136-138^{\circ} \mathrm{C}$ (decomp.)). In addition to 3 , small amounts of the $1,2 \lambda^{5}$-oxaphosphetane 8 (bordeaux red plates, m.p. $181^{\circ} \mathrm{C}, 17 \%$ yield) were isolated, whose structure was established by an X-ray structure analysis. ${ }^{[14]}$

In analogy to the synthesis of 7, the pentafulvene 6 was deprotonated ($n \mathrm{BuLi} /$ TMEDA) and subsequently treated with phosphorus trichloride at $-50^{\circ} \mathrm{C}$ to give rise to the 1,3,5,7-tetra-tert-butyl-4-phospha-s-indacene 4 , which could be isolated as blueblack crystals with a metallic luster (m.p. $221-222^{\circ} \mathrm{C}$ (decomp.), 75% yield). At room temperature 4 may be stored for several weeks under an inert atmosphere, and is only poorly soluble in organic solvents giving intense dark blue solutions. In the synthesis of 4 , the 6 -phosphapentafulvene derivative $9^{[15]}$ may be

an intermediate, whose 12π-electrocyclization and subsequent hydrogen chloride elimination generate the heterocycle 4.

The spectroscopic data of the azaindacene 3 (see below) suggest only a slight perturbation of the electronic structure by the introduction of the nitrogen atom into the 4 -position of the 12π perimeter of $\mathbf{2}$. A potential loss of symmetry through localized double bonds is not observed. The $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum shows, in addition to two singlets for the tert-butyl groups, a common singlet for $2-\mathrm{H}$ and $6-\mathrm{H}$, as well as one for $8-\mathrm{H}$. In the ${ }^{1} \mathrm{H}$ broadband decoupled ${ }^{13} \mathrm{C}$ NMR spectrum, six singlets are observed for the eleven ring carbon atoms. These data may be interpreted on the assumption of a $C_{2 v}$-symmetric structure with π-electron delocalization and equivalent bond lengths, as well as a rapid bond shift of the localized π-bonding isomers $\mathbf{3 A}$ and 3 B . A ${ }^{13} \mathrm{C}$ NMR spectrum in $\left[\mathrm{D}_{8}\right]$ THF recorded at 173 K shows no splitting of the signals by "freezing" a possible π-bond shift. The proton resonances of the azaindacene 3 experience a downfield shift of $\Delta \dot{\delta}=0.1$ for the $2-.6$-, and $8-\mathrm{H}$, compared with those of 2. This small difference in chemical shift indicates the similarity between the electronic structures of both compounds.

The NMR spectra of the phosphaindacene 4 likewise show no signal splitting due to double bond localization, neither at room temperature nor at 173 K . The resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum $(\Delta \delta=0.25$ for $2-\mathrm{H}$ and $6-\mathrm{H}$ and 0.37 for $8-\mathrm{H}$) display a distinctly stronger downfield shift than those of 2 . The ${ }^{1} \mathrm{H}$ broadband decoupled ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{4}$ with a singlet at $\delta=258.6,{ }^{[16]}$ indicates a comparatively strong deshielded phosphorus nucleus. This could be attributed to an appreciable contribution of dipolar resonance structures with a formal positive charge at the phosphorus atom, for example 4C. An X-ray structure analysis of 4 did not furnish any reliable data regarding bond lengths and angles owing to statistical disorder of the molecules in the crystal. ${ }^{[14]}$

The UV/Vis spectrum of $\mathbf{3}$ in dichloromethane shows an absorption maximum at $\lambda_{\max }=314 \mathrm{~nm}$ with resolved vibrational fine structure and a further maximum at 564 nm (Fig. 1). In

Fig. 1. UV.Vis spectra of the s-indacenes 2 and $\mathbf{3}$ in n-hexane, as well as those of $\mathbf{4}$ and $7 \mathrm{in} \mathrm{CH}_{2} \mathrm{Cl}_{2}$
comparison with the carbocyclic s-indacene 2 , the absorption bands of the 4-aza-indacene $\mathbf{3}$ are shifted bathochromically by $10-15 \mathrm{~nm}$ with a very similar fine structure. However, the extinction coefficients of the heterocycle 3 are comparable to those of the parent system 2. The UV/Vis absorptions of the phosphaindacene $4\left(\lambda_{\text {max }}=346,582\right.$, and 610 nm$)$ show a bathochromic shift of more than 30 nm relative to those of 2 (Fig. 1). The fact that these absorptions are shifted more bathochromically than
those of the azaindacene 3 may be, presumably, attributed to a resonance structure of type $\mathbf{4 C}$.
The reaction of the phosphaindacene 4 with methyllithium, followed by addition of methyl iodide led to 1,3,5,7-tetra-tert-butyl-4,4-dimethyl-4 λ^{5}-phospha-s-indacene (10), which was obtained as stable red needles (58% yield, sublimes $\geq 310^{\circ} \mathrm{C}$).

In an analogy to λ^{5}-phosphinines, ${ }^{[17]}$ the cyclic π-conjugation is partially perturbed by the formally pentavalent phosphorus. The resulting decrease of the paramagnetic ring current effect leads to downfield shifts of $\Delta \delta=0.59$ for $2-\mathrm{H}$ and $6-\mathrm{H}$ and 0.75 for $8-\mathrm{H}$ in the ${ }^{1} \mathrm{H} N M R$ spectrum of 10 , relative to that of the λ^{3}-phosphaindacene 4 . The ${ }^{31} \mathrm{P}$ resonance of 10 at $\delta=-16.7$ is in the range of usual values as expected for cyclic conjugated phosphorus ylides and suggests a substantial contribution of the resonance stabilized betaine structure of type 10 C to the ground state of the λ^{5}-phospha- s-indacene $\mathbf{1 0}$.

Upon irradiation (300 W , Osram Concentra), 4 reacts with phosphorus pentachloride under radical addition of one mole equivalent of chlorine at the phosphorus atom to give 1,3,5.7-te-tra-terl-butyl-4,4-dichloro-4 λ^{5}-phospha-s-indacene (11) (43\% yield, pale green needles, sublimes $\geq 235^{\circ} \mathrm{C}$). Double nucleophilic substitution in the 4 -position of 11 with sodium methoxide affords the 4,4-dimethoxy derivative 12 (48% yield, black

crystals. m.p. 228-229 C, soluble in organic solvents leading to an emerald green coloration).

Some spectroscopic data for the compounds 2-4. 7, 8, and $10-12$ [18].
$2[5]:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.18(\mathrm{~s}, 36 \mathrm{H}: 1-, 3-, 5-, 7-\mathrm{iBu}), 5.29(\mathrm{~s}, 2 \mathrm{H}$: $2-, 6-\mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H} ; 4-, 8-\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.0\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)_{3}}\right) .124,9(\mathrm{C}-2, \mathrm{C}-6$ or $\mathrm{C}-4, \mathrm{C}-8), 129.1(\mathrm{C}-2, \mathrm{C}-6$ or $\mathrm{C}-4, \mathrm{C}-8), 132.0$ (C-3a, C-4a, C-7a, C-8a), 164.3 (C-1, C-3, C-5, C-7); UV Vis (n-hexane): $\lambda_{\text {mix }}$ $(\lg e)=224(4.10), 234(4.03)(\mathrm{sh}), 278(4.23)(\mathrm{sh}), 284(4.37)(\mathrm{sh}), 289(4.48)(\mathrm{sh})$, 294 (4.61), 301 (4.66), 307 (4.77), 330 (3.45) (sh). 340 (3.48). 451 (3.41) (sh), 486 $(3.83)(\mathrm{sh}), 500(3.96)(\mathrm{sh}), 505(4.01), 519(4.11)(\mathrm{sh}), 527(4.26)(\mathrm{sh}), 539(4.51)(\mathrm{sh})$, 545 nm (4.64)
3: MS (70 eV): $m=(\%): 377$ (33) $\left[M^{+}\right], 362$ (100) $\left[M^{+}\right.$- Me], 332 (17) $\left[M^{+}-3 \mathrm{Me}\right], 320(12)\left[M^{+}-f \mathrm{Bu}\right] .57(34)\left[1 \mathrm{Bu}^{+}\right],{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right):$ $\dot{\delta}=1.16(\mathrm{~s}, 18 \mathrm{H}: 1-, 7-t \mathrm{Bu}), 1.22(\mathrm{~s} .18 \mathrm{H} ; 3-, 5-t \mathrm{Bu}) .5 .41(\mathrm{~s} .2 \mathrm{H} ; 2-, 6-\mathrm{H}) .6 .81(\mathrm{~s}$, $1 \mathrm{H}: 8-\mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(75.5 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=29.96\left(3-.5-\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}\right), 30.50(1-$, $\left.7-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.85\left(1-, 7-\right.$ or $\left.3-, 5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.49\left(1-, 7-\right.$ or $\left.3-, 5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 126.58$ (C-2. C-6), 126.96 (C-7a, C-8a), 128.71 (C-8). 153.44 (C-3a. C-4a), 163.21 (C-1, C-7 or $\mathrm{C}-3, \mathrm{C}-5), 163.78(\mathrm{C}-1, \mathrm{C}-7$ or $\mathrm{C}-3, \mathrm{C}-5) ;$ UV/Vis $\left(\mathrm{CH}, \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\lg t)=236$ (3.94), 301 (4.41) (sh), 307 (4.49), 314 (4.51), 320 (4.47). 355 (3.29) (sh), 505 (3.78) (sh). 527 (3.95) (sh), 564 nm (4.24)
4: MS (70 eV): miz (\%): 394 (47) $\left[M^{+}\right], 379$ (100) $\left[M^{+}-\mathrm{Me}\right], 364$ (25) $\left[M^{+}-2 \mathrm{Me}\right], 337(28)\left[M^{+}-t \mathrm{Bu}\right], 57(34)\left[t \mathrm{Bu}^{+}\right] ;{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right):$ $\delta=1.24(\mathrm{~s} .18 \mathrm{H} ; 1-.7-\mathrm{tBu}), 1.34(\mathrm{~s} .18 \mathrm{H} ; 3-.5-\mathrm{fBu}), 5.54\left(\mathrm{~d} .{ }^{.} J(\mathrm{P} . \mathrm{H})=3.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$;
$2-, 6-\mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H} ; 8-\mathrm{H}):{ }^{13} \mathrm{CNMR}\left(75.5 \mathrm{MHz} . \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=31.70(\mathrm{~s}, 1-, 7-$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.25\left(\mathrm{~d},{ }^{4} J(\mathrm{P}, \mathrm{C})=9.1 \mathrm{~Hz}, 3-, 5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.00$ (s. 1-, 7- or 3-, 5$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.49\left(\mathrm{~s}, 1-, 7\right.$ - or $\left.3-, 5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 125.63\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=9.8 \mathrm{~Hz}, \mathrm{C}-2, \mathrm{C}-6\right)$. 131.50 (s, C-7a, C-8a), 132.15 (s, C-8). 149.19 (d. $\left.{ }^{1} J(\mathrm{P}, \mathrm{C})=47.4 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{a}, \mathrm{C}-4 \mathrm{a}\right)$, $165.16\left(\mathrm{~d},{ }^{\mathrm{x}}{ }_{J(\mathrm{P}, \mathrm{C})}=9.9 \mathrm{~Hz}, \mathrm{C}-1, \mathrm{C}-7\right.$ or $\left.\mathrm{C}-3 . \mathrm{C}-5\right), 173.18\left(\mathrm{~d},{ }^{\mathrm{x}} J(\mathrm{P}, \mathrm{C})=23.7 \mathrm{~Hz}\right.$, C-1, C-7 or C-3, C-5); ${ }^{31} \mathrm{PNMR}$ ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=258.6$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\mathrm{lg}$ g $)=240(3.96)(\mathrm{sh}) .262(3.87) .346(4.61) .407(3.88), 443$ (3.64) (sh). 582 (4.06), 610 (4.08). 864 (2.30). 984 (2.23) (sh), 1120 nm (1.79) (sh)
7: MS (70 eV): $m /=(\%): 393$ (42) $\left[M^{+}\right], 378$ (23) $\left[M^{+}-\mathrm{Me}\right], 57$ (36) $\left[t \mathrm{Bu}{ }^{+}\right]$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.21(\mathrm{~s}, 18 \mathrm{H} ; 1-7-\mathrm{tBu}) .1 .27(\mathrm{~s}, 18 \mathrm{H} ; 3-, 5-t \mathrm{Bu})$, $5.47(\mathrm{~s}, 2 \mathrm{H}: 2-, 6-\mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H} ; 8-\mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=27.32$ $\left(3-, 5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.24\left(1-, 7-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.74\left(1-, 7-\right.$ or $\left.3-, 5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.87(1-, 7-$ or 3-, 5-C(CH3 $)_{3}$), $124.95(\mathrm{C}-2, \mathrm{C}-6), 127.29(\mathrm{C} .8), 128.84(\mathrm{C}-7 \mathrm{a}, \mathrm{C}-8 \mathrm{a}), 141.77$ (C-3a. C-4a), 157.96 (C-1. C-7 or C-3, C-5). 158.99 (C-1, C-7 or C-3, C-5): UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\lg \varepsilon)=239(3.85)(\mathrm{sh}), 288(4.09)(\mathrm{sh}), 316(4.55), 334(4.36)(\mathrm{sh})$, 380 (3.71), 396 (3.74), 432 (3.49), 528 (3.72) (sh), 547 (3.77). 587 (4.00), 627 (4.11) (sh). $637 \mathrm{~nm}(4.15)$
8: MS (70 eV): $m /=(\%): 486(6)\left[M^{+}-\mathrm{OMe}\right] .377(42)\left[M^{+}-\mathrm{OP}(\mathrm{OMe})_{3}\right], 362$ (100) $\left[M^{+}-\mathrm{OP}(\mathrm{OMe})_{3}-\mathrm{Me}\right], 57$ (34) $\left[t \mathrm{Bu}^{+}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right)$: $\delta=1.02$ (br.s. $9 \mathrm{H} ; 2 \mathrm{a}-t \mathrm{Bu}), 1.25(\mathrm{~s}, 9 \mathrm{H} ; t \mathrm{Bu}), 1.27(\mathrm{~s}, 9 \mathrm{H}: t \mathrm{Bu}) .1 .30(\mathrm{~s}, 9 \mathrm{H} ; t \mathrm{Bu})$, $3.54\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{H})=12.9 \mathrm{~Hz}, 9 \mathrm{H} ; \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right) .5 .99\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{H})=7.3 \mathrm{~Hz}, 1 \mathrm{H} ; 3-\mathrm{H}\right)$, $6.30(\mathrm{~s}, 1 \mathrm{H} ; 5-\mathrm{H}$ or $7-\mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H} ; 5-\mathrm{H}$ or $7-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=26.83$ (br.s. $\left.2 \mathrm{a}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.47$ (s. $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.92\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.00$ (s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.55\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.16\left(\mathrm{~d},{ }^{x} J(\mathrm{P}, \mathrm{C})=2.0 \mathrm{~Hz} . C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.60(\mathrm{~s}$, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right) .35 .78\left(\mathrm{~d} .{ }^{2} J(\mathrm{P}, \mathrm{C})=5.9 \mathrm{~Hz}, 2 \mathrm{a}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 53.50\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=10.7 \mathrm{~Hz}\right.$, $\left.\mathrm{OCH}_{3}\right) .87 .57\left(\mathrm{~d},{ }^{1} J(\mathrm{P}, \mathrm{C})=152.4 \mathrm{~Hz}, \mathrm{C}-2 \mathrm{a}\right), 89.16\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=16.8 \mathrm{~Hz}, \mathrm{C}-9 \mathrm{a}\right)$, 113.09 (s, C quat $) .117 .10\left(\mathrm{~d},{ }^{4} J(\mathrm{P}, \mathrm{C})=4.3 \mathrm{~Hz}, \mathrm{C}-5\right), 129.70\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=14.3 \mathrm{~Hz}\right.$, $\mathrm{C}-3), 135.26$ ($\mathrm{s}, \mathrm{C}-7$), $143.99\left(\mathrm{~d},{ }^{\mathrm{x}} J(\mathrm{P}, \mathrm{C})=13.4 \mathrm{~Hz}, \mathrm{C}_{\text {quas }}\right), 145.14\left(\mathrm{~s}, \mathrm{C}_{\text {qual }}\right), 150.04$ (d. ${ }^{X} J$ (P.C) $\left.=15.7 \mathrm{~Hz}, \mathrm{C}_{\text {qual }}\right), 151.52$ (s, $\mathrm{C}_{\text {quat }}$), 175.45 (s, C-8a); ${ }^{31} \mathrm{P}$ NMR $\left(121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \dot{\delta}=-29.4 ;$ UV:Vis $\left(n\right.$-hexane) : $\lambda_{\text {max }}(\mathrm{lg} \varepsilon)=250(4.24), 303$ (3.89), 493 nm (3.34)

10: MS (70 eV): $m / z(\%): 424$ (93) $\left[M^{+}\right], 409$ (100) $\left[M^{+}-\mathrm{Me}\right], 394$ (4) $\left[M^{+}-2 \mathrm{Me}\right], 379(9)\left[M^{+}-3 \mathrm{Me}\right] .57$ (13) $\left[t \mathrm{Bu}^{+}\right]:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta=1.39(\mathrm{~s} .18 \mathrm{H}: 1-7-$ or $3-.5-\mathrm{tBu}), 1.40(\mathrm{~s}, 18 \mathrm{H} ; 1-, 7-$ or $3-.5-\mathrm{tBu}), 2.23(\mathrm{~d}$, $\left.{ }^{2} J(\mathrm{P}, \mathrm{H})=12.9 \mathrm{~Hz}, 6 \mathrm{H} ; \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.13\left(\mathrm{~d},{ }^{4} J(\mathrm{P}, \mathrm{H})=6.9 \mathrm{~Hz}, 2 \mathrm{H} ; 2-, 6-\mathrm{H}\right), 8.02(\mathrm{~d}$. $\left.{ }^{4} J(\mathrm{P}, \mathrm{H})=2.8 \mathrm{~Hz}, 1 \mathrm{H} ; 8-\mathrm{H}\right) ;{ }^{13} \mathrm{CNMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.04(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{P}, \mathrm{C})=58.1 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}\right), 33.19\left(\mathrm{~s}, 1-, 7\right.$ - or $\left.3-, 5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.25(\mathrm{~s}, 1-, 7-$ or $3-$, $\left.\left.5-\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}\right)_{3}\right), 34.14\left(\mathrm{~s}, 1-3-, 5-\right.$ and $\left.7-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 91.00\left(\mathrm{~d}^{1}{ }^{1} J(\mathrm{P}, \mathrm{C})=100.0 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{a}\right.$, C-4a), $119.39\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=17.0 \mathrm{~Hz}, \mathrm{C}-2, \mathrm{C}-6\right), 124.27\left(\mathrm{~d} .{ }^{2} J(\mathrm{P}, \mathrm{C})=12.1 \mathrm{~Hz}, \mathrm{C}-7 \mathrm{a}\right.$, C-8a), $135.07(\mathrm{~s}, \mathrm{C}-8), 149.08$ (d, ${ }^{\mathrm{x}} J(\mathrm{P}, \mathrm{C})=9.3 \mathrm{~Hz}, \mathrm{C}-1, \mathrm{C}-7$ or C-3, C-5), 154.13 (d, ${ }^{\mathrm{x}}{ }_{J(\mathrm{P}, \mathrm{C})}=10.6 \mathrm{~Hz}, \mathrm{C}-1, \mathrm{C}-7$ or $\left.\mathrm{C}-3, \mathrm{C}-5\right) ;{ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\dot{\delta}=-16.7 ; \mathrm{UV} / \mathrm{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\lg \varepsilon)=234(4.36), 303(3.33), 318(3.30), 457$ (4.01). $575 \mathrm{~nm}(4.40)$

11: MS (70 eV): $m / z(\%): 464,466(81,55)\left[M^{+}\right], 449,451(100,67)\left[M^{+}-\mathrm{Me}\right]$, 434. 436 (7, 6) $\left[M^{+}-2 \mathrm{Me}\right], 394$ (39) $\left[M^{+}-2 \mathrm{Cl}\right], 379$ (75) $\left[\mathrm{M}^{+}-2 \mathrm{Cl}-\mathrm{Me}\right]$, 364 (25) $\left[M^{+}-2 \mathrm{Cl}-2 \mathrm{Me}\right], 337$ (19) $\left[M^{+}-2 \mathrm{Cl}-\imath \mathrm{Bu}\right], 57$ (96) $\left[t \mathrm{Bu} \mathrm{u}^{+}\right]$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=1.36(\mathrm{~s}, 18 \mathrm{H} ; 1-.7$ - or $3-.5-\mathrm{tBu}), 1.49(\mathrm{~s}, 18 \mathrm{H} ; 1-$, 7 - or $3-5-i \mathrm{Bu}), 6.30\left(\mathrm{~d},{ }^{4} J(\mathrm{P}, \mathrm{H})=9.1 \mathrm{~Hz}, 2 \mathrm{H} ; 2-, 6-\mathrm{H}\right), 8.03\left(\mathrm{~d},{ }^{4} J(\mathrm{P}, \mathrm{H})=2.4 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; 8-\mathrm{H}):{ }^{13} \mathrm{CNMR}\left(75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=32.43\left(\mathrm{~s} .1-.7-\right.$ or $\left.3-5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 32.96 (s, 1-, 7 - or $\left.3-, 5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.77$ (s, 1-, 7 - or $\left.3-, 5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.27(\mathrm{~s}, 1-, 7-$ or 3-, $\left.5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 96.88\left(\mathrm{~d},{ }^{1} J(\mathrm{P}, \mathrm{C})=119.9 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{a}, \mathrm{C}-4 \mathrm{a}\right), 122.91\left(\mathrm{~d},{ }^{3} J(\mathrm{P} . \mathrm{C})=\right.$ $23.0 \mathrm{~Hz}, \mathrm{C}-2, \mathrm{C}-6), 129.61\left(\mathrm{~d} .{ }^{2} J(\mathrm{P}, \mathrm{C})=18.9 \mathrm{~Hz}, \mathrm{C}-7 \mathrm{a}, \mathrm{C}-8 \mathrm{a}\right), 133.47(\mathrm{~s}, \mathrm{C}-8)$, $156.78\left(\mathrm{~d},{ }^{\mathrm{x}} J(\mathrm{P}, \mathrm{C})=17.3 \mathrm{~Hz}, \mathrm{C}-1, \mathrm{C}-7\right.$ or $\left.\mathrm{C}-3, \mathrm{C}-5\right), 164.10\left(\mathrm{~d},{ }^{\mathrm{x}} J(\mathrm{P}, \mathrm{C})=12.1 \mathrm{~Hz}\right.$, $\mathrm{C}-1, \mathrm{C}-7$ or $\mathrm{C}-3, \mathrm{C}-5)$; ${ }^{31} \mathrm{P}$ NMR ($\left.121.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=25.3$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\text {max }}(\lg \varepsilon)=262(4.55), 303(3.74), 353(3.48), 415(3.68)(\mathrm{sh}), 443(3.93)(\mathrm{sh}), 474$ (4.24) (sh), 492 (4.40$), 682 \mathrm{~nm}(3.85)$

12: MS (70 eV): $m /=(\%): 456$ (61) $\left[M^{+}\right], 441$ (100) $\left[M^{+}-\mathrm{Me}\right], 426$ (15) $\left[M^{+}-2 \mathrm{Me}\right], 411(7)\left[M^{+}-3 \mathrm{Me}\right], 57(60)\left[t \mathrm{Bu}^{+}\right] ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.32(\mathrm{~s}, 18 \mathrm{H} ; 1-7-$ or $3-, 5-\mathrm{iBu}), 1.36(\mathrm{~s}, 18 \mathrm{H} ; 1-, 7$ - or $3-, 5-\mathrm{tBu}), 3.58(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{P}, \mathrm{H})=13.8 \mathrm{~Hz}, 6 \mathrm{H} ; \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2}\right), 5.95\left(\mathrm{~d},{ }^{4} J(\mathrm{P}, \mathrm{H})=6.7 \mathrm{~Hz}, 2 \mathrm{H} ; 2-, 6-\mathrm{H}\right), 7.68$ $\left(\mathrm{d} .{ }^{4} J(\mathrm{P}, \mathrm{H})=3.2 \mathrm{~Hz}, 1 \mathrm{H} ; 8-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.82(\mathrm{~s}, 1-, 7-$ or 3-, $\left.5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.15\left(\mathrm{~s}, 1-, 7-\right.$ or $\left.3-, 5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.50(\mathrm{~s}, 1-, 7-$ or $3-, 5-$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .34 .34$ (s, 1-, 7 - or 3-, $\left.5-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 52.43\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 88.81(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{P}, \mathrm{C})=140.6 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{a}, \mathrm{C}-4 \mathrm{a}\right), 120.31\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=18.3 \mathrm{~Hz}, \mathrm{C}-2, \mathrm{C}-6\right), 130.51(\mathrm{~d}$, $\left.{ }^{2} J(\mathrm{P}, \mathrm{C})=17.9 \mathrm{~Hz}, \mathrm{C}-7 \mathrm{a}, \mathrm{C}-8 \mathrm{a}\right), 133.33(\mathrm{~s}, \mathrm{C}-8), 154.38\left(\mathrm{~d},{ }^{\mathrm{X}} J(\mathrm{P}, \mathrm{C})=13.5 \mathrm{~Hz}, \mathrm{C}-1\right.$, $\mathrm{C}-7$ or $\mathrm{C}-3, \mathrm{C}-5), 161.46\left(\mathrm{~d},{ }^{\mathrm{x}} J(\mathrm{P}, \mathrm{C})=9.9 \mathrm{~Hz}, \mathrm{C}-1, \mathrm{C}-7\right.$ or $\left.\mathrm{C}-3, \mathrm{C}-5\right) ;{ }^{34} \mathrm{P}$ NMR $\left(121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=56.1 ; \mathrm{UV} / \mathrm{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\mathrm{lg} \varepsilon)=240(4.47), 275$ (3.75) (sh), 328 (3.26)(sh), 338 (3.39), 472 (4.22) (sh), 482 (4.32), $638 \mathrm{~nm}(4.00)$

Received: August 17, 1994 [Z7243 IE]
German version: Angew. Chem. 1995, 107, 360
Keywords: aromaticity • indacenes • Hückel rules

[^1][3] R. Klann, R. J. Bäuerle. F. Laermer, T. Elsaesser, M. Niemeyer, W. Lüttke, Chem. Phys. Lett. 1990, 169, 172-178.
[4] C. Gellini, G. Cardini, P. R. Salvi, G. Marconi, K. Hafner, J. Phys. Chem. 1993, 97. 1286-1293.
[5] K. Hafner, B. Stowasser, H.-P. Krimmer, S. Fischer. M. C. Böhm, H. J. Lindner, Angew. Chem. 1986, 98, 646-648; Angew: Chem. Int. Ed. Engl. 1986, 25, 630-632; K. Hafner, Pure Appl. Chem. 1982, 54, 939-956; ibid. 1990, 62, 531-540.
[6] J. D. Dunitz, C. Krüger, H. Irngartinger, E. F. Maverick, Y. Wang, M. Nixdorf, Angew. Chem. 1988, 100, 415-418; Angew. Chem. Int. Ed. Engl. 1988, 27, 387-389.
[7] E. Heilbronner, Z.-Z. Yang, Angen. Chem. 1987, 99, 369-371; Angew. Chem. Int. Ed. Engl. 1987, 26, 360-362.
[8] R. H. Hertwig, M. C. Holthausen, W. Koch, Z. B. Maksić, Angew. Chem. 1994, 106, 1252-1254; Angew. Chem. Int. Ed. Engl. 1994, 33, 1192-1194.
[9] F. Closs, R. Gompper, U. Nagel, H.-U. Wagner, Angew. Chem. 1987, 99. 1068-1070; Anger. Chem. Ini. Ed. Engl. 1987, 26, 1037-1039.
[10] M. Eiermann, B. Stowasser, K. Hafner, K. Bierwirth, A. Frank, A. Lerch, J. Reußwig, Chem. Ber. 1990, 123, 1421-1431.
[11] S. Schardt. Diplomarbeit. Technische Hochschule Darmstadt, 1994.
[12] Correct elemental analyses were obtained for all the compounds described.
[13] V. Sturm. Dissertation, Technische Hochschule Darmstadt, 1987.
[14] H. J. Lindner, unpublished results.
[15] For synthesis of 6-phosphapentafulvenes see G. Märk1, K. M. Raab, Tetrahedron Lett. 1989, 30, 1077-1080.
[16] All ${ }^{31} \mathrm{P}$ NMR data are relative to 85% phosphoric acid as external standard.
[17] K. Dimroth, Fortsch. Chem. Forsch. 1973, 38, 1-147; Acc. Chem. Res. 1982, 15, 58-64.
[18] The NMR signals of 3,4 , and 7 could be assigned with the aid of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-COSY spectra and NOE experiments.

Surprising Formation of a Carborane-Substituted Digallane**

Anil K. Saxena, Hongming Zhang, John A. Maguire, Narayan S. Hosmane,* and Alan H. Cowley*

Dedicated to Professor M. Frederick Hawthorne

 on the occasion of his 65 th birthdayClassical inorganic compounds with $\mathrm{Ga}-\mathrm{Ga}$ bonds such as $\mathrm{Ga}_{2} \mathrm{Br}_{3}{ }^{[1]}$ have been known for several years. However, organometallic derivatives with $\mathrm{Ga}-\mathrm{Ga}$ bonds are of newer vintage, ${ }^{[2]}$ and structurally characterized examples are restricted to the Ga^{1} and $\mathrm{Ga}^{\text {II }}$ compounds $\left[\mathrm{GaC}\left(\mathrm{SiMe}_{3}\right)_{3}\right]_{4}{ }^{[3]}$ and $\mathrm{Ga}_{2} \mathrm{R}_{4}(\mathrm{R}=$ $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{CH},{ }^{[4]}{ }^{4,4,6-i} \mathrm{Pr}_{3} \mathrm{C}_{6} \mathrm{H}_{2}{ }^{[5]}\right.$ and $\left.2,4,6-\left(\mathrm{CF}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}{ }^{[6]}\right)$. We report a new class of compound in which the $\mathrm{Ga}-\mathrm{Ga}$ bond is supported by 2,4-dicarba-nido-hexaborate (2^{-}) carborane ligands.

The reaction of one equivalent of $\left[\mathrm{Ga}(t \mathrm{Bu}) \mathrm{Cl}_{2}\right]_{2}$ with two equivalents of the disodium compound of closo-exo-5,6$\mathrm{Na}(\text { thf })_{2}-1-\mathrm{Na}(\text { thf })_{2}-2,4-\left(\mathrm{SiMe}_{3}\right)_{2}-2,4-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{4}{ }^{[7]}$ afforded a mixture of two products, 1 and 2 (Scheme 1), which were separated by fractional distillation and sublimation. Compound 1 is an air- and moisture-sensitive colorless oil for which the overall
[*] Prof. Dr. N. S. Hosmane, Dr. A. K. Saxena, Dr. H. Zhang. Prof. Dr. J. A. Maguire
Department of Chemistry, Southern Methodist University
Dallas, TX 75275 (USA)
Telefax: Int. code $+(214)$ 768-4089
Prof. Dr. A. H. Cowley
Department of Chemistry and Biochemistry, The University of Texas at Austin Austin, TX 78712 (USA)
Telefax: Int. code + (512) 471-6822
[**] This work was supported by grants from the National Science Foundation (CHE-91000672 to N.S. H. and CHE-9108228 to A. H. C.), the Robert A. Welch Foundation ($\mathrm{N}-1016$ to N. S. H. and F-135 to A. H. C.), and the donors of the Petroleum Research Fund, administered by the American Chemical Society

[^0]: [*] Prof. Dr. K. Hafner, Dipl.-Ing. S. Schardt
 Institut für Organische Chemie der Technischen Hochschule
 Petersenstrasse 22, D-64827 Darmstadt (Germany)
 Telefax: Int. code $+(6151) 16-3574$
 Dr. T. S. Balaban
 C. D. Nenitzescu Institute of Organic Chemistry

 Bucharest (Romania)
 Dr. V. Sturm
 Freudenberg. Weinheim (Germany)
 [**] This work was supported by the Fonds der Chemischen Industrie and by the Dr. Otto-Röhm-Gedächtnisstiftung. Darmstadt. T. S. B. thanks the Alexan-der-von-Humboldt-Stiftung for a research stipendium.

[^1]: [1] K. Hafner, Angew. Chem. 1963, 75, 1041-1050; Angew. Chem. Int. Ed. Engl 1964, 3, 165-173; K. Hafner, K. H. Häfner, C. König, M. Kreuder, G. Ploss, G. Schulz, E. Sturm, K. H. Vöpel, ibid. 1963, 75, 35-46 and 1963, 2, 123-134; E. Sturm, Dissertation, Universität München, 1963
 [2] R. D. Brown, J. Chem. Soc. 1951, 2391-2394; T. Nakajima, T. Saijo, H. Yamaguchi. Tetrahedron 1964, 20, 2119-2124.

