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Abstract: In recent years, shell model studies have significantly contributed in improving the nuclear
input, required in simulations of the dynamics of astrophysical objects and their associated nucleosyn-
thesis. This review highlights a few examples such as electron capture rates and neutrino-nucleus
cross sections, important for the evolution and nucleosynthesis of supernovae. For simulations
of rapid neutron-capture (r-process) nucleosynthesis, shell model studies have contributed to an
improved understanding of half lives of neutron-rich nuclei with magic neutron numbers and of the
nuclear level densities and γ-strength functions that are both relevant for neutron capture rates.

Keywords: shell model; core-collapse supernova; r-process nucleosynthesis; neutrino–nucleus reac-
tions; electron capture

1. Introduction

The interacting shell model, which takes in account correlations beyond mean field in
a valence space, is generally considered as the method of choice to describe medium-mass
nuclei [1–3]. Such nuclei play crucial roles for the dynamics of astrophysical objects and
their associated nucleosynthesis. Unfortunately, a direct experimental determination of
the required input is often prohibited due to the extreme conditions of the astrophysical
environment in terms of temperature, density and also proton-to-neutron ratio; hence,
the information has to be modeled. Here, the shell model has led to decisive progress in
many cases in recent years, mainly due to its ability to account for the relevant correlations
among nucleons and to accurately reproduce low-energy spectra and electromagnetic
transitions [2,4,5].

This paper summarizes some of the progress achieved on the basis of shell model
studies. Here, two different versions of the interacting shell model have been exploited: the
diagonalization shell model [2] and the Shell Model Monte Carlo (SMMC) approach [6,7].
Diagonalization shell model calculations, which in contrast to SMMC allow for detailed
spectroscopy, have been performed to derive rates for weak interaction processes of nuclei
up to the iron-nickel mass range [8–11]. In particular, the shell model rates for electron
captures on nuclei have significant impact on the presupernova core evolution of massive
stars [12,13], the core evolution at the end of the hydrostatic evolution of medium-mass
stars [11,14,15] and on the nucleosynthesis in thermonuclear supernovae [16].

The SMMC approach is based on a statistical description of the nucleus at finite
temperature. In contrast to diagonalization, the shell model allows the derivation of
nuclear properties at finite temperatures in extremely large model spaces by taking the
relevant nuclear correlations into account [6,7]. SMMC has been the basis for deriving
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electron capture rates for heavier neutron-rich nuclei for which cross-shell correlations are
essential in establishing the capture on nuclei as the main weak interaction process for the
dynamics of the core collapse of a massive star [17–19].

Both varieties of the interacting shell model have improved the nuclear input required
for simulations of rapid neutron-capture (r-process) nucleosynthesis. Diagonal shell model
calculations have been used to derive half lives for neutron-rich nuclei with magic neutron
numbers (called waiting points), which are crucial for the mass flow during the nucleosyn-
thesis process [20–22]. Shell model calculations have also been used to study the general
behavior of electromagnetic transitions, which are essential for modeling neutron capture
rates, where an experimentally observed increase in the dipole’s strength function at low
energies has drawn attention recently [23,24]. The nuclear level density is another impor-
tant ingredient in modeling neutron capture rates. Here, SMMC calculations have allowed
a microscopic derivation of level densities, also allowing the exploration of parameter
dependencies, used in phenomenological approachesl (see, e.g., [25,26]) .

2. Weak Interaction Processes in Supernovae

A massive star ends its life in a supernova explosion triggered by the gravitational
collapse of its inner core that is no longer supported by energy released in charged-particle
reactions [19,27]. Electron captures on nuclei have three important consequences during the
collapse [4,28]: (i) electron captures reduce the number of electrons and hence the pressure
with which the degenerate (relativistic) electron gas counteracts against the gravitational
contraction; (ii) the neutrinos, generated by the capture process, leave the star mainly
unhindered, carrying away energy and keeping the entropy in the core low such that heavy
nuclei survive during collapse; (iii) electron capture changes a proton in the nucleus into a
neutron, driving the core composition to be a more neutron-rich (and heavier) nuclei. In
the late stage of the collapse, coherent scattering with nuclei and inelastic scattering with
electrons are responsible for neutrinos becoming trapped and thermalized in what is called
the homologous core [27]. Other neutrino–nucleus interactions are of minor importance
during collapse; however, they play a role in the nucleosynthesis processes following
supernova explosions and for the detection of supernova neutrinos.

2.1. Electron Capture on Nuclei

At the stellar conditions early in the collapse at which the core composition (described
by nuclear statistical equilibrium) is dominated by nuclei from the iron-nickel mass range
(p f -shell nuclei), electron capture is dominated by Gamow-Teller (GT+) transitions. The
subscript refers to the isospin component in the GT operator such that in GT+ transitions a
proton is changed into a neutron, in GT− transitions, which are relevant for β− decay of
nuclei with neutron excess, a neutron is changed into a proton, and the GT0 strength, im-
portant for describing low-energy inelastic neutrino-nucleus scattering, refers to transitions
between proton states and neutron states. It is now possible to derive converged low-energy
spectra and transitions of p f -shell nuclei in the respective model space [2]. In fact, it turned
out that, in addition to a constant renormalization of the Gamow–Teller operator [29,30],
such highly correlated wave functions are required to describe the strong fragmentation
and total value of GT+ strength [31], as experimentally determined by charge-exchange
experiments [32,33].

The formalism for the calculation of electron capture rates has been introduced in
ref. [34,35]. Note that the strong energy dependence of phase space as well as the fact that
the electron Fermi energy is of the same order as the Q-value (the energy difference between
initial and final nuclear states) of the abundant nuclei under presupernova conditions makes
a detailed and accurate description of the GT+ distribution an important requirement for a
reliable description of stellar electron capture during this phase of the collapse. That the
diagonalization shell model is up to this task and indeed the method of choice to describe
stellar weak-interaction rates during presupernova collapse has been demonstrated by
Cole and collaborators [36]. In [36], the capture rates, derived from experimental GT+ data
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for all p f -shell nuclei for which data exist, are compared with rates calculated within the
shell model using two different residual interactions. As shown in Figure 1, the agreement
is quite satisfactory at the conditions at which these nuclei are abundant and relevant for
the core dynamics. A tabulation of shell model capture rates for p f -shell nuclei has been
made available based on large-scale studies using a variation of the Strasbourg–Madrid
KB3 interaction [10]. More recent studies using an improved residual interaction basically
confirmed prior calculations. These studies led to slight improvements for selected mid-p f -
shell nuclei; see Figure 1.
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Figure 1. Comparison of electron captures rates, calculated from experimental GT+ data and distribu-
tions, derived from the large-scale shell model calculations with two different interactions (KB3G [37]
and GXPF1 [38]) and from a Quasiparticle Random Phase Approximation (QRPA) approach [36].
See text for details. The conditions correspond to the early stage of the collapse where the capture
rates are sensitive to details of the GT+ distribution. The shell model rates have been quenched with
typical factor of (0.74)2, as derived in [30]. ρYe and T denote the electron density and temperature,
respectively. KVI, UCSL and IUCF stay for the laboratories at which the experiments were performed.
Taken from [39] with permission.

Stars in the mass range of 8–12M� (M� denotes the Sun mass) received a lot of
attention recently as they fill the gap between low-mass stars, which end their lives as
white dwarfs and massive stars which, as discussed above, run through the full circle of
hydrostatic burning stages ending finally as core-collapse supernovae. The intermediate
mass stars are not massive enough to ignite all advanced hydrostatic burning stages and
instead degenerate ONe or ONeMg cores. Electron captures are crucial for the final fate of
the stars, where the most abundant nuclei, 24Mg and 20Ne, are of key importance together
with selected Urca pairs, which reduce the temperature of the core. Shell model rates
for sd-shell nuclei exist since several years [8]. The important capture rate on 24Mg has
been recently updated, mainly due to improved experimental data [11]. The capture rate
on 20Ne has also been updated with, however, two remarkable highlights. First, it has
been pointed out that the rate at the relevant astrophysical conditions could be decisively
altered due to the influence of the second forbidden transition between the 20Ne and 20F
ground states [11]. Such a situation is a novum, as the electron capture process is usually
dominated by permitted transitions and (first) forbidden transitions are contributed only in
high-temperature, high-density environments. The transition was very recently measured
in a dedicated experiment [15], and it was indeed confirmed that it increases the capture
rate in the astrophysically relevant range by orders of magnitude (Figure 2). The measured
transition strength also agrees with the value calculated within the shell model [40]. Sec-
ondly, the electron capture rate on 20Ne at the astrophysical conditions, relevant for the core
evolution of intermediate-mass stars, is now completely determined experimentally [15,40].
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The improved 20Ne electron capture rate has interesting consequences for the final core
evolution as the faster electron capture supports the ignition of oxygen burning at slightly
smaller densities and off-center. Simulations, exploiting the larger rate, indicate that some
intermediate-mass stars might explode as thermonuclear rather than electron capture su-
pernovae [40]. Final conclusions can, however, only been drawn after multidimensional
simulations of the core evolution with improved treatments of convection becoming avail-
able [41,42]. Other nuclei, for which the electron capture rates are dominated by second
forbidden transitions under astrophysical conditions, are 24Na and 27Al [43]. The latter is
expected to play a minor role on the evolution of ONeMg cores. The former may trigger
convectional instabilities that again require multidimensional modeling.
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Figure 2. Electron capture (ec) rate for 20Ne as function of density and for a specific temperature
(log T[K] = 8.6) relevant for the core evolution of intermediate-mass stars. The rate is broken down
to the individual state-by-state contributions. In the density regime, particularly relevant for core
evolution, the rate is dominated by the second-forbidden ground-state-to-ground-state transition. The
rates labeled ’Takahara et al.’ are derived from allowed transitions calculated in the shell model [44].
Taken from [11].

In the later stage of the collapse of massive stars, the nuclei present in the core compo-
sition become heavier and more neutron-rich. The appropriate model space to describe
electron capture for such nuclei is too large (requiring two major shells) to allow for shell
model diagonalization calculations. The calculations are then based on the SMMC variant
of the shell model [7], which allows the determination of nuclear properties at finite tem-
peratures and in large multi-shell model spaces taking the relevant nuclear correlations into
account. Such correlations are particularly important for nuclei with proton number below
and neutron number, N, above an oscillator shell closure (such as N = 40). In such states,
GT+ transitions would be completely blocked by the Pauli principle in the Independent
Particle Model (IPM) [45] suppressing electron capture on nuclei drastically. However, it
has been shown in [17,46] that nuclear correlations induced by the residual interaction
move nucleons across the shell gap, enabling GT+ transitions and making electron capture
on nuclei the dominating weak interaction process during collapse [17,47]. Let us add two
remarks. The unblocking of the GT+ strength across the N = 40 shell closure has been
experimentally confirmed for 76Se (with 34 protons and 42 neutrons) [48], in agreement
with shell model studies [49]. Furthermore, shell model studies certainly show that the
description of cross-shell correlations is a rather slowly converging process that requires
the consideration of multi-particle multi-hole configurations [49–51].
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Recently, it has been pointed out that the N = 50 shell closure could serve as a
severe obstacle for electron capture on the very neutron-rich nuclei encountered in the later
stage of the collapse [52]. This finding was apparently confirmed by measurements of the
GT+ strength in the N = 50 nuclei 86Kr and 88Se, which showed basically the vanishing
strength for the ground state [53,54]. However, the situation is decisively different at the
high temperaures (about 1 MeV) present in the collapsing core when N = 50 nuclei are
abundantly present. Here, thermal excitations mix orbitals across the shell gap and unblock
the GT transitions in this way. This was confirmed in two independent calculations for
neutron-rich N = 50 nuclei using a thermal Quasiparticle Random Phase Approximation
(QRPA) approach [55,56], in agreement with the earlier results obtained within the SMMC
studies [17,57].

Based on the diagonalization shell model and the SMMC results and assuming a
nuclear statistical equilibrium distribution for the composition, electron capture rates have
been tabulated for the range of astrophysical conditions encountered during collapse of
massive stars [57]. These rates consider potential screening effects of the astrophysical
surroundings. The rate tabulation of Ref. [57] is now incorporated in many of the leading
supernova simulation codes. It turns out that the rates have significant impact on collapse
simulations. In the presupernova phase (ρ < 1010 g/cm3), the captures proceed slower than
assumed before, and for a short period during silicon burning, β-decays can compete [12,13].
As a consequence, the core is cooler, more massive and less neutron rich before the final
collapse. However, for a long time simulations of this final collapse assumed that electron
captures on nuclei are prohibited by the Pauli blocking mechanism, as mentioned above
(see, e.g., [27]). However, based on the SMMC calculations, it has been shown in [17] that
capture on nuclei dominates over capture on free protons. The changes compared to the
previous simulations are significant [17–19]. Importantly, the shock is now created at a
smaller radius with more infalling material to traverse, but the density, temperature and
entropy profiles are also strongly modified [18].

Finally, let us note that the shell model electron capture rates [10,58], which are notice-
ably slower than the pioneering rates of Fuller et al. (FFN) for p f -shell nuclei [34], have
important consequences in nucleosynthesis studies for thermonuclear (type Ia) supernovae
assuming the single-degenerate scenario as they result in a smaller reduction in the electron-
to-nucleon ratio being the burning front [16]. As a consequence, very neutron-rich nuclei
such as 50Ti and 54Cr are significantly suppressed compared to calculations, which use FFN
rates [59]. In fact, in calculations using the shell-model rates, no nuclide is significantly
overproduced compared to solar abundances [16].

2.2. Neutrino–Nucleus Scattering

At sufficiently high densities (ρ > 4× 1011 g cm−3), neutrinos become trapped and
thermalized in the collapsing core by coherent scattering on nuclei and inelastic scattering
on electrons. It had been suggested that de-excitation of thermally excited nuclei by
neutrino pair emission [60] and inelastic neutrino–nucleus scattering [61] might be other
modes contributing to neutrino thermalization. Although both processes have been found
as rather unimportant cooling mechanisms [47,62], they have interesting impacts elsewhere.
Neutrino pair emission has been identified as the major source of neutrino types other
than electron neutrinos (produced overwhelmingly by electron capture) [47]. As the
consequences of inelastic neutrino scattering are based on shell model calculations, the
latter are briefly summarized. The formalism for the calculation of neutrino-nucleus
reactions has been introduced in Ref. [63].

Supernova neutrinos have rather low energies (of order 10 MeV). Therefore, inelastic
neutrino scattering of such neutrinos is dominated by allowed GT0 transitions. Unfortu-
nately, no data about inelastic neutrino scattering on nuclei exist at such energies. Due to
its success in describing GT+ (and GT−) distributions, one can expect that the shell model
will also reproduce the GT0 component quite well. Nevertheless, a validation of the shell
model approach to inelastic neutrino-nucleus scattering is desired. This can be achieved by



Physics 2022, 4 682

exploiting the fact that the GT0 strength is, in a rather good approximation, proportional to
the M1 strength of spherical nuclei [64]. In fact, precision M1 data, obtained by inelastic
electron scattering for such nuclei, are well reproduced by shell model calculations [64,65].
The same approaches can also be used to derive GT0 distributions for excited nuclear states,
which can be thermally populated at finite supernova conditions [64,66]. At higher neutrino
energies, forbidden transitions also contribute to the inelastic scattering cross section, which
has been derived by RPA calculations. Supernova simulations that incorporate inelastic
neutrino–nucleus scattering indicate that this mode has a noticeable effect on the early
neutrino spectra emitted from supernova [62]. Here, nuclei act as obstacles for high-energy
neutrinos which are down scattered in energy. This reduces significantly the tail of the
neutrino spectra and, hence, also the predicted event rates for the observation of supernova
neutrinos by earthbound detectors [62].

Charged-current and neutral-current neutrino–nucleus reactions are key to a specific
nucleosynthesis process (called neutrino nucleosynthesis [67]), which are initiated by neu-
trinos emitted after core bounce in the supernova. Upon passing through the outer layers of
the star, these neutrinos excite nuclei above particle thresholds so that the subsequent decay
is by particle emission (mainly of protons or neutrons). Neutrino nucleosynthesis has been
identified as the main or a strong source for the production of selected isotopes, 11B and
19F, from charged- and neutral-current reactions on the abundant isotopes 12C and 20Ne;
138La and 180Ta mainly by charged-current reactions on Ba and Ta isotopes, which had been
previously been produced by the slow neutron-capture process (s-process) [67–71]. The
partial neutrino–nucleus cross sections have been obtained by combining shell-model or
RPA excitation functions with statistical model decay probabilities [72–74]. A particular in-
terest in neutrino nucleosynthesis arises from the fact that the abundances of the produced
nuclides depend on the spectra of those neutrino types (νµ, ντ and their antiparticles and
νe), which have likely not been observed from supernova 1987A.

In principle, neutrino–nucleus reactions also play a role in the νp process that operates
in the neutrino-driven wind during cooling of the newborn proton–neutron star [75–77].
Simulations, however, show that the main neutrino reaction is the absorption of ν̄e on
protons that produce a continuous source of free neutrons, which drives the process and
allows mass flow through long-lived waiting points such as 64Ge. The νp process is
discussed as a potential source of isotopes such as 92Nb and 94,96Ru.

3. r-Process Nucleosynthesis

The r-process is the astrophysical origin of about half of the elements heavier than
iron [78]. It occurs in an astrophysical environment with extreme neutron densities [79,80].
The r-process site has been a mystery for a long time until the observation of the neutron star
merger event GW170817 by gravitational waves and its associated electromagnetic signal
proved that heavy elements are produced by neutron star mergers [81,82]. The observed
electromagnetic transient, called “kilonova,” agreed well with prior predictions [83].

r-process simulations show that the reaction path in the nuclear chart runs through
nuclei with such large neutron excesses that most of them have yet not been made in the
laboratory and their properties have to be modeled. The relevant nuclear properties are
masses, half lives, fission rates and yields and neutron capture rates [80]. Shell model
calculations improved the determination of half lives for the nuclei with magic neutron
numbers, which with their relatively long half-lives, act as obstacles in the r-process flow.
They have also demonstrated new methods to calculate electromagnetic strength functions
and nuclear level densities, which are both required to calculate neutron capture rates
within the framework of the statistical model. For a very recent review of the various
astronomical, astrophysical, nuclear, and atomic aspects of r-process nucleosynthesis; see
Ref. [84].

r-Process nucleosynthesis proceeds by successive neutron captures and beta decays,
which increase the mass and charge numbers, respectively. Nuclear half lives decide the
time required to produce the heaviest elements, beginning from free protons and neutrons
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that exist in the hot environment of merging neutron stars before matter is ejected and
cooled allowing nuclei to form. Hence, nuclear beta decays compete with the time scales
of the dynamical evolution of the ejected matter. There has been important progress
made by measuring the half lives of some intermediate-mass nuclei on the r-process
path [85,86]. However, most half lives still have to be modeled. Global sets of r-process
half lives have been determined by QRPA calculations on the basis of phenomenological
parametrizations [87,88] and more recently of microscopic Hartree-Fock-Bogoliubov (HFB)
or density functional approaches [89–93].

Particularly important for the r-process mass flow are the waiting point nuclei at the
magic neutron numbers N = 50, 82 and 126, which have rather long half lives due to their
closed-shell configurations. For these nuclei, large-scale shell model calculations exist.
Importantly, a few of these half lives could also been measured, showing good agreement
with the shell model results: for 78Ni, an experiment done at the National Superconducting
Cyclotron Laboratory (NSCL) experiment found a half life of 110± 40 ms [94], while the
shell model predicted 127 ms [4]. Data and shell model results for the N = 82 waiting
points are compared in Figure 3. Unfortunately, no data exist yet for N = 126 waiting
points. For these nuclei, two independent shell model calculations have pointed to the
importance of forbidden transitions induced by intruder states [21,22]. These forbidden
transitions are predicted to shorten the half lives of the N = 126 waiting points noticeably
and enhanced the mass flow through these waiting points [95]. This implies more r-process
material available for fission, thus affecting the abundances of the second r-process peak
around atomic mass number, A = 130, which for very neutron-rich ejecta is built up by
fission yields [95,96]. The enhanced mass flow also increase late-time α-decays from the
decaying r-process matter, which influence the kilonova signal [97].
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Figure 3. Comparison of shell model half lives for neutron number N = 82 r-process (rapid neutron-
capture process) waiting point nuclei with data [86,98–100]. The GT strengths underlying the shell
model results have been quenched with the standard factor of (0.74)2 [30]. Taken from [84].

Neutron capture rates become relevant for r-process nucleosynthesis once the process
drops out of (n, γ) � (γ, n) equilibrium at temperatures below about 1 GK. Neutron
capture rates are traditionally derived within the statistical Hauser–Feshbach model, al-
though this approach might not always be justified for r-process nuclei; see discussion and
references in [84]. Important ingredients in the Hauser–Feshbach approach are the nuclear
level densities and the γ-strength functions [80]. Shell model calculations have provided a
better understanding of both quantities.
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A method has been presented to derive level densities within the SMMC approach
by exploiting its ability to describe nuclei in extremely large model spaces and to account
for the correlations among nucleons [25,26]. The method has been used to explore the
effects of parity, angular-momentum and pairing on the level density [101–103]. Based
on SMMC studies, Alhassid et al. [104] presented an approach in which a microscopically
derived parity-dependence is incorporated into phenomenological level density formulas.
This approach has been used to derive a large set of r-process nuclei by also employing a
temperature-dependent parametrization of the pairing parameter modeled after SMMC
calculations [105]. These improved level densities are now part of statistical model pack-
ages NON-SMOKER and SMARAGD, developed by Rauscher [106–108]. An alternative
microscopic approach to level densities, built on the HFB model, has been derived by
Goriely and collaborators [109–111].

Experimentally determined dipole γ-strength functions show an upbend of the strength
towards low gamma energies [112,113], which can have important impacts on neutron
capture rates [23,24,113–116]. The upbend in the M1 strength has been studied and re-
produced in shell model calculations for p f -shell and heavier nuclei [117,118]. Similar
studies have been used to calculate the M1 contribution to the neutron capture rate in a
consistent state-by-state approach [119]. This study found that the rate will be dominated
by a single resonance if this state happens to fall into the Gamow window of the reaction.
Such a situation is difficult to describe within a statistical approach. The calculation also
shows that the M1 scissors mode observed in deformed nuclei [120] can lead to a significant
enhancement of the capture rate.

4. Summary

Due to the extreme densities, temperatures or neutron excesses encountered in astro-
physical environments, the properties of nuclei cannot be measured directly in a laboratory
and have to be modeled. If these properties are strongly influenced by nucleon correlations,
the diagonalization shell model is the method of choice. In recent years, such studies have
been performed to derive the electron capture rates and neutrino-induced cross sections
for nuclei in the sd- and p f -shell advancing our understanding of the core evolution of
intermediate-mass and massive stars. Another important application of the diagonalization
shell model was the calculation of half-lives for rapid neutron-capture process (r-process)
nuclei with magic neutron numbers, which serve as waiting points for the r-process’ mass
flow. This example also shows the limitation of current shell model applications as such
studies would be also very desirable for the other nuclei on the r-process path, but cannot
be performed yet as the required model spaces exceed current computational possibili-
ties. These limitations in model space can be overcome within the Shell Model Monte
Carlo (SMMC) approach, which is an alternative formulation of the shell model. This
approach describes nuclear properties at finite temperature, but is not capable of detailed
spectroscopy. Thus, the SMMC cannot be used to calculate r-process half-lives, which
need a state-by-state description of transition strength. However, the ability of the SMMC
approach to describe nuclear properties at finite temperatures including correlations paves
the way to determine electron capture rates of heavier nuclei, which are crucial for the fate
of core-collapse supernovae. In particular, SMMC allows the evaluation of how the Pauli
blocking of Gamow–Teller strength at closed shells is overcome by correlations. On the
basis of these studies, it could be demonstrated that neither N = 40 nor N = 50 neutron
shell closure serve as severe obstacles for electron capture on nuclei. It is now commonly
accepted that electron capture proceeds on nuclei throughout the entire collapse.
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