the products (light yellow powder in each case; yield 80 to 90%) can be recrystallized from pentane at $-40^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { Received: January 15, } 1970 \quad[Z 160 \text { IE] } \\
& \text { Grerman version: Angew. Chem. } 82,256 \text { (1970) }
\end{aligned}
$$

[*] Doz. Dr. H. Schumann and R. Weis
Institut für Anorganische Chemie der Universität
87 Würzburg, Röntgenring 11 (Germany)
[**] This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.
[1] H. Schumann, O. Stelzer, and W. Gick, Angew. Chem. 81, 256 (1969); Angew. Chem. internat. Edit. 8, 271 (1969); H. Schumann, W. Gick, and R. Weis, Proc. IV Int. Conf. Organometallic Chem., Bristol 1969, U 4.
[2] I. Ruidisch and M. Schmidt, J. organometallic Chem. 1, 160 (1963).
[3] H. Schumann and B. Jutzi, (b.p. $103^{\circ} \mathrm{C} / 0.1$ torr).
[4] Quartz tamp Q 81, Hanau.
[5] E.O. Fischer and R. Aumann, Angew. Chem. 79, 900(1967); Angew. Chem. 'internat. Edit. 6, 879 (1967); S. O. Grim, D. A. Wheatland, and W. McFarlane, J. Amer. chem. Soc. 89, 5573 (1967).

New Synthesis of Aceheptylene

By Klaus Hafner and Rolf Fleischer ${ }^{1 * 1}$

Like acenaphthylene (l), the isomeric compound cyclopent[$c d$]azulene (2) can also undergo 1,2 -cycloadditions at the double bond of the five-membered ring. In contrast to (1),

however, (2) - like other derivatives of pentalene ${ }^{[1]}$ - combines with multiple-bond systems at $0^{\circ} \mathrm{C}$ or at room temperature. The thermally labile 12π-electron system (2) is thus converted into stable azulene derivatives.
Reaction of ($2 a$) with tetracyanoethylene at $0^{\circ} \mathrm{C}$ affords the cyclobutane derivative (3) in 60% yield as the sole adduct ${ }^{[2]}$. Dimethyl acetylenedicarboxylate, however, adds to (2a) at $25^{\circ} \mathrm{C}$ in methylene chloride ($+1 \%$ of triethylamine, 15 h) both in the 1,2 - and in the 3,4 -position to form dimethyl $3,5-$ dimethyl-6b,8a-dihydrocyclobuta $[a]$ cyclopent $[c d]$ azulene- 7,8 dicarboxylate ($4 a$) (m.p. $112^{\circ} \mathrm{C}$, yield 40%) and the corresponding 4,6-dimethyl derivative (5a) (m.p. 143-144 ${ }^{\circ} \mathrm{C}$, yield $10 \%{ }^{[3]}$.
(2b) and (2c) [4] combine with dimethyl acetylenedicarboxylate only in the 1,2 -position to give ($4 b$) (m.p. $141^{\circ} \mathrm{C}$, yield 71%) and a mixture of (4 c) (m.p. $103-104^{\circ} \mathrm{C}$, yield 53%) and the aceheptylene derivative (6 c) (m.p. $152^{\circ} \mathrm{C}$, yield 8%, respectively.
X-ray structure analys is ${ }^{[5]}$ and SCF calculations ${ }^{[5,6]}$ indicate a high bond order for the 1,2- and 3,4-linkage in (2) and polarization consistent with participation of the resonance structures (2A) and (2B). These findings suggest that reactions of (2) with electron-deficient alkenes and alkynes are two-step cycloadditions proceeding via resonance-stabilized dipolar intermediates.
Thermal valence isomerization of the adducts $(4 a),(4 b)$, $(4 c)$, and ($5 a$) in boiling xylene (1 h) leads to the aceheptylenes ($6 a$) (m.p. $150^{\circ} \mathrm{C}$), ($6 b$) (m.p. $147^{\circ} \mathrm{C}$), ($6 c$) ($152^{\circ} \mathrm{C}$), and (7a) (m.p. $119-120^{\circ} \mathrm{C}$), respectively, in yields of about 90%. The preparation of (6) and (7) from the readily accessible cyclopent[cd]azulenes supplements the previous syntheses ${ }^{[2,7]}$ of the tricyclic 14π-electron system. The structures

of compounds (4)-(7) were established by elemental analysis, molecular-weight determination, and UV and NMR spectra.

Received: December 23, 1969 [Z 143a ME] German version: Angew. Chem. 82, 217 (1970)
[*] Prof. Dr. K. Hafner and Dr. R. Fleischer
Institut für Organische Chemie der Technischen Hochschule 61 Darmstadt, Schlossgartenstrasse 2 (Germany)
[1] 1,3-Bis(dimethylamino)pentalene [K. Hafner, K. F. Bangert, and V. Orfanos, Angew. Chem. 79, 414 (1967); Angew. Chem. internat. Edit. 6,451 (1967)] reacts with dimethy! acetylenedicarboxylate at $0^{\circ} \mathrm{C}$ to give dimethyl 4,8-bis(di-methylamino)azulene-5,6-dicarboxylate [V. Orfanos, Dissertation, Technische Hochschule Darmstadt 1968]. In this case, two-step cycloaddition of the enamine system to alkyne giving a cyclobutene derivative is probably followed by valence isomerization of the product to the substituted azulene. A concerted $[2+8]$ cycloaddition has been suggested by R. B. Woodward [Special Publication No. 21, Chem. Soc. (London) 1967, 217] as initial step in the formation of diethyl $1,2,3,4,5,8$-hex-aphenylazulene-6,7-dicarboxylate from hexaphenylpentalene and diethyl acetylenedicarboxylate at $160^{\circ} \mathrm{C}$ [E. LeGoff, J. Amer. chem. Soc. 84, 3975 (1962)].
[2] K. Hafner and J. Schneider, Liebigs Ann. Chem. 624, 37 (1959).
[3] In addition to (4a) and (5a), a 4\% yield of dimethyl dimethylaceheptylenedicarboxylate is formed, presumably by addition of the acetylene ester to (2a) in the $2,2 \mathrm{a}-$ or $2 \mathrm{a}, 3-$ position.
[4] K. Hafner and K. F. Bangert, Liebigs Ann. Chem. 650, 98 (1961).
[5] H. J. Lindner, J. chem. Soc. (London), in press.
[6] U. Müller-Westerhoff, unpublished; N. K. DasGupta and M. A. Ali, Theoret. chim. Acta 4, 101 (1966); P. Hochmann, R. Zahradnik, and V. Kvasnicka, Collect. czechoslov. chem. Commun. 33, 3478 (1968).
[7] K. Hafner, H. Pelster, and H. Patzelt, Liebigs Ann. Chem. 650, 80 (1961); K. Hafner and G. Schneider, ibid. 672, 194 (1964).

