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Abstract: Locating bearing track rollers are used, for example, in monorail transport systems to
enable relative movement between the rail and the shuttle. Due to the two-point contact, both radial
and axial forces can be transmitted simultaneously. Since friction is involved, the state of the art does
not provide any calculation rules for the dimensioning and design. The development of a calculation
model with sophisticated commercial software brings its difficulties since no plausibility check is
possible using existing models. For this reason, a model based on analytical descriptions including
the Hertzian and the elastic half space theories is presented in this paper. It bridges the gap between
very simple approaches and widely developed commercial software. With this model, the contact
forces, friction forces, surface tensions, relative velocities and subsurface stresses can be calculated
for both free and driven rolling. The main advantages are that the model is easy to apply, and thus
comparisons between different track roller designs can be made quickly.

Keywords: contact simulation; track rollers; open-source; hertzian contact; elastic half space;
contact mechanics

1. Introduction

Locating bearing track roller guidance systems are used, for example, in monorail
transport systems. Due to the essential requirements for the systems, no additional lubricant
can be used for the guideways. From a contact mechanics point of view, this is therefore a
problem that requires tangential surface stresses to be taken into account [1]. The current
state of research on the design of locating bearing track roller guidance systems [2,3] does
not offer any satisfactory calculation options for this; thus, the author has already described
the problem in an initial paper [4] and then presented a proposal for a static model that takes
friction into account [5]. In the design phase, it is very important to support decisions with
calculation models [6]. However, only very advanced commercial software can currently
be used for this purpose.

For contact mechanics calculation problems, the software CONTACT, which uses
Kalker’s theory [7], is particularly suitable [8]. Although such contact mechanics problems
can also be solved using finite element methods (FEM), FEM approaches will not be consid-
ered further within the scope of this article because of their very high computing times.

The application of CONTACT to the machine element of the fixed bearing track roller
requires some effort. First of all, the 2D contour geometry of the bodies must be derived
from the CAD (computer-aided design) models in order to use it as an input for the
calculation. For each geometry change, new contour geometries have to be derived [9].
Rapid changes to the geometry are therefore hardly applicable for the calculation, making
it difficult to carry out parameter studies during the design phase.

With commercial software, the calculation process is often not visible and therefore not
comprehensible. Therefore, a solution of the problem using contact mechanics modeling
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in combination with an open-source code is considered useful. In order to provide some
plausibility to the calculated results, the gap between simple models and highly developed
software must be closed by a scientifically developed, comprehensible model.

In this paper, a simulation model is presented that calculates the surface and material
stresses of a continuously rolling track roller. The model is presented using the example
of a selected locating bearing track roller guide (Figure 1, right), whose most important
geometrical quantities are shown in Table 1. The model covers both free rolling and driven
rolling and is valid for Hertzian contacts with a high proportion of spin.
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Table 1. Parameter and values of the selected example. 

Parameter 
𝑨𝐓 

(mm)  
𝒓𝐂,𝐓𝐑 
(mm) 

𝒓𝐂𝐮𝐫𝐯𝐞 
(mm) 

𝒓𝐂,𝐆 
(mm) 

𝜶 
(°) 

E 
(Nmm) 

𝝂 
(-) 

𝑭𝐫𝐚𝐝 
(N) 

𝑭𝐚𝐱 
(N) 

𝑭𝐌𝐨𝐭𝐨𝐫 (N) 
Free  

Rolling 
Driven 
Rolling 

Value 21.75 7 220 6 30 210,000 0.33 200 30 0 −30 

The simulation model can be used to calculate both straight and curved sections of 
the guideway. The radius 𝑟େ୳୰୴ୣ indicates the radius of the curvature of the guideway 
relative to the center of the contour. A distinction between the inner and outer wheel is 
necessary. 
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The presented project (available at: https://github.com/janwenzel/Dynamic-Contact-

Simulation-for-Locating-Bearing-Track-Rollers, accessed on 10 June 2022, supplementary 
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project is written in Python. The most important functions used are listed in the individual 
sections of this article and can be viewed in the repository. The documentation of the 
individual functions is openly accessible via the websites of the toolkits. 

The calculation of the subsurface stresses is performed with the elastic half space 
theory. The contact area is calculated according to the Hertzian theory [10,11]. The 
Hertzian pressure describes the normal stress distribution at the contact of two bodies of 
constant radii of curvature. Such contact always results in an elliptical contact surface. In 
the track roller guidance system used here, constant radii of curvature are present in the 
contacts, which is why Hertzian theory can be applied. The contact kinematics are derived 
on the basis of roller and guideway geometry following the procedure of Birkhofer [12]. 

Figure 1. Use of a locating bearing track roller in a monorail transport system; Photo: HA Hessen
Agentur GmbH—Jan Michael Hosan.

Table 1. Parameter and values of the selected example.

Parameter AT
(mm)

rC,TR
(mm)

rCurve
(mm)

rC,G
(mm)

α

(◦)
E

(Nmm)
ν

(-)
Frad

(mm)
Fax

(mm)

FMotor (N)

Free
Rolling

Driven
Rolling

Value 21.75 7 220 6 30 210,000 0.33 200 30 0 −30

The simulation model can be used to calculate both straight and curved sections of the
guideway. The radius rCurve indicates the radius of the curvature of the guideway relative
to the center of the contour. A distinction between the inner and outer wheel is necessary.

2. Materials and Methods

The presented project (available at: https://github.com/janwenzel/Dynamic-Contact-
Simulation-for-Locating-Bearing-Track-Rollers, accessed on 10 June 2022, Supplementary
Materials) is a simulation model based on known theories of contact mechanics. The entire
project is written in Python. The most important functions used are listed in the individual
sections of this article and can be viewed in the repository. The documentation of the
individual functions is openly accessible via the websites of the toolkits.

The calculation of the subsurface stresses is performed with the elastic half space
theory. The contact area is calculated according to the Hertzian theory [10,11]. The Hertzian
pressure describes the normal stress distribution at the contact of two bodies of constant
radii of curvature. Such contact always results in an elliptical contact surface. In the track
roller guidance system used here, constant radii of curvature are present in the contacts,
which is why Hertzian theory can be applied. The contact kinematics are derived on the
basis of roller and guideway geometry following the procedure of Birkhofer [12].

Additionally, as a post processing step, the Wöhler curve, as described in DIN50100 [13],
is used to establish a relationship between stress and duration until damage is reached.

A material database script can be used to retrieve and edit material parameters and to
add new materials.

https://github.com/janwenzel/Dynamic-Contact-Simulation-for-Locating-Bearing-Track-Rollers
https://github.com/janwenzel/Dynamic-Contact-Simulation-for-Locating-Bearing-Track-Rollers
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2.1. Calculation of the Subsurface Stresses

For the calculation of the stresses below the surface, the model of the elastic half-space,
as described by Johnson [14] is chosen. In this paper the further modified formulation by
Nikas [15] is used. Figure 2 shows the relationship between surface boundary conditions
and any point below the surface.
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Figure 2. Principles of the subsurface stress calculation, in accordance with [14].

Here C is any point within the contact zone S at which the traction vector (qx, qy, qz)
acts. The goal is to obtain the stresses at any point A below the surface. According to [15]
the potential functions are formulated as follows

Qi =
x

qi(ξ, η)Ωdξdη, (i = x, y, z) (1)

Thereby Ω is
Ω = z·ln(ρ + z)− ρ (2)

The vector ρ is formulated as follows

ρ =

√
(ξ − x)2 + (η − y)2 + z2 (3)

The calculation of the stresses is only given here as an example for the normal stresses

σi =
E

1 + ν

[
ν

1− 2ν

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

)
+

∂ui
∂i

]
, (i = x, y, z) (4)

The displacements are also again listed for only one component. The other formula-
tions can be taken from [10] as well as from the source code

ux =
1 + ν

2πE

[
2

∂2Qx

∂z2 −
∂2Qz

∂x∂z
+ 2ν

(
∂2Qx

∂x2 +
∂2Qy

∂x∂y
+

∂2Qz

∂x∂z

)
− z

(
∂3Qx

∂x2∂z
+

∂3Qy

∂x∂y∂z
+

∂3Qz

∂x∂z2

)]
(5)

The equivalent stress is calculated according to Distortion Energy Hypothesis (DEH)
since Broszeit [16] was already able to show that this is more suitable than, for example,
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the Alternating Shear Stress Hypothesis when additional shear stresses occur at the surface.
This approach was confirmed by Harris [17].

σDEH =

√
1
2

((
σx − σy

)2
+ (σz − σx)

2 +
(
σy − σz

)2
+ 6
(

τ2
xy + τ2

xz + τ2
yz

))
(6)

The stresses underneath the surface will be calculated with the formulas as described.
The necessary deviations of Ω are calculated using the toolkit SymPy with the functions
diff and simplify and afterwards only the results are included in the calculation script. The
potential theory in the implemented form is applicable for arbitrary contact areas.

2.2. Description of the Boundary Conditions on the Contact Surface

The track roller is always in equilibrium of the applied forces and torques. In the
model presented here, only stationary rolling is considered, which is why the inertia forces
in the force and torque equilibria can be neglected.

2.2.1. Force and Torque Equilibria

Figure 3 shows all forces and torques acting on the roller, always pointing in the
direction of the positive coordinate axes. The coordinate systems are shown in Figure 4.
The aim of the calculation model presented here is to determine the stresses, forces and
frictional torques acting in the two contacts for given forces on the roller axis.
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The radial force Frad, axial force Fax and motor force FMotor are specified here. These
external loads cause the tangential forces FT1 and FT2 perpendicular to the running direction
and the driving forces FA1 and FA2 parallel to the running direction. In addition, the
frictional torques MR1 and MR2 in the contact surfaces, the torque about the rolling axis
MxR and the tilting torques MyR

and MzR are caused. Furthermore, the lever arms hN and
hT are required to establish the torque equilibria.

First, the equilibria of forces are described

cos(α)·(FT1 + FT2) + sin(α)·(FN1 − FN2) = −Fax (7)

FA1 + FA2 = −FMotor (8)

sin(α)·(−FT1 + FT2) + cos(α)·(FN1 + FN2) = −Frad (9)

Subsequently, the description of the torque equilibria takes place

(MR1 −MR2)· sin(α) + (FA1 + FA2)·rA = MxR (10)

hN·(FN1 − FN2) + hT·(FT1 + FT2) = MyR (11)

(MR1 + MR2)· cos(α) + (FA1 − FA2)·rA· sin(α) = −MzR (12)

The following applies to the lever arms

hN = AT· sin(α) (13)

hT = AT· cos(α)− rC,G (14)

2.2.2. Relative Motion of the Contact Area

To describe the relative velocity in the contact area, two assumptions must be made
in advance:

• Due to the high proportion of spin slip, no distinction is made between adhesive
and sliding areas. Complete sliding in the entire contact area without micro-slip
components is assumed.

• In addition, it is assumed that the contact area occurs in the undeformed guide surface.
The assumption is therefore made of an ideally hard guide and a relatively soft
track roller.

To describe the kinematics, and also for the later presentation of the results, the
coordinate systems are first defined (Figure 4, left). The R coordinate system (R-COS) is
located on the central roller axis in the symmetry plane of the roller. The C coordinate
systems (C-COS) are located in the center of each contact surface. The C1 coordinate system
(C1-COS) is located in the positive xR direction.

The relative velocities in contact are determined on the basis of the geometrically-
induced drilling and rolling slip components. The decomposition of the angular velocities
is shown in Figure 4, right.

The angular velocity is first formulated as a vector in R-COS

→
ω

R
Roll =

−ωr
0
0

 (15)

The same applies to the radius

→
r

R
Guideway =

 xR
yR√

r2
C,G − x2

R −AT

 (16)
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Thus, the velocity of the contact point in the R-COS can be described

→
v

R
Roll =

→
ω

R
Roll ×

→
r

R
Guideway =

 0
ωr·
(√

rC,G
2 − xR

2 −AT

)
−ωr·yR

a (17)

The velocity of the contact point in the C-COS is obtained by rotation around the
yR axis

→
v

C
Roll =

 sin(α) ·ωr · yR

ωr ·
(√

rC,G
2 − xR

2 −AT

)
− cos(α) ·ωr · yR

 (18)

To be able to determine the relative velocity, the velocity of the guide in the C-COS
must first be described

→
v

C
Guideway =

 0
ωr · (rC,G · cos(α)−AT)

0

x (19)

Thus the relative velocity can be calculated. Furthermore the R-coordinates are substi-
tuted by C coordinates

→
v

C
rel =

→
v

C
Roll −

→
v

C
Guideway =


sin(α) ·ωr · yC

ωr ·
(√

rC,G
2 − (xC · cos(α) + rC,G · sin(α))2 − rC,G · cos(α)

)
− cos(α) ·ωr · yC

 (20)

Comparisons with findings from the literature and comparative simulations have
shown that further assumptions have to be made about the location of the spin center point
in order to adjust the relative velocity distribution.

Since the contact surface is assumed to be an ideal plane, the relative velocities in the
z-direction have no effect on the stresses induced by friction. For this reason, the relative
velocity in z-direction is not considered further.

Assumption 1: Location of the Spin Center

As can be seen from the literature, the spin center point can be located inside or
outside the contact, depending on the load case. It is therefore not coupled to the contact
center point. According to Kalker’s PhD thesis [18], Lutz and Wernitz already made the
assumption that the spin center is located on the contact edge. In the left part of Figure 5 it
is schematically shown how the spin center point shifts depending on the load situation
in the contact area. The right part of Figure 5 also shows the shifted spin center and the
associated change in the theoretical rolling radius.
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with 

If −𝑎 ൏ 𝑥େ,଴ୱ୮୧୬ ൏ 𝑎:  𝑦େ,଴ୱ୮୧୬ = −𝑏 ∙ ට1 − ቀ௫ి,బ౩౦౟౤௔ ቁଶ
 

Else: 𝑦େ,଴ୱ୮୧୬ = 0 
(22) 

and 𝑥େଵ,଴ୱ୮୧୬ = −𝑥େଶ,଴ୱ୮୧୬ = 𝑟ୈୣ୪୲ୟ଴sin( α) (23)

The assumption improves the distributions of the relative motion and the shear 
stresses, but the distributions do not yet match the observations from comparative 
simulations. 

Assumption 2: Non-concentric Distribution of the Relative Motions in the Contact Area 
A second assumption ensures even more realistic stress distributions. Assumption 2 

was implemented purely on the basis of observations from finite element analysis 
(Abaqus) and calculations with a commercial contact mechanics software (CONTACT). 
This assumption is not known in the literature. Assumption 2 offers an empirically 
determined correction of the results. This correction was determined on the basis of the 
roller and guideway profiles used in this application. An application of assumption 2 to 
other contact geometries may therefore lead to errors. 

Assumption 2 states that the velocity distribution is not formed purely concentrically 
around the spin center. Instead, an additional influence of the contact coordinate 𝑥େ on 
the 𝑥-component of the relative velocity is assumed. 

Final description of the relative motion 

𝑣⃗୰ୣ୪,ଶେ (𝑥େ, 𝑦େ) = ቆ𝑣୰ୣ୪,௫ి(𝑥େ, 𝑦େ)𝑣୰ୣ୪,௬ి(𝑥େ, 𝑦େ)ቇ = ቌ sin(α) ⋅ 𝜔୰ ⋅ (𝑦େ − 𝒚𝐂,𝐝𝐞𝐥𝐭𝐚)𝜔୰ ቆටrେ,ୋଶ − ൫𝑥େ ⋅ cos(α) + 𝑟େ,ୋ ⋅ sin(α)൯ଶ − rେ,ୋ ⋅ cos(α) + 𝑥େ,଴ୱ୮୧୬ ⋅ sin(α)ቇቍ (24)

 

If 𝑥େ ൏ 𝑥େ,଴ୱ୮୧୬: 𝑦େ,ୢୣ୪୲ୟ = (௫ిା௔)௫ి,బ౩౦౟౤ା௔ ∙ 𝑦େ,଴ୱ୮୧୬ (25) 

Figure 5. Movement of the spin center and characteristics of the contact surface in plain view (left),
displacement of the spin center in the cross section (right).
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The displacement of the spin center can be formulated as follows

→
v

C
rel,1 =

 sin(α)·ωr·
(

yC − yC,0spin

)
ωr·
(√

rC,G
2 − (xC· cos(α) + rC,G − sin(α))2 − rC,G· cos(α) + xC,0spin·sin(α)

) (21)

with

If− a < xC,0spin < a : yC,0spin = −b·

√
1−

( xC,0spin

a

)2
Else : yC,0spin = 0 (22)

and
xC1,0spin = −xC2,0spin =

rDelta0
sin(α)

(23)

The assumption improves the distributions of the relative motion and the shear stresses, but the
distributions do not yet match the observations from comparative simulations.

Assumption 2: Non-concentric Distribution of the Relative Motions in the Contact Area
A second assumption ensures even more realistic stress distributions. Assumption 2 was

implemented purely on the basis of observations from finite element analysis (Abaqus) and calculations
with a commercial contact mechanics software (CONTACT). This assumption is not known in the
literature. Assumption 2 offers an empirically determined correction of the results. This correction
was determined on the basis of the roller and guideway profiles used in this application. An
application of assumption 2 to other contact geometries may therefore lead to errors.

Assumption 2 states that the velocity distribution is not formed purely concentrically around
the spin center. Instead, an additional influence of the contact coordinate xC on the x-component of
the relative velocity is assumed.

Final description of the relative motion

→
v

C
rel,2(xC, yC) =

(
vrel, xC (xC, yC)
vrel,yC (xC, yC)

)
=

 sin(α) ·ωr ·
(
yC − yC,delta

)
ωr

(√
rC,G

2 − (xC · cos(α) + rC,G · sin(α))2 − rC,G · cos(α) + xC,0spin · sin(α)
) (24)

If xC < xC,0spin: yC,delta =
(xC + a)

xC,0spin + a
·yC,0spinIf xC > xC,0spin: yC,delta =

(xC − a)
xC,0spin − a

·yC,0spinElse : yC,delta = 0 (25)

2.3. Stresses at the Contact Surface
The stress calculation is described below. The calculation of the pressure as described by

Hertz [10]

p(xC, yC) = qz(xC, yC) = pmax·
√

1−
( xC

a

)2
−
( yC

b

)2
(26)

Condition for the calculation of the shear stresses with the assumption of total slip in the contact
area, wherein µ is the coefficient of friction

τabs(xC, yC) = µ·p(xC, yC) (27)

The coefficient of friction could also be replaced by more advanced models since it is often slip-

velocity dependent µ(xC, yC) = f
(
→
v

C
rel,2(xC, yC)

)
[19]. However, this is currently not implemented.

The program structure has to be slightly modified for this since the friction coefficient must then be
determined iteratively.

Finally, for directional calculation of the surface tangential stresses, the relative velocity direc-
tions vrel,dir, xC and vrel,dir, yC are needed

vrel,dir, xC (xC, yC) =
vrel, xC (xC, yC)

||→v
C
rel,2(xC, yC) ||

(28)
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vrel,dir, yC (xC, yC) =
vrel, yC (xC, yC)

||→v
C
rel,2(xC, yC) ||

(29)

This leads to the tangential stresses within the contact zone

→
τ

C
=

(
τxC

τyC

)
=

(
qx
qy

)
=

(
−vrel,dir, xC (xC, yC)·τabs(xC, yC)
−vrel,dir,yC (xC, yC)·τabs(xC, yC)

)
(30)

With the help of the presented equations, the whole contact area can be described. These in turn
form the input variables for the subsurface stress calculation.

Calculation Procedure
The actual calculation of the surface parameters is performed by an optimization process. The

optimizer (Toolkit: SciPy, scipy.optimize.brentq) iterates until the zeros of the quantity to be optimized
are found. The drive torque is used for this purpose since it is uniquely specified. The difference
between the calculated drive torque MxRist and the specified drive torque MxRsoll must be zero

MxR,Delta = MxRist −MxRsoll (31)

The deviation rDelta0 of the actual rolling radius from the nominal rolling radius rA is used
as input variable for the optimization function. rDelta0 is, thus, the variable to be iterated. The
optimization iterations are stopped when the error MxR,Delta falls below a limit value.

3. Results
With the help of the presented calculation model, different results regarding the contact area

and the material stress can be generated. An exemplary output is shown in Figure 6. This can be seen
as a guide to the interpretation of the output graphs when using the actual program. The first output
is a multi-plot that contains the shear stress distributions of both contact patches and the relative
frictional energy distribution. Furthermore, in the tangential stress distribution, the spin center is
represented as a black point. In addition, the stress distributions below the surface are plotted in two
section planes.
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Figure 7 shows the equivalent stress distribution below the surface for a frictionless
(µ = 0.0001, µ cannot be set to 0 due to the formulation of the equations in the current program
version) condition. It can be seen that the stress maximum is below the surface, as expected. In
Figure 7 below, the same calculation has been carried out for increased friction. As already described
by Hamilton and Goodman [20] (only pure sliding in one direction), a shift in the stress field can be
detected due to the increased friction. For very small z values ( z→ 0 ), inaccuracies occur. Thus, it is
recommended to consider the values near the surface only qualitatively.
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Fax = 30 N, free rolling.

Since the calculation is performed numerically, a suitable discretization must be set. Higher
discretization leads to more accurate results and fewer jumps in the near-surface regions, but the
computation time increases. However, the differences below the surface are small, so a lower
discretization is sufficient for the regions far from the surface. Table 2 lists the differences between
a high and a low discretization. The equivalent stress value differs only marginally, while the
calculation duration for the low discretization is significantly lower.

Table 2. Discretization, Duration and Accuracy.

Parameter nxC
(-)

nx
(-)

ny
(-)

nz
(-)

tsim
(min)

σDEH,max
(MPa)

High 120 120 xn· ba 31 ≈ 40 389.7

Low 40 20 xn· ba 12 ≈ 2 389.8

Here, nxC is the discretization count on the surface, nx, ny and nz are the discretization counts
for the subsurface stress calculation; tsim is the calculation duration for the simulation and σDEH,max
is the maximum equivalent stress value.

The results show that the contact surface stresses as well as the subsurface stresses can be
calculated within an adequate time of approximately 2 min (Intel Core i5-6200U CPU 2.30 GHz).
Additionally, the influence of increased friction can be shown.

4. Discussion
For the discussion of the results, the simulation results from the presented project are compared

with an established software for the calculation of contact mechanical and tribological issues. CON-
TACT is used as the comparison software. The calculation is performed with the help of CONTACTs
Module 1 [9]. In contrast to the algorithm of the project presented within this article, where the two
contact locations are predefined, CONTACT is able to find the contact patches automatically based
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on the contour geometry. The two calculations thus differ in this modelling aspect. The same case is
calculated with both programs: Frad = 200 N, Fax = 30 N, FMotor = 30 N, µ = 0.3.

In particular, the comparison of the contact forces and maximum stresses shows that the results
are very close to each other (Figure 8). The largest deviation is shown by the force FT2. The reason for
this difference can be seen in Figure 9. The shear stresses have both positive and negative components.
In the solution calculated with CONTACT, the negative shear stress components are larger, which is
why the force is smaller in total.
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A comparison of the normal and tangential stresses is shown in Figure 9. It can be seen that the
basic distributions of the stresses are very similar. As already described, the largest difference is seen
in the shear stress perpendicular to the rolling direction (x-direction). This can be explained by the
position of the spin center.

With the help of the directional representation of the shear stress distribution (top of Figure 10),
it can be clearly seen that the assumptions made are plausible. The position of the spin center can
also be found in the CONTACT results; however, it is not located on the edge of the ellipse but is
shifted further towards the interior of the contact surface. The main difference is mainly in the relative
velocity distribution around the spin center. CONTACT calculates the velocities iteratively and can
distinguish between sliding and adhesion areas. Around the spin center, there are only very low to
no relative velocities. This difference significantly influences the distribution of the frictional energy.
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Figure 10. Resulting shear stresses and frictional energy; steel/steel, Frad = 200 N, Fax = 30 N,
µ = 0.3, FMotor = −30 N.

The comparison of the equivalent stresses is shown in Figure 11. As with the stress distribution
at the contact surface, there are only very slight differences here. In particular, the position and the
height of the maxima are very close to each other. The weaknesses of the presented program are
mainly in the areas close to the contact surface. Inaccuracies occur here.
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5. Conclusions
The project presented takes up the existing state of research on the design of track roller

guideways and extends it to include existing contact mechanics models so that more in-depth
statements can be made on the stress state of the contact pairs, such as the influence of increased
friction. The model can be used primarily for basic evaluation and the predetermination of locating
bearing track roller guidance systems with two-point contacts. Through the combination of analytical
description and open-source code, every step of the calculation, and thus also the results, can be
reproduced. The presented calculation model therefore closes the gap in the state of research and can
be used as a basis for the interpretation of more in-depth analyses with commercial software. Due to
the disclosure of the entire source code, other interested parties can also use only parts of the code for
their own projects and questions, such as the calculation of the subsurface stresses.

However, especially when describing the relative velocities in the contact zone, further as-
sumptions are made to correct the simple analytical description. Despite this correction, there are
still deviations in comparison to more advanced commercial software, especially in the case of the
frictional energy. From the authors’ point of view, the calculation model is thus mainly suitable for
surface stress calculation and determination of the equivalent stresses below the surface. To obtain
more accurate results for the stress values for small z values, the calculation procedure must be
further optimized.

The model can also be used to calculate material pairings with different materials. Here, the
comparison with established commercial software showed that, although the shape deviates further
from the ideal ellipse with increasing contact areas, there is still very high agreement in the stresses.

Due to the poor data situation in the current state of research, experimental investigations are
being sought in order to further evaluate the model. For the development of a universal calculation
model for track roller guidance systems, the extension to non-Hertzian contacts is necessary. From the
authors’ point of view, this is associated with a high development and programming effort. However,
due to the modular structure of the source code, it would be possible to replace the contact area
calculation and the relative velocity calculation with more complex models, such as Kalker’s theory.

Supplementary Materials: The following supporting information can be downloaded at: https://
github.com/janwenzel/Dynamic-Contact-Simulation-for-Locating-Bearing-Track-Rollers, accessed
on 10 June 2022. It contains the whole source code of the presented project.
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