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Abstract

Today’s goals for the reduction of CO2 emissions are significantly impacting
both the civil and the industrial sector. The increasing share of renewable
energy sources leads to more volatile and challenging conditions for power
consumption. The building sector is responsible for approximately a third
of both CO2 emissions and energy consumption in Germany. At the same
time, it offers the potential to adapt to the changing conditions by the
intelligent use of energy storage systems. These can, e. g., be stationary
batteries, electric vehicles at charging stations, heat tanks or the building
itself. The control system for the power flow between these elements is called
a building energy management (BEM) system. As the control strategy,
Model Predictive Control (MPC) is an obvious choice. It allows optimal
control while incorporating forecasts of, e. g., power demand, renewable
energy production and air temperature.

However, in a complex control setting such as BEM, multiple contradicting
objectives are to be minimized. For example, next to the reduction of
monetary costs, the building’s temperature is supposed to be kept at a
comfortable level, electric vehicles have to be charged sufficiently, battery
degradation should be kept low and CO2 emissions have to be reduced. To
directly optimize real-world objectives such as the examples given above,
Economic Model Predictive Control (EMPC) can be utilized, in which the
cost function for the optimal control problem (OCP) does not need to be
quadratic, but can be of arbitrary form. However, if multiple objectives
have to be respected, usually this is done in form of a weighted sum.
Thereby, the weights are chosen either from experience or such that all
objectives are of the same magnitude. While this is a reasonably simple
approach, it neglects that, especially for BEM systems, the OCP varies
significantly with the volatile outer conditions. Therefore, the trade-off
which is chosen by the fixed weights varies over time, too.

The simultaneous optimization of contradicting objectives is called multi-
objective optimization (MOO). Usually, the set of all ’optimal’ solutions
is approximated and a (human) decision maker (DM) afterwards selects
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a solution which represents his preferences the most. This is appropriate
in the case of one-time optimizations, which is usually the case in MOO.
However, we want to use MOO for the permanent control of a BEM system.

Therefore, we propose an extended conceptualization of dynamic MOO,
which is the systematic combination of MPC and MOO. At every time
step, a multi-objective OCP is formulated and an approximation of the
Pareto front is derived as its solution, i. e. the set of all optimal compro-
mises. Then, a solution is automatically chosen. To this end, we present
two different options. In the metric-based automatized decision making
strategy, the Pareto front is first normalized. Then, a metric is calculated
for every solution and the solution with the best value is chosen. We
present two normalization schemes and three metrics a DM can choose
from. In the preference-based automatized decision making strategy, prefer-
ences formulated by the DM a priori are utilized. First, a knee region is
determined from the normalized Pareto front to exclude solutions which
are too extreme. Then, the preferences are used to construct a hyperplane
with which a solution from the knee region is finally selected.

The applicability of the proposed methods to the BEM problem is shown
in long-term simulations. To this end, we show how the most important
elements in a BEM system can be modeled while obtaining well-solvable
convex optimization problems. Furthermore, we present a new method to
determine an approximation of the Pareto front which is more apt for the
case of dynamic MOO and its varying conditions.
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Kurzfassung

Die heutigen Ziele zur Reduzierung von CO2 beeinflussen bereits sowohl
den privaten als auch den industriellen Energieverbraucher spürbar. Der
steigende Anteil an erneuerbaren Energien in der Stromerzeugung führt
zu volatileren und herausfordernden Bedingungen in der Stromnutzung.
Der Gebäudesektor ist dabei verantwortlich für jeweils ca. ein Drittel des
Stromverbrauchs und der Erzeugung von CO2-Emissionen in Deutsch-
land. Gleichzeitig verfügt er über das Potenzial, sich den sich ändernden
Bedingungen durch die intelligente Nutzung von Energiespeichersyste-
men anzupassen. Dies können zum Beispiel stationäre Batterien, Elek-
troautos an Ladestationen, Wärmespeicher oder auch das Gebäude selbst
sein. Zur Regelung der Leistungsflüsse zwischen diesen Elementen dient
ein Gebäudeenergiemanagementsystem. Dabei ist die modellprädiktive
Regelung (MPC) als Regelungsmethode eine naheliegende Wahl, da sie eine
optimale Regelung unter der Berücksichtigung von Vorhersagen für zum
Beispiel den Energieverbrauch, die Energieerzeugung durch erneuerbare
Energien und der Lufttemperatur erlaubt.

In einem komplexen System wie dem Gebäudeenergiemanagement müssen
jedoch mehrere, sich widersprechende Kriterien gleichzeitig optimiert wer-
den. Dies sind zum Beispiel die Minimierung der monetären Kosten,
die Regulierung der Gebäudetemperatur, das ausreichende Laden von
Elektroautos, die Minimierung der Batteriealterung und die Reduzierung
von CO2-Emissionen. Mit einer ökonomischen MPC können solche Kri-
terien direkt optimiert werden, da die Gütefunktion für das Optimals-
teuerungsproblem nicht der üblichen quadratischen Struktur entsprechen
muss, sondern von beliebiger Form sein darf. Wenn wie im vorliegen-
den Fall mehrere Kriterien berücksichtigt werden müssen, geschieht dies
üblicherweise in Form einer gewichteten Summe. Die Gewichte werden
dabei entweder aus Erfahrung gewählt oder so, dass alle Kriterien in der
gleichen Größenordnung liegen. Dieser Ansatz ist zwar vergleichsweise
einfach umsetzbar, vernachlässigt jedoch, dass insbesondere bei Gebäude-
energiemanagementsystemen die äußeren Bedingungen volatil sind und
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sich damit die Optimalsteuerungsprobleme über die Zeit signifikant ändern.
Daher variiert auch der Kompromiss zwischen den Kriterien, der durch die
festen Gewichte ausgewählt wird.

Die gleichzeitige Optimierung mehrerer, sich widersprechender Kriterien
nennt man multikriterielle Optimierung. Für gewöhnlich wird dabei
die Menge aller “optimaler” Lösungen approximiert und einem (mensch-
lichen) Entscheider präsentiert, der daraus die Lösung auswählt, die seinen
Präferenzen am besten entspricht. Dieser Vorgang ist gut geeignet für ein-
malige Optimierungen, wie sie in der multikriteriellen Optimierung üblich
sind. Im vorliegenden Fall soll die multikriterielle Optimierung jedoch
für die permanente Regelung eines Gebäudeenergiemanagementsystems
verwendet werden.

Daher wird in dieser Arbeit ein erweitertes Konzept der dynamischen mul-
tikriteriellen Optimierung präsentiert, das MPC und multikriterielle Opti-
mierung systematisch kombiniert. Dazu wird in jedem Zeitschritt ein multi-
kriterielles Optimalsteuerungsproblem aufgestellt und eine Approximation
der Pareto-Front, d. h. die Menge aller optimalen Kompromisse, als Lösung
bestimmt. Von dieser wird im Anschluss automatisiert eine einzelne Lösung
ausgewählt. Dazu werden zwei Möglichkeiten vorgestellt. Bei der metrik-
basierten Entscheidungsfindungsstrategie wird die Pareto-Front zunächst
normalisiert. Daraufhin wird jede Lösung hinsichtlich einer Metrik bewertet
und die beste ausgewählt. Dazu stehen zwei Normalisierungsmethoden
und drei Metriken zur Verfügung. In der präferenzbasierten Entscheidungs-
findungsstrategie werden zuvor formulierte Präferenzen eines Entscheiders
verwendet. Dazu wird zuerst aus der ebenfalls normalisierten Pareto-Front
eine Region von Kniepunkten bestimmt, die zu extreme Lösungen auss-
chließt. Dann wird mit Hilfe der Präferenzen eine Hyperebene konstruiert,
mit der die finale Lösung aus der zuerst bestimmten Region an Kniepunkten
ausgewählt wird.

Die Eignung der vorgeschlagenen Methoden für die Regelung eines
Gebäudeenergiemangementsystems wird durch Langzeitsimulationen
gezeigt. Dazu wird erläutert, wie dessen wichtigste Elemente so modelliert
werden können, dass gleichzeitig gut lösbare konvexe Optimierunsprob-
leme entstehen. Des weiteren wird eine neue Methode zur Bestimmung
einer Approximation der Pareto-Front vorgestellt, die für den Fall der
dynamischen multikriteriellen Optimierung und den damit einhergehenden
volatilen Bedingungen besser geeignet ist.
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1 Introduction

This introductory chapter starts with the motivation of this dissertation.
Then, the scientific contributions are summarized. Lastly, the structure
and outline of this thesis is presented.

1.1 Motivation
Politicians and governments all over the world declared the reduction of
CO2 emissions one of their highest priorities. The resulting energy policies
have a huge impact on both the industrial and civil sector, and changes
will be necessary on the production as well as the consumption side. The
increasing share of renewable energy sources (RESs) leads to a more volatile
energy production. In Germany, RESs have already been responsible for
42.1% of the gross electricity consumption in 2019 and their share is
supposed to reach 65% by 2030 and 80% by 2050. At the same time, the
German government’s official goal is to increase the total number of electric
vehicles (EVs) to 7 to 10 million until 2030 [20].1 However, a recent report
from a national committee already proposes the need of 14 million EVs
until 2030 to meet aggravated EU climate goals [101]. These changes go
along with a necessary decentralization of the power grid. The building
sector, which was responsible for 35% of the energy consumption and
33% of CO2 emissions in 2015 in Germany and is supposed to be ’nearly
climate neutral ’ until 2050 [21], thereby has a significant role. While the
conditions for energy usage become more challenging, as e. g. the increase
in peak costs in Figure 1.1 shows, buildings also have the potential for
more intelligent energy usage. For example, the increasing usage of EVs is
not only a stress factor for the power grid, but charging stations connected

1 In August 2021, there have been approximately 500,000 (purely) electric vehicles
in Germany, according to the German Bundesministerium für Wirtschaft und
Energie, https://www.bmwi.de/Redaktion/DE/Pressemitteilungen/2021/08/
20210802-erstmals-rollen-eine-million-elektrofahrzeuge-auf-deutschen%
2Dstrassen.html, accessed on 22.11.2021.

https://www.bmwi.de/Redaktion/DE/Pressemitteilungen/2021/08/20210802-erstmals-rollen-eine-million-elektrofahrzeuge-auf-deutschen%2Dstrassen.html
https://www.bmwi.de/Redaktion/DE/Pressemitteilungen/2021/08/20210802-erstmals-rollen-eine-million-elektrofahrzeuge-auf-deutschen%2Dstrassen.html
https://www.bmwi.de/Redaktion/DE/Pressemitteilungen/2021/08/20210802-erstmals-rollen-eine-million-elektrofahrzeuge-auf-deutschen%2Dstrassen.html
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to buildings also represent an opportunity of load shifting through the
EVs’ large batteries. The thermal capacity of a building can be used as a
passive storage without additional, monetary investments. Furthermore,
especially larger buildings or compounds of buildings can be enhanced
by further (active) storages such as heat tanks or stationary batteries,
as well as producers such as combined heat and power plants (CHPs) or
their own RESs, e. g. photovoltaic (PV) systems. As an alternative to
industry electricity, companies (and in the future possibly also private
consumers) could also participate in the electricity intraday market with
its highly fluctuating but, on average, lower energy prices. Note that this
combination of producers, storages and consumers in buildings fulfill all
requirements for a microgrid, i. e. there is no significant difference from the
control perspective. If the energy flows in a building are controlled, the
responsible control system is called a building energy management (BEM)
system. However, most of a BEM system’s elements are subject to volatile
conditions, which make an intelligent control necessary that appropriately
reacts to the changing environment. This makes Model Predictive Control
(MPC) a perfect candidate.

Figure 1.1: Exemplary progress of German peak costs. In Germany, industry
electricity clients receive significantly lower prices per kWh electricity compared
to private consumers, but have to pay peak costs (also called demand charges)
in addition. At the end of the year, the highest power peak averaged over fixed
15min intervals is punished with a high factor. For the exemplary medium-sized
company building considered in this thesis, it increased from 76.34 e

kW
in 2017 to

122.07 e
kW

in 2022, i. e. by 59.90% in 5 years.

The basic idea of MPC is very straightforward. Given a discrete dynamic
system at time t0, an optimal control problem over a prediction horizon
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[t0, t0 +Npred − 1] is formulated at every time step. However, only the first
time step of the optimal input trajectory is applied. Then, at t = t0 + 1
the optimal control problem is repeated over [t0 + 1, t0 + Npred]. Using
economic MPC, an arbitrary cost function can be used in the optimization
problem. This is more appropriate for BEM because the objectives to be
optimized can be formulated better in terms of real-world elements than
by quadratic expressions of the states and input variables. For example,
the most obvious objective is the reduction of monetary costs, which is
often (but not necessarily, e. g. in case of peak costs) a linear expression
of the decision variables. A second relevant objective can be the building
temperature, which can be beneficial as a passive storage as mentioned
before, since heating, ventilation, and air conditioning (HVAC) systems
are huge energy consumers. Further relevant objectives exist, such as
CO2 emissions and the degradation of battery systems, both stationary or
from EVs. Note that this is a very important topic, since current hopes
on the German energy transition base heavily on the use of (lithium-ion)
batteries, while the understanding of their degradation is an active field of
research and resources in their production have a significant environmental
impact [4, 95].

While the exemplary objectives stated above are all relevant, they cannot
directly be compared to each other, as they have different units, magni-
tudes and meanings. Thus, only an ’optimal’ compromise between the
objectives can be achieved. The field of simultaneous optimization of such
contradicting objectives or criteria is called multi-objective optimization
(MOO).2 Thereby, a (human) decision maker (DM) is supported in deriving
and choosing a so-called Pareto optimal solution. However, in the control
context, the MOO problem has to be solved at every time step – instead
of only once, which is the usual case in MOO. Furthermore, due to the
varying conditions of a BEM system, a once formulated preference of a
DM might not result in the same type of compromise at different times.
Thus, the optimal control problem has to be addressed dynamically. While
the literature on both MPC and MOO is rich, the combination of both has
not been given sufficient attention. This dissertation is aiming at closing
this gap.

2 Note that if more than 3 objectives are considered, usually the term many-objective
optimization is used. While most methods developed in this thesis are applicable
to an arbitrary number of objectives, we apply them only to 2 or 3 objectives in
simulation. Thus, we use the term multi-objective optimization throughout this
thesis.
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1.2 Contributions
The main contribution of this thesis is the systematic combination of MOO
and MPC, which we refer to as dynamic MOO.3 The basic principle is
to formulate the optimal control problem (OCP) at every time step as a
multi-objective optimization problem, determine the Pareto front, and then
automatically choose a solution. The methodological contributions are the

• development of efficient linear models for BEM systems (or microgrids
in general), e. g. by reformulation of nonlinear cost terms, resulting
in convex optimization problems which can be solved reliably and
fast enough for MOO purposes,

• presentation of a new method to sample the Pareto front which over-
comes problems of state-of-the-art methods in the dynamic setting,
and

• presentation of two general strategies for the automatized decision
making process,

1) by first normalizing the Pareto front approximation and then
choosing the solution which optimizes a fixed metric. Hereby,
a new so-called fixed normalization scheme is presented, which
tackles the problem that nonlinear cost terms and varying condi-
tions can lead to severe differences in the extremes of the Pareto
front.

2) As the core contribution of this thesis, a new approach to incor-
porate preferences of a DM by a geometric interpretation in the
objective space is presented, which allows for easy formulation
of preferences while at the same time ensuring that no unreason-
able solutions are selected. It has further advantages, such as
that the impact of the DM’s preferences can be varied a-priori,
but additionally depends on the landscape of possible solutions.
Furthermore, so-called knee points, which are considered the
most desirable solutions, are inherently preferred.

3 Note that in literature, the term ’dynamic MOO’ is usually used for MOOs which are
slightly changing over time. This characteristic is then utilized in the optimization
and determination of the Pareto front with evolutionary strategies. However, our
usage differs in that the changes in the MOO problem derive from the use of MPC
and we extend the concept by the additional decision making step.
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A big challenge in dynamic MOO is that the chosen solution represents
only the costs for one time step – and even not quite so, because the costs
shown in the Pareto front are those for the entire prediction horizon, but
only the first step of the horizon is applied, as usual for MPC. Moreover,
the decision made now can affect the conditions and thus options in the
future, which cannot be modeled in a straightforward way. However, only
the accumulated long-term costs are relevant for the DM. Thus, long-term
simulations have to be conducted to show empirically the efficacy of any
dynamic MOO approach. For all simulations in this thesis, we use the
model of a medium-sized office building with real-world measurement data.
The empirical contributions for the dynamic MOO are the

• analysis of the two dynamic MOO strategies and their long-term
effects, showing that

1) the first strategy with its different normalization schemes and
fixed metrics results in overall good costs and compromises, but
it is difficult to know a priori which combination will favor which
objectives;

2) this problem is overcome by the second approach, which shows
that not only the overall results are good, but the DM’s prefer-
ences are properly represented in the long-term costs as well.

Independently of the consideration of multiple objectives, a lack in current
literature of BEM or microgrid control is the analysis of how prediction
errors affect the cost outcome. Thus, further empirical contributions specific
to the energy management problem are the

• use of real-world solar irradiance forecasts from weather services to
empirically analyze the relationship between forecast accuracy and
cost savings,

• thereby showing that regular forecasts can successfully be used to
shave electricity peaks in a MPC setting and

• that despite a one-day horizon, prediction accuracy for RES pro-
duction is only relevant in the short-term for the example building
considered here.
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1.3 Outline of this Thesis
This thesis starts with single-objective BEM and subsequently builds on
that to finish with the multi-objective control of the medium-sized company
building which serves as our example. Thereby, instead of a general ’state
of the art’ chapter at the beginning, every chapter has its own literature
review. Furthermore, every chapter ends with simulation studies (except
for the purely methodological Chapter 4) and a short summary.

Chapter 2 presents a single-objective MPC approach to the building energy
management problem. It starts with the problem description and elaborates
on the key challenges. We continue with a review of current single-objective
MPC approaches and then build the foundation for our own approach,
i. e., we present models with different degrees of detail and complexity
and show how the objectives to be minimized can be reformulated as well
solvable convex optimization problems. Multiple simulation studies show
the applicability of our approach, its superiority over non-predictive control
schemes and the possibility of hierarchization to reduce computational
burdens.

In Chapter 3, we analyze the influence of forecasting errors. We use
real-world weather forecasts of solar irradiance to calculate photovoltaic
power output predictions. By adjusting the prediction error, we show
in simulation that current weather forecasts can successfully be used to
reduce peak costs. However, significant additional savings are possible if
the prediction accuracy is increased within the first couple of hours.

In Chapter 4, we first introduce the basics of MOO and give an overview of
how multiple objectives have been treated in MPC so far. Then, we build
the methodological foundations for our main contribution, the dynamic
MOO. We present different ways to construct an approximation of the
Pareto front with deterministic scalarization methods, among them the
focus point boundary intersection (FPBI) method, a new approach more
suitable for the dynamic setting with varying conditions. Then, we present
two different methods to automatize the compromise selection from the
Pareto front. First, we propose different normalization schemes and metrics.
Second, we present a new approach with which preferences from a decision
maker can be incorporated while ensuring the restriction to reasonable
areas of the Pareto front.

In Chapter 5, we apply both of these approaches to the building energy
management problem, i. e. solving it with dynamic MOO. Multiple simula-
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tion studies show their applicability and the different effects on the types
of compromises which result in the long term.

We conclude in Chapter 6 with a short summary and remarks on possible
future directions for both dynamic MOO in general and the control of
building energy management systems.
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2 Building Energy Management
with Single-Objective MPC

In this chapter, we will define and solve the building energy management
(BEM) problem with single-objective economic MPC. After a short intro-
duction with the focus on existing challenges, we will review the current
literature of MPC approaches. Then, we explain how a BEM system can
be modeled adequately for the use of MPC. We present multiple simulation
studies and finish with a summary.

This chapter is based on and has partly been published in the following
publications:

[S1] T. Schmitt, J. Engel, T. Rodemann, and J. Adamy. Application
of Pareto optimization in an economic model predictive controlled
microgrid. In 2020 28th Mediterranean Conference on Control and
Automation (MED), pages 868–874. IEEE, 2020.

[S3] T. Schmitt, T. Rodemann, and J. Adamy. Multi-objective model pre-
dictive control for microgrids. at - Automatisierungstechnik, 68(8):687
– 702, 2020.

[S4] T. Schmitt, J. Engel, M. Hoffmann, and T. Rodemann. PARODIS:
One MPC framework to control them all. Almost. In 2021 IEEE
Conference on Control Technology and Applications (CCTA), 2021.

[S9] J. Engel, T. Schmitt, T. Rodemann, and J. Adamy. Hierarchical
economic model predictive control approach for a building energy
management system with scenario-driven EV charging. IEEE Trans-
actions on Smart Grid, 13(4):3082–3093, 2022.

Note that [S9] builds on the results of the Master’s thesis [39].
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2.1 Introduction
In the control context, instead of a (building) energy management system,
the term microgrid is often used. Both phrases refer to an entity with energy
producers, consumers and storages. The control task is to find suitable (if
possible optimal) input trajectories for all actuators, i. e. satisfying demands
and constraints while, usually, minimizing various costs. The microgrid
under consideration can vary from a single residential home [29] to a large
university campus consisting of multiple individual buildings and plants
[116]. If all components are owned or controlled by a single shareholder,
a centralized approach is usually employed, i. e. a single optimization (or
optimal control) problem is formulated for the entire system. If multiple
shareholders (or agents) with different interests share some part of the
energy system, often decentralized approaches are necessary. Note that
throughout this thesis, only the case of a single microgrid is considered.
Therein, we sometimes model parts of the microgrid separately in more
detail as a system of its own and control them in a hierarchical setup,
which can also be referred to as a distributed system. However, this is
not considered as a decentralized approach since there are no competing
interests or limited information exchanges. Furthermore, we limit our
control aspect to the secondary control level of a microgrid [108], i. e. the
dispatch and unit commitment problem of producers and consumers, but
not the primary control level, such as inverter output and frequency control.
In this case, the energy management problem is also called optimal dispatch
control problem.

The main challenges in microgrid control are

• modeling the microgrid appropriately, i. e. reproducing the physical
behavior of all relevant parts with sufficient accuracy,

• formulating constraints and cost functions such that the resulting
optimization problem is solvable (well enough), and

• finding a reasonable compromise between the objectives.

For the modeling of a microgrid, mainly two basic approaches exist. In the
first, ordinary differential (or difference) equations (ODEs) are determined
for all storage systems. Actuators and constraints are incorporated into
these ODEs. Depending on the modeling complexity, this results in either
linear or non-linear systems, often including binary variables to cover start-
up/shut-down decisions. The second approach is to use higher modeling
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languages or software such as Simulink, Modelica, EnergyPlus or other
building performance software (BPS) tools. In this way, complex dependen-
cies and rules can be modeled with little effort. However, this comes at the
cost of limited insight into the model itself and an optimization problem
that is in general harder to solve. A review of various BPS tools can be
found in [100].

While MPC is a popular approach to generating control actions for a
microgrid due to the possibility of respecting constraints on states and
inputs and forecasts of demands and disturbances, several other methods
exist. Not all of them are equally applicable to the two modeling approaches.
Despite some heuristic approaches and artificial intelligence methods, an
optimization problem in some form is formulated in most cases. Then, the
two main options are deterministic or meta-heuristic optimization methods.
Deterministic optimization methods include linear, quadratic, mixed integer
and nonlinear programming methods. They might fail in case of harsh
nonlinearities modeled in complex BPS models. In this case, meta-heuristic
optimization methods including evolutionary strategies, genetic algorithms
(GA), Particle Swarm Optimization and others are preferable. These are
also the usual combinations: ODE modeling + deterministic optimizers
or BPS-based modeling + meta-heuristic optimizers, which can also be
described as simulation-based optimization. The MPC framework can be
used in both cases.

2.2 Related Work
Both MPC and Microgrid control have experienced large attention in the
research community in the last decade(s). Thus, we restrict ourselves to
an introduction to the basics of MPC and a short survey of the different
approaches to both modeling and the (optimal) dispatch control problem
of centralized microgrids.

2.2.1 Model Predictive Control (MPC)
Notation In the following and throughout the rest of this thesis,
sequences of scalars or vectors are typeset in bold, e. g. u(k) =
[u(k), u(k + 1), . . . , u(k +Np − 1)]. Furthermore, as is common in the
context of control theory, x denotes the state vector and u the input vector.
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In the context of MPC, a predicted value for r(k + n) at time step k is
denoted by r(n|k).

The basic concept of MPC is simple. Considering a discrete dynamic
system of the form

x(k + 1) = f(x(k), u(k)), (2.1)

the idea is to formulate an optimal control problem (OCP) over a prediction
horizon Npred at every time step k. Namely, the next Npred steps of the
input vector u are optimized. However, only the first optimized step u(0|k)
is applied to the system - then, the actually resulting state x(k + 1) is
measured and the process is repeated. In reality, the real state x(k + 1)
may deviate from the predicted state x(1|k) due to various reasons such as
modeling errors and unknown disturbances.

In regular (tracking) MPC, the objective function of the OCP usually has
a quadratic form. If a set point of xset =

(
0, . . . , 0

)
is chosen, it would be

JQR(x(k), u(k)) =

Np−1∑
k=0

x(k)⊺Qx(k) + u(k)⊺Ru(k) + V QR
f (x(Np)), (2.2)

where Q is positive semidefinite and R is positive definite. Vf is called the
terminal cost function. It is optional and might be a quadratic expression,
too. Stability can be ensured in different ways, e. g. by constraints on the
terminal state x(Npred) or by appropriate terminal costs. Since stability
analysis is not part of this dissertation, the reader is referred to the standard
literature for details, e. g. [28, 115].

An important extension of MPC is economic MPC (EMPC). The main
difference is that, instead of only quadratic, the cost function can be of
arbitrary form, resulting in

J(x(k), u(k)) =

Np−1∑
k=0

ℓ(x(k), u(k)) + Vf(x(Np)), (2.3)

where ℓ(x(k), u(k)) are the stage costs. The name economic MPC has
its historical origin in the new opportunity to directly optimize economic
costs, instead of following a trajectory from a real-time optimizer, and has
first been introduced in [44] in 2010. Since then, EMPC has seen many
developments, both on stability analysis [5, 6, 52, 114] and results on its
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performance and feasibility [98,99] as well as on further extensions, e. g. to
robust or distributed MPC [11–13,37, 97]. However, as discussed in [43],
especially for (significant) disturbances acting on the system - which might
even be beneficial, as is partially the case in this thesis - many problems
regarding the stability and performance analysis remain open. Furthermore,
for the dynamic models used in this thesis, constraints on the inputs are
loose enough such that the OCP remains feasible and constraints on the
states can be kept. Thus, no stability analyses are conducted and the reader
is referred to the aforementioned literature for additional information.

The OCP formulated at each time step is defined by the objective function
and its constraints, which include the system dynamics (2.1). Additionally,
box constraints x(k) ∈ X, u(k) ∈ U usually apply. However, any constraints
of the form g(x(k), u(k)) ≤ 0 and h(x(k), u(k)) = 0 are valid. The standard
OCP at time step k can then be expressed as

OEco(k) : min
u

Np−1∑
n=0

l(x(n|k), u(n|k)) + Vf(Npred|k) (2.4a)

s. t. x(n+ 1|k) = f(x(n|k), u(n|k)) ∀ n = 0, . . . , Npred − 1 (2.4b)
x(0|k) = x0, (2.4c)
x(n|k) ∈ X, u(n|k) ∈ U, ∀ n = 0, . . . , Npred − 1 (2.4d)
g(x(n|k), u(n|k)) ≤ 0, ∀ n = 0, . . . , Npred − 1 (2.4e)
h(x(n|k), u(n|k)) = 0, ∀ n = 0, . . . , Npred − 1 (2.4f)
x(Npred|k) ∈ Xf . (2.4g)

Note that, for the rest of the thesis, we omit the explicit predictive notation
r(n|k) for readability and only write r(k + n) or r(k) if there is no need to
distinguish between them. Furthermore, Xf = X is assumed if not otherwise
stated, such that a separate constraint (2.4g) is not necessary, but included
instead by stating k = 1, . . . , Npred (instead of 0, . . . , Npred − 1). Namely,
while x(0|k) should always satisfy all constraints, the current state cannot
be manipulated. Thus, state constraints for the time step k itself are
unnecessary in the OCP, but may lead to implementation problems due
to numerical boundaries. Lastly, we forego statements on the value of the
initial state such as (2.4c) when formulating different control schemes.

In conclusion, the main advantage of MPC is its capability for optimal
control with constraints on both states and inputs. Additionally, in EMPC,
economic objectives can directly be optimized, which allows us to also
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consider transient costs instead of only determining an optimal set point.
A huge advantage for the purpose of this thesis is the possibility to include
predictions of uncontrollable influences, too.

2.2.2 Microgrid Control
The aforementioned properties make EMPC a natural candidate for the
control of microgrids. While many other approaches have been used, we
limit the literature review in this section to (E)MPC approaches. Some
approaches based on other methods, e. g. computational intelligence, are
presented in Section 5.2 in the context of multi-objective microgrid control.

Different technical definitions of a microgrid exist, but most share the
following prerequisites: A microgrid consists of producers (also called
distributed energy resources (DERs)), consumers and storages (also called
energy storage systems (ESSs)) and might be connected to the host power
system, e. g. the public power grid [108]. If not, it is said to be in islanded
mode.

The single entities of these producers, consumers and storages vary. Most
commonly, the temperature of a building or single rooms and the cor-
responding HVAC systems are modeled and controlled due to the large
energy consumption for both heating and cooling [26,27, 29,61,82–84,103,
105,110,119,122,124,133,142,146,153]. In this way, the thermal capacity
can be utilized as a storage or buffer, which is also referred to as a passive
thermal energy storage (TES). Furthermore, water tanks can be used as
active TES for both heating and cooling [29,65,110,119,122,132,133].

Secondly, stationary batteries are frequently used for the storage of electrical
energy [26, 45, 46, 57, 65, 67, 107, 124, 130, 133, 134]. Their state of charge
can be expressed either implicitly as the result of the power balance, or by
explicit charging and discharging powers, which is necessary if efficiencies
shall be respected [45, 46, 65, 67, 107, 124,130]. Losses from self discharging
are only rarely considered, while they are easy to model [65,124].

As additional producers, combined heat and power plants (CHPs) are
interesting due to their high efficiency and the coupling of thermal and
electrical power, but modeled less frequently [65, 133]. Fuel cells and
electrolyzers are used to store excessive renewable energy as hydrogen
[26,45,134].

The control of EVs is more specific and not a standard component in
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microgrid control. However, the literature on EV control is rich, too. EVs
can be modeled either individually [64, 65, 103, 129, 130], as fleets [68] or
both. In the latter case, they are usually considered in a hierarchical
setup [73]. Furthermore, many approaches exist which do not utilize the
receding horizon control scheme [51,139] or are focused only on EV charging
control without the context of a microgrid.

The limitation in modeling lies in the complexity of the resulting OCP,
which depends on the system dynamics, the constraints and the objectives.
Mostly, they are chosen such that they result in a linear programming (LP)
or quadratic programming (QP) problem [26,29,45, 46,57,65, 82,117,124,
132–134,153], which are convex and thus easy to solve [23]. Nonlinearities
may occur in the system dynamics [61] or in the objective function [67], but
often stem only from additional constraints [27, 107]. If the OCP is a non-
linear programming (NLP) problem, it generally cannot be guaranteed that
the global optimum is found. Sometimes a piece-wise linear approximation
of the nonlinearities is possible, resulting in a mixed-integer linear program-
ming (MILP) problem [9,133]. Furthermore, mixed-integer formulations
are frequently necessary due to binary on/off variables [45,93,124,132,133].

If a larger number of temperature zones, EVs or similar entities have to
be controlled, the computational cost of the resulting OCP can become
unmanagable due to the rapidly increasing complexity. Then, multiple
agents or (sub-)systems are used. Their setup can be either hierarchical
[29,67,132] or distributed [27,93,122], depending on the communication
structure. Every agent may then have their own OCP [27,67,68,73,93,122,
132]. Some lower level agents might also use non-optimal control schemes
which use reference points from the higher level agents [110,119]. In this
case, even BPS models may be used in a co-simulation setting [29,72].

The most common objective to be minimized are monetary costs, often
indirectly expressed by the total energy consumption. If the building’s
temperature is modeled, it is usually optimized either by a reference
point [26, 29, 93, 103,122,132,133] or constrained to be within comfortable
limits [82, 84, 105, 124, 153]. Sometimes, other comfort indices are used [29].
Less common is the consideration of battery degradation costs [45,57,67],
which is most likely due to both the non-trivial task of modeling it in
general [3] and the resulting increase of the OCP’s complexity.

Depending on the objectives, either regular (tracking) [26,61,93,105,117,122,
134,153] or economic MPC [29,45,46,57,64,65,67,82,107,110,119,130,132,
133] is used. Frequently, forecasts for e. g. air temperature, humidity, solar
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irradiance, power demand or occupancy are incorporated, either perfect or
with deviations [26, 29, 45, 64, 67, 68, 72, 73, 83, 84, 105,107,129,130,133,142,
146,147]. To account for their uncertainties, robust [61, 65, 134,142,147]
or stochastic [46, 65, 73, 83, 105, 107, 129, 133, 146] MPC approaches can
be used. They cannot always be clearly distinguished, especially if they
are based on scenarios [65, 83, 107, 133, 134, 146] instead of probability
distributions [46,73,105,129].

It is noteworthy that the majority of studies are only simulation-based. A
few approaches have been tested under laboratory conditions [117,134] and
even fewer in real-world applications [153].

Note that only a (small) part of the existing publications has been covered
here to illustrate the most important options and properties, since hundreds
of publications exist. For a more comprehensive overview, the reader is
referred to the various existing reviews which focus on different aspects
each, see e. g. [1, 30,38,42,69,89,104,135,150,151].

2.3 Modeling
The appropriate modeling of a microgrid is one of the main challenges
in its control. Following G.E.P. Box’s credo: ’all models are wrong but
some are useful ’ [22], in this section we first show how the basic entities
of a (corporate) building with various power sources can be modeled in a
hierarchical setting of linear state space systems. Then, we define objectives
which can be used as optimization goals and use reformulation techniques
to obtain a well solvable (convex) optimization problem within our MPC
framework.

2.3.1 State Space Descriptions
Throughout this thesis, the medium-sized office building which is shared by
the Honda Research Institute Europe and Honda Research & Development
Europe in Offenbach, Germany is used as an application example. The
selection of power sources and storages presented in the following have
been chosen accordingly. However, note that the model descriptions can
be easily adapted to most buildings. In the following, we present multiple
state space models of different complexity, which can (but do not have to)
be used in a hierarchical setting, as exemplary illustrated in Figure 2.1.
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Figure 2.1: Exemplary hierarchical modeling of a corporate building with
one higher level and two lower level systems. The lower level systems represent
a single entity of the building in more detail (here: the EV charging stations and
the temperature zones).
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Higher Level: Building Model with Single Temperature Zone

In the simplest case, we consider a building with a single temperature zone
and a stationary battery. Note that, in contrast to the higher level system
in Figure 2.1, we first leave out any EVs, since this simpler model is used
throughout most of the simulation studies in this thesis.

The building’s temperature ϑb can be modeled by an ODE such as

ϑ̇b(t) =
1

Cth

(
Hair

(
ϑair(t)− ϑb(t)

)
+
∑
i

Q̇i(t)

)
, (2.5)

where
∑

i Q̇i stands for all thermal powers acting on the building [110].
Here, we consider the heating powers Q̇chp from a CHP and Q̇rad from a
gas heating, cooling power Q̇cool from an air conditioning system, and heat
losses Q̇other to the ground. Cth denotes the building’s thermal capacity
and Hair the heat transfer coefficient to the outside air temperature ϑair.

Another ODE for the stationary battery is necessary. If (self-discharging)
losses are neglected, the change of its energy level E(t) is simply given by

Ė(t) =
∑
j

Pj(t), (2.6)

where
∑

j Pj(t) stands for all electrical powers fed into or drawn from the
battery. Here, we consider the produced electrical power Pchp from the
CHP, the power Pgrid bought from or sold to the grid, the (uncontrollable)
renewable energy Pren from a PV system and the (uncontrollable) power
demand Pdem, e. g. consumption from offices, which must be met at all
times. Note that the CHP can only produce electrical power Pchp and
thermal power Q̇chp at the same time (see Table 2.1).

Using E(t) and ϑb(t) as states, a linear state space model of the microgrid
is derived, [

Ė(t)

ϑ̇b(t)

]
=

[
0 0
0 −Hair

Cth

]
·
[
sc(t)
ϑb(t)

]
. . .

+

[
1 1 − 1

ηrad

1
εc

0 1
ccur·Cth

1
Cth

1
Cth

]
·


Pgrid(t)
Pchp(t)

Q̇rad(t)

Q̇cool(t)

 . . .
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+

[
1 1 0 0
0 0 Hair

Cth

1
Cth

]
·


Pren(t)
Pdem(t)
ϑair(t)

Q̇other(t)

. (2.7)

Note that, for the gas heating, an efficiency ηrad and for the air condition
and energy efficiency ratio εc are considered.

For the rest of this thesis, we refer to the following discretized version
of system (2.7) as the model HL-1. Namely, a discrete linear state space
model in the form of

xHL1(k + 1) = AHL1xHL1(k) +BHL1uHL1(k) + SHL1dHL1(k) (2.8a)

is derived, i. e. [
E(k + 1)
ϑb(k + 1)

]
=

[
1 0

0 − e
−Hair
Cth

]
·
[
E(k)
ϑb(k)

]
. . .

+

[
Ts Ts 0 Ts

εc
0 µ

ccur
µ µ

]
·


Pgrid(k)
Pchp(k)

Q̇rad(k)

Q̇cool(k)

 . . .

+

[
Ts Ts 0 0
0 0 Hair · µ µ

]
·


Pren(k)
Pdem(k)
ϑair(k)

Q̇other(k)

, (2.8b)

where µ = 1−e
−Hair

Cth
Ts

Hair
with Ts being the sampling rate. Constraints x ∈

X ⊆ Rn on the states, u ∈ U ⊂ Rm on the inputs, d ∈ D ⊂ Rq on the
disturbances and on the rate of change of the states, (x(k + 1)− x(k)) ∈
∆X ⊆ Rn, apply. U and D are compact. Note that all uncontrollable
influences have been modeled as disturbances dHL1. The input constraints
are chosen generously such that all disturbances can be compensated,
e. g. Pgrid ∈ [−1000 kW, 1000 kW] whereas Pdem ∈ [−650 kW, 0]. Thus,
feasibility can be ensured for any x0 ∈ X. Table 2.1 gives an overview of
the model parameters.
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Table 2.1: Building model parameters for model HL-1 from (2.8).

Parameter Description Value

Ts Sampling time (step size) in h 0.5
Cth Thermal capacity of the building in kWh/K 1792.06
Hair Heat transfer coefficient to outside air in kW/K 341.94
εc Energy efficiency ratio for the cooling machine 2.5

ccur Current constant CHP, Pchp = ccur · Q̇chp 0.667

Higher Level: Building Model with Single Temperature Zone
and EV Charging Station

In the following, we will augment the HL-1 model (2.8) by a single amalga-
mated charging station for EVs. Namely, we accumulate 30 single charging
stations by summing up the capacities, energy levels and possible charge
rates of available EVs. Later, we present a lower level model consisting
of the EVs charging stations only, with which the following model can be
used in a hierarchical setup. Both higher and lower level model parts of
the EV charging stations have been developed in the process of a Master’s
thesis [39].

The HL model including the EV charging station, called HL-2, is expressed
as an extended version of (2.8) byxHL1(k + 1)

EEV(k + 1)
CEV(k + 1)


︸ ︷︷ ︸

xHL2(k+1)

=

[
AHL1 02×2

02×2 I2×2

]
︸ ︷︷ ︸

AHL2

xHL1(k)
EEV(k)
CEV(k)


︸ ︷︷ ︸

xHL2(k)

· · ·

+

BHL1

[
−Ts

0

]
01×4 Ts

01×4 0


︸ ︷︷ ︸

BHL2

[
uHL1(k)
PEV(k)

]
︸ ︷︷ ︸

uHL2(k)

· · ·



2.3 Modeling 21

+

SHL1 02×1 02×1 02×1 02×1

01×4 1 −1 0 0
01×4 0 0 1 −1


︸ ︷︷ ︸

SHL2


d(k)

EEV,arr(k)
EEV,dep(k)
CEV,arr(k)
CEV,dep(k)


︸ ︷︷ ︸

dHL2(k)

, (2.9)

where xHL1, uHL1, dHL1, AHL1, BHL1 and SHL1 are as in (2.8), EEV and
CEV are the accumulated energies and capacities of all EVs currently
connected to the charging stations (in kWh), EEV,arr(k) and CEV,arr(k) are
the accumulated energies and capacities of all new EVs arriving at time step
k, EEV,dep(k) and CEV,dep(k) are the same of all departing EVs at time
step k and PEV is the total charging (or discharging) power accumulated
over all EVs. In1×n2

denotes the identity matrix of dimensions n1 × n2

and 0n1×n2
a matrix consisting of only zeroes with dimensions n1 × n2.

Lower Level: Detailed EV charging stations model

With the HL-2 model, we calculate only the total (dis-)charging power PEV

for all EVs. To distribute PEV between the single charging stations, we use
a lower level model where every charging station is modeled individually. In
the following, we present a linear time-invariant model which is used for the
simulation studies in this thesis. For a linear time-variant model which is
more suitable for stochastic MPC approaches, the reader is referred to [39].
We assume that 30 charging stations are available. However, the model
description can easily be adapted to any number of charging stations.

The time-invariant model LL-EV is defined similarly to the the higher level
model HL-2, i. e. the arriving and departing of EVs are realized through
disturbances. It is given by

xLLEV(k + 1) = I60×60︸ ︷︷ ︸
ALLEV



EEV,1(k)
...

EEV,30(k)
CEV,1(k)

...
CEV,30(k)


︸ ︷︷ ︸

xLLEV(k)

+Ts

[
I30×30

030×30

]
︸ ︷︷ ︸

BLLEV

 PEV,1(k)
...

PEV,30(k)


︸ ︷︷ ︸

uLLEV(k)

. . .
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+

[
I+−
30×60 030×60

030×60 I+−
30×60

]
︸ ︷︷ ︸

SLLEV



EEV,arr,1(k)
EEV,dep,1(k)

...
EEV,arr,30(k)
EEV,dep,30(k)
CEV,arr,1(k)
CEV,dep,1(k)

...
CEV,arr,30(k)
CEV,dep,30(k)


︸ ︷︷ ︸

dLLEV(k)

, (2.10a)

I+−
30×60 =



1 −1 0 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
. . . . . .

...
...

. . . . . .
0 0 · · · 1 −1

. (2.10b)

EEV,arr,i(k) and CEV,arr,i(k) are the energy and capacity of an EV arriv-
ing at the charging station i at time step k (in kWh), EEV,dep,i(k) and
CEV,dep,i(k) are the same for an EV departing from charging station i at
time step k, and PEV,i is the (dis-)charging power from charging station i.

Lower Level: Multi Temperature Zone Model

The assumption of a single temperature zone is highly simplified. In reality,
every room would constitute a temperature zone at its own (and even
within a room, the temperature would not be homogeneous). Thus, we
present a model with multiple temperature zones. Since we will use it in a
hierarchical setting as illustrated in Figure 2.1, we neglect the electrical
energy system’s part.

If multiple temperature zones are respected, the temperature ϑb,i of zone i
in the continuous-time case can be described by

ϑ̇b,i(t) = −Hair,i

Cth,i
(ϑb,i(t)− ϑair(t))−

∑
j ̸=i

βij

Cth,i
(ϑb,i(t)− ϑb,j(t)) . . .

+
1

Cth,i

(
Q̇heat,i(t) + Q̇cool,i(t) + Q̇other,i(t)

)
, (2.11)
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where Cth,i is the thermal capacity of zone i, Hair,i is the heat transfer
coefficient between zone i and the outside air, βij is the heat transfer
coefficient between zones i and j, Q̇heat,i and Q̇cool,i are the respective
heating and cooling powers allocated to zone i, and Q̇other,i are the heat
losses from zone i to the ground. Note that we distinguish between heating
and cooling powers to forego the necessity of binary variables in the
constraints when used in the hierarchical setup with the single-zone building
models.

Assuming 9 temperature zones, the continuous-time state-space description
for model LL-TEMP is given by

ẋLLT(t) = ACont.
LLT xLLT(t) +BCont.

LLT uLLT(t) + SCont.
LLT dLLT(t), (2.12a)

with

xLLT(t) =
[
ϑb,1(t) · · · ϑb,9(t)

]⊺
, (2.12b)

uLLT(t) =
[
Q̇heat,1(t) · · · Q̇heat,9(t) Q̇cool,1(t) · · · Q̇cool,9(t)

]⊺
, (2.12c)

dLLT(t) =
[
ϑair(t) Q̇other,1 · · · Q̇other,9

]⊺
, (2.12d)

ACont.
LLT =


−Hair,1−

∑
j ̸=1 β1j

Cth,1

β12

Cth,1
· · · β19

Cth,1

β21

Cth,2

−Hair,2−
∑

j ̸=2 β2j

Cth,2
· · · β29

Cth,2

...
...

. . .
...

β91

Cth,9

β92

Cth,9
· · · −Hair,9−

∑
j ̸=9 β9j

Cth,9

, (2.12e)

BCont.
LLT =


1

Cth,1
0 · · · 0 1

Cth,1
0 · · · 0

0 1
Cth,2

· · · 0 0 1
Cth,2

· · · 0

...
. . .

...
...

. . .
...

0 · · · 0 1
Cth,9

0 · · · 0 1
Cth,9

, (2.12f)

SCont.
LLT =


Hair,1

Cth,1

1
Cth,1

0 · · · 0

... 0 1
Cth,2

· · · 0

...
...

. . .
...

Hair,9

Cth,9
0s · · · 0 1

Cth,9

. (2.12g)

By discretization with the sampling time Ts, we obtain the discrete state
space model

xLLT(k + 1) = ALLTxLLT(k) +BLLTuLLT(k) + SLLTdLLT(k), (2.13)
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whose analytical form we omit for brevity. The numerical values of the
building parameters are given in Table 2.2 and have been provided by an
external consulting specialist.1

Table 2.2: Building parameters for model LL-TEMP, i. e. thermal capacities
Cth,i, heat transfer coefficients Hair,i and βij . Note that βij = βji. Otherwise,
all βij not listed below are zero, e. g. β12 = 0.

in kWh/K in kW/K in kW/K

Cth,1 230.88 Hair,1 3.69 β29 48.40
Cth,2 476.29 Hair,2 9.82 β34 345.60
Cth,3 214.27 Hair,3 3.65 β56 1100.48
Cth,4 103.68 Hair,4 2.79 β58 23.40
Cth,5 330.14 Hair,5 4.79 β68 8.00
Cth,6 330.14 Hair,6 6.19
Cth,7 99.456 Hair,7 3.19
Cth,8 2.40 Hair,8 0.03
Cth,9 4.80 Hair,9 0.04

2.3.2 Objectives
In the following subsection, we formulate possible optimization criteria as
cost functions within the MPC context. Note that possible reformulations
are explored in Section 2.3.3. Furthermore, if not otherwise stated, the
single cost functions are formulated for a single time step and would be
summed over the entire prediction horizon, i. e. at time step k, the total
cost would be

Ji(k) =

Np−1∑
n=0

ℓi(n|k). (2.14)

First, we summarize objectives for the higher level (HL) systems. Then,
we do so for the different lower level (LL) systems.

HL: Monetary Costs: Industry and Intraday Pricing

The most obvious and common objective is to minimize the occuring
monetary costs. In the microgrid setting considered here, these arise from
1 EA Systems Dresden GmbH, https://www.ea-energie.de/, accessed on 09/14/21

https://www.ea-energie.de/
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gas costs from the use of the CHP and the gas heating and electricity costs
from buying/selling energy from/to the grid.

The gas costs are given by

ℓmon,chp(k) = 0.12
e

kWh
· Ts · Pchp(k) (2.15)

and

ℓmon,heat(k) = 0.0464
e

kWh
· Ts · Q̇rad(k). (2.16)

For the electricity costs, we distinguish between two cases.

Industry Pricing First, in German industry pricing, the energy costs
ℓindustrymon,grid for buying/selling electricity from/to the power grid are fixed.
On top of that, high peak costs ℓmon,peak apply. Namely, at the end of a
calendar year, the highest peak averaged over fixed 15min time slots is
punished with for example cgrid,peak = 100.01e/kW.

The regular energy costs in the industry scenario can be described by

ℓindustrymon,grid(k) =
(
cgrid,buy · P+

grid(k) + cgrid,sell · P−
grid(k)

)
· Ts, (2.17)

where P+
grid(k) = Pgrid(k) if Pgrid(k) > 0, i. e. if energy is bought from the

grid, and P+
grid(k) = 0 if Pgrid(k) < 0. P−

grid(k) is defined accordingly for
selling energy to the grid. We assume cgrid,buy = 0.13 e/kWh for buying and
cgrid,sell = 0.07 e/kWh for selling. To describe ℓindustrymon,grid in dependence of our
input and decision variable Pgrid, (2.17) is formulated as

ℓindustrymon,grid(k) =
(
cgrid,buy ·max(0, Pgrid(k)) . . . (2.18)

− cgrid,sell ·max(0,−Pgrid(k))
)
· Ts.

The peak costs in the industry pricing scenario are given by

ℓmon,peak(k) = cgrid,peak ·max(0, Pgrid(k)− Pgrid,peak(k)). (2.19)

Since our prediction horizon Np is significantly smaller than one year, we
punish every new peak according to the difference to the maximum peak
Pgrid,peak(k) which has occurred until time step k. Furthermore, Pgrid,peak

may change within Np, e. g. if the predicted Pgrid(2|k) > Pgrid,peak(k), then
Pgrid,peak(3|k) = Pgrid(2|k) and for t ≥ k + 3, new peak costs only occur
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for Pgrid(t) > Pgrid,peak(2|k). A solution to this problem is presented in
Section 2.3.3 together with the general reformulation of max-terms.

Combined with the gas costs, the monetary costs in the industry scenario
are given by

ℓindustrymon (k) = ℓindustrymon,grid(k)+ℓmon,peak(k)+ℓmon,chp(k)+ℓmon,heat(k). (2.20)

Note that, due to the discontinuities in (2.18) and (2.19), including (2.20)
in the MPC objective function without any reformulation would result in
a nonlinear programming problem, which is in general hard to solve.

Intraday Market In the second scenario, we assume participation in
the electricity intraday market. Thus, the electricity (grid) costs depend
on the current market price,

ℓmarket
mon,grid(k) = cmarket

grid (k) · Ts · Pgrid(k). (2.21)

Together with the gas costs (2.15) and (2.16), the monetary costs in the
intraday scenario are given by

ℓmarket
mon (k) = ℓmarket

mon,grid(k) + ℓmon,chp(k) + ℓmon,heat(k). (2.22)

Note that in this case, no reformulation is necessary as including (2.22) in
the MPC objective function results in a linear program.

HL: (Temperature) Comfort Costs

Since we model the building’s temperature as a state, we have to incentivize
its control. Instead of only defining constraints which have to be kept, we
additionally define a desired set point ϑset = 21°C, from which we punish
deviations quadratically,

ℓcomf(k) = (ϑb(k)− ϑset)
2 · Ts. (2.23)

Note that the sampling time Ts is only relevant if it varies throughout the
prediction horizon, i. e. if it is actually time-variant Ts(k). Otherwise, it
is only a scalar factor which could be compensated with an appropriate
weight.
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HL: Ecological Costs

With increasing monetarily punishment of CO2 emissions, they could be
included in the monetary costs. However, especially to meet self-imposed
limits, it might be necessary to respect them in the form of an objective on
their own. This is possible by considering the carbon intensity (CI) for each
actuator, i. e. how much CO2 is emitted per kWh energy. The following
cost terms have been derived in a student cooperation [56]. The CI factors
for the CHP and the gas heating are derived from the general life-cycle
emissions of a gas plant. Namely, a gas plant with an average efficiency
of 0.6 [111] has a median CI of 490 g CO2

kWh [123]. Thus, for the combustion
of natural gas, we assume a general CIgas = 490 · 0.6 g CO2

kWhgas
= 294 g CO2

kWhgas
.

For the gas heating, we assume an efficiency of ηrad = 0.97, which results
in

CIheat =
CIgas
ηrad

= 303.09
gCO2

kWh
. (2.24)

The CHP produces electrical and thermal energy at the same time (see
Table 2.1). Thus, the CI for electrical energy produced by the CHP is
comparatively high with

CICHP =
CIgas

ηCHP · 1
1+ 1

ccur

= 823.74
gCO2

kWh
. (2.25)

where ηCHP = 0.892 is the overall efficiency of the CHP. For electricity from
the power grid, we use the estimated CI by the German Umweltbundesamt
for the eletricity mix in 2019 [63],

CIgrid = 401
gCO2

kWh
. (2.26)

Together, the ecological costs are given by

ℓeco(k) =
(
CIgridPgrid(k) + CICHPPchp(k) + CIheatQ̇rad(k)

)
· Ts. (2.27)

HL: Battery Degradation Costs

The results in this section have been derived in the process of a Master’s
thesis [39]. Modeling battery degradation accurately is a complex research
field by itself. The relation between degradation and charging can be highly
nonlinear and depends on the battery technology [3,140]. However, it is too
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important to neglect entirely and can be approximated. Thus, we propose
a comparatively simple cost function, i. e. we punish

• the total energy throughput of the battery,

• the average state of charge and

• the (absolute) charge rate.

Additionally, the depth of discharge and the operating temperature are
relevant. However, the operating temperature cannot be controlled directly
and would be very complex to model. Therefore, it is neglected. The depth
of discharge is respected by constraining the battery’s lower limit.

Stationary Battery For the stationary battery, the charging power is
not an input (or decision) variable itself, but implicitly given by Pcharge(k) =
E(k + 1)− E(k). For example, for the HL-1 model, this is equivalent to

Pcharge(k) = Pgrid(k) + Pchp(k) +
Q̇cool(k)

εc
+ Pren(k) + Pdem(k). (2.28)

The cost term for the energy throughput is

ℓstatbat,E(k) =
|Pcharge(k)|

Cbat
· Ts(k). (2.29)

The charge rate is punished proportionally to the maximum possible value
Pcharge,max,

ℓstatbat,CR(k) =
|Pcharge(k)|
Pcharge,max

· Ts(k). (2.30)

Since the average state of charge has to be calculated over the entire
prediction horizon, we state here its total cost form,

J stat
bat,SoC(k) =

1

Np + 1

Np∑
n=0

E(n|k)
Cbat(n|k)

· Ts(n|k). (2.31)

The total degradation costs for the stationary battery are then given by

J stat
bat (k)=wstat

bat,EJ
stat
bat,E(k)+wstat

bat,CRJ
stat
bat,CR(k)+wstat

bat,SoCJ
stat
bat,SoC(k), (2.32)

where
(
wstat

bat,E, w
stat
bat,CR, w

stat
bat,SoC

)
=
(
10, 0.1, 1

)
are weights derived from

simulations and represent the cost terms’ relative importance from experi-
ence.
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HL EV Battery For the accumulated EV battery, the degradation costs
are calculated similarly to the stationary battery. However, we have to
introduce an additional variable MEV which indicates whether any EV is
available or not,

MEV(k) =

{
1 CEV(k) > 0

0 otherwise.
(2.33)

Then, the single parts can be expressed by

ℓEV
bat,E(k) = MEV(k) ·

|PEV(k)|
CEV

· Ts(k), (2.34)

ℓEV
bat,CR(k) = MEV(k) ·

|PEV(k)|
PEV,max

· Ts(k), (2.35)

JEV
bat,SoC(k) =

1

Np + 1

Np∑
n=0

MEV(k) ·
EEV(n|k)
CEV(n|k)

· Ts(n|k), (2.36)

and the total cost is given by

JEV
bat (k) = wEV

bat,EJ
EV
bat,E(k) + wEV

bat,CRJ
EV
bat,CR(k) + wEV

bat,SoCJ
EV
bat,SoC(k),

(2.37)

where
(
wEV

bat,E, w
EV
bat,CR, w

EV
bat,SoC

)
=
(
10, 0.1, 1

)
are chosen as for the

stationary battery.

LL: EV Battery Degradation Costs

For the LL EV model LL-EV, the battery degradation cost for each indi-
vidual EV is defined similarly to the HL. Namely, we first introduce an
additional variable mEV,i, which indicates whether an EV is available at
the charging station i or not,

mEV,i(k) =

{
1 CEV,i(k) > 0

0 otherwise.
(2.38)

Then, the single parts can be expressed by

ℓEV,i
bat,E(k) = mEV,i(k) ·

|PEV,i(k)|
CEV,i

· Ts(k), (2.39)

ℓEV,i
bat,CR(k) = mEV,i(k) ·

|PEV,i(k)|
PEV,i,max

· Ts(k), (2.40)
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JEV,i
bat,SoC(k) =

1

Np + 1

Np∑
n=0

mEV,i(n|k) ·
EEV,i(n|k)
CEV,i(n|k)

· Ts(n|k), (2.41)

and the total cost is given by

JEV,i
bat (k) = wEV,i

bat,EJ
EV,i
bat,E(k)+wEV,i

bat,CRJ
EV,i
bat,CR(k)+wEV,i

bat,SoCJ
EV,i
bat,SoC(k), (2.42)

where
[
wEV,i

bat,E, w
EV,i
bat,CR, w

EV,i
bat,SoC

]
= [10, 0.1, 1] are chosen as for the higher

level.

LL: EV Charging Satisfaction

On the LL, we also use a cost function for the charging satisfaction of each
individual EV. Since the arriving and departing of EVs is very hard to
predict, we model probability distributions from which we sample multiple
possible scenarios. Assuming that Nscen scenarios are available, the charge
satisfaction is defined as

lEV,i
Soc (k) = dEV,i(k)(min[EEV,i(k)− EEV,des,i, 0])

2 (2.43)

where EEV,des,i is usually set to 90% of the EV’s total capacity. dEV,i(k)
is the departure indication function, i. e.

dEV,i(k) =
Ndep,i(k)

Nscen
(2.44)

and Ndep,i(k) is the number of scenarios in which the EV i departs at time
step k.

Note that with min(y, z) = −max(−y,−z), the min-term in (2.43) can
be transformed into a linear programming problem the same way as the
max-terms of the monetary costs in the industry scenario, which will be
explained in Section 2.3.3.

LL: (Temperature) Comfort Costs

For the LL temperature zones model LL-TEMP, we adapt a similar cost
function as (2.23) for the HL. However, we sum up all single zones’ tem-
perature deviations weighted by their thermal capacities Cth,i,

ℓcomf,LL(k) =

9∑
i=1

Cth,i

Cth
(ϑb,i(k)− ϑset)

2 · Ts. (2.45)
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Without the weighting, it would always be beneficial to heat (or cool) the
smaller temperature zones first.

2.3.3 Problem Formulations
In this section, we will first summarize general constraints valid for most
of the simulations conducted in this thesis. Then, we will explain how the
monetary costs can be reformulated such that a nonlinear programming
problem is avoided. Lastly, as an example, we formulate the optimization
problem with multiple cost functions for the HL-1 model, which is used
in most of the simulation studies in this thesis. Necessary extensions for
special cases such as hierarchical control schemes are skipped here and will
be instead introduced in the corresponding simulation studies to improve
readability.

General Constraints

In the following, we summarize the general constraints which apply to all
models if they include the corresponding entity. We formulate the state
constraints in dependence of constant parameters, whose values are listed in
Table 2.3. Note that for EV control, the capacities and maximum charging
values depend on the number of vehicles and their assumed individual
values. Thus, details are given in the corresponding simulation study,
together with slack variables and special constraints for the hierarchical
setups.

State Constraints Both the building’s total temperature as well as each
zone’s temperature are subject to box constraints,

ϑb,min ≤ ϑb(k) ≤ ϑb,max, (2.46)
ϑb,min ≤ ϑb,i(k) ≤ ϑb,max for i = 1 . . . 9. (2.47)

The stationary battery has constraints both on its total energy level E and
the maximum charging/discharging power Pcharge, which is not a decision
variable itself. It can be expressed as the change of E between two time
steps,

0.15 · Cbat ≤ E(k) ≤ 0.85 · Cbat, (2.48a)

−Pbat,max ≤ Pcharge(k) =
E(k + 1)− E(k)

Ts(k)
≤ Pbat,max. (2.48b)
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Table 2.3: General parameter values for constraints on states (top) and inputs
(bottom).

Parameter Description Value

Cbat Battery capacity 98 kWh
Pbat,max Maximum battery charging and

discharging power
32.9 kW

ϑb,min Minimum building temperature 19 °C
ϑb,max Maximum building temperature 23 °C

Pgrid,max Maximum electrical power from grid 1000 kW
Pchp,max Maximum electrical power output from

CHP
199 kW

Q̇rad,max Maximum (thermal) heating power from
electrical radiator

600 kW

Q̇cool,max Maximum cooling power from cooling
machine

−440 kW

Note that all state constraints apply for k = 1 . . . Npred, i. e. not for the
current but for the time step after the end of the actual prediction horizon.

Input Constraints All inputs are subject to box constraints,

−Pgrid,max ≤ Pgrid(k) ≤ Pgrid,max, (2.49a)
0 ≤ Pchp(k) ≤ Pchp,max, (2.49b)
0 ≤ Q̇rad(k) ≤ Q̇rad,max, (2.49c)

Q̇cool,max ≤ Q̇cool(k) ≤ 0. (2.49d)

All constraints on the inputs apply for k = 0 . . . Npred − 1.

Reformulation of Monetary Costs with Industry Pricing

If industry pricing is assumed, including the monetary costs as stated in
(2.18), (2.19), (2.20) in the optimization problem would lead to a nonlinear
programming problem due to the max-terms. However, using an epigraph
reformulation [23, 80], it is possible to reformulate them to a relaxed
version which, when included in the optimization problem, still leads to the
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same optimum, but is only a linear programming problem. Similar linear
programming tricks can e. g. be found in [19]. (Note that, if for example
the comfort costs are included, too, the resulting optimization problem
becomes a quadratic programming problem.)

Grid Costs The main idea is to replace each max-term by an additional
decision variable. For (2.18), we introduce

Ppos(n|k)
!
= max(0, Pgrid(n|k)), (2.50)

which is achieved by respecting two additional constraints,

Ppos(n|k) ≥ 0, (2.51a)
Ppos(n|k) ≥ Pgrid(n|k). (2.51b)

Note that the two sides of (2.50) are not equivalent, but by replacing
the right hand side of (2.50) in (2.18) with Ppos (n|k), the new problem
formulation is a relaxed version of the old one. Figure 2.2 illustrates this
behaviour.

Figure 2.2: Comparison of max(0, Pgrid(k)) and its relaxed replacement Ppos.

Consequently, if (2.50) holds, the second max-term in (2.18) can be ex-
pressed as

−max(0,−Pgrid(n|k))
∧
= Pgrid(n|k)− Ppos(n|k). (2.52)
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Together, the grid costs can then be expressed as

ℓindustrymon,grid(n|k) =
(
cgrid,buy · Ppos(n|k) . . .
+ cgrid,sell · (Pgrid(n|k)− Ppos(n|k))

)
· Ts. (2.53)

Considering (2.53) as part of the cost function, it becomes clear that Ppos

will be minimized to fulfill (2.50) as long as cgrid,buy > cgrid,sell, which is
true. Note that with this reformulation, Np additional decision variables
and 2Np additional constraints are incorporated into the optimization
problem.

Peak Costs The same trick can be used to replace the max-term(s) in
(2.19). Namely, it is computationally advantageous to calculate ℓmon,peak

not for every prediction step n individually, but over the whole prediction
horizon n = 0, . . . , Np−1, since Pgrid,peak(n+1|k) depends on Pgrid,peak(n|k)
and only the maximum value of Pgrid matters. Thus, the peak costs in
each optimization step are given by

Jpeak
mon (k)=cgrid,peak ·max

(
0, max

k=0,...,Np−1

(
Pgrid(n|k)

)
−Pgrid,peak(k)

)
.(2.54)

Considering (2.54), the linear programming trick has to be applied twice.
Namely, first the inner max-term is replaced by an additional decision
variable v,

sP1(k)
!
= max

n=0,...,Np−1

(
Pgrid(n|k)

)
, (2.55)

which is s. t. Np constraints

sP1(k) ≥ Pgrid(n|k) ∀n = 0, . . . , Np − 1. (2.56)

Note that, in contrast to Ppos in (2.51a), only one decision variable and Np

constraints are added to the optimization problem for the reformulation of
this max-term. Again, (2.55) will be fulfilled in the optimization due to
the minimization of the costs.

Using (2.55) in (2.54), the peak costs can be described as

Jpeak
mon (k) =̂ cgrid,peak ·max

(
0, sP1(k)− Pgrid,peak(k)

)
. (2.57)

Again, the max-term in (2.57) is replaced by

sP2(k)
!
= max

(
0, sP1(k)− Pgrid,peak(k)

)
, (2.58)
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and constrained to

sP2(k) ≥ 0, (2.59a)
sP2(k) ≥ sP1(k)− Pgrid,peak(k), (2.59b)

i. e. for replacement (2.58), only one additional decision variable with only
two constraints is needed for the entire prediction horizon. Furthermore,
(2.58) will again be fulfilled when minimizing the peak costs, which can
now be expressed as

J̃peak
mon (k) = cgrid,peak · sP2(k). (2.60)

In total, we can formulate the monetary costs for the industry scenario as

J̃ indus
mon (k) =

J̃peak
mon (k) +

Np−1∑
n=0

ℓ̃industrymon,grid(n|k)+ℓmon,chp(n|k)+ℓmon,heat(n|k), (2.61)

whose inclusion in optimization results in a linear programming problem.

In summary, to use the monetary costs with industry pricing as an objective,
(2.61) has to be included in the cost function and (2.51), (2.56) and (2.59)
have to be included as constraints. This makes a total of Np +2 additional
decision variables and 3Np + 2 additional constraints, which is the price
for transforming the nonlinear into a linear programming problem.

Optimal Control Problem for the HL-1 Model

In this section, we will formulate the optimal control problem (OCP) when
we apply MPC to the HL-1 model with monetary costs (industry pricing)
and comfort costs as objectives. We will optimize them as a weighted
sum, which is the most common approach. Note that we will build on that
for all multi-objective optimization approaches presented in this thesis in
Chapters 4 and 5.

With J̃ indus
mon from (2.61) and Jcomf calculated as usual from (2.23), the

optimal control problem at time step k can be formulated as

O
Mon.(Ind),Comf.
HL−1 (k) : min

u,P pos,sP1,sP2

wmon · J̃ indus
mon (k) + wcomf · Jcomf(k), (2.62)

s. t. (2.8b),
(2.46), (2.48), (2.49),
(2.51), (2.56), (2.59).
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Note that, due to the quadratic comfort costs, (2.62) is a quadratic pro-
gramming problem and thus convex, which is very well solvable with today’s
optimization methods.

2.4 Simulation Studies
In this section, we present multiple simulation studies based on the different
building models and objectives presented before. Thereby, we use only
single-objective optimization methods, i. e. the different objectives are
combined in a weighted sum only. In Section 2.4.1, we first describe the
simulation data which is used for all studies. In Section 2.4.2, we shortly
introduce the MPC framework PARODIS which has been developed for
the purpose of this thesis. In Section 2.4.3, we present the first simulations
comparing our MPC approach to state-of-the-art PID and heuristic controls,
which are mostly used in current buildings. In Section 2.4.4, we use a
hierarchical setting of the models HL-1 and LL-TEMP to demonstrate how
the MPC approach can be used for more complex models while keeping
computational burdens low. Finally, in Section 2.4.5, we show how a large
number of EV charging stations can be controlled using MPC, again making
use of a hierarchical model setup.

2.4.1 Simulation Data
For the simulations in this chapter, mostly measurement data from the
Honda Research building in Offenbach, Germany from January 2018 - June
2019 have been used. Data is necessary for all disturbances acting on the
system. In case of the standard model HL-1, these are the produced power
from the RES Pren, the building’s power demand Pdem, the outdoor air
temperature ϑair and other thermal power disturbances Q̇other.

Since the building’s PV system was upgraded within the time-period of
this PhD project and no direct measurement data were available, we use
measurements of the solar irradiance Isol and estimate Pren from it. Their
relationship can generally be described by

P̃ren = ηPV ·APV · Isol · (1− βPV(Tcell − 25 °C)), (2.63)

with ηPV being the reference efficiency, APV the surface area, Tcell the
operating temperature of the cell and a constant βPV ≈ 0.04 [125]. For the
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purpose of this thesis, we neglect the temperature influence, resulting in
the linear approximation

Pren(k) = ηPV ·APV · Isol(k) (2.64)

with ηPV = 18.76%. For most simulation studies, APV is assumed such
that Pren has a maximum peak of 150 kW. Figure 2.3 shows exemplary
trajectories for Pren.

Figure 2.3: Assumed power production Pren of the PV plant from 20th to 23rd
of July in 2018.

The building’s power demand Pdem has been measured directly. However,
the power consumption of the cooling machines has been subtracted, since
we model their energy consumption explicitly. Overall, Pdem regularly
exceeds −500 kW. Figure 2.4 shows exemplary measurements of Pdem. The
outdoor air temperature ϑair has been measured by a weather station on
the building’s roof. It varies between −9.03 °C to 36.8 °C. As additional
thermal disturbances Q̇other, constant losses to the ground of −12.89 kW
are assumed, if not otherwise stated.

In addition to the measurement data, we use historical energy prices from
the intraday market if not industry, but intraday pricing is assumed for
the monetary costs. Data from the German Bundesnetzagentur is used.
In 2018, the mean electricity costs on the intraday market have been
0.0471 e

kWh with extremes of −0.03 e
kWh and 0.161 e

kWh . Note that negative
prices are possible if general production from RESs is high in comparison
to the demand.
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Figure 2.4: The building’s power demand Pdem from 20th to 23rd of July in
2018.

2.4.2 MPC Framework PARODIS
For implementation and simulation of the models and control schemes
developed in this thesis, we implemented a new Matlab MPC framework,
called PARODIS – Pareto optimal MPC framework for distributed systems
[S4]. It is open-source, available on GitHub2 and has also been published at
the IEEE Conference on Control Technology and Applications (CCTA 2021)
[S4], from where parts of the description here have been taken. It provides
generality to a great extent while maintaining flexibility and easy usage. It
is different from other MPC frameworks in that it i) supports distributed
(hierarchical) systems, ii) provides convenient interfaces to use large-scale
datasets for predicted and actual disturbances, iii) respects scenarios for
uncertain disturbances and parameters in a customizable fashion and iv)
as its main innovation, provides integrated support for multiple objectives
by automated generation of the Pareto front and selection of solutions. Its
capabilities for multi-objective optimization (point (iv)) will be explored
in more detail in Section 5.3.1. Here, we shortly describe its features and
conception for single-objective MPC.

Functionality PARODIS allows fully parameterized (and thus time-
variant) descriptions of discrete state space systems in the form

x(k + 1) = f(x(k), u(k), d(k), k), (2.65)

2 https://github.com/teamparodis/parodis, accessed on 09/14/21.

https://github.com/teamparodis/parodis
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where x, u and d are the state, input and disturbance vectors, respectively.
Multiple systems, in PARODIS called agents, can be defined and controlled
in a distributed (or hierarchical) fashion. Model predictive controllers are
defined for every agent by default, whereby the cost functions can be defined
arbitrarily, i. e. as in economic MPC. However, controllers could easily be
exchanged. There are two specialties of PARODIS. First, it distinguishes
not only between predicted and real disturbances d, but it also supports the
consideration of multiple scenarios in the prediction of disturbances and
parameters, thus advocating it for the use of scenario-based stochastic MPC.
As sources, either function handles or csv-files can be defined, thus allowing
for easy import of large data sets for long-term simulations. Furthermore,
the incorporation of scenarios in the optimization problem is customizable.
Second, it ships with algorithms for multi-objective optimization, i. e. both
methods for determining the Pareto front for multiple objectives and
methods for automatic selection of a solution, which is repeated at every
time step. We elaborate on them in Section 5.3.1. PARODIS utilizes
YALMIP [81] and its symbolic variables to formulate the optimization
problem, which makes the large selection of solvers supported by YALMIP
accessible.3

Concept PARODIS is object-oriented. All necessary information is
wrapped in an instance of the Simulation-class, which may contain multiple
instances of the Agent- and TimeSeries-classes (figures), as illustrated in
Figure 2.5.

A simplified flow chart diagram is shown in Figure 2.6. In distributed
or hierarchical MPC approaches, agents usually interact with each other
and (possibly) negotiate what actions they should take in the current
time step. In PARODIS, this interaction is called the negotiation and
is separate from the agents’ actual step. There are two options for this
negotiation: The first one is for the agents to execute their negotiation
step in a fixed order. Here, their OCP is solved as usual and a user-defined
callback is called afterwards. Using this callback, agents can exchange
information freely. The second option is a user-defined interaction using
simulation.negotiationHandle: This is a user-defined function, where
any arbitrary algorithm can be implemented. In this function, all agents,
controllers and simulation data can be accessed. After the negotiation, the

3 See https://yalmip.github.io/allsolvers/, accessed on 09/14/21, for an
overview.

https://yalmip.github.io/allsolvers/
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Figure 2.5: Structure of a simulation setup in PARODIS. Boxes with a bold title
represent an instance of the respective class. An agent fully defines a system and
consists of a model, a Controller instance and some optional configuration. Every
TimeSeries instance creates one figure with an arbitrary number of subplots and
may contain elements of any agent. In the simulation’s shared struct, agents can
store information of any kind. It is cleared after every iteration.

actual simulation step is executed. Note that multiple optional callback-
functions exist and enable the user to adjust the standard simulation flow,
e. g. agent.callbackMeasureState() to update an agent’s state before
optimization.

PARODIS supports different agent sampling times, as long as the first steps
of the agents’ horizons are multiples of each other. Thus, an execution
order is determined at the beginning. Figure 2.7 illustrates this. Within
the iteration of a simulation step, every agent’s doStep()-function is called
following this execution order. Thereby, all disturbances and parameters
are set. Then, the optimal trajectory is determined, plots are updated and
the first input is applied.

The Controller-class is responsible for the formulation and solving of
the OCP. At the time of writing, three different controller classes are
available, the SymbolicController, the ExplicitController and the
ParetoController. The ParetoController supports all multi-objective
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Figure 2.6: Flowchart diagram for PARODIS.
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Figure 2.7: Exemplary iteration for a simulation with 3 agents and sampling
times 4∆T (A1), 2∆T (A2), and ∆T (A3). Slower agents step first. Thus, the
execution order would be [A1, A2, A3, A3, A2, A3, A3].

optimization features and is thus omitted here. The SymbolicController
and ExplicitController only differ in their internal operating principle
and are thus better suited for different purposes. The SymbolicController
makes use of YALMIP’s optimizer feature by pre-compiling a fully pa-
rameterized optimization problem, which makes it very efficient for smaller
problems. The ExplicitController re-builds the OCP at every time step
explicitly, which makes it more suitable for larger problems. For instruc-
tions on the usage of PARODIS, the reader is referred to [S4] and the wiki
of the GitHub repository.

2.4.3 Comparison to State-of-the-Art Control
Today, most buildings’ HVAC systems and energy storages such as batteries
are still regulated either by simple PID controllers or heuristic rules [1].
Thus, we first want to compare the (E)MPC strategy to such a state-of-the-
art approach, which we refer to as the baseline solution in the following.
The standard HL-1 model is used and monetary costs with industry pricing
and comfort costs are considered as objectives. Note that parts of this
simulation study have been published in [S1].

Baseline Control Approach We develop a deterministic controller
combining if-then-else rules and a discrete P controller. Its aim is to
maintain the building’s temperature ϑb at the desired set point of 21°C
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as close as possible, thereby trying to avoid new peaks by utilizing the
stationary battery. Its limitations are that only currently measurable
information may be used, i. e. Pdem(k), Pren(k), ϑair(k) are assumed to be
known, while the heating losses to the ground Q̇other(k) are unknown.
Furthermore, no predictive behavior is possible.

For this purpose, we first reformulate and discretize (2.5) to express ϑb in
dependence of the overall heating power Q̇tot = Q̇chp + Q̇rad + Q̇cool,

ϑb(k + 1) = − e
−Hair
Cth ·ϑb(k) +

1− e
−Hair

Cth
Ts

Hair
· Q̇tot(k). (2.66)

We choose a simple proportional controller to determine the input Q̇tot by

Q̇tot(k) = kP · (ϑb(k)− ϑset), (2.67)

where kP is chosen such that the only eigenvalue of (2.66) is at the origin,
i. e. we use dead-beat control. Note that this is the best we can do with a
P controller to keep ϑb at the desired temperature.

Q̇tot is split into Q̇chp, Q̇rad and Q̇cool as follows. If Q̇tot ≥ 0, the CHP
is used as much as possible, since it cheaply produces both heating and
electrical power. Only if Q̇chp is running at its maximum, the gas radiator
Q̇rad is used. If Q̇tot < 0, the building must be cooled, thus Q̇cool = Q̇tot.

Furthermore, it must be determined whether the stationary battery should
be charged, discharged or neither, i. e. Pcharge has to be defined. Since the
battery shall be used for peak-shaving, the following strategy is applied.
The battery is only discharged if a new peak is arising. If so, it is discharged
only as much as necessary to avoid a new peak. Otherwise, it is charged
as much as possible without culminating in a new peak. All energy and
(dis-)charging constraints (2.48) are respected, too.

With Q̇chp, Q̇rad, Q̇cool and Pcharge determined, the corresponding Pgrid is
given by

Pgrid(k) = −
(
Pdem(k) + Pren(k) + ccur · Q̇chp(k) . . .

+
Q̇cool(k)

εc
+ Pcharge(k)

)
. (2.68)

MPC Strategies The OCP for the MPC approaches is the same as
(2.62). We use three different settings for the weights. In the first, we put
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the focus only on the comfort costs, i. e.
(
wA

mon, w
A
comf

)
=
(
10−5, 1

)
. In the

second, we use equal weights
(
wB

mon, w
B
comf

)
=
(
0.5, 0.5

)
, which is the same

as if no weighting was used. In the third, we use adjusted weights derived
a posteriori from a multi-objective optimization study (explained later in
Section 5.3.2),

(
wC

mon, w
C
comf

)
=
(
0.2647, 0.7353

)
. We set the prediction

horizon to 24 h with 48 steps of 30min each, which results in a total of
291 decision variables and 915 constraints (due to the reformulation of the
monetary costs as described before). As for all simulation studies in this
thesis, GUROBI [55] is used as a solver. Using the SymbolicController,
solving a single optimization problem takes ≈ 0.05 s on an Intel Xeon CPU
E5-1607 v4 with 3.10GHz.

Results The results for a 1-year simulation with data from 2018 as
described in Section 2.4.1 are presented in Figure 2.8. The baseline solution
performs well in terms of average temperature deviation with 0.11 °C, since
dead-beat-control is applied as long as the constraints are not active. Thus,
the temperature deviates from the given set point of 21°C mainly due to
the uncompensated disturbances Q̇other. However, it performs worst in
terms of monetary costs. Since the air conditioning is used regardless of
possible new peak costs, the maximum peak rises to 650.25 kW, resulting in
unnecessarily high peak and total monetary costs of ≈ 362,000e. However,
the MPC approach with focus put only on the comfort clearly outperforms
the baseline controller. It manages to keep the temperature nearly perfectly
at the desired set point with an average temperature deviation of only
0.0039°C while resulting in still lower overall costs of 358,638e.

In comparison, the MPC approach with equal weights wA
mon = wA

comf = 0.5
leads to a significant cost reduction of 36,764e. The maximum peak is
reduced to 384.46 kW, which turned out to be unavoidable due to the
maximum demand Pdem = −630.55 kW in January. However, since no
weighting is applied, the average temperature deviation is uncomfortably
high at 0.51 °C. Using the adjusted weight set C instead leads to a good
and desirable trade-off between both objectives, i. e. savings of 32,806e
with an average temperature deviation of 0.2430 °C.

Conclusion The results show how (E)MPC can successfully utilize the
building’s storages (thermal capacity, stationary battery) to avoid unneces-
sarily high peaks while controlling the temperature. However, appropriate
weighting is essential to obtain a suitable compromise.
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Figure 2.8: Simulation results for 2018. An initial peak of 250 kW has been
used, for which the peak costs are not included. For better comprehension, the
average temperature deviations are displayed instead of the actual optimization
costs Jcomf .

2.4.4 Hierarchical Control of Temperature Zones
The models presented in Section 2.3.1, especially the higher level models, are
a strong simplification of a real building. The simplification is necessary to
keep model equations at a complexity low enough to keep the optimization
problem, which results from the application of MPC, tractable. However,
we propose a hierarchical setup to take advantage of the optimal control
strategies on all essential entities on the higher level model, while more
detailed lower level models of single entities can distribute allocated total
powers. In this simulation study, we use a hierarchical setup of the building’s
temperature zones, illustrated in Figure 2.9.

Control Strategy For the higher level system, we again use model HL-1.
However, in contrast to Section 2.4.3, there are two differences. First, we
assume no heating disturbances (losses to the ground), i. e. Q̇other = 0. This
is only for simplicity. (Otherwise, we would have to distribute them between
the single temperature zones on the lower level.) Second, we additionally
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Figure 2.9: Higher and lower level models for the hierarchical control of the
building’s temperature zones. The higher level first measures all zone temper-
atures ϑb,1, . . . , ϑb,9 from the lower level and updates the averaged building
temperature ϑb. Then, it solves its OCP and communicates the total heating and
cooling powers, Q̇heat,total and Q̇cool,total, to the lower level, which distributes
them between the 9 temperature zones.
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respect the battery costs (2.32), but only to prevent unnecessary charging
and discharging. Thus, while we use the adjusted weights

(
wB

mon, w
B
comf

)
=(

0.2647, 0.7353
)

for the monetary and comfort costs, we choose the weight
on the battery degradation comparatively low at wB

bat = 0.01.

For the lower level system, we use model LL-TEMP with Q̇other,i = 0 ∀ i =
1 . . . 9. The only objective is (2.45). However, since the lower level is
supposed to distribute the powers provided from the higher level, we have
to add the constraints

9∑
i=1

Q̇heat,i = Q̇rad +
Pchp

ccur
, (2.69a)

9∑
i=1

Q̇cool,i = Q̇cool, (2.69b)

0 ≤ Q̇heat,i ≤ Q̇rad +
Pchp

ccur
∀ i = 1 . . . 9, (2.69c)

Q̇cool ≤ Q̇cool,i ≤ 0 ∀ i = 1 . . . 9. (2.69d)

Note that if large differences between higher and lower level models would
exist, the lower level’s optimization problem could be kept feasible by
adding slack variables in (2.69a) and (2.69b), as we will do in Section 2.4.5
for the EV models.

Overall, the resulting OCP on the lower level is

OLL−TEMP : min
uLLT

Jcomf,LL(k), (2.70)

s. t. (2.13), (2.47), (2.69).

Results Figure 2.10 shows the trajectories of the higher level. Figure 2.11
shows the corresponding temperatures and thermal powers of the single
zones as heat maps.

In summary, the results show that the hierarchical approach can successfully
be used to control multiple single temperature zones by the allocated total
heating and cooling powers. In this way, multiple objectives and entities
can be respected at the higher level and the computational burden can be
kept low enough to use more advanced optimization methods like the ones
we will introduce in Chapter 4.
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Higher Level State, Input and Disturbance Trajectories

Figure 2.10: Trajectories of the higher level system for the 5 day simulation
with data from June 2018. The battery is kept at its minimum and only charged
and discharged to avoid new peaks of Pgrid. The building temperature fluctuates
slightly around the desired 21 °C.
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Figure 2.11: Heat maps of the lower level system, i. e. the zone temperatures
ϑb,i as well as the single heating and cooling powers, Q̇heat,i and Q̇cool,i. The
absolute powers for zones 8 and 9 are very low due to their small thermal
capacities in comparison to zone 1-7.
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2.4.5 Electric Vehicle Charging
As the last simulation study with single-objective MPC only, we use a
hierarchical setup to control 30 EV charging stations connected to the
building. Namely, we use model HL-2 on the higher and model LL-EV
on the lower level as illustrated in Figure 2.12. Note that the results
presented in this section partly have been derived in the process of a
Master’s thesis [39], which also led to the publication [S9].

Simulation Data For the building’s power demand, PV production
and air temperature, data from 2018 is used as described in Section 2.4.1.
Since no data for EVs from the real building site is available, data from
the NASA Jet Propulsion laboratory and Adaptive Charging Network of
the California Institute of Technology [75] is used to derive probability
distributions. Namely, a Gaussian mixture model is fitted to the available
data, from which artificial charging sessions can then be drawn.

In general, a session at a charging station i is characterized by the EV’s
time of arrival ToAi, its time of departure ToDi = ToAi + Tsojourn,i, its
initial energy EEV,init,i, its total capacity CEV,i and the desired total energy
EEV,des,i. As predictions, Nscen scenarios are drawn from the probability
distributions and averaged. Note that for the time of departure, we use
estimations ToDest,i ∼ N(ToDi, (0.5 h)

2), i. e. we assume that the EV user
estimates his departure with a standard deviation of 0.5 h. We assume
CEV,i = 50 kWh and PEV,i,max = 10 kW for all EVs. On average, the
required energy is 12 kWh and 1.35 sessions occur per charging station.

MPC Control Strategies Similar to the hierarchical setting for the
temperature zones, the higher level model determines the aggregated
charging power PEV for all vehicles, which is then distributed on the lower
level. However, here we optimize the higher level two times, which is due
to a form of negotiation between the two levels. Namely, the lower level
may deviate from the allocated charging power PEV and use the adjusted
power P ′

EV instead. If so, the optimization on the higher level is repeated
with PEV = P ′

EV, as explained below.

For the higher level, we respect the cost functions for the monetary costs,
comfort costs, degradation of the stationary battery and, in addition to
before, the degradation of the aggregated EV battery JEV

bat from (2.42).
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Figure 2.12: Higher and lower level models for the control of 30 EV charging
stations. The higher level provides the lower level an aggregated total EV charging
power PEV, which is then distributed between the individual EVs. Afterwards,
the lower level updates the higher level with the actually realized charging powers
PEV,i, which might deviate from the plan due to various single constraints on
the lower level.
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The EV charging is not incentivized in the objective function, but ensured
by a time-varying lower constraint on EEV,

EEV,min(k) ≤ EEV(k) ≤ CEV(k) ∀ k = 1 . . . Npred. (2.71)

The lower bound EEV,min(k) is constructed as a piecewise linear tube rising
from the initial level to 60% of the maximum capacity, while avoiding
unnecessary steep rises in dependence of the sojourn time Tsojourn,i. Note
that in addition to (2.71), the actual charge satisfaction with energy levels
≈ 90% is achieved due to the assumption that cars leave with said 90%
at their ToDi. Thus, on average, the aggregator charges all cars higher
than the required 60%. This way, flexibility in the charging process is
maintained.

The constraints on the charge rates are time-varying, too, and depend on
the number of EVs available, i. e.

−PEV,max(k) ≤ PEV(k) ≤ PEV,max(k) ∀ k = 0 . . . Npred − 1. (2.72)

In total, the first OCP for the higher level is given by

O1st
HL−2(k) : min

uHL2,P pos,sP1,sP2

wmon · J̃ indus
mon (k) + wcomf · Jcomf(k) . . .

+ wstat
bat · J stat

bat (k) + wEV
bat · JEV

bat (k), (2.73)
s. t. (2.9),

(2.46), (2.48), (2.49),
(2.71), (2.72).

For this simulation study, the weights have been set to(
wmon, wcomf , w

stat
bat , w

EV
bat

)
=
(
1, 3, 0.2, 0.2

)
. If the lower level de-

viates from the allocated PEV, the second round OCP is the same as the
first one, but with an additional constraint, i. e.

O2nd
HL−2(k) : O1st

HL−2(k) (2.74)
s. t. PEV(k) = P ′

EV(k) ∀ k = 0 . . . Npred − 1.

For the lower level, we use model LL-EV. Its sole task is to distribute the
allocated power PEV between the single EVs using MPC, mirroring the
goals of the higher level. Thereby, constraints on the EVs’ energy levels
and charging powers similar to the higher level apply,

EEV,min,i(k) ≤ EEV,i(k) ≤ CEV,i(k) ∀ k = 1 . . . Npred, (2.75)
−PEV,max,i(k) ≤ PEV,i(k) ≤ PEV,max,i(k) ∀ k = 0 . . . Npred − 1. (2.76)
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Additionally, we have to constrain the sum of all charging powers PEV,i to
the allocated power PEV. However, the constraints (2.75) and (2.76) might
make this impossible. Thus, we add a slack variable sEV(k) which allows
deviations, i. e.

PEV(k) =

30∑
i=1

PEV,i(k) + sEV(k) ∀ k = 0 . . . Npred − 1. (2.77)

The slack variable is included in the objective function with a high weighting
factor wslack = 2000. This value is high enough to ensure that sEV is
only used if the problem is infeasible otherwise, but low enough to avoid
numerical issues. Using the charge satisfaction costs from (2.43), the OCP
of the lower level is then given by

OLL−EV(k) : min
uLLEV

30∑
i=1

JEV,i
Soc (k) + JEV,i

bat (k) +

Np−1∑
n=0

wslack · sEV(k), (2.78)

s. t. (2.10),
(2.75), (2.76), (2.77).

Baseline Control Approach To assess the benefits of our MPC ap-
proach, we compare it to the use of rule-based controllers for the higher
and/or lower level. On the higher level, the rule-based controller is mostly
the same as in Section 2.4.3. Namely, the total thermal power Q̇tot is
determined by the dead-beat control (2.67) and then split into Q̇chp, Q̇rad

and Q̇cool. The only difference is that, in addition, the EV charging power
PEV is simply determined as the maximum possible power for all EVs.
Thus, Pgrid is given by

Pgrid(k) = −
(
Pdem(k) + Pren(k) + ccur · Q̇chp(k) . . .

+
Q̇cool(k)

εc
+ Pcharge(k) + PEV(k)

)
. (2.79)

On the lower level, the rules depend on the higher level control. If we use
the rule-based controller on the higher level, all cars are simply charged
as much as possible without violating any constraints. If MPC is used
on the higher level, the available charging power PEV(k) is split between
all cars proportionally to how much energy they need until they are fully
charged. Similarly, if PEV(k) < 0, then the cars with the highest energy
requirements are discharged the least.
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Results We compare three different combinations, i. e. the proposed
MPC approaches on both levels (denoted as MPC / MPC), only MPC on
the higher level and rule-based control on the lower level (MPC / RBC)
and rule-based control on both levels (RBC / RBC). Figure 2.13 shows the
results for the 1-year simulations. Note that the average charge satisfaction
is determined as in (2.43) with EEV,des,i = 0.9 · CEV,i for all EVs. For
better interpretability, the battery degradation is calculated a posteriori
with the rainflow cycle-counting algorithm [140], for which we assume a
constant battery temperature of 25°C.

Figure 2.13: Results of 1-year simulations with different control strategies,
denoted in the form of (higher level / lower level). An initial peak of 250 kW
has been used, for which the peak costs are not included. Note that the axis for
the average charge satisfaction has been inverted for better interpretability, i. e.
values closer to the center are better. The numerical value can also be found in
the appendix in Table A.1.

The results show that our MPC approach on the higher level successfully
utilizes both the stationary and EV batteries to avoid unnecessary peak
costs, resulting in significantly lower overall monetary costs, 243,037e
for (MPC / MPC) instead of 293,040e for (RBC / RBC). If rule-based
control is used on the lower level in combination with MPC (MPC / RBC),
the monetary costs are even slightly lower at 242,228e. However, this is
because the MPC on the lower level occasionally demands more charging
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power than the higher level MPC provides in the first step. This is necessary
to satisfy the energy constraints for EVs which arrive with a very low state
of charge. Thus, the average charge satisfaction is higher for (MPC / MPC)
than for (MPC / RBC), i. e. 100.79% vs. 97.47%. The combination of
rule-based control on both levels has the highest average charge satisfaction
at 110.80% because it generally charges as much as possible. Note that
charge satisfactions greater than 100% appear if the desired state of charge
of 90% is exceeded.

The results also show that if rule-based control is used at the higher level
(RBC / RBC), the stationary battery is barely used and the EV batteries
are never discharged, which results in the lowest degradation values for
both. Furthermore, for (MPC / MPC) the degradation for the EV batteries
is higher than for (MPC / RBC) because they are generally charged more
and the stationary battery is used less instead.

Conclusion The simulation results show that the use of MPC is highly
beneficial in terms of monetary costs in comparison to simple rule-based
control while still achieving good results for the remaining objectives. Peaks
can successfully be shaved and the EV batteries can be utilized as buffers
while ensuring charge satisfaction. Even if a simple rule-based distribution
is used on the lower level, the higher level MPC shows strong benefits,
thus advocating the use of hierarchical model structures if computational
expenses are too high otherwise.

2.5 Summary
In this section, an overview of the energy management problem for buildings
and microgrids has been given first. MPC has been introduced as the most
promising control strategy. Then, several linear state space models with
different complexities have been derived to model the most essential parts of
the energy management system of a real-world building. Mainly, electricity
and the building’s temperature are coupled by heating, ventilation, and air
conditioning (HVAC) units and a combined heat and power plant (CHP).
The resulting ODEs depend on controllable actuators such as a the CHP and
HVAC units, the connection to the power grid etc., as well as uncontrollable
influences such as the power production of a PV plant, the building’s
regular energy demand and the air temperature. Additionally, models to
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incorporate electric vehicle charging stations into the energy management
system have been proposed. We showed how for example nonlinear peak
costs can be reformulated to obtain well solvable complex optimization
problems. Simulation studies showed that the state space models can
be successfully utilized, optionally in a hierarchical setup, to control the
building’s energy flows. Thereby, only single-objective economic MPC
has been used by minimizing weighted sums of all considered objectives,
already showing advantages over regular control schemes.
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3 Importance of Forecasting
Accuracy

In this chapter, we address the mostly neglected influence of the predictions
used for the MPC of a microgrid. To this end, we first summarize the current
state of research. Then, we use the main model HL-1 from Chapter 2 and
conduct an extensive simulation study with real-world weather forecasts
of the solar irradiance, which are used for predictions of the PV power
production. Thereby, we empirically analyze the relationship between
prediction errors and cost increases.

Note that parts of this chapter have already been presented in

[S5] T. Schmitt, T. Rodemann, and J. Adamy. The cost of photovoltaic
forecasting errors in microgrid control with peak pricing. Energies,
14(9), 2021.

3.1 Introduction
Throughout Chapter 2, we assumed perfect predictions of all disturbances
in the microgrid (except for the electric vehicles (EVs), for which a scenario-
based MPC approach has been used). In the literature, either perfect
predictions are utilized, too, or erroneous values from mathematical models
are used. Then, robust or stochastic MPC approaches are frequently used
to handle the prediction errors, as summarized in Section 2.2.2. However,
the urgency for handling uncertainties depends on their impact, which
again might depend heavily on the respective application. Specifically,
the most common objective, monetary cost, varies with different pricing
structures. With the high peak costs encountered in German industry
pricing, for example, forecasting errors can have serious consequences.
Thus, a systematic analysis of how (realistic) forecasting errors affect the
control outcome is necessary.
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One important source of uncertainties in modern microgrids is the use
of PV plants as RESs. While their power production can be predicted
from widely available weather forecasts [2, 74], simulation studies with
real-world predictions are comparatively rare. Mostly, strategies to handle
uncertainties are presented and the effect of the forecasting errors themselves
is only investigated in the evaluation of the new strategy.

Thus, this chapter intends to address the gap in research on the effect of
realistic uncertainties in microgrid control if unhandled, especially for the
challenging case of peak costs and tries to answer the following questions:

• Are state of the art weather predictions already sufficient to reduce
demand peaks?

• What is the correlation between prediction accuracy and resulting
cost?

• What is the time horizon in which the prediction accuracy is relevant?

To this end, we first review the current state of research.

3.2 Related Work
An interesting example of an application using historical weather forecasts
as predictions for the PV production is [106]. The uncertainties are ac-
counted for by a stochastic MPC approach with chance constraints. The
stochastic MPC outperforms a deterministic MPC, but the relationship
between the forecasting error and the resulting (additional) energy use
remains unclear. The effect of PV and wind power production forecasts on
their integration in the German power grid is considered in [76]. Namely,
the resulting control reserve power, the regime switches per week (i.e. how
often a storage has to change between charging and discharging) and the
storage energy losses are evaluated. However, the authors come to the
conclusion that today’s forecasts are sufficient and further improvement
has no significant effects. In [120], an affine arithmetic method for micro-
grid control is introduced and compared, among others, to MPC methods.
Three different levels of artificial forecasting errors are considered, for which
the error increases linearly within the time horizon (but with three different
slopes). The numerical results show that for regular MPC, costs increase
significantly with the error level. In [149], a residential home with plannable
loads and PV and wind energy sources is controlled. Five different levels
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of uniformly distributed forecasting errors from 6 % to 30 % are respected,
resulting in increasing costs. In [70], a microgrid with intraday pricing
is considered. Simulation results suggest a perfectly linear relationship
between a forecasting error varied between 19% and 21% and the costs.
However, this cost increase seems negligible in comparison to additional
costs from forecasting errors on electricity prices. In [88], a microgrid is
controlled in a rolling horizon fashion with forecasts for both PV production
and load demand. The authors scale the prediction error and show that the
resulting operation costs increase stronger than linear with the normalized
root mean square error of the forecasts. Costs arise from fuel consumption
and the number of start-ups of generators. In [148], a microgrid with
forecasts for electricity prices, load demand, PV and wind power generation
is controlled using MPC. The forecasting error for PV generation is varied
from 8 to 24 %. However, the results suggest no significant effect. In [58], an
AC/DC microgrid model with a wind turbine and a PV plant is controlled
in real-time. Reference points for power generation and use under uncertain
forecasts are derived by a robust optimization of a mixed integer linear
programming problem [16]. Forecast uncertainties are respected by possible
variations of ±2% of the power generation. Simulation results show an
increase of total costs over the 200 s simulation period of 12.45% for the
worst-case scenario. In [147], a microgrid with multiple distributed genera-
tors and storages is controlled. Using dual decomposition, the optimization
problem can be solved by a distributed algorithm. Uncertainties in wind
forecasts are respected in a robust fashion by minimizing the worst-case
transaction cost. However, no analysis of the cost impact in dependence of
the uncertainty is conducted. In [85], a closed loop robust MPC approach
is developed for the control of a building with uncertain heat gains. The
effect of different uncertainty levels on thermal discomfort and energy
consumption is evaluated for the proposed approach and the use of open
loop robust MPC and only regular MPC. The robust MPC approaches
are effective in reducing thermal comforts, however leading to an expense
of energy consumption. In [84], this closed loop robust MPC approach
is used for temperature control of a single room. In a comparison with
regular MPC and a rule-based controller, it shows superior results only
for an intermediate level of uncertainty (30 - 67%). For the case of less
uncertainty, the regular MPC is advantageous and for a higher uncertainty
the rule-based controller is. In [142], different MPC variants are compared
for the temperature control of a building. While the simulated thermal
sensation of the inhabitants deteriorates with an increasing level of un-
certainty for all control schemes, the energy consumption shows no clear
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trend and varies by less than 1%. In [83], a stochastic MPC approach is
used to control the heating, ventilation and air conditioning (HVAC) unit
and zone temperature of a building. For the uncertain loads (outside air
temperature and occupancy), probability distributions are derived from
historical data. Then, the expected energy consumption is minimized while
satisfying chance constraints. The stochastic MPC approach is compared
to a standard MPC, which uses expected values of the loads. The re-
sults suggest superiority of the stochastic MPC, if the uncertainty level
is not too high, i. e. if the forecasting errors are scaled by a factor ≤ 5.
In [46], stochastic MPC with explicit chance constraints is used for demand
response in a residential energy management system. Uncertainties in
PV power production and ambient temperature are modeled as normally
distributed. A doubling of the standard deviation of the PV forecasting
error leads to an increase in the required grid power of ≈ 43%.

While most results show a significant increase in cost for increasing errors,
its form remains unclear [46,58,83–85,106,120,149]. Or, if the relationship
is investigated, peak costs are not included in the electricity pricing scheme
[70, 88]. Real forecasting data is used in [88, 106, 147], while most works
only use artificial errors [46,58,70,76,84,85,120,142,148,149]. Furthermore,
there is no investigation of the necessary time horizon length for predictions,
i. e. on which time scale the prediction accuracy is relevant.

3.3 Simulation Study
To answer the questions raised in Section 3.1, we empirically analyze the
effect of prediction errors on the monetary costs of our main microgrid
model HL-1 with industry peak costs. We use real-world forecasts for
the solar irradiance, translate them into predictions for Pren and vary the
prediction error artificially.

3.3.1 MPC Formulation
The OCP differs from the standard problem described in Section 2.3.3 in
two ways, i. e. we use a different prediction horizon and a simplified version
of the battery degradation as the third objective.

The prediction horizon still has an overall length of 24 h, but is split into 56
steps. However, since forecasting accuracy decreases with time, we sample
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the first 8 h window more densely than the middle and last interval,

Ts(k) =


0.25 h if k ∈ [0, 31],

0.5 h if k ∈ [32, 47],

1 h if k ∈ [48, 55].

(3.1)

For the battery degradation, we neglect the influences of the charge rate
and the average state of charge and punish only the energy throughput as
in (2.29), i. e.

J simp
bat (k) =

Np−1∑
n=0

|Pcharge(n|k)|
Cbat

· Ts(n|k). (3.2)

The overall objective function is then given by

JPred.error
HL−1 (k) = wmon · J̃ indus

mon (k) + wcomf · Jcomf(k) + wbat · J simp
bat (k), (3.3)

with [wmon, wcomf , wbat] = [0.2, 0.7, 0.1]. Note that wbat is chosen large
enough to prevent the arbitrary charging and discharging of the battery,
but small enough to keep the battery use for peak shaving rewarding. The
resulting OCP is then given by

OPred.error
HL−1 (k) : min

u,P pos,sP1,sP2

JPred.error
HL−1 (k), (3.4)

s. t. (2.8b),
(2.46), (2.48), (2.49),
(2.51), (2.56), (2.59).

3.3.2 Data Sources and Handling
For the real disturbances, we use the same data as described in Section 2.4.1,
only for a different time period, i. e. for 30 days starting from the 15th of
April, 2020. However, weather forecasts of the solar irradiance Isol from a
commercial weather service are used, from which predictions for Pren are
derived as in (2.64), i. e. we assume a linear relationship. Furthermore, we
assume a larger PV plant, such that the effective power demand Pren+Pdem

has negative peaks on most days, see Figure 3.1. This results in a range from
a maximum effective demand of 349.94 kW to a maximum overproduction
of 617.61 kW. We assume perfect knowledge of the building demand Pdem

and outside air temperature ϑair and Q̇other = 0. Weather forecast updates
are available every ≈ 65min. Figure 3.2 shows the true trajectory of Isol
for two days together with forecasts from different points in time.
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Effective Power Demand

Figure 3.1: Effective power demand, i. e. building consumption and PV pro-
duction summed, for the simulated time horizon. The black line shows the limit
above which the CHP is insufficient to keep a peak of 100 kW. The red line
shows the limit if the battery is discharged at its maximum, i. e. the theoretic
demand limit for which the initial peak of 100 kW could be held. On May 11th,
a minimum peak of Pgrid ≥ 118 kW is unavoidable, even if the CHP and the
battery are operated at their maximum.

Solar Irradiance Forcasts

Figure 3.2: Exemplary forecasts (blue lines) and measurement (black line) of
solar irradiance for two days in April 2020. For a sunny day (Apr 27), the
forecasts do not change significantly over time and are reasonably accurate apart
from a small delay. For a cloudy day (Apr 28), the day-ahead forecasts smoothen
the variations in Isol. The closer a forecast is, the more it resembles the ups and
downs. However, even with only 2 h ahead, the prediction error is still significant.
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Artificial Errors

To systematically analyze the effect of different prediction errors, we in-
troduce artificial errors by scaling the actual prediction errors linearly.
Let Pren(k) be the real value at time step k and Pren(n|k) the value of
Pren(n+ k) predicted at time step k (with n ∈ [0, Npred − 1]). Then, the
new prediction with an error scale of serr is

P serr
ren (n|k) =

min

(
max

(
Pren(n+ k)+serr · (Pren(n+ k)−Pren(n|k))︸ ︷︷ ︸

regular prediction error eren(k)

, Pmax
ren

)
, 0

)
. (3.5)

Note that we limit predictions to physical limitations, i. e. 0 ≤ P serr
ren ≤ Pmax

ren .
Thus, we use the resulting mean absolute error within the prediction horizon
for the subsequent analyses. It is calculated as

eavg(serr) =
1

Nsim ·Npred

Nsim∑
k=1

Npred−1∑
n=0

|P serr
ren (n|k)− Pren(n+ k)|, (3.6)

where Nsim is the total number of simulation steps.

Treatment of Disturbances at the Current Time Step

A non-trivial challenge is the handling of prediction errors at the current
time step. If no robust MPC approach is used, differences in predicted
values d(0|k) for disturbances and real values d(k) lead to x(k+1) ̸= x(1|k),
potentially violating state constraints. Figure 3.3 illustrates how predictions
for the solar irradiance Isol(0|k) at the current time step and its true values
Isol(k) can deviate. Thus, the error eren(k) = Pren(k)−Pren(0|k) has to be
handled, for which we propose two options.

First, in the optimistic scenario, we assume perfect measurements, i. e.
Pren(0|k) = Pren(k). This neglects that a measurement at time k is most
likely to change within the time step (i. e. during the following 15min) and
thus does not represent the necessary average. In this case, no further
handling of eren is necessary and all constraints will be fulfilled.

Second, in the pessimistic scenario, we assume no additional measurement
at time k, which means that we use a value which has been predicted up to
65min ago. We use heuristic rules to account for eren(k). If eren(k) > 0 (i. e.
higher PV production than expected), the surplus is balanced by decreasing
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Predictions at Current Time Step

Figure 3.3: Exemplary comparison of true solar irradiance (black line) and
most recent predictions available at the beginning of a time step (blue line) for 5
days. Besides forecasts being up to 65min old, significant differences may occur
due to the local distance between the site and the next weather station used for
forecasting.

Pgrid(k). If eren(k) < 0 (i. e. lower PV production than expected), we
discharge the stationary battery if this is necessary to prevent a new peak
in Pgrid (while respecting all constraints). Otherwise, again Pgrid(k) is used
to compensate eren(k).

3.3.3 Results
As before, the simulations have been conducted in PARODIS [S4]. With
GUROBI as the solver, a single simulation of 30 days takes ≈ 150 s on an
Intel i7-8550U notebook CPU.

Potential Savings

The general potential savings, i. e. the difference in cost between simula-
tion with no and with perfect predictions, are shown for both scenarios
(optimistic and pessimistic) in Figure 3.4. Assuming perfect predictions,
the minimum monetary costs for the 30-day period are 21,980e (including,
however, the entire peak cost for the initially assumed peak of 100kW). If
no predictions for Pren are used (i. e. Pren(n|k) = 0 ∀n ∈ [0, Npred − 1]),
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Cost Ranges in Dependence of Predictions

(a) Optimistic Scenario (b) Pessimistic Scenario

Figure 3.4: Monetary costs for simulations with perfect, real or no predictions
for the (a) optimistic and (b) pessimistic scenario. The initial peak was set
to 100 kW (for which peak costs are included). The pessimistic scenario shows
overall higher costs if prediction errors are present.

they raise to 28,704e and 29,324e for the optimistic and pessimistic sce-
nario, respectively. For the optimistic scenario, this results in potential
savings of 6,724e and we already reach 4,577e with our current prediction
quality. However, for the pessimistic scenario, we only reach savings of
1,491e of the potential 7,344e. This leads to the question of how good the
predictions would need to be to achieve a certain amount of the potential
savings.

Correlation between Prediction Accuracy and Costs

To systematically analyze the correlation between prediction accuracy
and resulting costs, we run multiple simulations with different initial
peaks Pgrid,peak(0) ∈ [100, 200] kW and vary serr ∈ [0, 8], leading to
eavg ∈ [0, 269.6] kW as described by (3.6). Figure 3.5 shows the results for
the optimistic scenario. With no prediction errors, the costs rise only with
the initial peak costs (if ≥ 118 kW, which is unavoidable, see Figure 3.1).
For low initial peaks (100 kW or 120 kW), the costs increase linearly until
eavg =≈ 143.1 kW, from where they start to saturate. For high initial
peaks, eavg has no influence on the costs, since Pgrid,peak(0) + Pchp,max ≥
−(Pdem(k) + Pren(k)) ∀ k, and thus it is not necessary to use the battery
for peak shaving.
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Figure 3.5: Monetary costs for different prediction errors and initial peaks in
the optimistic scenario. Peak costs for the initial peaks are included. The red
dotted line shows the error level with real predictions (eavg(serr=1) = 83.76 kW).

Figure 3.6 shows the results for the pessimistic scenario. Here, the cor-
relation is much less consistent and could be described by piece-wise
linear functions for the different initial peaks. For lower initial peaks,
the costs increase drastically for eavg > 0. The higher the initial peak,
the lower the slope becomes. However, in contrast to the optimistic sce-
nario, costs do increase even for the highest initial peak of 200 kW. From
eavg ≈ 25 kW, the costs plateau (with one negative bump) and increase
again with eavg(serr > 1).

The negative bump, i. e. the decrease in costs with an increased average
error, can be explained by an artifact of the underlying data and would
change e. g. for other simulation time spans. To illustrate this, consider
two simulations with serr = 0.5 and serr = 1. Usually, serr = 1 will lead to
higher peaks, e. g. at time step k1. However, for a new demand peak at
k2 > k1, the controller 1 with serr = 0.5 would thus try to shave the peak
by discharging the battery, whereas controller 2 with serr = 1 would not. If
then at k2 + 1 an even higher peak occurs (previously unseen), controller
2 is in a better position and controller 1 might result in an overall higher
peak. To conclude, luckily chosen higher prediction errors might lead to
lower costs, but the general trend of increasing costs with higher errors is
clear. Furthermore, the closer the error gets to 0, the more beneficial it
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Figure 3.6: Monetary costs for different prediction errors and initial peaks in
the pessimistic scenario. Peak costs for the initial peaks are included. The red
dotted line shows the error level with real predictions (eavg(serr=1) = 83.76kW).

seems, due to the high impact of peak costs, as Figure 3.7 shows.

Influence of Prediction Accuracy within the Time Horizon

For the simulations shown in Figures 3.5 and 3.6, the prediction error has
been scaled equally over the prediction horizon as described in (3.5). To
analyze whether its influence is equal over the horizon as well, we run a
simulation with perfect predictions for the first nperf steps. Figure 3.8
shows the resulting additional costs compared to a simulation with overall
perfect predictions. Note that nperf = 1 for the optimistic and nperf = 0
for the pessimistic scenario refer to the regular simulations (with real
predictions). Furthermore, the pessimistic scenario with nperf = 1 is the
same as the regular optimistic scenario. In both scenarios, all additional
costs are already avoided with nperf = 5, i. e. with perfect predictions for
the first 75min. Note that this is significantly shorter than a complete
charging and discharging cycle of the stationary battery, which would take
250min.
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Parts of Additional Non-Peak-Costs

(a) Optimistic Scenario (b) Pessimistic Scenario

Figure 3.7: Parts of additional monetary costs which are not caused by higher
peaks for the (a) optimistic and (b) pessimistic scenario. Again, the red lines
indicate the real average prediction error.
For the optimistic scenario (a), only simulations with initial peaks of 100 kW or
120 kW are shown, since with higher initial peaks, generally, no new peaks occur.
For lower initial peaks, they dominate, i. e. the non-peak costs are negligible
(≤ 2%).
For the pessimistic scenario (b), the part of additional non-peak costs increases
with both higher eavg and initial peaks of Pgrid. However, in the most relevant
part with initials peaks ≤ 120 kW, they are still low (≤ 5%).
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Effect of Perfect Predictions at the Beginning of the Horizon

(a) Optimistic Scenario (b) Pessimistic Scenario

Figure 3.8: Additional costs in comparison to perfect simulation when the
first nperf steps of the prediction horizon are perfectly predicted. For both
the optimistic (a) and pessimistic (b) scenario, additional costs are avoided for
nperf ≥ 5.

3.3.4 Conclusion
For both scenarios, there is a significant correlation between monetary costs
and the prediction error, only its form varies. For the optimistic scenario,
it is mostly linear, for the pessimistic it is peace-wise linear - in reality, it
would be somewhere in between. Furthermore, the major part of the cost
increase is due to additional peak costs (90 to 99%). In both cases, current
weather forecasts can already be utilized successfully to reduce costs, but
further improvements would be rewarding, especially at the beginning of
the prediction horizon. For the presented setting, prediction accuracy of
only the first 75min is relevant. Note that most likely, this depends on
the dynamics of the microgrid model. For example, this time span might
increase if minimum up and down times for combustion engines or other
producers apply. Nevertheless, the employment of technologies for short-
term predictions such as sky cameras to monitor local cloud movements
seem promising. With these methods, real-world applications would shift
towards our optimistic scenario, since the average value for the first 15min
could be predicted more reliably. Furthermore, the results suggest that a
MPC approach designed to account for prediction errors, either stochastic
or robust, may be promising. However, a systematic comparison of the
control with and without a stochastic/robust method would be necessary
to test their effectiveness for different prediction errors.
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3.4 Summary
In this chapter, we analyze the effect of prediction errors on the monetary
costs in microgrid control if no special MPC scheme dedicated to account
for uncertainties (i. e. stochastic or robust) is used. To this end, we use
real-world weather forecasts from a 30 day period in April/May 2020 for the
solar irradiance and translate them into predictions of the PV power output.
Then, we artificially scale the prediction error to empirically sample the
correlation between the average prediction error and cost increase. We use
the main building model HL-1 from Chapter 2. To handle the prediction
error at the current time step, we introduce two options. First, we assume
perfect knowledge (measurement) of the current power output, which on
average would need to be the same over the next 15min (referred to as the
optimistic scenario). Second, we assume no additional measurement, but
the use of previously made forecasts (up to 65min old) and compensate
for errors in the power production by heuristic rules (referred to as the
pessimistic scenario).

As our main contributions, we show that, for a realistic microgrid setting
of a medium-sized company building with real-world data,

• using real-world solar irradiance forecasts from weather services as
predictions for PV power generation can reduce peak costs,

• the cost reduction scales with the prediction error, specifically

– if PV generation is known at the current time step, the costs
increase linearly with the prediction error,

– if only predictions are used for the current time step, the corre-
lation resembles a piece-wise linear function, with a significantly
higher slope for lower errors, and

• our results suggest that the prediction accuracy for PV generation is
only relevant within a short period at the beginning of the prediction
horizon.
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4 Dynamic Multi-Objective
Optimization

This chapter constitutes the methodological main part of this thesis.
Namely, we introduce methods to use multi-objective optimization (MOO)
in MPC, which we therefore refer to as dynamic MOO. First, we motivate
the basic principle in the introduction in Section 4.1. Then, we summarize
the general field of MOO, how multiple objectives have been handled in
MPC so far and which approaches exist to automatize the decision making
process in Section 4.2. We present an adapted method to approximate the
Pareto front in Section 4.3 and finally our own methods for the automa-
tized decision making, both without preferences in Section 4.4 and with
preferences in Section 4.5.

This chapter is based on and has partly been published in the following
publications:

[S3] T. Schmitt, T. Rodemann, and J. Adamy. Multi-objective model pre-
dictive control for microgrids. at - Automatisierungstechnik, 68(8):687
– 702, 2020.

[S8] T. Schmitt, M. Hoffmann, T. Rodemann, and J. Adamy. Incorporat-
ing human preferences in decision making for dynamic multi-objective
optimization in model predictive control. Inventions, 7(3), 2022.

4.1 Introduction
The term optimal control refers to the finding of an input trajectory that
is optimal to a control objective formulated as a mathematical expression,
i. e. a scalar function. Usually, this is a (fixed) compromise between the
actuation energy and the deviation of the system’s states from a desired
point or trajectory. The compromise is defined by weighting matrices, which
are usually tuned such that the resulting cost terms are of the same order of
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magnitude and simulations show satisfying behavior. As discussed before,
with economic MPC, real-world cost terms like monetary costs or CO2

emissions can be minimized even if they cannot be expressed as quadratic
terms of either states or input variables. However, they are much more
concrete and thus possibly more meaningful to the control engineer. Here,
preferences could be more sophisticated. Furthermore, varying external
conditions may influence the possible compromises between non-quadratic
objectives stronger, as e. g. with nonlinear peak costs. This might make an
adaption of the importance between the objectives, usually expressed as
weights, necessary or at least desirable.

Optimizing contradicting objectives simultaneously is the field of MOO. The
key element is the Pareto front, which is the set of all ’optimal’ compromises
between objectives. More precisely, it contains all Pareto optimal solutions.
A solution is Pareto optimal, if there is no other solution which is better
in one objective without being worse in at least one other objective. The
main challenge in MOO is to numerically derive an approximation of the
Pareto front (since an analytical solution is usually impossible, especially for
higher dimensional problems). With increasingly available computational
resources, the development of computational intelligence methods for this
problem has become an important field of research. Applications vary
from sensor network design to military mission planning [131]. However,
they usually have in common that only a one-time optimization for each
problem is necessary. The required decision making process, i. e. choosing
a solution from the Pareto front, has experienced less attention – since a
so-called (human) decision maker (DM) usually has the last call.

Concluding, the need for optimization of multiple contradicting objectives
in economic MPC is evident, but so far this is usually done only by the
minimization of a weighted sum of multiple cost functions with fixed weights.
An answer to this problem would be MOO, but it has been used mainly
for one-time optimization problems so far. The aim of this chapter is
to combine both MPC and MOO as suggested in Figure 4.1. Thus, we
mainly propose methods to automatize the decision making process. In
the following, we first summarize the relevant related work for MOO, the
handling of multiple objectives in MPC and which automatized decision
making methods exist so far. Then, we present our approaches for the
proposed concept of dynamic MOO. Note that our conceptualization of
dynamic MOO extends its usual usage in the literature, which considers
MOO problems that change over time and how these changes can be best
addressed in the optimization with evolutionary strategies [8, 113].
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Proposed Concept of Dynamic MOO
Multi-Objective Optimal Control Problem

J1

J2

J1

J2

J1

J2

J1

J2
Examples

Objectives

System Dynamics MPC

New Pareto Front

Automatized Decision Making

t 
=

 t
 +

 1

Constraints

Figure 4.1: General procedure for the use of MOO in MPC. As usual, an OCP
is solved at every time step. However, a multi-objective OCP is formulated,
to which the solution is the Pareto front (or an approximation of it). Thus, a
solution has to be chosen afterwards. Note that each solution on the Pareto
front represents a complete control sequence. The first input of the sequence
corresponding to the chosen Pareto solution is then applied to the system.

Notation

Decision variables are denoted by z, objective values by J . For vectors,
a subscript i as in Ji denotes its i-th value. A superscript j marks the
vector as a specific point, e. g. from a set of points such as Jj ∈ J. For an
integer index i, an interval [1, q] refers to an interval of integers only, i. e.
i ∈ [1, q] =̂ i ∈ {1, ..., q}.
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4.2 Related Work

4.2.1 Multi-Objective Optimization
Problem Formulation

A MOO problem can be formulated as

min J(z) =
(
J1(z), . . . , Jq(z)

)
(4.1a)

s. t. gj(z) ≤ 0, j = 1, 2, . . . ,mineq (4.1b)
hl(z) = 0, l = 1, 2, . . . ,meq, (4.1c)

where z ∈ Z is the decision variable vector, q the number of objectives and
mineq and meq the numbers of inequality and equality constraints, respec-
tively. The set of all feasible decision vectors Zf = {z | z ∈ Z, (4.1b), (4.1c)}
is then called the feasible decision space and the set of all possible objective
values {J(z) | z ∈ Zf} the objective space. Since there typically is no
single solution which minimizes all objectives Ji at the same time, the
concept of Pareto optimality is used. A solution z∗ is Pareto optimal, if it
is not dominated by any other solution, i. e. there is no solution z for which
Ji(z) ≤ Ji(z

∗) ∀ i ∈ [1, q] and Jk(z) < Jk(z
∗) for at least one k ∈ [1, q]. All

Pareto optimal solutions together form the Pareto front. However, usually
only a set of solutions J = {J1, . . . , JN} which approximates the Pareto
front can be determined. A solution z∗ is only weakly Pareto optimal, if
there is no other solution which is better in every objective, i. e. if there is
no solution z such that Ji(z) < Ji(z

∗) ∀ i ∈ [1, q]. A weakly Pareto optimal
solution is thus not part of the Pareto front.

Important points apart from the Pareto front are the Utopia and the Nadir
point. The Utopia point can be constructed from the Pareto front’s extreme
points. An extreme point is the Pareto solution with the minimum values
for its corresponding objective, i. e. the extreme point for objective i is

Jextreme,i = argmin
Jj∈J

Jj
i . (4.2)

The Utopia point then consists of the single minima of all objectives,

Jutopia =
(
Jextreme,1
1 , . . . , Jextreme,q

q

)
=
(
Jutopia
1 , . . . , Jutopia

q

)
, (4.3)

and is thus generally not attainable.
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Similarly, the Nadir point is the combination of all objectives’ worst values
on the front, i. e.

Jnadir =
(
supJi∈J J1, . . . , supJi∈J Jq

)
=
(
Jnadir
1 , . . . , Jnadir

q

)
. (4.4)

Figure 4.2 shows an illustration of a Pareto front for two objectives.

J1

J2

Utopia Point

Nadir Point

Figure 4.2: Illustrative 2D Pareto front with nonconvex parts and weakly Pareto
optimal solutions (in gray).

Solving the MOO Problem

It is important to note that different categorizations of MOO methods exist,
and our approach, which we will use throughout this thesis - determining
(an approximation of) the entire Pareto front and choosing a solutions from
it afterwards - is not the only way to solve (4.1). In their great review
paper from 2004, Marler and Arora [86] distinguish between methods with

A1) a priori articulation of preferences, which determine only a single
solution based on parameters representing the DM’s preferences, e. g.
the weighted sum method;

A2) no articulation of preferences, which also determine only a single
solution, but without any input from the DM, e. g. the sum of all
objectives without weights or the minimization of the maximum value
of all objectives; and

A3) a posteriori articulation of preferences, which means that the entire
Pareto front is determined and a solution is chosen afterwards – as
we do here.
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However, today especially due to the rise of evolutionary algorithms since
then, a different categorization is more common [136]. It distinguishes
between

B1) a priori (or explicit) methods, which respect preferences or interests
of the DM by calculating Pareto solutions on specific areas of the
Pareto front;

B2) interactive (or progressive) methods, which ask the DM for input
during the optimization process itself, also to focus on specific areas;
and

B3) again a posteriori (or implicit) methods as before.

In the following, we will limit all descriptions to the a posteriori methods.
Thereby, the biggest difference lies in how the Pareto front is approximated:
either by meta-heuristic (evolutionary strategies, genetic algorithms, etc.)
or deterministic (mathematical programming) methods.

Meta-heuristic methods can be considered the standard choice. Their
biggest advantage is that they can be used for any optimization problem,
even with black box models, as long as one can evaluate the objective
function, e. g. by simulation. However, this comes at the cost of high and
possibly unpredictable computation times and the uncertainty whether
a global (or even local) optimum has been found. Since all models used
in this thesis are expressed by (linear) ODEs, the use of deterministic
methods is sufficient and thus appropriate. Therefore, we omit any further
descriptions of meta-heuristic methods here and refer the interested reader
to [50,152].

Approximating the Pareto front with deterministic methods means to re-
peatedly solve a single-objective optimization problem of type A1). Thereby,
the parameters are varied iteratively such that a different point of the Pareto
front is determined each time. Combining the objectives into a single scalar
objective function (instead of the objective vector as in (4.1a)) is called
scalarization. Two groups of scalarization methods are commonly used
for the above purpose. The first utilizes weighted sums, possibly with
exponential expressions of the objectives. The second we will – due to the
lack of a better term – call intersection methods, since they aim at finding
the intersection of the Pareto front with some geometric entity, usually
a vector. In the following, we present a candidate from both groups and
discuss their strengths and weaknesses.
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A Weighted Sum Method: Adaptive Weight Determination
Scheme

Weighted sum methods generally have two weaknesses. First, with a regular
weighted sum, only convex parts of the Pareto front can be obtained. This
can be overcome by the use of an exponential weighted sum, i. e.

min J(z) =

[
q∑

i=1

(wiJi)
p

] 1
p

, (4.5)

with p ∈ N, p ≥ 2. However, this increases the optimization problem’s
complexity significantly, even if the (·)

1
p is omitted. The second weakness is

that it is hard to choose the weights such that (approximately) equidistant
points on the Pareto front are obtained, which is generally not achieved by
equidistant variation of the weights [32,121].

An approach that tackles the second problem in particular is the adaptive
weight determination scheme (AWDS) [121]. It uses a geometric interpreta-
tion and adjusts the weights for (4.5) iteratively. In the following, we will
assume a regular weighted sum, i. e. p = 1, which is the standard case and
used throughout this thesis since we only minimize convex cost functions.
For non-convex cost functions, p ≥ 2 would be necessary.

The main principle of AWDS is the following. After q samples of the
Pareto front are found, they are used to determine new weights wi. With
q = 2, this is equivalent to drawing a straight line through both points
and interpreting its gradient m as the ratio between both weights. Having
found two solutions

(
JA
1 , JA

2

)
and

(
JB
1 , J

B
2

)
, new weights wC

mon and wC
comf

are determined by solving[
JA
1 JA

2

JB
1 JB

2

][
wC

mon

wC
comf

]
=

[
1
1

]
. (4.6)

Then, the optimization is redone with the new weights wC
mon, w

C
comf . This

can be interpreted as shifting a straight line with the gradient m to the
origin until it is tangential to the Pareto front1, as is illustrated in Figure 4.3.
(Note that this characteristic of minimizing the weighted sum is not new,
but has been described before, e. g. in [32, 35].) As a result, we obtain a

1 This interpretation fails for non-convex Pareto fronts. In that case, it would be
more accurate to imagine the hyperplane moving from the origin towards the Pareto
front until they touch.
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J
A

J
BJ

C

J1

J
2

Figure 4.3: Illustration of the AWDS in the first step. The gradient of the
connection between Pareto front extreme points is used to determine new weights,
with which the ’new point’ is determined next. The tangent of the Pareto front
in the new point is parallel to the line connecting the extreme points.

new Pareto optimal solution
(
JC
1 , JC

2

)
which lies between

(
JA
1 , JA

2

)
and(

JB
1 , J

B
2

)
. Moreover, the new solution JC is more or less in the middle

between JA and JB. For a circular Pareto front, it would be exactly in
the middle. Next, JA ↔ JC and JB ↔ JC are used to derive new pairs
of weights, respectively, in the same fashion by solving equations such as
(4.6). This is repeated until the distance between two solutions is below a
chosen threshold ∆dawds. As starting points, the Pareto front’s extreme
points are used. Possible ways of determining the extreme points follow
below on page 81.

An Intersection Method: Normal Boundary Intersection

The idea to scalarize a MOO problem by, for example, maximizing the
length of a vector, dates back to the 1970’s [48] and has been varied since
then [109]. In general, a geometrization of the objective space is used
to reformulate the optimization problem such that the actual objective
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function appears in the constraints only. The normal boundary intersection
(NBI) was then introduced as a method of systematically varying the
scalarizations to obtain a reasonable approximation of the Pareto front [33].
The procedure is as follows. First, the extreme points have to be determined.
Second, a simplex connecting the extreme points is constructed, called the
convex hull of individual minima (CHIM). Then, this simplex is sampled
evenly. This can be expressed with the q × q matrix Φ, whose i-th column
is

Φ(: ,i) = Jextreme,i − Jutopia. (4.7)

The CHIM is sampled by ΦβNBI with a varying (q × 1)-vector βNBI, s. t.

q∑
i=1

βNBI
i = 1, βNBI

i > 0. (4.8)

A Pareto solution is then obtained by maximizing the length κ of the
CHIM’s normal vector n̂ pointing towards the Pareto front, with the
constraint that the vector’s tip ends at the Pareto solution itself. For a
combination βNBI, the MOO problem (4.1) is then replaced by

min (−κ) (4.9a)
s. t. ΦβNBI + κn̂ = J(z)− Jutopia (4.9b)

(4.1b), (4.1c). (4.9c)

Figure 4.4 gives an illustration of the geometric interpretation. Note
that (4.9) is the same if (4.9a) is replaced by max (κ). Furthermore,
the optimization problem’s solvability might be changed, since all possible
nonlinearities are shifted to the constraints instead of the objective function,
which is one of its disadvantages, next to its susceptibility to weakly Pareto
optimal solutions. However, intersection methods showed to be numerically
more robust for q ≥ 3 objectives in the simulation studies conducted
throughout this thesis and presented in Chapter 5. The original NBI as
described here has been modified in different ways since then [49,90,94,96]
and we also use a modified version which will be described in Section 4.3.
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Geometric Interpretation of the NBI

Boundary Plane

J1

J2
Extreme Points

New Solutions

βNBI = (0.9, 0.1)

βNBI = (0.5, 0.5)

βNBI = (0.1, 0.9)

Scaled Normal 

Vector κn^

(a) NBI for 2 Objectives

J1

J3

J2

(b) Simplex (CHIM) for 3 Objectives

Figure 4.4: Illustration of the NBI method.

(a) Different values for βNBI from (4.8) lead to different starting points on the
simplex, from which the normal vector n̂ point onto the Pareto front.

(b) For 3 objectives, it becomes clear that the simplex (CHIM) does not
necessarily cover neither the entire nor only the Pareto front, which is
why not all Pareto solutions are necessarily obtainable and weak Pareto
solutions are possible with the NBI method.
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Determining the Extreme Points

The knowledge of the extreme points is a prerequisite for most deterministic
methods approximating the Pareto front, including the ones described
before and used in this thesis. However, determining the extreme points is
not trivial and in general hard to do [14,36]. A straightforward approach
to approximating Jextreme,j is to minimize the weighted sum

q∑
i=1

wiJi (4.10)

with wj = 1 and all other weights wi ̸=j = wth with a threshold value
0 < wth ≪ 1, e. g. 10−5. Note that for wth = 0, the absolute minimum of
Jj would be obtained, but the solution would (most likely) only be weakly
Pareto optimal in terms of all other objectives. wth > 0 will lead to a real
Pareto solution, but inevitably to a value of Jj larger than the real Jutopia

j .

A more sophisticated approach is the lexicographic method [86, 128].
Jextreme,j can be determined by first minimizing Jj only, and then subse-
quently minimizing every other objective, but with the constraint(s) that
Jj and the other already minimized objectives are not larger than before.
In total, q optimizations are necessary for each extreme point. Note that
the order in which the objectives i ̸= j are minimized can be relevant.
Assuming an order O is used, e. g. O = [j, 1, 2, . . . , j − 1, j + 1, . . . , q], the
i-th optimization would write

z∗,i = argmin Ji(z) (4.11a)
s. t. Jk(z) ≤ Jk(z

∗,i−1) ∀ k = O(1), . . . ,O(i), i > 1 (4.11b)
(4.1b), (4.1c). (4.11c)

The extreme point of objective j is then defined as Jextreme,j = J(z∗,q).
In practice, the constraints (4.11b) can make the optimization problem
significantly harder to solve, since they are of the same type as the actual
objective functions, e. g. quadratic or worse. In addition, it might be
necessary to add a positive threshold on the right side to avoid numerical
issues.

4.2.2 A Posteriori Decision Making Strategies
Various types of a posteriori methods exist. Fuzzy logic can be used,
e. g., for uncertain objectives, constraints or decision variables [91], or to
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incorporate preferences from linguistic values [66], or (without preferences)
on top of the concept of k-optimality to loosen the crisp definition of Pareto
optimality [41]. Overall, the literature on different Fuzzy approaches is rich.
Another concept is the use of Shannon Entropy [79]. For each objective,
the solutions’ entropy is calculated, which depends on their diversity. From
these, weights for all objectives are derived. Then, the (normalized) solution
which fits the weights best is selected. Evidential Reasoning is a method for
decision making in the presence of uncertainties [141]. Multiple attributes
are weighted according to their importance. For each attribute, possible
grades are defined and the likelihood of a solution’s attribute to match them
is assessed, e. g. a likelihood of 0.3 to be ’good’ and 0.6 to be ’very good’.
Then, a single overall score of the solution can be derived and all Pareto
solutions are ranked accordingly. Euclidean distance based metrics are
widely used, e. g. LINMAP, which minimizes the weighted distance to the
Utopia point [127]. Frequently, the unweighted but normalized distance is
minimized instead [144,S1]. TOPSIS is an algorithm which considers both
distances to the Utopia and the Nadir point [62]. ϵ-dominance describes
which constant offset ϵ one would have to add to all objectives of a solution
z∗ such that the resulting point would be dominated [17,152]. Thus, the
higher the necessary ϵ is, the more preferable the solution is.

However, possibly the most popular aim is the selection of a knee point,
which in general is a solution on the Pareto front from which a small im-
provement in one direction (objective) would lead to a large(r) deterioration
in all others. Thus, the shape of the Pareto front is essential. Different
possibilities to define (or find) a knee point exist. Multiple approaches do
so based on the point’s angle to other parts of the front, e. g. the reflex
angle [24], the bend angle [35], the extended angle dominance [25] or the
angle utility [25]. Utility-based methods generally define a knee by the best
trade-off, i. e. the best ratio of improvements vs. deteriorations compared
to all other solutions [14,35,112]. This approach is extended to multiple
regions of the Pareto front in [18], i. e. the best trade-off for each region
is determined. In [143], knee points are identified by mapping the Pareto
front onto a hyperplane. Then, a solution is considered to be a knee point
if the other solutions are densely located around it. According to [24], a
point is a knee point if it is the result of the optimization of a weighted sum
for multiple (different) weight combinations. In an early work, Das [31]
characterizes the point with the largest distance to the convex hull of
individual minima as the knee.

Since there is no way of defining a clear knee point for every Pareto front,
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Pareto Front Examples with Knee Points

J1

J2

J1

J2

Figure 4.5: 2D Pareto fronts (black lines) with knee points (orange circles).
The left Pareto front has a sharp bend at which its derivative is discontinuous,
which is considered to be a knee point. The right Pareto front has a convex bulge,
which constitutes a knee point. However, which point exactly is to be considered
the knee depends on the definition.

a subset or multiple subsets of the front which show knee-like or other
properties of interest are often determined and presented to the DM. If
their definition is based on a metric as explained above, they are usually
called knee region, e. g. a trade-off based knee region [35] or the bulge of
points with the largest distance to the convex hull of individual minima [77].
If their definition is based on a DM’s preference, they might be called region
of interest. In [92], the DM defines a cost reference point, i. e. an arbitrary
chosen J ref =

(
J ref
1 , ... , J ref

n

)
, either infeasible or feasible. Then, imagining

a coordinate plane with Jref at its origin, the part of the Pareto front which
dominates Jref (if feasible) or which is dominated by Jref (if infeasible) is
considered as the region of interest. However, it does not provide the DM
with a final choice and, more importantly, it is neither clear how large
the region of interest will be, nor does it indicate whether it will contain
possible knee points or not. In [59], the DM defines a starting point and a
preference direction. Then, the part of the Pareto front which lies within
a pre-defined preference radius around the preference direction is defined
as the region of interest. Again, no final solution is provided and possible
knee points are ignored.

In summary, there are many ways of choosing a solution (compromise) to
the MOO problem (4.1) once an approximation of the Pareto front has been
determined. However, in the context of dynamic MOO, important problems
are still unsolved. First, it is mostly unclear what kind of compromises are
selected with each method in a repeating (but slightly changing) process.
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Second, methods to automatize this process while both incorporating the
preferences of a DM in a comprehensible way and preferring solutions with
knee-like behavior are missing. This is the main gap we try to fill with our
approaches presented in Sections 4.4 and 4.5. Before that, we review how
multiple objectives have been addressed specifically in the context of MPC
so far.

4.2.3 Multiple Objectives in MPC
The interest in MPC has been rising significantly throughout the last
decades. However, despite its optimization nature, no unifying framework
for MOO in MPC is available so far. Considering regular MPC with its
quadratic objective function, i. e.

min

Np−1∑
k=0

x(k)⊺Qx(k) + u(k)⊺Ru(k) + Vf(x(Np)), (4.12)

where Vf is the terminal cost function, the challenge of weight tuning Q
and R could be considered an optimization of two competing objectives,
i. e. between state control (with Q as its ’weights’) and actuator energy
(with R as its ’weights’). Literature about this general problem of weight
tuning is rich (see [47] and the references therein). However, in most auto-
tuning methods, only the system’s step or impulse responses are used and
evaluated by a different metric, which is insufficient for complex systems
such as microgrids.

In [34], a MOO MPC scheme for general nonlinear systems is defined.
They consider a finite number of objectives and show that, given some
mild assumptions in addition to the usual, the max() of all objectives as
costs can be used as a Lyapunov function to guarantee stability. In [15],
a weighted sum is used. However, the weights are updated in every time
step, thus choosing different Pareto solutions. It is shown that, under
some conditions on the objectives, e. g. joint convexity, closed-loop stability
can be guaranteed. However, for the updating of the weights, a linear
programming problem which is not jointly convex in general has to be
solved in every time step. An economic MPC scheme with a compromise
solution is formulated in [145]. Namely, the authors directly minimize the
(unweighted) distance to the Utopia point. However, they only consider
steady-state control and show that, if the objectives satisfy a Lipschitz
continuity property and strong duality, stability can be guaranteed.
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In [53, 54], nonlinear discrete-time systems with an arbitrary number of
(contradicting) objectives and without disturbances are considered. Given
some assumptions of the system (e. g. an equilibrium point), terminal costs
and a local feedback control law in the terminal region, the authors propose
a stabilizing MPC algorithm for which they show that the infinite-horizon
closed loop performance has an upper bound defined by a Pareto optimal
control sequence chosen at the beginning of the algorithm. For economic
stage costs and similar assumptions, they show that the average closed-loop
performance is bounded above. While they are able to give statements
on the performance of Pareto optimal sequences, the trade-off between
the multiple objectives seems to rely on the choice of their algorithms’
initialization. Thus, changing conditions over time cannot be respected.

A goal programming method for regular (quadratic) MPC is used in
[40]. They define goals for arbitrary objective functions and minimize the
(weighted) distance to the goals. However, this is done offline, i. e. it is a
one-time weight tuning (and does not further consider Pareto optimality).

In [102], a linear wind turbine model is controlled with regular MPC.
Thereby, one weight of Q and R each are varied contradictory, i. e. propor-
tional to ρ and (1− ρ) with ρ ∈ (0,1). Then, the system is simulated for
different input velocities. The resulting state trajectories are evaluated for
5 different objectives and some Pareto solutions in dependence of ρ are
plotted. However, the objectives are not directly considered in this weight
tuning approach and there is no systematic selection from the set of Pareto
solutions.

Evolutionary algorithms are used as optimization methods for an economic
MPC scheme with a weighted sum of a finite number of objectives in [10].
Furthermore, Smith dynamics are used to dynamically tune the weights
such that the solution lies in a pre-defined region of the Pareto front.
This so-called management region is defined by the objectives’ ratio in a
normalized space.

Concluding, while there are some theoretical approaches to establish stabil-
ity in MPC with multiple objectives and some practical simulation studies
in which different possible compromises between objectives have been
observed, systematic methods and analyses how the concept of Pareto op-
timization can be beneficially incorporated into MPC are missing. Possible
methods to do so are presented in the rest of this chapter, while extensive
analyses with long-term simulations are discussed in Chapter 5.
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4.3 Pareto Front Determination
The method described in this chapter has been derived within the super-
vision of a Master’s thesis [56]. It builds on the NBI method, but is more
apt for the purpose of dynamic MOO. Namely, due to varying conditions,
objectives may correlate sometimes. This would lead to a degenerate Pareto
front [60]. Even if they do not correlate perfectly, some extreme points may
end up very close to each other. If this is the case for 2 out of 3 objectives,
the resulting simplex (i. e. the CHIM) is a very narrow triangle. Then,
in combination with the search direction being strictly orthogonal to the
simplex, this might lead to almost no real Pareto solutions being found.

Thus, we propose the focus point boundary intersection (FPBI) method.
In contrast to the NBI, it 1) constructs a hyperplane which depends less
on the extreme points and 2) enables the DM to define a search direction
to increase the probability of finding solutions in the area of interest. If no
specific goal is available, we use the Utopia point.

The procedure of the proposed FPBI method is as follows. We assume that
the Pareto front’s extreme points {Jextreme,1, . . . , Jextreme,q} are known.
Moreover, all further calculations are done after a (dynamic) normalization
of the solutions, J → J̃ , such that each objective lies within [0, 1] in the
normalized space J̃. Details are explained in the next section and are not
relevant for the understanding of the rest of the procedure.

First, we determine the extreme point indices
(
a, b

)
between which the

distance is the longest,(
a, b

)
= argmax

i, j ∈ [1, q]

∥∥∥J̃ i − J̃j
∥∥∥
2
. (4.13)

With
(
a, b

)
known, we determine the center point between them,

J̃center =
1

2
(J̃a + J̃b). (4.14)

The search direction is then defined from J̃center to the focus point,

nf = J̃ focus − J̃center. (4.15)

If no specific focus point is given, J̃ focus = J̃utopia is used, which usually
gives good results.

The main idea is to use a hyperplane between the farthest extreme points
(a, b), sample it equidistantly in every direction and to then solve an
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optimization problem similar as in the NBI method, i. e. maximizing the
length of a vector with the direction nf from the hyperplane to the Pareto
front. J̃center is used as the base vector of the hyperplane. Thus, we
further need q − 1 (orthonormal) direction vectors to describe it. For
q = 2 objectives, the connection between the two extreme points already
constitutes the hyperplane and

Fd
1
=

J̃b − J̃a∥∥∥J̃b − J̃a
∥∥∥
2

(4.16)

is its only direction vector. For q = 3 objectives, the necessary second
direction vector can directly be determined as the cross product of the
search direction and the first direction vector,

Fd
2
=

nf × Fd
1∥∥∥nf × Fd
1
∥∥∥
2

(for q = 3 only!). (4.17)

For q ≥ 4 objectives, we have additional degrees of freedom. For ease of
representation, assume that a = 1, b = 2. This is no limitation, but can be
achieved by simple (temporary) re-ordering. Then, we first construct q − 2
auxiliary direction vectors

Fd̂ℓ = J̃extreme,ℓ+1 − J̃center ∀ ℓ ∈ [2, . . . , q − 1]. (4.18)

Note that we use the extreme points since we can assume that the resulting
vectors are linearly independent.

The direction vectors are then determined in increasing order by subse-
quently calculating the cross product of the search direction vector nf , the
already known direction vectors Fd

i
and the auxiliary direction vectors Fd̂j

for all other directions. To increase readability, we borrow the
∧

symbol
for the cross product of multiple vectors in the following, with which the
ℓ-th direction vector is determined by

Fd
ℓ
=

nf ×
∧ℓ−1

i=1
Fd

i ×
∧q−1

j=ℓ+1
Fd̂j∥∥∥nf ×

∧ℓ−1
i=1

Fd
i ×
∧q−1

j=ℓ+1
Fd̂j
∥∥∥
2

∀ j ∈ [2, . . . , q − 1]. (4.19)

The generalized cross product of q − 1 vectors can be calculated as the
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determinant of an extended matrix, i. e.

q−1∧
i=1

vi = det


e⃗ 1 v11 v21 . . . vq−1

1

e⃗ 2 v12 v21 . . . vq−1
2

...
...

...
. . .

...
e⃗ q v1q v2q . . . vq−1

q

. (4.20)

Note that we exceptionally use the vector symbol e⃗ i here to emphasize
that these are the unit vectors, e. g. e⃗ 1 =

(
1, 0, · · · , 0

)⊺, and not scalar
values. (4.20) can be solved by using the Laplace expansion along the first
column. In doing so, the purpose of the unit vectors becomes clear, too:
they transform the minors into a vector again.

With the hyperplane defined by J̃center, nf and the direction vectors, we
need to sample it to determine starting points for the optimization problem.
Hereby, the user can control the resolution by defining a number Fr of steps
along each direction. Thus, the total number of optimization problems is
Frq−1. We define a 1× Fr step size vector γ by

∆s =

∥∥∥J̃b − J̃a
∥∥∥
2

Fr
, (4.21)

γ =
(
1 ·∆s, · · · , Fr ·∆s

)
−

Fr

2
∆s. (4.22)

Let Fpi ∈ [1, . . . , Fr] for i = 1, . . . q − 1 be the sample indices along the
q − 1 direction vectors. For a combination (Fp1,

Fp2, . . . , Fpq−1), the
(q × 1)-dimensional starting vector in the optimization problem is then
given by

Θ(Fp1,
Fp2, . . . , Fpq−1) = J̃center +

q−1∑
i=1

γ(Fpi) · Fd
i
. (4.23)

The corresponding optimization problem is described by

min −κ (4.24a)
s. t. Θ(Fp1,

Fp2, . . . , Fpq−1) + κnf ≥ J̃(z) (4.24b)
(4.1b), (4.1c). (4.24c)

Note that we use ≥ instead of = in (4.24b) since this led to faster conver-
gence in practice.
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4.4 Automatized Metric-Based Decision
Making

In this section, we propose the use of metrics in combination with different
normalization schemes to automatically select a solution from the Pareto
front. First, we describe a dynamic and a fixed normalization of the Pareto
solutions. Second, we present three different metrics a decision maker can
choose from. The procedure in combination with MPC is illustrated in
Figure 4.6.

Multi-Objective Optimal Control Problem
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J2

J1
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Examples

Normalization

Objectives

System Dynamics MPC

New Pareto Front
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Figure 4.6: Automatized metric-based decision making in multi-objective MPC.
At every time step, the approximated Pareto front is first normalized, either with
the dynamic or the fixed normalization scheme. Then, all solutions are ranked
by one of the three proposed metrics from Section 4.4.2 and the best solution is
selected. The first step of the corresponding input trajectory is applied to the
system.

4.4.1 Normalizations
We assume to have an approximation J of the Pareto front and propose
two possible transformations; 1) a dynamic normalization J → d

J̃, also
called upper-lower bound approach and 2) a fixed normalization J → f

J̃
using constant values chosen a priori by the DM.
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Dynamic Normalization The dynamic normalization can be considered
the standard procedure [87]. The i-th component of a Pareto solution Jr ∈ J
is normalized as

d
J̃r
i (k) =

Jr
i (k)− Jutopia

i (k)

Jnadir
i (k)− Jutopia

i (k)
. (4.25)

Namely, the Utopia point is moved to the origin and its distance to the
Nadir point is scaled to 1 for every objective. Note that this dynamic
normalization respects that both the Utopia point and Nadir point change
over time.

Fixed Normalization In dynamic MOO, changing conditions can lead
to significantly different extreme points of the Pareto front. An example
in microgrid control are the possible peak costs, which can vary from
0 to over 20,000e. Thus, single objectives may overly dominate in the
dynamic normalization. To overcome this issue, we propose the so-called
fixed normalization,

f
J̃r
i (k) =

Jr
i (k)− Jutopia

i (k)

∆Jfix
i

. (4.26)

The constant scaling value ∆Jfix
i has to be chosen once for every objective.

This can be done either from experience, or from long-term simulations
in which the Pareto front is determined at every time step. In the latter
case, the distribution of the Pareto front’s widths can be utilized to obtain
a representative value. We use this method for our application example in
the simulation study in Section 5.3.2.

4.4.2 Metrics
We investigate three different metrics for the selection of a knee point:
1) the Euclidean distance to the Utopia point, i. e. the closest to Utopia
point (CUP) solution is chosen; 2) the minimum angle to the neighbor
points (ATN) and 3) the minimum angle to the extreme points (AEP) of
the Pareto front is considered best. Note that all metrics are determined
after the normalization, whether dynamic or fixed. Thus, we will use J̃

instead of
d
J̃ or

f
J̃ in the following descriptions.
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CUP The Euclidean distance of solution r to the Utopia point is given
by

dcup(J̃
r) =

∥∥∥(J̃r
1 , . . . , J̃

r
q )
∥∥∥ =

√
(J̃r

1 )
2 + (J̃r

q )
2. (4.27)

ATN To calculate the angle αATN between a solution J̃r and its neighbors
for q = 2 objectives, we assume that the Pareto set J̃ is of size nsamp and
has been ordered with increasing values for objective 1, i. e. J̃r

i ≤ J̃r
i+1.

Then, the ATN is calculated by

rATN(J̃
r) =

(
J̃r
1

J̃r
2

)
−
(
J̃r−1
1

J̃r−1
2

)
, (4.28)

pATN(J̃
r) =

(
J̃r
1

J̃r
2

)
−
(
J̃r+1
1

J̃r+1
2

)
, (4.29)

αATN(J̃
r) =

r⊺ATN · pATN

∥rATN∥ · ∥pATN∥
. (4.30)

Note that 1) αATN is defined only for i = 2, . . . , nsamp − 1, i. e. not for
the extreme points; and 2) this calculation is sensitive to the (Euclidean)
distance ∆d between the samples. Namely, on a continuously differentiable
curve, lim

∆d→0
αATN = 180°. Thus, the Pareto solutions have to be equally

distributed at least approximately. While this would be a big constraint for
especially meta-heuristic methods, it can be achieved by the use of both
the FPBI presented in Section 4.3 and the AWDS. The ATN can also be
extended to 3 or more objectives. However, the calculation becomes more
complicated; thus the interested reader is referred to [56].

AEP Similar to the ATN, for q = 2 the angle of a solution J̃r to the
extreme points is calculated by

rAEP(J̃
r) =

(
J̃r
1

J̃r
2

)
−
(
J̃1
1

J̃1
2

)
, (4.31)

pAEP(J̃
r) =

(
J̃r
1

J̃r
2

)
−
(
J̃
nsamp

1

J̃
nsamp

2

)
, (4.32)

αAEP(J̃
r) =

r⊺AEP · pAEP

∥rAEP∥ · ∥pAEP∥
. (4.33)



92 4 Dynamic Multi-Objective Optimization

As the ATN, αAEP is only defined for i = 2, . . . , nsamp − 1. However, in
contrast to the ATN, it is not sensitive to the distance ∆d between the
samples. Again, an extension for q ≥ 3 can be found in [56].

4.5 Automatized Preference-Based Decision
Making

With the metric-based strategies described above, the decision making
process can be automatized to either find knee points (AEP and ATN)
or a balanced compromise CUP. However, no preferences of a DM on
the importance of the objectives are respected. Thus, we present a new
preference-based decision making strategy in the following to overcome
this issue. The approach allows for representing preferences in an easy to
interpret way and at the same time limits their influence in dependence of 1)
a design parameter and 2) the shape of the Pareto front itself, thus ensuring
that no unreasonable compromise is selected. The approach consists of two
steps and as before, we assume that an approximation of the Pareto front is
available. First, a knee region of the normalized Pareto front is determined,
i. e. the set of solutions which would be of the highest interest to the DM.
Second, preferences formulated as a relative importance, e. g. 50-20-30, are
translated into the orientation of a hyperplane. The solution inside the
knee region at which the hyperplane can be placed without interfering
with the rest of the knee region is then selected. Figure 4.7 illustrates the
approach in the MPC setting.

4.5.1 Knee Region Determination
In all following calculations, we assume that the available approximation J
of the Pareto front has been normalized. Both normalization schemes from
Section 4.4.1 are possible. Thus, we again use the general forms J̃ or J̃ .

For the definition of our knee region, we use a metric similar to [31], i. e.
for each Pareto solution, we calculate its Euclidean distance to a geometric
object at the edge of the Pareto front. However, the individual minima
(also called extreme points) are often hard to find [14,36]. Thus, instead of
maximizing the distance from the convex hull of the extreme points, we
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Figure 4.7: Automatized preference-based decision making in multi-objective
MPC. First, reasonable areas of the Pareto front are identified as the knee region,
i. e. we exclude solutions that are too extreme. Then, we incorporate the decision
maker’s preferences by a geometric interpretation to finally choose a compromise.
The solution represents a control plan which is then applied (at least the first
step in case of MPC). Then, the process is repeated for the next time step.

use a hyperplane

D : {x | −11×q(x− J̃r) = 0, r = argmax
i

||J̃ i||2}, (4.34)

which we refer to as the distance plane in the following. Note that J̃r ∈ J̃
is the point of the (normalized) Pareto front with the largest Euclidean
distance to the normalized Utopia point J̃utopia =

(
0, . . . , 0

)
and that

we use the negative vector of ones −11×q as the distance plane’s normal
vector to avoid sensitivity to possibly unreliable extreme points. Then, the
distance of every solution J̃ i ∈ J̃ to D is calculated as

Dδ(J̃ i) =
1
√
q
(−11×q)(J̃

i − J̃r). (4.35)

Finally, similarly to [77,137], we define the knee region J̄ ⊆ J̃ as

J̄ = {J̃ i | Dδ(J̃ i) ≥ rlim ·max
J̃j

Dδ(J̃j)}, (4.36)
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Effect of rlim on Knee Region Size

(a) Front without Knee (b) Front with Knee

Figure 4.8: Exemplary knee regions in 2D for different rlim. For fronts without
a knee point (a), the knee region is larger than for fronts with a knee point (b)
for any rlim. Note that for convex 2D fronts, the distance plane is equivalent to
the convex hull of the minima from [31] (if normalized).

where rlim ∈ [0, 1] is a design parameter with which the influence of the
DM’s preferences can be adjusted. Furthermore, J̄ can be understood as a
bulge of the Pareto front in the direction of the Utopia point, whose size
depends on the Pareto front’s shape, as illustrated in Figure 4.8. Note that,
in contrast to the commentary in [77], while the bulge is hard to comprehend
in more than 3 dimensions, this is not necessary for our approach, since
the final decision making is automatized, too.

4.5.2 Choosing a Solution
After the knee region J̄ has been determined, one of its solutions has to
be chosen. First, the preferences of the decision maker are formulated
as the preference vector p ∈ Rq

+ for all q objectives. Since we work in
the normalized space, the objectives’ possibly different magnitudes can be
ignored. Then, p can be interpreted as the normal vector of a hyperplane

P(J̃b) : {x | p⊺(x− J̃b) = 0} (4.37)
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where J̃b ∈ J̄ is the hyperplane’s base point. In the following, we will refer
to P as the preference plane.

As the base point J̃b, we choose the knee region’s solution to which the
preference plane is ’tangent’, i. e. the J̃b = J̃ i ∈ J̄ that builds a halfspace
with the preference plane which is below all other solutions, such that

p⊺(J̃j − J̃b) ≥ 0 ∀ J̃j ∈ J̄. (4.38)

In 2D, this halfspace is the area below a line, and the line which passes
through J̃b and is orthogonal to p. In the unlikely event that multiple
solutions on the knee region fulfill (4.38), any of them can be selected.
Figure 4.9 illustrates different preference planes and the resulting selections
for a 2D front.

4.5.3 Discussion of the Preference for Knee Points
As stated in Section 4.2.2, [24] defines the knee point of a 2D MOO problem
as the point which is the solution for the most λi in the weighted sum

min
x

(λi · J1(x) + (1− λi) · J2(x)) (4.39)

where λi is chosen from a large but finite set ⊆ [0, 1]. However, as illustrated
in [35, Figure 1] and explained in [32], the minimization of (4.39) can be
interpreted as shifting a plane with an angle α(λi) to the origin until
it is tangent to the Pareto front. Furthermore, this interpretation is
also applicable with q-dimensional hyperplanes, see e. g. [121]. Thus, our
approach of constructing a hyperplane a posteriori and choosing the solution
at which it is tangent to the Pareto front inherently prefers knee points,
since multiple preferences p (and thus preference planes) will satisfy (4.38)
for the same J̃ i if it is a knee point (as the small illustration in Figure 4.9(b)
suggests). However, note that this does not admit the conclusion that our
approach could be replaced by solving a weighted sum with the according
weights instead. First, the reduction of possible decisions to a knee region
prevents point which are too extreme (and thus uninteresting) to be selected,
independently of the formulated preferences. Second, our approach allows
us to use an approximation of the Pareto front which can be derived from
any method, not just from the minimization of a weighted sum.
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Effect of p on selected Solution

(a) Front without Knee (b) Front with Knee

Figure 4.9: Exemplary preference planes (4.37) for the Pareto fronts from
Figure 4.8 and the selected solutions (i. e. base points J̃b) with rlim = 0.8. For
example, for the green preference plane with p⊺ =

(
0.50, 0.50

)
, the base point

J̃b is marked as a green diamond. Note that for the front without a knee in (a),
the different preferences lead to solutions far apart from each other. For the
front with a knee in (b), two of the three preferences choose the knee itself. Even
for p⊺ =

(
0.75, 0.25

)
, the selected solution is close to the knee point, despite

the large knee region (with solutions a human DM would not consider to be
interesting).
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4.6 Summary
In this chapter, we combine multi-objective optimization (MOO) with
(economic) MPC by formulating the optimal control problem as a multi-
objective optimization problem. Namely, all constraints from the system
dynamics etc. are respected as usual, but the solution to the multi-objective
optimal control problem is the Pareto front representing all possible Pareto
optimal compromises of the objectives. Then, a solution from the Pareto
front is chosen and the first step of the underlying control sequence is
applied to the system. We refer to this procedure as dynamic MOO.
Furthermore, we present the focus point boundary intersection (FPBI)
method, a new approach to sample higher dimensional Pareto fronts in the
dynamic MOO setting with varying conditions in a robust fashion.

Besides the determination of the Pareto front itself, the most crucial task is
to automatize the decision making process, since it would be too tedious for
a human decision maker (DM) to manually choose a compromise, which is
the usual procedure in regular MOO, in every time step. Thus, we present
two different strategies to automatize the decision making process; 1) a
metric-based strategy, which first normalizes the Pareto front and then
selects the solution with the best value of a pre-defined metric. We propose
2 different normalization schemes and 3 different metrics, resulting in 6
possible combinations. And 2), a preference-based strategy, which is the
main methodological contribution of this thesis. In a first step, it determines
a knee region of the Pareto front which would be most interesting to the
DM. In a second step, it uses easy to interpret preferences of the DM, e. g.
50-20-30, to finally choose a solution by interpreting them as the normal
vector of a hyperplane. Its advantages are that it 1) ensures that only
good compromises can be selected by limiting possible choices to the knee
region, which 2) depends on the Pareto front’s shape, 3) gives the DM a
design parameter with which he can comprehensibly choose how strong his
influence should be a priori, and 4) has a built-in proclivity for knee points,
if they exist.
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5 Building Energy Management
with Multi-Objective MPC

In this chapter, we build upon the models and simulations from Chapter 2
and apply the dynamic MOO strategies from Chapter 4. First, we mo-
tivate why multi-objective MPC is necessary for the control of building
energy management systems in Section 5.1. Then, we review how multiple
objectives have been handled in microgrid control so far in Section 5.2. We
analyze the effect of both the metric-based and preference-based decision
making strategies to our exemplary building in long-term simulation studies
in Section 5.3 and end with a summary in Section 5.4.

This chapter is based on and has partly been published in the following
publications:

[S3] T. Schmitt, T. Rodemann, and J. Adamy. Multi-objective model pre-
dictive control for microgrids. at - Automatisierungstechnik, 68(8):687
– 702, 2020.

[S4] T. Schmitt, J. Engel, M. Hoffmann, and T. Rodemann. PARODIS:
One MPC framework to control them all. Almost. In 2021 IEEE
Conference on Control Technology and Applications (CCTA), 2021.

[S8] T. Schmitt, M. Hoffmann, T. Rodemann, and J. Adamy. Incorporat-
ing human preferences in decision making for dynamic multi-objective
optimization in model predictive control. Inventions, 7(3), 2022.

5.1 Introduction
In Section 2.3.2, we introduced 5 different objectives which we used in
the subsequent simulation studies: monetary costs, temperature comfort,
ecological costs (CO2 emissions), battery degradation and EV charging
satisfaction. This list of possible objectives is incomplete and could be
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extended, but is already sufficient to illustrate that compromises inevitably
have to be made in the control of an energy management system. All objec-
tives are of both different units and scales, which makes it hard for a DM to
compare them. Furthermore, the changing environment during long-term
control, e. g. weather seasons, renewable energy production and possible
peak costs can lead to changing conditions in the optimization problems
over time such that a compromise (or weighting) decided on before may not
represent the DM’s intention anymore. Thus, the systematic incorporation
of (dynamic) MOO in the control of building energy management systems
is necessary and, due to the slow system dynamics, possible, too.

5.2 Related Work
As explained in Section 2.1, the two main approaches in microgrid control
are either ODE modeling in combination with deterministic optimizers,
which we use, or BPS-based modeling in combination with meta-heuristic
optimizers. Since the majority of the MOO community uses meta-heuristic
methods, these also constitute a large part of the microgrid control liter-
ature which considers multiple objectives. Thus, studies following both
approaches are covered in the following literature review.

Examples for complex models based on a BPS and meta-heuristic optimiza-
tion are [7,78,118], which all consider monetary costs and thermal comfort
as objectives. The authors of [78] use a combination of GenOpt [138] and
EnergyPlus to optimize temperature set points of three building models in
an MPC scheme over a time period of 5 days. As the optimization strategy,
they use Hooke-Jeeves Particle Swarm Optimization. However, they do
not construct a dense Pareto front for the two objectives, but determine
five Pareto solutions by running their simulation with five different weights
on the monetary costs. In [7], a three-room building is modeled with
EnergyPlus. Matlab is used to derive optimal control sequences with ge-
netic algorithms in an MPC framework. The optimization is repeated only
once every 24h with Ts = 1h, possibly due to the long optimization time
required (> 1 h), which makes this approach not applicable in real-time.
In [118], again the combination of EnergyPlus and genetic algorithms is
used to control the model of a residential building with 6 temperature
zones. As decision variables, hourly set points are used. However, the
fitness of a population within the optimization process is not evaluated by
simulating the model in EnergyPlus, but by an artificial neural network
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surrogate model. It is trained for every temperature zone to reproduce
simulation results such as energy consumption and indoor temperature in
dependence of forecasted exogenous factors such as outdoor temperature,
relative humidity and solar irradiance. Artificial neural networks are used
both for determining a population’s fitness as well as for approximating
solutions from the genetic algorithms to reduce optimization time, which
allows for online optimization with ∆t = 1h. However, thermal comfort
is only defined by being in a certain temperature range in occupied times.
If this is violated, a penalty function is applied in the genetic algorithm.
Thus, no trade-offs in form of a MOO problem are considered.

Examples for modeling based on ODEs and MPC using deterministic
optimization are [57, 106, 126, 144]. The authors of [57] model a simple
linear microgrid model with a stationary battery as the only state. As
the objective function, they use the unweighted sum of monetary costs
and battery lifetime degradation. A time horizon of 12h with a time
step ∆t = 20min is chosen. However, the battery lifetime is a nonlinear
function and it is not clear how the resulting optimization problem has
been solved (other than with the Matlab optimization toolbox). In [144],
a simplified building model with 4 ODEs including an air-handling unit
is used. Energy consumption and thermal comfort are considered as
objectives. The distance to the Utopia point is directly minimized, which
leads to an NLP problem. However, only one optimization problem per
day with ∆t = 1h is solved. In [126], a microgrid in island mode with
diesel generators and shiftable loads is considered. The prediction horizon
is 24h. However, to reduce computational expenses, the sampling time
varies, i. e. increases from 5min in the first half hour to 1h for the last
22h of the horizon. Fuel and emission costs are minimized. The authors
compare two different strategies for this MOO problem, namely taking a
(fixed) weighted sum and directly minimizing the distance to the Utopia
point, which results in a mixed-integer nonlinear programming (MINLP)
problem and took on average 8.12 s to solve. However, the results of the
one day simulation for the scenario without demand response show that
the compromise solution is outperformed by the weighted sum solution.
This might be due to non-global optima found for the MINLP. In [106],
stochastic MPC with chance constraints and uncertain weather forecasts is
used. Namely, constraints for the building temperature are not violated
with a likelihood of 1 − α. Samples of the Pareto front (energy use vs.
number of constraint violations) are derived by varying α. However, no
systematic choice of a trade-off is conducted.
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Concluding, applying sophisticated MOO methods within a MPC frame-
work to microgrid models with increasing complexity generally is a challeng-
ing problem. Furthermore, there is a lack of research as to how compromises
between contradicting objectives are selected best.

5.3 Simulation Studies
In the following, we analyze the effect of the dynamic MOO methods from
Chapter 4 to the microgrid models derived in Chapter 2 in simulation. After
a short overview of the Pareto functionalities of our Matlab framework
PARODIS in Section 5.3.1, we first apply the decision making strategies
with fixed metrics in Section 5.3.2 and then the preference-based knee
region approach in Section 5.3.3.

5.3.1 Pareto Functionalities in PARODIS
We presented the basic functionalities of our new Matlab MPC framework
PARODIS in Section 2.4.2. Here, we shortly describe its functionalities for
the use of dynamic MOO.

Pareto optimization in PARODIS is used by simply defining the Controller
to be of type ParetoController (instead of SymbolicController or
ExplicitController). Then, the user can choose from the different pre-
implemented methods for

1) determining the extreme points (called extreme point method),

2) calculating the rest of the Pareto front (called front determination
scheme) and

3) choosing a solution from the Pareto front (called metric function).

Note that, alternatively to 3), a solution could be chosen by hand. The
method to be used for each type is defined in the config of the controller,
e. g.

c o n t r o l l e r . c on f i g . extremePointFunction=’LEX’ ;
c o n t r o l l e r . c on f i g . frontDeterminationScheme=’NBI ’ ;
c o n t r o l l e r . c on f i g . metr icFunct ion=’CUP’ ;

Table 5.1 summarizes the currently available options.
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Table 5.1: List of extreme point functions, front determination schemes and
metric functions in PARODIS. The string for selecting a method is given in
parentheses.

Extreme Point Methods

Lexicographic
Approach

(’LEX’) Optimization in lexicographic order as
in (4.11).

Miniscule Weight
Approximation

(’MWA’) Approximation of the extreme points
with weights wi = 1 and wj ̸=i = 10−5 as de-
scribed in Section 4.2.1, page 81.

Normalized Minis-
cule Weight Approx-
imation

(’MWAN’) Miniscule Weight Approximation with
prior (dynamic) normalization as in (4.25) for a
better conditioning of the optimization problem.

Front Determination Schemes

Normal Boundary
Intersection

(’NBI’) NBI method as described in Section 4.2.1,
page 78.

Focus Point Bound-
ary Intersection

(’FPBI’) FPBI method from Section 4.3, page 86.

Adaptive Weight
Determination
Scheme

(’AWDS’) AWDS method as described in Sec-
tion 4.2.1, page 77.

Metric Functions

Closest-to-Utopia-
point

(’CUP’) Distance-based CUP metric, see (4.27).

Angle to extreme
points

(’AEP’) Angle-based AEP metric, see (4.31)-
(4.33)

Angle to neighbors (’ATN’) Angle-based ATN metric, see (4.28)-
(4.30)

(Approximated) ra-
dius of curvature

(’RoC’) In 2D, the radius of curvature is the
radius of the circle which connects a point on the
Pareto front with its two neighbors. See [71] for
a formal definition and [56] for the implemented
approximation.
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5.3.2 Fixed Metrics
In this section, we analyze all possible combinations of the 2 normalization
schemes (dynamic or fixed) and 3 metrics (CUP, ATN or AEP) from
Section 4.4.2. To this end, we first summarize the simulation setting,
then we derive the scaling values for the fixed normalization scheme, show
selections for all combinations on exemplary Pareto fronts and finally
compare their long-term effects in 1-year simulations. Note that parts of
this simulation study have been published in [S3].

Simulation Setting

The simulation conditions are the same as in Section 2.4.3, i. e. we use the
standard model HL-1, data from 2018 and monetary and comfort costs
as the two objectives. For the monetary costs, both the industry and the
intraday pricing scenarios are simulated. For the industry scenario, the
optimization problem is as in (2.62). For the intraday scenario, it is defined
by

O
Mon.(Intra),Comf.
HL−1 (k) : min

u
wmon · J intra

mon (k) + wcomf · Jcomf(k), (5.1)

s. t. (2.8b),
(2.46), (2.48), (2.49).

AWDS is used to determine the Pareto front. Furthermore, if either CUP
or AEP are used as metrics, the area around the first determined solution
has been sampled again with a smaller distance ratio ∆dawds to increase
precision. For ATN, this is not done because the result is sensitive to the
distance between solutions, as discussed in Section 4.4.2.

Determining Constant Scaling Values for Fixed Normalization

To use the fixed normalization scheme (4.26), we have to choose fixed
scaling values ∆Jfix

i . Note that, in the following, we use the notation(
Jmon, Jcomf

)
instead of

(
J1, J2

)
to refer to the individual objectives for

better readability.

As motivated before, the widths of the Pareto fronts can vary significantly,
especially for the monetary costs. Thus, instead of relying on expert
knowledge, we simulate the system with the dynamic normalization scheme
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Distributions of the Pareto fronts’ widths (Intraday Scenario)

(a) Monetary Costs (b) Comfort Costs

Figure 5.1: Frequency distributions of (a) ∆Jmon and (b) ∆Jcomf in a one year
simulation for the intraday scenario (dynamic normalization, CUP metric). For
example, ∆Jmon(k) has been ≤ 189.82 (which is the mean value) in 38.13% of
all cases. The maximum value for ∆Jmon has been 290.64.

and CUP as the metric for one year. Then, we determine the frequency
distributions of the (unnormalized) Pareto fronts’ widths for both objectives,
i. e.

∆Jmon(k) = Jnadir
mon (k)− Jutopia

mon (k), (5.2)
∆Jcomf(k) = Jnadir

comf (k)− Jutopia
comf (k) (5.3)

at time step k. Afterwards, we can derive appropriate
(
∆Jfix

mon, ∆Jfix
comf

)
from the frequency distributions.

Figure 5.1 shows the distributions for a 1-year simulation of the intraday
scenario. Note that these distributions would vary if different metrics were
used for the selection, but are similar enough for the purpose of determining
representative values. For the intraday scenario, the mean values are taken,
which cover 38.13% of all ∆Jmon and 46.32% of all ∆Jcomf .

The resulting distributions for the industry scenario are presented in Fig-
ure 5.2. Figure 5.2(a) shows that the mean value of all ∆Jmon is drastically
shifted to the right in comparison to the mean of all ∆Jcomf in Figure 5.2(b).
This is due to the possibly occurring new peaks. Thus, taking the means
as ∆Jfix

mon and ∆Jfix
comf is not appropriate. Instead, we make use of the

bend in the distribution of Figure 5.2(a). It corresponds to ∆Jfix
mon = 272
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Distributions of the Pareto fronts’ widths (Industry Scenario)

(a) Monetary Costs (b) Comfort Costs

Figure 5.2: Frequency distributions of (a) ∆Jmon and (b) ∆Jcomf in a one year
simulation for the industry scenario (dynamic normalization, CUP metric).

and lies above 91.80% of all occuring ∆Jmon. Accordingly, we choose
∆Jfix

comf = 153.5, which covers 91.82% of all ∆Jcomf . Table 5.2 summarizes
the constant scaling values for the fixed normalization.

Table 5.2: Scaling values for fixed normalization.

Intraday Scenario Industry Scenario

∆Jfix
mon 189.82 272

∆Jfix
comf 93.90 153.5

Comparison of Selections on Real Pareto Fronts

To gain insights on the different selections with each normalization and
metric, three typical Pareto fronts in the industry scenario are examined.
Figure 5.3(a) shows a setting in winter, when heating is necessary. Due
to a low ∆Jcomf , the fixed normalization shifts all selections to the right.
Thereby, the ATN solution is affected less in comparison to CUP and AEP.

Figure 5.3(b) shows the selections for a cooling scenario in summer without
possible peak costs. For the dynamic normalization, both angle-based
metrics (ATN and AEP) select the same point which could be considered
a knee point. If fixed normalization is used, ∆Jmon is scaled stronger than
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Metric Selections on Exemplary Pareto Fronts

(a) Heating necessary (b) Cooling necessary, no Peaks

(c) Cooling necessary, possible Peaks

Figure 5.3: Exemplary Pareto fronts in the industry scenario and the selections
for the different combinations of metrics and normalization schemes.

(a) ϑair ≈ 8.59°C < 21°C, i. e. heating is necessary. Since ∆Jcomf

∆Jfix
comf

< ∆Jmon

∆Jfix
mon

, all
knee selections are shifted to the right when fixed normalization is used.

(b) ϑair > 21°C, i. e. cooling is necessary. Since ∆Jcomf ≈ ∆Jfix
comf and ∆Jmon <

∆Jfix
mon, the CUP and AEP selection are shifted to the right when fixed

normalization is used.

(c) ϑair > 21°C and high demand, i. e. cooling is necessary and (high) peak
costs are possible. Thus, ∆Jmon >> ∆Jfix

mon and the selections for all
metrics are shifted to the left.
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∆Jcomf . Thus, again all solutions are shifted to the right. However, the
CUP is shifted significantly less than the ATN and AEP.

In Figure 5.3(c), a Pareto front with high peak costs is shown. Here, a clear
knee point can be deducted. However, only for the dynamic normalization
all metrics find it. For the fixed normalization, all selections are shifted to
the left due to ∆Jmon >> ∆Jfix

mon. This results in trajectories with higher
Jcomf . Again, the CUP is shifted the least.

Despite the last setting with peak costs, the Pareto fronts and the knee
selections for the intraday scenario look similar and are thus omitted. The
examples show that metrics based on an angle, i. e. ATN or AEP, are more
sensitive to the front’s curvature than the CUP. The fixed normalization
mainly shifts the solutions to one side, depending on the relation of ∆Jcomf

∆J fix
comf

to ∆Jmon

∆J fix
mon

, i. e. whether it is greater or smaller. In summary, the CUP
metric seems to be the most robust one. However, long time simulations
are necessary to evaluate the resulting trajectories and assess whether the
shifting from the fixed normalization is beneficial or not.

Simulation Results

Determining the 2D Pareto front takes ≈ 0.4 s in PARODIS on a single
core of an Intel Xeon CPU E5-1607 v4 with 3.10GHz, a 1-year simulation
takes ≈ 105min. Note that in the following, we refer to the summed costs
over the 1-year simulation as (Jyear

mon , J
year
comf).

Intraday Scenario Figure 5.4 illustrates the results for the intraday
scenario and simulation with data from 2018. Note that, to support
interpretation, the model has been simulated with wmon = 1, wcomf ≈ 0,
i. e. with a focus only on monetary costs to obtain a lower limit on how
much money has to be spent only on fulfilling Pdem (while making use of
the stationary battery). This value of 98,341e has been substracted from
all other simulation results for Figure 5.4. All numerical values without
this adaption can be found in the Appendix in Table A.2. Note that, due
to numerical reasons and to ensure Pareto optimality (and not only weak
Pareto optimality), wcomf has actually been set to a very small value (10−5).
However, the effect on Jyear

mon is negligible.

In addition to the three metrics for both dynamic and fixed normalization,
we also simulated the entire year with fixed weights (i. e. without Pareto
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Intraday Scenario
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Figure 5.4: 2018 results for the intraday scenario. Note that the minimum
possible value for Jyear

mon has been subtracted.
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front construction and knee point selection). First, wmon = wcomf = 0.5 is
the setting for no weighting between the objectives and can be considered
a baseline result. Second, the mean weights from the CUP (dynamic)
simulation have been used as fixed weights, i. e. wmon = 0.14, wcomf =
0.86. Note that this setting can also be considered a comparison baseline.
However, this (sophisticated) weighting could not have been done a priori.
Last, we focused on comfort only, i. e. wmon ≈ 0, wcomf = 1. Again, due to
the reasons described before, wmon = 10−5 for this setting.

In comparison to the unweighted setting (wmon = wcomf = 0.5), all dynamic
MOO settings significantly reduce Jyear

comf (≈ 60 to 80%) with only a slight
increase of Jyear

mon (≈ 4 to 8%). The same applies for the fixed weighting
with wmon = 0.14, wcomf = 0.86, which results in an even lower Jyear

comf but
higher Jyear

mon than any knee point setting. However, as has been stated
before, these weights could not have been chosen a priori. Surprisingly,
when the CUP is chosen as the metric, the fixed normalization outperforms
the dynamic normalization.

If the knee point is chosen by an angle metric (either ATN or AEP), the
fixed normalization leads to a stronger focus on costs, i. e. a lower Jyear

mon

and higher Jyear
comf . Note that this behavior might change with different

normalization scales, which have been derived from a one-year simulation
with CUP (dynamic) as described in Section 4.4.1.

Industry Scenario The results for the industry scenario are illustrated in
Figure 5.5. Again, for ease of interpretation, the minimum monetary costs
have been subtracted and all numerical results are given in the Appendix,
Table A.3. Note that the (unadapted) Jyear

mon is higher overall due to the
higher grid (and peak) costs.

Furthermore, if no focus is set on comfort (wmon = 1, wcomf ≈ 0), Jcomf

is less than half as high as for the intraday scenario. This is due to the
stronger use of the CHP, whose electricity is cheaper than energy from
the grid for the industry scenario. However, for the other settings, the
comfort costs are generally higher, since a stronger focus on minimizing
the monetary costs is set due to the higher grid costs. In contrast to the
intraday scenario, the fixed normalization always leads to a lower Jyear

mon

and higher Jyear
comf here. This is more severe if an angle-based metric is used

(both ATN and AEP).
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Industry Scenario
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Figure 5.5: 2018 results for the industry scenario. Note that the minimum
possible value for Jyear

mon has been subtracted.
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Note that the CUP (dynamic) setting is the only one (besides wmon = 1,
wcomf ≈ 0) which ’voluntarily’ accepts new peak costs. Namely, in all
other settings, the maximum peak is 384.6 kW and it is dictated by a high
Pdem(k = 1081) = −630.55 kW on the 23rd of January. However, the CUP
in the dynamic normalized space is associated with new peak costs twice
within three time steps on the 23rd of June and goes up to 394.62 kW.
This results in 875.35e higher peak costs and leads to the CUP (dynamic)
setting being slightly outperformed by the AEP (dynamic) solutions.

Conclusion

In summary, the results suggest that using the CUP is the most robust
metric. For the angle based metrics, the fixed normalization shifts the
focus further on reducing monetary costs at the expense of a lower thermal
comfort. This effect is more severe for the industry than for the intraday
scenario. The most promising combination seems to be the CUP metric
together with the fixed normalization, since in the intraday scenario it even
outperforms the CUP with dynamic normalization and in the industry
scenario it avoids unnecessary peak costs (in comparison to the dynamic
normalization). Alternatively, mean weights resulting from the knee point
selections can be used a posteriori.

5.3.3 Preference-Based Knee Region Approach
In this section, we analyze how effectively the long-term costs can be varied
with the preference-based decision making strategy from Section 4.5. We
first summarize the simulation setting, then describe a simpler approach
to respect preferences as a baseline comparison, and finally present the
results for 30-day simulations with different preferences for both 2 and 3
objectives.

Simulation Setting

We again use the standard model HL-1, but data from July 2018 only and
assume the intraday pricing scenario. First, we use only monetary and
comfort costs as the two objectives. Then, in contrast to the simulation
study before, we additionally respect the battery degradation costs (2.32)
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as a third objective, which would result in the optimization problem

O
Mon.(Intra),Comf.,Bat.
HL−1 (k) : min

u
wmon · J intra

mon (k) + wcomf · Jcomf(k) . . .

+ wbat · J stat
bat (k), (5.4)

s. t. (2.8b),
(2.46), (2.48), (2.49).

However, since we use the FPBI method to determine a Pareto front
approximation in the 3D case, this optimization problem is transformed as
in (4.24).

For the 3D MOO problem, it formulates 378 single optimization problems
in every time step. Overall, one simulation in PARODIS with data from
July 2018 and its 30 · 48 = 1440 time steps takes about 2.5 h on a single
core of an Intel Xeon CPU E5-1607 v4 with 3.10GHz. The 2D problem
takes only 9min.

Baseline Comparison

To compare the effectiveness of our proposed approach, we present a simpler
strategy as a baseline. Assume q = 3 objectives and p⊺ = [20%, 70%, 10%].
The preferences determine the order in which the objectives are considered
in the following. For the above example, all Pareto solutions would be
ranked by J2 first. Then, the worst 70% (in terms of J2) are removed from
the set of possible solutions. Next, the remaining solutions are ranked by
J1, from which the worst 20% (in terms of J1) are then removed. Finally,
the remaining solutions are ranked by J3 and the solution which is better
than the worst 10% (in terms of J3) is selected.

In the simulation results presented below, we optionally combine this simple
approach with the limitation to a knee region as in our proposed approach
from Section 4.5. If so, the knee region J̄ is determined first as usual, and
then we select a solution from J̄ by the rules described above (instead of
using the preference plane).

Note that the preferences might have to be normalized first, such that∑q
i=1 pi = 100%. If only q = 2 objectives are considered, the solution

which splits the set in terms of the preferences can be selected directly.
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Simulation Results

For all results presented in the following, the minimum possible costs for
each objective have been subtracted. Namely, we run the simulations
with each objective separately (e. g. wmon = 1, wcomf = 0, wbat = 0 if
only monetary costs are to be minimized) to obtain the lowest values
which cannot be avoided. In this way, the effect of the preferences can be
interpreted appropriately.

2 Objectives For the 2D simulations, we vary pmon from 0 to 100 while
pmon + pcomf = 100. The results are shown in Figure 5.6.

Figures 5.6(a) and 5.6(b) show the monetary and comfort costs for the
simple baseline approach. The preferences are respected, i. e. every increase
in pmon leads to a decrease in monetary costs and consequently to an
increase in comfort costs. However, the trade-offs for higher preference
values are extreme, especially the resulting comfort costs for pmon ≥ 80.

This can be overcome by limiting all possible selections to the knee region,
as we propose. If so, even the simple selection shows good results in the 2D
case, see Figures 5.6(c) and 5.6(d). The highest comfort costs are limited
to ≈ 100, instead of more than 4000. Note that for pmon = {0, 10, 20}
and pmon = {80, 90, 100}, respectively, the results are (nearly) the same,
because the knee region sizes have been so small that the extremes are
(nearly) almost chosen by rounding. This would be different for denser
samplings.

The proposed approach (Figures 5.6(e) and 5.6(f)) incorporates the pref-
erences in the long term costs as expected, too. Furthermore, the
knee region limitation leads to the same results for pmon = {0, 10} and
pmon = {80, 90, 100} only. However, here this is not due to the sampling
density and rounding, but intended behavior. Namely, the resulting prefer-
ence planes are so steep that they choose the extreme points of the knee
region every time. Note that this would change for increasing knee region
sizes, i. e. for rlim < 0.85.

Concluding, in the 2D case, the simple baseline approach is inappropriate
for the dynamic decision making due choices and trade-offs which are too
extreme if the preferences are not set cautiously. The limitation of possible
selections to a knee region, i. e. the first step of our two-step approach,
can overcome this problem even in combination with a simpler selection
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Simple Baseline Approach

(a) Monetary Costs (b) Comfort Costs

Simple Baseline Approach with Limitation to the Knee Region

(c) Monetary Costs (d) Comfort Costs

Proposed Approach (Knee Region Limitation + Hyperplane Selection)

(e) Monetary Costs (f) Comfort Costs

Figure 5.6: Monetary and comfort costs for the 30 days 2D simulations with
different preferences pmon and pcomf for (a)+(b) the simple baseline approach,
(c)+(d) the simple baseline approach but with limitation to the knee region, and
(e)+(f) the proposed preference-based decision making approach, with rlim = 0.85
for the latter two cases. Results from using the CUP metric are plotted for
comparison.
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technique than the proposed preference hyperplane (the second step of
our proposed approach). However, most likely this only holds because the
occurring Pareto fronts are all convex. Furthermore, in the following we
will see that the selection based on the preference hyperplane is superior if
3 objectives are considered.

3 Objectives The battery degradation costs are now considered as an
additional third objective. Since only the relationship between the elements
of the preference vector p⊺ = (pmon, pcomf , pbat) is relevant, we vary both
pmon and pcomf by {25, 50, 75, 100} while we keep pbat = 50 constant.

Figures 5.7 (a) – (c) show the simulation results for the simple baseline
approach. As in the 2D case, the costs for higher differences in the
preferences become extreme, especially the comfort costs in Figure 5.7(b).
Furthermore, in contrast to the 2D case, the resulting long term costs do
not follow the preferences as expected. For example, in Figure 5.7(a) the
monetary costs are reduced by half first if preferences are changed from(
pmon, pcomf , pbat

)
=
(
25, 100, 50

)
to
(
50, 100, 50

)
, but then increase for(

75, 100, 50
)
. Note that these considerable jumps and changes in direction

can partly be explained by the necessary ordering in the algorithm. Namely,
the order in which the objectives are considered in removing parts of the
Pareto front is relevant. For equal preferences of two objectives, Jmon is
respected before Jcomf , which is respected before Jbat.

However, this does not explain all of the unwanted behavior. Consider the
row for pcomf = 50 in Figure 5.7(a). The monetary costs increase instead
of decreasing if pmon is increased from 50 to both 75 or 100, although the
order in which the objectives are considered is the same, i. e. first Jmon,
then Jcomf and then Jbat.

The battery costs in Figure 5.7(c) are even more turbulent. They decrease
instead of increase for increasing pmon and pcomf = 25 and have drastic
jumps in general.

Figures 5.7 (d) – (f) show the simulation results for the simple baseline
approach if the selection is limited to the knee region. As expected, the
extreme solutions are avoided, i. e. the maximum comfort costs are reduced
from 4040.14 to 271.12 and for the battery costs from 387.56 to 86.49.
However, the unwanted behavior is mostly the same otherwise. In contrast
to the 2D case, the limitation to the knee region is not sufficient in combi-
nation with the simple baseline approach for an appropriate representation
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Simple Baseline Approach

(a) Monetary Costs (b) Comfort Costs (c) Battery Costs
x

Simple Baseline Approach with Limitation to the Knee Region

(d) Monetary Costs (e) Comfort Costs (f) Battery Costs

Figure 5.7: Monetary, comfort and battery degradation costs for the 30 days 3D
simulations with different preferences pmon and pcomf and pbat = 50 for (a)-(c)
the simple baseline approach and (d)-(f) the simple baseline approach but with
limitation to the knee region; rlim = 0.85. Note the different camera angles
for better readability and especially the inverted axis for pcomf in (c) and (f).
Subtracted minimum costs for each objective have been determined by single-
objective optimizations.

of the preferences in the long term simulation costs.

Figure 5.8 shows the simulation results for our proposed approach. In
contrast to the baseline approach, the long term costs for the monetary
and comfort objective differ when varying pmon and pcomf just as expected.
The jumps between the different preference settings are smaller and more
evenly distributed. Every increase in a preference leads to a decrease in
the long term costs and vice versa.

For the battery costs, some simulations still show unexpected results,
e. g. the total Jbat is slightly lower for p⊺ =

(
100, 50, 50

)
than for p⊺ =(

100, 75, 50
)
. However, this can be explained by the weak influence of
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Proposed Approach (Knee Region Limitation + Hyperplane Selection)

(a) Monetary Costs (b) Comfort Costs

(c) Battery Costs

Figure 5.8: Total (i. e. summed) monetary (a), comfort (b) and battery (c)
costs for the 30 days simulations with different preferences pmon and pcomf , while
pbat = 50 is kept constant. The knee region size is set to rlim = 0.85. Note the
different camera angles for better readability and especially the inverted axis
for pcomf in (c). Minimum costs for each objective have been determined by
single-objective optimizations and subtracted.
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Jbat. Battery and comfort costs are nearly independent and only implicitly
linked via the monetary costs or possibly if Pgrid would be at its limit. The
monetary costs are in direct conflict with the battery costs because they
can be reduced by buying energy at lower prices, storing it temporarily
and selling it at higher prices. However, the assumed battery capacity
and charging power are so low that the vast majority of possible monetary
costs are due to the possible (but not necessary) cooling and heating of the
building. Thus, the Pareto fronts become extremely steep, as Figure 5.9
shows exemplary. The Pareto fronts are almost degenerate [60].

However, our approach still handles this problem sufficiently well, as
Figure 5.8(c) shows a clear trend of increasing costs Jbat from pmon =
pcomf = 25 to pmon = pcomf = 100. Furthermore, in contrast to the baseline
approach (even with the limitation to the knee region), the battery costs are
significantly lower with a maximum of 13.18 instead of 86.49 overall. The
long term results can actually be considered better overall, as our approach
outperforms both the simple approach (e. g.

(
25, 25, 50

)
vs.

(
75, 100, 50

)
and the simple approach with prior limitation to the knee region (e. g.(
75, 25, 50

)
vs.

(
55, 25, 50

)
) for some preference combinations. The

numerical values for the 3D simulations can be found in the appendix, see
Tables A.4, A.5 and A.6.

Figure 5.10 shows how rlim affects the possible influence of the DM. For
every rlim, we simulated the three possible extremes p1 =

(
1, 0, 0

)⊺,
p2 =

(
0, 1, 0

)⊺ and p3 =
(
0, 0, 1

)⊺ and calculated the maximum difference
for each objective, e. g.

∆Jmon(rlim) = max
p∈{p2,p3}

(Jmon(rlim, p))− Jmon(rlim, p
1). (5.5)

The difference in monetary costs shown in Figure 5.10(a) is nearly
(anti)proportional to rlim. The possible differences in ∆Jcomf seem to
decrease quadratically with an increasing rlim in (b), which is probably due
to its quadratic form (2.23). The battery costs in (c) again have an outlier
for rlim = 0.75, which can be explained by its weak influence and the steep
Pareto fronts as discussed before. However, the trend of the decrease in
∆Jbat with an increasing rlim is clear, too. The average number of Pareto
points which are determined as part of the knee region is nearly linear
to rlim, as (d) shows. However, this depends on the shapes of the Pareto
fronts and cannot be generalized.
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Exemplary Preference Planes on a 3D Pareto Front

(a) p⊺ =
(
100, 25, 50

)
(b) p⊺ =

(
25, 100, 50

)

(c) p⊺ =
(
25, 25, 50

)
Figure 5.9: Single Pareto front from simulation with its knee region (rlim = 0.85)
and different preference planes with focus on (a) monetary, (b) comfort and
(c) battery costs. Note that the different preferences are set according to the
extreme cases from Figure 5.8.
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Influence of Different Knee Region Sizes

(a) Monetary Costs (b) Comfort Costs

(c) Battery Costs

#
 o

f 
P

o
in

ts

(d) Average Number of Points in Knee
Region

Figure 5.10: Maximum difference in total monetary (a), comfort (b) and battery
(c) costs and the average number of points considered to be part of the knee
region (d) for different rlim; calculated according to (5.5).
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Conclusion

The results show that the determination of the Pareto front at every time
step is feasible even for 3 objectives. Furthermore, our proposed preference-
based decision making strategy from Section 4.5 successfully respects
the DM’s preferences in the long-term costs and shows superior results
compared to a simpler baseline strategy, especially for 3 objectives. The
results of this one-month simulation could be shown to a DM to help him
choose his preference values for the building energy management system,
while all intrinsic advantages of the method as discussed in Section 4.6
remain.

5.4 Summary
In this section, we apply the dynamic MOO methods developed in Chapter 4
to the standard microgrid model from Chapter 2.

We analyze the different combinations of normalization schemes and metrics
from Section 4.4 in a 1-year simulation of the microgrid with real-world
data for both the intraday and the industry pricing scenarios. The distance-
based metric (CUP) showed to be the most stable and especially promising
in combination with the fixed normalization scheme for both scenarios.

The preference-based decision making strategy from Section 4.5 as the
main contribution of this thesis showed to successfully represent preferences
formulated by a DM not only in the selection of a single Pareto solution,
but also in the accumulated long-term costs. For 3 objectives, it even
outperforms a proposed simpler baseline strategy for the selection of a
Pareto solution due to its better handling of steep and nearly degenerate
Pareto fronts. The selection of a solution by the preference plane shows to
be very reliable and the knee region sizes can be effectively controlled with
the design parameter rlim.
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6 Conclusions

In this final chapter, we summarize this thesis shortly and put it in a larger
context. Afterwards, we finish with a short outlook on possible future
directions for multi-objective building energy management.

6.1 Summary
So far, MOO and MPC have rarely been considered in combination. In part,
reasons for this are probably that it is hard to derive analytical properties,
since the optimization only covers the prediction horizon, but the long-term
costs are relevant. And even empirically, large obstacles exist in general.
In comparison to single-objective MPC, the computational costs are at
least significantly and possibly a lot higher, depending on the number of
objectives. This makes MOO in MPC unsuitable for most applications.

However, BEM systems present a first real-world application which is both
suitable and promising for the use of MOO in MPC. First, the system
dynamics, at least on the secondary level, are slow enough to allow for
sampling times of minutes, which offers enough time for the determination of
sufficiently dense approximations of the Pareto front for multiple objectives.
Second, the objectives in BEM control are diverse and contradicting enough
to justify the use of MOO. For example, it is hard to express the building
occupants’ comfort, the satisfaction with an EV’s battery status or the
degradation of batteries with all its ecological impacts by monetary terms
without losing parts of their meaning. Third, current policies force the
need for significant adaption in energy usage and production, as explained
in the motivation for this thesis. Thus, enough attention and monetary
interest from both the public and industrial sector exist to drive further
developments, which also becomes evident in the extensive investigation of
this topic throughout current literature.

In this thesis, we have presented a methodological framework for how MOO
can systematically be incorporated into MPC and called it dynamic MOO.
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The main idea is to formulate the OCP in MPC as a multi-objective OCP,
i. e. as a MOO problem. As its solution, (an approximation of) the Pareto
front is derived and then a solution is automatically chosen, for which
different methods are presented.

The optimization problem has to be sufficiently well-behaved to solve the
necessary number of different variations quickly enough to determine the
Pareto front’s approximation within a time step. To this end, we have
presented different linear state space models for the most important entities
of a medium-sized company building in Chapter 2. In addition, we have
made use of reformulation techniques to derive a convex representation of
e. g. peak costs in the objective function. We also have proposed models
of different complexity for the thermal zones of a building or EV charging
stations, with which computational burdens can be lowered by using a
hierarchical setup. Pareto optimization could be used at the highest level
only, while more complex models follow predetermined aggregated power
flows on the lower levels.

In Chapter 3, we have made a small digression to the importance and
influence of prediction accuracy in BEM with MPC, since this has not yet
been covered sufficiently. Empirical analysis has shown that real-world
weather forecasts can already be used successfully to lower peak costs, but
that every improvement at the beginning of the prediction horizon would
be beneficial.

The main methodological contributions have been introduced in Chapter 4.
First, we presented a new algorithm to determine an approximation of the
Pareto front more suitable for dynamic MOO, since it is more robust to
imperfect extreme points and possibly non-contradicting objectives. For
the decision making process, we have presented two main strategies, which
we then evaluated in long-term simulations in Chapter 5. The use of fixed
metrics in combination with a normalization of the Pareto solutions showed
good long-term results. The Euclidean distance-based CUP metric has
been the most promising, especially in combination with the proposed
fixed normalization scheme. However, its disadvantage is that the balance
between objectives cannot be influenced and is hard to anticipate a priori.
This is overcome by our second strategy, the knee region approach from
Section 4.5. It successfully maps preferences from a DM to long-term costs,
as simulations for both 2 and 3 objectives show. Thus, we consider it the
superior decision making strategy.



6.2 Future Directions 125

6.2 Future Directions
Conceptually, a key challenge in the future will be to investigate how a
DM can be included in the control process. Although the decision making
process evidently has to be automatized, the acceptance for such control
systems will most likely depend on whether the DM not only has the feeling
that his preferences are respected, but that he is still in control of the type
of decisions being made. This could e. g. be done by presenting the last
decisions to him on demand and asking him whether he is satisfied, or if
he wants to change the parameters of the decision making process.

On the more technical end, we see two major challenges. First, the ap-
propriate hierarchization and communication between the different levels
is a non-trivial problem. The hierarchy possibly includes a digital twin
and ends at the lowest level with the real-world actuators and sensors.
Modeling differences between levels may lead to unforeseen instabilities
which have to be prevented in a systematic way. This leads to the second
major technical challenge. So far, the models for BEM systems are usually
derived with expert knowledge for the specific building. The design of
control schemes, especially in a hierarchical setup, then depends on further
expertise from control engineers. However, to successfully establish BEM
systems for a wide variety of buildings and users, both the modeling as
well as the subsequent control design has to be modularized.
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A Appendix: Numerical Results
from Simulation Studies

A.1 Electric Vehicle Charging, Section 2.4.5

Table A.1: Total results for the 1-year EV charging simulation study. The
numerical values are the same as shown in Figure 2.13.

MPC/MPC MPC/RBC RBC/RBC

Monetary Costs in 1000e 243.0369 242.2289 293.0400
Avg. Temp Deviation in K 0.0553 0.0553 0.0162
Avg. Charge Satisfact. in % 100.6987 98.9551 110.8549
EV Capacity Degr. in % 5.4059 4.1773 3.4017
Stat. Capacity Degr. in % 0.6613 0.7293 0.0071



128 A Appendix: Numerical Results from Simulation Studies

A.2 Metric-Based Decision Making,
Section 5.3.2

Table A.2: Results for the 1-year simulations with data from 2018 in the
intraday scenario. Note that these are the complete costs. The minimum possible
monetary costs, which have been subtracted for the representation in Figure 5.4,
are stated below for wmon = 1, wcomf ≈ 0.

Jmon in e Jcomf

wmon = 1, wcomf ≈ 0 98341.66 2211587.11
wmon = wmon = 0.5 209709.19 4932.82
wmon = 0.14, wcomf = 0.86 216148.36 438.71
CUP (dynamic) 215593.36 1281.63
CUP (fixed) 214209.20 1110.64
ATN (dynamic) 215480.22 1678.42
ATN (fixed) 213606.31 1869.77
AEP (dynamic) 217274.28 881.78
AEP (fixed) 213570.40 1741.81
wmon ≈ 0, wcomf = 1 226940.76 35.16

Table A.3: Results for the 1-year simulations with data from 2018 in the industry
scenario. Note that these are the complete costs. The minimum possible costs,
which have been subtracted for the representation in Figure 5.5, are stated below
for wmon = 1, wcomf ≈ 0.

Jmon in e Jcomf

wmon = 1, wcomf ≈ 0 297114.09 1031189.72
wmon = wmon = 0.5 347226.94 5028.78
wmon = 0.26, wcomf = 0.74 351185.20 1153.58
CUP (dynamic) 354854.43 975.78
CUP (fixed) 350899.90 1325.99
ATN (dynamic) 353513.58 1667.77
ATN (fixed) 349152.45 3463.39
AEP (dynamic) 354785.96 948.41
AEP (fixed) 349662.53 4175.14
wmon ≈ 0, wcomf = 1 377954.87 35.24
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A.3 Preference-Based Decision Making,
Section 5.3.3

Table A.4: Numerical results from the simulation study in Section 5.3.3 for
the simple baseline approach. The results are the same as presented in Fig-
ures 5.7 (a) – (c). Note that all values are presented unitless and as one vector
for [Jmon, Jcomf , Jbat] and the minimum possible values [10866.84, 0.049, 53.73]
have been subtracted. pbat = 50 applies for all settings.

pcomf = 25 pcomf = 50

pmon = 025 [59.13, 4007.62, 109.43] [2463.87, 003.020, 054.5]
pmon = 050 [69.79, 3960.26, 104.60] [0942.62, 315.50, 292.75]
pmon = 075 [60.38, 4033.94, 088.68] [1018.12, 183.82, 334.03]
pmon = 100 [56.68, 4040.14, 079.14] [1077.26, 134.70, 342.53]

pcomf = 75 pcomf = 100

pmon = 025 [2519.38, 004.73, 024.59] [2543.40, 002.10, 034.13]
pmon = 050 [1336.79, 057.04, 264.52] [1233.47, 087.13, 298.36]
pmon = 075 [0957.82, 254.47, 356.61] [1407.25, 057.16, 286.11]
pmon = 100 [1028.29, 172.83, 370.16] [0973.59, 252.07, 387.56]
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Table A.5: Numerical results from the simulation study in Section 5.3.3 for the
simple baseline approach with prior limitation to the knee region. The results are
the same as presented in Figures 5.7 (d) – (f). Note that all values are presented
unitless and as one vector for [Jmon, Jcomf , Jbat] and the minimum possible values
[10866.84, 0.049, 53.73] have been subtracted. pbat = 50 applies for all settings.

pcomf = 25 pcomf = 50

pmon = 025 [1090.24, 261.50, 19.69] [1967.86, 17.52, 04.99]
pmon = 050 [1102.22, 271.12, 13.65] [1215.26, 77.65, 75.30]
pmon = 075 [1111.35, 259.55, 07.39] [1257.98, 63.57, 78.01]
pmon = 100 [1127.13, 230.96, 03.52] [1313.43, 54.59, 79.34]

pcomf = 75 pcomf = 100

pmon = 025 [1938.58, 23.12, 04.65] [1936.68, 25.97, 04.90]
pmon = 050 [1451.70, 38.63, 66.44] [1389.81, 45.17, 76.72]
pmon = 075 [1238.53, 70.54, 82.72] [1461.27, 38.51, 71.79]
pmon = 100 [1260.10, 63.04, 84.33] [1242.50, 70.82, 86.49]

Table A.6: Numerical results from the simulation study in Section 5.3.3 for our
proposed approach. The results are the same as presented in Figure 5.8. Note
that all values are presented unitless and as one vector for [Jmon, Jcomf , Jbat]
and the minimum possible values [10866.84, 0.049, 53.73] have been subtracted.
pbat = 50 applies for all settings.

pcomf = 25 pcomf = 50

pmon = 025 [1360.69, 055.79, 3.86] [1664.16, 025.25, 4.92]
pmon = 050 [1117.64, 172.63, 6.61] [1338.79, 053.60, 8.41]
pmon = 075 [1063.37, 218.72, 8.87] [1193.50, 091.22, 8.76]
pmon = 100 [1050.14, 222.33, 9.32] [1103.01, 177.78, 8.05]

pcomf = 75 pcomf = 100

pmon = 025 [1744.27, 17.76, 06.16] [1835.29, 13.23, 09.79]
pmon = 050 [1489.06, 33.99, 08.49] [1639.04, 24.56, 08.52]
pmon = 075 [1331.20, 52.23, 11.75] [1433.75, 39.41, 12.44]
pmon = 100 [1225.23, 81.69, 08.79] [1328.93, 51.88, 13.18]
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