
Department of Civil and
Environmental Engineering
Institute of Hydraulic and
Water Resources
Engineering
Chair of Hydraulic
Engineering

Hydraulic Data Analysis Using
Python
Master thesis by Teresa Schnellbach
Date of submission: August 18, 2022

1. Review: Prof. Dr.-Ing. habil. Boris Lehmann
Darmstadt

Hydraulic Data Analysis Using Python

Master thesis by Teresa Schnellbach

1. Review: Prof. Dr.-Ing. habil. Boris Lehmann

Date of submission: August 18, 2022

Darmstadt

Bitte zitieren Sie dieses Dokument als:
URL: http://tuprints.ulb.tu-darmstadt.de/22026

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International
https://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons License:
Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/

http://tuprints.ulb.tu-darmstadt.de/22026
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Abstract

Acoustic Doppler velocimeter (ADV) data is prone to high uncertainty in measurement. In
this thesis, technical literature that proposes data analysis methods to reduce error effects is
reviewed, and subsequently, three methods are implemented using the programming language
Python. The reduction of uncertainty in measurement is evaluated by categorising statistical
parameters and analysing time-series and Kolmogorov energy spectra for 160 ADV samples
in turbulent flow. The results show that out of the examined data analysis methods, kernel
density estimation despiking in combination with lowpass Butterworth filtering is the most
promising way to reduce the uncertainty in measurement. Furthermore, a procedure to find
the optimal sampling time for ADV measurements is realised. The implementation shows
that statistical equivalence testing is adequate for finding the optimum sampling time. Still,
the procedure needs further development to provide significance regarding higher statistical
moments. Ultimately, a systematic workflow for handling ADV data is proposed.

Keywords: Turbulence; ADV; Uncertainty; Data processing; Sampling time.

Daten, die mit dem akustischen Doppler Velocimeter (ADV) aufgenommen werden, sind
anfällig für hohe Messunsicherheiten. In dieser Thesis werden Datenanalysemethoden aus der
Fachliteratur, die zur Reduzierung von Fehlereffekten entwickelt wurden, geprüft. Anschlie-
ßend werden drei Datenanalysemethoden in der Programmiersprache Python implementiert.
Die Reduzierung der Messunsicherheit wird dann durch die Kategorisierung statistischer
Parameter und durch die Analyse von Zeitreihen und Kolmogorov Energiespektren bei 160
ADV-Messungen in turbulenter Strömung bewertet. Die Ergebnisse zeigen, dass von den
untersuchten Datenanalysemethoden das Kerndichteschätzer-Despiking in Kombination mit
dem Butterworth Tiefpassfilter die vielversprechendste Methode zur Reduzierung der Messun-
sicherheit ist. Darüber hinaus wird ein Verfahren zur Ermittlung einer optimalen Abtastdauer
für ADV-Messungen realisiert. Die Umsetzung veranschaulicht, dass statistische Äquivalenz-
tests geeignet sind, um die optimale Abtastdauer zu finden. Jedoch muss das Vorgehen noch
weiterentwickelt werden, um auch in Bezug auf höhere statistische Momente Signifikanz zu
schaffen. Schließlich wird ein systematischer Arbeitsablauf für die Handhabung von ADV-Daten
vorgeschlagen.

Schlüsselworte: Turbulenz; ADV; Datenaufbereitung; Messwertverarbeitung; Messdauer.

v

Contents

List of Figures ix

List of Acronyms xi

1. Introduction 1

2. Fundamentals 3
2.1. Basics of Statistics . 3

2.1.1. Probability Distributions . 3
2.1.2. Statistical Hypothesis Testing . 4
2.1.3. T -Test . 6
2.1.4. Equivalence Testing . 8

2.2. Basics of Fluid Dynamics . 10
2.2.1. Kinematic Properties of Flow . 10
2.2.2. Transport Properties of Fluids . 12
2.2.3. Turbulence . 13

2.3. Basics of Signal Processing . 17
2.3.1. Signals . 17
2.3.2. Nyquist-Shannon Sampling Theorem 18
2.3.3. Convolution . 19
2.3.4. Transformations . 20

2.4. Basics of Filters in Signal Processing . 22
2.4.1. Filter Characteristics . 22
2.4.2. Finite Impulse Response Filters . 24
2.4.3. Infinite Impulse Response Filters . 25

3. Acoustic Doppler Velocimeter 27
3.1. Components . 27
3.2. Basic Principles of Acoustic Doppler Velocimetry 28

3.2.1. Sound Propagation . 28
3.2.2. Doppler Effect . 29
3.2.3. Working Principle of the Acoustic Doppler Velocimeter 30

vi

3.3. Uncertainty in Measurement . 30
3.3.1. Guide to the Expression of Uncertainty in Measurement 31
3.3.2. Random Effects . 34
3.3.3. Systematic Effects . 34

4. Data Analysis Methods for Acoustic Doppler Velocimeter Data 37
4.1. Basic Cutoff Filters . 37

4.1.1. Signal-to-noise Ratio Filter . 38
4.1.2. Correlation Score Filter . 38

4.2. Despiking . 38
4.2.1. 3D Phase Space Thresholding . 39
4.2.2. Velocity Correlation Filter . 40
4.2.3. Wavelet Space Despiking . 41
4.2.4. Kernel Density Estimation Despiking 41
4.2.5. Autoregressive Moving Average Models 44
4.2.6. Singular Spectrum Analysis . 45

4.3. Denoising . 46
4.3.1. Noise Floor Subtraction in Turbulent Spectra 46
4.3.2. Digital Filtering . 47
4.3.3. Bifrequency Doppler Noise Repression 50
4.3.4. Polynomial Least-Squares Regression 50
4.3.5. Proper Orthogonal Decomposition . 51
4.3.6. Noise Auto-correlation . 51
4.3.7. Kalman Filter . 52

4.4. Data Replacement . 52
4.5. Available Software . 53

5. Implementation of Data Analysis Methods in Python 55
5.1. Hardware and Libraries . 56
5.2. File Management Tools . 56
5.3. Gauss Filter . 57
5.4. Butterworth Filter . 59
5.5. Python Statistical Analysis of Turbulence (P-SAT) Framework 60
5.6. Kernel Density Estimation Despiking . 61
5.7. Data Replacement . 62

6. Evaluation of Data Analysis Methods in Python 63
6.1. Visual Inspection . 63

6.1.1. Python Statistical Analysis of Turbulence (P-SAT) Framework 65
6.1.2. Kernel Density Estimation Despiking 66
6.1.3. Butterworth Filtering . 68

vii

6.1.4. Gauss Filtering . 69
6.1.5. Combination of Methods . 70

6.2. Statistical Parameters . 75
6.2.1. Mean . 76
6.2.2. Variance . 78
6.2.3. Skewness . 79
6.2.4. Kurtosis . 81

6.3. Discussion of Results . 83

7. Optimal Sampling Time 85
7.1. General Approach . 86
7.2. Requirements and Input Parameters . 87
7.3. Comparison of Means . 87
7.4. Testing for Equivalence of Means . 89
7.5. Discussion of Results . 91

8. Conclusion and Outlook 94

References 97

A. Annex 105
A.1. Figures . 106
A.2. Code . 137
A.3. Data and Tables . 165

viii

List of Figures

2.1. Basic types of hypothesis tests. 6

2.2. Difference in hypothesis formulation between hypothesis testing and equiva-
lence testing. 8

2.3. Kolmogorov energy spectrum of turbulent flow. 15

2.4. Analog and digital signals. 18

2.5. Aliasing resulting from sampling at a lower sampling frequency than the
Nyquist-Shannon sampling theorem stipulates. 19

2.6. Filter prototypes. 23

2.7. Digital signal processing representation of a finite impulse response filter. . . . 26

2.8. Digital signal processing representation of an infinite impulse response filter. . 26

3.1. Nortek acoustic Doppler velocimeters. 28

3.2. Sound propagation with stationary and moving sound source. 29

4.1. Comparison of ellipse projection in 3D phase space between 3D phase space
thresholding method and velocity correlation filter. 40

4.2. Visualisation of the density map resulting from kernel density estmation and
demarcation of the ellipse to detect spikes. 43

5.1. Gauss filter frequency response with a sampling frequency of 25Hz. 58

5.2. First order Butterworth filter frequency response with a sampling frequency of
25Hz and a cutoff frequency of 1Hz. 60

6.1. Exemplary visualisation of acceleration threshold filtered time-series against
original time-series. 65

ix

6.2. Exemplary visualisation of kernel density estimation despiked time-series
against original time-series. 66

6.3. Exemplary visualisation of spectra from despiked time-series. 67

6.4. Exemplary visualisation of Butterworth filtered (2.5Hz, order=1) time-series
against original time-series. 68

6.5. Exemplary visualisation of Gauss filtered time-series against original time-series. 70

6.6. Exemplary visualisation of spectra from denoised time-series. 71

6.7. Exemplary visualisation of spectra from time-series obtained by combination
of despiking methods and Butterworth filtering (2.5Hz, order=1). 73

6.8. Exemplary visualisation of spectra from time-series obtained by combination
of despiking methods and Gauss filtering. 74

6.9. Heatmap of the categorisation of the relative change in means in the u-velocity
component for all implemented data analysis methods (n=160 samples). . . . 77

6.10.Heatmap of the categorisation of the relative change in variance in the u-velocity
component for all implemented data analysis methods (n=160 samples). . . . 79

6.11.Heatmap of the categorisation of the skewness in the u-velocity component for
all implemented data analysis methods in comparison to the categorisation of
the original samples (n=160 samples). 80

6.12.Heatmap of the categorisation of the kurtosis in the u-velocity component for
all implemented data analysis methods in comparison to the categorisation of
the original samples (n=160 samples). 82

7.1. Comparison of means for the long-duration measurement in central horizontal
position and vertical position of 0.4m over bottom for sampling times up to
20min and for recommended sampling times. 89

7.2. Comparison of null hypothesis acceptance rates for the long-duration measure-
ment in central horizontal position and vertical position of 0.4m over bottom
at two equivalence levels. 92

8.1. Proposal for a systematic approach to working with data from acoustic Doppler
velocimeter devices in the hydraulic laboratory. 96

x

List of Acronyms

ADV Acoustic Doppler Velocimeter

AR Autoregressive

ARMA Autoregressive Moving Average

BIC Bayesian Information Criterion

CLT Central Limit Theorem

COR Correlation Score

DFT Discrete Fourier Transformation

DN Diamètre Nominal

DSP Digital Signal Processing

EMD Empirical Mode Decomposition

ENU Earth-North-Up

FFT Fast Fourier Transformation

FIR Finite Impulse Response

Gau Gauss Filter

GUI Graphical User Interface

GUM Guide to the Uncertainty in Measurement

IDE Integrated Development Environment

IDFT Inverse Discrete Fourier Transformation

IFFT Inverse Fast Fourier Transformation

IIR Infinite Impulse Response

JCGM Joint Committee for Guides in Metrology

xi

KDE Kernel Density Estimation

LLN Law of Large Numbers

LMMSE Linear Minimum Mean Square Error

LTI Linear Time Invariant

MA Moving Average

NAC Noise Auto-correlation

POD Proper Orthogonal Decomposition

P-SAT Python Statistical Analysis of Turbulence

RANS Reynolds Averaged Navier-Stokes

RMS Root Mean Square

SNR Signal-to-Noise Ratio

SSA Singular Spectrum Analysis

TKE Turbulent Kinetic Energy

TOST Two One-sided T-test

xii

1. Introduction

Hydraulic measurements are an integral part of hydraulic laboratory practice. Recorded
parameters range from the most apparent geometric quantities (e.g. lengths, widths, flow
depths and radii) to kinematic quantities (e.g. flow velocities) and dynamic parameters (e.g.
pressures, local forces and stresses). They are needed to conduct hydromechanical experiments
or design, plan and construct hydraulic structures. For hydraulic structure models, hydraulic
data is necessary to transfer actual flow conditions to a true-to-scale representation. Numerical
models are verified and calibrated using recorded hydraulic data, which can help understand
ecological or ethohydraulic interactions in the laboratory and the field. (Morgenschweis,
2018)

Therefore, every researcher in the hydraulic laboratory and many other professionals in
the industry and the public sector are familiar with measuring hydraulic data. Regardless
of the contemplated use of the recorded data, measurement device users generally aim to
generate the most accurate data possible with the available resources. They calibrate their
measurement devices, minimise systematic errors, and record repetitively to reduce random
errors. Sometimes, they manipulate their data to eliminate known errors inherent to the
measurement technique, the device, or measurand from their data.

This thesis focuses on flow velocity measurements in turbulent flow. It highlights the par-
ticularities of a measurement technique called acoustic Doppler velocimetry. Specifically, it
concentrates on a device known as the acoustic Doppler velocimeter (ADV). Although ADV
devices are not new to the market of velocity measurement devices, they are still prone to
uncertainties in measurement.

Resulting from these uncertainties in measurement, velocity data recorded with ADVs needs
to undergo extensive data processing efforts to be usable without a doubt. This need for
processing leads to a significant flaw of this otherwise practical and precise measurement
device: data processing activities are not standardised. Authors rarely report transparently
and in detail on their processing efforts, and there are only a few computational open-source
solutions to process recorded ADV data efficiently. Because of this lack of standardised
procedure, this thesis attempts to identify critical data analysis methods for ADV data by
reviewing technical literature and further tries to implement several reviewed methods in the

1

open-source programming language Python. Then, the effects of said data analysis methods
on 160 ADV samples are evaluated.

Besides the absence of standardised protocols for processing ADV data, there also seems to be
a considerable disparity in recommendations and studies concerning the necessary sampling
time for ADV measurements. This ambiguity is surprising, as the sampling time is not only
one of the first considerations needed when recording data but also a rather fundamental
one. The undertaken efforts to apply hypothesis testing to find an optimal sampling time for
ADV measurements are specified.

Ultimately, the goal is to give pointers to standardise the ADV data recording and process-
ing protocols in the hydraulic laboratory at Technische Universität Darmstadt and provide
provisional open-source tools that facilitate the realisation of this protocol.

Fundamental scientific principles needed to realise the abovementioned goals are gathered in
chapter 2 of this thesis. The chapter briefly summarises the basics of statistics, fluid dynamics,
signal processing, and digital filters that are relevant here. Detailed information on ADV
devices is outlined in chapter 3. Chapter 4 reviews the technical literature on ADV data analysis
methods. While chapter 5 describes the process of implementing promising methods in Pyhon,
chapter 6 explains the evaluation methodology and evaluates the velocity measurements at
hand. Chapter 7 illustrates the efforts to develop a procedure for finding optimal sampling
times. Finally, chapter 8 critically reviews the methodology used in this thesis, points out
shortcomings and flaws and gives recommendations for standardising laboratory work with
the ADV. The chapter brings forward suggestions to further improve the implementations in
Python. It highlights other details concerning ADV measurements that can be examined and
evaluated for standardisation in future projects.

2

2. Fundamentals

This chapter outlines scientific fundamentals that need to be grasped to understand the less
common concepts picked up in chapter 4 and comprehend the details of the code implemen-
tations in chapter 5, chapter 6 and chapter 7.

Section 2.1 goes into statistic fundamentals that need to be well-defined to evaluate hydraulic
measurement data statistically and introduces ways to test recorded data regarding their
statical parameters. The second section (see subsection 2.2), gives insight into basic concepts
of fluid dynamics to understand details on flow and flow conditions. Furthermore, this section
is meant to draw a bow to the modus operandi of acoustic Doppler velocimetry (see chapter
3). Lastly, sections 2.3 and 2.4 introduce the basics of signal processing and the operation of
digital filters. These fundamentals are critical for comprehending how digital filtering can
reduce error terms in hydraulic measurements (see subsection 4.3.2).

2.1. Basics of Statistics

Hypothesis testing is a conventional method to prove the statistical significance of data. This
concept can be perfectly transferred to hydraulic data and helps understand uncertainty in
measurements and gain confidence in recorded data. Therefore, this subsection first gives
pointers on the Gauss distribution and the Student’s t-distribution, then outlines the basics of
hypothesis testing and highlights the differences between traditional hypothesis testing and
equivalence testing.

2.1.1. Probability Distributions

Probability distributions of experiments describe the probability of occurrence of the exper-
iment’s different possible outcomes. Probability distributions can be specified by several
statistical parameters, such as the mean, the variance, the standard deviation, the skewness,
the kurtosis, the central moment of order, the modus, quantiles and the median. (Lange &

3

Mosler, 2017, pp. 32–36) There are many common probability distributions. However, this
study will only talk about the Gauss distribution (also normal distribution) and Student’s
t-distribution as only those are needed within its scope.

Gauss distribution calls a random variable normally distributed if it obeys the probability
density function of

f(x) =
1√

2π · σ
· e−

1
2

(︂
x−µ
σ

)︂2

, x ∈ R (2.1)

f(x)− probability density function,
x − random variable,
σ − standard deviation,
µ −mean. (Lange & Mosler, 2017, p. 56)

Talking about normal distribution also calls for mentioning the central limit theorem (CLT). It
implies that the sum of an adequate number of independent random variables is normally
distributed by approximation. This assumption holds even when the original variables do
not follow a normal distribution. (Bonamente, 2013, pp. 54–58) In practice, it means that
the normal distribution of a random variable can be assumed if the threshold of an adequate
number of measurements is reached, which is important for multiple statistical applications,
e.g. hypothesis testing. The rule of thumb to assume normal distribution is at a sample
size of 30-50 (Ross, 2010, Schiefer and Schiefer, 2021, p. 76). It is important to distinguish
the CLT from the law of large numbers (LLN) as they draw different conclusions. While
the CLT determines normal distribution for sample sizes tending to infinity, the LLN asserts
that the sample mean equals to the population mean for sample sizes tending to infinity
(Bonamente, 2013, p. 62). If the standard deviation of a population is unknown and must be
approximated with the sample standard deviation, the sample mean of normally distributed
data is not normally distributed anymore but follows a different distribution called Student’s
t-distribution. (Waldi, 2019, pp. 241–242) Generally, the population standard deviation
is unknown in hands-on data analysis. This is why, the Student’s t-distribution is rather
important for further statistical operations such as hypothesis testing (see subsection 2.1.3)

2.1.2. Statistical Hypothesis Testing

The general approach of hypothesis testing is to compare distribution parameter values of a
sample to a reference value of the same distribution parameter. Consequently, these tests are
also called parameter-bound tests as they use statistical parameters to test for differences in

4

the mean (t-test), the dispersion (F -test) or the distribution (χ2-test). (Schiefer & Schiefer,
2021, p. 69)

Statistical hypothesis testing quantitatively determines whether a formulated assumption
describing a sample holds or must be rejected at a given confidence level (also p-value or
confidence interval). This assumption is called the null hypothesis. If the null hypothesis is
rejected for a given confidence level, the alternate hypothesis holds. The significance level
gives the probability that the null hypothesis is rejected erroneously, which is called a type I
error (also α-error). Therefore the confidence level describes the probability of not rejecting
an accepted null hypothesis. The significance level is usually set at α = 5% or lower. For

α = 0.05 (2.2)

follows

p = 1− α = 0.95 (2.3)

α− significance level,
p − confidence level.

Type II error (also β-error) happens if the test does not reject the null hypothesis although
the alternate hypothesis holds. As there is no safeguard to reduce the occurrence of type II
error, hypothesis testing produces more reliable results if the test design proves a statement by
rejecting the null hypothesis instead of proving a statement by accepting the null hypothesis.
Thus, one chooses the null hypothesis accordingly to produce robust test results. (Frost, 2017,
pp. 9–10, 18)

There are two basic types of hypothesis tests: one-tailed (also one-sided) and two-tailed (also
two-sided) tests. The test either compares whether the sample values are the same as the
reference value or not (two-tailed, term 2.4) or it compares whether the sample values are
smaller (right-tailed, term 2.5) or bigger (left-tailed, term 2.6) than the reference value:

H0 : x = x0 ∧H1 : x ̸= x0 (2.4)

H0 : x ≤ x0 ∧H1 : x > x0 (2.5)

H0 : x ≥ x0 ∧H1 : x < x0 (2.6)

H0 − null hypothesis,
H1 − alternate hypothesis,
x − sample value,
x0 − reference value.

5

While two-tailed tests are also called tests with a point hypothesis that refers to a permissible
value (see figure 2.1b), one-tailed tests consider the distribution function from the right or
the left side (see figure 2.1a). One-tailed tests are perceived to produce more significant
results than two-tailed tests. Still, two-tailed tests are a standard approach when extreme
discrepancies between values are unlikely (Waldi, 2019, p. 226). Generally, hypothesis testing
becomes more sensitive as sample sizes increase. (Schiefer & Schiefer, 2021, p. 72) Hypothesis

(a) One-tailed (b) Two-tailed

Figure 2.1.: Basic types of hypothesis tests (Schiefer & Schiefer, 2021, p. 73).

tests usually call for requirements, like independency of measurements and samples, normal
distribution of the examined characteristic or variance homogeneity of samples, to be met.
However, if some conditions are not met, one can use test modifications or test extensions for
these exceptions. (Schiefer & Schiefer, 2021, p. 75)

2.1.3. T -Test

T -tests are hypothesis tests used to determine whether the mean values of a sample and a
reference value (from a population) or the mean values of two samples differ and whether
their difference can be deemed significant or random.

There are several requirements for performing a t-test, which are listed in the following:

– Samples are taken at random from the population.

– Samples and measurements are independent of each other.

– The examined characteristic is interval-scaled.

– The examined characteristic is normally distributed, or the sample size allows for the
CLT (see subsection 2.1.1) to be applied.

6

– The variance of the examined characteristics (from two samples) are the same, or the
test must be modified (Welch’s t-test). (Schiefer & Schiefer, 2021, p. 75)

By replacing the population standard deviation of the normal distribution with the sample
standard deviation, the Student’s t-distribution’s test statistic with n− 1 degrees of freedom is
formulated:

S =

√︃
1

n− 1

∑︂
(Xi − X̄)2 (2.7)

T =
X̄ − µ

S

√
n (2.8)

S − sample standard deviation,
T − test statistic,
n − sample size,
Xi − random variable,
X̄ − sample mean,
µ − population mean. (Frost, 2017, p. 8)

Then, a so-called p-value can be calculated or determined using specific tables and taking
into account the beforehand calculated test statistic, the respective degrees of freedom and
the chosen significance level. The null hypothesis is rejected if the p-value is smaller than the
selected significance level. The null hypothesis is accepted if the p-value is greater than the
chosen significance level.

Altogether, to carry out a t-test (as for every hypothesis test), several steps are required:

– Drafting the null hypothesis and the alternate hypothesis.

– Defining the significance level.

– Determining the rejection region of the test.

– Calculating the test statistic and the p-value.

– Interpreting the results: reject or accept the null hypothesis. (Frost, 2017, p. 9)

7

2.1.4. Equivalence Testing

When hypothesis testing, the null hypothesis represents the opposite of the researcher’s intent,
so the usual goal is to reject the null hypothesis. However, sometimes the research question
might require not to look for differences but a certain level of equivalence instead. Carrying
out a traditional two-tailed t-test does not provide evidence on this question. So-called
equivalence tests offer a solution: they reverse the null and alternate hypotheses and test for
equivalence of samples or values within the scope of a constant, previously-set equivalence
margin. (Walker & Nowacki, 2011, p. 1)

Equivalence testing was first introduced to improve pharmaceutical studies which is why
it is still particularly prevalent in the medical field, and recommendations for use, such as
Piaggio et al., 2006, are given in this context. However, there are efforts to adopt equivalence
testing to other research questions and fields, e.g. in Rose et al., 2018 for behavioural and
ecological studies and Siebert and Ellenberger, 2020 for automatic passenger counting in
public transport.

The following figure 2.2 shows the difference between traditional comparative hypothesis
testing and equivalence testing by picking up a problem from the data analysis part of this
thesis (see section 7.2):

Traditional
Comparative

Study

Equivalence

Study

There is no difference
between velocity

means.

The velocity means
are not equivalent.

There is a difference
between velocity

means.

The velocity means
are equivalent.

H0

H0 H1

H1

H0 Acceptance:

Rejection

of Research Intent

H1 Acceptance:

Fulfillment

of Research Intent

Figure 2.2.: Difference in hypothesis formulation between hypothesis testing and equivalence
testing (adapted from Walker and Nowacki, 2011, p. 2).

A simple and common approach to equivalence testing is the two one-sided t-test (also TOST)
by Westlake, 1976 and Schuirmann, 1987. The TOST tests the difference in means of two
samples against a preset range, the equivalence margin δ, limited by a lower boundary and an
upper boundary. The TOST’s major flaw is choosing the equivalence margin prior to testing.

8

Thus, the researcher must assume from the data or estimate from experience, which might
tamper with test results or make them intransparent. Consequently, accurate protocolling of
methods is indispensable when conducting the TOST. (Juzek & Kizach, 2019, p. 2)

Two one-tailed t-tests are carried out for the TOST, so two null hypotheses are specified, one
for each boundary. The two alternate hypotheses translate to one final alternate hypothesis,
which indicates the positive test outcome of similarity within the set equivalence margin at a
chosen significance level:

H0,a : µ1 − µ2 ≤ −δ ∧H1,a : µ1 − µ2 > −δ (2.9)

H0,b : µ1 − µ2 ≥ +δ ∧H1,b : µ1 − µ2 < +δ (2.10)

H1 : −δ < µ1 − µ2 < +δ (2.11)

H0,a − null hypothesis of test a,
H1,a − alternate hypothesis of test a,
H0,b − null hypothesis of test b,
H1,b − alternate hypothesis of test b,
H1 − final alternate hypothesis,
−δ − lower boundary,
+δ − upper boundary,
µ1 −mean sample 1,
µ2 −mean sample 2. (Juzek & Kizach, 2019, p. 3)

The test statistics comply with those of the t-test (see equation 2.8), but as the TOST consists
of two one-tailed t-tests, the confidence level is:

p = 1− 2α (2.12)

α− significance level,
p − confidence level.

9

2.2. Basics of Fluid Dynamics

Acquisition of hydraulic data in the laboratory or in situ is essential for many projects in
hydraulic engineering. In both settings, measurements aim to observe hydraulic characteristics
and occurring phenomena. However, to observe hydraulic characteristics and phenomena,
one must take the properties of fluids and flow into account. Therefore, the following sections
address the transport properties of fluids and the kinematic properties of flow. As most
technical flows are turbulent, the subsequent sections introduce turbulent flow characteristics
and approaches to its description.

2.2.1. Kinematic Properties of Flow

It is essential to introduce technical concepts to describe flow conditions. The most basic
concept considers flow as an accumulation of single moving fluid particles and conceptualising
equations considering an individual particle and its particular movement.

Initial coordinates, which form planes (and thus functions) of space coordinates, are attributed
to every particle in its initial position. Because each particle keeps the attributed coordinates
when changing position, all planes comprise an invariant set of particles. Then, space coor-
dinates are given as a function of the initial coordinates and time to identify the so-called
pathlines. The Lagrangian approach (Song, 2018, pp. 49–50) (also Lagrangian description or
material description (Spurk & Aksel, 2020, p. 8)) is used:

x = F1(a, b, c, t)

y = F2(a, b, c, t)

z = F3(a, b, c, t)

(2.13)

x, y, z − space coordinates,
a, b, c − initial coordinates,
t − time. (Oertel, 2017, p. 46)

Connecting all points on the trajectories of the particles that passed through a set point in
the flow field within a set timeframe yields so-called streaklines. One can observe streaklines
when inserting a tracer into a fluid in motion at a fixed point. (Oertel et al., 2015, p. 70) The

10

velocity components are defined as a function of space coordinates and time to consider a
change in flow conditions over time:

u = f1(x, y, z, t)

v = f2(x, y, z, t)

w = f3(x, y, z, t)

(2.14)

u, v, w − velocity components. (Oertel, 2017, p. 46)

This representation is called the Eulerian approach (Song, 2018, p. 50) (also Eulerian descrip-
tion or spatial description (Spurk & Aksel, 2020, p. 9)).

Streamlines are another concept to describe flow conditions: by placing a tangent to the
pathlines, the slope field of the velocity vector is given at a specific time. Because the tangent
lines are always parallel to the velocity vector, the velocity components can be derived using
the cross product between the velocity vector and an infinitesimal section of the pathline.
(Bollrich, 2013, p. 87)

v⃗ × dx⃗ = 0 (2.15)

v⃗ − velocity vector,
dx⃗− infinitesimal section of the pathline. (Oertel et al., 2015, p. 69)

This leads to the system of differential equations for streamlines (Bollrich, 2013, p. 88):

v · dz = w · dy
w · dx = u · dz
u · dy = v · dx.

(2.16)

For stationary flow, the pathlines accord with the corresponding streamlines. For unsteady
flow, the curves differ. Still, to give precise information for a compressible flow on hand, one
must additionally state the pressure and the density. (Oertel, 2017, p. 46)

11

2.2.2. Transport Properties of Fluids

Interactions between molecules determine the transport properties of fluids. However, with
varying definitions and approaches, theories, and many fields of application, it is a complex
phenomenon to grasp. Mass conservation, momentum conservation, and energy conservation
translate to three fluid transport properties: mass transfer, friction and heat transfer. (Oertel
et al., 2015, p. 48)

Literature sometimes distinguishes between outer friction (also skin friction), which describes
the interaction of fluid molecules and adjacent solids, and inner friction (also viscosity), which
occurs because of molecule exchange within the fluid (Bollrich, 2013, p. 26). However, skin
friction only occurs because of viscosity (Schlichting & Gersten, 2006, p. 1).

Viscosity is a physical property that describes the molecules’ resistance to move in a fluid in
motion relatively to said motion (Bollrich, 2013, p. 26). A practical consequence of viscosity
is the no-slip condition, which assumes zero relative motion for viscous fluid layers in contact
with solid boundaries (Day, 1990, p. 3). The no-slip condition serves as a basis for the
development of fluid dynamic boundary layers near solid structures (Schlichting & Gersten,
2006, p. 27).

For transport properties, the viscosity is relevant as it induces momentum transport normal to
the main flow direction of the fluid. Newton’s law of viscosity represents this concept and
defines shear stress:

τ = µ
du

dy
(2.17)

τ − shear stress [N
m2],

µ − dynamic viscosity [kg
m s],

du
dy

− shear rate (also velocity gradient) [1s]. (Schlichting & Gersten, 2006, p. 3)

Equation 2.17 is recognised as the definition of viscosity. Nevertheless, one must note that it
showcases a particular case, the simple Couette configuration. Stokes’ law generalises this
formulation. (Schlichting & Gersten, 2006, p. 3)

Analogous to friction inducing momentum transport across a velocity gradient (from high to
low velocity), one can envision mass transfer as a flux across a concentration gradient (from
high to low density) which can be described using Fick’s law of diffusion, and heat transfer as
a flux across a temperature gradient (from high temperature to low temperature), respectively
described by Fourier’s law of heat conduction. (Oertel, 2017, p. 666)

12

2.2.3. Turbulence

Measuring flow velocities and interpreting flow velocity data do not get by without basic
knowledge of turbulence. With varying definitions and approaches, theories and many fields of
application, it is, however, a complex phenomenon to grasp. Tsinober, 2009 tries to apprehend
this complexity by linking three problems when describing turbulence, i.e. nonlinearity,
nonintegrability and nonlocality to the Navier-Stokes equations (Tsinober, 2009, p. 24). While
in subsection 2.2.2 Stokes’ law is mentioned as the generalisation of the simple Couette
configuration, it itself is a derivation from these partial differential equations, which render
it possible to describe flow fields completely. Although the Navier-Stokes equations offer
universal validity and a deterministic approach to turbulence, turbulence remains difficult to
describe because of its randomness, absence of reproducibility, and sensitivity to disruption.
Therefore most turbulence models are deduced from solving the Navier-Stokes equations for
special cases or using numerical models, which again does not lead to a general understanding
of turbulence. (Tsinober, 2009, pp. 24–30)

A classic, empirical approach to turbulence is to distinguish two basic types of flow: laminar
and turbulent flow regimes, linked by a transition between both states. This approach goes
back to O. Reynolds (1883), who observed the regimes in pipe flow and introduced a parameter
called the Reynolds number that specifies laminar flow at small values and turbulent flow for
values surpassing a critical Reynolds number:

Re =
u · L
ν

(2.18)

and

Recrit,pipe = 2040± 10 (2.19)

Re − Reynolds number [-],
u −mean velocity [ms],
L − characteristic length [m],
ν − kinematic viscosity [m2

s],
Recrit,pipe − critical Reynolds number for pipe flow [-] (Avila et al., 2011, p. 5).

The critical Reynolds number differs for every geometry. (Bollrich, 2013, pp. 90, 99) As noted
in equation 2.18, to determine the Reynolds number, usually the mean velocity is used for
its calculation. This approximation is necessary as the random nature of turbulence causes
fluctuation in instantaneous velocity measurements, which prompts a statistical description
of the velocity field.

13

The Reynolds Decomposition facilitates this approach by splitting the velocity components
into the sum of the mean velocity and the turbulence-induced fluctuation velocity:

u(x, y, z, t) = u(x, y, z) + u′(x, y, z, t) (2.20)

u(x, y, z, t) − instantaneous velocity [ms],
u(x, y, z) −mean velocity term [ms],
u′(x, y, z, t)− fluctuating velocity term [ms]. (Spurk & Aksel, 2020, p. 226)

Combining the Reynolds Decomposition and the Navier-Stokes equations leads to a concept
called Reynolds-averaged Navier-Stokes (RANS) Equations where the velocity components in
the Navier-Stokes equations are substituted with the Reynolds decomposition as showcased in
equation 2.20. Consequently, the fluctuation terms cancel out in the Navier-Stokes equations,
which means that on average, they are as often and overall in the same magnitude positive
as they are negative, leaving only the mean velocity components to be determined for a
time-averaged solution. On the contrary, the nonlinear terms in the Navier-Stokes equations
(the correlations between the fluctuating velocity components) do not zero out, as they are
not statistically independent. (Schlichting & Gersten, 2006, pp. 505–510)

Recognised as Reynolds’ stresses, they form the elements of the so-called Reynolds stress
tensor instead. Thus, turbulent fluctuating motion increases momentum flux, but also heat
and diffusion flux, which are picked up in subsection 2.2.2. Only the no-slip condition (see
subsection 2.2.2) makes the Reynolds stress terms become zero in a layer called the viscous
sublayer, where viscous stresses dominate. (Spurk & Aksel, 2020, pp. 226–230)

Following up on this statistical take on turbulence and bearing the basics of statistics outlined
in section 2.1 in mind, one considers viewing flow velocities and flow velocity fluctuations
in the light of probability distributions and respective consequences for data analysis that
incorporates statistical parameters or normality. While normality is defined explicitly by the
probability density function 2.1, there exist multiple notions on whether turbulent velocities
can be accepted as normally distributed.

Many references speak of near-Gaussian distributions with only the tails of the distribution
deviating slightly (Chanson & Larrarte, 2008, p. 69) and analytical solutions supporting this
hypothesis but empirical findings straying off normality (She, 1991, p. 3). Others argue that
error analysis in experiments ultimately leads to an approximation of normal distribution
(Doroudian et al., 2010, p. 7) and Gaussian distribution to be given as a deduction from the
CLT (see subsection 2.1.1) (Tennekes & Lumley, 1972, p. 218).

In practice, slight deviations from the Gauss distribution are sometimes neglected for assump-
tions but kept in mind when evaluating overall (Cea et al., 2007, p. 9, Strom and Papanicolaou,

14

2007, p. 4). On the other hand, there seems to be a consensus concerning velocity deriva-
tives, which are viewed as clearly non-Gaussian (Li and Meneveau, 2005, p. 1, Bailly and
Comte-Bellot, 2015, p. 11).

E(
f)

[(m
²/s

²)/
H

z]

log(f) [Hz]

containing
range

inertial
subrange

dissipation

range

E(f) ~ f -5/3

Figure 2.3.: Kolmogorov energy spectrum of turbulent flow (adapted from von Kusserow,
2018, p. 172).

Further, time and length scales can be deduced by integrating timely and spatial correlations
from the Reynolds-averaged Navier-Stokes equations. These lead to different types of spec-
tra: wavenumber or frequency spectra that describe underlying patterns and periodicity of
turbulence. Three different length scales are considered to find laws for these reoccurring
phenomena via data correlation. Then, it is assumed that there is reproducibility along the
largest, the smallest and intermediate scales of turbulence. Based on these assumptions
(separation of scales and similarity), A. Kolmogorov formulated Kolmogorovs’ law in 1941
(see, e.g. in Kolmogorov, 1991), describing the energy spectrum of turbulent flow in relation
to the wavenumber. (Reynolds, 1974, pp. 71–102, Skiadas, 2016, p. 10)

15

Figure 2.3 shows Kolmogorov’s energy spectrum of turbulent flow in relation to the frequency.
In this form, the spectrum is often used to compare spectra of turbulent flow measurements
against it; the spectrum is deemed universal for every turbulent flow. While the features of the
spectrum in the containing range are neglected, the distinct −5

3
slope in the inertial subrange

and the plummeting energy levels in the dissipation range of Kolmogorov’s spectrum are ideal
indicators of turbulent flow spectra.

Statistical parameters quantify turbulence intensity and the turbulent kinetic energy (TKE).
View subsection 3.3.1 to gain insight into the calculation of basic statistical parameters for
velocity measurements and their connection to the uncertainty in measurements, as these
parameters are needed for the calculation of turbulence parameters with

Iu =

√︂
1
2
(σ2

u + σ2
v + σ2

w)

u
(2.21)

Iu − turbulence intensity in u-velocity component [-] (other components, respectively),
σ2
u − variance in u-velocity component [m2

s2],
σ2
v − variance in v-velocity component [m2

s2],
σ2
w − variance in w-velocity component [m2

s2],
u −mean of u-velocity component [ms](other components, respectively),

and

TKE =
1

2
·
(︂
u′2 + v′

2
+ w′2

)︂
(2.22)

TKE− turbulence kinetic energy [m2

s2],
u′ −mean of u-velocity fluctuating term [ms],
v′ −mean of v-velocity fluctuating term [ms],
w′ −mean of w-velocity fluctuating term [ms].

Because it is normalised, the turbulence intensity is an appropriate parameter to compare
flow fields. The TKE is the energy represented in Kolmogorov’s energy spectrum. (Adam and
Lehmann, 2011, p. 101, Schlichting and Gersten, 2006, pp. 312, 406)

16

2.3. Basics of Signal Processing

To understand filter operations in signal processing, one needs to know the basic properties
of signals and signal recording. This section first focuses on distinguishing between analog
and digital signals by quantising and sampling. The Nyquist-Shannon sampling theorem then
showcases the most fundamental principle of sampling. The last two subsections empha-
sise two signal processing operations needed for nearly every signal processing operation:
convolution and transformation.

2.3.1. Signals

When dealing with signal processing, it is evident to define the term signal. Definitions from
technical literature contain three basic keywords: physical phenomenon, information and
mathematical function (Veloni, 2019, p. 3, Meyer, 2021, p. 1, Puthusserypady, 2021, p. 3,
Stein, 2000, p. 42, Sundararajan, 2021, p. 1). As they are almost identical, only one is cited
here:

”Signal is a physical phenomenon that carries information. This physical phe-
nomenon is described by mathematical functions, and usually the signal and its
mathematical function are used for one another, i.e., synonymous.”
- Gazi, 2018, p. 1

The distinction of signals is between continuous and discrete, deterministic and random,
periodic and aperiodic and real and complex signals. The most basic classification derives from
sampling and quantising functions in time and values. While sampling means to record values
of a continuous quantity only at set intervals of time and therefore reducing the resolution in
time, quantising means to assign values to defined value ranges, thus reducing the resolution
of the signal in amplitude. Consequently, sampling and quantising are always attended by a
loss of information. The processes give four basic types of signals which are depicted in figure
2.4. This classification includes the definition of two often-used categories, i.e. analog and
digital signals. (Veloni, 2019, pp. 6–7)

Periodic signals repeat their values after a period of time in the time domain. Therefore, they
can be completely specified by only knowing the details of one period. Aperiodic signals do
not follow a pattern in the time domain. (Puthusserypady, 2021, p. 9)

The values of deterministic signals can be predicted exactly without uncertainty. The fluctua-
tion of physical phenomena characterises random signals, and therefore their measurement
and further analysis also contain uncertainty. Often, a statistical analysis helps quantify and
describe random signals. (Meyer, 2021, p. 16)

17

Analog Signals Sampled Signals

Digital SignalsQuantised Signals

values - continuous

time - continuous

values - continuous

time - discrete

values - discrete

time - continuous

values - discrete

time - discrete

sample

sample

quantise quantise

Figure 2.4.: Analog and digital signals (adapted from Meyer, 2021, p. 15).

There are some more classifications, such as real and complex signals, bound and unbound
signals, even and odd signals and causal and noncausal signals, which can be neglected in
our context. Hence, they are not further explained after this (Sundararajan, 2021, pp. 7–12).

2.3.2. Nyquist-Shannon Sampling Theorem

As shortly outlined in the previous subsection 2.3.1, sampling is a necessary operation when
recording and working with signals. It reduces the complexity of a signal, so one must handle
sampling with care to still record signals with enough detail. While undersampling a signal
causes a loss of information, oversampling is less worrisome concerning data quality but still
imposes an increased strain on resources (time, personnel, computational). For this, the
Nyquist-Shannon sampling theorem proposes an optimum sampling frequency so that a signal
which is continuous in time can be reconstructed entirely from recorded samples. It states
that the sampling frequency must be chosen so that it is at least twice the maximum frequency
of the signal:

fs ≥ 2fmax (2.23)

18

fs − sampling frequency [Hz],
fmax −maximum signal frequency [Hz].

If the sampling frequency is chosen without respecting the Nyquist-Shannon sampling theorem,
the signal will not be reconstructible without ambiguity, which causes effects known as aliasing
and folding. (Veloni, 2019, p. 11)

Figure 2.5 shows an original signal (black line) that is sampled at a sampling frequency
that does not respect the Nyquist-Shannon sampling theorem. The sampled values do not
allow for a reconstruction of the signal without loss of information. In fact, in this case, it
is impossible to reconstruct the original signal from the sampled values; instead, an aliased
signal is constructed (red line).

sampling instances

time as a multiple of the period of the original signal
aliased signaloriginal signal sampled value

Figure 2.5.: Aliasing resulting from sampling at a lower sampling frequency than stipulated
by the Nyquist-Shannon sampling theorem (adapted from Mrtz, 2004).

2.3.3. Convolution

Convolution is a mathematical operation to manipulate a function using another function.
This operation is usually indicated by using the star symbol. For discrete data, it forms the
sum of products of the elements of two finite sequences, while one sequence is time-reversed
and the other remains unmodified. The operation is commutative, associative and distributive.

y(n) = x(n) ∗ h(n) =
∞∑︂

k=−∞

x(k)h(n−k) =
∞∑︂

k=−∞

h(k)x(n−k) (2.24)

n = N +M − 1 (2.25)

19

y(n) − output sequence,
x(n)− input sequence,
h(n)− input sequence,
k − control variable,
n − length of output sequence,
N − length of first input sequence,
M − length of second input sequence. (Sundararajan, 2021, pp. 44–46)

Convolution is the basic mathematical principle behind filter operations in signal processing,
which are covered in section 2.4 of this thesis. It is essential to understand that convolution
in the time domain corresponds to multiplication in the frequency domain to use the concept
for filters. This statement can be proven by Fourier transforming the components of the
convolution operation (Meyer, 2021, p. 36). Transformation operations are picked up in the
following subsection 2.3.4.

2.3.4. Transformations

Most real physical signals are arbitrary in their amplitude profiles making them generally
difficult to process in the time domain. Therefore, appropriate signal representation is needed,
which can be reached by transforming signals using mathematical operations. Transformations
- such as the Fourier transformation or the wavelet transformation - represent the signal in the
frequency domain. They facilitate the manipulation of the signals and improve computational
efficiency. (Sundararajan, 2021, p. 65)

Fourier Transform

The Fourier analysis is a mathematical method to approximate a signal in the time domain by
sums of trigonometric functions. Fourier transformation is the core operation of said method.
The result of Fourier transformation is called the Fourier transform; it gives all frequency
components of the signal. There are four different types of the Fourier transform, but in the
context of this thesis, only the discrete Fourier transformation (DFT) is of importance. (Meyer,
2021, pp. 164–166)

The DFT separates a sequence into harmonic trigonometric components and a direct component
(which corresponds to the mean of the sequence) by expressing the data in the form of complex
exponentials using Euler’s formula:

e±jω = cos(ω)± jsin(ω) (2.26)

20

j − imaginary unit,
ω − angular frequency.

While the DFT of a signal can be calculated using

X(k) =
N−1∑︂
n=0

x(n)e−jk 2π
N

n, k = 0, 1, 2, ..., (N − 1) (2.27)

the inverse discrete Fourier transformation (IDFT) transforms the Fourier transform back to
the signal in the time domain

x(n) =
1

N

N−1∑︂
k=0

X(k)ejk
2π
N

n, n = 0, 1, 2, ..., (N − 1) (2.28)

X(k)− sequence of complex amplitudes,
x(n) − signal in time domain,
k − DFT length,
n − input sequence length,
N −window length of signal. (Sundararajan, 2021, pp. 66–67)

In practice, numerical solutions often use the fast Fourier transform (FFT) and its counterpart,
the inverse fast Fourier transform (IFFT), to calculate the DFT and the IDFT. The FFT and
the IFFT use an algorithm designed by Cooley and Tukey in 1965. The algorithm calculates
redundant parts of the DFT only once and hereby reduces the complexity of multiplication
from order N2 to order Nlog(N). (Meyer, 2021, p. 175)

Wavelet Transform

The wavelet transform is a transformation operation that was introduced out of the need
to represent and manipulate a signal in the time-frequency domain rather than only in the
frequency domain like in Fourier analysis. Instead of decomposing a signal into trigonometric
components, wavelet theory uses impulse signals in the time domain. These impulse signals
are then compared to a base function called the mother wavelet. (Teolis, 2017, pp. 59–62)

This thesis only broaches the subject of wavelet transformation, as it is frequently picked up
by publications in denoising contexts for a threshold approach proposed by Donoho, 1995 -
the universal wavelet threshold.

21

2.4. Basics of Filters in Signal Processing

Filters in signal processing are tools to manipulate input data by applying a convolution
operation. Filters can be interpreted as black-box systems, which makes their output data a
result of the systems impulse response to the input. Generally, they work in both the time and
the frequency domain but are usually applied in the frequency domain as a usual goal is to
let specific frequencies pass while filtering out others. A function of frequency will therefore
relate input and output. (Gazi, 2018, p. 233)

There are two basic types of filters: analog and digital filters. Their concepts correspond
to the ones of analog and digital signals, i.e. analog filters can process continuously in
time and amplitude, and digital filters handle naturally time-varying values as a quantised
series. As signal processing is a field originating from electrical engineering, filters stem from
manipulating signals in electrical circuits. (Meyer, 2021, pp. 123, 128)

Therefore, analog filters are realised using mechanical, electrical or electro-mechanical com-
ponents such as capacitors, inductors or resistors. In electrical circuits, digital filter systems
are realised using microprocessors, programmable logic blocks or chips, which carry out
the needed mathematical operations of the digital filter after converting the analog signal
to a digital signal. After the digital filter operations are successfully executed, the signal is
reconverted to the analog signal. Nowadays, processing with digital filters is possible with
standard computers after sampling. (Meyer, 2021, pp. 128, 150–151)

In analogy to analog filters in hydraulic contexts, one can think of screens or honeycombs in a
flume. In the entryway of a flume, these structures can be used to eliminate, e.g. unwanted
spin induced by pumps and inlet pipes. Another possibility to include analog filters in the
hydraulic setup is to add electrical components in the electrical circuit of the ADV device.
Processing the data with digital filters on the computer is the same as for electrical circuits.

The following subsections only discuss inherent digital filters and digital filters deduced from
analog filters by approximation. However, this section on digital filters is not exhaustive, as
picking up every detail would exceed the reasonable periphery of this thesis.

2.4.1. Filter Characteristics

Filter characteristics describe how filter design can be altered to generate the desired filter
effect. Generally, the goal of a filter operation needs to be before defining filter characteristics.
Four basic characteristics can differentiate between filters:

– The passband specifies the desired frequencies allowed to pass through the filter.

22

– The cutoff frequency (fc) defines the boundary of the passband.

– The stopband specifies the undesired frequencies which are held back by the filter.

– The transition frequencies between the passband and the stopband are called the skirt
response. Here, the reduction in signal amplitude changes rapidly, which is referred to
as attenuation. (Winder, 2002, pp. 22–23)

Another filter property is filter order. It describes the steepness of the stopband’s slope which
defines the delay present in the filter operation. The rate of attenuation is defined as 20dB per
decade. All previously explained characteristics can be determined by viewing the frequency
response function of a filter. (Winder, 2002, p. 27) Frequency responses can be categorised
following four prototypes: the lowpass, highpass, bandpass, and bandstop ideal filters (Alessio,
2016, p. 185). The four prototypes are displayed in the following figure (see figure 2.6), with
a colour scheme indicating the four characteristics. The digital filters picked up in this section

Frequency Frequency

Frequency Frequency

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

stopband skirtpassband cutoff frequency

a b

c

dhighpass bandpasslowpass bandstopa b c

d

Figure 2.6.: Filter prototypes (adapted from Winder, 2002, p. 23).

23

are all linear time-invariant (LTI) systems. The formal characteristics of these filters are time
invariance, linearity, causality and stability. While time invariance grants constant system
coefficients for the investigation period, linearity ensures superposition and scaling principles
of linear systems, respectively, additivity and homogeneity. Causality states that the system
is not anticipatory; thus, the output only depends on the input, and stability specifies that
sequences with limited absolute values will produce output sequences within the bounds of
this limitation. (Haslwanter, 2021, p. 73, Alessio, 2016, pp. 36–37)

Filter operations always consider a neighbourhood for every point of the signal. This means
that they use previous and subsequent measurements of every time step. For each tuple of
neighbouring values, the filter function is applied, which causes a slight phase delay in the
output signal of filter operations. (Haslwanter, 2021, p. 82, Alessio, 2016, p. 193)

From all the above information, the general expression for a filter operation can be written as
follows:

y[n] = h[n] ∗ x[n] (2.29)

y[n] − signal output function,
h[n]− filter impulse response,
x[n]− signal input function (Alessio, 2016, p. 38).

This expression - just as all the following equations on digital filters - follows a numerical,
computational notation rather than a mathematical one. The advantages of using this notation
will become apparent when viewing and following the paragraphs on the digital signal
processing (DSP) representations.

2.4.2. Finite Impulse Response Filters

Finite impulse response (FIR) filters are typically nonrecursive linear digital filters. Their
characterising feature is that they generate an impulse response of finite nature. They can be
implemented both digitally or analogously but are mainly used as digital filters.

y[n] =
M∑︂
k=0

bk · x[n− k] (2.30)

y[n] − signal output function,
k − control variable,
M − order of magnitude of input sequence,
bk − filter coefficients,
x[n]− signal input function (Haslwanter, 2021, p. 73). (Gazi, 2018, pp. 290–291)

24

The scheme for an FIR filter in figure 2.7 shows how computers process the digital filter
operations. This DSP representation highlights the finite nature of the filter as it works by
solely processing data from the input sequence. FIR filters are easy to realise because their
design is linear, and the desired optimisation typically follows straight-forward optimisation
goals. Their finite nature guarantees stable operation, i.e. convergence toward a constant.
The disadvantage to FIR filters is that they require large memory contingencies, and for
complex problems, the process can become time-consuming. Common FIR filters are median
filters, moving average filters (also known as boxcar filters) and Savitzky-Golay-Filters. (Stein,
2000, pp. 602–603)

2.4.3. Infinite Impulse Response Filters

Contrary to FIR filters, infinite impulse response (IIR) filters are usually recursive, and their
impulse response does never exactly reach zero but instead lasts indefinitely. This property
results from the impulse response of IIR filters considering the most recent output values
ongoing from the first output. (Haslwanter, 2021, p. 75)

y[n] =
M∑︂
k=0

bk · x[n− k]−
N∑︂
k=1

ak · y[n− k] (2.31)

y[n] − signal output function,
k − control variable,
M − order of magnitude of input sequence,
bk − filter coefficients,
x[n]− signal output function,
N − order of magnitude for most recent output values,
ak − filter coefficients for most recent output values (Haslwanter, 2021, p. 75).

The scheme for an IIR filter in figure 2.8 shows how computers process the digital filter
operations. This DSP representation highlights the infinite nature of the filter as it works
by processing data from the input sequence and additionally taking recent output data into
account. The design of IIR filters is also linear, but while the desired optimisation by the
impulse response of IIR systems often approaches a constant (usually zero), it does not
always. Sometimes, the infinite nature of IIR filters makes the operations become unstable
and produce unbound outcomes. IIR filters require less memory than FIR filters and are more
computationally efficient and easier to implement than FIR filters. However, FIR filters can be
easier to design when specific frequency responses are required or when a form aside from
the beforementioned four prototypes is needed. Common IIR filters are Butterworth filters,
Chebyshev filters, Cauer filters and Bessel filters. (Stein, 2000, pp. 602–603)

25

Delay Delay Delay
x[n] x[n-1] x[n-2] x[n-M]

y[n]

b0 b1 b2 bM

Figure 2.7.: Digital signal processing representation of a finite impulse response filter
(adapted from Haslwanter, 2021, p. 74).

Delay

Delay

Delay

x[n]

x[n-2]

x[n-3]

y[n]

b0
Delay

b1

b2

b3

bM

x[n-1]

x[n-M]

Delay

Delay

Delay

Delay

-a1

-a2

-a3

-aN

y[n-1]

y[n-2]

y[n-3]

y[n-N]

Figure 2.8.: Digital signal processing representation of an infinite impulse response filter
(adapted from Haslwanter, 2021, p. 75).

26

3. Acoustic Doppler Velocimeter

ADVs are measurement devices predominantly used to record instantaneous three-dimensional
single-point velocity data in fluids. They are commonly used for laboratory and field measure-
ments. Notable manufacturers of ADV devices are the Nortek Group, Norway (devices: Vector,
Vectrino and Vectrino+) and SonTek, USA (devices: microADV, Argonaut, FlowTracker).
Since the Chair of Hydraulic Engineering at TU Darmstadt only uses Nortek devices, this
paper emphasises those.

The following sections describe the fundamentals of ADVs in theory and practice: components,
the basic principles of acoustic Doppler velocimetry, errors, and commonly applied data
analysis methods for ADV data.

3.1. Components

An ADV comprises a pressure case, a probe with several transducers, power and communication
cables and sensors. The pressure case connects to a computer and an external power source
with a power and communication cable. It contains a single circuit board that manages the
power supply and signal processing. This electronic module acts as the interface between the
probe and the connected computer. A cable or a rigid rod links the probe to the pressure case.
The probe mounts two types of transducers: one transmitter and, varying by model, several
receivers. While the transmitter sits at the centre of the probe head, the receivers are at the
tip of each angled receiver arm. Vertical and horizontal operation of probes is possible. All
the Nortek models have a temperature sensor. The Vector also comes with a pressure sensor
to collect pressure data, tilt sensor to detect the tilt of the probe against a set axis, and a
compass or an inertial motion unit to translate velocity measurements into earth-north-up
(ENU) coordinates. Nortek also offers the Vectrino as a sturdier field probe. The pictures in
figure 3.1 show two models manufactured by Nortek with a differing number of receivers and
different probe fixing. (Nortek, 2021, pp. 26, 41)

27

(a) Nortek Vector (b) Nortek Vectrino

Figure 3.1.: Nortek ADVs (Nortek, 2021, p. 1).

3.2. Basic Principles of Acoustic Doppler Velocimetry

To explain the measurement principle of ADVs, one must first understand the basic physical
principles of sound waves and their propagation. Therefore, this section starts with the
underlying physical principles and ultimately explains the working principle of ADV measuring.

3.2.1. Sound Propagation

Literature defines sound as the propagation of a local change in pressure in gases, liquids and
solids. Sound propagates in longitudinal mechanical waves. Transversal mechanical waves
are also possible in solids or at boundary layers between gases and liquids. (Hering et al.,
2016, pp. 420, 554)

Several parameters specify sound waves: amplitude, wavelength, period, frequency and wave
speed (Harten, 2021, p. 146). While the amplitude gives the maximum deflection of the wave,
the wavelength is the length after which the wave pattern repeats, and the period is the time
needed for one repetition. The inverse of the period is the frequency. It shows the number of
oscillations per time unit. (Wolfson, 2020, p. 267)

The speed of sound depends on the elasticity for solids, the compressibility for gases and
liquids (also bulk modulus), and the density of the medium which the sound passes through.
In this thesis, only the speed of sound in fluids is relevant, which calculates with

cf =

√︄
K

ρ
(3.1)

28

cf − speed of sound in fluids [ms],
K − bulk modulus [N

m2],
ρ − density [kg

m3]. (Harten, 2021, pp. 153–154)

Sound propagation obeys all observations that also prevail for light waves, such as reflection,
refraction, and interference, and thus the superposition principle (Wolfson, 2020, pp. 273–
281).

3.2.2. Doppler Effect

A point source of sound produces mechanical waves which propagate uniformly around the
point source (see figure 3.2a). If the sound source moves, the propagation shifts from uniform
to non-uniform. A stationary sound source and a moving observer of sound (e.g. a sensor or
the human ear), or both of them moving at different speeds or in different directions, have
the same effect. Figure 3.2b shows this shift for two observers (A and B) for a moving the
sound source. Dependent on the direction of movement of the sound source, the sound wave
apices appear with decreased or increased spacing. Consequently, the wavelengths decrease or
increase, respectively, which affects frequency as wavelength and frequency behave inversely
proportional. This effect is called the Doppler effect, or Doppler shift. (Harten, 2021, pp. 57–
58, Wolfson, 2020, pp. 282–283)

A B

λ

S

(a) Uniform sound propagation

A B

λ'recede λ'approach

vsS

(b) Doppler effect

Figure 3.2.: Sound propagation with stationary (a) and moving (b) sound source (adapted
from Wolfson, 2020, p. 282).

29

3.2.3. Working Principle of the Acoustic Doppler Velocimeter

The ADV device is installed in the water body and put into operation. First, the transmitter
produces a pair of sound pulses of a preset frequency into the water. The sound pulses
propagate per the laws of sound propagation. Because the sound waves reflect from particles
suspended in the water in the direction of the instrument, they can then be picked up by the
receivers of the ADV device. As the suspended particles in the water move along pathlines
at flow velocity (see subsection 2.2.1), the reflection of the sound signals is also affected by
the current flow velocity, which manifests itself in the form of a change in frequency - the
Doppler effect. By detecting the phase difference of the two sound echos, the current velocity
can be output using

v =
∆ϕc

4πfs∆t
(3.2)

v − velocity [ms],
∆ϕ− phase difference [-],
c − speed of sound [ms],
fs − transmitted frequency (sampling frequency) [Hz],
∆t − time difference between pulses [s]. (Nortek, 2021, pp. 12–13)

As the instantaneous velocity is measured by the degree of similarity or difference between the
two sound pulses, the measurement technique is also known as the pulse-coherent method.
The time between the two pulses introduces a small lag to each measurement which is
important to consider for the range of velocities to be quantified. (Nortek, 2021, pp. 12–13)

The Nortek ADV devices transmit from the centre to a space in the water body called the
sampling volume. This volume is defined at a known distance from the centre transducer,
the transmit length and the receivers’ intersection zone. The Nortek devices can measure in
Cartesian coordinates or by beam orientation. The beam coordinates are the ”rawest” format
which means that they are best when wanting to perform data analysis operations to decrease
uncertainty. Further pointers on the uncertainty in measurement of ADV measurements will
be brought up in the following section 3.3. (Nortek, 2021, pp. 13–15)

3.3. Uncertainty in Measurement

It is indispensable for every experiment that relies on measuring quantities to discuss mea-
surement errors and uncertainty in measurements. The following subsections introduce

30

a standard recommendation for evaluating statistical and non-statistical parameters that
influence measurements - the Guide to the Expression of Uncertainty in Measurement (GUM).
The GUM defines two types of evaluation and two types of errors, which are identified and
indicated in detail for ADV measurements after this.

3.3.1. Guide to the Expression of Uncertainty in Measurement

To facilitate standardisation of the expression of uncertainty in measurement, the Joint
Committee for Guides in Metrology (JCGM) regularly publishes and revises an international
standard called the Guide to the Expression of Uncertainty in Measurement. Overall, the
guide offers best-practice advice for measurements and a discussion of uncertainty, its compo-
nents, possible corrections and practical tips. Ultimately, it recommends a procedure for the
evaluation of uncertainty in measurement. (JCGM, 2008b)

The GUM differentiates between two types of uncertainty assessment methods: statistical
analysis of measurements (type A) and methods relying on scientific judgement based on
peripheral information on measurements (type B). Type A evaluation includes calculating
statistical parameters, namely the arithmetic mean, variance, covariance or correlation for
multi-measurand measurements and skewness and kurtosis, the third and fourth statistical
moments. With the latter two parameters being taken on by the first supplement to the GUM,
which provides a general numerical approach to GUM principles (JCGM, 2008a, p. 29). As
variance can be hard to interpret in practice, the guide also allows the specification of the
standard deviation. Type B evaluation is linked to a concept which is often called subjective
probability as it not only takes the concerned measurement into account but also includes data
from previous measurements, general knowledge concerning the measurement, boundary
conditions, equipment and materials, expert and manufacturer recommendations, calibration
procedures, certificates and reference data. Type A and type B evaluations can be combined
to analyse data. (JCGM, 2008b, pp. 22–23)

The GUM defines uncertainty in measurement as follows:

”uncertainty (of measurement)
parameter, associated with the result of a measurement, that characterizes the
dispersion of the values that could reasonably be attributed to the measurand”
- JCGM, 2008b, p. 14

Consequently, the uncertainty term and the traditional error term must be explicitly distin-
guished: Errors can be of random or systematic nature. While random errors result from
unpredictable random effects, systematic errors result from recognised influence quantities.
Both error types cause effects on the observation of the intended measurand, which in turn
affects the uncertainty in said measurement. It is impossible to compensate for random effects,

31

but their impact on uncertainty in measurement can be minimised by increasing the number
of observations. Systematic errors can often be quantified, corrected or compensated. Even
after correcting effects caused by errors, the measurement result remains an estimate, and a
discussion of uncertainty remains essential. (JCGM, 2008b, p. 17)

Type A Evaluation

Here, type A evaluation parameters are defined with their equations specified in the GUM.
However, the general terms are replaced with the notation for one velocity component (u,
v and w) specified in subsection 2.2. The equations apply to the other velocity compo-
nents, respectively. Also, alternative notations are included to ensure clear identification of
parameters:

µu = ū =
1

n
·

n∑︂
k=1

uk (3.3)

σ2
u =

1

n− 1
·

n∑︂
k=1

(uk − ū)2 (3.4)

σu = urms =

⌜⃓⃓⎷ 1

n− 1
·

n∑︂
k=1

(uk − ū)2 (3.5)

µu, ū −mean [ms],
uk − observed value [ms],
k − control variable [-],
n − number of observations,
σ2
u − variance [m2

s2],
σu, urms − standard deviation [ms]. (JCGM, 2008b, p. 22)

For measurements that determine more than one measurand at once, the GUM recommends
giving the covariance matrix elements or the elements of the correlation coefficient matrix.
This applies in the case of flow velocity measurements with ADV devices as the devices record
data for all three velocity components. The covariance of velocity components u and v - and
other combinations, respectively - calculates as follows:

32

u′v′ =
1

n− 1

n∑︂
k=1

(uk − ū)(vk − v̄) (3.6)

u′v′ − covariance of velocity components u and v [m2

s2].

The correlation coefficient matrix is the normalised covariance matrix. Normalisation is
performed by dividing by the multiplication of the standard deviations of the respective
velocity components. (JCGM, 2008b, pp. 4, 12, 42) Further, the GUM indictates that skewness
and kurtosis can be provided as supplementary information to analyse data regarding its
distribution (JCGM, 2008a, p. 29). Skewness, the third statistical moment is calculated using
the following formula with

γm =
1

n−1
·
∑︁n

k=1(uk − ū)3√︂
1

n−1
·
∑︁n

k=1(uk − ū)2
(3.7)

and kurtosis, the fourth statistical moment follows as

ωm =
1

n−1
·
∑︁n

k=1(uk − ū)4(︁
1

n−1
·
∑︁n

k=1(uk − ū)2
)︁2 (3.8)

γm − skewness [-],
ωm − kurtosis [-] (Agarwal et al., 2021, p. 5).

Type B Evaluation

As type B evaluation does not follow a standardised procedure or a set of equations, it is
nearly impossible to give an exhaustive summary of all type B evaluations possible for ADV
measurements. While the ADV itself gives out a few parameters to rate the quality of any ADV
observation, technical literature deems those as not fit to evaluate the quality of measurements
(see section 4.1). They do not give information on the uncertainty in measurement involved.
However, many type B evaluation strategies are implied by data correction methods as the
approaches generally demarcate ’good’ and ’bad’ data (see sections 4.3 and 4.2). As stated
by the GUM, uncertainties in correction might lead to bias and thus can introduce further
uncertainty to measurements (JCGM, 2008b, p. 17).

33

A standard method for velocity measurements apart from the statistical evaluation is to
inspect ADV measurements using turbulence spectra. By assuming that the turbulence model
assumptions hold, it is expected that the slope of the spectra follows the theoretical Kolmogorov
turbulence spectrum. The −5

3
slope in the inertial subrange of the spectrum is especially

useful for comparison (see subsection 2.2.3). This approach is often used as authors assume
the type A evaluation parameters to remain the same when correcting specific errors. Those
errors have zero means, so statistical parameters sometimes cannot indicate the correction
method’s success or failure. However, there have been no efforts to formalise an evaluation
using the Kolmogorov dissipation range. The only broadly recognised criterion is the −5

3
slope

in the inertial subrange.

3.3.2. Random Effects

As previously mentioned, random effects are caused by unpredictable, random occurrences
that influence the observation of the measurand. This type of effect is essential for ADV
measurements, as random effects are inherent to flow velocity measurements: variation in
flow velocities are caused by the turbulent nature of flows (see subsection 2.2.3), the forming
of air bubbles (Mori et al., 2007) and swirls of dispersed sediments (Chanson et al., 2008),
interference of fauna (e.g. fish movement) or nautic traffic (Chanson et al., 2007) when
measuring in natural systems. The only way to resolve said variation is to sample at an
adequate sampling rate to reach high enough timely resolution to display the measurand
in detail. Another factor is waves requiring adequate sampling to find periodicity and to
capture the sea state statistically. Then, wave fluctuations can be considered for static ADV
measurements (C. J. Huang et al., 2018). (Nortek, 2021, pp. 20, 34–35, 58) A procedure to
find an optimal sampling time to reduce the influences of random effects while still considering
efficiency in time and resources is assayed in chapter 7.

3.3.3. Systematic Effects

In this subsection, several systematic errors that lead to systematic effects in ADV measure-
ments are highlighted. Most of these errors can be avoided by considerate preparation and
thoughtfully tuning the settings of the ADV. Many can also be prevented by preliminary tests
or cross-examinations. This includes visually inspecting the device before use, pinging in still
water and test measuring to chose adequate velocity ranges.

Data analysis methods which attempt to reduce uncertainties in measurement caused by
systematic effects are presented in chapter 4 some of which are implemented in Python and
tried for hydraulic data at hand in chapter 5.

34

Calibration

ADV measurement devices are factory-calibrated and remain accurate unless there are me-
chanical impacts that physically harm the probe heads. Calibrated ADVs have a bias of less
than 1% of the measured value. However, calibration might be needed for auxiliary sensors
such as temperature, compass, pressure or tilt sensors. (Nortek, 2021, pp. 13, 23, 85)

Signal Strength

To confidently measure velocity with ADVs, the reflection of the emitted signal needs to surpass
a certain level, which is quantified by a parameter called signal strength. It is measured
using the original signal amplitude in a unit called counts, which is connected to the decibel
term and describes the degree of required signal amplification by the device. (Nortek, 2021,
pp. 19–20) A low number of suspended scatterers in the fluid usually leads to decreased
reflection and thus to low signal strength. (Nortek, 2021, p. 113) The type of suspended
particles also affects signal strength. (V. I. Nikora & Goring, 1998, p. 3)

Pulse-to-pulse Interference

The pair of short acoustic pulses emitted by an ADV can be exposed to circumstances that
interfere with the expected reflection from particles. This effect is called pulse-to-pulse
interference. (Nortek, 2021, p. 118) It occurs when measurements take place in proximity
to solid boundaries or the water surface: the first pulse hits the boundary, is reflected, and
arrives at the sampling volume while the second pulse simultaneously passes the sampling
volume. The location where pulse-to-pulse interference occurs is called a weak spot. (Nortek,
2021, p. 55) The consequence of weak spots for velocity data from ADV measurements is an
underestimation of flow velocities. (Precht et al., 2006, p. 10)

Connection Errors

Errors caused by an interrupted connection between the probe and the computer, either
provoked by hardware or software, are called communication errors. They might occur due
to cable damage, overly long cables or momentary loss of power. Depending on the specific
issue, the sample might miss data points, or the device automatically adjusts the sampling
rate. (Nortek, 2004, pp. 34–35, 106)

35

Noise Floor

The noise floor is specific for a device and describes the measured velocity when theoretically
no velocity measurement is possible. The device will measure nothing but noise. The noise
floor can be identified by, e.g. pinging in the air. The device will then give a number of counts
which can be validated with reference values from the manufacturer. All sensor heads count
similar noise floors. (Nortek, 2021, p. 71)

Phase Wrapping

Phase wrapping (also Doppler aliasing) results from pulse-coherent systems not identifying
the Doppler phase shift distinctly. The Doppler phase shift is calculated using the covariance
method with the arctangent, limiting resulting angles between−π and π. (Rusello, 2009, p. 5)
Yet, if the modulus of the Doppler shift is greater than π, the possibility to unambiguously
determine the Doppler phase shift disappears, and velocity measurements show sudden,
unexpected changes in magnitude, most of the time accompanied by a change in sign. (Nortek,
2021, p. 118)

Acoustic Streaming

Secondary flow caused by acoustic pulses generated by the device is called acoustic streaming.
The induced streaming has a rather small effect on velocity measurements as it only ranges
up to velocities of 3 cm

s . (Nortek, 2021, p. 56) Therefore, acoustic streaming is particularly
important for measurements of small velocities as the possible errors might be relatively large
compared to the measured values.

Analytical solutions can approximate acoustic streaming. They prove a dependency of the
magnitude of acoustic streaming effects on the transmitted sound amplitude. Experiments
with ADVs show increasing secondary flow in close proximity to the device and a beginning
decline of the effects between 3 cm to 9 cm. Also, flow perpendicular to the ADV measurement
axis reduces but does not prevent acoustic streaming effects. (Poindexter et al., 2011, pp. 2,
8–11)

Probe Head Vibration

Even small vibrations of the ADV mount can generate large spikes in velocity data. Vibrations
can be caused by wave impacts, high flow rates, unstable mounting of the device or vibrations
from the laboratory, e.g. generated by nearby equipment. (Nortek, 2021, p. 63)

36

4. Data Analysis Methods for Acoustic
Doppler Velocimeter Data

This section points out existing data analysis methods for ADV data. Subsection 4.1 addresses
basic cutoff filters that use parameters directly output by the ADV device. The subsequent
two subsections divide data analysis methods by two different types of erroneous data.
While subsection 4.2 discusses analysis methods for detecting outliers in hydraulic data, i.e.
despiking, subsection 4.3 picks up data analysis methods for reducing error effects caused by
noise, i.e. denoising. However, it needs to be pointed out that defining the scopes of despiking
and denoising analysis methods and distinguishing them from each other is quite tedious and
not always possible. Some methods are used for both purposes or adapted to the other. Lastly,
subsection 4.4 outlines options to remove or replace erroneous data points and indicates the
advantages and disadvantages of either approach.

4.1. Basic Cutoff Filters

Basic cutoff filters reject measurements which do not fit a chosen quality cutoff value. ADVs
give out two parameters to which basic cutoff filters can be applied: the signal-to-noise ratio
(SNR) and the correlation score (COR). If the filters detect inadequate data points, the user
either deletes them without replacement or chooses a data replacement method to find an
appropriate replacement for the data points (see section 4.4). Several authors (Köse, 2013,
p. 2, Agarwal et al., 2021, p. 2) also refer to these methods as spike detection filters. Other
authors (Mori et al., 2007, p. 4) say that the parameters applied by these filters are not fit for
processing ADV data as they show no apparent relation to erroneous data points. Generally,
these basic filters are not very present in the relevant literature, and publications seldom pick
them up. The occasional use indicates that they only offer limited means to process ADV
data and must therefore only be applied as fast preliminary tools to get an overview of the
recorded data and its quality.

37

4.1.1. Signal-to-noise Ratio Filter

The SNR is a parameter given by the device for each probe head. Just as the original signal
amplitude in the unit counts (see subsection 3.3.3), it assesses the signal strength of a
measurement. The SNR uses the unit decibel and relates the signal amplitude to the total
current amplitude, including the noise floor (see subsection 3.3.3):

SNR = 20log10
As

At
(4.1)

SNR− signal-to-noise ratio [dB],
As − signal amplitude [counts],
An − total amplitude [counts].

Nortek recommends an SNR above 15dB for original data and above 5dB for mean data.
(Nortek, 2021, p. 20)

4.1.2. Correlation Score Filter

The device also gives out the correlation score for each probe head. It describes the degree
of similarity between the two pulses transmitted by the device. Complete correlation gives
a score of 100%, and no correlation gives a score of 0%. A high correlation of the two
pulses indicates a valid phase shift but not necessarily an accurate velocity measurement. For
correlation filters, many researchers use a threshold of 70% (Köse, 2013, p. 3, Wahl, 2000,
p. 6, Agarwal et al., 2021, p. 8). Nortek recommends filtering data by a quality cutoff value
determined by visual prescreening the recorded data. (Nortek, 2021, p. 21)

For a dataset produced with jet streams, Islam and Zhu, 2013, p. 6 find that correlation
filtering removes many good data points and does not improve data quality. The authors
conclude that correlation filtering does not suit all flow and turbulence conditions.

4.2. Despiking

An often observed problem with ADV data is that the velocity time-series contains sudden
spikes. The spikes are assumed not to be part of the measured random variable as the
corresponding accelerations exceed physical upper limits (Wahl, 2000, pp. 6–7). This error is
known as phase wrapping (see subsection 3.3.3). The presence of spikes in ADV time-series

38

influences the calculation of flow and turbulence parameters as data outliers can significantly
alter statistical parameters (see subsection 2.2.3).

The following subsections outline scientific endeavours to eliminate spike data from ADV
velocity signals, their benefits, challenges, critical reviews and efforts to improve despiking.
While they pick up the most popular approaches to ADV despiking and even some lesser-known
ones, they are not exhaustive.

4.2.1. 3D Phase Space Thresholding

A broadly applied method to eliminate spikes in ADV time-series is the 3D phase space
thresholding method by Goring and Nikora, 2002, which is discussed and adapted by Wahl,
2003 and Mori et al., 2007.

The method is composed of three ideas:

– The derivative of a signal amplifies its high-frequency components.

– The universal threshold from wavelet theory (see subsection 2.3.4) gives the expected
maximum of a time-series.

– Data holding similar properties form a cluster, and data outside the cluster must be
suspected to be outliers.

From these ideas, a procedure is derived: First, one forms the first and second derivatives of
the measured velocities, then calculates the standard deviation and the expected universal
threshold. Then, the velocities and the second derivatives are cross-correlated, and the
maximum boundaries of an ellipse in 3D phase space are calculated. Lastly, data points
outside the projected ellipse are detected and replaced. The algorithm iterates until the
replacement of outliers induces no more effects on the calculation of standard deviations. The
left side of figure 4.1 shows the forming of data clusters in 3D phase space and the difference
between the ellipse demarcation of the original method by Goring and Nikora, 2002 and the
adaptation by Wahl, 2003. (Goring & Nikora, 2002)

Many studies on hydraulic problems that use ADV data apply the 3D phase space thresholding
method and regularly compare the method to other despiking methods. It is cited often
and pops up in virtually every publication concerning ADV data analysis, but still, authors
run into problems. For example, Chanson et al., 2008, p. 4 find the method inadequate for
velocimetry data in a natural estuarine system. However, they also state general difficulties in
selecting appropriate techniques for lack of independent representative data sets for comparing
methods. Islam and Zhu, 2013, p. 6 only consider the 3D phase space thresholding method
effective if the number of spikes is significantly smaller than the number of non-spiky data
points (<5%).

39

Figure 4.1.: Comparison of ellipse projection in 3D phase space between 3D phase space
thresholding method and velocity correlation filter (Islam & Zhu, 2013, p. 3).

4.2.2. Velocity Correlation Filter

The velocity correlation filter developed by Cea et al., 2007 picks up several ideas of the 3D
phase space thresholding method by Goring and Nikora, 2002. The major difference is that
instead of cross-correlating the velocities and their second derivatives, it cross-correlates the
velocity components against each other. This approach facilitates non-iterative filtering and
replacement of erroneous data points as spike detection depends on the relation between the
three-component measurements at one point rather than the relation between successive mea-
surements (i.e. derivatives). However, this also means that applying the velocity correlation
filter dismisses the advantages of idea one in list 4.2.1.

The authors test their method with ADV data recorded in a high turbulence fishway scale
model containing many air bubbles and compare the despiking results to the 3D phase space
thresholding method and its antecedent - the acceleration thresholding method by V. Nikora
and Goring, 2000. They find that all methods work similarly well concerning the filtered
signals and statistical parameters. Still, the amount of detected spikes varies with the choice
of filter, which hints at differences in operation.

The right side of figure 4.1 shows how the velocity correlation filter pools ADV data into
clusters and demarcates spiky from non-spiky measurement points. The method does not
differ noticeably from the 3D phase space method displayed on the left side.

40

4.2.3. Wavelet Space Despiking

Razaz and Kawanisi, 2011 use wavelet theory (see subsection 2.3.4) for despiking ADV
time-series. However, the authors do not apply discrete wavelet theory but take a slightly
different approach with wavelet packet decomposition, where the composition includes both
detailed and approximated coefficients. The method applies the universal threshold as the
thresholding criterium and enhances the accuracy by introducing a robust scale estimator.
This estimator is devised so that its influence function becomes unbound if the magnitude
of a data point is relatively large, i.e., a spike. If the data point stays within the sample’s
morphology, the function is bound. The authors test several choices for this estimator and
present a recommendation for future use; the new criterion is further called the shrinkage
criterion.

The algorithm using the wavelet method requires the following steps:

1. Transform the time-series into a zero-mean sample.

2. Extract the wavelet packet basis using a spline filter with a single coefficient Fourier
cosine series.

3. Set the shrinkage criterion.

4. Find spikes by detecting non-zero values in the inverse wavelet decomposition (Razaz &
Kawanisi, 2011, p. 3).

The authors suggest autoregressive moving average (ARMA) modelling or Kalman filtering for
data replacement after the despiking process.

4.2.4. Kernel Density Estimation Despiking

Islam and Zhu, 2013 devise a despiking algorithm based on a statistical method called kernel
density estimation (KDE). The paper states the necessity for an improved despiking method
as existing methods - essentially, the methods described in subsections 4.2.1 and 4.2.2 - prove
inadequate for ADV measurements obtained in a wall jet in a flume. The authors discover that
samples containing many spikes lead to the development of spike clusters that become part of
the calculated ellipses and, therefore, are not detected as outliers. Indeed, figure 4.1 shows
an example for which the demarcation technique of the 3D phase space thresholding method
only works partially. Islam and Zhu, 2013, p. 6 argue, that for the showcased data set, all
clusters within Goring and Nikora, 2002’s ellipse, but the very central cluster are so-called
spike clusters. According to the paper, Wahl, 2003’s further development of the 3D phase
space thresholding method successfully isolates said spike clusters. This can also be seen in
figure 4.1. However, the statistics swayed by the high number of spikes still cannot produce

41

satisfying filter results without manually manipulating the cutoff threshold. The proposed
kernel density despiking method attempts to determine cutoff thresholds automatically by
taking data and spike patterns into account.

KDE is a statistical technique relying on the fact that random variables are distributed in known
probability distributions. Like other non-parametric techniques, KDE tries to identify a proba-
bility distribution from a sample. The procedure is comparable to constructing a histogram,
but instead of forming a discrete distribution, it approximates a continuous distribution density
function. This approximation is made by multiplying the bins of the histogram by a probability
distribution function and summing up the resulting curves. For the KDE despiking, the method
assumes the Gaussian probability distribution and uses the respective function (see equation
2.1) for multiplication; it uses a Gaussian kernel. Other kernels apply different probability
distributions. For example, a Python package to perform kernel density estimations offers
a tophat kernel, exponential kernel, linear kernel, cosine kernel, Epanechnikov kernel, and
Gaussian kernel (Pedregosa et al., 2011). Another parameter to consider is the bandwidth:
it determines the tradeoff between bias and variance of the continuous function. Therefore,
mathematically, the kernel is a function dependent on the data set and the chosen bandwidth.
(Haslwanter, 2021, p. 94)

The bivariate KDE equation used for KDE despiking goes as follows:

f̂(x, y) =
1

2πNhxhy

N∑︂
i=1

e
− (x−xi)

2

2h2x
− (y−yi)

2

2h2y (4.2)

f̂(x, y)− density estimation at location x and y,
x − location of density estimation for x variable,
y − location of density estimation for y variable,
N − number of data points,
hx − bandwidth for x-axis,
hy − bandwidth for y-axis,
xi − realisation of x variable,
yi − realisation of y variable (Islam & Zhu, 2013, p. 3).

Using all this information, Islam and Zhu, 2013 devise a despiking algorithmwith the following
main points using a bivariate kernel designed by Botev et al., 2010:

1. Decide on one velocity component variable and devise its first derivative. These are the
two variables used for the bivariate kernel density estimation.

2. Estimate the rotation angle of the principal axes of the grid with the classical least-squares
approximation.

42

3. Transform and rescale variables to match the rotation angle and so that the values range
from 0 to 1.

4. Use the density estimation equation 4.2. Locate the maxima of the density matrix and
extract the corresponding density profiles for each variable.

5. Identify the size of the ellipse from the data and define the cutoff points using the slopes
of normalised densities along the ellipse.

6. Calculate the ellipse according to the cutoff points and flag outliers.

Spike removal works per beam, so spikes detected in the v-velocity component are not
eliminated from the u-velocity component and the w-velocity component and vice versa.
Replacement of the removed data points remains elective. However, to calculate turbulence
spectra, it is necessary to replace missing data points to maintain statistical propriety. (Islam
& Zhu, 2013, p. 5)

Figure 4.2 visualises steps 4 and 5 of the KDE despiking algorithm (see list 4.2.4). The data in
the figure is the same as in figure 4.1, which makes it easy to identify the difference in ellipse
demarcation between the dispiking techniques.

Figure 4.2.: Visualisation of the density map resulting from kernel density estmation (step 4)
and demarcation of the ellipse to detect spikes (step 5) (Islam & Zhu, 2013, p. 4).

43

4.2.5. Autoregressive Moving Average Models

ARMA models are linear and discrete models that represent statistical processes. They use
linear difference equations, thus represent linear statistic functions and can only approximate
more complex systems. ARMA models operate using two separate models - an autoregressive
(AR) model and a moving average (MA) model. Interestingly, the AR model corresponds to
the design of digital IIR filters (see subsection 2.4.3), and the MA model corresponds to the
design of digital FIR filters (see subsection 2.4.2). ARMA modelling also facilitates short-term
forecasts, which is a common use of the method. (Alessio, 2016, pp. 471–484)

The motive of Dilling and MacVicar, 2017 is dissatisfaction with preceding ADV despiking
methods. They criticise methods that remove non-spiky data points in time-series with few
spikes, eliminate a high number of non-erroneous data points with high magnitude spikes,
and replace spikes using simple replacement methods only. Therefore, the authors devise a
use of the following ARMA equation and an application of the Bayesian information criterion
(BIC) to determine model order:

ut =

p∑︂
i=0

φiut−i +

q∑︂
j=0

θjϵt−j + ϵt (4.3)

BIC = (n− p− q) · ln[nσ2

n− p− q
] + n(1 + ln

√
2π) + (p+ q) · ln[

∑︁n
t=1 u

2
t − nσ2

p+ q
] (4.4)

ut − velocity at time step,
t − time,
i − lag step for AR model,
p − total number of AR coefficients,
φi − AR coefficient at lag i,
j − lag step for MA model,
q − total number of MA coefficients,
θj −MA coefficient at lag j,
ϵ − residual (error) terms,
n − number of measurements,
σ − standard deviation (Dilling & MacVicar, 2017, pp. 2, 4).

The authors follow an algorithm as summarized:

1. Pre-screen data for extremely poor quality time-series.

2. Determine model order using the BIC.

44

3. Check the estimates of AR and MA coefficients, and update the model if they are off.

4. Assess whether the model residuals indicate a spike.

5. Calculate the difference between original and replacement data, normalise the values
using the standard deviation (residual z-scores).

6. Determine actual spikes by evaluating the z-scores.

7. Replace spikes. (Dilling & MacVicar, 2017, pp. 3–5)

Dilling and MacVicar, 2017 find their method more precise than other prevalent methods,
such as the 3D phase space thresholding method. An advantage is a progressive elimination
of spikes by descending spike magnitude. This approach ensures detecting extreme values
and less extreme spikes that might not represent fluctuations caused by turbulence but are
indeed erroneous. (Dilling & MacVicar, 2017, p. 12)

The method is also applied to ADV data in a study by C. Huang et al., 2020. However, the
authors use the method for denoising and compare it to a Kalman filtering denoising method
(see subsection 4.3.7). They claim that an appropriate ARMA model delivers the white noise
contaminating the signal in the form of its residuals and apply the ARMAmodel after despiking
with the adapted 3D phase space thresholding approach (Mori et al., 2007).

When reading the publication, it becomes clear that this method requires a profound knowledge
of the method and ADV data analysis as it contains many manual checks and adjustments.
On the one hand, this may make the method more precise than others but, on the other hand,
lead to complexity when processing large amounts of samples.

4.2.6. Singular Spectrum Analysis

Singular spectrum analysis (SSA) is a non-parametric spectral analysis method with the goal to
constitute the original signal by linearly combining data-adaptive functions of time. Therefore,
it does not use harmonic composition as classical spectral analysis methods do. Usually, the
SSA method consists of four steps: embedding, decomposition, grouping and reconstruction.

Embedding means that a covariance matrix - containing the signal’s desired and noisy part -
is devised from the original signal. The decomposition step calculates the eigenvalues of the
covariance matrix, giving out an eigenvalue spectrum. Every single eigenvalue represents
a different variability in the original signal. Afterwards, the eigenvalues and eigenvectors
are grouped by descending importance. Each group then forms a so-called trajectory matrix.
A conversion of the trajectory matrices into joint univariate signals, which reconstructs the
output signal, follows. (Alessio, 2016, p. 537)

45

Sharma et al., 2018 create a procedure to apply SSA to ADV recorded time-series. The authors
follow the steps of conventional SSA closely. A significant difference is that after computing
the eigenvectors of the covariance matrix, the method calculates the local mobility of each
eigenvector. The local mobility further forms the basis for defining signal subspace. Then
it removes eigenvectors that show higher mobility values than a threshold chosen from the
morphology of the data. A sinusoidal signal of 1Hz is chosen as the threshold in the publication
because the authors identify this part of the spectrum as useful. The signal’s reconstruction is
then performed only with the eigenvectors according to the set threshold, and one gets the
now despiked signal as the output.

The study finds that the SSA method produces cleaner signals than other methods with
fewer remaining spikes while also being iteration-free. Interestingly, the slope in the inertial
subrange matches Kolmogorov’s −5

3
slope but at a significantly lower power level than the

other reviewed methods. (Sharma et al., 2018, p. 5)

4.3. Denoising

Most of the denoising approaches for ADV devices aim to reduce Doppler noise, which is
inherent to the measurement technique of acoustic Doppler velocimetry. While the approaches
indeed employ the most different techniques and mathematical procedures, the nature of the
present Doppler noise is almost universally defined as white noise. Whereas this thesis does
not go into the specifics of white noise, its most important property for denoising strategies
needs to be stated: white noise follows a normal distribution. The following subsections
outline data analysis methods to reduce or eliminate noise from ADV measurements and give
an overview of attempts to improve ADV measurements with denoising. This section does not
provide an exhaustive list of all denoising methods but tries to pick up the most referenced
ones regarding acoustic Doppler velocimetry.

4.3.1. Noise Floor Subtraction in Turbulent Spectra

An early consideration of noise in ADV measurements is by V. I. Nikora and Goring, 1998.
The authors determine that Doppler noise is inherent to acoustic velocimetry. They name a
finite residence time of scatterers in the sampling volume, small-scale turbulence and beam
divergence as possible noise inducers and generally find that noise causes bias in statistical
characteristics and turbulent spectra obtained from original ADV signals. The authors claim
that noise in ADV measurements can be viewed as a constant fluctuation term that may be
subtracted from the time-series. Therefore, they propose to measure a Doppler noise floor in
still water to subsequently subtract the noise floor terms from the turbulence characteristics

46

determined from the time-series measured in the experiment. In further discussion of the
beforementioned method, Lemmin et al., 1999 highlight several flaws of the noise floor
subtraction method in the time domain. The paper argues that Doppler noise is dependent on
several circumstances, which sometimes will even be present in still waters. The discussion
also picks up spectral analysis of ADV measurements and how spectral density often plateaus
in high-frequency zones of spectrums.

As a continuation of the discussion, Dombroski and Crimaldi, 2007 try to utilize this plateau
of density spectra combined with noise floor subtraction. For this, a high-frequency noise floor
is subtracted from the turbulence spectra of the original signal. Although the filtered spectra
show improvements compared to the original ADV signals, the authors generally dismiss noise
filtering. They claim that noise filtering clouds errors, especially errors induced by measuring
in proximity to walls, which leads to turbulence statistics appearing sound in cases they are
indeed not. However, note that today’s Nortek manual (Nortek, 2021) includes spacing from
weak spots dependent on the set velocity range.

4.3.2. Digital Filtering

This subsection picks up the principal concepts of digital filters from section 2.4 and presents
ADV analysis methods applying them to ADV data for denoising.

Gauss Lowpass Filter

Several authors report the application of Gauss lowpass filters to filter out Doppler noise.
They all use a method devised by Lane et al., 1998, which uses the digital filter and the
corresponding parameters designed by Biron et al., 1995. Note that Biron, 1997 correct a
significant error in the Gauss function of the original publication.

The Gauss filter function used for this method is

w(t) = (2πσ2)−
1
2 · e

(︂
−t2

2σ2

)︂
(4.5)

with sigma calculating as

σ =

(︃
ln(0.5)0.5

−2π2f 2
50

)︃ 1
2

(4.6)

using the half-power frequency devised from the sampling frequency

f50 =
fs
6

(4.7)

47

w(t)− Gauss filter function,
t − time,
σ − standard deviation of the filter,
f50 − half-power frequency,
fs − sampling frequency. (Lane et al., 1998, p. 8)

The filter operates with a cutoff frequency at the Nyquist frequency, with the standard
deviation of the filter as the only other interchangeable parameter. This parameter specifies
the steepness of the transition band of the filter’s frequency response. A higher standard
deviation produces steeper frequency responses and smoother filtered signals; a smaller
standard deviation produces wider transition bands and less attenuated filtered signals.
However, the publications at hand specify a recommended standard deviation for applying
the filter to ADV data that calculates as presented above.

The frequency response of the filter is written as

R(f) = e−2π2σ2f2 (4.8)

R(f)− Gauss filter frequency response,
f − frequency,
σ − standard deviation of the filter. (Biron et al., 1995, p. 6)

Lane et al., 1998 recognise the filter to help remove a high-frequency noise floor caused by
aliasing (see subsection 2.3.2), which also finds support from other authors (Carbonneau
and Bergeron, 2000, p. 4, Strom and Papanicolaou, 2007, p. 7) but does not lead to its
implementation on a grand scale in future publications. All results are assessed with the
approach to fit the power spectra of the velocity measurements to Kolmogorov’s inertial
subrange dissipation slope of −5

3
.

Linear Minimum Mean Square Error

Hejazi et al., 2016 also assume that the noise in ADV velocity signals is random white noise.
Using an FIR filter, the paper presents an algorithm applying linear minimum mean square
error (LMMSE) estimation:

∞∑︂
k=−∞

w(|n− k|)Rxx(k) = wn ∗Rxx(n) = Rvv(n) (4.9)

48

with a frequency response of

H(f) =
Pvv(f)

Pxx(f)
=

Pvv(f)

Pvv(f) + Pnn(f)
=

Pvv(f)
Pnn(f)

Pvv(f)
Pnn(f)

+ 1
(4.10)

wn − filter coefficients,
n − data points,
Rvv − autocorrelation matrix of the true velocity,
Rxx − autocorrelation matrix of the measured velocity,
Rnn − autocorrelation matrix of the noise,
H(f)− LMMSE filter frequency response,
f − frequency,
Pvv − Fourier transform of the autocorrelation matrix of the true velocity,
Pxx − Fourier transform of the autocorrelation matrix of the measured velocity,
Pnn − Fourier transform of the autocorrelation matrix of the noise

(Hejazi et al., 2016, p. 5).

The autocorrelation matrices of the three components (true velocity, measured velocity and
noise) are used in their Fourier transform for the filter equation as a result of using a Fourier
transform method for approximating the IIR filter form with the above-defined FIR filter.

To assess the noise elimination method by LMMSE estimation, the authors use two different
methods - an autoregressive model and a numerical 3D model. Alongside a smooth filtered
signal and a significant improvement of SNR, both assessment methods show that the LMMSE
is successful not only in denoising but also in despiking. Still, the paper only does a statistical
assessment of the filtered signals and does not assess within the scopes of a turbulence model.
(Hejazi et al., 2016, p. 8)

Lowpass Butterworth Filter

C. J. Huang et al., 2018 use a lowpass Butterworth filter to remove Doppler noise and high-
frequency fluctuations from ADV measurements. The authors chose a first order Butterworth
filter for denoising ADV data due to the filter’s common noise-reducing efforts in turbulence
spectra aside from ADV applications, such as in Roget et al., 2006. However, the publication
does not explicitly specify filter characteristics but does discuss the identification of the
Butterworth cutoff frequency by assessing wavenumber spectra. The authors expect that the
spectra of the measured velocities deviate significantly from the theoretical spectra. Therefore,
they approximate the spectra analytically and subsequently fit the measured ADV shear

49

spectra to the theoretical spectra by calculating velocity shear with Taylor’s frozen turbulence
hypothesis and transforming it into wavenumber spectra. The wavenumber at which the
beforementioned deviation occurs then dictates the cutoff frequency. (C. J. Huang et al., 2018,
pp. 2–3)

Furthermore, the authors combine the Butterworth filter with another method called empirical
mode decomposition (EMD), which this thesis does not pick up, as it is only described vaguely
in the publication. C. J. Huang et al., 2018 find that combining the two methods is indeed
constructive. The combination is indispensable for low turbulence conditions to produce good
results, but only applying the Butterworth filter is also adequate for higher turbulence. The
authors assess with the classical Kolmogorov approach in the inerial subrange and a newly
developed assessment method. (C. J. Huang et al., 2018, p. 7)

4.3.3. Bifrequency Doppler Noise Repression

The bifrequency Doppler noise repression method by Hurther and Lemmin, 2008 applies cross-
correlation of two independent velocity samples measured at different sampling frequencies
in the same sampling volume. It requires double measurement at all measurement points.
This practice seems inefficient, especially because many authors recommend sampling at the
highest sampling frequency possible to reduce aliasing (see 2.3.2). Therefore, this method is
not further discussed and is only mentioned for completeness.

4.3.4. Polynomial Least-Squares Regression

In Richard et al., 2013, the authors propose to estimate Doppler noise in ADV signals with
polynomial least-squares regression. The basic assumption of their method is that the noise
induces variance in the velocity signal’s frequency domain and that the errors of adjacent
measurements are not correlated.

Two curves are observed in the turbulent spectra: the measured spectra of the original signals
and a curve fitted to the measured spectra by least-squares approximation. The differences
between the curves are calculated and minimised as part of a regression function dependent
on N (noise in the spectra) and K (constant in the spectra). This process gives a distinct linear
system which can be solved numerically.

Although the paper finds good ways to determine noise contamination in ADV velocity signals,
it does not propose appropriate methods to eliminate noise based on polynomial least-squares
regression. (Richard et al., 2013)

50

4.3.5. Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a numerical data analysis method which simplifies
complex contexts by reducing model order. The procedure realises the simplification by
identifying the physical field’s principal components from the data with its eigenvalues
and eigenvectors. The resulting spatial functions are called modes. The modes and their
combination can represent flow structures. Lastly, a reconstruction of the signal only recognises
selected modes which alters the signal accordingly. (Weiss, 2019, pp. 1, 4)

Durgesh et al., 2014 apply POD to decompose ADV data. The procedure neglects high-order
modes when recomposing the time-series, which is called a low-order reconstruction. The
elimination of high order modes is possible because present noise is expected to be white
noise and, therefore, connected to high-energy. Neglecting these modes in reconstruction
gives a signal only containing desired components of the signal. The method is similar to the
SSA method proposed by Sharma et al., 2018 for despiking (see subsection 4.2.6).

Although the method is straightforward, the authors face difficulties when choosing an
appropriate number of modes for reconstruction. For this, they test two approaches. The first
approach assumes that the spectra follow Kolmogorov’s −5

3
slope in the intertial subrange

and adds modes until the spectrum of the reconstructed signal fits said slope. The procedure
accomplishes the slope with 359 modes. The second approach focuses on the energy levels
of the signal. It also requires knowledge of the energy level of the noise contaminating the
signal. The noise energy is subtracted from the total energy, and low-order modes are added
until the sum of the mode energy levels accounts for the expected, clean signal energy level.
Both approaches are effective, but many a priori assumptions are a general disadvantage of
either approach. When comparing spectra from Gauss filtering with spectra from the POD
method, the authors find that the POD method improves results, especially in high-frequency
sections of the spectra. (Durgesh et al., 2014, pp. 8–10)

4.3.6. Noise Auto-correlation

Noise auto-correlation (NAC) is an approach also published in Durgesh et al., 2014. It exploits
that instrument noise is identified as white noise and uses the superposition principle to
separate the auto-correlations and cross-correlations of noise and true signal in every velocity
component. Further, the authors assume the energy contribution of the white noise in the
spectra, and by Fourier transforming the auto-correlation of the true signal, they determine
the respective spectra. Therefore, the method highly relies on estimating the energy level of
the noise, which can be a disadvantage for inexperienced researchers. Also, the method only
gives noise-corrected frequency spectra and does not supply noise-corrected time-series. Still,

51

it gives adequate spectra when comparing the spectra to spectra from other methods, like the
POD or the Gauss filter. (Durgesh et al., 2014)

4.3.7. Kalman Filter

The Kalman filter is not a classical digital filter. Although it resembles an IIR filter in the
time domain, it is a recursive filter for time-varying linear systems with forecasting potentials.
Therefore it does not comply with the conditional properties of the classical digital filters
presented in subsection 2.4.

C. Huang et al., 2020 use the filter for denoising purposes for laboratory and oceanic field data
and compare the results from the Kalman filter to an ARMA model approach. The authors
only supply basic information on their procedure and refer to a used Matlab package. They
do not specify the chosen parameters to operate the package and the method. They report
that both the ARMA model approach and the Kalman filter approach are useful to eliminate
noise from already despiked signals and prove the output signals’ quality improvements with
the Kolmogorov slope approach in the inertial subrange. (C. Huang et al., 2020)

4.4. Data Replacement

While denoising efforts usually work with attenuation or amplification, operations applied
to all data points, despiking methods identify single erroneous data points. For the time
being, this identification of spikes does not alter the other data points of the set, and one must
decide how to proceed further. There are two possible options available: eliminating spikes
or replacing the spikes by determining an appropriate value for the concerned data point.

Elimination of spikes is the easiest solution to deal with identified spikes. Provided that data
sets are large, elimination does not alter turbulence statistics compared to an appropriate
replacement method. This course of action is valid for only obtaining a mean velocity or
turbulent kinetic energy value. (Cea et al., 2007, p. 2)

Though, when working with methods that analyse in the frequency domain, like the Fourier
analysis, or that rely on order and succession of values, such as forming derivatives, solely
deleting data points causes bias by suddenly allocing the values of the signal to different time
steps. This misalignment of data significantly impacts turbulence spectra, insinuating shifts
in periodic phenomena. Therefore, proper spike replacement is indispensable for spectral
analysis. (Islam and Zhu, 2013, p. 5, Razaz and Kawanisi, 2011, p. 2) Still, spike replacement
can also introduce additional uncertainty to samples by adding artificial frequency components

52

to spectra. Authors surmise the highest impact of replacement efforts on uncertainty in the
spectra’s high-frequency parts. (Doroudian et al., 2010, p. 9)

Several rather basic data replacement methods exist. They can be divided into three categories:

– Extrapolation: last valid data point, last two valid data points.

– Interpolation: linear between endpoints, polynomial, cubic spine.

– Statistical time-series parameters: mean, median.

Although authors attempt to evaluate the effects of different replacement methods on their
data, there exists no consensus for a genuine recommendation. As a result, the replacement
process is perceived as arbitrary but not satisfactory at the same time. (Wahl, 2003, p. 1,
Hejazi et al., 2016, p. 2, Goring and Nikora, 2002, pp. 4, 9, Doroudian et al., 2010, p. 2, Cea
et al., 2007, pp. 2, 5, Chanson et al., 2008, p. 5, Jesson et al., 2013, p. 3)

This discontentment with replacement methods lead to the publication by Razaz and Kawanisi,
2011 which uses time-series modelling and Kalman filtering for the prediction of values and
the paper by Dilling and MacVicar, 2017, which applies autoregressive moving average (ARMA)
models for replacing spike data. Both papers evaluate that their replacement strategies work
reasonably well and are superior to the basic replacement methods.

4.5. Available Software

The most common free data analysis tool for ADV data is a software called WinADV. It was
published in 1996 by the U.S. Bureau of Reclamation, Water Resources Research Laboratory.
It offers post-processing methods for ADV data recorded with SinTek and Nortek ADV devices,
such as visualisation, filtering, data flagging and statistical analysis. WinADV also offers
easy visualisation of data and facilitates manual screening. The software comes with a user
interface which makes it accessible to users without programming proficiency. (Wahl, 2000)

Although the software WinADV is quite old, it still provides the most needed tools when
working with ADV data. It has considerable advantages over more flexible solutions like
e.g. Microsoft Excel, which fails to process large data sets reasonably. Scripts in modern
programming languages, such as Python or Matlab, require previous knowledge and, as in the
case of Matlab, sometimes are costly. WinADV is also still recommended by expert panels, e.g.
the German Federal Waterways Engineering and Research Institute (Sokoray-Varga B. & Höger
V., 2014) and the realised methods are devised from recommendations by manufacturers
(Nortek, 2021). Consequently, many researchers rely on the software and continuously use it.

53

In 2021 a research group published a Python framework for statistical analysis of turbulence in
geophysical flows. The framework is called Python Statistical Analysis of Turbulence (P-SAT),
written in Python 3+ and is provided on the platform Github under an open-source licence
(Agarwal et al., 2021). To test and explain the framework’s functionality, the researchers
provide an accompanying publication, which includes the analysis of ADV data. The authors
transfer several methods included in WinADV to an up-to-date language granting users more
flexibility and adaptation possibilities. Beyond basic cutoff filters, they provide a Python
implementation for the acceleration thresholding method (the 3D phase space thresholding
method’s antecedent). A disadvantage is that the framework does not include a graphical
user interface (GUI) at present. (Agarwal et al., 2021)

Furthermore, several software solutions are published as Matlab code onMatlab’s file exchange
platform. This database includes the despiking methods by Mori et al., 2007 and Islam and
Zhu, 2013. B. MacVicar et al., 2014 provide a Matlab toolbox which contains multiple
algorithms to process and analyse velocity measurements.

54

5. Implementation of Data Analysis
Methods in Python

The previous chapter gives an overview of available approaches to analysing and manipulating
ADV data to improve data quality and decrease the uncertainty in measurement. Although
respective publications suggest that the authors use computational support to operate their
considerations, the technicalities of their implementations often remain unclear. Transparent
and practical solutions for efficient ADV data handling are rare.

Ideally, a routine for laboratory work with the ADV needs to include timesaving ways to
process the measured samples. This solution needs to be open-source and free, adaptable to
different types of experiments and purposes. It must allow for processing multiple samples
simultaneously while being computationally frugal and easy to handle even by programming
beginners. Apart from practical requirements, it needs to reliably produce sound results in
terms of the uncertainty in measurement.

Currently, only Agarwal et al., 2021’s package offers an ADV data processing solution adequate
by these standards. However, when preliminarily testing the package, the solution often
fails to detect all spikes in a sample. As a result of this lack of practical processing solutions,
this thesis attempts to implement other data analysis methods in a modern, open-source
programming language: the kernel density estimation despiking method by Islam and Zhu,
2013 for despiking and a Gauss filter as described in Lane et al., 1998, and Biron et al., 1995
and a Butterworth filter similar to the one used in C. J. Huang et al., 2018 for denoising.
These methods are chosen from all available methods in chapter 4 because the respective
publications show successful application to turbulent ADV data. Another reason to select KDE
despiking and Butterworth lowpass filtering is that they appear in recent publications. As an
alternative to the Butterworth filter, the Gauss filtering approach is selected to represent a
rather conventional approach to denoising that is not picked up often in newer literature.

While the first section 5.1 of this chapter gives insight into the used system, programming
language, environment and libraries, section 5.2 describes little tools used for file management.
Section 5.5 describes the utilisation of the P-SAT framework in this thesis. Section 5.3, section
5.4 and section 5.6 describe the implementation of the beforementioned data analysis methods

55

in Python. As a data replacement solution, linear interpolation is implemented and outlined
in section 5.7.

5.1. Hardware and Libraries

All programming and processing are done on a system with an Intel(R) Core(TM) i5-4590
CPU@ 3.30GHz, 8GB RAM, and Windows 10 Pro N on 64-Bit. Python (version 3.8.5) (Python
Software Foundation, 2020) is utilised within the Spyder IDE (version 4.1.5) as a part of
the Anaconda Distribution in (version 4.10.3) (Anaconda, 2021). The implemented Python
scripts require the following external libraries for successful execution:

– NumPy: Support library for array and matrice operations and high-level mathematical
functions (Harris et al., 2020).

– SciPy: Scientific computing library that, among other things, includes signal processing
and transformation algorithms (Virtanen et al., 2020).

– pandas: Support library for multi-dimensional data structures and data operators (The
pandas development team, 2022).

– matplotlib: Plotting library for 2D data visualisation (Hunter, 2007).

– seaborn: Library based on Matplotlib that offers even more visualisation options
(Waskom, 2021).

– statsmodels: Package derived from NumPy, SciPy and Matplotlib, which offers advanced
functions for statistical testing (Seabold & Perktold, 2010).

These specifications also apply to all Python implementations in chapters 6 and 7.

5.2. File Management Tools

To comfortably work with the data recorded by ADVs, the original format of the files needs
to be converted from .dat to .csv. The script ”Make_csv_from_dat” (see source code A.1)
performs this conversion. Further, defining respective methods to reliably and consistently
import data from external files into Python scripts is necessary. For the scripts used in this
thesis, there are three possible input formats:

– Original data .csv files denoted as input_file_state = 1.

– Files output by the P-SAT framework denoted as input_file_state = 2.

56

– Files output by KDE despiking, Butterworth filtering or Gauss filtering, denoted as
input_file_state = 3.

The input file state is specified by the user. By executing the script, the method ”get_data”
(see source code A.5) extracts the data according to the user-specified input file state. An
if-statement ensures that the data is read with the according methods ”get_raw_data” (see
source code A.2), ”get_PSAT_data” (see source code A.4) and ”get_KDE_G_B_data” (see
source code A.3). The method ”get_data” gives out all velocity components, calculates the
velocity magnitude and provides the time-steps for the time-series.

For using the P-SAT framework, it is necessary to convert the files so that the framework can
reliably read them. The files need to have the format .dat and have the data sorted in a specific
way. The conversion script ”Make_dat_for_P-SAT_from_dat” (see source code A.7) converts
the recorded .dat files to .dat files that can be input to the P-SAT framework. Furthermore,
the P-SAT framework requires itemising file names in an additional .txt file, which is quite
time-consuming if the filenames are manually entered. This is why the framework is not very
practical for batch processing a large number of files. This problem is solved by employing
a script (see source code A.8) that extracts the filenames for the .txt files in the necessary
format using the method ”get_filenames” (see source code A.9). The list of filenames can be
copied directly from the console to the .txt file.

Sometimes, it is practical to sort files by their original filing system. In this thesis, this
filing system corresponds to the turbulence conditions, i.e. cylinder diameter constructed
in the flume. The initial sorting of files is required when analysing according to turbulence
conditions (see chapter 6 for more information on the data at hand) - a ”File_mover” script
(see source code A.6) is utilised. The script reads the filenames from the original filing system
by employing the beforementioned method ”get_filenames” (see source code A.9) and then
sorts the mixed files accordingly to the user-specified directory.

5.3. Gauss Filter

Original ADV data is loaded to the script using the methods explained in the previous section
5.2. Only one other parameter needs to be specified by the user: the sampling frequency used
for measuring the data.

To apply the Gauss filter by Lane et al., 1998 and Biron et al., 1995 to one or several ADV
measurements with Python, further specifications, namely sigma (see equation 4.6) and the
impulse response function (see equation 4.8), need to be calculated. The method ”calculate_-
sigma” (see source code A.10) is implemented. An x-axis according to the sampling frequency
is devised using the implementedmethod ”get_x_f” (see source code A.11) to get the frequency

57

response function. Sigma and the x-axis in the frequency domain are then input to a method
called ”calculate_R_f” (see source code A.12), which calculates the filter’s needed response for
the set sampling frequency. Figure 5.1 shows the frequency response for a sampling frequency
of 25Hz.

0 2 4 6 8 10 12
Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

 [-
]

Frequency Response

Figure 5.1.: Gauss filter frequency response with a sampling frequency of 25Hz.

Then, the method ”gauss_filter” (see source code A.13) fast Fourier transforms (see subsection
2.3.4) every velocity component and multiplies the resulting frequency components by the
filter frequency response. This operation is possible as a convolution in the time domain
corresponds to multiplication in the frequency domain, respectively (see section 2.4). Then,
the inverse fast Fourier transform transforms the results to the time domain. This process
disregards complex values by only considering absolute values. The method gives a list which
contains all filtered velocity components and is output as a .csv file to the same directory.

The script is showcased in the annex (see source code A.14). The whole process iterates all
filenames in the specified directory to process several files with only one script execution.
Applying a try-except statement within the iteration loop ensures that iteration continues
even if an error occurs. The console gives out an indication of successful and unsuccessful

58

filter applications. Wrong formatting of input files is the most likely exception to occur. The
average runtime to filter all 160 samples amounts to (7.17 s).

The filter application can also be implemented using the Gauss filter function (see equation
4.5) and convoluting the signal. However, applying the frequency response function in the
frequency domain seemed more straightforward.

5.4. Butterworth Filter

Again, the data input methods outlined in section 5.2 are used to process the measured ADV
files with a Butterworth filter. Further, the user must specify the filter order and a cutoff
frequency. For a first order filter, four different settings for the cutoff frequency are tested
(1Hz, 1.5Hz, 2Hz and 2.5Hz), for a third order filter, only one setting (fs

2.93
) is tested. The

settings are determined from the review of technical literature. (C. J. Huang et al., 2018, B. J.
MacVicar et al., 2007). The procedure to determine the optimal cutoff frequency described in
subsection 4.3.2 is not applied as it is deemed detrimental to the comparability of results to
filter each original data sample using different filter settings. Still, when only processing one
file, the method might generate more precise results.

As the Butterworth filter is a popular filter for lowpass filtering, there are several options for
its implementation in Python. This thesis uses the functions ”butter” and ”lfilter” from the
SciPy signal package. Furthermore, two new methods are defined for this script. The method
”normalize_cutoff” (see source code A.15) assigns a value between 0 and 1 for the cutoff
frequency set by the user. Scaling the values is necessary as the ”butter” function inquires
for this range of values, with 1 signifying a cutoff frequency at the Nyquist frequency and
0 signifying a cutoff frequency at 0Hz. The method ”butterworth_filter” (see source code
A.16) applies the actual filter operation: The IIR filter coefficients (see subsection 2.4.3) are
identified with the ”butter” function by specifying the normalised cutoff frequency and the
filter characteristics ”btype=’low’” for the lowpass filter and ”analog=False” for the digital
filter.

The result is the filter frequency response, exemplarily showcased in figure 5.2 with an first
order Butterworth filter and a cutoff frequency of 1Hz. Then each velocity component array
is filtered using the function ”lfilter” with the beforehand calculated coefficients using the
convolution operation (see subsection 2.3.3). The script ”Butterworth” (see source code A.17)
iterates all files in the specified directory, applies the filter accordingly and gives out a file
containing the filtered time-series in the directory of the original files. The console alerts the
user to arising exceptions.

59

0 2 4 6 8 10 12
Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0
Am

pl
itu

de
 [-

]
Frequency Response
Cutoff Frequency

Figure 5.2.: First order Butterworth filter frequency response with a sampling frequency of
25Hz and a cutoff frequency of 1Hz.

The average run time of the script to process 160 samples with the Butterworth filter is 6.90 s.
The course of the obtained spectra after Butterworth filtering corresponds to the spectra
presented in C. J. Huang et al., 2018, p. 7, which gives confidence that the Butterworth filter
works as intended.

5.5. Python Statistical Analysis of Turbulence (P-SAT) Frame-
work

The PSAT package by Agarwal et al., 2021 is used to filter according to the acceleration
thresholding method by V. I. Nikora and Goring, 1998. The mechanisms of this framework are
not further explained in this thesis because the method is mainly applied here to test it and
to compare the results from the KDE despiking method. The implementation authors give an
example of use in their publication to learn how to use the framework (Agarwal et al., 2021).
The PSAT package includes an implementation of linear interpolation between endpoints of

60

a detected spike as the data replacement method. The iterative nature of the method (see
subsection 4.2.1) leads to a high average run time of the script to process 160 samples that
amounts to 260.52 s.

5.6. Kernel Density Estimation Despiking

For this section and the source codes in A.19, A.20, A.21, A.22, A.24, please note that adapting
KDE despiking in Python, although at times undergoing vigorous modification, is based on the
source codes by Islam and Zhu, 2013 and Botev et al., 2010 and the ParaMonte package by
Shahmoradi et al., 2020. Before describing the efforts to implement KDE despiking in Python,
relevant copyright notices are acknowledged in A.18.

Just as for all analysis methods, ADV data is read using the tools presented in section 5.2. To
prepare the data further and facilitate the input into the kernel density function (see equation
4.2), the method ”get_kde_input” (see source code A.19) is introduced to apply steps 1-3
from the algorithm by Islam and Zhu, 2013. It includes forming the backward and forward
derivatives and finally the central derivative, estimating the axis rotation and transforming
the data according to the axis rotation.

The method ”get_kde_output” (see source code A.20) applies the kernel density function using
Botev et al., 2010’s algorithm. First, it determines the minima and maxima of the velocity and
the first derivative. By taking these values into account, the data is scaled from 0 (minima) to
1 (maxima). Then, the data is binned into 256 bins with the NumPy ”histogram2d” function.
The number of bins is adopted from Islam and Zhu, 2013, in which the authors tested several
settings and found 256 bins to work best. Afterwards, the method smooths the bins using
the Gaussian kernel with a standard deviation corresponding to the user-specified bandwidth
(in this case, hy=hx=0.01, adopted from suggestions in Islam and Zhu, 2013). The density
profiles for the velocity and its derivative and the grid axes are output. Both are input to the
following method, ”get_spike_Id” (see source code A.21), where they are used to identify the
ellipses to demarcate the data clusters using the user-specified cutoff points.

The method ”KDE_despike” (see source code A.22) applies this procedure to all velocity
components of the input ADV data and gives out a spike identifier list for each velocity
component. This list can either be used to remove the data points or replace the data
points with an appropriate data replacement strategy. The approach to implementing a data
replacement method for this thesis is picked up in section 5.7.

The script to despike ADV data with the user input parameters can be found in the annex (see
script A.24). The average run time of the script to process 160 samples with KDE despiking is
32.94 s. Exceptions which occurred while testing the code came up for selecting the wrong

61

”input_file_state” for samples with not enough measurement points (under 180) and samples
without spikes. To use KDE despiking, the user needs to decide on an appropriate bandwidth,
grid size and cutoff threshold.

5.7. Data Replacement

As discussed in section 4.4, spike replacement is essential if wanting to analyse velocity
spectra after despiking. The P-SAT framework in Python uses a linear interpolation algorithm
for replacing identified spikes and so does the Matlab code by Islam and Zhu, 2013. For
implementing Islam and Zhu, 2013’s method in Python, neither implementation seems
fitting. While the P-SAT interpolation method does not consider removing spikes per ADV
beam, adapting the Python code just so that it can apply the Matlab implementation of the
replacement strategy is unreasonably complicated.

Linear interpolation is still chosen as the replacement strategy to preserve comparability in
this aspect with the P-SAT results. However, a new method is devised in Python, which caters
to the previously explained implementation of KDE despiking in Python (see section 5.6). The
method ”replace_spike_lin_interpolation” is showcased in the annex (see source code A.23).
It uses the spike identifier list created by the method ”KDE_despike” (see source code A.22)
as input. The values identified as spikes are replaced by linearly interpolating between the
last and the next good values, i.e. values that are not spikes. Thus, neighbouring spikes are
replaced with the same values. One fatal exception for replacing spikes using interpolation is
if the signal’s first or last data points are identified as spikes. In these cases, the mean of the
signal is used as it is simply not possible to perform the interpolation.

62

6. Evaluation of Data Analysis Methods in
Python

In this chapter, the implementation of data analysis methods in Python (see chapter 5) is
used to process ADV data recorded with a Nortek Vectrino device by Daniel Weidler in the
hydraulic laboratory at TU Darmstadt in January 2021. Daniel Weidler recorded the ADV
data while first and foremost measuring pressures with three pressure sensors mounted on
a model fish and did not process or further utilise the ADV data. The sampling rate of the
ADV was set to 25Hz, the nominal velocity range was set to 4ms, the transmit length was
1.8mm, and the sampling volume was set to 7.0mm. As Daniel Weidler’s thesis investigates
the pressure patterns resulting from vortex shedding in a flume, the velocity measurements
correspond to four types of present turbulence: type 1 represents velocities without a cylinder
in the flume, type 2 represents velocities in the wake of a DN50 cylinder, type 3 represents
velocities in the wake of a DN90 cylinder, and type 4 represents velocities in the wake of a
DN160 cylinder. (Weidler, 2021, pp. 43–44) In total, 160 samples for four different turbulence
conditions (type 1 = 20 samples, type 2 = 40 samples, type 3 = 48 samples, type 4 = 52
samples) are used in this thesis. Details on the measuring grid used by Daniel Weidler are not
given, as the samples are only evaluated independently of their relative position in the grid.

Evaluation methods for the uncertainty in measurement per the GUM (see subsection 3.3.1)
are implemented to evaluate the effects of the processing methods. First, visual inspection
of time-series in the time domain and the analysis of turbulence spectra realise Type B
evaluation by comparing original samples to filtered samples (see section 6.1). Then, section
6.2 highlights Type A evaluation parameters for original and filtered samples. Criteria are
defined and categories are devised to quantify effects on evaluation parameters caused by
data analysis efforts. Lastly, section 6.3 draws conclusions from the evaluations.

6.1. Visual Inspection

Although visual inspection of time-series and spectra are not as compelling as quantitative
statements, they can still serve to give general ideas on the functioning of data analysis efforts.

63

For example, by examining time-series, it becomes apparent whether despiking efforts were
effective with a single glance: if spikes remain in the time-series, despiking was unsuccessful.
For spectra, one can compare the course of the energy dissipation function to Kolmogorov’s
spectrum of turbulent flow (see figure 2.3). By plotting the −5

3
slope of energy dissipation

in the inertial subrange, the log-log plot can indicate whether the examined sample follows
the basic structure of the theoretical spectrum. While a similar course signifies good data
in terms of Kolmogorov’s law, a strongly deviating course indicates high uncertainty in the
measurement (see subsection 2.2.3).

A Python script (see source code A.25) visualises samples in the time domain. The script
gives out a visualisation of all velocity components (green, red, yellow) and the velocity
magnitude (blue) of the processed sample in comparison to each time-series of the original
sample (brown). The figures are then sorted according to the turbulence conditions of the
samples (see source code A.6) and screened manually.

For constructing the energy dissipation spectra, Welch’s method is employed in a Python script
(see source code A.26). The method is a popular approach to spectral density estimation and
delivers an adequate approximation for power spectra in an efficient way. It is chosen in this
thesis as well-established implementations in Python already exist, which only need to be
adapted to the problem at hand. Here, the script gives out the spectra of the original velocity
components (dotted) and the filtered velocity components (line) spectra in one figure. The
grid in the background shows the −5

3
slope that the spectra are compared against. The figures

are then sorted according to the turbulence conditions of the samples (see source code A.6)
and screened manually. To improve this evaluation approach and quantify data quality in
terms of fit to Kolmogorov’s spectrum, one could further implement automatical classification
of spectra.

The two following subsections discuss findings and conspicuous features in the time-series
and spectra produced by these scripts for the samples at hand. However, as discussing the
visual evaluation of all 160 samples in detail goes beyond the scope of this thesis, one type
4 measurement (3_2_V20210111151049) is chosen, and general statements that can be
made for all samples are shown for this measurement. All figures for time-series and spectra
for this measurement can be found in the annex (see figures A.1 to A.24). Figures for this
measurement relevant to explanations are displayed in the text, but only the time-series of
the velocity magnitudes are shown. For the time-series of all velocity components, see figures
A.9 to A.20 in the annex. Figures concerning this sample do not further reference the sample
identifier. Sporadically, visualisations for other samples are picked up to highlight specific
findings, mostly regarding data analysis effects on other turbulence conditions. These figures
specify the respective sample identifiers. To see the figures and data for all 160 samples, view
the supplementary material to this thesis.

64

6.1.1. Python Statistical Analysis of Turbulence (P-SAT) Framework

The P-SAT framework is mostly successful in despiking and somewhat smoothing the velocity
signal in the time domain. Still, the method struggles to eliminate all spikes reliably, as shown
in the despiked time-series in figure 6.1 at around t = 12 s. At least one noticable spike
remains in 121 of the 160 samples. Many references report that this problem occurs with a
high number of spikes or at high turbulence levels. The evaluation at hand does not verify this
statement: neither samples with a low number of spikes nor samples at comparatively low
turbulence levels (type 1 samples) are filtered perfectly. This issue leads to the assumption that
the P-SAT framework (and, therefore, the acceleration thresholding method) cannot detect
particular spikes within the projected ellipse’s boundaries. The problem can be connected to
thresholding or an error type that produces spikes and opposes the applied data clustering.
Apart from that, it can be an issue with the code, or it occurs due to incorrectly using the
framework.

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ve
lo

cit
y

[m
/s

]

res_original
res_filtered

Figure 6.1.: Exemplary visualisation of P-SAT filtered time-series against original time-series.

Overall, the spectra of the velocity components (see 6.3a) approach Kolmogorov’s −5
3
slope in

the inertial subrange, and the effect of the data analysis method is undoubtedly apparent when
comparing filtered spectra to the spectra of the original data. The filtered spectra follow a
relatively horizontal course in the higher frequency part of the spectra (>7Hz) that resembles
the course of the original spectra but at a lower energy level. Comparing the spectra to the

65

theoretical energy dissipation spectrum for turbulent flow, one finds a lack of the sudden
plummeting of the spectra at high frequencies. Overall, all velocity components follow their
courses at the same energy levels.

While the spectra for type 3 and type 4 turbulence conditions accord well to the theoretical
turbulence spectrum, the spectra of type 1 and type 2 turbulence conditions show prominent
upward arching in the central part of the spectra, where the course should be rather straight-
lined. Figure A.25 in the annex shows this effect displaying exemplary spectra for a type 2
sample.

6.1.2. Kernel Density Estimation Despiking

The implemented KDE despiking Python script works reliably for despiking the samples.
Regardless of turbulence conditions and the present numbers of spikes, not a single spike stays
undetected. The method does not have a smoothing effect on the signal; instead, only from
screening the time-series (see figure 6.2), it seems like the overall variance is maintained.

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ve
lo

cit
y

[m
/s

]

res_original
res_filtered

Figure 6.2.: Exemplary visualisation of KDE despiked time-series against original time-series.

The spectra for the KDE despiking method generally show an approach to Kolmogorov’s −5
3

slope compared to the original data spectra. For the type 1 and type 2 samples, the gradient of
the central part of the spectra is too flat (see figure A.26 in the annex). However, the gradient

66

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

(a) Spectra from P-SAT filtered time-series.

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

(b) Spectra from KDE despiked time-series.

Figure 6.3.: Exemplary visualisation of spectra from despiked time-series.

67

approximates Kolmogorov’s −5
3
slope for type 3 and 4 samples. Just as for the P-SAT spectra,

the KDE despiked spectra follow a somewhat horizontal course in the higher frequency part of
the spectra (>7Hz) that resembles the course of the original spectra at a lower energy level.
It must be noted that the velocity components appear at the same energy levels in the lower
frequency parts of the spectra, but the w-velocity spectra separate from the other component
spectra between 2Hz and 4Hz to follow a course at a lower energy level. Figure 6.3b shows
the spectra for the exemplary sample.

6.1.3. Butterworth Filtering

The applied Butterworth lowpass filtering script attenuates all present frequencies with a
significantly increasing attenuation for frequencies beyond the set cutoff frequency, making the
signal appear smoother. The attenuation is the strongest for the lowest chosen cutoff frequency.
Some spikes are only slightly attenuated, and others are strongly attenuated (and do no longer
appear as spikes). This outcome indicates that spikes are present in all frequencies, which
does not advocate using lowpass filtering exclusively for ADV data processing.

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ve
lo

cit
y

[m
/s

]

res_original
res_filtered

Figure 6.4.: Exemplary visualisation of Butterworth filtered (2.5Hz, order=1) time-series
against original time-series.

These statements are valid for all turbulence conditions and number of spikes for the samples at
hand. The exemplary time-series that undergoes Butterworth filtering with a cutoff frequency

68

of 2.5Hz and an order of 1 is shown in figure 6.4. The time-series filtered by the other settings
of the Butterworth filter can be viewed in the annex (see figures A.1 to A.4).

While all cutoff frequencies up to 2.5Hz provide plausible results, filtering with the cutoff
frequency of fs

2.93
and filter order 3, as suggested in B. J. MacVicar et al., 2007 and Roy et al.,

1997, yields no discernible effect on the time-series. The same can be stated for the spectra
obtained with this setting. As this approach is generally unsuccessful the respective time-series
and spectra can only be found in the annex (see figures A.4 and A.24).

However, the spectra obtained with the cutoff frequencies up to 2.5Hz provide spectra that
show a good fit to the theoretical energy dissipation spectrum for turbulent flows (see figures
A.21 to A.23 and 6.6a). All cutoff frequencies show similar results, but a slightly increasing
upward arch in the central part of the spectra can be identified with increasing cutoff frequen-
cies. For all turbulence conditions and samples, the w-velocity component spectra linger at
slightly lower energy levels than the spectra of the other components.

The w-velocity component spectra’s course improves for higher cutoff frequencies, the best
spectra are therefore produced by the first order Butterworth filter with a cutoff frequency of
2.5Hz displayed in 6.6a. In the high frequency part of the spectra, the component spectra
plummet while the spectra of the velocity magnitude maintain a horizontal course.

6.1.4. Gauss Filtering

The Gauss filtering script causes a substantial attenuation of the signal compared to the
Butterworth filter (see figure 6.5). Interestingly, there is a sign change of negative spikes (see
figure A.12 in the annex). As with the Butterworth filter, some spikes disappear entirely, and
others are only attenuated, which again points to spikes occurring regardless of frequency.

Gauss filtering improves the filtered turbulence spectra compared to the original data spectra.
Although an approach to the course of the theoretical energy dissipation spectrum can be seen,
the spectra do not distinctly display the desired slopes’ features (see figure 6.6b). Especially
the straight-lined central part of the theoretical spectrum is missing - this part of the spectra
is somewhat arched upward after Gauss filtering.

69

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ve

lo
cit

y
[m

/s
]

res_original
res_filtered

Figure 6.5.: Exemplary visualisation of Gauss filtered time-series against original time-series.

6.1.5. Combination of Methods

The screening of spectra shows that no method provides satisfactory results in all aspects.
While, on the one hand, digital filtering generates the best results concerning turbulence
spectra, the time-series are still contaminated with spikes. On the other hand, the despiking
methods despike more or less reliably, but they have clear disadvantages in terms of spectral
characteristics. Therefore, the combination of previously semi-productive methods is examined
additionally. It must be noted that despiking efforts are always performed before applying
denoising filters. This order is vital as the attenuation of spikes might disrupt data morphology,
consequently leading to unsatisfactory despiking: by attenuating spikes before despiking, the
data clusters, which pose a fundamental concept for despiking methods, change, which in
turn affects cutoff or demarcation processes.

Both despiking methods are combined with the most promising filtering methods - the first
order Butterworth filter with a cutoff frequency of 2.5Hz and the Gauss filter. As expected,
the time-series smooth out by lowpass filtering after despiking. Generally, the Gauss filter
attenuates the signal more than the Butterworth filter. Because the P-SAT framework already
smooths the signal somewhat, the resulting signal from combining P-SAT and Gauss filtering
seems too strongly attenuated. Inspection of the time-series shows that the time-series of
several samples miss some distinguishable features.

70

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

(a) Spectra from Butterworth filtered (2.5Hz, order=1) time-series.

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

(b) Spectra from Gauss filtered time-series.

Figure 6.6.: Exemplary visualisation of spectra from denoised time-series.

71

Moreover, the additional use of denoising methods after P-SAT despiking does not substantially
affect the spikes remaining in the signal. Sporadically, the remaining spikes are attenuated
slightly. Sometimes, they are attenuated so strongly that they thoroughly blend with the
signal. Again, this demonstrates that spikes are present at all frequencies. Correspondingly,
it can be deduced that denoising efforts cannot compensate for shortfalls in despiking. The
time-series of the combinations are showcased in the annex (see figures A.5 to A.8 and figures
A.17 to A.20).

Figure 6.7 shows the spectra obtained from combining both despiking methods with the best
Butterworth filter option with cutoff frequency at 2.5Hz and order 1. The spectra of the
combined use of KDE despiking and the Butterworth filter, displayed in figure 6.7a, show
significant improvement compared to only the Butterworth filter (see figure 6.6a) and only
KDE despiking (see figure 6.3b): the central part of the spectra distinctly follows Kolmogorov’s
−5

3
slope and the high turbulence part of the spectra plummets instead of remaining horizontal.

Also, it can be observed that the course of the w-velocity component spectra aligns with the
other components’ spectra regarding energy levels. The spectra’ starting energy level remains
nearly unchanged compared to the original spectra - the level is only slightly reduced.

Applying the P-SAT framework in combination with the above-specified Butterworth filter
produces the spectra in figure 6.7b. The spectra show improvement in the high-frequency parts,
but the slope in the central part of the spectra is also disadvantageously altered. Compared to
figure 6.3a, the slope is significantly steeper, especially for frequencies beyond 1.5Hz.

Figure 6.8 shows the spectra obtained from both despiking methods combined with the
Gauss filter. Both combinations produce satisfying spectra. The high-frequency part of the
spectra does not plummet as sharply as with the Butterworth filter, but the central parts of
the spectra show good accordance with the −5

3
slope. The stronger attenuation of the Gauss

filter shows in the decreased energy levels of the spectra, which are already apparent at the
lowest frequencies.

72

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

(a) Spectra from KDE despiked and Butterworth filtered time-series.

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

(b) Spectra from P-SAT filtered and Butterworth filtered time-series.

Figure 6.7.: Exemplary visualisation of spectra from time-series obtained by combination of
despiking methods and Butterworth filtering (2.5Hz, order=1).

73

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

(a) Spectra from KDE despiked and Gauss filtered time-series.

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

(b) Spectra from P-SAT filtered and Gauss filtered time-series.

Figure 6.8.: Exemplary visualisation of spectra from time-series obtained by combination of
despiking methods and Gauss filtering.

74

6.2. Statistical Parameters

The GUM asks for several parameters to be surveyed regarding type A evaluation (see subsec-
tion 3.3.1). Python scripts can be used for type A evaluation to efficiently give out needed
parameters for each input sample, e.g., using the output parameters for reporting. This
application is easily realised using a relatively straightforward script (see source code A.27).
The implementation determines the mean, the variance, the standard deviation, the global
maxima and minima, the skewness and the kurtosis for all velocity components and the
velocity magnitude. Furthermore, the covariance and correlation of all velocity components
and the turbulent kinetic energy are computed. The script runs on average 11.82 s to calculate
all parameters for the 160 original samples.

Here, the calculation of parameters according to type A evaluation is consulted to determine
the effects of implemented data analysis methods. For this, it is necessary to establish criteria
to quantify the change in parameters. The following subsections explain four different
parameters and how they can be used to determine the improvement or degradation of
samples due to the ADV data analysis methods implemented in Python (see chapter 5). For
every data analysis method, the parameters are evaluated in comparison to the original
samples or the normal distribution and then are allocated to one of four categories. By
categorising the parameters, it can be determined what share of the 160 samples changes
in which manner and at what magnitude. The percentage of samples per category for each
analysis method is visualised in a heatmap for every velocity component to grasp the parameter
change at a glance. It is not productive to evaluate the parameters of the velocity magnitude,
as spikes turn positive as a consequence of squaring component values. Thus, it can no longer
be assumed that the mean of the spikes is zero, which might not be especially relevant for
samples containing a small number of spikes but does indeed influence samples with many
spikes.

A script (see source code A.35 for one examplary parameter) is executed in Python to create the
heatmaps. The script employs the four methods ”get_filenames”, ”get_parameters”, ”count_-
categories” and ”sort_category_by_method”, which remain the same for every parameter. The
method ”get_filenames” (see source code A.9) identifies the basenames of the files in the
user-specified directory. Then, the method ”get_parameters” (see source code A.28) combines
the basenames with the file name endings in the directory, extracts the parameters from the
parameter files created with the ”Parameter_Calculation” script (see source code A.27) and
creates a data frame for all parameters for one sample. This method needs to be changed
when changing the methods one wants to compare or when changing the file denotation. In
the next step, a categorisation method is employed. The methods to categorise the parameters
are different for each parameter and picked up separately in the following subsections. After
categorisation, the category data must be sorted by method (see source code A.30) to be able

75

to visualise the data with the heatmap function from the seaborn library. All in all, the user
needs to specify a directory containing all parameter files, the number of methods to compare,
the number of velocity components, the number of categories, the number of samples to
compare and needs to name the methods in their order in the parameter data frame, as well
as the data frame indices of the parameter to compare (see table A.1 in the annex). The script
gives out the heatmap figures in the directory in which the script is executed.

6.2.1. Mean

The mean is an essential statistical parameter to evaluate because it is the parameter used for
most ADV data applications. Even after applying data analysis methods such as despiking and
denoising, no change in the mean should occur when comparing the means of filtered and
original means. This indicator is a deduction from the error effects (spikes and white noise)
being expected to exhibit a mean of zero.

Therefore, this analysis determines relative positive and negative changes between original and
filtered samples. While a positive relative change expresses that the data analysis operation
increases the filtered mean compared to the original mean, a negative relative change attests
to a decrease in mean. The calculation is displayed in equation 6.1.

∆µ =
(µfiltered − µoriginal)

µoriginal
· 100 (6.1)

∆µ − relative change in means [%],
µfiltered −mean of the filtered sample [ms],
µoriginal −mean of the original sample [ms].

The relative change in means is then sorted into established categories using the method
”categorise_means” (see source code A.31). The established categories are:

– Category 1: ∆µ ≥ −1% and ∆µ ≤ 1%,

– Category 2: ∆µ ≥ −5% and ∆µ ≤ 5%,

– Category 3: ∆µ ≥ −10% and ∆µ ≤ 10%,

– Category 4: ∆µ < −10% and ∆µ > 10%.

76

Category 1 Category 2 Category 3 Category 4

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

3.1 16.2 21.2 59.4

50.6 47.5 1.9 0.0

100.0 0.0 0.0 0.0

1.9 41.2 34.4 22.5

1.2 20.0 39.4 39.4

2.5 30.6 40.6 26.2

34.4 59.4 5.0 1.2

51.2 46.9 1.9 0.0
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure 6.9.: Heatmap of the categorisation of the relative change in means in the u-velocity
component for all implemented data analysis methods (n=160 samples).

While categories 1 and 2 correspond to values often chosen in statistical contexts, the boundary
for category three is selected because a relative change over 10% already seemed unacceptable
to attest to mediocrity. When evaluating the created heatmap for the u-velocity component, the
options KDE despiking, Butterworth, and both KDE despiking combinations are the methods
inducing the slightest relative change in the mean. Gauss filtering and both P-SAT despiking
combinations work reasonably well. The P-SAT framework changes the mean of the u-velocity
component the most, with 95 samples (59% of all samples) in category 4.

The heatmaps for the two horizontal velocity components are showcased in the annex (see
figures A.27 and A.28). The v-velocity and w-velocity components are susceptible to small
absolute mean changes because the values themselves are small. Even the slightest absolute
changes cause significant relative changes. The Butterworth filter still manages to perform
well for these velocity components. The second and third best methods are KDE despiking
and KDE despiking combined with Gauss filtering. Also, it must be noted that the v-velocity
and w-velocity components in the samples at hand are at high risk for high uncertainty
in measurement because some absolute values are smaller than 10 mm

s , which is the given
accuracy of the measurement device. All methods have the same effect on the mean change
disregarding the turbulence conditions, which are evaluated by comparing the distributions of
shares in the categories (the respective heatmaps are included in the supplementary materials).

77

6.2.2. Variance

The primary goal of the data analysis methods applied in this thesis is to eliminate known
error terms from samples. These processes also induce a decrease in signal variance. A relative
change approach, just as for the change in the mean, is selected to quantify this decrease.
The respective calculation goes as follows:

∆σ2 =

(︂
σ2
filtered − σ2

original

)︂
σ2
original

· 100 (6.2)

∆σ2 − relative change in variance [%],
σ2
filtered − variance of the filtered sample [m2

s2],
σ2
original − variance of the original sample [m2

s2].

On the one hand, a decrease of variance in the signal indicates a reduction of erroneous
data; on the other hand, the lowering of signal variance lets the signal appear smoother. The
smoothing makes it easier to identify primary patterns in the data and gather periodicity.
However, if the decrease in variance is too high, it can also make essential features of the
signal indistinct.

Four categories are established to categorise the decrease in the variance. They are following
the findings by Cea et al., 2007, p. 8, a paper that investigates the effects of the acceleration
thresholding method (the method implemented in the P-SAT framework) on signal variance.
They find a reduction of the u-velocity and one of the horizontal velocity components of
around 30%, while the variance of the remaining horizontal velocity component only changes
slightly. This information is used to section the categories so that they allow comparability
with this study (see respective method ”categorise_variance” in source code A.32):

– Category 1: ∆σ2 ≤ −50%,

– Category 2: ∆σ2 ≤ −25% and ∆σ2 > −50%,

– Category 3: ∆σ2 ≤ −10% and ∆σ2 > −25%,

– Category 4: ∆σ2 > −10%.

The analysis of the statical parameters of the samples at hand (see figure 6.10) shows that
the reduction of the variance caused by the acceleration thresholding method is generally
in the same range of decrease as in the study by Cea et al., 2007. All other methods reduce
the variance by more than 50% (see figures A.29 and A.30 in the annex). For the horizontal
velocity componentes, a slightly decrease can be attested for the w-velocity component for

78

the P-SAT framework, KDE despiking and the Butterworth filter. Nevertheless, most sample
variances still decrease significantly and not only slightly, as proposed by Cea et al., 2007.
However, it also remains in question what kind of change the authors deem as ”slight change”
as no values are mentioned in this regard. All methods have the same effect on the variance
change disregarding of turbulence conditions (the heatmaps by turbulence conditions are
included in the supplementary materials).

Category 1 Category 2 Category 3 Category 4

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

8.8 69.4 15.0 6.9

95.6 3.1 1.2 0.0

96.2 3.8 0.0 0.0

100.0 0.0 0.0 0.0

100.0 0.0 0.0 0.0

96.2 3.8 0.0 0.0

100.0 0.0 0.0 0.0

96.9 3.1 0.0 0.0
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure 6.10.: Heatmap of the categorisation of the relative change in variance in the u-velocity
component for all implemented data analysis methods (n=160 samples).

6.2.3. Skewness

The skewness is a measure to evaluate if fluctuations in the signal are symmetric in relation to
the mean of the signal or if they deviate to either side of the mean, i.e. are skewed positively
(distribution leaning to the left side) or negatively (distribution leaning to the right side) (Cea
et al., 2007, p. 9). The evaluation of the samples regarding the skewness does not consider
parameter change. Instead, the skewness of the original and filtered samples is compared to
the skewness of the normal distribution, which is symmetric. Then the effect of each data
analysis method is evaluated by assessing the number of samples that move to a category
attesting less deviation from the normal distribution compared to the original samples. This

79

approach is possible as turbulent velocities are considered to be nearly normally distributed
(see subsection 2.2.3). The skewness of the normal distribution is zero (γm = 0), and the
categories are defined as follows:

– Category 1: γm ≥ −0.1 and γm ≤ 0.1,

– Category 2: γm ≥ −0.5 and γm ≤ 0.5,

– Category 3: γm ≥ −2 and γm ≤ 2,

– Category 4: γm < −2 and γm > 2.

The sectioning of categories is deduced from values from the references Bailly and Comte-
Bellot, 2015, p. 11 and Cea et al., 2007, p. 9 that both report skewness for filtered velocity
signals. These values coincide with references on basic statistics that call distributions to
substantially deviate from the normal distribution for values γm < −2 and γm > 2 (Schiefer &
Schiefer, 2021, p. 33). The method ”categorise_skew” according to categorise the samples by
skewness can be viewed in the annex (see source code A.33).

Category 1 Category 2 Category 3 Category 4

Orig

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

2.5 18.1 43.8 35.6

0.0 0.6 0.6 98.8

63.7 35.6 0.6 0.0

9.4 31.9 54.4 4.4

0.0 0.6 1.2 98.1

24.4 31.9 6.9 36.9

23.1 26.9 11.2 38.8

48.1 50.6 1.2 0.0

53.1 45.0 1.9 0.0
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure 6.11.: Heatmap of the categorisation of the skewness in the u-velocity component for
all implemented data analysis methods in comparison to the categorisation of
the original samples (n=160 samples).

80

Analysing the heatmap of samples sorted by skewness categories for the u-velocity component
(see figure 6.11), it becomes apparent that only the method KDE and both KDE combinations
lead to most samples showing a fairly symmetrical distribution. The P-SAT framework and the
Gauss filter even make the distributions more skewed than they were in the original samples.
Especially from the P-SAT framework one would expect better results regarding the skewness.

The same can be stated for the v-velocity component (see figure A.31 in the annex) and for
the w-velocity component (see figure A.32 in the annex). Interestingly, the P-SAT method
performs better for the w-velocity component, but the original samples are also less skewed
for this component. Overall, the results for the acceleration thresholding method (P-SAT
framework) do not agree with the findings of Cea et al., 2007. They determine the effect of
the acceleration thresholding method on the skewness of turbulent velocity samples and find
an improvement in the skewness parameter when comparing filtered to original samples.

All methods have the same effect on the skewness disregarding the turbulence conditions (the
heatmaps by turbulence conditions are included in the supplementary materials).

6.2.4. Kurtosis

The kurtosis of a signal is the parameter that evaluates the magnitude of present fluctuations.
Therefore, a signal that contains spikes shows a significantly higher kurtosis than a non-
spiky signal. The categorisation of the kurtosis parameters follows the same logic as the
one for skewness in the previous subsection 6.2.3. The kurtosis of the normal distribution
is three (ωm = 3), which is denoted as mesokurtic. A distribution with smaller values for
the kurtosis is called leptokurtic, and a distribution with smaller values for the kurtosis is
called platykurtic. Leptocurtic distribution does not exist with the samples at hand, as they
are rather contaminated with spikes than extenuated values. Accordingly, the categories are
defined as follows:

– Category 1: ωm ≥ 2 and ωm ≤ 4,

– Category 2: ωm > 4 and ωm ≤ 10,

– Category 3: ωm > 10 and ωm ≤ 50,

– Category 4: ωm > 50.

The sectioning of categories is again chosen based on Schiefer and Schiefer, 2021, p. 33
deeming a distribution significantly different from the normal distribution with the kurtosis
of ωm < 1 and ωm > 5. The values in Bailly and Comte-Bellot, 2015, p. 11 and Cea et al.,
2007, p. 9 confirm this order of magnitude for turbulent velocity distributions. The Python
implemented method ”categorise_kurt” to categorise the samples by kurtosis can be viewed
in the annex (see source code A.34).

81

Category 1 Category 2 Category 3 Category 4

Orig

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

0.0 0.0 8.8 91.2

0.6 0.0 88.1 11.2

99.4 0.6 0.0 0.0

0.0 1.2 95.0 3.8

0.6 0.0 80.0 19.4

53.1 7.5 12.5 26.9

46.9 5.0 20.6 27.5

99.4 0.6 0.0 0.0

99.4 0.6 0.0 0.0
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure 6.12.: Heatmap of the categorisation of the kurtosis in the u-velocity component for
all implemented data analysis methods in comparison to the categorisation of
the original samples (n=160 samples).

The heatmap for the kurtosis of the u-velocity component (see figure 6.12) shows that all data
analysis methods improve a large share of samples in terms of the kurtosis. This effect is not
surprising, as they all attenuate the signal. The methods showing the most improvement and
the best mesokurtic distribution in samples are the KDE despiking method and its combinations.
The P-SAT combinations also work well, but around a quarter of the samples stay in the
extremely platykurtic realm. Again, the findings concerning the acceleration thresholding
method (implemented by the P-SAT framework) do not agree with respective references.

The same can be stated for the heatmap of the v-velocity component (see figure A.33 in the
annex). Just as for the skewness, the results are improved for the w-velocity component
(see figure A.34 in the annex) because the original samples already show a more favourable
distribution in the original samples.

All methods have the same effect on the kurtosis disregarding the turbulence conditions (the
heatmaps by turbulence conditions are included in the supplementary materials).

82

6.3. Discussion of Results

Firstly, the evaluation procedure itself needs to be discussed. The procedure is devised by
taking into account recommendations by the GUM and is split into three separate approaches:
visual inspection of time-series (type B), visual inspection of turbulence spectra (type B) and
evaluation of statistical parameters (type A). Generally, all of these approaches are useful
somehow, but one must be careful of their scopes.

Their constraints become evident when evaluating the filtered sample’s output by the P-SAT
framework: The spectra produced by this method are fine, but when inspecting the time-series
it is evident that single spikes remain in the time-series. Based on the respectable spectra,
one could overlook the remaining spikes and not give them much weight when reviewing
the big picture. However, the method additionally manipulates the data morphology in a
disadvantageous way, which becomes clear when reviewing the skewness parameter, for
which the results worsen by applying the P-SAT framework. One would never identify this
flaw in the statistical distribution by merely evaluating the time-series, which shows that type
A evaluation is obligatory when evaluating data, just as recommended by the GUM. All in all,
this leads to three principle results that are deduced for evaluation strategies:

– Visual inspection is mainly helpful for evaluating spectra and only evaluating time-series
provisionally.

– Assessing statistical parameters is essential to evaluating measurements and cannot be
replaced by merely visually inspecting the time-series or visually inspecting spectra.

– Only the combination of statistical evaluation and inspection of spectra reliably evaluates
the effectiveness of data analysis methods for turbulent velocity data.

Concerning the effectiveness of the data analysis methods implemented in Python, several
conclusions are drawn from the findings presented in the previous subsections:

– Original ADV data must not be further used without adequately evaluating the data
and potentially processing the data accordingly.

– Either the P-SAT framework does not work as intended by the authors, or it is operated
incorrectly in this thesis.

– Digital noise filtering efforts effectively attenuate signals, and their application manipu-
lates the spectra positively, but they must only be used for already despiked data.

– Choosing adequate filter characteristics and parameters is essential for filtering to yield
satisfactory results.

83

– The best settings for the Butterworth filter for the data at hand are a cutoff frequency of
2.5Hz and an order of 1.

– Data analysis methods can differ for studied turbulence conditions.

– The KDE despiking method in combination with Butterworth lowpass filtering produces
the best results regarding spectra, time-series and statistical properties. It also filters
produces reliable results for every studied turbulence condition.

The outlook of this thesis (see chapter 8) discusses the consequences of these results for future
work with turbulent flow ADV data while also taking the results from the following chapter (see
chapter 7) on the optimal sampling time for ADV measurements under consideration. It also
gives insight into the general practicalities of the implementation in Python and transferability
to other measurement devices and experimental set-ups.

84

7. Optimal Sampling Time

The sampling time is a rather definitive decision when undertaking a hydraulic study. The
researcher intends to choose a sampling time that delivers statistically significant measure-
ments and aims for the shortest sampling time possible to save project time and optimise
laboratory and resource access. Although there are general recommendations for sampling
times, one could save time by determining optimal sampling times for standard measurement
devices or similar research questions. Determining optimal sampling times could minimise
laboratory work while affirming the statistical significance of measurements.

In literature, one finds several different recommendations regarding sampling times: Adam
and Lehmann, 2011, p. 97 mention 3min to 5min for turbulent flow to have high enough
resolution for fluctuations but do not specify sampling frequencies. Chanson et al., 2007,
p. 4 recommend at least 5000 measurement points for first and second statistical moments
and a range of 25000-50000 measurement points for third and fourth statistical moments.
40 s is the sampling time recommended by US agencies and institutions (Turnipseed & Sauer,
2010, p. 58). However, the manufacturer SonTek emphasises that higher sampling times
ts > 40 s might be needed for turbulent flow or low flow velocities but does not give tangible
recommendations (SonTek, 2011, p. 126). An extensive study on sampling times by Díaz
Lozada et al., 2021 introduces a new method called dynamic selection of exposure time (SET).
After measuring increments of 5 s to 10 s, the data is statistically evaluated (by parameters
and distribution) using real-time bootstrapping (a statistical resampling technique) and
compared to user-set confidence margins. If the user-set requirements regarding uncertainties
in measurement are met, the recording of data is stopped. The authors compare the time
needed for data collection across entire cross-sections and could decrease the sampling times
between 36% and 49% compared to a fixed sampling time of 40 s. (Díaz Lozada et al., 2021,
pp. 3, 9) When reviewing the literature on sampling time, it stands out that recommendations
are either ambiguous or associated with a great deal of effort.

This chapter aims to illustrate the process of finding a procedure to determine an optimal
sampling time for hydraulic measurements via hypothesis testing. As this thesis has a time
limit, the procedure is developed for only one measurement device (Nortek Vectrino) with
one setting (25Hz) at six measurement points. Firstly, the general approach to the problem
will be explained. Secondly, a detailed protocol for implementing this general approach in

85

Python is given. This subsection also gives further insight into technicalities and decision
making regarding resampling and input parameters. At the end of the section, the results are
critically evaluated. A discussion gives recommendations and comments on the transferability
of the method to different research settings and measurement devices.

7.1. General Approach

Six long-duration ADV measurements were undertaken in the hydraulic laboratory at TU
Darmstadt by Katharina Bensing to analyse optimal sampling times. Each measurement was
carried out with the Vectrino device by Nortek at a sampling rate of 25Hz for about 30min
(around 45000 measurement points) at two different horizontal positions in a flume (centre
and wall) and three vertical positions over the flume’s bottom (0.1m, 0.4m and 0.6m) per
horizontal position. The original data from the ADV is not filtered or otherwise processed as
it is presumed that these techniques alter the samples’ statistical parameters, which would
distort the analysis on optimal sampling times.

It is presumed that by prolonging the sampling time, statistical parameters converge toward a
constant value as per the LLN (see subsection 2.1.1). Although this can be shown quite easily by
plotting sample means for increasing sampling times, the question remains when a researcher
can be sure enough to measure a significant sample meeting expected quality parameters (see
subsection 2.1.2). Nonetheless, plotting the sample means can help determine the degree of
quality the researcher is looking for. By plotting the sample means, the researcher can gain
insight concerning the dispersion of their data and can evaluate what defines the quality of
statistical parameters of a sample in the context of the research question.

A comparison of means is performed to quantify at what sampling time the statistical pa-
rameters of a sample are generally robust enough to meet the desired quality: the means
of samples with shorter sampling times are compared to the mean of a sample for which
one can be sure that the dispersion is small enough (subsequently called the base sample).
Typically, the comparison of means is carried out with a t-test (see subsection 2.1.3) or a
Mann–Whitney-U test. However, as these test for differences in means, the TOST is used
in this paper instead to test for equivalence in means (see subsection 2.1.4). A margin of
equivalence for the TOST can be devised by assessing the plot of sample means.

To ensure that the test results are not random but significant and reliable, the TOST is carried
out for each increment (time steps of 20 s) of many discriminable samples (n = 2000). The
TOST compares against ten different base samples. By counting the number of acceptance of
the null hypothesis and calculating the mean number of acceptance across all combinations of
samples, an indicator of performance to produce satisfying samples is given for each sampling
time. This procedure is performed for each of the six long-duration measurements. The

86

results are expected to be similar for each measurement for the same test setup (i.e. the same
significance level and the same margin of equivalence). Still, there might be slight differences
in the original data of the measurements in proximity to the wall and the bottom of the flume
because they contain more measurement errors (see subsection 3.3.3) than the measurements
appropriately spaced from the bottom and the wall.

Although this allows a statement on whether a shorter sampling time generally produces
samples of an acceptable quality concerning their statistical parameters, it does not eliminate
errors. It excludes the possibility that a sample might not be of sound quality on occasion.
There still must be a consideration of the margin of errors in hypothesis testing and the
sampling itself.

7.2. Requirements and Input Parameters

Before starting the actual implementation of the TOST in Python, the requirements to perform
a t-test were considered (see subsection 2.1.3) and transferred to the problem at hand: Here,
each long-duration ADV measurement at full measuring time, i.e. around 30min, represents
one population. Each population comprises discrete, independent and interval-scaled mea-
surements. As discriminable samples are resampled from all data points, the independence
of samples is ensured by choosing a maximum sample size of 30000 measurements, i.e. a
sampling time of 20min. Normal distribution of the examined characteristic (see subsection
6.2.2) is assumed by choosing a minimum sample size of 500 measurements, i.e. a sampling
time of 20 s. The compared samples vary in size; thus, variance homogeneity is not given and
the Welch test must be used.

The needed parameters to carry out a t-test (in this case, a TOST) are defined beforehand.
The null hypothesis states that the velocity means of the two samples do not pass as equivalent
regarding to the chosen equivalence margin. The alternate hypothesis states that the velocity
means of the two samples pass as equivalent under consideration of the chosen equivalence
margin (see figure 2.2). The standard significance level of α = 0.05 is chosen. Hence, for
each one-tailed test in the TOST, the significance level is α = 0.025. After calculating the test
statistics, the TOST factors in the greater p-value of the two one-tailed tests.

7.3. Comparison of Means

After the prior considerations, the comparison of sample means for varying sampling times
is implemented in Python to show convergence toward a constant value when prolonging

87

sampling times and gain some insight into the data at hand for choosing an appropriate
margin of equivalence δ.

As a first step, the original data files are converted to comma-separated values (.csv files).
The method ”get_population_df” (see source code A.36) is written to read the created .csv
files by inputting their file paths, strip unnecessary data, calculate the velocity magnitude
using the three recorded velocity vectors and generate a data frame containing an index and
the velocity magnitude. The output data frame serves as the population for further statistical
operations.

Then, the method ”get_samples” (see source code A.37) is created to get a set number of
random but reproducible samples from the population data frame with the desired minimum
number of measurements. Reproducibility of samples is ensured by using the option ”ran-
dom_state” within the ”sample” function. The method ”extend_samples” (see source code
A.38) is used to extend the previously created samples in set increments by a set number of
measurements for an established number of steps. This method creates a nested list ”list_of_-
samples” specifying the steps and all the created samples for each step. A similar method,
”calculate_means” (see source code A.39), calculates the means of all the samples in the
nested list and creates a new nested list, ”list_of_means”, which includes the steps and all
the sample means for each step. This nested list can now be used to plot sample means for
different sampling times.

For this analysis, the script (A.45) is executed with the input parameters as specified. Using
the ”list_of_means”, it is possible to plot the mean of a specific sample for each step, i.e. each
sampling time. The following figures show the comparison of means for the long-duration
measurement ”0.4_center” (the measurement expected to be the most accurate). While the
first figure 7.1a shows an overall comparison of means for varying sampling times, the next
figure 7.1b only shows the sampling times given as usual recommendations for measurement
devices, namely sampling times between 3min and 5min. The comparison of means for all
six long-duration ADV measurements can be found in the annex (see figures A.35 to A.39).

From the overall comparison of means, it can be deduced that, as expected, the sample means
converge towards a value with increasing sampling time. Then, the resolution for the plot is
adjusted so that it only shows sample means for the sampling times of interest (see figure
7.1b). Nevertheless, merely by visually assessing this plot, it is impossible to grasp the degree
of improvement of data between timesteps in a substantiated manner. Consequently, a basic
comparison of means gives a general idea of how the accuracy of sample means improves
when increasing sampling times on a large scale, but it is not fit to facilitate educated decisions
when refining and optimising sampling times. As a result, the TOST is performed employing
two different equivalence margins of δ = 0.004 and δ = 0.006, which were chosen based on
the comparison of means.

88

0 200 400 600 800 1000
Sample Number [-]

0.482

0.484

0.486

0.488

0.490

0.492

0.494

M
ea

n
Ve

lo
cit

y
[m

/s
]

20s 5min 10min 20min

(a) Comparison of means for sampling times up
to 20min.

0 200 400 600 800 1000
Sample Number [-]

0.485

0.486

0.487

0.488

0.489

0.490

M
ea

n
Ve

lo
cit

y
[m

/s
]

3Min 4Min 5min

(b) Comparison of means for recommended sam-
pling times.

Figure 7.1.: Comparison of means for the long-duration measurement in central horizontal
position and vertical position of 0.4m over bottom for sampling times up to 20min
and for recommended sampling times.

7.4. Testing for Equivalence of Means

The TOST is implemented in Python using an already existing method for calculating test
statistics and p-values. The method ”weightstats.ttost_ind” is part of the statsmodels package
(Seabold & Perktold, 2010). It offers testing for equivalence of two independent samples with
various settings and specifications.

Reading and processing the original data is executed the same way as for the comparison
of means using the method ”get_population_df” (see source code A.36). For the TOST, two
samples are needed to compare their respective sample means. The base sample always
contains the maximum number of measurements of 30000, i.e. 20min. It is created with the
method ”get_base_sample” (see source code A.40). Iterating the script makes it possible to
compare the same samples to different base samples.

To get samples of varying sampling times, the previously explainedmethods ”get_samples” (see
source code A.37) and ”extend_samples” (see source code A.38) are adopted. As processing the
script is rather computationally intensive and the analysis is performed with a private computer
of limited computational capacity, a workaround to get more discriminable samples without
increasing the number of samples is implemented. This workaround is realised by shuffling

89

the population and kept reproducible by once again defining a ”random_state=random_-
state_population” within the ”sample” function. The method is called ”shuffle_population”
(see source code A.41) and ensures that the first 100 samples in the data frame are different
for each set ”random_state_population”. This solution is disadvantageous when performing
the analysis with more than 100 samples because the user must alter the ”random_state_-
population”, but it prevents the script from crashing, e.g. because the computational resources
are depleted.

The methods ”calculate_pvalues” (see source code A.42) works analogously to the method
”calculate_means” (see source code A.39) in the comparison of means but uses the above
mentioned method ”weightstats.ttost_ind” from the statsmodels package to calculate the
p-value instead of the sample mean. The setting ”usevar=’unequal’” is specified to employ
the Welch test for unequal sample sizes. The resulting p-values are sorted by step, i.e. by
sampling time. For further analysis, it is preferred that the p-values are sorted by sample
instead. This is realised with the method ”sort_pvalues_by_sample” (see source code A.43).

Lastly, the method ”count_accept_H0” (see source code A.44) counts all p-values for each
sample at each sampling time that are greater than the set significance level , which represents
the acceptance of the null hypothesis. An acceptance of the null hypothesis means that the
two samples in the TOST are not equivalent at an equivalence margin.

For the analysis, the script ”TOST” (see source code A.46) is performed with the parameters
as specified. Ten script iterations are undertaken with the indicated 20 random population
states at 100 samples each and for two different equivalence margins. For each base sample,
the average acceptance rate per time step in percent (number of H0 acceptance per 100
discriminable samples per ”random_state_population”), which corresponds to 2000 samples
in total, is calculated and then visualised. The visualisation script (see source code A.47) is
separated from the analysis script for practical reasons. The visualised results for all long-
duration ADV measurements (see figures A.42 - A.47), as well as the acceptance rate data
can be found in the annex (see tables A.4 - A.11).

As expected, the acceptance rates of the null hypotheses plummet with increasing sampling
times (see figure 7.2). Also, it is clear that increasing the equivalence margin makes more
samples equivalent at shorter sampling times. The data is analysed for when the acceptance
rate of the hypothesis falls below 5%, which means that only 5% of the samples do not comply
with the chosen equivalence margin for equivalence in means. For δ = 0.004 the optimal
sampling times correspond to 7min to 10min, and for δ = 0.006 the optimal sampling times
correspond to 3min to 5min (see table A.14 in the annex).

This analysis also points out that the needed sampling times to produce significant samples
are generally higher for the measurements recorded in proximity to the wall and the bottom
of the flume than for the measurements away from the wall and further into the water body.
Also, note that the equivalence margins are chosen very conservatively. This setting implies

90

that for applications that concur with higher equivalence margins, the optimal sampling times
are even lower than the ones presented for δ = 0.006.

The following subsection 7.5 highlights the possible implications of optimising sampling times
in hydraulic experiments and general laboratory practice.

7.5. Discussion of Results

When attempting to find an optimal sampling time for ADV measurements, the primary goal is
to save resources. So, every effort undertaken to find the optimal sampling time for a planned
hydraulic experiment must be traded off against the potential saving of resources realised by
optimisation. For example, shaving off several minutes of measuring time via optimisation
to realise measurements in a large measurement grid with many measurement points might
be worthwhile, while performing a time-consuming analysis on measurement times when
only recording a few measurements can be a waste of resources. Apart from more resource
efficiency, the optimisation approach also ensures a level of statistical significance which
enables making educated decisions on sampling times and increases awareness of uncertainty
in the measurements among measurement device users.

Several samples at different measurement points are analysed to develop the optimisation
approach for hydraulic data measurements. The process is retaken for many different samples
to ensure reproducibility of results for different cases and test the robustness of the approach.
When applying the optimisation approach to an actual project, one would only record one
long-duration measurement, ideally at the measuring point expected to show the highest
uncertainty in measurement. Also, hypothesis testing would include much fewer samples
to minimise computation times. Furthermore, the long-duration measurements were not
processed before optimising when developing this approach. This is a quite bidirectional
point to consider: on the one hand, one wants to produce significant samples independent of
possible uncertainties but on the other hand, optimising the sampling time after processing
promises to decrease the sampling time even further. However, after some thought and
performing the statistical evaluation in chapter 6, it appears more logical to use filtered
samples in future sampling time optimisations using hypothesis testing. By doing this, one
can be sure that higher statistical moments agree with general recommendations and that the
samples are not biased regarding the statistical distribution of the data.

Aside from the effectiveness of the sampling time optimisation approach, it is important to
stress that the process needs to be adapted to every new experiment setup. Correspondingly,
several circumstances allow an advantageous use of the approach, like a precise research
question, details on the measurement campaign and knowledge of the device and its accuracy.
Moreover, the researcher should evaluate the time needed to understand and execute the

91

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

H0
 A

cc
ep

ta
nc

e
Ra

te
 [%

]

= 0.004

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

(a) Null hypothesis acceptance rates for the long-duration measurement in central horizontal
position and vertical position of 0.4m over bottom at δ = 0.004.

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

H0
 A

cc
ep

ta
nc

e
Ra

te
 [%

]

= 0.006

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

(b) Null hypothesis acceptance rates for the long-duration measurement in central horizontal
position and vertical position of 0.4m over bottom at δ = 0.006.

Figure 7.2.: Comparison of null hypothesis acceptance rates for the long-duration measure-
ment in central horizontal position and vertical position of 0.4m over bottom at
two equivalence levels.

92

method. A requirement that definitely must be met is the independence of measurements.
All these considerations facilitate the choice of fitting input parameters for the optimisation
process and help assess whether the optimisation is genuinely essential and profitable.

Several general statements can be deduced from the findings presented in the previous
subsections:

– Optimising the sampling time regarding to statistical parameters is possible via hypoth-
esis testing.

– Optimisation of the sampling time is only genuinely advantageous if high confidence in
the data is needed or if the collection of data is extensive.

– For the data at hand, the sampling time recommendations in the literature of 3min to
5min correspond to very small equivalence margins.

– This approach only recognises equivalence in means. An optimisation that uses higher
statistical moments could result in longer optimal sampling times.

93

8. Conclusion and Outlook

Initiated by a lack of practical, efficient, transparent and open-source tools to reduce uncer-
tainty from ADVmeasurements, this thesis reviews ADV data analysis approaches. While many
data analysis methods seem worthwhile, some apply complicated mathematical operations
and theories and require good mathematical understanding and programming proficiency to
transfer the abstract concepts into working Python code. For this thesis, three methods (one de-
spiking method and two denoising methods) were implemented in the programming language
Python. The processing of 160 samples of ADV measurements in turbulent flow shows that
the overall most successful combination of data analysis methods implemented and evaluated
here is KDE despiking in combination with Butterworth filtering. The implementations are
now available for other velocity measurements using ADV devices.

A despiking method that was implemented in Python and published in 2021 - the P-SAT
framework - could not be employed successfully. Either the method does not work as intended,
or the code is used incorrectly. Although the results from the P-SAT framework are severely
flawed in a statistical sense, the produced spectra show potential. Therefore, I deem it
profitable to find the mistakes in use or in code that lead to the disadvantageous statistical
parameters, to provide an alternative despiking method in the Python language for future
projects with the ADV.

Furthermore, the calculation of statistical parameters for ADV measurements is implemented
by creating a respective script in Python. This implementation facilitates calculating relevant
statistical parameters for reporting in compliance with the GUM. Furthermore, it is found
that data evaluation by statistical parameters is overall a fit approach to detect uncertainties
in ADV data, but for turbulent flow, spectra should be evaluated additionally. In this thesis,
spectra are only evaluated visually by manual screening. A Python implementation can
be realised to improve this evaluation so that it automatically evaluates spectra regarding
the degree to which they follow the theoretical Kolmogorov spectrum. For example, this
implementation can be realised by comparing function properties or by utilising an image
data processing approach. For more information on automated detection of the −5

3
slope

in the inertial subrange see e.g. Ortiz-Suslow et al., 2020. All in all, processed data should
always be evaluated to ensure that the methods work reliably and to work in agreement with
good scientific practice.

94

The TOST for equivalence in means is explored in this thesis to find an optimal sampling
time for ADV measurements and improve the data collection process. Overall, the attempt is
successful, and the method can be used to devise optimal sampling times regarding a priori
set quality levels. When using the method, I recommend a minimum long time duration
measurement of 30min (for the Vectrino at a sampling frequency of 25Hz, i.e. 45000 measure-
ment points). Computing the null hypothesis acceptance rates can get quite time-consuming
due to the many iterations. Therefore, I recommend testing with ten different base samples
(”iterations_of_script=10”) and only two values for ”random_state_population”. By doing
this, it can be ensured that the introduced redundancy can detect mistakes.

I suggest testing the TOST procedure for more flow conditions and original and filtered data
to improve the method further. Also, at the moment, only the first statistical moment is
considered, which in the future can be extended by trying to equivalence test for goodness-of-
fit with the χ-square-test (Staudte, 2020). Also, alternative tests (such as the Mann-Whitney-U
test for the mean) can be implemented so that the test results can be tested for coherence.
The method is also transferable to other devices.

An in-depth study on optimal sampling times might be worthwhile to give general recom-
mendations for future projects. The study could examine long-duration measurements for
various flow conditions using multiple devices frequently used in the hydraulic laboratory.
Applying the TOST with several equivalence and confidence levels can produce data to assess
the optimal sampling time for many settings.

Lastly, a flow chart (see figure 8.1) is proposed that incorporates the findings of this thesis
into a systematic approach to working with data from ADV devices in the hydraulic laboratory.
The left side of the flow chart divides the diagram into critical project phases concerning
ADV data. The work flow starts in the rectangle with the two droplets. By following the
arrows and answering the questions that arise along the way, essential steps to ADV data
handling are respected. The colours in the flow chart represent the nature of the step that
is represented by the respective rectangle. The right side of the flow chart integrates a fail
safe into the procedure so that eventual problems are solved systematically. As the flow chart
mainly includes actions and questions tangential to topics from this thesis, I am sure that
there is still a lot to add to this systematic approach and therefore make no claim that the
flow chart is exhaustive.

Altogether, this thesis shows that Python as a programming language is very well suited for
hydraulic data analysis, even for users without a plethora of previous programming experience.
This is due to much information and many learning platforms available for free. Considering
this, I find it surprising to find only a few specialised, open-source tools for hydraulics or
water engineering questions in this language. I believe it could be rewarding to work towards
specialised open-source tools in the hydraulics and water engineering field.

95

Colour Scheme

Record long duration measurement.

Draft research question.

Need for high confidence in data?

or

High number of projected samples?

Perform TOST.

Determine TOST parameters.

Record data according to TOST
results.

Only need the mean velocity for this
project?

Calculate the statistical parameters.

Are the statistical parameters fine?

Review basic assumptions,
experimental setup and

methodology.

Use data for research question.

Evaluate the spectra.

Visualise the spectra.

Evaluate the statistical parameters.

Calculate the mean.

Process data with a combination of
despiking and denoising methods.

Convert data for use in Python.

Record data for a set
sampling time.

Ask.

Do.

Success.

Challenges.

no

yes

no

yes

Statistical parameters correct?

Despiking and denoising
implementation correct?

Data conversion correct?

Recording process correct?

Are the spectra fine?

yes

yes

no

yes

yes

yes

yes

no

no

no

no

Study
Design

Data
Collection

Statistical
Reporting

Data
Processing

Data
Evaluation

Data Use

no

Figure 8.1.: Proposal for a systematic approach to working with data from ADV devices in
the hydraulic laboratory.

96

References

Adam, B., & Lehmann, B. (2011). Ethohydraulik. Springer Berlin Heidelberg. https://doi.org/
10.1007/978-3-642-17210-6

Agarwal, M., Deshpande, V., Katoshevski, D., & Kumar, B. (2021). A novel Python module for
statistical analysis of turbulence (P-SAT) in geophysical flows. Scientific reports, 11(1),
3998. https://doi.org/10.1038/s41598-021-83212-1

Alessio, S. M. (2016). Digital Signal Processing and Spectral Analysis for Scientists: Concepts and
Applications (1st ed. 2016). Springer. https://doi.org/10.1007/978-3-319-25468-5

Anaconda. (2021). Anaconda Software Distribution. Retrieved May 21, 2022, from https:
//anaconda.com/

Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D., & Hof, B. (2011). The onset of
turbulence in pipe flow. Science (New York, N.Y.), 333(6039), 192–196. https://doi.
org/10.1126/science.1203223

Bailly, C., & Comte-Bellot, G. (2015). Turbulence. Springer.
Biron, P. (1997). Errata. Mathematical Geology, 29(5), 725. https://doi .org/10.1007/

BF02769653
Biron, P., Roy, A. G., & Best, J. L. (1995). A scheme for resampling, filtering, and subsampling

unevenly spaced laser Doppler anemometer data. Mathematical Geology, 27(6), 731–
748. https://doi.org/10.1007/BF02273535

Bollrich, G. (2013). Technische Hydromechanik (7. Auflage). Beuth Verlag GmbH.
Bonamente, M. (2013). Statistics and Analysis of Scientific Data. Springer New York. https:

//doi.org/10.1007/978-1-4614-7984-0
Botev, Z. I., Grotowski, J. F., & Kroese, D. P. (2010). Kernel density estimation via diffusion.

The Annals of Statistics, 38(5). https://doi.org/10.1214/10-AOS799
Carbonneau, P. E., & Bergeron, N. E. (2000). The effect of bedload transport on mean and

turbulent flow properties. Geomorphology, 35(3-4), 267–278. https://doi.org/10.
1016/S0169-555X(00)00046-5

Cea, L., Puertas, J., & Pena, L. (2007). Velocity measurements on highly turbulent free surface
flow using ADV. Experiments in Fluids, 42(3), 333–348. https://doi.org/10.1007/
s00348-006-0237-3

97

https://doi.org/10.1007/978-3-642-17210-6
https://doi.org/10.1007/978-3-642-17210-6
https://doi.org/10.1038/s41598-021-83212-1
https://doi.org/10.1007/978-3-319-25468-5
https://anaconda.com/
https://anaconda.com/
https://doi.org/10.1126/science.1203223
https://doi.org/10.1126/science.1203223
https://doi.org/10.1007/BF02769653
https://doi.org/10.1007/BF02769653
https://doi.org/10.1007/BF02273535
https://doi.org/10.1007/978-1-4614-7984-0
https://doi.org/10.1007/978-1-4614-7984-0
https://doi.org/10.1214/10-AOS799
https://doi.org/10.1016/S0169-555X(00)00046-5
https://doi.org/10.1016/S0169-555X(00)00046-5
https://doi.org/10.1007/s00348-006-0237-3
https://doi.org/10.1007/s00348-006-0237-3

Chanson, H., Trevethan, M., & Koch, C. (2007). Discussion of “Turbulence Measurements
with Acoustic Doppler Velocimeters” by Carlos M. García, Mariano I. Cantero, Yarko
Niño, and Marcelo H. García. Journal of Hydraulic Engineering, 133(11), 1283–1286.
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1283)

Chanson, H., & Larrarte, F. (Eds.). (2008). Acoustic Doppler Velocimetry in the Field and in
Laboratory: Practical Experiences (Vol. CH70/08).

Chanson, H., Trevethan, M., & Aoki, S.-i. (2008). Acoustic Doppler velocimetry (ADV) in
small estuary: Field experience and signal post-processing. Flow Measurement and
Instrumentation, 19(5), 307–313. https://doi.org/10.1016/j.flowmeasinst.2008.03.
003

Day, M. A. (1990). The no-slip condition of fluid dynamics. Erkenntnis, 33(3), 285–296.
https://doi.org/10.1007/BF00717588

Díaz Lozada, J. M., García, C. M., Scacchi, G., & Oberg, K. A. (2021). Dynamic Selection of
Exposure Time for Turbulent Flow Measurements. Journal of Hydraulic Engineering,
147(10), 04021035. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001922

Dilling, S., & MacVicar, B. J. (2017). Cleaning high-frequency velocity profile data with
autoregressive moving average (ARMA)models. FlowMeasurement and Instrumentation,
54, 68–81. https://doi.org/10.1016/j.flowmeasinst.2016.12.005

Dombroski, D. E., & Crimaldi, J. P. (2007). The accuracy of acoustic Doppler velocimetry
measurements in turbulent boundary layer flows over a smooth bed. Limnology and
Oceanography: Methods, 5(1), 23–33. https://doi.org/10.4319/lom.2007.5.23

Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information
Theory, 41(3), 613–627. https://doi.org/10.1109/18.382009

Doroudian, B., Bagherimiyab, F., & Lemmin, U. (2010). Improving the accuracy of four-
receiver acoustic Doppler velocimeter (ADV) measurements in turbulent boundary
layer flows. Limnology and Oceanography: Methods, 8(11), 575–591. https://doi.org/
10.4319/lom.2010.8.0575

Durgesh, V., Thomson, J., Richmond, M. C., & Polagye, B. L. (2014). Noise correction of
turbulent spectra obtained from acoustic doppler velocimeters. Flow Measurement and
Instrumentation, 37, 29–41. https://doi.org/10.1016/j.flowmeasinst.2014.03.001

Frost, I. (2017). Statistische Testverfahren, Signifikanz und p-Werte: Allgemeine Prinzipien
verstehen und Ergebnisse angemessen interpretieren. Springer VS. https://doi.org/10.
1007/978-3-658-16258-0

Gazi, O. (2018). Understanding Digital Signal Processing (Vol. 13). Springer Singapore. https:
//doi.org/10.1007/978-981-10-4962-0

Goring, D. G., & Nikora, V. I. (2002). Despiking Acoustic Doppler Velocimeter Data. Journal
of Hydraulic Engineering, 128(1), 117–126. https://doi.org/10.1061/(ASCE)0733-
9429(2002)128:1(117)

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., …

98

https://doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1283)
https://doi.org/10.1016/j.flowmeasinst.2008.03.003
https://doi.org/10.1016/j.flowmeasinst.2008.03.003
https://doi.org/10.1007/BF00717588
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001922
https://doi.org/10.1016/j.flowmeasinst.2016.12.005
https://doi.org/10.4319/lom.2007.5.23
https://doi.org/10.1109/18.382009
https://doi.org/10.4319/lom.2010.8.0575
https://doi.org/10.4319/lom.2010.8.0575
https://doi.org/10.1016/j.flowmeasinst.2014.03.001
https://doi.org/10.1007/978-3-658-16258-0
https://doi.org/10.1007/978-3-658-16258-0
https://doi.org/10.1007/978-981-10-4962-0
https://doi.org/10.1007/978-981-10-4962-0
https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)
https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)

Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362.
https://doi.org/10.1038/s41586-020-2649-2

Harten, U. (2021). Physik. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-
61698-7

Haslwanter, T. (2021). Hands-on Signal Analysis with Python. Springer International Publishing.
https://doi.org/10.1007/978-3-030-57903-6

Hejazi, K., Falconer, R. A., & Seifi, E. (2016). Denoising and despiking ADV velocity and salinity
concentration data in turbulent stratified flows. Flow Measurement and Instrumentation,
52, 83–91. https://doi.org/10.1016/j.flowmeasinst.2016.09.010

Hering, E., Martin, R., & Stohrer, M. (2016). Physik für Ingenieure. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-662-49355-7

Huang, C. J., Ma, H., Guo, J., Dai, D., & Qiao, F. (2018). Calculation of turbulent dissipation
rate with acoustic Doppler velocimeter. Limnology and Oceanography: Methods, 16(5),
265–272. https://doi.org/10.1002/lom3.10243

Huang, C., Qiao, F., & Ma, H. (2020). Noise reduction of acoustic Doppler velocimeter data
based on Kalman filtering and autoregressive moving average models. Acta Oceanologica
Sinica, 39(12), 106–113. https://doi.org/10.1007/s13131-020-1641-x

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engi-
neering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Hurther, D., & Lemmin, U. (2008). Improved Turbulence Profiling with Field-Adapted Acoustic
Doppler Velocimeters Using a Bifrequency Doppler Noise Suppression Method. Journal
of Atmospheric and Oceanic Technology, 25(3), 452–463. https://doi.org/10.1175/
2007JTECHO512.1

Islam, M. R., & Zhu, D. Z. (2013). Kernel Density–Based Algorithm for Despiking ADV Data.
Journal of Hydraulic Engineering, 139(7), 785–793. https://doi.org/10.1061/(ASCE)
HY.1943-7900.0000734

JCGM. (2008a). Evaluation of measurement data - Supplement 1 to the “Guide to the ex-
pression of uncertainty in measurement” - Propagation of distributions using a Monte
Carlo method (101:2008). Retrieved April 18, 2022, from https://www.bipm.org/
documents/20126/2071204/JCGM_101_2008_E.pdf/325dcaad-c15a-407c-1105-
8b7f322d651c

JCGM. (2008b). Evaluation of measurement data — Guide to the expression of uncertainty
in measurement (100:2008). Retrieved December 2, 2021, from https://www.bipm.
org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-
4dcd86f77bd6

Jesson, M., Sterling, M., & Bridgeman, J. (2013). Despiking velocity time-series—Optimi-
sation through the combination of spike detection and replacement methods. Flow
Measurement and Instrumentation, 30, 45–51. https://doi.org/10.1016/j.flowmeasinst.
2013.01.007

99

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/978-3-662-61698-7
https://doi.org/10.1007/978-3-662-61698-7
https://doi.org/10.1007/978-3-030-57903-6
https://doi.org/10.1016/j.flowmeasinst.2016.09.010
https://doi.org/10.1007/978-3-662-49355-7
https://doi.org/10.1002/lom3.10243
https://doi.org/10.1007/s13131-020-1641-x
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1175/2007JTECHO512.1
https://doi.org/10.1175/2007JTECHO512.1
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000734
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000734
https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf/325dcaad-c15a-407c-1105-8b7f322d651c
https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf/325dcaad-c15a-407c-1105-8b7f322d651c
https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf/325dcaad-c15a-407c-1105-8b7f322d651c
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6
https://doi.org/10.1016/j.flowmeasinst.2013.01.007
https://doi.org/10.1016/j.flowmeasinst.2013.01.007

Juzek, T. S., & Kizach, J. (2019). How to Set Delta in the Two-One-Sided T-tests Procedure
(TOST). Journal of Research Design and Statistics in Linguistics and Communication
Science, 5(1-2), 153–169. https://doi.org/10.1558/jrds.39002

Kolmogorov, A. N. (1991). The local structure of turbulence in incompressible viscous fluid
for very large Reynolds numbers. Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, 434(1890), 9–13. https://doi.org/10.1098/rspa.
1991.0075

Köse, Ö. (2013). Various filtering algorithms used to eliminate outliers in velocity time series
obtained by ADVs (acoustic Doppler velocimeter). Arabian Journal of Geosciences, 6(7),
2691–2697. https://doi.org/10.1007/s12517-012-0523-8

Lane, S. N., Biron, P. M., Bradbrook, K. F., Butler, J. B., Chandler, J. H., Crowell, M. D.,
McLelland, S. J., Richards, K. S., & Roy, A. G. (1998). Three-dimensional measurement
of river channel flow processes using acoustic doppler velocimetry. Earth Surface
Processes and Landforms, 23(13), 1247–1267. https://doi.org/10.1002/(SICI)1096-
9837(199812)23:13{\textless}1247::AID-ESP930{\textgreater}3.0.CO;2-D

Lange, T., & Mosler, K. (2017). Statistik kompakt. Springer Berlin Heidelberg. https://doi.
org/10.1007/978-3-662-53467-0

Lemmin, U., Lhermitte, R., Nikora, V. I., & Goring, D. G. (1999). ADV Measurements of
Turbulence: Can We Improve Their Interpretation? Journal of Hydraulic Engineering,
125(9), 987–988. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(987)

Li, Y., & Meneveau, C. (2005). Origin of non-Gaussian statistics in hydrodynamic turbulence.
Physical review letters, 95(16), 164502. https://doi.org/10.1103/PhysRevLett.95.
164502

MacVicar, B. J., Beaulieu, E., Champagne, V., & Roy, A. G. (2007). Measuring water velocity
in highly turbulent flows: field tests of an electromagnetic current meter (ECM) and
an acoustic Doppler velocimeter (ADV). Earth Surface Processes and Landforms, 32(9),
1412–1432. https://doi.org/10.1002/esp.1497

MacVicar, B., Dilling, S., & Lacey, J. (2014). Multi-instrument turbulence toolbox (MITT):
Open-source MATLAB algorithms for the analysis of high-frequency flow velocity time
series datasets. Computers & Geosciences, 73, 88–98. https://doi.org/10.1016/j.cageo.
2014.09.002

Meyer, M. (2021). Signalverarbeitung. Springer Fachmedien Wiesbaden. https://doi.org/10.
1007/978-3-658-32801-6

Morgenschweis, G. (2018). Hydrometrie: Theorie und Praxis der Durchflussmessung in offenen
Gerinnen (2. Auflage). Springer Vieweg. https://doi.org/10.1007/978-3-662-55314-5

Mori, N., Suzuki, T., & Kakuno, S. (2007). Noise of Acoustic Doppler Velocimeter Data in
Bubbly Flows. Journal of Engineering Mechanics, 133(1), 122–125. https://doi.org/10.
1061/(ASCE)0733-9399(2007)133:1(122)

Mrtz. (2004). Aliasing. Retrieved May 26, 2022, from https://commons.wikimedia.org/wiki/
File:Aliasing_mrtz.svg

100

https://doi.org/10.1558/jrds.39002
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.1007/s12517-012-0523-8
https://doi.org/10.1002/(SICI)1096-9837(199812)23:13{\textless}1247::AID-ESP930{\textgreater}3.0.CO;2-D
https://doi.org/10.1002/(SICI)1096-9837(199812)23:13{\textless}1247::AID-ESP930{\textgreater}3.0.CO;2-D
https://doi.org/10.1007/978-3-662-53467-0
https://doi.org/10.1007/978-3-662-53467-0
https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(987)
https://doi.org/10.1103/PhysRevLett.95.164502
https://doi.org/10.1103/PhysRevLett.95.164502
https://doi.org/10.1002/esp.1497
https://doi.org/10.1016/j.cageo.2014.09.002
https://doi.org/10.1016/j.cageo.2014.09.002
https://doi.org/10.1007/978-3-658-32801-6
https://doi.org/10.1007/978-3-658-32801-6
https://doi.org/10.1007/978-3-662-55314-5
https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(122)
https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(122)
https://commons.wikimedia.org/wiki/File:Aliasing_mrtz.svg
https://commons.wikimedia.org/wiki/File:Aliasing_mrtz.svg

Nikora, V., & Goring, D. (2000). Flow Turbulence over Fixed and Weakly Mobile Gravel Beds.
Journal of Hydraulic Engineering, 126(9), 679–690. https://doi.org/10.1061/(ASCE)
0733-9429(2000)126:9(679)

Nikora, V. I., & Goring, D. G. (1998). ADV Measurements of Turbulence: Can We Improve
Their Interpretation? Journal of Hydraulic Engineering, 124(6), 630–634. https://doi.
org/10.1061/(ASCE)0733-9429(1998)124:6(630)

Nortek. (2004). Vectrino Velocimeter User Guide.
Nortek. (2021). The comprehensive Manual for Velocimeters: Vector | Vectrino | Vectrino

Profiler.
Oertel, H. (2017). Prandtl - Führer durch die Strömungslehre. Springer Fachmedien Wiesbaden.

https://doi.org/10.1007/978-3-658-08627-5
Oertel, H., Böhle, M., & Reviol, T. (2015). Strömungsmechanik. Springer Fachmedien Wies-

baden. https://doi.org/10.1007/978-3-658-07786-0
Ortiz-Suslow, D. G., Wang, Q., Kalogiros, J., & Yamaguchi, R. (2020). A Method for Identi-

fying Kolmogorov’s Inertial Subrange in the Velocity Variance Spectrum. Journal of
Atmospheric and Oceanic Technology, 37(1), 85–102. https://doi.org/10.1175/JTECH-
D-19-0028.1

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,
J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-
learn: Machine Learning in Python. Retrieved March 28, 2022, from https://scikit-
learn.org/stable/modules/density.html#kernel-density

Piaggio, G., Elbourne, D. R., Altman, D. G., Pocock, S. J., & Evans, S. J. W. (2006). Reporting
of noninferiority and equivalence randomized trials: an extension of the CONSORT
statement. JAMA, 295(10), 1152–1160. https://doi.org/10.1001/jama.295.10.1152

Poindexter, C. M., Rusello, P. J., & Variano, E. A. (2011). Acoustic Doppler velocimeter-induced
acoustic streaming and its implications for measurement. Experiments in Fluids, 50(5),
1429–1442. https://doi.org/10.1007/s00348-010-1001-2

Precht, E., Janssen, F., & Huettel, M. (2006). Near-bottom performance of the Acoustic
Doppler Velocimeter (ADV) – a comparative study. Aquatic Ecology, 40(4), 481–492.
https://doi.org/10.1007/s10452-004-8059-y

Puthusserypady, S. (2021). Applied Signal Processing. Now Publishers. https://doi.org/10.
1561/9781680839791

Python Software Foundation. (2020). Python. Retrieved May 21, 2022, from https://www.
python.org/

Razaz, M., & Kawanisi, K. (2011). Signal post-processing for acoustic velocimeters: detecting
and replacing spikes. Measurement Science and Technology, 22(12), 125404. https:
//doi.org/10.1088/0957-0233/22/12/125404

Reynolds, A. J. (1974). Turbulent flows in engineering. Wiley.

101

https://doi.org/10.1061/(ASCE)0733-9429(2000)126:9(679)
https://doi.org/10.1061/(ASCE)0733-9429(2000)126:9(679)
https://doi.org/10.1061/(ASCE)0733-9429(1998)124:6(630)
https://doi.org/10.1061/(ASCE)0733-9429(1998)124:6(630)
https://doi.org/10.1007/978-3-658-08627-5
https://doi.org/10.1007/978-3-658-07786-0
https://doi.org/10.1175/JTECH-D-19-0028.1
https://doi.org/10.1175/JTECH-D-19-0028.1
https://scikit-learn.org/stable/modules/density.html#kernel-density
https://scikit-learn.org/stable/modules/density.html#kernel-density
https://doi.org/10.1001/jama.295.10.1152
https://doi.org/10.1007/s00348-010-1001-2
https://doi.org/10.1007/s10452-004-8059-y
https://doi.org/10.1561/9781680839791
https://doi.org/10.1561/9781680839791
https://www.python.org/
https://www.python.org/
https://doi.org/10.1088/0957-0233/22/12/125404
https://doi.org/10.1088/0957-0233/22/12/125404

Richard, J.-B., Thomson, J., Polagye, B., & Bard, J. (2013). Method for identification of Doppler
noise levels in turbulent flow measurements dedicated to tidal energy. International
Journal of Marine Energy, 3-4, 52–64. https://doi.org/10.1016/j.ijome.2013.11.005

Roget, E., Lozovatsky, I., Sanchez, X., & Figueroa, M. (2006). Microstructure measurements
in natural waters: Methodology and applications. Progress in Oceanography, 70(2-4),
126–148. https://doi.org/10.1016/j.pocean.2006.07.003

Rose, E. M., Mathew, T., Coss, D. A., Lohr, B., & Omland, K. E. (2018). A new statistical
method to test equivalence: an application in male and female eastern bluebird song.
Animal Behaviour, 145, 77–85. https://doi.org/10.1016/j.anbehav.2018.09.004

Ross, S. M. (2010). Introductory statistics (3. ed.). Academic Press. http://www.sciencedirect.
com

Roy, A. G., Biron, P. M., & Lapointe, M. F. (1997). Implications of low-pass filtering on
power spectra and autocorrelation functions of turbulent velocity signals. Mathematical
Geology, 29(5), 653–668. https://doi.org/10.1007/BF02769649

Rusello, P. J. (2009). A Practical Primer for Pulse Coherent Instruments (Nortek, Ed.).
Schiefer, H., & Schiefer, F. (2021). Statistics for Engineers. Springer Fachmedien Wiesbaden.

https://doi.org/10.1007/978-3-658-32397-4
Schlichting, H., & Gersten, K. (2006). Grenzschicht-Theorie: Mit 22 Tabellen (10., überarbeitete

Auflage). Springer.
Schuirmann, D. J. (1987). A comparison of the two one-sided tests procedure and the power

approach for assessing the equivalence of average bioavailability. Journal of pharmacoki-
netics and biopharmaceutics, 15(6), 657–680. https://doi.org/10.1007/BF01068419

Seabold, S., & Perktold, J. (2010). statsmodels: Econometric and statistical modeling with
python. 9th Python in Science Conference.

Shahmoradi, A., Bagheri, F., & Osborne, J. A. e. (2020). Fast fully-reproducible serial/parallel
Monte Carlo and MCMC simulations and visualizations via ParaMonte::Python library.
arXiv e-prints, arXiv:2010.00724.

Sharma, A., Maddirala, A. K., & Kumar, B. (2018). Modified singular spectrum analysis
for despiking acoustic Doppler velocimeter (ADV) data. Measurement, 117, 339–346.
https://doi.org/10.1016/j.measurement.2017.12.025

She, Z.-S. (1991). Intermittency and non-gaussian statistics in turbulence. Fluid Dynamics
Research, 8(1-4), 143–158. https://doi.org/10.1016/0169-5983(91)90039-L

Siebert, M., & Ellenberger, D. (2020). Validation of automatic passenger counting: introducing
the t-test-induced equivalence test. Transportation, 47(6), 3031–3045. https://doi.
org/10.1007/s11116-019-09991-9

Skiadas, C. (Ed.). (2016). The Foundations of Chaos Revisited: From Poincaré to Recent Ad-
vancements: The Kolmogorov Law of turbulence, What can rigorously be proved ? Part II.
Springer. https://doi.org/10.1007/978-3-319-29701-9

Sokoray-Varga B., & Höger V. (2014). Messungen mit dem Vectrino. BAW Empfehlung. Ausgabe
2014. BAW.

102

https://doi.org/10.1016/j.ijome.2013.11.005
https://doi.org/10.1016/j.pocean.2006.07.003
https://doi.org/10.1016/j.anbehav.2018.09.004
http://www.sciencedirect.com
http://www.sciencedirect.com
https://doi.org/10.1007/BF02769649
https://doi.org/10.1007/978-3-658-32397-4
https://doi.org/10.1007/BF01068419
https://doi.org/10.1016/j.measurement.2017.12.025
https://doi.org/10.1016/0169-5983(91)90039-L
https://doi.org/10.1007/s11116-019-09991-9
https://doi.org/10.1007/s11116-019-09991-9
https://doi.org/10.1007/978-3-319-29701-9

Song, H. (2018). Engineering Fluid Mechanics. Springer Singapore. https://doi.org/10.1007/
978-981-13-0173-5

SonTek. (2011). RiverSurveyor S5/M9 system manual: Firmware Version 2.00 (SonTek, Ed.).
Spurk, J. H., & Aksel, N. (2020). Fluid Mechanics. Springer International Publishing. https:

//doi.org/10.1007/978-3-030-30259-7
Staudte, R. G. (2020). Evidence for goodness of fit in Karl Pearson chi-squared statistics.

Statistics, 54(6), 1287–1310. https://doi.org/10.1080/02331888.2020.1862115
Stein, J. Y. (2000). Digital signal processing: A computer science perspective. Wiley. http://

swbplus.bsz-bw.de/bsz088772233cov.htm
Strom, K. B., & Papanicolaou, A. N. (2007). ADV Measurements around a Cluster Microform

in a Shallow Mountain Stream. Journal of Hydraulic Engineering, 133(12), 1379–1389.
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1379)

Sundararajan, D. (2021). Digital Signal Processing: An Introduction (1st ed. 2021). Springer
International Publishing; Imprint Springer. https://doi.org/10.1007/978-3-030-62368-
5

Tennekes, H., & Lumley, J. L. (1972). A first course in turbulence. MIT Press. http://mitpress.
mit.edu/books/first-course-turbulence

Teolis, A. (2017). Computational Signal Processing with Wavelets. Birkhäuser. https://doi.org/
10.1007/978-3-319-65747-9

The pandas development team. (2022). Pandas. https://doi.org/10.5281/zenodo.3509134
Tsinober, A. (2009). An informal conceptual introduction to turbulence: Second edition of ”An

informal introduction to turbulence” (2. ed., Vol. 92). Springer. http://www.loc.gov/
catdir/enhancements/fy1202/2009930633-d.html

Turnipseed, D. P., & Sauer, V. B. (2010). Discharge measurements at gaging stations (U.S.
Geological Survey, Ed.).

Veloni, A. (2019). Digital and Statistical Signal Processing. Chapman and Hall/CRC. https:
//ebookcentral.proquest.com/lib/kxp/detail.action?docID=5538941

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,
E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J.,
Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … van
Mulbregt, P. (2020). SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nature methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-
2

von Kusserow, U. (2018). Chaos, Turbulenzen und kosmische Selbstorganisationsprozesse.
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55895-9

Wahl, T. L. (2000). Analyzing ADV Data Using WinADV. In R. H. Hotchkiss & M. Glade
(Eds.), Building Partnerships (pp. 1–10). American Society of Civil Engineers. https:
//doi.org/10.1061/40517(2000)300

Wahl, T. L. (2003). Discussion of “Despiking Acoustic Doppler Velocimeter Data” by Derek
G. Goring and Vladimir I. Nikora. Journal of Hydraulic Engineering, 129(6), 484–487.
https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(484)

103

https://doi.org/10.1007/978-981-13-0173-5
https://doi.org/10.1007/978-981-13-0173-5
https://doi.org/10.1007/978-3-030-30259-7
https://doi.org/10.1007/978-3-030-30259-7
https://doi.org/10.1080/02331888.2020.1862115
http://swbplus.bsz-bw.de/bsz088772233cov.htm
http://swbplus.bsz-bw.de/bsz088772233cov.htm
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1379)
https://doi.org/10.1007/978-3-030-62368-5
https://doi.org/10.1007/978-3-030-62368-5
http://mitpress.mit.edu/books/first-course-turbulence
http://mitpress.mit.edu/books/first-course-turbulence
https://doi.org/10.1007/978-3-319-65747-9
https://doi.org/10.1007/978-3-319-65747-9
https://doi.org/10.5281/zenodo.3509134
http://www.loc.gov/catdir/enhancements/fy1202/2009930633-d.html
http://www.loc.gov/catdir/enhancements/fy1202/2009930633-d.html
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=5538941
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=5538941
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-3-662-55895-9
https://doi.org/10.1061/40517(2000)300
https://doi.org/10.1061/40517(2000)300
https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(484)

Waldi, R. (2019). Statistische Datenanalyse. Springer Berlin Heidelberg. https://doi.org/10.
1007/978-3-662-60645-2

Walker, E., & Nowacki, A. S. (2011). Understanding equivalence and noninferiority testing.
Journal of general internal medicine, 26(2), 192–196. https://doi.org/10.1007/s11606-
010-1513-8

Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software,
6(60), 3021. https://doi.org/10.21105/joss.03021

Weidler, D. O. (2021). Drucksignaturen imNachlauf von Zylindern unterschiedlichen Durchmes-
sers.

Weiss, J. (2019). A Tutorial on the Proper Orthogonal Decomposition. https://doi.org/10.
14279/depositonce-8512

Westlake, W. J. (1976). Symmetrical Confidence Intervals for Bioequivalence Trials. Biometrics,
32(4), 741. https://doi.org/10.2307/2529259

Winder, S. (2002). Analog and Digital Filter Design, 2nd Edition (2nd edition). Newnes; Safari.
https://learning.oreilly.com/library/view/-/9780750675475/?ar

Wolfson, R. (2020). Essential university physics: Volume 1 (Fourth edition). Pearson Education.
https://elibrary.pearson.de/book/99.150005/9781292350257

104

https://doi.org/10.1007/978-3-662-60645-2
https://doi.org/10.1007/978-3-662-60645-2
https://doi.org/10.1007/s11606-010-1513-8
https://doi.org/10.1007/s11606-010-1513-8
https://doi.org/10.21105/joss.03021
https://doi.org/10.14279/depositonce-8512
https://doi.org/10.14279/depositonce-8512
https://doi.org/10.2307/2529259
https://learning.oreilly.com/library/view/-/9780750675475/?ar
https://elibrary.pearson.de/book/99.150005/9781292350257

A. Annex

105

A.1. Figures

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ve

lo
cit

y
[m

/s
]

res_original
res_filtered

Figure A.1.: Exemplary visualisation of Butterworth filtered (1Hz, order=1) time-series against
original time-series.

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ve
lo

cit
y

[m
/s

]

res_original
res_filtered

Figure A.2.: Exemplary visualisation of Butterworth filtered (1.5Hz, order=1) time-series
against original time-series.

106

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ve

lo
cit

y
[m

/s
]

res_original
res_filtered

Figure A.3.: Exemplary visualisation of Butterworth filtered (2Hz, order=1) time-series against
original time-series.

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ve
lo

cit
y

[m
/s

]

res_original
res_filtered

Figure A.4.: Exemplary visualisation of Butterworth filtered (fs
2.93

, order=3) time-series against
original time-series.

107

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ve

lo
cit

y
[m

/s
]

res_original
res_filtered

Figure A.5.: Exemplary visualisation of P-SAT and Butterworth filtered (2.5Hz, order=1) time-
series against original time-series.

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ve
lo

cit
y

[m
/s

]

res_original
res_filtered

Figure A.6.: Exemplary visualisation of P-SAT and Gauss filtered time-series against original
time-series.

108

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ve

lo
cit

y
[m

/s
]

res_original
res_filtered

Figure A.7.: Exemplary visualisation of KDE despiked and Butterworth filtered (2.5Hz, order=1)
time-series against original time-series.

0 25 50 75 100 125 150 175
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ve
lo

cit
y

[m
/s

]

res_original
res_filtered

Figure A.8.: Exemplary visualisation of KDE despiked and Gauss time-series against original
time-series.

109

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.9.: All components - exemplary visualisation of P-SAT filtered time-series against
original time-series.

110

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.10.: All components - exemplary visualisation of KDE despiked time-series against
original time-series.

111

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.11.: All components - exemplary visualisation of Butterworth filtered (2.5Hz, order=1)
time-series against original time-series.

112

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.12.: All components - exemplary visualisation of Gauss filtered time-series against
original time-series.

113

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.13.: All components - exemplary visualisation of Butterworth filtered (1Hz, order=1)
time-series against original time-series.

114

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.14.: All components - exemplary visualisation of Butterworth filtered (1.5Hz, order=1)
time-series against original time-series.

115

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.15.: All components - exemplary visualisation of Butterworth filtered (2Hz, order=1)
time-series against original time-series.

116

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.16.: All components - exemplary visualisation of Butterworth filtered (fs
2.93

, order=3)
time-series against original time-series.

117

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.17.: All components - exemplary visualisation of P-SAT and Butterworth filtered
(2.5Hz, order=1) time-series against original time-series.

118

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.18.: All components - exemplary visualisation of P-SAT and Gauss filtered time-
series against original time-series.

119

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.19.: All components - exemplary visualisation of KDE despiked and Butterworth
filtered (2.5Hz, order=1) time-series against original time-series.

120

0

2

4

Ve
lo

cit
y

[m
/s

]

4

2

0

2

4

Ve
lo

cit
y

[m
/s

]

2

0

2

Ve
lo

cit
y

[m
/s

]

0 25 50 75 100 125 150 175
Time [s]

1

0

1

Ve
lo

cit
y

[m
/s

]

original res_filtered u_filtered v_filtered w_filtered

Figure A.20.: All components - exemplary visualisation of KDE despiked and Gauss time-
series against original time-series.

121

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

Figure A.21.: Spectra from Butterworth filtered (1Hz, order=1) time-series.

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

Figure A.22.: Spectra from Butterworth filtered (1.5Hz, order=1) time-series.

122

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

Figure A.23.: Spectra from Butterworth filtered (2Hz, order=1) time-series.

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

Figure A.24.: Spectra from Butterworth filtered (fs
2.93

, order=3) time-series.

123

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

Figure A.25.: Spectra from P-SAT filtered time-series for type 2 turbulence conditions (9A_-
3_V20210106125137).

10 1 100 101

Frequency [Hz]
10 11

10 9

10 7

10 5

10 3

10 1

E(
f)

[(m
²/s

²)/
Hz

]

-5/3 slope

u_original
v_original
w_original
res_original

u_filtered
v_filtered
w_filtered
res_filtered

Figure A.26.: Spectra from KDE despiked time-series for type 2 turbulence conditions (9A_-
3_V20210106125137).

124

Category 1 Category 2 Category 3 Category 4

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

0.6 0.6 1.9 96.9

4.4 16.2 15.0 64.4

85.0 11.9 1.9 1.2

0.0 0.0 0.0 100.0

0.6 0.0 0.0 99.4

0.0 3.1 0.6 96.2

0.0 0.0 0.0 100.0

4.4 15.6 16.9 63.1
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure A.27.: Heatmap of the categorisation of the relative change in means in the v-velocity
component for all implemented data analysis methods (n=160 samples).

Category 1 Category 2 Category 3 Category 4

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

1.2 8.1 10.6 80.0

8.1 20.0 26.9 45.0

96.9 3.1 0.0 0.0

0.0 0.0 0.0 100.0

0.0 0.0 0.0 100.0

1.9 6.9 11.9 79.4

0.0 0.0 0.0 100.0

8.1 21.2 25.6 45.0
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure A.28.: Heatmap of the categorisation of the relative change in means in the w-velocity
component for all implemented data analysis methods (n=160 samples).

125

Category 1 Category 2 Category 3 Category 4

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

3.8 69.4 17.5 9.4

85.6 11.9 2.5 0.0

90.0 10.0 0.0 0.0

100.0 0.0 0.0 0.0

100.0 0.0 0.0 0.0

95.6 3.1 1.2 0.0

100.0 0.0 0.0 0.0

96.2 3.8 0.0 0.0
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure A.29.: Heatmap of the categorisation of the relative change in variance in the v-velocity
component for all implemented data analysis methods (n=160 samples).

Category 1 Category 2 Category 3 Category 4

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

10.6 53.8 29.4 6.2

35.0 47.5 16.2 1.2

34.4 63.7 1.9 0.0

100.0 0.0 0.0 0.0

100.0 0.0 0.0 0.0

78.8 20.6 0.6 0.0

100.0 0.0 0.0 0.0

68.8 30.6 0.6 0.0
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure A.30.: Heatmap of the categorisation of the relative change in variance in the w-
velocity component for all implemented data analysis methods (n=160 sam-
ples).

126

Category 1 Category 2 Category 3 Category 4

Orig

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

6.9 25.6 30.0 37.5

1.2 1.2 4.4 93.1

33.8 58.1 8.1 0.0

12.5 36.2 49.4 1.9

0.0 0.0 0.6 99.4

0.0 3.1 46.2 50.6

15.6 27.5 23.1 33.8

0.0 18.1 81.9 0.0

31.2 56.9 11.9 0.0
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure A.31.: Heatmap of the categorisation of the skewness in the v-velocity component for
all implemented data analysis methods in comparison to the categorisation of
the original samples (n=160 samples).

Category 1 Category 2 Category 3 Category 4

Orig

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

9.4 48.8 41.9 0.0

30.0 43.8 24.4 1.9

48.8 51.2 0.0 0.0

31.2 65.0 3.8 0.0

0.0 0.0 78.8 21.2

0.0 0.0 93.8 6.2

24.4 71.2 3.8 0.6

0.0 3.1 96.9 0.0

46.2 53.8 0.0 0.0
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure A.32.: Heatmap of the categorisation of the skewness in the w-velocity component
for all implemented data analysis methods in comparison to the categorisation
of the original samples (n=160 samples).

127

Category 1 Category 2 Category 3 Category 4

Orig

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

0.6 0.0 10.6 88.8

2.5 0.6 81.9 15.0

98.8 1.2 0.0 0.0

0.6 3.1 93.8 2.5

0.0 1.2 67.5 31.2

39.4 10.0 8.8 41.9

48.1 4.4 32.5 15.0

91.9 8.1 0.0 0.0

96.9 2.5 0.0 0.6
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure A.33.: Heatmap of the categorisation of the kurtosis in the v-velocity component for
all implemented data analysis methods in comparison to the categorisation of
the original samples (n=160 samples).

Category 1 Category 2 Category 3 Category 4

Orig

P-SAT

KDE

But

Gau

P-SAT_But

P-SAT_Gau

KDE_But

KDE_Gau

0.6 4.4 94.4 0.6

23.1 64.4 12.5 0.0

99.4 0.6 0.0 0.0

30.0 69.4 0.6 0.0

2.5 64.4 33.1 0.0

47.5 40.6 11.9 0.0

79.4 20.0 0.6 0.0

95.6 4.4 0.0 0.0

100.0 0.0 0.0 0.0
0

20

40

60

80

100

Sa
m

pl
es

 [%
]

Figure A.34.: Heatmap of the categorisation of the kurtosis in the w-velocity component for
all implemented data analysis methods in comparison to the categorisation of
the original samples (n=160 samples).

128

0 200 400 600 800 1000
Sample Number [-]

0.4800

0.4825

0.4850

0.4875

0.4900

0.4925

0.4950

M
ea

n
Ve

lo
cit

y
[m

/s
]

20s 5min 10min 20min

(a) Comparison of means for sampling times up
to 20min.

0 200 400 600 800 1000
Sample Number [-]

0.485

0.486

0.487

0.488

0.489

0.490

0.491

M
ea

n
Ve

lo
cit

y
[m

/s
]

3Min 4Min 5min

(b) Comparison of means for recommended sam-
pling times.

Figure A.35.: Comparison of means for the long-duration measurement in wall proximity and
vertical position of 0.1m over bottom for sampling times up to 20min and for
recommended sampling times.

0 200 400 600 800 1000
Sample Number [-]

0.4650

0.4675

0.4700

0.4725

0.4750

0.4775

0.4800

0.4825

M
ea

n
Ve

lo
cit

y
[m

/s
]

20s 5min 10min 20min

(a) Comparison of means for sampling times up
to 20min.

0 200 400 600 800 1000
Sample Number [-]

0.470

0.471

0.472

0.473

0.474

0.475

0.476

M
ea

n
Ve

lo
cit

y
[m

/s
]

3Min 4Min 5min

(b) Comparison of means for recommended sam-
pling times.

Figure A.36.: Comparison of means for the long-duration measurement in central horizontal
position and vertical position of 0.1m over bottom for sampling times up to
20min and for recommended sampling times.

129

0 200 400 600 800 1000
Sample Number [-]

0.480

0.482

0.484

0.486

0.488

0.490

0.492

0.494

M
ea

n
Ve

lo
cit

y
[m

/s
]

20s 5min 10min 20min

(a) Comparison of means for sampling times up
to 20min.

0 200 400 600 800 1000
Sample Number [-]

0.484

0.485

0.486

0.487

0.488

0.489

M
ea

n
Ve

lo
cit

y
[m

/s
]

3Min 4Min 5min

(b) Comparison of means for recommended sam-
pling times.

Figure A.37.: Comparison of means for the long-duration measurement in wall proximity and
vertical position of 0.4m over bottom for sampling times up to 20min and for
recommended sampling times.

0 200 400 600 800 1000
Sample Number [-]

0.4500

0.4525

0.4550

0.4575

0.4600

0.4625

0.4650

0.4675

M
ea

n
Ve

lo
cit

y
[m

/s
]

20s 5min 10min 20min

(a) Comparison of means for sampling times up
to 20min.

0 200 400 600 800 1000
Sample Number [-]

0.457

0.458

0.459

0.460

0.461

0.462

M
ea

n
Ve

lo
cit

y
[m

/s
]

3Min 4Min 5min

(b) Comparison of means for recommended sam-
pling times.

Figure A.38.: Comparison of means for the long-duration measurement in wall proximity and
vertical position of 0.6m over bottom for sampling times up to 20min and for
recommended sampling times.

130

0 200 400 600 800 1000
Sample Number [-]

0.474

0.476

0.478

0.480

0.482

0.484

0.486

0.488

M
ea

n
Ve

lo
cit

y
[m

/s
]

20s 5min 10min 20min

(a) Comparison of means for sampling times up
to 20min.

0 200 400 600 800 1000
Sample Number [-]

0.479

0.480

0.481

0.482

0.483

M
ea

n
Ve

lo
cit

y
[m

/s
]

3Min 4Min 5min

(b) Comparison of means for recommended sam-
pling times.

Figure A.39.: Comparison of means for the long-duration measurement in central horizontal
position and vertical position of 0.6m over bottom for sampling times up to
20min and for recommended sampling times.

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

H0
 A

cc
ep

ta
nc

e
Ra

te
 [%

]

= 0.004

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

Figure A.40.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.1m over bottom at δ = 0.004.

131

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
H0

 A
cc

ep
ta

nc
e

Ra
te

 [%
]

= 0.006

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

Figure A.41.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.1m over bottom at δ = 0.006.

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

H0
 A

cc
ep

ta
nc

e
Ra

te
 [%

]

= 0.004

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

Figure A.42.: Null hypothesis acceptance rates for the long-duration measurement in central
horizontal position and vertical position of 0.1m over bottom at δ = 0.004.

132

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
H0

 A
cc

ep
ta

nc
e

Ra
te

 [%
]

= 0.006

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

Figure A.43.: Null hypothesis acceptance rates for the long-duration measurement in central
horizontal position and vertical position of 0.1m over bottom at δ = 0.006.

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

H0
 A

cc
ep

ta
nc

e
Ra

te
 [%

]

= 0.004

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

Figure A.44.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.4m over bottom at δ = 0.004.

133

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
H0

 A
cc

ep
ta

nc
e

Ra
te

 [%
]

= 0.006

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

Figure A.45.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.4m over bottom at δ = 0.006.

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

H0
 A

cc
ep

ta
nc

e
Ra

te
 [%

]

= 0.004

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

Figure A.46.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.6m over bottom at δ = 0.004.

134

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
H0

 A
cc

ep
ta

nc
e

Ra
te

 [%
]

= 0.006

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

Figure A.47.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.6m over bottom at δ = 0.006.

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

H0
 A

cc
ep

ta
nc

e
Ra

te
 [%

]

= 0.004

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

Figure A.48.: Null hypothesis acceptance rates for the long-duration measurement in central
horizontal position and vertical position of 0.6m over bottom at δ = 0.004.

135

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Sampling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

H0
 A

cc
ep

ta
nc

e
Ra

te
 [%

]

= 0.006

Base Sample 1
Base Sample 2
Base Sample 3
Base Sample 4
Base Sample 5
Base Sample 6
Base Sample 7
Base Sample 8
Base Sample 9
Base Sample 10

Figure A.49.: Null hypothesis acceptance rates for the long-duration measurement in central
horizontal position and vertical position of 0.6m over bottom at δ = 0.006.

136

A.2. Code

1 #Input
2 directory_dat = r'F:\Uni\Masterthesis\Python\Daten\Vortex_Shedding\

Messung_04_ohne\dat'
3 directory_csv = r'F:\Uni\Masterthesis\Python\Daten\Vortex_Shedding\

Messung_04_ohne\csv'
4 #Script
5 all_files = glob.glob(directory_dat + "/*.dat")
6 for filename in all_files: #converts all .dat files in directory_dat to .csv

files and saves them in directory_csv
7 df = pd.read_csv(filename, delimiter = ' ', skipinitialspace=True)
8 df.to_csv(r'{}\{}.csv'.format(directory_csv, os.path.basename(filename).

split('.')[0]), index=False, sep=',')

Source Code A.1: Script ”Make_csv_from_dat”

1 def get_raw_data(path,fs): #gets raw data converted to .csv files
2 dataframe = pd.read_csv(path,
3 names=['Time','Ensamble Counter','Status','u','v','w1','w2','Amp_x','Amp_y',

'Amp_z','Amp_z2','SNR_x','SNR_y','SNR_z','SNR_z2','COR_x','COR_y','COR_z',
'COR_z2'])

4 dataframe['index_col'] = dataframe.index #makes index start at 0
5 dataframe['Time'] = dataframe['index_col']*(1/fs) #calculates the

measurement time steps, necessary because device time steps are not reset
6 dataframe = dataframe.set_index('Time') #makes time steps the index
7 return dataframe

Source Code A.2: Method ”get_raw_data”

1 def get_KDE_G_B_data(path,fs): #gets data output by KDE, Gauss or Butterworth
scripts

2 df = pd.read_csv(path, names=['u_out','v_out','w_out'])
3 df['index_col'] = df.index
4 df['Time'] = df['index_col']*(1/fs)
5 df = df.set_index('Time')
6 df = df.drop(columns=['index_col'])
7 return df

Source Code A.3: Method ”get_KDE_G_B_data”

1 def get_PSAT_data(path): #gets data output by KDE, Gauss or Butterworth
scripts

2 df = pd.read_csv(path, names=['Time','u_out','v_out','w_out'], skiprows=1)
3 df = df.set_index('Time')
4 return df

Source Code A.4: Method ”get_PSAT_data”

137

1 def get_data(input_file_state, path, fs): #gets relevant arrays according to
user-specified variable "input_file_state"

2 if input_file_state == 1: #get_raw_data
3 df = get_raw_data(path, fs)
4 u_df = df.iloc[:,2]
5 v_df = df.iloc[:,3]
6 w1_df = df.iloc[:,4]
7 if input_file_state == 2: # get_PSAT_data
8 df = get_PSAT_data(path)
9 u_df = df.iloc[:,0]

10 v_df = df.iloc[:,1]
11 w1_df = df.iloc[:,2]
12 if input_file_state == 3: #get_KDE_G_B_data
13 df = get_KDE_G_B_data(path, fs)
14 u_df = df.iloc[:,0]
15 v_df = df.iloc[:,1]
16 w1_df = df.iloc[:,2]
17 u = pd.Series.to_numpy(u_df) #convert to array
18 v = pd.Series.to_numpy(v_df) #convert to array
19 w = pd.Series.to_numpy(w1_df) #convert to array
20 res = np.sqrt(u**2 + v**2 + w**2) #calculate velocity magnitude
21 x_t = df.index.values #get time steps for x-axis
22 return u, v, w, res, df, x_t

Source Code A.5: Method ”get_data”

1 #Input
2 directory = r"F:\Uni\Masterthesis\Python\Filtered data\2_7_Time-Series"
3 all_files = glob.glob("{}/*.png".format(directory))
4 filenames = get_filenames_to_sort(all_files)
5 filter_name = "AccelerationThresh_Butterworth_2.5Hz_order1_spectra"
6 directory_raw = r"F:\Uni\Masterthesis\Python\Daten\Vortex_Shedding\

Messung_04_ohne\csv"
7 destination = "ohne"
8 all_files_raw = glob.glob("{}/*.csv".format(directory_raw))
9 filenames_raw = get_filenames_original_order(all_files_raw)

10 #Script
11 for e in filenames: #moves files from directory to destination directory while

considering structure of directory_raw
12 try:
13 if e in filenames_raw:
14 shutil.move(r"{}\{}{}.png".format(directory, e, filter_name), r"

{}\{}\{}{}.png".format(directory, destination, e, filter_name))
15 except BaseException as error:
16 print('An exception occurred:{}'.format(error))

Source Code A.6: Script ”File_mover”

138

1 #Input
2 directory_dat_in = r'F:\Uni\Masterthesis\Python\Daten\Vortex_Shedding\

Messung_04_ohne\dat'
3 directory_dat_out = r'F:\Uni\Masterthesis\Python\Daten\Vortex_Shedding\

Messung_04_ohne\dat_psat'
4 #Script
5 all_files = glob.glob(directory_dat_in + "/*.dat")
6 for filename in all_files: #converts all .dat files in directory_dat_in to dat

files that can be input to P-SAT framework
7 df = pd.read_csv(filename, delimiter = ' ', skipinitialspace=True, header=

None)
8 df.iloc[:, 0] = round(df.iloc[:, 0] - df.iloc[0,0],3)
9 df.iloc[:, 1] = df.iloc[:, 1] - df.iloc[0,1] + 1

10 df.to_csv(r'{}\{}.dat'.format(directory_dat_out, os.path.basename(filename).
split('.')[0]), index=False, sep=',', header=None)

Source Code A.7: Script ”Make_dat_for_P-SAT_from_dat”

1 #Input
2 directory = r"F:\Uni\Masterthesis\Python\PSAT"
3 all_files = glob.glob("{}/*.dat".format(directory))
4 #Script
5 filenames = get_filenames(all_files)
6 for e in filenames:
7 print(e + '.dat')

Source Code A.8: Script ”Filenames_P-SAT”

1 def get_filenames(all_files): #gets filenames in directory and elimates
duplicates

2 li_basenames_duplicates = []
3 for filename in all_files:
4 basenames = os.path.basename(filename).split('.')[0]
5 basenames = basenames.split('_')[0] + '_' + basenames.split('_')[1] + '_'

+ basenames.split('_')[2]
6 li_basenames_duplicates.append(basenames)
7 li_basenames = []
8 for i in li_basenames_duplicates:
9 if i not in li_basenames:

10 li_basenames.append(i)
11 return li_basenames

Source Code A.9: Method ”get_filenames”

139

1 def calculate_sigma(fs): #calculates sigma for the Gauss filter
2 f50 = fs/6 #half-power frequency, equation 4.7
3 sig_enum= np.log(np.sqrt(0.5)) #sigma enumerator, equation 4.6
4 sig_denom= ((-2*np.pi**2)*(f50**2)) #sigma denominator, equation 4.6
5 sig = (sig_enum/sig_denom)**0.5 #equation 4.6
6 return sig

Source Code A.10: Method ”calculate_sigma”

1 def get_x_f(x_t,fs): #gets x-axis in frequency domain
2 N = len(x_t) #number of measurements
3 T = len(x_t)*1/fs - 1/fs #sampling time
4 x_f=np.linspace(0.0,N/(T),N) #x-axis at length of sampling frequency
5 return x_f

Source Code A.11: Method ”get_x_f”

1 def calculate_R_f(sig, x_f): #calculates frequency response
2 R_f = np.exp((-2*np.pi**2)*(sig**2)*(x_f**2)) #equation 4.8
3 return R_f

Source Code A.12: Method ”calculate_R_f”

1 def gauss_filter(u, v, w, R_f): #operates Gauss filter
2 in_li = [u,v,w]
3 out_li= []
4 for e in in_li:
5 get_fft = fft(e) # gets signal in frequency domain
6 output_fft = R_f * get_fft #multiplies signal with filter in freq domain
7 out = abs(ifft(output_fft)) # get filtered signal in time domain
8 out_li.append(out)
9 return out_li

Source Code A.13: Method ”gauss_filter”

1 #Input
2 directory = r"F:\Uni\Masterthesis\Python\Gauss" #directory that contains the

files to be filtered
3 all_files = glob.glob("{}/*.csv".format(directory)) #gets filenames of the

files to be filtered
4 input_file_state = 1 #user-specified state of input files (1 = raw, 2 = P-SAT,

3 = KDE, Gauss, Butterworth)
5 fs = 25 #sampling frequency
6 #Script
7 for filename in all_files:
8 try:
9 #Get data

10 u, v, w, res, df, x_t = get_data(input_file_state, filename, fs)
11 x_f= get_x_f(x_t,fs) #x-axis frequency domain
12 #Get sigma

140

13 sig = calculate_sigma(fs)
14 #Frequency response in freq domain
15 R_f = calculate_R_f(sig, x_f)
16 #Filter all components
17 out_li = gauss_filter(u, v, w, R_f)
18 #Output to dataframe
19 output = get_output_df(out_li)
20 #Output to CSV
21 output_to_csv(output, directory, os.path.basename(filename).split('.')[0])
22 except BaseException as error: #exceptions are not filtered
23 print('An exception occurred for the file {}: {}.'.format(filename, error)

)

Source Code A.14: Script ”Gauss”

1 def normalize_cutoff(cutoff, fs):
2 nyq = 0.5*fs #calculates nyquist frequency
3 n_cutoff = cutoff / nyq #normalises cutoff frequency
4 return n_cutoff

Source Code A.15: Method ”normalize_cutoff”

1 def butterworth_filter(u, v, w, order, n_cutoff):
2 in_li = [u,v,w] #gets components as list to make them iterable
3 out_li= []
4 for e in in_li: #iterates over components
5 b, a = butter(order, n_cutoff, btype='low', analog=False) #b = numerator,

a = denominator, btype sets filter prototype, digital filter --> analog =
false

6 out = lfilter(b, a, e) #filters data along one-dimension
7 out_li.append(out) #appends filtered components to out_li
8 return out_li

Source Code A.16: Method ”butterworth_filter”

1 #Input
2 directory = r"F:\Uni\Masterthesis\Python\Butterworth" #directory that contains

the files to be filtered
3 all_files = glob.glob("{}/*.csv".format(directory)) #gets filenames of the

files to be filtered
4 input_file_state = 3 #user-specified state of input files (1 = raw, 2 = P-SAT,

3 = KDE, Gauss, Butterworth)
5 fs=25 #sampling frequency
6 order = 1 #filter order
7 cutoff = 2.5 #cutoff frequency in Hz
8 #Script
9 for filename in all_files:

10 try:
11 #Script
12 #Get data

141

13 u, v, w, res, df, x_t = get_data(input_file_state, filename, fs)
14 #Normalize cutoff.
15 n_cutoff = normalize_cutoff(cutoff, fs)
16 #Filter all components
17 out_li = butterworth_filter(u, v, w, order, n_cutoff)
18 #Output to dataframe
19 output = get_output_df(out_li)
20 #Output to CSV
21 output_to_csv(output, directory, os.path.basename(filename).split('.')[0],

cutoff, order)
22 except BaseException as error: #exceptions are not filtered
23 print('An exception occurred for the file {}: {}.'.format(filename, error)

)

Source Code A.17: Script ”Butterworth”

1 # Copyright (c) 2013, Md Rashedul Islam
2 # Copyright (c) 2010, Barry Dillon
3 # Copyright (c) 2015, Dr. Zdravko Botev
4 # All rights reserved.
5 # Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met
:

6 # * Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

7 # * Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution

8 # * Neither the name of University of Alberta nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

9 # * Neither the name of The University of New South Wales nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

10 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

11

12 # Copyright (C) 2012-present, The Computational Data Science Lab
13 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

142

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Source Code A.18: Copyright Notices

1 def get_kde_input(e):
2 #Step 1: derivatives
3 df = [0.0]*n
4 db = [0.0]*n
5 du = [0.0]*n
6 for i in range(n-1):
7 df[i] = e[i+1] - e[i] #forward difference equation
8 for i in range(1,n):
9 db[i] = e[i] - e[i-1] #backward difference equation

10 for i in range(len(e)): #exceptions
11 if abs(db[i]) > abs(df[i]):
12 du[i] = df[i]
13 else:
14 du[i] = db[i]
15 u1 = np.asarray(e, dtype=float)
16 w1 = np.asarray(du, dtype=float)
17

18 #Step 2: Axis rotation estimation
19 th = np.arctan2((n*sum(np.multiply(u1,w1))-sum(u1)*sum(w1)),(n*sum(np.

multiply(u1,u1))-sum(u1)*sum(u1)))
20

21 #Step 3 : Data transformation
22 ut = (u1)*np.cos(th) + (w1)*np.sin(th)
23 wt = (w1)*np.cos(th) - (u1)*np.sin(th)
24 return ut, wt

Source Code A.19: Method ”get_kde_input”

1 def get_kde_output(ut, wt):
2 #Step 5a: Applying kernel density function using Botev et al.(2010)'s

algorithm
3 #gets minima and maxima from input vectors
4 max_ut = np.amax(ut)
5 min_ut = np.amin(ut)
6 max_wt = np.amax(wt)
7 min_wt = np.amin(wt)
8 #gets max-min for input vectors
9 scaling_ut=max_ut-min_ut

10 scaling_wt=max_wt-min_wt
11 ##(Step 4:) Rescaling the data so that it ranges from 0 to 1.
12 ut_t = (ut - min_ut)/scaling_ut
13 wt_t = (wt - min_wt)/scaling_wt

143

14 #Bin data uniformly using regular grid
15 (binned, xedges, yedges) = np.histogram2d(ut_t, wt_t, bins=N, density=False)

range=((min_ut, max_ut), (min_wt, max_wt))
16 #Discrete cosine transform
17 a = dctn(binned/n)
18 a[0, :] /= 2
19 a[:, 0] /= 2
20 #Bandwidth
21 t_y = hy**2
22 t_x = hx**2
23 # # Smooth the discrete cosine transform of initial data
24 k = np.arange(N, dtype="float")
25 k2 = k**2
26 smoothed = a * np.outer(np.exp(-np.pi**2 * k2 * t_x/2), np.exp(-np.pi**2 *

k2 * t_y/2)) #equation 4.2
27 # # Apply the inverse discrete cosine transform
28 smoothed[0, :] *= 2
29 smoothed[:, 0] *= 2
30 inverse = idctn(smoothed)
31 density = np.transpose(inverse) * N/scaling_ut * N/scaling_wt # density

matrix
32 #Get meshgrid
33 #vector x
34 a_start = min_ut #start a
35 a_stop = max_ut #stop a
36 a_step = scaling_ut/(N-1) #value per step for a
37 a = np.arange(a_start,a_stop,a_step, float) # looses endpoint --> gives only

array with length 255
38 endpoint = (a[254]+a_step) # calculate endpoint
39 a = np.append(a,endpoint) #append endpoint to array
40 #vector y
41 b_start = min_wt #start b
42 b_stop = max_wt #stop b
43 b_step = scaling_wt/(N-1) #value per step for b
44 b = np.arange(b_start,b_stop,b_step, float) # looses endpoint --> gives only

array with length 255
45 endpoint = (b[254]+b_step) # calculate endpoint
46 b = np.append(b,endpoint) #append endpoint to array --> array with length

256
47 #meshgrid
48 X, Y = np.meshgrid(a,b)
49 # #Get outputs from kde
50 uf = np.diag(X)
51 wf = np.diag(Y)
52 return wf, uf, density

Source Code A.20: Method ”get_kde_output”

144

1 def get_spike_Id(wf, uf, density, ut, wt):
2 #Step 5b: Get maximum density values
3 dp = np.amax(np.amax(density))
4 #Get indices of maximum density
5 t_wp_up = np.where(density==dp) # get array indices
6 l_wp_up = list(t_wp_up) #turn from tuple to array
7 wp = l_wp_up[0] #get first column of indices
8 up = l_wp_up[1] #get second column of indices
9 #Step6a: Get slopes and iteration specifics, this part becomes clear when

looking at figure 4.2
10 #u
11 f_u = density[wp,:]
12 lf_f_u = len(np.transpose(f_u)) #get length for row axis
13 diff_f_u = np.diff(f_u,axis=1) #difference quotient
14 diff_f_u_0 = np.insert(diff_f_u,0,0, axis=1) #add zero at index 0 --> no

delta possible here
15 dk_u = diff_f_u_0*N/dp # slope for velocity component
16 #w
17 f_w = np.transpose(density[:,up]) #transpose, so that array is normal to f_u
18 lf_f_w = len(np.transpose(f_w)) #get length for row axis
19 diff_f_w = np.diff(f_w,axis=1) #difference quotient
20 diff_f_w_0 = np.insert(diff_f_w,0,0, axis=1) #add zero at index 0 --> no

delta possible here
21 dk_w = diff_f_w_0*N/dp # slope for derivative
22 #Get i for loops within grid boundaries
23 i_1_u = np.arange(up,1,-1, float)
24 i_1_u_li = i_1_u.tolist()
25 i_1_u_li_int = [int(i) for i in i_1_u_li]
26 i_2_u = np.arange(up+2,lf_f_u,1, float)
27 i_2_u_li = i_2_u.tolist()
28 i_2_u_li_int = [int(i) for i in i_2_u_li]
29 i_1_w = np.arange(wp,1,-1, float)
30 i_1_w_li = i_1_w.tolist()
31 i_1_w_li_int = [int(i) for i in i_1_w_li]
32 i_2_w = np.arange(wp+2,lf_f_w,1, float)
33 i_2_w_li = i_2_w.tolist()
34 i_2_w_li_int = [int(i) for i in i_2_w_li]
35 #Step6b: Calculate cutoff points: iterates over the indices and determines

where condition is met first for f_u and dk_u
36 for i in i_1_u_li_int:
37 if f_u[:,i]/f_u[:,int(up)] <= c1 and np.absolute(dk_u[:,i]) <= c2:
38 i_1_a_u = i
39 break
40 else:
41 i_1_a_u = i_1_u_li_int[-1]
42 for i in i_1_w_li_int:
43 if f_w[:,i]/f_w[:,int(wp)] <= c1 and np.absolute(dk_w[:,i]) <= c2:
44 i_1_a_w = i
45 break

145

46 else:
47 i_1_a_w = i_1_w_li_int[-1]
48 for i in i_2_u_li_int:
49 if f_u[:,i]/f_u[:,int(up)] <= c1 and np.absolute(dk_u[:,i]) <= c2:
50 i_2_a_u = i
51 break
52 else:
53 i_2_a_u = i_2_u_li_int[-1]
54 for i in i_2_w_li_int:
55 if f_w[:,i]/f_w[:,int(wp)] <= c1 and np.absolute(dk_w[:,i]) <= c2:
56 i_2_a_w = i
57 break
58 else:
59 i_2_a_w = i_2_w_li_int[-1]
60 u_i1 = uf[i_1_a_u] # =ul
61 u_i2 = uf[i_2_a_u] # =uu
62 w_i1 = wf[i_1_a_w] # =wl
63 w_i2 = wf[i_2_a_w] # =wu
64 # Step 7: Calculate axes of ellipse and identify spikes
65 uu1 = u_i2 - 0.5*(u_i2+u_i1)
66 wu1 = w_i2 - 0.5*(w_i2 + w_i1)
67 Ut1 = ut - 0.5*(u_i2 + u_i1)
68 ul1 = u_i1 - 0.5*(u_i2 + u_i1)
69 wl1 = w_i1 - 0.5*(w_i2 + w_i1)
70 Wt1 = wt - 0.5*(w_i2 + w_i1)
71 F = [0.0]*n
72 F = np.asarray(F, dtype=float)
73 at = 0.5 * (uu1 - ul1)
74 bt = 0.5 * (wu1 - wl1)
75 for i in range(n): #sets values of zero-array to 1 if condition for spike is

met
76 if Ut1[i] > uu1 or Ut1[i] < ul1:
77 F[i] = 1
78 else:
79 we = np.sqrt((bt**2)*(1-(Ut1[i]**2)/(at**2)))
80 if Wt1[i] > we or Wt1[i] < -we:
81 F[i] = 1
82 Id_tuple = np.where(F>0) #find flagged values
83 Id = np.asarray(Id_tuple[0])
84 return Id

Source Code A.21: Method ”get_spike_Id”

146

1 def KDE_despike(u_li): #summarises all KDE methods into one method that gives
the spike IDs

2 Id_li= []
3 for e in u_li:
4 ut, wt = get_kde_input(e)
5 wf, uf, density = get_kde_output(ut, wt)
6 Id = get_spike_Id(wf, uf, density, ut, wt)
7 Id_li.append(Id)
8 return Id_li

Source Code A.22: Method ”KDE_despike”

1 def replace_spike_lin_interpolation(Id_li, u, v, w):
2 u_out = u.tolist()
3 u_out = pd.DataFrame(u_out, columns=['u_out'])
4 v_out = v.tolist()
5 v_out = pd.DataFrame(v_out, columns=['v_out'])
6 w_out = w.tolist()
7 w_out = pd.DataFrame(w_out, columns=['w_out'])
8 #Check if first and/or last data points are spikes, replace by mean, delete

Id from list
9 if Id_li[0][0] == 0:

10 u_out.iloc[0] = np.mean(u_out)
11 Id_li[0] = np.delete(Id_li[0],0)
12 if Id_li[0][len(Id_li[0])-1] == (n-1):
13 u_out.iloc[n-1] = np.mean(u_out)
14 Id_li[0] = np.delete(Id_li[0],-1)
15 if Id_li[2][0] == 0:
16 w_out.iloc[0] = np.mean(w_out)
17 Id_li[2] = np.delete(Id_li[2],0)
18 if Id_li[2][len(Id_li[2])-1] == (n-1):
19 w_out.iloc[n-1] = np.mean(w_out)
20 Id_li[2] = np.delete(Id_li[2],-1)
21 if Id_li[1][0] == 0:
22 v_out.iloc[0] = np.mean(v_out)
23 Id_li[1] = np.delete(Id_li[1],0)
24 if Id_li[1][len(Id_li[1])-1] == (n-1):
25 v_out.iloc[n-1] = np.mean(v_out)
26 Id_li[1] = np.delete(Id_li[1],-1)
27 #Replaces in u and w (Beams 1 and 3)
28 for j in [0,2]:
29 for i in Id_li[[j][0]]:
30 lgv = i-1 #last good value
31 ngv = i+1 #next good value
32 while lgv in Id_li[[j][0]]: #checks if ID of lgv is a spike
33 lgv -= 1
34 while ngv in Id_li[[j][0]]: #checks if ID of ngv is a spike
35 ngv += 1
36 u_out.iloc[i,0] = (u_out.iloc[lgv,0] + u_out.iloc[ngv,0])/2

147

37 w_out.iloc[i,0] = (w_out.iloc[lgv,0] + w_out.iloc[ngv,0])/2
38 #Replaces in v (Beams 2 and 4)
39 for i in Id_li[[1][0]]: # replaces in v
40 lgv = i-1 #last good value
41 ngv = i+1 #next good value
42 while lgv in Id_li[[1][0]]: #checks if ID of lgv is a spike
43 lgv -= 1
44 while ngv in Id_li[[1][0]]: #checks if ID of ngv is a spike
45 ngv += 1
46 v_out.iloc[i,0] = (v_out.iloc[lgv,0] + v_out.iloc[ngv,0])/2
47 output = pd.concat([u_out, v_out, w_out], axis=1)
48 if output.isnull().sum().sum() > 0: #check if there are nan values in output

dataframe
49 sys.exit("Filtering not successful. Check whether input file state

corresponds to input file. If yes, check other input parameters.")
50 return output

Source Code A.23: Method ”replace_spike_lin_interpolation”

1 #Input
2 directory = r"F:\Uni\Masterthesis\Python\KDE" #directory that contains the

files to be filtered
3 all_files = glob.glob("{}/*.csv".format(directory)) #gets filenames of the

files to be filtered
4 input_file_state = 3 #user-specified state of input files (1 = raw, 2 = P-SAT,

3 = KDE, Gauss, Butterworth)
5 fs = 25 #sampling frequency
6 hx = 0.01 #bandwidth (recommended in Islam and Zhu, 2013)
7 hy = 0.01 #bandwidth (recommended in Islam and Zhu, 2013)
8 N = 256 #number of bins (recommended in Islam and Zhu, 2013)
9 c1 = 0.4 #cutoff threshold (recommended in Islam and Zhu, 2013)

10 c2 = 0.4 #cutoff threshold (recommended in Islam and Zhu, 2013)
11 #Script
12 for filename in all_files:
13 try:
14 #Get data
15 u, v, w, res, df, x_t = get_data(input_file_state, filename, fs)
16 u_li = [u,v,w]
17 n = len(u)
18 #KDE despiking
19 Id_li = KDE_despike(u_li)
20 #Replace spikes
21 output = replace_spike_lin_interpolation(Id_li, u, v, w)
22 #Output to CSV
23 output_to_csv(output, directory, os.path.basename(filename).split('.')[0])
24 except BaseException as error: #exceptions are not filtered
25 print('An exception occurred for the file {}: {}.'.format(filename, error)

)

Source Code A.24: Script ”KDE_despiking”

148

1 #Input
2 directory = r"F:\Uni\Masterthesis\Python\PDF Bilder" #directory containing the

original and filtered data files
3 all_files = glob.glob("{}/*.csv".format(directory)) #gets filenames of all

files
4 filter_name = "KDE_Butterworth_2.5Hz_order1" #specifies filenames of all files
5 input_file_state_original = 1 #user-specified state of input files (1 = raw, 2

= P-SAT, 3 = KDE, Gauss, Butterworth)
6 input_file_state_filtered = 3 #user-specified state of input files (1 = raw, 2

= P-SAT, 3 = KDE, Gauss, Butterworth)
7 fs = 25 #sampling frequency
8 #Script
9 filenames = get_filenames(all_files) # eliminates duplicates from filename

10 for filename in filenames:
11 path_raw, path_filtered = get_file_paths(directory, filename, filter_name)
12 u_original, v_original, w_original, res_original, df_original, x_t_original

= get_data(input_file_state_original, path_raw, fs)
13 u_filtered, v_filtered, w_filtered, res_filtered, df_filtered, x_t_filtered

= get_data(input_file_state_filtered, path_filtered, fs)
14 #Plotting Comparison of Velocity Magnitudes
15 fig = plt.figure()
16 fig.set_figheight(9)
17 fig.set_figwidth(16)
18 line1, = plt.plot(x_t_original, res_original, 'tab:brown', label='

res_original')
19 line2, = plt.plot(x_t_filtered, res_filtered, 'tab:blue', label='

res_filtered')
20 y_ticks = np.arange(0,4.5,0.5)
21 plt.yticks(y_ticks)
22 plt.legend([line1,line2],["res_original", "res_filtered"], loc="upper right"

, prop=dict(size=14))
23 plt.xlabel("Time [s]", fontsize=16)
24 plt.ylabel("Velocity [m/s]", fontsize=16)
25 plt.xticks(fontsize=14)
26 plt.yticks(fontsize=14)
27 plt.savefig('{}_{}_res.pdf'.format(filename, filter_name), bbox_inches='

tight')
28 plt.close(fig)
29 #Plotting Comparison of all velocities (u,v,w,res)
30 fig = plt.figure()
31 gs = fig.add_gridspec(4, hspace=0.06)
32 axs = gs.subplots(sharex=True)
33 fig.set_figheight(18)
34 fig.set_figwidth(14)
35 l5, = axs[0].plot(x_t_original, res_original,'tab:brown', label='

res_original')
36 l0, = axs[0].plot(x_t_filtered, res_filtered, 'tab:blue', label='

res_filtered',)
37 l1, = axs[1].plot(x_t_original, u_original, 'tab:brown', label='u_original')

149

38 l1, = axs[1].plot(x_t_filtered, u_filtered, 'tab:green', label='u_filtered')
39 l2, = axs[2].plot(x_t_original, v_original, 'tab:brown', label='v_original')
40 l2, = axs[2].plot(x_t_filtered, v_filtered, 'tab:red', label='v_filtered')
41 l3, = axs[3].plot(x_t_original, w_original, 'tab:brown', label='w_original')
42 l3, = axs[3].plot(x_t_filtered, w_filtered, 'tab:orange', label='w_filtered'

)
43 plt.legend([l5, l0, l1, l2, l3,],["original","res_filtered","u_filtered", "

v_filtered", "w_filtered"], loc="lower center", ncol = 5, prop=dict(size
=14))

44 axs[0].set_yticks([0,2,4])
45 axs[1].set_yticks([-4,-2,0,2,4])
46 axs[2].set_yticks([-2,0,2])
47 axs[3].set_yticks([-1,0,1])
48 for ax in axs:
49 ax.set_xlabel("Time [s]", fontsize=16)
50 ax.set_ylabel("Velocity [m/s]", fontsize=16)
51 ax.label_outer()
52 ax.tick_params(axis='both', labelsize=14)
53 plt.savefig('{}_{}_all.pdf'.format(filename, filter_name), bbox_inches='

tight')
54 plt.close(fig)

Source Code A.25: Script ”Time-series_Visualisation”

1 #Input
2 directory = r"F:\Uni\Masterthesis\Python\Filtered data\2_7_Spectra" #directory

containing the original and filtered data files
3 all_files = glob.glob("{}/*.csv".format(directory)) #gets filenames of all

files
4 filter_name = "KDE" #specifies filenames of all files
5 input_file_state_original = 1 #user-specified state of input files (1 = raw, 2

= P-SAT, 3 = KDE, Gauss, Butterworth)
6 input_file_state_filtered = 3 #user-specified state of input files (1 = raw, 2

= P-SAT, 3 = KDE, Gauss, Butterworth)
7 fs = 25 #sampling frequency
8 #Script
9 filenames = get_filenames(all_files) # eliminates duplicates from filename

10 for filename in filenames:
11 #Gets file paths for original and filtered data
12 path_raw, path_filtered = get_file_paths(directory, filename, filter_name)
13 #Gets data for original and filtered data
14 u_original, v_original, w_original, res_original, df_original, x_t_original

= get_data(input_file_state_original, path_raw, fs)
15 u_filtered, v_filtered, w_filtered, res_filtered, df_filtered, x_t_filtered

= get_data(input_file_state_filtered, path_filtered, fs)
16 #Computing PSD original samples
17 freqs_u_original, psd_u_original = compute_PSD(u_original, fs)
18 freqs_v_original, psd_v_original = compute_PSD(v_original, fs)
19 freqs_w_original, psd_w_original = compute_PSD(w_original, fs)

150

20 freqs_res_original, psd_res_original = compute_PSD(res_original, fs)
21 #Computing PSD filtered samples
22 freqs_u_filtered, psd_u_filtered = compute_PSD(u_filtered, fs)
23 freqs_v_filtered, psd_v_filtered = compute_PSD(v_filtered, fs)
24 freqs_w_filtered, psd_w_filtered = compute_PSD(w_filtered, fs)
25 freqs_res_filtered, psd_res_filtered = compute_PSD(res_filtered, fs)
26 #Get x_f original
27 x_f_original = get_x_f(x_t_original, fs)
28 #Get x_f filtered
29 x_f_filtered = get_x_f(x_t_filtered, fs)
30 #Get Kolmogorov -5/3 slopes for slope grid
31 x, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14 =

get_Kolmogorov_slope()
32 #Plotting
33 fig, ax = plt.subplots(figsize=(8, 8))
34 #slope grid
35 line9, = plt.plot(x, y1, 'lightgray', label='-5/3 slope', linestyle='dashed'

)
36 line10, = plt.plot(x, y2, 'lightgray', linestyle='dashed')
37 line11, = plt.plot(x, y3, 'lightgray', linestyle='dashed')
38 line12, = plt.plot(x, y4, 'lightgray', linestyle='dashed')
39 line13, = plt.plot(x, y5, 'lightgray', linestyle='dashed')
40 line14, = plt.plot(x, y6, 'lightgray', linestyle='dashed')
41 line15, = plt.plot(x, y7, 'lightgray', linestyle='dashed')
42 line16, = plt.plot(x, y8, 'lightgray', linestyle='dashed')
43 line17, = plt.plot(x, y9, 'lightgray', linestyle='dashed')
44 line18, = plt.plot(x, y10, 'lightgray', linestyle='dashed')
45 line19, = plt.plot(x, y11, 'lightgray', linestyle='dashed')
46 line20, = plt.plot(x, y12, 'lightgray', linestyle='dashed')
47 line21, = plt.plot(x, y13, 'lightgray', linestyle='dashed')
48 line22, = plt.plot(x, y14, 'lightgray', linestyle='dashed')
49 first_legend = ax.legend(handles=[line9], loc='lower center', prop=dict(size

=14))
50 ax.add_artist(first_legend)
51 #original
52 line1, = plt.plot(freqs_u_original, psd_u_original, 'tab:green', label='

u_original', linestyle='dotted')
53 line2, = plt.plot(freqs_v_original, psd_v_original, 'tab:red', label='

v_original', linestyle='dotted')
54 line3, = plt.plot(freqs_w_original, psd_w_original, 'tab:orange', label='

w_original', linestyle='dotted')
55 line4, = plt.plot(freqs_res_original, psd_res_original, 'tab:blue', label='

res_original', linestyle='dotted')
56 second_legend = ax.legend(handles=[line1,line2,line3,line4,], loc='lower

left', prop=dict(size=14))
57 ax.add_artist(second_legend)
58 #filtered
59 line5, = plt.plot(freqs_u_filtered, psd_u_filtered, 'tab:green', label='

u_filtered')

151

60 line6, = plt.plot(freqs_v_filtered, psd_v_filtered, 'tab:red', label='
v_filtered')

61 line7, = plt.plot(freqs_w_filtered, psd_w_filtered, 'tab:orange', label='
w_filtered')

62 line8, = plt.plot(freqs_res_filtered, psd_res_filtered, 'tab:blue', label='
res_filtered')

63 third_legend = ax.legend(handles=[line5,line6,line7,line8,], loc='lower
right', prop=dict(size=14))

64 #Specifications
65 plt.xlim([0.09,13])
66 plt.ylim([0.00000000001,0.1])
67 plt.xlabel("Frequency [Hz]", fontsize=16)
68 plt.ylabel("E(f) [(m²/s²)/Hz]", fontsize=16)
69 plt.xticks(fontsize=14)
70 plt.yticks(fontsize=14)
71 plt.loglog()
72 plt.savefig('{}_{}_spectra.pdf'.format(filename, filter_name), bbox_inches='

tight')
73 plt.close(fig)

Source Code A.26: Script ”Spectra_Visualisation”

1 directory = r"F:\Uni\Masterthesis\Python\Parameter_neu" #directory that
contains the files to calculate parameters for

2 all_files = glob.glob("{}/*.csv".format(directory)) #gets filenames of the
files to be filtered

3 input_file_state = 2 #user-specified state of input files (1 = raw, 2 = P-SAT,
3 = KDE, Gauss, Butterworth)

4 fs=25
5 #best use this script when only files of one input_file_state are present in

the directory
6 for filename in all_files:
7 try:
8 u, v, w, res, df, x_t = get_data(input_file_state, filename, fs)
9 # Mean

10 mean_u = sum(u)/len(u)
11 mean_v = sum(v)/len(v)
12 mean_w = sum(w)/len(w)
13 mean_res = sum(res)/len(res)
14 # Global Maximum
15 max_u = max(u)
16 max_v = max(v)
17 max_w = max(w)
18 max_res = max(res)
19 # Global Minimum
20 min_u = min(u)
21 min_v = min(v)
22 min_w = min(w)
23 min_res = min(res)

152

24 # Variance
25 var_u = sum([(e - mean_u)**2 for e in u]) / (len(u)-1)
26 var_v = sum([(e - mean_v)**2 for e in v]) / (len(v)-1)
27 var_w = sum([(e - mean_w)**2 for e in w]) / (len(w)-1)
28 var_res = sum([(e - mean_res)**2 for e in res]) / (len(res)-1)
29 # Standard Deviation
30 std_u = np.sqrt(var_u)
31 std_v = np.sqrt(var_v)
32 std_w = np.sqrt(var_w)
33 std_res = np.sqrt(var_res)
34 #Covariance
35 sum_u_v = 0
36 for i in range(0, len(u)):
37 sum_u_v += ((u[i] - mean_u) * (v[i] - mean_v))
38 cov_u_v = sum_u_v / (len(u)-1)
39 sum_u_w = 0
40 for i in range(0, len(u)):
41 sum_u_w += ((u[i] - mean_u) * (w[i] - mean_w))
42 cov_u_w = sum_u_w / (len(u)-1)
43 sum_v_w = 0
44 for i in range(0, len(v)):
45 sum_v_w += ((v[i] - mean_v) * (w[i] - mean_w))
46 cov_v_w = sum_v_w / (len(v)-1)
47 #Correlation
48 cor_u_v = cov_u_v / (std_u * std_v)
49 cor_u_w = cov_u_w / (std_u * std_w)
50 cor_v_w = cov_v_w / (std_v * std_w)
51 #Skewness
52 skew_u = ((var_u)**(-3/2)) * sum([(e - mean_u)**3 for e in u]) / (len(u)

-1)
53 skew_v = ((var_v)**(-3/2)) * sum([(e - mean_v)**3 for e in v]) / (len(v)

-1)
54 skew_w = ((var_w)**(-3/2)) * sum([(e - mean_w)**3 for e in w]) / (len(w)

-1)
55 skew_res = ((var_res)**(-3/2)) * sum([(e - mean_res)**3 for e in res])/ (

len(res)-1)
56 #Kurtosis with Pearson
57 kurt_u = ((var_u)**(-2)) * sum([(e - mean_u)**4 for e in u]) / (len(u)-1)
58 kurt_v = ((var_v)**(-2)) * sum([(e - mean_v)**4 for e in v]) / (len(v)-1)
59 kurt_w = ((var_w)**(-2)) * sum([(e - mean_w)**4 for e in w]) / (len(w)-1)
60 kurt_res = ((var_res)**(-2)) * sum([(e - mean_res)**4 for e in res]) / (

len(res)-1)
61 #Turbulence kinetic energy TKE
62 tke = 0.5*(var_u + var_v + var_w)
63 #Arrange values
64 output_data = {'mean_u':[mean_u],'var_u':[var_u], 'std_u':[std_u],
65 'max_u':[max_u], 'min_u':[min_u],
66 'skew_u':[skew_u], 'kurt_u':[kurt_u],
67 'mean_v':[mean_v], 'var_v':[var_v], 'std_v':[std_v],

153

68 'max_v':[max_v], 'min_v':[min_v],
69 'skew_v':[skew_v], 'kurt_v':[kurt_v],
70 'mean_w':[mean_w], 'var_w':[var_w], 'std_w':[std_w],
71 'max_w':[max_w], 'min_w':[min_w],
72 'skew_w':[skew_w], 'kurt_w':[kurt_w],
73 'mean_res': [mean_res], 'var_res':[var_res], 'std_res':[std_res],
74 'max_res':[max_res], 'min_res':[min_res],
75 'skew_res':[skew_res], 'kurt_res':[kurt_res],
76 'cov_u_v':[cov_u_v], 'cov_u_w':[cov_u_w], 'cov_v_w':[cov_v_w],
77 'cor_u_v':[cor_u_v], 'cor_u_w':[cor_u_w], 'cor_v_w':[cor_v_w],
78 'tke':[tke]}
79 #Values to dataframe
80 output_df = pd.DataFrame(output_data, index={filename})
81 #Output to .csv
82 points = [(i, filename[i]) for i in findall('.', filename)] #finds number

of '.' in filename, necessary for denotation
83 if len(points) == 2:
84 #Option for file names with 2 '.' (e.g. 2.5Hz and .csv)
85 output_to_csv(output_df, directory, (os.path.basename(filename).split('.

')[0]+ '.' +os.path.basename(filename).split('.')[1]))
86 if len(points) == 1:
87 #Output to .csv for file names with only one '.' (only .csv)
88 output_to_csv(output_df, directory, os.path.basename(filename).split('.'

)[0])
89 except BaseException as error:
90 print('An exception occurred for the file {}: {}.'.format(filename, error)

)

Source Code A.27: Script ”Parameter_Calculation”

1 def get_parameters(directory, filename): #extracts data so that it creates a
data frame for all parameters for one sample

2 path_original = r"{}\{}_parameters.csv".format(directory, filename)
3 path_KDE = r"{}\{}_KDE_parameters.csv".format(directory, filename)
4 path_PSAT = r"{}\{}_AccelerationThresh_parameters.csv".format(directory,

filename)
5 path_Gauss = r"{}\{}_Gauss_parameters.csv".format(directory, filename)
6 path_Butterworth = r"{}\{}_Butterworth_2.5Hz_order1_parameters.csv".format(

directory, filename)
7 path_KDE_Gauss = r"{}\{}_KDE_Gauss_parameters.csv".format(directory,

filename)
8 path_KDE_Butterworth = r"{}\{}_KDE_Butterworth_2.5Hz_order1_parameters.csv".

format(directory, filename)
9 path_PSAT_Gauss = r"{}\{}_AccelerationThresh_Gauss_parameters.csv".format(

directory, filename)
10 path_PSAT_Butterworth = r"{}\{}_AccelerationThresh_Butterworth_2.5

Hz_order1_parameters.csv".format(directory, filename)
11 parameters_original = pd.read_csv(path_original, index_col=0)
12 parameters_KDE = pd.read_csv(path_KDE, index_col=0)

154

13 parameters_PSAT = pd.read_csv(path_PSAT, index_col=0)
14 parameters_Gauss = pd.read_csv(path_Gauss, index_col=0)
15 parameters_Butterworth = pd.read_csv(path_Butterworth, index_col=0)
16 parameters_KDE_Gauss = pd.read_csv(path_KDE_Gauss, index_col=0)
17 parameters_KDE_Butterworth = pd.read_csv(path_KDE_Butterworth, index_col=0)
18 parameters_PSAT_Gauss = pd.read_csv(path_PSAT_Gauss, index_col=0)
19 parameters_PSAT_Butterworth = pd.read_csv(path_PSAT_Butterworth, index_col

=0)
20 all_parameters_df = pd.concat([parameters_original, parameters_PSAT,

parameters_KDE, parameters_Butterworth, parameters_Gauss,
21 parameters_PSAT_Gauss, parameters_PSAT_Butterworth, parameters_KDE_Gauss,

parameters_KDE_Butterworth], axis=0)
22 return all_parameters_df

Source Code A.28: Method ”get_parameters”

1 def count_category(li, component, method, category): #counts how often a
category occurs for each method, used in next method "
sort_category_counts_by_method"

2 count = 0
3 for i in range(len(li)):
4 if li[i][component][method] == category:
5 count += 1
6 return count

Source Code A.29: Method ”count_category”

1 def sort_category_counts_by_method(number_of_components, number_of_methods,
number_of_categories,li_cat_per_sample): #sorts mean category count by
method

2 category_by_method = []
3 for e in range(number_of_components): #iterates velocity components
4 category_by_method_c = []
5 for f in range(number_of_methods): #iterates methods
6 category_by_method_m = []
7 for i in range(1,(number_of_categories+1)): #iterates categories, count

starts at 1, i.e. ends at number_of_categories+1
8 category_by_method_m.append(count_category(li_cat_per_sample,e,f,i))
9 category_by_method_c.append(category_by_method_m)

10 category_by_method.append(category_by_method_c)
11 return category_by_method

Source Code A.30: Method ”sort_category_counts_by_method”

1 def categorise_means(filenames, indices, number_of_methods): #categorises the
mean per sample for every velocity compoent

2 li_mean_cat_per_sample = []
3 for filename in filenames: #iterates samples
4 all_parameters_df = get_parameters(directory, filename)
5 li_mean_cat = []

155

6 for e in indices: #iterates velocity components
7 li_mean_cat_component = []
8 for i in range(1,(number_of_methods+1)): #iterates methods, starts at 1,

because original samlpes cannot be categorised
9 mean_change = ((all_parameters_df.iloc[i,e]-all_parameters_df.iloc[0,e

])/all_parameters_df.iloc[0,e])*100 # Equation 6.1 Gives percentage of
realtive change in mean

10 if mean_change >= -1 and mean_change <= 1:
11 mean_cat = 1
12 elif mean_change >= -5 and mean_change <= 5:
13 mean_cat = 2
14 elif mean_change >= -10 and mean_change <= 10:
15 mean_cat = 3
16 else:
17 mean_cat = 4
18 li_mean_cat_component.append(mean_cat)
19 li_mean_cat.append(li_mean_cat_component)
20 li_mean_cat_per_sample.append(li_mean_cat)
21 return li_mean_cat_per_sample, all_parameters_df

Source Code A.31: Method ”categorise_means”

1 def categorise_variance(filenames, indices, number_of_methods): #categorises
the mean per sample for every velocity compoent

2 li_variance_cat_per_sample = []
3 for filename in filenames: #iterates samples
4 all_parameters_df = get_parameters(directory, filename)
5 li_variance_cat = []
6 for e in indices: #iterates velocity components
7 li_variance_cat_component = []
8 for i in range(1,(number_of_methods+1)): #iterates methods, starts at 1,

because original samlpes cannot be categorised
9 variance_change = ((all_parameters_df.iloc[i,e]-all_parameters_df.iloc

[0,e])/all_parameters_df.iloc[0,e])*100 # Equation 6.2 Gives percentage of
realtive change in variance

10 if variance_change <= -50:
11 variance_cat = 1
12 elif variance_change <= -25:
13 variance_cat = 2
14 elif variance_change <= -10:
15 variance_cat = 3
16 else:
17 variance_cat = 4
18 li_variance_cat_component.append(variance_cat)
19 li_variance_cat.append(li_variance_cat_component)
20 li_variance_cat_per_sample.append(li_variance_cat)
21 return li_variance_cat_per_sample, all_parameters_df

Source Code A.32: Method ”categorise_variance”

156

1 def categorise_skew(filenames, indices, number_of_methods): #categorises
skewness values per sample for every velocity component

2 li_skew_cat_per_sample = []
3 for filename in filenames: #iterates samples
4 all_parameters_df = get_parameters(directory, filename)
5 li_skew_cat = []
6 for e in skew_indices: #iterates velocity components
7 li_skew_cat_component = []
8 for i in range(number_of_methods+1):#iterates methods, number_of_methods

+1 because here the original samples are categorised, too
9 if all_parameters_df.iloc[i,e] <= 0.1 and all_parameters_df.iloc[i,e]

>= -0.1 :
10 skew_cat = 1
11 elif all_parameters_df.iloc[i,e] <= 0.5 and all_parameters_df.iloc[i,e

] >= -0.5:
12 skew_cat = 2
13 elif all_parameters_df.iloc[i,e] <= 2 and all_parameters_df.iloc[i,e]

>= -2:
14 skew_cat = 3
15 else:
16 skew_cat = 4
17 li_skew_cat_component.append(skew_cat)
18 li_skew_cat.append(li_skew_cat_component)
19 li_skew_cat_per_sample.append(li_skew_cat)
20 return li_skew_cat_per_sample, all_parameters_df

Source Code A.33: Method ”categorise_skew”

1 def categorise_kurt(filenames, indices, number_of_methods): #categorises
kurtosis values per sample for every velocity component

2 li_kurt_cat_per_sample = []
3 for filename in filenames: #iterates samples
4 all_parameters_df = get_parameters(directory, filename)
5 li_kurt_cat = []
6 for e in indices: #iterates velocity components
7 li_kurt_cat_component = []
8 for i in range(number_of_methods+1): #iterates methods,

number_of_methods+1 because here the original samples are categorised, too
9 if all_parameters_df.iloc[i,e] <= 4 and all_parameters_df.iloc[i,e]

>= 2 :
10 kurt_cat = 1
11 elif all_parameters_df.iloc[i,e] <= 10 and all_parameters_df.iloc[i,e]

> 4:
12 kurt_cat = 2
13 elif all_parameters_df.iloc[i,e] <= 50 and all_parameters_df.iloc[i,e]

> 10:
14 kurt_cat = 3
15 else:
16 kurt_cat = 4

157

17 li_kurt_cat_component.append(kurt_cat)
18 li_kurt_cat.append(li_kurt_cat_component)
19 li_kurt_cat_per_sample.append(li_kurt_cat)
20 return li_kurt_cat_per_sample, all_parameters_df

Source Code A.34: Method ”categorise_kurt”

1 #Input
2 directory = r"F:\Uni\Masterthesis\Python\PDF Bilder\parameters" #directory

containing the parameter files
3 all_files = glob.glob("{}/*.csv".format(directory)) #gets filenames of the

files to be categorised
4 filenames = get_filenames(all_files) # eliminates duplicates from filenames
5 kurt_indices = [6,13,20,27] #see table A.1. in the annex for indices in the

parameter dataframe
6 number_of_methods = 8 # number of methods to compare
7 number_of_components = 4 # number of components to compare (velocity magnitude

included)
8 number_of_categories = 4 # number of defined categories
9 number_of_samples = 160 #number of samples to categorise

10 #Write out method and category names for heatmap, make sure, that method names
follow the order of parameters in line 46

11 methods_by_name = ['Orig','P-SAT','KDE','But','Gau','P-SAT_But','P-SAT_Gau','
KDE_But','KDE_Gau'] #defines names of methods to compare

12 categories_by_name = ['Category 1','Category 2','Category 3','Category 4'] #
defines names of categories

13 #Script
14 li_kurt_cat_per_sample, all_parameters_df = categorise_kurt(filenames,

kurt_indices, number_of_methods) # gets kurtosis categories by sample and
parameter_df

15 category_by_method = sort_category_counts_by_method(number_of_components,
number_of_methods, number_of_categories, li_kurt_cat_per_sample) #sorts
kurtosis categories by method

16 category_by_method[:] = [[[x / number_of_samples * 100 for x in g] for g in k]
for k in category_by_method] #calculates percentage of samples per method
per category for each component

17 #Get data for heatmaps
18 u_kurt = pd.DataFrame(category_by_method[0], columns=categories_by_name,
19 index = methods_by_name)
20 v_kurt = pd.DataFrame(category_by_method[1], columns=categories_by_name,
21 index = methods_by_name)
22 w_kurt = pd.DataFrame(category_by_method[2], columns=categories_by_name,
23 index = methods_by_name)
24 res_kurt = pd.DataFrame(category_by_method[3], columns=categories_by_name,
25 index = methods_by_name)
26 #Plot heatmaps
27 plt.figure()
28 cbar_ticks = [0,20,40,60,80,100]
29 heatmap_u_kurt = sns.heatmap(u_kurt,annot=True, cmap="YlGnBu", fmt='.1f',

158

30 cbar_kws={'label': 'Samples [%]','orientation': 'vertical','ticks': cbar_ticks
}, vmin=0, vmax=100)

31 plt.yticks(rotation=0)
32 plt.savefig('heatmap_u_kurt.pdf', bbox_inches='tight')
33 plt.figure()
34 heatmap_v_kurt = sns.heatmap(v_kurt,annot=True, cmap="YlGnBu", fmt='.1f',
35 cbar_kws={'label': 'Samples [%]','orientation': 'vertical','ticks': cbar_ticks

}, vmin=0, vmax=100)
36 plt.yticks(rotation=0)
37 plt.savefig('heatmap_v_kurt.pdf', bbox_inches='tight')
38 plt.figure()
39 heatmap_w_kurt = sns.heatmap(w_kurt,annot=True, cmap="YlGnBu", fmt='.1f',
40 cbar_kws={'label': 'Samples [%]','orientation': 'vertical','ticks': cbar_ticks

}, vmin=0, vmax=100)
41 plt.yticks(rotation=0)
42 plt.savefig('heatmap_w_kurt.pdf', bbox_inches='tight')

Source Code A.35: Script ”Categorisation_and_Heatmap_Visualisation_Kurtosis”

1 def get_population_df(path): #gets dataframe including all velocity magnitudes
2 velocity_df = pd.read_csv(path,
3 names=['0','1','velocity_y','velocity_z','velocity_x','5','6','7','8','9','

10','11','12','13','14','15','16','17'])
4 velocity_df.drop(['0','1','5','6','7','8','9','10','11','12','13','14','15',

'16','17'], axis=1, inplace = True)
5 velocity_df['velocity_res']= np.sqrt(velocity_df['velocity_y']**2 +

velocity_df['velocity_z']**2 + velocity_df['velocity_x']**2)
6 population_df = velocity_df['velocity_res']
7 return population_df

Source Code A.36: Method ”get_population_df”

1 def get_samples(no_measurements, population_df, no_samples): # gets
discriminable samples from population data frame of initial measurement
length

2 samples = []
3 for i in range(no_samples):
4 samples.append(population_df.sample(no_measurements, random_state=i))
5 return samples

Source Code A.37: Method ”get_samples”

1 def extend_samples(no_measurements, no_steps, increment): # extends
discriminable samples by number of steps of specified increments-->
prolongs the sampling time

2 list_of_samples = []
3 for x in range(no_steps):
4 list_of_samples.append(get_samples(no_measurements, population_df,

no_samples))
5 no_measurements+=increment

159

6 return list_of_samples

Source Code A.38: Method ”extend_samples”

1 def calculate_means(list_of_samples): # calculates means per sample for
different sampling times.

2 list_of_means = []
3 for i in range(len(list_of_samples)):
4 means_part = []
5 for j in range(len(list_of_samples[i])):
6 means_part.append(np.mean(list_of_samples[i][j]))
7 list_of_means.append(means_part)
8 return list_of_means

Source Code A.39: Method ”calculate_means”

1 def get_base_sample(no_measurements_base, random_state_base_sample,
population_df): #gets base samples from population data frame

2 base_sample_df = population_df.sample(no_measurements_base, random_state =
random_state_base_sample)

3 return base_sample_df

Source Code A.40: Method ”get_base_sample”

1 def shuffle_population(random_state_population, population_df):
2 population_df_shuffled = population_df.sample(frac=1, random_state =

random_state_population) #shuffles population so that samples (
get_base_sample, get_samples) produce different samples

3 return population_df_shuffled

Source Code A.41: Method ”shuffle_population”

1 def calculate_pvalues(list_of_samples, base_sample_df, low, upp): #performs
TOST, gives pvalues by sampling time

2 list_of_pvalues = []
3 for i in range(len(list_of_samples)):
4 pvalues_part = []
5 for j in range(len(list_of_samples[i])):
6 TOST = weightstats.ttost_ind(list_of_samples[i][j], base_sample_df, low,

upp, usevar='unequal')
7 pvalues_part.append(TOST[0])
8 list_of_pvalues.append(pvalues_part)
9 return list_of_pvalues

Source Code A.42: Method ”calculate_pvalues”

1 def sort_pvalues_by_sample(list_of_pvalues): #sorts pvalues by sample
2 list_of_pvalues_by_sample = []
3 for i in range(len(list_of_pvalues[0])):
4 list_of_pvalues_by_sample.append([])

160

5 for e in list_of_pvalues:
6 list_of_pvalues_by_sample[i].append(e[i])
7 return list_of_pvalues_by_sample

Source Code A.43: Method ”sort_pvalues_by_sample”

1 def count_accept_H0(results_df, alpha):
2 count_accept_0 = (results_df > alpha).sum()
3 count_accept_0 = count_accept_0.to_numpy()
4 return count_accept_0

Source Code A.44: Method ”count_accept_H0”

1 #Input Parameters
2 file = "0.1_wall" #long duration measurement
3 directory = r"F:\Uni\Masterthesis\Ttest\data" #directory of long duration

measurement
4 no_measurements = 500 #Defines the number of measurements for the initial step

.
5 increment = 500 #Defines the increment for each step to increase the number of

measurements.
6 no_steps = 15 # Defines the number of steps to increase the number of

measurements (prolong the sampling time).
7 no_samples = 1000 #Number of samples per step.
8 #Script
9 path = r"{}\{}.csv".format(directory, file)

10 population_df = get_population_df(path)
11 list_of_samples = extend_samples(no_measurements, no_steps, increment)
12 list_of_means = calculate_means(list_of_samples)

Source Code A.45: Script ”Comparison of Means”

1 #Input Parameters
2 directory = r"F:\Uni\Masterthesis\Ttest\data" #directory of long duration

measurement
3 directory_output = r"F:\Uni\Masterthesis\Ttest\Ergebnisse\TOST_Ergebnisse_0

.003\P_counts_" #directory to output results
4 file = "0.1_wall" #long duration measurement
5 no_measurements_base = 30000 #Defines the number of measurements for the base

sample.
6 random_state_population = 0 #Defines the reproducable state of the population

dataframe.
7 no_measurements = 500 #Defines the number of measurements for samples for the

initial step.
8 increment = 500 #Defines the increment for each step to increase the number of

measurements.
9 no_steps = 30 #Number of steps to increase the number of measurements (prolong

the sampling time).
10 no_samples = 100 #Number of samples to compare against the base sample.
11 alpha = 0.05 #Significance level of the TOST.

161

12 iterations_of_script = 10 #Number of base samples.
13 low = -0.003 #Lower equivalence boundary of the TOST δ(-).
14 upp = 0.003 # Upper equivalence boundary of the TOST δ(+).
15 #Script
16 path = r"{}\{}.csv".format(directory, file)
17 random_state_population_str = str(random_state_population)
18 population_df = get_population_df(path)
19 #Calculate p-values.
20 results = []
21 for i in range(iterations_of_script):
22 random_state_base_sample = i
23 base_sample_df = get_base_sample(no_measurements_base,

random_state_base_sample, population_df)
24 population_df_shuffled = shuffle_population(random_state_population,

population_df)
25 list_of_samples = extend_samples(no_measurements, no_steps, increment)
26 list_of_pvalues = calculate_pvalues(list_of_samples, base_sample_df, low,

upp)
27 list_of_pvalues_by_sample = sort_pvalues_by_sample(list_of_pvalues)
28 results.append(list_of_pvalues_by_sample)
29 #Get list of dataframes.
30 results_df = []
31 for each_sample in range(iterations_of_script):
32 df = pd.DataFrame.from_records(results[each_sample])
33 results_df.append(df)
34 #Count H0 acceptions for each sample.
35 accept_H0 = []
36 for each_sample in range(iterations_of_script):
37 count = count_accept_H0(results_df[each_sample], alpha)
38 accept_H0.append(count)
39 #Dataframe to array.
40 df_array_count = pd.DataFrame.from_records(accept_H0)
41 #Array to .csv.
42 df_array_count.to_csv(r"{}{}\{}_base_sample_iterations_{}_dataframe_{}

nosamples{}.csv".format(directory_output, file, file,
iterations_of_script, random_state_population_str, no_samples), index=
False, header=False)

Source Code A.46: Script ”TOST”

162

1 #Parameters
2 file = '0.1_wall'
3 low = '-0.002'
4 upp = '+0.002'
5 delta = '0.004'
6 path = r"F:\Uni\Masterthesis\Python\Ttest\Ergebnisse\TOST_Ergebnisse_{}\

P_counts_{}".format(delta,file)
7 all_files = glob.glob(path + "/*.csv")
8 #Script
9 li = []

10 for i in range(10):
11 for filename in all_files:
12 df = pd.read_csv(filename, names=['20','40','60','80','100','120','140','160

','180','200','220','240','260','280','300','320','340','360','380','400',
'420','440','460','480','500','520','540','560','580','600'])

13 df_row = df.iloc[[i]]
14 li.append(df_row)
15 df = pd.concat(li)
16 df = df.transpose()
17 acc_rate_0 = df.iloc[:,0:20].sum(axis=1)/2000
18 acc_rate_1 = df.iloc[:,20:40].sum(axis=1)/2000
19 acc_rate_2 = df.iloc[:,40:60].sum(axis=1)/2000
20 acc_rate_3 = df.iloc[:,60:80].sum(axis=1)/2000
21 acc_rate_4 = df.iloc[:,80:100].sum(axis=1)/2000
22 acc_rate_5 = df.iloc[:,100:120].sum(axis=1)/2000
23 acc_rate_6 = df.iloc[:,120:140].sum(axis=1)/2000
24 acc_rate_7 = df.iloc[:,140:160].sum(axis=1)/2000
25 acc_rate_8 = df.iloc[:,160:180].sum(axis=1)/2000
26 acc_rate_9 = df.iloc[:,180:200].sum(axis=1)/2000
27 x =

[20,40,60,80,100,120,140,160,180,200,220,240,260,280,300,320,340,360,380,400,420,440,460,480,500,520,540,560,580,600]

28 #Plotting
29 fig= plt.figure()
30 fig.set_figheight(8)
31 fig.set_figwidth(14)
32 plt.xlabel("Sampling Time [s]", fontsize=16)
33 plt.ylabel("H0 Acceptance Rate [%]", fontsize=16)
34 plt.plot(x,acc_rate_0, marker='.', linestyle='None', label='Base Sample 1')
35 plt.plot(x,acc_rate_1, marker='.', linestyle='None', label='Base Sample 2')
36 plt.plot(x,acc_rate_2, marker='.', linestyle='None', label='Base Sample 3')
37 plt.plot(x,acc_rate_3, marker='.', linestyle='None', label='Base Sample 4')
38 plt.plot(x,acc_rate_4, marker='.', linestyle='None', label='Base Sample 5')
39 plt.plot(x,acc_rate_5, marker='.', linestyle='None', label='Base Sample 6')
40 plt.plot(x,acc_rate_6, marker='.', linestyle='None', label='Base Sample 7')
41 plt.plot(x,acc_rate_7, marker='.', linestyle='None', label='Base Sample 8')
42 plt.plot(x,acc_rate_8, marker='.', linestyle='None', label='Base Sample 9')
43 plt.plot(x,acc_rate_9, marker='.', linestyle='None', label='Base Sample 10')
44 plt.text(5, 0.01, ' = '.format(delta), fontsize = 14, backgroundcolor= 'white'

163

)
45 plt.legend(loc="upper right", fontsize=14)
46 plt.minorticks_on()
47 ax = plt.gca()
48 ax.xaxis.set_major_locator(MultipleLocator(40))
49 ax.xaxis.set_minor_locator(MultipleLocator(20))
50 plt.xticks(fontsize=14)
51 plt.yticks(fontsize=14)
52 plt.grid(b=True, which='major', color='lightgrey', linestyle='-')
53 plt.grid(b=True, which='minor', color='lightgrey', linestyle='--')
54 plt.savefig(r'F:\Uni\Masterthesis\Python\PDF Bilder\{}_{}.pdf'.format(delta,

file), bbox_inches='tight')
55 plt.close(fig)

Source Code A.47: Script ”Visualisation_TOST”

164

A.3. Data and Tables

Table A.1.: Indices for statistical parameters in the parameter dataframe.

u v w res uv uw vw res
mean 0 7 14 21 cov 28 29 30 TKE 34

variance 1 8 15 22 cor 31 32 33
standard deviation 2 9 16 23
global maximum 3 10 17 24
global minimum 4 11 18 25

skewness 5 12 19 26
kurtosis 6 13 20 27

165

Table A.2.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.1m over bottom with δ = 0.004.

0 1 2 3 4 5 6 7 8 9
20 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
60 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
80 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
120 1 0.9995 0.9995 1.0 0.999 1.0 0.999 1.0 0.9995 0.999
140 0.9325 0.9225 0.935 0.926 0.926 0.923 0.9285 0.9285 0.9205 0.931
160 0.8455 0.836 0.863 0.831 0.8405 0.831 0.8395 0.8345 0.833 0.8635
180 0.768 0.7455 0.773 0.747 0.7565 0.7495 0.757 0.7435 0.75 0.7685
200 0.6715 0.671 0.7075 0.6605 0.6715 0.6535 0.669 0.6665 0.656 0.698
220 0.606 0.61 0.6445 0.6075 0.5975 0.6055 0.5975 0.6075 0.608 0.637
240 0.53 0.542 0.5925 0.5195 0.5205 0.515 0.5245 0.528 0.5155 0.5735
260 0.474 0.489 0.5335 0.4665 0.4665 0.4555 0.465 0.473 0.4565 0.519
280 0.4185 0.44 0.485 0.408 0.4115 0.407 0.413 0.4225 0.41 0.46
300 0.3785 0.4025 0.4515 0.3735 0.369 0.363 0.3695 0.384 0.3655 0.4245
320 0.3315 0.37 0.4205 0.3315 0.3265 0.3155 0.3275 0.344 0.317 0.3935
340 0.2985 0.3145 0.391 0.299 0.286 0.2815 0.285 0.3035 0.2815 0.3655
360 0.269 0.2825 0.3585 0.2545 0.256 0.2465 0.257 0.262 0.2485 0.328
380 0.2385 0.2525 0.3375 0.2295 0.221 0.21 0.223 0.2325 0.2135 0.3115
400 0.2015 0.2215 0.3245 0.1875 0.187 0.185 0.189 0.199 0.185 0.2975
420 0.181 0.2035 0.2975 0.1605 0.1685 0.1535 0.171 0.17 0.1525 0.271
440 0.1555 0.1755 0.2775 0.1445 0.144 0.135 0.1475 0.1595 0.137 0.2415
460 0.135 0.159 0.247 0.13 0.1225 0.1215 0.1205 0.137 0.122 0.222
480 0.116 0.1365 0.226 0.1155 0.1035 0.094 0.1055 0.12 0.094 0.1945
500 0.0965 0.117 0.2075 0.09 0.0905 0.0775 0.091 0.103 0.079 0.1735
520 0.0885 0.1005 0.1845 0.0775 0.0785 0.068 0.0785 0.0855 0.0695 0.1515
540 0.0785 0.0905 0.1675 0.0655 0.067 0.0545 0.068 0.0735 0.055 0.1335
560 0.071 0.077 0.161 0.053 0.058 0.0425 0.062 0.063 0.0435 0.1305
580 0.054 0.064 0.153 0.045 0.0435 0.0385 0.046 0.0465 0.0385 0.126
600 0.0505 0.0525 0.1435 0.036 0.0385 0.0315 0.04 0.039 0.0305 0.112

166

Table A.3.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.1m over bottom with δ = 0.006.

0 1 2 3 4 5 6 7 8 9
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
60 0.9115 0.905 0.911 0.906 0.9135 0.9045 0.9115 0.909 0.905 0.914
80 0.7255 0.7265 0.722 0.712 0.7215 0.715 0.722 0.7145 0.7155 0.725
100 0.543 0.556 0.568 0.5465 0.5415 0.548 0.541 0.551 0.5475 0.5605
120 0.406 0.408 0.441 0.403 0.403 0.395 0.402 0.407 0.395 0.43
140 0.302 0.3135 0.332 0.2985 0.2945 0.296 0.2955 0.3025 0.296 0.3185
160 0.222 0.228 0.2635 0.2185 0.215 0.2115 0.2165 0.226 0.2115 0.248
180 0.1605 0.1605 0.2045 0.145 0.152 0.1395 0.1535 0.148 0.1395 0.1895
200 0.1125 0.1215 0.157 0.1135 0.11 0.1105 0.1105 0.118 0.111 0.1425
220 0.078 0.098 0.123 0.088 0.0795 0.089 0.077 0.0915 0.089 0.112
240 0.063 0.0685 0.0965 0.0625 0.0585 0.053 0.059 0.0615 0.054 0.085
260 0.0465 0.046 0.071 0.038 0.0445 0.0345 0.0445 0.0395 0.034 0.064
280 0.0305 0.0315 0.06 0.0255 0.0295 0.0235 0.0295 0.028 0.0235 0.0525
300 0.0215 0.0255 0.048 0.021 0.019 0.017 0.019 0.0215 0.017 0.038
320 0.018 0.02 0.0365 0.0145 0.015 0.0125 0.0155 0.016 0.0115 0.0325
340 0.011 0.0145 0.0285 0.011 0.0095 0.0095 0.01 0.013 0.01 0.0225
360 0.007 0.012 0.0215 0.008 0.007 0.006 0.006 0.0085 0.006 0.017
380 0.006 0.0085 0.0145 0.006 0.004 0.005 0.004 0.0065 0.005 0.011
400 0.0045 0.006 0.0125 0.004 0.004 0.003 0.004 0.0045 0.003 0.0085
420 0.002 0.002 0.0095 0.0015 0.002 0.002 0.002 0.002 0.0015 0.008
440 0.002 0.0015 0.006 0.001 0.0015 0.0015 0.0015 0.0015 0.0015 0.0045
460 0.002 0.0005 0.0045 0.0005 0.002 0.0005 0.002 0.0005 0.001 0.0035
480 0.002 0.001 0.0045 0.0005 0.001 0.0005 0.001 0.0005 0.0005 0.0035
500 0.001 0.0005 0.0025 0.0 0.0 0.0 0.0005 0.0 0.0 0.002
520 0.0005 0.0 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.0015
540 0.0 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0005
560 0.0 0.0 0.0005 0.0 0.0 0.0 0.0 0.0 0.0 0.0
580 0.0 0.0 0.0005 0.0 0.0 0.0 0.0 0.0 0.0 0.0
600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

167

Table A.4.: Null hypothesis acceptance rates for the long-duration measurement in central
horizontal position and vertical position of 0.1m over bottom with δ = 0.004.

0 1 2 3 4 5 6 7 8 9
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 0.9985 0.9985 0.996 0.997 0.997 0.9985 0.998 0.9995 0.9965 0.997
120 0.8955 0.897 0.908 0.9025 0.9005 0.896 0.8905 0.896 0.9035 0.9025
140 0.7795 0.7805 0.8005 0.7955 0.781 0.7805 0.7855 0.7855 0.7965 0.793
160 0.68 0.6885 0.716 0.7095 0.685 0.6875 0.6785 0.687 0.7125 0.7065
180 0.5985 0.602 0.624 0.626 0.6025 0.6015 0.6045 0.6125 0.6265 0.627
200 0.494 0.499 0.564 0.5595 0.493 0.4985 0.5025 0.514 0.5615 0.5555
220 0.432 0.4375 0.4885 0.478 0.432 0.4365 0.446 0.4585 0.482 0.477
240 0.379 0.382 0.4325 0.4245 0.3805 0.382 0.381 0.393 0.4295 0.4185
260 0.3335 0.3365 0.381 0.369 0.3345 0.3355 0.325 0.332 0.373 0.3625
280 0.2875 0.292 0.3345 0.324 0.292 0.291 0.2875 0.2965 0.328 0.3225
300 0.243 0.247 0.297 0.287 0.2425 0.2465 0.2495 0.2525 0.291 0.2835
320 0.207 0.2085 0.2805 0.2695 0.205 0.2085 0.212 0.231 0.2735 0.2655
340 0.167 0.1645 0.2515 0.2375 0.1635 0.163 0.173 0.19 0.242 0.23
360 0.1335 0.136 0.223 0.2135 0.135 0.136 0.142 0.1575 0.2155 0.2115
380 0.109 0.1105 0.2045 0.1905 0.1045 0.1105 0.1255 0.14 0.194 0.184
400 0.0825 0.0865 0.187 0.1705 0.085 0.0855 0.094 0.118 0.1765 0.164
420 0.0725 0.0755 0.158 0.1445 0.07 0.0755 0.0785 0.097 0.1475 0.1435
440 0.056 0.0555 0.1375 0.122 0.057 0.0555 0.064 0.0805 0.127 0.1205
460 0.051 0.0535 0.128 0.114 0.0515 0.053 0.0555 0.071 0.1175 0.1115
480 0.043 0.044 0.108 0.0975 0.044 0.044 0.0425 0.0665 0.1 0.093
500 0.0335 0.0365 0.0925 0.0825 0.036 0.036 0.04 0.0495 0.086 0.081
520 0.0325 0.0315 0.0785 0.069 0.0315 0.031 0.036 0.041 0.0725 0.066
540 0.023 0.0235 0.066 0.0565 0.0235 0.023 0.0295 0.036 0.0585 0.055
560 0.0195 0.0205 0.0615 0.0525 0.0195 0.0205 0.0245 0.033 0.0555 0.051
580 0.013 0.014 0.0555 0.0475 0.014 0.014 0.021 0.0265 0.05 0.043
600 0.0115 0.011 0.052 0.0455 0.0115 0.011 0.0145 0.0245 0.047 0.0425

168

Table A.5.: Null hypothesis acceptance rates for the long-duration measurement in central
horizontal position and vertical position of 0.1m over bottom with δ = 0.006.

0 1 2 3 4 5 6 7 8 9
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 0.999 0.999 0.9995 0.999 0.9985 0.999 1.0 0.999 0.9995 0.999
60 0.765 0.7595 0.758 0.7595 0.7635 0.759 0.766 0.766 0.7605 0.7565
80 0.5555 0.554 0.563 0.5575 0.554 0.554 0.5425 0.548 0.5585 0.555
100 0.388 0.3865 0.42 0.4085 0.388 0.387 0.392 0.394 0.4135 0.4075
120 0.2725 0.2835 0.314 0.3055 0.276 0.2835 0.2785 0.2805 0.3075 0.3045
140 0.202 0.2035 0.225 0.222 0.204 0.203 0.2055 0.204 0.2225 0.2205
160 0.1415 0.137 0.167 0.165 0.1405 0.1365 0.1465 0.148 0.1655 0.1605
180 0.093 0.093 0.119 0.1135 0.0935 0.093 0.091 0.098 0.114 0.113
200 0.0615 0.0595 0.0925 0.085 0.0605 0.0595 0.066 0.072 0.087 0.083
220 0.0355 0.0395 0.0575 0.0535 0.036 0.0395 0.037 0.043 0.055 0.053
240 0.025 0.024 0.0415 0.037 0.0245 0.024 0.026 0.028 0.0375 0.0365
260 0.0145 0.015 0.028 0.025 0.0155 0.015 0.0165 0.017 0.026 0.024
280 0.007 0.0085 0.0205 0.0185 0.0065 0.0085 0.01 0.0105 0.0185 0.0165
300 0.0055 0.0045 0.014 0.013 0.005 0.0045 0.0065 0.007 0.0135 0.012
320 0.003 0.0035 0.0075 0.007 0.003 0.0035 0.003 0.0035 0.007 0.007
340 0.0015 0.002 0.006 0.005 0.0015 0.002 0.002 0.0025 0.005 0.005
360 0.0005 0.001 0.0045 0.004 0.0005 0.001 0.0015 0.002 0.0045 0.004
380 0.0 0.0 0.003 0.003 0.0 0.0 0.0 0.001 0.003 0.003
400 0.0 0.0 0.0025 0.002 0.0 0.0 0.0 0.0005 0.0025 0.0015
420 0.0 0.0 0.0015 0.001 0.0 0.0 0.0 0.0 0.0015 0.0005
440 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
460 0.0 0.0 0.0005 0.0005 0.0 0.0 0.0 0.0 0.0005 0.0005
480 0.0 0.0 0.0005 0.0005 0.0 0.0 0.0 0.0 0.0005 0.0
500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
520 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
540 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
560 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
580 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

169

Table A.6.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.4m over bottom with δ = 0.004.

0 1 2 3 4 5 6 7 8 9
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 0.999 0.9985 0.9985 1.0 0.9995 0.9995 0.999 0.999 0.999 0.999
120 0.904 0.9125 0.903 0.898 0.9 0.8995 0.9015 0.895 0.894 0.9005
140 0.789 0.7895 0.788 0.792 0.792 0.7895 0.7915 0.7925 0.792 0.794
160 0.698 0.7025 0.697 0.704 0.7025 0.6965 0.708 0.702 0.706 0.7135
180 0.602 0.615 0.6025 0.6365 0.6245 0.614 0.6435 0.628 0.6385 0.6485
200 0.5295 0.5305 0.5365 0.5535 0.547 0.538 0.557 0.547 0.554 0.568
220 0.471 0.4695 0.472 0.489 0.4795 0.472 0.5025 0.481 0.4935 0.505
240 0.3845 0.3905 0.3855 0.4275 0.405 0.3965 0.438 0.407 0.4345 0.4465
260 0.325 0.3315 0.329 0.3805 0.3635 0.351 0.398 0.371 0.3915 0.4085
280 0.2835 0.286 0.2825 0.336 0.298 0.294 0.3595 0.3075 0.346 0.365
300 0.243 0.2445 0.24 0.287 0.2685 0.2515 0.3105 0.274 0.296 0.3275
320 0.2005 0.201 0.202 0.2545 0.235 0.217 0.273 0.2425 0.2635 0.286
340 0.171 0.179 0.1685 0.2145 0.1915 0.176 0.234 0.197 0.2185 0.244
360 0.1495 0.1525 0.1505 0.179 0.1635 0.1545 0.197 0.1635 0.1835 0.208
380 0.1225 0.1295 0.126 0.1645 0.142 0.1295 0.1865 0.147 0.172 0.1965
400 0.107 0.107 0.1055 0.139 0.126 0.1135 0.16 0.132 0.146 0.1715
420 0.079 0.08 0.0775 0.1165 0.102 0.0885 0.139 0.1055 0.123 0.1485
440 0.063 0.066 0.063 0.107 0.09 0.072 0.1285 0.0975 0.1155 0.137
460 0.0485 0.053 0.0505 0.094 0.0705 0.0585 0.109 0.0745 0.0985 0.1195
480 0.0355 0.0405 0.0355 0.067 0.0505 0.039 0.0905 0.055 0.0735 0.1025
500 0.024 0.037 0.026 0.0585 0.041 0.032 0.0755 0.045 0.0635 0.084
520 0.0195 0.0285 0.021 0.0495 0.0345 0.028 0.0635 0.04 0.0535 0.0715
540 0.014 0.024 0.015 0.048 0.031 0.0175 0.0575 0.0365 0.0515 0.065
560 0.0135 0.0165 0.014 0.0405 0.027 0.0165 0.051 0.031 0.045 0.06
580 0.012 0.0145 0.0115 0.0335 0.025 0.0165 0.0445 0.0275 0.038 0.0485
600 0.0095 0.0135 0.0105 0.0275 0.019 0.0145 0.0385 0.022 0.029 0.044

170

Table A.7.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.4m over bottom with δ = 0.006.

0 1 2 3 4 5 6 7 8 9
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.0 0.9995 1.0 1.0 0.9995 0.9995 1.0 1.0 1.0 1.0
60 0.765 0.7745 0.7665 0.7695 0.7715 0.7695 0.7775 0.771 0.7705 0.7815
80 0.5725 0.5765 0.5685 0.579 0.5695 0.5685 0.5835 0.573 0.583 0.586
100 0.406 0.407 0.407 0.406 0.4085 0.4075 0.4145 0.407 0.411 0.422
120 0.2745 0.281 0.2765 0.2965 0.292 0.282 0.309 0.295 0.3 0.31
140 0.19 0.195 0.1925 0.206 0.1995 0.195 0.2125 0.2025 0.2075 0.2185
160 0.126 0.131 0.127 0.1425 0.133 0.129 0.154 0.1375 0.1455 0.1585
180 0.0865 0.09 0.088 0.0965 0.0885 0.088 0.102 0.0925 0.097 0.105
200 0.059 0.064 0.0595 0.0695 0.0645 0.061 0.072 0.067 0.0715 0.0785
220 0.04 0.0375 0.04 0.0515 0.046 0.0435 0.0565 0.048 0.0525 0.0585
240 0.025 0.027 0.024 0.0325 0.028 0.027 0.0375 0.029 0.0335 0.041
260 0.016 0.015 0.0155 0.02 0.017 0.017 0.0265 0.0185 0.0205 0.0285
280 0.008 0.0095 0.009 0.017 0.012 0.011 0.0175 0.014 0.0175 0.0185
300 0.003 0.0075 0.004 0.01 0.008 0.0065 0.0105 0.008 0.01 0.011
320 0.003 0.003 0.0035 0.007 0.006 0.004 0.0085 0.006 0.0075 0.009
340 0.0025 0.001 0.0025 0.0035 0.0025 0.0035 0.0045 0.0035 0.0045 0.0055
360 0.001 0.001 0.002 0.0015 0.002 0.002 0.003 0.002 0.002 0.0035
380 0.001 0.001 0.001 0.0015 0.0 0.0005 0.0025 0.0 0.002 0.003
400 0.0 0.001 0.0 0.001 0.0005 0.0 0.001 0.0005 0.001 0.002
420 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001
440 0.0 0.0005 0.0 0.0005 0.0 0.0 0.0005 0.0 0.0005 0.0005
460 0.0 0.0 0.0 0.0 0.0 0.0 0.0005 0.0 0.0 0.0005
480 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
520 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
540 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
560 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
580 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

171

Table A.8.: Null hypothesis acceptance rates for the long-duration measurement in central
horizontal position and vertical position of 0.4m over bottom with δ = 0.004.

0 1 2 3 4 5 6 7 8 9
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
80 0.9915 0.991 0.9875 0.99 0.9895 0.9885 0.992 0.9895 0.988 0.9915
100 0.8395 0.842 0.84 0.844 0.842 0.841 0.8465 0.8505 0.845 0.845
120 0.71 0.6945 0.6925 0.698 0.692 0.698 0.7035 0.6975 0.7285 0.7085
140 0.6105 0.5735 0.58 0.575 0.579 0.5755 0.5815 0.573 0.6335 0.5845
160 0.5225 0.485 0.5 0.4845 0.4975 0.4935 0.4925 0.485 0.5425 0.4965
180 0.4265 0.4085 0.389 0.413 0.3865 0.383 0.4235 0.3885 0.455 0.428
200 0.362 0.3395 0.3325 0.3425 0.3325 0.3285 0.352 0.3275 0.399 0.3665
220 0.303 0.2815 0.2745 0.287 0.271 0.2735 0.298 0.272 0.3475 0.3085
240 0.251 0.2275 0.2265 0.231 0.2235 0.224 0.242 0.225 0.2875 0.253
260 0.204 0.1905 0.1735 0.197 0.1735 0.1655 0.211 0.177 0.253 0.217
280 0.1815 0.1485 0.143 0.156 0.139 0.1345 0.1675 0.132 0.2135 0.1795
300 0.1495 0.1185 0.121 0.123 0.1155 0.112 0.138 0.103 0.1815 0.1465
320 0.1175 0.1005 0.094 0.1055 0.093 0.0875 0.1135 0.093 0.1485 0.1225
340 0.0895 0.0845 0.068 0.0865 0.0675 0.0645 0.098 0.0725 0.1175 0.103
360 0.0715 0.069 0.0495 0.0715 0.0485 0.048 0.082 0.052 0.1005 0.089
380 0.0555 0.0535 0.04 0.059 0.0405 0.041 0.0695 0.045 0.086 0.0765
400 0.052 0.0455 0.035 0.051 0.0355 0.033 0.057 0.033 0.069 0.062
420 0.0435 0.0305 0.029 0.034 0.027 0.0245 0.043 0.029 0.069 0.047
440 0.037 0.024 0.0235 0.025 0.0205 0.017 0.034 0.0185 0.0595 0.0385
460 0.0315 0.017 0.0155 0.02 0.0145 0.0145 0.0245 0.013 0.0495 0.028
480 0.0235 0.0135 0.0115 0.0175 0.012 0.0105 0.0225 0.0105 0.0385 0.0265
500 0.019 0.0135 0.008 0.0155 0.008 0.0075 0.021 0.007 0.029 0.0235
520 0.014 0.0105 0.0055 0.0125 0.0055 0.005 0.016 0.0055 0.0225 0.0205
540 0.011 0.0075 0.0045 0.0095 0.0045 0.004 0.015 0.005 0.02 0.0185
560 0.0075 0.0045 0.003 0.0055 0.002 0.002 0.009 0.002 0.02 0.0115
580 0.0065 0.0035 0.002 0.004 0.0015 0.0005 0.006 0.0015 0.012 0.0095
600 0.0045 0.003 0.001 0.0035 0.001 0.001 0.0055 0.0005 0.01 0.007

172

Table A.9.: Null hypothesis acceptance rates for the long-duration measurement in central
horizontal position and vertical position of 0.4m over bottom with δ = 0.006.

0 1 2 3 4 5 6 7 8 9
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 0.8915 0.884 0.889 0.886 0.886 0.8895 0.8865 0.888 0.8865 0.886
60 0.6015 0.5735 0.576 0.573 0.5745 0.572 0.576 0.5725 0.6045 0.5755
80 0.392 0.3865 0.3765 0.39 0.3765 0.379 0.395 0.382 0.402 0.3935
100 0.244 0.2255 0.225 0.2245 0.225 0.2205 0.225 0.222 0.267 0.2315
120 0.141 0.144 0.1325 0.149 0.133 0.133 0.155 0.1365 0.1585 0.159
140 0.102 0.085 0.0865 0.0875 0.0865 0.0845 0.097 0.082 0.107 0.099
160 0.0645 0.0535 0.0555 0.053 0.052 0.0495 0.0565 0.0495 0.0745 0.06
180 0.0385 0.033 0.0335 0.0335 0.0335 0.03 0.035 0.029 0.0475 0.0365
200 0.025 0.0195 0.015 0.02 0.014 0.0145 0.024 0.017 0.0315 0.027
220 0.015 0.0145 0.0095 0.015 0.0105 0.009 0.0165 0.0115 0.02 0.02
240 0.0085 0.0085 0.0055 0.0085 0.005 0.0045 0.0105 0.006 0.0125 0.0125
260 0.004 0.004 0.0035 0.0035 0.0035 0.0025 0.0045 0.003 0.0045 0.0055
280 0.002 0.0025 0.001 0.0025 0.001 0.001 0.003 0.0015 0.0035 0.004
300 0.0005 0.001 0.0 0.001 0.0 0.0 0.0015 0.0005 0.002 0.002
320 0.0005 0.0005 0.0 0.0005 0.0 0.0 0.0005 0.0 0.0015 0.0015
340 0.0005 0.0 0.0 0.0 0.0 0.0 0.0005 0.0 0.0005 0.0005
360 0.0 0.0005 0.0 0.0005 0.0 0.0 0.0005 0.0 0.0 0.001
380 0.0 0.0005 0.0 0.0005 0.0 0.0 0.0005 0.0 0.0 0.0005
400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0005 0.0005
420 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
440 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
460 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
480 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
520 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
540 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
560 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
580 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

173

Table A.10.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.6m over bottom with δ = 0.004.

0 1 2 3 4 5 6 7 8 9
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 0.9995 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9995
120 0.912 0.9075 0.908 0.91 0.924 0.9105 0.9055 0.8985 0.9155 0.897
140 0.7885 0.808 0.7895 0.7925 0.8105 0.8105 0.799 0.7855 0.8175 0.7865
160 0.7055 0.7095 0.6925 0.698 0.717 0.718 0.7055 0.692 0.731 0.6935
180 0.6105 0.6285 0.6115 0.612 0.634 0.636 0.6115 0.603 0.664 0.6045
200 0.526 0.546 0.5215 0.5305 0.5555 0.5475 0.533 0.516 0.6045 0.52
220 0.4555 0.4755 0.4525 0.451 0.4855 0.498 0.459 0.454 0.5525 0.4535
240 0.389 0.4025 0.3785 0.385 0.44 0.4225 0.386 0.3805 0.477 0.3805
260 0.3385 0.3635 0.3365 0.338 0.392 0.381 0.345 0.334 0.4415 0.334
280 0.291 0.316 0.2775 0.288 0.335 0.3405 0.291 0.273 0.4075 0.2745
300 0.2465 0.271 0.2285 0.2455 0.3045 0.291 0.2575 0.2295 0.3575 0.231
320 0.1995 0.238 0.205 0.2105 0.2585 0.2615 0.218 0.1875 0.331 0.191
340 0.1755 0.207 0.169 0.1785 0.24 0.234 0.191 0.16 0.3115 0.1595
360 0.1505 0.186 0.1445 0.1595 0.209 0.2155 0.165 0.1405 0.2905 0.137
380 0.127 0.16 0.123 0.132 0.1885 0.1855 0.1405 0.113 0.273 0.1135
400 0.1085 0.1425 0.1035 0.1135 0.157 0.1645 0.118 0.0975 0.252 0.1
420 0.0975 0.121 0.084 0.0965 0.15 0.1425 0.1025 0.0795 0.219 0.08
440 0.079 0.1105 0.0785 0.0865 0.1335 0.136 0.0905 0.064 0.203 0.066
460 0.0685 0.0925 0.06 0.0695 0.1115 0.116 0.072 0.0515 0.1785 0.0535
480 0.0505 0.0745 0.043 0.0525 0.097 0.0985 0.058 0.041 0.161 0.043
500 0.0505 0.0615 0.033 0.041 0.0855 0.08 0.044 0.036 0.1525 0.039
520 0.0425 0.047 0.0225 0.029 0.077 0.07 0.0335 0.0275 0.139 0.028
540 0.035 0.0415 0.018 0.024 0.0725 0.061 0.028 0.0175 0.1235 0.0175
560 0.0285 0.0335 0.014 0.02 0.062 0.0515 0.024 0.0135 0.1105 0.014
580 0.019 0.029 0.0125 0.0155 0.0555 0.0405 0.017 0.01 0.1 0.0105
600 0.016 0.028 0.009 0.013 0.048 0.035 0.016 0.008 0.081 0.008

174

Table A.11.: Null hypothesis acceptance rates for the long-duration measurement in wall
proximity and vertical position of 0.6m over bottom with δ = 0.006.

0 1 2 3 4 5 6 7 8 9
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.0 1.0 1.0 0.999 0.9995 1.0 0.9995 1.0 0.9995 1.0
60 0.804 0.792 0.791 0.788 0.804 0.797 0.7865 0.794 0.7995 0.7955
80 0.5645 0.571 0.563 0.5625 0.577 0.5745 0.5655 0.5515 0.5995 0.553
100 0.3945 0.415 0.408 0.408 0.4115 0.425 0.4115 0.398 0.4465 0.3975
120 0.288 0.2895 0.276 0.2805 0.3105 0.294 0.2805 0.2765 0.3245 0.2775
140 0.1975 0.2045 0.197 0.195 0.2185 0.2135 0.2 0.195 0.246 0.193
160 0.1405 0.157 0.1405 0.148 0.157 0.1645 0.15 0.1355 0.1945 0.133
180 0.094 0.107 0.0885 0.0935 0.113 0.1175 0.097 0.0925 0.1435 0.092
200 0.062 0.0775 0.064 0.0635 0.0765 0.086 0.0655 0.0605 0.108 0.0605
220 0.0385 0.0515 0.038 0.041 0.0545 0.0575 0.0455 0.0365 0.082 0.0385
240 0.03 0.0345 0.0225 0.029 0.037 0.044 0.03 0.025 0.063 0.0245
260 0.0195 0.0235 0.017 0.0185 0.028 0.0295 0.0195 0.0155 0.0495 0.0155
280 0.0115 0.0165 0.011 0.0125 0.019 0.0205 0.0145 0.009 0.033 0.008
300 0.007 0.0085 0.0045 0.0065 0.0135 0.0125 0.008 0.005 0.0265 0.0055
320 0.005 0.004 0.003 0.003 0.008 0.007 0.003 0.0045 0.016 0.0045
340 0.003 0.003 0.001 0.0015 0.007 0.005 0.0015 0.0015 0.0105 0.0015
360 0.0025 0.001 0.0005 0.001 0.0065 0.001 0.001 0.0005 0.007 0.001
380 0.001 0.0005 0.0005 0.0005 0.0045 0.0005 0.0005 0.0005 0.0045 0.0005
400 0.0015 0.0 0.0 0.0 0.003 0.0 0.0 0.0 0.003 0.0
420 0.0005 0.0 0.0 0.0 0.002 0.0 0.0 0.0 0.001 0.0
440 0.0005 0.0 0.0 0.0 0.0005 0.0 0.0 0.0 0.001 0.0
460 0.0005 0.0 0.0 0.0 0.0005 0.0 0.0 0.0 0.0005 0.0
480 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
520 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
540 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
560 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
580 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

175

Table A.12.: Null hypothesis acceptance rates for the long-duration measurement in central
horizontal position and vertical position of 0.6m over bottom with δ = 0.004.

0 1 2 3 4 5 6 7 8 9
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 0.927 0.897 0.919 0.8975 0.925 0.9265 0.924 0.897 0.9225 0.926
120 0.7965 0.798 0.797 0.7985 0.7945 0.7945 0.801 0.7975 0.7975 0.7935
140 0.684 0.6715 0.7005 0.672 0.681 0.684 0.691 0.671 0.6955 0.683
160 0.572 0.572 0.5895 0.57 0.5735 0.574 0.572 0.5715 0.582 0.574
180 0.4805 0.4815 0.491 0.4825 0.4755 0.48 0.485 0.48 0.491 0.4755
200 0.4035 0.416 0.414 0.4135 0.4025 0.4025 0.4045 0.4125 0.411 0.405
220 0.3305 0.3345 0.358 0.332 0.3295 0.328 0.341 0.3325 0.347 0.332
240 0.2705 0.26 0.2995 0.26 0.267 0.272 0.2845 0.259 0.2905 0.269
260 0.2295 0.2275 0.2485 0.2285 0.2245 0.228 0.2385 0.2265 0.244 0.224
280 0.183 0.1815 0.218 0.1805 0.184 0.183 0.1955 0.181 0.206 0.1845
300 0.151 0.146 0.182 0.1445 0.1475 0.151 0.1635 0.1445 0.171 0.1495
320 0.125 0.1235 0.155 0.1205 0.122 0.125 0.1365 0.1205 0.145 0.123
340 0.1025 0.098 0.127 0.0965 0.094 0.099 0.113 0.096 0.118 0.0945
360 0.082 0.0845 0.1095 0.0845 0.075 0.0795 0.0985 0.084 0.1025 0.0775
380 0.073 0.0675 0.093 0.0655 0.066 0.072 0.0805 0.066 0.088 0.069
400 0.061 0.056 0.0755 0.054 0.054 0.06 0.067 0.0545 0.071 0.057
420 0.0445 0.0445 0.0665 0.0445 0.041 0.0435 0.052 0.0445 0.059 0.042
440 0.0345 0.034 0.053 0.0345 0.0325 0.0345 0.043 0.034 0.048 0.0345
460 0.027 0.0305 0.043 0.03 0.0235 0.026 0.0355 0.03 0.0405 0.0225
480 0.0215 0.0235 0.0395 0.023 0.0195 0.0215 0.0265 0.0235 0.033 0.0195
500 0.0185 0.0165 0.031 0.017 0.015 0.017 0.0225 0.0165 0.028 0.016
520 0.0125 0.0095 0.026 0.009 0.01 0.012 0.0155 0.009 0.02 0.0105
540 0.0105 0.008 0.02 0.008 0.0085 0.01 0.016 0.0075 0.0175 0.0095
560 0.01 0.007 0.019 0.007 0.0075 0.0085 0.015 0.007 0.016 0.008
580 0.007 0.004 0.015 0.0045 0.006 0.0065 0.009 0.004 0.0115 0.0065
600 0.0055 0.0045 0.012 0.0045 0.0055 0.0055 0.008 0.0045 0.0085 0.0055

176

Table A.13.: Null hypothesis acceptance rates for the long-duration measurement in central
horizontal position and vertical position of 0.6m over bottom with δ = 0.006.

0 1 2 3 4 5 6 7 8 9
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 0.9555 0.956 0.95 0.956 0.96 0.955 0.9525 0.9555 0.9505 0.959
60 0.671 0.663 0.6835 0.6625 0.668 0.669 0.6745 0.663 0.679 0.6675
80 0.4525 0.4585 0.456 0.4595 0.4565 0.454 0.4535 0.4585 0.4565 0.4555
100 0.297 0.293 0.304 0.2935 0.2925 0.2965 0.2905 0.2925 0.2965 0.291
120 0.1965 0.19 0.2055 0.191 0.191 0.196 0.2025 0.19 0.2055 0.194
140 0.124 0.116 0.137 0.116 0.1185 0.122 0.127 0.1155 0.132 0.121
160 0.0655 0.066 0.079 0.0655 0.0645 0.066 0.073 0.0655 0.0755 0.0655
180 0.0425 0.0405 0.0535 0.04 0.04 0.0415 0.0455 0.04 0.048 0.0395
200 0.028 0.025 0.0325 0.0245 0.025 0.028 0.031 0.0245 0.0325 0.025
220 0.0155 0.014 0.0195 0.0135 0.0145 0.0155 0.017 0.014 0.018 0.0145
240 0.0085 0.01 0.012 0.0095 0.008 0.0085 0.009 0.0095 0.011 0.0085
260 0.006 0.0075 0.0095 0.0075 0.005 0.006 0.0075 0.0075 0.008 0.0055
280 0.004 0.003 0.006 0.003 0.0035 0.0035 0.005 0.003 0.005 0.0035
300 0.0015 0.0035 0.004 0.003 0.0015 0.0015 0.002 0.0035 0.003 0.0015
320 0.001 0.001 0.001 0.001 0.001 0.001 0.0005 0.001 0.0005 0.001
340 0.0005 0.0005 0.0015 0.0005 0.0005 0.0005 0.0005 0.0005 0.001 0.0005
360 0.0 0.0 0.0005 0.0 0.0 0.0 0.0005 0.0 0.0005 0.0
380 0.0 0.0 0.0005 0.0 0.0 0.0 0.0 0.0 0.0 0.0
400 0.0 0.0 0.0005 0.0 0.0 0.0 0.0 0.0 0.0005 0.0
420 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
440 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
460 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
480 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
520 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
540 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
560 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
580 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

177

Table A.14.: Sampling times corresponding to null hypothesis acceptance rates under 0.05
for all base samples.

No Positionh Positionv Sampling Time [min] Sampling Time [min]
[m] δ = 0, 004 δ = 0, 006

1 Center 0.1 10 4
2 Center 0.4 7 3
3 Center 0.6 7.67 3.33
4 Wall 0.1 >10 5
5 Wall 0.4 9.67 4
6 Wall 0.6 10 4.33

178

	List of Figures
	List of Acronyms
	Introduction
	Fundamentals
	Basics of Statistics
	Probability Distributions
	Statistical Hypothesis Testing
	T-Test
	Equivalence Testing

	Basics of Fluid Dynamics
	Kinematic Properties of Flow
	Transport Properties of Fluids
	Turbulence

	Basics of Signal Processing
	Signals
	Nyquist-Shannon Sampling Theorem
	Convolution
	Transformations

	Basics of Filters in Signal Processing
	Filter Characteristics
	Finite Impulse Response Filters
	Infinite Impulse Response Filters

	Acoustic Doppler Velocimeter
	Components
	Basic Principles of Acoustic Doppler Velocimetry
	Sound Propagation
	Doppler Effect
	Working Principle of the Acoustic Doppler Velocimeter

	Uncertainty in Measurement
	Guide to the Expression of Uncertainty in Measurement
	Random Effects
	Systematic Effects

	Data Analysis Methods for Acoustic Doppler Velocimeter Data
	Basic Cutoff Filters
	Signal-to-noise Ratio Filter
	Correlation Score Filter

	Despiking
	3D Phase Space Thresholding
	Velocity Correlation Filter
	Wavelet Space Despiking
	Kernel Density Estimation Despiking
	Autoregressive Moving Average Models
	Singular Spectrum Analysis

	Denoising
	Noise Floor Subtraction in Turbulent Spectra
	Digital Filtering
	Bifrequency Doppler Noise Repression
	Polynomial Least-Squares Regression
	Proper Orthogonal Decomposition
	Noise Auto-correlation
	Kalman Filter

	Data Replacement
	Available Software

	Implementation of Data Analysis Methods in Python
	Hardware and Libraries
	File Management Tools
	Gauss Filter
	Butterworth Filter
	Python Statistical Analysis of Turbulence (P-SAT) Framework
	Kernel Density Estimation Despiking
	Data Replacement

	Evaluation of Data Analysis Methods in Python
	Visual Inspection
	Python Statistical Analysis of Turbulence (P-SAT) Framework
	Kernel Density Estimation Despiking
	Butterworth Filtering
	Gauss Filtering
	Combination of Methods

	Statistical Parameters
	Mean
	Variance
	Skewness
	Kurtosis

	Discussion of Results

	Optimal Sampling Time
	General Approach
	Requirements and Input Parameters
	Comparison of Means
	Testing for Equivalence of Means
	Discussion of Results

	Conclusion and Outlook
	References
	Annex
	Figures
	Code
	Data and Tables

