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Abstract: Fused filament fabrication (FFF), an additive manufacturing process, is an emerging
technology with issues in the uncertainty of mechanical properties and quality of printed parts. The
consideration of all main and interaction effects when changing print parameters is not efficiently
feasible, due to existing stochastic dependencies. To address this issue, a machine learning method is
developed to increase reliability by optimizing input parameters and predicting system responses. A
structure of artificial neural networks (ANN) is proposed that predicts a system response based on
input parameters and observations of the system and similar systems. In this way, significant input
parameters for a reliable system can be determined. The ANN structure is part of physics-informed
machine learning and is pretrained with domain knowledge (DK) to require fewer observations for
full training. This includes theoretical knowledge of idealized systems and measured data. New
predictions for a system response can be made without retraining but by using further observations
from the predicted system. Therefore, the predictions are available in real time, which is a precondition
for the use in industrial environments. Finally, the application of the developed method to print bed
adhesion in FFF and the increase in system reliability are discussed and evaluated.

Keywords: reliability optimization; physics-informed machine learning; recurrent neural network;
knowledge transfer; additive manufacturing; Latin hypercube sampling

1. Introduction

The production of plastic parts by means of fused filament fabrication (FFF) is on
its way to becoming established for mass production [1]. The major advantage of mass-
produced products from FFF over conventional manufacturing is the greater variability and
individuality of the products as well as lower cost for smaller production quantities [1,2].
Furthermore, FFF is an inexpensive and widely used additive manufacturing process [3].
In FFF, a polymer is heated until it reaches a semi-fluid state. Then it is squeezed out of a
nozzle, cools down, and becomes solid shortly after. In this way, products are created layer
by layer with a 3D printer. The process depends on print parameters that determine, among
other things, the number and properties of the layers, speeds, and temperatures. In order
to be able to use the FFF process economically in mass production, the machine costs and
personnel costs must be reduced [4] as well as the uncertainty in the product quality such
as aesthetics, dimensional accuracy, and mechanical properties [5]. Research is conducted
to control the uncertainty by using simulations of the whole printing process [6] and by
optimizing the printing parameters [7] among others [5]. Three-dimensional printing is
a complex process with a minimum of 75 printing parameters and more to be optimized
simultaneously. Physically informed machine learning (PIML) combines machine learning
using data and physical knowledge in the form of models or constraints to reduce errors
of machine learning and physical models [8,9]. PIML has shown promising results in
high-dimensional contexts [9]. Through integration of mathematical physics models into
machine learning fewer data are needed for the training of the neural network [10].
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The method developed in this paper differs from the literature mentioned above by
deriving empirical models from domain knowledge (DK), which can be in the form of
research results or other sources. These models are then combined with data collected from
3D printers. System reliability is ensured by individually optimizing the input parameters
for each 3D printer, paying attention to the disturbance variables.

The summarized contributions of this paper are as follows:

1. Development of a new method using physics-informed machine learning to optimize
system reliability in additive manufacturing.

2. Reliability optimization is implemented by using neural networks to predict the
system responses and an optimization algorithm with respect to system specific
boundary conditions.

3. System behavior of 3D printers is quantified by unsupervised machine learning and
is used for predictions of system responses for the knowledge transfer.

4. The new method is designed to be used for a number of 3D printers in an industrial
environment in continuous operation and to provide calculation proposals for input
parameters in real time.

2. Methods

This section gives an overview of the techniques used by the proposed method for
reliability optimization. These methods include Latin hypercube sampling, deep neural
networks, recurrent neural networks, which have been widely used and closely studied in
the scientific field [11], and PIML, which yields promising results.

2.1. Latin Hypercube Sampling (LHS)

The influence that a parameter has on a target value is called the total effect, which is
composed of interaction effects and the main effect. The main effect is the influence of the
parameter that depends only on the parameter itself. Interaction effects also depend on
other parameters. The order of an interaction indicates how many other parameters the
influence depends on. To conduct experiments, the research question must be clarified to
determine what type of effects should be identified. For the proposed method, detailed
knowledge of the effects is required, and therefore the goal of knowing main and interaction
effects is pursued. This is achieved using stochastic simulation. In Latin hypercube
sampling (LHS), each parameter is divided into equally sized intervals, with the number of
intervals corresponding to the number of experiments performed. Then, the experiments
are distributed uniformly among the intervals [12]. This method was extended to generate
approximately orthogonal, i.e., particularly balanced, experimental designs [13]. Currently,
the method is accepted and widely used, although the number of experiments cannot
be expanded without changing the overall number of samples. This method was chosen
because it does create a pseudo-random experimental design, but it is also approximately
orthogonal. These properties are important for quantifying the behavior of 3D printers, as
effects can be determined independently of neural networks.

2.2. Artificial Neural Networks (ANN)

Artificial neural networks (ANN) consist of artificial neurons which in turn are com-
posed of a weighted sum connected to an activation function. Therefore, each artificial
neuron has one or more inputs and one output. ANN can be constructed from artificial
neurons in layers, where a neuron has all the outputs of the neurons of the previous layer
as inputs. This setup is called multilayer perceptron (MLP). The value of the neurons in the
first layer of the MLP, which is called the input layer, are the inputs of the MLP. The last
layer is called the output layer, as the output from the artificial neurons in this layer are the
outputs of the total MLP. The layers in between are called hidden layers; see Figure 1 for a
graphical representation of an MLP. An MLP with multiple hidden layers is called a deep
neural network (DNN) [14].
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Figure 1. A multilayer perceptron (MLP) consists of neurons organized in layers. Each neuron is
composed of a weighted sum of all inputs and an activation function to define the output.

During the training, the weights of the artificial neurons are altered in a way such
that the input from the DNN matches the desired output. This is performed by means of
an optimization algorithm. Consider a DNN A1 that is trained by a set of input vectors
X = {X1, . . . , Xn}, Xi ∈ Rm and a set of output vectors Y = {Y1, . . . , Yn} , Yi ∈ Rk, where
each output is assigned to one input Yi → Xi . The inputs and outputs are combined in the
training data Dtrain(X, Y). If A1 is given an Xi as an input, A1 can be called to estimate Ŷi,
which can be written as A1(Xi) = Ŷi. To quantify how well the estimations are matching
with the desired outputs, a loss function L is used, e.g., the root mean square error (RMSE),
which is defined as

LRMSE
(
Y, Ŷ

)
=

√
∑
(
Yi − Ŷi

)2

n
(1)

For the initialization, random values are assigned to the weights from the weighted
sum in all neurons. Consider multiple DNNs Aj using the same architecture and a random,
and thus different, initialization. The training is performed using the same training data
Dtrain(X, Y), but the resulting Aj differ. While after a successful training the loss function
is minimized and Yi ≈ Ŷi can be assumed for all Aj, different Aj are explained by using a
gradient decent optimization algorithm for the training, which minimizes the loss function
and can only find local optima. Therefore, different optima are found [15,16]. ANNs show
substantial differences in weights in intermediate and higher-level networks with more
than six layers, despite similar performance [17].

A DNN with a special architecture can be used as an encoder–decoder for lossy
compression of data. The encoder–decoder (ED) has a small central layer and is trained to
reconstruct input data X as output X = ED(X), as shown in Figure 2. The values of the
small central layer are called compressed feature vector (CFV) Y. The CFV is significantly
smaller than the input and output. The size of the CFV is a main factor on how well the
output can be recreated from the CFV [18]. The encoder–decoder can be split into two
DNNs, the encoder E and the decoder D. E uses data X to generate CFV Y = E(X) and D
uses CFV to estimate data X̂ = D(Y) [19].
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Figure 2. The encoder–decoder (ED) consists of two neural networks trained in unity to output X̂
from X while information must pass the compressed feature vector (CFV).

The ED is chosen for the proposed method because it contains a way of unsupervised
learning using algorithms for supervised learning. This is intended to allow for ease of
connection with the other ANNs that use supervised learning.

2.3. Recurrent Neural Networks (RNN)

Recurrent neural networks (RNN) are ANNs that can use information from previous
calls. This makes it possible for RNNs to analyze data with respect to past inputs and
makes estimations dependent on previous calls. A simple implementation uses an artificial
neuron, where the output from the previous call is going to be an additional input for the
next estimation. With this implementation, the problem of vanishing gradients occurs. This
means that the output from the previous call has to be mostly defining the state of the
next call, if the neuron needs to keep its state over a larger number of calls [20]. A type of
cell which can solve this problem is the long short-term memory (LSTM) [21]. Here, the
cell is replaced by multiple cells with well-defined tasks. One of the cells is the memory
cell, where the output is an input for next call with a fixed weight of one. Therefore, the
problem of vanishing gradients cannot occur, as the state is transported over various time
steps without vanishing or growing exponentially [20]. This property predestines LSTM
for the proposed method, since patterns found in the observational data should not be lost
due to vanishing gradients.

2.4. Physics-Informed Machine Learning (PIML)

The amount of data needed to train a neural network can be reduced by including
physical knowledge in machine learning. This physical knowledge includes laws or obser-
vations typically found through extensive scientific work in the form of experimentation,
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modeling, and other measures. This knowledge is called domain knowledge (DK) [22].
The more DK that is used, the fewer the data that are needed to train a neural network [10].
Several possibilities to include DK into neural networks exist. Physical laws can be added
to the loss function as an extra term and can therefore penalize unphysical calls during
training, called physics-guided neural networks (PGNN) [23]. Kapusuzoglu et al. [10]
compared different approaches of PIML in the context of 3D printing. Based on this com-
parison, the approach shown in Figure 3 was selected for the developed method in this
paper. In this approach, neural networks are pretrained with estimates based on DK of
inputs and outputs. The network is pretrained to gain knowledge of how certain input
parameters must be combined to obtain the desired results. Physical laws are not enforced
in further training and are only an initialization for the neural network to learn fundamental
correlations [10]. This feature is important to adapt neural networks to a wide range of
3D printers.
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with input and output from a model, based on Figure 4c (Kapusuzoglu et al. [10]).

3. Developed Method

In this paper, the developed method aims at optimizing system reliability with chang-
ing requirements by predicting outcome and suggesting input variables. Reliability can be
ensured without further training by transferring and enriching DK on conducted observa-
tions, though neural networks can only generalize from data that were used to train the
neural networks. Predictions from neural networks can only be as informed as DK and
observations are.

3.1. Prediction Versus Suggestion

Consider a system Sa which uses a vector of input parameters X to generate a set of
target values Y = Sa(X). Essentially, for a reliable operation, it is important that target
values Y must be achieved within certain limits. Hence, for an explicit system Sa, an explicit
vector X that achieves this target value Y needs to be identified. This could be achieved
directly by a neural network suggesting X. As in most cases some parameters in X cannot
be set freely, the presented method is developed to solve this problem. To identify an
explicit vector X, an optimization algorithm is better suited as it can satisfy constraints in
the form of mathematical equations and optimize the target values, see Figure 4. Thus, the
aim of this work is to generate predictions Ŷ for the system Sa and freely chosen X that can
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be used in an optimization algorithm to identify an explicit X with a desired estimation for
Ŷ. By using this method, target values and, thus, system reliability can be optimized. Since
constraints depend on the application, further considerations can be found in Section 4,
where the application to additive manufacturing is discussed.
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3.2. Predictions of Target Values

For a system Sa, all observations of Sa should have a direct influence on the predictions
Ŷ. This is ensured using a recurrent neural network R that creates an estimation on the
general reactions of Sa based on all observations

(
Yobs → X

)
a
. In this paper, this is called

behavior and is quantified in the behavioral vector Ba, which is estimated by calling the
RNN R as follows:

B̂a = R
(

X, Yobs
)

. (2)

After that, a feed-forward DNN F is called to generate an estimation of the target values:

Ŷ = F
(
X, B̂a

)
. (3)

To calculate estimations for different X, only the network F is used, while B̂a stays
the same until new observations Yobs → X are made. The whole process of predictions is
shown in Figure 5.
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3.3. Behavioral Vector

To define the behavioral vectors B for various known systems, a DNN encoder–
decoder is used. The encoder–decoder ED is trained using predictions for the target value
ŶLHC

that is estimated using the DNN network F and vectors XLHC that are, respectively,
derived from Latin hypercube sampling:

ŶLHC = F
(

XLHC, B̂a

)
(4)

For the training of ED, the prediction for the target values ŶLHC
are used as an input

and output. ED encodes the input to a CFV and decodes it afterwards. The CFV is defined
as the behavioral vector B, because the CFV contains the necessary information to recover
the prediction ŶLHC

. After training the DNN ED is split in the encoder DNN E and the
decoder DNN D to calculate B.

B = E
(

ŶLHC
)

(5)

ŶLHC = D(B) (6)

The complete usage of the encoder–decoder ED is illustrated in Figure 6.
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4. Method Transfer

The developed method is designed to ensure the system reliability in operating 3D
printers used for mass production. In this case, disturbance variables, materials, and
optimization targets are constantly changing, while in an industrial environment, high
demands on quality are placed [24]. In the context of this work, print defects in additive
manufacturing mean that the printing process must be canceled, mechanical properties
are not met, dimensional accuracy could not be kept, or optical defects are present in the
3D-printed product [1]. Due to these print defects, the printed parts must be reprinted.

The influence of a single parameter on an outcome is called the total effect. The total
effect consists of interaction effects and the main effect. The main effect is the influence
of the parameter, which depends only on the parameter itself. Interaction effects are also
dependent on other parameters. The order of an interaction effect indicates how many
other parameters are involved.

In practice, there are guidelines (manufacturer´s instructions) to avoid print defects by
changing printing parameters. One larger collection of print defects by Richter [25] names
more than 200 total effects of 18 input parameters on 40 print defects while mechanical
properties as print defects are not considered. All of these total effects are documented to be
monotonic, and the general direction of the changing outcomes of the effects is claimed to
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be applicable to all FFF 3D printers, regardless of the printing material and printer design.
According to Richter, some geometric features seem to have effects on print defects.

Scientific literature also names interaction effects [26] and non-monotonic effects [27]
for 3D printers. The summarized results of those studies show that the avoidance of print
defects could lead to opposing goals, such as surface roughness and dimensional accuracy,
i.e., [26]. In consequence, the reliable operation of 3D printers is a complex task, as in
the best case, all effects must be known in order to counteract print defects and to ensure
high-quality parts.

As there are presumably more than 200 total effects on more than 40 print defects,
an intelligent, automated process must be developed to adjust the print parameters just
in time. This should enable the printing system to perform more efficiently concerning
time and costs than is the case so far, and ultimately ensures the system reliability. The
effects may be non-monotonic, so a simple linear regression is insufficient. Interaction
effects make statistical investigation labor-intensive, as rapid screening methods are not
sufficient, as they can only be used to determine total effects. The method developed
and explained in the previous sections highly encourages knowledge transfer among
systems, which is convenient given that the effects are comparable among 3D printers. By
using an optimization algorithm, it is ensured that opposing goals could be weighted and
individually adjusted to the printed part. The results of the method transfer to 3D-printing
are shown in the following.

4.1. Application and Results

To apply the developed method on FFF 3D printers, the general system must be
defined. Three-dimensional printers are considered individual systems, and with a sub-
stantial change of the 3D printer, a new system is formed. This can be a modification such
as a changed print bed or print nozzle. Each system requires printing parameters, printer
parameters, and disturbance variables X to produce the outcomes Y. Print parameters
are controllable parameters for the print, which can be optimized. Disturbance variables
contain all parameters that can be measured or determined, such as ambient temperature
or print time since the last maintenance, e.g., printer parameters are specific for the printer,
such as, for example, the printer model or the nozzle diameter. Product parameters are,
for example, geometric features of the printed product, such as the maximum overhang
angle and the contact surface of the product on the print bed. The outcome contains all
print defects and some other metrics, such as production time and used material for the
final product. Overall, 75 printing parameters, 4 disturbance variables, 8 printer param-
eters, 9 product parameters, 40 print defects, and 4 print metrics are recorded for each
observation of a print process.

The possible occurrence of certain printing defects related to geometry can be derived
from the product parameters of the printed product. Combined with known customer
requirements, the required outcome of a successful print and the optimization criterion
can be created. This criterion is used for the optimization to find print parameters for a
successful print and thus a reliable operation of the printer.

4.2. Use of Domain Knowledge (DK)

This paper addresses a well-known and crucial problem, i.e., the print bed adhe-
sion [21], to show the method transfer exemplarily. If the print bed adhesion could be
controlled, the printed part can be easily detached from the print bed after the print. This is
crucial in order to enable an automation of the printing process and to make this technology
more available for mass production.

Following the general initialization process explained in Section 2.4, DK must be
defined based on scientific research on the subject. This is performed via various measure-
ments and datasets of the print bed adhesion taken from scientific literature. Two publications
suitable for this application are particularly noteworthy. The first publication is written by
Kujawa [28], who investigated the influence of the first layer print parameters on the print
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bed adhesion. The second publication is written by Spoerk et al. [27], who optimized the
print bed adhesion by varying print parameters. The problem with using literature data is
that not all print parameters and disturbance variables are known for these measurements,
so no complete observations (see Figure 7) can be created. In the next paragraphs it will be
explained how DK can still be taught to neural networks.
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Figure 7. Extended Ishikawa diagram visualizing all relevant input and output parameters for the
proposed method from a 3D-printed product in FFF.

In the first publication, by Kujawa [28], only total effects were measured in a one-factor-
at-a-time design of experiments. Measurements were repeated, and usable data are given in
the publication. To use the data in the developed method, synthetic observations are created
from the data. This is achieved using linear interpolation between the measurements. See
Figure 8a for a graphical representation.
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Figure 8. Simple synthetic data generation using measurements for the pretraining of the neural
networks are shown: (a) linear interpolation using data from Kujawa [28] and (b) superposition using
data from Spoerk et al. [27].

In the second publication, by Spoerk et al. [27], linear main effects and interaction
effects were calculated for three print parameters in a full-factorial design of experiment. In
a second step, the printer bed temperature was singularly investigated from 20 ◦C to 80 ◦C
in steps of 10 ◦Celsius. For the pretraining of the ANN used in the proposed method, these
two designs of experiments are combined using superposition, as can be see in Figure 8b.
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The authors of both publications have chosen parameters that are expected to have
the biggest effects on the printer bed adhesion. Not-investigated effects, which are to be
expected, should be equal to or smaller than the investigated effects. ANNs learn about
important effects with DK, resulting in fewer experimental data needed until ANNs are
successfully trained [29].

In order to train the first neuronal net Fphy using DK, the behavioral vector Bbin
i must

be set, which is a binary representation of the system number. In this case, it is a vector
of the length 1 with values 0 and 1. Synthetic data generation and initialization is carried
out as described. Afterwards, FFF 3D printers are used and the observations should be
documented in the format shown in Figure 5 in Section 4.1. The observations can then be
used to update Fphy based on DK to F. Suggestions for print parameters can be generated
using a simple gradient-based optimization algorithm with the predictions from F, as
described in Section 3.1 and Figure 4.

4.3. Critical Discussion

The aim of the proposed method is to ensure system reliability in operating 3D printers.
Thus, systematic errors are avoided by suggesting optimal parameters. A reliable operation
is strongly dependent on the suggested parameters and, as a result, strongly dependent on
the accuracy of the underlying prediction. With this in mind, the accuracy of the prediction
can be used as an indicator for system reliability.

There are also other approaches to ensure the reliable operation of 3D printers. These
approaches are the intuitive and the statistical approach that are discussed in the following.
In an intuitive or popular approach, which is widely used in the non-scientific literature, the
print parameters are only changed when print defects occur. Working print parameters are
stored for different materials, conditions, and 3D printers. In this approach, the total effects
are used only qualitatively, although most parameters have effects on multiple defects. The
result is a trial-and-error analysis that can lead to long setup times due to various print
defects, since different print defects can occur after each step [25].

With the newly developed method, setup times should be shortened, because if
working as intended, all print defects should be predicted and avoided simultaneously.
On the contrary, for the intuitive approach only the total effects are known qualitatively,
which gives only an indication of how to adjust print parameters to avoid individual print
defects. A reliable operation cannot be ensured, since the known global total effect could
be locally incorrect. With the developed method, on the contrary, the print parameters can
be adjusted before print defects occur.

In direct comparison of the proposed method with the widely used manual prevention
of print defects, the proposed method has the potential to save setup time, to automatically
avoid print defects, to ensure the reliability of the printing process, and thus improve the
time and cost efficiency of the printing process.

Currently, one disadvantage of the newly developed method is certainly the initial-
ization and updating process. However, since this initialization phase only needs to be
performed once, the overall result could be a more efficient and reliable process that ensures
the possibility of automating 3D printing in the future.

For example, a DNN can be combined with LHS to predict print defects using statistics.
The statistical study of a 3D printer is lengthy but possible, even with more than 90 input
parameters and more than 40 output parameters. In comparison, the proposed method
uses previously published observations and further DK to predict print defects of a single
3D printer with fewer observations. In a statistical approach, a study is conducted at a
particular time and under particular conditions. Any deviation from these conditions can
lead to inaccurate predictions and thus a decrease in reliability. This can only be avoided
by further investigation or by transferring knowledge from a single 3D printer to all other
3D printers and printing materials. Knowledge transfer could be an essential part of the
proposed method and is achieved by creating a behavioral vector from the observations of
one 3D printer. This vector is used to make predictions for all 3D printers using the same



Machines 2022, 10, 525 12 of 16

neural network. As conditions change, the behavior of the 3D printer changes and the
behavioral vector could be adjusted by the neural network. Thus, compared to a statistical
approach, the proposed method requires fewer observations and no manual statistical
analysis is required to transfer knowledge. Another advantage is that no retraining is
required to derive new predictions from new observations. As a result, the reliability of
3D printing is increased because real-time knowledge transfer allows real-time response to
changing conditions. As it is summarized in Table 1.

Table 1. Comparison among different approaches to specify parameters for the reliable operation of
3D printers.

Intuitive Approach Using
Qualitatively Known Total Effects Statistical Approach Proposed Method

Functionality Total effects give multiple possibilities to
eliminate print defects.

Predictions are based on previous
observations to avoid print defects.

Predictions are based on observed
and quantified behavior to avoid

print defects.
Observations needed

for setup None, only DK is used. Most, because a full sensitivity analysis
is needed.

Less than the statistical approach,
because DK is used.

Observations needed
for reliable print

Eliminating print defects often leads to
other print defects. None. Enough to quantify behavior.

Transfer of
knowledge

Qualitatively known total effects are
mostly universal.

Deviations in print process could make
all observations obsolete.

Integrated through quantification
of behavior.

Other approaches of mitigating print defects exist as well, such as closed-loop con-
trol [5] or ANN-based optimizing of process parameters [8,10]. These approaches have in
common that they are supposed to eliminate certain or only a few defects at the same time.
While these approaches might be better used to eliminate individual defects, it is unclear
how these systems work together to eliminate all print defects. FFF 3D printers have a
large number of parameters that influence numerous defects. The presented method aims
to avoid all defects at the same time by only setting print parameters. Therefore, not all
problems could be solved by the proposed method, such as mechanical problems, but it
could be combined with other approaches as the 3D printers are not altered in any way.

4.4. Case Study

A case study is conducted to show the effectiveness of the proposed method. On
four identical and unmodified Prusa i3 MK3s, 3D printers in a temperature- and humidity-
controlled room without direct sunlight, 1273 print bed adhesion measurements are taken.
Prior to printing, the print beds are cleaned using an alcohol-based solvent and a fresh
paper towel every day, and each printer used one black PLA filament coil from Verbatim
for all prints. For the measurements, a basic geometry is printed because our focus lies
on print bed adhesion. The print bed is left to cool down to 35 ◦C after printing and the
printed test cubes with an edge length of 10 mm are slowly pulled horizontally from the
print bed using a pull arm with a worm gear driven by a stepper motor. The resulting force
is recorded at 48 KHz and the maximum value is noted.

These measurements are part of an LHS experimental design, which includes
400 experiments; each comprises a minimum of three measurements, resulting in a to-
tal of 1273 print bed adhesion measurements. Within the design of experiments, 75 print
parameters are varied and the print bed adhesion is recorded. Parameters which directly
influence support structures, overhangs, or bridges are not chosen because of the focus on
print bed adhesion. Temperature, relative humidity, prints since last print bed cleaning, and
prints since last calibration are recorded as disturbance variables. The test data comprise
80 experiments with 210 measurements. The evaluation in the comparison is derived based
on the prediction accuracy of the said test data with the loss-function LRMSE.

A comparison with the intuitive approach is not conducted, since it strongly depends
on the person choosing print parameters and the prognosis of the printing defects is not
calculated. Therefore, the proposed method is compared with a possible statistical approach
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from the last subsection. A similar approach is used in the statistical approach as in the
proposed method for better comparison. A DNN is trained with the same data and nearly
the same architecture as the DNN in the proposed method and with this comparison, the
influence of the PIML approach in the proposed method can be determined due to the
similarities of the two methods.

In the proposed method, the training of the encoder–decoder failed, arguably because
of the low number of 3D printers in the case study, which were also very similar. As a
result, the redefinition of the behavioral vector, as described in Section 3.3, was not carried
out. In Figure 9, a comparison of RMSE in prognosis of the print bed adhesion is illustrated.
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and a statistical approach using a similar DNN and identical training data and test data.

Around 3000 physical experiments as training data are created for pretraining for
the proposed PIML approach, which are used 50 times for training. In addition to the
pretraining with the physical experiments of the proposed PIML approach, both approaches
used the real measurements 50 times for training. For every set of values in the figure,
each approach was carried out and evaluated 10 times. Data and results can be found in
the supplementary materials [30] linked below. High variance occurs in the evaluation
of the statistical approach, when the number of measurements for training is low. The
variance of the evaluated RMSE is mostly 50 to 100 times bigger in the statistical approach
when compared to the proposed method. The variance as well as the prediction error is
similar, with around 350 or more measurements available for training. The spike around
10 measurements in the proposed method is caused by some consecutive unexpectedly
high measurements in the training data. In the case study, the proposed method has a
lower RMSE for predicting unknown experiments while knowing only a limited amount of
measurements. This indicates that transfer learning from domain knowledge is working,
but with an increasing number of measurements, the effect disappears.

5. Conclusions

In this paper, a method for optimizing the system reliability of FFF 3D printers is
presented. The developed method optimizes reliability by suggesting optimal print pa-
rameters using physics-informed machine learning. Print defects such as insufficient
mechanical properties, dimensional accuracy, and aesthetics are avoided simultaneously by
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optimizing predictions from ANNs. Based on real-world experiments, a behavioral vector
is determined for an individual 3D printer which is used to predict the system outcome
of a 3D printer. Literature and first experiments on FFF 3D printers suggest that the total
effects of the printing parameters on printing defects remain qualitatively the same for
different materials and printers. This suggests that for accurate predictions, only a few
observations are needed for each individual 3D printer when DK is used. In consequence,
accurate predictions ensure the reliable operation of 3D printers by avoiding multiple print
defects simultaneously.

For the initialization of the neural networks, DK is used. In the selected literature,
effects of print parameters on print defects are investigated. The investigations are used to
pretrain the neural network. This way, quantitative effects between print parameters and
print defects are learned by the neural network without using real-world observations.

Different approaches for a reliable operation of multiple 3D printer are compared and
discussed. The intuitive and popular approach is to use qualitative knowledge of effects to
avoid print defects. This can cause the appearance of different print defects in the setup.
Consequently, with slowly changing disturbance variables, print defects may occur. When
the proposed method is compared to a general statistical approach, the main advantages of
the new developed method are the integrated knowledge transfer among different printers
and materials as well as less-needed observations by the use of DK. This is shown with the
implementation of the proposed method in the form of a case study on the parameter print
bed adhesion. Initial results indicate that the transferability of domain knowledge with the
proposed method is given with a few experimental results, but with an increasing number
of experimental results, this effect decreases.

Three-dimensional printers can behave in unforeseen ways, and to quantify such
behavior, future research is investigating a synthetic data generation method using DK in
neural networks. The presented approach is extended to all print defects. All significant
parameters must be determined and investigated in terms of their influence on the final
result. DK must be researched and models for PIML have to be derived for all print defects.
It must be defined how those defects can be measured appropriately. Possible combinations
with other conventional methods could be researched, such as reverse modelling of the print
products and mitigating geometric inaccuracies in the product model. Further research
on the effects of the parameters of the proposed approach on the prediction accuracy is
needed and will be implemented. Investigations of the capabilities and limitations of the
transfer of knowledge will be carried out.
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