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Preface

Introduction

In recent decades humanity gained the technical ability to precisely observe and
manipulate quantum systems on the scale of a single atom or a photon. These advances
led to new applications, especially in information theory. At the same time they created
a new emphasis on the investigation of the dynamics of systems of a few quantum
particles and especially their asymptotic behaviour.

The research area of this thesis is operator-algebraic or non-commutative probability
theory and more specifically non-commutative Markov processes (see e.g. [Küm85]),
which describe the time evolution of a large class of open quantum systems. One usual
method in non-commutative probability is to take established tools from classical
probability and see how they can be generalized to the operator-algebraic methods.

In this work, we apply this philosophy to the theory of topological Markov processes.
Topological Markov processes are a concept from symbolic dynamics and coding
theory for example presented in [LM21]. In this context, the word “topological” means
that we only describe which trajectories, or sequences of system states, are possible
for given dynamics, without tracking the probabilities of a certain trajectory.

We will only consider discrete-time, time-homogeneous Markov processes, which are
also often called Markov chains. In [GKL06, 1.] a definition of “non-commutative
topological Markov chain” is presented, which can be seen as an example of the theory
we present (see 7.5.5). However, a general theory of non-commutative topological
Markov processes does not seem to exist in the literature, for understandable reasons.
Since quantum mechanics is a fundamentally stochastic theory, there is no obvious
concept of trajectories. However, it is possible to see a classical topological Markov
process as an equivalence class of stochastic Markov processes. We lift this idea to
the theory of non-commutative Markov processes. While the dynamics of a quantum
system still obey the probabilistic laws of quantum mechanics, as they have been
discovered about 100 years ago, we describe it just by what we define as its topological
properties. This gives us a non-deterministic but non-probabilistic description of the
dynamics. We demonstrate that many commonly considered stochastic properties of
such dynamics, especially those relevant to the asymptotic behaviour of the system,
can be derived completely from this topological description.

The central new concept of this thesis are reach maps, maps on orthogonal projections
of an algebra that capture the topological essence of completely positive operators.
They turn out to be a useful concrete representation of the previously vague concept
of a “topological Markov operator” which we were looking for. Reach maps encode
which sequences of events are possible in given dynamics and are exactly the right

v



vi Preface

morphisms to form a category in which we can express non-deterministic topological
dynamics.

To define reach maps, we apply methods from non-commutative topology, a theory
first introduced by C.A. Akeman with the definition of open projections in [Ake69]
(see [AB15] and [Ped18] for modern descriptions). It uses the universal enveloping von
Neumann algebra to apply von Neumann algebra methods to C*-algebras, bringing
measure theoretic and topological objects closer to each other, like we require for our
goal. We adapt this theory to our cause by generalizing some of its foundations to
admit other enveloping von Neumann algebras than the universal one.

Besides giving definitions for non-commutative topological dynamics in the form
of reach maps and a topological Markov condition, main results in this thesis are a
characterization of reach maps via cross-ratios from projective geometry, applying
Perron-Frobenius theory to reach maps and the discovery of the surprisingly elegant
structure of reach maps of conditional expectations.

This thesis was produced under supervision of and in the research group of Burkhard
Kümmerer at the Technical University Darmstadt. In his master’s thesis [Bra17]
the author built on previous research in the group by A. Gärtner [Gär14] and J.
Dörner [Dör10] to discuss definitions like communicating classes, recurrence and
transience and the theorem of Perron-Frobenius (see [Sen81]) in the non-commutative
probabilistic setting. Those are all examples of concepts which we demonstrate to be
topological properties in this work.

Overview

In Chapter 1 we establish the setting of C*-algebras and how they describe classical
and quantum systems. We motivate the conceptual idea of reach maps in the classical
setting. Then we introduce completely positive operators to give the definition of
reach maps, first for non-commutative finite-dimensional systems.

In Chapter 2 we introduce the concepts of enveloped C*-algebras, hereditary subalgeb-
ras and open projections. Those definitions are required to give a proper definition of
reach maps between infinite-dimensional algebras. Hereditary subalgebras are an es-
tablished concept in the theory of C*-algebras, the definition of enveloped C*-algebras
is a new perspective on well established theories. Our definition of open projections
generalizes the usual definition in the literature.

In Chapter 3 we give the general definition of reach maps. We establish their funda-
mental properties and use them to gain more insight into the “topology” defined by
the open projections. We also discuss supports of positive elements and completely
positive operators in enveloped C*-algebras. At the end of the chapter we have es-
tablished the setting of this thesis: The category of reach maps between enveloped
C*-algebras.

In the Chapters 4 and 5 we investigate reach maps between finite-dimensional sys-
tems in more detail. In Chapter 4 we give different characterizations of reach maps
and their corresponding equivalence classes of completely positive operators. First,
we give a characterization of reach maps by preservation of cross-ratios, a concept
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from projective geometry. Then we describe exactly what we mean by “topological
properties” of completely positive operators.

In Chapter 5 we harvest the fruits of our work and give the theory of communicating
classes, recurrence and transience and a Perron-Frobenius style theorem for reach
maps.

In Chapter 6 we show that reach maps of conditional expectations are completely
determined by their support and the subalgebra they are projecting onto.

Finally, in Chapter 7 we first discuss how classical shift spaces can be generalized to
non-commutative systems. We discuss and define a Markov condition for topological
processes. Lastly, we show that every reach map has an associated topological Markov
process.

Chapter 1 is introductory. The chapters 2,3,6 and 7 build directly on each other. While
the chapters 4 and 5 are central to the theory and give additional context, they are not
required for the results in the chapters 6 and 7.

Zusammenfassung

Diese Arbeit generalisiert klassische topologische Markovketten aus der symboli-
schen Dynamik indem sie sie mit der Theorie nicht-kommutativer Markovprozesse
zusammen bringt. Als zentrale neue Definition werden Reach Maps eingeführt. Sie
repräsentieren die topologischen Eigenschaften vollständig positiver Operatoren. Für
die Definition von Reach Maps in unendlich-dimensionalen C*-Algebren verwenden
wir Methoden der nicht-kommutativen Topologie. Wir definieren Reach Maps als
Abbildungen auf den sogenannten offen Projektionen bezüglich einer einhüllenden
Von-Neumann-Algebra. Dann charakterisieren wir Reach Maps mit Hilfe projektiver
Geometrie und beschreiben die Struktur der von ihnen erzeugten Äquivalenzklassen
vollständig positiver Operatoren. Wir demonstrieren, dass viele bekannte stochasti-
sche Eigenschaften von Markovprozessen, wie kommunizierende Klassen, Rekurrenz
und Transienz sowie ein Satz von Perron-Frobenius, topologisch beschrieben werden
können. Wir zeigen, dass die Reach Map einer bedingten Erwartung vollständig
durch ihren Träger und die Algebra, auf die projiziert wird, festgelegt ist. Die Arbeit
endet mit einer Diskussion der Definition topologischer Markovprozesse und der
Konstruktion von Markov-Dilatationen.
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1 Non-Deterministic Topological
Dynamics

In this work, we propose a generalized definition of topological dynamical systems

with the primary motivation to analyse the topological properties of Markov processes.

We use the word “topological” in contrast to “stochastic” and mean by it that we

describe the dynamics of a system by saying which sequences of system states are

possible and which are not, without considering how probable a specific sequence of

states is. We introduce reach maps as the central tool for the topological description

of non-deterministic dynamics.

In this chapter, we will explain how, in our topological approach, reach maps play the

role that completely positive operators play in the usual theory of quantummechanics,

which is a stochastic theory. We motivate their definition in three steps:

(1) Reach maps for finite classical systems in Section 1.1.

(2) Reach maps for finite-dimensional quantum systems in Section 1.3.

(3) Reach maps for infinite-dimensional systems in Chapter 3.

We postpone the final definition of reach maps to Chapter 3 because we need more

theory to work with infinite-dimensional systems.

This text assumes a certain familiarity with the subjects of C*-algebras, von Neu-

mann algebras and completely positive operators. Those foundations can be found,

for example, in [Bla06], [Tak79], [Ped18] or [Stø13]. For convenience, we will still

frequently give concrete references.

This introductory chapter contains no new results, but the definition of reach maps is

a new concept.

1.1 Topological Dynamics on Classical Systems

In this section, we talk about the essential idea of reach maps in a classical setting.

We start by defining what we mean when we say “classical”.

1



2 1 Non-Deterministic Topological Dynamics

1.1.1 Classical vs. Quantum Systems

We model all our systems as C*-algebras, usually denoted by A, which we call matrix
algebras if they are finite-dimensional. We refer to a system as classical if its algebra
is commutative. In that case, the algebra can be given as a set of functions on a set

S . We speak of a quantum system if we allow the algebra to be non-commutative.

Thus, a classical system is a particular case of a quantum system in our framework.

The states of the system are given by the normed positive functionals S(A) on A.

In the classical case, a state always corresponds to a probability measure on S . We

can interpret this as the system being in one well-defined point state l ∈ S and the

probability measure models our lack of knowledge of which point state the system is

in. In a quantum system, we do not generally have point states because of the famous

physical concept of superposition. Thus, the probabilistic nature of quantum systems

cannot be explained simply by a lack of knowledge about the precise system state.

1.1.2 Topological Dynamics with 0-1-Matrices

We will now motivate our description of topological dynamics in a finite-dimensional

classical system. Let S be a finite set with |S | = n. We consider a stochastic matrix
a ∈ Mn, a matrix with non-negative entries such that the sum of every row is 1. It

contains the transition probabilities for a Markov process on S . We can visualize the

transition probabilities as weights of the edges in a directed graph, where the nodes

are the elements of S . We call a the adjacency matrix of the weighted graph. This is

an example of non-deterministic dynamics.

1 2 3 4 5

0.7

0.3

1

0.8

0.2

0.5
0.5

1

The graph of a Markov process on the state space
S = { 1, . . . , 5 } and its adjacency matrix.

a =

©­­­­­­­«

0.3 0.7 0 0 0

1 0 0 0 0

0 0.2 0 0.8 0

0 0 0 0.5 0.5

0 0 0 1 0

ª®®®®®®®¬
We ignore the probabilities to get a topological version of these dynamics. The directed

graph now only tells us which transitions are possible. The adjacency matrix marks

possible transitions with a 1 and blocked transitions with a 0.

1 2 3 4 5

The same non-deterministic dynamics but without
probabilities.

a =

©­­­­­­­«

1 1 0 0 0

1 0 0 0 0

0 1 0 1 0

0 0 0 1 1

0 0 0 1 0

ª®®®®®®®¬
This idea of describing topological transitions with 0-1-matrices, easily generalizes to

maps between different state spaces. In that case, the matrix is generally not square.
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1.1.3 Reaching States

Our guiding question is: How can we generalize the concept of 0-1-matrices as a

topological description of non-deterministic dynamics to quantum systems? An entry

aij in the adjacency matrix gives us the information whether a system in point state

li can reach the point state lj in the next time step. We now discuss different ideas to

represent this information to find a representation that does not rely on point states.

As a first idea, we could use a function f : S → S mapping every point state to a

point state which can be reached in the next time step. This is, in fact, the traditional

definition of a classical finite dynamical system: A pair (S , f ) of a finite state space

with a function f describing the dynamics. This, however, is too restrictive for our use

case because it would imply a deterministic time evolution. It would be equivalent to

a 0-1-matrix, which has exactly one 1 per row.

S at t = 0

S at t = 1

f

1 2 3 4 5

1 2 3 4 5

An example of deterministic dynamics for S = { 1, . . . , 5 }.

However, we want to describe also non-deterministic systems. That means that from

every point state, we can reach none, one or multiple other point states. We can model

this with a set-valued function f : S → P (S).

S at t = 0

S at t = 1

f

1 2 3 4 5

1 2 3 4 5

The function representation of the example of non-deterministic topological dynamics in 1.1.2.

1.1.4 From Points to Subsets

A function from S → P (S) still relies on point states, though. So, we look for an

equivalent representation that does not. We can do this using subsets instead of points

in S . Instead of mapping a point l ∈ S to the set of points f (l) ⊆ S which can be

reached from it, we can also equivalently map a set of points A ⊆ S to the set of points

f (A) which can be reached from any point in A, giving us a function g : P (S) → P (S)

from power set to power set. We can see that f preserves unions of sets: A point

l ∈ S can be reached from the set A ∪ B ⊆ S , i.e. l ∈ g(A ∪ B), if and only if either

l ∈ g(A), l ∈ g(B) or both. In fact, on finite sets set-valued functions S → P (S)
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and union-preserving functions P (S) → P (S) are in one-to-one correspondence:

We can restrict every function P (S) → P (S) to sets with one element, giving us a

function S → P (S). For the other direction, every union preserving function on P (S)

is entirely defined by its action on the atoms of P (S), which are the singleton sets

containing each one element of S .

1.2 From Sets to Algebras

In this section, we see how we can lift our representation of non-deterministic topolo-

gical dynamics of a classical system to the matrix algebra representation.

1.2.1 From Subsets to Orthogonal Projections

The algebraic description of a finite state space S is given by the algebra of complex-

valued (continuous, which is trivial on a discrete space) functions C(S). In contrast

to point states, subsets of S have a correspondence for quantum systems: For every

subsetA ⊂ S , the characteristic function jA : S → { 0, 1 } is an orthogonal projection in

C(S). Conversely, every orthogonal projection in C(S) is a characteristic function of

a subset ofS . We denote the set of orthogonal projections of a C*-algebraA as P(A).1

Now, we can generalize a function g : P (S) → P (S) to a map R : P(A) → P(A) for

any matrix algebra A. For any orthogonal projection p, we call R(p) the reach of p.
It represents the “part” of A, or when we represent A on some Hilbert space H, the

subspace of H, which can be reached from p.

1.2.2 The Schrödinger Picture

Given a function g : P (S) → P (S) the map jA ↦→ jg(A) might be the obvious algebra-

ization of g. That would be the interpretation in the Schrödinger picture, where the

dynamics are applied to the states of the system while the observables are static. Con-

cretely, given a probability matrix a ∈ Mn and, as the state of the system, a probability

measure ` on S which we represent as a row vector in Cn, then `a is the measure in

the next step. If we only have g given but do not know a, then we cannot calculate

`a. However, when A is the support of `, i.e. A = {l ∈ S : `({l }) > 0 }, then g tells

us that `a has support g(A). Thus, jA ↦→ jg(A) maps supports of states to supports of

states.

1We often omit the “orthogonal” in “orthogonal projection” because we will not mention any non-orthogonal idempotent
elements of C*-algebras in this thesis.
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1.2.3 The Heisenberg Picture

We, however, will work in the Heisenberg picture, where the dynamics are applied

to the observables of the system, given by the self-adjoint operators in A, while the

states stay fixed. Concretely, for an observable h : S → R, interpreted as a column

vector in Cn, ah is an observable, observing the previous time step. This is consistent

with the Schrödinger picture because (`a)h = `(ah), so the resulting observation of a

state does not depend on the picture.

First, consider a map f : S → S describing the deterministic dynamics of a classical

dynamical system. Given an observable h : S → R we algebraize f as if (h) = h ◦ f .
The map if is a unital *-homomorphism on C(S). We consider the observable jA, also

called an event , because it is an orthogonal projection, that observes whether the state

is one of the point states in A. Applying if we get if (jA) = jA ◦ f = j{l∈S :f (l)∈A } =

jf –1[A].

How can we do the same with non-deterministic dynamics g : P (S) → P (S)? We

cannot simply write “jA ◦ g”. That expression does not make sense. What we can do

is map jA ↦→ j{l∈S :g({l })∩A≠∅ }. That means an event jA can only be observed if, at

the previous time step, the system was in a point state l which has the possibility of

reaching A, which is precisely the condition g({l }) ∩ A ≠ ∅.

To confirm that this is the correct algebraization, we show consistency with the

Schrödinger picture. Let ` be a probability measure with support A, and jB an

observable for the next state of the dynamics. Then jB will observe the next state `a
exactly if g(A) ∩ B ≠ ∅, which needs to be equivalent to the Heisenberg picture with

`({l ∈ S : g({l }) ∩ B ≠ ∅ }) > 0. We do this via `({l ∈ S : g({l }) ∩ B ≠ ∅ }) > 0 ⇔
{l ∈ S : g({l }) ∩ B ≠ ∅ })∩A ≠ ∅ ⇔ {l ∈ A : g({l }) ∩ B ≠ ∅ } ≠ ∅ ⇔ g(A)∩B ≠ ∅.
In the last step, we used the fact that

⋃
l∈A g({l }) = g(A).

1.3 Topological Dynamics on Quantum Systems

We had motivated f : P (S) → P (S) via 0-1-matrices as containing the topological

information of an adjacency matrix with probabilities as entries. To keep this cor-

respondence for quantum systems, a reach map R : P(A) → P(A) needs to contain

the topological information of the non-commutative generalization of such matrices.

This leads us to the definition of completely positive operators.
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1.3.1 Completely Positive Operators

Definit ion Let A and B be C*-algebras. An operator T : A → B is called

(1) positive if 0 ≤ T (x) for all x ∈ A+,

(2) k-positive if T ⊗ id : A ⊗ Mk → B ⊗ Mk is positive for k ∈ N,

(3) completely positive if T is k-positive for all k ∈ N.

Remark A positive operator is always bounded, i.e., norm continuous (cf. [Stø13, 1.3.3]).

Definit ion We call a completely positive operator mapping between von Neumann algebras

normal when it is continuous regarding the weak* topologies (see [Bla06, III.2.2]).

Example 1 Every *-homomorphism i is a positive operator because it maps a positive element

xx∗ to the positive element i(x)i(x∗). Since i ⊗ id is a *-homomorphism, every

*-homomorphism is completely positive.

Example 2 Every positive functional in A+∗ is a completely positive operator from A to C as

every positive map out of or into a commutative C*-algebra is completely positive (cf.

[Stø13, 1.2.5]).

Example 3 We consider a matrix a ∈ Mn×m with positive (but not necessarily strictly positive)

entries. On the matrix algebraCm ' C({ 1, . . . ,m }), the linear function amaps positive

functions to positive functions and is completely positive because Cm is commutative.

This motivates that completely positive operators can be used as non-commutative

generalization of the stochastic version of our transitions.

1.3.2 The Kraus Representation

Because of the central relevance of completely positive operators, we summarize the

most fundamental facts about them.

Example Let H,K be Hilbert spaces and a ∈ B(K,H) a bounded linear operator between them.

Then Ada : B(H) → B(K) defined by x ↦→ a∗xa is a normal completely positive

operator.

This example is so general that it can be used to derive a general representation of

completely positive operators.
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Theorem
[Küm86, 1.1.3]

Let A ⊆ B(H),B ⊆ B(K) be von Neumann algebras represented on Hilbert spaces H
and K. For a map T : A → B the following are equivalent:

(a) T is a normal completely positive operator.
(b) There exists a family (ai)i∈I of linear operators ai ∈ B(K,H) such that

T (x) =
∑
i∈I

a∗i xai

for all x ∈ A, where the sum converges in the strong operator topology.

Definit ion We call the family (ai)i∈I in (b) a Kraus representation of T . We call any operator

a ∈ B(K,H) a Kraus operator of T if it is an element of a Kraus representation of T .

Remark Kraus operators can be found in any specific representation of A and B. For every T ,

there is a representation of A such that one Kraus operator suffices to implement T .

This is called the Stinespring representation (see [Bla06, II.6.9.7]) and is a generalization

of the Gelfand-Naimark-Segal representation for positive functionals.

1.3.3 The Kadison-Schwarz Inequality

The following inequalities are essential for working with completely positive operators.

Theorem
[Pau02, Ex. 3.4]

Let T be 2-positive on a C*-algebra. Then

T (x∗)T (x) ≤ ‖T (1)‖ T (x∗x)

and 

T (x∗y)

2 ≤


T (x∗x)

 

T (y∗y)

 .

1.3.4 The Support of Positive Elements

With completely positive operators, we can now define reach maps. For this, we

quickly remind ourselves of the following well-known definition.

Definit ion Let M be a von Neumann algebra. For any positive element x ∈ M+ the support
(projection) of x , denoted by [x], is the smallest orthogonal projection p ∈ P(M)

satisfying pxp = x .

Remark
[Bla06, I.5.2.1]

If we represent M on some Hilbert space H, the support [x] is the orthogonal projec-

tion onto the closed range of x in A.

1.3.5 Reach Maps in Finite Dimensions

Definit ion Let A and B be matrix algebras. We call a map R : P(A) → P(B) a reach map if there

is a completely positive operator T : A → B such that

R(p) = [T (p)].
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Example For a commutative matrix algebraA = C(S)with a finiteS , the reach map R : P(A) →
P(A) indeed corresponds to the classical function g : P (S) → P (S) that we discussed

in 1.1.3: Let a ∈ Mn be a stochastic matrix. Then, on the one hand, we have

R(j{ j })(i) = [aj{ j }](i) = [aej](i) =

1 if aij > 0

0 if aij = 0

and on the other hand

R(j{ j })(i) = j{l∈S :g({l })∩{ j }≠∅ }(i) = j{l∈S :j∈g({l }) }(i) =

1 if i ∈ g({ j })

0 if i ∉ g({ j })
.

This gives g exactly the meaning that we intended for it. Reach maps are, therefore, a

non-commutative generalization of 0-1-matrices.

Let us consider the specific matrix a from our example in 1.1.2:

1 2 3 4 5
a =

©­­­­­­­«

1 1 0 0 0

1 0 0 0 0

0 1 0 1 0

0 0 0 1 1

0 0 0 1 0

ª®®®®®®®¬
We interpret our orthogonal projections as observables since we defined our reach

map in the Heisenberg picture. However, the graph displayed in 1.1.2 maps states

to states. Thus, to calculate R we follow the arrows backwards and get for example

R(j{ 2 }) = j{ 1,3 }, R(j{ 1,3 }) = j{ 1,2,3 } and R(j{ 1,2,3 }) = j{ 1,2,3 }.

Remark In this introduction, we switched from the Schrödinger to the Heisenberg picture.

It is worth pointing out that completely positive operators can also be used in both

pictures. Indeed, in physics, using completely positive operators operating on density

matrices of states is quite common. In that situation, the completely positive operator

in the Schrödinger picture (which is often required to preserve the trace of a matrix)

can be seen as an adjoint operator to the operator in the Heisenberg picture (which is

equivalently often required to be the identity on 1). Both operators contain the same

information about the dynamics. In both pictures, a completely positive operator

gives rise to a reach map, also hinting at an adjointness relation between reach maps

given via R(p) ⊥ q ⇔ p ⊥ R∗(q). While this could be done, we focus solely on the

Heisenberg picture for the rest of this work.

In this chapter, we introduced our operator-algebraic setting and completely positive

operators. We motivated reach maps via graphs in commutative examples and gave

their definition for finite-dimensional systems.



2 Enveloped C*-Algebras and
Open Projections

Our journey will lead us through the borderlands between the stochastic and topolo-

gical realms. In the context of operator algebras, it is well-known that C*-algebras cor-

respond to topological theory, while von Neumann algebras correspond to stochastic

theory. Our challenge is that we want to build a topological theory, so applying it to

arbitrary C*-algebras should be possible. However, supports are noncontinuous and

generally only exist in von Neumann algebras.

In this chapter, we will talk about hereditary C*-subalgebras and open projections,

two closely related ways to talk about the supports of positive elements in C*-algebras.

Hereditary C*-algebras and open projections are well-known concepts in the literature.

However, we will generalize the definition of open projections to work in a von

Neumann algebra, which is not the universally enveloping von Neumann algebra of a

C*-algebra. For this, we introduce the new definition of an enveloped C*-algebra.

2.1 Enveloped C*-Algebras

This section introduces the category of enveloped C*-algebras, morally C*-algebras

with a weak* topology.

2.1.1 Weak Topologies of von Neumann Algebras

We will use the term von Neumann algebra for concrete and abstract von Neumann

algebras. As a particular case of this rule, we call a weak* closed subalgebra M of

B(H) a von Neumann algebra even if the unit of M is not the identity on H, as for

example in [Ped18, 2.2.6]. In a concrete von Neumann algebra, we can use, additionally

to the norm topology, the weak, strong, f-weak and f-strong operator topologies (see

[Bla06, I.3.1]). Thus, whenever we use, for example, the strong operator topology,

we assume that our von Neumann algebra is represented on a Hilbert space. We are,

however, trying to stay independent of a specific representation, so we will prefer to

use the weak* topology, which is the topology induced by the predual of an abstract

von Neumann algebra. It is equivalent to the f-weak topology whenever we choose a

representation (cf. [Tak79, III.3.5]).

9
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2.1.2 Enveloped C*-Algebras

Definit ion An enveloped C*-algebra is a pair A� ≔ (A,MA) of a C*-algebra A and an abstract

von Neumann algebra MA where A is a weak* dense C*-subalgebra of MA.

Remark We freely use all the vocabulary implied by this definition. For example MA is

enveloping A, and we may call MA an envelope of A. Some literature uses the term

enveloping von Neumann algebra for the weak* closure in the universal representation.

As defined, we use it instead for the weak* closure in any representation of our choice

and reserve the term universal enveloping von Neumann algebra for the weak* closure

Af∗
= A′′ ' A∗∗ in the universal representation.

Of course, if a given C*-algebra A is not finite-dimensional, the enveloping von

Neumann algebra is not unique up to equivalence and different envelopes can induce

different weak* topologies on A.

Definit ion A representation c : A → B(H) on some Hilbert space H is a normal representation of

A� if it extends to a normal *-homomorphism from MA to the weak* closure c (A)
f∗

of A in B(H).

Remark Because every von Neumann algebra can be represented on a Hilbert space, every

enveloped C*-algebra has a normal faithful representation. In any normal repres-

entation, A is also dense in MA in the weak and strong operator topologies, by the

bicommutant theorem (cf., e.g. [Bla06, I.9.1] or [Ped18, 2.2.4]). Every faithful repres-

entation c : A → B(H) of a C*-algebra A on some Hilbert space H leads us to an

enveloping von Neumann algebra MA ≔ c (A)
f∗

.

Definit ion Two representations of a C*-algebraA are quasi-equivalent if there is a *-isomorphism

between the weak* closures that leaves A fixed (cf. [Tak79, III.2.10]).

Remark That means choosing an envelope for A is the same as choosing a faithful representa-

tion of A up to quasi-equivalence.

Example 1 As noted above, the universal enveloping von Neumann algebra is the motivating

example for naming this definition. For every C*-algebra A in its universal represent-

ation, the universal enveloping von Neumann algebra A′′ = A∗∗ makes (A,A∗∗) an

enveloped C*-algebra.

Example 2 For every von Neumann algebra M, (M,M) is an enveloped C*-algebra. We say

M� is self-enveloped. This construction means that most theorems about enveloped

C*-algebras are generalizations of theorems for von Neumann algebras and can always

be specialized to them.
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Example 3 If A is finite-dimensional, (A,A) is an enveloped C*-algebra. This is a special case of

both examples 1 and 2.

Example 4 The compact operators on a Hilbert space are a C*-algebra, and they are weak* dense

in the von Neumann algebra B(H) of bounded operators on H. Thus, K(H)� =

(K(H),B(H)) is an enveloped C*-algebra. Actually, because K(H)∗ ' T (H) and

T (H)∗ ' B(H) (cf. [Bla06, I.8.6.1]), the envelope B(H) is isomorphic to the universal

envelope of K(H). So, this is another special case of example 1.

Example 5 Let S be a locally compact Hausdorff space. Then the continuous functions vanishing

at infinity are weak* dense in the bounded functions l∞(S). So (C0(S), l∞(S)) is an

enveloped C*-algebra.

Proof To see that C0(S) is indeed dense in l∞(S), which is similar to a claim in [GK71,

§3], we take any bounded function f ∈ l∞(S) with ‖f ‖∞ = 1. We define a net L by

taking all finite subsets _ ⊆ S . For f_ we choose a continuous function vanishing

at infinity such that for all l ∈ _ f (l) = f_(l) and ‖f_ ‖∞ ≤ ‖f ‖∞ = 1. Because S

is as a locally compact Hausdorff space completely regular, such a function exists.

Let d ∈ l1(S) with ‖d ‖1 = 1 and Y > 0. With
∑
l∈S |d(l)| = 1 we can find a

finite subset _ ⊆ S such that
∑
l∈_ |d(l)| ≥ 1 – Y

2 . Now for all ` ∈ L with _ < `

we have |
∑
l∈S (d(f – f_))(l)| ≤

∑
l∈S |d(l)| |(f – f_)(l)| =

∑
l∈_ |d(l)| |(f – f_)(l)| +∑

l∈S \_ |d(l)| |(f – f_)(l)| ≤ 0 + ‖f – f_ ‖∞
∑
l∈S \_ |d(l)| ≤ 2 Y2 = Y. Thus, f_ → f in

the weak* topology of l∞(S). �

Remark The definition of an “enveloped C*-algebra” is not an entirely novel concept. We

introduce it as a representation theory of C*-algebras up to quasi-equivalence.

2.1.3 Orthogonal Positive Elements

We introduced enveloped C*-algebras because we were missing supports in C*-

algebras. In the context of an enveloped C*-algebra A� for any x ∈ A+, we have

[x] ∈ MA. We might wonder how arbitrary the choice of the envelope is. Maybe

supports in an enveloped C*-algebra are just an entirely additional structure not giving

us information about the C*-algebra. The following lemma should give us hope that

this is not the case. It might seem elementary, but we emphasize it here because it

will be used often in this thesis.

Lemma Let A� be an enveloped C*-algebra. For two positive elements x , y ∈ A+ the following
are equivalent:

(a) [x][y] = 0

(b) yxy = 0

(c) xy = 0
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Proof (a) ⇒ (b) With [x][y] = 0 we calculate yxy = yx[x][y]y = yx0y = 0.

(b) ⇒ (c) If 0 = ‖yxy‖ =


√xy

2 we get xy =

√
x
√
xy =

√
x0 = 0.

(c) ⇒ (a) If xy = 0 then [Bla06, I.5.2.1] says that [x]y = 0. Applying that argument a

second time, we arrive at [x][y] = 0. �

Definit ion If those conditions are true, we call x and y orthogonal and write x ⊥ y.

Remark This definition coincides with the well-known definition for orthogonal projections

and is also common in the literature (cf., e.g. [Bla06, II.3.1.13]). The most valuable

property of this equivalence is that (b) and (c) are just equations in the C*-algebra A.

Thus, the property for two elements to have orthogonal supports is independent of

the envelope. We can apply this theorem to all positive elements of a von Neumann

algebra by self-enveloping it like in example 2.1.2 2.

2.1.4 Enveloped Subalgebras

Next, we look at subalgebras of enveloped C*-algebras and their units.

Remark Let A� be an enveloped C*-algebra and B a C*-subalgebra of A, then B and its weak*

closure MB ≔ Bf∗
in MA form an enveloped C*-algebra B� ≔ (B,MB), where MB

is a von Neumann subalgebra of MA.

Definit ion We call B� a subalgebra of A�.

2.1.5 Units of Subalgebras

A subalgebra B� ⊆ A� will generally not have a unit 1B ∈ B. Nevertheless, MB as a

von Neumann algebra has a unit. Let us see how this unit relates to the C*-algebra B.

Definit ion An approximate unit of a C*-algebra A is a net (ui)i∈I in A+
1 so that i < j implies

ui ≤ uj and limi∈I uix = x for all x ∈ A.

Remark Like in [Ped18, 1.4.1], we include the condition that an approximate unit has to consist

of monotonically increasing positive elements in our definition.

For any subalgebra B� of an enveloped C*-algebra, we write 1B for the unit of MB . It

should not be confused to mean that the C*-algebra B has a unit, but whenever B has

a unit, it will be 1B .

Lemma Let B� be a subalgebra of an enveloped C*-algebra A�.

(1) All approximate units of B converge strongly to 1B ∈ MB .
(2) 1B = supB+

1 .
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Proof (1) Let (ui)i∈I be an approximate unit of B. Then by monotone convergence (cf.

[Bla06, I.3.2.5]) the net (ui)i∈I has a strong limit u ∈ MB . By one-sided continuity

of multiplication, we have ux = xu = x for all x ∈ B. Because B is strongly dense in

MB , we can use one-sided continuity of multiplication again to achieve ux = xu = x
for all x ∈ MB . For x = 1B we get u = 1Bu = 1B .

(2) By a standard proof for the existence of approximate units, as, for example, given

in [Ped18, 1.4.2], the open unit ball B+
<1 is an approximate unit of B. The set B+

<1 has

the supremum 1B . All elements of the closed unit ball B+
1 are also dominated by 1B ,

thus, B+
1 which contains B+

<1 has the same supremum. �

2.1.6 Morphisms Between Enveloped C*-Algebras

As morphisms in our category, we want completely positive operators compatible with

the structure of the enveloped C*-algebra. For this, we choose completely positive

operators between C*-algebras, that have a normal extension onto the weak* closures.

We proceed to make this more rigorous:

Lemma Let A� and B� be enveloped C*-algebras and T : MA → MB a weak* continuous map.
If T |A is a completely positive operator from A to B, then

(1) T is a normal completely positive operator uniquely determined by T |A,
(2) ‖T ‖ = ‖T |A‖,
(3) the following are equivalent:

(a) T is a *-homomorphism
(b) T |A is a *-homomorphism

Proof (1) T |A uniquely determines T becauseA is weak* dense inMA. By weak* continuity

of addition and scalar multiplication, T is linear. By the theorem of Kaplansky (cf.

[Ped18, 2.3.3]) we know that any x ∈ (MA ⊗ Mk )+ can be weak* approximated by a

bounded net in (A ⊗ Mk )+‖x ‖ . Since T is completely positive, we have (T ⊗ id)((A ⊗
Mk )+) ⊆ (A ⊗ Mk )+. Because Mk is finite-dimensional, T ⊗ id is weak* continuous,

and we get (T ⊗ id)((MA ⊗ Mk )+) ⊆ (MA ⊗ Mk )+ for all k ∈ N and T is completely

positive.

(2) By the definition of the operator norm, it is clear that ‖T |A‖ ≤ ‖T ‖ and we rescale

T so that ‖T ‖ = ‖T (1)‖ = 1. We take an approximate unit (ui)i∈I of A and choose a

normal representation of B� on some Hilbert space H. T is f-strongly continuous

(see [Bla06, III.2.2.2]), and because it is bounded, it is strongly continuous on A1 (see

[Bla06, I.3.1.4]). T (ui) converges strongly to T (1). So for all b ∈ H and Y > 0 there is

an i ∈ I such that ‖T (1)b – T (ui)b ‖ < Y
2 . Because ‖T (1)‖ = 1, there is for every Y > 0

a b ∈ H1 such that ‖T (1)b ‖ > 1 – Y
2 . For that b ∈ H1 and an appropriate i ∈ I we



14 2 Enveloped C*-Algebras and Open Projections

get ‖T (ui)b ‖ = ‖T (ui – 1)b + T (1)b ‖ ≥ |‖T (ui)b – T (1)b ‖ – ‖T (1)b ‖| ≥
��(1 – Y

2 ) –
Y
2
�� =

|1 – Y |. Thus ‖T (ui)‖ → 1 and we get 1 ≤ ‖T |A‖ = ‖T ‖.

(3) If T is a *-homomorphism, T |A is too. If T |A is a *-homomorphism, we consider

x , y ∈ MA with nets (xj )j∈J , (yk )k∈K ⊆ Awith xj → x and yk → y in the weak* topo-

logy. Then we can calculate T (xy) = T ((limj∈J xj )y) = T (limj∈J xjy) = limj∈J T (xjy) =
limj∈J T (xj (limk∈K yk )) = limj∈J (limk∈K T (xjyk )) = limj∈J limk∈K T (xj )T (yk ) =

limj∈J T (xk )T (y) = T (x)T (y) by one-sided weak* continuity of multiplication and

weak* continuity of T . �

Definit ion Let A� and B� be enveloped C*-algebras.

(1) We call T : A� → B� a normal completely positive operator , if T is a normal

completely positive operator from MA to MB with T (A) ⊆ B.

(2) We define the category of enveloped C*-algebras, with enveloped C*-algebras as

objects and normal completely positive operators between them as morphisms.

(3) We call such a morphism a *-homomorphism if it fulfils the conditions of the

statement (3) in the above lemma.

(4) We call it a *-isomorphism if T : MA → MB and T |A : A → B are

*-isomorphisms.

(5) A *-automorphism is (as usual) a *-isomorphism from A� to A�.

2.1.7 Isomorphic Envelopes

We call two enveloped C*-algebras A� and B� isomorphic or equivalent and write

A� ' B� if there is a *-isomorphism between them. Two different representations of a

C*-algebra A are quasi-equivalent if and only if their induced enveloped C*-algebras

are isomorphic. Then, in the spirit of a subrepresentation, we can define a subenvelope.

Proposit ion If von Neumann algebras N and M are envelopes of a C*-algebra A then the following
are equivalent:

(a) There is a central orthogonal projection z ∈ P(Z(M)) such that (zA, zM) '
(A,N ).

(b) There is a *-homomorphism c : (A,M) → (A,N ) that is an extension of the
identity on A and surjective from M onto N .

Proof (a) ⇒ (b) is clear, because up to isomorphism x ↦→ zx is exactly the desired surjective

*-homomorphism.

(b) ⇒ (a) Let zN , zM ∈ P(Z(A∗∗)) such that (A,N ) = (zNA, zNA∗∗) and (A,M) =

(zMA, zMA∗∗). Then by [Bla06, III.5.1.3] we have zN ≤ zM. �

Definit ion In this case, we call N a subenvelope of M.
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Remark In the previous proof we used that every enveloped C*-algebra A� is isomorphic to

(zA, zA∗∗) for some central projection z ∈ P(Z(A∗∗)) in the universal enveloping

von Neumann algebra A∗∗. In other words, every envelope of A is a subenvelope of

the universal envelope. There is a one-to-one correspondence between envelopes of

A and such z ∈ P(Z(A∗∗)) for which x ↦→ zx is a faithful representation (cf. [Ped18,

3.8.2]).

2.1.8 Interplay of Isomorphisms Between an Algebra and its Envelope

We have defined an isomorphism i : MA → MB by requiring that i|A : A → B and

i : MA → MB are *-isomorphisms. It turns out that both conditions do not imply

each other:

Example 1 Let A� be any enveloped C*-algebra with A ≠ MA. Then the identity map id : A� →
(MA,MA) is a morphism in the category of enveloped C*-algebras. The same map

on the envelope id : MA → MA is a *-isomorphism, but the restriction to the C*-

algebras id : A → MA is not. Hence, a *-isomorphism on the weak* closure does not

need to be a *-isomorphism on the C*-algebra.

Example 2 Whenever a C*-algebra A has an envelope MA so that (A,MA) is not equivalent to

(A,A∗∗) we have a surjective map c : A∗∗ → MA that is a *-isomorphism on A but

not fromA∗∗ → MA. A concrete example is (C([0, 1]), l∞([0, 1])) (Example 5 in 2.1.2).

To see that l∞([0, 1]) is not equivalent to the universal envelope, we consider that

every functional of C([0, 1]) is an element of the predual of C([0, 1])∗∗. The predual of

l∞([0, 1]) is l1([0, 1]), which, for example, cannot contain a density function for the

state induced by the Lebesgue measure.

2.1.9 Functorial Relations

There are two fundamental examples of how to find morphisms between enveloped

C*-algebras.

Example 1 Between universally enveloped C*-algebras (A,A∗∗) and (B,B∗∗) all completely pos-

itive operators T : A → B have a normal extension T ∗∗ : A∗∗ → B∗∗. It is given by

T ∗∗(x)(i) = x(i◦T ) for x ∈ A∗∗ and alli ∈ A∗. T ∗∗ is normal because if xi(i) → x(i)
for all i ∈ A∗, then xi(i ◦ T ) → x(i ◦ T ).

Example 2 Between self-enveloped von Neumann algebras, all normal completely positive op-

erators on the von Neumann algebras are morphisms in the category of enveloped

C*-algebras.
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Remark With these two examples, we have seen the categorical background for our considera-

tions given by the following commuting diagram of functors. We have the category of

matrix algebras (MA) contained in the category of C*-algebras (C*) and the category

of von Neumann algebras (vNA), and our new category of enveloped C*-algebras

(env-C*). Our morphisms are completely positive operators (CPO), which must be

normal (f*-CPO) if a von Neumann algebra is involved.

(MA, CPO)

(C*, CPO) (vNA, f*-CPO)

(env-C*, f*-CPO)

id
id

universal envelope self-envelope

2.2 Hereditary Subalgebras

During our discussion in 1.2.1, we established the correspondence between orthogonal

projections and subsets of a state space. This correspondence can lose its footing

when we go to infinite-dimensional spaces. Consider, for example, the algebra C([0, 1])
of continuous functions on the interval [0,1]. It contains no non-trivial orthogonal

projections and thus cannot have support projections for most positive functions. This

is a problem for us because a reach map R : P(C([0, 1])) → P(C([0, 1])) can only be

very trivial.

An established method to keep up this analogy are hereditary subalgebras, which are

a decent stand-in for orthogonal projections in a lot of contexts. They are, though,

just one perspective onto a collection of closely related concepts as there are in a

C*-algebra A correspondences between

(a) hereditary subalgebras,

(b) open projections (in the universal envelope),

(c) closed left (or right) ideals,

(d) faces in the cone of positive functionals (A∗)+,

(e) faces in the set of states S(A).

We will, however, only explore some of those correspondences and restrict ourselves

mainly to the relation of (a) and (b) with a little bit of (c). More details can be found in

[Ped18, 1.5, 3.10, 3.11].
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2.2.1 Hereditary Subalgebras

Definit ion A C*-subalgebra B ⊆ A is called hereditary if for every b ∈ B+ and a ∈ A+ a ≤ b
implies a ∈ B.

Proposit ion
[Ped18, 1.5.2]

Let A be a C*-algebra.

(1) For any hereditary C*-subalgebra B ⊆ A, the set { x ∈ A : x∗x ∈ B } is a closed
left ideal.

(2) For any closed left ideal I ⊆ A, I ∩ I ∗ is a hereditary C*-subalgebra.
(3) These two maps are one-to-one and inverses of each other.

Remark
[Ped18, 2.5.4]

In any von Neumann algebra M, every orthogonal projection p ∈ P(M) is the

unit of the hereditary von Neumann subalgebra pMp. All hereditary von Neumann

subalgebras are of this form, but there can be more hereditary C*-subalgebras of M,

which are not weak* closed. So, in von Neumann algebras, where there are enough

orthogonal projections, we see a correspondence between projections and hereditary

subalgebras.

Example 1 For every C*-algebra A, trivially A and { 0 } are hereditary.

Example 2 In a commutative C*-algebra C0(S) (with S locally compact and Hausdorff), every left

ideal is a two-sided ideal. Thus, the hereditary C*-subalgebras are exactly the closed

ideals. A closed ideal in C0(S) is of the form { f ∈ C0(S) : f (x) = 0 for all x ∈ S \ X }

for some open set X ⊆ S . Hence, the hereditary C*-subalgebras correspond to the

open sets of S .

2.2.2 Infima from Suprema

In the theory of von Neumann algebras, it is well-known that the orthogonal pro-

jections form a complete lattice. This means that they have a partial (i.e. generally

non-total) order for which arbitrary sets have a supremum, i.e. a smallest upper bound,

denoted by ∨ and an infimum, i.e. a largest lower bound, denoted by ∧, which are

elements of the lattice. As we will see, the hereditary C*-subalgebras and the open

projections are also lattices. To show this, we will need the following general result

from the theory of lattices.

Theorem
[Bly05, Thm. 2.11]

If an ordered set L has suprema for infinite sets and a minimum, then it also has infima
for infinite sets, and they are given by∧

i∈I
xi =

∨
{ x ∈ L : x ≤ xi for all i ∈ I } for all (xi)i∈I ⊆ L.

Thus, L is a complete lattice. The dual result (switching infima and suprema, with a
maximum) also holds.
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Remark This theorem formalizes the commonly used fact that the largest lower bound is

the same as the supremum of all lower bounds. It can be used to describe a lot of

situations where we define generated objects. For example, the closed subspaces of a

Hilbert space form a lattice by inclusion. The span of a set of elements A in H is the

intersection of all subspaces containing A. Which is the same as the supremum of the

set of one-dimensional subspaces {Cb : b ∈ A }.

Example This result can also lead to slightly unintuitive lattices. Consider, for example, a

topological space (S , T ). As a subset of the power set P (S), the topology T is ordered

by inclusion. By definition, T is closed under unions and contains the minimum

∅. Thus, Theorem 2.2.2 tells us that T also has infima for arbitrary sets. However,

topologies generally are not closed under the intersection of infinite sets. Instead, the

lattice definition of the infimum for a family of open sets A is the largest open set

contained in every open set in A, which is the interior of their intersections, but not

necessarily their intersection itself.

2.2.3 The Lattice of Hereditary Subalgebras

Proposit ion If A is a C*-algebra, then the ordered set of hereditary C*-subalgebras of A form a
complete lattice with the infimum given by intersection.

Proof The C*-subalgebras of A can be ordered by inclusion. The intersection of an arbitrary

number of hereditary algebras is again a hereditary C*-subalgebra by straightforward

calculation. Using A as the maximum, we apply Theorem 2.2.2. �

Remark The supremum we receive by applying Theorem 2.2.2 is the smallest hereditary C*-

subalgebra containing all the algebras we are calculating the supremum over. It is,

however, not generally the smallest C*-subalgebra containing all of them because that

subalgebra does not have to be hereditary.

2.2.4 Hereditary C*-subalgebras by Reduction

We have announced hereditary C*-subalgebras as a kind of replacement for orthogonal

projections. To make this notion precise, we look at the relation between hereditary

C*-subalgebras and projections in the envelope.

Definit ion Let A� be an enveloped C*-algebra. We write Ap ≔ A ∩ pMAp for any p ∈ P(MA).

Remark In the case of a self-enveloped von Neumann algebra (M,M), the definition of Mp

as M ∩ pMp = pMp coincides with the usual definition of a reduced von Neumann

algebra (cf. [Tak79, II. 3.11]). For the next lemma we remember from Definition 2.1.5

that 1Ap is the unit of the envelope of the enveloped subalgebra A�
p and therefore an

element of MAp but not necessarily of Ap .
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Lemma If p ∈ P(MA) is an orthogonal projection, then

(1) Ap = A ∩ pAp,
(2) Ap is a hereditary C*-subalgebra of A,
(3) 1Ap ≤ p.

Proof (1) We show the equality by proving both inclusions. The inclusion A ∩ pAp ⊆ Ap =

A ∩ pMAp follows from pAp ⊆ pMAp. On the other hand, for every x ∈ Ap , we

have x = pxp and x ∈ A, which means that x ∈ A ∩ pAp.

(2) The reduced algebra Ap is the intersection of two C*-algebras and thus a C*-

algebra. To see that it is hereditary, let x ∈ A and y ∈ Ap with x ≤ y . We know that

x ≤ y ⊥ p⊥, and so x = pxp and x ∈ Ap .

(3) From Lemma 2.1.5 we know that 1Ap =
∨
(Ap)+1 . Since (Ap)+1 ⊆ MA we can

conclude 1Ap ∈ pMAp. �

Remark Statement (3) leaves the possibility that the unit ofAp can be smaller than p. So, some

projections can be characterized by their reduced hereditary C*-subalgebra, while

others cannot. This leads us to the definition of open projections.

2.3 Open Projections

We will now introduce open projections because we need them as domains of reach

maps.

2.3.1 Open Projections

Proposit ion Let A� be an enveloped C*-algebra. For an orthogonal projection p ∈ P(MA) the
following are equivalent:

(a) p = 1Ap .
(b) p = 1B for a subalgebra B� ⊆ A�.
(c) There is a monotonically increasing net of positive elements (xi)i∈I ⊆ A+ with

supi∈I xi = p.

Proof (a) ⇒ (b) This step is trivial because the reduced algebra Ap is a C*-subalgebra of A
(cf. Lemma 2.2.4).

(b) ⇒ (c) All approximate units of B are monotonically increasing nets converging to

1B according to Lemma 2.1.5.

(c) ⇒ (a) We know from Lemma 2.2.4 that 1Ap ≤ p and need to show equality. It

follows from the inclusion (xi)i∈I ⊆ (Ap)+1 . �
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Definit ion We call p an open projection of A� if the above conditions hold. With T (A�) =

T (A,MA) we denote the set of all open projections of A�. We often write T (A) ≔

T (A�) if it is clear which envelope we are talking about. The orthogonal complement

of an open projection is a closed projection. If a projection is closed and can be

majorized by an element in A+, we call it compact.

Remark This definition of open projections is more general than usual in the literature. For

example, in the original definition in [Ake69, II.1] or [Ped18, 3.11.10], only the universal

envelope (or equivalently, the “atomic” envelope, see Lemma 3.2.3) is used for the

definition of open projections. In that case, a one-to-one correspondence exists

between open projections and hereditary C*-subalgebras (cf. Proposition 3.2.1). In

other envelopes, different hereditary C*-subalgebras B1,B2 can lead to the same open

projection with 1B1 = 1B2 . [AB15, 2.3] starts with our more general definition but

quickly returns to the more special case in [AB15, 2.5].

The notation T (A) is chosen in analogy to the topology of a topological space. We

will explore in the next chapter how well this analogy works.

Example 1 In a self-enveloped von Neumann algebra, every orthogonal projection is open.

Example 2 In every enveloped C*-algebra A�, 0 and 1A are open.

Remark We will see more examples of open projections (see Sections 3.2.5, 3.2.6), how they

form a lattice (see Section 3.2.4) and further topological properties (see Section 3.4) in

the next chapter.

2.3.2 Every support is an open projection

Our aim was a possibility to talk about the supports of elements in a C*-algebra. Open

projections are precisely the right tool to do this:

Proposit ion Let A� be an enveloped C*-algebra with h ∈ A+
1 and B ≔ hAh

‖·‖
.

(i) B is the smallest hereditary C*-subalgebra of A which contains h.
(ii) (h

1
n )n∈N is an approximate unit of B.

(iii) [h] = 1B .
(iv) If f(h) ⊆ { 0 } ∪ (Y,∞), for some Y > 0, B = hAh and [h] ∈ B.

Further for every separable C*-subalgebra B ⊆ A the following are equivalent:

(a) B is hereditary.
(b) There is h ∈ A+

1 with B = hAh
‖·‖

.

All of the statements in this proposition are proven in the literature: The first four

statements can be found in (i) [Mur90, 3.2.4], (ii) [Bla06, II.4.2.1], (iii) [Ped18, 3.10.5]
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and (iv) [Bla06, II.3.2.9 and II.3.2.11]. The final equivalence is given in [Mur90, 3.2.5

Theorem].

Remark For a certain subalgebra B there are many h with hAh
‖·‖

= B. On the other hand,

only ifA is separable we know that every open projection is the support of an element

in A+.

Since we will use reach maps to prove properties about open projections, we will

postpone further investigation of open projections to the next chapter.

In this chapter, we introduced enveloped C*-algebras and their morphisms, a represent-

ation theory up to quasi-equivalence. Then we introduced substitutes for orthogonal

projections in C*-algebras, primarily hereditary C*-subalgebras and open projections

in the envelope.





3 Reach Maps

This chapter continues our investigation of reach maps and open projections. We will

start with the general definition of reach maps and show that they preserve suprema.

Then we discuss the lattice of open projections and its analogy to topology. Ultimately,

we will be able to define the category of reach maps.

The most important results of this chapter are that reach maps preserve suprema

(Theorem 3.1.3) and that our generalized definition of open projections forms a lattice

as well (Proposition 3.2.4). Also noteworthy is the slightly intricate analysis of supports

of completely positive operators in enveloped C*-algebras (Proposition 3.3.1) and the

proof of a Hausdorff property for our generalized open projections (Proposition 3.4.3).

For this chapter, let A� and B� be enveloped C*-algebras and T : A� → B� a normal

completely positive operator between them.

3.1 Reach Maps, Suprema and Infima

We have seen reach maps on matrix algebras in Definition 1.3.5. Now, we give the

general definition on enveloped C*-algebras.

3.1.1 Reach Maps

Definit ion We define the reach map RT of T as

RT : T (A) 3 p ↦→ [T (p)] ∈ P(MB)

Remark We will prove in Proposition 3.5.1 that, in fact, RT (p) ∈ T (B) for all p ∈ T (A), thus a

reach map maps open projections to open projections. Until we have completed that

proof, we will only write RT (p) ∈ MB .

We explore reach maps of different completely positive operators throughout this

whole work. We have looked at commutative finite-dimensional systems in Chapter

1 and will examine the non-commutative finite-dimensional case in Chapter 4. See

Chapter 6 for reach maps of conditional expectations.

23
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Example 1 One special case of a completely positive operator is a normal positive functional

i : M → C. Then the reach map Ri : T (M,M) → P(C) is a function into the set

{ 0, 1 }. We have Ri (p) = 1 if and only if i(p) ≠ 0 and correspondingly Ri (p) = 0

exactly if i(p) = 0.

Example 2 If i : A� → B� is a *-homomorphism, then Ri(p) = [i(p)] = i(p) for all p ∈ T (A).

Therefore, we often write i for Ri . Also, if p ⊥ q for p, q ∈ T (A) then Ri(p) ⊥ Ri(q).
We will discuss in 4.2.4 that reach maps preserving orthogonality are always induced

by a *-homomorphism.

3.1.2 A Special Reach Map: The Support

One perspective on the support function x ↦→ [x] is that it is the reach map of the

identity operator id : A� → A�. Many calculations with reach maps come down

to operating with supports. Thus, we collect a few basic properties of the support

function. A note on notation: We use “
∨
” for suprema in the lattice of orthogonal

projections and “sup” for suprema of general positive elements when we know that

they exist, most often for bounded monotonically increasing nets.

Lemma If x , y ∈ MA
+, then

(1) x ≤ y ⇒ [x] ≤ [y].
(2) If (xi)i∈I ⊆ MA

+ is a bounded, increasing net, then [supi∈I xi] = supi∈I [xi].
(3) [

∑
i∈N xi] =

∨
i∈N[xi] for all strongly convergent sums of (xi)i∈N ⊆ MA

+.
(4) [T (x)] = [T ([x])] for every normal completely positive operator T : A� → B�.
(5) If xy = yx , then [x][y] = [y][x] = [yx] = [xy].

Proof (1) If p ≔ [y]⊥ ∈ MA, then p ⊥ y and pxp ≤ pyp = 0. So p ⊥ [x] and thus [x] ≤ [y].

Before we prove statement (2), we show the auxiliary statement T (x) = 0 ⇔ T ([x]) = 0,
which is a special case of (4).
For every normal functional i ∈ S∗(MA),k ≔ i ◦ T is normal. With p ≔ suppk we

get k (x) = 0 ⇔ pxp = 0 ⇔ [x] ⊥ p ⇔ k ([x]) = 0. Since S∗(MA) is separating for

MA we have shown the auxiliary statement T (x) = 0 ⇔ T ([x]) = 0.

(2) For every p ∈ P(MA) we have

p ⊥ [sup
i∈I

xi] ⇔ 0 = p(sup
i∈I

xi)p = sup
i∈I

pxip ⇔ ∀i ∈ I xi ⊥ p

⇔ 0 = sup
i∈I

p[xi]p = p(sup
i∈I

[xi])p ⇔ p ⊥ sup
i∈I

[xi].

Which gives us sup x = supi∈I [xi].

(3) First, we show the equality for finite sums. Since x ≤ x + y and y ≤ x + y we have

[x] ≤ [x+y] and [y] ≤ [x+y] and so [x]∨[y] ≤ [x+y]. Let p ≔ ([x]∨[y])⊥ ∈ P(MA)

then 0 = pxp + pyp = p(x + y)p so p ⊥ [x + y] and [x + y] ≤ [x] ∨ [y].
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Now, with the equality shown for finite sums, the claim for infinite sums follows

directly from (2): [supn∈N
∑n
i=1 xi] = supn∈N[

∑n
i=1 xi] = supn∈N

∨n
i=1[xi] =

∨
i∈N[xi].

(4) First, we consider any Kraus operator a ∈ B(K,H) of T where MA ⊆ B(H) and

MB ⊆ B(K). Now for all x′ ∈ B(H)+, y′ ∈ B(K)+ we have a∗x′a ⊥ y′ ⇒ a∗x′ay′ =
0 ⇒ ay′a∗x′ay′a∗ = 0 ⇒ x′ ⊥ ay′a∗ and by symmetry of the argument we get

a∗x′a ⊥ y′ ⇔ x′ ⊥ ay′a∗. Applying that to any p ∈ P(MB) we get a∗xa ⊥ p ⇔
x ⊥ apa∗ ⇔ [x] ⊥ apa∗ ⇔ a∗[x]a ⊥ p and so [a∗xa] = [a∗[x]a]. Now for a

Kraus representation (ai)i∈N ⊆ B(K,H) of T we can compute [T (x)] = [
∑∞
i=1 a

∗
i xai] =∨

i∈N[a∗i xai] =
∨

i∈N[a∗i [x]ai] = [
∑∞
i=1 a

∗
i [x]ai] = [T ([x])].

(5) First, x commutes with [y] because it commutes with everything in { y }′′. With

the same argument, [y] also commutes with [x]. As a product of two commuting

orthogonal projections, [x][y] is also an orthogonal projection. By (4), we know

that [a∗xa] = [a∗[x]a] and thus we get [yx] = [y
1
2 xy

1
2 ] = [y

1
2 [x]y

1
2 ] = [y[x]] =

[[x]y[x]] = [[x][y][x]] = [[x][y]] = [x][y]. �

Remark While the support map is continuous from below, it is very non-continuous from

above. Consider 1
nx for any x ∈ A+. That sequence converges in norm against zero

while the support converges against [x].

Statement (4), an essential ingredient for working with reach maps, can already be

found in [Gär14, 2.4.1].

3.1.3 Reach Maps Preserve Suprema

The following theorem will later give us, for example, RT (p ∨ q) = RT (p) ∨ RT (q)
for p, q ∈ T (A). Since we have not yet shown that p ∨ q is an open projection, we

formulate this theorem for all P(MA).

Theorem If (pi)i∈I ⊆ P(MA) is a family of orthogonal projections, then [T (
∨

i∈I pi)] =∨
i∈I [T (pi)].

Proof We define the projection p ≔
∨

i∈I pi , the set M ≔ { J ⊆ I : |J | < ∞ } and

a partial order on M by set inclusion. Define qJ ≔
∨

i∈J pi for all J ∈ M .

Then (qJ )J∈M is an increasing, bounded net with supJ∈M qJ =
∨

i∈I pi = p.
Also, since every J ∈ M is finite, the sum

∑
i∈J pi exists, and we have

[T (qJ )] = [T (
∨

i∈J pi)] = [T ([
∑
i∈J pi])] = [T (

∑
i∈J pi)] = [

∑
i∈J T (pi)] =

∨
i∈J [T (pi)].

We can conclude [T (p)] = [T (supJ∈M qJ )] = [supJ∈M T (qJ )] = supJ∈M [T (qJ )] =

supJ∈M
∨

i∈J [T (pi)] =
∨

i∈I [T (pi)]. �

Remark Because of RT (0) = [T (0)] = 0 reach maps map 0 to 0, which is also a consequence of

the above theorem. With 0 =
∨ ∅ we get RT (0) = RT (

∨ ∅) = ∨ ∅ = 0.
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3.1.4 Monotone Maps

Corollary (1) If p ≤ q ∈ P(MA), then [T (p)] ≤ [T (q)].
(2) If (pi)i∈I ⊆ P(MA), then [T (

∧
pi)] ≤

∧
[T (pi)].

Proof (1) All maps R which preserve suprema are monotone: Let q ≤ p, then R(q) ≤
R(q) ∨ R(p) = R(q ∨ p) = R(p).

(2) All monotone maps R fulfil this property: R(
∧

pi) ≤ R(pi) for all i ∈ I , therefore
R(

∧
pi) ≤

∧
R(pi). �

3.2 The Lattice of Open Projections

Now, we will see that the set of open projections is closed under suprema. That fact is

known in the literature for the universal envelope, and we will use the reach map of

representations to transfer the result to other envelopes.

3.2.1 Open Projections in the Universal Representation

Proposit ion
[Ped18, 3.11.10]

Let A� ≔ (A,A∗∗) be a universally enveloped C*-algebra, then B ↦→ 1B is a bijection
from the hereditary C*-subalgebras of A to the open projections T (A).

3.2.2 The Universal Atomic Envelope

As discussed in Section 2.1.7, every envelope of a C*-algebra A is a subenvelope

of the universal envelope. We want to single out one other envelope of A which is

particularly natural for working with open projections. We say a projection isminimal
if it is non-zero and has no other non-zero projection below it. A von Neumann algebra

M is called atomic if below every non-zero projection in P(M) there is a minimal

projection.

Definit ion Let A� be an enveloped C*-algebra. If za ∈ P(Z(A∗∗)) is the smallest orthogonal

projection in P(Z(A∗∗)) such that i(za) = 1 for all pure states i ∈ S(A), then we call

MA the universal atomic envelope of A if (A,MA) ' (zaA, zaA∗∗).

Remark Every atomic envelope is a subenvelope of the universal atomic envelope (see [Tak79,

III.6.36]). The universal atomic envelope is isomorphic to the envelope induced by the

universal atomic representation, which is defined as the direct sum of all irreducible

representations of A (see [Tak79, III.6.35]). It is also equivalent to the envelope

induced by the reduced atomic representation, which is defined as the direct sum of

one representative for every class of equivalent irreducible representations of A (see

[Ped18, 4.3.7]).
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3.2.3 Open Projections in Other Representations

Lemma If c : (A,A∗∗) → (A,MA) is a surjective *-homomorphism with c |A = id, then:

(1) The reach map Rc is surjective onto the open projections T (A,MA).
(2) If the universal atomic envelope is a subenvelope of MA, then Rc is bijective.

Proof (1) First, we need to show that Rc only maps to open projections. For that, we consider

any open projection p ∈ T (A,MA), which is the supremum of an approximating

unit (ui)i∈I of a hereditary subalgebra of A. Then (c (ui))i∈I = (ui)i∈I is the same ap-

proximating unit, which has a supremum in A∗∗ and therefore Rc (p) = c (supi∈I ui) =
supi∈I c (ui) ∈ T (A,MA) is an open projection.

Second, we show surjectivity by considering an open projection p ∈ T (A,MA). It is

the supremum of an approximating unit (ui)i∈I of a hereditary subalgebra in A as a

subalgebra of MA. Of course (ui)i also has a supremum supi∈I ui in T (A,A∗∗) and

because c is normal we have c (supi∈I ui) = p.

(2) See [AB15, 2.5]. �

3.2.4 The Lattice of Open Projections

Proposit ion (1) The supremum of open projections is an open projection.
(2) The open projections imbued with the order of orthogonal projections are a complete

lattice.
(3) The map B ↦→ 1B from the hereditary C*-subalgebras to the open projections is

surjective, monotone and preserves suprema.

Proof (1) is shown in [GK71, Theorem 3.3] for open projections of the universal atomic

envelope, and therefore also for the universal envelope. For all other envelopes we can

conclude it from Lemma 3.2.3: Any family of open projections in (pi)i∈I ⊆ T (A,MA)

is an image of a family of open projections in T (A,A∗∗) under a *-homomorphism

c : (A,A∗∗) → A� like in Lemma 3.2.3. Since
∨

i∈I pi is an open projection in

T (A,A∗∗) its image c (
∨

i∈I pi) =
∨

i∈I c (pi) is an open projection in T (A,MA).

(2) follows from (1) via Theorem 2.2.2.

(3) The map is surjective because it can be written as the concatenation of the

bijective map B → 1B onto T (A,A∗∗) (Proposition 3.2.1) and the surjective map

Rc : T (A,A∗∗) → T (A,MA) (Lemma 3.2.3). That the map is monotone is clear from

the definition. When we consider a family of hereditary C*-subalgebras (Bi)i∈I of

A, then
∨

i∈I Bi =: B belongs to a unique open projection 1B ∈ T (A,A∗∗). When

we consider the open projection p ≔
∨

i∈I 1Bi then because of 1Bi ≤ 1B , we have

p ≤ 1B . Also, p belongs to a hereditary C*-subalgebra Ap which includes all Bi

and thus B ≤ Ap and 1B ≤ p. We conclude that 1B = p and consequently the map
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B ↦→ 1B ∈ T (A,A∗∗) preserves suprema. For other envelopes, we need to add that

the reach map Rc : T (A,A∗∗) → T (A,MA) preserves suprema. �

Definit ion For p ∈ P(MA) we call p◦ ≔
∨ {

q ∈ T (A�) | q ≤ p
}
∈ T (A�) the interior of p.

Similarly, p̄ = ((p⊥)◦)⊥ is the closure of p.

Remark We have shown in this proposition that, like all unions of open sets are open sets, the

suprema of open projections yield open projections. On the other hand, we know that

intersections of open sets do, in general, not result in an open set. The same is valid for

open projections. The infimum in the set of orthogonal projections (i.e. the intersection

of Hilbert subspaces) of open projections is not generally an open projection. Still, the

open sets and the open projections form a complete lattice. We only must be careful

to take the infimum in the right lattice. For a family of open sets, their infimum is

the interior of their intersection. The infimum of a family of open projections is the

largest open projection below their intersection. In the language of lattice theory, the

open projections are a complete sub ∨-semilattice but not a complete sub-lattice of

the orthogonal projections.

The parallel between open sets and open projections has its limits. There are examples

of the infimum of two non-commuting open projections not being open (see [Ake69,

II.6]). However, at least in the universal envelope, the intersection of commuting open

projections is open (see [Ake69, II.7]).

We have seen in the preceding theorems that the hereditary C*-subalgebras give a

structure to a C*-algebra by which we can analyse it. When we choose a “small”

envelope, we lose some of this structure because multiple hereditary C*-subalgebras

induce the same open projection. The “bigger” we make our envelope, the larger the

set of open projections becomes. In terms of topology, our topology becomes finer.

However, once the envelope contains the universal atomic envelope, we have achieved

the finest topology. Making the envelope even bigger only makes the von Neumann

algebra bigger without gaining more distinct open projections. Thus, we can see the

universal atomic envelope as a sweet spot. Sometimes, we want a coarser topology.

For example, in a self-enveloped von Neumann algebra (M,M), the structure given by

all projections P(M) is sufficient to inspect reach maps on M. If instead we used the

universal envelope (M,M∗∗), a rather unusual construct, we would get many more

open projections, one for every hereditary C*-subalgebra. In a von Neumann algebra,

the hereditary von Neumann subalgebras (a subset of the hereditary C*-subalgebras)

give a more helpful structure.
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3.2.5 Open Projections in Commutative Algebras

Example 1 In a commutative C*-algebra C0(S) with S locally compact and Hausdorff, we had

discussed in Example 2 in 2.2.1 that the hereditary C*-subalgebras correspond precisely

to the open sets in S . Consequently, in the universal envelope of C0(S), the open

projections are exactly the characteristic functions of open sets (cf. [Ped18, 3.11.10]),

motivating the name open projections.

Example 2 If we choose another envelope, the characteristic functions of different open sets

could lead to the same open projection. We can observe that the point evaluation

f ↦→ f (l) for every l ∈ S is a pure state. In an envelope where each of these pure

states is normal, for example (C0(S), l∞(S)), we can separate characteristic functions

of different open sets. This is an example of how the universal atomic envelope is

enough to make the map from the hereditary C*-subalgebras to the open projections

bijective.

Example 3 In contrast, let us look at C([0, 1]) ⊆ L∞([0, 1], _) where we use the Lebesgue measure

as a probability measure on the unit interval. Different open sets, e.g. [0, 12 ) and (0, 12 )

or [0, 1] and [0, 12 ) ∪ (12 , 1], lead us to the same open projection. Two open sets give us

the same open projection if and only if they only differ by a set of measure zero.

Example 4 We consider the Cantor space S = SZ
0 for a finite S0. We envelope it with L∞(S , `)

for any product measure `. Again, we know that the characteristic functions of open

sets are open projections. We can say more in this case: A cylinder set is defined

by an n ∈ N and w ∈ S2n
0 to be Zw ≔

{
l ∈ S

�� l[–n,n] = w
}
, where l[–n,n] is the

subsequence (l–n,l–n+1, . . . ,ln–1,ln). Every cylinder set is clopen in S . Because S

is a topological product space, finite unions of cylinder sets give us all clopen sets inS

(cf. [LM21, Ex. 6.1.7.]). So, the orthogonal projections inP(C(S)) are the characteristic

functions of a finite union of cylinder sets. Further, every open set is given as a union

of cylinder sets. A topological space like this, with a topological base of clopen sets, is

also called zero dimensional (see [Eng89, 6.2]). This property means that we cannot

only approximate every open projection in P(L∞(S , `)) with an increasing net in

C(S)+, but that we can choose the increasing net to consist of orthogonal projections

in P(C(S)). This means the open projections are the closure under suprema of the

orthogonal projections in the algebra. Again, if two open sets only differ by a null set,

they will belong to the same projection. Which pairs of open sets only differ by a null

set will heavily depend on the chosen product measure.

3.2.6 Examples for Open Projections in Non-Commutative Algebras

Example 1 For the compact operators on a Hilbert space K(H) we know that K(H)∗∗ = B(H).

Every orthogonal projection in P(B(H)) can be written as a supremum of minimal
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projections and thus as an increasing sequence of finite-dimensional orthogonal

projections. So, we have T (K(H),B(H)) = P(B(H)). Since every possible projection

is open, this non-commutative topology could be called discrete.

Example 2 We consider the open projections of the CAR-algebra A ≔ M⊗Z
2 . This is the non-

commutative version of the Cantor space. A has real rank zero, which means that

all hereditary C*-subalgebras have an approximate unit consisting of orthogonal

projections. This property is a non-commutative analogue to a zero-dimensional

topological space (see [Bla06, V.3.2.7)] and is also what we have observed for the

Cantor space. Again, it means for separable algebras that every open projection

can be approximated by a monotone sequence of orthogonal projections in A, or

consequently, every open projection can be written as a supremum of projections in

the algebra. The Cantor space { 0, 1 }Z can be embedded on the diagonal of A. Thus,

the previous example gives all open projections on the diagonal. For every unitary

u ∈ A and every open projection p ∈ T (C({ 0, 1 }Z)), we have that u∗pu is also an open

projection. By Adu being normal, it maps the sequence approximating p to u∗pu.

3.3 Supports of Completely Positive Operators

Besides positive elements and functionals, completely positive operators also have a

support. It is a valuable tool we introduce now because we will need it to analyse open

projections and reach maps further. Supports, especially of functions, are a widely

used concept in von Neumann algebras. In the context of enveloped C*-algebras,

we notice, however, that there are two different notions of support for a normal

completely positive operator.

3.3.1 The Support of a Completely Positive Operator

Proposit ion Let A� and B� be enveloped C*-algebras and T : A� → B� a normal completely positive
operator.

(1) The set NT ≔ { x ∈ A : T (xx∗) = T (x∗x) = 0 } is a hereditary C*-subalgebra.

Also for the orthogonal projections q ≔ 1NT and p ≔ suppT ≔ q⊥ in P(MA) the
following statements hold:

(2) q is open and p is closed.
(3) T (q) = 0 and T (p) = T (1).
(4) NT = Aq .
(5) q =

∨
{ q′ ∈ T (A) : T (q′) = 0 }.

(6) T (pxp) = T (xp) = T (px) = T (x) for all x ∈ A.
(7) T (x) = 0 ⇔ x ⊥ p for all x ∈ A+.
(8) supp(MA,MA)T ≤ suppA�T = supp(MA,MA)T .
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In statement (8), we use the definition of suppT for two different enveloped C*-algebras,

once for A� and once for MA self-enveloped. As in Definition 3.2.4, the closure is

the smallest dominating closed projection regarding the topology T (A,MA).

Proof (1) We show that I ≔ { x ∈ A : T (x∗x) = 0 } is a closed left ideal. For x , y ∈ I
and _ ∈ C we have T ((_x∗)(_x)) = |_|2T (x∗x) = 0. Also, ‖T ((x + y)∗(x + y))‖ ≤
‖T (x∗x)‖ + ‖T (y∗y)‖ + ‖T (x∗y)‖ + ‖T (y∗x)‖. Proposition 1.3.3 says that ‖T (x∗y)‖2 ≤
‖T (x∗x)‖ ‖T (y∗y)‖ = 0 and we conclude with ‖T (x + y)(x + y)∗‖ = 0 that I is a sub-

space. If x ∈ I , y ∈ A, then T ((xy)∗(xy)) = T (x∗y∗yx)) ≤ T (x∗ ‖y∗y‖ 1x) = 0 and I is
an ideal. To show that I is closed, we choose a uniform convergent net (xj )j∈J → x
in I . Then (x∗j xj )j∈J converges against x∗x , and because T is continuous, T (x∗x) = 0.

Since I is a closed left ideal, we can conclude with Proposition 2.2.1 that NT = I ∗ ∩ I
is a hereditary C*-subalgebra.

(2) q is open by definition and thus p is closed.

(3) q can be written as a weak*-limit of an approximating unit of NT and because T is

normal T (q) = 0. T (p) = T (1) follows directly.

(4) For all elements x ∈ N +
T ⊆ A we have pxp = x and so x ∈ Aq . On the other hand,

if x ∈ A+
q then x ≤ ‖x ‖ q and so T (x) ≤ ‖x ‖ T (q) = 0, which implies x ∈ N +

T . Since

both C*-subalgebras have the same positive cone, they are the same.

(5) q is open with T (q) = 0, so q is one of the open projections in the supremum

we are calculating. On the other hand, any open q′ ∈ T (A) with T (q′) = 0 can be

approximated from below by elements in NT , thus q′ ≤ q.

(6) With Proposition 1.3.3 we get T (xq) = T (qx) = 0. Hence, T (x) = T ((p+q)x) = T (px)
and similar for the other terms.

(7) Let T (x) = 0, then T ([x]) = 0 which means [x] ≤ q and x ⊥ p. On the other hand

if x ⊥ p then T (x) = T (xp) = T (0) = 0.

(8) We set qMA ≔ (suppMAT )
⊥. Since T (q) = 0 and q ∈ MA we know from the

definition of qMA that q ≤ qMA . On the other hand, for every q′ ∈ T (A) with

q′ ≤ qMA we have T (q′) ≤ T (qMA ) = 0, thus q = q◦MA
. �

Definit ion We call NT the null algebra of T , the open projection q the null space of T , and the

closed projection p = suppT the support of T . If suppT = 1, we call T faithful . Further
we call supp(MA,MA)T the support on the envelope of T and if supp(MA,MA)T = 1,

we call T faithful on the envelope.

Remark This definition is designed to coincide with the usual definition of the support as, for

example, given in [Stø13, 1.4.1] for self-enveloped von Neumann algebras.
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Example 1 For an example where the support and the support on the envelope are very different,

we look again at the enveloped C*-algebra (C([0, 1]), l∞([0, 1])). We can consider the

functional i defined by i ≔
∑∞
i=1

1
n2lqi , where (qi)i∈N is an enumeration of the

rational numbers in [0, 1] and lqi the point evaluation f ↦→ f (qi) at qi . If a positive

continuous function on [0, 1] is zero on all rational points, it is zero. Thus, the support

of i is 1. On the other hand, all functions in l∞([0, 1]), that are only non-zero on

irrational numbers, are sent to zero by i . The support on the envelope of i is jQ∩[0,1]
which is significantly smaller than 1.

Example 2 In our graph picture in Chapter 1, the support of an operator is the characteristic

function of all points reached by an arrow.

3.4 An Excursion into Topology

This section explores a few more properties of non-commutative topology. Most of

the results here are not required for the following chapters.

3.4.1 Open Projections in C*-Algebras with Added Unit

Lemma If A� is an enveloped C*-algebra, then T (A,MA) = T (A + C1,MA).

Proof First inclusion, T (A,MA) ⊆ T (A + C1,MA): Let supi∈I xi = p with (xi)i∈I ∈ A+,

then xi ∈ A + C1 and thus p ∈ T (A + C1).

Second inclusion, T (A + C1,MA) ⊆ T (A,MA): First let x ∈ (A + C1)+,1, we show

[x] ∈ T (A�). We pick an approximate unit (ui)i∈I of A. Because of x
1
2 ∈ A + C1

we have x
1
2uix

1
2 ∈ A. By monotone convergence and one-sided strong-continuity

of multiplication, we have supi∈I x
1
2uix

1
2 = x . Because the support map preserves

suprema we get supi∈I [x
1
2uix

1
2 ] = [x

1
2 1x

1
2 ] = [x] ∈ T (A�). For any p ∈ T (A +

C1,MA)with supi∈I xi = p we get supi∈I [xi] = p ∈ T (A�), because [xi] ∈ T (A�). �

This proof was inspired by a trick in the proof of [GK71, Lemma 3.2].

This lemma shows a complication with the approach chosen in this work to allow

arbitrary envelopes for the definition of T (A). A commutative C*-algebra C0(S)

is unital if S is compact and non-unital if S is only locally compact. This fits the

introduced definition of compactness for projections. If 1 can be majorized by an

element in A, 1 is compact and A unital. In the universal envelope, whether A is

unital can be deduced from the topology T (A,A∗∗) (see [AB15, 3.]). However, when

we fix the envelope and adjoin a 1 like in this lemma, the topology stays the same and

A∗∗ is generally not the universal envelope of A + C1. So whether 1 is compact and

A is unital can only be determined from T (A) if it is the topology in the universal

envelope.
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3.4.2 Open Spectral Projections

The following result gives us an additional method to find open projections.

Proposit ion Let U ⊆ R be an open subset of the real numbers and x ∈ Asa a self-adjoint element of
an enveloped C*-algebra A�. Then the spectral projection jU (x) is an open projection.

Proof We use a shortened version of the proof of [GK71, Lemma 3.2] but confirm that we

do not require the envelope to be atomic, as is required there. Let f : R → R be a

continuous function with support U . Then we have jU (x) = [f (x)]. From the spectral

calculus (cf., e.g. [Mur90, 2.1.13]) we know that f (x) ∈ C∗(x ,1) ⊆ C∗(A,1), thus

jU (x) = [f (x)] ∈ T (A + C1) = T (A). �

3.4.3 A Hausdorff Property

One of the most important properties a topological space can have is the Hausdorff

property. Usually, it is used to separate points. We give a Hausdorff property by

separating supports of pure states, the closest thing to a point we have available.

Lemma If i ∈ S(A) is a pure state onAwith normal extension ontoMA, then suppi is minimal
in P(MA).

Proof Since MA is a subenvelope of A∗∗, there is a *-homomorphism c : (A,A∗∗) →
(A,MA) which extends id on A. First, we show that suppi is minimal in P(A∗∗). Be-

cause i is pure, there is, as shown in [Ped18, 3.13.6], an open projection p in T (A,A∗∗)

with i(p) = 0 and p⊥ minimal in P(A∗∗). We can see that p⊥ is already the support

of i : From i(p) = 0 we conclude p ≤ (suppi)⊥ and suppi ≤ p⊥. Now suppi = p⊥

holds because p⊥ is minimal. To look at MA again, we observe that the support is

defined as 1 – 1Ni
and thus c (suppi) = suppi . Since c is surjective, suppi is also

minimal in MA. �

Proposit ion Let A� be an enveloped C*-algebra. If i ,k ∈ S(A) are pure states with normal extension
onto MA and suppi ⊥ suppk , then there are open projections p ⊥ q ∈ T (A) with
suppi ≤ p and suppk ≤ q.

Proof First: Let A be unital and universally enveloped.
Since A is unital, suppi and suppk are compact projections. Then by the non-

commutative Urysohn lemma (cf. [Ped18, 3.11.12]) there is an x ∈ A+ with suppi ≤
x ≤ (suppk )⊥. So we can pick two disjoint open neighbourhoods U0 and U1 of 0 and

1 to get jU0 (x) ≥ suppk and jU1 (x) ≥ suppi .

Second: Let A be unital, with any envelope.
Since MA is a subenvelope of A∗∗ there is a *-homomorphism c : (A,A∗∗) →
(A,MA) which extends id on A. The states i and k have an extension to normal
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states on A∗∗ with i ◦ c = i and k ◦ c = k . To apply the result from the previous

step, we need to show that suppi ⊥ suppk ∈ P(A∗∗). Since suppi is closed, we know

that there is a monotonically increasing net (xi)i∈I ⊆ A+ with supi∈I xi = (suppi)⊥.

Because we have given that suppi ⊥ suppk in MA, we know thatk (suppi) = 0 and

k (supi∈I xi) = 1. Because A is weak* dense in MA and in A∗∗, k (supi∈I xi) = 1 also

holds for k ∈ S∗(A∗∗). From 1 = k (suppi⊥) = k (suppksuppi⊥suppk ) we conclude

suppksuppi⊥suppk = suppk and that suppi ⊥ suppk in A∗∗. Now, we can find the

desired open projections p and q in T (A,A∗∗), map them with c into T (A�) and c

preserves orthogonality.

Third: Let A be non-unital. Now for any non-unital A, i andk are also pure states

on A + C1 and because T (A + C1) = T (A) we can apply the theorem for the unital

case. �

For the case of the universal (atomic) envelope, this theorem can be found in [GK71,

Theorem 3.6].

Corollary Let A� be an atomically enveloped C*-algebra. Then all p ∈ P(MA) can be written
as p =

∧
{ q ∈ T (A) : p ≤ q }.

Proof Since MA is atomic we have enough pure normal states so that for p ∈ P(MA)

we have p =
∨

{ suppl : l ∈ S∗(MA),l pure, suppl ≤ p } and equivalently for p⊥.
From the Hausdorff property for any pure normal i with suppi ≤ p⊥ we get that

p ≤ ∨
{ q ∈ T (A) : i(q) = 0 }. We get the result if we intersect those projections for

all pure normal i with suppi ≤ p⊥. �

3.4.4 The Open Projections are Weak* Total

Theorem Let A� be an enveloped C*-algebra and (MA)∗ separable, then T (A)′′ = MA.

Proof First, we observe that the result is valid for all atomic envelopes. Since T (A)′′ is,

as a von Neumann algebra, closed under infima of orthogonal projections, we have

P(MA) ⊆ T (A) and P(MA) is weak* total in MA.

We need a bit of machinery for the rest of the proof because we need to consider

three different envelopes of A. We consider the universal envelope (A,A∗∗), the

universal atomic envelope (A,Ma) and the envelope A� = (A,MA) given in the

statement of the theorem. Since (MA)∗ is separable we can represent A� so that MA
is f-finite. SinceMa andMA are subenvelopes ofA∗∗ we have two normal surjective

representations ca : (A,A∗∗) → (A,Ma) and c : (A,A∗∗) → (A,MA).

We consider the setU (A) ⊆ A∗∗ of the universallymeasurable elements in the universal

envelope of A. For a definition of U (A) see [Ped18, 4.3.11]. We just need to know

three things about U (A):



3.5 The Category of Reach Maps 35

(1) T (A,A∗∗) ⊆ U (A) (cf. [Ped18, 4.3.13]).

(2) The atomic representation ca is faithful on U (A) (cf. [Ped18, 4.3.15]).

(3) The f-finite representation c maps c (U (A)) = MAsa (cf. [Tak79, III.6.39])

Since T (A,Ma) is weak* total inMa we can approximate ca(x) ∈ Ma with elements

from T (A,Ma) for every x ∈ U (A). Because ca is surjective, maps open projections

to open projections and is faithful on U (A), the set of open projections T (A,A∗∗) is

weak* total in U (A). And again, because c maps open projections to open projections,

this means that T (A,MA) is weak* total in MA. �

3.5 The Category of Reach Maps

With this, we conclude our analysis of open projections and focus on reach maps. We

now have all the structure to do this.

3.5.1 The Reach is Open

Proposit ion If p ∈ T (A) then RT (p) ∈ T (B).

Proof With supi∈I xi = p we show RT (p) = [T (supi∈I xi)] = [supi∈I T (xi)] = supi∈I [T (xi)] =∨
i∈I [T (xi)]. Because T (B) is closed under suprema (cf. Proposition 3.2.4), this is an

open projection. �

3.5.2 The Category of Reach Maps

In sum, we have established that reach maps are suprema (or join) preserving maps

between lattices of open projections. Reach maps do in general not preserve infima.

For example, for the graph

1 2 3

we have 0 = R(j{ 2 }) = R(j{ 1,2 } ∧ j{ 2,3 }) < R(j{ 1,2 })∧R(j{ 2,3 }) = j{ 2 }. Remember that

our reach map is defined in the Heisenberg picture, while we interpret the graph in

the Schrödinger picture. This means that for example the observable j{ 2,3 } will only

be reached by a state in point 2, so R(j{ 2,3 }) = j{ 2 }.

Definit ion We define the category of reach maps with enveloped C*-algebras as objects and reach

maps as morphisms.

Remark In the theory of complete lattices, there are three common categories. The category

of complete lattices with completely join and meet preserving maps is often too

restrictive. Thus, there are also the category of complete lattices with maps which

preserve only joins and the category of complete lattices which preserve only meets.
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By replacing the enveloped C*-algebra A� with its lattice of open projections T (A),

we can see the category of reach maps as a sub-category of the category of complete

lattices with completely join preserving maps.

3.5.3 Domains of Reach Maps

We have defined RT (p) = [T (p)] for all open projections p ∈ T (A). We could have

chosen a larger domain for our reach maps, for example, RT (x) = [T (x)] for all

x ∈ MA
+. Let us discuss the implications of choosing different domains.

Proposit ion For two normal completely positive operators T , S : A� → B� the following are equival-
ent:

(a) RT = RS
(b) [T (x)] = [S(x)] for all x ∈ A+.

Proof (a) ⇒ (b) For x ∈ A+ we calculate [T (x)] = [T ([x])] = RT ([x]) = RS ([x]) = [S(x)].

(b) ⇒ (a) For any open projection p = supi∈I xi with a monotonically increasing net

(xi)i∈I ⊆ A+ we have RT (p) = supi∈I [T (xi)] = supi∈I [S(xi)] = RS (p). �

Thus, a reach map RT has a unique extension to a map RT : T (A) ∪A+ → T (A) and

is uniquely determined by the behaviour of that extension on A+. We don’t know

whether RT = RS implies [T (x)] = [S(x)] for all x ∈ MA
+. That means two different

reach maps from (MA,MA) to (MB ,MB) might belong to the same reach map from

(A,MA) to (B,MB). This differs from the category of completely positive normal

operators, where an operator T : A� → B� is uniquely determined on all of MA by

its behaviour on A.

3.5.4 The Functor

Proposit ion We can define a functor R from the category of enveloped C*-algebras with normal

completely positive operators into enveloped C*-algebras with reach maps with the
object part being the identity and the morphism part being the mapping to the reach
map of an operator.

Proof It is clear that Rid = id. We use Lemma 3.1.2 to show (RT ◦ RS )(p) = [T ([S(p)])] =
[T (S(p)] = RT◦S (p) for all p ∈ T (A). �
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Overall, we have now established the functorial relations between the categories we

are interested in:

(MA, CPO)

(C*, CPO) (vNA, f*-CPO)

(env-C*, f*-CPO)

(env-C*, Reach Maps)

id
id

universal envelope self-envelope

R

In this chapter, we deepened our understanding of reach maps, giving their definition

on the open projections and showing that the open projections form a lattice. This

led us to the definition of the category of reach maps. In between, we defined the two

notions of support of a completely positive operator between enveloped C*-algebras

and discussed the “topology” created by the open projections, proving for example a

Hausdorff property.





4 Characterization of Reach Maps

This chapter investigates different characterizations of the information encoded by a

reach map. For this, we look mainly at three different perspectives. First, we look at

reach maps of rank one as projectivities. Next, we look at reach maps as equivalence

classes of completely positive operators, and lastly, we investigate the Kraus operators

associated with a reach map. We investigate this for finite-dimensional systems.

The deepest result of this chapter is the characterization of reach maps of rank one in

4.1.6. After that, our investigation becomes increasingly more concrete, ending in a

practical criterion to pinpoint reach maps in 4.4.7.

For this chapter, A ⊆ Mn,B ⊆ Mm are matrix algebras. Since A is finite-dimensional,

(A,A) is an enveloped C*-algebra, and P(A) = T (A). Because in finite dimensions the

technical details of open projections are irrelevant, we will say that R is a reach map

from P(A) to P(B) in this chapter. With P1(A), we denote the minimal projections

in A. Every matrix algebra is isomorphic to a direct sum of Mni . If n is so small that

A =
⊕k

i=1Mni ⊆ Mn with n =
∑k
i=1 ni , then all minimal projections have rank one in

Mn. In that case, we call A ⊆ Mn minimally represented . All minimal representations

of A are unitarily equivalent.

4.1 A Characterization via Cross-Ratios

Until now, our only way to determine whether a suprema preserving map between

lattices of projections is a reach map was to find a completely positive operator which

induces the reach map. That is unsatisfying on multiple levels. For one, it can be hard

to do so. In particular, with further criteria, it might be easier to show when such an

operator does not exist. Also, it would be nice if the category of reach maps could

become more independent of its obvious “parent” category, the completely positive

operators.

4.1.1 Preserving Suprema is Not Everything

The obvious first question when one wants to define reach maps without finding a

concrete, completely positive operator is whether all suprema-preserving maps are

39
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reach maps. We construct an example for a suprema-preserving map P(M2) → P(M2)

which is not a reach map.

Example Consider a map f : P(M2) → P(M2) with f (0) = 0, f (1) = 1. The lattice P(M2) has a

very simple structure. The projection 0 is the smallest element, 1 is the largest, and

all other projections are incomparable with each other, unless they are equal. On the

one-dimensional projections, f can be any arbitrary injective map into P(M2) \ { 0 } and

would still preserve suprema. From continuity considerations, it seems implausible

that every injective map on the one-dimensional projections would make f a reach

map. Indeed, there are more constraints on f if it is supposed to be a reach map: We

consider the 6 rank-1 projections

p1 ≔

(
1 0

0 0

)
, p2 ≔

(
0 0

0 1

)
, p3 ≔

1
2

(
1 1

1 1

)
,

p4 ≔
1
5

(
1 2

2 4

)
, p5 ≔

1
2

(
1 –i
i 1

)
, p6 ≔

1
5

(
1 –2i
2i 4

)
,

and assume f (pi) = pi for 1 ≤ i ≤ 6. Many injective maps on P1(M2) fulfil this

constraint. If f is a reach map, we have a completely positive operator T with f = RT .
For T it holds by our assumption that T (pi) = _ipi with _i ∈ R>0 for i ∈ { 1, . . . , 6 }.

The pi span M2, thus T is completely defined by the _i . We want to show that T is

determined up to scalar multiples. We observe 5p4 = 4p3 – p1 + 2p2, similarly 5p6 =
4p5–p1+2p2. If we apply T to those equations we receive 5_4p4 = 4_3p3–_1p1+2_2p2
and 5_6p6 = 4_5p5 –_1p1 +2_2p2. The solution of this system of eight linear equations

gives us that all _i must be equal, and thus T = _1id and f = Rid.

4.1.2 Joining Reach Maps

We will decompose reach maps into components that are simpler to characterize. For

that, we need to know how we can join reach maps together.

Definit ion If R, R′ : P(A) → P(B) are reach maps, then we define R ∨ R′ : P(A) → P(B) by
R ∨ R′(p) ≔ R(p) ∨ R′(p) for all p ∈ P(A). Further, we define an order on the set of

reach maps between P(A) and P(B) by setting R ≤ R′ if R(p) ≤ R′(p) for all p ∈ P(A).

Proposit ion The map R ∨ R′ is a reach map, which is the supremum of R and R′ in the partially
ordered set of reach maps.

Proof There are completely positive operators T and T ′ with R = RT and R′ = RT ′ . Con-

sequently, R ∨ R′(p) = R(p) ∨ R′(p) = [T (p)] ∨ [T ′(p)] = [(T + T ′)(p)] = RT+T ′ (p) is a
reach map. The fact that R ∨ R′ is the supremum in the pointwise order is generally

true for maps between partially ordered sets: First, by the pointwise definition, we
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have R ≤ R ∨ R′ and R′ ≤ R ∨ R′. On the other hand for any R̃ with R ≤ R̃ and R′ ≤ R̃
we have (R ∨ R′)(p) ≤ R̃(p) for all p ∈ P(A). �

4.1.3 The Rank of a Reach Map

Now, we can decompose our reach map.

Definit ion A reach map R : P(A) → P(B) has rank one if in the minimal representation A ⊆ Mn

of A with B ⊆ Mm there is a Kraus operator a ∈ Mn×m with R = RAda .

Remark We must use the minimal representation here. As mentioned in 1.3.2 if we allowed

arbitrary representations, every reach map would have rank one.

Proposit ion For a map P(A) → P(B) the following are equivalent:

(a) R is a reach map.
(b) R is the supremum of a finite family of rank one reach maps.

Definit ion The rank of R is the smallest cardinality of a finite family fulfilling (b).

Proof (a) ⇒ (b) Let R = RT with T =
∑d
i=1 Adai then R =

∨d
i=1 RAdai .

(b) ⇒ (a) We have just shown in Proposition 4.1.2 that the supremum of reach maps

is a reach map. �

Remark Every rank one reach map maps minimal projections to minimal projections or zero.

However, not every reach map fulfilling this condition has rank one. An example

would be T : Mn → Mn with n ≥ 2 and T (x) = e11i(x) with a faithful state i . RT
maps minimal projections to minimal projections but is not of rank one.

While a succinct direct criterion to tell whether a map R : P(A) → P(B) is a reach

map would be desirable, we have reduced the problem of characterizing reach maps

to the characterization of rank one reach maps.

4.1.4 The Cross-Ratio

Every reach map preserves suprema and is thus uniquely determined by its behaviour

on the minimal projections. We will use this fact to describe reach maps of rank one.

We consider a map R : P1(M2) → P1(M2). This is simply a map on the Bloch sphere

and is especially well known in quantum mechanics if R = RAdu for a unitary u ∈ M2.

However, we assume that R = RAda is a rank one reach map for a not necessarily

unitary but invertible a ∈ M2. The question is how much information is necessary

to uniquely determine a or equivalently R. For linear maps, it is sufficient to analyse

their behaviour on a basis. However, P1(M2) is not a linear space, and R is not a

linear map. Let (eij )1≤i,j≤2 be matrix units for an orthonormal basis e1, e2 ∈ C2. If
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we know the value of R(e11) then the value of R(e22) is not completely determined. If

we additionally know the value R(e22) then that does still not determine the value of

R(12 (e11 + e12 + e21 + e22)) (the projection onto 1√
2
(e1 + e2)). For example, we can have

a1e1 = 2e1 and a1e2 = e1 or a2e1 = e1 and a2e2 = 2e2. Both maps RAda1 and RAda2 will

behave the same on e11 and e22 but differently on 1
2 (e11 + e12 + e21 + e22).

We aim to describe how the reach map R is uniquely determined if we evaluate it at

three distinct points in P1(M2). As a quotient of the vector space C2 \ { 0 }, the set of

rank one projections P1(M2) is a complex projective space. Since the global phase and

scale of a vector representing a state are unobservable in quantum mechanics, it is

well-known that it is sensible to consider pure quantum states as points in a projective

space (see [Var07]). Three distinct points in P1(M2) form a so-called projective frame,
the projective equivalent of a basis. While sensible morphisms between vector spaces

need to be linear, i.e. preserve linear combinations, morphisms between projective

spaces need to preserve so-called cross-ratios, which we will now define. To get an

intuitive grasp of what a cross-ratio is, it might help to already look at statement (3)

of Corollary 4.1.5 while reading on.

As a projective space P1(M2) has dimension 1 (the projective dimension is the dimen-

sion of the underlying vector space, in this case C2, minus 1), consequently, it is called

a projective line. An - or rather the - canonical example for a projective line is the

projective space C̃ ≔ C ∪ {∞ } (see [Ber94, 4.2.5]). We can imagine it by continuously

wrapping C around the Bloch sphere and tying it together with a point called ∞ on

the opposite side. A map f between projective spaces is called a projectivity (or homo-

graphy or isomorphism between projective spaces) if it is induced by an invertible

linear map a via f (Cb) = Cab for all vectors b from the underlying vector space (cf.

[Ber94, 4.5.2]).

Let p1,p2,p3, p4 be points on a complex projective line L, with p1,p2 and p3 being

distinct.

Proposit ion
[Ber94, 4.6.9]

There is a unique projectivity f : L → C̃ with f (p1) = ∞, f (p2) = 0 and f (p3) = 1.

Definit ion
[Ber94, 6.1.1]

We define the cross-ratio of the four points p1 to p4, as [p1, p2, p3, p4] ≔ f (p4) ∈ C̃.

We also write [pi] ≔ [p1, p2, p3, p4].

Remark The cross-ratio can be understood as the position of p4 on the projective line in co-

ordinates fixed by the three other points. In a linear space, a line, i.e. a one-dimensional

subspace, would be determined by one vector b . Then any point on that line could be

addressed as _b with _ ∈ C. So, this simple coordinate would be the linear analogue

of a cross-ratio. In an affine space, a line is spanned by two vectors b1 and b2. Again,

any point on the line can be addressed as _b1 + (1 – _)b2 with _ ∈ C. This would be

the affine analogue to a cross-ratio.
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4.1.5 Cross-Ratios for Rank One Projections

There is a concrete formula to calculate the cross-ratio for rank one projections in a

matrix algebra. We formulate it here not because it is convenient to calculate, but to

demonstrate that cross-ratios are a concrete property of the lattice of projections.

Proposit ion Let p1, p2, p3, p4 ∈ P1(A) four minimal projections such that p1, p2 and p3 are pairwise
distinct and p3, p4 ≤ p1 ∨ p2. We define p′1 ≔ (p1 ∨ p2) – p1 and _i ∈ C̃ so that
p′1pip

′
1 = _ip′1.

Then p1, p2, p3, p4 lie on a projective line and the cross-ratio _ ≔ [p1, p2, p3, p4] fulfils

p1

(
p4
_4

–
p2
_2

)
p′1 = _ p1

(
p3
_3

–
p2
_2

)
p′1.

For b ,[ ∈ Cn we use the notation tb ,[ for the rank one matrix tb ,[Z ≔ 〈[, Z 〉b .

Proof Since it contains at least three distinct orthogonal projection of rank one but p1 ∨ p2
has at most rank 2 the reduced algebra Ap1∨p2 is isomorphic to M2. Consequently,

the rank one projections P1(Ap1∨p2 ) form a projective line.

We can find an orthonormal basis e1, e2 ∈ (p1 ∨ p2)H in which

p1H = Ce1 p2H = C(U2e1 + V2e2)

p3H = C(U3e1 + V3e2) p4H = C(U4e1 + V4e2)

with Ui , Vi ∈ C and |Ui |2 + |Vi |2 = 1 for i ∈ { 2, 3, 4 }. By our definition we have _i = |Vi |2

and p1pip′1 = UiV ite1,e2 . If we insert this into our formula for _, we get

_ =

U4
V4

– U2
V2

U3
V3

– U2
V2

.

The projections pi for i ∈ { 1, . . . , 4 } are points on the projective line P1(Ap1∨p2 ). By

definition, they all can be given in coordinates of e1 and e2, up to a scalar factor. So,

according to [Ber94, 6.2.3], their cross-ratio is given by

–V3 ·
�����U4 U2

V4 V2

����������U3 U2

V3 V2

����� · –V4
=
V3(U4V2 – V4U2)
(U3V2 – V3U2)V4

= _. �

Corollary (1) The cross-ratio is ∞ iff p4 = p1, 0 iff p4 = p2 and 1 iff p4 = p3.
(2) If p1 ⊥ p2 then the cross-ratio simplifies to

p1p4p2 =
__4
_3

p1p3p2

.
(3) If pi is the projection onto Cbi with b1 = e1, b2 = e2, b3 = 1√

2
(e1 + e2) and

b4 = Ue1 + Ve2 then [p1, p2, p3, p4] = U
V
.
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Proof (1) Is obvious from the definition of the cross-ratio.

(2) With p2 = p′1 we get V2 = 1 and so _2 = 1. With p2p1 = 0, the given formula

follows.

(3) With U2 = 0 and U3 = V3 we can see [pi] =
U4
V4

in the formula for _ in the above

proof. �

4.1.6 Characterization of Rank One Reach Maps

Definit ion Let R : P(A) → P(B) be a suprema preserving function. We define the support of R
as suppR ≔ 1 –

∨
{ p ∈ P(A) : R(p) = 0 }.

Remark This definition is crafted so that if R = RT for a completely positive operator T , we

have suppR = suppT .

Theorem Let R : P(A) → P(B) be a map on the lattice of orthogonal projections in A. Then the
following are equivalent:

(a) R is a reach map of rank one.
(b) R fulfils the following conditions:

(1) R preserves suprema.
(2) R|D is an injective, cross-ratio preserving map into P1(B) with D ≔ { p ∈

P1(A) : p ≤ suppR }.
(3) R(p) = R([(suppR)p(suppR)]) for all p ∈ P1(A).

The more interesting conditions in (b) are (1) and (2). Condition (3) is just necessary

so that R extends sensibly outside its support.

To prove this result, we first show the core argument in the following lemma:

Lemma For a map R : P1(Mn) → P1(Mn) the following are equivalent:

(a) R is a projectivity.
(b) There is a matrix a ∈ GL(n) with R = RAda |P1(Mn).
(c) R is a bijection which preserves suprema and cross-ratios.

Remark By [Fis01, 3.2.1], the linear map a ∈ GL(n) in statement (b) is unique up to scalar

multiples.

Proof (b) ⇒ (a) Via Ada(tb ,b ) = ta∗b ,a∗b the reach map of Ada is the projectivity on the

projective space P1(Mn) which is induced by the invertible linear map a∗.

(a) ⇒ (b) If R is a projectivity, then by definition, there is an invertible linear map

a ∈ GL(n) which induces R. We can implement it as R = RAda∗ .

(a) ⇒ (c) Projectivities are bijective and preserve cross-ratios (cf., e.g. [Fis01, 3.3.1]).

(c) ⇒ (a) We show the implication via case distinction over the dimension n ∈ N.
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Let n = 1. Then P1(M1) has exactly one point, and the result is clear.

Let n = 2. Then P1(M2) is a projective line. Since R preserves cross-ratios, it is a

projectivity by [Fis01, 3.3.1].

Let n ≥ 3. Then we can apply the main theorem of projective geometry (cf. [Fis01,

3.3.9]). It says that since R fulfils R(p∨q) ≤ R(p)∨R(q) it is a so-called semi-projectivity,
where a semi-projectivity is a map on a projective space which is induced by a bijective

semi-linear map, i.e. a map a : Cm → Cm with a(b + [) = ab + a[ and a(_b) = U(_)ab
for some field-automorphism U : C → C. Since R preserves cross-ratios, we know that

R is a projectivity when we restrict it to any projective line, as shown in the n = 2 step.

So, since the underlying semi-linear map a is a linear map on every 2-dimensional

subspace, it is a linear map on all of Cn. Thus, R is a projectivity. �

Now we prove the actual theorem:

Proof For the whole proof, we represent A ⊆ Mn and B ⊆ Mm minimally.

(a)⇒ (b) We have a Kraus operator a ∈ Mn×m with R = RAda . We check the conditions

in (b).

(1) As a reach map, R is join preserving.

(2) For every p ∈ D a∗pa is not zero. Since we have represented A minimally, p has

rank one. Hence, a∗pa can only have rank one and [a∗pa] must be in P1(B). R|D
is injective and preserves cross-ratios because it is a restriction of the projectivity

RAda : P1((suppR)Mn(suppR)) → P1(R(1)MmR(1)).

(3) This condition is true for all reach maps.

(b) ⇒ (a) Our task is to find a Kraus operator a which induces R. We do this by

splitting suppR along theminimally central projections ofA into a family of orthogonal

projections (pi)1≤i≤d with suppR =
∑d
i=1 pi . Now for each i ∈ { 1, . . . , d }, the reduced

algebra piApi is isomorphic to Mki for some ki ∈ N. We want to show that R is a

projectivity on each of these factors. Then we glue the resulting Kraus operators

together into one.

Auxiliary statement: For any p ≤ suppR such that pAp ' Mk for a k ∈ N we have
R(p)BR(p) ' Mk and R maps P1(pAp) bijective onto P1(R(p)BR(p)). First, we observe

that p can be written as a sum of minimal projections, which get mapped to minimal

projections. Consequently, we know that dim R(p) ≤ k.
We show the rest of the statement via induction on k.
For k = 1 the statement is obvious because p and R(p) have rank one and P1(C)
consists only of one point.

For k = 2 we see by injectivity, that three distinct points below p get mapped to three

distinct points below R(p). So, R(p) has at least and at most rank 2. R(p)BR(p) can
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also not be commutative because then R could not be injective, thus R(p)BR(p) ' M2.

Because every point inP1(M2) ⊆ B can be given a coordinate as a cross-ratio regarding

the image of the three distinct points we chose earlier, R is surjective onto P1(M2).

Now let p have rank k + 1 and let q ≤ p be a projection of rank k. Then P1(qAq)
gets mapped surjectively into a subspace of the form P1(Mk ). Two further points

in P1(pAp) \ P1(qAq) will, because of injectivity, be mapped to two different points

outside of R(q)BR(q). So R(p) needs to have rank k + 1 and R(p)BR(p) needs to be

isomorphic to Mk+1 because that is the smallest subalgebra of R(p)MmR(p) which

contains R(q)BR(q) and two different projections of rank 1. Again, every point in

P1(R(p)B)R(p)) can be given a coordinate as a cross-ratio and thus is in R(P1(pAp)).
This proves the auxiliary statement.

In conclusion, we have shown that R can be written as a combination of different

projectivities on D. Because R|D is injective, the projectivities have disjoint images.

For every projectivity on a pi we find a Kraus operator ai with a∗i : piC
n → Cm. We

can add them to define a ≔
∑d
i=1 ai . For every p ∈ P1(A) we get R(p) = RAda (p). �

Remark A welcome property of the characterization of rank one reach maps is that the criteria

are representation-independent.

In commutative matrix algebras, no projective lines exist, because they have no

subalgebra isomorphic to M2. So, every map trivially preserves cross-ratios. The

conditions (2) and (3) become trivial. Thus, in commutative matrix algebras, the reach

maps are precisely the suprema preserving maps.

This characterization of reach maps does not rely on completely positive operators,

which is the beauty of this theorem. However, explicitly calculating the cross-ratios

is not very practical. In fact, we only use the preceding result once again in this

thesis. It makes the proof of Proposition 4.4.3 more elegant, although an elementary

(but tedious) proof which does not rely on projective geometry can be given for that

proposition. Besides that exception, we put the perspective from projective geometry

aside and continue to investigate reach maps from the point of view of completely

positive operators.

4.2 Topological Equivalence

Reach maps describe the topological properties of a completely positive operator.

Different completely positive operators can have the same topological properties.

We will consider those operators equivalent which lead to the same reach map. We

explore this equivalence in this section.
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4.2.1 Topological Comparison

In Proposition 4.1.2, we have established a partial order (transitive, reflexive, antisym-

metric) on reach maps. We can pull back this order through the functor T ↦→ RT to

get a pre-order (transitive, reflexive, but not antisymmetric) on completely positive

operators.

Proposit ion For all completely positive operators S, T : A → B the following are equivalent:

(a) RS ≤ RT .
(b) For all completely positive operators P : B → B, Q : A → A, we have PTQ = 0 ⇒

PSQ = 0.
(c) For all orthogonal projections p ∈ P(A), q ∈ P(B), we have T (p) ⊥ q ⇒ S(p) ⊥ q.
(d) For all minimal orthogonal projections p ∈ P1(A), q ∈ P1(B), we have T (p) ⊥

q ⇒ S(p) ⊥ q.

Proof (a) ⇒ (b) For all p ∈ P(A), PTQ = 0 means 0 = P (RT (Q(p))) ≥ P (RS (Q(p))) and
0 = [P (RS (Q(p)))] = [P (S(Q(p)))].

(b) ⇒ (c) Let p ∈ P(A), q ∈ P(B) with S(q)p = 0, then we have Adp ◦ S ◦ Adq = 0.

With (b) we can conclude Adp ◦ T ◦ Adq = 0 and therefore T (q)p = 0.

(c) ⇒ (d) Is clear because P1(A) ⊆ P(A).

(d)⇒ (a) Pick any minimal orthogonal projections p ∈ P1(A), q ∈ P1(B)with RT (p) ⊥
q. Then from T (p) ⊥ q we get S(p) ⊥ q. This holds for any minimal q orthogonal to

RT (p). Together, those cover RT (p)⊥ which gives us RS (p) ≤ RT (p). Any non-minimal

p ∈ P(A) can be written as a union of minimal projections p1, …, pk . Since reach

maps preserve suprema, we get RS (pi) ≤ RT (p) and RS (p) ≤ RT (p). �

4.2.2 Topological Equivalence

We can now pick any of the criteria above to define an equivalence relation on the

completely positive operators.

Corollary For two completely positive operators S, T : A → B the following are equivalent:

(a) RS ≤ RT and RT ≤ RS .
(b) RS = RT .
(c) S(p) ⊥ q ⇔ T (p) ⊥ q for all p ∈ P(A), q ∈ P(B).

Proof (a) ⇒ (b) Because the ≤ relation on reach maps is a partial order it is antisymmetric.

This gives us exactly the wanted implication.

(b) ⇒ (c) S(p) ⊥ q ⇔ RS (p) ⊥ q ⇔ RT (p) ⊥ q ⇔ T (p) ⊥ q.

(c) ⇒ (a) Follows from Proposition 4.2.1. �



48 4 Characterization of Reach Maps

Definit ion Given those conditions, we say that S and T are topologically equivalent .

Since T ↦→ RT maps a pre-order to a partial order, it maps, by our definition, an

equivalence class of completely positive operators to a single reach map.

4.2.3 Reach Maps as Faces in the Cone of Completely Positive Operators

We might wonder whether the topological equivalence classes of completely positive

operators have a geometric structure. Indeed, we can find a closely related face in the

cone of completely positive operators for every equivalence class. We write CP(A,B)
for the cone of completely positive operators.

Definit ion A face in CP(A,B) is a subset F ⊆ CP(A,B) such that for all T = S + Q with T , S,Q ∈
CP(A,B) the following are equivalent:

(a) T ∈ F .
(b) S ∈ F and Q ∈ F .

Proposit ion For any reach map R : P(A) → P(B) the set { T ∈ CP(A,B) : RT ≤ R } is a face in the
cone CP(A,B) of completely positive operators.

Proof Let T = S +Q with S,Q ∈ CP(A,B) we need to show that the following are equivalent:

(a) RT ≤ R.
(b) RS ≤ R and RQ ≤ R.

(a) ⇒ (b) For all p ∈ P(A), q ∈ P(B) we see that T (p) ⊥ q implies S(p) ≤ T (p) ⊥ q
and Q(p) ⊥ q.

(b) ⇒ (a) For all p ∈ P(A), q ∈ P(B) we can conclude from S(p) ⊥ q and Q(p) ⊥ q
that T (p) = S(p) + Q(p) ⊥ q. �

Remark The face generated by RT contains the equivalence class of T . Not all elements of

the face generated by RT are equivalent to T because they might belong to a strictly

smaller reach map, which would generate a strict sub-face. The face generated by T
is always contained in the face generated by RT . However, this inclusion can be strict.

As we will see in example 4.4.5 (once we have more tools to talk about faces), there

can be a completely positive operator S which does not belong to the face generated

by T but RS ≤ RT .

4.2.4 Homomorphisms from Reach Maps

When we talk about equivalence classes of completely positive operators, it is inter-

esting to know when the operator is up to scalar multiples uniquely determined by

the reach map. One such class are the *-homomorphisms. In example 2 in 3.1.1, we
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have already seen that reach maps of *-homomorphisms preserve orthogonality. In

finite dimensions, this is an equivalent characterization.

Proposit ion If R : P(A) → P(B) is a reach map, then the following are equivalent:

(a) p ⊥ q implies R(p) ⊥ R(q) for all p, q ∈ P(A).
(b) R = Ri for a *-homomorphism i : A → B.

Proof We pick a T : A → B with R = RT . Then for x , y ∈ A+ with [x] ⊥ [y] we have

[T (x)] = RT (x) ⊥ RT (y) = [T (y)], which means T (y) ⊥ T (x). By [WZ09, Theorem 3.3]

this means that there is a *-homomorphism c : A → B∩ { T (1) }′ with T (x) = T (1)c (x)
for all x ∈ A. We define i : x ↦→ [T (1)]c (x), which is also a *-homomorphism from A
to B because c takes values in B ∩ { T (1) }′. With statement (5) from Lemma 3.1.2 get

Ri(p) = [[T (1)]c (p)] = [T (1)c (p)] = [T (p)] = R(p) for all p ∈ P(A). �

4.2.5 Uniqueness of Homomorphisms

Proposit ion For any two *-homomorphisms i, j : A → B the following are equivalent:

(a) i = j.
(b) Ri = Rj .

Proof (a) ⇒ (b) Clear.

(b) ⇒ (a) Since P(A) spans A and i|P(A) = Ri = Rj = j |P(A) we have i = j. �

Remark As in the category of normal completely positive operators (which do not necessarily

preserve stationary states) *-homomorphisms are not the monomorphisms in the

category of reach maps.

Not every reachmapwith an inverse reachmap belongs to a *-isomorphism or needs to

be orthogonality preserving. Consider Ada for any full rank but non-normal a ∈ M2.

4.3 Blocked Transitions

In Corollary 4.2.2, we have seen that we can pinpoint a reach map by knowing all pairs

of projections p ∈ A and q ∈ B with R(p) ⊥ q. We will call this a blocked transition.

This is merely a change of perspective but will be very relevant when investigating

dynamics.

For a completely positive operator T : Mn ⊇ A → B ⊆ Mm we define the set

Kr(T ) ≔ C { ai ∈ Mn×m | ai is a Kraus operator of T }.
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4.3.1 Transitions

Before we look at blocked transition, we can have a more general look for context.

If p is a minimal projection we have pT (q)p = _p for some _ ∈ R≥0. Thus, we could

consider labelling the transition from q to p with the value _. In fact, labelling all

transitions this way already completely determines T since there is a basis of A
consisting of minimal orthogonal projections.

Proposit ion If T , S : A → B are two completely positive operators, then the following are equivalent:

(a) T = S
(b) qT (p)q = qS(p)q for all p ∈ P1(A), q ∈ P1(B).
(c) qjT (pi)qj = qiS(pj )qi for all pi , qj in bases of A and B consisting of minimal

orthogonal projections.

Remark If we pick some bases of minimal projections for A and B, then T is uniquely determ-

ined by its positive value qjT (pi)qj = _ijqj on the pairs (pi , qj ) like in condition (c).

However, not all families of _ij result in a completely positive operator.

4.3.2 Blocked Transitions

Coming back to blocked transitions, like in the classical case, we ignore the exact

numeric amount of the _ij for a topological investigation. We only care whether a

transition can happen at all, that means whether it is blocked or not. We now give

many relations which all describe blocked transitions. Some of them are very similar,

but we spell out all of them because it is helpful to have all of them handy in day-to-day

calculations.

Proposit ion Let A ⊆ Mn,B ⊆ Mm be matrix algebras and T : A → B a completely positive
contraction. For two orthogonal projections p ∈ P(A), q ∈ P(B) the following are
equivalent:

(a) RT (p) ⊥ q.
(b) T (p) ≤ q⊥.

(c.i) qT (p)q = 0.
(c.ii) T (p)q = 0.
(c.iii) qT (p) = 0.

(e.i) qT (x)q = qT (p⊥xp⊥)q.
(e.ii) qT (x) = qT (p⊥x).
(e.iii) T (x)q = T (xp⊥)q.

(d.i) paq = 0 for all a ∈ Kr(T ).
(d.ii) pa = paq⊥ for all a ∈ Kr(T ).
(d.iii) aq = p⊥aq for all a ∈ Kr(T ).

(f.i) T (pxp) = q⊥T (pxp)q⊥.
(f.ii) T (px) = q⊥T (px).
(f.iii) T (xp) = T (xp)q⊥.

And if T (1) = 1:

(g) T (p⊥) ≥ q.

Definit ion In this case, we call the tuple (p, q) a blocked transition for RT or T .
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Remark Condition (d.i) means that all Kraus operators have a “corner” in which they are zero,

as hinted at by this matrix representation:

ai =

q q⊥

p
(

0 ∗
)

p⊥ ∗ ∗
.

Proof (a) ⇔ (b) ⇔ (c) All those criteria are slightly different formulations of T (p) ⊥ q (see

2.1.3).

(c.i) ⇒ (d.i) If 0 = qT (p)q =
∑d
i=1 qa

∗
i paiq = 0 we can follow qa∗paq = 0 for all

a ∈ Kr(T ), which means paq = 0.

(d.i) ⇔ (d.ii) ⇔ (d.iii) The three statements are equivalent because pa = paq + paq⊥

and aq = paq + p⊥aq.

(d.iii) ⇒ (e.*) For example qT (x) = q
∑d
i=1 a

∗
i xai = q

∑d
i=1 a

∗
i p

⊥xai = qT (p⊥x).

(d.ii) ⇒ (f.*) For example pT (x) =
∑d
i=1 a

∗
i pxai = q⊥

∑d
i=1 a

∗
i pxai = q⊥T (px).

(e.*) ⇒ (c.*) For example qT (p)q = qT (p⊥pp⊥q = qT (0)q = 0.

(f.*) ⇒ (c.*) For example qT (p)q = qq⊥T (p)q⊥q = 0.

(b) ⇒ (g) T (p⊥) = T (1) – T (p) = 1 – T (p) ≥ 1 – q⊥ = q.

(g)⇒ (b) This step actually only requires that T is a contraction: T (p) = T (1)–T (p⊥) ≤
1 – T (p⊥) ≤ 1 – q = q⊥. �

Remark This proposition is a generalization of [Bra17, 2.1.1]. There, as we will see in Chapter

5, T is defined as an endomorphism and p and q are orthogonal to each other. It was

the suggestion by Burkhard Kümmerer to drop the orthogonality in that proposition

to analyse topological Markov chains which started the endeavour culminating in this

thesis.

Saying “the transition from p to q is blocked” is again spoken in the Heisenberg

picture. It might sometimes be more intuitive to say that a state transition from q to p
is blocked.

If (p, q) is blocked, then for all p′ ≤ p and q′ ≤ q, the transition (p′, q′) is also blocked.

It is, thus, in some sense sufficient to only know the “largest” blocked transitions

of an operator T . This intuition led to the definition of reach maps which capture

precisely this information because (p, R(p)⊥) is blocked. The reach map R maps p to

the smallest projection q for which (p, q⊥) is a blocked transition.

Example 1 If p or q are zero (p, q) is always blocked.



52 4 Characterization of Reach Maps

Example 2 For the zero reach map R : A → B with R(p) = 0, all transitions are blocked.

Example 3 If R has a non-zero null space p ∈ P(A), then for all q ∈ P(B), the transition (p, q) is
blocked.

Example 4 Let R = RAda for some a ∈ Mn×m. Then for every (unit) vector b ∈ Cn, a∗tb ,ba is

one-dimensional. If we write q for the projection onto (a∗b)⊥, then (tb ,b , q) is blocked.

4.4 Kraus Operator Modules of Reach Maps

This section looks at the most concrete representation of reach maps. We have already

established a connection between reach maps and faces in the cone of completely

positive operators. As a next step, we connect faces in the cone of completely positive

operators to submodules of the linear spaces in which the Kraus operators live. Those

are different representations of reach maps which can be easier to analyse.

4.4.1 Kraus Operators and Faces of Completely Positive Operators

Let T : Mn ⊇ A → B ⊆ Mm be a completely positive operator.

Definit ion We call a subspace K ⊆ Mn×m an A′-B′-submodule if a′xb′ ∈ K for all x ∈ K , a ∈ A′

and b ∈ B′.

Remark The face of the cone CP(A,B) generated by T is the smallest face which contains T .

It is spanned by operators majorized by T . Every face C of the cone CP(A,B) has
a (non-unique) representative operator generating it. To see this, we start with any

operator T . If S ∈ C is not in the face generated by T , we can switch to the face

generated by S + T . This procedure terminates because CP(A,B) is finite-dimensional.

Proposit ion (1) The set Kr(T ) ⊆ Mn×m is an A′-B′-submodule of Mn×m.
(2) The set { S ∈ CP(A,B) : a ∈ Kr(T ) for all Kraus operators a of S } is the face gener-

ated by T .

This relation establishes a one-to-one correspondence between A′-B′-submodules of
Mn×m and faces of CP(A,B).

Proof Let (ai)1≤i≤d be a Kraus representation of T . This proof relies mainly on the following

theorem: By [Küm86, 1.1.12] for any operator the following are equivalent:

(a) There is _ > 0 such that T – _S is completely positive, i.e. S is an element of the

face generated by T .

(b) All Kraus operators S are of the form
∑d
i=1 a

′
iai with a′i ∈ A′.
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(1) By the above statement, Kr(T ) is closed under addition. Let (ai)i∈I be a Kraus

representation of a T and some unitaries u′a ∈ A′, u′b ∈ B′ given. Then (u′baiu
′
a)i∈I is

also a Kraus representation of T via
∑
i=1 u′∗b a

∗
i u

′∗
a xu′aaiu′b =

∑
i=1 a∗i xu

′∗
a u′aaiu′∗b u

′
b =

T (x) for all x ∈ A. Since Kr(T ) is closed under addition and A′ and B′ are spanned by

their unitary elements, Kr(T ) is an A′-B′-submodule.

(2) Again, by the given equivalence, all Kraus operators of every element of the face

generated by T are elements of Kr(T ) and all operators with Kraus operators out of

Kr(T ) are part of the face generated by T .

One-to-one correspondence: If K is an A′-B′-submodule of Mn×m then since it also is

a linear subspace, we can pick a basis of K and use it as a Kraus representation to

define an operator T . Then Kr(T ) is an A′-B′-submodule which contains a basis of

K and thus K . Nevertheless, since every Kraus operator for an operator in the side

generated by T is an A′ sum over the previous basis, K is all of Kr(T ). Thus, every
A′-B′-submodule corresponds to a face in CP(A,B) and their correspondence embeds

the A′-B′-submodules into the faces of CP(A,B). Since any face is generated by a

completely positive operator, our mapping is one-to-one. �

4.4.2 The Kraus Operator Module of a Reach Map

We already know that reach maps generate faces in the cone of completely positive

operators. Therefore, we can now define a corresponding A′-B′-submodule of Kraus

operators belonging to a reach map.

Definit ion Let R : P(A) → P(B) be a reach map. We define the Kraus operator module of R as

Kr(R) ≔
⋃

{ Kr(T ) : R = RT , T ∈ CP(A,B) } .

Corollary Kr(R) is the A′-B′-submodule of Mn×m belonging to the face { T ∈ CP(A,B) : RT ≤ R }.
It is also given by Kr(R) = { a ∈ Mn×m : ∀p ∈ P(A), q ∈ P(B), R(p) ⊥ q ⇒ paq = 0 }.

Remark As discussed, the face generated by R has a representative operator T such that

Kr(R) = Kr(T ). This operator, T , has precisely those blocked transitions which define

R. There are always operators in the face generated by R with more blocked transitions

and smaller generated faces.

We now have at least four equivalent ways to describe the topological properties

of completely positive operators: Reach maps, blocked transitions, specific faces in

the cone of completely positive operators and certain Kraus operator modules. The

relations between those different perspectives is monotonous in the following way: A

larger reach map is equivalent to a larger face, a larger Kraus operator module and

fewer blocked transitions.
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4.4.3 Kraus Operator Modules of Rank One Reach Maps

Since we characterized reach maps by looking at reach maps of rank one, it makes

sense to analyse what their Kraus operator module looks like.

Proposit ion Let A ⊆ Mn,B ⊆ Mm minimally represented and R : P(A) → P(B) a rank one reach
map then there is a matrix a ∈ Mn×m such that Kr(R) = A′aB′.

Proof Let T be a completely positive operators with RT = R and T =
∑d
i=1 Adai . We split

the support of T along the central projections of A into suppT =
∑k
j=1 pj . By the

Lemma in 4.1.6, aj is up to scalar multiples uniquely determined on pjCn. That means

there are bj : pjCn → Cm such that for all ai there are _ij with a∗i =
∑k
j=1 _ijbjzj =∑k

j=1 bjzj
∑k
j=1 _ijzj . Since

∑k
i=1 _ijzj ∈ A′ with a ≔

∑k
j=1 b

∗
j we get the result. �

Corollary If A = Mn and B = Mm, then Kr(R) = Ca.

Proof If A = Mn and B = Mm, then A′ = C1 and B′ = C1. �

4.4.4 The Full Reach Map

Now that we have collected all perspectives on reach maps, we can look at a particular

example:

Example For a reach map R : P(A) → P(B) the following are equivalent:

(a) R(p) = 1 for all p ∈ P(A) \ { 0 }.

(b) R = RT with a faithful state i on A and T : A → B with T (x) = 1i(x) for all
x ∈ A.

(c) No non-zero transitions (p, q) ∈ P(A) \ { 0 } ×P(B) \ { 0 } from A to B are blocked

for R.

We call this reach map the full reach map. If A = Mn and B = Mm, then the full reach

map is defined by Kr(R) = Mn×n. In the lattice of reach maps, the constant 0 reach

map is the minimum, and the full reach map is the maximum.

4.4.5 A Submodule That Does Not Belong to a Reach Map

As promised, we give an example of a face in the cone of completely positive operators

not induced by a reach map.

Example Let T : M2 → M2 be given by the Kraus operators e11, e22, e12 + e21. Then Kr(T ) =
span(e11, e22, e12 + e21) ≠ M2 = Kr(RT ).
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Proof We look for blocked transitions RT (p) ⊥ q. They need to fulfil S(p) ⊥ q for all S
in the face generated by T . Since the identity map can be given as id = Ad1 and

1 = e11 + e22 is in the generated face of T a blocked transition RT (p) ⊥ q has to fulfil

p = id(p) ≤ RT (p) ⊥ q. This means that in M2, any blocked transition must be of the

form (p, p⊥) with p ∈ P1(M2). For Ade11 and Ade22 the only blocked transitions which

fulfil this are (e11, e22) and (e22, e11). Those transitions are however not blocked for

Ade12+e21 . Thus, RT has no non-zero blocked transitions and is the full reach map. �

Remark So, in this case, the face generated by T has all blocked transitions of RT , but the face

generated by RT does not have more blocked transitions. Thus, the face generated by

T is not induced by a reach map.

4.4.6 Submodules That Cannot Belong to the Full Reach Map

Since it can apparently easily happen that a face in the cone of completely positive

operators has no blocked transitions, we give one sufficient criterion for when there

must be blocked transitions.

Proposit ion Let a1, . . . , an be n matrices in Mn. Then the smallest reach map R : P(Mn) → P(Mn)

with span(a1, . . . , an) ⊆ Kr(R) is not the full reach map.

Proof The function f : C → C : _ ↦→ det(_a1 + a2) is a complex polynomial and therefore

has a root. So there is a _ such that _a1 + a2 does not have full rank, and with

that, a b ∈ Cn with _a1b + a2b = 0 so a1b and a2b are linearly dependent. This

means that dim(span { aib : 1 ≤ i ≤ n }) ≤ n. We can construct a blocked transition

for span(a1, . . . , an) from this. �

4.4.7 Identifying Faces Belonging to Reach Maps

Given a subspace ofMn, we know it belongs to a face in the cone of completely positive

operators CP(Mn,Mm). However, the face might not be generated by a reach map.

Theorem For an A′-B′-submodule K ⊆ Mn×m the following are equivalent:

(a) K = Kr(R) for some reach map R : P(A) → P(B).
(b) There is a set B ⊆ P(A)×P(B) such that K = { a ∈ Mn×m : paq = 0 for all (p, q) ∈ B }.

Proof (a) ⇒ (b) Let K = Kr(R) then by Proposition 4.2.2 R is completely determined by its

blocked transitions.

(b) ⇒ (a) Let T be a representative of the face generated by K , i.e. Kr(T ) = K . We

know that K = Kr(T ) ≤ Kr(RT ). Every blocked transition (p, q) ∈ B implies a blocked

transition T (p) ⊥ q of T and blocked transitions of T are blocked transitions of RT .
Consequently, every a ∈ Kr(RT ) also fulfils paq = 0 for all (p, q) ∈ B, and we get

K = Kr(RT ). �
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Remark While this observation might not look particularly exciting, it is beneficial to pinpoint

concrete reach maps in practice. It means that R ↦→ Kr(R) is a bijective map from

reach maps to submodules fulfilling condition (b). We can define a reach map R from

a set B with only very few blocked transitions. However, in that case, R often has a

lot more blocked transitions than we required.

For reach maps on Mn, we can describe this in another way. For this, we use an inner

product, known as the Hilbert-Schmidt inner product , onMn via the trace tr : Mm → C
as 〈x , y〉 ≔ tr(y∗x) for all x , y ∈ Mn.

Corollary For a subspace K ⊆ Mn×n the following are equivalent:

(a) K = Kr(R) for some reach map R : P(Mn) → P(Mn).
(b) K is the Hilbert-Schmidt orthogonal complement of a set of rank one matrices inMn.

Proof (b)⇒ (a) If t[,b is a rank one matrix, then for all a ∈ Mn×m we have t[,[atb ,b = 0 if and

only if tr(t∗
[,ba) = 0. Thus, the orthogonal complement defines K by a set of blocked

transitions.

(a) ⇒ (b) By Proposition 4.2.1, R is already determined from its blocked transitions of

rank one. �

In this chapter, we have characterized reach maps in finite-dimensional systems.

First, we gave a definition of reach maps of rank one via preservation of cross-ratios.

Then we associated reach maps with certain faces in the cone of completely positive

operators. We connected those faces to submodules in the space of possible Kraus

operators between algebras and characterized when such submodules belong to a

reach map.
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Reach Maps

In this chapter, we finally see how the topological properties of a completely positive

operator already determine quite a lot of its behaviour including even its peripheral

spectrum. For a fixed reachmap, we decompose thematrix algebra into communicating

classes (Theorem 5.2.4), define recurrence and transience (Definition 5.3.3) and present

a Perron-Frobenius style theorem for reach maps (Theorem 5.5.2). This generalizes

the classical theory for positive matrices as presented in e.g. [Sen81]. This chapter

can be considered an improved version of [Bra17], while the new part here is that

everything presented can be done on the level of reach maps.

In this chapter, again, A will be a matrix algebra, i.e. finite-dimensional, and R a reach

map. But now instead of going from A to B our reach map R : P(A) → P(A) is an

endomorphism in the category of reach maps.

5.1 Irreducibility

The motivational idea for the decomposition theory in this chapter is “from where to

where in the algebra” states can move under the dynamics. This motivation already

shows the connection to blocked transitions from the last chapter which will come into

play here. A special case is when states can “go everywhere”. For that, we introduce

the concept of irreducibility.

5.1.1 Unital Representatives

Much of the theory in this chapter traditionally only applies to, or is at least signific-

antly easier for, unital completely positive operators (also called Markov operators).

Their use is often well justified because they describe a probability-preserving dy-

namic. Every reach map has representatives that are not unital. In fact, it is even

worse. We cannot present a non-trivial criterion to tell whether a given reach map

has a unital representative. There are, however, examples where this is not the case:

Example If a ∈ Mn, then by Corollary 4.4.3 we have Kr(RAda ) = Ca. Thus, RAda has a unital

representative if and only if a is a multiple of a unitary matrix.

57
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At least in the commutative case, we can always find a unital representative.

Lemma Let A be commutative, then any reach map R : P(A) → P(A) with R(1) = 1 has a
unital representative.

Proof A commutative reach map corresponds to a matrix with 0-1-entries. Because of

R(1) = 1, the matrix has at least one non-zero entry in every row. We assign a Laplace

distribution to the non-zero entries to create a stochastic matrix belonging to the

correct equivalence class. �

5.1.2 Subinvariant projections

The core tool for discussing irreducibility, communicating classes, recurrence and

transience are subinvariant projections.

Definit ion Let R : P(A) → P(A) be a reach map. Then we call an orthogonal projection p ∈ P(A)

subinvariant for R if R(p) ≤ p.

Remark If T : A → B is a completely positive operator with R = RT , we will also say that p is

subinvariant for T . From our perspective, a subinvariant projection is a special case

of a blocked transition. Since R(p) ⊥ p⊥ the transition (p, p⊥) is blocked. Thus, all the
calculation rules given in Proposition 4.3.2 can be applied to subinvariant projections

and become simpler for that case. For example, we have T (xp) = T (xp)p for all x ∈ A
and subinvariance means pap⊥ = 0 for all a ∈ Kr(T ).

Subinvariant projections are often called superharmonic, for example, in [Gär14] and

[Bra17]. Then their orthogonal complement is called subharmonic.

For example, the following result can also be found in [Gär14, 2.4.3]. We get it nearly

for free from our general theory of reach maps.

Proposit ion The subinvariant projections are closed under suprema and infima.

Proof We consider a family (pi)i∈I ⊆ P(A)with R(pi) ≤ pi for all i ∈ I . Reach maps preserve

suprema and are majorized by infima, so we have R(
∨

i pi) =
∨

i R(pi) ≤
∨

i pi and
R(

∧
i pi) ≤

∧
i R(pi) ≤

∧
i pi . �

Remark Thus, the subinvariant projections are a sublattice of the orthogonal projections.

Example 1 Trivially, 1 and 0 are subinvariant for every reach map.

Example 2 For a ∈ Mn and Ada : Mn → Mn, we can find an orthonormal basis in which a has

upper triangular form. This means there are at least n different projections with

pap⊥ = 0.
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5.1.3 Irreducibility

Definit ion We call a reach map R : P(A) → P(A) irreducible if 0 and 1 are the only subinvariant

projections of R. We call an operator irreducible if its reach map is irreducible.

Example 1 In the case A = C, every reach map, including the zero reach map, is irreducible. In

all other cases, the zero reach map has a lot of subinvariant projections and hence is

not irreducible.

Example 2 The full reach map is irreducible.

Example 3 The commutative reach map R : P(C2) → P(C2) given by the 0-1-matrix

(
0 1

1 0

)
is

irreducible. C2 has only two non-trivial projections, e1 and e2. Since R(e1) = e2 and

R(e2) = e1, both of them are not subinvariant.

Example 4 Let R : P(M2) → P(M2) with Kr(R) = span

((
0 1

0 0

)
,

(
0 0

1 0

))
=

{ (
1 0

0 0

)
,

(
0 0

0 1

) }⊥
.

All non-trivial orthogonal projections have rank one. We have R(e11) = e22, R(e22) =
e11 and for all other one-dimensional projections p ∈ P(M2) we get R(p) = 1. Hence,

R is irreducible.

We can immediately make one observation about irreducible reach maps:

Lemma Let R ≠ 0 be an irreducible reach map, then R(1) = 1.

Proof Let R(1) = p, then R(p) ≤ R(1) = p thus p is subinvariant. Since R ≠ 0, p must be

1. �

5.2 Decomposition into Communicating Classes

In the classical theory of Markov chains, two points in the state space communicate

with each other if there is a non-zero probability of going from one to the other in

both directions. This gives us an equivalence relation which can be used to decompose

the state space. We generalize this theory to reach maps.

5.2.1 Reduced Reach Maps

To decompose the algebra A into parts along projections in P(A), we formalize

the concept of restricting a reach map R : P(A) → P(A) and a completely positive

operator T : A → A to a hereditary subalgebra.
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Definit ion For any orthogonal projection pwe define the reduced reachmap Rp : P(Ap) → P(Ap)

as Rp(q) ≔ [pR(q)p] for all q ∈ P(Ap) and the reduced completely positive operator

Tp : Ap → Ap as Tp(x) ≔ pT (x)p for all x ∈ Ap .

Remark Sometimes it is convenient to extend Rp to all orthogonal projections q ∈ P(A) as

Rp(q) = [pR([pqp])p] and for x ∈ A as Tp(x) = pT (pxp)p.

If R = RT then we have Rp = RTp .

5.2.2 Projections Closed Under Communication

To define equivalence classes of communicating points, we need two properties of

a projection. First, no point (or more generally, projection) inside the class should

communicate with something outside the class, and this is the concept we introduce

here:

Definit ion Let q ≤ p be two subinvariant projections, then we call the projection p – q closed
under communication.

Example If p is subinvariant, p and p⊥ are closed under communication, since p = p – 0 and

p⊥ = 1 – p.

Since we want to restrict the dynamics to reduced algebras with projections which

are closed under communication, we need to confirm that this plays nicely with the

concept of subinvariance.

Lemma Let q ≤ p be two subinvariant projections, for q′ ≤ c ≔ p–q the following are equivalent:

(a) q′ is subinvariant for Rc .
(b) q′ + q is subinvariant for R.

Proof (a) ⇒ (b) We have Rc (q′) ≤ q′. With [cR(q′)c] ⊥ q′⊥ we get R(q′) ⊥ c – q′, so
R(q′) ≤ 1– (c –q′), but we also know that R(q′) ≤ R(p) ≤ p so R(q′) ≤ 1– (c –q′)∧p =

p – (c – q′) = p – (p – q – q′) = q + q′. Consequently, R(q′ + q) = R(q′) ∨ R(q) ≤
(q + q′) ∨ q = q + q′.

(b) ⇒ (a) Let R(q′ + q) ≤ q′ + q apply on both sides RAdc then Rc (q′) ≤ [cR(q′ + q)c] ≤
q′. �

Corollary If the projection c is a projection which is closed under communication, then for a
dominated projection c′ ≤ c the following are equivalent:

(a) c′ is closed under communication for Rc .
(b) c′ is closed under communication for R.
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5.2.3 Communicating Classes

Additionally to no point in the class communicating with the outside, we need

everything inside a communicating class to communicate with each other.

Definit ion We call an orthogonal projection c a communicating class if it is minimally closed

under communication.

Proposit ion If a projection c is closed under communication, then the following are equivalent:

(a) c is a communicating class.
(b) Rc is irreducible.

Proof We pick subinvariant projections p and q such that c = p – q.

(a) ⇒ (b) Let q′ be subinvariant for Rc . Then q′ + q is subinvariant. Thus, p – (q′ + q)
is closed under communication below c, so we have either q′ = c or q′ = 0.

(b) ⇒ (a) Let c′ ≤ c be closed under communication. Then c′ = p′ – q′ with q ≤ q′ ≤
p′ ≤ p. Since Rc is irreducible q′ and p′ have to be either q or p. So c′ is either 0 or

c. �

5.2.4 Decompositions of One

Definit ion We call a family of orthogonal projections p1, . . . , pk a decomposition of 1 if p1 ∨ · · · ∨
pk = 1 and pi ∧ pj = 0 for all i ≠ j. We call the decomposition orthogonal if pi ⊥ pj
for all i ≠ j.

Theorem Let R : P(A) → P(A) be a reach map. There is an orthogonal decomposition of 1

consisting of communicating classes c1, . . . , ck such that
∑l
i=1 ci is subinvariant for

all 1 ≤ l ≤ k.

Proof Assume c1, . . . , ck is an orthogonal decomposition of 1, fulfiling that
∑l
i=1 ci is subin-

variant for all 1 ≤ l ≤ k, but without the condition that the ci are irreducible. Then

we can pick an arbitrary reducible ci and a Rci -subinvariant projection p and split ci
into ci – p and p. Since

∑i–1
j=1 cj + p is subinvariant, the new decomposition fulfils the

same conditions but is finer. Since A is finite-dimensional, we can iterate this until all

ci are irreducible. We can start with the decomposition k = 1 and c1 = 1. �

Remark The version of this theorem for completely positive contractions was shown in [Bra17,

3.3.2]. This theorem can also be understood as bringing the (not necessarily self-

adjoint) algebra generated by Kr(R) in a blockwise upper triangular form. In this form,

the statement is very similar to [GLR06, Theorem 11.2.2]. That book talks about linear

algebra from the point of view of invariant subspaces, which are directly connected

to subinvariant projections.
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In the same way in which matrices do not have unique upper triangular forms, the

decomposition into communicating classes is not unique.

Example For id : A → A, every projection is subinvariant. Consequently, every orthogonal

decomposition of 1 into minimal projections satisfies the theorem.

5.3 Recurrence and Transience

Recurrence and transience are important properties of the asymptotic dynamics of

a system. Classically recurrent points are states into which the dynamics always

return, while transient points will be left at some point and then never returned to. We

will introduce stochastic and topological recurrence, where stochastic recurrence is a

property of projections in regard to a completely positive operator, and topological

recurrence is a property in regard to a reach map.

5.3.1 Supports of Eigenstates

Stochastic recurrence can most elegantly be described by the existence of invariant

states. To prepare this, we take a quick look at the eigenstates of an operator.

Lemma If p is the support of an eigenstate of a completely positive operator T : A → A, then p⊥

is subinvariant for T .

Proof Let i be an eigenstate of T with eigenvalue _. Then i(T (p⊥)) = _i(p⊥) = 0 which

yields T (p⊥) ⊥ p and T (p⊥) ≤ p⊥. �

5.3.2 The Eigenvalue Theorem for Irreducible Operators

Lemma Any irreducible completely positive operator T ≠ 0 has spectral radius r (T ) > 0, and
there is a faithful state i ∈ S(A) with i ◦ T = r (T )i .

Proof That the spectral radius is strictly positive is, for example, shown in [Gro81, 2.3]. By

the eigenvalue theorem (cf. [Gro81, 2.1]) an eigenstate for the eigenvalue r (T ) exists.
It is faithful because T is irreducible together with the previous lemma. �

5.3.3 Topological Recurrence

Definit ion We call a communicating class c topologically recurrent for R if c⊥ is subinvariant for

R. Otherwise, we call it topologically transient .

We call R recurrent if all communicating classes are topologically recurrent.
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Proposit ion (1) For a communicating class c the following are equivalent:
(a) c is topologically recurrent.
(b) For all representatives T of R, T has an eigenstate i for a positive eigenvalue

with c = suppi .
(2) If R is recurrent, then for all projections p the following are equivalent:

(a) p is subinvariant.
(b) p⊥ is subinvariant.
(c) p is closed under communication.

Proof (1) (a) ⇒ (b) Let T be a representative of R. We consider the restriction Tc , which is

irreducible and thus has a faithful eigenstate i . We can extend i as i ◦ Adc onto all

of A and i ◦Adc has support c. Since c⊥ is subinvariant by Proposition 4.3.2 we have

Adc ◦ T = Tc . We can conclude i ◦ T = i ◦ Adc ◦ T = i ◦ Tc = r (Tc )i .

(1) (b) ⇒ (a) Let i be an eigenstate for a strictly positive eigenvalue of T with support

c. Then i(T (c⊥)) = _i(c⊥) = 0, so T (c⊥) ⊥ suppi , or T (c⊥) ≤ c⊥. This was the only

property we needed to check to show that c is topological recurrent.

(2) (a) ⇒ (b) The projection p has an orthogonal decomposition into communicating

classes. Their complements are all subinvariant, so p⊥ as the intersection of them is

subinvariant.

(2) (b) ⇒ (c) As mentioned in 5.2.2, any subinvariant projection and its complement

are closed under communication.

(2) (c) ⇒ (a) Since it is closed under communication, p has a decomposition into

communicating classes. Thus, with the argument from (a) ⇒ (b) p⊥ is subinvariant.

This means that p⊥ is also closed under communication. With the same argument

again, we conclude that p is subinvariant. �

Example 1 Let R : A → B be defined by the single blocked transition (p, p⊥) for any non-trivial

orthogonal projection p ∈ P(A). p is subinvariant, thus p and p⊥ are closed under

communication. Rp and Rp⊥ are irreducible. Hence, p and p⊥ are communicating

classes. Since p is subinvariant and p⊥ is not, p is topologically transient and p⊥ is

topologically recurrent.

Example 2 Let R : A → B be defined by the blocked transitions (p, p⊥) and (p⊥, p) for any non-

trivial orthogonal projection p ∈ P(A). This is the same case as before, but p and p⊥

are subinvariant. Hence, both communicating classes are topologically recurrent, and

R is recurrent.
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5.3.4 Stochastic Recurrence

While the definition of topological recurrence is new here, there is already an es-

tablished definition of recurrence in regard to completely positive operators. Incon-

veniently, topological recurrence in regard to a reach map R only implies stochastic

recurrence in regard to an operator T with R = RT if T is unital. We now establish

this relation in detail:

Definit ion For a completely positive contraction T , we call a projection stochastically recurrent if
it is below the support of a stationary state of T . We call the projection stochastically
transient if it is orthogonal to the supports of all stationary states of T .

We call an operator T recurrent if 1 is stochastically recurrent for T .

Further, we define the unital support of T as pu ≔
∨

{ p ∈ P(A) : T (p) ≥ p }.

Remark Relevant properties of the unital support are T (pu) ≥ pu , its complement p⊥u is

subinvariant, and T is unital if and only if pu = 1.

Lemma If a positive element a ∈ A+ and projection p ∈ P(A) fulfil ‖a‖ ≤ 1 and pap = p, then
it holds that p ≤ a.

Proof With p ≤ paap = pap⊥ap + papap = pap⊥ap + p we get pap⊥ = 0 and thus a =

pap + p⊥ap⊥ ≥ pap = p. �

Proposit ion Let T : A → A be a completely positive contraction.

(1) There is a maximal stochastically recurrent projection r ∈ P(A) and a stationary
state with support r .

(2) For a communicating class c ∈ P(A) the following are equivalent:
(a) c ≤ r , i.e. c is stochastically recurrent.
(b) T (c) ≥ c.
(c) c is topologically recurrent and c ≤ pu .

(3) With t ≔ r⊥ for a projection p ∈ P(A) the following are equivalent:
(a) p ≤ t , i.e. p is stochastically transient.
(b) T n(p) → 0.

(4) Every communicating classes c ∈ P(A) has exactly one of these three properties:
(A) topologically and stochastically recurrent
(B) topologically and stochastically transient
(C) topologically recurrent but stochastically transient.

Proof (1) First, we recognize that every stochastically recurrent projection is dominated

by the support of a stationary state. So, to show the statement, it is sufficient to

show that the supremum of supports of stationary states again is the support of

a stationary state. If we consider two stationary states i and k , l ≔ 1
2 (i + k )
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is also stationary. For 0 < x ≤ suppi we have l(x) > 0, so suppi ≤ suppl

and the same argument holds for suppk . On the other hand l(suppi ∨ suppk ) =
1
2 (i(suppi ∨ suppk ) +k (suppi ∨ suppk )) = 1

2 (1+1) = 1. That yields suppi∨suppk ≥
suppl . Since any chain of projections in P(A) is finite, we can reduce arbitrary su-

prema to finite suprema. Thus, we receive r as the supremum over all supports of

stationary states, and it is the support of a stationary state.

(2) (a) ⇒ (b) Let p ≤ r with Tr (p⊥) ≤ p⊥. Then i(p⊥ – Tr (p⊥)) = i(p⊥ – p⊥) = 0 and

thus Tr (p⊥) = p⊥ and Tr (p) = p. We can complete c to a decomposition of r where,

by the previous argument, all summands are fixed points of Tr and get Tr (c) = c. This
way, we see cT (c)c = crT (c)rc = cTr (c)c = c and thus T (c) ≥ c.
(2) (b) ⇒ (c) Since T is a contraction T (c) ≥ c implies R(c⊥) ≤ c⊥.
(2) (c) ⇒ (a) There is an eigenstate i with support c and eigenvalue _ ≤ 1. We

show _ = _i(1) = i(T (1)) ≥ i(T (pu)) ≥ i(pu) = 1. Thus, i is stationary and c is

stochastically recurrent.

Auxiliary statement. Let p be subinvariant. Then either T n(p) → 0 or there is a
stochastically recurrent communicating class below p.
Because T (p) ≤ p, the sequence T n(p) converges monotonically against some fixed

point h ∈ A+
p . If h = 0, we are finished. So, we assume h > 0. Then Tp has spectral

radius 1 and thus a stationary state. From the stationary state, we get a stochastically

recurrent communicating class c for Tp . With T (c) = T (pcp) = Tp(c) ≥ c, c is also

stochastically recurrent for T . This shows the auxiliary statement.

(3) (b)⇒ (a) Let T n(p) → 0, then i(p) = i(T n(p)) → 0 and so p ⊥ r and p is transient.

(3) (a)⇒ (b) t is subinvariant. Since, by definition, there are no stochastically recurrent

communicating classes below it, we have T n(t) → 0.

(4) By definition, a communicating class is either topologically recurrent or transient.

From (3), we know that stochastic recurrence implies topological recurrence. Thus, we

only need to show that every communicating class is either stochastically recurrent

or stochastically transient. It is clear that the cases are mutually exclusive, but we

need to show that always one of them is true. Let c be not stochastically recurrent

and let p be minimal such that c + p is subinvariant. We choose any orthogonal

ordered decomposition of p. Since p was minimal, none of the summands in the

decomposition are topologically recurrent. We show by induction that all summands

of the decomposition of p and c are stochastically transient. We start with the fact that

0 is transient. As induction step, consider a communicating class c and a transient,

subinvariant p such that c + p is also subinvariant. With our lemma, either i(c + p) =
i(T n(c + p)) → 0, which means c is transient, or there is a stochastically recurrent

class below c + p. Since it must be orthogonal to the stochastically transient p, it must

be c. �



66 5 Perron-Frobenius Theory for Reach Maps

Corollary If T is unital, then stochastic and topological recurrence are the same.

Proof This is a direct consequence of (3) with pu = 1. �

Example Let us look at a simple commutative example to discuss the different recurrence

properties:

1 2 3

In this graph, or rather for its corresponding reach map, point 1 is topologically

transient while the communicating class { 2, 3 } is topologically recurrent. We can see

that for any probabilities assigned to the edges, the probability that a state could move

out of the set { 2, 3 } is zero. However, from this topological analysis we cannot tell

whether a specific stochastic transition will preserve probabilities in { 2, 3 }. Only if we

know that we choose a unital operator, then every edge gets assigned the probability

1 and then { 2, 3 } is certainly stochastically recurrent. The stationary measure would

be the Laplace distribution on { 2, 3 } extended to point 1 with probability 0.

Corollary All projections that are closed under communication commute with the maximal
stochastically recurrent projection r .

Proof Take any projection p closed under communication and decompose it into com-

municating classes ci . Every communicating class is either below r or t . Thus,

pr =
∑
ci recurrent ci = rp. �

5.3.5 Dealing with Leakage

In the previous example, we have discussed that non-unital operators are not probab-

ility preserving. In a classical probability graph, we can interpret a situation where

the probabilities of outgoing edges do not sum up to 1 as the possibility that the state

gets lost into the environment. We could say the state leaks out of the system. For

any non-unital completely positive operator T : A → A, we can extend our algebra

to find a canonical unital extension of T . In the introduced analogy, we can interpret

this as explicitly adding the environment into which a state could have been lost into

our algebra.

Proposit ion Let T (1) < 1, then there is T̃ : C ⊕ A → C ⊕ A unital such that T̃1A = T and for
all p ∈ A the following are equivalent:

(a) p is subinvariant for T .
(b) 0 ⊕ p is subinvariant for T̃ .
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Proof We define T̃ as T̃ (U ⊕ x) = U ⊕ (T (x) + U(1 – T (1))).

(a) ⇒ (b) T̃ (0 ⊕ p) = 0 ⊕ T (p) ≤ 0 ⊕ p.

(b) ⇒ (a) We get 0 ⊕ T (p) = T̃ (0 ⊕ p) ≤ 0 ⊕ p and thus T (p) ≤ p. �

5.4 The Reversible Algebra

Recurrence and transience are properties to investigate the asymptotic behaviour of

dynamics. Another central tool for that is the reversible algebra. This is the only

part of the algebra which is asymptotically relevant for the dynamics, and on it, the

dynamics operate as a *-automorphism; hence the name, reversible.

5.4.1 The Multiplicative Algebra

To capture the multiplicative aspect of an operator, we look at the so-called multiplic-

ative algebra. We get it by converting the Kadison inequality to an equality.

Definit ion For a completely positive contraction T : A → A we define

MT ≔
{
x ∈ A : T (xx∗) = T (x)T (x∗), T (x∗x) = T (x∗)T (x)

}
as the multiplicative algebra of T .

Remark By [Stø13, 2.1.5 and 2.1.6] MT is indeed a *-subalgebra of A and for all x ∈ MT and

y ∈ A we have T (xy) = T (x)T (y) and T (yx) = T (y)T (x).

The core trick of the rest of this chapter is that the multiplicative algebra and the

behaviour of the operator on it are topological properties. This might not be very

surprising because we had already observed this for the case A = MT , which means

that T is a *-homomorphism.

Proposit ion Let S and T be unital completely positive operators with RS ≤ RT , then S(x) = T (x) for
all x ∈ MT .

Proof As a matrix algebra,MT has a basis consisting of orthogonal projections, so it suffices

to show this for orthogonal projections. Let p ∈ P(MT ), then we have RT (p) = T (p).
Since T is unital, 1 is also in MT and thus p⊥ ∈ MT . Again, since T is unital, we

have T (p⊥) = 1 – T (p) = T (p)⊥. So, we also have RT (p⊥) = T (p)⊥. Thus, we have

S(p) ≤ RS (p) ≤ RT (p) = T (p) and S(p⊥) ≤ T (p)⊥. But since S(p + p⊥) = 1, this means

S(p) = T (p) (and S(p⊥) = T (p)⊥ = T (p⊥)). �
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5.4.2 The Reversible Algebra

Definit ion We define the reversible algebra of T as E(T ) ≔ span { x : T (x) = _x , |_| = 1 }.

Proposit ion Let R : P(A) → P(A) be a recurrent reach map with unital representatives T and S,
then

(1) E(T ) is a *-subalgebra of A
(2) T is a *-automorphism on E(T ).
(3) E(T ) = E(S)
(4) T (x) = S(x) for all x ∈ E(T ).
(5) f1(T ) = f1(S).

Proof For the proof of (1) and (2), see [Bra17, 5.1.3].

Since E(T ) ⊆ MT = MS ⊇ E (S), we have T (x) = S(x) for x ∈ E(T ) and x ∈ E(S).
Now (3), (4) and (5) follow directly. �

Definit ion If R has a unital representative T , we say that E(R) ≔ E(T ) is the reversible algebra of

R.

5.5 Perron-Frobenius Theory for Reach Maps

For the asymptotic behaviour of completely positive contractions, the peripheral

spectrum is of special importance. The theorem of Perron-Frobenius is the main

theorem about the peripheral spectrum of linear maps. We present a version of this

theorem for reach maps.

5.5.1 Equivalence to Unital Operators from Irreducibility

Lemma
[Gro82, 2.2]

Let T be a non-zero irreducible completely positive operator with spectral radius r (T ).
Then there is an invertible completely positive operator U such that r (T )–1(U ◦ T ◦U –1)

is a unital operator.

5.5.2 The Perron-Frobenius Theorem for Reach Maps

Definit ion A cycle for a reach map R is a sequence of projections p1, . . . , pk , such that R(pi) ≥
p(imodk)+1 for all 1 ≤ i ≤ k. An exact cycle fulfils R(pi) = p(imodk)+1.

Remark For the commutative case, this definition of a cycle is compatible with the definition

of a cycle in a directed graph.
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Theorem Let R > 0 be an irreducible reach map.

(1) There is a maximal k such that there is an exact cycle p1, . . . , pk which is a decom-
position of 1. For A ⊆ Mn we have k ≤ n.

Let T be any representative of R with spectral radius r = r (T ).

(2) fr (T ) = r
{
e
i2c l
k : l ∈ { 1, . . . , k }

}
.

(3) All eigenvalues in fr (T ) are simple and 1
r fr (T ) · f(T ) = f(T ).

(4) r is the unique eigenvalue of T with a positive eigenvector. This eigenvector is
strictly positive.

If T is unital, then

(4) The decomposition p1, . . . , pk is orthogonal.
(5) E (R) = span { p1, . . . , pk } and the peripheral eigenspaces are spanned by unitaries.

Proof First we assume that T is a unital representative of R. Then statements (2), (3) and (4)

are directly given by [Gro81, 3.1] when we consider that fr (T ) must be finite. We set

k = |fr (T )|.

By [Gro81, 3.3], a decomposition consisting of k projections like in (1) exists. Their

span is a commutative *-subalgebra of dimension k and lies in E (T ) = E (R), which

also has dimension k. The unitary eigenvectors are given by
∑k
i=0 _

–ipi for _ ∈ f1(T ),
proving (5).

On the other hand, assume a decomposition like in (1). Since R(pi) = pi+1, T (pi) ≤ pi+1
and T is recurrent, we have T (pi) = pi+1. Since all the pi get eachmapped to orthogonal

projections, they are part of MT . Consider the *-algebra B generated by the pi . T
maps B into B and T k is the identity on B. That means T is a *-automorphism on B
with inverse T k–1. Because T is a *-automorphism on B, we have B ⊆ E (T ). Since
E(T ) is commutative, the pi must be orthogonal, and since E(T ) has dimension k, this
limits the number of pi . Thus, a decomposition as in (1) exists. The k is maximal and

is always orthogonal, proving (4).

Now we assume T to not be unital. By Lemma 5.5.1, there is an invertible completely

positive operator U such that S = 1
r (U ◦ T ◦ U –1) is a unital operator. We have

f(T ) = rf(T ) and U preserves positivity, proving again (2), (3) and (4).

Let pi be an exact cycle orthogonal decomposition of S, then T (U –1(pi)) =

rU –1(pi+1), so R([U –1(pi)]) = [U –1(pi+1)]. So the [U –1(pi)] form an exact

cycle for R. Since U –1 is invertible [U –1(1)] = 1, and thus 1 = [U –1(1)] =

[U –1(
∑k
i=0 pi)] = [

∑k
i=0 U

–1(pi)] =
∨k

i=0[U
–1(pi)]. At the same time we have

[U ([U –1(pi)] ∧ [U –1(pj )])] ≤ [U ([U –1(pi)])] ∧ [U ([U –1(pj )])] = pi ∧ pj = 0. Since

U has to be faithful, we get that the [U –1(pi)] are a decomposition of 1. Thus, the

decomposition of (1) exists even in the absence of a unital representative of R. On
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the other hand, if a decomposition like that of any size exists, it will translate to an

orthogonal decomposition for T and can thus maximally have size k. �

Definit ion We call k the period of R.

Remark As is apparent from the proof, in the unital case the Perron-Frobenius theorem for

positive operators can easily be transferred, since we know that all unital repres-

entatives coincide on the reversible algebra. The strength of this theorem lies in

the non-unital case. Especially the concept of a non-orthogonal exact cycle for a

non-unital irreducible operator is only sensibly expressible via the reach map and thus

probably a new contribution to the Perron-Frobenius theory of completely positive

operators.

We see that the peripheral spectrum of any representative of R can be determined

from R. This is, however, not possible for the rest of the spectrum.

For irreducible reach maps, this theorem gives as a necessary condition for the exist-

ence of a unital representative: If we find an exact cycle, which is a decomposition of

1 with the length of the period, it must be an orthogonal decomposition.

Example Let e1, e2 and f1, f2 be two bases of C2 with matrix units eij and fij such that e11 ≠ f11.
Let R : P(M2) → P(M2) be a reach map defined by the blocked transitions (e11, f22)

and (f11, e22). Then Kr(R) =
{
te1,f2 , tf1,e2

}⊥
with the Hilbert-Schmidt inner product

on M2. A basis of Kr(R) can be given by e21 and f21. We can calculate R(e11) =

RAde21 (e11) ∨ RAdf21 (e11) = 0 ∨ f11 = f11 and R(f11) = e11. For all other rank one

projections p, we have R(p) = 1 since they are not orthogonal to e22 or f22. Hence, R
is irreducible and since it has the exact cycle e11, f11 it has period 2. If we are in the

special case e1 ∈ Cf2 and f1 ∈ Ce2, then the basis of Kr(R) simplifies to e12, e21 and

R has a unital representative. Consistent with our theorem we have e11 ⊥ e22 = f11
which means that the exact cycle e11, e22 is an orthogonal decomposition of 1.

5.5.3 Aperiodicity

A special case of irreducible operators are the ones with |f1(T )| = 1. For them, the

asymptotic behaviour is completely independent of the initial state of the system. We

can also describe this class of operators on the level of reach maps.

Proposit ion For a non-zero irreducible reach map R the following are equivalent:

(a) The period of R is 1.
(b) For all p ∈ P(A) there is a k ∈ N such that Rk (p) = 1.
(c) Rk is irreducible for all k ∈ N.

Definit ion In this case, we call the reach map R aperiodic.
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Proof (a) ⇒ (b) We have Rk (p) = [Sk (U –1(p))] where S has a unique stationary state and

Sk (x) → 1i(x). So Rk (p) → 1, where, by dimensional arguments, the limit must be

reached after a finite number of steps.

(b) ⇒ (c) Assume Rk (p) ≤ p, then Rkn(p) ≤ p for all n ∈ N thus Rl (p) can never

become 1.

(c) ⇒ (a) We prove this implication by contraposition. Let R have period k > 1, then

there is a p ≠ 0,1 with Rk (p) = p. So Rk is not irreducible. �

5.5.4 Structure of the Reversible Algebra

There is more to say about the reversible algebra of a reach map. We only give the

central theorem here. Since the perspective of reach maps does not add anything new

to this investigation, we refer to [Bra17] for further discussion.

Theorem Let R be a recurrent reach map with a unital representative. Then there are orthogonal
projections p1, . . . , pk that are an (up to order) unique orthogonal decomposition of 1 so
that for all i ∈ { 1, . . . , k }

(1) pi ∈ Z(E(R)),
(2) There is an ni ∈ N, a matrix algebra Bi , a *-automorphism Ui : Mni → Mni

and an irreducible reach map R′i : P(Bi) → P(Bi) such that Api ' Mni ⊗ Bi

and Rpi ' Ui ⊗ R′i .

Proof This structure of the reversible algebra of a unital recurrent operator is the main result

of [Bra17, 5.2.8]. The idea of the proof is to show that every peripheral eigenvector

can be decomposed into partial isometries. The uniqueness of the decomposition

is given in [Bra17, 5.3.2]. A very similar result has independently been shown in

[GFY18, Theorem 2]. Because the structure of E (R) is independent of the concrete

representative T , the result holds for reach maps as well. �

Remark The central projections pi in this theorem are not the minimal central projections

which determine the structure of E(R) as a direct sum of Mni . However, to every

restricted reach map R′i , there belongs an exact cycle, and the projections in this cycle

are, in fact, minimal central projections of E (R).

5.5.5 Asymptotics

Also, in [Bra17, Chapter 6], it is shown that the asymptotic time behaviour of any

completely positive operator can be given by T k – T k ◦ P → 0, where P projects

onto E(T ) on which T acts as an automorphism. While the automorphism behaviour

of T on E(T ) is uniquely determined by R, the exact form of P , but not its reach

map, depends on the representative. If additionally T is not recurrent, the form of
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E (T ) (which is not simply a subalgebra in this case) also depends on the concrete

representative.

In this chapter, we presented a Perron-Frobenius theory for reach maps. First, we

decomposed the algebra along communicating classes. Then we sorted those classes

into recurrent and transient classes. Finally, we described the dynamics of a reach

map restricted to one of those classes.



6 Conditional Expectations

Conditional expectations are a special kind of completely positive operators. They are

essential for describing how a system can be a subsystem of a larger system. We will

need conditional expectations to project onto a single time step of a Markov process

on an algebra representing the system’s state for all times. Since we want to describe

processes with infinitely many time steps, we need to consider infinite-dimensional

systems. Thus, for the rest of this work, we return to the category of enveloped

C*-algebras.

In this chapter, we show that the reach map of a conditional expectation is determined

by its support (on the envelope) and the subalgebra onto which the expectation is

projecting. This is described in generality in Theorem 6.2.2, which is the central

result of this chapter. The main takeaway, that reach maps of faithful conditional

expectations are completely determined by the subalgebra, can be found in Corollary

6.2.3.

6.1 Conditional Expectations and Expected Subalgebras

We start with a quick summary of conditional expectations and their properties in

enveloped C*-algebras.

6.1.1 Definition

First, we look at the established definition of conditional expectations.

Proposit ion
[Bla06, II.6.10.1]

Let A ⊆ Â be C*-algebras, consider a linear map P : Â → Â with P(Â) = A
and ‖P ‖ = 1. Then the following are equivalent:

(a) P is completely positive with

P (axb) = aP (x)b for all x ∈ Â, a, b ∈ A.

(b) P2 = P .

Definit ion We call an operator like that a conditional expectation. It is also called a projection of
norm one in the literature.

73
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Example The most important example for a conditional expectation for us will be Pi : A⊗B →
A ⊗ B for two unital C*-algebras A and B defined with some state i ∈ S(B) via
P (x ⊗ y) = i(y)x ⊗ 1 for all x ∈ A and y ∈ B.

6.1.2 Enveloped Conditional Expectations

For enveloped C*-algebras, we have to specify what a conditional expectation is.

Proposit ion Let Â� be an enveloped C*-algebra and P : Â� → A� ⊆ Â� a normal completely
positive operator. If P |Â : Â → A ⊆ Â is a conditional expectation onto A then
P : MÂ → MA ⊆ MÂ is a conditional expectation onto MA.

Proof By Lemma 2.1.6, P is completely positive and of norm 1. SinceA is weak* dense inMA
and P normal, we get P (MA) = MA. Also, by continuity we have P |MA = id|MA . �

Definit ion In this case, P is called a conditional expectation onto A�.

6.1.3 Properties of Conditional Expectations

We will need a few properties about how conditional expectations work in enveloped

C*-algebras. We need to be careful again because of the difference between the support

on A and MA.

The first lemma shows that commutation relations are stable under taking the closure

or the interior of a projection.

Lemma Let x ∈ A, p ∈ P(MA) and xp = px . Then xp̄ = p̄x and xp◦ = p◦x .

Proof Because of the commutation relation, we can see that x∗p⊥x ⊥ p. Since (p⊥)◦ =

p̄⊥ ≤ p⊥ we also know x∗p̄⊥x ⊥ p and [x∗p̄⊥x] ⊥ p. Adx is an endomorphism

on the enveloped C*-algebra (A,MA). As the orthogonal complement of a closed

projection p̄⊥ is an open projection, so [x∗p̄⊥x] = RAdx (p̄
⊥) is also an open projection.

This allows us to switch to the closure on the other side of the orthogonality and get

[x∗p̄⊥x] ⊥ p̄. So p̄x∗p̄⊥xp̄ = 0, p̄⊥xp̄ = 0, and xp̄ = p̄xp̄. With the same argument

for x∗ we get x̄p = p̄xp̄ = p̄x . When x commutes with p it also commutes with p⊥

and thus also with (p⊥) = (p◦)⊥ and p◦. �

Lemma Let P : Â� → A� ⊆ Â� be a normal conditional expectation in an enveloped C*-algebra.
With r ≔ suppP we get

(1) r ∈ A′

(2) P (r ) = 1A ≥ r
(3) rA 3 x ↦→ P (x) ∈ A is a *-isomorphism.
(4) rA 3 x ↦→ r⊥P (x) ∈ r⊥A is a *-homomorphism.



6.1 Conditional Expectations and Expected Subalgebras 75

Proof (1) We consider p ≔ supp(MA,MA)P . Let x ∈ A. Then P (xx∗) = P (P (x)x∗) =

P (P (xp)x∗) = P (xpx∗) and consequently xp⊥x∗ ⊥ p. Because px = xp we also have

for r = p̄, rx = xr .

(2) We have P (1) ∈ MA. For any x ∈ MA we get xP (1) = P (x1) = P (1x) = P (1)x .
Since also P (1)2 = P (1)P (1) = P (1P (1)) = P (P (1)) = P (1)we can conclude 1A = P (1) =
P (r ), where the last step uses Proposition 3.3.1 (4). Since r is closed, to show 1A ≥ r
it is enough to show that x ⊥ 1A entails x ⊥ r for all x ∈ Â. If x1A = 0, we have

P (x) = 1AP (x) = P (1Ax) = P (0) = 0. That implies x ⊥ r .

(3) A 3 x ↦→ rx ∈ rA is a *-homomorphism, because r commutes with A. Because

of x = P (x) = P (rx) and rx = rP (x) = rP (rx) for x ∈ A it is the inverse map of

rA 3 x ↦→ P (x) ∈ A.

(4) Let x , y ∈ A then P (rxry)r⊥ = P (rxy)r⊥ = P (xP (y))r⊥ = P (rx)r⊥P (ry)r⊥ =

P (rx)r⊥P (ry)r⊥. �

Remark This lemma is inspired by the investigation of idempotent Markov operators in [Gär14,

Chapter 4] and picks the properties we need from the bigger picture painted there.

6.1.4 Expected Subalgebras

We define expected subalgebras to make the notion of a subsystem concrete.

Lemma Let P : Â� → A� ⊆ Â� be a normal conditional expectation, then the following are
equivalent:

(a) suppP = 1A.
(b) NP ⊥ A.

Proof (a) ⇒ (b) Let x ∈ N +
P and y ∈ A+

1 , thus P (x) = 0 and x ⊥ 1A ≥ y .

(b) ⇒ (a) Since suppP ≔ 1⊥NP
and 1A ⊥ 1NP we have suppP ≥ 1A. However, since

we always have suppP ≤ 1A, we get (a). �

Definit ion We call a C*-subalgebraA ⊆ Â expected if there is a conditional expectation P ontoA
with NP ⊥ A. We call a subalgebra A� ⊆ Â� of an enveloped C*-subalgebra expected
if A is expected and the conditional expectation P has a normal extension.

Remark The weakest sensible definition for an expected subalgebra would be to just require

the existence of any conditional expectation. That however would be too weak, since

very non-faithful conditional expectations preserve too little structure to be useful. On

the other hand if we would require that P be faithful, then every expected subalgebra

would be required to have the same 1 as the surrounding algebra. That would be too

restrictive for our use case. The condition here is the correct weakening of faithfulness

for subalgebras which do not share the unit of Â.
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Morally, the faithfulness condition does not exclude a lot of subalgebras. If we have

suppP < 1A we can switch to Pr projecting onto Ar and Ar is isomorphic to the

original A. There is, however, one technical problem with this. In general, r is not an

element of A, so Ar might not be a subalgebra of A. In that case one would need to

see if it is feasible to adjust the algebra accordingly.

6.2 Reach Maps of Conditional Expectations

Now, we can look at the reach map of a conditional expectation. We will see that they

are often completely determined by the algebra we are projecting on.

6.2.1 The Relative Support

Definit ion Let x ∈ Â+ be a positive element of an enveloped C*-algebra Â� and

A� ⊆ Â� a subalgebra. Then we define the (relative) support of x in A� as

[x]A� ≔
∧

{ q ∈ P(MA) | x ≤ ‖x ‖ q }.

Proposit ion Let x ∈ Â+, then

(1) [x] ≤ [x]A� .
(2) [x] = [x]Â� .

Proof (1) Follows from the definition.

(2) [x] ≥ [x]Â� is true, because x ≤ ‖x ‖ [x]. On the other hand [x]Â�x[x]Â� = x
and thus [x] ≤ [x]Â� . �

Remark By definition, there is no reason at this point to assume that [x]A is an open projection.

6.2.2 Reach Maps of Conditional Expectations

We come to the main theorem about reach maps of conditional expectations.

Theorem Let Â� be an enveloped C*-algebra and P : Â� → A� ⊆ Â� be a normal conditional
expectation.

(1) RP = R2P and RP is surjective onto T (A�).
(2) If r ≔ supp(MÂ,MÂ)P , then RP (p) = [rpr]A� for all open projections p ∈ T (Â�).
(3) If A = MA and r ≔ suppÂ�P , then RP (p) = [rpr]A� for all open projections

p ∈ T (Â�).
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Proof (1) For any p ∈ Â we have RP (RP (p)) = [P ([P (p)])] = [P (P (p))] = [P (p)] = RP (p) and
p = P (p) = [P (p)] = RP (p) for any p ∈ T (A).

In the rest of the proof, we show (2) and (3) in lockstep. Let q ≔ RP (p) ∨ p – RP (p). First
we show P (q) = 0.
Because RP (p) ≤ RP (p) ∨ p the defined q is an orthogonal projection. We note

q ≤ RP (p) ∨ p. We can apply RP , which is join-preserving, monotone and idempotent,

to both sides of this inequality to get RP (q) ≤ RP (p) ∨ RP (p) = RP (p). We continue by

observing that q ⊥ RP (p), which, with the just proven RP (p) ≥ RP (q), gives us q ⊥
RP (q) and so qP (q) = 0. Now we can conclude 0 = P (0) = P (qP (q)) = P (q)P (q) = P (q)2

and P (q) = 0.

We show q ⊥ r for the case of statement (2). With r ≔ supp(MÂ,MÂ)P we can directly

conclude r ⊥ q with Proposition 3.3.1 (4).

We show q ⊥ r for the case of statement (3). With r ≔ suppÂ�P we need to show that

q is open. We consider an increasing net in (xi)i∈I ⊆ Â+ with supi∈I xi = RP (p) ∨ p.
Since RP (p) ∈ A ⊆ Â by the extra condition for statement (3), we can see that

RP (p)⊥xiRP (p)⊥ ∈ Â. Thus, supi∈I RP (p)
⊥xiRP (p)⊥ = RP (p)⊥(RP (p) ∨ p)RP (p)⊥ =

(RP (p) ∨ p)(1 – RP (p)) = RP (p) ∨ p – (RP (p) ∨ p)RP (p)) = RP (p) ∨ p – RP (p) = q is open

and thus q ⊥ r again by Proposition 3.3.1 (4).

Next we show rpr ≤ RP (p). For both definitions of r , we have r ∈ A′; thus RP (p)r =

rRP (p) is an orthogonal projection. From q ⊥ r we get r (RP (p) ∨ p – RP (p))r = 0 and

so rRP (p) = r (RP (p) ∨ p)r is an orthogonal projection. So rRP (p)r = r (RP (p) ∨ p)r =

[r (RP (p) ∨ p)r] = r (RP (p))r ∨ [rpr] and thus rpr ≤ [rpr] ≤ RP (p)r ≤ RP (p).

Finally, we show RP (p) = [rpr]A� . We already know that rpr ≤ RP (p) and thus

[rpr]A� ≤ RP (p). On the other hand we consider q′ ∈ P(MA) with rpr ≤ q′ ≤ RP (p).
We define a new q ≔ RP (p) – q′ and want to show q = 0. Since we know rpr ⊥ q
and q ∈ A′′, we get 0 = P (qrpr ) = qP (p), which means q ⊥ RP (p). With q ≤ RP (p) we

conclude q ⊥ q and thus q = 0. This means RP (p) = [rpr]A� . �

Remark This means the reach map of a conditional expectation is uniquely determined by its

support projection and the subalgebra onto which we are projecting.

One consequence of this theorem is that we can project open projections onto a subal-

gebra without knowing a specific conditional expectation. We can always calculate

the relative support for any subalgebra. However, suppose we do not know whether

there is a conditional expectation. In that case, we also do not know if the relative

support is a reach map and, for example, whether it maps into the open projections.
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6.2.3 Faithful Conditional Expectations

The theorem becomes particularly elegant for faithful conditional expectations.

Corollary If P is faithful on the envelope, or P is faithful and A = MA then

p ≤ RP (p) = [p]A�

for all p ∈ T (Â�).

This corollary is, for example, always true for expected finite-dimensional subalgebras

with 1A = 1Â.

6.2.4 Conditional Expectations onto Finite Subalgebras

When working with topological Markov chains we want that the properties which

we are discussing are independent of the specific chosen envelope. For this we need

the following slightly technical proposition which moves the perspective onto the

hereditary subalgebras, to abstract from a specific envelope. It says that if A is finite-

dimensional, we can show for arbitrary supports of the conditional expectation that

the behaviour of the reach map is independent of the envelope.

Proposit ion Let A be a finite-dimensional C*-subalgebra of a C*-algebra Â and MP and MQ

different envelopes of Â. If we have two normal conditional expectations P : (Â,MP ) →
A ⊆ (Â,MP ) and Q : (Â,MQ ) → A ⊆ (Â,MQ ) with the same null algebra, then for
every hereditary C*-subalgebra of B ⊆ Â we have

RP (1B) = RQ (1B).

Proof Let cP and cQ be the normal surjective representations mappingA∗∗ toMP andMQ .

P and Q have unique normal continuations onto A∗∗ and because of normality we

have cP ◦ P = P ◦ cP (and the same for Q). Now for 1B ∈ A∗∗ we have RP (1B) =
[suppP1BsuppP]A = [suppQ1BsuppQ]A = RQ (1B) ∈ A∗∗.

Then MP 3 RP (1B) = [P (cP (1B))] = [cP (P (1B))] = [cP ([P (1B)])] = cP ([P (1B)]) =
cP (RP (1B)) ∈ A ⊆ Â∗∗. Since we can do the same equality chain for RQ , we get

MP 3 RP (1B) = RQ (1B) ∈ MQ . �

6.3 Examples of Conditional Expectations

Before we move on to discuss topological Markov chains, we look at a few examples

of Corollary 6.2.3 in action.
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6.3.1 Classical Finite Product Systems

Example We start with a finite set S and consider the algebra A = C(S) embedded via

i(f )(l1,l2) = f (l1) into Â = C(S × S). We identify A with i(A). A conditional

expectation P : Â → A ⊆ Â can be used to lift a measure ` on A to a measure ˆ̀ on

Â via i ˆ̀ = i` ◦ P . We assume that P is faithful. Then it lifts faithful measures to

faithful measures. We can describe the reach map of P on the set level. LetM ⊆ S ×S ,

then RP (jM ) = jN with N = {l1 ∈ S : ∃l2 ∈ S .(l1,l2) ∈ M }. If we consider the

coordinate projection c1 : S ×S → S , then this means simply N = c1(M ). Thus, RP
is just lifting of the coordinate projection to orthogonal projections. Our theorem

applies because N is the smallest subset of S such that M ⊆ N ×S .

This example is a special case of the next two examples, in which we will manually

demonstrate that our result works.

6.3.2 Commutative Conditional Expectations

Example We consider a probability space (S ,O , `) and a finite sub f-algebra O0 ⊆ O , without

null-sets. The sub f-algebra O0 gives us a subalgebra L∞(S ,O0) ⊆ L∞(S ,O).

Let us consider the conditional expectation P : L∞(S ,O) → L∞(S ,O0) ⊆ L∞(S ,O)

which preserves `. Let O0 be generated by k atoms Si ∈ O0 for 1 ≤ i ≤ k. Then

L∞(S ,O0) ' Ck . And for f ∈ L∞(S ,O) we have

P (f )i =
∫
Si

f d` for all i ∈ { 1, . . . , k } .

If we consider the special case of an orthogonal projection p = jS ∈ L∞(S) with

S ∈ O , we get

P (p)i =
∫
Si

jS d` =
∫
S∩Si

1 d` = `(S ∩ Si) for all i ∈ { 1, . . . , k } .

Now, let us look at the support of the image. For all i ∈ { 1, . . . , k } we get

RP (p)i =

0, if `(S ∩ Si) = 0

1, if `(S ∩ Si) > 0.

This is consistent with our theorem. If we regard L∞(S ,O) as self-enveloped we get

RP (jS ) = [jS]L∞(S ,O0) =
∧ {

q : q ∈ P(L∞(S ,O0)), q ≥ jS
}

=
∧

{ jK : K ∈ O0, jK ≥ jS }

= j⋃{ Si :`(S∩Si)>0, 1≤i≤k }.

Which is the same result.
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6.3.3 Tensor Conditional Expectations

Example Consider the algebra Mn ⊗ Mk = Mk (Mn) and any faithful state i ∈ S(Mk ). We want

to look at the behaviour of the conditional expectation P ≔ id ⊗ i . Without loss

of generality we pick i to have a diagonal density (_i)1≤i≤k in Mk . Then for any

projection q = (aij )1≤i,j≤k ∈ P(Mk (Mn)) we have

P ((aij )1≤i,j≤k ) =
∑
i
_iaii ∈ M+

n .

We can calculate the reach map to be RP (q) = [
∑
i _iaii] =

∨
i[aii] ∈ P(Mn). We are

still free to pick a basis for Mn. Let us pick one, such that p ≔ RP (q) ∈ P(Mn) is

diagonal and sorted, so that it looks like

©­­­­­­­­­­­«

1
. . .

1

0
. . .

0

ª®®®®®®®®®®®¬
.

Then, because p ≥ [aii], the aii are only different from zero in the upper left corner

with ones on the diagonal. For the matrix (aij )ij to be positive, the same has to hold

also for the off-diagonal entries aij ∈ Mn. Thus, q ≤ p ⊗ 1.

We could wonder if there could be a smaller p′ ∈ P(Mn) such that q ≤ p′ ⊗ 1 ≤ p ⊗ 1.

However, from that, we could conclude [aii] ≤ p′ for all i and thus, by definition of p
we have p ≤ p′ and p = p′.

6.3.4 A Peek at Tensor Dilations

Example The independence of a specific conditional expectation applied to a tensor product

becomes very relevant when we look at dilations of Markov operators, like we do

in the next chapter: We consider two matrix algebras A and C, a *-automorphism

U : A ⊗ C → A ⊗ C and a faithful state k ∈ S(C). Then we can define a completely

positive unital operator Tk : A → A as Tk (x) = (id ⊗ k )(U(x ⊗ 1)). We can see the

map id ⊗ k as a conditional expectation Pk : A ⊗ C → A ⊗ 1 ⊆ A ⊗ C, which is

faithful, sincek is. Thus, the reach map of Tk given by RTk (p) = RPk (RU (p ⊗ 1)) for all

p ∈ P(A) is independent ofk , as long ask ∈ S(C) is faithful. As we have seen, this

means that a lot of properties of Tk , like the structure of communicating classes and

the peripheral spectrum, are completely determined by A, C and U .

In this chapter, we showed that the reach map of a conditional expectation is determ-

ined completely by its support on the envelope and the subalgebra we are projecting

onto. We showed the usefulness of this result in multiple examples.
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In this chapter, we finally join the concepts of topological Markov processes and

quantum Markov processes. We do this by unifying both theories in the category of

reach maps. In classical symbolic dynamics and coding theory, topological Markov

chains are a special case of shift spaces. We mirror this by first picking a suitable

generalization of a non-commutative shift space. Then we discuss which properties

such a shift space needs to have, to make it a Markov process. In the end we will

discuss how every topological Markov process is a dilation of a reach map and that

every reach map has a dilation.

The central result in this chapter is the comparison of Markov conditions in Theorem

7.4.2.

In analogy to classical shift spaces all processes we discuss in this chapter are time-

discrete, homogeneous and two-sided.

7.1 Classical Shift Spaces

First we introduce classical shift spaces. They are the topological equivalent of a sta-

tionary stochastic process. Shift Spaces are shift-invariant (hence the name) subspaces

of the so-called full shift. Thus, we start by defining full shifts.

7.1.1 Full Shifts

Definit ion Let S be a finite set. We call it an alphabet . Then the full shift over the alphabet S is

the set of paths

SZ = { (li)i∈Z : li ∈ S for all i ∈ Z } .

The (left) shift is the map s : SZ → SZ with s((li)i∈Z) = (li+1)i∈Z.

Remark Using the product topology of the discrete topology onS , we get a metrizable topology

on SZ, which makes it a compact space.

Example The simplest interesting full shift is the space of all 0-1-sequences.

81
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7.1.2 Shift Spaces

Definit ion Let F ⊆ S∗ ≔
⋃

i∈NS i . We define the shift space or a sub shift with the forbidden
words or forbidden blocks F as

SF ≔

{
l ∈ SZ : �w ∈ F , i ∈ Z such that w = l[i,i+|f |–1]

}
.

Theorem
[LM21, 6.1.21]

For a subset S ⊆ SZ of a full shift SZ the following are equivalent:

(a) S = SF for some set F ⊆ S∗.
(b) S is compact and s(S) = S.

Remark For any shift space S over the alphabetS there can be different sets of forbidden words

F1, F2 ⊆ S∗ with F1 ≠ F2 and S = SF1 = SF2 .

Example 1 Every full shift is a subshift with F = ∅.

Example 2 We pick the full shift { 0, 1 }Z and one forbidden block F = { 000 }. Now SF contains all

sequences of any form . . . 0100101110101011 . . . which never contain more than two

zeros in a row. We can see here that the set of forbidden words is not unique. If we

define the set F̃ = { 000, 0001 } we get SF = SF̃ . Clearly, in this case the forbidden word

0001 is unnecessary.

Example 3 We consider a 0-1-matrix a ∈ Mn on the alphabet S ≔ { 0, . . . , n }. We define the set

of forbidden words as F ≔
{
ij ∈ S ×S : aij = 0

}
. The adjacency matrix a describes

which transitions are possible in the shift space. We will come back to this example,

when we define topological Markov chains.

7.2 Non-Commutative Shift Spaces

As a next step, we generalize shift spaces to non-commutative systems.

7.2.1 Homogeneous Processes

Definit ion A process is a tuple (Â,A, (in)n∈Z) where A and Â are C*-algebras and in : A → Â
is a family of injective *-homomorphisms, such that all in(A) ⊆ Â are expected. A

dynamical system is a tuple (Â,U) of a C*-algebra Â and a *-automorphism U : Â →
Â. A process is called homogeneous if there is a dynamical system (Â,U) such that

in = Un ◦ i0 for all n ∈ Z. We call these processes and dynamical systems stochastic
if all involved algebras are von Neumann algebras and all morphisms are normal,

otherwise, we call them topological.
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Remark For a homogeneous process, we can identify A with its image under i0 in Â. Then the

process is completely determined by the dynamical system (Â,U) and the expected

subalgebra A. Hence, we write (Â,U ,A) for a homogeneous process. This slightly

hides the fact, that there are potentially multiple different conditional expectations

onto A, but since we will mainly care about reach maps, this choice does not matter

to us.

Technically speaking, all processes are topological and some of them stochastic, but

often it is not very useful to consider a stochastic process as a topological process, akin

to how the universal enveloping von Neumann algebra of a von Neumann algebra is

a strange concept.

Definit ion We write AI ≔ C∗(
⋃

n∈I in(A0)) for all index sets I ⊆ Z. A topological process is

called minimal if AZ = Â and a stochastic process is called minimal if AZ
f∗

= A.

We say A is the process’s algebra of values. If A is finite-dimensional, we speak of a

process with finite-dimensional values.

Two homogeneous processes (Â1,U1,A1) (Â2,U2,A2) are equivalent if there is a

*-isomorphismQ : Â1 → Â2 with

Q ◦ U1 = U2 ◦Q and Q(A1) = A2.

Remark From now on, all our processes will be homogeneous with finite-dimensional values.

Example We consider a stochastic process with values in a finite setS on a canonical path space

(SZ,O , `). The process is then given by the random variables Xn : (SZ, `) → S , which

are just the coordinate projections onto time n ∈ Z. With the shift s : SZ → SZ,

we get Xn = X0 ◦ sn for all n ∈ Z. We define Â ≔ L∞(SZ, `) and the algebra of

values A ≔ L∞(S). We embed A into Â via the *-homomorphism i0 : A → Â
with i0(f ) = f ◦ X0 and identify A with i0(A). Then there is a classical conditional

expectation ontoA, which leaves ` invariant, makingA an expected subalgebra. With

the algebraic shift f , (Â,f ,A) is a stochastic homogeneous process by our definition.

We have in(f ) = fn ◦ i0(f ) = f ◦ X0 ◦ sn for all n ∈ Z.

7.2.2 Enveloped Processes

In principle, it would be nice for topological Markov processes, to be simply describable

in the category of C*-algebras. But we have seen that we will need to embed the

topological process into an envelope so that we can talk about supports of elements

and use reach maps. For this reason we take a look at how a topological process

behaves together with an envelope.
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We remind ourselves of Definition 2.1.6: A normal *-isomorphism between enveloped

C*-algebras is a normal *-isomorphism between the enveloping von Neumann algebras,

such that the restriction on the C*-algebras is also a *-isomorphism.

Proposit ion Let Â� ≔ (Â,MÂ) be an enveloped C*-algebra, A ⊆ Â an expected finite-dimensional
subalgebra and U : Â� → Â� a normal *-automorphism. Then

(1) (Â,U ,A) is a topological process.
(2) (MÂ,U ,A) a stochastic process..
(3) If (Â,U ,A) is a minimal topological process, (MÂ,U ,A) is a minimal stochastic

process.
(4) For a normal *-isomorphismR : Â� → B̂� with (B̂, V ,B) constructed as (Â,U ,A),

the following are equivalent:
(a) R is a topological process equivalence.
(b) R is a stochastic process equivalence.

Proof (1) and (2) are clear by definition.

(3) If AZ = Â then clearly AZ
f∗

= MÂ.

(4) Follows from restriction and continuity. �

Definit ion In this situation, we call (Â�,U ,A) an enveloped process, in the case of (3) a minimal
enveloped process and in (4) we call the enveloped processes equivalent .

Remark For every homogeneous topological process (Â,U ,A), we can find an envelope so

that it becomes an enveloped process. The other way around, let (Â,U ,A) be a

stochastic process. Then AZ is a weak* dense subalgebra of AZ
f∗

. Thus, (AZ,AZ
f∗
)

is an enveloped C*-algebra. This way, we can find a topological process inside every

stochastic process.

7.2.3 Algebraization of Shift Spaces

We now want to give a definition for non-commutative shift spaces. The number

one condition for any non-commutatitve generalization is that we can recover the

classical definition in the commutative case. First we show how a classical shift space

is a topological process.

Example Let S be a shift space over an alphabet S , then we can define C*-algebras A ≔ C(S)

and Â ≔ C(S). Via i : A → Â, f ↦→ f (l0) we can embed A into Â, thus we will

considerA a subalgebra of Â. The shift s : S → S lifts to a *-automorphism f : Â → Â
which makes (Â,f ,A) a topological process. Thus, every shift space gives rise to a

canonical topological process.
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7.2.4 Commutative Topological Processes are Shift Spaces

Now we show that under the right conditions all commutative topological processes

belong to a shift space.

Theorem Let (Â,U ,A) be a commutative, minimal, topological process with A ' C(Sn) for a finite
set Sn and Â unital with the same 1 as A. If we define a set of forbidden words

F ≔

 w ∈ S∗
n

������ ∏
1≤i≤|w |

U i(jwi ) = 0


and the resulting shift space S ≔ SF then with the canonical shift f on C(S) we have

(Â,U ,A) ' (C(S),f ,C(Sn))

Here jwi ∈ C(Sn) ' A ⊆ Â denotes the characteristic function of the singleton set

{wi }, where wi is the i-th element of the word w .

Definit ion We call S the associated shift space of the topological process.

Proof We represent Â as C(S) on a compact Hausdorff space S . Then U induces a homeo-

morphism onS andA induces a partition of clopen sets (Pj )j∈Sn ofS . For (li)i∈Z ∈ S
we note that there is exactly onel ∈ S with U i(l) ∈ Pli for all i ∈ Z. It exists because

(li)i would otherwise contain a forbidden word. It is unique because AZ = Â. By

[LM21, 6.5.8] the map S 3 (li)i ↦→ l ∈ S is continuous, surjective and conjugates

between (S, s) and (S ,U). However, in contrast to the conditions in [LM21], our parti-

tion is disjoint, making the map injective. Because S is compact and S Hausdorff by

[Mun00, Theorem 26.6] our map is as a bijective continuous function a homeomorph-

ism. We can lift that homeomorphism to a *-isomorphism between the C*-algebras,

giving us the desired topological process equivalence. �

Now we can give the general non-commutative definition of a shift space.

Definit ion We call a minimal, homogeneous topological process (Â,U ,A)with finite-dimensional

values and 1A = 1Â a shift space.

Remark For our definition of topological Markov processes, we will not need the conditions

of minimality nor that 1A = 1Â. That is why we use the more general definition of

topological processes instead of only talking about shift spaces. Shift spaces remain

our most important example, though.
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7.2.5 Stochastic Processes on Shift Spaces

Example Let (M,U ,A) be a commutative stochastic process with a faithful normal (not neces-

sarily invariant) state i . We know (C(S),f ,C(Sn)) ' (AZ,U ,A) and can consider i on

C(S). In the cyclic representation with regard to i we get C(S)′′ = L∞(S, `i ) (compare

[Mur90, 4.4.1 Example]). For any finite set I ⊆ Z we see that (AI ,i) is equivalent

to (C(SI ),i). This means that as a classical stochastic process, this is an equivalent

representation. Thus, we have proven the classical Daniell-Kolmogorov extension

theorem for constructing the canonical path space for this special case.

7.3 Subshifts of Finite Type

There are many different kinds of shift spaces. One large and interesting class is given

by the so-called subshifts of finite type, of which again topological Markov chains

are a special case. We now introduce subshifts of finite type and how they can be

algebraized.

7.3.1 Forbidden Words

We have already talked about forbidden words, but here we give a more algebraic

definition.

Definit ion Let (Â,f ,A) be a topological process. We call tuples of orthogonal projections

(p0, . . . , pn) ∈ P(A)∗ ≔
⋃

n∈N P(A)n words. We call a word (p0, . . . , pn) forbidden
if ∏

0≤i≤n
f i(pi) = 0.

7.3.2 Full Shifts

We have seen that a classical shift space S ⊆ SZ is called full if S = SZ. Let us see if

we can describe this in our algebraic language.

Proposit ion For a commutative shift space (Â,f ,A) the following are equivalent:

(a) The associated subshift S is a full shift.
(b) No word in P(A)∗ is forbidden.

Proof We have A = C(Sn) for some alphabet Sn. Because we did not require the projections

in a word in P(A)∗ to be minimal, one word in P(A)∗ corresponds to a set of words

in S∗
n. As remarked in example 1 in 7.1.2, a shift space without forbidden words is a

full shift and a full shift has no forbidden words. �
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7.3.3 Subshifts of Finite Type

Classically a subshift of finite type is defined like this:

Definit ion A classical shift space S ⊆ SZ is called an M-step subshift of finite type for M ∈ N if

S = SF for a finite set F of forbidden words of length at most M + 1.

A 1-step classical subshift of finite type is called a topological Markov chain.

Example 1 A full shift is a 0-step subshift of finite type and thus also a topological Markov chain.

Example 2 Our example with F ≔ { 000 } is a 2-step subshift of finite type.

Remark We can see that the step number of a subshift of finite type implies howmuch “memory”

is required to determine if a certain sequence belongs to the subshift. To determine

whether a sequence belongs to the full shift, we do not need to do anything. To see

if a sequence belongs to SF from example 2 we need to go through the seqence and

always remember if the last two points we have visited were 0.

Example 3 Again, we consider a 0-1-matrix a ∈ Mn on the alphabetS ≔ { 0, . . . , n } and define the

set of forbidden words by the blocked transitions of a as F ≔
{
ij ∈ S ×S : aij = 0

}
.

All forbidden words are of length 2. Thus, SF is a 1-step subshift of finite type, or, as

expected, a topological Markov chain.

Example 4 We discuss which topological Markov chains exist on the alphabet { 0, 1 }. There are 16

different possible 0-1-matrices a ∈ M2. With 4 zeros in a, our shift space is empty. With

4 ones, we get the full shift. With 3 zeros, the shift space is either empty or contains

one constant sequence if 00 or 11 is allowed. With 2 zeros, either we have exactly

one outgoing edge for every node, giving us a deterministic chain, or only one node

has outgoing edges meaning that only that node can appear in the sequence, giving

us again a constant sequence. Thus, only the case with only one blocked transition

in a gives us a non-trivial Markov chain. Here there are effectively two cases. The

first case is that one of the two node switches 01 and 10 is forbidden. This means

that we get stuck in one node. If, for example, 01 is blocked, all sequences (besides

the constant sequences) are of the form . . . 11111100000 . . . and the only question is

when the switch from 0 to 1 happens. By the way, we can see here, that 0 is recurrent

and 1 transient. The last case is where 00 or 11 is blocked. If 00 is blocked we can

have sequences of the form . . . 110101111010111 . . ., where everything is allowed but

two zeros in a row. Of course if we switch 0 and 1 the topological Markov chain with

11 blocked is the same. This means that there is essentially only one “interesting”

topological Markov chain with a two-letter alphabet. This process is recurrent.

Now, we attempt to generalize the definition of subshifts of finite type to the non-

commutative case.
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Definit ion We call a shift space (Â,f ,A) an M-step subshift of finite type for M ∈ N if every

forbidden word consisting of minimal projections contains a forbidden word of length

at most M + 1.

And, of course, we show that this is a proper generalization.

Proposit ion For a commutative shift space (Â,f ,A) the following are equivalent:

(a) The associated subshift S is an M-step subshift of finite type.
(b) (Â,f ,A) is an M-step subshift of finite type.

Proof Since we require in the algebraic definition of an M-step subshift of finite type that the

projections in a forbidden word are minimal, the classical and the algebraic definitions

of forbidden words coincide.

(a) ⇒ (b) Let w be a forbidden word of the associated subshift S with k ≔ |w | > M + 1.

We consider the two subwords of w[1,k–1] and w[2,k] of w where we drop the first and

the last letter respectively. They have a common subword w[2,k–1] of length greater

or equal to |M |. Thus, by [LM21, Theorem 2.1.8] one of those two subwords has to be

forbidden. We can iterate this to find a subword of length at most M + 1.

(b) ⇒ (a) If we have a forbidden word w , then any forbidden subword of w forbids the

same or more sequences. Thus, given any, possibly infinite, set of forbidden words

for an algebraic subshift of finite type, we can shorten those words to length M + 1

without allowing more sequences. We arrive at a set of forbidden words of length at

most M + 1. This set must be finite because the alphabet is. �

We could use the non-commutative definition of a 1-step subshift of finite type to

define topological Markov processes. However, as so often, many different equivalent

characterizations in the commutative setting become inequivalent in the more general

setting. Thus, in the next section, we will inspect different possible characterizations

and pick one.

7.4 Markov Processes

Now we get to the definition of topological Markov processes. For inspiration and

analogy we first give the stochastic definition of a non-commutative Markov process.

Then we discuss the different possible Markov criteria.
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7.4.1 Stochastic Markov Processes

The stochastic Markov condition unsurprisingly applies to stochastic processes, so we

need to introduce their definition.

Definit ion We call (M̂,U ,M,i) a stationary stochastic process, if M ⊆ M̂ are von Neumann

algebras, U is a normal *-automorphism on M̂, i is a faithful normal state on M̂
which is invariant for U and there is a normal conditional expectation preserving i

onto M.

Proposit ion
[Küm85,

2.1.3 & 2.2.3]

Let (M̂,U ,M,i) be a stationary stochastic process, then for every I ⊆ Z the conditional
expectation PI onto AI exists and the following are equivalent:

(a) For any n,m ∈ N P0(x) = P[–m,0](x) for every x ∈ M[0,n].
(b) P0(x) = P0](x) for every x ∈ M[0.
(c) For any n ∈ Z Pn(x) = Pn](x) for every x ∈ M[n.

Definit ion If any of these conditions is true, we call the stochastic process a Markov process.

7.4.2 Markov Conditions

For the definition of a non-commutative topological Markov condition, we use the

following criteria:

• It should actually be a generalization of the commutative definition (shown in

the following theorem).

• If we use an envelope for the topological process the condition should be

independent of the process (shown in the following theorem).

• The Markov condition should ensure that the process is a dilation of a reach

map (defined and shown in 7.5.1).

• The topological process belonging to a stochastic Markov processes should be a

topological Markov process (shown in 7.4.4).

• Ideally the definition is symmetric in time (shown in 7.4.5).

For the next theorem we keep in mind, that if A is expected in Â, then there is an

envelope (namely at least the universal envelope) such that A� is expected in Â� We

write PI for a conditional expectation onto the subalgebra AI and RI for RPI .
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Theorem Let (Â,f ,A) be a topological process with finite-dimensional values. Let MÂ be an
envelope of Â such that A� is expected in (Â,MÂ). If (Â,f ,A) is a commutative shift
space the following are equivalent:

(a) The process is 1-step.
(b) p ⊥ q implies R0(p) ⊥ R0(q) for all n ∈ N, p ∈ T (A�

[–n,0]) and q ∈ T (A�
[0,n]).

(c) R[–n,0](q) = R0(q) for all n ∈ N, q ∈ T (A�
[0,n]).

(d) p ⊥ q implies R0(p) ⊥ R0(q) for all p ∈ T (A�
0]), q ∈ T (A�

[0).
(e) p ⊥ q implies Rn(p) ⊥ Rn(q) for all n ∈ N, p ∈ T (A�

n]), q ∈ T (A�
[n).

In the non-commutative case, the following implications hold:

(a) (b) (d) (e).

(c)(∗)

(∗∗∗)(∗∗)

(*) We only consider condition (c) if A�
[–n,0] is expected for all n ∈ N.

(**) If for finite intervals I ⊆ Z all AI are finite-dimensional and have the same 1.
(***) If all open projections in T (A�

0]) and T (A�
[0) are increasing limits of elements

in
⋃

n∈NA+
[–n,0] and

⋃
n∈NA+

[0,n].

Also, for all five conditions, assuming (*) and (**) for condition (c), the following are
equivalent:

(i) The condition is true for all envelopes MÂ.
(ii) The condition is true for some envelope MÂ.

Proof We will first show the implications in the general setting, then the equivalence in the
commutative case and, lastly, the independence of the envelope MÂ.

(e) ⇒ (d) Is clear with n = 0.

(d) ⇒ (e) Follows from the fact, that f is an automorphism and f–n maps e.g. An] to

A0] and An to A0.

(d) ⇒ (b) Is clear because (b) is quantified over fewer elements than (d).

(c)⇒ (b) We show pq = 0⇒ 0 = P[–n,0](pq) = pP[–n,0](q) = pP0(q)⇒ 0 = P0(pP0(q)) =
P0(p)P0(q)⇒ R0(p) ⊥ R0(q).

(b) ⇒ (a) Consider a forbidden word w ∈ P(A)∗ of length at least 3. We shift the

word w so that w0] and w[0 have both at least length 2 and embed them into Â. Then

0 = w = w0]w[0 and so w∗
0]w0]w[0w∗

[0 = 0. We have w∗
0]w0] ≤ w0 and w[0w∗

[0 ≤
w0. Since w0 ≤ 1A0 is minimal in A0 this means R0([w∗

0]w0]]) = [w∗
0]w0]]A�

0
∈

{ 0,w0 } and R0([w[0w∗
[0]) = [w[0w∗

[0]A�
0
∈ { 0,w0 }. Since we haven given from (b) that

R0([w∗
0]w0]])R0([w[0w∗

[0]) = 0 and R0 is faithful on 1A this means either w∗
0]w0] = 0
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or w[0w∗
[0 = 0. So w contains a forbidden subword. By induction on the length of w ,

it contains a forbidden subword of length 2.

(b) ⇒ (c) with (**) For q ∈ T (A�
[0,n]) we put p ≔ 1A – R[–n,0](q). We generally know

that R[–n,0](q) = [q]A�
[–n,0]

≤ [q]A�
0
= R0(q). On the other hand p ⊥ R[–n,0](q) ≥ q and

thus by (b) p ≤ R0(p) ⊥ R0(q) ≥ R[–n,0](q). But since p + R[–n,0](q) = 1A this means

that R0(p) + R0(q) = 1A, p = R0(p) and R0(q) = R[–n,0](q).

(b) ⇒ (d) with (***) Let supi∈I xi = p and supj∈J yj = q for (xi)i∈I ⊆ ⋃
n∈NA+

[–n,0]
and (yj )j∈J ⊆ ⋃

n∈NA+
[0,n]. That implies xi ⊥ yj for all i ∈ I and j ∈ J . Because

R0(xi) ⊥ R0(yj ) for all i ∈ I and j ∈ J we can conclude R0(p) ⊥ R0(q).

Commutative case.
If Â is a commutative shift space then the conditions of (*), (**) and (***) are fulfilled

and thus the only missing implication is (a) ⇒ (b). If Â is commutative A[–n,0]
and A[0,n] are spanned by words. We choose minimal w1, . . . ,wn ∈ P1(A[–n,0])

and vi , . . . , vn ∈ P1(A[0,n]) with p =
∑
wi and q =

∑
vj with wi ≠ 0 ≠ vj for

all i, j. Since wivj is a forbidden word, but wi ≠ 0 ≠ vj we have wi0 ≠ vj0 and thus

R0(wi) ≤ wi0 ⊥ vj0 ≥ R0(vj ). So R0(p)R0(q) = R0(
∨

wi)R0(
∨

vj ) =
∨

R0(wi)
∨

R0(vj ) =∨
R0(wi)R0(vj ) = 0.

Envelope independence.
(i) ⇒ (ii) is clear since there always is at least one envelope which we quantify over.

So we need to show (ii) ⇒ (i). Condition (a) is clearly independent of MÂ. For (b),(d)

and (e) we consider hereditary C*-subalgebras Bp and Bq each of the corresponding

AI in question. Since R0(1Bp ) ⊥ R0(1Bq ) in some envelope by Proposition 6.2.4 it

holds for all permissible conditional expectations in all envelopes. If we assume (*)

and (**), (c) is equivalent to (b) and thus itself independent of the envelope. �

Definit ion If a topological process fulfils condition (d) (and equivalently (e)), we call it a topological
Markov process.

Remark We present option (a) to show the parallel to the classical definition and option (c) to

show the close analogy to the stochastic Markov condition.

The other sensible choice for the Markov condition instead of (d)/(e) would have been

option (b). It can be shown that both conditions fulfil all the presented criteria. Their

closest analogies in the stochastic case are equivalent, which we did not achieve to

show for the topological case here. We use the stronger condition (d) because of

aesthetical preference.
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7.4.3 Properties of the Markov Condition

In the case that 1A = 1Â the Markov condition automatically strengthens to R0(p) ⊥
R0(q) ⇔ p ⊥ q for all p ∈ T (A�

0]), q ∈ T (A�
[0). More generally we have the following

relations:

Proposit ion Let R0 be the reach map of a conditional expectation onto an expected subalgebra
A� ⊆ Â� and p, q ∈ T (Â�).

(1) The following are equivalent:
(a) R0(p) ⊥ R0(q).
(b) R0(p) ⊥ q.
(c) p ⊥ R0(q).

(2) If p ≤ 1A or q ≤ 1A the conditions in (1) imply p ⊥ q.

Proof (1) (a) ⇒ (b) R0(p) ⊥ R0(q) ⇒ 0 = R0(p)R0(q)R0(p) ≥ R0(p)[1Aq1A]R0(p) ⇒ 0 =

R0(p)1Aq1AR0(p) = R0(p)qR0(p) ⇒ R0(p) ⊥ q.
(1) (b) ⇒ (a) R0(p) ⊥ q ⇒ R0(p)q = 0 ⇒ P (R0(p)q) = 0 ⇒ R0(p)P (q) = 0 ⇒
R0(p)R0(q) = 0 ⇒ R0(p) ⊥ R0(q).
The equivalence (a) ⇔ (c) follows if we swap p and q.

(2) Let p ⊥ R0(q) then pR0(q)p = 0 with [1Aq1A] ≤ R0(q) we have p[1Aq1A]p = 0

and 0 = p1Aq1Ap = pqp so p ⊥ q. �

7.4.4 Stochastic Markov Processes are Topological Markov Processes

Now we go on to prove the different criteria that we mentioned before.

Proposit ion Let Â� be an enveloped C*-algebra, A ⊆ Â finite-dimensional and (MÂ,f ,A, P ,i) a
stationary stochastic Markov process. Then (Â,f ,A) is a faithful topological Markov
process.

Proof If we have a stochastic Markov process given, then by applying the support map to

both sides of the Markov condition, we get R0](p) = R0(p) for all p ∈ T (A�
[0). This

implies (d) in the same way that (c) implied (b) in the last proof. �

7.4.5 Time Symmetry

Proposit ion Let (Â,f ,A) be a topological Markov process, then (Â,f–1,A) is also a topological
Markov process.

Proof Clear by the definition of the Markov condition. �
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7.5 Markov Dilations

As our last point of order we tie back Markov processes to our analysis of reach maps.

First, we show how every Markov process gives us a reach map. Then we construct

Markov processes for arbitrary reach maps.

7.5.1 Markov Dilations

Proposit ion Let (Â,f ,A) be a topological Markov process with any envelope. For the reach map
R : T (A�) → T (A�) defined by R ≔ R0 ◦ f the following diagram commutes for
all n ∈ N.

T (A�) T (A�)

T (Â�) T (Â�)

Rn

id

fn

R0

Proof Let p ∈ T (A�). We show the statement by induction over n. For n = 0, it is fulfilled

by definition. Let q ∈ P(MA) with q ⊥ R0(fn(p)). Then q ⊥ fn(p) and thus

f–1(q) ⊥ fn–1(p). Now f–1(q) ⊥ R0(fn–1(p)) = Rn–1(p). So q ⊥ f(Rn–1(p)) and
q ⊥ R0(f(Rn–1(p))) = Rn(p). Thus, Rn(p) ≤ R0(fn(p)). �

Definit ion We call (Â,f ,A) a Markov dilation of R.

7.5.2 1-Dilations for Rank One Reach Maps

To construct Markov dilations, we will first construct a 1-dilation for one Kraus

operator.

Definit ion Let R : P(A) → P(A) be a reach map on a matrix algebra A. Then we call (Â,U ,A)

a 1-dilation of R if A is expected in a C*-algebra Â via a conditional expectation

P : Â → A, U : Â → Â a *-automorphism and R = R(P◦U)|A .

Proposit ion Let A ⊆ Mn and a ∈ Mn with Ada(A) ⊆ A. Then there is a finite-dimensional 1-dilation
for the reach map RAda : P(A) → P(A).

Proof We embedA asA ⊗ e11 intoMn ⊗M2. Then we define u ≔

(
a

√
1n – aa∗

√
1n – a∗a –a∗

)
which fulfils
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u∗u =

(
a∗

√
1 – a∗a√

1 – aa∗ –a

) (
a

√
1 – aa∗√

1 – a∗a –a∗

)
=

(
a∗a +

√
1 – a∗a

2
a∗
√

1 – aa∗ –
√

1 – a∗aa∗
√

1 – aa∗a – a
√

1 – a∗a
√

1 – aa∗
2
+ aa∗

)
= 1n⊗2.

We have used that af (a∗a) = f (aa∗)a for all polynomials f to see that the off-diagonal

entries are zero. The other identity uu∗ = 1 follows immediately if we swap a∗ with a
in our definition of u. Thus, u is a unitary element.

Now

[(id ⊗ l11)(u∗(p ⊗ e11)u) ⊗ e11] = [(id ⊗ l11)(u∗(p ⊗ e11)u)] ⊗ e11

=

[
(id ⊗ l11)

((
a∗

√
1 – a∗a√

1 – aa∗ –a

) (
p 0

0 0

) (
a

√
1 – aa∗√

1 – a∗a –a∗

))]
⊗ e11

=

[
(id ⊗ l11)

((
a∗pa . . .

. . . . . .

))]
⊗ e11

= [a∗pa] ⊗ e11.

Thus, our dilation of RAda is given by (Mn ⊗ M2, Adu ,A ⊗ e11). �

7.5.3 Structure of 1-Dilations

To continue our construction of dilations, we show that the construction we used in

the last proof is actually the general structure of 1-dilations.

Lemma Let A be a matrix algebra and R : P(A) → P(A) a reach map with a finite-dimensional
1-dilation. Then there are minimal natural numbers n, d ∈ N, a unitary matrix u ∈
U (Mn ⊗Md ) and an orthogonal projection p ∈ Md so that the 1-dilation can be extended
to a 1-dilation (Mn ⊗ Md , Adu ,A ⊗ p) of R.

Proof Let the given 1-dilation be (Â,U ,A). First, we take the smallest n such that we can

represent A ⊆ Mn. Second, we choose the smallest d ∈ N such that we can embed

Â ⊆ Mnd (where possibly 1Â ≤ 1nd ) and we extend U to a *-automorphism Adu
of Mnd . Now we can extend the embedding i : A → Â ⊆ Mnd to an embedding

i : Mn → Mnd . For a set of matrix units ejk of Mn, all projections i(ejj ) have the same

dimension, say l, in Mnd . So, i(1n) has dimension n · l. We split 1nd – i(1n) into n
orthogonal projections of dimension l – d and extend them to matrix units fjk . Now

we can define a third set of matrix units gjk ≔ i(ejk ) + fjk , with
∑n
j=1 gjj = 1nd . We

can now factor Mnd = Mn ⊗ Md as a tensor product along those matrix units. Then

there is a p ∈ Md such that i(1n) =
∑d
j=1 ejj = 1n ⊗ p. By construction, we have

i(RA(U(q))) = RA⊗p(u∗(q ⊗ p)u) for all q ∈ P(A). �
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7.5.4 1-Dilations for Suprema

We have already constructed 1-dilations for reach maps induced by one Kraus operator.

Technically, by the Stinespring representation, this covers all reach maps, but we can

also construct a 1-dilation in any representation we are given by combining the reach

maps of the single Kraus operators:

Proposit ion Let R1 and R2 be reach maps on Matrix algebra A with finite-dimensional 1-dilations.
Then there is a finite-dimensional 1-dilation for R ≔ R1 ∨ R2.

Proof Let (Mn⊗Mdi , Adui ,A⊗pi) be the 1-dilation of Ri , then (Mn⊗(Md1⊕Md2 ), Adu1⊕u2 ,A⊗
(p1 ⊕ p2)) is a 1-dilation of R:

[(id ⊗ tr((p1 ⊕ p2)·))((u∗1 ⊕ u∗2)(p ⊗ (p1 ⊕ p2))(u1 ⊕ u2))] ⊗ (p1 ⊕ p2)

= [(id ⊗ tr((p1 ⊕ p2)·))(u∗1(p ⊗ p1)u1) ⊕ (u∗2(p ⊗ p2)u2)] ⊗ (p1 ⊕ p2)

= [(id ⊗ tr(p1·))(u∗1(p ⊗ p1)u1) + (id ⊗ tr(p2·))(u∗2(p ⊗ p2)u2)] ⊗ (p1 ⊕ p2)

= ([(id ⊗ tr(p1·))(u∗1(p ⊗ p1)u1)] ∨ [(id ⊗ tr(p2·))(u∗2(p ⊗ p2)u2)]) ⊗ (p1 ⊕ p2)

= (R1(p) ∨ R2(p)) ⊗ (p1 ⊕ p2) �

7.5.5 Dilations for Infinitely Many Steps

In [GKL06, 1.1] a definition of a “non-commutative topological Markov chain” is

presented. Because they construct a one-sided process, they use a slightly more

general 1-dilation given by a *-homomorphism J : A → A ⊗ C. Then they use the

usual coupling to a shift construction to build a dilation for infinitely many steps. We

do exactly the same in the next theorem, but for a two-sided process, demonstrating

that the definition of a “non-commutative topological Markov chain” from [GKL06] is

subsumed by our definition.

In this construction we will use the von Neumann tensor product ⊗̄ (see [Sak98,

1.22.10]) and the infinite tensor project of von Neumann algebras
⊗

along a product

state (see [Sak98, 4.4.1]).

Lemma Let A ⊆ Mn, C0], C[0 and Â ≔ C0]⊗̄Mn⊗̄C[0 be von Neumann algebras, k0] and k[0

normal states on C0] and C[0 and U a *-automorphism on Â. With p0] ≔ suppk0],
p[0 ≔ suppk[0 and A0 ≔ p0]⊗̄A⊗̄p0] ⊆ Â we get a topological process (Â,U ,A0).
If A0] ⊆ C0]⊗̄A⊗̄p[0 and A[0 ⊆ p0]⊗̄A⊗̄C[0 the process is Markov.

Proof We can check the Markov condition in any envelope, so it is an obvious choice to check

it for T (Â, Â) = P(Â). We pick any conditional expectation P : Mn → A ⊆ Mn.

Further we write p0]k0] for the map C0] 3 x ↦→ p0]k0](x) and p[0k[0 analogous.

Then we have in (Â, Â) the normal conditional expectations P0] = id ⊗ P ⊗ p[0k[0,
and P0 = p0]k0] ⊗ id ⊗ p[0k[0. Let p ∈ P(A0]) and q ∈ P(A[0) with q ⊥ p. By



96 7 Topological Markov Processes

assumption there is a q′ ∈ A ⊗ C[0 with q = p0] ⊗ q′ and thus P0](q) = P0](p0] ⊗ q) =
id(p0]) ⊗ (P ⊗ p[0k[0)(q′) = p0]k0](p0]) ⊗ (P ⊗ p[0k[0)(q′) = P0(q). Now we have

0 = pq = P0](pq) = pP0](q) = pP0(q) and thus the topological process is Markov. �

Theorem Let A be a matrix algebra and R : P(A) → P(A) a reach map with a 1-dilation. Then
there is a Markov dilation for R.

Proof Let (Mn⊗Md , Adu ,A⊗p) be the 1-dilation of R. We define the statei : x ↦→ 1
tr(p) tr(px)

on Md . We define (C0],k0]) ≔
⊗

Z<0
(Md ,i) and (C[0,k[0) ≔

⊗
Z≥0 (Md ,i), so that

(C,k ) ≔ (C0]⊗̄C[0,k0] ⊗ k[0) =
⊗

Z(Md ,i). Now, we define the topological process

like in the lemma. For this we define U = Adû ◦ (idA ⊗ S) where S is the tensor

(right) shift on C and û is u ⊗
⊗

Z≠0
1d . We need to show that A0] ⊆ C0]⊗̄A⊗̄p[0 and

A[0 ⊆ p0]⊗̄A⊗̄C[0 so that the process is Markov as well as a dilation of R (instead of

for a different reach map). For both we observe that p[0 = p ⊗ p[0 and p0] = p0] ⊗ p.
By induction A[–n,0] ⊆ C0]⊗̄A⊗̄p[0 and A[0,n] ⊆ C0]⊗̄A⊗̄p[0 for all n ∈ N. Also, we

have R0(U(p0] ⊗ q ⊗ p[0)) = R0(Adû(S(p0] ⊗ q ⊗ p[0))) = R0(Adû(p0] ⊗ q ⊗ p[0)) =
R0(p0] ⊗ Adu(q ⊗ p) ⊗ p[0) = p0] ⊗ RA⊗p(Adu(q ⊗ p)) ⊗ p[0 = p0] ⊗ R(q) ⊗ p[0. �

7.5.6 Dilations for Everyone

This brings our journey to an end.

Corollary Let A be a matrix algebra and R : P(A) → P(A) a reach map, then there is a Markov
dilation for R.

Proof Every reach map on a matrix algebra can be given as the supremum of a finite number

of reach maps of rank one. Thus, there are 1-dilations and so dilations for any reach

map. �

Remark The category we designed and our definition of dilation has been deliberately crafted

in such a general way that we could arrive at this result. It would not be as easy if

we required 1A = 1Â. Also, the underlying completely positive operators which we

construct will often have norm strictly smaller than one. Thus, these dilations would

not be very useful as dilations of those completely positive operators.

With this we conclude the final proper chapter, in which we discussed generalizations

of shift spaces, subshifts of finite type and topological Markov processes to non-

commutative systems. We compared different possible Markov conditions and which

criteria we used to give the final definition. Then we defined and constructed Markov

dilations for reach maps.
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In the seven preceding chapters, we have laid the foundation for a theory of non-

commutative topological Markov processes. However, a lot of questions had to remain

unanswered, of which we present a selection here, after a quick summary.

8.1 Summary

We established the theory necessary to apply the category of reach maps between en-

veloped C*-algebras to our task. To compensate for the lack of orthogonal projections

in C*-algebras we enriched them with surrounding von Neumann algebras to define

the lattice of open projections. Reach maps are suprema preserving maps between

such lattices, defined from a completely positive operator together with the support

map. Simultaneously, we discussed different properties of the “topology” given by

the open projections and proved a Hausdorff property. It also became apparent that

the support of a completely positive operator in an enveloped C*-algebra is a closed

projection and not the same as the well-known support of the same operator in regard

to the enveloping von Neumann algebra.

We gave different characterizations of reach maps between finite-dimensional algebras.

Reach maps of rank one are suprema preserving maps which preserve cross-ratios on

their support. Also, reach maps relate to those faces in the cone of completely positive

operators which are defined by their blocked transitions. We gave a criterion to

determine which Kraus operator submodules of the Mn×m matrices belong to a reach

map and discussed various examples of concrete reach maps and their submodules.

Then we applied our methods to investigate the communication structure of endo-

morphisms in the category of reach maps. We defined communicating classes and

discussed the difference between topological and stochastic recurrence and transience,

which coincide for unital completely positive operators. A Perron-Frobenius style

theorem for reach maps was presented, including a property of cycles of orthogonal

projections even for non-unital operators.

We saw that conditional expectations of reach maps are completely determined by

the subalgebra they are projecting on and their support.

97
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Finally, we discussed and defined non-commutative topological Markov processes in

the category of reach maps. We showed how a Markov process relates to a reach map

and how every reach map belongs to a Markov process.

8.2 Open Questions

We first collect a few questions concerning the topics of specific chapters, then we

open our discussion to further ideas. As a collection of loose threads, this part does

not try to present a closed narrative.

8.2.1 Chapter 1

As mentioned in the beginning, we only described our theory in the Heisenberg

picture. The concept of an adjoint reach map could certainly be fleshed out and a

discussion of reach maps in the Schrödinger picture might be helpful, especially when

trying to apply our results to literature in theoretical physics.

The name of the concept reach map should not be considered set in stone. Frankly, the

name was partially chosen because the letter R was not yet overused in our context.

Many different names have been considered, for example “adjancency functions”, since

reach maps are a generalization of adjacency matrices. The term “next neighbour

function” from graph theory was also a candidate.

8.2.2 Chapters 2 and 3

With the definition of enveloped C*-algebras we intentionally chose a very general

setting for the definition of reach maps. Applications of the theory might reveal

whether this is too much generality. On the one hand it might be helpful to specialize

the theory to von Neumann algebras. On the other hand it often might suffice to use

the universal envelope. In that case, reach maps are essentially maps on the lattice of

hereditary C*-algebras. While a map for which the points are algebras is probably not

the most intuitive concept, it might be interesting to explore this perspective on reach

maps.

Our definition of reach maps used the open projections as domain. For a given

completely positive operator we can extend the domain to all orthogonal projections

of the envelope. We could not present an example for two different completely positive

operators which induce the same reach map on the open projections but different

reach maps on all orthogonal projections.
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8.2.3 Chapters 4 and 5

An obvious route of investigation would be to figure out which aspects of chapters 4

and 5 can be generalized to infinite-dimensional algebras. One of the places where

this could be possible is the result that an orthogonality preserving reach map is the

reach map of a *-isomorphism. At least for von Neumann algebras this result seems

likely to be true with the tools from [WZ09]. For some parts of the theory this will

certainly become more intricate. For example in the finite-dimensional case we did

not need to differentiate between positive recurrence and null recurrence.

But even in the finite-dimensional case a lot of open questions remain. Are there

better sufficient criteria to detect whether a suprema preserving map is a reach map?

Are there better criteria to tell when a Kraus operator module belongs to a reach

map? For example, for which dimensions of a linear subspace of K ⊆ Mn can we

say for certain that there is a reach map R : P(Mn) → P(Mn) with K = Kr(T ). For

dimensions dimK = 1 and dimK = n2 this is the case, we have seen examples for

other dimensions where it is not.

Another open question is to find sufficient criteria to say that a reach map with

R(1) = 1 has a unital representative. As discussed after Theorem 5.5.2, for irreducible

reach maps the orthogonality of a decomposition which forms an exact cycle is a

necessary criterion, but we are not aware of interesting sufficient conditions for

non-commutative algebras.

In Proposition 5.3.4, we showed that there is a maximal stochastically recurrent

projection and a maximal stochastically transient projection which sum up to 1. To

complete the picture in that theorem, it would be nice to show that the same can be

said about topological recurrence and transience.

8.2.4 Chapter 6

In our theorem about reach maps of conditional expectations we needed to use the

support on the envelope in condition (2). It remains to be seen whether the theorem

can be strengthened to use the proper support of P in Â�.

8.2.5 Chapter 7

For the whole chapter, we restricted ourselves to processes with finite-dimensional

values, which was consistent with the fact that chapters 4 and 5 used finite-dimensional

algebras. This is, as remarked for those chapters, a natural restriction to lift. However,

with the methods we developed, a generalization of for example Theorem 7.4.2 about

Markov conditions and their envelope independence seems infeasible since we would

lose the envelope independence given by Proposition 6.2.4.
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We omitted deepening our theory of non-commutative shift spaces beyond Markov

processes. For example, it would probably be possible to give at least definitions of

sofic shifts (see [LM21, Chapter 3]).

For commutative irreducible topological Markov processes, it is possible to find a

measure on the process which converts it into a stationary stochastic Markov process

(see [LM21, 13.3]). For any non-commutative Markov property, it would be an accolade

if we could show that there exists an envelope and a state on that envelope which

converts the process into a stochastic Markov process. Moreover, in the classical

case, the measure can be chosen so that it maximizes the entropy of the stochastic

Markov chain, giving a possible value for an entropy of the topological Markov chain.

It would be interesting to investigate possible entropy definitions for reach maps or

non-commutative topological Markov chains and how they relate to existing stochastic

definitions of entropy.

Some of the conditions in Theorem 7.4.2 are quite technical, however the author did

not succeed in strengthening the theorem. It would be nice to find interesting classes

of processes for which these conditions become equivalent or show that for example

condition (***) is unnecessary.

As discussed in Proposition 7.5.5, in [GKL06] a non-commutative topological Markov

process is constructed. Then the process is endowed with a state to define the concept

of asymptotical completeness. If a stochastic Markov dilation which is constructed from

two matrix algebrasA and C and a *-homomorphism J : A → A⊗ C is asymptotically

complete, the operator Tk ≔ id ⊗ k ◦ J for a faithful state k ∈ S(C) is aperiodic

irreducible. From our investigation we know that the reach map of Tk is independent

of k as long as the state is faithful. That means that the question whether Tk is

aperiodic irreducible is independent ofk . In fact, in [GKL06, 4.4] it is shown that J
is asymptotically complete together with a specific faithful statek if and only if it is

asymptotically complete with any faithful statek . It is therefore clear that asymptotic

completeness is just a property of J and A ⊗ C. Since J is a *-homomorphism, all

information about it is contained in its reach map RJ . Further, the reach map of the

conditional expectation id ⊗k : A ⊗ C → A ⊗ 1 ⊆ A ⊗ C is uniquely determined by

A ⊗ C. Thus, it seems very plausible that asymptotic completeness is a purely topolo-

gical property. Consequently, an investigation into giving a topological definition of

asymptotic completeness seems very fruitful.

8.2.6 Further Questions and Speculations

Having a theory of topological Markov processes opens a lot of further questions.

Basically, we can consider every concept of classical shift spaces as in [LM21] and ask

ourselves whether we can generalize it to the non-commutative case. This applies,
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for example, to the different kinds of codes discussed there. In [Ste08], Lisa Steiner

presented a quantum coding theory. She used a different approach to generalize

quantum shift spaces, defining them via infinite tensor products, in close analogy

to classical shift spaces. She observed then that so-called higher block coders for

non-commutative algebras are in conflict with the no-cloning theorem of quantum

mechanics. We do not knowwhether our approach would encounter the same problem.

A more far-fetched idea is related to the theory of quantum error correction. Coding

theory is exactly the setting in which classical error correction in information sys-

tems can be described. It would certainly be interesting to see if our perspective on

topological processes can be helpful in understanding quantum error correction.

Also in [LM21] there is a wide discussion of different equivalence relations on shift

spaces. One of those relations is the so-called flow equivalence. Cuntz and Krieger

famously constructed C*-algebras for shift spaces which are invariant under flow

equivalence and, with a bit of additional structure, can be made complete invariants

of the equivalence. A particularly far-fetched but intriguing question would be if it is

possible to define something like a Cuntz-Krieger algebra for a given reach map and

if it could provide any invariants for some equivalences.

With this, we conclude our collection of open questions and this thesis.
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