2-en-1-al (1a) ^[2], 4-(dimethylamino)but-3-en-2-one (1b) ^[3], and methyl 3-(dimethylamino)acrylate (1c) ^[4] leads almost quantitatively to the hydrobromides (2), which react with triethylamine to give the bromine derivatives (3) in yields of more than 90 % ^[5]. The acetylenes (4) are obtained from (3) in yields of about 70 % by elimination of HBr with potassium *tert*-butoxide ^[6]. Compound (4a), a pale yellow oil, is stable for long periods only below -50 °C, whereas (4b) and (4c) can be kept for several hours at room temperature.

> Received: January 15, 1968 [Z 713a IE] German version: Angew. Chem. 80, 443 (1968) Publication delayed at the authors' request

[*] Prof. Dr. K. Hafner and Dr. M. Neuenschwander

Institut für Organische Chemie der Technischen Hochschule 61 Darmstadt, Schlossgartenstr. 2 (Germany)

 $[^{**}]$ M. N. is grateful to the Schweizerische Stiftung für Stipendien auf dem Gebiete der Chemie for a grant. We thank Fräulein M. Ruppert for her skilful experimental assistance.

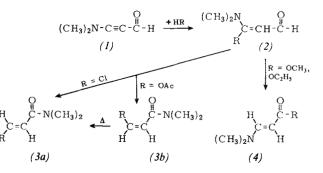
[1] K. Hafner and J. Schneider, Liebigs Ann. Chem. 624, 37 (1959); K. Hafner and G. Schneider, ibid. 672, 194 (1964); K. Hafner and M. Kreuder, Angew. Chem. 73, 657 (1961); K. Hafner, R. Fleischer, and K. Fritz, Angew. Chem. 77, 42 (1965); Angew. Chem. internat. Edit. 4, 69 (1965).

[2] F. Wille and F. Knörre, Chem. Ber. 85, 841 (1952); German Pat. 944852 (1956), Chem. Abstr. 52, 16300b (1958). We are grateful to *Badische Anilin- und Sodafabrik AG.*, Ludwigshafen, for the supply of compound (1a).

[3] E. Benary, Chem. Ber. 63, 1573 (1930).

[4] Propiolic acid after V. Wolf, Chem. Ber. 86, 735 (1953); methyl ester by refluxing for two days with 10 % conc. H₂SO₄ in anhydrous methanol; (1c) by addition of dimethylamine to methyl propiolate in tetrahydrofuran at 20 °C.

[5] Correct analytical data were obtained for all the compounds described.


[6] Overall yield for all the steps. The acetylenes were purified by distillation in a bulb tube at 10^{-4} torr and oven temperatures of 20 °C (4a), 40 °C (4b), and 30 °C (4c). The yields decrease rapidly at higher temperatures.

A New Rearrangement of Substituted 3-Aminopropenals^[**]

By M. Neuenschwander and K. Hafner [*]

3-(Dimethylamino)prop-2-yn-1-al (1) reacts with an equimolar quantity of HCl in anhydrous tetrahydrofuran at 0 °C to give the reactive aldehyde (2), $R = Cl^{[1]}$, which rearranges during isolation to form isomer-free [2] trans-3-chloro-N,Ndimethylacrylamide (3a), R = Cl (yield 80 %)^[3]. The strong band in the UV spectrum of (3a), R = Cl, occurs at 216 nm (n-hexane), a position characteristic of amides of similar structure, and the AB system of the vinyl protons in the NMR spectrum occurs at $\tau = 2.77$ and 3.32 (J = 13 Hz^[4]); hydrogenation of (3a), $\mathbf{R} = \mathbf{C}\mathbf{I}$, with Pd black (20 °C in benzene) yields N,N-dimethylpropionamide. The aldehyde (2), R = OAc, cannot be isolated in the analogous reaction of (1) with glacial acetic acid; the product obtained (80 % yield) is isomer-free^[2] cis-3-acetoxy-N,N-dimethylacrylamide (3b), R = OAc [NMR in CDCl₃: $\tau = 2.58/D$ (J = 7.5 Hz)/1 H; $\tau = 4.43/D/1$ H; $\tau = 6.90$ and 6.94/2 S/6 H; $\tau =$ 7.75/S/3H], which rearranges when heated to 60 °C to give the thermodynamically more stable *trans* isomer (3a). R = OAc [NMR in CDCl₃: $\tau = 1.73/D$ (J = 12 Hz)/1H; $\tau = 3.73/D/1 H$; $\tau = 6.93/S/6 H$; $\tau = 7.79/S/3 H$]. Compound (3b), R = OAc, can be converted into 3-acetoxy-N,N-dimethylpropionamide by hydrogenation (Pd/H₂, 20° C in benzene).

Compound (1) reacts highly stereoselectively ^[6] with an equimolar quantity of diethylamine or with an excess of methanol or ethanol^[5] to give the aldehydes (2), $\mathbf{R} = \mathbf{N}(\mathbf{C}_2\mathbf{H}_5)_2$, OCH₃, and OC₂H₅ respectively, which can be isolated since their tendency toward rearrangement is less pronounced than that of the adducts of (1) with HCl or acetic acid, and decreases in the order OCH₃ > OC₂H₅ > N(C₂H₅)₂.

Whereas only traces of 3-(diethylamino)-3-(dimethylamino)prop-2-en-1-al (2), R = N(C₂H₅)₂, rearrange at 60 to 80 °C, 3-methoxy-3-(dimethylamino)prop-2-en-1-al (2), R = OCH₃, [yellow oil, yield 90 %, NMR in CDCl₃: $\tau = 0.72/D$ (J = 8 Hz)/1 H; $\tau = 5.46/D/1$ H; $\tau = 6.16/S/3$ H; $\tau = 7.06/S/6$ H] is converted when heated at 60 °C in CHCl₃ into the isomeric methyl trans-3-(dimethylamino)acrylate (4), R = OCH₃ [57 % yield, m.p. 46-47 °C, λ_{max} in CH₂Cl₂: 278 nm, log $\varepsilon = 4.28$, NMR in CDCl₃: $\tau = 2.57/D$ (J = 13 Hz)/1 H; $\tau = 5.50/D/1$ H; $\tau = 6.35/S/3$ H; $\tau = 7.09/S/6$ H], the constitution of which was verified by comparison with (4), R = OCH₃, prepared from methyl propiolate and dimethylamine.

The new rearrangement of 3-aminopropenal derivatives (2) evidently proceeds with high stereoselectivity; a four-membered ring intermediate or a corresponding transition state is probably involved. The configuration of the aldehyde (2), which is important for the elucidation of the mechanism^[71], cannot be established from the above results. We are now proceeding with the further study of this reaction.

Received: January 15, 1968 [Z 713b IE] German version: Angew. Chem. 80, 444 (1968) Publication delayed at the authors' request

Institut für Organische Chemie der Technischen Hochschule 61 Darmstadt, Schlossgartenstr. 2 (Germany)

[**] M. N. is grateful to the Schweizerische Stiftung für Stipendien auf dem Gebiete der Chemie for a grant. We thank Fräulein M. Ruppert for her skilful experimental assistance.

[1] The aldehyde (2), R = Cl, can be obtained in the impure state by careful working-up [UV in CH₂Cl₂: $\lambda_{max} = 297$ nm; NMR in CDCl₃: $\tau = 0.45/D/1$ H and $\tau = 4.80/D$ (J = 7 Hz)/1 H; $\tau = 6.81/S/6$ H].

[2] Purity checked by NMR spectra.

[3] Similarly, the addition of HCl to 3-(*N*-methylanilino)prop-2-yn-1-al (NMR in CDCl₃: $\tau = 0.73/S/1$ H; τ approx. 2.75/M/5 H; $\tau = 6.62/S/3$ H; IR in CCl₄: $v_{C \equiv C} = 2170$ cm⁻¹) leads by rearrangement to *trans*-3-chloro-*N*-methylacrylanilide [NMR in CDCl₃: $\tau = 2.3-2.9/M/6$ H, including $\tau = 2.64/D/(J = 13 \text{ Hz})$; $\tau = 3.78/D$ (J = 13 Hz)/1 H; $\tau = 6.63/S/3$ H].

[4] For coupling constants of similar compounds, cf. E. Winterfeldt and H. Preuss, Chem. Ber. 99, 450 (1966).

[5] Since the reaction rate in dilute equimolar solutions is too slow, the reactions was carried out in the corresponding alcohol. [6] According to the NMR spectra, the adducts (2), $R = N(C_2H_5)_{2}$, OCH₃, OC₂H₅, are formed with a stereoselectivity of about 90 %.

[7] For the steric course of additions to $C \equiv C$ bonds, cf. R. Huisgen, B. Giese, and H. Huber, Tetrahedron Letters 1967, 1883 (further references cited); E. Winterfeldt, Angew. Chem. 79, 389 (1967) (further references cited); Angew. Chem. internat. Edit. 6, 423 (1967).

Preparation of 2,4,6-Tri-tert-butylpyrylium Tetrafluoroborate, 2,4,6-Tri-tert-butylpyridine, and 2,4,6-Tri-tert-butylphosphorin

By K. Dimroth and W. Mach^[*]

Pyrylium salts substituted by *tert*-butyl groups in the 2,4,6-positions have not previously been known. The synthesis of such a salt, which we describe here, made possible the prepa-

Hafner, Klaus: A New Rearrangement of Substituted 3-Aminopropenals aus Angewandte Chemie international Edition 7, Jahrgang 1968, Nr. 6 Copyright © 1968 Wiley by Verlag Chemie, GmbH, Germany

^[*] Dr. M. Neuenschwander and Prof. Dr. K. Hafner