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A B S T R A C T

Providing Internet access to billions of people worldwide is one of the main technical
challenges in the current decade. The Internet access edge connects each residential
and mobile subscriber to this network and ensures a certain Quality of Service (QoS).

However, the implementation of access edge functionality challenges Internet ser-
vice providers: First, a good QoS must be provided to the subscribers, for example,
high throughput and low latency. Second, the quick rollout of new technologies and
functionality demands flexible configuration and programming possibilities of the
network components; for example, the support of novel, use-case-specific network
protocols. The functionality scope of an Internet access edge requires the use of pro-
gramming concepts, such as Network Functions Virtualization (NFV).

The drawback of NFV-based network functions is a significantly lowered resource
efficiency due to the execution as software, commonly resulting in a lowered QoS
compared to rigid hardware solutions. The usage of programmable hardware accel-
erators, named NFV offloading, helps to improve the QoS and flexibility of network
function implementations.

In this thesis, we design network functions on programmable hardware to improve
the QoS and flexibility. First, we introduce the host bypassing concept for improved
integration of hardware accelerators in computer systems, for example, in 5G radio
access networks. This novel concept bypasses the system’s main memory and en-
ables direct connectivity between the accelerator and network interface card. Our
evaluations show an improved throughput and significantly lowered latency jitter
for the presented approach.

Second, we analyze different programmable hardware technologies for hardware-
accelerated Internet subscriber handling, including three P4-programmable platforms
and FPGAs. Our results demonstrate that all approaches have excellent performance
and are suitable for Internet access creation. We present a fully-fledged User Plane
Function (UPF) designed upon these concepts and test it in an end-to-end 5G stan-
dalone network as part of this contribution.

Third, we analyze and demonstrate the usability of Active Queue Management
(AQM) algorithms on programmable hardware as an expansion to the access edge.
We show the feasibility of the CoDel AQM algorithm and discuss the challenges and
constraints to be considered when limited hardware is used. The results show signif-
icant improvements in the QoS when the AQM algorithm is deployed on hardware.

Last, we focus on network function benchmarking, which is crucial for under-
standing the behavior of implementations and their optimization, e.g., Internet ac-
cess creation. For this, we introduce the load generation and measurement frame-
work P4STA, benefiting from flexible software-based load generation and hardware-
assisted measuring. Utilizing programmable network switches, we achieve a nanosec-
ond time accuracy while generating test loads up to the available Ethernet link speed.
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K U R Z FA S S U N G

Eine der größten technischen Herausforderungen der aktuellen Zeit ist die Anbin-
dung von Milliarden Menschen weltweit an das Internet. Die Internet Access Edge
verbindet jeden Hausanschluss sowie Mobilfunkteilnehmer mit diesem gigantischen
Netzwerk und gewährleistet eine bestimmte Dienstgüte (Quality of Service (QoS)).
Das Erreichen angemessener QoS wird für Internetanbieter zunehmend schwieri-
ger, denn moderne Anwendungsfälle benötigen immer niedrigere Latenzzeiten und
gleichzeitig höheren Datendurchsatz. Daraus resultiert ein Flexibilisierungsdruck
auf die Netzwerkkomponenten an der Access Edge, um die schnelle Adaption von
neuen Technologien und Funktionalitäten, wie beispielsweise neuer anwendungs-
spezifischer Netzwerkprotokolle, zu gewährleisten. Um dies zu erreichen, sind flexi-
ble Programmierkonzepte wie Network Functions Virtualization (NFV) an der Internet
Access Edge nötig. Jedoch ist der Nachteil von NFV-basierten Netzwerkfunktionen
eine deutlich verschlechterte Ressourcen-Effizienz, da diese als Software-Komponen-
ten ausgeführt werden. In der Konsequenz bieten NFV-basierte Ansätze in der Regel
eine deutlich geringere QoS im Vergleich zu starren Hardware-Lösungen. Allerdings
kann durch den Einsatz von programmierbaren Hardware-Beschleunigern, auch be-
kannt als NFV Offloading, die QoS der Netzfunktion deutlich erhöht werden.

Diese Arbeit fokussiert sich auf solche programmierbaren Hardware-Beschleuniger
und deren Einfluss auf die erreichbare QoS und Flexibilität der Internet Access Edge.
Zuerst wird das Host-Bypassing-Konzept eingeführt, welches eine verbesserte Integra-
tion von Hardware-Beschleunigern in Computersysteme ermöglicht. Dieser Ansatz
hat unter anderem eine hohe Bedeutung für Hardware-Beschleuniger in mobilen
5G-Zugangsnetzwerken. Durch das Host-Bypassing Konzept wird der Hauptspeicher
eines Serversystems umgangen und somit eine direkte Verbindung zwischen dem
Beschleuniger und der Netzwerkkarte ermöglicht. Die präsentierten Evaluationser-
gebnisse zeigen einen erhöhten maximalen Datendurchsatz und eine deutlich verrin-
gerte Varianz der Latenz im Vergleich zu herkömmlichen Ansätzen.

Des Weiteren werden in dieser Arbeit verschiedene programmierbare Hardware-
technologien für die hardwarebeschleunigte Anbindung von Endgeräten an das In-
ternet untersucht, darunter drei P4-programmierbare Plattformen sowie Field Pro-
grammable Gate Arrays (FPGAs). Unsere Ergebnisse zeigen, dass alle untersuchten
Ansätze eine sehr gute QoS ermöglichen, alle funktionalen Anforderungen erfüllen
und somit für die Anwendung an der Internet Access Edge geeignet sind. In Er-
gänzung zu der analytischen Evaluation wird eine voll funktionsfähige User Plane
Function (UPF) präsentiert, welche in einem 5G-Standalone-Netzwerk mit gewöhnli-
chen Smartphones getestet wurde.

In einem weiteren Anwendungsfall von programmierbaren Hardware-Beschleuni-
gern wird die Nutzbarkeit von Hardware-beschleunigten Active Queue Management
(AQM)-Algorithmen untersucht und demonstriert, um höhere Datenraten und nied-
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rigere Latenzen an der Internet Access Edge zu erreichen. Diese Konzepte erweitern
die zuvor vorgestellten Ansätze für die Anbindung von Nutzern an das Internet mit-
tels programmierbarer Hardware. Konkret wird die Umsetzbarkeit des CoDel-AQM-
Algorithmus gezeigt und die Herausforderungen sowie Einschränkungen diskutiert,
die beim Einsatz von Hardware mit nur eingeschränkter Programmierbarkeit zu be-
rücksichtigen sind. Die Evaluationsergebnisse zeigen eine erhebliche Verbesserung
der Latenz bei gleichbleibendem Datendurchsatz, wenn der AQM-Algorithmus auf
Hardware eingesetzt wird.

Der letzte Beitrag dieser Arbeit betrachtet die Leistungsbewertung von Netzwerk-
funktionen. Dies ist von hoher Relevanz, um das Verhalten von Netzfunktionen zu
verstehen sowie für deren Optimierung. Hierfür wird das Lastgenerator- und Mess-
Framework P4STA vorgestellt, welches auf flexibler softwarebasierter Lastgenerie-
rung und hardwareunterstützter Zeitmessung basiert. Durch den Einsatz program-
mierbarer Netzwerk-Switches wird eine Zeitgenauigkeit im Nanosekundenbereich
erreicht, während gleichzeitig Datenraten bis zu der maximal verfügbaren Ethernet-
Verbindungsgeschwindigkeit erzeugt werden können.
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P R E V I O U S LY P U B L I S H E D M AT E R I A L

This thesis includes material previously published in scientific journals, magazines,
and conferences. Table 1 provides an overview of the previously published contribu-
tions and their mapping on the sections within this thesis. Even though this thesis
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Scientific work, publications, and results are typically the result of a joint team
effort. In this thesis, I address the acceleration of network functions at the Internet
access edge in collaboration with partners in academia and industry. Therefore, we
state the contributions of each co-author in previously published material. Whenever
no affiliation is provided, the person was a colleague at the Multimedia Communica-
tions Lab (KOM), TU Darmstadt, at the time of the respective work. Academic titles
are provided only for the first naming and correspond to the submission date of this
work. In this thesis, the “we” is used to emphasize the team effort.

In the following of this chapter, I discuss the previously published material in
detail, highlighting the contributions of myself and the co-authors. As a consequence,
these co-authors contributed indirectly to this thesis. However, my contribution to
every named publication is the main part. The ordering of this discussion follows
the structure of this thesis within Chapter 3 and Chapter 4. Note that the evaluation
results presented in Chapter 5 directly belong to a contribution in Chapter 3 and are
not discussed separately.

First, we presented the host bypassing approach in Section 3.1, allowing us to con-
nect hardware accelerators and Network Interface Cards (NICs) with each other to
improve the Quality of Service (QoS). In Section 5.1, we presented the corresponding
evaluation. As part of this contribution, three scientific publications were published
in conference proceedings: [102], [103], and [100]. In [102], the idea of host bypassing
was presented initially as a poster paper. Prof. Dr. Carsten Griwodz (Simula Research
Laboratory, Oslo, Norway) supported me in developing the concept and elaborated
the design decisions. M.Sc. Tim Burkert (student at TU Darmstadt) supported the
creation of the concept with a focus on the realization of the required Peripheral
Component Interconnect Express (PCIe) functionality on Field Programmable Gate
Arrays (FPGAs). Prof. Dr. Boris Koldehofe and Carsten Griwodz assisted me dur-
ing the writing process and provided valuable feedback. The publication [103] pre-
sented the entire host bypassing concept, a working prototype based on FPGAs, and
detailed evaluation results. Large parts of this prototype were developed by M.Sc.
Kadir Eryigit (student at TU Darmstadt) as part of his master’s thesis under my
supervision and assistance. During the thesis and while writing the scientific paper,
M.Sc. Jonas Markussen (Ph.D. student at Simula Research Laboratory, Oslo, Norway)
contributed deep knowledge and support for realizing PCIe-based peer-to-peer data
transfers. Dr.-Ing. Osama Abboud (Huawei Technologies, Munich, Germany) sup-
ported elaborating the use-case of 5G network function acceleration. The remaining
co-authors, Carsten Griwodz, Dr.-Ing. Rhaban Hark, and Prof. Dr.-Ing. Ralf Stein-
metz, assisted the writing process of the publication by repetitively reviewing the
manuscript and providing feedback. The evaluation of the FPGA-based prototype
was performed by myself alone. In [100], we extended the host bypassing approach
to Graphics Processing Units (GPUs), a more commodity hardware accelerator kind
than FPGAs. As part of a student research lab, Leonard Anderweit (student at TU
Darmstadt) migrated the existing program code to GPUs under my supervision. I
developed the general concept and provided this to the student. Jonas Markussen
and Carsten Griwodz provided their knowledge on GPU architectures and the inte-
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gration into the PCIe ecosystem. M.Ed. Benjamin Becker, Osama Abboud, and Dr.-
Ing. Tobias Meuser assisted the writing process of the publication by repetitively
reviewing the manuscript and providing feedback. The evaluation of the GPU-based
prototype was performed by myself without assistance.

In Section 3.2, we focused on the capabilities of programmable hardware for Inter-
net service creation and proposed a design and implementation for residential and
mobile subscriber handling. The evaluation of these concepts and prototypes was
presented in Section 5.2. These works were performed in an extensive exchange with
Deutsche Telekom as part of the project “Dynamische Netze 7-10”. As part of this
contribution, three scientific publications in conference proceedings and one journal
article were published: [106], [107],[108], and [105].

In [106], the termination of residential Internet subscribers on P4-programmable
hardware was discussed, and we presented three prototypes, including evaluation
results. My co-authors Dr.-Ing. Leonhard Nobach (Deutsche Telekom Technik GmbH,
Darmstadt, Germany) and Dr.-Ing. Jeremias Blendin (Barefoot Networks, Santa Clara,
USA) and I contributed equally to this work. Networks, Santa Clara, USA) and I con-
tributed equally to this work. Leonard Nobach was responsible for analyzing and im-
plementing the prototype on the Netronome SmartNIC platform. Jeremias Blendin
performed the study on the capabilities of the Intel Tofino platform and built the
initial prototype. I developed the NetFPGA-based Internet subscriber termination,
the third prototype in this work. Dr. rer. nat. Hans-Joerg Kolbe (Deutsche Telekom
Technik GmbH, Darmstadt, Germany) and Dipl.-Soz. Georg Schyguda (Deutsche
Telekom Technik GmbH, Darmstadt, Germany) provided their detailed knowledge
on Internet sevice creation from an operator perspective. M.Sc. Vladimir Gurevich
(Barefoot Networks, Santa Clara, USA) assisted this research project with detailed
knowledge of the capabilities of the P4-programmable Tofino platform and the P4

programming language. The evaluation, scientific preparation of the results, and the
writing of this paper were performed mainly by myself. Boris Koldehofe and Ralf
Steinmetz supervised me during this research project and supported the scientific
course of action. All co-authors revised the paper manuscript and provided feed-
back.

The journal publication [107] is an extension of [106], and the initial contributors
and their contributions remain unchanged. In addition to the initial publication, we
proposed a concept and prototype for realizing QoS functionality in a co-located QoS
chip implemented with FPGAs. The concept was created in discussions between
Jeremias Blendin, Leonhard Nobach, and myself. The realization of the extended
prototype was done solely by myself. The team of this follow-up research collabora-
tion was strengthened by Dipl.-Ing. (FH) Andreas Zimber (Deutsche Telekom Tech-
nik GmbH, Darmstadt, Germany), Dipl.-Ing. (FH) Wilfried Maas (Deutsche Telekom
Technik GmbH, Darmstadt, Germany), and Rhaban Hark. Andreas Zimber and Wil-
fried Maas assisted in this work while defining the required QoS-functionality at the
Internet access edge. Wilfried Maas passed away during this work. All co-authors
and I thank him for a great time together and keep him in memory as a great col-
league and friend. Rhaban Hark, Boris Koldehofe, and Ralf Steinmetz supervised this
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research project and scientific positioning. The article was written mainly by myself;
all co-authors (excepting Wilfried Maas) assisted this writing process by providing
feedback on the manuscript.

In the subsequent poster paper [108], we elaborated on the internals of the FPGA-
bases QoS co-processor. The presented FPGA design was implemented solely by
myself. Leonhard Nobach and Hans-Joerg Kolbe contributed the requirements and
perspective of a large-scale Internet service provider. During this research project, Dr.-
Ing. Tobias Meuser and Ralf Steinmetz supported and advised me. The article was
written by myself. Tobias Meuser and Hans-Joerg Kolbe provided valuable feedback
on the manuscript, which is incorporated in the final version of the poster paper.

The last publication related to Section 3.2 focuses on the subscriber termination in
5G mobile access networks [105]. This publication presented and evaluated the im-
plementation of the 5G User Plane Function (UPF) with P4-programmable hardware.
This implementation and evaluation results are part of this thesis. Further, we in-
vestigated two other UPF realizations from related work in this paper. These results
are part of this thesis as well. The design and implementation of the P4-based UPF
were done solely by myself. Tobias Meuser and I investigated several open-source-
available Data Plane Development Kit (DPDK)-based UPF implementations and set
them up for evaluation. The evaluation of the kernel-space UPF implementation was
done by myself. Note that this paper contains additional material, not included di-
rectly in this thesis. The paper was written mainly by Ralf Kundel and partially by
Tobias Meuser. M.Sc. Timo Koppe (Business Informatics, TU Darmstadt, Germany)
provided feedback on the manuscript. Ralf Steinmetz supervised me scientifically
during this work. All authors provided feedback on the paper manuscript.

In Section 3.3, we discussed how Active Queue Management (AQM) algorithms
could be realized in programmable hardware. We presented the implementation of
an existing algorithm, named CoDel, on FPGAs and P4-programmable switches. The
evaluations belonging to this contribution are presented in Section 5.3. As part of
this section, the results were partially published before:[101], and [109].

The first publication on realizing the CoDel algorithm with P4-programmable
hardware [101] focused on the language-specific limitations. The initial idea of this
work was the result of discussions between Jeremias Blendin and me. The prototyp-
ical implementation of the developed concept was realized only by myself. In later
discussions, Tobias Viernickel provided additional feedback and assisted in refining
the concept. During the whole time, Boris Koldehofe and Ralf Steinmetz supervised
me with a focus on a scientific working style. The paper was written by myself, and
all co-authors reviewed the sections of the manuscript several times.

In a subsequent work [109], we applied the initial concept to real P4-programmable
hardware, discussed the challenges, and presented detailed evaluation results. The
two implementations were created solely by me. Prof. Dr.-Ing. Amr Rizk (Univer-
sity of Duisburg-Essen, Germany) and I developed the evaluation metrics. Jeremias
Blendin assisted me with hardware-specific details on the utilized P4-Tofino plat-
form. Boris Koldehofe, Rhaban Hark, and Ralf Steinmetz provided me feedback
while defining the research challenge of this work. The paper was written by myself,
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and all co-authors assisted me in revising the manuscript. In the already discussed
poster paper on packet queueing in FPGAs [108], we named the possibility of real-
izing AQM in FPGAs at the access edge. However, this previously published paper
contains no details on the realization of AQM as presented in this work.

In Chapter 4, we introduced the P4STA load generation and measurement frame-
work. The initial idea of this work was created by myself. B.A. Fridolin Siegmund
(student at TU Darmstadt) implemented the initial prototype in his Bachelor thesis
under my supervision. Besides the idea definition, I provided detailed feedback and
ideas to him and assisted during the implementation. After his successful gradua-
tion, he continued this work as a student assistant under my guidance. The initial
results were published as a demo paper [113]. The writing of this demo paper was
performed by myself under the supervision of Boris Koldehofe. The contribution
of Fridolin Siegmund was on the implementation part. All evaluation results were
generated by myself.

In the following publication [111], we presented a comprehensive explanation of
the underlying concepts and detailed evaluation results. This paper was written by
myself under the supervision of Amr Rizk and Boris Koldehofe. They assisted me
while representing the results. Jeremias Blendin assisted this work with a focus on
the P4-programmable data plane and its limitations. All evaluation results were gen-
erated by myself. All co-authors revised the submitted manuscript and provided
valuable input and feedback. In a second demonstration paper [110], we highlighted
the advances of hardware-based rate-limiting for networking experiments. In this
work, Amr Rizk and I elaborated a new visualization approach to depict the bursti-
ness of a packet sender, building upon the P4STA framework. This demo paper was
written by myself. Further, I conducted all measurement results.

The last previously published article [112] related to Chapter 4 highlights the pos-
sibilities of programmable hardware for network function testing and monitoring
in general. In this article, Amr Rizk and I created an additional method for packet
reordering detection. Fridolin Siegmund assisted in presenting the P4STA workflow
in this article. The remaining parts of this article were contributed by myself under
the supervision of Rhaban Hark and Boris Koldehofe.

Besides these four scientific publications, one Bachelor Thesis relates to this work.
B.Sc. Moritz Jordan (student at TU Darmstadt) investigated the feasibility of the
P4STA concept on a second P4-programmable hardware platform [88]. Under my
supervision and guidance, he migrated the existing code to the Netronome P4-Smart-
NIC platform and investigated the newly arisen limitations. This implementation
was used in this thesis to generate evaluation results, discussed in Section 4.3.1. Note
that all results are generated by myself.

As a supplement to this thesis, we provided additional material in the Appendix A.
This material was partially published before.

Appendix A.2 contains material that was published before in [105]. Section two of
this paper describes a laboratory setup of a 5G standalone network realized with the
open-source free5gc core. This setup was improved and extended since the date of
publication; however, the key contributions remain unchanged. Rhaban Hark and I
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contributed to this specific section of the paper. I investigated the existing software
components, identified software bugs, and eliminated them. As a result, an end-to-
end working 5G network could be started. I wrote this section of this paper with
the support of Rhaban Hark. Rhaban Hark provided feedback and contributed ideas
on Linux-based packet routing. The remaining parts of this paper were discussed
before.

In Appendix A.3, we presented traffic characteristics of real residential Internet
usage. These results were created in collaboration with Deutsche Telekom Technik
GmbH and published before: [115]. I created the initial idea for this paper due to the
lack of up-to-date traffic statistics for buffer sizing at the access edge. Dr. rer. nat. Jo-
erg Wallerich (Deutsche Telekom Technik GmbH, Darmstadt, Germany) provided
the knowledge and possibility to perform a measurement at the access edge of
Deutsche Telekom in the fall 2019. The captured raw data sets were analyzed by
myself. Further, I identified meaningful representations of the results in discussions
with Wilfried Maas and Leonhard Nobach. Boris Koldehofe and Ralf Steinmetz su-
pervised me during this process, including critically questioning the results and the
derived findings. The paper was written solely by myself, and all co-authors con-
tributed feedback that improved the final version.

The aforementioned publications were all reviewed by many reviewers as part of
the peer-reviewing processes. These anonymous reviewers provided valuable feed-
back, which I incorporated in the final versions of the papers and articles. Thus, the
reviewers contributed indirectly to this thesis. I would like to take this opportunity
to thank all reviewers once again for this.
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1
I N T R O D U C T I O N

During the last decades, digital communication networks have become the basis of
many applications in everyday life. This digital transformation process will most
likely continue in the future, as supposedly additional services will be built upon
digital computer networks, such as autonomous driving, smart manufacturing, or
medical care [9, 75, 191]. The challenges during the COVID pandemic and the accom-
panying rise of remote work have shown the importance of reliable and performant
communication networks. Connecting billions of people worldwide via digital video
presence requires low latency and high throughput connectivity.

But even before the COVID-19 pandemic, the Internet has developed into a gigan-
tic network that continues to grow. In 2021, more than five billion people, around
two-thirds of the whole mankind, are connected to this huge network with even
more devices. Besides the number of users, the bandwidth consumption has in-
creased tremendously. Between 1983 and 2019, the speed of Internet access lines,
which means vDSL connections or equivalents, has a constant growth rate of 50%
per year [140]. The increasing available bandwidth and decreasing latency resulted
in many new applications upon the Internet in the past. For example, 360◦ video
streaming or multi-player computer games became possible [44, 200].

Due to the increasing application requirements, providing the underlying network
infrastructure is still challenging. Besides the steadily increasing network through-
put, additional metrics obtained importance in the last years. For example, high
availability and low latency are required in industrial automation networks [97].
Moreover, many end-user applications require not only high bandwidth but also
low latency simultaneously [166]. To fulfill the novel demands of current and future
applications, computer networks must provide high functional flexibility while hav-
ing a satisfactory performance, characterized in general by a good Quality of Service
(QoS). In this context, flexibility includes the ability to launch novel functionality,
such as protocols or mechanisms, by reconfiguring the existing network hardware.

Furthermore, this large-scale connectivity in the Internet consumes a lot of energy.
According to several studies, e.g., the article presented by Jones in 2018 [87], the
worldwide energy consumption of the Internet is about 10% of the total electrical
energy consumption and will rise further in the future. However, the author men-
tioned that by novel technologies, such as new processor architectures, the energy
consumption of data centers can be reduced. In the same way, other technological
advances can also assist in reducing the energy consumption of computer networks.

Consequently, it is of tremendous importance to achieve the required functional
flexibility and performance in an energy-efficient manner. There is a huge necessity
for research on the underlying hardware and corresponding utilization concepts,
which can strongly contribute to achieving the aforementioned performance goals.

1



2 introduction

1.1 motivation for network functions acceleration

The constantly growing and varying requirements on computer networks require
high flexibility and increasing performance. Software Defined Networking (SDN)
and Network Functions Virtualization (NFV) propose a toolset of concepts provid-
ing increased programmability and execution flexibility to address this demand. The
SDN concept introduces an improved configuration interface for network devices by
exposing an open configuration API [68, 129]. SDN improves the flexibility in com-
puter networks by disaggregating the hardware switches, defined as the data plane,
from the network control plane. In extension to this, NFV enables the programming
and the flexible execution of network functions by deploying the required function-
ality as a software component in universal compute nodes. These compute nodes are
off-the-shelf data center servers and have good network connectivity [34].

While conventional networking hardware and its network functions are built upon
Application Specific Integrated Circuits (ASICs), providing very high performance
and good energy efficiency, they suffer from limited flexibility and slow innovation
speed [58].

In contrast, network functionality built upon the NFV approach, running on com-
modity off-the-shelf hardware, has significantly higher flexibility; however, the achiev-
able performance per device is a magnitude lower than for conventional ASIC-based
solutions [171, 194]. This results in a large number of stacked NFV-servers providing
the same amount of network packet processing as a single conventional ASIC-based
networking device. Further, this approach implies a strongly lowered throughput
while having the same number of network devices.

Especially in Internet Service Provider (ISP) access networks, high flexibility and
performance are required at the same time to fulfill the needs of millions of cus-
tomers. Figure 1.1 depicts the main service creation scenarios. Most residential sub-
scribers are connected via a Very High-Speed Digital Subscriber Line (vDSL) connec-
tion and a Multi-Service Access Node (MSAN) as an intermediate agent to the BNG.
The Broadband Network Gateway (BNG) is the termination node for thousands of
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Figure 1.1: Service creation for 1) residential access, 2) mobile access, and 3) industrial
campus networks upon softwarized network infrastructure.
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parallel subscriber connections. Analogous to the BNG, the User Plane Function
(UPF) is responsible for terminating all subscriber sessions in mobile access networks.
Both network functions, the BNG and UPF, process each packet transmitted to or
from the subscriber. Further, they suffer under the tradeoff between flexibility and
performance. Assuming novel access technologies such as hybrid residential access,
providing dual connectivity via vDSL and radio simultaneously, or network slicing
for private networks, the demand for high performant and flexible network functions
is even higher. Similarly, network functions in Radio Access Networks (RANs) have
very high performance and latency requirements for en-/decoding each packet sent
over the radio interface, especially in disaggregated OpenRAN environments.

To overcome the limitations of either inflexible ASIC-based solutions or functional-
ity provided by less efficient NFV software appliances, programmable hardware con-
stitutes a reasonable compromise, combining high flexibility and good performance.
For example, Field Programmable Gate Arrays (FPGAs), Graphics Processing Units
(GPUs), or P4-programmable ASICs can be utilized [26].

In this work, we investigate prospects of programmable hardware to improve the
flexibility and performance of network functions in Internet access networks simul-
taneously.

1.2 research challenges

The aforementioned motivation imposes several challenges on the design, implemen-
tation, and validation of network functions. As part of this work, we identify and
address two key challenges in the domain of ISP access networks:

Challenge: Network functions at the Internet access edge must provide high flexibility and
functionality while providing high performance and low innovation cycle times.

Implementing network functions as a fixed-function ASIC provides, as known today,
the best achievable performance. However, these fixed-function chips have the big
drawback of slow innovation cycles and immense development costs. For example,
the previously introduced UPF and BNG in Internet access networks must provide
specific functionality and high throughput at the same time. In this context, introduc-
ing new protocols and mechanisms, e.g., as a new functionality of the latest mobile
radio standard 5G (3GPP release 15)[2], leads Internet service providers to either inte-
grate the new functionality into the current hardware or renew the entire hardware.
While software-based solutions allow updating the current hardware flexibly, they
cannot satisfy the heavy demand for good performance. Therefore, a huge need for
flexibly programmable platforms with good performance exists. Consequently, novel
concepts to benefit from programmable hardware must be established to simultane-
ously achieve high flexibility and good deterministic performance in Internet access
network functions.
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Challenge: The validation of high-performance network functions is vital, yet precisely eval-
uating their functional and performance characteristics under load is challenging.

As addressed by the first research challenge, the demand for high-performance net-
work functions requires QoS performance identifiers. However, the validation and
verification of high-performance network functions demands measurement equip-
ment being able to provide at least the same performance as the network function
under test. As the performance level of the newest networking hardware is at the
technological limit of chip manufacturing technology, meeting this performance by
the test equipment is challenging. On the one hand, building special-purpose test-
ing hardware would cause an immense effort and is not economical. On the other
hand, inferior measurement equipment would not allow a high testing accuracy, i.e.,
a nanosecond time accuracy at 100 Gbit/s throughput at potentially small packet
sizes down to 64 bytes. In summary, no solution that provides high flexibility and
accuracy for benchmarking network functions with a high performance exists.

1.3 research goals and contributions

In the following, we present two research goals derived from the challenges above.
As an implication of the first research challenge, the first research goal addresses how
to put high-performance network functions into practice. Analogous, the second goal
addresses the second challenge and focuses on validating such high-performance
network functions. Each goal is made more specific by research questions answered
within this work.

Research Goal 1: Acceleration of network functions to meet the desired high-performance
requirements of Internet access networks while providing flexibility by adaptability.

This goal can be achieved by addressing the following two research questions:

RQ1.1: How to design, implement, and integrate hardware accelerators, fulfilling the pos-
tulated QoS requirements, in networking edge environments?

The integration into the data path is an integral part of hardware-accelerated net-
work functions. In access networks, this path forwards all traffic to and from the
subscriber, wherefore, a high performance, including high throughput and constant
low latency, is required. However, some accelerator technologies, such as GPUs and
FPGAs, do not offer direct network connectivity and must be integrated via the sys-
tem bus of a host system, causing additional overhead. In addition to the integration,
the design and implementation of a network function within a hardware accelerator
can strongly affect its performance and is therefore of tremendous importance.

Contributions: To address this research question, we first introduce and inves-
tigate the host bypassing concept for a better data plane integration of FPGAs and
GPUs, not providing any direct network interface, in 5G-RAN functions [100, 102,
103]. Further, we focus on the implementation of residential and mobile Internet
subscriber termination in this context [105, 106]. In this context, we investigate the



1.3 research goals and contributions 5

capability of integrating FPGAs as a QoS co-processor to programmable switches in
Internet access networks [107].

Last, we focus on the expressiveness and capabilities of the P4 language to real-
ize Active Queue Management (AQM), on the example of the CoDel algorithm [101,
109].

RQ1.2: Which hardware constraints must be considered for selecting programmable off-
the-shelf hardware technologies and algorithms for offloading network functions?

Utilizing programmable hardware for offloading network functions implies sev-
eral challenges. Due to multiple hardware constraints, the straightforward transfer
of existing algorithms on hardware from a software reference implementation is not
possible. For example, current programmable networking switches allow only non-
iterative algorithms and basic arithmetic operations. In contrast to programmable
switches, FPGAs allow iterative algorithms but offer a lower maximum bandwidth.
Therefore, it is necessary to evaluate different programmable hardware platforms
regarding their restrictions and their matching with the QoS requirements of the
desired network function. Due to the different characteristics of different network
functions, this consideration must be performed again for each application use case.
Different network applications may benefit from other hardware platforms; thus, no
single platform fits best for all applications.

Contributions: To address this research question, we investigate multiple pro-
grammable hardware platforms in this work for their application-specific eligibility.
For that, one focus is on the expressiveness and capabilities of the domain-specific
language P4 and corresponding hardware. In total, we investigate Graphics Process-
ing Units (GPUs), Field Programmable Gate Arrays (FPGAs), and three different
P4-programmable hardware platforms for various applications and scenarios of In-
ternet service creation.

Specifically, we investigate the capabilities and performance characteristics of these
three P4 platforms and FPGAs for the termination of Internet subscribers [105–108].
Further, we investigate the functional and performance differences between GPUs
and FPGAs integrated into the data plane of mobile access networks [100, 103].

Research Goal 2: Validation of high-performance network functions.

We address the following research question in this thesis to achieve the second re-
search goal:

RQ2: How to accomplish the high measurement accuracy requirements with programmable
hardware for flexible network function testing?

High-accuracy measurements are crucial to validate the correct behavior of net-
work functions with the highest performance. While hardware-based measurement
approaches suffer under limited flexibility, software approaches do not provide the
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required accuracy. Analogous to RQ1.2, the choice of measurement hardware deter-
mines the maximum possible time accuracy and throughput.

Contributions: To address this research question, we investigate the conjunction
of both concepts, software- and hardware-based network function benchmarking, to
benefit from both. Based on our presented framework, named P4STA, we investigate
the advantages of a disaggregated testing environment [111, 112]. In this work, we
investigate two hardware platforms and varying internal configurations, such as the
best location for retrieving timestamps and performing loss detection, to determine
the maximum achievable performance [110, 113].

Scope Differentiation

In this thesis, we focus on the acceleration of network functions. The approaches pre-
sented in this thesis will aim primarily at improving the flexibility and performance
at the Internet access edge. At the same time, these approaches commonly enhance
the energy efficiency compared to state-of-the-art methods. Nevertheless, this is only
a side effect of our work and, thus, not analyzed in detail. Further, the introduction
of novel concepts for describing and implementing network functions imposes many
new challenges for reliability and security, which are also not part of this thesis. Last,
we do not focus on the management and orchestration of hardware accelerators.

1.4 structure of the thesis

The outline of this thesis is as follows: First, in Chapter 2, the background and re-
lated work are discussed. In Chapter 3, we present the contributions belonging to
the first research goal, acceleration network functions to fulfill the required QoS
performance identifiers. To validate these contributions, we introduce the novel mea-
surement methodology and framework P4STA in Chapter 4, addressing the second
research goal. In the same chapter, we validate the correctness of this introduced
measurement framework.

In the evaluation of this thesis, presented in Chapter 5, we evaluate the contribu-
tions of network function acceleration in the subsequent evaluation sections. Finally,
in Chapter 6, the thesis is concluded with a summary of the main contributions, and
we provide an outlook on potential future work.



2
B A C K G R O U N D A N D S TAT E - O F - T H E - A RT

In this chapter, we provide background information as well as prior work in the
field of this thesis. First, in Section 2.1, we introduce the general concepts of network
softwarization. Section 2.2 gives an overview of the access technologies in residential
and mobile Internet service creation. Following this, we summarize existing hard-
ware acceleration technologies for computer networks in Section 2.3, which can be
applied in Internet access networks. One focus of this work is on algorithms and
mechanisms for Queueing and Scheduling at the Internet access edge. The belong-
ing background and related work are presented in Section 2.4. Last, in Section 2.5,
state-of-the-art approaches for network function benchmarking are presented.

2.1 network softwarization

Network softwarization is the primary enabler for rapid innovation in computer
networks and includes the approaches Software Defined Networking (SDN) and
Network Functions Virtualization (NFV).

Scott Shenker, one of the network softwarization pioneers, motivated SDN as fol-
lows: “Think of it as a general language or an instruction set that lets me write a con-
trol program for the network rather than having to rewrite all of code on each individual
router” [130].

The Open Networking Foundation, a non-profit organization that standardizes
multiple open network APIs, defines SDN as “the physical separation of the network con-
trol plane from the forwarding plane, [...] where a control plane controls several devices” [54].
Specifically, SDN approaches provide an open Application Programming Interface
(API) to configure capable network devices by a logically separated controller [52,
68, 99]. The data plane is defined as the set of devices responsible for forwarding
network packets, such as all network switches. All functionality not responsible for
packet forwarding, e.g., routing engines, belongs to the control plane.

The most prominent implementation of such an API between data and control
plane is OpenFlow, which was introduced in 2008 and supported by many commer-
cial network switches [129]. An SDN controller holds a centralized global view of the
network as a basis for its configuration decisions. Compared to a local and incom-
plete network view within traditional switches, better decisions can be performed,
e.g., when routing of network flows. Further, the SDN controller can provide a second
API to SDN Apps [157, 189]. This API allows disaggregating control functionality,
whereas the controller offers only basic functionalities for event handling, monitor-
ing, and flow rule installation. All further functionality, e.g., routing, DDoS detection,
or network analytics, are executed as Apps. Consequently, the controller and all net-
work Apps build the control plane. The Open Network Operating System, maintained
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SDN Controller
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east-/west-
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...
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Figure 2.1: Schematic structure of SDN-based networks.

by the Open Networking Foundation, is an open-source-available controller provid-
ing the introduced interfaces to network switches and SDN Apps [19].

As shown in Figure 2.1, the interface between network switches and the con-
troller is named southbound; the northbound interface describes the connection to the
SDN Apps [11]. The east-/west-bound API allows interconnecting multiple SDN
controllers for load balancing and reliability reasons. Note that multiple physical
controller instances can form a single logical SDN controller with the complete net-
work view.

However, the data plane functionality of the network switches remains unchanged.
The internal behavior of SDN-capable data plane devices is typically realized by a
fixed-function Application Specific Integrated Circuit (ASIC). To summarize, the flex-
ibility in SDN is increased by opening up the configuration interface and decoupling
and centralizing the network’s control logic.

To overcome the limitations of fixed data planes, NFV was introduced in 2012 [34].
NFV is a concept for realizing data plane functionality as a software component
running in commodity servers. By utilizing a server with a powerful Central Process-
ing Unit (CPU) and a high-performance Network Interface Card (NIC), almost any
network function can be realized flexibly, e.g., for IoT applications or within mobile
access networks [7, 74].

The Open vSwitch is the most prominent implementation of an SDN-capable switch
realized on commodity servers by utilizing NFV concepts [155]. This approach is al-
ready highly optimized and can achieve much higher data and packet rates than
conventional Linux-based systems. The achievable throughput is mainly limited by
the Dynamic Random Access Memory (DRAM) bandwidth of the system, i.e., DDR3

or DDR4 memory, to a few hundreds of Gbit/s [51]. For small average packet sizes,
the packets rate denoted typically in packets per second (pps), is the limiting factor
as for each packet a forwarding decision must be performed. However, the perfor-
mance is at least a magnitude lower compared to ASIC-based networking hardware
providing constant throughput even at small packet sizes [171].

To summarize, SDN and NFV provide concepts for describing networking func-
tionality in a unified way. However, conventional SDN approaches still suffer under
limited data plane functionality, and NFV does not provide similar performance.
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2.2 internet service creation

The main task of an Internet Service Provider (ISP) is the establishment and mainte-
nance of connectivity for its subscribers. The network infrastructure of an ISP can be
divided into multiple parts, as shown in Figure 2.2.

The backbone network spans over a large geographical area, i.e., a nationwide net-
work. Note that this network is sometimes also referred to as a core network; however,
due to naming conflicts with the 5G core we refer to it as the backbone network only.
Many local access networks provide connectivity to this backbone via wired residen-
tial and wireless mobile access technologies. Betker et al. presented in 2014 a model
of the network topology of a large ISP in Germany [20]. According to them, the core
network consists of 9 core locations, each having two redundant core routers. Further,
900 residential access network nodes are connected to these 9 locations in redundant
rings. Similarly, in the case of mobile access, an access network provides connectivity
to the backbone network. The access networks of mobile and residential access can
currently be considered to be independent but might converge in the future [188].

Besides subscribers, content providers, i.e., data centers, are connected to the net-
work of an ISP. Large content providers typically have a worldwide content provi-
sioning infrastructure being present in most operator networks [24]. However, some
content, e.g., the webserver of a local sports club, might be present only in a single
ISP network. For that, ISP networks can be interconnected with each other at peering
points to make the resources in the counter-side network available.

Definition

The Access Edge describes all components and functionality required to pro-
vide Internet access for subscribers, excluding the subscriber equipment.

In the following subsections, we will describe in detail the structure of residential
and mobile access networks, the access edge of the Internet.

...
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Figure 2.2: Overall Internet architecture consisting of multiple ISP including mobile and
residential access. Figure derived from: [115].
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2.2.1 Residential Access Networks

Residential access networks connect houses, apartments, and companies to the Inter-
net or a private network. Due to the evolution of access networks over many years,
multiple access technologies exist. Figure 2.3 presents common access technologies
deployed in nowadays networks.

The Broadband Network Gateway (BNG) is responsible for terminating the sub-
scriber lines of all attached Residential Gateways (RGs) and routing their traffic ac-
cordingly [77]. In older literature and specifications, the device realizing BNG func-
tionality is named Broadband Remote Access Server (BRAS) [170]. In the following
of this work, we use only the term BNG.

The remaining access network does not perform any function on the network layer;
it is only responsible for delivering data packets from the subscribers to the BNG and
vice versa. The currently most common deployed technology is Very High-Speed
Digital Subscriber Line (vDSL), connecting a subscriber via a copper wire to a Multi-
Service Access Node (MSAN) [39, 43]. Starting from the MSAN, all subscriber data
are sent in aggregated fiber-optical links to the BNG. This access technology is called
Fiber to the Curb (FTTC).

While FTTC does not provide end-to-end connectivity over fiber-optical links, the
more recent technology Fiber to the Home (FTTH) technology offers a high-speed
fiber-optical connection between RG and BNG. Besides point-to-point connections, a
passive optical network can connect n RGs to a single Optical Line Terminal (OLT)
by optically splitting up the fiber as a shared, time-multiplexed medium [118]. This
allows cost improvements as the OLT must provide fewer ports, and the available
physical bandwidth of a fiber-optical cable seems to be no limitation at the moment
and in the near future.

As the deployment of FTTH implies building activities in every building and apart-
ment, it is not easy to upgrade existing houses. Therefore, Fiber to the Building
(FTTB) was introduced as a technological compromise. A fiber-optical cable is in-
stalled into the basement of a building, and only the last meters to the RG are re-
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Figure 2.3: Exemplary residential Internet access network topology.
Figure derived from: [107].
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alized with conventional copper-based technology. Due to the shorter cable length,
the signal-to-noise ratio is better, and subscribers can achieve higher data rates than
with vDSL. This technology is named G.fast [185].

Besides these three technologies, other access methods exist and vary between
countries. To summarize, a BNG must serve subscribers being connected by multiple
access network technologies concurrently.

Functional Requirements of BNGs

In the following, we describe the functional data plane requirements of BNG sys-
tems. Note that these requirements vary from country to country and from operator
to operator. Further, they provide room for interpretation, wherefore, even two oper-
ators in a country can have a different configuration of their network [180]. Based on
existing literature and our previous work, we introduce the essential functionality of
a BNG [6, 39, 107]:

Tunneling: For each subscriber, a tunnel between RG and BNG is established,
e.g., by the use of the L2-Tunneling Protocol (L2TP), Point-to-Point Protocol over
Ethernet (PPPoE) [32] or any other appropriate protocol. By that, subscribers are
isolated from each other, and per-subscriber accounting can be performed. In the
following of this work, we focus on PPPoE only, but the presented concepts can
be generalized. The MSAN or OLT in Figure 2.3 does not influence this tunnel as
they only pass through all packets while converting from one physical medium to
another. In total, for a single BNG 5, 000 to 35, 000 subscribers can be expected [162].
The maximum bandwidth of a BNG depends on its deployment scenario; however it
can be assumed to be in the range of hundreds of Gbit/s. Last, an IPv4 (and an IPv6)
address must be assigned to the RG of each subscriber.

Routing: The BNG must forward all packets to and from the subscriber. For that,
a certain set of routes must be known and continuously synchronized with the back-
bone network. Further, the packet size may exceed the Maximum Transmission Unit
(MTU) of the access network due to the additional PPPoE header, and either frag-
mentation or signaling is required [49]. In addition, the BNG decrements the time to
live field of forwarded packets. If this field reaches zero, the sender must be notified.
Last, for IPTV multicast services, the BNG must manage the multicast groups and
duplicate all packets accordingly.

QoS and traffic shaping: A subscriber is allowed to utilize the access network
up to a specific bandwidth, typically named in his Internet contract. To ensure this
bandwidth is not exceeded but to allow the subscriber to utilize its bandwidth fully,
queueing must be performed in the BNG for traffic towards the subscriber (down-
stream). For upstream traffic, i.e., packets sent from the subscriber to the Internet, a
policing on the maximum rate is sufficient as the RG performs the queueing. The
details on needs, queue dimensioning, and algorithms are presented later in Sec-
tion 2.4.

Each subscriber can have different services belonging to numerous Quality of Ser-
vice (QoS) classes, e.g., network management, Voice over IP (VoIP), multicast IPTV,
and best-effort traffic. Packets belonging to a higher priority class must be able to
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overtake already enqueued packets with a lower priority. Consequently, a dedicated
queue is required for all QoS classes of each subscriber. Assuming 35, 000 subscribers
and 4 QoS classes, 140, 000 queues are needed. The configuration of the queues and
schedulers offers a lot of freedom, leading to a different setup for each ISP, all having
their pros and cons [180].

In order to achieve the often requested accounting accuracy, there must be zero
packet loss between BNG and RG. Due to over-subscription, packet loss can occur
within the access network. For example, an MSAN provides Internet connectivity to
400 subscribers, each having a 100Mbit/s access line connected to the BNG only by a
single 10Gbit/s cable. However, it is very unlikely that all subscribers use their access
line thoroughly at the same time. Nevertheless, this network node is over-subscribed
by a factor of 4, and therefore packet loss can occur. To avoid this, in addition to
normal QoS, the BNG must realize a Hierarchical Quality of Service (HQoS), which
is aware of the hierarchical access network topology.

Softwarization of BNG Functionality

Realizing BNG functionality with SDN and NFV concepts has been discussed in the
literature before.

Bifulco et al. presented a software-based architecture for BNG functionality follow-
ing the NFV concepts in 2013 [21]. In contrast to conventional BNG systems, software
realizations provide much higher flexibility as new instances can be simply started
and stopped to serve the current bandwidth needs [86]. Further, subscriber sessions
can be migrated at runtime from one instance to another to allow highly flexible
scaling but also to handle a failover in case of a crashing software instance [48].
Subsequent works built upon this and presented the idea of considering a BNG as
a usual data center [154]. However, these software-based approaches strongly suffer
under limited bandwidth compared to ASIC-based solutions; e.g., Bifulco et al. named
“up to 10Gbit/s.”

Until now, we considered the BNG as a single system. However, it can be disaggre-
gated into a control plane and data plane, separated by a well-defined API, following
the key idea of SDN [77]. By that, the complexity is decreased, and innovation within
one of these components is simplified. Utilizing SDN protocols for managing access
network nodes, e.g., the MSAN, has been investigated in literature as well [93].

Nobach et al. investigated the realization of BNG-functionality with OpenFlow-
capable SDN switches. However, they figured out that the OpenFlow protocol does
not support all required functionality, mainly the processing of PPPoE packet head-
ers. Further, even if an extension of the protocol would allow the description of the
needed functionality, the networking hardware still does not implement these fea-
tures, a general limitation of pure SDN approaches.
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2.2.2 5G Mobile Access Networks

Access networks for mobile Internet service creation are specified by the 3rd Gener-
ation Partnership Project (3GPP). In this work, we focus on the 5G standalone stan-
dard only, specified in Release 15 of the 3GPP [2]. Previous 5G standards of the 3GPP
specify “5G non-standalone” only. The non-standalone standard builds upon a 4G-
Core and two radio cells for connecting the User Equipment (UE) with the network.
Building upon 4G technology only, the first cell is used for all control functionality,
including dial-in and data transmission. This cell is called “anchor cell.” The signal-
ing methods are very similar to conventional 4G networks. The second cell, building
upon 5G technology, is used as a second data channel to the UE in order to increase
the total bandwidth. This 5G radio channel is activated only if needed to reduce the
UE energy consumption. As this works focus on data plane functionality within the
core network, we only focus on the standalone architecture.

Figure 2.4 depicts the end-to-end connectivity of UEs in 5G standalone access
networks. Generally, the access network can be divided into two functional parts:
the Radio Access Network (RAN) and the 5G core. Further, ISPs deploy a Network
Address Translation (NAT) between the mobile access network and their backbone
network to hide the public IP addresses of their subscribers for security reasons but
also to save scarce public IPv4 addresses [124]. Following the SDN terminology, the
architecture can be divided into a data plane (indicated by thick lines) and a control
plane (indicated by thin lines).
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Figure 2.4: Disaggregated 5G standalone architecture according to [3].

5G Radio Access Network

The RAN functionality can be further disaggregated into multiple network func-
tions [123]. Following the O-RAN terminology, we present the RAN as a composition
of the Radio Unit (RU), Distributed Unit (DU), and Centralized Unit (CU) disaggre-
gated by a “7.2-split” [10, 60]. Further, an SDN controller, called RAN Intelligent
Controller (RIC), and SDN Apps can (but most not be) deployed. This work focuses
on the data plane acceleration, wherefore we describe these three network functions
in more detail. Note that the data plane is often named user plane in the context



14 background and state-of-the-art

of mobile networks; however, we use only the term data plane in the following for
reasons of uniformity.

The radio unit contains mainly high-frequency functionality, i.e., sending and re-
ceiving radio signals. The main functionality, e.g., scheduling, pacing, baseband mod-
ulation, encryption, is performed within the distributed and centralized unit. Due to
this functionality, the functionality in the data plane of the RAN is very compute-
intensive and can enormously benefit from hardware acceleration [22, 25]. Further,
the centralized unit contains basic control plane functionality for session manage-
ment, which is less performance-demanding than the data plane.

5G Core

The 5G core is a compound of multiple network functions in a Service-Based Ar-
chitecture (SBA). Besides the User Plane Function (UPF), all functions belong to the
control plane, e.g., the NRF, UDR, AMF, and SMF, and are not the focus of this work.
However, we described the setup used in this work in Appendix A.2.

The UPF is responsible for the termination of all subscriber sessions, analogous
to the BNG in residential access networks [3]. In contrast to the BNG, all control
functionality is realized within the control plane functions of the 5G core, and the
UPF can focus on subscriber traffic processing. Traffic is encapsulated between the
RAN and the UPF with the GPRS Tunneling Protocol (GTP) protocol for the same
reasons as in residential access networks [1]. Therefore the UPF must perform this
encapsulation based on flow rules installed by the 5G core control plane. Further, the
UPF must perform a QoS-aware packet queueing. Analogous to residential Internet
access, several QoS classes for VoIP, best-effort traffic, and other services may exist.

2.3 programmable hardware for computer networks

The use of hardware accelerators, including programmable hardware, can enormously
improve the overall system performance in computer networks and has been the sub-
ject of many previous research works and surveys [73, 95]. In this work, we use the
following definition:

Definition

A programmable Hardware Accelerator executes a function more efficiently
by utilizing specialized, reconfigurable hardware components, e.g., an Field
Programmable Gate Array (FPGA), a Graphics Processing Unit (GPU), a Net-
work Processing Unit (NPU), or a programmable switching ASIC.

This means that in contrast to the original NFV approach, introduced in Section 2.1,
commodity CPUs are partially or fully replaced by hardware accelerators. In the fol-
lowing subsections, we introduce multiple hardware accelerator technologies being
suitable for improving the performance of network functions.
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Programmable Network Switches

Fixed-function ASICs in networking hardware do not support any reconfiguration
exceeding the chip functionality at runtime. Besides controlling table entries, only
interface parameters, e.g., link speed and auto-negotiation, and basic traffic shaping
policies, can be set. Special network protocols and processing sequences are either
supported or not, e.g., the PPPoE protocol in residential access networks. This limita-
tion also exists in conventional SDN hardware, i.e., OpenFlow-capable switches.

To overcome this, Bosshart et al. presented in 2013 a general and programmable
switch pipeline architecture [27]. Their approach, presented in Figure 2.5, consists of
three main components: 1) After packets ingress the switch on one of the n ingress
ports, the ingress pipeline processes the packet first. 2) Next, the packets are stored in
configurable output queues and scheduled according to the egress port’s link speed
and configured rate. 3) Last, after being scheduled, the packets traverse the egress
pipeline.
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Figure 2.5: Generic programmable packet processing pipeline following the P4

programming paradigm. Figure derived from: [27, 109].

The internal design of the ingress and egress pipeline is the same and consists of
a fixed number of programmable pipeline stages. Each pipeline stage consists of a
generic set of resources, which can be configured and interconnected at runtime. The
parsed packet header of a packet and its meta-data traverse the pipeline from the left
to the right and the pipeline cannot be stalled. Therefore, each pipeline stage must
have a guaranteed and bounded packet processing time. Meta-data are information
belonging to the packet but not being part of the packet, e.g., the ingress port, ingress
time, queueing delay, or computed values.

The resources in a pipeline stage include memory blocks that can be utilized for
lookup tables to perform a lookup on one or multiple input values, e.g., a packet
header field or a computed value. Further, stateful operations can be performed in
registers to maintain a state between the processing of two packets. Last, arithmetic
operations, denoted as fx, can be performed on any packet header or meta-data field.

Before a packet enters the pipeline, it will be parsed by the parser. The developer
can define a parser state machine to extract any packet header format. Next, the
parser provides a vector of parsed header fields to the pipeline. All unparsed bytes
of a packet are defined as payload and bypass the pipeline. Similarly, at the end of
the pipeline, the deparser serializes the header vector, possibly modified within the
pipeline, and attaches the payload to it.
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In order to program this generic structure, the Programming Protocol-Independent
Packet Processors (P4) language was introduced in 2014 [26]. P4 is a C-like language
optimized for describing the behavior of data planes and can be compiled for generic
hardware architectures. An example code for a simple Ethernet switch is presented
inAppendix A.1. The P4 language released in 2014 is restricted on this pipeline ar-
chitecture consisting of an ingress and egress pipeline, wherefore other switches and
SmartNICs could be only programmed with strong limitations. Consequently, P416
was presented in 2016 to overcome these limitations and enable further extensibil-
ity [30].

To the best of our knowledge, currently, two ASICs exist following the concept
of general and configurable hardware: The Intel Tofino and the Pensando DSC [82,
152]. However, further P4-programmable platforms, not following such an ASIC ar-
chitecture, exist, i.e., FPGAs and NPUs, which will be presented in the following
subsections.

P4-programmable ASICs provide an alternative to CPUs in NFV, e.g., for offload-
ing mobile access network functionality [171]. Besides programmable packet pro-
cessing, programmable hardware for optical circuit switching exists, which can be
used to improve the flexibility in softwarized networks but is not the focus of this
work [197].

Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) are programmable chips allowing to re-
alize any boolean logic by reconfiguration only. They can be programmed by hard-
ware description languages, e.g., Verilog and VHDL [79, 80]. The functionality of any
ASIC can be realized with FPGAs, assuming sufficient resources are available. By
using FPGAs, the development costs can be strongly reduced, and the innovation
cycle time is lower. Further, the configuration of an FPGA can be easily changed
after manufacturing, allowing new product features and bug fixes while being in
operation [186]. Compared to P4-programmable ASICs, introduced in the previous
subsection, the expressiveness on FPGAs is much higher. However, FPGAs suffer
under a lower performance due to their clock frequency, approximately a quarter
of ASICs. Consequently, the maximum achievable throughput is lower, and FPGAs
should only be used when programmable ASICs do not provide the required func-
tionality. This guidance is strengthened by the fact that developing algorithms on
FPGAs at bit-level is much more time-intensive than describing data plane behavior
in P4.

Utilizing FPGAs for networking functionality has been discussed in related work
several times. The NetFPGA platform, introduced in 2006, provides a common base
for developing network functions in a framework tailored for network applications
with less effort [193]. In the meantime, further commercial and non-commercial
frameworks exist, and many networking applications have been presented, e.g.: Nagy
et al. proposed an FPGA accelerated DDoS attack detection system which can make
a decision within milliseconds on the FPGA [134]. Further, the in-network process-
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ing of video streams in QoS-aware 5G networks has been demonstrated by Ricart et
al. [161].

Besides networking, FPGAs are used in many other domains: They can be used
to strongly accelerate encryption methods, for example OpenSSL [96]. They are also
very prominent in big data evaluations and many other fields, which require high
performance, where building ASICs is not reasonable [135].

To overcome the hurdle of high development effort, multiple projects aimed at a
P4 to FPGA compiler [18, 190]. Despite mapping the P4 language constructs directly
onto the available hardware resources, all known approaches build upon an inter-
mediate representation in a low-level FPGA programming language, e.g., Verilog,
VHDL, or Bluespec. Currently, two commercial compilers from Xilinx and Intel, the
world’s largest FPGA vendors, are available and can be used to describe a design
being composed of a P4 pipeline and low-level modules for specialized functional-
ity [18, 141]. On top of such a compiler, the “P4 → NetFPGA” project was created,
providing the complete workflow to compile a P4 program on FPGAs without any
low-level FPGA programming [78]. Consequently, P4 compilers provide a tool to
establish FPGAs without requiring FPGA developers.

Graphics Processing Units (GPUs)

Graphics Processing Units (GPUs) are well known for personal computers, where
they are mainly used to render images, which are displayed on the screen. Internally,
they consist of many processing cores optimized for vectorized arithmetic. Although
these linear algebra processors were only intended for graphics computation, they
can be used in many other application scenarios, e.g., machine learning, scientific
computing, and networking function acceleration. Network Functions can typically
process many packets in parallel and, therefore, are very well suited for an acceler-
ation in GPUs [90, 179, 187]. In contrast to FPGAs, they are more commonly used,
and the price per device is lower. However, due to the nature of GPUs, they do
not provide network interfaces, and all data is copied into and from the GPU by a
helper process running on the CPU of the host system. These copy processes cause
a significant CPU and data bus utilization.

Internally, GPUs consist of many cores, typically more than 1, 000. Only programs
that can be executed parallelly benefit from this architecture, as a single GPU-core
has less performance than a server or desktop computer CPU. In contrast to con-
ventional multi-core CPUs, the GPU architecture is optimized for executing the
same program code on many cores in parallel, known as Single Instruction Mul-
tiple Data (SIMD) parallelism. However, modern GPUs can run numerous streams
in parallel, each consisting of a SIMD-program, providing additional flexibility[175].
The expressiveness and flexibility of programs written for GPUs are similar to con-
ventional software programs running on CPUs and, therefore, much higher than
on P4-programmable switches. GPUs can be programmed by domain-specific lan-
guages, e.g., OpenCL or CUDA [65, 144].
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Smart Network Interface Cards (SmartNICs)

Smart Network Interface Cards (SmartNICs) is an extensively used term and in-
cludes various technologies. The common feature of all SmartNICs is that they have
the same form factor as an ordinary Network Interface Card (NIC) but additionally
offer special functions. This function set can include advanced load balancing, se-
curity features, remote direct memory access [67], or programmability of the data
plane.

Various chips can be manufactured on SmartNICs, including Field Programmable
Gate Arrays (FPGAs), Network Processing Units (NPUs), and purpose build ASICs.
Harkous et al. presented a comparison on different P4-programmable hardware, in-
cluding two SmartNICs and one programmable switch [69]. While the investigated
chipset of the P4-programmable switch showed very constant performance charac-
teristics, the NPU- and FPGA-based SmartNIC implementations pose an increased
latency for more complex data plane programs. The internal architecture of these
chipsets causes this, being less performance-optimized than switching ASICs with
many ports and > 10Tbit/s total bandwidth capacity. As the required amount of
SmartNICs is high, the chipset price must be as low as possible and the ASICs
from programmable switches, providing an over-dimensioned performance, is un-
economic. An NPU is a processor specially built for performing network packet pro-
cessing, e.g., the Netronome NFP SmartNICs build upon an NPU [137]. However, a
new chipset was announced by Pensando, Inc., claiming to have a switch-like internal
pipeline providing constant and deterministic behavior within the SmartNIC [59]. As
of today, no evaluation results exist for this architecture, either fortifying or falsifying
this statement. In addition, the GPU vendor NVIDIA announced SmartNICs, called
Bluefield, utilizing a hardware architecture similar to GPUs [41].

In the previous Section 2.1, we introduced the Open vSwitch architecture for pure
software-based packet switching. By utilizing SmartNICs with specialized hardware,
i.e., an FPGA or an NPU, the performance of this software switch can be increased
by a factor of two to four [136, 195].

Control Plane Interfaces

The control plane interface of networking hardware must provide the required func-
tionality to configure the underlying hardware. As OpenFlow switches provide a
fixed and specified function set, the control plane API can be static [129].

However, programmable data planes allow allow the description of any control
flow and table format, wherefore, more generalized APIs are required. The P4 pro-
gramming language can be used to describe the behavior of the data plane, and a
compiler generates a hardware configuration file out of it. Besides this, the compiler
can generate a custom API tailored solely for this P4 program, called P4Runtime [146].
This approach can even be used to describe the behavior of fixed-function ASICs as
a P4-model in order to auto-generate an API for this architecture. As one of the goals
of the P4 programming language is hardware independence, a single P4 program
can be compiled to multiple hardware targets, all providing the same P4Runtime



2.4 scheduling and active queue management 19

API. The P4Runtime API builds upon the google Remote Procedure Call (gRPC)
protocol [66]. In case the behavior of the data plane exceeds the expressiveness of
P4, a custom API must be defined, e.g., utilizing gRPC, REST, or any other suitable
protocol technology.

2.4 scheduling and active queue management

Human users of the Internet expect a good subjective performance of the network,
known as Quality of Experience (QoE) [84]. However, this metric depends strongly
on the perception of test persons, and it takes high effort to quantify and measure it
accurately, e.g., with user studies.

Therefore, Quality of Service (QoS) metrics were introduced to assess systems
without human test subjects [125, 165, 177]. Further, machinery systems with an
underlying network, e.g., within smart factories, require a certain QoS level [61, 62].
In this work, we use the following QoS definition:

Definition

“Quality of Service (QoS) is the well-defined and controllable behavior of a
system with respect to quantitative parameters.”[165]

The important characteristic of QoS metrics is the measurability of quantitative
parameters. In the context of computer networks, mainly the following metrics are
considered: latency, throughput, latency jitter, rate jitter, prioritization, packet loss,
availability, and out-of-order delivery of packets [125].

Latency describes the duration a network packet traverses the network from the
sender to the receiver. The maximum throughput of this connection is typically lim-
ited by the bottleneck link with the lowest available bandwidth on the path. Jitter
can be subclassified in latency jitter and rate jitter, both being indicators for a non-
deterministic network performance, e.g., caused by a single overloaded network func-
tion. A variance in the latency of multiple packets transmitted on the same route is
named latency jitter. Rate jitter is characterized by a varying throughput over time.
Prioritization describes if packets are forwarded according to their QoS class, i.e.,
high-priority packets can overtake packets with lower priority in case of congestion
within a network switch. The metric packet loss describes the number of packets not
delivered to the receiver, typically presented in relation to the total amount of sent
packets. The relative downtime of a network is defined as availability. Out-of-order
packet delivery can occur in networks if the latency jitter between two packets is
higher than the inter-packet time. Note that out-of-order delivery between multiple
traffic classes can occur due to prioritization and is not always negative. Also, packet
reordering is not necessarily a problem within a traffic class but can often cause
reduced end-to-end performance [192].
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Queueing and Congestion Control in Access Networks

Queueing is required to achieve high throughput in nowadays computer networks,
especially in network switches with a lower egress than ingress bandwidth.

Typically transport protocols in computer networks use a congestion control mech-
anism to avoid sending more data than the network can deliver to the receiver. Due
to the dynamics of many flows in computer networks, this congestion control con-
stantly updates its sending rate based on network feedback [150]. The most common
feedback is packet loss, detected by the receiver and cascaded to the sender by not ac-
knowledging the packet. Further, a congested network switch can label a packet with
an “explicit congestion notification” marker to notify the receiver and, by that, the
sender. Both mechanisms result in a reduced sending rate and consequently avoid
congestion.

As the available bandwidth in the network can vary, the congestion control in-
creases its rate until the first packet loss occurs. In case of packet loss, it will reduce
its rate significantly and continues increasing the rate, also known as congestion win-
dow, which describes the maximum number of packets in transmission. By that, the
sending rate is oscillating around the maximum achievable throughput. To utilize
a bottleneck link fully by one or multiple congested controlled flows, a queue be-
fore this link is needed, shaping the packets on link rate. The optimal queue size
depends on many factors, including the number of congestion-controlled flows, the
link speed, the flow Round-Trip Time (RTT), and the congestion control mechanism.
On the one hand, the link will not be fully utilized if the queue size is too small. On
the other hand, if the queue size is too big, unnecessarily high latency will be caused
by queueing the packets. According to Appenzeller et al., the optimal queue size for
TCP flows is [13]:

B =
RTT ·C√

n

Where RTT denotes the average RTT over all flows, C the bottleneck link speed,
and n the number of parallel congestion-controlled flows. This formula was derived
for Transmission Control Protocol (TCP), the most used transport protocol in the
Internet, but other protocols utilize similar congestion control mechanisms, i.e., the
QUIC transport protocol [115, 119]. Nowadays, the access network is typically the
bottleneck link, and ∼ 93% of the residential Internet traffic is congestion-controlled.
Therefore, queueing at the access edge is of tremendous importance to ensure a good
link utilization and will be discussed in this work [115].

Queueing Theory

This section introduces the terminology of queueing systems we will use in this work.
Figure 2.6 depicts the general setup of a queueing system. In the first step, packets
ingress on the left side into the system, and the according queue will be determined
by a classifier. If the queue reaches its maximum capacity, packets are dropped. This
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procedure is called “taildrop.” The system can consist of one or multiple First In First
Out (FIFO) queues. On the right side, a scheduler determines which packet should
be sent next. This scheduler is aware of rate limits of the individual queues, of dif-
ferent QoS classes, and all other information to be considered, e.g., hierarchical rate
limits in residential Internet access networks. Suppose different QoS classes are as-
signed to the queues. In that case, several mechanisms exist to prioritize the schedul-
ing process, e.g., Round Robin (RR), Weighted Round Robin (WRR), Weighted Fair
Queueing (WFQ), Strict Priority (SP), and many others[182, Section 5.4.3]. Further,
the scheduler can contain an Active Queue Management (AQM) algorithm, which
decides to drop a packet instead of sending it to notify the congestion control. These
AQM algorithms are described in detail in the following two subsections of this work.
Last, the packet will be sent by the egress port.

classifier scheduler...

FIFO-queues

packetx

packety

arrivals(A): service(S):

taildrop AQM

Figure 2.6: Generic Queueing System Model.

Queueing theory has a very long history, e.g., considering a system of humans
waiting in a line to be served. We can also apply these theories to formalize the
previously introduced packet queueing system. In the following, we build upon the
model described by David George Kendal in the 1950s [92]. In general, the Kendall
notation is denoted as follows [40, 98]:

A/S/c/B/N/SD

A describes the distribution of the arriving packets and S the distribution on the
service side. In the case of networking hardware, we can assume the arrival process
to be randomly distributed, indicated in the Kendall notation as A = M(Markovian).
If one egress port is sending packets from a single queue with a constant bit rate, e.g.,
100Mbit/s, the service is deterministic and therefore S = D(Deterministic). However,
in the case of multiple queues for one egress port, i.e., various QoS classes exist, we
cannot assume the queue service to be deterministic and therefore S = M(Markovian).
Nevertheless, in practice, this behavior would be close to the deterministic queue as
long as no congestion of the egress port occurs. The symbol c indicates how many
service nodes are pulling packets from the queue, in the case of packet schedulers
c = 1, as one egress queue is served by exactly one egress port. B describes the
maximum number of entities in a queue. We determine this to be B = Bmax, i.e., the
queue capacity in bytes. The total amount of packets in the system is described by the
symbol N: In the case of computer networks, we assume this to be B =∞ as no upper
bound can be given. Last, the service discipline SD describes in which order packets
in the queue are processed. In this work, we focus on FIFO queues only; however,
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further disciplines exist. Therefore, we can describe a packet queueing system with
a single queue per egress port as:

M/D/1/Bmax/∞/FIFO
and a system with multiple queues per egress port is described by:

M/M/1/Bmax/∞/FIFO
Upon these initial queueing models, the framework “Network Calculus” for describ-
ing and understanding the behavior of computer networks has been created [53,
120]. In the following of this work, especially the concepts presented in Chapter 4,
we build upon these mathematical models.

Bufferbloat and Active Queue Management AQM

The phenomenon bufferbloat was first mentioned in 2011 and describes unnecessar-
ily high latency in computer networks caused by generously dimensioned packet
queues (buffers) in network switches. Bufferbloat can occur in many different kinds
of networks, including residential and mobile Internet access networks in the down-
stream and upstream direction, as long as queues before bottleneck links exist [85].
As a consequence, a very high end-to-end latency can enormously decrease the QoS
and by that the experienced service quality. As presented before, the optimal buffer
size depends on multiple variables, and therefore addressing this issue is not trivial.
Especially, the varying flow-RTTs in the Internet poses a hurdle.

Active Queue Management (AQM) algorithms can help to overcome issues regard-
ing TCP flow synchronization and the bufferbloat phenomenon. In general, an AQM
is “a method that allows network devices to control the queue length or the mean
time that a packet spends in a queue” [17]. This control is performed by selective
dropping or marking packets within the congested network device. In this work, we
define them as follows:

Definition

Active Queue Management (AQM) algorithms manage the length of a packet
queue by intended dropping or marking packets which is noticed by the
transport-layer congestion control.

The first AQM algorithm, presented in 1998, is Random Early Detection (RED).
This algorithm tackles the issue of synchronization effects when a taildrop queue is
used, tending to overflow from one moment to the next, and massive packet loss oc-
curs [38]. This massive packet loss affects all congested control flows simultaneously,
wherefore they synchronously reduce their sending rate and become synchronized.
In contrast to this, RED starts dropping packets with dynamically computed proba-
bility as soon as a threshold is reached, e.g., 60%, and this probability increases with
the fill level of the queue. Consequently, only a few packets are dropped, congestion
control mechanisms can react earlier, and no synchronization effects occur.
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However, the RED algorithm does not solve the bufferbloat problem as it still
causes a statically configured queue delay. To that end, more advanced and stateful
algorithms were presented in the last decade:

The Controlled Delay (CoDel) and Proportional Integral controller Enhanced (PIE)
algorithms avoid bufferbloat by allowing only a temporary high queue latency [139,
147]. Specifically, these algorithms maintain a state since when the queue latency
exceeds a given threshold. After a waiting period in this exceeded state, they start
dropping or marking packets. On the one hand, flows with a high RTT requiring
large queueing delay can temporarily fill the queue to achieve high throughput. On
the other hand, flows with a short RTT or many parallel flows cause a constant
high latency, and the AQM would intervene. The justification of AQM algorithms
for combining high throughput and low latency has been discussed multiple times
in related work [64, 167]. Besides the presented algorithms, further variations and
more specialized algorithms exist as well [45].

Hardware Realizations of Qeueueing and Scheduling

As network switches are typically based on ASICs, their behavior cannot be adopted
easily and, as of today, mainly provide only basic taildrop and RED functionality.
The previously presented approaches of programmable network switches, i.e., by
the programming language P4, focus on header processing only, and the queueing
functionality is still realized with a fixed behavior.

Sivaraman et al. presented the idea of utilizing FPGAs for scheduling, as they can
be programmed very flexible, and the required algorithm varies from use case to use
case [174]. In follow-up work, they introduced the concept of programmable sched-
ulers by dynamically composing basic building blocks, i.e., Push In First Out (PIFO)
queues, arbiters, and token bucket instances [173].

Although the PIFO architecture provides high flexibility, it has neither academic
nor industrial success so far, possibly as a hardware realization seems to be chal-
lenging. Shrivastav proposed in a subsequent work the concepts of Push In Ex-
tract Out (PIEO) queues to improve flexibility and increase performance simulta-
neously [169]. Upon a similar approach, Zhang et al. investigated the capabilities of
programmable queues in industrial networks with real-time guarantees [198].

Another research team proposed an approximation of PIFO queues by utilizing
multiple FIFO queues [8]. Sharma et al. presented a concept for realizing calendar
queues, a flexible data structure to realize improved schedulers, in P4-programmable
ASICs [168]. However, this concept is not yet realized by an existing chip, and the
initial realization causes the high costs and development times of ASICs. To sum-
marize the related works, many queueing mechanisms for multiple scenarios exist;
however, a realization with good performance in networking hardware is still an
open challenge.
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2.5 benchmarking of network functions

An improved QoS in computer networks and improved architectures within servers
for low-latency I/O operations can enable new application fields, e.g., virtualizing 5G
radio functionality [60, 163]. However, not meeting the desired QoS level in computer
networks leads to a lowered service quality and possible system failures; for exam-
ple, in 5G fronthaul networks or production plants that rely on real-time communi-
cation [156, 160, 163]. In the context of 5G access networks, a guaranteed network
QoS is often named “Ultra Reliable and Low Latency Communication (URLLC)”,
specifying a guaranteed latency up to < 1ms RTT and a reliability > 99.9999% [97,
122]. For ultra-low latency applications, e.g., high-frequency stock trading, network
switches exist which do not store a packet entirely before forwarding it and there-
fore have a port-to-port latency of fewer than 100ns [15]. Therefore, it is important
to ensure and validate the translation of the QoS metrics mentioned in the previous
section.

As the testing methodology of network functions, black-box testing has been estab-
lished as the most common way of testing [132]. This approach does not consider the
internals of the tested network function, and only the interaction with the surround-
ing world is observed. In the case of a network function, this includes observing 1)
the configuration of the data plane and 2) all ingressing and egressing packets. In
general, the latency of modern network switches is very low, i.e., typically in the
range of hundreds of nanoseconds, and the throughput is very high. Therefore, accu-
rate measurement equipment, providing at least the same performance as the tested
network function, is needed [158].

However, measuring such network functions is very challenging. Utilizing software-
based tools for debugging or monitoring computer networks neither provides the re-
quired throughput performance nor the accuracy, so hardware assistance is manda-
tory [16]. Ideally, a test tool can generate small packet sizes up to the link speed,
i.e., 100-byte packets at 100Gbit/s, while providing a high latency and packet loss
accuracy, i.e., nanosecond granularity.

Existing Approaches for Network Function Benchmarking

Multiple concepts for network function benchmarking, including commercial prod-
ucts, and academic projects, exist and will be presented in this section.

Cisco and Juniper, two large network suppliers, provide freely available software
load generators, named TRex and Warp17, for load generation with high perfor-
mance and traffic patterns up to the application layer [37, 89]. Both approaches
utilize servers with state-of-the-art Network Interface Cards (NICs) and the Data
Plane Development Kit (DPDK). DPDK allows direct control of the NIC without any
operating system interference and, therefore, improves the performance compared
to conventional software [55]. However, the accuracy of time measurements has only
a granularity of around 100 ns and can be even worse under load [159]. To overcome
this, the Moongen load generator, presented by Emmerich et al., utilizes the same NICs
but with enabled hardware timestamping, initially intended for time synchroniza-
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tion [50]. By that, packets can be timestamped at ingressing or egressing the NIC
with much higher accuracy, up to 10 ns [159]. However, this high accuracy can only
be achieved when either the total load is low or a subset of packets is measured. Oth-
erwise, small packet queues can be built up within the NIC. In all aforementioned
software-based approaches, packet loss detection is difficult as no guarantees for a
non-overloaded detection system can be given. This means detecting zero loss with
one of these three generators is a correct result; however, the reason for packet loss
cannot be determined for sure.

Solutions building upon programmable hardware, mainly FPGAs, exist to over-
come these limitations. Micheel et al. presented the initial version of the Data Acqui-
sition and Generation card in 2001 [131]. These cards are built upon an FPGA with a
special-purpose design for load generation and packet capturing. They have the same
form factor as commodity NICs. Current versions provide up to four 10Gbit/s Eth-
ernet ports, and large amounts of data can be stored directly in the hosting server’s
memory. The achievable accuracy and performance are slightly higher than with the
aforementioned Moongen approach. However, they provide only limited flexibility,
and due to the lower clock frequency of FPGAs, the maximum possible time accu-
racy is limited. Note that one clock cycle on an FPGA, running at 200MHz, is 5 ns,
limiting the measurement granularity. ASICs, running typically with at least 1GHz,
could provide a sub-nanosecond granularity but are far too expensive to develop
for this niche market only. Besides this commercial product, further open-source
projects for load generation within FPGAs exist [12, 42]. Other commercial test tools
exist as well, i.e., from IXIA and Spirent, which suffer from very high prices and
limited flexibility [50]. The internals of these solutions are not publicly available;
however, we assume that they build upon FPGAs and could partially confirm this by
datasheets [176].

Last, we would like to mention the In-band Network Telemetry (INT) approach
presented in parallel to this work [181]. Instead of network function benchmark-
ing, the purpose of INT is fine-grained monitoring in production networks. This
approach leverages programmable network switches to monitor a single packet flow
through the network. For this, at the ingress node, an INT header is added to the
packet, and each switch on the path can add additional monitoring data to this
header stack. This header stack is removed at the egress node, and the initial packet
leaves the network. Further, the header stack of collected information can be exported
at the egress node. The INT approach builds upon the same programmable switches
we utilize in this work, and thus the theoretically achievable time accuracy can be
assumed to be similar.

Measurement Data Acquisition

A considerable challenge in benchmarking network functions is the capturing of
information. Let’s assume a packet source of 10Mpps, and each packet should be
timestamped and classified for loss detection. If the investigated network function
causes 1ms latency, there are always 10, 000 packets in flight. For each of these pack-
ets, a state must be maintained in the test equipment, and deleted after a certain
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timeout in case of packet loss. In the case of previously discussed Data Acquisition
and Generation cards, this is done within the internal memory of the card, which is
realized with high-speed but rare SRAM memory, which can quickly become a limi-
tation [148]. Further, a time series of all traversed packets must be stored persistently,
which is impossible within the FPGA due to limited memory capacity. For that, the
Data Acquisition and Generation cards can write the data directly via DMA into the
host memory.

Another approach of measurement data acquisition is aggregating statistics di-
rectly in the data plane. Network switches can generate statistics such as transferred
packets and bytes for each flow, and by periodic retrieving of counter registers, a
time series can be generated [199]. For example, a sampling rate of 1ms provides
fine-grained results of throughput and packet loss; however, no information can be
determined on a per-packet basis, e.g., latency distributions.

We summarize that multiple approaches for network function benchmarking exist.
However, providing a flexible test solution while providing nanosecond accuracy at
high data rates is challenging, and to the best of our knowledge, no existing approach
can provide this concurrently.



3
D E S I G N O F Q O S - AWA R E N E T W O R K F U N C T I O N S

In this chapter, we focus on realizing network functions with programmable hard-
ware to achieve a high Quality of Service (QoS) in Internet access networks and in
general.

First, in Section 3.1, we introduce the host bypassing approach, improving the per-
formance and flexibility of PCIe-based hardware accelerator cards, i.e., Field Pro-
grammable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs), for net-
work function acceleration. Second, in Section 3.2, we investigate hardware accelera-
tion capabilities in Internet access networks, specifically considering the User Plane
Function (UPF) in 5G networks and the Broadband Network Gateway (BNG) in res-
idential access networks. Last, the realization of Active Queue Management (AQM)
algorithms in hardware is challenging but necessary to provide a high QoS in In-
ternet access networks. Therefore, we examine these challenges in Section 3.3 and
deduce general guidelines on the example of the Controlled Delay (CoDel) AQM
algorithm.

3.1 host bypassing : pci express hardware accelerator integration

One main challenge of PCIe-based hardware accelerators for network functions is the
input and output of data [102]. Peripheral Component Interconnect Express (PCIe)
is the de-facto standard for integrating peripheral components in computer systems,
including hardware accelerators [151]. While at least some FPGA accelerators offer
Ethernet connectors in addition to PCIe, GPUs provide either only display connec-
tivity or no additional connector to PCIe at all. Therefore, data to be processed must
be injected via PCIe.

3.1.1 General Host Bypassing Concept

Figure 3.1 depicts the general architecture of hardware-accelerated network functions
in commodity servers. Within the server, a Network Interface Card (NIC) and a
hardware accelerator are connected as a PCIe endpoint to the PCIe infrastructure of the
server via one or multiple lanes. Typically, these PCIe lanes are directly connected
to the CPU; however, more complex bus-topologies can exist, e.g., the utilization
of a PCIe switch that increases the total number of connectable devices. All PCIe
endpoints and the system main memory share the same physical memory address space.
A software thread running on one of the CPU cores can access the PCIe endpoint
device’s memory by reading or writing on a physical memory address. Additionally,
PCIe endpoints can perform Direct Memory Access (DMA) reads and writes within
this physical memory address space.

27
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Figure 3.1: Server with PCIe-based hardware accelerator. The yellow line indicates the host
bypassing data path, not involving the host memory. Figure derived from: [103].

The general process for packet I/O in state-of-the-art approaches with hardware-
accelerated network functions is as follows: 1) A packet enters on one of the Ethernet
ports of the NIC and is written via DMA into the system’s main memory. 2) From
there, a software process, running on one of the CPU cores, copies the packet into
the hardware accelerator or initiates a DMA transfer. Now, the packet is within the
hardware accelerator and can be processed by the actual network function, denoted
as fx. 3) After being processed, the packet to be sent will be transferred back into
the main memory. 4) Last, a software process initiates the transmission of the packet,
and the packet is transferred via PCIe to the NIC.

In total, the system copies the packet four times over the PCIe bus, which causes
significant overhead on bus resources and CPU utilization without any additional
value. To that end, we present the host bypassing approach as shown in Figure 3.1.
Network packets are transferred directly from the NIC into the hardware accelera-
tor, without any interaction of the system’s main memory and one or more Central
Processing Unit (CPU) threads. In general, this is called a PCIe peer-to-peer transfer, al-
lowing one endpoint to read or write data directly from or into another endpoint [23,
184]. By that, the total number of memory copies is reduced from four to two. As the
main memory of a system is shared between all applications, utilizing it as temporary
transfer storage it can quickly exceed its maximum memory bandwidth and conse-
quently limit other applications running on the CPU only. Further, main memory
is typically realized with Dynamic Random Access Memory (DRAM) memory tech-
nology, e.g., DDR4, having a non-deterministic behavior due to physical limitations
of this memory kind [121]. This non-determinism can cause an increased latency jit-
ter, e.g., caused by concurrent DRAM refresh cycles or simultaneous accesses from
multiple processes on different memory regions.

As a consequence, the host bypassing approach is supposed to reduce the packet
I/O latency and jitter while increasing the maximum achievable throughput. At the
same time, commodity hardware accelerators not specially built for networking pur-
poses, e.g., GPUs, can be integrated into the network data path. In contrast to a
fixed-wired accelerator, this approach allows a flexible orchestration within a server
by configuring the NIC and accelerator with the appropriate physical addresses of
each other. In this work, we show the viability of this approach on the example of
GPUs (Section 3.1.4) and FPGAs (Section 3.1.5). Still it can be generalized to any
other hardware accelerator technology providing a DMA-capable PCIe interface.
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3.1.2 Working Principle of Poll Mode Drivers

Design goals of host bypassing are flexibility and the utilization of commodity hard-
ware, especially off-the-shelf NICs should be used. The advantage of user space
poll-mode drivers over conventional NIC drivers is that the host operating system is
not involved in any packet I/O; the user space process communicates directly with
the NIC. Therefore, we reverse-engineered the behavior of an existing poll-mode
driver, being open-source available as part of the DPDK framework [55]. Specifically,
we choose the Intel 82599 chipset in this work, which is currently one of the most
widespread NICs in data centers. This NIC is controlled by the ixgbe DPDK-driver.

Figure 3.2 shows the concept of poll-mode drivers, including DPDK. The NIC
and the user space application communicate over a shared memory region in the
system’s main memory. This memory region is pinned to a fixed physical memory
address, pointing on a not-fragmented memory huge page. If the physical memory
gets re-fragmented by the operating system, the user space application, operating on
virtual addresses, would not be affected by this. However, the NIC writes on the old
physical address, and therefore errors will occur. Thus, this memory must be pinned
to a fixed physical address.

Within the shared memory, the received packets and packets to be sent are handed
over between the NIC and the user space application. The packets are stored in a
shared memory buffer, labeled mbuf. In addition, multiple descriptor rings of con-
stant size for receiving and sending exist, at least one for each. Each ring has two
pointers, a head and tail pointer. The ring sector between the tail and head pointer (in
a clockwise direction) is controlled by the user space application and the remaining
part by the NIC. Thus, the NIC and the application can work without any interference
on the same rings.

NIC

shared memory (DRAM):

mbuf:

rx ring:

rx head pointer

rx tail pointer

∅
∅∅

∅
∅

#1#2

#3

direct write

#3
#4 ∅

∅
∅

#1

#2

∅

tx ring:

user space
application

. . .

tx tail pointer

tx head pointer

CPU:

rx/tx tail
pointer update

...

Figure 3.2: Memory mapped interaction between user space network function and
DPDK-capable NIC. Figure derived from: [103].

The process of receiving packets works as follows:
1) The user space application allocates a memory block with at least the Maximum

Transmission Unit (MTU) size in the mbuf and writes its address into a descriptor
entry, formatted as shown in Figure 3.3. Note that the Descriptor Done (DD) bit must
be set to zero. Last, the application increases the rx tail pointer in the NIC to indicate
the change.
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0163

Packet Buffer Address [63:1] A0

Header Buffer Address [63:1] DD

Figure 3.3: Rx descriptor format for Intel 82599 NICs according to: [81]. The A0 bit is
unused, the DD bit (descriptor done) is used to mark a processed descriptor.

2) The NIC reads the memory address from the descriptor ring at the rx head pointer
and writes the next arriving packet on the provided memory address. To notify the
application, the NIC overwrites the descriptor ring entry with metadata information
of the received packet, e.g., the packet length, and sets the DD bit to one.

3) The receiving thread of the user space polls the DD bit of the descriptor ring en-
try of the tail pointer to await the next packet. This process is named “busy waiting”,
as a single CPU core is fully utilized by permanently checking the status. Therefore,
poll-mode drivers are only reasonable for high loads when the overall efficiency is
higher than for an interrupt solution. As soon as the DD-bit flips to one, the receiv-
ing thread can read the packet from the memory buffer or forward a pointer of it for
further processing. For this, the memory address must be saved at allocation time,
as the NIC has overwritten the descriptor ring entry.

4) Last, the software process prepares the descriptor for a new receiving packet
and increases the rx tail pointer as described in step 1).

1 pointer rx_descriptor_ring [256]

2 pointer packet_bufs [256]

3 receive_thread():

4 //Initialize empty descriptors:

5 for i in range (0,256):

6 rx_descriptor_ring[i].dd = 0

7 pointer tmp = malloc(MTU)

8 rx_descriptor_ring[i].packet_buffer_address = tmp

9 packet_bufs[i] = tmp

10 int tailpointer = 0

11 init_NIC(rx_descriptor_ring)

12 while(true):

13 //Polling for new packets:

14 if(rx_descriptor_ring[tailpointer].dd == 1):

15 network_function.process(packet_bufs[tailpointer])

16 //Prepare the descriptor for receiving a new packet:

17 pointer tmp = malloc(MTU)

18 rx_descriptor_ring[tailpointer].packet_buffer_address = tmp

19 packet_bufs[tailpointer] = tmp

20 //Increase tailpointer

21 tailpointer++

22 tailpointer = tailpointer % 256 //ring size

23 update_NIC_tailpointer(tailpointer)

Listing 3.1: Simplified pseudo-code of a DPDK-application receiving network packets from
the NIC via a descriptor ring with 256 entries located in shared memory.
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This receiving process is depicted as pseudo-code in Listing 3.1. In the example
given in Figure 3.2, currently, three packets are received by the NIC but not yet
processed by the application. The remaining five slots are free for receiving future
packets. In the case of the used NIC, the number of descriptors is higher and can
be configured before runtime, i.e., between 64 and 256, and by that, packets can
be processed in bulks. The descriptor of the used NIC allows specifying a second
memory address to store the packet headers, separated from the payload of the
packet. However, this work focuses on packet processing, including all headers, and
therefore we do not enable this functionality.

3.1.3 Software Driver Modifications

The prototypes presented in this work build upon the DPDK framework, which
required minor changes to initialize the NIC for host bypassing. For this, we added
an Application Programming Interface (API) function to set custom rx and tx ring
addresses in the NIC as well as the number of rings. With this functionality, the
NIC can be reconfigured to read and write descriptor rings located anywhere in the
physical memory address space of the system; in the approach of this work, they are
located in the PCIe hardware accelerator.

Further, the hardware accelerator, i.e., the FPGA or GPU, must be configured simi-
larly. First, the physical base address of the NIC must be set. Second, the hardware ac-
celerator must know its own physical address to independently determine addresses
in descriptor ring entries. Third, the initialization driver notifies the hardware accel-
erator that the NIC is ready, and tail pointer updates can be written.

In addition, the PCIe endpoints of the NIC and hardware accelerator must be al-
lowed to communicate with each other. For this, it is required to load a kernel mod-
ule for both of them, allowing to perform DMA bus transfers. In our experiments,
we utilized the general-purpose module igb_uio. Further, depending on the PCIe ar-
chitecture of the server, it might be required to disable PCIe access control services.

These initialization procedures must be performed only once before starting the
system. At runtime, no interaction by any control application running on the CPU is
needed, and therefore this resource can be utilized with other tasks.

The driver modifications, build instructions, and the source code for the FPGA-
and GPU-based prototype are publicly available on Github [76]. In the following
two subsections, we will introduce the details on the realization of host bypassing on
FPGAs and GPUs.
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3.1.4 FPGA-based Host Bypassing

FPGAs differ significantly from their internal architecture and way of solving a given
problem from conventional computer processors as introduced in Section 2.3. There-
fore, existing poll-mode drivers for NICs can not be migrated in a straightforward
manner on FPGAs to enable host bypassing, i.e., by cross-compiling from one lan-
guage to another. Instead, a hardware design of logical circuits must be described,
providing the same behavior to the NIC as a software-based driver. In this work, we
built upon one of the most prominent hardware description languages, Verilog. Yet,
other languages provide similar expressiveness and would probably not influence
the results strongly as the described logic remains similar [79]. The presented hard-
ware design does not contain any vendor-specific functionality and can be realized
with FPGA boards from Xilinx and Intel, the two most prominent vendors in the
world. We tested the presented design with multiple FPGA technologies, including
the Xilinx Virtex 7, Xilinx Virtex UltraScale+, and Intel Stratix 10 GX chipsets. How-
ever, the concepts can be applied to any other platform providing PCIe connectivity
and sufficient programmable logic circuits. The presented design is synthesized with
a clock frequency of 250MHz. In the following subsections, we introduce the key con-
cepts, design decisions, and implementation details. The overall design is depicted
in Figure 3.4.

Shared Memory

The main principle of host bypassing with FPGAs is memory mapping. As described
in Section 3.1.2, the NIC communicates with the software driver over a shared mem-
ory region, located in the system’s main memory and is reachable over physical
addressing on the PCIe bus. This shared memory region should be located inside
the FPGA, still accessible via physical addressing on the PCIe bus for the NIC but
also for logic within the FPGA.

In Figure 3.4, we present the component overview within the FPGA. A PCIe in-
terface is required to enable the aforementioned PCIe-accessible shared memory re-
gion. For this, one must build upon an Intellectual Property Core (IP core), as the
PCIe logic is too complex and the timing requirements are too high for a custom
FPGA design. However, most FPGA vendors provide this functionality as an IP core,
realized in partially fixed logic within the FPGA, and therefore this is no limitation.
The PCIe IP core offers a generic memory interface consisting of address, data wires
for read and write operations, and various control signals, attached to any memory-
like module. Assuming a data wire width of 64 bits and a FPGA clock frequency of
200MHz, the theoretical maximum throughput of this interface can be determined
by: 64 bit · 200 · 106 1

s = 12.8Gbit/s. This number must be higher than the required
bandwidth as all network packets plus control overhead are transmitted over this
interface. Thus, the PCIe IP core must be configured to a PCIe technology, e.g., PCIe
Gen3, a sufficient number of lanes, e.g., x8, and an appropriate data bus width, e.g.,
64 bits or 128 bits, fulfilling this bandwidth demand. At the startup time of the host
system, the PCIe IP core requests a physical address range from the PCIe system,
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Figure derived from: [103].

e.g., 2 MB are sufficient for host bypassing with up to 256 descriptor ring entries, but
a larger address range is not detrimental.

Inside the FPGA, the memory interface of the IP core, e.g., the AXI4 interface for
Xilinx and the Avalon interface for Intel FPGAs, is mapped on multiple memory re-
gions. For this, we utilize a crossbar implementation that forwards the incoming read
and write requests based on the address to one of the five memory controllers. The
table in the top left of Figure 3.4 depicts the mapping of physical addresses to the dif-
ferent controllers. Note that these addresses are relative to the physical start address
of the FPGA. Assuming the FPGA address region starts at 0x0800_0000, a physical
write access on the address 0x0800_0042would appear at the FPGA internal data bus
at the address 0x0000_0042 and is therefore forwarded to the rx buffer, denoted as A.
Each memory region is abstracted by a very simple memory interface, consisting of
an address bus, the read and write data bus, and read- and write-enable signals. This
interface is very common to access Block Random Access Memory (BRAM) blocks
and is therefore named BRAM interface. The BRAM controller converts the complex
but universal AXI4 signals to this primitive memory interface. This interface repre-
sents the cutting point between FPGA-type specific and FPGA-type generic hardware
modules.

On the right side of the BRAM interface, four memories, namely the rx ring, the rx
buffer, the tx ring, and the tx buffer, are realized with FGPA internal BRAM memory
blocks, consisting of fast Static Random Access Memory (SRAM) cells. Each of these
blocks can be mapped to the corresponding DPDK memory region as shown in
Figure 3.2. Note that we split up the mbuf memory into two buffer memories, one for
sending and one for receiving packets, as the underlying processes are also totally
autonomous from each other. These four memories are independent of each other
and do not share any resources. Further, they provide each two BRAM interfaces,
also called dual-port RAM, allowing isochronous access from the module attached
on the left and on the right side without any synchronization overhead. Thus, the
control logic of the rx and tx handler can independently from incoming PCIe accesses
read and write from one of the four memories.
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Further, a configuration register exists, which can be accessed via PCIe from the host.
In this register, the software driver can write the physical address of the NIC and of
the FPGA. For details on the configuration, we refer the reader to Section 3.1.3.

FPGA-based Poll Mode Driver

The receiving and sending logic can be examined independently. In general, the
behavior of the FPGA implementation reproduces the behavior of the reference soft-
ware implementation as described in Section 3.1.2.

The rx ring must be first initialized with valid physical memory addresses within
the rx buffer for receiving packets. For this, the physical address of the FPGA, known
from the software driver initialization, is used as an offset. After all descriptor ring
entries are initialized and the software driver configured the NIC with the GPU
address, the NIC updates once the rx tail pointer to point on the first valid ring entry.

Now, the first packet can be received. The NIC reads one or multiple descriptor
ring entries via DMA from the FPGA. As soon as a packet arrives at the Ethernet port
of the NIC, it will be written via DMA on the physical memory address of the first
descriptor ring entry, the current rx head pointer is pointing on. In contrast to the main
memory from server systems, the FPGA has the opportunity to monitor incoming
data bursts, allowing the detection of new arriving packets. This writing process
can be distributed over one or multiple PCIe bus transfers. Therefore, the FPGA
can not determine from incoming bytes that a new packet was received entirely.
Consequently, analogous to software-based poll mode drivers, the FPGA must await
the rx descriptor writeback. As soon as the NIC has written all data in the rx buffer
of the FPGA, it updates the rx ring entry accordingly. This writeback information
contains the byte length of the received packet and further metadata, including the
DD bit, which indicates the successful reception of the packet (Compare Figure 3.3).
The rx descriptor control permanently polls this descriptor ring entry, awaiting the
DD bit to be active. Due to the dual-port BRAM, the descriptor control can access
this memory address every clock cycle without affecting the performance on the left
side of the memory towards the PCIe interface.

Next, the descriptor control hands over the extracted packet length from the write-
back descriptor and the memory address within the rx buffer to the packet handler. The
packet handler reads the packet data from the given address in the rx buffer and pro-
vides this as a serialized stream, compliant with the AXI4-stream and Avalon-stream
protocol specifications. This stream interface is the current de-facto standard packet
processing in FPGAs; however, providing the data in any other format would not
change the presented concept significantly. Now, the network function fx can per-
form any packet processing, which is not the focus of this work. Last, the descriptor
control must reset the descriptor ring entry with a new valid physical address. As the
packets are never stored longer within the rx buffer, we map the descriptor ring en-
tries one-to-one on memory slots in the buffer memory. This simplifies the memory
allocation and memory address calculation strongly. The NIC is informed by writing
the updated rx tail pointer via PCIe into a control register of the NIC. Updating the
rx and tx tail pointers are the only PCIe operations initiated by the FPGA, and for
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this, the physical address of the NIC must be known. As the rx ring consists of many
entries, this can be done only for every nth packet or every m time units, reducing
the total traffic on the PCIe bus. For this, an optional delay module for tail pointer
updates is instantiated between the descriptor control and the PCIe IP core.

Analogous to receiving packets, the tx handler prepares packets to be transmitted
by the NIC. Packets are provided on an AXI4-stream interface to the packet handler,
which writes the data into the next free memory slot of the tx buffer. Identical to the
rx handler, one memory slot in the buffer corresponds to one entry in the tx ring. Next,
the packet length and location in the buffer are handed over to the tx descriptor control.
From there, the packet address and length is written to the next free tx ring entry,
indicated by the current tx tail pointer (Compare Figure 3.3). Last, the updated tx tail
pointer is written into the NIC to indicate the new packet to be sent. Similar to the
receiving process, this pointer update can be delayed and grouped that not for every
packet a PCIe transfer is required. However, in contrast to the receiving process, this
causes additional latency as packets are sent later. Therefore, a timeout is mandatory
to prevent packets from never being sent. For example, if the tail pointer is updated
every 8th packet, but only 7 packets are added to the tx ring, they will never be sent.
A timer, starting when the first packet was added to the ring after a preceding tail
pointer update, guarantees the packet to be sent within a timeout period, e.g., 1µs.

Typically, the speed of sending packets by the NIC can be assumed to be higher
than a software process can generate new data. In that case, the tx ring can not run
over. However, a high-speed packet source, e.g., an FPGA performing host bypassing,
can fill this ring faster than the packets can be sent. As a solution approach, an
optional transmission confirmation of a packet can be enabled, realized by a final
descriptor writeback from the NIC into the tx ring. For this functionality, a writeback
bit must be set in the tx descriptor when handing over the packet to the NIC. By this,
the descriptor control can ensure that a packet was sent before overwriting this ring
entry with a new packet and is implemented as an optional feature in our concept
prototype. However, as investigated later as part of the evaluation in Section 5.1.1, it
is very likely that these additional PCIe transfers lower the total system performance.

Monitoring and Debugging

The main purpose of this prototype is to prove and understand the host bypassing
concept. Therefore, investigating the internals of the design at runtime is crucial to
understand performance implications and learn from them.

To enable this, we introduced the following three capabilities of on-chip moni-
toring: First, interfaces between the modules allow to monitor any interaction with
the NIC by attaching an on-chip logic analyzer, provided as part of the synthesis
toolchains by both used FPGA vendors.

Second, the standardized AXI4-stream interface allows connecting an ethernet port
of the FPGA to receive packets via Ethernet and send them out via host bypassing.
Analogous, the opposite direction can be leveraged. By this, the development pro-
cesses is facilitated and benchmarking becomes more precise.
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Third, the software driver, introduced in section 3.1.3 for initialization, can also
read on physical addresses at runtime and can be used to read out hardware registers
for monitoring purposes, e.g., the rx/tx head/tail pointers to detect faulty behavior or
lock states.

3.1.5 GPU-based Host Bypassing

The approach, presented in the previous Section 3.1.4, realizes host bypassing with
FPGAs and commodity NICs. With this, the packet I/O of FPGA-accelerated net-
work functions can be improved compared to state-of-the-art FPGA acceleration ap-
proaches in PCIe environments. However, on the one hand, FPGAs are an accelerator
technology that causes high development effort compared to conventional software
development. Indeed, FPGAs can provide a good performance due to their reconfig-
urability on bit-level, and any behavior can be realized. On the other hand, FPGA
accelerators are not as widespread as other acceleration technologies in today’s data
centers, e.g., GPUs. GPUs can execute a software program on many integrated and
parallel processing cores, described by software programming languages, similar to
those used in conventional software development. Due to their parallelism, they are
very well suited for parallel packet processing.

Therefore, in the following of this section, we will investigate how the host bypass-
ing approach can be extended from FPGAs to commodity GPUs. As GPUs’ internals
strongly differ from FPGAs, the previously introduced approach can not be applied
one-to-one on GPUs; however, the main concept remains unchanged.

Memory Exposing on GPUs

Host bypassing with GPUs builds upon the same principle as with FPGAs: an ex-
posed memory within the hardware accelerator, i.e., the GPU, accessible via DMA
by the NIC. To enable this, we choose the NVIDIA Quadro RTX 4000 GPU for our
research, as most consumer cards currently do not allow exposing memory to be ac-
cessible by other PCIe devices. To access all features of this hardware, we select the
vendor-specific programming language CUDA [144]. Note that this is not a techni-
cal limitation; instead, the vendor unlocked this feature only for professional GPUs,
presumably for reasons of market separation [23].

To investigate the practicability of host bypassing on GPUs, we propose a prototypi-
cal design. The overall software architecture of this prototype is shown in Figure 3.5,
consisting of one big memory region in the global memory and three CUDA kernels,
each having a variable number of threads.

First, we allocate once at startup time a memory block on the GPU with the usual
CUDA allocation method. This block has the size of all rx/tx descriptor rings and of
the mbuf for storing packets. Note that the mbuf must have enough packet slots for
all descriptor entries in all rx rings plus packets currently processed by the network
function and packets under transmission. If we assume 4 rx descriptor rings, each
with 256 slots, a total of > 1, 024 slots is required. However, GPUs provide sufficient
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Figure 3.5: Software structure within GPUs to enable host bypassing. The global memory can
be accessed by the GPU software kernels but also directly from the NIC.

global memory, wherefore we allocate in our experiments 16 times as much memory
as the descriptor rings have slots.

The newly allocated memory can be accessed from within a CUDA kernel running
on the GPU and also from the control process running on the CPU by virtual memory
pointers and DMA helper functions. Indeed, physical addressing of this memory by
the NIC is not yet possible. For this, the memory must be exposed to a physical
address and pinned to it, making it directly accessible from the NIC. The pinning is
of tremendous importance as the physical address should be static as a movement
would not be noticed by the NIC. For this, we must develop, compile, and load
a small kernel module, allowing us to pin and expose the allocated memory. This
process is comparable to the NVIDIA GPUDirect communication, and we followed
the guidelines of the GPU vendor while developing this module [47].

The kernel module provides an API function pin_memory, consuming the virtual
address and length of the allocated memory and the GPU’s PCIe location (bus and
device ID). The CUDA host thread, initializing host bypassing, calls this function after
the allocation and receives the physical address of the pinned memory as a return
value. With this value, the physical addresses of the rx and tx descriptor rings are
computed and written into the NIC. Further, this offset is required to compute the
physical addresses of memory slots in the mbuf memory, which are written in the
rx and tx descriptor ring entries. The complete host bypassing initialization process
is described in Section 3.1.3. Let’s assume the physical address region is located at
the address 0xCAFE_0000, the pinned memory region might start at 0xCAFE_8000
as the GPU internal offset is 0x8000. This internal offset and the physical address of
the GPU in the system are dynamic and must be determined at run-time.

Modern GPUs provide a complex hierarchy of memories and memory caches in
addition to the global memory. Therefore it must be ensured that the host bypassing
approach allocates the shared memory in the global memory, and memory caches
are disabled for all read and write operations on this region. Otherwise, memory
inconsistencies could occur between the software kernels running on the GPU and
the NIC reading and writing the same memory. For this, we declared all operations
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on the rx/tx descriptor rings and the mbuf as volatile operations, enforcing the
operation to be performed on the global memory only.

Parallel Packet Handling

We initialize two CUDA streams for receiving and sending packets, each executing a
dedicated CUDA kernel, as shown in Figure 3.5. In addition, a network function kernel
can be started to perform the actual network function to be accelerated. However,
this kernel is not the focus of this work, as the focus is on the packet I/O with good
performance.

One or multiple descriptor rings can be used for receiving and sending packets.
In the case of an incoming packet at the Ethernet port of the NIC, a hash value is
computed based on a couple of header fields. Next, the NIC determines one of the rx
rings based on this hash value. The remaining receive process for each ring follows
the usual procedure of poll-mode drivers as introduced in Listing 3.1. In order to
support multiple receive threads in parallel, the rx kernel has a 1-dimensional block
ID, indicating to which ring this kernel belongs. The descriptor rings are located
within the global memory in ascending order. Therefore, the kernel can easily com-
pute the memory address, i.e., a memory pointer, of its descriptor ring at run-time
by the block ID, known memory base address, and the descriptor ring size.

Analogous to the receiving process, sending packets can be done by multiple
CUDA threads in parallel within the tx kernel. For this, any packet distribution over
the threads is viable, and no classification must be performed, as long as no sin-
gle thread is overloaded. For our experiments, we realized a one-to-one mapping of
ingress and egress threads, e.g., a packet received by the rx thread 3 would be sent
by the tx thread 3. As long as no huge amount of packets is generated within the
GPU, e.g., for multicast applications, the load distribution at the tx side is sufficient
and inherited from the NIC rx classification.

For the execution of a network function, we propose a similar concept: a network
function kernel is started consisting of multiple threads. This number should be at
least the same as the number of rx/tx kernel threads. In the case of more threads, the rx
kernel performs a load distribution of incoming packets on all network function threads
being assigned to it. For example, 64 network function threads may be managed by 8
receive threads. Note that no network function on the GPU is developed within this
work, as we focus on packet I/O only.

The communication between the three kernels running in parallel, realized as
CUDA streams, poses challenges. It is required to realize an inter-stream communica-
tion via the global memory, suffering under high latency. An alternative represents
the communication between threads within a single kernel, accessing a so-called
“shared memory” with significantly better performance. Therefore, the investigation
of different parallelism mechanisms within the GPU would be a promising continua-
tion of this work, e.g., realizing packet reception, sending, and processing within the
same CUDA kernel but with higher parallelism.



3.1 host bypassing : pci express hardware accelerator integration 39

Memory Management

The memory region in the global memory, including the rx/tx descriptor rings and
mbuf, is allocated once at startup by the initialization process. However, within the
mbuf an allocation procedure is required. As a shared memory buffer would require
synchronization between the rx threads, we realized a mbuf slice for each receive
thread. Assuming an uneven distribution of the packets over the rings, this requires
a little bit higher memory utilization. However, GPUs provide sufficient global mem-
ory resources, realized in DDR5 memory. Our allocation mechanism allows each
mbuf packet slot to be in one of the following three states: 1) free, 2) allocated by the
rx kernel for future incoming packets, or 3) under processing by the network func-
tion or tx kernel. The rx/tx kernels can allocate and free memory. Consequently, this
zero-copy implementation allows a packet to be stored at the same memory address
in the global memory from the receiving, during the network function processing,
until sending.

3.1.6 Related Work on PCIe Hardware Accelerator Integration

Provisioning and interconnection of hardware accelerators in PCIe environments
have been discussed in related work before.

Nobach et al. presented a framework for elastic provisioning for hardware-accelerat-
ed virtual network functions [143]. In contrast to traditional Network Functions Vir-
tualization (NFV), they suggest to shipping network functions as a software bundle
with different implementations, including a legacy CPU implementation and various
implementations for offloading performance-critical parts of the network function on
hardware accelerators, namely FPGAs, GPUs, and Network Processing Units (NPUs).
When deployed on a server, the available hardware accelerators are checked, and the
network functionality may be offloaded to an accelerator. A similar approach was
presented almost at the same time, both in 2015, by Bronstein et al. [29]. However,
both approaches utilize only state-of-the-art packet I/O capabilities and would enor-
mously benefit from the concepts presented in this section.

Utilizing the PCIe peer-to-peer capabilities in general for accelerating program ex-
ecution was discussed multiple times in related work. Thoma et al. presented a frame-
work, named FPGA2, for direct communication between FPGAs and GPUs [184].
Similar to our approach, they benefit from fewer data transfers in the system and,
by that, increased throughput at lower latency. A similar approach of the direct in-
terconnection of FPGAs and GPUs was presented by Bittner et al. in 2014 [23]. On
the example of a computer vision application, they demonstrated that the approach
could lower the latency significantly. The authors mention that a peer-to-peer data
transfer requires the willingness of GPU vendors to enable these features, as they
“are presently hidden behind black-box driver code.” Almost one decade later, only
a few premium GPUs support this feature, and cheap consumer cards still cannot
be used. However, we are convinced that this is caused by commercial reasons only
and not a technical limitation.
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Markussen et al. investigated the capabilities of sharing PCIe devices between mul-
tiple servers. For that, they utilize a PCIe network, interconnecting the servers, and
physical address translation capabilities of the servers, i.e., by the I/O Memory Man-
agement Unit (IOMMU). The presented approach of the authors also leverages PCIe
peer-to-peer capabilities and experienced performance benefits from avoiding unnec-
essary copies to the systems main memory [126, 128]. In a follow up work, they
extended this approach to operate on non-volatile memories leveraging NVIDIA
GPUDirect capabilities, i.e., accessing Solid State Drives (SSDs) directly from the
GPU [47, 127].
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3.2 internet service creation on programmable hardware

According to the first research challenge of this thesis, network functions must pro-
vide high flexibility and functionality while providing high performance. In this sec-
tion, we will focus on this in the context of Internet service creation. More in detail,
the focus is on the point of subscriber termination, i.e., the access edge of residential
and mobile Internet access networks. In particular, as introduced in Section 2.2, exist-
ing approaches suffer either under limited flexibility or relatively low performance.

In the subsequent Section 3.2.1, we discuss and analyze the requirements for In-
ternet service creation. In Section 3.2.2 and Section 3.2.3, we present our solution ap-
proaches for residential and mobile Internet access, leveraging programmable hard-
ware. Last, Section 3.2.4 introduces a concept for flexible packet queueing, shaping,
and QoS-enforcement, building upon FPGAs.

3.2.1 Functional Requirements Analysis

The underlying protocols and mechanisms for residential and mobile Internet service
creation are different; however, they build upon similar concepts. In Figure 3.6, the
similarities between both approaches are presented visually.
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5G core (CP)
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Figure 3.6: Subscriber tunneling and termination in Internet service creation for residential
and mobile subscribers.

First, we discuss the subscriber tunneling from the customer premises equipment,
i.e., the Residential Gateway (RG) for residential and the User Equipment (UE) for
mobile subscribers, to the access edge. For this, it is required to provide an isolated
tunnel for each subscriber, implying a large number of parallel tunnels to be termi-
nated at the access edge. For residential access networks, typically, the Point-to-Point
Protocol over Ethernet (PPPoE) protocol is used to enable per subscriber data encap-
sulation. The tunnel is terminated by the Broadband Network Gateway (BNG). In
5G networks, this tunnel is realized between the User Plane Function (UPF) and Ra-
dio Access Network (RAN) by the GPRS Tunneling Protocol (GTP) in mobile access
networks. For the radio interface, other 5G-specific protocols are used. However, the
end-to-end tunnel characteristics between UE and UPF are not affected.
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Figure 3.7: Summary of functional requirements in Internet service termination for
residential and mobile subscribers at the BNG/UPF. Figure derived from: [107].

Second, the Access Node (AN) is responsible for forwarding packets to and from
the subscriber. In both scenarios, the AN can enrich upstream packets with addi-
tional metadata, i.e., the AN line ID for residential access or the RAN cell to which
the UE is attached. This metadata information can be used during authentication
and authorization by the BNG or 5G core control plane (CP), respectively.

Besides subscriber tunneling and packet forwarding, further functional require-
ments exist in Internet access networks, as shown in Figure 3.7. It is noteworthy that
the UPF is only responsible for data plane traffic termination in 5G access networks.
The authentication, authorization, and session establishment request messages are
sent directly from the RAN to the Access and Mobility Management Function (AMF)
of the 5G core. The UPF is involved in the session establishment by applying the
flow rules from the 5G core, more precisely from the Session Management Function
(SMF).

In contrast to the UPF in the highly disaggregated 5G architecture, the BNG func-
tionality includes the control functionality for authentication, authorization, and ses-
sion establishment. Further, the BNG must provide hierarchical QoS, including traffic
shaping, in the downstream direction for each subscriber. For the UPF, traffic rate
enforcement for each established subscriber session is sufficient, and no hierarchical
dependencies must be considered. In both scenarios, traffic rate enforcement in the
upstream direction is needed.

In addition to this, the access edge must perform access control checks on each
packet. These checks include the validation of the sender IP address, named anti-
spoofing filtering. Otherwise, a malicious subscriber could send network packets into
the Internet with a sender IP address not belonging to him, e.g., to perform a cyber
attack. Similarly, it must be avoided that a subscriber can send network packets in a
higher QoS class than they belong to, e.g., misusing the Voice over IP (VoIP) traffic
class.

Last, accounting for the traffic of each subscriber is essential for two reasons: First,
this measurement data is essential for network monitoring, failure detection, and
network planning purposes. Second, volume contracts require to slow down a sub-
scriber dependent on their accumulated bandwidth usage or to charge additional
fees.
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To summarize, the requirements on residential and mobile Internet access edges
have several overlaps. Therefore, the two approaches presented in the following sec-
tions have high similarities.

3.2.2 P4-based Broadband Network Gateway

In this section, we present how a Broadband Network Gateway (BNG), the access
edge for residential Internet subscribers, can be realized flexibly but still with high
performance, utilizing programmable hardware. This section excludes the traffic
shaping in the downstream direction and focuses on the header processing. The
aspect of hierarchical QoS and traffic shaping, in general, is discussed later in Sec-
tion 3.2.4 for residential and mobile Internet access creation. The presented approach
presented in this section is available open-source on GitHub1.

Packet Header Decoding

In the following, we assume the header stack as shown in Figure 3.8. Upstream
packets, i.e., data from the subscriber to the Internet backbone, are encapsulated by
the RG in a PPPoE tunnel. In addition, the RG adds a Virtual LAN (VLAN) tag to
identify the type of service, and the Ethernet source and destination addresses are
updated. In the next step, this packet is forwarded to the access node, which adds a
second VLAN header to the packet. This second VLAN header represents the line ID
within the access node and can be used for authentication. Finally, the BNG receives
this packet, including all added headers, and must interpret them.
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Figure 3.8: Packet header-centric system design of a residential access network. Red headers
will be removed, green headers will be added. Figure derived from: [107].

Similarly, the packets arriving from the backbone site consist of a custom header
format, specifically two stacked Multiprotocol Label Switching (MPLS) headers. MPLS
is a common protocol in Internet Service Provider (ISP) backbone networks, relying

1 https://github.com/opencord/p4se

https://github.com/opencord/p4se
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on source routing mechanisms. In both directions, the BNG must parse the incoming
packets correctly to allow further processing.

However, understanding these protocols, which are not even supported by com-
monplace SDN hardware [142], is challenging. Therefore, the programming language
P4 and corresponding hardware architectures provide a novel degree of freedom
wherefrom we benefit in this work.

The main challenge of residential Internet access termination with commodity
SDN-hardware is the PPPoE protocol [142]. A PPPoE packet is transported in an
Ethernet frame, and the header can be identified by a known EtherType, 0x8863 and
0x8864, for PPPoE control and data packets. The structure of PPPoE data packets,
formally named “PPPoE Session Stage,” is shown in Figure 3.9. Analogous to the
P4 example in Appendix A.1, we define this header format (and all additionally re-
quired headers) in P4. The parser state machine, also part of the P4 program, contains
a specific rule to extract this PPPoE header in the case of the dedicated EtherType.

31 27 23 15 0

version type code session ID

length protocol

Figure 3.9: Point-to-Point Protocol over Ethernet (PPPoE) header format for data packet
encapsulation (PPPoE Session Stage), according to: [32].

At the access side of the BNG, the following packet header to be parsed can be
determined by the appropriate next header fields of the currently parsed header,
e.g., the EtherType in the Ethernet and VLAN headers or the PPPoE protocol field. In
contrast, packets arriving at the backbone side consist of two MPLS headers, which
do not indicate the encapsulated packet type. To determine the next header in this
case, we introduce a lookup table in the parser, building upon the P4 construct of
parser value sets. By this, the next protocol type is determined by the MPLS label,
for example, all flows with the label 42 comprise of IPv4 packets. As the network
operator is aware of its own MPLS routes, the next packet header, i.e., IPv4 or IPv6,
can be parsed.

After the parser completes extracting all required headers, they pass through the
switch pipeline as a P4 packet header vector. Multiple tables and actions can be
applied to realize the desired BNG functionality based on this vector. The deparser
assembles the packet headers from the vector to a packet at the end of the pipeline.
For this, all valid headers are deparsed in a given order. Note that the packet header
vector, including the set and kind of headers, can change while being processed in
the pipeline.

P4-based Pipeline Design

In the following, we discuss the processing of the parsed headers in detail. Note that
many packet header vectors may be processed parallel by the switch pipeline in dif-
ferent stages. Therefore, it is mandatory that every pipeline stage has a guaranteed
limited processing time. Thus, the P4 program must be written in a way that the com-
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piler can fulfill these timing constraints and available resources of the programmable
pipeline, as introduced in Section 2.3. The following explanations consider only the
case of IPv4 packets for simplicity reasons; however, the processing of IPv6 packets
functions analogously.

Figure 3.10 depicts the control flow of the P4 program, realizing the BNG function-
ality. Later, a compiler can map this program on the P4-programmable match-action
pipeline resources of the underlying hardware. In general, the proposed pipeline de-
sign can be divided into three parts: 1) a general pipeline for packet classification,
2) a downstream pipeline, and 3) an upstream pipeline.

The general classification part of the pipeline is colored in light-yellow in the figure
and consists of two tables with the indices 0 and 1. First, the table t_cptap_outer_ethernet
determines, based on the Ethernet destination address and etherType, i.e., the type
0x8863, whether it is a packet for the BNG control plane. In that case, the packet will
be forwarded to the control plane, and no further processing in the P4 hardware is
done. This rule applies to all packets during authentication and authorization but
also for periodic link control echo requests and responses, used for monitoring the
connection state. Similarly, packets can be injected from the control plane, which is
not shown in the diagram. In all other cases, the pipeline proceeds with the table
t_usds, responsible for determining if the ingressing packet belongs to an access or
backbone switch port. This information is used to select if the packet should be pro-
cessed by the upstream or downstream pipeline. From a functional side, this could
also be done by checking the valid packet headers. However, checking the ingress
port is also a security mechanism. Otherwise, a malicious subscriber could send a
valid double-tagged MPLS packet to the BNG, interpreted as a packet from the trust-
worthy backbone side.

In the downstream direction, packets arrive at a port attached to the MPLS-routed
backbone network of the ISP. Therefore, incoming packets at this port can be as-
sumed to be more trustable, assuming security mechanisms on all ingressing ports of
the backbone network. The first applied table for downstream traffic is t_ds_routev4.
Based on the destination IPv4 address (or IPv6 address range), we determine the
corresponding subscriber, including its subscriber ID and line ID. This subscriber
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information is used in the next step to encapsulate the packet in a PPPoE tunnel and
two stacked VLAN headers, as discussed before. In addition to the PPPoE session
ID the length of the packet is required for encapsulation and can be determined
from the length field of the ingressing IPv4 packet. As modern switches start packet
processing as soon as all required header fields are received and parts, the tail of
the packet may still be under transmission, and therefore the length of the received
Ethernet frame cannot be referenced. If the subscriber’s IP address is unknown, the
packet is dropped and may be reported optionally to the control plane for monitor-
ing reasons.

Second, the table t_ds_acl_qos_v4 is applied. Mainly based on the sender IP ad-
dress, the QoS class of the packet is determined. As all non best-effort traffic classes,
e.g., VoIP or live television streaming, have their source within the ISP backbone net-
work, the addresses are known and can be used. QoS class identifiers set by either
subscribers or third-party data center operators are not trustworthy and should be
overwritten. Otherwise, this invites abuse.

In the upstream direction, first, the table t_line_map determines the unique line ID
of the subscriber based on the access node line ID, provided as a VLAN tag, and
the belonging access node. Note that this involves no information provided by the
subscriber, e.g., the PPPoE session ID, which could be manipulated. In the next step,
table t_pppoe_cpdp determines based on the PPPoE protocol field if the payload is a
valid IPv4 (or IPv6) header and the packet can be processed further. Otherwise, in
the case of an unknown PPPoE protocol type, the packet is sent to the control plane.

The next two tables, t_antispoof_mac and t_antispoof_ipv4, check if the previously
computed unique line ID maps to the sender’s Ethernet and IPv4 source addresses.
This prevents a subscriber from impersonating another subscriber or anonymous
packet injection into the Internet, named spoofing [72]. As an RG of a subscriber typi-
cally has only one Ethernet address but probably multiple IPv4 and IPv6 addresses,
this functionality is split up over three tables (for Ethernet, IPv4, and IPv6 source
addresses) to lower the total resource utilization. If a subscriber sends a packet with
an invalid source address, the packet is dropped in the data plane.

Last, Table t_us_routev4 assigns a route to the packet based on its destination ad-
dress (IPv4 or IPv6). For this, two MPLS labels and a new Ethernet destination ad-
dress are added to the packet, analogous to a conventional MPLS edge router that
forwards packets through the MPLS network. All the access headers, including the
two VLAN headers and the PPPoE header, are removed. After this processing, up-
stream packets are deparsed and sent out to the backbone side.

Subscriber and State Management

The presented pipeline design is optimized for three target platforms: 1) the P4-
NetFPGA, 2) P4-programmable SmartNICs manufactured by Netronome, and 3) In-
tel Tofino-based network switches. Even though the data plane design is similar for
all three platforms, the control plane interfaces were not unified at the time of this
work. Later, in Section 5.2.1, we provide evaluation results for these three platforms,
highlighting the pros and cons of each. To provide a unified state configuration API
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during evaluation, allowing to set up new subscriber session and a general platform
configuration, we build a simple python library. This library allows adding/remov-
ing subscribers and configuring access and backbone ports. However, note that the
hardware abstraction is not the focus of this work and only a means to an aim.

3.2.3 P4-based User Plane Functions in 5G Networks

The User Plane Function (UPF) in mobile networks is the equivalent of the BNG
data plane, which is discussed in the previous section. Note that the UPF is only
responsible for the subscriber termination on the data plane, as the radio access
network sends all control messages directly to the 5G core control plane. Therefore,
the UPF contains less control logic and we can present a fully-fledged prototype
in this work, which can be integrated in the remaining 5G core via the unified N4

interface. Note that the 5G core is formed by the control plane network functions
and the UPF as the data plane function. Even though the integration in an end-to-
end network is an extensive research field, it is not the focus of this thesis and is
explained briefly in Appendix A.2.

The differences between multiple programmable hardware platforms are already
investigated by the BNG use case and it is very likely that the general characteris-
tics continue to possess their validity for the UPF use case. Thus, in the following
investigations, we consider only a single programmable architecture, specifically the
P4-programmable Intel Tofino.

In the remainder of this section, we will discuss how concepts and mechanisms
from the BNG scenario can be adapted and unified for the mobile 5G access use case,
fulfilling the demanding QoS requirements on current and future 5G networks.

General System Design

The UPF system design consists of multiple components and is shown in Figure 3.11.
The system is connected to its environment through three interfaces, N3, N4, and
N6, following the 3rd Generation Partnership Project (3GPP) specification [2]. In this
work, we present a disaggregated concept within the UPF, serving these three inter-
faces. The control plane component of the UPF implements the N4-interface protocol,
allowing to add, modify, and remove subscriber sessions.

From the control plane, all deployable flow rules are handed over to the hardware
abstraction layer, which provides a simplified API to configure ports and manage sub-
scriber sessions. A flow rule may not be deployable if only a subset of the required
information is handed over to the UPF from the SMF during subscriber registration.
In that case, the state is stored only in the UPF control plane until all required infor-
mation is present. The simplified API can be used to migrate the presented approach
to other programmable platforms, e.g., the P4-NetFPGA or Netronome SmartNICs,
as evaluated in this work for the BNG scenario.

Next, the hardware abstraction layer installs flow rules on the hardware. As the cur-
rent P4-programmable hardware does not offer sufficient resources for per-subscriber
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Figure 3.11: System architecture of the hardware accelerated UPF presented in this work.
Data plane components are highlighted in light red, control plane functionality

in blue.

traffic shaping, we added an optional QoS co-processor, realized on an FPGA directly
attached to the P4 switch. The abstraction layer divides a single incoming request
over these two hardware platforms. For example, a new downstream subscriber ses-
sion would be installed 1) in the P4-programmable ASIC to encapsulate and forward
its packets, and 2) in the QoS co-processor, shaping the packets to the maximum
allowed bandwidth of the subscriber. The queue assignment is done within the P4

switch and this information is given to the QoS co-processor together with the packet.
Details on the QoS co-processor concept are discussed later in Section 3.2.4.

Furthermore, the system consists of a software based packet processor, labeled as
slow path. This software switch is used for replying to address resolution requests,
Ethernet address learning, and Ethernet address resolving. All packets which cannot
be processed by the P4-based data plane are encapsulated in a GTP tunnel and sent
to this slow path switch. The GTP encapsulation has two advances: First, the slow
path part of the UPF can be located anywhere in a data center, reachable by the
UPF data plane. This is also the case for the hardware abstraction layer and control
plane. Thus, the UPF software stack can be either located in the same box as the
programmable hardware or distributed and probably virtualized. Second, the GTP
Tunnel Endpoint ID (TEID) is used to inform the slow path processor on which port
the packet ingressed the switch.

Besides receiving packets, the slow path switch can inject packets into the data
plane on any port of the programmable ASIC. For this, the GTP tunnel ID, set by
the software switch, indicates the port on which the packet should be sent by the
hardware switch.

The normal case of operation is as follows: First, a subscriber flow for upstream
and downstream traffic is installed via the N4 interface. Following this, the subscriber
can send IP packets addressed to the backbone network via the RAN on the N3

interface into the UPF. The UPF terminates the subscriber tunnel and forwards the
packets to the N6 interface. Analogously, downstream packets arriving at the N6

interface are sent towards the RAN on the N3 interface.
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We realized all software components, including the control plane, hardware ab-
straction layer, and slow path, using the Golang programming language. This lan-
guage provides ideal support for the PFCP protocol due to existing libraries, used at
the N4 interface [117]. Further, the integration of the gRPC and GTP protocols can
be easily done and the program execution performance is sufficiently high.

Subscriber Data Encapsulation

For each subscriber, more precisely for each “Protocol Data Unit (PDU)” session, at
least one tunnel is established between the RAN and the UPF. In case of additional
services, e.g., VoIP, multiple tunnels are established in parallel for a single subscriber.
The header stack for packet encapsulation, i.e., for tunneling, is shown in Figure 3.12.
Note that the RAN is not the focus of this work, and therefore the protocols of the
air interface are not shown.
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Figure 3.12: Packet header-centric view on the UPF functionality. Downstream packets are
only indicated by the arrow; the added/removed headers are reverse to the

upstream direction. Red headers are removed, green headers are added.

The packets arrive at the access side of the UPF encapsulated by the GPRS Tun-
neling Protocol (GTP), a tunneling protocol on top of the UDP/IPv4 or UDP/IPv6

network protocols. The Ethernet, IP, and UDP headers can be parsed in a straightfor-
ward manner based on the respective next protocol field. However, the GTP protocol
can only be assumed based on the provided UDP destination port, typically port
2152 for GTP. Within the GTP encapsulation header, the IPv4/IPv6 packet sent by
the subscriber is encapsulated. On the backbone side of the UPF, the packets ar-
rive and depart as conventional packets. In mobile networks, a Network Address
Translation (NAT) is typically instantiated between the backbone network and the
subscriber for several reasons (compare Section 2.2.2 for details). Therefore, we can
assume a direct connection at the backbone side of the UPF to the NAT, and no
complex routing mechanism is mandatory.

Most used network protocols on both sides of the UPF are very common, and the
parsing process is straightforward. Only the GTP protocol poses a minor challenge,
as it is encapsulated in a UDP frame that does not indicate the next protocol type.
However, as stated before, the parser state machine can determine the next parsing
state based on the UDP destination port. UDP ports are used to differentiate multiple
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applications running on a single system, e.g., port 2152 for GTP tunneling. Transfer-
ring this concept of application differentiation to the hardware, we can state that the
parser filters incoming packets based on the destination port for the UPF application
running within the switch. Alternatively, to support a different UDP-port or multi-
ple ports in parallel, this value can be set dynamically at run-time by a P4 parser
value set. This concept is very similar to the parsing of MPLS packets at the BNG, as
discussed in the previous section.

Figure 3.13 depicts the header format of the GTP protocol. The header has a base
length of 8 bytes, including the payload length and the Tunnel Endpoint ID (TEID).
In addition, further optional extensions can occur, indicated by the status bits in
the flags section of the base header. In our experiments, we observed different GTP
header formatting in terms of extensions, and therefore the UPF must be able to
interpret all of them. Specifically, the QoS identifier, named 5QI, is an extension in
5G standalone and thus is not present in older standards. As a consequence, it is
currently not implemented in all existing UPF implementations. After extracting the
header fields of the base header, the parser checks if at least one of the flags bit is set
and proceeds in parsing the optional header extensions. If the next extension field of
the currently parsed extension is zero (0), the parser stops and hands over the packet
to the ingress pipeline. In the downstream direction, the packet deparsing works
analogously but is under the control of the UPF, which can decide the exact header
format. However, the downstream header format must be specified at compile time
of the P4 program, i.e., if an optional extension for the QoS identifier should be added
to every packet.

Data Plane Pipeline Design

The packet processing part of the UPF consists of a P4 programmable switch and
an optional QoS co-processor. In this section, we discuss the internal structure and
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Figure derived from: [107].

concepts of the programmable switch, realizing the header processing within the
UPF. In the first step, the incoming packets are parsed, as discussed in the previous
section. Next, the packets walk through the programmable match-action pipeline of
the switch, consisting of multiple lookup tables and actions, as shown in Figure 3.14.

The pipeline, described in the P4 programming language, can be separated into
four parts, a general packet processing, an upstream pipeline, a downstream pipeline, and
a slow path injection pipeline.

In a first step, ingressing packets are processed by the table t_usdssp of the general
pipeline. This table is used to determine by which pipeline the packet should be
processed next. For this pipeline assignment, we use the ingress port of the switch;
however, in the case of programmable devices with less ports other packet charac-
teristics, e.g., the destination IP or available packet headers, can be used. Next, the
packet is handed over to one of the three pipelines.

The upstream pipeline consists of three tables. First, the table t_us_decap_antispoof_v4
and the belonging action decapsulate the incoming GTP packet. For this, the table
uses the GTP tunnel ID and the IPv4 source address of the inner, encapsulated IP
packet as input. As each subscriber session has an assigned IP address, this table
combines the tunnel termination and anti-spoofing detection. If a subscriber sends a
packet with a spoofed sender IP address, this table will not match, and the packet
is discarded. If a flow rule matches, i.e., the incoming packet belongs to an authen-
ticated subscriber, the action of the table invalidates all encapsulation headers, as
shown in Figure 3.13.

Next, the optional table t_us_qos is applied. This table matches the same flow ID
and applies a metering action on the packets according to their configured maximum
upstream bandwidth. In contrast to traffic shaping in the downstream direction, the
metering requires no packet queueing, and packets are either forwarded or dropped.

The last upstream specific table is t_us_route. This table and the belonging action
determine the egress port and next-hop Ethernet destination address, i.e., to which
Network Address Translation (NAT) the packet should be sent. This table can load-



52 design of qos-aware network functions

balance the upstream packets between multiple NAT instances that are common in
mobile access networks. But even if only a single NAT is used, this table strongly
reduces the action data width of the preceding table, as only a single table entry is
required to forward the packets of all subscribers attached to this UPF. Finally, the
packet will be processed by the general part of the pipeline and sent out.

The downstream pipeline has an inverted behavior compared to the upstream
pipeline. First, the table t_ds_encap_v4 is responsible for the GTP encapsulation of
incoming packets. For this, the IPv4 destination address of the incoming packet is
used as match input. Suppose a registered subscriber belongs to this IP. In that case,
the packet is encapsulated in the corresponding GTP tunnel, using the IP address of
the connected radio access network and the GTP tunnel ID of the subscriber.

Next, if a QoS co-processor is connected to the P4 switch, the table t_ds_qos is
applied. This table determines the unique queue ID of the subscriber and sends the
packet together with the queue ID to the FPGA. The processing within the FPGA is
discussed later in Section 3.2.4. As soon as the packet is sent back from the FPGA to
the P4 switch, the pipeline proceeds with the third table of the downstream pipeline.
To allow this, we added a fourth case in the initial classification table of the general
pipeline part. Figure 3.14 shows a simplified version of the FPGA integration to
improve the readability. In the actual design, the packet enters and leaves the P4

switch twice, including parsing and deparsing. If no QoS rule is installed for this
subscriber, the packet is handed over directly to the next table, t_ds_route_v4.

Last, Table t_ds_route_v4 determines the egress port and Ethernet destination ad-
dress of the packet based on the outer IPv4 destination address, i.e., the addressed
5G base station.

The third pipeline of the presented design is the slow path packet injection. Pack-
ets to be sent by the software switch arrive at the P4 switch in GTP encapsulated
packets. These packets are decapsulated and sent to the egress port specified in the
GTP tunnel by the software switch. Note that the encapsulated packets also include
an Ethernet header, and therefore no destination address must be determined in the
P4 switch. This is intended by design, as the slow path is used to request unknown
Ethernet addresses and should be able to send out any packet on any port.

At the end of the upstream and downstream pipelines, all packets are processed
again by the general part of the pipeline. The table t_sp_encap verifies if a packet was
successfully processed by one of the pipelines. If not, the tables action encapsulates
the packet and marks it to be sent to the slow path switch port. Finally, the P4

pipeline sets the Ethernet source address of the packet corresponding to the egress
port, and the packet is handed over to the deparser for sending.

End-to-End UPF Integration

The presented UPF design provides all required functionality to be integrated into
a 5G standalone network, including a standard-compliant 5G core and Radio Ac-
cess Network (RAN). In Appendix A.2, we describe the end-to-end testbed used to
verify the functional correctness of this prototype. In total, we tested three different
RANs from different vendors and the free5gc open-source 5G core [56]. We observed
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multiple issues in the open-source 5G core during integration and testing, which we
repaired and contributed to the open-source project. The proposed design (with and
without QoS Co-processor) works as expected to the best of our knowledge. However,
the presented prototype’s main purpose is to demonstrate hardware acceleration in
mobile access networks, and therefore we do not aim to build a commercial product.

3.2.4 FPGA-based Traffic Shaping

In the two sections before, Section 3.2.2 and Section 3.2.3, we discussed how resi-
dential and mobile Internet access could be realized with programmable hardware.
While the functional header processing can be realized with existing programmable
network switches, they do not provide sufficient resources for per-subscriber traffic
queueing. If we assume 35, 000 residential subscribers, each having 4 QoS classes, a
total of 140, 000 parallel queues are required. Indeed, most current network switches,
including the P4-programmable switch utilized in this work, offer only a few queues,
e.g., 8 queues per egress port. Therefore, subscriber isolation and per-subscriber traf-
fic shaping, a requirement stated in Section 2.2, is not possible with current P4

switches. However, we introduced the concept of a QoS co-processor for both sce-
narios, residential and mobile Internet service creation. In the following, we will
discuss this co-processor in detail.

We decided to realize the QoS co-processor within Field Programmable Gate Ar-
rays (FPGAs). FPGAs provide the potential to realize almost every digital circuit
on bit-level, including a QoS-aware traffic shaping system. Though, as stated in the
background Section 2.3, they have a significantly lower clock frequency, wherefore
the maximum achievable throughput is lower, i.e., in the range of multiple hundred
Gbit/s. Yet, this is sufficient to fulfill the bandwidth demands of current and near-
future access edges for residential and mobile Internet subscriptions. In contrast to
manufacturing Application Specific Integrated Circuits (ASICs), development time
and costs are significantly lower for FPGAs. Note that the presented design could
also be realized within an ASIC; however, this would probably not be economical for
a product series of multiple thousand devices of this niche functionality compared
to commodity data center switches. Further, in contrast to ASICs, FPGAs allow a
reconfiguration of the chip after deployment, i.e., an update can be deployed on the
access edge devices, providing new functionality or rectifying faulty behavior.
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Figure 3.15: Integration concepts of an FPGA-based QoS co-processor with
P4-programmable switches. Figure derived from: [107].
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Figure 3.15 depicts two concepts of integrating an FPGA into the data plane. Note
that the FPGA-based QoS co-processor is only used to shape downstream traffic.

1) The FPGA can be attached to the subscriber side of the P4 switch in the data
path. By this, the access ports of the access edge, i.e., the BNG or UPF, are realized
in the FPGA. On the one hand, this allows realizing many different link-layer tech-
nologies, including almost any Ethernet standard from 10Mbit/s to 400Gbit/s. But
also, specific link-layer technologies in access networks, e.g., XGSPON in Fiber to
the Home (FTTH) access networks, can be realized on the same chip. Theoretically,
the access node and access edge can be located in the same hardware platform. On
the other hand, multiple link-layer technologies must be realized in parallel in the
FPGA design to support different generations of access network nodes. This includes
multiple Ethernet speeds, but auto-negotiation and link training technology are also
mandatory. Furthermore, the FPGA must route the packet, i.e., sending it to the ap-
propriate egress port where the subscriber is attached.

2) An alternative to this is the sidewise FPGA integration. Here, the packets arrive
at the backbone side of the switch. After being processed, they are sent to the FPGA.
From there, after being dequeued, the packets are sent back to the P4 switch. In this
sidewise integration concept, the FPGA must support only a single link technology,
e.g., 100Gbit/s Ethernet, and neither auto-negotiation nor link training must be sup-
ported, as the FPGA ports are not exposed to the outside of the hardware platform.
Though, the packet traverses twice the P4 switch, halving the switch bandwidth
and adding additional latency to the packet. As the maximum bandwidth of the P4

switch is roughly ten times higher than for the FPGA and the latency of one switch
pass-through is below 1µs, we assess this disadvantage to be minor. All dequeued
packets on the FPGA are sent back to the P4 switch, which then determines the
egress port, lowering the complexity within the FPGA compared to the subsequent
integration concept.

Based on this assessment, we focus on the sidewise FPGA integration in the fol-
lowing. Nevertheless, the presented concept for traffic shaping can also be applied
for subsequent FPGA integration.

Hierarchical QoS in Residential Access Networks

In residential access networks, a Hierarchical Quality of Service (HQoS) must be ap-
plied to downstream packets and is discussed in the following. HQoS is required for
legal reasons, as (almost) zero packet loss must be ensured between the subscribers
and the access edge, i.e., the BNG. By this, the counted and accounted data traffic can
be ensured to be delivered to the subscriber. Note that this does not apply to mobile
access networks, where a simple traffic shaping for each subscriber is sufficient.

Figure 3.16 depicts the access topology of residential access networks on the right
side, as already known from the background Section 2.2. The mapping of the net-
work nodes on the right side into the hierarchical limits is shown on the left side.

For example, the Multi-Service Access Node (MSAN) in the presented figure
has a total bandwidth of 1Gbit/s towards the BNG, and 100 subscribers with each
100Mbit/s Internet contracts are connected to this MSAN. In general, it is very un-
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likely that all subscribers utilize their access line fully. If all subscribers try to use
their total available bandwidth, a bandwidth demand on the MSAN of 10Gbit/s
occurs and cannot be satisfied. This is called oversubscription, a typical concept in ac-
cess networks, viable by traffic statistics. However, in the seldom cases of overloaded
network nodes, this would cause packet loss between the BNG and the subscriber,
which is not allowed. To avoid this, HQoS must be applied in the BNG. The HQoS
scheduler is aware of all bandwidth limitations in the hierarchical access network
and can shape the packets accordingly. By that, packet loss still occurs; however, in
the BNG before the packets were counted. In addition, the BNG is aware of the dif-
ferent QoS traffic classes, e.g., best effort and VoIP traffic, and can prioritize a high
priority packet of subscriber A over a packet of subscriber B with a lower priority.

This mechanism is called HQoS-aware scheduling and must be realized in residen-
tial access edges. Note that the QoS-aware prioritization between subscribers is not
exactly specified and is only a soft requirement; however, the hierarchy awareness
must be fulfilled. In the following of this work, we present a single FPGA design
with two exchangeable schedulers, one fulfilling the HQoS demands of residential
access networks and a simple scheduler for the mobile use case. The remaining parts
of the design are identical.

Memory Technologies for Packet Buffering

The FPGA-based co-processor for traffic shaping realizes a memory-intensive func-
tion in the overall system, as every packet to be shaped must be stored by the FPGA.
For this, a memory is required, either inside the FPGA or as an external, attached
memory. In general, two memory technologies can be considered: Static Random
Access Memory (SRAM) and Dynamic Random Access Memory (DRAM).

SRAM memory cells build upon transistors, preserving a stored bit in an electrical
circuit. The manufacturing process of transistors can be combined with the digital
logic of FPGAs and ASICs. Therefore, SRAM can be realized on the same chip. Nowa-
days, FPGAs typically provide many internal SRAM-based memory blocks that can
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be used for the hardware design, which is described in a hardware description lan-
guage. However, their storage capacity is limited. As SRAM is available in blocks,
they are often named block RAM in the context of FPGAs.

In contrast to this, DRAM technology stores data in tiny capacitors, representing
a data bit by their positive/negative charge. This technology can be used to create
significantly larger memories. However, DRAM cannot be realized on the same chip
as the packet processing logic due to different manufacturing processes. Therefore,
DRAM is typically co-located to processing chips, known as DDR3/DDR4 memory.
The memory bandwidth of DRAM memory is typically lower compared to inter-
nal SRAM, caused by the lower memory clock frequency, the data bus width and
the physical characteristics of capacitors. Further, the access latency is significantly
higher, as the reading of a single bit requires measuring the electrical load within
the corresponding capacitor, which requires some time. In addition, these capaci-
tors lose their charge and must be refreshed frequently, leading to a sporadic non-
deterministic behavior of the memory.

According to Perino et al., the access latency of SRAM is 0.45 ns, and for DRAM
55 ns, i.e., around 100x higher [153]. Further, they stated in 2011 that the maximum
achievable memory capacity of SRAM is ∼ 26MB and for DRAM ∼ 10GB. The cost
of one MB SRAM memory is around 1000x higher than a realization with DRAM,
and the power consumption of SRAM is also higher. Note that these numbers are
from 2011; however, the postulated differences between these technologies still have
their validity [121]. Only the achievable memory capacity has increased for both
technologies but is still in a similar range. Nowadays, with SRAM memory on special-
purpose ASICs, one can realize a memory of < 100MB with high effort. In FPGAs,
achievable storage capacities are significantly lower.

A very simple approach to determine an upper bound for the required memory is
as follows: Let us assume 35, 000 subscribers, each having a maximum bandwidth of
100Mbit/s and a queue depth of 50ms. A 50ms queue delay seems to be sufficient
for most flows in the Internet, as determined by a 24 hours measurement in the
access network of Deutsche Telekom (compare Appendix A.3 for details). Then, we
can determine the required total buffer size B by:

B = 35, 000 subscriber · 100 Mbit/s · 1 byte
8 bit

· 50 ms = 21.875 GB

However, this assumption is not realistic as 1) not all subscribers will utilize their
access line in parallel, and 2) the backbone bandwidth of the access edge is lower
than 35, 000 · 100Mbit/s. If we assume a backbone interface speed of 2 · 100Gbit/s
and a shared memory for all queues, the memory demand is as follows:

B = 200Gbit/s · 1 byte
8 bit

· 50ms = 1.25GB

This estimation is still not accurate as each queue level has a sawtooth-like character-
istic, i.e., it is unlikely that all queues are 100% filled at the same time.

A similar problem was already discussed in the related work before and described
in the background of this thesis: In Section 2.4, we introduced a formula that de-
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scribes the required buffer size B for n parallel TCP flows in a single queue. This for-
mula cannot be applied to this problem one-to-one, as the subscriber flows are sepa-
rated in different queues, and the inter-flow interference is not comparable. However,
we can use the following estimation as a lower bound. If we assume 2, 000 subscribers
utilizing their downstream link in parallel, the applied formula looks as follows:

B =
RTT ·C√

n
=
50ms · 200 Gbit/s√
2, 000 subscriber

· 1 byte
8 bit

= 27.95MB

We can summarize that the required packet buffer memory size cannot be precisely
determined but is in the range between 27.95MB and 1.25 GB. Note that measure-
ments in existing devices or simulations with traffic traces are not meaningful, as
the dropping behavior of a queueing system influences the sending rate of the trans-
port layer congestion control and, by that, the input rate of packets. Even the lower
bound of this memory range cannot be realized with on-chip SRAM memory in ac-
tual FPGAs. Therefore, the utilization of DRAM memory, typically external DDR3/4

memory, is unavoidable and a design basis in the following.

Overall FPGA Design

In both access scenarios, residential and mobile Internet access termination, the re-
quirements on the (H)QoS co-processor are similar: Many queues, e.g., 140, 000 for
the residential use case with four queues per subscriber, are required, each being
able to build up a queue of up to 100ms. Furthermore, it would be beneficial for the
end-to-end service quality to instantiate an Active Queue Management (AQM) algo-
rithm in the co-processor (compare Section 2.4). Last, the scheduler implementation
should be exchangeable to realize multiple scenarios, e.g., residential and mobile In-
ternet service creation, with a similar design. In addition to the named scenarios, we
claim that the presented concept is even more general and can be used for further
use cases with only a scheduler modification, e.g., packet scheduling in industrial
computer networks with real-time guarantees for certain traffic classes.

Besides the functional design goals, we identified two requirements from the eco-
nomic perspective: 1) A modular design allows reusing some components and easy
extensibility for new functionality. 2) The proposed concept should be FPGA-type
independent, and generic. This means parameters of the design can be reconfigured
to support many/few queues, schedulers, and different performance levels, depend-
ing on the use case. By this, smaller and by that cheaper FPGAs can be used in
scenarios with lower demands. Further, the design should be vendor-independent.
Specifically, two big FPGA vendors exist globally, and the concepts should be valid
for the programmable hardware structures of both of them.

Based on the requirements, we present a generic packet queueing design, shown
in Figure 3.17. This design builds upon vendor-specific IP-cores only for I/O func-
tionality where this is unavoidable, i.e., the Ethernet functionality, the PCIe control
plane interface, and the memory controllers. However, the interfaces for the Ethernet
IP-cores are identical for FPGAs from the two focused vendors. For the PCIe control
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Figure 3.17: Modular FPGA-internal design of the QoS co-processor. Thick arrows indicate
network packets; thin arrows represent metadata and control signals.

plane interface, the wishbone bridge converts the vendor-specific signals into the open-
source wishbone data bus. For a vendor migration, only the bridge implementation
must be exchanged.

The last component of the design, which relies on vendor-specific modules, is the
memory interface. Here, we provide a memory abstraction layer, allowing the use of
a single memory or multiple memories in parallel to benefit from a higher total mem-
ory bandwidth. For a low-performance design, only a single external DDR4 memory
may be sufficient. If a higher bandwidth is desired, more memories can be added,
including external DRAM-based DDR4 memory but also internal SRAM memories.
These SRAM memories are very well suited for storing small network packets, e.g.,
VoIP data packets, as they probably remain in the FPGA for a short time. Further,
DDR4 performs worse for short read and write accesses. As this DDR4 interface
is very performance-critical, we optimized the corresponding implementation, i.e.,
within the rx-handler and tx-handler, for the AXI data bus, which is used in Xilinx FP-
GAs. The migration of this interface to Intel FPGAs would either cause some effort
or a performance decrease.

In the following subsections, we will discuss some key concepts of the proposed
concept in detail.

Packet Data Flow

In the following, we describe the general working principle of the proposed concept.
As shown in Figure 3.18, the P4 switch sends packets to the QoS co-processor with
a queue ID, labeled as qID in the figure, prepended to the packet. This ID is before
the most out header of the packet, i.e., the Ethernet header of the packet, and has a
constant length of 4 bytes.

Note that the presented design is not a sequentially executed software algorithm.
Instead, it is the combination of multiple hardware modules all running in parallel.
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Figure 3.18: Queue ID metadata transmission from the P4 switch to the QoS-FPGA. The
queueing information is prepended to the downstream packet, including all

packet headers added by the BNG/UPF.

The packet enters the FPGA on the left side at the 100G Ethernet port, as shown
in Figure 3.17. First, the classifier cuts off the queue ID, prepended to the packet,
and provides the raw packet, the extracted queue ID, and the packet length to the
rx-handler. To determine the packet length, it is required to store the incoming packet
in a FIFO memory until the last byte has arrived. The utilized data bus, defined in
the AMBA AXI4-stream specification, has a data width of 512 bits, e.g., a 1500 byte
packet can be received in 24 clock cycles of the FPGA. The queue ID and packet
length are provided in parallel to this data bus as a metadata signal.

Next, the tx-handler is responsible for storing the incoming packet in the mem-
ory of the FPGA, represented by the memory abstraction layer. For this, a memory
address is requested from the malloc module. In the case of multiple external and
internal memories, the allocated memory blocks are distributed equally over the
available memory instances. The internal SRAM memory, if available, is only used
for network packets up to a size of 512 bytes and is aligned in packet blocks of this
size. In contrast to this, the external memory is 2048 byte aligned, sufficiently large for
normal network packets with an MTU of 1514 bytes. As more than sufficient external
DDR4 memory is available, the effect of wasting ∼ 500 bytes per packet is neglectable;
however, it simplifies the address computation. If the internal SRAM memory for
small packets is fully utilized, small packets can also be stored in external DDR4

memory with worse performance.
The memory abstraction layer forwards read and write requests to the corresponding

memory instance based on the address of the request. Thus, only the malloc unit must
be aware of the actual memory topology. The rx-handler and tx-handler can simply
access all memory types in a unified way.

After an incoming packet is stored successfully in the memory and the abstraction
layer confirms the successful write, the packet metadata information, i.e., the physical
memory address of the packet, the length in bytes, and the queue ID, is handed over
to the queue memory. The queue memory consists of a FIFO queue for each queue ID,
and the incoming packet information is appended at the tail of the corresponding
queue. If the queue reaches a configured maximum size, the newly arrived packet
will be dropped, and the memory address is freed in the malloc unit, a typical taildrop
behavior. The details of this module are discussed later.

On the other side of the queue memory in Figure 3.17, the scheduler is attached.
Depending on the scenario, different implementations can be instantiated here, all
providing the same interface towards the queue memory and the tx-handler. The inter-
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face between the queue memory and the scheduler is used to find and dequeue packets
and will be discussed later.

If the scheduler identifies a packet to be sent, the packet address and length are
handed over to the tx-handler. Furthermore, a counter module is informed, counting
the number of sent packets and bytes for each queue.

The tx-handler requests the packet data from the memory abstraction layer and sends
out the data on the egress Ethernet port. This Ethernet port can be the same for
ingressing packets, as the receiving and sending channels are independent of each
other.

Non-Blocking System Design

One main design goal of this prototype is high performance, i.e., high throughput,
low jitter and a low base latency. Therefore, the task execution of the different logi-
cal modules should be decoupled as good as possible. This means, the beforehand
introduced functional components should not wait for each other. E.g., the rx-handler
must wait for the receive confirmation of metadata transmitted to the queue mem-
ory, currently being busy or locked by another task. To avoid this, we propose the
concept of job queues. These queues can be instantiated between two modules with
unidirectional communication and confirm the data reception immediately to the
sending module. After being confirmed, the sending module can process the next
packet, and the job queue waits until the receiver is ready to accept this data. In the
overall design figure, they are only shown at the input of the queue memory and at the
input of the tx-handler; however, they are instantiated between all modules, despite
the interface from the queue memory and scheduler. The interface cannot be used in
conjunction with a job queue, as the information flow is bidirectional. Job queues are
also used for the malloc functionality, allocating memory addresses in advance.

Memory Access Parallelization

The utilized external DRAM memory technology, i.e., DDR4, suffers under high ac-
cess latency and limited bandwidth. Note that the theoretical throughput is halved,
as each packet must be written and read from the external memory. To increase
the throughput, we have already introduced the concept of parallel memories and
a round-robin arbitration between these memories at enqueue time. In addition to
this, multiple overlapping read and write requests can be performed in parallel on
the memory abstraction layer. We utilize read and write IDs of the AXI memory inter-
face specification, allowing multiple unordered requests in parallel. The rx-handler is
allowed to have up to four parallel outstanding write requests for each memory, e.g.,
12 requests for two DDR4 memories and a single internal SRAM memory. This is
mandatory, as we observed in our experiments a very high delay for write responses,
i.e., the signal that a packet is successfully stored in the memory. Similarly, the tx-
handler can address and prefetch multiple packets to be sent in parallel to utilize the
memory bus as high as possible. Note that this optimization is currently optimized
for the AMBA AXI memory interface, which is only available for Xilinx FPGAs. A
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Figure 3.19: Memory data structures of the queue memory storing packets of queues in a
linked list. Each queue is identified by its first and last packet. A bucket holds

the pointer on the packet in the external memory and to the next bucket in this
list. Figure derived from: [108].

migration to Intel FPGAs requires an adaption of the memory access or the loss of
this improvement by parallelization.

Massive Parallel Packet Queueing

The queues within the FPGA are realized in the queue memory, holding a list of mem-
ory pointers on the packets in the external memory. This functionality is realized
internally by four SRAM block memories, namely the queues_mem, queue_valid_mem,
buckets_mem, and bucket_valid_mem.

In the queue_valid_mem memory, each bit indicates for one queue if at least one
packet is in it, i.e., all non-empty queues have a 1 in this memory on the correspond-
ing position. Each entry of this memory has a data width of 32 bits, which allows
checking for 32 queues in parallel if a non-empty queue is available and can be sug-
gested to the scheduler. In the given example of Figure 3.19, the queues nr. 2 and
4 have at least one entry. If the first packet of a queue is pushed or the last packet
popped, this bit is swapped.

The queues themselves are realized as a linked list. The queues_mem has a pointer
to the first and last packet of each queue. In addition, the total amount of bytes in
this queue is stored as a queue length, used for realizing the taildrop behavior. Every
time a packet is pushed or popped, this value is updated incrementally.

Each packet is realized by an entry in the buckets_mem, pointing to the physical
memory address of the packet. In addition, it holds the length of this packet and
a pointer to the next packet in this queue, i.e., another buckets_mem entry. If this
next pointer is 0xffffffff, the tail of the queue is reached, and the last packet is
popped. For performance reasons, the tail of a queue can be detected even simpler
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by comparing the first and last pointer of the queues_mem for equality. The next
pointer is ignored in this case.

The last memory is the bucket_valid_mem and indicates the used entries in the
buckets_mem. This memory is required to find free slots in the buckets_mem for new
packets to be pushed, i.e., an allocation unit. Analogous, each dequeued packet must
be freed in this memory. Note that the buckets_mem is a shared memory between all
queues. Therefore the fixed resource utilization of an additional queue is only its first
and last pointers in the queues_mem as well as its length register.

In the shown example of Figure 3.19, queue nr. 2 holds three packets, and queue
nr. 4 contains a single packet.

For enqueueing and dequeueing packets, two Finite-State Machines (FSMs) are
realized in the queue memory module. We introduce a semaphore-based lock mech-
anism to avoid synchronous access to the memories by the enqueue and dequeue
FSM. This mechanism prevents the two FSMs from operating on the same queue
ID range, i.e., the same memory row in the queue_valid_mem at the same time. For
example, no concurrent operations on all queues with the IDs 32 to 63 are allowed.
By this, operations on the same queues_mem entry are prevented implicitly.

In the following, we describe the enqueueing mechanism in detail, as shown in
Listing 3.2.

1 func enqueue(packet p, int qID):

2 //check configured maximum queue length (taildrop)

3 if (queue[qID].length > MAX_QUEUE_SIZE):

4 //drop the packet

5 external_mem_malloc.free(p.address)

6 return

7

8 //create buckets_mem entry

9 bucket = new bucket()

10 bucket.address = p.address

11 bucket.length = p.length

12 bucket.next = 0xffffffff

13

14 //update queues_mem

15 if (valid_memory[qID] == 0):

16 //pushing the first packet

17 queue[qID].first = bucket

18 else:

19 //update the currently last bucket entry of the queue

20 queue[qID].last.next = bucket

21 queue[qID].last = bucket

22 queue[qID].length += p.length

23

24 //mark queue to be non-empty (even if it was 1 before)

25 valid_memory[qID] = 1

Listing 3.2: Working principle of the enqueue FSM of the queue memory.
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Figure 3.20: FPGA internal finite state machine (FSM) and control signals of the push
mechanism in the queue memory.

First, the algorithm checks whether the current queue length has reached the tail-
drop limit (line 3). In this case, the packet is discarded, and the memory address
of the packet is freed in the malloc unit. Otherwise, a new entry in the buckets_mem
is created, pointing to the memory address of the packet (lines 9 to 12). The next
pointer is 0xffffffff, as newly pushed packets are always at the tail of the queue.

If the pushed packet is the first packet in the queue, i.e., the queue is currently
empty, the first pointer must be redirected to the new buckets_mem entry (lines 15 to
17). In all cases, the last pointer will be updated to point to the newly added entry,
and the queue length is increased by the length of the currently added packet. Other-
wise, if the queue already has entries, the FSM must redirect the next pointer of the
previous last bucket to the newly added entry (line 20). The bit in the valid_memory,
indicating that the queue is not empty, can be set to 1 in all cases, even if it was 1
before (line 25), to avoid an unnecessary comparison.

This algorithm is described as a FSM in Verilog, consisting of 4 or 5 states (note
one optional state), as shown in Figure 3.20. In the figure, only the read and write
operations on three memories are shown, as the bucket_valid_mem is not performance-
critical and can be seen as an encapsulated allocation unit.

In the first clock cycle, during the state push_idle, the bucket entry is created and
written. If the packet would be discarded later due to a taildrop, this memory is
then simply freed. In parallel, a read operation on the queues_memory at the address
of the queue ID is performed. This read operation is performed in either one or
two clock cycles depending on the number of queues and FPGA clock frequency. In
addition, the queue_valid_memory is read, as the queue where the packet is pushed
might require an update of its valid bit. As this memory has a word size of 32 bits
and only a complete word can be written, the remaining 31 bits must be known to
update a single bit. The next state, push_reg, is only used if the number of queues
and FPGA clock frequency is very high.



64 design of qos-aware network functions

In the following two states, push_reg2 and push_update_queue, the new values of
these memories are computed, and the taildrop check is performed. Finally, in the
state push_write_queue, the new memory data is written to the three memories. Note
that each digital signal, e.g., queue_last_s, is stored after each state transition in a new
data register to maximize the possible clock frequency of the FPGA. The rewriting
for parallel execution of the presented algorithm is necessary to achieve the highest
possible performance.

Assuming a clock frequency of 200MHz, i.e., a clock cycle takes 5 ns, a theoretical
enqueue packet rate of 40 million packets per second can be achieved. The dequeue
state machine, following the same mechanisms, consists of 10 states, leading to a
theoretical packet rate of 20 million packets per second. This state machine has more
states as it 1) searches a non-empty queue, 2) requests a scheduler decision, and
3) dequeues the packet. However, this packet rate is still sufficient to achieve a line
rate of 100Gbit/s for large packet sizes and will be discussed later in evaluation
Section 5.2.3.

Packet Scheduling at Scale

In the proposed architecture, the scheduler is attached to the queue memory on an
interface, allowing to search non-empty queues and dequeueing them. In this work,
we developed three scheduler implementations with different purposes:

• No-Scheduler: The intention of the no-scheduler is the performance evaluation
of the remaining system components. It immediately accepts every suggested
packet of the queue memory and is used for evaluation purposes only.

• Simple-Scheduler: The simple scheduler performs rate limiting for each queue
based on a token bucket mechanism. It suits well for the demand in mobile
access networks, i.e., as a part of the UPF.

• HQoS-Scheduler: The HQoS-scheduler fulfills the needs of residential access
networks, mainly hierarchical rate limits and inter-subscriber QoS enforcement.

The interfaces of the three implementations towards the queue memory and tx-handler
are identical and will be discussed in the following. Figure 3.21 depicts the simplified
internal structure of the HQoS-scheduler and the interface towards the queues_memory.
The tx-handler interface is not shown.

The scheduling process can be divided into four phases: 1) First, the queues_memory
proposes a queue ID of a non-empty queue to the scheduler. Note that the packet
length is not provided to the scheduler at this time. 2) Based on this queue ID, the
scheduler decides if the first packet of this queue is allowed to be sent or not. For this,
the internal token bucket instance(s) check if sufficient tokens are available, assum-
ing maximum-sized packets, i.e., of the Maximum Transmission Unit (MTU). In the
case of the hierarchical scheduler, multiple token bucket instances are instantiated in
parallel, each representing a hierarchical layer. Only if all hierarchical layers allow a
packet to be sent the scheduler output ok_to_send will be set. 3) After the notification
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that a packet should be dequeued, the memory address and length of the packet are
handed over from the queues_memory to the scheduler. In contrast to the scheduling
decision, assuming a packet size of the MTU, the token buckets are updated with the
actual packet length. This allows faster scheduling, as finding a non-empty queue in-
volves only queue_valid_memory, while the packet length of the first packet is stored
in the buckets_mem, and reading the length would require three subsequent memory
accesses in total. Further, the packet address and length are handed over to the tx-
handler. Last, in step 4), the scheduler notifies the queues_memory module to continue
searching for non-empty queues. For this, the scheduler can provide a queue ID as
starting index. If this index is the same as the currently popped packet, multiple
packets of a single queue can be dequeued at once, assuming the queue is not empty.
In the case of hierarchical access networks, the token bucket of a shared access node
may prohibit sending a packet. Then, the scheduler can jump over all queue IDs be-
longing to this access node and continue searching for non-empty queues belonging
to another access node. If a packet of the proposed queue ID should not be sent, i.e.,
the token bucket is empty, the scheduler can proceed with step 4 directly after the
queues_memory offers the queue ID.

The token bucket module must maintain and update the states of many queues
in parallel, e.g., for > 100, 000 rate-limited queues. A periodic update of the token
bucket state, e.g., n tokens every 10µs, would cause a significant overhead and is un-
necessary as most subscribers do not permanently utilize their Internet connection.

Therefore, we propose a concept to update only the token buckets of active rate
limiters. Every time a scheduler decision is requested, the following mechanism is
used to update the token bucket value:

bucket[qID] = bucket[qID] + (tnow − t[qID]) · token_rate[qID]

t[qID] = tnow

For every queue, a bucket value, a timestamp (t), and a token_rate value are stored.
The timestamp indicates when the bucket value for this queue ID was updated last.
Based on this, the time difference to the current time (tnow) can be computed and
multiplied by the number of tokens per time unit, i.e., the configured token_rate. This
mechanism is realized within the FPGA, leveraging an 18-bit hardware multiplier,
called DSP, to enable fast scheduling decisions. Timestamp overflows are detected
by an overflow bit and can be handled. Note that an undetected overflow of the
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timestamp register can still occur, however, only if packets are in this queue. In this
case, the overflow has no significant impact on the system behavior.

The scheduler implementation can be extended by an Active Queue Management
(AQM) algorithm, discussed later in Section 3.3.3.

Control Plane Integration

Even though the focus of this work is on the data plane, considering the control
plane integration is unavoidable. For each queue, the control plane can configure
an individual rate. Further, the control plane can access configuration and status
registers, e.g., taildrop queue depth or AQM support, and counter values. For this, a
low performance data bus is available on the FPGA, allowing read and write requests
via PCIe.

A simple control plane driver runs on the server connected to the FPGA via PCIe,
converting incoming gRPC requests for read and write operations on the PCIe bus.

For this, two approaches exist, both implemented and evaluated in this work:

• Kernel Module: A custom kernel module is registered to be used for this PCIe
device, i.e., by the vendor and device ID. This kernel module appears as a char-
acter device in Linux, e.g., as “/dev/QosFpga”. In addition to the kernel module,
a user space driver can access this character device and perform read and write
operations on a custom API. This approach requires a kernel module compila-
tion on every system and after every kernel update.

• Memory Mapped I/O: Instead of using a kernel module, the PCIe memory re-
gion of the FPGA can be memory mapped in the user space application, e.g., by
mounting the following Linux path “/sys/bus/pci/devices/0000:65:00.0/resource0”.
This approach works without any kernel modification, only sufficient permis-
sions are required. However, it is mandatory that neither interrupts nor Direct
Memory Access (DMA) is used. As long as only configuration updates are
performed, this is no disadvantage.

These two approaches are equivalent to the QoS co-processor functionality from
the functional side. The memory mapping approach allows a simpler integration and
maintenance, as no kernel module must be compiled and maintained. The control
plane performance, i.e., how fast read or write operations can be performed, will be
evaluated later in Section 5.2.3.

3.2.5 Discussion on Accelerated Internet Service Creation

In this chapter of the thesis, we presented approaches to accelerate residential and
mobile Internet service creation. While the state-of-the-art approaches in current res-
idential access networks are inflexible blackboxes, existing mobile access networks
rely on softwarized network functions with limited performance. In this section, we
proposed the concept of flexible hardware acceleration with good performance on
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P4-programmable switches and FPGAs as QoS co-processors for both access scenar-
ios.

Our previously published results have already been picked up in related work, and
other researchers have discussed similar topics in the meantime. In the following, we
will discuss them briefly.

In 2019, Singh et al. presented an approach for offloading the virtual Evolved
Packet Gateway (vEPG), the equivalent of the UPF in 4G networks, on P4 pro-
grammable switches [171]. Their work builds upon the concepts of the already pub-
lished acceleration methods for the residential BNG use case, presented as part of
this thesis. Further, their presented evaluation results are similar to the findings in
this work, punctuating the results’ validity of each other.

Nadas et al. presented a concept, named “Per Packet Value”, enabling QoS en-
forcement in access networks [133]. This approach allows realizing prioritization
between multiple subscribers in hierarchical residential access networks (compare
Figure 3.14). This approach would classify the packet at the access edge in the down-
stream direction and assigns a per packet value, which is later used in the access
network to schedule packets. However, this approach would cause packet loss in the
network elements of the access network, which is undesirable as one requirement is
zero packet loss between the access edge and the subscriber.

Upon our ideas, the company APS Networks GmbH announced multiple products,
building upon the conjunction of FPGAs and P4-programmable switching chips [14].
These switches are tailored to realize residential and mobile Internet service creation,
but further use cases, e.g., deep packet inspection, are also intended.

The Telecom Infra Project, represented by multiple large Internet service providers,
released in 2020 an open specification for the residential Internet service creation,
named “OpenBNG” [183]. This work addresses the same needs and requirements as
discussed in this work, i.e., functionality, flexibility, and performance.

Based on our results in this work, we suggest a further technological convergence
of residential and mobile Internet access termination in the future, already discussed
in the literature as Fixed Mobile Convergence (FMC) [36]. We extended our design,
proposed in Section 3, allowing residential and mobile subscribers to be terminated
simultaneously, both being authenticated by a 5G core.

In this design, all concepts of the preceding three sections are included. Note
that in residential access networks, the control traffic is also sent to the access edge
and will be redirected in the design to the slow path of the Access Gateway Func-
tion (AGF). Yet, this convergence was not investigated as part of this work.

Another related field of research investigates the combination of software- and
hardware-based data planes. This idea of a hybrid network function, consisting of
hardware and software parts for packet processing, was discussed in the literature,
e.g., by Katta et al [91]. These approaches are compatible with the presented con-
cepts in this work and allow future space for improvement, i.e., distributing the total
set of subscribers between programmable hardware and a software switch. By this,
the almost infinite memory capacity of software switches is combined with high-
performance hardware. In the presented design for residential and mobile subscriber
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termination in Figure 3.22, the slow path represents a software switch that could be
extended following the idea of a hybrid switch. By this, the number of parallel sub-
scriber sessions could be further increased; however, this is currently not needed.
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Figure 3.22: Concept of a general UPF design for fixed-mobile convergence following the
concepts of this work and the TR-470 specification [36], realizing residential

and mobile subscriber termination in the same dataplane.
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3.3 active queue management

One goal of this work is the QoS improvement by hardware acceleration in network-
ing edge environments. In the previous sections, we presented concepts for Packet
I/O in hardware accelerators with low latency and high throughput; further, we
discussed approaches to realize residential and mobile Internet service creation on
programmable hardware. However, the previously presented concepts aim only at a
high QoS of the network function but not of the end-to-end connection, e.g., from the
subscriber to the Internet service.

As introduced in the background Section 2.4, traffic shaping of congestion-con-
trolled network flows, e.g., common TCP flows in the Internet, tend to fill the shaper
queue completely, a phenomenon called “bufferbloat”. Active Queue Management
(AQM) algorithms offer a remedy to this. In this section, we introduce concepts how
existing algorithms, tailored for software-based network stacks, can be adapted for
and integrated in programmable hardware.

3.3.1 The CoDel Algorithm

In the following, we analyze the Controlled Delay (CoDel) algorithm, which we choose
as an exemplary mechanism to avoid unnecessarily high delays in the Internet, ex-
tending the concepts of subscriber termination in this work [139]. Traffic shaping, i.e.,
queueing of packets, is required before potential bottleneck links to compensate for
the rate variability of arriving packets. In the case of bloated buffers, the queueing
delay is constantly high, and thus the queue never becomes empty. The main idea of
the CoDel algorithm is to detect and prevent constantly filled queues.

In Listing 3.3, the CoDel algorithm is given as pseudo-code, extracted and sim-
plified from the Linux reference implementation. The algorithm has two input pa-
rameters, TARGET and INTERVAL, both affecting the AQM decision, i.e., if a packet
should be dropped/marked. The TARGET describes a queueing latency, e.g., 5ms,
which should not be exceeded permanently. If the queueing delay is higher than
the TARGET value for a time period longer than INTERVAL, the algorithm starts
dropping or marking packets. The default INTERVAL value of 100ms is sufficient to
absorb temporary packet bursts.

Next, we analyze the CoDel algorithm in detail. In general, CoDel has a state,
either being idle or dropping. The algorithm is called for each packet to be sched-
uled, compare Line 5 of Listing 3.3. First, in Line 7, the current queue delay is
checked (if_1). If the current queue delay is below the latency TARGET or less than
one MTU-sized packet is in the queue, the algorithm transits to the idle state. The
MTU check is only relevant for very low shaper rates to ensure that the algorithm can
send at least one MTU-sized packet. In this case, the algorithm terminates without
dropping any packet (Line 9).

Otherwise, the algorithm checks if the current packet is the first one exceeding
the TARGET delay (if_2 in Line 11). In this case, the dropping state is entered, and
the number of dropped packets in the previous dropping phase is saved (Line 13
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and 22). In Line 21, the algorithm computes the point in time when the first packet
should be dropped. Note that this calculation includes a square root computation
and a division, which is complex to implement in hardware.

In Line 15, the basic algorithm is extended by an optimization (if_3). In the case
of an increasing number of dropped packets over the last two dropping phases,
the algorithm starts with a count value bigger than 1 (Line 18), leading to earlier
and more frequent packet drops. This is a very simple learning mechanism, which
allows reacting more effectively under load-intensive network conditions, e.g., many
parallel and bandwidth-demanding TCP flows.

The actual packet dropping is performed in Line 26 and following (if_4). If the
algorithm remains in the dropping state until the time drop_next_packet, a packet is
dropped, the dropped packet counter is increased, and the next time to drop a
packet is computed. Note that if the queueing latency falls below the TARGET la-
tency, the state toggles and the timestamp of the next packet to be dropped is not
used anymore.

1 #define TARGET 5 //ms

2 #define INTERVAL 100 //ms

3 Queue queue; State state

4

5 for each received packet p:

6 //Is the latency below the target delay? (if_1)

7 if(p.queue_delay < TARGET || queue.byte < IFACE_MTU):

8 state.dropping = false //false: idle, true: dropping

9 continue

10 //Do we have to enter the drop state? (if_2)

11 if(state.dropping == false):

12 state.dropping = true

13 tmp_count = state.count

14 //Was the number of dropped packets per round increasing? (if_3)

15 if((state.count - state.last_count > 1) &&

16 (now - s.drop_next_packet < 16*INTERVAL)):

17 //Start packet dropping earlier

18 state.count = state.count - state.last_count

19 else:

20 state.count = 1

21 state.drop_next_packet = now + INTERVAL/sqrt(state.count)

22 state.last_count = tmp_count

23 continue

24 //Are we in droping state and reached the time to drop the next packet?

25 //(if_4)

26 if(state.dropping && state.drop_next_packet <= now):

27 p.drop()

28 state.count++

29 state.drop_next_packet = now + INTERVAL/sqrt(state.count)

Listing 3.3: Pseudo-code for the CoDel AQM algorithm, based on RFC 8289 [139] and [109].
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3.3.2 P4-Codel

In this section, we investigate how the CoDel algorithm, introduced in Section 3.3.1,
can be adapted for P4-programmable hardware. First, we investigate the reduction
of the mathematical complexity. Second, we propose a concept for mapping the algo-
rithm in a cycle-free way on the programmable hardware resources. The underlying
source code of this work is available open-source2.

Reduction of Mathematical Complexity

In Line 21 of Listing 3.3, the CoDel algorithm includes an inverse square root compu-
tation. However, even highly specialized hardware architectures for (inverse) square
root computation require many clock cycles, e.g., 12 clock cycles as named by Hasnat
et al. in 2017 [71]. Existing P4-programmable hardware would not allow the realiza-
tion of such calculations, and a realization in FPGAs would delay scheduler decisions.
Therefore, to ensure a constant and low processing time in hardware pipelines, this
function should be approximated.

Although the mathematical approximation of a function causes an approximation
error, this error is neglectable in this scenario for two reasons: First, the computed
value is not used as the input for further direction, which would cause the error to
be multiplied by itself and by that increased. Second, the congestion control mecha-
nisms and flow mixture in the Internet depend on many influencing factors, causing
a non-deterministic behavior. Therefore, any AQM algorithm is only an estimation
to handle this.

Therefore, we propose a simple approximation for the squareroot function, which
can be realized with ternary match tables of P4-programmable switches and with
logical building blocks of FPGAs. The input of this function is the integer number
n. The approximation performs a ternary lookup on the number of leading zeros
of the binary input n, and the lookup table entry contains a precomputed value
for the function. This mechanism can be realized with existing hardware concepts.
Figure 3.23 depicts the original inverse square root function and the approximation.
This function could be approximated quite well by a very low number of entries.
This approximation can be improved by utilizing range matches instead of counting
the number of leading zeros; however, this is not needed for this algorithm.

To summarize, we introduced an approximation for the inverse square root func-
tion and have shown its mathematical matching with the original function. However,
this assessment does not allow any statement about the real influence of the approx-
imation on the end-to-end behavior of network flows and congestion. Later in Sec-
tion 5.3, we investigate how the approximated CoDel algorithm behaves compared
to the Linux reference implementation.

2 https://github.com/ralfkundel/p4-codel

https://github.com/ralfkundel/p4-codel
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Figure 3.23: Mathematical approximation of the INTERVAL√
n

function to realize to CoDel
AQM in programmable hardware. The approximation performs a ternary
lookup of the input n, i.e., counting the number of leading zeros in binary

representation.

Pipeline Mapping on P4-programmable Switches

The next step in realizing the CoDel algorithm in P4-programmable switches is the
rewriting of the algorithm, allowing the compiler to map the functionality on the
available switch resources.

The general concept of P4 switches, introduced in Section 2.3, relies on a packet
processing pipeline, as shown in Figure 3.24. Based on the assumption that the packet
queues are located between the ingress and egress pipeline, the per-packet queueing
delay is only available in the egress pipeline. Therefore, the CoDel algorithm should
be instantiated in the egress pipeline. Note that asynchronous feedback of the cur-
rent queue occupancy in the ingress pipeline is theoretically possible and might be
supported by future generations of P4-switches. The CoDel AQM algorithm could
also be instantiated before the queues if asynchronous feedback is supported. How-
ever, this is not the case for current generations of P4 switches and, thus, we expect
the algorithm to be located behind the queues.

Next, we transform the CoDel algorithm, introduced in Listing 3.3, into a state-
centric dependency graph, shown in Figure 3.25. This graph highlights the three
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stateful variables, dropping, count, and last_count. It is visually recognizable in the de-
pendency graph that there is a time gap between reading operations, denoted with
an r, and writing operations, denoted with a w. However, each stateful variable can
and must be placed only in a single pipeline stage of the P4-switch. Cyclic depen-
dencies cannot be supported by P4-programmable switches, as this would cause a
data inconsistency between multiple packets and an information flow in the pipeline
contrary to the pipeline flow.

Therefore, each stateful variable must be realized within a register located in a
single pipeline stage of the P4 switch. All computational logic between reading and
writing this register must also be located in the same pipeline stage.

For example, the dropping variable is read to determine the current state. If this
state is idle and the TARGET queue delay is violated, the dropping state is entered.
This state entering should be detected for further computations. The read and write
operations on the dropping register must be located in the same pipeline stage. Oth-
erwise, the subsequent packet reads an outdated value, and the state entering may
be detected twice.

Listing 3.4 shows a cycle-free representation of the algorithm optimized for the
P4-programmable Intel Tofino architecture. The sketch in Figure 3.26 shows logic
mapping on the corresponding pipeline stages.

First, for each packet, a possible TARGET delay violation is examined by if1. This
function does not depend on any state and can be performed on the packet metadata.
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Figure 3.26: Cycle-free dependency graph placement of the CoDel algorithm, optimized for
the hardware resources of the P4-programmable Intel Tofino. The grey boxes

represent stateful ALUs of the hardware, a component that allows atomic and
stateful operations for all network packets. Figure derived from [109].



74 design of qos-aware network functions

1 #define TARGET 5 //ms

2 #define INTERVAL 100 //ms

3 Queue queue;

4

5 for each received packet p:

6 //check for target delay violation? (if_1)

7 if(p.queue_delay < TARGET || queue.byte < IFACE_MTU):

8 delay_violation = false

9 else:

10 delay_violation = true

11 is_first_violation = S_ALU1.exec(delay_violation)

12 codel_drop = S_ALU2.exec(is_first_violation)

13 if(delay_violation && codel_drop): //&

14 p.drop()

Listing 3.4: Cycle-free representation of the CoDel algorithm optimized for
P4-programmable pipelines. Code derived from [109].

The following stateful operations are executed for all packets, independent of a
delay violation. In the case of no delay violation, the final logical AND (&) operation
disables a possible dropping decision, and the stateful CoDel logic has no effect.
This optimization simplifies the behavior of the two stateful ALU operations in the
pipeline stage n and n+1, and enables the logic to be compiled.

The state management of the CoDel algorithm is located in the first stateful ALU
(S_ALU1). The input of this component is the information on whether there is a
TARGET delay violation or not. The output indicates if the state has changed from
idle to dropping, i.e., the current packet is the first packet with a delay violation.

The input of the second stateful ALU (S_ALU2) is the information on whether it is
the first queue delay violation or not. Further, the current time, an incremental integer
number, is the second input. The information on the algorithm state, i.e., if it is in
the dropping state or not, is not known. This ALU maintains two stateful registers,
drop_next and count, both having a width of 32 bit. If the current packet is the first
delay violation, the count register will be set to 1. In addition, the time drop_next,
describing the first packet to be dropped, is computed.

If the current packet is not the first delay violation, a comparison between the
current time and the drop_next register is performed. As soon as the current time
overruns this value, the output of this ALU is set to codel_drop = 1, the counter is
incremented, and the next drop_next value is computed.

As the number of inputs and registers per stateful ALU is limited to two by cur-
rently available P4-hardware, the last_count register and corresponding optimization
in Line 15 of Listing 3.3 cannot be realized. If future P4-programmable hardware
supports more stateful registers per pipeline stage and more input signals, i.e., the
dropping state, an improved version of CoDel could be realized.
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Pipeline Mapping on P4-programmable Network Interface Cards

Besides the Intel Tofino platform, we briefly discuss Netronome SmartNICs as a
second P4-programmable target for queue management. This P4 target is already
known from Section 3.2, where we discussed Internet service creation. This plat-
form consists of a Network Processing Unit (NPU), which executes assembly code
provided by a P4 or C compiler. The execution is distributed over multiple cores, pro-
cessing packets in parallel. To the best of our knowledge, details on the compilation
and mapping process of P4-programs on this hardware architecture are not known.

While investigating the capabilities of this platform, we observed several issues,
probably caused by limited compiler functionality. First, the current queue delay is
not accessible by the P4 program. To circumvent this issue, we utilized embedded C
functions in the C code, which access the corresponding information. As the infor-
mation is available, we assume this to be a compiler limitation only.

Further, this data cannot be used as an input for further processing within the P4

program. Therefore, we implement the complete CoDel AQM algorithm as an exter-
nal C function, analogous to the pseudo-code in Listing 3.3. Note that the complex
square root operation is still approximated by counting the number of leading zeros.
The observed limitation of programmable data plane hardware regarding complex
mathematical operations is generous and is not caused by any programming lan-
guage.

We do not have detailed information on the parallel packet processing within the
SmartNIC. However, it is very likely that the parallel execution of the same program
on multiple processor cores will cause race conditions on the shared register val-
ues of the algorithm. Later, in Section 5.3, we evaluate this solution and compare
it with the Linux reference implementation. Assuming the register values are not
synchronized and thread-safe between the processing cores, as implied in the hard-
ware datasheets, we expect a higher packet drop rate due to simultaneous dropping
decisions.

3.3.3 FPGA-based Queue Level Control

In Section 3.2.4, we introduced a concept for realizing QoS functionality on FPGAs,
aiming at per-subscriber traffic shaping and hierarchical scheduling in Internet ac-
cess networks. This concept, however, would also benefit from AQM, actively avoid-
ing bufferbloat to improve the end-to-end service quality and experience. In this sec-
tion, we discuss how the CoDel algorithm can be integrated in this previously pre-
sented design and propose a prototypical implementation. Analogous to the restric-
tions of P4-programmable data planes, a software algorithm cannot be instantiated
as it is on FPGAs, but it must be adapted.

Modular Integration and Interaction of the AQM Algorithm in the Scheduler

The previously introduced FPGA architecture contains an exchangeable scheduler
module (compare Figure 3.17). Within this module, the rate-limiting logic should
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be extended by the CoDel AQM functionality. For this, we extend the general state
machine of the scheduler, currently only requesting feedback from one or multiple
rate limiters, by an AQM instance. The general control flow of this state machine is
presented in Listing 3.5.

The scheduler is called for each non-empty queue, suggested by the queue memory.
First, in Line 4, the scheduler iterates over all rate limiter instances and checks if a
packet of the given queue is allowed to be sent. In the case of mobile access networks,
typically, only a single rate limiter exists. For hierarchical residential access networks,
multiple parallel limiters are instantiated. Note that the sequential check of multiple
rate limiters is realized by a logical AND operation in hardware, i.e., all rate limiters
are requested for their packet acceptance (ok) in parallel (compare Section 3.2.4). If
at least one scheduler declines the packet to be scheduled (Line 6), the packet is not
sent now, and the process terminates. Otherwise, the logic proceeds with requesting
an AQM decision.

The input of the AQM module, called in Line 11, is the queue ID, the rate limit of
the queue, and the current queue length. While the queue memory provides the queue
ID and length, the queue rate must be provided from the configuration memory of
the per-subscriber rate limiter.

The queue rate and length are required, as the latency of the packet is computed by
dividing the queue length by the queue rate. Alternatively, the enqueue timestamp
must be stored for each packet to compute the queue delay. Both approaches are
viable; however, the chosen method requires less memory as no timestamp must be
stored. On the other hand, storing a timestamp for each packet simplifies the queue
delay computation, as discussed in the following subsection.

1 for each suggested queue q:

2 ok = true

3

4 for each limiter in rate_limiters:

5 ok = ok && limiter.is_ok(q.id)

6 if(!ok):

7 //at least one rate limiter declined packet sending

8 continue

9

10 //AQM integration:

11 aqm_decision = aqm.request(q.id, q.rate, q.length)

12 if (aqm_decision == drop):

13 //the first packet in the queue is dropped for AQM reasons

14 q.pop_and_drop()

15

16 // if the scheduler accepts the offered queue, always a packet is sent

17 q.pop_and_send()

Listing 3.5: Integration of the AQM functionality in the scheduler module in extension to
the FPGA design presented in Figure 3.21.
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If the AQM instance decides that a packet should be dropped, this packet is
popped from the queue memory and then discarded instead of handing it over to
the tx-handler (Line 14). Further, in Line 17, a second packet will be popped and
sent from the same queue. This is a viable decision, as the goal of the AQM is not
to reduce the scheduling rate; instead, the congestion control mechanism should be
notified by controlled packet drops. In the case of no AQM drop decision, only this
pop_and_send logic is executed.

Note that the scheduling logic is presented and described as a sequential process.
However, the actual FPGA realization is highly parallelized to achieve faster schedul-
ing decisions.

FPGA-based CoDel Realization

After discussing the overall integration of the CoDel AQM logic in the scheduler
module, we face the realization of the algorithm next. The block diagram in Fig-
ure 3.27 shows the internal logical structure. It consists of three data input signals,
queue_id, queue_rate, queue_length, and a request indication signal.

If a request is performed, first, the queueing delay is computed by dividing the
queue_length by the queue_rate. Due to its complexity, this operation requires two
clock cycles within the FPGA and is already optimized by allowing a little inaccu-
racy, i.e., the queue_length is rounded to multiples of 64 byte. As stated before, this
could also be realized by storing the enqueue timestamp for each packet and sub-
tracting it from the current time. A subtraction is significantly easier than a division.
However, storing additional per-packet metadata, i.e., the enqueue timestamp, re-
quires additional memory resources, lowering the total number of queues that can
be realized. Next, a possible TARGET delay violation is checked. Finally, the CoDel
AQM logic is realized as a Finite-State Machine (FSM). Besides the already discussed
inputs, a local clock is instantiated.

For each queue ID, there is an entry in the queue_state_mem, responsible for main-
taining the CoDel state, as discussed in Section 3.3.2. Specificaly, a 1-bit state (drop-
ping or idle), and a 31-bit timestamp are stored. The timestamp indicates the drop_-
next_packet value, already introduced in the P4-realization section. The logic of the
FSM is realized analogous to the P4 switch implementation.

Note that at any time only a single decision request is processed within this AQM
module and the whole scheduler.
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Figure 3.27: Internal structure of the CoDel Active Queue Management (AQM) module,
realized as a low-level FPGA module.
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3.3.4 Discussion on AQM in Programmable Hardware

In this thesis chapter, we introduced concepts to realize Active Queue Management
(AQM) algorithms in programmable data planes, specifically, P4-programmable swit-
ches and FPGAs. The previously introduced concepts for Internet service creation,
including subscriber termination and QoS-aware rate enforcement, were extended.
This allows an improved end-to-end QoS in Internet access networks. Specifically, the
deployed AQM algorithm allows a lower queueing delay while the same throughput
can be achieved. New mechanisms in the data plane are also conceivable [104].

Other researchers investigated similar topics in parallel or building upon our work.
Extending our initial work on the CoDel algorithm realization in the P4 program-
ming language [101], Papagianni et al. proposed a novel algorithm, “PI2”, tailored
for P4-programmable hardware [149]. However, they addressed only a realization
in the P4 software switch bmv2 that does not suffer under the hardware restrictions
discussed in this section. Therefore, it is not clear if their algorithm is a viable so-
lution for hardware switches. However, it emphasizes the expressiveness of the P4

programming language and the concept of AQM realizations in hardware.
Harkous et al. presented a virtual queue-based traffic management approach in

P4 data planes, including an AQM-based Explicit Congestion Notification (ECN)
mechanism [70]. They faced the AQM mechanism of the newly introduced Low
Latency, Low Loss, Scalable Throughput (L4S) congestion control scheme [28]. The
realized prototype is based on the P4 software switch bmv2 and P4-programmable
smart network interface cards from Netronome, the same as utilized in this work.
The authors have shown that different QoS classes, named slices, can be separated
by their approach, and different service levels can be guaranteed. In their realization
with the P4-programmable hardware from Netronome, they could not utilize the
queueing capabilities of the hardware, as “some of the standard metadata fields that
report the queue occupancy are missing” [70]. This description coincides with the
findings in this work. However, in our approach, we circumvented this limitation
by addressing the queue level status register by embedding micro-C code in the P4

program, an unclean solution but viable to prove the general feasibility.
Kunze et al. investigated the powerfulness of the Intel Tofino platform in conjunc-

tion with the P4 programming language for AQM in general [116]. The authors
state that the realization of queue management algorithms in P4 hardware is very
challenging, and existing software algorithms cannot be used without modifications.
This statement agrees with the findings in this work and partially builds upon our
previously published research results. Further, they demand better support for queue
management in the P4 programming language. We consider this critical, as it is not
compatible with the basic principles of a cycle-free switch pipeline. We expect a hy-
brid chip design of future programmable switches as a viable solution, consisting of
P4-programmable pipelines, fixed data structures for packet queues, and FPGA-like
programmable regions to describe custom schedulers, including cyclic algorithms.
Programmable packet processors, such as the used P4-SmartNICs in this work, may
also be appropriate programmable hardware for packet schedulers.
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P 4 S TA : H I G H P R E C I S I O N N E T W O R K F U N C T I O N
B E N C H M A R K I N G

Network function benchmarking is crucial for system understanding and optimiza-
tion in computer networks, including the approaches presented in the prior Chap-
ter 3 of this work. Specifically, an accurate capturing of the Quality of Service (QoS)
identifiers latency, packet loss, throughput, and jitter is fundamental.

These metrics indicate if the tested network function fulfills the postulated service
quality. Further, they can be used to understand and optimize network functions.
Besides latency, packet loss is a very important metric: Even slight packet loss, es-
pecially at the end of data flows, can have a strong negative influence on the flow
completion time [63]. In addition, Internet access networks must guarantee zero un-
detected packet loss for regulatory reasons (compare Section 2.2). Therefore, network
function benchmarking is very important to achieve an improved network quality.

The importance and difficulty of network function benchmarking become appar-
ent when we examine current networking hardware, which experienced many perfor-
mance jumps in the past: An up-to-date data center switch may consist of 64 ports,
each operating at 100Gbit/s. At this link speed, transmitting a packet of 1500 byte
requires 120ns, the inter-packet time. This time is proportionally shorter for smaller
packets, e.g., 10 ns for a 128 byte Voice over IP (VoIP) packet. Compared to the clock
frequency of current networking switches, which is ∼ 1GHz =̂ 1 ns/clock cycle, this is
a very short time [35]. Imagine that sending and receiving small packets may happen
at all 64 switch ports in parallel.

The actual latency of networking switches is significantly higher than the inter-
packet times, as many packets are processed in parallel by the switch pipeline. How-
ever, we assume the port-to-port switch delay is below 1µs depending on the con-
crete switch model [158]. During normal operation, i.e., no failure or congestion
occurs, the packet loss is typically zero.

As a consequence of this good performance, the benchmarking equipment must
be able to operate at these high link speeds and concurrently must provide a very
high time and loss measurement accuracy. Specifically, an exact packet loss detection
and a time accuracy of a few nanoseconds are mandatory.

As discussed in Section 2.5, existing commercial and open-source approaches do
not provide this accuracy, especially not in a flexible environment. Note that existing
commercial tools build on FPGAs, operating on a lower internal clock frequency than
networking switches [176]. This implies a reduced time accuracy as the inter-packet
time of small packets is in the range of a single clock cycle.

In this chapter, we discuss how highly accurate and flexible network function
testing can be realized with programmable network hardware. This approach allows

79
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a sophisticated understanding of the tested hardware, allowing further optimizations
of Internet access networks and computer networks.

Requirements on the Testing System

From the above-mentioned demands and challenges, we derive the following require-
ments for a testing and benchmarking system:

• Flexible and Easy Load Generation: Generating complex traffic patterns in
hardware is challenging, especially if the sender should react to incoming pack-
ets. Therefore, a load generation should be possible in a any way, e.g., utilizing
existing standard software tools.

• Throughput: It is mandatory to generate test loads up to 100Gbit/s at any
packet size. Current software-based load generators[37] or trace replay tools [4]
do not support this. Therefore, hardware assistance is mandatory to achieve
high rates. Further, the test load should be precisely adjustable.

• Time Accuracy: To capture the behavior of the tested network function in de-
tail, a nanosecond time accuracy for packet timestamping is mandatory. For
some analysis, it is compulsory to capture timestamps for every packet, even
at 100Gbit/s.

• Loss Detection: In order to detect packet loss, each packet sent in and received
from the tested network function must be captured. This loss detection requires
exact packet counting, as the benchmarking system should be able to prove
zero packet loss behavior of the tested network function.

• Extendability: Every network experiment is different, and they often have par-
ticular demands. Therefore, the test framework should be modular and easily
extendible, including open interfaces and common data formats.

4.1 overview on disaggregated network function testing

We propose the P4STA framework to address these requirements, which we will dis-
cuss in the following. The overall topology is shown in Figure 4.1 and consists of
several interconnected components, which will be discussed in the following:

The Device Under Test (DUT) is the network function to be tested. We consider
the DUT as a black box, as the internals of the DUT are not necessarily known, and
this knowledge is not required.

The load generators are commodity servers with Network Interface Cards (NICs).
This allows the execution of any software-based packet generator, e.g., MoonGen [50],
TRex [37], tcpreplay [4] or IPerf [83]. Thus, the complete flexibility of computer soft-
ware is usable, including congestion-controlled transport protocols and the verifica-
tion of received packets. The number of load generator servers is variable and allows
the realization of complex measurement scenarios, such as generating many parallel
subscriber sessions and maintaining the belonging state.
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Figure 4.1: Disaggregated load generation, packet timestamping, and experiment
orchestration in the P4STA framework.

The Stamper is the core component of the P4STA measurement setup. It is re-
sponsible for establishing the connection between the load generators and the DUT,
utilizing commodity Ethernet links. Further, high-precise timestamping, load regu-
lation, and packet loss detection are performed within the Stamper hardware. Later,
in Section 4.2, this core component of P4STA will be discussed in detail.

The external data capturing host (short: external host) is an information sink and
temporary storage during network experiments. The Stamper, unable to store large
amounts of data, sends selected network packets with additional metadata informa-
tion to the external host. The external host is a software application that receives these
packets and extracts the information to be stored, e.g., packet timestamps. After the
experiment, this information is provided as an aggregated file, e.g., comma-separated
values.

The management server is the central control entity in P4STA. All other compo-
nents of P4STA, i.e., the load generators, the Stamper, and the external host, are con-
nected to it. This server enables a centralized configuration, measurement execution,
results collection, and analysis. The management server can be executed on any server
within the testbed as no special requirements exist. Its main component is the P4STA-
core, which provides all functionality and generic internal driver APIs for the Stamper,
load generators, and the external host. These APIs allow an easy exchange, for example,
of different Stamper hardware realizations. After a measurement experiment, the man-
agement server collects the results from the load generators, Stamper, and external host
and stores them persistently, including the setup configuration. The analytics module
is used to evaluate these raw data, as discussed later in Section 4.5. A Command
Line Interface (CLI) and web interface are used to control the P4STA core, including
all its functionality. In addition, the analyzed results can be visualized in the web
interface, and all data can be downloaded for further processing in third-party tools.

Note that this disaggregated architecture does not imply that a dedicated server
instance is required for every component. Instead, it is possible to run all components
in a single P4-programmable hardware switch and its co-located management CPU.
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The complete P4STA framework is open-source available, including three different
Stamper implementations1.

In the following Section 4.2, we will describe the P4STA Stamper in detail. In
Section 4.3, the postulated accuracy and performance of this approach are evalu-
ated. Next, in Section 4.4 and Section 4.5, we introduce the general workflow of this
framework and fundamental analytics features, enabling fast network function test-
ing. Last, we discuss the presented approach and evaluation results in Section 4.6.

4.2 functionality of the p4sta stamper

The Stamper is the central component of P4STA. It is the only component of P4STA
relying on specific hardware, as it realizes the performance and time-critical func-
tions. In this work, we focus on the following three P4 platforms as a basis for the
Stamper realization:

• bmv2: The behavioral model v2 (bmv2) is the software reference implementa-
tion of a P4 switch provided by the P4 language consortium [145]. Although
this P4 switch does not provide the required latency and bandwidth perfor-
mance, we used it as the architecture for the Stamper reference implementation.
Here, no hardware-specific constraints must be considered, and teh bmv2 can
be very well integrated into emulated test networks for development purposes
and automated testing.

• Intel Tofino: The P4-Tofino platform offers up to 64 Ethernet ports, each offering
100Gbit/s link speed [82]. The internal switch pipeline can be described by the
P4 programming language. This platform is the primary hardware target of
P4STA.

• Netronome NFP-4000: This P4-programmable smart network interface card
(P4-SmartNIC) provides either two 40Gbit/s ports or two 10Gbit/s ports. It
must be integrated into a server due to its PCIe form factor. Further, it is a
less costly solution than a P4-programmable Tofino. Therefore, it is well suited
for a low-budget P4STA setup in a single server if the lower port count and
data rates are sufficient.

However, the functional behavior of the three Stamper implementations is similar
and will be presented in the following sections. Figure 4.2 visualizes the internal
components of the Stamper device. The packet flow in this representation is only
from left to right. Each load generator server is shown twice, 1) as a packet sender
on the left side and 2) on the right as a receiver. Analogous, each port of the DUT
is represented twice: for ingressing and egressing packets. This means that every
packet traverses the Stamper device two times: before and after passing through the
DUT (compare Figure 4.1 for the overall scenario).

1 https://github.com/ralfkundel/p4sta

https://github.com/ralfkundel/p4sta
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Figure 4.2: Internal functional components of the Stamper realized with P4-programmable
hardware, attached to load generators for packet generation and verification.

4.2.1 Load Generation and Aggregation

P4STA supports the usage of multiple software-based load generators in parallel
and numerous connected ports of the DUT. This parallelism allows the generation
of many different stateful packet streams and the validation of each packet after the
DUT. The load generation servers are divided into N groups, consisting of one or
multiple load generators each. Each generator group is assigned to one of the N
input ports of the DUT. The Stamper aggregates all packets sent from one of these
load generation servers on this DUT port.

Note that a load generator is characterized by an Ethernet port, i.e., a single physi-
cal server with multiple ports can run multiple parallel load generator instances.

After passing through the DUT, the packets enter the Stamper device again. Now,
multiple packets arriving on a single DUT port must be forwarded to the correspond-
ing load generator server. For example, a packet arriving at port 1 can be forwarded
to load generator 1.1 or 1.2.

To cover most scenarios and allow future extensions, we realize three different and
concurrent forwarding mechanisms, all implemented in P4STA:

• Layer 1 forwarding: This forwarding mechanism determines the egress port
only based on the DUT ingress port, e.g., the Stamper port 3 will be forwarded
to port 7. However, it allows only a single load generator per DUT port. On the
other hand, this mechanism is robust against packet corruption, i.e., no valid
destination information is provided by the packet.

• Layer 2 forwarding: The L2 forwarding mechanism forwards the packets based
on their Ethernet destination address to enable multiple load generation servers
per DUT port. As the management server has access to all load generators, it
can retrieve the dedicated L2 addresses and install the flow rules in the Stamper.

• Layer 3 forwarding: Analogous to the L2 forwarding, this approach uses the
packet destination address to determine the egress port. However, the IPv4 des-
tination address is used instead of the Ethernet destination, allowing multiple
receiver addresses on the same port.
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A fourth forwarding logic can be simply added if a more advanced forwarding mech-
anism is required, e.g., a hashing-based packet distribution. Note that this is possible
1) due to the modular design and 2) as the source code of the framework is available.

4.2.2 Load Multiplication, Traffic Shaping and Loss Detection

In addition to the load aggregation mechanism introduced in the previous section, it
is beneficial in some scenarios to multiply the generated load in hardware.

Specifically, a software-based load generator creates a packet and sends it to the
Stamper. Next, the Stamper duplicates this packet several times, e.g., 20 or 100 times
in the example of Figure 4.2, and sends all packets towards the DUT. For example,
a software load generator can replay a packet trace with 1Gbit/s; however, the DUT
experiences an input rate of 100Gbit/s. This is a powerful functionality, as a single
server is sufficient to generate high test loads.

This load multiplication leads to massive packet duplication, which can disturb the
receiving load generator on the right side. For example, the receiver of a stateful TCP
load generation would detect duplicated packets, and the congestion control reduces
the sending rate as a consequence. To overcome these effects, the P4STA Stamper
filters all duplicated packets after the DUT, denoted as load divider in Figure 4.2. A
flag in the P4STA header, introduced in the following Section 4.2.3, indicates whether
a packet is the original one or a duplicate. Based on this information, the Stamper
can easily realize the load dividing functionality, i.e., dropping all duplicated packets
behind the DUT. In the case of packet loss in the DUT, this applies proportionally to
the original packets and is detectable by the congestion control of the load generator.

The capability to test a DUT at a precisely adjusted rate is crucial. However, a
precise rate-limiting in software is challenging, especially when load duplication is
used. Therefore, the P4STA Stamper allows a hardware-based traffic shaping for each
egress port towards the DUT. Traffic shaping describes the rate-limited dequeueing
of packets from a queue. Later, in Section 4.3.2, we will investigate the traffic shap-
ing on the P4-Tofino platform and compare it with a software-based rate limiter. Note
that traffic shaping in P4STA is currently only supported on the P4-Tofino, realized by
a token-bucket limiter of the egress queue. As the queues are realized in this architec-
ture between the ingress and egress pipeline, packet timestamping and counting can
be performed afterward. In contrast to this, the investigated P4-SmartNIC platform
offers no programmability after the egress queues. Counting the packets before these
queues, which drop packets because of enabled rate limiting, leads to erroneous re-
sults. Therefore, no packet loss detection could be performed on this platform if
traffic shaping is enabled.

The Stamper must count packets before and after the DUT to address the goal
of exact packet loss detection. P4-programmable pipelines allow a flexible packet
and byte counting of different flows. Within the Stamper device, we utilize these
capabilities for two different counters:

• Port counter: These counters detect every packet received or sent on any port,
including the load generator ports and the external host. Therefore, they are
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very well suited for testbed monitoring and debugging. However, software-
based load generators tend to send background noise, e.g., IPv6 neighbor dis-
covery packets dropped by the DUT, making this counter type unsuitable for
exact loss detection.

• P4STA-flow counter: In contrast to the port counters, this counter captures
only packets belonging to flows measured by P4STA. For example, P4STA can
be configured to capture only UDP or TCP packets.

4.2.3 Packet Timestamping

Latency measurements and, consequently, packet timestamping is a fundamental
task of the P4STA Stamper. Every packet must be timestamped before and after the
DUT, as shown in Figure 4.2. As a result, a series of timestamp tuples for each packet,
t1 and t2, is generated. These timestamps can be used to compute the latency of a
single packet, and to compute an inter-packet time of consecutive packets.

Two general questions must be answered regarding the packet timestamping:
1) Where the timestamps should be stored, and 2) how to retrieve these timestamps.

Timestamp Data Storage

Storing two timestamps for each packet at line rate is very challenging. If we as-
sume a rate of 108 packets per second and 16-byte measurement data per packet, the
Stamper creates 1600MB/s data. However, the internal memory of modern network
switches provides only a few MB capacity, as it is realized with fast but small Static
Random Access Memory (SRAM) (compare Section 2.5). Therefore, only little data
can be stored there, e.g., the previously mentioned counter values or the timestamps
of packets in flight. Storing all timestamps of an experiment in the Stamper hardware
is not possible, even if the experiment takes only a few seconds.

In general, two approaches for storing timestamps exist:

• In the Stamper: The timestamps are taken by the Stamper device and stored in-
ternally. The switching hardware does not provide the required capacity, so the
data must be transferred to the control CPU. In addition to every timestamp,
packet classification information must be stored to assign the two timestamps
later. Both transferring data to the control CPU at high rates and packet classi-
fication are challenging.

• Inside the Packets: P4-programmable hardware is made for packet header
modification, including adding additional headers to the packet. This method
allows the storage of timestamps and further data within the packet headers.
The challenge to match the two timestamps on a single packet does not apply,
as every packet carries its own timestamp. Therefore, we chose this approach,
and its realization is presented in the following.

Additional header space is required to store the timestamps. By default, network
protocols do not allocate any unused header fields by default which can be used.
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Figure 4.3: TCP header extension for P4STA, storing the timestamps before and after
passing through the DUT with 1ns precision. Analogous, the timestamps are

encoded in the UDP payload. Figure derived from: [111].

However, the TCP protocol allows header extensions, which can be added either
by the sender or by an intermediate network node, i.e., the P4STA Stamper. We utilize
the option ID 0x0f, which TCP does not use. The option has a total length of 16 bytes,
2 bytes to advertise the option ID and length, and the remaining bytes as payload. We
name this extension the P4STA header in the following, and the header structure is
shown in Figure 4.3.

When a packet passes through the Stamper device the first time, the P4STA header
is added between the existing TCP header and the packet payload. For this, the
Stamper updates the length and checksum fields of the IP and TCP headers. The
TCP checksum is updated incrementally, which means the old checksum is used as
the start value, and all packet modifications are applied to it. Further, the Stamper
can already set the timestamp_1 value. The second timestamp remains zero. Each
timestamp is stored with a accuracy of 1ns as unsigned integer value. The flags
are used for additional packet metadata. For example, during load duplication, the
packets are marked as duplicates by a flag to identify and filter them later. Further,
the flag bits can be used to encode the ingress port of the DUT if more than a single
port is used.

When the packet passes through the Stamper the second time, the timestamp_2 is
taken and added to the appropriate field in the P4STA header.

This approach works only for TCP packets for apparent reasons. Therefore, we
extend this approach to store the P4STA header in the first 16 bytes of the UDP payload
if the packet size is sufficiently large. In contrast to the TCP approach, this does not
increase the packet size; however, it corrupts the payload and can only be used if this
is no drawback.

Finally, after passing through the DUT, the packet exists within the Stamper and
the two timestamps are encoded in the P4STA header. The information is collected by
the external data capturing host and is described in the following Section 4.2.4.
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Figure 4.4: Mapping of the P4STA Stamper functionality, described in stamper.p4, on the
P4-programmable hardware pipeline of the Intel Tofino.

Figure derived from: [112].

Locality of Timestamping Logic

One reason to utilize P4-programmable hardware for the Stamper functionality is the
potential of timestamping packets with high accuracy. However, multiple places in
the pipeline of the utilized hardware exist, where timestamps can be retrieved.

We can generally formulate the following rule of thumb: Packets should be times-
tamped as late as possible before the DUT and as early as possible after the DUT.

Figure 4.4 depicts the internal pipeline of the P4-Tofino, one of the two hard-
ware targets for the Stamper. The Tofino architecture allows two different ways to
retrieve timestamps: 1) In the P4-programmable ingress and egress pipeline, marked
as stage 1 to stage n, or in the ingress and egress Media Access Controllers (MACs)
of each port. Note that the MACs are not programmable by P4; however, packet
timestamping for PTP time synchronization can also be used.

Following the before-stated rule of thumb, we expect a higher accuracy for the
MAC timestamping. Nevertheless, we evaluate both approaches as part of the evalu-
ation in the following Section 4.3.1.

Packets sent towards the DUT are timestamped in the egress MAC. The egress
MAC stores the timestamp directly into the P4STA header and updates the TCP
checksum accordingly. For this, the P4 pipeline computes the exact position of the
timestamp and the TCP checksum within the packet. Then, the egress MAC writes
the current time on this position in the packet and updates the checksum field with
the timestamp value.

Timestamping of packets after the DUT works slightly differently. The ingress
MAC takes the timestamp and provides it as metadata to the P4 pipeline. Later, in
stage 2 of the depicted pipeline, this timestamp is written into the P4STA header.

All other stamper.p4 implementation functionality is mapped on the P4-program-
mable pipeline parts.

The P4-SmartNICs used in this work offer the same MAC timestamping capabilities
for time synchronization and are used by our implementation.
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4.2.4 Data Acquisition in the Data Capturing Host

The measurement data must be stored after a packet traverses the Stamper the second
time and the second timestamp was taken. To accomplish this, the Stamper duplicates
the packet, sends the original to the receiver, and the copy is forwarded to the external
data capturing host (compare Figure 4.2). The external host extracts the two timestamps
from the P4STA header and stores them in a comma-separated values list. In addition,
the packet size is stored. Further information, e.g., the packet IP, can be extracted
similarly if the information is required. However, every additional extracted and
stored information causes a significantly increased memory demand.

The processing within the external host is not time-critical, i.e., the information
content remains unchanged whether a packet is parsed immediately or in 1ms later.

Sending packets at a very high rate to the external host can quickly overload the
software process, and uncontrolled packet loss occurs. The Stamper can send only
everyMth packet to the external host to counteract this. In contrast to the uncontrolled
packet loss, which typically occurs in batches, this behavior is very deterministic.
For most evaluations, timestamps for every Mth packet are sufficient. Note that this
factor does not influence the packet loss detection within the Stamper. Further, the
maximum, minimum, and average latency is captured within the Stamper hardware,
not influenced by this.

The P4STA-Core starts and stops the external host automatically. After an experi-
ment, the results are stored as comma-separated values and copied to the manage-
ment server for the analysis of the results.

The P4STA framework provides two implementations of the external host, both
providing the same functionality:

• Python External Host: This implementation opens a raw socket on the network
interface of the external host. A raw socket receives every incoming packet on
the bound interface, including Ethernet, IP, and transport layer headers. By
this, the python implementation has access to the P4STA header, can extract
the information, and store them in an internal data structure. Raw sockets can
be opened on almost any Linux system without modifications, making this
approach uncomplicated. However, raw sockets have a comparably bad per-
formance in receiving packets. We observe a maximum receive bandwidth of
6 1Gbit/s, depending on the packet size and server CPU. Using another pro-
gramming language would have a slight performance influence, but receiving
every packet at high rates would still not be possible [114].

• DPDK External Host: The Data Plane Development Kit (DPDK) is a user-space
driver framework for network interfaces, aiming for the highest possible per-
formance. The entire incoming packet is handed over to the user space appli-
cation, identical to the raw socket behavior. This application is written in the
programming language C, offering the highest achievable performance. The
DPDK driver requires supported network interfaces cards. Most NICs with
> 10Gbit/s link speed support this driver framework, and thus this is no ma-
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jor limitation. However, a DPDK-specific kernel module must be compiled and
loaded for the used NIC port, making the DPDK external host a more error-
prone implementation. This module must be rebuilt after every kernel update.

Consequently, the python external host offers an easy-to-use solution; however, the
DPDK realization should be used if the timestamps of every packet should be stored.
In our tests, we experienced zero dropped packets for the DPDK driver up to 10Gbit/s,
even at a small average packet size of 200 bytes. Higher data rates are not yet tested
at the external host. The Stamper counter also captures all packets sent to the external
host. These counter values allow the P4STA-core to compare the number of packets
sent to the external host with the received packets. The derived difference indicates
uncontrolled packet loss and is a sign of non-trustworthy results of the external host.
To that end, we introduce the downscale factor M, indicating how many packets are
sent to the external host, i.e., every Mth packet. This factor M should be increased
until zero packet loss between the Stamper and external host occurs.

4.3 accuracy and performance evaluation

In this section, we evaluate the P4STA framework concerning the aimed performance
goals. First, in Section 4.3.1, we focus on the time accuracy of the Stamper. Second,
in Section 4.3.2, the rate-limiting behavior of the hardware-based traffic shaping in
the Stamper is evaluated. For the rate-limiting, we focus on packet burst occurrence
while traffic shaping.

4.3.1 Time Accuracy

To investigate the accuracy of the time measurement mechanism, we use a DUT
with known and constant latency: a fiber-optic cable. While the speed of light in a
vacuum is ∼ 300 · 106 meters per second, the propagation speed in optic cables is
lower but still constant and known. Consequently, the Stamper device, which takes
the timestamps, is responsible for any potential variance in the measurement results.

In the following, we investigate the Stamper implementation realized on the P4-
Tofino platform. In this architecture, the timestamping can be realized in two different
ways (compare Section 4.2.3 for details):

• P4 timestamping: The incoming and outgoing packets are timestamped in the
P4-programmable ingress or egress pipeline, respectively.

• MAC timestamping: The Media Access Controllers (MACs), the closest func-
tional component to the fiber-optic cable, can timestamp packets, i.e., before
the ingress parser and after the egress deparser.

The experiment setup is as follows: 1) A load generator creates 1514 byte test pack-
ets with a rate of 10Gbit/s for 10 seconds and sends them into the Stamper. 2) The
Stamper timestamps the packets and forwards them into the DUT, the fiber-optic ca-
ble. This link is configured as 40Gbit/s Ethernet. 3) Next, the Stamper receives the
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Figure 4.5: Measured latency of the fiber-optic cable as DUT with P4STA for the P4-Tofino
Stamper. The two curves represent the two stamping options in the switch

pipeline. This plot visualizes the results in Table 4.1.

packets, and the second timestamp is added. 4) All packets are sent to the receiving
load generator, and the external host captures every 50th packet.

We repeat this experiment for multiple fiber-optic cables of different lengths. Each
run consists of multiple million packets and is therefore significant.

The numeric results of this experiment for both timestamping methods and all
tested cable lengths are shown in Table 4.1 and visualized in Figure 4.5. Note that
it is essential to determine the real cable length as the manufacturer information is
imprecise, e.g., the 3m cable in our tests has an actual length of 3, 18m.

The average latency values for the P4 timestamping approach are significantly higher
than for the MAC timestamping. This deviation corresponds to the known internal ar-
chitecture of the P4-Tofino (compare Figure 4.4). As the MAC timestamping approach
retrieves the two timestamps closer to the DUT, the lower latency is self-evident. We
can state that the MAC timestamping is superior to the P4 timestamping and should be
used.

Further, we observe a similar and low latency standard deviation for both times-
tamping methods, i.e., always below 2ns. A significant improvement of the MAC
timestamping approach cannot be determined; however, this may change if more Stam-
per ports are used in parallel.

The visualization in Figure 4.5 indicates a linear correlation between the cable
length and the measured latency. We perform a linear regression on the measurement

actual P4 timestamping MAC timestamping

length avg. latency std. dev. avg. latency std. dev.

1m 1.06m 388.80ns 1.53ns 107.83ns 1.46ns

2m 2.08m 393.70n 1.74ns 112, 85ns 1.61ns

3m 3.18m 399.14ns 1.69ns 118.34ns 1.52ns

10m 10.12m 433.46ns 1.64ns 152.88ns 1.61ns

Table 4.1: Measured latency and standard deviation for MTP OM4 multi-mode fibers at
40Gbit/s link speed. Zero packet loss in all measurements.
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values to confirm and substantiate this relationship. A linear equation is represented
as follows:
f(x) = a · x+ b
In the particular scenario of this thesis, f(x) describes the measured latency, x the

cable length, a the latency per meter cable, and b is a constant offset.
After applying the measurement values to the linear regression mechanism, we

get the following results: For P4 timestamping, the basis latency is b = 383.49ns, and
the propagation speed is a = 4.94ns/m. The average absolute error is 0.05ns. For
MAC timestamping, the basis latency is b = 102.53ns and the propagation speed is
a = 4.97ns/m. Here, the average absolute error is 0.02ns.

Both results are excellent; however, the MAC timestamping approach stands out
positively. The speed of light in a fiber-optic cable depends on the fiber’s refrac-
tive index. According to related work, a propagation speed between 67% and 69%
of the speed of light in vacuum is realistic, i.e., 4.83ns/m to 4.98ns/m [172, 178].
Consequently, these numbers match with our measurement results and illustrate the
desired accuracy of the P4STA approach realized on the P4-Tofino platform.

However, it is required to perform an offset correction while performing exper-
iments with real DUTs, especially if the DUT latency is low. For this, the constant
latency factor must be determined for every experiment, consisting of the constant
latency n and the propagation delay of the cable. Since these values are known, they
can be subtracted from the latency values after the experiment. Note that the constant
latency offset n depends on the link speed of the DUT-cable and must be determined
for every combination of Stamper hardware and DUT-port configuration.

Influence of the Hardware Platform

Besides the P4-Tofino platform, we presented the P4-SmartNIC as a secondary Stamper
implementation. We repeat the previous experiment, measuring the speed of light in
cables, with this platform. In Table 4.2, the results for the P4-SmartNIC and the P4-
Tofino are shown. The P4-Tofino utilizes a 100Gbit/s cooper cable of 2-meter length as
DUT, configured as 10Gbit/s or 100Gbit/s Ethernet connection.

For the P4-Tofino platform, we can observe a slight difference between the two
link speeds but also regarding the basis latency in contrast to a fiber link (compare
Table 4.1 for the base latency of a 40Gbit/s fiber connection).

The results of the P4-SmartNIC are significantly worse. While the higher average
latency is a constant factor that can be subtracted, the higher latency standard de-
viation leads to measurement inaccuracies. Yet, ∼ 8.4ns is still a very low value.
Figure 4.6 visualizes the difference between these two approaches. The inaccuracy of
the P4-SmartNIC compared to the P4-Tofino becomes clear by the more widespread
vertical distribution.

In these experiments, the P4-SmartNIC detected zero packet loss, which means
that the packet counting before and after the DUT works appropriately.

We can conclude that the P4-SmartNIC is a well-suited alternative to the P4-Tofino
switch if the two physical ports are sufficient and not the highest possible timestamp-
ing accuracy is required. Note that the software load generators must be realized
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Figure 4.6: Latency over time for a (fiber-optic) cable as DUT at 10Gbit/s link speed,
10Gbit/s throughput, and 1500 byte packets. This representation extends

Table 4.2.

within the system of P4-SmartNIC, as the DUT uses the two available ports. Similar
cards with 2x 40Gbit/s ports exist, which can be configured to 8x 10Gbit/s, allowing
an external load generator. However, these cards were not available during this work.

4.3.2 Microbursts in Traffic Load Generation

Utilizing the load multiplication of the Stamper device allows reaching a test load of up
to 100Gbit/s even for small packet sizes and a low input rate. Recently released P4-
programmable network switches support even up to 400Gbit/s link speed on each
port [82]. We expect no change in the behavior of the proposed concepts for a four
times increased link speed; however, we could not investigate this novel hardware
within this work.

However, achieving a test load at link speed is not always desired. For example,
testing a DUT on specific or different input rates can be very insightful, i.e., an input
rate parameter sweep. For this, the Stamper allows traffic shaping at a given rate for
each egress port towards the DUT.

An ideal traffic shaping mechanism would send only one packet at once, with a
constant inter-packet time. If multiple packets are sent at once in small microbursts,
the time between two bursts is longer to achieve the configured rate. In general, if a
DUT should be tested at a specific input rate, no large microbursts are intended and
may negatively influence the results.

link

speed

avg.

latency

latency

std. dev.

max.

latency

packet

loss

P4-Tofino 10Gbit/s 182.96ns 1.93ns 193ns 0

P4-Tofino 100Gbit/s 150.56ns 1.10ns 165ns 0

P4-SmartNIC 10Gbit/s 364.33ns 8.41ns 392ns 0

Table 4.2: Latency over time for a (fiber-optic) cable as DUT at 10Gbit/s throughput and
1500 byte packets for the two Stamper implementations and a varying link speed.
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(a) P4-Tofino traffic shaping. (b) IPerf3 traffic shaping.

Figure 4.7: Average minimum and maximum measured data rate over a window of N
packets, ranging from 100 to 8, 000. The rate limit is set to 624Mbit/s for both

realizations. Note the different y-axis scaling.

In the following, we compare the traffic shaping accuracy of the P4-Tofino plat-
form, used as Stamper in this work, with the widely-used software load generator
IPerf3 [83]. For this comparison, we configured a rate of 624Mbit/s in both investi-
gated platforms. For the P4STA approach, a software load generator sends a 1Gbit/s
packet stream into the P4-Tofino, which means that the traffic shaping queue is al-
ways full. For both scenarios, the Ethernet link is configured to 40Gbit/s, and P4STA
captures the packet timestamps for every packet. For this experiment, it is required
to capture every packet as the inter-packet times are computed afterward.

The results of this experiment are shown in Figure 4.7. The two graphs depict the
maximum and minimum observed data rate for a window of n packets. The window
size n is varied from 100 to 8000.

In general, we observed a bursty behavior for both realizations. The P4-Tofino sends
packets in bunches of 6 packets, while the IPerf3 load generator sends hundreds of
packets at once. For the P4-Tofino, this bunch size depends on the configured link
rate and varied in our experiments from 4 to 8. This can be explained by the internal
token bucket mechanism, which must enable a rate-limiting of up to the link rate
(compare Appendix A.4).

The results in the graph can be interpreted as follows: Considering any series
of 100 packets, the maximum observed rate over these 100 packets is ∼ 670Mbit/s,
while the lowest rate is ∼ 580Mbit/s. In contrast to this, for the IPerf3 rate-limiting
mechanism, we observed an average rate of ∼ 38Gbit/s for the packet window sizes
of 100 and 200 packets. Only starting with a packet window size of ∼ 6000 packets,
the maximum observed rate is close to the configured rate.

We can conclude that hardware traffic shaping causes significantly lower micro-
bursts than software-based approaches. Note that other load generator implementa-
tions may have better performance; however, generating packets in software is easier
in batches.
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4.4 the p4sta workflow

Performing network experiments with the P4STA framework involves multiple com-
ponents with different functionality, which must be orchestrated. The P4STA-core is
the central control entity, managing all other components. In this section, we intro-
duce the automation capabilities of this framework.

During installation, all involved servers must be configured to fulfill the needs of
the corresponding software components. For example, software dependencies must
be installed, and permissions in the operating system must be set. This installation
process consists of two phases: 1) All dependencies on the management server are
installed. After this, the P4STA-core can be started to manage the second installa-
tion stage. 2) In the web-UI, the server instances for the Stamper, load generators, and
the external host must be configured. Following this, the P4STA-core installs all de-
pendencies on each server automatically. After this installation process, the P4STA
framework is ready to use.

The typical workflow of a measurement execution consists of four phases: 1) Con-
figure, 2) Deploy, 3) Run, and 4) Analyze.

First, in the Configure phase, the entire testbed setup is described. This configura-
tion includes the connectivity of the Stamper device, i.e., which ports are connected to
the DUT, to the load generators, and to the external data capturing host. Further, the IP
addresses and credentials for management access of these components are set, and
the load generation configuration is described. The configuration can also include
Stamper-specific configurations, such as supported Ethernet technologies or custom
data plane programs extending the default stamper.p4 implementation.

As an output of the configure phase, a JSON configuration file is generated, used
in the following phases, and as documentation of the experiment. As distributed
systems with many configuration prospects are error-prone, we added a status check
for the configuration phase. This check validates all requirements and configured IP
addresses on each server, matching with the configuration.

Second, in the Deploy phase, the testbed configuration is loaded on the Stamper
device, and the status of this device and its connections is checked, i.e., if all required
Ethernet links are up. This deployment includes the initialization of the required
drivers for the selected Stamper implementation.

Third, the actual experiment is started in the Run phase. The external host is started,
the Stamper counters are reset to zero, and the load generators are started. After the
completion of the load generation, the external host is terminated. Further, the results
from the external host and Stamper are copied to the central management server.

Last, in the Analyze phase, the captured results are evaluated. This includes basic
statistics and generous plots of the time series data. By that, the testing engineer can
review the first feedback of the measurement within seconds. In addition to the visu-
alization, all raw data, evaluation scripts, and generated results can be downloaded
as an archive file. Based on this Python script collection, the user can adapt the vi-
sualizations and add further representations of the results. We discuss the details of
the analytic functions in the following Section 4.5.
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Figure 4.8: Screenshot of the P4STA web-UI, showing the counter values of the Stamper
device as part of the analysis functionality.

All four phases of measurement execution can be controlled either via the web-
UI or the CLI. While the web-UI allows an intuitive usage and immediate results
visualization, the CLI can be used for automated experiment execution. For example,
the MACI framework can perform sweeping measurement series without human
interaction [57].

The P4STA framework is a large software framework consisting of many modules,
programming languages, and configuration options. Therefore, software testing is
essential. We provide multiple test cases covering all phases of the installation and
measurement execution for multiple Stamper and external host implementations. By
this, all typical use cases are tested. These tests can be executed in a containerized
environment, either locally or in a continuous integration pipeline. However, the
testing of the P4STA framework is not the focus of this work.

4.5 p4sta analytics

One essential functionality of P4STA is the automated evaluation of results. The Stam-
per device provides counter values for every port and aggregated latency statistics,
i.e., maximum, minimum, and average latency. In addition to this, the external data
capturing host provides time-series data of the two packet timestamps and the packet
size. The analytics module of P4STA evaluates this data and prepares the results in a
human-readable way.

The visualization of the Stamper results does not require significant processing of
the measurement data. In Figure 4.8, a cutout of the visualization in the web-UI is
shown for any measurement. The table on the left side presents the number of pack-
ets and bytes counted for each ingressing and egressing port of the Stamper. Here,
the user can choose between all packets or the timestamped packets. On the right
side, an auto-generated graphic visualizes the connectivity of the Stamper based on
the P4STA configuration. Further, the packet loss of the DUT in each direction is com-
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(a) Latency time series. (b) Latency occurrence percentile.

Figure 4.9: Exemplary measurement results created with P4STA on the P4-Tofino Stamper
for different DUTs and input rate. The external host captured every 100. packet.

Packet size: 1020 byte. No offset-correction.

puted and presented (not shown in the screenshot). Parallel to this representation, all
results are exported in human-readable text files. This representation of results as-
sists the user in assessing the quality of a performed measurement much faster than
a manual results extraction.

In addition to these basic evaluations, the time series data of the external host offers
further evaluations, as discussed in the following sections.

Latency Measurements

The P4STA framework creates two timestamp series for the experiment, describing
the time of a packet before and after the DUT. Based on this data, the latency of each
packet can be computed and visualized.

In Figure 4.9a, the latency of the first 0.9 s after start for four network experiments
are shown, performed identically for two different DUTs at two different input rates.
The packet size of 1020 bytes is intentionally chosen, as some effects become visible by
this. Both DUTs, the DPDK packet forwarder and the FPGA, connect two Ethernet
ports with each other and forward every packet. However, these simple network
functions are not the focus of this section.

We observe different behavior in the latency curves of the four experiments. The
FPGA, operating at 9.9Gbit/s, has a constant low latency. When increasing the input
rate to 10Gbit/s, the same DUT has little packet loss and an increased latency with a
saw-tooth pattern. Similarly, the DPDK packet forwarder at 9.9Gbit/s input rate has
a constant latency with a visually detectable jitter. The same DUT at an input rate of
10Gbit/s builds up a queue as the packets cannot be processed as fast as they arrive.
However, no packet loss occurs as the buffering capacity of this DUT is larger than
the built-up queue in the first 1 s. The numeric results for these four runs are shown
in Table 4.3.

In Figure 4.9b, the latency distribution is visualized. Focusing on the DPDK DUT
at 9.9Gbit/s input rate, we can read that ∼ 99.8% of the packets have a latency below
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FPGA FPGA DPDK DPDK

input rate: 9.9Gbit/s 10Gbit/s 9.9Gbit/s 10Gbit/s

transmitted packets 11887798 12005428 11886608 12007588

lost packets 0 340 0 0

loss rate 0% 0.003% 0% 0%

average delay 1.49µs 6.89µs 7.23µs 338.89µs

min. latency 1.43µs 1.45µs 6.10µs 6.05µs

max. latency 1.57µs 7.43µs 23.36µs 733.22µs

std. latency deviation 28.9ns 664ns 427.9ns 220, 630ns

Table 4.3: Numeric measurement results in extension to Figure 4.9 for the complete
experiment with a total duration of ∼ 5 s.

101 µs. Only a few packets, the outliers, have higher latency. In contrast to this, the
curve for the FPGA at the same input rate is straight, which means that no latency
outliers exist.

If we compare these observations with the numeric Table 4.3 generated by the
P4STA analytics function, we can confirm these findings. The latency standard devi-
ation for the FPGA at 9.9Gbit/s is the lowest, an indicator of low jitter. Further, the
latency range, i.e., the difference between the minimum and maximum latency, is
comparably low. These numbers are captured in the hardware of the Stamper, con-
sidering every packet, not only the random sample captured by the external host.
In contrast, the DPDK DUT investigated at 9.9Gbit/s input rate has a much higher
latency standard deviation and maximum latency value. This underlies the interpre-
tations of the generated graphs.

We can conclude that the multiple numeric and graphical result presentations of
P4STA can help to interpret the latency behavior of the DUT quickly.

Packet Ordering

Another important field of network function measurement is packet reordering. To
investigate this phenomenon, P4STA must timestamp and capture every packet. The
resulting two timestamp series can be used to detect packet reordering. We expect a
strictly monotonous increase of both timestamp series for a network function with
no packet reordering.

We analyzed the measurement results of multiple hardware and software devices
during our experiments regarding packet reordering. Figure 4.10 presents the results
for a DUT that suffers from packet reordering under some circumstances. On the left
side, the latency during the 10 s of the experiment is depicted. Red crosses mark a
reordered packet. The arrival and departure times of 7 consecutive packets at the
DUT are shown on the right side. The red packet #n is the marked reordered packet
on the left side. One can observe that the seven packets arrive at the DUT with
approximately constant inter-packet times. However, the departure times of these
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Latency

arrival time departure time

Figure 4.10: Left: Latency of a DUT over time; red crosses mark reordered packets. Right:
Arrival and departure time of 7 consecutive packets at the DUT. Each bar
represents the duration a packet stays in the DUT. Packet #n is reordered.

packets are not ordered. Packet #n+1 leaves the DUT before packet #n. This reordering
can be identified precisely by the automated results analysis of P4STA.

Network Calculus

In Section 2.4, we introduced Network Calculus as a framework for describing and un-
derstanding the behavior of network functions [53, 120]. The generated time series
of timestamp and packet size, created by P4STA, can be used to generate a service
curve, following the mathematical instruments of network calculus. The depicted ser-
vice curves in Figure 4.11 for three different DUTs show the amount of data in byte
after a time interval for the first 300µs and 25ms after start. At time 0, the first packet
of a constant 10Gbit/s packet flow enters the DUT.

In the case of the fiber-optic cable as DUT, we observe a constant bitrate service,
starting almost immediately with the first packet. As discussed earlier, the latency of
a short fiber cable is rather low, i.e., in the range of ∼ 110ns including measurement
overhead. In contrast to this, the DPDK packet forwarding has a constant bitrate ser-
vice but with some delay. This correlates with our earlier expectations that a DPDK
forwarder has a delay of ∼ 10µs, depending on the packet size. Note that the fiber-
optic cable in the left and right plot is the same measurement but at different x-axis
and y-axis scaling, and serves for comparison.

Last, we investigate the behavior of the Linux kernel packet forwarding. In this ex-
periment, we observed packet loss that can also be supposed by the gradient of the
plot. At the beginning of a busy period, we observe a warm-up behavior for the first
18ms after which the service rate increases. This warm up behavior may be caused
by the software implementation of the Linux kernel and by this CPU caching effects
can occur, leading to worse performance in the beginning.

To summarize, we have shown that the mathematical concepts of Network Calculus
can be applied on the measurement data created by P4STA. An additional value in
analyzing the behavior of network functions is created, facilitating the assessment
of measurement data. Note that many other analyses can be performed similarly;
however, the focus of this work is on the precise measurement data creation only.
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Figure 4.11: Service curve for different DUTs, on which an abruptly applied load of 10Gbit/s
acts. The packet size is 1500 byte. Note the different x-axis and y-axis scaling.

4.6 summary and discussion

Due to the absence of flexible and performance-oriented test solutions with high
time accuracy, we investigated the capabilities of programmable hardware for this
purpose in this chapter. The introduced P4STA framework combines the benefits of
programmable networking hardware and commodity software. By this, high mea-
surement accuracy is achieved while any software-based load generator is used. Si-
multaneously, high data rates at a low average packet size can be achieved, e.g.,
100Gbit/s at 100-byte packets.

Our evaluation results of the timestamping accuracy have shown that it is suffi-
ciently good to determine the propagation speed of light in fiber-optic cables. The
presented algorithms for automated results evaluation allow a timely assessment of
measurement results. In the following of this work, we will use the P4STA framework
to evaluate network functions at the Internet access edge regarding their Quality of
Service (QoS) characteristics.

During this work, a similar approach was presented in related work, named “In-
band Network Telemetry (INT)” [181], which we already discussed in Section 2.5.
Nevertheless, we would like to emphasize at this point of the thesis one major similar-
ity with our work: The proposed INT approach stores the packet timestamps within
the network packets, utilizing the timestamping capabilities of P4-programmable
network switches, yet, for the use case of network monitoring.

The contributions of this work are not isolated; instead, the P4STA framework
should be seen as a measurement concept. The generated results provide an ideal
basis for further evaluations by data inspection tools, e.g., the traffic analyzing tool
Tranalyzer [31].

Last, we would like to mention that the company Keysight Technologies built a com-
mercial product upon the concepts and results of this chapter [94]. Utilizing the same
programmable hardware as this work, i.e., the P4-Tofino, they provide a closed-source
testing environment. Even though we expect the same accuracy and performance, the
advantage of an extensible open-source solution disappears.





5
E VA L U AT I O N

Based on our conceptional contributions on host bypassing, Internet service creation
on programmable hardware, and active queue management in programmable hard-
ware, we will show the viability of these approaches in the following. Further, we
will investigate the properties of the prior introduced approaches in detail.

The evaluation of this work builds upon the P4STA framework introduced in this
work, which allows very accurate measurement of network functions performance.
The accuracy of this novel measurement methodology is discussed in the foregoing
Chapter 4. First, in Section 5.1, we discuss the host bypassing approach while present-
ing measurement results for various deployment scenarios. Following, the concepts
for Internet service creation in access networks are discussed in Section 5.2, investi-
gating residential and mobile Internet access technologies. To improve the Quality of
Service (QoS) in Internet access networks, we proposed concepts for Active Queue
Management (AQM) in programmable hardware, which are evaluated and discussed
in Section 5.3. Last, in Section 5.4, we summarize the evaluation results of the contri-
butions and discuss them with the aim of a fast, flexible, and energy-efficient future
Internet, relying on programmable hardware.

5.1 host bypassing

In Section 3.1, we introduced the concept of host bypassing for an improved packet
I/O in PCIe-based hardware accelerators, i.e., Field Programmable Gate Arrays (FP-
GAs) and Graphics Processing Units (GPUs). The expected benefit of this approach
compared to state-of-the-art is an improved throughput, lower latency, zero packet
loss, and less jitter while network packets are transferred between the hardware ac-
celerator and Network Interface Card (NIC). The evaluation results presented in the
following two sections will discuss these performance goals while investigating the
presented prototypes for host bypassing with FPGAs and GPUs, respectively.

Investigated PCIe Topology

The host bypassing approach builds upon PCIe peer-to-peer transfers from one end-
point, i.e., the NIC, to another endpoint, i.e., the GPU or FPGA. For this, it is very
likely that the PCIe infrastructure can strongly influence the overall system’s per-
formance. Therefore, we investigate multiple PCIe architectures and technologies to
identify potential differences between them.

Conventional server CPUs typically provide a sufficient number of PCIe lanes. All
peripheral components are connected directly to the PCIe root complex, co-located
with the CPU at the same chip. However, the number of PCIe lanes and by that the
number of simultaneously connected devices can be increased by a PCIe switch, as
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shown in Figure 5.1. The following two CPU models and the PCIe switch will be
subject of investigation:

• Intel Xeon Silver 4110: This CPU supports up to PCIe Gen 3 support, and main
memory is accessible via a DDR4 interface.

• AMD Epyc 7402: Similarly, this CPU offers DDR4 interfaces for main memory
integration. However, PCIe up to Gen 4 is supported.

• Broadcom PEX 8747: This chip is a PCIe switch, supporting up to the third
generation (Gen 3) of PCIe. It can be attached to a root complex, and main
memory access from an attached endpoint must be forwarded to the PCIe root
complex within the CPU. Though, a DMA access on the physical address range
of another endpoint can be forwarded only through the PCIe switch, e.g., from
the NIC to the hardware accelerator.
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Figure 5.1: PCIe bus topology utilized while evaluation. Figure derived from: [103].

5.1.1 FPGA-based Host Bypassing

In this section, we evaluate the host bypassing approach with FPGAs. All evaluation
results are generated with the Xilinx Alveo U50 FPGA accelerator, operating at PCIe
Gen 3 and up to 16 lanes (x16). Further, this FPGA provides a single 100Gbit/s
Ethernet port, which can be leveraged for comparative evaluation measurements
as described later. Note that this FPGA could be integrated directly into computer
networks by this Ethernet port, and host bypassing is not mandatory. However, other
FPGA accelerator cards do not provide such network connectivity.

In this work, we investigate the following four evaluation scenarios, as shown in
Figure 5.2:
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Figure 5.2: Evaluation scenarios for host bypassing with FPGAs considered in this work.
Figure derived from: [103].
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1) Packets arrive at the 10Gbit/s Ethernet port of the NIC and are written into the
system’s main memory via DMA. From there, the packet goes the same path back
without any processing and is sent by the NIC. For this, we built upon the sam-
ple application DPDK skeleton, which is part of the driver framework. The packets
are not copied to and from an FPGA accelerator, and this scenario corresponds to
packet I/O for classical Network Functions Virtualization (NFV) without hardware
acceleration.

2) The packet data path in state-of-the-art NFV approaches with FPGA accelerators
is investigated in the second scenario. In addition to the first scenario, we extend the
DPDK application by an FPGA accelerator integration. This extension enables copy-
ing the network packets from the main memory into the FPGA and back. First, the
receive software process, running on the CPU, hands over memory pointers to the
FPGA, indicating the physical address of a received packet. Next, the FPGA can copy
this packet via DMA from the system’s main memory to the FPGA. Analogous, the
software process on the CPU for transmitting packets provides a physical memory
address to the FPGA, where the packets to be sent can be stored. After the FPGA con-
firms the writeback into the main memory, the software process inserts this packet
address into the tx ring of the NIC, and the packet will be sent on the NIC’s Ethernet
port.

3) The third evaluation scenario describes unidirectional host bypassing. This means
packets are received via the NIC directly into the FPGA and sent out via the built-
in Ethernet port; similarly, the opposite direction receives packets at the FPGA and
sends them out via host bypassing at the NIC’s Ethernet port. This scenario allows an
investigation of the rx and tx process independently.

4) Scenario 4 describes the actual host bypassing approach. Packets are received
and sent by the NIC, logically attached to the FPGA without copying the data into
the system’s main memory. Within the FPGA, the packets are not processed by any
network function; only the complete I/O procedure is applied to the packets.

Scenarios 2, 3, and 4 are performed with 64 descriptor ring entries for receiving
and sending packets within the FPGA, as this parameter shows no influence on the
measured performance. For the DPDK baseline (Scenario 1), we configured the ring
size to 256 entries each, which provides the best achievable performance.

To achieve high test loads and good measurement accuracy, we built upon the
P4STA framework, introduced in Chapter 4. The overall setup is shown in Figure 5.3
and consists of two off-the-shelf servers for load generation and one P4STA Stamper,
more precisely a P4-programmable Tofino switch. Test packets are generated by the
load generation servers and sent to the Stamper, responsible for load multiplication
and traffic shaping to a given bandwidth. Further, the Stamper has a direct connec-
tion to the Device Under Test (DUT), the host bypassing system to be investigated,
and timestamps every packet before and after the DUT to ensure the highest possi-
ble measurement accuracy. Packets egressing from the DUT are demultiplexed to the
corresponding receiving load generator, which performs a checksum validation. De-
pending on the evaluation scenario, packets can ingress and egress the DUT via the
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Figure 5.3: Measurement setup for the host bypassing approach with FPGAs building upon
the P4STA framework. Figure derived from: [103].

NIC or the FPGA. All presented latency measurements are corrected by a constant
offset for the P4STA setup and cable delays.

General Packet I/O Performance

First, we evaluate and discuss the general performance of host bypassing with FPGAs,
specifically the QoS metrics latency, jitter, throughput, and packet loss. For this, we
investigate the host bypassing system (Scenario 3 and 4), and the DPDK baseline
(Scenario 1), at a rate of 9.99Gbit/s with 300− byte UDP packets. This small packet
size was intentionally chosen as it causes a higher packet rate (∼ 4.17 packets per
second), allowing us to observe effects in the limiting performance area.

The results in Figure 5.4 and Table 5.1 show the measured latency in the investi-
gated scenarios. The host bypassing measurements (Scenario 3 and 4) are performed
with the NIC and FPGA being connected to a PCIe root complex. The NIC and FPGA
in the DPDK baseline (Scenario 1) and the state-of-the-art approach (Scenario 2), con-
sidering the packet I/O into the system’s main memory only, are attached directly
to the CPU root complex to avoid any performance reduction.

The DPDK baseline (Scenario 1) receives packets from the NIC into the system’s
main memory and sends them out without any processing. In this measurement,
we already observe high and periodic latency peaks up to 180ms and an average
latency of ∼ 29ms. Even when ignoring the latency peaks, one can visually observe
a high latency jitter. However, this system is able to I/O all packets without any
loss or corruption. This scenario is very important as it describes the half path of
state-of-the-art packet I/O into hardware accelerators: receiving and sending packets
into the system’s main memory. Even if the I/O from the main memory into the
accelerator causes zero overhead, this behavior is unavoidable. The behavior of the
main memory, especially the latency spikes, might be caused by the behavior of
the system’s main memory controller and the nature of DRAM-based memories,
e.g., mandatory refresh cycles, arbitration methods, and shared access with software
processes.

Next, we investigate the state-of-the-art packet I/O (Scenario 2). Note that this im-
plementation was built by ourselves for comparison purposes and might offer addi-
tional optimizations. However, the performance of an ideal implementation would
be between our implementation (Scenario 2) and the DPDK baseline (Scenario 1). For
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Figure 5.4: Measured latency for the Scenarios 1,3, and 4. The test load is 300 bytes UDP
packets with a constant rate of 9.99 Gbit/s. Disabled tail pointer update delay,

and no tx descriptor writeback. Note the y-axis scaling.

the state-of-the-art approach, copying all packets via the system’s main memory into
the hardware accelerator, we observed massive packet loss, i.e., around 76%. Further,
the average measured latency is 168µs, which is a consequence of the rx buffer in
the NIC damming up as the system cannot process the packets faster. We observed
less packet loss at larger packet sizes, and we can determine the packet rate as the
limiting factor. As the latency is very high due to the bloated rx buffer, we present
only the characteristic numbers but no latency over time plot.

In contrast to this, the host bypassing approach (Scenario 4) shows up a much bet-
ter performance, as shown in the right plot of Figure 5.4. The average latency is
∼ 8µs, and only little jitter occurs. Comparing this behavior with the DPDK base-
line, an upper bound of the maximum achievable performance for state-of-the-art
approaches, the host bypassing approach is superior to this. In contrast to the state-of-
the-art measurement (Scenario 2), this approach allows a much higher throughput
at lower latency and jitter. Therefore, this evaluation shows that the goals of host
bypassing are achieved.

The detailed behavior of host bypassing can be investigated further with the eval-
uation Scenario 3. In this scenario, packets are received from the NIC via PCIe and
sent out at the native Ethernet port of the FPGA (rx only) or the other way round (tx
only). Both directions have lower latency and jitter than the aforegoing bidirectional
measurement, which includes both directions. The rx only scenario has an average

num.

packets

avg.

latency

latency

std. dev.

max.

latency

packet

loss

DPDK baseline (1) 39, 162, 180 28.91µs 35.61µs 180.26µs 0

state-of-the-art (2) 39, 055, 481 168µs 23.11µs 1.89ms 76.31%

rx host bypassing (3) 36, 281, 223 3.37µs 40.01ns 3.37µs 0

tx host bypassing (3) 38, 894, 412 4.56µs 46.96ns 4.74µs 0

rx + tx host bypassing (4) 40, 124, 675 7.99µs 35.61ns 8.65µs 0

Table 5.1: Numeric measured latency of host bypassing, extending Figure 5.4.
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Figure 5.5: Measured latency for the Scenarios 1,2, and 4. The test load is 300 bytes UDP
packets with a constant rate of 2.00 Gbit/s.

latency of 3.37µs, and for the tx only scenario, 4.56µs. The sum of these two delays is
7.93µs, which is 60ns lower than the bidirectional scenario. This can be explained by
the lower PCIe bus utilization and only a very low overhead of the native Ethernet
port within the FPGA. For example, if a DMA access of the NIC on the FPGA is on-
going to read a packet to be sent, a parallel DMA read on the rx descriptor ring may
be delayed. Further, we can conclude from the results that the rx process is causing a
higher latency, yielded by the mandatory rx descriptor writeback, notifying the new
packet to the FPGA.

Non-Overloaded Forwarding Behavior

Next, we will investigate the system’s performance with a lower packet rate, not
overloading the state-of-the-art implementation (Scenario 2). Increasing the average
packet size would cause a different latency behavior due to the store and forward
nature within the FPGA. Therefore, we lower the sending rate and keep the packet
size constant at 300 bytes.

Figure 5.5 depicts the latency over time and latency distribution at 2Gbit/s for the
measurement Scenarios 1, 2, and 4. In all three scenarios, zero packet loss occurs.
As expected, the visual examination of the latency over time shows that the state-of-
the-art approach has a latency characteristic that extends the DPDK baseline. Indeed,
we still observe latency peaks in the measurements for the DPDK baseline and the
state-of-the-art approach, probably caused by the system’s main memory.

From this experiment, we can conclude that also for low rates, the host bypassing
approach enables significantly lowered latency and jitter for packet I/O. Further, our
logically derived assumption that the DPDK baseline is an upper bound for state-of-
the-art approaches has been fortified by this experiment.

Influence of the PCIe Topology

In this section, we will investigate the influence of different PCIe topologies on the
host bypassing approach with FPGAs. Table 5.2 shows the achievable TCP through-
put of three concurrent TCP flows, generated with the load generator iperf3. The
transport protocol TCP adapts its sending rate automatically based on packet loss or
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corruption. Therefore, the rx queue of the NIC cannot be overloaded, and the average
latency stays moderate, even if packet loss occurs. Note that the provided average
goodput is the TCP throughput, excluding overhead of L1-L4 packet header fields. A
TCP throughput of ∼ 9.29Gbit/s is the theoretical achievable maximum on a 10Gbit/s
Ethernet link. The test packets are a mixture of large TCP data packets (∼ 1514 bytes)
and small acknowledgment packets.

We can observe that for the root complex of the AMD Epyc 7402 CPU and the
Broadcom PEX 8747 PCIe switch zero packet loss occurs. The end-to-end latency is
around 770ns lower for the PCIe switch, which is a very similar result. The max-
imum achievable throughput for the Intel Xeon 4110 CPU is only 7.77Gbit/s, and
packet loss occurs. The average latency is significantly higher than the other two
PCIe topologies, as the system is in an overloaded state. However, in contrast to our
aforegoing tests with a constant rate sender, overloading the host bypassing system,
36.63µs latency is comparably low thanks to the TCP congestion control.

avg. goodput avg. latency loss

Intel Xeon 4110 7.77Gbit/s 36.63µs 1.84%

AMD Epyc 7402 9.28Gbit/s 13.89µs 0.00%

Broadcom PEX 8747 9.29Gbit/s 13.12µs 0.00%

Table 5.2: Achievable bidirectional throughput of three concurrent TCP streams with a MTU
limit of 1514 bytes in evaluation Senario 3 depending on the PCIe topology.

To understand the influence of the PCIe topology in more detail, we perform an
input rate sweep from 100Mbit/s to 9.99Gbit/s on the DUT. The presented results in
Figure 5.6 depict the average latency for a given input rate and test scenario. Further,
if the packet loss is not zero for all rates of a single DUT, the same-colored dotted
lines indicate the relative packet loss. Note the logarithmic y-axis scaling.

First, we will discuss the DPDK baseline measurement: As stated earlier, this ap-
proach does not have any packet loss up to a throughput of 9.99Gbit/s. However,
starting from 5.00Gbit/s, we observed a slight latency increase. Only at 9.99Gbit/s,
the average latency increases strongly. This latency increase can be explained by the
latency spikes, already known from Figure 5.4, which cannot be retrenched quickly
as the link speed of the egress port is very close to the arrival rate. For lower in-
put rates, this packet backlog can be retrenched much faster, wherefore the average
latency is significantly lower.

The state-of-the-art approach, copying packets via the system’s main memory into
the hardware accelerator, has a latency of less than 10µs until a rate of 2Gbit/s.
Increasing the input rate further leads to a significant latency increase up to 168µs.
Further, between 2.35Gbit/s and 2.4Gbit/s first packet loss occurs. A further increase
of the input rate does not lead to any throughput increase or latency variation.

Utilizing the Broadcom PEX 8747 PCIe switch causes no packet loss at any input
rate. In addition, we observed only a slight latency increase while increasing the load,
more precisely 1.95µs from the lowest to the highest input rate.
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(a) latency (b) packet loss

Figure 5.6: Packet loss and latency of host bypassing for the different evaluated PCIe
topologies depending on the input rate at 300 byte packet size. If no packet loss

is denoted, this topology shows up no lost packets for any input rate.

The results for the Intel Xeon 4110 CPU are similar; a latency increase can be ob-
served while increasing the input rate. However, in contrast to the PCIe switch, the
system’s performance limit is reached before reaching the link speed. Specifically,
we observed a significant latency increase between 7Gbit/s and 8.4Gbit/s but still no
packet loss. First packet loss occurs with a load of 8.42Gbit/s, and the goodput ratio
does not increase further with higher input rates.

The FPGA toolchain provides an integrated logic analyzer, which we utilized
for further debugging this performance. We observed that the incoming data write
bursts at the PCIe interface are at most 64 bytes long. In the case of the PCIe switch,
we observed longer write requests. Thus, we can assume a PCIe write burst fragmen-
tation within the CPU. However, we neither know the reason for this fragmentation
nor can we confirm this as the reason for the limited performance. Possibly the dis-
crepancy of the PCIe speeds, specifically Gen2 for the NIC and Gen3 for the FPGA,
causes this fragmentation.

Last, we investigate the AMD Epyc 7402 CPU, which causes zero packet loss with
all tested input rates. Contrary to the other two PCIe architectures, this root com-
plex causes a higher latency for very low rates. With an increased input rate until
5.5Gbit/s, the latency decreases. From this point on, the latency slightly increases,
similar to the other architectures. This behavior is comparable to memory caches
and might be caused by a routing table cache within the CPU root complex for phys-
ical addresses. However, we can neither confirm nor falsify this assumption.

Summarized, we conclude that the PCIe architecture and topology strongly influ-
ence the host bypassing performance with FPGAs.
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batch-factor/ latency PCIe transfers [bytes/pkt]

timeout [ns] average std. deviation outgoing ingoing

1/- 7.86µs 101.23ns 324.0 316.0

8/2500 9.15µs 98.93ns 317.0 316.0

16/2500 9.43µs 65.33ns 316.7 316.0

Table 5.3: Influence of delaying and batching the rx and tx tailpointer updates in Scenario 4.
The test load is 300 byte packets at 9.99Gbit/s.

Tail Pointer Delaying

In Section 3.1.4, we introduced the concept of batching rx and tx tailpointer updates
to lower the PCIe bus utilization. To evaluate this, we performed three experiments,
as shown in Table 5.3. In the first run, the FPGA writes tailpointer updates immedi-
ately into the NIC, equating the hitherto discussed approach. The second and third
runs describe a tailpointer update only for every 8th or 16th packet, respectively. Lat-
est after 2, 500ns, the tailpointer will be updated to avoid packets being never sent.
In the third run with a batch size of 16 packets, this timeout occurs frequently due
to the per-packet transmission time of 240 ns (a result of the link speed and packet
size).

The batching of tailpointer updates causes an increased latency while sending
packets, as the NIC becomes informed later of newly available packets. However, we
measured a lower standard deviation in the latency distribution, presumably caused
by the lower utilization of NIC, FPGA, and PCIe resources. Further, the NIC can read
multiple descriptor ring entries at once.

In addition to the latency, we monitored the ingoing and outgoing PCIe bus trans-
actions within the FPGA. Here, we observe a decrease in the number of bytes sent
out of the FPGA, which is caused by the reduced number of tailpointer updates.

If a latency increase is acceptable, we can assess the tailpointer batching mecha-
nism as a viable solution to lower the PCIe bus load. However, only delaying the
rx tailpointer updates causes no latency increase as long as sufficient free descriptor
ring entries are available.

Tx Descriptor Writeback

The utilized NIC and the presented FPGA prototype provide the capability of an
optional tx descriptor writeback, as introduced in Section 3.1.4. In Figure 5.7a, we
present the measured latency over time for the bidirectional Scenario 4 with and
without tx descriptor writeback and two PCIe architectures.

In the case of the NIC and FPGA being attached to the PCIe switch, we cannot
determine any performance difference caused by the writeback. The latency is con-
stantly low, and zero packet loss occurs.

However, the behavior for the Intel Xeon 4110 CPU changes when writeback is en-
abled. With enabled tx descriptor writeback, 15.79% packet loss occurs, significantly
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(a) Latency and out-of-order packets over time. (b) Relative ingress and egress time of 20

consecutive packets 0.2ms after start.

Figure 5.7: Packet reordering in an overloaded scenario. Tx descriptor writeback is
disabled/enabled. The test load is 300 byte UDP packets at 9.99 Gbit/s.

more than the 9.90% for the other case. This can be explained by the additional
overhead caused by writing an 8− byte descriptor for every packet into the FPGA.

The advantage of tx descriptor writeback is congestion control for sending packets,
as every sent packet is confirmed in the tx descriptor ring. By that, overflowing the
descriptor ring becomes impossible, e.g., if the enqueueing mechanism of the FPGA
is faster than the tx mechanism of the NIC. The red crosses in Figure 5.7a indicate
reordered packets caused by descriptor ring overflows. We define a reordered packet
if its first timestamp, i.e., before the DUT, is smaller than the timestamp of the pre-
ceding packet behind the DUT. In this test, we observed 176, 761 packets fulfilling
this reordering criterion, while a total of 35, 784, 597 packets were processed.

The diagram in Figure 5.7b depicts the time of 20 consecutive packets staying
within the FPGA with no descriptor writeback enabled. The snapshot was created
0.2ms after the start, where the packet queue was not yet fully built up, in order to
create a readable graph. The left side of a horizontal bar represents the ingress time,
the right side of the bar when the NIC sends out the packet. One can observe two
classes of packets exist, and the latency difference of packets between these classes
is around 15µs, approximately the round-trip-time of the tx descriptor ring with 64

entries, 300 − byte packets, and 10Gbit/s link speed. For example, the Packets 8, 9,
and 10 cause a tx ring overflow and are sent earlier than expected. The Packet 11,
however, is an “old” packet of the previous descriptor filling round.

To summarize, a tx descriptor writeback is only required when the maximum system
performance is reached, and packet reordering should be avoided. Yet, the price of
descriptor writeback is a lowered performance due to the additional PCIe overhead.

5.1.2 GPU-based Host Bypassing

As an extension of the host bypassing approach with FPGAs, we proposed a realiza-
tion on GPUs in Section 3.1.5. Identically to the FPGA approach, packets are received
from the GPU via PCIe from the NIC, without any CPU or main memory interaction.
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Figure 5.8: Measurement setup for the host bypassing approach with GPUs building upon
the P4STA framework. Figure derived from: [100].

We set up a test environment to evaluate this approach, as shown in Figure 5.8.
Test packets can ingress and egress the DUT only via the NIC, as the GPU provides
no network connectivity. The remaining measurement setup, based on the P4STA
framework, is unchanged from the previous section.

Specifically, we compare the two scenarios as shown in Figure 5.9. The first sce-
nario is the DPDK baseline, containing only packet I/O to and from the system’s
main memory. As discussed in the previous section, we assume this scenario as an
upper bound for state-of-the-art packet I/O into hardware accelerators.

Instead of building a state-of-the-art reference implementation for packet I/O into
GPUs, we only compare the GPU host bypassing implementation with this upper
bound. The second scenario specifies the host bypassing approach with GPUs.

In this section, we will discuss the performance of host bypassing with GPUs, focus-
ing on latency, jitter, and throughput. Following this, in Section 5.1.3, we compare
the measurement results of FPGAs and GPUs with each other.
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Figure 5.9: Evaluation scenarios for host bypassing with GPUs. Figure derived from: [100].

General Packet I/O Performance

The plots in Figure 5.10 show the latency over time for the evaluation Scenarios
1 and 2 with a packet size of 300 bytes and 1000 bytes at 9.99Gbit/s. The GPU host
bypassing implementation consists of 8 descriptor rings for receiving and 8 descriptor
rings for sending packets. The influence of the number of rings will be discussed
in a subsequent section. Analogous to the FPGA evaluation, the NIC and GPU in
Scenario 2 are connected to a PCIe switch, and in Scenario 1, the NIC is directly
attached to the CPU root complex to be closest to the system’s main memory.

Investigating the curve for GPU host bypassing with 300− byte packets, we observe
significant latency jitter, ranging from ∼ 8µs to ∼ 100µs, with an average latency of



112 evaluation

Figure 5.10: Latency over time for GPU host bypassing (8 rings) with 300-byte and 1000-byte
test packets at 9.99Gbit/s. The green curve is cut-off for readability at 4 s.

27.17µs. With an increased packet size of 1000 bytes, the jitter is significantly lower,
and the average latency is 15.28µs.

Compared to this, the DPDK baseline has a low median latency; however, periodic
latency peaks disturb the overall system performance. On average, the baseline has
a latency of 29.19µs, which is strongly raised by the latency peaks.

From this experiment, we can derive two insights: First, host bypassing with GPUs
is susceptible to jitter and a higher packet rate, i.e., smaller packets at constant bitrate,
increases this effect. Second, compared to state-of-the-art approaches, with a theoreti-
cally bounded performance by the DPDK baseline, this approach is a viable solution
to improve the packet I/O performance.

Parallel Packet Processing

In the following, we investigate the influence of parallel packet receiving and sending
in the GPU. The GPU implementation of host bypassing, presented in Section 3.1.5, al-
lows the instantiation of multiple descriptor rings for receiving and sending packets
in parallel.

The NIC classifies every incoming packet by computing a hash value based on the
packet header fields and assigns it to one of the receive rings. We generated synthetic
test traffic for the evaluation, consisting of multiple packets equally distributed over
all available hash values. By this, we utilize all descriptor rings uniformly.

The results in Figure 5.11 are generated with 1000 − byte test packets in a non-
overloaded scenario. Consequently, zero packet loss occurs in all tests. We observe
a slight rise in latency when the number of descriptor rings becomes greater than
one. Further, higher variance in latency is visible, i.e., higher latency jitter. Although
we cannot observe the internal behavior of the GPU in real-time, we can assume
possible causes. The parallel descriptor rings are served by multiple CUDA threads
within the GPU, each accessing the same global memory. Probably this synchronous
access leads to a disturbance between the threads.
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Figure 5.11: Latency distribution of host bypassing with GPUs depending on the number of
rx/tx descriptor rings. 1000-byte test packets at 7.4Gbit/s.

Next, we will investigate the GPU performance depending on the number of de-
scriptor rings and packet size at a data rate of 9.99Gbit/s. The results are presented
in Table 5.4.

First, we can observe a very high latency for all tests with packet loss. The reason
for this is the rx buffer of the NIC, already discussed in the preceding section.

Second, zero packet loss occurs for large packet sizes, i.e., 1500 byte, even for only
a single descriptor ring. From this, we can identify the packet rate to be the limiting
factor. Further, the latency standard deviation is very low for a single descriptor ring
and large packets. Therefore, as long as large packets can be guaranteed, a single
descriptor ring should be preferred for jitter-critical applications.

Third, we observe massive packet reordering for multiple descriptor rings. For
this, analogous to the FPGA host bypassing evaluation, we captured a timestamp with
nanosecond accuracy for every packet before and after the DUT. This reordering can
be explained by the asynchronous processing of the rings in the GPU, implicitly
allowing packets to overtake other packets. Although packet reordering is an issue
for some applications, for many network functions it is irrelevant. In the case of a
single descriptor ring and 300− byte packets, the reordering is caused by overflows
in the descriptor ring. For 300 − byte packets at line rate, zero packet loss occurs
starting with 8 descriptor rings.

rx-/tx-

rings

packet

size

avg.

latency

latency

std. dev.

packet

loss

reordered

packets

1/1 1500 9.76µs 87.7ns 0 0

1/1 300 1790µs 50.3µs 74.78% 0.01%

2/2 300 1000µs 87.7µs 51.64% 49.49%

4/4 300 544.2µs 99.7µs 6.45% 42.28%

8/8 300 27.17µs 7.6µs 0 38.20%

Table 5.4: GPU host bypassing performance characteristics, influenced by the number of rx
and tx rings and packet size, at a constant 9.99Gbit/s UDP test load.
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Influence of the PCIe Topology

In Section 5.1.1, we have shown that the performance of the host bypassing approach
with FPGAs significantly depends on the PCIe infrastructure.

We tested the DUT with a constant UDP test load of 300 − byte packets and 4

descriptor rings for receiving and sending packets to evaluate the PCIe influence.
Four rings are intentionally chosen, as this causes an overloaded scenario for all
topologies and the packet loss is a good metric for the achievable throughput. The
results are presented in Table 5.5.

The packet loss is lowest for the PCIe switch (Broadcom PEX 8747) and highest for
the Intel Xeon 4110 CPU. The latency measurements have only a low significance as
they are mainly caused by the rx buffer in the NIC, which cannot write the packets
faster into the GPU. This buffer has a constant size, so the latency depends inversely
on the throughput.

We can summarize that the PCIe topology influences the performance of host by-
passing with GPUs slightly, but all investigated architectures have shown a similar
and good performance.

avg. latency latency std. dev. packet loss

Broadcom PEX 8747 544.18 µs 99.68µs 6.45%

AMD Epyc 7402 564.67 µs 94.75µs 7.72%

Intel Xeon Silver 4110 583.73 µs 98.36µs 9.82%

Table 5.5: Influence of the PCIe topology on the host bypassing performance. All tests with
300-byte test packets at 9.99Gbit/s and 4 descriptor rings for rx and tx.

5.1.3 Comparison of Host Bypassing with FPGAs and GPUs

In the two preceding sections, we discussed the performance characteristics of the
host bypassing approach with FPGAs and GPUs. Although both realizations rely on
the same concept, their performance characteristics are diverse.

First, the latency of GPU host bypassing is significantly higher than with FPGAs,
as shown in Figure 5.12. A higher latency leads to a higher backlog in the system,
i.e., the number of packets being processed concurrently. Further, we observed a
higher jitter for all experiments with GPUs. Both effects depend probably on the
internal architecture of the GPU, consisting of a DDR5-based global memory on
which the software threads operate. In contrast to this, the FPGA realization is highly
optimized for this particular application, and therefore packet handling can be much
faster. Indeed, both approaches outperform state-of-the-art approaches, handing over
packets via the system’s main memory. The line rate of the NIC, i.e., 10Gbit/s, can
be reached with both approaches.

While the FPGA implementation reached a very high performance with a single
descriptor ring for sending and receiving packets, the GPU implementation bene-



5.1 host bypassing 115

Figure 5.12: Comparison of host bypassing latency for FPGAs (1 ring) and GPUs (8 rings) at
9.99Gbit/s and 300-byte packets. No packet loss in both measurements.

fits from parallelism. In our tests, we observed an increased achievable throughput
when increasing the number of descriptor rings up to 8 for sending and receiving.

The influence of the PCIe architecture influences the overall performance. The
PCIe switch has shown the best performance for FPGA and GPU host bypassing,
followed by the PCU root complexes of AMD and Intel CPUs. Surprisingly, these
effects were much stronger for the FPGA implementation. Perhaps, this is caused
either by the GPU being optimized for common CPUs or by the parallel packet
handling of the GPU and by this more simultaneous PCIe bus transfers. The faster
link technology of the AMD CPU, supporting up to the 4th PCIe generation, should
not influence the results, as neither the NIC nor the FPGA/GPU supports this.

Tailpointer batching is an improvement that can be realized only with FPGAs
at an acceptable effort. Yet, it can lower the PCIe bus utilization and increase the
system’s performance along with a slight latency increase.

To summarize, we can state that the host bypassing approach is superior to state-of-
the-art techniques for Packet I/O in PCIe-based hardware accelerators.
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5.2 network function offloading on programmable hardware

In Section 3.2, we introduced flexible Internet service creation concepts using pro-
grammable hardware. In the following, we will evaluate the performance of these
concepts. First, in Section 5.2.1, we discuss the residential Internet service creation
with P4-programmable hardware, including switches, smart Network Interface Cards
(NICs), and Field Programmable Gate Arrays (FPGAs). Next, in Section 5.2.2, we in-
vestigate the mobile Internet access use case, focusing on the User Plane Function
(UPF).

As these two residential and mobile Internet access creation approaches provide
only the subscriber termination but no per-subscriber traffic shaping and QoS en-
forcement, we suggested an FPGA-based QoS co-processor. The prototypical imple-
mentation of this co-processor will be evaluated in Section 5.2.3 to prove the under-
lying concepts.

5.2.1 Residential Internet Access Termination

The requirements for residential Internet service creation, i.e., a Broadband Network
Gateway (BNG) system, are quite challenging. Especially, fulfilling the requirements
regarding the number of parallel subscriber sessions, throughput, and application-
specific network protocols is challenging (compare Section 2.2). In the following,
we will investigate the performance criteria of the proposed prototype, i.e., latency,
throughput, and the number of subscribers.

Evaluation Setup

In total, we investigate three different P4-programmable targets, all realizing the
desired BNG functionality, and a software-based baseline implementation for pure
packet forwarding:

• P4-Tofino: The P4-Tofino platform is a P4-programmable switch manufactured
by Intel (formerly Barefoot Networks) and provides up to 64 x 100Gbit/s Ether-
net ports.

• P4-NetFPGA: This P4 target offers 4 x 10Gbit/s ports and can be programmed
by a P4-compiler, integrated into the common FPGA development workflow [78].

• P4-SmartNIC: The Netronome NFP-4000 is a Network Processing Unit (NPU)
that allows programming its data plane with the P4 programming language. It
offers up to 2 x 40Gbit/s Ethernet connectivity or up to 8 x 10Gbit/s breakout
Ethernet ports.

• Software-based baseline (Linux Kernel): This work assumes the superiority of
hardware-accelerated Internet service creation over pure software approaches.
However, a software reference implementation, e.g., Accel-PPP[5], may not of-
fer the maximum achievable performance. Therefore, we compared the inves-
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Figure 5.13: Evaluation scenario for the P4-BNG. The three implementations can be
exchanged. All implementations are attached via a 10 Gbit/s Ethernet link.

tigated BNG implementations with the native packet forwarding of the Linux
kernel as the upper bound for kernel space network functions.

The general evaluation measurement setup is shown in Figure 5.13, building upon
the P4STA framework introduced in Chapter 4. The three P4-targets and the software
baseline can be exchanged in this setup, each being connected via two 10 Gbit/s
Ethernet links. This link speed is chosen for fairness reasons, as Ethernet systems
with a higher link speed typically have a lower base latency due to their store and
forward behavior. For example, 1500 byte packet requires 1.2µs to be transmitted on
a 10 Gbit/s link, but only 120ns at 100 Gbit/s link speed. This implies that even a
lower latency can be achieved. For this, we refer to Section 5.2.2, where we present
evaluation results for mobile Internet access termination on the P4-programmable
Tofino platform, operating at 100 Gbit/s.

While the P4STA framework is used for packet loss and latency measurements, the
test traffic generation is done with the MoonGen load generator [50]. MoonGen allows
generating the custom network protocol stacks, i.e., PPPoE encapsulated subscriber
packets, at high rates with various session configurations. Further, a receive thread
in MoonGen can verify packets on the access port. To summarize, we benefit from the
disaggregation flexibility of P4STA, allowing the usage of a highly flexible software
load generator.

To increase the packet rate, we lowered the packet size to 532 bytes on the up-
stream port and 562 bytes at the access port. The additionally added headers for
PPPoE-based subscriber encapsulation cause the size difference. With this smaller
packet size, the differences between the P4 targets become more visible. Note that
all presented latency measurements are corrected by a constant offset for the P4STA
setup and cable delays, i.e., the shown latency numbers are caused only by the tested
device.

P4 Language Limitations

One main goal of the P4 programming language is platform independence, i.e., it
should be possible to compile the BNG data plane program for the different plat-
forms. However, we observed multiple restrictions.

First, the P4 language (compare Section 2.3), exists in two versions: P414 and P416.
These two languages express the same logical constructs but are not compatible with
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each other. Both languages were about equally common at the starting time of this
work. The P4-NetFPGA, building upon the Xilinx SDNet compiler, offers only P416
support. The Netronome SmartNIC and the Intel Tofino provide support for both
languages. However, the P416 support was very restricted at the starting time of this
work. Note that in the meantime, the P416 support for the Intel Tofino is significantly
enhanced. We tested and used both versions of the Intel Tofino in this work; for the
Netronome SmartNIC, only P414 is used.

The SDNet compiler, used by the P4-NetFPGA project, allows neither longest prefix
match tables nor parser_value_sets. However, both are used in our BNG reference
implementation, and we circumvented them. Note that this is not a limitation of
FPGAs; instead, the early-stage P4 compiler does not support these features.

For the Netronome NFP-4000 SmartNICs, we observed multiple minor issues at
compile time. This may be caused as the primary programming language for this
hardware is micro-C, a vendor-specific C dialect. For example, we observed table size
limits that do not correspond to the configured sizes.

The Intel Tofino platform is built for the P4-programming language and has the
best support for this language. However, if a very high resource utilization or special
functionality is desired, the source code must be adopted as well. For these optimiza-
tions, detailed knowledge of the hardware pipeline is required.

The P4 language specification, a reference compiler, and the bmv2 software switch
reference implementation are available open-source. It is noticeable that commercial
tools are utilized for all of the three investigated platforms. Further, confidentially
agreements are partially mandatory to access compilers and documentation, not pro-
viding an ideal basis for a quick establishment in industry and academia.

Besides the Intel Tofino platform, the impression is created that the utilized P4

compilers are not yet fully-grown. However, the FPGA vendor Xilinx recently an-
nounced a successor of the tested P4 compiler, claiming better feature support and
commercial suitability [141]. In general, we can confirm that the P4 language is a
promising step towards platform independence. As of today, minor adaptions to the
source code are required to enable a compilation on multiple platforms.

General Performance Characteristics

First, we evaluate the latency and throughput of the different hardware platforms,
realizing the BNG functionality. In the following, we measure the latency and packet
loss of the Device Under Test (DUT). Note that zero packet loss at a constant in-
put rate is the demonstration that (at least) this throughput can be handled by the
DUT. The “point of failure,” i.e., the maximum throughput, can be determined by
performing multiple measurement runs at multiple input rates.

Figure 5.14 shows the average latency for the different P4-BNG realizations de-
pending on the input rate. In addition to this, Table 5.6 presents the latency standard
deviation for selected input rates of the same measurement scenario. The standard
deviation is a metric for jitter and indicates how the latency values of different pack-
ets vary around the average value. By this, we can investigate how deterministic the
DUT behavior is.
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Figure 5.14: Average latency of the tested BNG system in the downstream direction,
depending on the input rate. Packet loss exists only for the Linux kernel packet

forwarder. Each run is 10 s long. An input rate of 9.4Gbit/s corresponds to
∼ 10Gbit/s at the egress port due the additional added headers.

P4-BNG baseline

input rate: P4-Tofino P4-NetFPGA P4-SmartNIC Linux

100Mbit/s < 10ns 327ns 1.7µs 13.2µs

1, 000Mbit/s < 10ns 211ns 0.7µs 19.8µs

9, 000Mbit/s < 10ns 263ns 1.6µs 157.9µs

Table 5.6: Latency standard deviation of the P4-BNG implementation for selected input
rates of the scenario in Figure 5.14.

The P4-Tofino latency curve has a constant and low latency of 1.17µs, and no
influence of the varying input rate can be observed. The measured latency standard
deviation is in the range of the measurement error and can be assumed to be almost
zero. As this switch builds upon a P4-programmable ASIC with a total capacity of
6.5Tbit/s and 100Gbit/s per port, this behavior is not surprising. The packets traverse
without any interference through the switch pipeline in constant time. As the switch
is a store-and-forward Ethernet device, the packet is stored at least once internally,
which already requires 425ns at the configured link speed and packet size.

Similarly, the P4-NetFPGA has a constant latency, independent of the input rate.
However, this latency is higher, i.e., 5.08µs on average. Executing exactly the same
digital logic on FPGAs with a lower clock frequency, e.g., the described P4 pipeline,
would cause significantly higher latency. However, these results are still very good
compared to the Linux baseline.

The P4-SmartNIC has the highest latency of the three investigated platforms,
about 22µs at 9.4Gbit/s. Further, we observe a latency increase with an increasing
input rate. In contrast to the two other P4 targets, this hardware builds upon a many-
core processor for parallel packet processing. Therefore, a higher load can cause
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internal micro congestion, leading to the observed latency increase. Surprisingly, the
latency standard deviation decreases for higher input rates, probably because of a
more constant internal resource utilization. However, we cannot explain the causes
of this behavior without knowing the platform’s hardware architecture details.

In comparison to this, the performance values of the Linux baseline differ signif-
icantly. For all input rates, the latency is significantly higher. Starting with a rate of
∼ 1.5Gbit/s, the first packet loss occurs, and the latency increases drastically. This
latency increase can be explained by packet queues built up in the server system or
ingoing Network Interface Card (NIC), as the software cannot process them as fast
as they arrive. But even before this point of failure, we observed non-deterministic be-
havior. Especially for very low rates, e.g., 100Mbit/s, higher latency is measured than
for higher rates. This may be caused by the processor cache, which benefits from a
higher packet rate.

In general, we can conclude that all three hardware approaches have a significantly
better performance than the software baseline in terms of latency, packet loss, and
throughput. Note that this Linux baseline performs no packet processing at all and
would thus be an advantage compared to the P4-platforms.

Number of Subscriber Influence

Due to the nature of Internet service creation, many subscribers should be terminated
on a single access edge, e.g., up to 35, 000 for a BNG system [162].

Table 5.7 shows the average latency depending on the number of installed sub-
scriber sessions. In all measurements, zero packet loss occurs. No results were shown
for the Linux baseline, as this is not able to terminate subscriber sessions.

The P4-Tofino and P4-NetFPGA are not sensitive to the number of parallel sessions,
which is not surprising due to the foregoing evaluation results and their determinis-
tic internal logic.

For the P4-SmartNIC, we observed a slight variation in latency. This may be caused
by the internal load balancer, distributing incoming packets over multiple processor
cores. However, further investigations would require detailed knowledge of the pro-
prietary hardware and compiler.

Further, for unknown reasons, more than 4, 000 installed subscribers on the P4-
SmartNIC lead to unexpected packet loss. We assume this to be caused by a control
plane bug, not installing flow rules going beyond 4, 000 subscribers.

All in all, the behavior of all three P4 platforms is almost independent of the num-
ber of subscribers. As expected, the hardware behaves without difficulty until its ca-
pacity limit. After this, all further subscribers are ignored. The P4-SmartNIC compiler
either misbehaves or does not refuse a P4-program exceeding the hardware capaci-
ties. According to the datasheet, the available table memory of the P4-SmartNIC is
higher; thus, we assume compiler misbehavior.
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#Subscribers std. dev.

32 256 1024 2048 4000 (#S=4000)

P4-Tofino 1.17µs 1.17µs 1.17µs 1.17µs 1.17µs 1.54ns

P4-NetFPGA 5.08µs 5.08µs 5.08µs 5.08µs 5.08µs 242ns

P4-SmartNIC 22.12µs 22.14µs 22.19µs 22.03µs 22.06µs 2.6µs

Table 5.7: P4-platform dependent average latency of the P4-BNG for a variable number of
subscribers and 9.4Gbit/s downstream traffic. Input packet size: 532 byte.

Resource Utilization

Table 5.8 and Table 5.9 show the resource utilization of the BNG prototype on the
P4-NetFPGA and P4-Tofino, respectively. As the used P4-SmartNIC builds upon a
many-core processor, a Network Processing Unit (NPU) executing program code, no
resource utilization can be discussed.

FPGAs consist of many different resources that can be configured by the synthe-
sis tool to achieve the desired behavior. However, only the resources Lookup Table
(LUT) and Block Random Access Memory (BRAM) are highly utilized by the BNG
implementation. LUTs are mainly used for realizing boolean logic, while BRAMs
are small Static Random Access Memory (SRAM)-based memory cells, e.g., used for
realizing packet forwarding tables.

The utilization values in Table 5.8 show these two resources. The total value de-
scribes the utilization of all logic on the P4-NetFPGA, including Ethernet logic and
PCIe control plane integration. The P4-datapath value includes only the P4-program-
mable match-action pipeline. Even though the available resources are not yet fully
utilized. A higher utilization is not possible as the synthesis tool must place them
on the FPGA, fulfilling strict timing guarantees, i.e., how long an electrical signal
takes from A to B. Therefore, ∼ 4000 subscribers are already the maximum on this
platform, depending on the required functionality.

SRAM memory and Ternary Content-Addressable Memory (TCAM) are the crit-
ical resources in the P4-Tofino. In Table 5.9, the utilization for 4096 and 8192 sub-
scribers is shown. Similar to the P4-NetFPGA, a utilization of 100% is not realistic
due to dependency conflicts of sequential P4 constructs. However, a higher utiliza-
tion than for FPGAs, including the P4-NetFPGA, is possible. The logic is distributed
over nine consecutive pipeline stages for dependency reasons, each having a constant
amount of memory and logic blocks.

The increase of subscribers by a factor of two has only a minor impact on the
resource utilization, and even higher subscriber numbers can be achieved. The exact
number of achievable subscribers depends on the particular configuration. Thus, the
35, 000 subscribers stated at the beginning can be achieved, depending on the exact
functionality.
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total P4-datapath available

LUT 202, 155 (47%) 163, 013 (38%) 433, 200

BRAM 1, 074.5 (73%) 952 (65%) 1470

Table 5.8: Resource utilization of the P4-NetFPGA platform, realizing BNG functionality for
4096 subscribers.

4096 subscribers 8192 subscribers

SRAM 12.81% 15.94%

TCAM 15.97% 15.97%

#pipeline stages 9/12 9/12

Table 5.9: Resource utilization of the P4-programmable Intel Tofino, realizing BNG
functionality for 4096/8192 subscribers.

5.2.2 Mobile Internet Access Termination

In extension to the residential Internet access termination, in Section 3.2.3, we pro-
posed a concept for hardware accelerated subscriber termination in mobile 5G access
networks, i.e., the User Plane Function (UPF). In this section, we will discuss the per-
formance characteristics of P4-based UPF realizations compared to state-of-the-art
kernel space and user space implementations.

Figure 5.15 depicts the evaluation setup, utilizing the previously introduced P4STA
framework to evaluate the Device Under Test (DUT). In the case of the P4-based
implementation, the UPF is attached via two 100Gbit/s Ethernet links to the P4STA
Stamper. The kernel space and user space realizations of the UPF are attached via
two 40Gbit/s Ethernet links. In addition to these two data plane ports, we developed
a simple emulator of the 5G Session Management Function (SMF), installing flow
rules in the UPF. By this, isolated testing of the data plane network function becomes
possible without setting up a complete 5G network, e.g., no 5G authentication of real
User Equipments (UEs) is required.

The test packets consist of equally-sized 1000−byte packets shaped to a constant
input rate. Further, the P4STA Stamper duplicates all incoming packets by a constant
factor to achieve packet rates up to 100Gbit/s. By this, a replayed packet trace of
packets on the N3 interface with a rate of 1Gbit/s and multiplied by a factor of
100 causes a load of 100Gbit/s on the DUT. After passing through the DUT, all
duplicated packets are sorted out, and only the initial load packets are sent to the
packet verification.

Besides the evaluations in this section, the proposed UPF implementation was
tested in an end-to-end testbed, as described in Appendix A.2.

In the next sections, we investigate the following three implementations in detail:

• Kernel Space UPF (KS): As state-of-the-art kernel space realization, we uti-
lize the reference UPF implementation of the free5gc open-source project [56].
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Figure 5.15: Measurement setup to investigate different UPF implementations. The input
load is multiplied by up to 100, enabling higher packet rates.

For this, a specific kernel version is required, and a kernel module must be
compiled and loaded for GTP encapsulation.

• User Space UPF (US): To assess user space subscriber termination, we chose
an existing open-source project, namely dpdk_gtp_gateway [33]. This implemen-
tation builds upon the DPDK framework and requires capable Network Inter-
face Cards (NICs). Further, the NIC is decoupled from the operating system
network stack, a typical procedure for user space network functions. This im-
plementation does not support the 5G QoS identifiers, which we added in the
source code to provide the same behavior as the other two implementations.

• P4-based UPF (P4): The evaluated P4-based UPF implementation is presented
as part of this work in Section 3.2.3, operating with no QoS co-processor.

For the kernel and user space realization, we utilize a commodity server with two
Xeon E5-2670v3 CPUs, 256GBDDR4 system memory, and two Intel XL710 NICs. The
operating system is Ubuntu 18.04 with the kernel version 5.0.0-23. We disabled CPU
clock frequency throttling to avoid non-deterministic disturbance by this. Further, no
background tasks are executed on the servers in parallel.

Performance Characteristics of a Kernel Space UPF

First, we investigate the characteristics of the kernel space UPF implementation. Fig-
ure 5.16 depicts the performance characteristics of the kernel space (KS) implemen-
tation. For input rates with a step-width of 500Mbit/s and additional measurement
points around the “point of failure,” the average latency and packet loss are shown.

First, while increasing the input rate from 100Mbit/s to 500Mbit/s, we observe a
latency decrease from 62µs to 23µs. This behavior is already known from the Linux
baseline, discussed in Section 5.2.1. From there on, the latency increases monotonously
with the input rate. At 2, 450Mbit/s, the first packet loss occurs, and the latency in-
creases. From this point on, the throughput remains constant, and a further input
rate increase causes only higher packet loss.

Note that the authors of this implementation focused on a functional reference
implementation and did not aim for the highest achievable performance. However,
the general behavior agrees with the observations in Section 5.2.1 and in related work
for kernel space network functions.
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Figure 5.16: Latency and packet loss of the kernel space UPF implementation, which is
provided as part of the free5gc open-source project [56].

Hardware Acceleration Comparison

Extending the evaluation of the kernel space UPF, we investigated the user space (US)
implementation similarly. Up to an input rate of 22.5Gbit/s, i.e., a rate of 2.8 ·106 pack-
ets per second, zero packet loss occurs. From there on, the latency increases, and
packet loss occurs. Further, the average latency is significantly lower than the kernel
space UPF.

Besides these two software implementations, we evaluated our P4-based UPF pro-
totype in the same way. In Figure 5.17, the latency distribution of these three different
implementations is shown for selected input rates. Note that all shown measurement
runs have zero packet loss, which means the DUT is not overloaded.

The P4-implementation of the UPF has a constant low latency of ∼ 739 ns on aver-
age, independent of the load. Further, almost no jitter is detectable, and zero packet
loss occurs, up to 100Gbit/s. In contrast to this, the P4-BNG has an average latency
of 1.17µs for smaller 532−byte packets (compare Section 5.2.1). As discussed before,
this difference is mainly caused by the different Ethernet link speeds, i.e., 10 and
100Gbit/s, and the different P4 programs have almost no impact on the actual la-
tency.

The latency of the user space (US) UPF is around one order of magnitude higher
than the P4-implementation. It is noticeable that the latency distribution at 2.4Gbit/s
is worse than at 22Gbit/s. The reasons for this are unknown. As stated before, above
22Gbit/s packet loss occurs, and the latency increases strongly.

For the kernel space (KS) implementation, only results for 1Gbit/s and 2.4Gbit/s
are shown, as higher input rates would cause packet loss and significantly higher
latency (compare Figure 5.16). The observed latency distribution is again around
one order of magnitude higher than for the user space UPF and has a high jitter. This
corresponds to the known and expected benefit of user space poll-mode drivers.

Note that all implementations may suffer under non-optimal implementations,
and the exact performance numbers can vary from implementation to implementa-
tion. However, the general finding of our investigations is unmistakable: Between
kernel space and user space network functions, significant differences regarding
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Figure 5.17: Latency distribution of the kernel space (KS), user space (US), and
P4-based (P4) UPF implementations at selected input rates.

their performance exist. By using programmable hardware, i.e., P4-programmable
switches, further performance improvements can be achieved in terms of throughput,
latency, and jitter. Therefore the utilization of programmable hardware is mandatory
to achieve the ambitious goals of future mobile networks, i.e., low and deterministic
latency, high throughput, zero packet loss, and real-time eligibility. Our presented
implementation of a 5G UPF has shown the highest performance while providing
the required functionality. The proposed concepts can and should be recognized as
a trendsetter for next-generation mobile subscriber termination.

5.2.3 QoS-aware Traffic Shaping in FPGAs

In this section, we evaluate the proposed FPGA-based QoS co-processor, as intro-
duced in Section 3.2.4. For this, we focus on the main design requirements, i.e., mas-
sive parallel packet queueing for subscriber separation, high throughput, acceptable
latency, and zero unexpected packet loss. Note that this generic concept of FPGA-
based traffic shaping can be applied for both Internet access scenarios: residential
and mobile subscriber termination.

Evaluation Setup

To investigate these performance characteristics, we set up an evaluation environ-
ment, as shown in Figure 5.18. Similar to the UPF evaluation in the preceding section,
the P4STA framework is used for packet loss and latency measurements. Further, a
load multiplier and input rate shaper are used to generate a fine-shaped test load in
the range from a few hundred Mbit/s up to 100Gbit/s.

Further, the P4STA framework is used to tag packets with a queue ID (qID) (com-
pare Figure 3.18). For this, a control plane emulator configures the classifier within
the P4STA Stamper and the QoS co-processor with corresponding information. For
example, a load generator 5-tuple UDP flow is classified by the Stamper device and
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Figure 5.18: Measurement setup for the FPGA-based QoS co-processor. The P4STA
framework is extended by a classifier module, tagging the packets with queue

IDs required by the FPGA.

assigned to the queue ID 42, and a traffic shaping rule for the same queue ID is
installed in the QoS co-processor.

As we chose a “sidewise FPGA integration” in Section 3.2.4, the packets are in-
gressing and egressing the QoS co-processor on the same port.

General Packet Forwarding Behavior

First, we investigate the maximum throughput of the FPGA-based prototype. The No-
Scheduler implementation accepts every packet in any queue to be sent immediately,
enabling maximum throughput tests. As input load, 1474 byte packets are sent into
the FPGA with a rate of 99.9Gbit/s, enqueued, and as soon as possible dequeued. In
this experiment, the packet traverses the complete data path of the FPGA internal
design, including the external memory and the internal processing stages (compare
Figure 3.17 of the design section). We utilize two external DRAM-based DDR4 mem-
ories in this experiment. In a following section, the impact of using two instead of
one external DDR4 memory is investigated in detail.

In Figure 5.19, the latency over time and its distribution are plotted for two dif-
ferent queue numbers, a parameter of the proposed queue design. For 2048 queues,
the latency varies between 2µs and 3µs. For 262144 queues, the lower line of the la-
tency is unchanged, but the maximum latency is ∼ 40µs. This behavior is caused
by the FPGA internal scheduler, following a round-robin mechanism. In each clock
cycle of the FPGA, 32 queues can be checked in parallel for packets. The proposed
FPGA design operates at a clock frequency of 220MHz, i.e., ∼ 4.5 ns per clock cycle.
With the known number of queues, we can deduce that the scheduler checks every
262144/32 = 8192 clock cycles the same queue, assuming no other packets are sent
in between. This results in a theoretical scheduler round-trip time of 37.23µs and
corresponds with the shown measurement values. In every cycle, multiple packets
can be dequeued from a single queue.

Based on these results, we can conclude that the base latency is almost neglectable,
and only an increased number of queues causes higher latency.

The achievable throughput of the evaluated QoS co-processor is 99.9Gbit/s, as we
measured zero packet loss even at this high input rate. At an input rate of 100Gbit/s,
we observed very little packet loss caused by micro congestion in the FPGA-internal
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Figure 5.19: Measured end-to-end latency of the FPGA queueing system with the
No-Scheduler, performing no traffic shaping. Note the differnt y-axis scaling.

pipeline. However, a 100% link utilization in real computer networks is not possible
without packet loss for multiple reasons and is not desirable. Note that this experi-
ment was performed with two external DDR4 memories for packet storing.

Fine-grained Traffic Shaping

In the following, we discuss the working behavior of the token-bucket rate limiters
within the scheduler. The results are similar for both schedulers, relying on the same
token-bucket implementation, and thus, only the results for the Simple-Scheduler are
presented in the following. The test load is configured to constant-sized 1000-byte
UDP packets, sent into the FPGA with a rate of ∼ 500Mbit/s. All packets are classified
and assigned to the same packet queue in the FPGA. The rate limiter of this queue
is set to a rate of ∼ 100Mbit/s.

In this experiment, only the output of the FPGA is of interest for validating the
token-bucket shaper. Observing the packet loss would only show very high packet
loss due to the input and output rate mismatch. However, this rate mismatch is
required to ensure that the FPGA queue never becomes empty. Further, the latency
of the packets is assumed to be very high, i.e., corresponding to the taildrop limit of
the queue.

The output behavior of the FPGA, and by this, the traffic shaper, can be investi-
gated best by analyzing the timestamp series of all scheduled packets behind the
FPGA. The P4STA framework captures these timestamps. In case of varying packet
sizes, the size must be captured for each packet in addition.

As every packet is captured, the inter-packet time can be computed by subtracting
the timestamps from the current and the preceding packet. We can compute the
theoretical desired inter-packet time for the given numbers as follows:

1000 byte
100Mbit/s

· 8 bit
1 byte

= 80µs

The distribution of the inter-packet times is shown in Figure 5.20 for two different
numbers of queues in the FPGA. The start and end phases are cut off as there the
input load and queue level did not yet reach the desired steady state. We observe two
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Figure 5.20: Distribution of the inter-packet scheduling time of the Simple-Scheduler, shaping
the 1000 byte packets to a constant rate of 100Mbit/s.

bars in the plot for each number of queues, one below and one above the expected
80µs of a theoretical shaper.

The round-robin behavior of the scheduler can explain this behavior. In the sce-
nario with 262, 144 queues, the scheduler requires 37.23µs for one traversal of all
queues. Therefore, packets can be sent only every n · 37.23µs, i.e., after 74.46µs or
111.69µs. The token bucket is filled constantly with new tokens, corresponding to
a rate of 100Mbit/s, and the packets are sent either after 74.46µs or after 111.69 µs.
Still the rate limiter enforces a bit rate of 100Mbit/s on average.

Even though the variance in the inter-packet time seems to be very high, this re-
sult is excellent. We can state that this scheduler never sends more than one packet
at once, which means that no microbursts occur. As discussed in related work, data
center switches with only a few queues compared to the presented prototype tend to
send packets in bulks of two or more packets [46]. This is confirmed by our measure-
ments, presented in Section 4.3.2, comparing the accuracy of software and hardware-
based traffic shaping. In this experiments, performed on an Intel Tofino, we observed
microbursts of 8 packets at once at a 100Gbit/s Ethernet link, shaped to a rate of
100Mbit/s. Note that this hardware offers only a couple of queues per egress port,
which is not comparable with the discussed FPGA prototype in this section.

A token bucket algorithm generally underlies a tradeoff between maximum achiev-
able rate, burstiness, and rate configuration granularity. The correlation of these di-
mensions is deduced in Appendix A.4. In the presented evaluation measurement,
the token bucket algorithm has the following parameter: Every 1024 clock cycles,
i.e., every 4.65µs, new tokens are assigned to the token bucket. As shown in the ap-
pendix, microbursts would be unavoidable if this value is higher than the estimated
inter-packet time. The token update time of 4.65µs implies that the shaper has a
configuration accuracy of 1.7Mbit/s. Note that the accuracy can be improved by in-
creasing the token-bucket update time. However, we prioritized a burst-free behavior
for even higher rates.

We can summarize that the token-bucket traffic shaper is able to perform accurate
traffic shaping and rate enforcing. The observed behavior of the QoS co-processor
matches with the expected M/D/1/Bmax/∞/FIFO Kendal queueing system (com-
pare Section 2.4). Even though the exact requirements regarding microbursts in In-
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Figure 5.21: Average latency and packet loss of the FPGA-based QoS co-processor with a
single DDR4 memory and the No-Scheduler depending on the input rate, from

1Gbit/s to 99.9Gbit/s.

ternet access networks are not specified, we can conclude that this is not a problem,
as only a single packet is always scheduled at once. No microbursts occur at all while
enforcing the desired rate. Thus, the shaper behavior is sufficient for the use case of
Internet access creation.

External Memory Influence

We discussed in the design chapter different approaches to realize the external
memory for packet storing: First, either a single or two DDR4 memories can be
used. DDR4 is a memory technology relying on Dynamic Random Access Mem-
ory (DRAM). DRAM allows a very high memory capacity but has comparably high
and non-deterministic access time. Second, to overcome this limitation, an optional
internal memory, realized with Static Random Access Memory (SRAM), can be in-
stantiated. In this section, the impact of these two configuration decisions will be
discussed.

In Figure 5.21, the average latency of the FPGA design with a single DDR4 mem-
ory is shown. The No-Scheduler is used to measure the basic packet forwarding
behavior without any congestion. Up to a rate of 65Gbit/s, zero packet loss is de-
tectable. Further, the latency increases only slightly by ∼ 200ns in this rate range.
An input rate increase causes only higher packet loss from this point on. Surpris-
ingly, the packet loss is disproportionate. For an input rate of 100Gbit/s, 63.89%
packet loss occurs. This packet loss would imply that the maximum throughput is
around (1− 0.64) · 100 = 36Gbit/s, which is lower than the maximum loss-free rate
of 65Gbit/s. An FPGA internal memory data bus analysis shows that the higher in-
put rate causes more packet write-requests on the DDR4 memory, lowering the read
performance for sending packets.

Compared to related work and data sheets, stating that the memory bandwidth
of DDR4 memory is higher than 100Gbit/s, the measured results seem to lower than
expected. However, in our prototype, the memory interface writes and reads the data
of each packet. Theoretically, by this, the bandwidth is lowered by a factor of two.
Further, with the change of operation mode, i.e., reading and writing data simulta-
neously, the achievable memory bandwidth is even lower [196]. Therefore, we can
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Figure 5.22: Latency distribution of the QoS co-processor, depending on the memory
technology and packet size.

conclude that the measured results are in the range of maximum achievable per-
formance. If a throughput higher than ∼ 65Gbit/s should be achieved, two external
DDR4 memories are required. The discussed results in the previous section show
that with two memories, zero packet loss up to 100Gbit/s is achievable (compare
Figure 5.19).

In addition to the external DDR4 memory, an internal SRAM memory can be used
for small packets. It is common knowledge that SRAM memory has a deterministic
behavior and a lower access latency. Following, we investigate the influence of this
theoretical advantage. Figure 5.22 depicts the latency distribution of probe packets
for different packet sizes. Measurements for the SRAM memory are only shown
for 250 byte and 500 byte packets due to the memory alignment of this memory, i.e.,
allowing only packets up to 512 byte.

First, we observe a higher latency variance for the DDR4 memory compared to the
SRAM. Especially, the outliers of the DDR4 memory are conspicuous. They confirm
our suspicion that DDR4 memory is not well suited for network applications with
very low and deterministic latency requirements. Even so, we cannot determine the
cause of these outliers. They are likely caused by memory refresh cycles running
parallel to the packet handling.

Second, the latency distribution of SRAM memory for 500-byte packets is better
than for 250-byte packets. The constant input data rate causes this, i.e., the packet
rate is doubled when the packet size is halved.

Third, the average latency of the four DDR4 measurements is rising with the
packet size. This is plausible as the FPGA has a store-and-forward behavior, which
means the packet sending is not started before the last bit of the packet is received.

Subscriber Interference

One main reason for per-subscriber traffic shaping in Internet access networks is the
isolation of flows. This means the data traffic of subscriber A should be isolated and
independent of subscriber B. In Figure 5.23, the evaluation setup is shown, consid-
ering two subscriber flows in the residential Broadband Network Gateway (BNG)
scenario.
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Figure 5.23: Evaluation scenario for subscriber isolation in residential access networks.

background latency

traffic: # packets loss min. max. average std. dev.

none 10, 000 0 2.02µs 12.85µs 7.24µs 3.00µs

1Gbit/s 10, 000 0 2.01µs 12.76µs 7.39µs 3.00µs

9Gbit/s 10, 000 0 2.01µs 14.47µs 7.34µs 3.19µs

Table 5.10: Background traffic influence on the P4-BNG + FPGA system. 178 byte probe
packets, e.g., VoIP packets, are sent with a constant rate of 2,000 packets/s in the
test queue. In another queue, a constant packet stream is shaped at 0/1/9Gbit/s.

This evaluation scenario consists of two flows: 1) Background traffic that is shaped
in the QoS co-processor to a constant rate, e.g., 9Gbit/s. 2) A low rate probe packet
flow, consisting of small 178 byte packets with a rate of 2, 000 packets/s. The purpose
of the first flow is to disturb the queueing system. The P4STA framework captures
only the behavior of the second flow. The expectation of this experiment is that in
the case of perfect subscriber isolation, no change in the behavior can be observed
depending on the background traffic.

The results of this experiment are shown in Table 5.10. First, we measured a base-
line with zero background traffic, with an average latency of 7.24µs. The average
latency increases slightly for a background load of 1 and 9Gbit/s, as visualized in
Figure 5.24. For 9Gbit/s background load, latency peaks up to 14.47µs are present.

However, the increase in average and maximum latency is very low and can be
neglected compared to the current end-to-end latency in the Internet, far above
1ms (compare Appendix A.3). The utilized FPGA design for the QoS co-processor
consists of a single DDR4 memory and no internal SRAM-based memory for packet
storing. Therefore, the two flows share the same memory interface, which can cause
collisions and micro congestion while writing and reading data. We assume that this
shared memory interface is the cause of the slight latency increase of 6 150 ns.

Overall, we can conclude that almost no subscriber interference occur in the pre-
sented QoS co-processor design. Therefore, the goal of subscriber isolation at the
Internet access edge is achieved.
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Figure 5.24: Influence of background traffic on the FPGA-based traffic shaping for no
background traffic and 9Gbit/s background traffic, integrated in a residential

BNG system. Remaining measurement setup as in Table 5.10.

Resource Utilization

In this thesis, we discussed multiple configurations of the FPGA-based QoS co-
processor. In the following, the utilization of the resources on the FPGA is presented.
Note that the presented results are generated only for Xilinx-based FPGAs; how-
ever, the general trends are universal for FPGA-based QoS systems relying on other
vendors’ chips.

FPGAs consist of multiple resources, which are all utilized to realize the described
boolean behavior.

Lookup tables (LUT) are used to represent the combinatoric logic of the digital
signals. In a Flip Flop (FF) memory, a single bit can be stored. With LUTs and FFs,
the most common boolean logic can be realized, with except of large memories.

Within the FPGA, internal Static Random Access Memory (SRAM) blocks are avail-
able, named BRAM. In addition to BRAM, “ultra RAM” (URAM) blocks exist. De-
spite their larger size, they are similar to BRAM. In the following, we focus on these
four resources. However, many more hardware primitives exist on FPGAs, which are
typically not limiting.

The resource utilization for multiple configurations is shown in Table 5.11. They
are an output of the FPGA synthesis tool and are specific for the used Xilinx Alveo
U200 FPGA. In the first row, the results for a minimal evaluation configuration are
shown, consisting of only a single external DDR4 memory and the No-Scheduler. The
utilized resources are pretty low and already include the peripheral infrastructure,
i.e., the IP cores for PCIe, Ethernet, and the external memory.

In the second row, the No-Scheduler is exchanged with the Simple-Scheduler. We note
an increase in the URAM utilization (plus two blocks) caused by the additional state
memory of the token-bucket for 2048 rate-limited queues. Similarly, in the third row,
the added Active Queue Management (AQM) instance causes an additional increase
of URAM (plus one block).

From this, we can infer that the scheduler and AQM functionality requires ad-
ditional functionality while the other resources remain almost unchanged. The in-
fluence by the scheduler is two times higher than for the AQM algorithm, as the
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scheduler stores a token bucket value and a rate value for each queue, 54 bits in total.
On the other hand, the AQM instance requires only 32 bits per queue, fitting with
the data width of a single URAM.

The same configuration is used in the fourth row, but width two external DDR4

memories and an internal SRAM memory for packet queueing. The significant re-
source increase of LUTs, FFs, and BRAMs can be explained by the second IP-core for
DDR4 memory access. The internal SRAM-based memory block for packet storing
causes a very high increase in URAM. Therefore, it should be well-considered if this
internal memory is really needed.

In the last row, the number of queues and buckets for packet metadata storing is in-
creased to realistic scaling dimensions in large-scale Internet access networks. Here,
we can observe almost no additional increase for LUTs and FFs. However, the uti-
lization of BRAM and URAM is increased. Especially the URAM utilization is at the
limit of the synthesis tool, as electrical signals between the logical components must
be routed with strict timing requirements. In the proposed prototype, the clock fre-
quency is 220MHz, which means that no electrical signal within the FPGA is allowed
to have a propagation delay of greater than 4.545 ns. If higher resource utilization is
desired, either the clock frequency must be lowered, or the logic of pushing and
popping packets in the queues must be slowed down.

From these numbers, and after analyzing the hardware description code, we can
deviate the following mathematical correlation, describing the memory demand of
the queueing logic:

memory demand ∼ 5 · #queues + 2 · #buckets

Configuration LUT FF BRAM URAM

2048 queues, 16384 buckets,

1x DDR4, no-scheduler

36, 463

(3.1%)

51, 104

(2.3%)

130

(6.0%)

6

(0.6%)

2048 queues, 16384 buckets,

1x DDR4, simple-scheduler

36, 775

(3.1%)

54, 445

(2.4%)

130

(6.0%)

8

(0.8%)

2048 queues, 16384 buckets,

1x DDR4, simple-scheduler, AQM

37, 178

(3.1%)

54, 596

(2.4%)

130

(6.0%)

9

(0.9%)

2048 queues, 16384 buckets,

2x DDR4, 1x SRAM,

simple-scheduler, AQM

65, 373

(5.5%)

88, 797

(3.8%)

157

(7.3%)

73

(7.6%)

262144 queues, 131072 buckets,

2x DDR4, 1x SRAM,

simple-scheduler, AQM

66, 576

(5.6%)

89, 108

(3.8%)

173

(8.0%)

416

(43.3%)

Table 5.11: Resource Utilization of the QoS co-processor for a Xilinx Alveo U200 FPGA. In
all configurations, a single 100Gbit/s Ethernet IP core for receiving and sending

packets is used.
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Here, we assume the Simple-Scheduler and AQM support. This formula does not
consider the peripheral IP cores that are independent of the number of queues and
buckets.

In general, we can summarize that the presented FPGA design for QoS function-
ality requires mainly memory. FPGAs are available in many different sizes with
strongly varying allocatable resources. The presented resource utilization numbers
allow an assessment of which chipsets may be suitable for this or similar functional-
ity. Note that besides the FPGA internal resources, an Ethernet connectivity must be
provided by the FPGA.
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Control Plane Performance

In this work, we proposed two concepts for control plane integration of the FPGA-
based QoS system: 1) Using a kernel module, or 2) directly accessing the FPGA from
the user space by memory mapping. For evaluation of these two approaches, we read
and write 32-bit values from and to the FPGA via PCI express. The results are shown
in Table 5.12. Each test is executed 100 times, and the average time for a single
operation is presented. In addition, we performed the same read and write test over
a gRPC control plane implementation, building upon the memory mapping approach.

The results show, that read operations require significant more time than write
operations. This is not surprising, as in addition to the command, the read result
must be provided to the control software.

For the kernel module the average time to read or write a value on the PCI express
device is higher than for the memory mapping approach. In both cases, a user space ap-
plication performs the operation, but for the kernel module approach a context switch
is required, when handing over the command and data from the user space. This
explains the decreased performance. The widespread prejudice that kernel modules
are very fast is not right, if they are very often called by a user space application and
only for tiny tasks.

Compared to these results, the average time for operations via the gRPC control
plane interface is much higher. If all gRPC components run locally on the same server,
the average read and write time is ∼ 270µs, a significant degradation of performance.
If the controller runs on a remote server, i.e., ∼ 15ms RTT away, the time is increased
further. A the read and write operations are executed sequentially, the network de-
lay dominates the execution speed. Therefore, we can take away that the controller
should be located either very close to the FPGA or a parallelism concept must be
introduced, i.e., bulk operations. Note that these results are not specific for the pre-
sented FPGA prototype, they are universally valid for every PCIe-based hardware
that is controlled over a gRPC interface (or similar protocols).

The general behavior, that a high delay on the control plane path lowers the flow
rule installation, was discussed in related work before. For example Nguyen et al.
investigated the control plane performance of SDN-capable OpenFlow switches [138].

kernel

module

memory

mapped

gRPC

local

gRPC

remote

write 5.37µs 1.25µs 270.4µs 14, 822µs

std. dev. (write) 0.46µs 0.22µs 49.84µs 5, 154µs

read 11.11 µs 5.67µs 271.2µs 15, 010µs

std. dev. (read) 2.40µs 3.74µs 41.46µs 6, 311µs

Table 5.12: PCIe control plane performance: average time for sequential 32-bit configure
write and read requests.
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One of their findings is an inverse-linear correlation between the controller to data
plane round-trip time and the speed of flow rule installation.

We can summarize, that the control plane performance is currently lowered by the
control protocols on the higher layers, e.g., OpenFlow or gRPC. Both investigated
FPGA-access methods, the kernel module and memory mapping, have a significant bet-
ter performance than the high-level protocols, running on top of this. However, it is
noteworthy that the memory mapping approach has a better performance and allows
a simpler realization as no kernel module must be compiled. Therefore, we hope
for kernel module free drivers of next generation networking hardware, which is
currently not state-of-the-art in commercial products.

5.2.4 Energy Consumption of Programmable Hardware

One main advantage of hardware-accelerated network functions over pure software-
based approaches is the improved performance. Even though very low latency and
jitter are not likely achievable with software, at least the same throughput could be
achieved by many parallel server instances, sharing the total load. However, scaling
up the number of servers increases the energy consumption linearly. As Internet ac-
cess networks are responsible for ∼ 70% of the total network energy consumption,
this prospect is significant [164]. According to Betker et al., the total energy consump-
tion of computer networks scales almost linearly with the total traffic volume [20].

In the following of this section, we evaluate the hardware acceleration technologies
in this work briefly regarding their energy consumption. Specifically, we consider 1) a
basic user-space packet forwarder, discussed as DPDK baseline in this work before,
2) a P4-programmable Tofino switch, and 3) the FPGA-based QoS co-processor of this
work.

All experiments are performed with the same IP-based power outlet NETIO 4,
offering a power meter functionality. However, we could not precisely determine
the accuracy of this measurement tool, and therefore, the results should be seen
primarily as relative numbers to each other.

First, we investigate the behavior of the DPDK baseline. Table 5.13 presents the mea-
sured energy consumption for the Server 1) in idle mode, 2) with a running DPDK
application running, and 3) with 10Gbit/s throughput. The idle energy consumption
includes two fiber-optical transceivers, causing an increase of ∼ 2Watt. We see that
the power consumption increases by ∼ 20Watt, caused by a single CPU core busy-

idle 10Gbit/s ∆

Server 77Watt

Server + DPDK running 97Watt 97Watt ∼ 0Watt

∆ ∼ 20Watt

Table 5.13: Measured energy consumption of the DPDK baseline packet forwarder.
Server: Dell R740 with 1x Intel Xeon 4110 and Intel 82599 NIC.
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idle 100Gbit/s ∆

P4-Switch, no fan 92Watt

P4-Switch, 30% fan 101Watt

P4-Switch, fan, ASIC enabled 166Watt 168Watt ∼ 2Watt

∆ ∼ 65Watt

Table 5.14: Measured energy consumption of the P4-Tofino network switch under different
circumstances. P4-Switch: BF6064X-T with 2 x 100Gbit/s copper cable.

waiting for new packets with 100% core utilization. However, if we send 10Gbit/s
test traffic through the system, the power consumption remains constant or below
the measuring inaccuracy. A complex network function that operates on multiple
CPU cores has an almost linearly increased power consumption with the number of
CPU cores. Similarly, multiple network interfaces can be served on a single server,
each requesting one or multiple CPU cores.

Next, we focus on the energy consumption of the P4-Tofino, which is presented
in Table 5.14. In the first two rows of the table, the switching chip, a so-called Ap-
plication Specific Integrated Circuit (ASIC), is not yet enabled. We observe a power
consumption increase of 9Watt for enabling the fans at a constant rate of 30%. This
fan speed is constant during the experiments and can not influence the results. Note
that a further increase of the fan speed significantly increases the power consump-
tion; we measured up to ∼ 250Watt at maximum speed. Therefore, the fans can
become non-neglectable power consumers. If we enable the ASIC, the power con-
sumption increases by ∼ 65Watt. The power consumption increases by 2Watt if we
send 100Gbit/s data through two ports of the switch.

Last, we investigate the energy consumption of the FPGA-based QoS co-processor.
The measurement results in Table 5.15 show an increase of 23Watt for the entire sys-
tem if the FPGA is physically installed and the appropriate configuration is loaded.
The consumption without FPGA is 2Watt less than for the DPDK baseline (compare
Table 5.14) as two fiber-optic transceivers less are installed. In addition, the packet
queueing system causes a power consumption increase of 10Watt / 100Gbit/s.

We conclude that all compared approaches have a constant, throughput indepen-
dent energy consumption. Further, a load-dependent power consumption exists, i.e.,
Watt / Gbit/s, which strongly varies between these approaches. Thus, hardware accel-
eration is more suitable for network functions with high throughput.

idle 99.9Gbit/s ∆

Server 75Watt

Server + FPGA 98Watt 108Watt ∼ 10Watt

∆ ∼ 23Watt

Table 5.15: Measured energy consumption of the FPGA-based QoS co-processor (Alveo
U200). FPGA configuration: 262, 000 queues, 2x DDR4, SRAM, Simple-Scheduler,

AQM. Server: Dell R740 with 1x Intel Xeon 4110 and commodity NICs.
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5.3 active queue management in programmable hardware

In Section 3.3, we introduced concepts to realize Active Queue Management (AQM)
in programmable data planes. More specifically, we investigated the capabilities of
P4-programmable switches and FPGAs. This contribution improves the Internet ser-
vice creation on these hardware platforms, as AQM can enormously improve the
service quality in Internet access networks.

In Section 5.3.1, we evaluate the concepts of mapping the CoDel AQM algorithm
on P4-programmable hardware. Afterward, the FPGA-based realization of the same
algorithm is evaluated in Section 5.3.2.

Note that AQM algorithms work in a control loop with the congestion control of
the transport layer protocol, e.g., TCP. Therefore, the presented results depend on
many factors, including the operating system, link delays, interrupt structures, and
slightly vary between experiments.

5.3.1 P4-CoDel

In the following, the P4-CoDel implementation, introduced in Section 3.3.2, is evalu-
ated. We implemented CoDel on two P4-capable hardware platforms:

• Intel Tofino: The prototype on this platform is realized within the P4-program-
mable egress pipeline of the switch, located behind the packet queues. Thus,
the latency of the current packet can be used as input for the AQM algorithm.

• Netronome SmartNIC: In this architecture, the AQM algorithm is located be-
fore the packet queues. Therefore, the current queue level of the corresponding
queue is used as input. Further, this hardware platform has no conventional
pipeline. Instead, it relies on a many-core processing architecture.

We compare these implementations with the Linux kernel reference implementa-
tion. In Figure 5.25, the latency of one and three starting TCP flows is shown for the
first four seconds. The rate is limited to 100Mbit/s.

For a single TCP flow, in Figure 5.25a, the time series is similar for the two in-
vestigated implementations and the Linux kernel reference implementation. In the
beginning, the latency increases rapidly until the CoDel algorithm starts with con-
gestion prevention. From now on, the TCP sending rate is influenced by controlled
packet dropping to fall below the TARGET delay of 5ms. This is the expected behav-
ior and coincides with the Linux kernel implementation.

The results for the three TCP flows in Figure 5.25b are different. First, the Linux
kernel implementation has a higher latency increase in the beginning compared to
the same implementation with a single TCP flow. This is caused by the three par-
allel TCP flows, which have a three times higher congestion window increase and,
therefore, a faster sending rate increase. Second, the apparent sawtooth behavior of
a single TCP flow is not present anymore. The three TCP flows are all limited by
packet drops of the CoDel algorithm. Note that no more than a single packet is
dropped at a point in time. Therefore, the three flows cannot synchronize with each
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(a) 1 TCP flow. (b) 3 TCP flows.

Figure 5.25: Latency time series of the CoDel algorithm, realized in two different
P4-programmable data planes and the Linux kernel reference implementation.

other, i.e., reducing their congestion window simultaneously. This causes the wavy
latency pattern, still falling below the 5ms TARGET periodically.

The behavior of the P4 Tofino implementation is similar. In the beginning, we ob-
serve a high latency increase and, from there on, the wavy latency. Thus, the algo-
rithm on the Tofino platform works as expected.

The results of the P4-SmartNIC deviate from the expected behavior. The pattern is
similar to a single TCP flow except for the faster-increasing latency. This arouses the
suspicion of TCP flow synchronization, i.e., many packets are dropped at the same
time. As multiple processor cores process the packets in parallel, the CoDel drop
decision is likely executed on multiple packets simultaneously. From an algorithmic
point of view, this is not intended by CoDel. However, the many-core architecture
makes it impossible to avoid this race condition and parallel packet dropping.

Last numeric statistics of this experiment with one, two, and three TCP flows are
shown in Table 5.16. The packet loss and latency numbers are different, although
still in the same range.

We can conclude that the realization of AQM algorithms in the data plane, e.g.,
as a supplement to Internet service creation functionality, is possible. While the P4-
Tofino is well suited, the many-core SmartNIC suffers from synchronization problems
caused by its internal architecture.

Linux P4-SmartNIC P4-Tofino

#TCP-flows loss latency loss latency loss latency

1 0.05% 5.7ms 0.17% 5.51ms 0.16% 5.59ms

2 0.17% 6.5ms 0.24% 6.25ms 0.36% 6.86ms

3 0.33% 7.2ms 0.45% 6.42ms 0.44% 8.17ms

Table 5.16: Number of dropped packets and average latency for three different investigated
CoDel implementations. Each run is 4 s long, and has a configured rate of

100Mbit/s, corresponding to approximately 33 · 103 packets.
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5.3.2 FPGA-based CoDel

In this section, we evaluate the realization of the FPGA-based CoDel implementation,
presented in Section 3.3.3. The algorithm is integrated into the FPGA-based QoS co-
processor for traffic shaping at the Internet access edge. In the previous section, we
evaluated the same algorithm in P4-programmable hardware. In contrast, an FPGA
integration offers much more freedom, as no P4 language and hardware constructs
made for packet header processing must be diverted.

In Figure 5.26, the latency for the first four seconds is shown for the Linux kernel
implementation and the FPGA realization. In this experiment, three TCP flows are
started in parallel, and the FPGA limits the rate to 100Mbit/s. The behavior of both
traces is very similar: The latency increases rapidly until the CoDel algorithm starts
dropping packets. After that, we observe the wavy latency pattern in both scenarios.

However, a close examination shows that the periodicity of the wavy latency is
higher on the FPGA. The CoDel algorithm contains an optimization, allowing to
drop packets earlier if frequent congestion occurs (compare Line 15 of Listing 3.3).
This optimization is not implemented in the FPGA prototype, as this would dou-
ble the maintained state for each queue. The lack of this optimization presumably
causes the behavior difference; however, its effect can be neglected in most real-world
deployments as it is almost not visible.

All in all, we can summarize that an AQM algorithm can be deployed in the QoS
co-processor. The evaluation results show that the behavior of the realized algorithm
is similar to the software reference implementation. Therefore, the same effect as by
the software implementation on end-to-end flows in the Internet can be expected.
However, the proposed approach works at scale with thousands of packet queues
and is deployable at the Internet access edge, i.e., at the termination point of residen-
tial and mobile subscribers.

Figure 5.26: Comparison of the FPGA-based CoDel implementation with the Linux kernel
reference implementation for 3 parallel congestion-controlled TCP flows.
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5.4 overall discussion of the evaluation

In this chapter, we evaluated the contributions according to the first research goal.
First, we have shown the performance characteristics of the host bypassing approach,
enabling a direct data transfer between Network Interface Cards (NICs) and PCIe-
based hardware accelerators. In particular, we observed excellent behavior in terms
of latency and throughput for our proof-of-concept implementation on Field Pro-
grammable Gate Arrays (FPGAs). The Graphics Processing Unit (GPU)-based proto-
type has shown similar throughput characteristics but was not suitable for latency
and jitter-critical applications. However, the host bypassing approach has superior
performance characteristics for both accelerator technologies compared to state-of-
the-art approaches with the same accelerator.

Second, we discussed the performance characteristics of QoS-aware network func-
tions for Internet service creation at the access edge, offloaded on programmable
hardware. In detail, the proposed prototypes for residential and mobile Internet ser-
vice creation on P4-programmable hardware have shown excellent results. We could
show the expected behavior of the proposed FPGA-based QoS co-processor up to
a data rate of 100Gbit/s. In conjunction with the P4-based approaches for Internet
service creation, this FPGA concept enables a fully functional and programmable
hardware basis with the highest performance.

Last, the evaluation of the Active Queue Management (AQM) realizations on pro-
grammable hardware has shown the expected behavior, enabling an enormously
improved end-to-end service quality in future Internet access networks compared to
static-sized queues.

As part of this work and within the evaluation chapter, different programmable
hardware platforms, i.e., the P4-programmable Tofino, P4-programmable SmartNICs,
Field Programmable Gate Arrays (FPGAs), and Graphics Processing Units (GPUs),
were used. These platforms build upon totally different internal structures, benefits,
and disadvantages. Here, we would like to highlight the advantages of the program-
ming language P4. While FPGAs can be described with very narrow limitations, e.g.,
in Verilog, the development process is time-consuming, challenging, and attracts im-
plementation bugs. In contrast, the domain-specific language P4 allows focusing on
the functionality in a much faster and easier development process due to the hard-
ware abstraction. Therefore, if the functional expressiveness is sufficient, P4 should
be preferred over a low-level design.

In summary, the performance goals of the contributions as part of the first research
goal are achieved. The contributions in Chapter 3, aiming for high throughput and
low latency realization of network functions at the access edge, have proven their
presumptions.
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S U M M A RY, C O N C L U S I O N S , A N D O U T L O O K

In this work, we addressed several challenges in accelerating network functions to-
wards high-performance programmability at the Internet access edge. In this chapter,
we summarize the content of the previous chapters and highlight our main contri-
butions in the following. Finally, we conclude our work and provide an outlook on
potential future works and research fields, building upon this work.

6.1 summary of the thesis

In Chapter 1, we motivated this work and described challenges in current computer
communication networks, especially the Internet. As the functional and performance
demand steadily increases, the underlying networking hardware must grow with
these challenges. From this, we derived a need for flexible and programmable net-
work functions with high performance at the access network edge, such as building
on programmable hardware. In Chapter 2, we provided background information on
current residential and mobile Internet access networks, concepts for network soft-
warization and programmability, and discussed existing hardware acceleration tech-
nologies. Further, we discussed mechanisms for Active Queue Management (AQM)
to reduce the end-to-end latency in the Internet, aiming to apply them at the Inter-
net access edge. Upon these analyses and the motivation, we derived three research
questions, which we answered in this work:

• RQ1.1: How to design, implement, and integrate hardware accelerators, fulfill-
ing the postulated QoS requirements, in networking edge environments?

• RQ1.2: Which hardware constraints must be considered for selecting program-
mable off-the-shelf hardware technologies and algorithms for offloading net-
work functions?

• RQ2: How to accomplish the high measurement accuracy requirements with
programmable hardware for flexible network function testing?

Based on these research questions, we summarize the contributions and results of
this thesis in the following.

6.1.1 Contributions

In Chapter 3, we presented our contributions regarding the first two research ques-
tions, RQ1.1 and RQ1.2, aiming to establish QoS-aware network functions on pro-
grammable hardware at the Internet access edge.

143
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First, in Section 3.1, we focus on the integration of Peripheral Component Inter-
connect Express (PCIe)-based hardware accelerators in computer systems. This ac-
celerator kind is widely used in mobile Internet access networks. Efficient data in-
put and output to and from the accelerator are essential to achieve high end-to-end
service quality. While state-of-the-art approaches suffer from multiple data copies,
the presented host bypassing approach allows the direct interaction of the hardware
accelerator and Network Interface Card (NIC). This concept addresses the research
question RQ1.1, focusing on the QoS-aware integration of hardware accelerators. The
general concept of our approach is to control the NIC directly from the hardware ac-
celerator to prevent unnecessary packet copying. We aimed to improve latency, jitter,
and throughput by bypassing the main system memory, built with non-deterministic
and shared memory resources. We proposed two different prototypes for Field Pro-
grammable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs) with dif-
ferent advantages and disadvantages to investigate the differences between these
hardware technologies as part of research question RQ1.2.

Second, we investigated how to provide Internet subscriber termination at the ac-
cess edge with programmable hardware. For this, we presented two concepts for
implementing residential and mobile Internet subscriber termination in Section 3.2.
We investigated three different programmable hardware platforms as part of re-
search question RQ1.2, utilizing the domain-specific language P4. In addition, we
performed research on the implementation of massive packet queueing systems on
FPGAs, aiming to serve thousands of packet queues in parallel. Our novel hardware
architecture builds a flexible and generic basis for packet queueing and scheduling
in hardware chips. In this context, we investigate the design and implementation
prospects of the research question RQ1.1. Especially the conjunction of FPGAs and
P4-programmable switches turned out to be a very flexibly programmable basis for
many network applications, including Internet service creation.

Last, we investigated the practicability of existing Active Queue Management
(AQM) algorithms in programmable hardware. These algorithms were initially made
for the execution as software of network clients and can lead to a strongly lowered
end-to-end latency in the Internet. In Section 3.3, we proposed techniques for migrat-
ing these existing algorithms to P4-programmable hardware and FPGAs. For this,
we applied these techniques to the exemplary algorithm CoDel. This contributes to
answering the research question RQ1.1, how these QoS-aware algorithms must be
designed to be mapped on programmable hardware.

Evaluating network functions with very high performance is challenging and re-
quires specialized measurement hardware. Due to the absence of appropriate tools
that simultaneously offer all required functionality, mainly a high accuracy and test-
ing flexibility, we proposed the P4STA framework in Chapter 4. This framework
combined P4-programmable hardware, configured for packet timestamping and loss
detection, with commodity software-based load generators. By this functional disag-
gregation, we combined the performance and time accuracy of hardware and the
flexibility of software. Generating test loads in software is crucial for setting up flex-
ible test scenarios. In addition, the software flexibility includes experiment manage-
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ment and results evaluation. By using the P4STA framework proposed in this work,
measurement results are automatically documented and easier to analyze.

6.1.2 Conclusions and Results

Upon the investigations related to the P4STA framework, we can answer the research
question RQ2: In order to measure the behavior of high-performance network func-
tions, it is essential to utilize hardware that offers at least the same performance.
As it is not cost-effective to build special-purpose hardware at this performance
grade, the utilization of universal P4-programmable turned out to be a game-changer.
With such programmable hardware, the P4STA framework achieved latency measure-
ments with nanosecond granularity at link speeds of up to 100Gbit/s. This frame-
work served as the primary measurement tool for the contributions of the first two
research questions discussed in the following.

In our comprehensive evaluation, presented in Chapter 5, we investigated the pre-
sented contributions related to RQ1.1 and RQ1.2 regarding their compliance with the
postulated performance.

We evaluated the presented host bypassing approach in Section 5.1 regarding la-
tency, jitter, and throughput. The presented results show that with this approach,
significant throughput and jitter improvements and minor latency reductions can be
achieved compared to state-of-the-art methods. Bypassing the main system memory,
having a non-deterministic performance, and the lower number of memory copies
is the reason for this reduction. During our evaluations, we observed a determinis-
tic and low latency up to a throughput of 10Gbit/s, even at small packet sizes of
300 bytes. Our comparative prototypes for FPGAs and GPUs have shown significant
differences: The FPGA prototype has revealed a significantly better latency and jitter
behavior caused by the accelerator-internal architecture: While GPUs are mainly a
many-core processor architecture and thus have similar advantages and drawbacks
as commodity CPUs, FPGAs comprise application-tailored digital circuits with de-
terministic behavior.

The evaluation of our contributions to Internet service creation on programmable
hardware was discussed in Section 5.2. Our conceptual studies for residential and
mobile Internet service creation have shown an excellent performance. Depending
on the chosen programmable hardware platform, we demonstrated failure-free Inter-
net subscriber termination up to 100Gbit/s. One key contribution of this thesis is the
fully functional prototype of a 5G User Plane Function (UPF), which was integrated
and tested in real 5G Standalone networks. The behavior of our novel architecture for
massive packet queueing on FPGAs has ideal performance characteristics. Zero unex-
pected packet loss was detected in our tests, and while evaluating the traffic shaping
capabilities, no microbursts occurred. We have shown the interference-free isolation
of various subscriber flows in multiple queues. To summarize, our evaluation results
show that our approach fulfills all requested requirements on the data plane func-
tionality. Thus, programmable hardware, such as P4-programmable switches and
FPGAs, are a suitable, performant, and flexible alternative to existing blackbox solu-
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tions for Internet access termination. At least one hardware vendor picked up our
idea of combining P4-programmable switches and FPGAs and announced a product
upon this concept to the best of our knowledge.

Last, we evaluated the implementation of Active Queue Management (AQM) algo-
rithms on programmable hardware in Section 5.3. The investigated prototypes have
shown the expected behavior, similarly to existing software reference implementa-
tions. However, the presented transformation in hardware scales much better for
many parallel queues, such as in Internet access networks. Therefore, this approach
supplements the beforehand introduced concepts for Internet access creation on pro-
grammable hardware, especially to enhance the FPGA-based QoS co-processor. In-
tegrating these concepts in future Internet access edge implementations could enor-
mously lower the end-to-end latency and increase the overall service quality and
experience.

Based on the presented evaluation results, we answer the first research question,
RQ1.1, aiming at the design, implementation, and integration of hardware acceler-
ators while fulfilling the postulated QoS requirements: With the host bypassing ap-
proach and the FPGA-based QoS co-processor, we presented how hardware acceler-
ators can be integrated much better into the network’s data plane compared to the
state-of-the-art. Generally, any indirections should be avoided, e.g., copying network
packets within a system multiple times without necessity, as the end-to-end perfor-
mance suffers from the weakest link in the chain. To design and implement network
functions at the access edge, fulfilling the favored QoS requirements, the choice of
appropriate hardware is mandatory, and the desired behavior is implemented with
constantly good performance. For this, we focused on the example use case of resi-
dential and mobile Internet subscriber termination. Last, we have shown how AQM
algorithms, improving the end-to-end QoS in computer networks strongly, must be
adopted to be mapped on programmable hardware. We applied similar concepts to
the network function implementation as for the subscriber termination.

The research question RQ1.2, aiming at the selection constraints of programmable
hardware, can be answered as follows: GPUs turned out to be susceptible to higher
jitter and, therefore, they are less suitable for latency-sensitive applications. However,
they offer enormous potential for advanced network functions, such as encryption
tasks. In contrast to GPUs, P4-programmable hardware has a higher service level in
terms of latency, throughput, and jitter. However, the expressiveness of these hard-
ware architectures is rather limited and is suitable only for header processing. We
investigated three different specific platforms within the class of P4-programmable
data planes, all having pros and cons regarding their performance and functional
expressiveness. Last, we investigated FPGAs described on the bit-level for packet
queueing systems. FPGAs turned out to be very powerful for this use case but with
the drawback of significantly more complicated programming models. To summa-
rize, during the programmable hardware selection process, one should weigh up the
required and desired performance needs, functional requirements, and development
effort. A single, generally best solution does not exist. However, we can conclude that
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programmable hardware is a powerful technology class to improve future Internet
access edge networks.

6.2 outlook

The contributions and results of this work contain the potential for further research.
First, we did not consider the management of hardware accelerators in virtualized
environments at the access edge. It would be beneficial to investigate appropriate
concepts to describe hardware accelerators as a resource, managed in a cloud-like
manner, e.g., by management tools such as Kubernetes.

Second, we considered programmable hardware accelerators to be atomic resources,
which means we have exclusive access. However, the shared execution of multiple
network functions simultaneously could significantly improve capacity efficiency.
For this, existing and novel hardware virtualization concepts must be investigated
regarding their applicability to network functions. For example, two network func-
tions operate on two different network ports of a single P4-programmable switch or
FPGA, and a third network function can be added at runtime on a third port with-
out interference. Third, we investigated multiple programmable hardware platforms
for Internet service creation in this work. However, we noted that they are not ex-
changeable one by one with ease, and significant modifications of the control plane
interfaces were required. Therefore, we see huge potential for research on hardware
abstractions concepts to standardize the control plane interaction.

Last, we would like to mention our open-source load generation framework P4STA.
Even though a commercial product was announced upon our concepts and results,
previously presented in a scientific publication by us, this still comprises many open
research questions. For example, how programmable network switches, anyway de-
ployed in existing and future data centers, can be used best for benchmarking pur-
poses in operational networks and how to monitor the entire networking.

open-source

Scientific work and technological progress are the results of interaction between re-
searchers and engineers. To fortify future achievements of the research community
and facilitate the reproduction of our results, we disclosed multiple implementations
of this work as open-source projects.
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A
A P P E N D I X

a.1 example p4 program

One essential basis for this work is programmable networking hardware which can
be configured by the P4 programming language, as introduced in Section 2.3.

In this appendix, we present a simple P4 program to complement the explanations
in this work and provide a hands-on example of this language.

The source code in Listing A.1 describes a program that performs packet forward-
ing based on the Ethernet destination address. A compiler can generate a hardware-
dependent configuration file of the P4 switch, FPGA, or other appropriate hardware.

The presented source code describes the behavior of the bmv2 software switch,
a reference implementation to test P4 programs1, but the concepts are identical
for real hardware switches. This switch consists of four main building blocks, the
ParserlImpl, Ingress pipeline, Egress pipeline, and DeparserImpl, combined in
Line 48 to form a switch. In the preceding lines, these blocks are defined.

First, an ingressing packet at the switch will be processed by the ParserImpl,
starting in Line 13. The parser is responsible for parsing the incoming byte stream
and providing packet header vectors to the subsequent internal pipeline stages. The
parser is described as an Finite-State Machine (FSM) and always starts in the state
start. The Ethernet header, including its fields, i defined in Line 1 to 5. This definition
is necessary to extract this header in Line 15 of the start state. This concept allows
describing any existing and future networking protocol. By default, no packet header
format is known by P4. Based on the etherType of this parsed header, the next parser
state is determined (Line 16 to 18), e.g., parsing IPv4 or IPv6 (not shown), or the
packet is accepted by the parser, meaning that the ingress pipeline proceeds with
this packet.

Next, the Ingress Pipeline describes the packet header processing and is typically
implemented in hardware by a staged pipeline with constant packet processing delay.
The control flow, i.e., the ordering of tables and actions to be applied, is defined in
the apply section starting in Line 41. In the presented example, the table ether_exact is
applied for each packet with a valid Ethernet header. This table, specified in Line 29

and below, matches the destination Ethernet address of the packet and sets the egress
port of the packet by the action send. Note that the P4 language is only used to specify
the tables; however, they are filled at runtime by a different protocol, e.g., P4Runtime,
OpenFlow, or gRPC.

1 https://github.com/p4lang/behavioral-model
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1 header ethernet_t {

2 bit<48> dstAddr;

3 bit<48> srcAddr;

4 bit<16> etherType;

5 }

6 ...

7 struct headers {

8 ethernet_t ethernet;

9 ipv4_t ipv4;

10 ...

11 }

12

13 parser ParserImpl(packet_in packet, out headers hdr, inout metadata meta, inout

standard_metadata_t standard_metadata) {

14 state start {

15 packet.extract(hdr.ethernet);

16 transition select(hdr.ethernet.etherType) {

17 0x0800: parse_ipv4;

18 default: accept;

19 }

20 }

21 state parse_ipv4 {

22 ...

23 }

24 ...

25 }

26

27 control Ingress(inout headers hdr, inout metadata meta, inout standard_metadata_t

standard_metadata) {

28

29 table ether_exact {

30 key = {

31 hdr.ethernet.dstAddr : exact;

32 }

33 actions = {

34 send;

35 }

36 }

37 action send(bit<9> port) {

38 standard_metadata.egress_spec = port;

39 }

40

41 apply {

42 if( hdr.ethernet.isValid() ){

43 ether_exact.apply();

44 }

45 }

46 }

47 ...

48 V1Switch(ParserImpl(), Ingress(), Egress(), DeparserImpl()) mySwitch;

Listing A.1: Exemplary P4 code for the P4 BMV2 software switch.
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a.2 5g standalone laboratory setup

In this work, we present a novel User Plane Function (UPF) design running upon
programmable hardware. In the evaluation of this thesis, we analyzed the behav-
ior of this design in testbed environments with stimulus generators for the relevant
interfaces. In addition to this, we set up a 5G testbed to demonstrate the full function-
ality and to illustrate the end-to-end data transmissions. A working laboratory setup
with real User Equipments (UEs), such as commodity smartphones, can guarantee
that no major functionality is missing. Concretely, this laboratory setup follows the
3GPP mobile broadband standard in release 15, often referred to as 5G standalone.
In contrast to this, 5G non-standalone is the mainly deployed 5G technology in cur-
rent real-world networks. This technology builds mainly upon 4G technology and
protocols that are extended by a second radio channel using the 5G frequencies and
modulation techniques. However, the functionality of the 5G core is typically almost
unchanged in 5G non-standalone over 4G networks.

The main hardware components of this testbed are shown in Figure A.1 and can
be divided into three parts: 1) the UEs, 2) the 5G RAN, and 3) the 5G core. We uti-
lize commodity smartphones from Huawei, OnePlus, Oppo, and Asus for the UEs. In
addition, two industrial 5G modems were used. The smartphone UEs are connected
via USB to a Raspberry Pi microcomputer, which runs a commodity Ubuntu-based
Linux. The Android Debug Bridge (adb) allows remote access and screen mirroring
these smartphones.
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Figure A.1: Hardware components and simplified network topology of the 5G standalone
testbed. Note that not all components are shown to improve the readability.
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For the 5G RAN, three different realizations exist:

• O-RAN: The disaggregated O-RAN consists of one Central Unit (CU), two
Distributed Units (DU), and six Radio Units (RU) of the vendor Airspan. The
fronthaul network allows time synchronization between the RUs and DUs. Fur-
ther, the fronthaul switch ensures low jitter. The DU and CU are deployed on a
Kubernetes cluster.

• Amarisoft Callbox: The second RAN is manufactured by Amarisoft and is a
laboratory base station. In addition to the RAN functionality, an IMS server is
part of this product and used in this work. It is delivered as a precompiled
software, and therefore insights into the internal behavior are not possible.

• OpenAirInterface: The third RAN is based on the open-source project OpenAir-
Interface5G. A software-defined radio board is used for the radio functionality,
attached via USB to a powerful desktop PC. The open-source project can oper-
ate in a disaggregated way following the O-RAN terminology with a DU and
CU or as a single software component with all required functionality.

All three RAN implementations provide the N1/N2/N3 interfaces towards the 5G
core, which the 3GPP specifies. The backhaul switch creates the connectivity, a com-
modity, VLAN-aware Ethernet switch.

On the right side, the hardware components of the 5G core are shown. The VM
cluster allows hosting virtual machines for the 5G core and many other infrastructure
functions, such as the Kubernetes master for the O-RAN, monitoring functions, a
DHCP server, and many more. The NAT gateway is a bare-metal server connecting
the testbed to the Internet, including subscriber traffic from the 5G UEs. The P4-UPF
is the design presented in Section 3.2.3. Note that either the P4-UPF can be used or
the default UPF of the 5G core.

5G Core Integration

We chose the open-source free5gc project as 5G core, to which we contributed several
bug fixes and features during this work [56]. To reproduce the setup described in this
section, we recommend version 3.0.6 or later, which contains all required function-
ality. In Figure A.2, the detailed setup and configuration of this 5G core are shown.
Note that one advantage of this 5G core implementation is the separated execution of
each network function in the core. By this, a single function can be easily exchanged
in the Service-Based Architecture (SBA), for example, the UPF. The presented setup
consists of two virtual machines (192.168.1.3, 192.168.1.4) and the Amarisoft RAN
(192.168.1.1). All components are connected to the backhaul switch.

In the first virtual machine, all control plane components of the 5G core are run-
ning, e.g., the AMF and SMF. Additionally, one software-based UPF is running there
for the data network “ims”, used for VoIP and described in the following subsec-
tion. In the second virtual machine, the software-based UPF for the data network
“internet” is running.



A.2 5g standalone laboratory setup 171

IMS
server

RAN
UE

AMF
UPF
"ims"

10.0.0.0/16

SMF
"ims"

SMF
"internet"

N4

VM #1

1
9
2
.1

6
8
.1

.1

192.168.1.0/24

1
9
2
.1

6
8
.1

.3
1
9
2
.1

6
8
.1

.2

UPF
"internet"
10.1.0.0/16

Internet

5G-core        free5gc-based

...
SBA

VM #2

10.0.255.254

N1/N2/N3

assigned UE
IP-addresses:
• ims: 10.0.0.1
• internet: 10.1.0.1

N4

N3/
N4

N3

N1/N2

Amarisoft
Callbox Classic

NAT gateway

Backhaul
switch:

N6

Figure A.2: Logical structure of the testbed, building upon the open-source free5gc core.
Figure derived from: [105]

If a UE connects to this 5G network, it gets two IP addresses assigned for these
two data networks, 10.0.0.1 for ims and 10.1.0.1 for internet in the example. Packets
sent to the data network internet are terminated by the second UPF and forwarded
to a Network Address Translation (NAT) and from there to the Internet.

The second VM can be replaced by a third-party UPF implementation or by the
prototype presented in this work. Only the standardized N4 control plane interface
towards the 5G core and the N3 protocol specification must be fulfilled.

Voice over New Radio

The UEs in this testbed setup must support the 5G standalone standard, which is not
the case for many tested smartphones regardless of the advertised features set. In ad-
dition to various smartphones, we tested two industrial 5G modems successfully.
But even for the phones which connected successfully to the network, we observed
one main issue: They request a “voice over new radio” service which enables VoIP
telephony. If this service is unreachable, they stop the registration process and dis-
connect. To circumvent this, we added 1) a second data network named “ims”, and
2) started an IMS server. In our tests, we found out that this server must not provide
full VoIP functionality; it is sufficient if the UE can open a TCP connection and the
server responds with error messages on UE requests.
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a.3 traffic characteristics of residential access networks

This work aims at the hardware acceleration of network functions at the Internet
access edge. Therefore it is beneficial to understand the behavior of Internet access
networks, i.e., the traffic characteristics of the packets to be forwarded to and from
the subscriber. We performed measurements at a residential access edge of Deutsche
Telekom in Frankfurt to retrieve these traffic statistics. The measurement was per-
formed over 24 hours in 2019 and captured all subscriber packets in upstream and
downstream directions. The exact number of subscribers is not presented for confi-
dentiality reasons but is in the range of multiple thousands and does not influence
the key statements. However, in the following, only the results for downstream traf-
fic are shown as they are more meaningful for this work, and most traffic is in the
downstream direction.

Figure A.3 depicts the general access network topology of residential Internet ac-
cess. We captured the packets at the link from the Label Switch Router (LSR) to the
Broadband Network Gateway (BNG). Multicast traffic, i.e., IPTV, is not considered
as the BNG distributes and duplicates these packets to the subscribers. Therefore a
measurement of multicast traffic on this link would not be significant.
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Figure A.3: Residential Internet access topology, terminated by the BNG. The traffic
statistics were captured between BNG and LSR. Figure derived from: [115]

Packet Size Distribution

In total, we captured around 54 · 109 packets in the downstream direction. These
packets can be assigned in multiple QoS traffic classes, i.e., Best Effort (BE), Low De-
lay (LD), Low Loss (LL), Voice over IP (VoIP), and network control traffic. Table A.1
presents the distribution of all packets over these QoS classes. We observe that almost
all packets belong to the BE traffic class, representing normal Internet traffic.

QoS class: BE LD/LL VoIP Ctrl

relative share: 99.82% 0.03% 0.14% 0.01%

avg. pkt. size [byte]: 1314 382 200 886

Table A.1: Packet distribution over the QoS classes.
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Figure A.4: Packet size distribution over all observed unicast packets.

In addition, the average packet size strongly depends on the traffic class, self-
inflicted by the applications running in these classes. For example, VoIP traffic trans-
mits the digitized speech in small packet chunks; otherwise, the end-to-end latency
would be increased.

Within the BE traffic class, we analyze the packet size distribution in detail, as
shown in Figure A.4 and Table A.2. Here, we classify the traffic into TCP, QUIC,
UDP, and other traffic. It is noteworthy that TCP and QUIC are congestion-controlled
transport protocols, which means that at least ∼ 93% of the Internet traffic adapts its
sending rate if congestion occurs. The packet size distribution has a clear tendency to
maximum-sized packets, which means close to the Ethernet Maximum Transmission
Unit (MTU) of 1514 bytes. This is no surprise as a TCP data transmission always fills
the packets completely, except for the last packet in each transmission. The QUIC
transport protocol has a smaller maximum packet size than TCP for unknown rea-
sons.

TCP QUIC UDP other

relative share: 84.4% 8.8% 6.4% 0.4%

avg. pkt. size [byte]: 1347 1319 832 721

Table A.2: Unicast packet distribution within the best effort (BE) class.

TCP flow Characteristics

The main traffic of current Internet traffic is based on the TCP transport protocol. To
understand this more in detail, we captured some TCP flow characteristics. In total,
we observed ∼ 70 · 106 TCP flows, each detected by the TCP-characteristic handshake
in the beginning.

We can assume no network congestion was caused by this flow during the TCP
handshake. By capturing the timestamp of the three handshake packets, we compute
the Round-Trip Time (RTT) of this TCP flow. This includes a minor measurement er-
ror of the processing time in the TCP endpoints, but we assume this to be neglectable
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Figure A.5: TCP flow length distribution of all TCP flows. The weighted RTT (wRTT)
weights each flow by its length F in bytes.

compared to the significantly higher end-to-end latency. In addition to the flow RTT,
we capture the flow length F in bytes for each flow, i.e., how many bytes are transmit-
ted from the sender to the receiver until a FIN packet is sent or the flow timeouts.

Figure A.5 depicts the distribution of the flow RTTs in the range from 0 to 112ms,
covering 89.44% of all flows. In addition, the weighted RTT (wRTT) is shown, weight-
ing each flow by its byte length, covering 96.38% of all transferred bytes. These two
covering shares indicate that the RTT of flows with a significant number of trans-
ferred bytes tends to be lower.

In general, we can postulate that most flow RTTs are quite low, and only a few
flows with high RTTs exist. However, most flow RTTs are still distributed between
0ms and 64ms. This distribution challenges the static sizing of packet queues, where-
fore we discussed the realization of Active Queue Management (AQM) algorithms
at the network access edge in Section 3.3.

In addition to this, Figure A.6 depicts the distribution of flow duration and length.
We can read from the graphs that 75% of all TCP flows have a duration of 6 30 s

and 6 10 kB. The combination of the two plots illustrates that most flows transfer
only very little data, or the other way round, a low number of flows transmit most
of the data. This is no surprise, as the working principle of most applications in the
Internet request many data in parallel in small requests, e.g., domain name requests
or loading of html/css/js files. The heavy payload flows are quite seldom compared
to these tiny requests, e.g., transferring a large file or streaming a video.

(a) Flow duration until TCP-FIN or timeout. (b) Flow length distribution.

Figure A.6: TCP flow statistics for all observed TCP flows.
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a.4 token bucket accuracy assessment

In this work, we perform traffic shaping based on the token-bucket mechanism. In
the following, we discuss 1) this mechanism, 2) its parameters, and 3) its accuracy
depending on these parameters.

The token bucket mechanism works as follows:

• Every T time units, e.g., 1024 clock cycles, new tokens are added to the bucket.

• For each bucket instance i, the number of newly added tokens is rate[i].

• The maximum number of tokens in the bucket is M.

The general update mechanism, applied every T time units, looks as follows:

buckett+1[i] =

{
buckett[i] + rate[i], if (buckett[i] + rate[i]) < M

M, otherwise

We can freely choose the following three parameters: 1) the time T, 2) the rate[i]
of each queue/bucket instance, and 3) the maximum bucket size M.

Accuracy of the Token Bucket Mechanism

To achieve a rate configuration granularity of 1 kbit/s, we can determine the parame-
ters as follows:

1) 1 kbit/s corresponds to a rate[i] = 1 token/T =̂ 1 byte/T , the smallest rate > 0.
2) The time T can be computed as follows:

T =
rate[i]

1 kbit/s
=

1
byte
T

125 byte/s
= 8ms

Assuming a chip frequency of 200MHz, T is 1.6 · 106 clock cycles in this example. A
smaller value T would cause a granularity of the shaper greater than 1 kbit/s.

However, larger values of T cause Microbursts, as discussed in the following. We
assume a configured rate of 250Mbit/s. In this case, every 8ms, rate[i] = 250, 000 tokens
are added to the token bucket. If we assume MTU-sized packets, i.e., 1500 byte, 166
or 167 packets are sent every 8ms as one microburst. Further, to achieve this rate, the
maximum bucket size M must be at least 250, 000, as the bucket would otherwise
not be able to hold the added tokens of one round. When T is choosen smaller, this
microburst effect decreases, but the granularity is also lowered.

Based on this derivation, we can conclude: A token bucket algorithm has either a
fine shaper granularity and tends to microbursts for high rates or has no microbursts
for higher rates but a lower shaper granularity. A tradeoff needs to be found. If
both are required simultaneously in one system, for each token bucket instance i, a
dedicated time T [i] is required, and probably even a dedicated M[i] value.





a.5 list of acronyms

3GPP 3rd Generation Partnership Project

AMF Access And Mobility Management Function

AN Access Node

API Application Programming Interface

AQM Active Queue Management

ASIC Application Specific Integrated Circuit

BNG Broadband Network Gateway

BRAM Block Random Access Memory

CLI Command Line Interface

CoDel Controlled Delay

CPU Central Processing Unit

DMA Direct Memory Access

DPDK Data Plane Development Kit

DRAM Dynamic Random Access Memory

DUT Device Under Test

FIFO First In First Out

FPGA Field Programmable Gate Array

FSM Finite-State Machine

FTTB Fiber To The Building

FTTC Fiber To The Curb

FTTH Fiber To The Home

GPU Graphics Processing Unit

gRPC Google Remote Procedure Call

GTP GPRS Tunneling Protocol

HQoS Hierarchical Quality Of Service

IP core Intellectual Property Core

ISP Internet Service Provider

LUT Lookup Table
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