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Abstract

The Internet and the services it provides have become an omnipresent part of our lives.
Asynchronous distributed systems form the basis of these services. Resiliency in the face
of partial failures is an essential requirement for many distributed systems, meaning
the systems must continue to function as specified even if several components fail. En-
suring correct behavior, particularly when it comes to failures and asynchrony, makes
programming such systems very challenging. Multiparty session types (MPSTs) is a typing
discipline for concurrent processes that statically ensures desired properties, such as the
absence of message reception errors and deadlocks. These properties can help developers
implement correct asynchronous message-passing applications. However, existing MPSTs
do not support the specification and verification of partial failure-handling or practical
fault-tolerant protocols that handle and recover from partial failures. This fundamentally
limits the applicability of MPSTs to asynchronous real-world distributed systems.
In this thesis we present our article “A Typing Discipline for Statically Verified Crash

Failure Handling in Distributed Systems” [VCE+18], which is the first MPST formulation for
crash failure handling in asynchronous distributed systems. This work features a lightweight
coordinator modeled after widely used systems such as Apache ZooKeeper and Chubby.
For this formulation we developed a typing discipline based on MPSTs that supports the
specification and static verification of multiparty protocols with failure handling. The
model preserves the distributed nature of MPSTs and interacts only with the lightweight
coordinator for the purpose of critical decision-making around failure handling. The type
system provides subject reduction despite the possibility of failures occurring at runtime.
We implemented our formulation as a prototype in Scala, using Apache ZooKeeper for
coordination, and used it to implement and verify a distributed logistic regression (LR)
model. In the accompanying performance evaluation, the session type distributed LR
model has a performance comparable to failure agnostics distributed LR models in the
absence of failures.
We also present our article, “A Multiparty Session Typing Discipline for Fault-tolerant

Event-driven Distributed Programming” [VHEZ21], which combines ideas from the previ-
ous model with observations from fault-tolerant middleware systems. This work is the first
formulation of MPSTs for practical fault-tolerant distributed programming of asynchronous
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distributed systems. In this work, we give structure to communication patterns involving
asynchronous communication and concurrent failures and integrate the features required
to express practical fault-tolerant protocols involving dynamic replacement of failed parties
and the retrying of failed protocol segments in the presence of imperfect failure detection
(perfect failure detection is impossible in asynchronous distributed systems). Key to our
approach is the development of the first model of event-driven concurrency for multiparty
sessions to unify the session-typed handling of failures and regular I/O events. Moreover,
the characteristics of our model allow us to prove a global progress property for well-typed
processes engaged in multiple concurrent sessions. Global progress traditionally does not
hold in MPST systems. To demonstrate its practicality, we implement our approach as
a toolchain for Scala and use it to specify and implement a session-typed version of the
cluster manager (CM) of the widely employed Apache Spark data analytics engine. Our
session-typed CM integrates with other vanilla Spark components to give a functioning
Spark runtime, i.e., it can execute existing unmodified third-party Spark applications.
Measured on an industry-standard benchmark Apache Spark has an average performance
overhead below 10% when using our session-typed CM instead of Spark’s default CM, in
the absence of failures.
The developed MPSTs typing disciplines and prototypes enable the specification and

verification of practical distributed applications that handle partial failures. Thus, we
enable the verification of desired properties and, in turn, help develop correct distributed
applications.
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Abstract

Das Internet und die Dienste, die es bereitstellt, sind ein omnipräsenter Teil unseres
Lebens geworden, und asynchrone verteilte Systeme bilden die Basis dieser Dienste.
Eine wichtige Eigenschaft von verteilten Systemen ist, dass sie robust mit partiellen
Fehlern umgehen. Diese Eigenschaft ermöglicht den verteilten Systemen, trotz Fehlern
in mehreren Komponenten, weiterhin den Anforderungen entsprechende Fortschritte
zu machen. Das Programmieren von verteilten Systemen wird durch die Notwendigkeit
mit partiellen Fehlern umzugehen, sehr anspruchsvoll und fehleranfällig. Insbesondere
das Sicherstellen der Anforderungen, unter Berücksichtigung von Asynchronität und
möglichen Fehlern, ist eine Herausforderung. Multiparty Session Types (MPSTs) ist eine
Klasse von Typsystemen für parallele Prozesse, die wünschenswerte Eigenschaften, wie
beispielsweise die Abwesenheit von Empfangsfehlern und Deadlocks, statisch sicherstellt.
Daher können MPSTs das Programmieren von verteilten Anwendungen vereinfachen.
Bisher existierende MPSTs-Ansätze können nicht auf eine signifikante Klasse von verteilten
Systemen angewendet werden, da diese die Spezifikation und Verifikation von Crash-
Stopp-Fehlerbehandlung nicht ermöglichen. Weiterhin bieten existierende MPSTs-Ansätze
nicht die nötigen Abstraktionen zur Spezifikation und Verifikation von praxistauglichen
Protokollen, die partielle Fehler behandeln und tolerieren.
Diese Ausarbeitung stellt unseren Artikel “A Typing Discipline for Statically Verified

Crash Failure Handling in Distributed Systems” [VCE+18] vor, der die erste MPSTs For-
mulierung für Crash-Stopp-Fehlerbehandlung in asynchronen verteilten Systemen ist.
Diese Arbeit verwendet ein leichtgewichtiges Koordinatormodell, inspiriert durch die weit
verbreiteten Systeme wie Apache ZooKeeper und Cubby. Für dieses Modell haben wir
ein MPSTs-Typsystem entwickelt, dass das Spezifizieren und Verifizieren von Protokollen
mit expliziter Fehlerbehandlung von partiellen Fehlern ermöglicht. Der Koordinator ist
nur in der kritischen Behandlung von partiellen Fehlern involviert, daher bewahrt die
Arbeit die verteilte Struktur von MPSTs. Wir zeigen, dass das Typsystem Subject-Reduction
erfüllt, trotz des möglichen Auftretens von Fehlern während der Laufzeit. Wir haben
einen Prototypen in Scala entwickelt, der Apache Zookeeper als Koordinator verwendet
und demonstrieren damit die praktische Einsetzbarkeit unserer MPSTs Formulierung
zur Entwicklung und Verifikation von verteilten Anwendungen, die robust mit partiellen
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Fehlern umgehen können. In der durchgeführten Evaluation hat der entwickelte Prototyp
außerhalb der Fehlerbehandlung keinen relevanten Performance Overhead.
Weiterhin stellen wir unseren Artikel “A Multiparty Session Typing Discipline for Fault-

tolerant Event-driven Distributed Programming” [VHEZ21] vor, dies ist die erste For-
mulierung von MPSTs für die praxistaugliche Programmierung von fehlertoleranten verteil-
ten Anwendungen in asynchronen verteilten Systemen. Wir beantworten eine offene Frage
im Bereich von Session Types; wie können wir Kommunikationsmustern, die Asynchronität
und parallele Fehler beinhalten eine Struktur geben und gleichzeitig die nötigen Funk-
tionen bereitstellen, die für praxistaugliche fehlertolerante Protokolle nötig sind. Diese
Protokolle benötigen Funktionen, wie das dynamische Ersetzten von fehlerhaften Teil-
nehmern, das Wiederholen von Protokollsegmenten, die wegen Fehlern gescheitert sind
und das Tolerieren von nicht perfekten Fehlerdetektoren (da eine perfekte Fehlererken-
nung in asynchronen System nicht möglich ist). Kern unseres Ansatzes ist, dass wir das
erste Modell für eine eventbasierte Nebenläufigkeit für MPSTs entwickelt haben. Dieses
Modell behandelt normale IO-Nachrichten und Fehlerbenachrichtigungen uniform. Dies
ermöglicht es uns, nicht nur eine Vielzahl an Funktionen zu realisieren, sondern ist auch
Grundlage für unser Global Progress Resultat, was traditionell nicht in MPSTs gilt. Um
die praktische Einsetzbarkeit unseres Ansatzes aufzuzeigen, haben wir eine Toolchain
in Scala entwickelt. In dieser haben wir einen Session typisierten Cluster Manager (CM)
für Apache Spark entwickelt. Unsere Session typisierter CM interagiert mit Apache Spark
Komponenten und ergibt eine funktionierende Apache Spark Laufzeitumgebung. Der CM
kann existierende und unmodifizierte Spark Anwendungen, auch von Dritten, ausführen.
In einem Standardbenchmark hat Apache Spark, wenn es den Session typisierten CM
anstelle des Standard CM verwendet, einen durchschnittlich Overhead von unter 10%.
Die entwickelten neuartigen MPSTs basierten Typsysteme und Frameworks ermöglichen

die Spezifikation und Verifikation von praxistauglichen verteilten Anwendungen, die
partielle Fehler behandeln. Wir ermöglichen damit eine leichtgewichtige Verifikation,
stellen wünschenswerte Eigenschaften sicher und unterstützen damit die Entwicklung
von robusten verteilten Anwendungen.
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1. Introduction

The Internet and the services that it provides have become an omnipresent part of our
lives. Networked distributed systems form the basis of these services, e.g., web services
and cloud-based data processing. Developing applications which execute across a set
of physically separated nodes is a major challenge. A distributed application requires
a correctly designed communication protocol that describes the asynchronous commu-
nication between distributed processes. And the processes comprising the distributed
application must correctly implement the protocol in accordance with the role they play
in the protocol.
Asynchrony is a crucial reason why developing distributed applications is challenging.

This is because the processing speeds of different processes and the message transmission
delays between processes are unbounded. Consequently, steps that would occur in a
particular order on a single machine may not occur in the same order in a distributed
application. The problem is amplified enormously when a distributed application has to
be resilient against partial failure, so that, even if some processes fail, others must remain
functional. Partial failures affect both the correctness and the progress of distributed
applications. Once again, asynchrony is the reason why dealing with partial failures is
so tricky. In general, asynchrony makes it impossible to distinguish a failed process from
an extremely slow process, and the famous impossibility result [FLP85] states that when
only one process can fail, it is impossible to reach an agreement in an asynchronous
system. Furthermore, dealing with partial failures often requires additional logic such as
the replacement of failed processes.
In many areas, type systems provide developers with a helpful tool that is accessible in

the early stages of development. Type systems are among the most widely used lightweight
verification tools. Many programming languages support static type checking. Four of
the five most popular programming languages, based on the TIOBE index1, offer static
type checking. Type systems are usually closely integrated with the development process,
provide early and rapid feedback to the developer, are almost free, and verify many
relevant properties. Type systems can for example prevent the following errors: memory

1TIOBE Index for May 2021, https://www.tiobe.com/tiobe-index/ (accessed May 21st of 2021)
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errors [MI14], type mismatches, e.g., in method calls [IPW01], and leakage of sensitive
information to untrusted parts [SM03]. Behavioral type systems are a kind of type system
that can describe the behavior of a program. Intuitively, behavioral type systems describe
how a calculation proceeds, whereas “classical” type systems describe what (result) a
calculation computes [HLV+16] – allowing type systems to verify an even broader class of
beneficial properties. Examples of behavioral types include: typestates [SY86, SNS+11]
that restrict the operations that may be carried out on an entity depending on its current
state; and type-and-effect systems [NN93] where the type describes what is calculated
and the effect describes how it is calculated. See Hüttle et al. [HLV+16] for a recent and
broad survey of behavioral types focusing on session types and behavioral contracts.
Behavioral type systems are an active and promising area towards addressing the chal-

lenges of correctly developing distributed applications. Session types (STs) and multiparty
session types (MPSTs), in particular, are well-established behavior type systems for con-
current message-passing programs that statically ensure properties such as the absence
of message reception errors and deadlocks. The original MPSTs paper [HYC08] recently
won the Most Influential POPL Paper Award.2 And the Journal of the ACM published an
extended and revised version of the original MPSTs work [HYC16]. MPSTs generalize
STs to more than two parties, i.e., MPSTs can type multiparty interactions. MPSTs consti-
tute a promising technique for distributed systems: an essential concept in MPST theory
is projection, which derives a decoupled (i.e., distributed) view of a protocol for each
participant. STs and MPSTs were originally developed for the π-calculus [HVK98] but
have been successfully applied to many practical languages, e.g., Java [HY16, SQZ+13],
Scala [SDHY17a], Haskell [LM16, PT08], and OCaml [IYY17, Pad17]. We believe that
behavioral type systems such as MPSTs can continue the success story of type systems for
distributed systems.
Figure 1.1 provides an overview of the standard MPST framework. It starts with a user-

provided protocol specification, the global type. The global type describes the asynchronous
multiparty communication from a neutral perspective. The framework derives a protocol
specification, the local type for each endpoint participating in the global type. The local
types describe the localized behavior and allow endpoints to play their part in a protocol
without global supervision. The framework uses the local type to statically type check the
I/O actions of the implementations for the different endpoints. A well-typed system of
session endpoint programs enjoys important safety and liveness properties, such as no
reception errors (only expected message types are received) and session progress (absence
of deadlocks).

2Most Influential POPL Paper Award https://www.sigplan.org/Awards/POPL/ (accessed May 21st
of 2021)
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Figure 1.1.: Overview of the multiparty session types framework.

MPSTs are an active research area, and themessage passing aspect of MPSTsmakes them
well suited to capturing the asynchronous behavior of distributed systems. Unfortunately,
current MPST works cannot handle partial failures in an asynchronous distributed system.
Partial failures refer to the situation in which some processes fail, by crashing, while others
remain operational. However, failures are an inevitable part of distributed systems, and a
broad class of distributed applications has to deal with partial failures. Not supporting
partial failures fundamentally limits the applicability of MPSTs to asynchronous real-world
distributed systems.

1.1. MPSTs for Fault-tolerant Distributed Applications

MPSTs are not ready for practical fault-tolerant distributed programming because no
existing asynchronous MPSTs work (apart from the works presented here) considers
crash-stop failures and provides the tools necessary to handle such failures. We will now
discuss the obstacles that MPSTs must overcome before developers can benefit from the
calm, order, and safety that MPSTs offer while implementing distributed applications that
deal with all the chaos of failures. It should be noted that, to the best of our knowledge,
no existing work (outside of this thesis) addresses these obstacles.

(Crash-stop) failures. Failures are a normal part of (asynchronous) distributed systems
[Bur06], i.e., not considering failures means ignoring an essential class of distributed
applications. Crash-stop failures3, in particular, are a normal part of distributed

3Distributed systems can also suffer from other failures, such as network partitions [GL02] or Byzantine
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systems. A crash-stop failure occurs when a process crashes and stays down. This
can happen at any time. This behavior makes crash-stop failures hard to handle for
the particular reason that the failed process cannot help with ensuring consistent
failure handling.
The behavior of crash-stop failures is in stark contrast with that of application-
level failures or interrupts, which are studied in MPSTs [CGY16, DHH+15], such
as division by zero or out of memory exceptions. Application-level failures can be
handled by the process, in which the failure occurred, i.e., the subject of the failure
can handle the failure. This is not possible in the case of crash-stop failures.

Asynchrony. Typical distributed applications have to deal with asynchrony because the
Internet and typical data centers are subjected to asynchrony. That makes imple-
menting distributed applications challenging because they must consider that the
processing speeds and message transmission delays are unbounded. Consequently,
steps that would occur in a particular order in a single machine may not occur in
the same order in a distributed application.
MPSTs are well equipped to capture asynchronous behavior in distributed applica-
tions that communicate over reliable channels such as TCP. However, asynchrony also
vastly complicates dealing with partial failures, and, to the best of our knowledge,
no MPST work (outside of this thesis) considers failures, such as crash-stop failures,
in an asynchronous reduction semantic. However, asynchrony is the reason why it is
impossible to reach an agreement even when only one process fails [FLP85] and
why it is impossible to accurately detect a failed process [CT96].

Application specific failure handling. What to do when a failure occurs is highly applica-
tion specific. Different distributed applications provide different means of remedying
failures. For some distributed applications it may be sufficient to safely terminate
when a failure occurs. But other distributed applications must remain operational
even in the face of multiple failures. This means that they must replace failed pro-
cesses, for example. Application specific failure handling, and therefore failures, can
influence the communication pattern and behavior that occurs inside a distributed
application.

Abstraction and programming features. Failures, asynchrony, and the resulting nonde-
terminism influence the ways in which fault-tolerant distributed applications are

failures [LSP82]. These are interesting subjects for future work. Note that tolerating network partitions
requires sacrificing either consistency or availability [GL02]. And it has been argued that Byzantine
failures are an excessively generic failure model (e.g., [Bir17]).
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implemented.

It is very difficult to deal correctly with failures, so a lot of distributed applications
use extremely reliable coordination services, such as ZooKeeper [Hun10] or Chubby
[Bur06], as a tool for simplifying fault-tolerance [VCE+18]. But these services do
not in any way render the implementation of fault-tolerant applications trivial.

Event-driven programming (EDP) or similar styles are commonly used programming
and concurrency models for dealing with the nondeterminism in fault-tolerant
applications. Apache Spark uses EDP, for example. EDP makes it possible to treat
standard I/O actions and failures uniformly.

Failures and their handling is a cornerstone of the implementation of fault-tolerant
distributed applications. However, practical applications must also deal with further
aspects, such as replacing failed processes, concurrent tasks, and working with a
variable number of processes depending on the workload.

Implementation. A safe typing discipline does not directly help developers implement
distributed applications. It is vital to ensure that a typing discipline for failure
handling can specify protocols and verify real distributed applications that deal with
partial failures. Moreover, a framework for failure handling should not add too much
performance overheads. Therefore, a prototype, the implementation of relevant use
cases, and performance evaluation are required.

1.2. Problem Statement

MPSTs are a good foundation for the specification and verification of distributed applica-
tions, because they ensure properties like communication safety and progress. However,
as highlighted in the previous section, we must address a large number of obstacles before
MPSTs provide the means of verifying practical fault-tolerant distributed applications.
We now discuss the high-level problems that we need to address before MPSTs can be-
come a helpful lightweight verification tool to support the development of fault-tolerant
distributed applications.

1. We need to extend asynchronous MPSTs with a concept of failure that is faithful to
crash-stop failures. Such a concept can be explicit (modeling a crash) or implicit, but
it must take into account the nondeterminism and unpredictability behind crash-stop
failures. We need to study such failures in asynchronous MPSTs, because asynchrony
is the key reason why failure handling in distributed systems is so difficult.
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We have to bear in mind here that in general it is impossible to reach an agreement
in an asynchronous system even if only one process fails [FLP85]. To overcome this
impossibility, we need to make appropriate assumptions.

We need to work out assumptions that are both practical and faithful and also work
in an MPST framework. We can, for example, consider concepts used in existing fault-
tolerant distributed applications, such as coordination services or program-controlled
crashes.

2. We need to extend the global types and local types with abstractions for application-
specific failure handling. Furthermore, we need to provide a programming construct
to implement the failure handling.

Providing mechanisms for the specification of failure handling is the first step,
because it allows us to specify and verify fault-tolerant distributed applications. We
then need to enrich MPSTs with features that include concurrent tasks potentially
involving different participant subsets, parameterization, restarting of failed tasks,
and dynamic replacement of failed participants, because practical fault-tolerant
applications rely on more than just failure handling.

Furthermore, we should provide a programming model already used by existing
systems, such as EDP, instead of the π-calculus that is the traditional foundation of
MPSTs.

3. We need to verify the designed methods for dealing with the asynchronous and
chaotic behavior of failures by proving desired properties. Here we need to consider
that a consequence of asynchrony and failures is that failure handling itself is subject
to both, i.e., failure handing can potentially be interrupted by new failures and
therefore only partially executed. Or different participants can react to different
failures.

An important aspect to consider in ensuring the desired properties is that MPSTs de-
fine a very rigid invariant that describes how different processes relate to each other
(cf., coherence and consistency [HYC16, CDYP16]). MPSTs ensure this invariant
for the entire execution, and this rigid invariant is the foundation for establishing
subject reduction. This invariant does not take failure into account. We therefore
need to modify this invariant so that it can deal with partial failures. We need to
relax the invariant to allow for inconsistencies that can occur because of failures,
e.g., a process that waits for a message from a failed process or a message in transit
where the receiver failed. At the same time, we need to ensure that the invariant
remains rigid enough to prove the desired properties.
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4. We need to implement our formalization to verify that it is implementable and in
practices expressive enough to verify relevant distributed applications. In addition,
we need to evaluate the implementation to ensure that it does not introduce an
undue performance overhead.

This thesis presents two typing disciplines that extend MPSTs to deal with crash-stop
failures in asynchronous reduction semantics (addressing Problem 1). Both extend MPSTs
to offer application-specific failure handling (addressing Problem 2). And we establish
and prove relevant properties (addressing Problem 3). Lastly, we provide prototype imple-
mentations for both formalizations and show that they provide reasonable performance
(addressing Problem 4). To add some perspective, we will now discuss the work of Adameit
et al. [APN17]. To the best of our knowledge, this is the only other MPSTs work that
studies distributed system failures as we do in this thesis. We will then discuss further
related works. See Section 2.2 for a detailed discussion of related work.

Adameit et al. [APN17] study link failures in synchronous MPSTs. They introduce an
optional block that allows an enclosed session fragment to be executed as standard. But the
block may also abruptly discard the ongoing execution non-deterministically. In both cases,
the session outside of the optional block continues, using either the results calculated
within the optional block or default values if the optional block has been discarded, i.e.,
the optional block expresses failure masking rather than failure handling. Failure masking
needs to be distinguished from failure handling. Both are important concepts that are
used in the implementation of fault-tolerant distributed applications. Besides targeting a
different set of fault-tolerant distributed applications (failure masking rather than failure
handling), the work uses synchronous MPST semantics. However, asynchrony is a crucial
reason why dealing with partial failures is challenging. That said, the authors convincingly
argue that the main example, a rotating coordinator algorithm, can be considered as
a distributed asynchronous process; because of its structure, e.g., it uses no choice and
outputs have no continuation different than 0 [APN16]. Lastly, the work does not offer an
implementation.

Besides the work of Adameit et al. [APN17], Fowler et al. [FLMD19] add an exception
handling process primitive for failures in (binary) STs. Type-level treatment of failure
handling behaviors between the remaining (and new) peers, as in this thesis, cannot
be studied in a binary setting. Several other works study application-level exception
or interrupt handling (e.g., [DHH+15, CGY16]). We discuss related work in detail in
Section 2.2.
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1.3. Thesis Statement

This thesis extends MPSTs to handle partial failures in asynchronous distributed systems
and combines failure handling with several practical and advanced features that enable
specification and verification of practical fault-tolerant distributed protocols and their fault-
tolerant implementations. We propose and implement a novel framework that extends
MPSTs with a coordination service inspired by practical and widely used coordination
services, creating the first asynchronous MPST framework that supports partial failure
handling for distributed applications in an asynchronous distributed system. We combine
ideas from the first model with observations from fault-tolerant middleware systems and
derive the first event-driven formulation of MPSTs. This novel model allows the specification
and verification of practical fault-tolerant protocols and their implementations, has strong
formal properties such as global progress, can deal with false failure suspicions, and is
expressive enough to build components that integrate with an existing and widely used
fault-tolerant middleware system, namely Apache Spark.

1.4. Outlook and Summary

We now provide a preview of the rest of this chapter and the rest of the thesis. We
summarize the two main technical sections, i.e., Chapters 3 and 4. We then list the
contributions of this thesis and conclude with a list of publications and how they relate to
this thesis. Chapter 2 presents explicitly optional background, related to the two main
technical chapters, and a discussion of related work. Chapter 3 presents our article “A
Typing Discipline for Statically Verified Crash Failure Handling in Distributed Systems”,
which appeared at the European Symposium on Programming 2018 [VCE+18]. Chapter 4
presents our work “A Multiparty Session Typing Discipline for Fault-tolerant Event-driven
Distributed Programming”, which appeared at Proceedings of the ACM on Programming
Languages 2021 [VHEZ21]. Both Chapters 3 and 4 are self-contained and can be read in
isolation. Chapter 5 concludes the thesis and provides a short discussion of future work.

Appendix A provides the appendix for Chapter 3. It provides additional examples,
omitted definitions and the proof details. Appendix B provides the appendix for Chapter 4.
It provides additional examples, more details on the main use case and the system model,
omitted definitions and the proof details.
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1.4.1. A typing discipline for statically verified crash failure handling in
distributed systems

Chapter 3, which presents our article, “A Typing Discipline for Statically Verified Crash
Failure Handling in Distributed Systems” [VCE+18], introduces a formal model for crash
failure handling in asynchronous distributed systems featuring a lightweight coordinator,
modeled along the lines of widely used systems such as Apache ZooKeeper [Hun10] and
Chubby [Bur06].
For this model we develop a typing discipline based on MPSTs that supports the specifi-

cation and static verification of multiparty protocols with explicit failure handling. We
thereby make partial failure handling in MPSTs available for a widely used class of dis-
tributed systems, e.g., many systems in the family of Apache middleware systems use
ZooKeeper [Hun10] by default or as an option for fault-tolerance, such as Apache Mesos
[HKZ+11], Apache Hadoop YARN [VMD+13a], and Apache Spark [ZCD+12b].
We introduce a try-handle construct in the global type, local type, and the processes

for the specification and implementation of failure handling. In a global type a try-handle(︁
G1▶H↑)︁κ.G2, describes a “failure-atomic” protocol unit: all live (i.e., non-crashed) roles
will eventually reach a consistent protocol state, despite any concurrent and asynchronous
role crashes. The try-block G1 defines the default protocol flow, and H↑ is a handling
environment. Each element of H↑ maps a handler signature F , that specifies a non-empty
set of failed roles {pi}i∈I , to a handler body specified by a G. The handler body G specifies
how the live roles should proceed given the failure of roles F . The protocol then proceeds
(for live roles) according to the continuation G2 after the default block G1 or failure
handling defined in H↑ has been completed as appropriate.
We introduce a coordination process Ψ . The coordinator plays a crucial role in ensuring

consistent partial failure handling. Importantly, processes interact with the coordination
service via asynchronous message passing, and the coordination does not know imme-
diately when a failure occurs. Furthermore, the coordination is not involved in normal
message exchange between participants; it is only involved in the coordination to ensure
consistent partial failure handling. The last point is crucial in practice, because interac-
tions with the coordinator are expensive in comparison with normal interactions between
participants, and it is therefore important not to involve it in the normal asynchronous
interactions.
We show that our type system ensures subject reduction in the presence of failures. Our

published article [VCE+18] provides a progress property for our formal model. In other
words, in a well-typed system, even if some participants fail during execution, the system
is guaranteed to progress in a consistent manner with the remaining participants.
Lastly, the chapter presents a prototype implementation and a performance evaluation.
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The prototype is based on the formal model, uses Apache ZooKeeper for coordination, and
is written in Scala. The evaluation shows that a session type logistic regression model has
a runtime performance comparable to that of failure-agnostic baseline implementations.

1.4.2. A multiparty session typing discipline for fault-tolerant event-driven
distributed programming

Chapter 4, which presents our article, “A Multiparty Session Typing Discipline for Fault-
tolerant Event-driven Distributed Programming” [VHEZ21], develops an MPST-based
theory for practical programming of fault-tolerant distributed applications. The work draws
inspiration from one of the major paradigms for distributed programming in practice,
event-driven programming (EDP), and introduces an event-driven reduction semantics
to MPSTs. Furthermore, the work adds several advanced features needed for practical
fault-tolerant protocols. In addition, the proposed formalization is designed to tolerate
false failure suspicions. This enables MPST-based specification and verification of practical
fault-tolerant multiparty asynchronous protocols that deal with crash-stop process failures
to ensure the key properties of communication safety and progress. Moreover, it enables us
to prove a global progress property for well-typed processes engaged in multiple concurrent
sessions, which does not hold in traditional MPST systems.
We introduce two new core abstractions, role sets, and failure-aware subprotocols to

global and local types. Role sets provide an abstraction for a set of participant processes
capable of the same behavior. E.g., a set of worker processes where worker processes
are selected during execution to perform different tasks or a set of master processes to
provide redundancy for potential failures. Role sets provide a practical, lightweight form
of parameterization. Subprotocols provide an abstraction for concurrent failure-aware
tasks. We now illustrate our concept of a failure-aware concurrent task:

g(r1, ..., rn; rp;R1, ..., Rm) = G with rp@ri . G

It specifies task g whose participants are the individual processes playing roles r1, ..., rn
and rp, combined with all member processes of the role sets R1, ..., Rn. The arguments
are separated into three groups separated by ‘;’. Each role, e.g., r1, is implicitly associated
with a role set. The role arguments r1, ..., rn (first group) specifies participants that occur
in the subprotocol; the rp in the second argument group specifies that this participant
should be dynamically assigned from its role set when this subprotocol is spawned, and
the last argument group specifies role sets that occur in the protocol.
The subprotocol definition has two parts: the normal activitywritten before the with, and

the failure handling activity after thewith. The rp@ri clause specifies that, in this subsession,
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ri is responsible for monitoring rp for failure. By default, the subsession proceeds following
the interactions in the normal activity. However, if ri suspects rp of failure, ri will switch
to the failure handling and inform the other participants about the failure; it may do so at
any point during the subsession.
The work introduces a novel event-driven reduction semantic and concurrency model.

Instead of using a parallel composition of sequential processes in the context of the π-
calculus, which is the typical style used in MPSTs. Participant processes are written as
an event loop that contains a set of event handlers. For instance, the runtime calls event-
handlers for receiving a message once that message is present in the queue. Event handlers
have the following form:

[L]λx . P

The above event-handler has two parts. The function λx . P is the behavior of the event
handler, where x is the session channel variable and P is the event handler body. [L]
describes the action performed on the session channel x in P . The runtime system calls
an event handler when the session is in a state that is compatible with L and the required
events are ready, e.g., if P receives a message on x then the handler is fired if the message
is present in the queue.
We show that our type system ensures subject reduction, session progress, and global

progress in the presence of failures. It should be noted that global progress does not
generally hold in MPSTs. In other words, in a well-typed system, even if some participants
fail during execution, the system is guaranteed to progress in a consistent manner with
the remaining participants.
To demonstrate the practicality of our approach, we implement our system as a toolchain

for fault-tolerant distributed programming in Scala and use it to specify and implement a
session-typed version of Spark’s cluster manager (CM). Our session-typed CM is compatible
with other vanilla Spark components and provides a functioning Spark runtime to execute
existing third-party Spark applications without any code modifications. We use a Spark
implementation of the industry-standard TPC-H benchmark suite4 to test and evaluate the
runtime performance of our session-typed CM. Measuring the time it takes from submitting
a Spark application to its completion, the results show our prototype implementation
incurs an average overhead below 10%, in the absence of failures.

4Transaction Processing Performance Council (TPC), http://www.tpc.org/tpch/ (accessed May 20,
2021)
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1.5. Contributions

In this dissertation, we introduce and implement two novel typing frameworks that extend
MPSTs to enable partial failure handling in asynchronous distributed systems.

1.5.1. A typing discipline for statically verified crash failure handling in
distributed systems

Chapter 3, which presents our article “A Typing Discipline for Statically Verified Crash
Failure Handling in Distributed Systems” [VCE+18], introduces a new typing discipline
for safe specification and implementation of distributed programs prone to process crash
failures based onMPSTs in amodel using a coordination service. The following summarizes
the contributions of that work.

Multiparty session calculus with coordination service. We develop an extended multi-
party session calculus as a formal model of processes prone to crash-stop failures
in asynchronous message passing systems. Unlike standard session calculi that re-
flect only “minimal” networking infrastructures, our model introduces a practically-
motivated coordinator artifact and explicit, asynchronous messages for run-time
crash notifications and failure handling.

MPSTs with explicit failure handling. We introduce new global and local type constructs
for explicit failure handling, designed for the specification of protocols that tolerate
partial failures. Our type system carefully reworks many of the key elements in
standard MPSTs to manage the intricacies of handling crash failures. These include
the well-formedness of failure-prone global types, and the crucial coherence invariant
of MPST typing environments to reflect the concept of system consistency in the
presence of crash failures and the resulting errors. We show safety for a well-typed
MPST session despite potential failures.

Prototype and performance evaluation. Our prototype, which is implemented in Scala,
uses Apache ZooKeeper as a coordination service. We compare the performance of a
session typed logistic regression model that uses our prototype with failure-agnostic
baseline implementations. The session typed version offers a performance similar to
the failure-agnostic baseline implementations in the absence of failures.
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1.5.2. A multiparty session typing discipline for fault-tolerant event-driven
distributed programming

Chapter 4, which presents our article, “A Multiparty Session Typing Discipline for Fault-
tolerant Event-driven Distributed Programming” [VHEZ21], combines the ideas of Chap-
ter 3 with observations from fault-tolerant middleware systems. When compared with
Chapter 3, it uses a more practical and flexible failure and system model, by, e.g., allowing
for false suspicions and not requiring a coordination artifact. Furthermore, it adds features
that are required for the expression of many practical fault-tolerant distributed applications.
Lastly, we demonstrate its practicality by realizing a complex use case and show that it
has a negligible performance overhead. The following summarizes our contributions.

Practical fault-tolerance. We develop the first session typing discipline that supports
and integrates a range of novel features needed to specify fault-tolerant multiparty
interactions, including failure-aware subprotocols, participant parameterization and
dynamic role assignment.

EDP. We present the first MPST-based system for event-driven concurrency. We develop
an endpoint projection and type system for distributed processes implemented and
executed as components driven by asynchronous I/O events. The central abstractions
are session-typed event handlers and event loops

MPST properties for practical fault-tolerance. We formalize our system and prove the
key properties of communication safety and global progress for an entire system of
multiple, concurrent sessions. Our framework offers global progress, which generally
does not hold in MPSTs. And integrating the range of features needed to meet our
aims in a tractable formalism is a significant challenge for MPSTs. We achieve this
by exploiting EDP to unify handling of regular I/O and failure handling events.

Implementation and evaluation. We implement our framework as a toolchain for safe
programming of fault-tolerant distributed applications in Scala. To evaluate our
approach we specify and implement a session-typed version of Spark’s cluster man-
ager (CM) component, which is compatible with the other existing Spark runtime
components, and supports the execution of existing Spark application code without
modification.
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1.6. Publications and Thesis-related Correspondence

[CVB+16] Tzu-Chun Chen, Malte Viering, Andi Bejleri, Lukasz Ziarek, and Patrick Eug-
ster. A Type Theory for Robust Failure Handling in Distributed Systems. In Formal
Techniques for Distributed Objects, Components, and Systems - 36th IFIP WG 6.1
International Conference, FORTE 2016, volume 9688, pages 96–113. Springer, 2016

Declaration of originality. Tzu-Chun Chen was the technical lead and lead author
of that work. I contributed to that work with writing, technical discussion, and
technical modifications and extensions to many parts of the technical development.
All authors contributed to the work in technical discussions, writing, and refinement
of the presentation of the paper.

Thesis correspondence. This work does not directly appear in this thesis. The
proofs in Chapters 3 and 4 follow, modify, and extend the proof schemes that we
used and developed in that work.

[VCE+18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu, and Lukasz
Ziarek. A Typing Discipline for Statically Verified Crash Failure Handling in Dis-
tributed Systems. In Programming Languages and Systems - 27th European Sympo-
sium on Programming, ESOP 2018, volume 10801 of Lecture Notes in Computer
Science, pages 799–826. Springer, 2018.

Declaration of originality. I was the technical lead and lead author of this work.
The work was created in close cooperation with Tzu-Chun Chen, however. Tzu-Chun
Chen headed the initial development of the type system and proving of the properties.
Furthermore, she contributed technical modifications and extensions to other parts
of the formal model. Raymond Hu contributed the initial version of the Three-Buyer
and Streaming examples. Furthermore, all my co-authors contributed to the work
in technical discussions, writing, and refinement of the presentation of the paper.

Thesis correspondence. Chapter 3 mostly presents that work directly, i.e., the
chapter (including its supplement) is for significant parts a verbatim copy of that
work. The chapter slightly revises the calculus and adds additional explanation,
examples, and a new evaluation. Furthermore, I reuse parts of the writing in other
parts of the thesis.
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2. Background

This chapter provides general background information on MPSTs and a dis-
cussion of relevant related work. In the first part, Section 2.1, we provide
an informal description of MPSTs and explain the user view and underlying
framework of MPSTs and the methodology for establishing properties. This
provides optional background information for Chapters 3 and 4. In Section 2.2,
we discuss related work with a focus on MPSTs.

2.1. Multiparty Session Types

In this section, we present optional background information for Chapters 3 and 4. We begin
by explaining MPSTs. In particular, we explain the programming model and user view,
the typing system, and a methodology for establishing type system properties. For this
purpose, we present an adaptation of the works of Coppo et al. [CDYP16] and our previous
work [CVB+16]. Our adaptation mostly follows the work of Coppo et al. [CDYP16], but
in particular, for the section about establishing properties we adopt parts of our work
[CVB+16]. We present an adaptation of these two works, because this allows us to align
this section closely with Chapter 3. This chapter also provides background for Chapter 4,
but in that chapter we adopt MPSTs for EDP, which is novel.
Multiparty session types (MPSTs) are a behavioral type system for (distributed) appli-

cations that use channels as communication primitives [HYC16, CDYP16]. MPSTs define
the usage of channel primitives and ensure their safe usage. In particular, they ensure,
communication safety, fidelity, and progress. Communication safety guarantees that there
is never a mismatch between the received message type and the expected type. Fidelity
ensures that processes follow a defined protocol specification. Lastly, progress ensures
that a non-terminated application can always perform a reduction step.
MPSTs structures communication in sessions and typically follow a top-down approach,

as illustrated in Figure 2.1 (left side). The top-down approach starts from a user-specified
global type, a protocol that describes the entire communication in a session from a neutral
perspective. The global type (top-level) is used to type check the processes that implement
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Global Type G2Buyer = b1 → s ltitle(str)...

Lb1 = s! ltitle(str)... ...

a[b1](y).y[s]! ltitle(e) . ... ...

G2Buyer ↾ b1 ...

Γ⊢ ... y[s]! ltitle(e) . ...▷ y : Lb1

Local typeiLocal type1 Local typen

Projection Projection Projection

Process1 Processi Processn

Verification Verification Verification

Written
by users

Figure 2.1.: Overview of the multiparty session types framework (left side) and an illus-
tration based on the running example (right side).

the (distributed) application (bottom level). The user writes the global type and the
implementation, whereas the steps in between are part of the MPST framework.
MPSTs [HYC08] were developed as a generalization of session types (STs) [HVK98], i.e.,

they generalized typing from two-party communications to multiparty communications.
STs and MPSTs were originally introduced for the π-calculus [HVK98, HYC08], and
subsequently applied successfully to a broad range of practical languages, e.g., Java [HY16,
SQZ+13], Scala [SDHY17a], Haskell [LM16, PT08], OCaml [IYY17, Pad17].

Remark. Throughout this thesis, we occasionally refer to standard or classic MPSTs. We are
then referring to the works of Honda et al. [HYC16] and Coppo et al. [CDYP16].

Figure 2.1 provides an overview of the MPST framework, which follows the typical
top-down approach (left part), and illustrates it in accordance with the running example
in this section (right part). A software architect specifies a global type, i.e., the protocol,
which describes the communication between all, say n, participants of a distributed
application. The right-hand side shows the beginning of the two-buyer global type (see
Figure 2.2 for the full global type). The global type gets projected onto a local type for
each of the n participants. On the right-hand sideG2Buyer ↾ b1 denotes the projection of the
two-buyer global type onto the participant b1 (see Figure 2.3). A local type describes the
communication that one participant performs in the protocol, i.e., the messages it sends
and receives. Lb1 = s! ltitle(str)... (right-hand side) specifies that b1 will send a message
with label ltitle and type str to s, which is the beginning of the local type of participant b1.
The type system uses the local types to type the different participant implementations
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G2Buyer = b1 → s ltitle(str). s→ b1 lprice(dbl). s→ b2 lprice(dbl).
b1 → b2 lshare(dbl). b2 → s{

laddr (str). s→ b2 ldate(str).end,
lquit(str). end

}

Figure 2.2.: Global type of the two-buyer protocol [HYC16].

and ensures that the session channels are used as described by the local types. Lastly,
developers implement the processes that implement the different protocol participants.
The right-hand side shows the beginning of the process (a[b1](y).y[s]! ltitle(e) . ...) that
implements participant b1. The process starts with an initiation action that starts a new
session followed by sending a message with label ltitle and a value of type str to s (see
Figure 2.4 for the full implementation).
We now use examples to give an intuition on the global types, local types, and processes,

and then define these terms more precisely. For the purpose of definition, we use the
two-buyer protocol as an example, following the specification proposed by Honda et al.
[HYC16]. Note that this example is simple and intentionally only uses a subset of the
MPST features.

Global types in a nutshell. Before specifying and describing the two-buyer protocol,
we explain the two interaction primitives that are required. The first is a (regular)
interaction a → b l(S).G which denotes that a sends a message carrying a value of
type S and a label l to b; the protocol then continues as G. The second is a choice
a→ b{l1(S1).G1, ..., ln(Sn).Gn} which denotes that a sends a message to b and chooses a
label from l1, ..., ln; the protocol will continue with the Gi corresponding to the selected
label.
Figure 2.2 specifies the two-buyer protocol, which involves two buyers (b1 and b2) and

a seller (s). It describes the following behavior. The first buyer b1 sends the title of the
book they want to buy to the seller s. Then the seller sends the book price to both buyers.
After that, the first buyer b1 sends the second buyer b2 the amount they are willing to
contribute. The second buyer then decides whether they are willing to pay the rest or not.
They either send the shipping address to the seller, who replies with the shipping date, or
inform the seller that they will not buy the book.

Local types in a nutshell. The two-buyer’s local types use the send type a! l(S).L and
receive type a? l(S).L. The send type describes sending a message that carries a value
of type S and label l to a; after that, the protocol continues as L. The receive type is the
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G2Buyer ↾ s = b1? ltitle(str). b1! lprice(dbl). b2! lprice(dbl).
b2?{

laddr (str). b2! ldate(str).end,
lquit(str). end

}

G2Buyer ↾ b1 = s! ltitle(str). s? lprice(dbl). b2! lshare(dbl). end

G2Buyer ↾ b2 = s? lprice(dbl). b1? lshare(dbl).
s! {

laddr (str). s? ldate(str).end,
lquit(str). end

}

Figure 2.3.: Local types for the two-buyer protocol.

receiving counterpart to the send type. The protocol further uses selection and branching
types. The selection type a! {l1(S1). L1, ..., ln(Sn). Ln} describes sending a message to a;
the protocol continues with the local type corresponding to the send label, e.g., with
L1 if l1 is sent. Lastly, the branching type a? {l1(S1). L1, ..., ln(Sn). Ln} is the receiving
counterpart to the selection type.
See Figure 2.3 for the local types of the two-buyer protocol. We use G2Buyer ↾ s to state

that G2Buyer is projected to s, i.e., the local type of s is calculated from G2Buyer . The
different local types should be relatively self-explanatory. We, therefore, only explain the
local type of the seller (G2Buyer ↾ s). The seller receives the book title and sends the book
price to both buyers. The seller then waits to receive either the shipping address, in which
case they will send the second buyer the expected delivery date, or a quit, signaling that
the buyers do not want to buy the book.

Processes in a nutshell. The processes implementing the two-buyer protocol all start
with an initialization instruction, e.g., a[b1](y).P . A initialization instruction a[p](y).P
states that this process looks for other participants over the shared name a to start a
session. In that session, this process wants to play participant p. During initialization, the
session variable y gets replaced with the session channel. The initializing instruction has
no matching type. Furthermore, the implementations use the send instruction y[p]! l(e).P ,
which sends both label l and the result of the expression e over the channel y to p and then
continues as P . The receiving counterpart is y[p]? l(x).P , which expects label l and a value
that gets substituted for x in P . The branching statement y[p]?{l1(x1).P1, ..., ln(xn).Pn}
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Ps = a[s](y).y[b1]? ltitle(xbook ). Pb1 = a[b1](y).
y[b1]! lprice(price). y[s]! ltitle("MPSTs").
y[b2]! lprice(price). y[s]? lprice(xprice).
y[b2]?{ y[b2]! lshare(xprice/2).0
laddr (xaddr ). y[b2]! ldate(date).0,
lquit(xquit).0

}

Pb2 = a[b2](y).y[s]? lprice(xprice). y[b1]? lshare(xshare).if (xprice − xshare < 100)
y[s]!laddr (addr). y[s]? ldate(x).0

else
y[s]!lquit(quit).0

Figure 2.4.: The implementation of the two buyers and the seller from the two-buyer
protocol.

differs from the receive statement in that the computation continues in Pi depending
on the received label, e.g., P1 if label l1 was received. Lastly, the implementations use a
condition statement if (e) P1 else P2 where depending on whether e evaluates to true or
false, the computation continues as either P1 or P2. The condition statement allows the
execution of different interaction primitives, i.e., sending different labels, depending on
the evaluation of e.

The implementation of the three processes, in Figure 2.4, is quite self-explanatory. We
will explain the second buyer’s (b2) implementation as it implements a selection. The
process Pb2 of the second buyer starts with an initialization, stating that this process will
play the participant b2 and awaits other processes through shared name a. After session
initialization, it receives the book price from seller s and the amount the first buyer (b1) is
willing to contribute. The following condition checks whether this process (b2) is willing to
pay the rest. If the price after subtracting the other buyer‘s contribution is below 100, this
process (b2) is willing to pay the rest; it (b2) sends the shipping address to the seller and
receives the shipping date from the seller. Otherwise, the price is too high, and this process
(b2) informs the seller and aborts the transaction. The send instructions in the different
condition branches, i.e., y[s]!laddr (addr) in the then branch and y[s]!lquit(quit) in the else
branch, implement the selection type s! {laddr (str). s? ldate(str).end, lquit(str). end} from
b2’s local type.
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G ::= p→ q{li(Si).Gi}i∈I Branching
|| µt .G || t Recursion
|| end End

S ::= bool || str || int || ... Sorts

Figure 2.5.: Syntax of global types.

L ::= p!{li(Si).Li}i∈I Selection
|| p?{li(Si).Li}i∈I Branching
|| µt .L || t Recursion
|| end End

Figure 2.6.: Syntax of local types.

2.1.1. Global types

Figure 2.5 defines the global types we use in this chapter. A global type consists of
branching types p→ q{li(Si).Gi}i∈I , which define that p sends a label li from {li}i∈I and
a value of type Si to q; the communication will then continue as described in the selected
branching case, i.e., Gi. The value type is a primitive type such as bool or str. If {li}i∈I
contains only one label, i.e., we have a singleton label set, we may write p→ q l(S). G as
a shorthand. Note that we introduce the shorthand as a separated construct in the “in a
nutshell” section to make these sections easier to read.
µt .G is a recursive type, and t is a type variable. We assume type variables are guarded

in the standard way [CDYP16], meaning that type variables only appear under some
interaction prefix. We use an equi-recursive approach to recursion i.e., µt .G is equal to
G{µt .G/t}. Lastly end expresses the end of a global type, which we sometimes omit from
examples.
Figure 2.2 shows the two-buyer protocol expressed in this global type.

2.1.2. Local types

We now describe local types and projection, the process of extracting local types from
global types (see Figure 2.1 for the top-down view of MPSTs).
Figure 2.6 depicts the local type syntax. The selection type p!{li(Si).Li}i∈I states that

the process sends a message to p that carries a label li (li ∈ {li}i∈I) and a value of type
Si; the processes communication continues as described in the selected branching case,
i.e., Li. The branching type p?{li(Si).Li}i∈I is the receiving counterpart. We may write
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p! l(S). L and p? l(x). L for a selection type or branch type over a singleton label set.
µt .L is a recursive type, and t a type variable. As in the global type, recursion must
be guarded, meaning type variables only appear under some interaction prefix, and we
take an equi-recursive approach. Lastly, end expresses the end of a local type, which we
sometimes omit from examples.
Figure 2.3 provides the local types for the seller s and the two buyers (b1 and b2) of the

two-buyer protocol (Figure 2.2).

Projection

We now explain projection, i.e., the process of extracting local types from a global type.

Definition 1 (Projection (g↾p)). The projection of a global type G to a participant p is
defined as follows:

p1 → p2{li(Si).Gi}i∈I↾p =

⎧⎨⎩
p2!{li(Si).Gi↾p}i∈I if p = p1
p1?{li(Si).Gi↾p}i∈I if p = p2
G1↾p if ∀i, j ∈ I.Gi↾p = Gj↾p

(µt .G)↾p = {µt .(G↾p) if G↾p ̸= t end otherwise} t↾p = t end↾p = end

Otherwise it is undefined.

The first case handles branching types. If we project a branching type to the sender
(p = p1), we create a selection type and project all branching cases. Respectively, if
we project to the receiver (p = p2), we create a branching type. If we project neither
to the sender nor the receiver, the projection of all branching cases must be identical
(∀i, j ∈ I.Gi↾p = Gj↾p), and we project the first branching case. The cases in the second
line handle recursion and end. Lastly, if no rule is applicable, projection is undefined.
Figure 2.3 shows the result of projecting the two-buyer protocol (see Figure 2.2) to the

two buyers and the seller.

2.1.3. Endpoint processes

Figure 2.7 provides the process syntax, which ranges overP, P1, ... Labels range over l, l1, ...,
expressions e, ei, .. can be values v, vi, ..., variables x, xi, ..., and standard operations.
An initialization process (a[p](y).P ) states that this process wants to initialize a new

session via the shared name a and play participant p; in P , the process uses the channel
variable y, which gets replaced by a session channel during initialization for the session
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P (Process) ::= a[p](y).P Initialization a, b Shared name
|| c[p]!l(e).P Selection x Value Var
|| c[p]?{li(xi).Pi}i∈I Branching y, z Channel Var
|| if e P else P Condition s Session name
|| def D in P Recursion p, q Participant id
|| X⟨e, c⟩ Call l Label
|| 0 Inaction s[p] Conc. Channel
|| P | P Parallel c ::= y || s[p] Channel
|| s : h Queue m ::= ⟨p, q , l(v)⟩ Message
|| (νs)P Session hiding v Value

D ::= X(x, y) = P Declaration e Expression
E ::= [] || P |E || E |P Eval. context h ::= h ·m || ∅ Queue

|| (νs)E || def D in E

Figure 2.7.: Process syntax.

communication. A selection process c[p]!l(e).P evaluates an expression e, sends the result
together with label l to participant p over channel c, and continues as P . A channel is either
a channel variable (y) before initialization or a named channel (s[p]). A branching process
c[p]?{li(xi).Pi}i∈I receives a value and a label from p over channel c; then continues as
the Pi that corresponds to the received label; the received value is accessible via the value
variable xi.
A condition if e P1 else P2 evaluates an expression e to a boolean. If the result is true,

the process proceeds as P1, otherwise as P2. A recursion def D in P1 defines a declaration
X(x, y) = P1 over a value and a channel variable. A process callX⟨e, c⟩ calls a declaration.
0 expresses an inactive process. Parallel composition P1 | P2 states both processes run in
parallel.
A queue s : h stores messages (⟨p, q , l(v)⟩) in transit and a session hiding (νs)P hides a

session channel. Queues and hidings exist only during execution.

Reduction

Figure 2.8 shows selected reduction rules. Processes are considered modulo structural
equivalence, and the reduction relies on the evaluation context E; we omit these details
here and focus on a selection of reduction rules.

Remark. We present fewer details from this section onwards and only explain the general
concepts. We believe that focusing on the concepts is suffice as general background. In particular,
as Chapters 3 and 4 are self-contained
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a[p1 ](y1).P1 | ... | a[pn ](yn).Pn →
(νs)(P1{s[p1 ]/y1} | ... | Pn{s[pn ]/yn} | s : ∅) {p1, .., pn} = pid(G) (Link)

s[p][q]! l(e).P | s : h→ P | s : h · ⟨p, q , l(v)⟩ e ⇓ v (Snd)

s[p][q]? {li(xi).Pi}i∈I | s : ⟨q , p, lk(v)⟩ · h→ Pk{v/xk} | s : h k ∈ I (Rcv)

Figure 2.8.: Selected reduction rules.

The (Link) rule initializes a new session where the processes P1 to Pn play the participants
p1 to pn. The processes agree on shared name a, obeying to some global type that involves
the participants p1 to pn. Together they start a private session s; this replaces the variable
yi in Pi with the channel s[pi] and creates a global queue s : ∅.
The (Snd) rule reduces a sending process s[p][q]! l(e). P to P by emitting a mes-

sage ⟨p, q , l(v)⟩ to the global queue s : h. The (Rcv) rule reduces a receiving process
s[p][q]? {li(xi).Pi}i∈I to Pk, if a message with label lk from q is present at the head of the
global queue; the message value gets substituted for xk.

Example 1. We now discuss a partial reduction of the two-buyer protocol. We start with the
processes in Figure 2.4.

Ps | Pb1 | Pb2
(Link)−−−−→ (νs)(s[s][b1]? ltitle(x). s[s][b1]! lprice(220). s[s][b2]! lprice(220). P

′
s

| s[b1][s]! ltitle("MPSTs"). s[b1][s]? lprice(xprice).
s[b1][b2]! lshare(xprice/2).0

| s[b2][s]? lprice(xprice). s[b2][b1]? lshare(xshare). P ′
b2

| s : ∅)
(2.1)

In Equation (2.1) the three processes start a new session s, the first process plays the participant
s, i.e. the seller, and its channel variable y is replaced by the channel s[s], and similarly for
the other two processes.

(2.1)
(Snd)−−−−→ (νs)(s[s][b1]? ltitle(x). s[s][b1]! lprice(220). s[s][b2]! lprice(220). P

′
s

| s[b1][s]? lprice(xprice). s[b1][b2]! lshare(xprice/2).0
| s[b2][s]? lprice(xprice). s[b2][b1]? lshare(xshare). P ′

b2
| s : ⟨b1 , s, ltitle("MPSTs")⟩)

(2.2)

In Equation (2.2) the first buyer (b1) sends the book title to the seller (s) and the corresponding

25



Γ ⊢ a : ⟨G⟩
Γ ⊢ P ▷ ∆, {y : G↾p}
Γ ⊢ a[p](y).P ▷ ∆

k ∈ I Γ ⊢ e : Sk Γ ⊢ P ▷ {c : Lk},∆
Γ⊢ c[p]! lk(e).P ▷ {c : p! {li(Si).Li}i∈I},∆

⌊T-ini/T-snd⌋

Γ ⊢ P1 ▷ ∆1 Γ ⊢ P2 ▷ ∆2

dom(∆1) ∩ dom(∆2) = ∅
Γ ⊢ P1 | P2 ▷ ∆1,∆2

Γ ⊢ P ▷ ∆ ∆s coherent
Γ ⊢ (νs)P ▷ ∆ \∆s

⌊T-par/T-s⌋

Figure 2.9.: Selected typing rules.

message is added into the queue (s : ⟨b1 , s, ltitle("MPSTs")⟩).

(2.2)
(Rcv)−−−−→ (νs)(s[s][b1]! lprice(220). s[s][b2]! lprice(220). P

′
s{"MPSTs"/x}

| s[b1][s]? lprice(xprice). s[b1][b2]! lshare(xprice/2).0
| s[b2][s]? lprice(xprice). s[b2][b1]? lshare(xshare). P ′

b2
| s : ∅)

(2.3)

In Equation (2.3) the seller receives a message carrying the book title and substitutes the title
for x. The remaining reductions are similar, so we omit them.

2.1.4. Type system

We now discuss type checking in MPSTs. Figure 2.9 shows selected typing rules, which
have the following form

Γ ⊢ P ▷ ∆

stating P is well-typed by ∆ under Γ. Γ is a shared environment, which tracks process
variables (X : S L), content variables (x : S), and shared names (a : G). The session
environment ∆ tracks endpoint types (c : L) and queue types (s : h).
We first discuss typing rules for endpoint processes, i.e., ⌊T-snd⌋ and ⌊T-ini⌋. After

that, we explain typing rules for processes, i.e., ⌊T-s⌋ and ⌊T-pa⌋.
The typing rule ⌊T-snd⌋

k ∈ I Γ ⊢ e : Sk Γ ⊢ P ▷ {c : Lk},∆
Γ⊢ c[p]! lk(e).P ▷ {c : p! {li(Si).Li}i∈I},∆

states that we can type a send process c[p]! l(e). P on channel c if we can type the
continuation, P , (Γ ⊢ P ▷ {c : Lk},∆) and message value expression e; with a selection
type added, as a prefix, to the channel type c coming from typing the continuation (c : Lk),
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i.e., c : p! {li(Si).Li}i∈I . The selection types can contain cases not part of the send process
since multiple send primitives implement selections, i.e., multiple send statements, in
different branches of a condition statement, provide the implementation for a selection
type (cf, Pb2 in Figure 2.4). The general idea of this typing rule and other typing rules for
interaction processes is to type the continuations and add the process type as a prefix to
the type derived from typing the continuations.
The typing rule ⌊T-ini⌋ connects endpoint types with the corresponding global type.

In detail, we can type an initialization process a[p](y).P , if P uses the channel variables
y as defined by its local type, i.e., the local type derived by projecting the global type G
associated with the shared name a to the participant p.
We now discuss the typing rules for processes. The first rule ⌊T-pa⌋ types a parallel

composition if we can type both processes (Γ ⊢ P1/2 ▷ ∆1/2) with session environments
(∆1 and ∆2) having disjointed domains. The last check is crucial, as it ensures the linear
usage of session channels. The last typing rule ⌊T-s⌋ types a session hiding (νs)P . It
requires that we can type P (Γ ⊢ P ▷ ∆) where the session environment, containing the
endpoint types and queue type of s, is coherent.
Coherence, also called consistency [CDYP16], is the central typing invariant in MPSTs.

We will discuss coherence after explaining the concepts on which it relies. The general
idea is that two endpoint types in the same session have matching inputs and outputs, e.g.,
if one has an output, the other must have an input matching the output. Coherence must
consider messages in transit, and that local types describe interactions towards multiple
participants.

Queue types. MPSTs have typing rules for messages and queues, and their typing is
straightforward. A message ⟨p, q , l(v)⟩, has the type ⟨p, q , l(S)⟩ where v has the type S.
A queue s : h has the type s : h, where each message in the queue has a corresponding
message type in the queue type.

Coherence

We now explain the required concepts for coherence. These include: extracting from a
local type the interactions towards a specific participant; selecting message types from the
queue type that describe messages between specific participants; calculating the effect
messages have on a type; checking that inputs and outputs in one type match the outputs
and inputs in another type based on the duality relation.
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Partial projection (L ⇂ p). Partial projection, projects a local type L to a participant p
by removing all selection and branching types from L which do not interact with p. For
example, the first buyer‘s local type describes interactions with the participants b2 and s.

Lb1 = s! ltitle(str). s? lprice(dbl). b2! lshare(dbl)

The partial projection to s (Lb1 ⇂s) is s! ltitle(str). s? lprice(dbl) and to b2 is b2! lshare(dbl).

Heading-to ((h)p→q ). Heading-to is similar to partial projection but for queue types.
Given a queue type and participants p and q, heading-to removes all message types that do
not describe messages sent from p and heading to q. For example, consider the queue type
h = ⟨p1 , p2 , l(S)⟩ · ⟨p3 , p1 , l′(S′)⟩ · ⟨p4 , p1 , l′(S′)⟩ then (h)p3→p1 returns ⟨p3 , p1 , l′(S′)⟩, the
only message sent by p3 and heading to p1.

Session remainder L− h. The session remainder calculates the effect message types
have on a type; it subtracts branching prefixes from the type for which a message type is
present. For example, assume the type s? lprice(dbl). end of b1 and a queue type containing
⟨s, b1 , lprice(dbl)⟩. The session remainder will return end; the branching type s? lprice(dbl)
consumes the message ⟨s, b1 , lprice(dbl)⟩.

Duality (s[p] : L ▷◁ s[p] : L). The duality relation checks that two endpoint types in
a session s have matching inputs and outputs. A selection type is dual to a branching
type (and vice versa) if both use the same branching labels and data types, and all
branching cases are dual. For example, the following selection type (of s[b2]) s[b2] :
s! {laddr (str). s? ldate(str).end, lquit(str). end} is dual to the branching (of s[s]) s[s] :
b2?{laddr (str). b2! ldate(str).end, lquit(str). end }, since both use the same labels and data
types (laddr (str), and lquit(str)) and the branching cases are dual. Because, s? ldate(str) is
dual to b2! ldate(str) as they have the same label and data type, and describe no further
interactions (end is dual to end).

Coherence. We say that a session environment ∆ is coherent for a session s if every
endpoint type is dual to every other endpoint type, taking into consideration partial
projection, heading-to and session remainder. More formally, ∆ is coherent for the session
s if s : h ∈ ∆ and for all s[p] : L, s[q ] : L′ ∈ ∆ the following holds:

s[p] : L⇂q – (h)q→p ▷◁ s[q ] : L
′ ⇂p – (h)p→q

We now provide an example of a coherent session environment.
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Example 2. Assume a session environment

∆ =

⎧⎪⎪⎨⎪⎪⎩
s : h where h = ⟨p3 , p1 , l1(S1)⟩,

s[p1] : L1 where L1 = p3? l1(S1). p2? l2(S2). end,
s[p2] : L2 where L2 = p1! l2(S2). end,
s[p3] : L3 where L3 = end

⎫⎪⎪⎬⎪⎪⎭
Taking into account partial projection, heading-to, and session remainder we have

s[p1] : L1 ⇂p2 – (h)p2→p1 = s[p1] : p2? l2(S2) – ∅ = s[p1] : p2? l2(S2)
s[p1] : L1 ⇂p3 – (h)p3→p1 = s[p1] : p3? l1(S1) – ⟨p3 , p1 , l1(S1)⟩ = s[p1] : end

s[p2] : L2 ⇂p1 – (h)p1→p2 = s[p2] : p1! l2(S2) – ∅ = s[p2] : p1! l2(S2)
s[p2] : L2 ⇂p3 – (h)p3→p2 = s[p2] : end – ∅ = s[p2] : end

s[p3] : L3 ⇂p1 – (h)p1→p3 = s[p3] : end – ∅ = s[p3] : end
s[p3] : L3 ⇂p2 – (h)p2→p3 = s[p3] : end – ∅ = s[p3] : end

Comparing the endpoint types, taking into account partial projection, heading-to, and session
remainder, we have for the pair p1 and p2 that the branching type p2? l2(S2) is dual to the
selection type p1! l2(S2). For any other pair we have that end is dual to end. Therefore, the
session environment ∆ is coherent.

2.1.5. Properties

The three main properties that MPSTs provide are: subject reduction, which provides
communication safety as a corollary; fidelity; and progress.

Subject reduction Subject reduction ensures that a process that is well-typed in a coherent
typing environment remains well-typed in a – potentially different – coherent typing
environment after performing a reduction step.

The coherence invariant ensures that there is never a type mismatch between
received messages and expected messages, i.e., it ensures communication safety.

Fidelity The global type accounts for any reduction that a well-typed process performs.

Progress Awell-typed process can perform a reduction step or it has reached end. Progress
typically forbids session interleaving [CDYP16].
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Global Type Global Type1 Global Type2 ...G G
l−→ G1 G1

l−→ G2

Types (s[p] : L) Types (s[p] : L1) Types (s[p] : L2)
...∆ ∆ ⇒ ∆1 ∆1 ⇒ ∆2

Processes Processes Processes
...P −→ P1 P1 −→ P2(νs)P

G↾p = ∆(s[p]) G1↾p ∼ ∆1(s[p]) G1↾p ∼ ∆2(s[p])

Γ ⊢ P ▷ ∆ Γ ⊢ P ▷ ∆1 Γ ⊢ P ▷ ∆2

Figure 2.10.: Overview of the relation between different reduction relations in multiparty
session types.

We now discuss the general idea of how to establish these properties. We rely on a
typing environment reduction relation (∆ ⇒ ∆′) to establish subject reduction. The typing
environment reduction describes the endpoint type and queue type changes that occur
alongside a process reduction.1 Similarly, to establish fidelity and progress, we rely on a
global type reduction relation. Figure 2.10 visualizes the different reductions and their
connection.
In Figure 2.10 (first column) we assume a process just after initialization of a new

session s which follows a global type G. The process has the form (νs)P , i.e., it is a session
hiding processes. The process P is well-typed in a session environment∆ and the endpoint
type of a participant p is s[p] : G↾p, i.e., projectingG gives us the endpoint types. By nature
of its construction the initial session environment∆ is coherent (Performing projection and
partial projection on a global type results in dual types, i.e., s[p] : G↾p ⇂q ▷◁ s[q] : G↾q ⇂p).
To establish subject reduction we must ensure that a process performing a reduction,

e.g., sending a message, remains well-typed in a coherent session environment. To do
this, we rely on the typing environment reduction, which, e.g., reduce a selection type to
one of its branching cases and adds a message type into the queue type. For any process
reduction we show that: we can perform a typing environment reduction alongside the
process reduction; the typing environment reduction preserves coherence; and the result

1The typing environment reduction relation is only required for the proofs. It is not part of a runtime
reduction.
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of the typing environment reduction types new processes.
In Figure 2.10 we see this in the bottom two rows. Initially P is well-typed by ∆ under

Γ, then we reduce P to P1 by any reduction rule. We show that, regardless of the reduction
rule used, we can perform a typing environment reduction from ∆ to ∆1 and that P1 is
well-typed by ∆1 under Γ. Similarly, from P1, respectively ∆1, and so on.
The proofs in Chapters 3 and 4 follow this general idea and use structural induction

over P → P to establish subject reduction.

Example 3. We now demonstrate the concept of typing environment reduction with a concrete
reduction of the two-buyer protocol. We start from P = s[b1][s]! ltitle("MPSTs"). P ′

b1
| s :

∅ | Pb2 | Ps which we can type Γ ⊢ P ▷ ∆ with ∆ = {s[b1] : s! ltitle(str).L′
b1, s :

∅},∆′. Assume P → P1, where b1 sends the book title to the seller. Then P1 = P ′
b1

| s :
⟨b1 , s, ltitle("MPSTs")⟩ | Pb2 | Ps.
We can perform ∆ ⇒ ∆1 where ∆1 = {s[b1] : L′

b1, s : ⟨b1 , s, ltitle(str)⟩},∆′. It is easy to
see that we have Γ ⊢ P1 ▷ ∆1.

The coherence invariant is insufficient to establish fidelity and progress. For those
following Coppo et al. [CDYP16], we introduce a labeled global type reduction relation
(G l−→ G′). The global type reduction uses a slightly extended global type, e.g., it contains
a fired interaction type, i.e., a type describing an interaction that sent a message that is
not yet received. To establish fidelity, we show that when we make a typing environment
reduction, we can perform a matching global type reduction. Projection connects the
global type with the typing environment. The queue types need special consideration.
Figure 2.10 shows this in the top two rows.
Once fidelity is established, progress follows more or less as a matter of course. The

prefix interaction (branching type or fired interaction type) in the global type ensures that
there is either a sending process, or a branching process and a message for the branching
process is in the queue. In both cases, the process can do a step
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2.2. Related Work

Failure, exceptions, and interrupts in session types. In the literature on MPSTs, there is
one closely related work on failures. Adameit et al. [APN17] extend MPSTs with optional
blocks to model communication link failures. Optional blocks allow an enclosed session
fragment to be executed as standard, but they may also abruptly discard the ongoing
execution non-deterministically. From the perspective of the protocol, optional blocks
model a form of failure masking. Link failures are modeled by encapsulating the relevant
interactions in appropriate optional blocks, as a kind of design pattern. Safety is attained by
first requiring default values for input operations that may be skipped. Secondly, whenever
execution discards the block of some role, the only action permitted of the peer roles is
to discard their corresponding blocks. This is achieved by using synchronous channels,
which may limit applicability to real-world distributed systems that are asynchronous. The
authors argue that the main example, a rotating coordinator algorithm, can be considered
as a distributed asynchronous process; because of its structure, e.g., it uses no choice and
outputs have no continuation different than 0 [APN16]. The work does not provide an
implementation nor a practical evaluation.
Fowler et al. [FLMD19] add an exception handling process primitive for failures in binary

sessions. Type-level treatment of failure handling behaviors between the remaining (and
new) peers, as in this thesis, cannot be studied in a binary setting. Structured interactional
exceptions [CHY08] study exception handling for binary sessions. The work extends
session types with a try-catch construct and a throw instruction, allowing participants to
raise runtime exceptions. Global escape [CGY16] extends previous works on exception
handling in binary session [CHY08] types to MPSTs. It supports nesting and sequencing
of try-catch blocks with restrictions. Reduction rules for exception handling are of the form
Σ ⊢ P → Σ′ ⊢ P ′, where Σ is the exception environment. This central environment at the
core of the semantics is updated synchronously and atomically. Furthermore, the reduction
of a try-catch block to its continuation is done in a synchronous reduction step involving all
participants in a block. Lastly, this work can only handle exceptions, i.e., explicitly raised
application-level failures. These do not affect communication channels [CGY16], unlike
participant crashes. Similarly, our previous work [CVB+16] only deals with exceptions. An
interaction p→ q : S∨F defines that p can send a message of type S to q. If F is not empty
then, instead of sending a message, p can throw F . If a failure is thrown only participants
that have casual dependencies on that failure are involved in the failure handling. No
concurrent failures are allowed, so all interactions which can raise failures are executed
in a lock step fashion. As a consequence, the model cannot be used to deal with crash-stop
failures. Demangeon et al. [DHH+15] study interrupts in MPSTs. This work introduces an
interruptible block {|G|}c⟨l by r⟩;G′ identified by c; here the protocolG can be interrupted
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by a message l from r and is continued byG′ after either normal or interrupted completion
of G. An interrupt is a control flow instruction like an exception, rather than an actual
failure handling construct, and the semantics cannot model participant crashes. Miu et
al. [MFYZ21] studies MPSTs for web programming, targeting TypeScript, in particular
React.js2 for the front end and Node.js3 for the back end. The implementation presented
requires the user to provide a cancellation handler that handles local exceptions and global
session cancellation exceptions such as a disconnects [MFYZ21]. Such handlers neither
provide partial failure handling, nor are they part of the formal model.
Neykova and Yoshida [NY17] show that MPSTs can be used to calculate safe global

states for a safe recovery in Erlang’s let it crashmodel [Arm03]. That work is well suited for
recovery of lightweight processes in an actor setting. However, while it allows for elaborate
failure handling by connecting (endpoint) processes with runtime monitors, the model
does not address the fault-tolerance of runtime monitors themselves. As monitors can be
interacting in complex manners, replication does not seem straightforwardly applicable,
at least not without potentially hampering performance (just as with straightforward
replication of entire applications).

Events in session types. Hu et al. [HKP+10] present a binary session calculus that
allows encodings of EDP patterns. They add a non-blocking primitive for polling channels
for messages and a typecase construct for sessions based on dynamic typing [ACPP91],
whereas we model (in Chapter 4) event loops and handlers as first-class concepts. Their
operational semantics maintains runtime types for channels for the typecase, not dissimilar
to our concept of subprotocol state; unlike their dynamic channel typing, however, our
subprotocol states are used to generalize the dynamic dispatch of event occurrences (e.g.,
in the special but not uncommon case of systems that dispatch solely on unique input labels,
subprotocol states are unnecessary). Their approach is based on encoding event-driven
behaviors in terms of these primitives, as opposed to our work that models first-class event
loops. Their work does not consider failures. And specification of fault-tolerant, multiparty
communication patterns, as we propose in Chapters 3 and 4, cannot be studied in a binary
setting. Their work does not consider any of the technical challenges that we address for
MPSTs, e.g., (partial) projections, coherence or fidelity. Cano et al. [CAP17] present a
reactive binary calculus (without types) for reactive sessions.

Progress in MPSTs. Coppo et al. [CDYP16] develop an additional interaction type
system on top of MPSTs to analyze global progress; the system that we propose in Chapter 4
2React.js. https://reactjs.org.
3Node.js https://nodejs.org.
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offers global progress for concurrent (sub)sessions within MPSTs.

Subsessions in MPSTs. Our subprotocol and subsession concepts, which we use in
Chapter 4, are inspired by the nested protocols of Demangeo and Honda [DH12]. We
exploit subsessions to (i) incorporate a lightweight and practical facility for participant
parametericity, and dynamic assigning of participants, and (ii) reason about the runtime
structure of failure monitoring between subsessions. Their work does not consider event-
driven concurrency nor failures, and their progress property is restricted to a single session
(cf. the “simple” condition on their session typing environment).

Parameterization in MPSTs. Yoshida et al. [YDBH10, DYBH12] and Deniélou et al.
[YDBH10] present a purely theoretical approach to parameterization in MPSTs. These
works realize role parameterization via dependent types. Ng et al. [NdFCY15] use pa-
rameterized MPST [DYBH12] to generate C code for Message Passing Interface (MPI)
programs. Their work produces completely centralized programs [CHJ+19]. Charalam-
bides et al. [CDA16], present a parameterization for multi-actor computation extension
to MPSTs, with a focus on repeated behavior, such as sliding window protocols. The
work does not support role parametric protocols in the sense that two roles with different
indexes can exchange messages (cf, projection [CDA16]). This forbids, for example, typical
parameterized protocols, such as pipelines or rings. Castro et al. [CHJ+19] present a
work for parameterized protocols with indexed roles. They support role-parametricity
in MPST while maintaining both decidability and modularity of MPSTs. They provide a
toolchain for MPST-based programming in Go. Unlike our work (in Chapter 4), none of
the above works deals with partial failure or supports EDP. Furthermore, their treatment
of parameterization tends to be quite technical, e.g., by relying on dependent types or SAT
solving, whereas the lightweight parameterization in Chapter 4 does not rely on additions
such as these.

Code generation for type checking of session types. Hu and Yoshida [HY16] proposed
the use of global types in MPSTs to generate a type direct channel API to allow a hybrid
verification of MPSTs in Java. Hybrid refers to the underlying compiler, here the Java
compiler, that statically verifies the behavior part of session typing whereas the linearity
part of session typing is performed dynamically. The general idea is to use a finite state
machine (FSM) representation of the endpoint behavior in the protocol [DY12]. For each
state, the framework generates a channel class with methods for the outgoing transitions,
and those methods return a new channel for the state to which the transition leads and
perform the corresponding session action, e.g., sending a message. This approach was used,
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for example, in session type implementation in F# [NHYA18] and Go [CHJ+19]. Zhou
et al. [ZFH+20] modify this approach to ensure linearity statically. Instead of exposing
the channels to the user program, they require the user program to implement callback
functions that are executed in the transition from one state to another. These callback
functions, e.g., return a sent message but do not directly interact with the underlying
channel. The underlying channel is never exposed to the user program, so the approach can
ensure linear channel usage. The idea has similarities with the code generation approach
of Ng et al. [NdFCY15], which generates centralized programs for MPI in C99. That work
generates backbone MPI code and links it with user written sequential code. The work uses
aspect-oriented programming to safely merge sequential user code with the generated
MPI code.
There are further methods, besides code generation, that may be used to verify session

types. These may be based onmonads [OY17], monitors [CBD+11], or compiler extensions
[HKP+10], for example.
The prototype implementation in Chapter 3 performs dynamic type checking using a

monitor, similar to the work of Chen et al. [CBD+11]. The monitor checks that performed
session actions are permissible. In Chapter 4, we build on the ideas of Hu and Yoshida
[HY16] and extend them to EDP.

Typing invariant in MPSTs. Different approaches to compare the channel types exist in
the MPST literature to ensure that processes can interact safely. The work of Coppo et
al. [CDYP16] defines the consistent invariant (described as coherent in their conference
publication [BCD+08]), for session channel typing environments. In essence, consistency
is a generalization of duality from STs [HVK98]. STs have a concept of co-types. The
co-type of a type T is written T , where T is a channel type. E.g., the co-type of a sending
type !(S);T is a receiving type ?(S);T , similarly defined for other types. The main idea
behind the generalization of duality is to introduce a second projection relation. This
extracts – from a generalized type that consists of message types and a channel type
– the types related to a specific participant, which is then related via duality. Honda
et al. [HYC08, HYC16] use the coherent invariant. The main idea of this is that there
must be a coherent global type4 G. And for all participants in the global type G, the
channel type of each participant equals the local type derived by projecting G onto that
participant. Scalas and Yoshida [SY19] introduce a safety property for typing context that
relates channel types via MPST-based behavioral type properties. This thesis builds on
the concepts proposed by Coppo et al. [CDYP16].
4“We say G is coherent if it is linear and G ↾ p is well-defined for each p ∈ pid(G)” [HYC16](DEFINITION
4.2 (COHERENCE))
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Branching restriction MPSTs. The projection of branching types in standard MPSTs
[CDYP16, HYC16] is somewhat limiting. A participant, which is neither sender nor re-
ceiver, may not occur in any continuation or must perform the exact same behavior in all
continuations of a branching statement. The merge operator [CYH09a, YDBH10] enables
more flexible interaction patterns. Scalas et al. [SDHY17b] provide a careful treatment
of the merge operator and fix an error in the classic definition. Hu and Yoshida [HY17]
propose a model checking approach for the validation of safety and progress properties
in MPSTs that also enables branching patterns not expressible in classic MPSTs. We use
restricted projection since expressing more flexible branching patterns is an interesting
but orthogonal research question.

Verification of distributed systems outside of session types Failure handling is studied
in several process calculi and communication-centered programming languages without
typing disciplines. The conversation calculus [VCS08] models exception behavior in
abstract service-based systems with message-passing-based communication. The work
does not use channel types but studies the behavioral theory of bisimilarity. Error recovery
is studied in a concurrent object setting [XRR+95]; interacting objects are grouped into
coordinated atomic actions (CAs), enabling safe error recovery. CAs cannot be nested,
however. PSYNC [DHZ16] is a domain-specific language based on the heard-of model of
distributed computing [CBS09]. Programs written in PSYNC are structured into rounds
that are executed in a lock step manner. PSYNC comes with a state-based verification
engine that enables the checking of safety and liveness properties; programmers have to
define non-trivial inductive invariants and ranking functions.
Model-checking can automatically verify or partially verify distributed systems and

protocols. However, complete verification is often not feasible because of underlying
undecidabilities, i.e., model checkers may find errors but usually can not guarantee the
absence of those errors. They can, for example, transparently check implementations
[YCW+09] or be combined with a programming model tailored to the model checker
[KAB+07]. Konnov et al. [KLVW17] introduce a model checker for a restricted class of
distributed protocols, expressed as threshold automata. For those protocols, they can
automatically verify safety and liveness properties.
Mechanized verification is used to establish properties for distributed systems. Examples

include Verdi [WWP+15] and IronFleet [HHK+15]. Verdi [WWP+15] is a framework
for implementing and verifying distributed systems in Coq. It provides the possibility of
verifying the system against different network models. Verdi enables the verification of
properties in an idealized fault model and then transfers the guarantees to more realistic
fault models by applying transformation functions. Verdi supports safety properties but
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not liveness properties. IronFleet [HHK+15] enables the implementation of distributed
systems and the process of proving them correct. They use a combination of TLA-style
state-machine refinement and Hoare-logic verification – the first for protocols including
concurrency and ignoring the complexity of the implementation, the latter for verification
of the implementation while ignoring the concurrency. They can establish both safety and
liveness properties of distributed systems. More recent works on verification for distributed
systems, e.g., Sergey et al. [SWT18] and Taube et al. [TLM+18], try to reduce the burden
on engineers through the use of modularity. However, the burden of creating proofs
remains huge. Sergey et al. [SWT18] still require a proof of almost 3, 000 lines of code for
their two-phase commit protocol. And Taube et al. [TLM+18] state that the verification of
the Raft protocol, which is well understood, took them approximately 3 person-months.
We believe that complete verification is an auspicious direction for future research, but
the amount of proof engineering required is still prohibitive in many cases.
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3. A Typing Discipline for Statically Verified
Crash Failure Handling in Distributed
System

This chapter is based on our work, “A Typing Discipline for Statically Verified
Crash Failure Handling in Distributed Systems”, which appeared at the Euro-
pean Symposium on Programming 2018 [VCE+18]. The chapter presents for
significant parts that work directly, i.e., the chapter is for significant parts a
verbatim copy of our article. It introduces a formal model for crash failure han-
dling in asynchronous distributed systems. This model features a lightweight
coordinator modeled along the lines of widely-used systems such as Apache
ZooKeeper and Chubby. We develop, for this model, a typing discipline based
on multiparty session types that supports the specification and static verifi-
cation of multiparty protocols with explicit failure handling. We show that
our type system ensures subject reduction in the presence of failures. The
publication on which this chapter is based, provides a progress property for
our formal model. In other words, in a well-typed system, even if some par-
ticipants crash during execution, the system is guaranteed to progress in a
consistent manner with the remaining participants. Furthermore, we present
a prototype based on the formal model that uses ZooKeeper for coordination
and is written in Scala. The accompanying performance evaluation shows no
real performance impact in the absence of failures.

3.1. Introduction

Networked distributed systems - like web services and cloud-based data analytics - are
becoming omnipresent.
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3.1.1. Distributed programs, partial failures, and coordination

Nevertheless, developing programs that execute across a set of physically remote, net-
worked processes is challenging. The correct operation of such a distributed program
requires correctly designed protocols, which govern the asynchronous interaction of con-
current processes, and processes, which are correctly implemented in accordance with their
roles in the protocols. This becomes particularly challenging when distributed programs
have to be resilient to partial failures, where some processes crash while others remain
operational. Partial failures affect both safety and liveness of applications. Asynchrony is
the key issue in the handling of such failures, resulting in the inability to distinguish slow
processes from failed ones. In general, this makes it impossible for processes to reach
agreement, even when only a single process may crash [FLP85].
In practice, such impasses are overcome by making appropriate assumptions about

the considered infrastructure and applications. One common approach is to assume the
presence of a highly available coordination service [Hun10] – realized using a set of
replicated processes large enough to survive common rates of process failures (e.g., 1 out
of 3, 2 out of 5) – and delegating critical decisions to this service. While this coordinator
model has been in widespread use for many years (cf. consensus service [GS01]), the advent
of cloud computing has recently brought it further into the mainstream, via instances such
as Chubby [Bur06] and Apache ZooKeeper [Hun10]. Such systems are used not only by
end user applications but also by a variety of frameworks and middleware systems across
the layers of the protocol stack [CDG+06, GGL03, KNR11, SKRC10].

3.1.2. Typing disciplines for distributed programs

Typing disciplines for distributed programs constitute a promising and active research area
towards addressing the challenges in the correct development of distributed programs. See
Hüttel et al. [HLV+16] for a broad survey. Session types are one of the established typing
disciplines for message passing systems. Originally developed in the π-calculus [HVK98],
these have subsequently been successfully applied to a broad range of practical languages,
e.g., Java [HY16, SQZ+13], Scala [SDHY17a], Haskell [LM16, PT08], and OCaml [IYY17,
Pad17].
Multiparty session types (MPSTs) [CDYP16, HYC16] is a generalization of session types

to more than two participants. In a nutshell, a standard MPST framework takes (1) a
specification of the whole multiparty message protocol as a global type, from which (2)
local types, describing the protocol from the perspective of each participant, are derived;
these are in turn used to (3) statically type check the I/O actions of endpoint programs
implementing the session participants. A well-typed system of session endpoint programs
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Figure 3.1.: Coordinator model for asynchronous distributed systems. The coordinator is
implemented by replicated processes (internals omitted).

enjoys important safety and liveness properties, such as no reception errors (only expected
messages are received) and session progress. A basic intuition behind MPSTs is that the
design (i.e., restrictions) of the type language constitutes a class of distributed protocols
for which these properties can be statically guaranteed by the type system.

Unfortunately, noMPST work supports protocols for asynchronous distributed programs
dealing with partial failures due to process crashes, so the aforementioned properties no
longer hold in such an event. Several MPST works have treated communication patterns
based on exception messages (or interrupts) [CGY16, CHY08, DHH+15]. In these works,
such messages may convey exceptional states in an application sense; from a protocol
compliance perspective, however, these messages are the same as any other messages
communicated during a normal execution of the session. This contrasts with process
failures, which may invalidate messages which are already in-transit (orphan messages),
and where the task of agreeing on the concerted handling of a crash failure is itself prone
to such failures.

Outside of session types and other type-based approaches, there have been a number
of advances in the verification of fault tolerant distributed protocols and applications (e.g.,
based on model checking [KAB+07] or proof assistants [WWP+15]); however, little work
exists on providing direct compile-time support for programming such applications in the
spirit of MPSTs.
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3.1.3. Contributions and challenges

This chapter puts forward a new typing discipline for safe specification and implementation
of distributed programs prone to process crash failures based on MPSTs. The following
summarizes the key challenges and contributions.

Multiparty session calculus with coordination service. We develop an extended multi-
party session calculus as a formal model of processes prone to crash failures in
asynchronous message passing systems. Unlike standard session calculi that re-
flect only “minimal” networking infrastructures, our model introduces a practically-
motivated coordinator artifact and explicit, asynchronous messages for run-time
crash notifications and failure handling.

MPSTs with explicit failure handling. We introduce new global and local type constructs
for explicit failure handling, designed for the specification of protocols that tolerate
partial failures. Our type system carefully reworks many of the key elements in
standard MPSTs to manage the intricacies of handling crash failures. These elements
include the well-formedness of failure-prone global types, and the crucial coherence
invariant for MPST typing environments to reflect the notion of system consistency
in the presence of crash failures and the resulting errors. We show safety for a
well-typed MPST session despite potential failures.

Prototype and performance evaluation. We develop a prototype based on our model in
Scala that uses Apache ZooKeeper as its coordination service. We realize a session-
type logistic regression (LR) model in it. In our evaluation, the session-type logistic
regression (LR) has a performance similar to the non-failure-aware baselines in the
non-failure cases.

To apply our model in practice, we introduce programming constructs similar to well-
known and intuitive exception handling mechanisms, for handling concurrent and asyn-
chronous process crash failures in sessions. These constructs serve to integrate user-level
session control flow in endpoint processes and the underlying communications with the
coordination service, which is used by the target applications of our work to outsource
critical failure management decisions (see Figure 3.1). It is important to note that the
coordinator does not magically solve all problems. Key design challenges are to ensure
that communication with the coordinator is fully asynchronous as in real-life, and that
it is involved only in a “minimal” fashion. Thus we treat the coordinator as a first-class,
asynchronous network artifact, as opposed to a convenient but impractical global “oracle”
(cf. [CGY16]), and our operational semantics of multiparty sessions remains primarily
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⎛⎝µt .drv→w1 lpoints(S).drv→w2 lpoints(S).
w1→drv lgrad (S

′).w2→drv lgrad (S
′).t
▶

{w1} : µt1.drv→w2 lpointsw1 (S).
w2→drv lgradw1 (S

′).t1,
{w2} : ..., {w1 ,w2} : end

⎞⎠1

Figure 3.2.: A top-level global type [[drv ]]G that describes a distributed logistic regression
model with failure handling capabilities.

choreographic in the original spirit of distributed MPSTs, unlike works that resort to a
centralized orchestrator to conduct all actions [CP16, CLM+16]. As depicted in Figure 3.1,
application-specific communication does not involve the coordinator. Our model lends
itself to common practical scenarios, in which processes monitor each other in a peer-based
fashion to detect failures, and rely on a coordinator only to establish agreement on which
processes have failed, and when.

3.1.4. Example

Figure 3.2 provides a communication specification, as a global type, for a logistic regression
(LR) model. The model has a structure similar to many other big data tasks: Namely,
divide data into chunks, distribute data chunks, calculate partial results, aggregate partial
results, and optionally repeat previous steps. For example, distributed algorithms, such as
word count, distributed π, or K-means clustering, also follow this scheme. The distributed
LR model is an iterative algorithm, and in every iteration, it performs the following: the
driver splits the data points into chunks and sends the chunks and model parameter to
the workers; the workers calculate the partial model update and send the result to the
driver; the driver updates the model parameter. The global type in Figure 3.2 involves
a driver, drv , and two workers, w1,2 . We want to focus on the novel failure handling, so
we intentionally keep the global type simple. In particular: We use only two workers;
We do not specify the concrete message types; We assume that the driver has built-in
fault tolerance mechanisms, i.e., we consider the driver, drv , to be robust, denoted by the
annotation [[drv ]]; The workers, however, may fail individually. The LR model specification
can be easily extended to more than two workers or a non-robust driver.
We now explain the global type in more detail. In the try-handle construct

(︁
(a)▶(b)

)︁1,
the try-block (a) gives the normal (i.e., failure-free) flow of the protocol, and (b) contains
the explicit handlers for potential failures. In the try-block, the global type specifies
that the driver sends the model parameter and data points to the individual workers
(drv→wi lpoints(S)), and then each worker sends the calculated update back to the driver
(w1→drv lgrad (S

′)). If a worker fails by crashing, the corresponding failure handling
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({wi} : ...) will take over. In it the non-failed worker performs the computation for both
workers, enabling the system to produce a valid result in spite of the failure. If both
workers fail (by any interleaving of their concurrent failures), the global type specifies
that the driver should safely terminate its role in the session.
We shall refer to this basic example, that focuses on the new failure handling constructs,

in explanations in later sections. See Appendix A.1 for examples of larger protocols
featuring multiparty choices and recursion with explicit failure handling. We also give
many further examples throughout the following sections. These illustrate the potential
session errors due to failures exposed by our model and the way in which our framework
resolves the errors in order to recover MPST safety.

3.1.5. Roadmap

Section 3.2 describes the adopted system and failure model. Section 3.3 introduces global
types for guiding failure handling. Section 3.4 introduces our process calculus with failure
handling capabilities and a coordinator. Section 3.5 introduces local types, derived from
global types by projection. Section 3.6 describes typing rules, and defines coherence of
session environments with respect to endpoint crashes. Section 3.7 states the properties
of our model. Section 3.8 presents our prototype implementation. Section 3.9 discusses
related work. Section 3.10 draws conclusions.

3.2. System and Failure Model

In distributed systems, care is required to prevent partial failures from adversely affecting
the liveness (e.g., waiting for messages from crashed processes) or safety (e.g., when
processes manage to communicate with some peers but not others before crashing, thus
leading to inconsistencies) properties of applications. Based on the nature of the infras-
tructure and application, appropriate system and failure models are chosen along with
judiciously made assumptions to overcome such impasses in practice.
We pinpoint the key characteristics of our model, according to our practical motivations

and standard distributed systems literature, that shape the design choices we make later
regarding the process calculus and types. As is common practice, we augment our system
with a failure detector (FD) to allow for distinguishing slow and failed processes. The
advantages of the FD are that: (i) in terms of reasoning, it concentrates all assumptions to
solve given problems, and (ii) in terms of implementation, it yields a single main module
in which time-outs are set and used.
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In our work, we make the following concrete assumptions about failures, the system,
and FDs:

(1) Crash-stop failures: Application processes fail by crashing (halting), and do not
recover.

(2) Asynchronous system: Application processes and the network are asynchronous,
meaning that there are no upper bounds limiting processes’ relative speeds or
message transmission delays.

(3) Reliable communication: Messages transmitted between correct (i.e., non-failed)
participants are eventually received.

(4) Robust coordinator: The coordinator (coordination service) is permanently avail-
able.

(5) Asynchronous reliable failure detection: Application processes have access to
local FDs which eventually detect all failed peers and do not falsely suspect peers.

Items (1), (2) and (5) are standard in the literature on fault-tolerant distributed sys-
tems [FLP85]. Note that processes can still recover but will not do sowithin sessions (or will
not be re-considered for those sessions). Other failuremodels, e.g., crash-recovery [ACT00]1,
network partitions [GL02] or Byzantine failures [LSP82], are interesting subjects of fu-
ture work. Note that network partitions are not tolerated by ZooKeeper et al., and that
Byzantine failures have often been argued to be a too generic failure model (e.g., [Bir17]).
Assumption (4) about the coordinator is in line with a large number of applications.

For example, the data analytics frameworks Hadoop [Apa06] and Spark [ZCD+12a],
the non-relation distributed database HBase [Apa08], or the resource managements
Mesos [HKZ+11] and YARN [VMD+13a] use the ZooKeeper [Hun10] coordination service
by default or as an option for coordination/fault tolerance. The assumption that the
coordinator is robust implicitly means that the number of concomitant failures among
the coordinator replicas is assumed to remain within a minority and that failed replicas
are replaced in time to tolerate further failures. Without loss of validity, the coordinator
internals can be treated as a black box.
The final Item (4) regarding failure detection is backed in practice by the concept

of program-controlled crash [CHTCB96], which consists in communicating decisions to
disregard supposedly failed processes also to those very processes, prompting them to reset
1This is different from simply assuming that crashed processes transparently recover without disrupting an
application.
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(Basic type) S ::= bool | str | int
(Global type) G ::= p→ q{li(Si).Gi}i∈I | µt .G | t | end |

(︁
G▶H↑)︁κ.G

(Failure block) H↑ ::= F : G , H↑ | ∅ (Failure set) F ::= {pi}i∈I

Figure 3.3.: Syntax of global types with explicit handling of partial failures.

themselves upon false suspicion. In practice, systems can be configured to minimize the
probability of such events, by a “two-level” membership that involves evicting processes
from individual sessions (cf. recovery above) more quickly than from the system as a whole;
several authors have also proposed network support to avoid false suspicions altogether
(e.g., [LWH+11]).
These assumptions do not make handling of failures trivial, let alone mask failures. For

instance, the network can arbitrarily delay messages and thus reorder them with respect
to their real sending times. Different processes can therefore detect failures at different
points in time and in a different order. This means that our approach has to overcome the
difficulty that processes have to agree on which failures to handle, and when and how to
handle them.

3.3. Global Types for Explicit Handling of Partial Failures

Based on the foundations of MPSTs, we develop global types to formalize specifications of
distributed protocols with explicit handling of partial failures due to role crashes, simply
referred to as failures. We present global types before introducing the process calculus to
provide a high degree of insight into how failure handling works in our model.

3.3.1. Global types syntax

The syntax of global types is depicted in Figure 3.3. We use the following base notation:
p, q , ... for role (i.e., participant) names; l1, l2, ... for message labels; and t , t ′, ... for type
variables. Base types S, S1, ... include primitive types such as bool or int.
Global types are denoted by G. We first summarize the constructs from standard

MPSTs ([CDYP16, HYC16]). A branch type p → q{li(Si).Gi}i∈I means that p can send
to q one of the messages of type Sk with label lk, where k is a member of the non-empty
index set I. The protocol then proceeds according to the continuation Gk. When I is
a singleton, we may simply write p→q l(S).G. We use t for type variables and take an
equi-recursive view, i.e., µt .G and its unfolding [µt .G/t ] are equivalent. We assume type
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variable occurrences are bound and guarded (e.g., µt .t is not permitted). end is for
termination.
We now introduce our extensions for partial failure handling. A try-handle

(︁
G1▶H↑)︁κ.G2

describes a “failure-atomic” protocol unit: all live (i.e., non-crashed) roles will eventually
reach a consistent protocol state, despite any concurrent and asynchronous role crashes.
The try-block G1 defines the default protocol flow, and H↑ is a handling environment. Each
element of H↑ maps a handler signature F , that specifies a non-empty set of failed roles
{pi}i∈I , to a handler body specified by a G. The handler body G specifies how the live roles
should proceed given the failure of roles F . The protocol then proceeds (for live roles)
according to the continuation G2 after the default block G1 or failure handling defined
in H↑ has been completed as appropriate. We allow nesting of try-handles, if the inner
try-handle occurs in the default block of outer try-handles, but we do not allow try-handles
to occur inside a handling environment.
To simplify later technical developments, we annotate each try-handle term in a given

G by a unique κ ∈ N that lexically identifies the term within G. These annotations may be
assigned mechanically. As a shorthand, we refer to the try-block and handling environment
of a particular try-handle by its annotation; e.g., we use κ to stand for

(︁
G1▶H↑)︁κ. In the

running examples, if only one try-handle exists, we may omit κ for simplicity.
We define the global context G as follows:

G ::= [ ] |
(︁
G▶H↑)︁κ.G |

(︁
G▶F : G, H↑)︁κ.G′ |(︁

G▶H↑)︁κ.G | p→ q{li(Si).Gi}i∈I ∪ {lj(S).G} | µt .G

We define the global context in the standard way, i.e., a global context is a global type
with a hole. In more detail a context is a hole [ ], a default block context

(︁
G▶H↑)︁κ.G, a

handler body context
(︁
G▶F : G, H↑)︁κ.G′, a try-handle continuation context

(︁
G▶H↑)︁κ.G,

a branching context p→ q{li(Si).Gi}i∈I ∪ {lj(S).G}, or a recursion context µt .G. Such
contexts allow us to reason about parts of global types. Based on these contexts, we define
a containment relation on global types as follows:

Definition 2 (G′ ∈ G). If ∃G s.t. G = G[G′], then G′ ∈ G

G′ ∈ G means G′ is a part of global type G. Analogous to G′ ∈ G, we write G ∈ H↑ if
the handling environmentH↑ containsG; κ ∈ G ifG contains κ (remember κ is shorthand
for
(︁
G1▶H↑)︁κ); κ ∈ κ′ if the try-handle κ contains the try-handle κ′; l ∈ G if the label

l appears inside G; and l ∈ G if the label l appears inside G. We use a lookup function
outerG(κ) for the set of all try-handles in G that enclose a given κ (including κ itself).

Definition 3 (outerG(κ)). outerG(κ) = {κ′ | κ ∈ κ′ ∧ κ′ ∈ G}.
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Top-level global types and robust roles We use the term top-level global type to mean
the source protocol specified by a user, following a typical top-down interpretation of
MPST frameworks [CDYP16, HYC16]. We allow top-level global types to be optionally
annotated [[p̃]]G, where [[p̃]] specifies a set of robust roles—i.e., roles that can be assumed to
never fail. In practice, a participant may be robust if it is replicated or is made inherently
fault tolerant by other means (e.g., the participant that represents the driver in Figure 3.2).

3.3.2. Well-formedness

Not every syntactically correct global type describes a safe communication protocol.
Therefore, the first stage of validation in standard MPSTs is to check that the top-level
global type satisfies the supporting criteria used to ensure the desired properties of the
type system. MPSTs require global types to be projectable and they validate global types in
projection [HYC16, CDYP16]. For example, MPSTs reject the following branching pattern,
since it defines an unsafe branching pattern.

a→ b{l1(S). c→a l(S), l2(S). c→a l′(S)}

The issue is that c does not know if a selects l1 or l2 but c must send l to a if a selects l1,
or l′ if a selects l2. Therefore, this protocol gets rejected during projection in standard
MPSTs [HYC16, CDYP16] and in this work (see Definition 10 branching case). We add
well-formedness criteria for failure handling that is not present in standard MPSTs.
We now define well-formedness below:

Definition 4 (Well-formedness). Let κ stand for
(︁
G1▶H↑)︁κ, and κ′ for (︁G′

1▶H
↑′)︁κ′
. A

top-level [[p̃]]G is well-formed if it fulfills all the following conditions. For all κ ∈ G:

1. For any two separate handler signatures of a handling environment of κ, there is always
a handler whose handler signature matches the union of the respective failure sets.
This handler is either inside the handling environment of κ itself, or in the handling
environment of an outer try-handle:

∀F1 ∈ dom(H↑).∀F2 ∈ dom(H↑).∃κ′ ∈ outerG(κ) s.t. F1 ∪ F2 ∈ dom(H↑′)

2. If the handling environment of a try-handle κ contains a handler for F , then there is
no outer try-handle κ′ with a handler for F ′ such that F ′ ⊆ F :

∄F ∈ dom(H↑).∃κ′ ∈ outerG(κ).∃F ′ ∈ dom(H↑′) s.t. κ′ ̸= κ ∧ F ′ ⊆ F
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3. All κ in G are unique. In addition, all labels which appear inside a default try-body or
any handler body do not occur outside of the default block/the handler body:

G = G[
(︁
G1▶H↑)︁κ.G2] ⇒ ∀l ∈ G1.l ̸∈ G, G2, H

↑ and
∀F, F ′ ∈ H↑. s.t. F ̸= F ′ ∀l′ ∈ H↑(F ).l′ ̸∈ G, G1, G2, H

↑(F ′)

4. A role does not appear in the handling activity of its own failure:

∀F ∈ dom(H↑).∀p ∈ F ⇒ p ̸∈ roles(H↑(F ))

5. All branching types of non-robust participants (p ̸∈ p̃) must be handled in G, i.e., must
be enclosed by try-handles which can handle the potential failures of p:

∀q → q′{li(Si).Gi}i∈I ∈ G.∀p ∈ {q , q ′}.p ̸∈ p̃ ⇒
∃κ′ ∈ G.q → q′{li(Si).Gi}i∈I ∈ κ′ ∧ {p} ∈ dom(H↑′)

Condition 1 ensures that if roles are active in different handlers of the same try-handle,
there is a handler whose signature corresponds to the union of the signatures of those
different handlers. Example 7 and Example 8 in Section 3.4 show why this condition is
needed. The reason for condition 2 is that, in the case of nested try-handles, the operational
semantic (see (TryHdl) in Section 3.4, Figure 3.8) allows multiple try-handles to start failure
handling; eventually the outermost try-handle will perform the handling and may interrupt
failure handling at an inner try-handle. The reason for condition 3 is that a try-handle is
our handling basis, and we shall not confuse normal messages or done notifications from
different try-handles. Condition 4 is straightforward. Condition 5 is also straightforward,
because we can only handle failures occurring in a try-handle, so interaction that involves
non-robust roles needs to be inside try-handles.
We use the following examples to illustrate non-well-formed global types.

Example 4. Gko = (
(︁
G′▶ {p1} : G1

)︁2
▶ {p1} :G′

1)
1 violates condition 2 because there are

two different handling activities for {p1} at different nesting levels. Since the outer try-handle
will eventually take over, it is not sensible to have the handling activity {p1} at the inner
nesting level.
Example 5. Gko =

(︁
p1→p2 l1(S1)▶ {p1} :p1→p2 l2(S2)

)︁
violates condition 4. It is not

well-formed since the handling activity of {p1} contains p1→p2 l2(S2) in which p1 is expected
to output a message, yet p1 would have failed at that point.
Example 6. Gko =

(︁
p1→p2 l1(S1)▶ {p1} :p2→p3 l3(S3)

)︁
.p1→p3 l2(S2) violates condition 5,

since the non-robust p1 is expected to perform a message send p1→p3 l2(S2) which is not
enclosed by any try-handle. This is not safe because, if p1 crashes before p1→p3 l2(S2)
completes, then p3 will get stuck.
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Figure 3.4.: Challenges under pure asynchronous interactions with a coordinator. Between
time (1) and time (2), the task ϕ = (κ, ∅) is interrupted by the crash of Pa.
Between time (3) and time (4), due to asynchrony and multiple crashes,
Pc starts handling the crash of {Pa, Pd} without handling the crash of {Pa}.
Finally after (4) Pb and Pc finish their common task.

3.4. A Process Calculus for Coordinator-based Failure Handling

In this section we introduce our calculus for describing processes implementing our global
types with failure handling. Figure 3.4 depicts a scenario that can occur in practical
asynchronous systems with coordinator-based failure handling through frameworks such
as ZooKeeper (Section 3.2). Using this scenario, we first illustrate challenges, then formally
define our model, and finally develop a safe type system.

3.4.1. Scenario

The scenario corresponds with a global type of the form (G)▶({Pa} : Ga, {Pa, Pd} :
Gad, ...)

κ, with processes Pa..d and a coordinator Ψ . We define a task to mean a series
of interactions, which includes failure handling behaviors. Initially all processes are
collaborating on a task ϕ, which we label (κ, ∅) (identifying the task context, and the set
of failed processes). The shaded boxes signify the tasks on which each process is working.
Dotted arrows represent notifications between processes and Ψ related to task completion,
and solid arrows represent failure notifications from Ψ to processes. During the scenario,
Pa first fails, then Pd fails: the execution proceeds through failure handling for {Pa} and
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{Pa, Pd}.

(I) When Pb reaches the end of its part in ϕ, the application has Pb notify Ψ . Pb

then remains in the context of ϕ (the continuation of the box after notifying) in
consideration of other non-robust participants still working on ϕ – Pb may yet need
to handle their potential failure(s).

(II) The processes of synchronizing on the completion of a task or performing failure
handling are themselves subject to failures that may arise concurrently. In Figure 3.4,
all processes reach the end of ϕ (i.e., four dotted arrows from ϕ), but Pa fails.
Ψ determines this failure and initiates failure handling at time (1), while done
notifications for ϕ continue to arrive asynchronously at time (2). The failure handling
for crash of Pa is itself interrupted by the second failure at time (3).

(III) Ψ can receive notifications that are no longer relevant. For example, at time (2), Ψ
has received all done notifications for ϕ, but the failure of Pa has already triggered
failure handling from time (1).

(IV) Due to multiple concurrent failures, interacting participants may end up in different
tasks: around time (2), Pb and Pd are in task ϕ′ = (κ, {Pa}), whereas Pc is still in
ϕ (and asynchronously sending or receiving messages with the others). Moreover,
Pc never executes ϕ′ because of delayed notifications, so it goes from ϕ directly to
(κ, {Pa, Pd}).

3.4.2. Syntax

Figure 3.5 defines the grammar of processes and networks (distributed applications).
Expressions e, ei, .. can be values v, vi, ..., variables x, xi, ..., and standard operations.

(Application) processes and statements. (Application) processes are denoted byP, Pi, ....
An initialization a[p](y).P agrees to play role p via shared name a and takes actions defined
in P ; actions are executed on a session channel c : η, where c ranges over s[p] (session
name and role name) and session variables y; η represents action statements.
A try-handle

(︁
η▶H

)︁ϕ attempts to execute the local action η, and can handle failures
occurring therein as defined in the handling environment H , analogously to global types.
H thus also maps a handler signature F to a handler body η defining how to handle F .
Annotation ϕ = (κ, F ) is composed of two elements: an identity κ of a global try-handle,
and an indication of the current handler signature which can be empty. F = ∅ means that
the default try-block is executing, whereas F ̸= ∅ means that the handler body for F is
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(Expression) e ::= v | x | e+ e | − e | ... (Channel) c ::= s[p] | y
(Process) P ::= a[p](y).P | c : η (Level) ϕ ::= (κ, F )

(Statement) η ::=
(︁
η▶H

)︁ϕ
.η | 0 | 0 | p!l(e).η (Declaration) D ::= X(x) = η

| p?{li(xi).ηi}i∈I | X⟨e⟩ (Handling) H ::= F : η , H | ∅
| def D in η | if e η else η (Queue) h ::= ∅ | h ·m

(Network) N ::= P | Ψ ♦N | s : h (Context) E ::=
(︁
E▶H

)︁ϕ
.η

| N |N | (νs)N | 0 | def D in E | [ ]

(Message) m ::= ⟨p, q , l(v)⟩ | ⟨[p, F ]⟩ | ⟨p, q⟩ϕ (Coordinator) Ψ ::= G :s (F , h)

Figure 3.5.: Grammar for processes, applications, systems, and evaluation contexts.

executing. Term 0 only occurs in a try-handle during runtime. It denotes a yielding for a
notification from a coordinator (introduced shortly).
Other statements are similar to those defined in Coppo et al. [CDYP16]. Term 0 repre-

sents an idle action. Following convention, we sometimes omit 0 at the end of a statement.
Action p! l(e).η represents a sending action that sends p a label l with content e, then it
continues as η. Branching p?{li(xi).ηi}i∈I represents a receiving action from p with several
possible branches. When label lk is selected, the transmitted value v is saved in xk, and
ηk{v/xk} continues. For convenience, when there is only one branch, the curly brackets
are omitted, e.g., c : p?l(x).P means there is only one branch l(x). X⟨e⟩ is for a statement
variable with one parameter e, and defD in η is for recursion, where declarationD defines
the recursive body that can be called in η. The conditional statement is standard.
The structure of processes ensures that failure handling is not interleaved between

different sessions. However, we note that in standard MPSTs [CDYP16, HYC16], session
interleaving must in any case be prohibited for the basic progress property. Our model
does allow parallel sessions at the top-level, whose actions may be concurrently interleaved
during execution.

Network A network in our framework is a composition of processes (describing a dis-
tributed application) and a coordinator (cf. Figure 3.1). A network consists of processes P ;
a system Ψ ♦N , which consists of (robust) coordinator services Ψ = G :s (F , hd), which
coordinates the session s following the global type G and a network which is coordi-
nated by the coordinator. The coordinator stores in (F , hd) the failures F that occurred
in the application, and in hd done notifications sent to the coordinator. We may omit s
from a coordinator if it is clear from the context. The coordinator is denoted by ψ when
viewed as a role. The job of the coordinator is to ensure that even in the presence of
failures there is consensus on whether all participants in a given try-handle completed
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Pdrv = a[drv ](y).y :⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

def X(xw) =
w1! lpoints(xw, getPoints(w1)).
w2! lpoints(xw, getPoints(w2)).
w1? lgrad(xres1).
w2? lgrad(xres2).
X⟨calcW (xw, xres1 , xres2 )⟩ in

X⟨xwi⟩

▶

w1 : def Xw1
(xw) =

w2! lpointsw1
(xw, getPoints(w1,w2)).

w2? lgradw1
(xres1).

Xw1⟨calcW (xw, xres1 )⟩ in
Xw1⟨xwi⟩
w2 : ...
w1,w2 : 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1,∅)

Figure 3.6.: A driver process that implements the driver role, drv , from the LR model
(Figure 3.2).

their respective local actions, or whether failures need to be handled, and which ones;
global queues s : h carry a sequence of messages m sent by participants in session s. A
message is either a regular message ⟨p, q , l(v)⟩ with label l and content v sent from p to q
or a notification. A notification may contain the role of a coordinator. There are done and
failure notifications. The done notifications: ⟨p, ψ⟩ϕ notifies ψ that p has finished its local
actions of the try-handle ϕ; ⟨ψ, p⟩ϕ is sent from ψ to notify p that ψ has received all done
notifications for the try-handle ϕ so that p shall end its current try-handle and move to
its next task. For example, in Figure 3.4 at time (4) the coordinator will inform Pb and
Pc via ⟨ψ,Pb⟩(κ,{Pa,Pd}).⟨ψ,Pc⟩(κ,{Pa,Pd}) that they can finish the try-handle (κ, {Pa, Pd}).
Note that the appearance of ⟨ψ, p⟩ϕ implies that the coordinator has been informed that
all participants in ϕ have completed their local actions. The failure notifications: ⟨[ψ,F ]⟩
notifies ψ that F occurred (e.g., {q} means q has failed); and ⟨[p, F ]⟩ is sent from ψ to
notify p about the failure F for possible handling. We write ⟨[˜︁p, F ]⟩, where ˜︁p = p1 , ..., pn
short for ⟨[p1 , F ]⟩ · ... · ⟨[pn , F ]⟩; similarly for ⟨ψ, ˜︁p⟩ϕ; N | N ′ composes two networks in
parallel; (νs)N hides the session s in N ; and 0 is an inactive network.

Processes of LR example

Figures 3.6 and 3.7 present an implementation of the LR model (see Figure 3.2 for the
global type). Figure 3.6 presents the implementation of the driver role, drv , and Figure 3.7
presents the implementations of the worker roles, w1 and w2. We take the liberty of
using non-defined functions for local calculations that involve no communication. The
first process Pdrv (see Figure 3.6) implements the driver, starting with an initialization
a[drv ](y).y which states that the process will play drv via the shared name a. The following
statement is a try-handle annotated by (1, ∅) where 1 matches the try-handle annotation
from the global type (see Figure 3.2) and ∅ states that the try-handle has no active failure
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Pw1
= a[w1](y).y :⎛⎜⎜⎜⎜⎜⎜⎝

def X(x) =
drv? lpoints(xw, xpoints).
drv ! lgrad(calcG(xw, xpoints)).
X⟨0⟩

in X⟨0⟩

▶

w2 : def Xw2
(x) =

drv? lpointsw2
(xw, xpoints).

drv ! lgradw2
(calcG(xw, xpoints)).

Xw2⟨0⟩
in Xw2⟨0⟩
...

⎞⎟⎟⎟⎟⎟⎟⎠

(1,∅)

Pw2
= a[w2](y).y :⎛⎜⎜⎜⎜⎜⎜⎝

def X(x) =
drv? lpoints(xw, xpoints).
drv ! lgrad(calcG(xw, xpoints)).
X⟨0⟩

in X⟨0⟩

▶

w1 : def Xw1
(x) =

drv? lpointsw1 (xw, xpoints).
drv ! lgradw1 (calcG(xw, xpoints)).
Xw1

⟨0⟩
in Xw1

⟨0⟩
...

⎞⎟⎟⎟⎟⎟⎟⎠

(1,∅)

Figure 3.7.: Worker processes that implement the worker roles, w1 and w2, from the LR
model (Figure 3.2).

handling. In the default block, the driver contains a recursive definition (def X(xw) =
... in ...) that defines the communication for one iteration of the LR model. The initial call
to the recursive definition X⟨xwi⟩ provides the initial model parameter xwi. Inside the
recursive definition, the driver sends the point information and model parameter to all
workers, e.g., w1! lpoints(xw, getPoints(w1)) for worker w1. The driver then waits until it
receives the result of the model update calculations from all workers, e.g., w1? lgrad (xres1)
for worker w1. It calculates the LR model parameter update and repeats the previous steps
(X⟨calcW (xw, xres1 , xres2 )⟩). Furthermore, the implementation provides failure handling
for the following failures {w1}, {w2}, and {w1, w2}. The handler body for {w1} and {w2}
follows the default block with the difference that a handler body only involves one worker,
namely the non-failed worker. The handler body for {w1, w2} is just 0, i.e., ending the LR
model since all workers have failed.
The implementations of both workers (Pw1 and Pw2 in Figure 3.7) have a structure

which is similar to the implementation of the driver. After the initialization statement,
they have a try-handle annotated with (1, ∅) matching the try-handle level from the global
type. In the default activity, they contain a recursive definition in which they expect to
receive the point information and model parameter from the driver, then calculate the
gradient and send the result to the driver. In the failure handling, if the other worker has
failed, the general behavior is the same as in the default block; the only difference is that
the worker has to process more points in the gradient calculation.
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a : G Ψ = G :s (∅, ∅) {p1, .., pn} = pid(G)

a[p1 ](y1).P1 | ... | a[pn ](yn).Pn → (νs)(Ψ ♦P1{s[p1 ]/y1} | ... | Pn{s[pn ]/yn} | s : ∅)
(Link)

s[p] : E[q! l(e).η] | s : h→ s[p] : E[η] | s : h · ⟨p, q , l(v)⟩ e ⇓ v (Snd)

lk ∈ {li}i∈I

s[p] : E[q?{li(xi).ηi}i∈I ] | s : ⟨q , p, lk(vk)⟩ · h→ s[p] : E[ηk{vk/xk}] | s : h
(Rcv)

s[p] : E[def X(x) = η in X⟨e⟩] → s[p] : E[def X(x) = η in η{v/x}] e ⇓ v (Rec)

N1 ≡ N3 → N4 ≡ N2

N1 → N2

N1 → N2

N1 |N → N2 |N
N1 → N2

Ψ ♦N1 → Ψ ♦N2

N → N ′

(νs)N → (νs)N ′
(Str, Par)
(Sys, New)

N | s : h→ N \ s[p] : η | s : remove(h, p) · ⟨[ψ, {p}]⟩ s[p] : η non-robust (Crash)

Figure 3.8.: Operational semantics of distributed applications.

3.4.3. Basic dynamic semantics for processes

Figure 3.8 shows the operational semantics of applications. The processes and networks
are considered modulo structural equivalence, denoted by ≡, and defined by the rules
in Definition 5 along with α-renaming. We use evaluation contexts as defined in Fig-
ure 3.5. Context E is either a hole [ ], a default context

(︁
E▶H

)︁ϕ
.η, or a recursion context

def D in E. We write E[η] to denote the action statement obtained by filling the hole in
E[·] with η.
Rule (Link) says that (local) processes who agree on shared name a, obeying some

protocol (global type), playing certain roles pi represented by a[pi ](yi).P , will together
start a private session s; this will result in replacing every variable yi in Pi and, at the
same time, creating a new global queue s : ∅, and appointing a coordinator G :s (∅, ∅),
which is novel in our work.
Rule (Snd) in Figure 3.8 reduces a sending action q! l(e) by emitting a message ⟨p, q , l(v)⟩

to the global queue s : h. Rule (Rcv) reduces a receiving action if the message arriving at
its end is sent from the expected sender with an expected label. Rule (Rec) is for recursion.
When the recursive body, defined inside η, is called by X⟨e⟩ where e is evaluated to v, it
reduces to the statement η{v/x} which will again implement the recursive body. Rule (Str)
says that a process can do a step, if a process that is structurally concurrent to that process
can do a step. Structural concurrence is unsurprising and we define it after discussing
the remaining rules. Rule (Par) states that a parallel composition has a reduction if its
sub-application can reduce. Rule (Sys) states that a system has a reduction if the network
has a reduction, and (New) says a reduction can proceed under a session.
Rule (Crash) states that a process on channel s[p] can fail at any point in time. (Crash) also
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adds a notification ⟨[ψ, F ]⟩which is sent to ψ (the coordinator). This is an abstraction for the
failure detector described in Section 3.2 system model assumption (4). The notification
⟨[ψ,F ]⟩ is the first such notification issued by a participant based on its local failure
detector. Adding the notification into the global queue instead of making the coordinator
immediately aware of it models that failures are only detected eventually. Note that a failure
is not annotated with a level because failures transcend all levels, and asynchrony makes it
impossible to identify “where” exactly they occurred. As a failure is permanent it can affect
multiple try-handles. The (Crash) rule does not apply to participants which are robust, i.e.,
that conceptually cannot fail (e.g., drv in Figure 3.2). Rule (Crash) removes channel s[p]
(the failed process) from application N , and removes messages and notifications delivered
from, or heading to, the failed p by function remove(h, p). Function remove(h, p) returns
a new queue after removing all regular messages and notifications that contain p, e.g.,
let h = ⟨p2 , p1 , l(v)⟩ · ⟨p3 , p2 , l′(v′)⟩ · ⟨p3 , p4 , l′(v′)⟩ · ⟨p2 , ψ⟩ϕ · ⟨[p2 , {p3}]⟩ · ⟨ψ, p2 ⟩ϕ then
remove(h, p2 ) = ⟨p3 , p4 , l′(v′)⟩. Messages are removed to model that in a real system send
and receive does not constitute an atomic action.
We now detail structural congruence used in rule (Str)

Structural congruence Structural congruence is defined as follows:

Definition 5 (Structural Congruence).
h ≡ ∅ · h ≡ h · ∅ m ·m′ ↷ m′ ·m

h ·m ·m′ · h′ ≡ h ·m′ ·m · h′
h ≡ h′

s : h ≡ s : h′

def D in 0 ≡ 0
def D in (def D′ in η) ≡ def D′ in (def D in η)

if dpv(D) ∩ (dpv(D′) ∪ fpv(η)) = dpv(D′) ∩ (dpv(D) ∪ fpv(η)) = ∅

Ψ ♦ 0 ≡ 0 N ≡ N ′

Ψ ♦N ≡ Ψ ♦N ′ (N1 |N2) |N3 ≡ N1 | (N2 |N3) (N1 |N2 ≡ N2 |N1)

N | 0 ≡ N (νs)(νs′)N ≡ (νs′)(νs)N (νs)N |N ′ ≡ (νs)(N |N ′) if s ̸∈ fn(N ′)

In Definition 5, the rules in the first lines allow the permutation of messages, modeling
asynchrony. m ·m′ ↷ m′ ·m means that the order of m ·m′ can be switched to m′ ·m.
Permutation is detailed below. The rules in the next two lines give structural congruence
over recursions. Function dpv(D) gives the set of process variables in declarations, and
fpv(η) gives the set of process variables which occur freely in η. The final two lines of
rules state structural congruence of networks where: the first two rules defines structural
congruence of a network N combined with a coordinator Ψ ; the next three rules define
structural congruence for parallel composition of network; and the last rules define
structural concurrent for restriction and scope extension in the standard way. Function
fn(N) on the last line gives the set of free names in N .
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We now detail the permutation of messages. Permutation is possible, when messages
and notifications have different sources or destinations, or done notifications have different
levels (e.g., ϕ ̸= ϕ′).

Definition 6 (Permutable Messages). We define mi ·mj ↷ mj ·mi, i ̸= j, saying mi ·mj

can be permuted to mj ·mi, if none of the following conditions holds:

• mi = ⟨p, q , l(v)⟩ and mj = ⟨p, q , l′(v′)⟩ for some l, l′, v, v′.

• mi = ⟨ψ, q⟩ϕ and mj = ⟨[q , F ]⟩ for some ϕ, F .

For example the following messages are permutable: ⟨p, q , l(v)⟩ · ⟨p, q ′, l(v)⟩ if q ̸= q′

and ⟨p, q , l(v)⟩ · ⟨ψ, p⟩ϕ and ⟨p, q , l(v)⟩ · ⟨[q , F ]⟩. But ⟨ψ, p⟩ϕ · ⟨[p, F ]⟩ is not permutable,
because both have the same sender and receiver (ψ is the sender of ⟨[p, F ]⟩).

3.4.4. Handling at processes

Failure handling, defined in Figure 3.9, is based on the observations that (i) a process
that fails stays down, and (ii) multiple processes can fail. As a consequence, a failure can
trigger multiple failure handlers either because these handlers are in different (subsequent)
try-handles or because of additional failures. Therefore a process needs to retain the
information of who failed. For simplicity we do not model state at processes, but instead
processes read but do not remove failure notifications from the global queue. We define
Fset(h, p) to return the union of failures for which there are notifications heading to p,
i.e., ⟨[p, F ]⟩, issued by the coordinator in queue h up to the first done notification heading
to p:

Definition 7 (Union of Existing Failures Fset(h, p)).

Fset(∅, p) = ∅ Fset(h, p) =

⎧⎪⎨⎪⎩
F ∪ Fset(h′, p) if h = ⟨[p, F ]⟩ · h′

∅ if h = ⟨ψ, p⟩ϕ · h′

Fset(h′, p) otherwise h = m · h′

In short, if the global queue is ∅, then naturally there are no failure notifications. If the
global queue starts with a failure notification sent from the coordinator, say ⟨[p, F ]⟩, we
collect the failure and process the tail. If the global queue starts with a done notification
⟨ψ, p⟩ϕ sent from the coordinator, then Fset(h, p) stops collecting failure notifications.
Otherwise, Fset(h, p) ignores the first message and processes the tail.
Our failure handling semantics, (TryHdl), allows a try-handle ϕ = (κ, F ) to handle

different failures or sets of failures by allowing a try-handle to switch between different
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F ′ = ∪{A | A ∈ dom(H ) ∧ F ⊂ A ⊆ Fset(h, p)} F ′ : η′ ∈ H

s[p] : E[
(︁
η▶H

)︁(κ,F )
.η′′] | s : h→ s[p] : E[

(︁
η′▶H

)︁(κ,F ′)
.η′′] | s : h

(TryHdl)

s[p] : E[
(︁
0▶H

)︁ϕ
.η] | s : h→ s[p] : E[

(︁
0▶H

)︁ϕ
.η] | s : h · ⟨p, ψ⟩ϕ (SndDone)

⟨ψ, p⟩ϕ ∈ h

s[p] : E[
(︁
0▶H

)︁ϕ
.η] | s : h→ s[p] : E[η] | s : h \ {⟨ψ, p⟩ϕ}

(RcvDone)

s[p] : E[η] | s : ⟨q , p, l(v)⟩ · h→ s[p] : E[η] | s : h l ̸∈ labels(E[η]) (Cln)

⟨ψ, p⟩ϕ ∈ h ϕ ̸∈ E[η]

s[p] : E[η] | s : h→ s[p] : E[η] | s : h \ ⟨ψ, p⟩ϕ
(ClnDone)

Figure 3.9.: Operational semantics of distributed applications, for endpoint handling.

handlers. F thus denotes the current set of handled failures. For simplicity we refer to this
as the current(ly handled) failure set. This is a slight abuse of terminology for the purpose
of brevity, as failures are obviously only detected with a certain time lag. The handling
strategy for a process is to handle the — currently — largest set of failed processes that
this process has been informed of and is able to handle. This largest set is calculated by
∪{A | A ∈ dom(H ) ∧ F ⊂ A ⊆ Fset(h, p)}, that selects all failure sets which are larger
than the current one (A ∈ dom(H ) ∧ F ⊂ A) if they are also triggered by known failures
(A ⊆ Fset(h, p)). Condition F ′ : η′ ∈ H in (TryHdl) ensures that there is a handler for F ′.
The following example shows how (TryHdl) is applied to switch handlers.

Example 7. Take h such that Fset(h, p) = {p1} and H = {p1} : η1, {p2} : η2, {p1, p2} : η12

in process P = s[p] :
(︁
η1▶H

)︁(κ,{p1}), which indicates that P is handling failure {p1}.
Assume now one more failure occurs and results in a new queue h′ such that Fset(h′, p) =
{p1, p2}. By (TryHdl), the process acting at s[p] is handling the failure set {p1, p2} such that
P = s[p] :

(︁
η12▶H

)︁(κ,{p1,p2}) (also notice the η12 inside the try-block). A switch to only
handling {p2} does not make sense, since, e.g., η2 can contain p1. Figure 3.2 shows a case in
which the handling strategy differs according to the number of failures.

In Section 3.3 we formally define well-formedness conditions, which guarantee that
if there are two handlers for two different handler signatures in a try-handle, then a
handler exists for their union. The following example demonstrates why such a guarantee
is needed.

Example 8. Assume a slightly different P compared to the previous examples (no handler for
the union of failures): P = s[p] : E[

(︁
η▶H

)︁(κ,∅)
] withH = {p1} : η1, {p2} : η2. Assume also

that Fset(h, p) = {p1, p2}. Here (TryHdl) will not apply since there is no failure handling for
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{p1, p2} in P . If we were to allow a handler for either {p1} or {p2} to be triggered we would
have no guarantee that other participants involved in this try-handle will all select the same
failure set. Even with a deterministic selection, i.e., all participants in that try-handle selecting
the same handling activity, there needs to be a handler with handler signature = {p1, p2}
since it is possible that p1 is involved in η2. Therefore, the type system will ensure that there
is a handler for {p1, p2} either at this level or at an outer level.

Before discussing the next rule, we revisit observation (I), which explains that a process
finishing its default action (Pb) cannot leave its current try-handle (κ, ∅) immediately
because other participants may fail (Pa failed). Equation 3.1 below also shows this issue
from the perspective of semantics:

s[p] :
(︁
0▶F : q!l(10).q?l′(x)

)︁(κ,∅)
.η′ | s[q ] :

(︁
p?l(x′).p!l′(x′ + 10)▶H↑)︁(κ,F )

.η′′

| s : ⟨[q , F ]⟩ · ⟨[p, F ]⟩ · h (3.1)

In Equation 3.1 the process acting on s[p] ended its try-handle (i.e., the action is 0 in
the try-block), and if s[p] finishes its try-handle the participant acting on s[q ] which
started handling F would be stuck. To solve the issue, we use (SndDone) and (RcvDone) for
completing a local try-handle with the help of a coordinator.
The rule (SndDone) sends out a done notification ⟨p, ψ⟩ϕ if the current action in ϕ is 0

and sets the action to 0, indicating that a done notification from the coordinator is needed
for ending the try-handle. The send out done notification of a process indicates that the
process wants to finish the try-handle, but has no further effect on the reduction until the
coordinator processes it. Assume process on channel s[p] finished its local actions in the
try-block (i.e., as in Equation 3.1 above), then by (SndDone), we have

(3.1) → s : ⟨[q , F ]⟩ · ⟨[p, F ]⟩ · ⟨p, ψ⟩(κ,∅) · h |

s[p] :
(︁
0▶F : q!l(10).q?l′(x)

)︁(κ,∅)
.η′ | s[q ] :

(︁
p?l(x′).p!l′(x′ + 10)▶H↑)︁(κ,F )

.η′′

where notification ⟨p, ψ⟩(κ,∅) is added to inform the coordinator. Now the process on
channel s[p] can still handle failures defined in its handling environment. This is similar
to the case described in observation (II).
Rule (RcvDone) is the counterpart of (SndDone). Once a process receives a done notification

for ϕ from the coordinator it can finish the try-handle ϕ and reduces to the continuation
η. Consider Equation 3.2 below, which is similar to Equation 3.1, except that take a case
where the try-handle can be reduced with (RcvDone). In Equation 3.2 (SndDone) is applied:

s[p] :
(︁
0▶F : q!l(10).q?l′(x)

)︁(κ,∅)
.η′ | s[q ] :

(︁
0▶F : p?l(x′).p!l′(x′ + 10)

)︁(κ,∅)
.η′′ | s : h

(3.2)
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With h = ⟨ψ, q⟩(κ,∅) · ⟨ψ, p⟩(κ,∅) · ⟨[q , F ]⟩ · ⟨[p, F ]⟩ both processes can apply (RcvDone) and
safely terminate the try-handle (κ, ∅). Note that Fset(h, p) = Fset(h, q) = ∅ (by Defini-
tion 7), i.e., rule (TryHdl) cannot be applied since a done notification suppresses the failure
notification. Further, the done and the failure notifications cannot be permuted. Thus
Equation 3.2 will reduce to:

(3.2) →∗ s[p] : η′ | s[q ] : η′′ | s : ⟨[q , F ]⟩ · ⟨[p, F ]⟩

It is possible that η′ or η′′ have handlers for F . Note that once a queue contains ⟨ψ, p⟩(κ,∅),
all non-failed processes in the try-handle (κ, ∅) have sent done notifications to ψ (i.e.,
applied rule (SndDone)). The coordinator which will be introduced shortly ensures this.
Before explaining rule (Cln) we define the function labels(η) (see Definition 8), which

returns all labels of receiving actions in η which are able to receive messages now or
possibly later. The only receiving actions which cannot and never will be able to receive
messages in η are those in a handler with signature F in a try-handle (κ, F ′) where F ⊆ F ′

((TryHdl) cannot switch the handling to F ).

Definition 8 (Extracting Reachable Labels in η). We define labels(η), which is the over-
approximation of the set of all labels reachable in η, as the fix point of:

labels(p!l(e).η) = labels(η)

labels(p?{li(ei).ηi}i∈I) =
⋃︁

i∈I({li} ∪ labels(ηi))

labels(
(︁
η▶H

)︁(κ,F )
.η′) = labels(η) ∪ labels(η′)

⋃︁
(F ′:η′′)∈H∧F⊂F ′ labels(η′′)

labels(X⟨e⟩) = labels(η) where def X(x) = η in η′ (the called)
labels(def X(x) = η in η′) = labels(η′)

labels(if e η else η′) = labels(η) ∪ labels(η′)

labels(0) = ∅ labels(0) = ∅

In detail, labels() collects labels in η based on the following cases: for a send p!l(e).η
it collects all labels in the continuations; for a branching p?{li(ei).ηi}i∈I it collects all
branching labels and all labels in all continuations; for a try-handle

(︁
η▶H

)︁(κ,F )
.η′ it

collects all labels in the statements η and η′, and all labels in the handler bodies with
handling signatures larger (⊂) than the current handler signature; for an end 0 or an
end waiting for a done 0 it collects no labels; for a statement variable X⟨e⟩ it collects the
labels of the called definition; for a definition def X(x) = η in η′ it collects the labels of
η′; for a condition statement if e η else η′ it collects the label in both cases.
Rule (Cln) removes a normal message from the queue if the label in the message does not

exist in the target process, which can happen when a failure handler was triggered. This
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p̃ = roles(G) \ F ′ F ′ = F ∪ {p} m = ⟨[p̃, {p}]⟩
G : (F , hd)♦N | s : ⟨[ψ, {p}]⟩ · h→ G : (F ′, hd)♦N | s : h ·m

(F)

h′d = hd · ⟨p, ψ⟩ϕ

G : (F , hd)♦N | s : ⟨p, ψ⟩ϕ · h→ G : (F , h′d)♦N | s : h
(CollectDone)

roles(hd, ϕ) ⊇ roles(G,ϕ) \ F ∀F ′ ∈ hdl(G,ϕ).(F ′ ̸⊆ F ) ˜︁ps = roles(G,ϕ) \ F
G : (F , hd)♦N | s : h→ G : (F , remove(hd, ϕ))♦N | s : h · ⟨ψ,˜︂ps⟩ϕ (IssueDone)

Figure 3.10.: Operational semantics for the coordinator.

removal based on the syntactic process is safe because in a global type separate branch
types not defined in the same default block or handler body must have disjoint sets of
labels (c.f., Section 3.3). Let ϕ ∈ P if try-handle ϕ appears inside P . Rule (ClnDone) removes
a done notification of ϕ from the queue if no try-handle ϕ exists, which can happen in the
case of nesting when a handler of an outer try-handle is triggered.

3.4.5. Handling at coordinator

Figure 3.10 defines the semantics of the coordinator. The rule (F), states that the coordina-
tor collects and removes a failure notification ⟨[ψ, p]⟩ heading to it, retains this notification
by G : (F ′, hd), F ′ = F ∪ {p}, where F represents the failures that the coordinator is
already aware of, and issues failure notifications to all non-failed participants. roles(G)
extracts the set of all roles appearing in G.
Rules (CollectDone, IssueDone), in short, instruct all participants in ϕ = (κ, F ) to finish

their try-handle ϕ if the coordinator has received sufficient done notifications of ϕ and did
not send out failure notifications that interrupt the task (κ, F ) (e.g., see observation (III)).
Rule (CollectDone) collects done notifications, i.e., ⟨p, ψ⟩ϕ, from the queue and retains
these notifications which are used in (IssueDone). Before introducing (IssueDone), we first
introduce hdl(G, (κ, F )) to return a set of handler signatures which can be triggered with
respect to the current handler:

Definition 9. hdl(G, (κ, F )) = dom(H↑)\P(F ) if
(︁
G0▶H↑)︁κ ∈ G where P(F ) represents

a powerset of F .

Also, we abuse the function roles to collect the non-coordinator roles of ϕ in hd, written
roles(hd, ϕ). Note hd contains only done notifications sent by participants. Similarly, we
write roles(G,ϕ) where ϕ = (κ, F ) to collect the roles appearing in the try-handle κ
without the failed roles, i.e. roles(κ) \ F .
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Rule (IssueDone) is applied for some ϕ when conditions ∀F ′ ∈ hdl(G,ϕ).(F ′ ̸⊆ F ) and
roles(hd, ϕ) ⊇ roles(G,ϕ) \ F are both satisfied, where F contains all failures, of which
the coordinator is aware. Intuitively, these two conditions ensure that (1) the coordinator
only issues done notifications to the participants in the try-handle ϕ if it did not send
failure notifications which will trigger a handler of the try-handle ϕ; (2) the coordinator
has received all done notifications from all non-failed participants of ϕ.
We further explain both conditions in the following examples, starting from condition

∀F ′ ∈ hdl(G,ϕ).(F ′ ̸⊆ F ), which ensures that no handler in ϕ can be triggered based on
the failure notifications F sent out by the coordinator.

Example 9. Assume a process playing role pi is Pi = s[pi] :
(︁
ηi▶H i

)︁ϕi where i ∈ {1, 2, 3},
H i = {p2} : ηi2, {p3} : ηi3, {p2, p3} : ηi23; the coordinator is G : ({p2, p3}, hd) (F =
{p2, p3}) where

(︁
G′▶H↑)︁κ ∈ G, dom(H↑) = dom(H i) for any i ∈ {1, 2, 3}, and hd =

⟨p1 , ψ⟩(κ,{p2}) · ⟨p1 , ψ⟩(κ,{p2,p3}) · h′d. For any ϕ in hd, the coordinator checks whether it has
issued a failure notification that could trigger a new handler of ϕ:

1. For ϕ = (κ, {p2}) the coordinator issued failure notifications that can interrupt a
handler since

hdl(G, (κ, {p2})) = dom(H↑) \ P({p2}) = {{p3}, {p2, p3}}

and {p2, p3} ⊆ {p2, p3}. That means the failure notifications issued by the coordinator,
i.e., {p2, p3}, can trigger the handler with signature {p2, p3}. Thus the coordinator will
not issue done notifications for ϕ = (κ, {p2}). A similar case is depicted in Figure 3.4
at time (2).

2. For ϕ = (κ, {p2, p3}) the coordinator did not issue failure notifications that can inter-
rupt a handler, because

hdl(G, (κ, {p2, p3})) = dom(H↑) \ P({p2, p3}) = ∅

so that ∀F ′ ∈ hdl(G, (κ, {p2, p3})).(F ′ ̸⊆ {p2, p3}) is true. The coordinator will issue
done notifications for ϕ = (κ, {p2, p3}).

Another condition roles(hd, ϕ) ⊇ roles(G,ϕ) \ F states that only when the coordinator
sees sufficient done notifications (in hd) for ϕ, does it issue done notifications to all
non-failed participants in ϕ, i.e., ⟨ψ, roles(G , ϕ) \ F ⟩ϕ. Recall that roles(hd, ϕ) returns all
roles which have sent a done notification for the handling of ϕ and roles(G,ϕ) returns
all roles involved in the handling of ϕ. Intuitively one might expect the condition to be
roles(hd, ϕ) = roles(G,ϕ); the following example shows why this would be wrong.
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Example 10. Consider a process P acting on channel s[p] ({q} ̸∈ dom(H )):

P = s[p] :
(︁
...
(︁
...▶{q} : η,H ′)︁ϕ′

▶H
)︁ϕ

Assume P has already reduced to:

P = s[p] :
(︁
0▶H

)︁ϕ
We show why roles(hd, ϕ) ⊇ roles(G,ϕ) \ F is necessary. We start with the simple cases and
then move to the more complicated ones.

(a) Assume q did not fail, the coordinator is G : (∅, hd), and all roles in ϕ issued a done
notification. Then roles(hd, ϕ) = roles(G,ϕ) and F = ∅.

(b) Assume q failed in the try-handle ϕ′, the coordinator isG : ({q}, hd), and all roles except
q in ϕ issued a done notification. roles(hd, ϕ) ̸= roles(G,ϕ) however roles(hd, ϕ) =
roles(G,ϕ) \ {q}. Cases like this are the reason why (IssueDone) only requires done
notifications from non-failed roles.

(c) Assume q failed after it had issued a done notification for ϕ (i.e., q finished try-handle
ϕ′) and the coordinator collected it (by (CollectDone)), so we have G : ({q}, hd) and
q ∈ roles(d, ϕ). Then roles(hd, ϕ) ⊃ roles(G,ϕ) \ {q}. I.e. (IssueDone) needs to consider
done notifications from failed roles.

Thus rule (IssueDone) has the condition roles(hd, ϕ) ⊇ roles(G,ϕ) \ F because of cases
like (b) and (c).

The interplay between the issuing of done notifications (IssueDone) and the issuing of fail-
ure notifications (F) is non-trivial. The following proposition clarifies that the participants
in the same try-handle ϕ will never get confused with handling failures or completing the
try-handle ϕ.

Proposition 1. Given s : h with h = h′ · ⟨ψ, p⟩ϕ · h′′ and Fset(h, p) = Fs, the rule (TryHdl)
is not applicable for the try-handle ϕ at the process playing role p.

Proof. Without loss of generality we assume that the coordinator is Ψ = G :s (Fq, hd)
and ϕ = (κ, F ′

s). The failure and done notifications sent by Ψ to p are not permutable by
Definition 6. Fset(h, p) stops collecting failure notifications when it reaches the first done
notification.
Assume we have F ∈ hdl(G,ϕ) and F = ∪{A | A ∈ dom(H ) ∧ Fs

′ ⊂ A ⊆ Fset(h, p)}.
Since Fset(h, p) ⊆ Fq, immediately rule (IssueDone) is violated. So we have a contradiction.
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Example 11 (Example reduction for the LR model). This example provides a partial
reduction for the processes illustrated in Figures 3.6 and 3.7. The reduction covers interactions
from the default behavior of the LR model. A failure of w1 will interrupt the task and all live
processes will switch to the failure handling for w1.
In the reductions below, we write over the arrow the main rule that is used. For the sake

of brevity, we may leave parts of the network unspecified. We will now start sketching the
reduction.

Pdrv |Pw1 |Pw2

(Link)−−−−→ (νs)

(︄
G :s (∅, ∅) ♦ s[drv ] :

(︁
ηdrv ▶H drv

)︁(1,∅) |
s[w1] :

(︁
ηw1 ▶Hw1

)︁(1,∅) | s[w2] :
(︁
ηw2 ▶Hw2

)︁(1,∅) | s : ∅
)︄

⏞ ⏟⏟ ⏞
N1

(3.3)
In Equation (3.3) the (Link) reduction initializes the system N1. (Link) creates a new session s,
hides the new session (νs), replaces the session variables with the new session name and role
names, e.g., s[drv ] for the driver, creates the session queue s : ∅, and assigns a coordinator
G :s (∅, ∅), where G is the global type from Figure 3.2.

N1
(Rec)−−−−→ (Rec)−−−−→ (Rec)−−−−→ (Snd)−−−−→ (Snd)−−−−→ N2 N2 = (νs)(G :s (∅, ∅) ♦N ′

2) where

N ′
2 =

s[drv ] :

⎛⎜⎜⎝
def X(xw) = ... in
w1? lgrad (xres1).
w2? lgrad (xres2).
X⟨calcW (xw, xres1 , xres2 )⟩

▶H drv

⎞⎟⎟⎠
(1,∅)

⏞ ⏟⏟ ⏞
η′drv

| s[w1] : η
′
w1

| s[w2] : η
′
w2

|

s : ⟨drv ,w1 , lpoints(v1)⟩ · ⟨drv ,w2 , lpoints(v2)⟩
(3.4)

In the reductions in Equation (3.4), the driver and the workers call their recursive definitions
(X). Furthermore, the driver sends ⟨drv ,w1 , lpoints(v1)⟩ to w1, and ⟨drv ,w2 , lpoints(v2)⟩ to
w2.

N2
(Crash)−−−−−→ N3 where

N3 = (νs)(G :s (∅, ∅) ♦ s[drv ] : η′drv | s[w2] : η
′
w2

| s : ⟨drv ,w2 , lpoints(v2)⟩ · ⟨[ψ, {w1}]⟩)
(3.5)

In the reduction in Equation (3.5), the participant w1 fails by crashing. This reduction removes
the process of w1, removes all messages in the queue heading to or from w1, and adds a failure
notification heading to the coordinator. The message removal models that reliable message
delivery is only ensured for live participants. Furthermore, the added failure notification
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models that, the failure will only be observed eventually (when the coordinator receives the
notification).

N3
(Rcv)−−−−→ (Snd)−−−−→ N4 N4 = (νs)(G :s (∅, ∅) ♦N ′

4) where

N ′
4 = s[drv ] : η′drv | s[w2] :

(︃
def X(xw) = ... in
X⟨0⟩ ▶Hw2

)︃(1,∅)

⏞ ⏟⏟ ⏞
η′′w2

|

s : ⟨[ψ, {w1}]⟩ · ⟨w2 , drv , lgrad (vg)⟩

(3.6)

In Equation (3.6) worker w2 receives the message ⟨drv ,w2 , lpoints(v2)⟩, calculates the model
update, and sends the result to the driver drv (⟨w2 , drv , lgrad (vg)⟩). These reductions show
that even if a failure occurs other participants progress as normal (until they are aware of
the failure – via a failure notification from the coordinator).

N4
(F)−−→ N5 where

N5 =
(νs)(G :s ({w1}, ∅) ♦ s[drv ] : η′drv | s[w2] : η

′′
w2

|
s : ⟨w2 , drv , lgrad (vg)⟩ · ⟨[drv , {w1}]⟩ · ⟨[w2 , {w1}]⟩)

(3.7)

In Equation (3.7) the coordinator collects the failure notification and informs all live partici-
pants (drv and w2) about the failure of w1.

N5
(TryHdl)−−−−−→ (TryHdl)−−−−−→ N6 where

N5 = (νs)(G :s ({w1}, ∅) ♦ s[drv ] : (η1▶H drv )
(1,{w1}) | s[w2] : (η2▶Hw2)

(1,{w1}) |
s : ⟨w2 , drv , lgrad (vg)⟩ · ⟨[drv , {w1}]⟩ · ⟨[w2 , {w1}]⟩)

(3.8)
where

η1 =

def Xw1(xw) =
w2! lpointsw1 (xw, getPoints(w1,w2)).
w2? lgradw1 (xres1).
Xw1⟨calcW (xw, xres1 )⟩ in

Xw1⟨xwi⟩

η2 =

def Xw1(x) =
drv? lpointsw1 (xw, xpoints).
drv ! lgradw1 (calcG(xw, xpoints)).
Xw1⟨0⟩

in Xw1⟨0⟩
(3.9)

In Equation (3.8) both w2 and drv activate failure handling. The try-handle level changes to
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L ::= p!{li(Si).Li}i∈I | p?{li(Si).Li}i∈I |
(︁
L▶H↓)︁ϕ.L | t | µt .L | end | end

H↓ ::= F : L | H↓, H↓

Figure 3.11.: The grammar of local types.

(1, {w1}) and the default block gets replaced by the handler body for the failure {w1}.

N6
(Cln)−−−→ N7 where

N7 = (νs)(G :s ({w1}, ∅) ♦ s[drv ] : (η1▶H drv )
(1,{w1}) | s[w2] : (η2▶Hw2)

(1,{w1}) |
s : ⟨[drv , {w1}]⟩ · ⟨[w2 , {w1}]⟩)

(3.10)
In Equation (3.10) drv removes the message ⟨w2 , drv , lgrad (vg)⟩ from the queue. The message
was sent before failure activation and failure handling made this message obsolete. From N7

onward drv and w2 iteratively improve the model parameter unless a failure of w2 leads to
termination.

3.5. Local Types

Figure 3.11 defines local types for typing behaviors of endpoint processes with failure
handling. In contrast with global types, which describe global behavior, local types describe
the endpoint behavior of a process. Local types can be derived from global type via projec-
tion which we will describe shortly. Type p!{li(Si).Li}i∈I is the primitive for a selection
and p?{li(Si).Li}i∈I is the branching counterpart, describing the process perspective of
the global type p → q{li(Si).Gi}i∈I .

(︁
L▶H↓)︁ϕ.L describes a try-handle process. t and

µt .L type recursion. end types the inactive process and end types an inactive process in a
try-handle that expects a done notification. Note that type end only appears in runtime
type checking.
Below we define G↾p to project a global type G on p, thus generating p ’s local type.

Definition 10 (Projection). Consider a well-formed top-level global type [[q̃ ]]G. Then G↾p is
defined as follows:

(1) G↾p where G =
(︁
G0▶F1 : G1, ..., Fn : Gn

)︁κ
.G′

=

⎧⎪⎨⎪⎩
(︁
G0↾p▶F1 : G1↾p, ..., Fn : Gn↾p

)︁(κ,∅)
.G′↾p

if p ∈ roles(κ)
∀i ∈ {1, .., n}. ̸ ∃

(︁
G′′▶H↑)︁ ∈ Gi

G′↾p elseif p ̸∈ roles(κ)
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(2) p1 → p2{li(Si).Gi}i∈I↾p =

⎧⎨⎩
p2!{li(Si).Gi↾p}i∈I if p = p1
p1?{li(Si).Gi↾p}i∈I elseif p = p2
G1↾p elseif ∀i, j ∈ I.Gi↾p = Gj↾p

(3) (µt .G)↾p = {µt .(G↾p) if ̸ ∃
(︁
G′▶H↑)︁ ∈ G ∧ G↾p ̸= t end elseif G↾p = t}

(4) t↾p = t (5) end↾p = end

Otherwise it is undefined.

The main rule is (1): if p appears somewhere in the target try-handle global type
(p ∈ roles(κ)) then the endpoint type has a try-handle annotated with κ and the default
logic (i.e., Fs = ∅). Note that even if G0 ↾ p = end the endpoint still gets such a try-
handle because it needs to be ready for (possible) failure handling; if p does not appear
anywhere in the target try-handle global type, then the projection skips to the continuation.
Furthermore, the rule ensures that nested try-handles occur only in the default block.
Rule (2) produces local types for interaction endpoints. If the endpoint is a sender (i.e.,

p = p1), then its local type abstracts that it will send something from one of the possible
internal choices defined in {li(Si)}i∈I to p2, then continue as Gk ↾p, gained from the
projection, if k ∈ I is chosen. If the endpoint is a receiver (i.e., p = p2), then its local type
abstracts that it will receive something from one of the possible external choices defined
in {li(Si)}i∈I sent by p1; the rest is the same as for the sender. However, if p is not in this
interaction, then its local type starts from the next interaction which includes p; moreover,
because p does not know what choice the sender, p1, has made, the p ‘s behavior Gi↾p
regarding any choice li shall be the same. This ensures that interactions are consistent.
For example, in G = p1 → p2{l1(S1).p3 → p1 l3(S), l2(S2).p3 → p1 l4(S)}, interaction
p3 → p1 continues after p1 → p2 takes place. If l3 ̸= l4, then G is not projectable for p3
because p3 does not know which branch p1 has chosen; if p1 chooses branch l1, but p3
(blindly) sends out label l4 to p1, for p1 it is a mistake (but it is not a mistake for p3) because
p1 is expecting to receive label l3. To prevent such inconsistencies, we adopt the projection
algorithm proposed in Honda et al. [HYC16]. Other session type works [DY11, SDHY17b]
provide ways to weaken the classical restriction on projection of branching which we use.
Rule (3) forbids a try-handle to appear in a recursive body, e.g., µt .

(︁
G▶F : t

)︁κ
.G is not

allowed, but
(︁
µt .G▶H↑)︁κ and (︁G▶F : µt .G′, H↑)︁κ are allowed. This is because κ is used

to avoid confusion of messages from different try-handles. If a recursive body contains
a try-handle, we have to dynamically generate different levels to maintain interaction
consistency. Other rules are straightforward.

Example 12. Recall the global type G from Figure 3.2 in Section 3.1. Applying projection

67



rules defined in Definition 10 to every role in G we obtain the following:

Ldrv = G↾drv = (L′
drv ▶H

↓
drv )

(1,∅)

L′
drv = µt .w1!lpoints(S).w2!lpoints(S).w1?lgrad(S

′).w2?lgrad(S
′). t

H↓
drv = {w1} : µt1.w2!lpointsw1

(S).w2?lgradw1
(S′). t1,

{w2} : µt2.w1!lpointsw2 (S).w1?lgradw2 (S
′). t2, {w1 ,w2} : end

Lw1
= G↾w1 = (L′

w1
▶H↓

w1
)(1,∅)

L′
w1

= µt . drv?lpoints(S). drv !lgrad(S
′). t

H↓
w1

= {w1} : end, {w2} : µt2. drv?lpointsw2
(S). drv !lgradw2

(S′). t2, {w1 ,w2} : end

Lw2
= G↾w2 = (L′

w2
▶H↓

w2
)(1,∅)

L′
w2

= µt . drv?lpoints(S). drv !lgrad(S
′). t

H↓
w2

= {w1} : µt1. drv?lpointsw1
(S). drv !lgradw1

(S′). t1, {w2} : end, {w1 ,w2} : end

3.6. Type System

Next we introduce our type system for typing processes. Figure 3.12 and Figure 3.13
present typing rules for endpoint processes and networks.

3.6.1. Typing environments and rules

We define shared environments Γ to keep information on variables and the coordinator,
and session environments ∆ to keep information on endpoint types:

Γ ::= ∅ | Γ, X : S L | Γ, x : S | Γ, a : G | Γ,Ψ ∆ ::= ∅ | ∆, c : L | ∆, s : h
m ::= ⟨p, q , l(S)⟩ | ⟨[p, F ]⟩ | ⟨p, q⟩ϕ h ::= ∅ | h · m

Γ maps process variables X and content variables x to their types, shared names a to
global types G, and a coordinator Ψ = G :c (Fq, hd) to failures and done notifications
that it has observed. ∆ maps session channels c to local types and session queues to
queue types. We write Γ,Γ′ = Γ∪ Γ′ when dom(Γ)∩ dom(Γ′) = ∅; same for ∆,∆′. Queue
types h are composed of message types m. Their permutation is defined analogously to
the permutation for messages (see Definition 22). Figure 3.12 and Figure 3.13 use the
following typing judgment:

Γ ⊢ N ▷ ∆

which states N is well-typed by ∆ under Γ. Figure 3.12 defines the typing rules for (local)
processes and Figure 3.13 defines the typing rules for networks.
Figure 3.12 lists our typing rules for endpoint processes. Rule ⌊T-ini⌋ says that if

a process’s actions on the session variable y are well-typed by G↾p, then this process
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Γ ⊢ a : ⟨G⟩
Γ ⊢ P ▷ {y : G↾p}
Γ ⊢ a[p](y).P ▷ ∅

k ∈ I Γ ⊢ e : Sk

Γ ⊢ c : ηk ▷ {c : Lk}
Γ⊢ c :p! lk(e).ηk ▷ {c : p! {li(Si).Li}i∈I}

⌊T-ini/T-snd⌋

∀i ∈ I. Γ, xi : Si ⊢ c : ηi ▷ {c : Li}
Γ ⊢ c : p? {li(xi).ηi}i∈I ▷ {c : p? {li(Si).Li}i∈I}

⌊T-rcv⌋

Γ ⊢ c : 0▷ {c : end} Γ ⊢ c : 0▷ {c : end} ⌊T-0/T-yd⌋

Γ ⊢ e : bool
∀i ∈ {1, 2}. Γ ⊢ c : ηi ▷ ∆

Γ ⊢ c : if e η1 else η2 ▷ ∆

Γ ⊢ e : S

Γ, X : S L ⊢ c : X⟨e⟩▷ {c : L}
⌊T-if/T-var⌋

Γ, X : S t , x : S ⊢ c : η1 ▷ {c : L′}
Γ, X : S µt .L′ ⊢ c : η2 ▷ {c : L}

Γ ⊢ c : def X(x) = η1 in η2 ▷ {c : L}
⌊T-def⌋

Γ ⊢ c : η ▷ {c : L} Γ ⊢ c : η′ ▷ {c : L′} dom(H ) = dom(H↓)

∀F ∈ dom(H ). Γ ⊢ c : H (F )▷ {c : H↓(F )}

Γ ⊢ c :
(︁
η▶H

)︁ϕ
.η′ ▷ {c :

(︁
L▶H↓)︁ϕ.L′}

⌊T-th⌋

Figure 3.12.: Typing rules for processes.

can play role p in a. ⟨G⟩ means that G is closed, i.e., devoid of type variables. This rule
forbids a[p].b[q ].P because a process can only use one session channel. Since we do not
define sequential composition for processes ⌊T-ini⌋ implicitly forbids session interleaving.
This is a difference compared to other MPSTs works [CDYP16, HYC16], where session
interleaving is prohibited for the progress property; here the restriction is inherent in the
type system. Rule ⌊T-snd⌋ states that an action for sending is well-typed to a sending
type if the label and the type of the content are expected; ⌊T-rcv⌋ states that an action
for branching (i.e., for receiving) is well-typed to a branching type if all labels and the
types of contents are as expected. Their follow-up actions shall also be well-typed. Rule
⌊T-0⌋ types an idle process with end. Rule ⌊T-yd⌋ types yielding actions, which only
appear at runtime. Rule ⌊T-if⌋ is standard in the sense that the process is well-typed by
∆ if e has boolean type and its sub-processes (i.e., η1 and η2) are well-typed by ∆. Rules
⌊T-var,T-def⌋ type recursion. Rule ⌊T-th⌋ states that a try-handle is well-typed if it is
annotated with the expected level ϕ, its default statement is well-typed, H↓ and H have
the same handler signatures, and all handling actions are well-typed.
Figure 3.13 shows typing rules for networks. Rule ⌊T-∅⌋ types an empty queue. Rules

⌊T-m,T-D,T-F ⌋ simply type messages based on their shapes. Rule ⌊T-pa⌋ says two
networks composed in parallel are well-typed if they do not share any session channel.
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Γ ⊢ s : ∅▷ {s : ∅}
Γ ⊢ s : h▷ {s : h} Γ ⊢ v : S

Γ ⊢ s : h · ⟨p, q , l(v)⟩▷ {s : h · ⟨p, q , l(S)⟩}
⌊T-∅/T-m⌋

(p1, p2) ∈ {(p, ψ), (ψ, p)} Γ ⊢ s : h▷ {s : h}
Γ ⊢ s : h · ⟨p1 , p2 ⟩ϕ ▷ {s : h · ⟨p1 , p2 ⟩ϕ}

Γ ⊢ 0▷ ∅ ⌊T-D/T-N0⌋

p ∈ {q , ψ} m = ⟨[p, F ]⟩
Γ ⊢ s : h▷ {s : h}

Γ ⊢ s : h · ⟨[p, F ]⟩▷ {s : h · m}

Γ ⊢ N1 ▷ ∆1 Γ ⊢ N2 ▷ ∆2

dom(∆1) ∩ dom(∆2) = ∅
Γ ⊢ N1 | N2 ▷ ∆1,∆2

⌊T-F/T-pa⌋

Γ ⊢ N ▷ ∆ Γ ⊢ ∆s coherent
Γ ⊢ (νs)N ▷ ∆ \∆s

Γ′ = Γ,Ψ Γ ⊢ N ▷ ∆

Γ′ ⊢ Ψ ♦N ▷ ∆
⌊T-s/T-sys⌋

Figure 3.13.: Typing rules for networks.

Rule ⌊T-N0⌋ types an idle network. Rule ⌊T-s⌋ states a session hiding, (νs)N , is well-
typed, if the network, N , in which s is hidden is well-typed under environments Γ and
∆ that are coherent for s (Γ ⊢ ∆s coherent); then (νs)N gets typed under the session
environment ∆ \∆s, i.e., the session environment ∆ without local and queue types of
s. We say Γ ⊢ ∆ is coherent under Γ if the local types of all endpoints are dual to each
other after their local types are updated according to messages or notifications in s : h.
We define coherence shortly.

Definition 11 (A session environment having s only: ∆s).

∆s = {s[p] : L | s[p] ∈ dom(∆)} ∪ {s : h | s ∈ dom(∆)}

Rule ⌊T-sys⌋ says that a system Ψ ♦N is well-typed if network N is well-typed and
there is a coordinator Ψ for handling this network.

Example 13. In this example we show that the driver process from Figure 3.6 is well-typed.

Γ ⊢ a : ⟨G⟩ Γ ⊢ y :
(︁
ηdrv ▶H drv

)︁(1,∅)
.0▷ {y : G↾drv}⏞ ⏟⏟ ⏞

T

a : G, xwi : S
′′⏞ ⏟⏟ ⏞

Γ

⊢ a[drv ](y).y :
(︁
ηdrv ▶H drv

)︁(1,∅)
.0▷ ∅

(3.11)

In Equation (3.11) we type the driver process, via ⌊T-ini⌋, using an empty session environ-
ment and a shared environment containing the type of the shared name a and the variable
xwi. We show in T (see Equation (3.12)) that the process uses y as described by the global
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type projected to drv . See Example 12 for G↾drv .

Γ ⊢ y : ηdrv ▷ L′
drv⏞ ⏟⏟ ⏞

T1

∀i ∈ {1, 2}. Γ ⊢ y : Hdrv ({wi})▷ {H↓
drv ({wi})}⏞ ⏟⏟ ⏞

Twi

Γ ⊢ y : 0▷ {y : end}
Γ ⊢ y : 0▷ {y : H↓

drv ({w1, w2})⏞ ⏟⏟ ⏞
end

}

Γ ⊢ y :
(︁
ηdrv ▶H drv

)︁ϕ
.0▷ {y : (L′

drv ▶H
↓
drv )

(1,∅).end}
(3.12)

Equation (3.12) shows the type derivation T , i.e. the typing of a try-handle process, via
⌊T-th⌋; for that we type the continuation and the handler body for {w1,w2} with end, both
are idle (0); furthermore, we type the default activity η in T1 and the two remaining handler
bodies for {w1} and {w2} in Tw1 and Tw2 . We do not show the type derivation for Tw1 and
Tw2 because they are similar and simpler than T1. Equation (3.12) can only be typed if
(L′

drv ▶H
↓
drv )

(1,∅).end = G↾drv (See Example 12).

Γ, X : S′′ t , xw : S′′ ⊢ ηX ▷ {y : L}⏞ ⏟⏟ ⏞
T2

Γ ⊢ xwi : S
′′

Γ, X : S′′ µt .L ⊢ y : X⟨xwi⟩▷ {y : µt .L}
Γ ⊢ y : def X(xw) = ηX in X⟨xwi⟩▷ {c : µt .L}

(3.13)
Equation (3.13) shows the type derivation T1, i.e. the typing of the default activity, which is
a recursive definition (X), which we type via ⌊T-def⌋; the definition is immediately called.
We type the call X simply via ⌊T-var⌋ and we must ensure that we can type the definition
with y : L such that µt .L = L′

drv . We show the typing of the recursive definition in T2.

Γ ⊢ e : S

Γ ⊢ e′ : S Γ, X : S′′ t , xw : S′′ ⊢ y : η′′X ▷ {y : L′′}⏞ ⏟⏟ ⏞
T3

Γ, X : S′′ t , xw : S′′ ⊢ y : w2! lpoints(e
′).η′′X ▷ {y : w2!lpoints(S).L

′′}
Γ, X : S′′ t , xw : S′′ ⊢ y : w1! lpoints(e).η

′
X⏞ ⏟⏟ ⏞

ηX

▷ {y : w1!lpoints(S).w2!lpoints(S).L
′′}

(3.14)
Equation (3.14) shows the type derivation T2, i.e. the typing of the body of the recursive
definition. We type the first two sends in the body, via ⌊T-snd⌋ twice, with the session
environment {y : w1!lpoints(S).w2!lpoints(S).L

′′}. What remains to be shown is that y : η′′X
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has the type w1?lgrad (S
′).w2?lgrad (S

′). t, which we do in T3.

Γ, X : S′′ t , xw : S′′, xres1 , xres2 : S′ ⊢ calcW (xw, xres1 , xres2 ) : S
′′

Γ, X : S′′ t , xw : S′′, xres1 , xres2 : S′ ⊢ y : X⟨calcW (xw, xres1 , xres2 )⟩▷ {y : t}
Γ, X : S′′ t , xw : S′′, xres1 : S′ ⊢ y : w2? lgrad (xres2). η

′′′′
X ▷ {y : w2?lgrad (S

′). t}
Γ, X : S′′ t , xw : S′′ ⊢ y : w1? lgrad (xres1). η

′′′
X ▷ {y : w1?lgrad (S

′).w2?lgrad (S
′). t⏞ ⏟⏟ ⏞

L′′

}

(3.15)
Equation (3.14) shows the type derivation T3, i.e. the typing of the remaining two receives
followed by the recursive call ofX with the session environment {w1?lgrad (S

′).w2?lgrad (S
′). t}

as desired. The type derivation first uses ⌊T-rcv⌋ twice and then ⌊T-var⌋ once.

3.6.2. Coherence

We say that a session environment is coherent if, at any time, given a session with its latest
messages and notifications, every endpoint participating in it can find someone to interact
with (i.e., its dual party exists) right now or later. To check whether two endpoints, say drv
and w2 (from Example 12), can interact safely (are dual), we compare their types; actions
described in one must have a matching action in the other. E.g., if one type contains a
selection, the other type must contain a matching branching (branching is the dual-action
to selection). However, e.g., the type of drv describes actions with both w2 and w1 . Recall
the local type of drv , from Example 12, (w1 !lpoints(S).w2 !lpoints(S). ...▶H

↓
drv )

(1,∅) and
the local type of w2 (drv?lpoints(S). ...▶H

↓
w2 )

(1,∅). These types describe safe interactions
even if w2 does not receive any message from drv at this point. Only after drv sends out
a message to w1 will drv send a message to w2 . Following Coppo et al. [CDYP16], we
define a second projection operation to extract the parts of a local type that define the
interactions towards a specific participant (see Definition 12). Furthermore, we need to
consider message types to ensure that two endpoints can interact safely. Let us consider,
e.g., N ′

2 from the LR reduction example (Example 11, Equation (3.4)). We can type N ′
2,

Γ′ ⊢ N ′
2 ▷ ∆′ where

∆′ = s[drv ] : (w1?lgrad (S
′).w2?lgrad (S

′). L′
drv ▶H

↓
drv )

(1,∅),

s[w1 ] : (drv?lpoints(S). drv !lgrad (S
′). L′

w1
▶H↓

w1 )
(1,∅),

s[w2 ] : (drv?lpoints(S). drv !lgrad (S
′). L′

w2
▶H↓

w2 )
(1,∅),

s : ⟨drv ,w1 , lpoints(S)⟩ · ⟨drv ,w2 , lpoints(S)⟩

In ∆′ the types of drv ,w1 and w2 all have branching type prefixes in the default block,
but a branching type requires a dual selection type. The effect of, e.g., the message
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type ⟨drv ,w1 , lpoints(S)⟩ on w1’s type is to remove the branching prefix, which gives us
balanced inputs and outputs between w1 and drv . We define the effect of message types
shortly (see Definition 14). Next we define when two types are dual to each other, i.e., all
actions described by one type have matching counterparts in the other (see Definition 15).
Lastly, we define the coherence invariant, which ensures that the typed processes can
communicate safely (see Definition 16).

Behavior and messages for p

We now define the process of extracting, from a local type, the behavior towards a specific
role.

Definition 12 (L⇂p (Behaviors for p in L)).(︁
L▶F1 : L1, ..., Fn : Ln

)︁ϕ
.L′ ⇂p ={︄(︁

L⇂p▶F1 : L1 ⇂p, ..., Fn : Ln ⇂p
)︁ϕ
.L′ ⇂p if p ∈ roles(κ) where ϕ = (κ, Fs)

L′ ⇂p otherwise

q !{li(Si).Li}i∈I ⇂p =

{︄
p!{li(Si).Li ⇂p}i∈I if p = q

L1 ⇂p otherwise

q?{li(Si).Li}i∈I ⇂p =

{︄
p?{li(Si).Li ⇂p}i∈I if p = q

L1 ⇂p otherwise

end⇂p = end end⇂p = end t ⇂p = t µt .L⇂p =

{︄
µt .L⇂p if L⇂p ̸= t

end otherwise

In general, the rules keep a local type if it contains the role p. The first rule uses roles(κ) to
extract all roles in the try-handle κ inG, whereG is the global type that this session follows.
It keeps a try-handle if p occurs in the try-handle κ and filters the continuation. The rule
uses the global type instead of the local type because, e.g., during done synchronization,
a role may be involved in a try-handle in which it no longer syntactically occurs. The
following two rules keep a selection or branching type where p is the receiver or sender and
filter all continuations. If p is neither the receiver nor the sender, these two rules filter one
continuation. To filter only one continuation is safe because of the final case of Definition 10
(Projection) clause (2); if p is neither the sender nor the receiver, then the action of p
shall be the same for any branch, e.g., p1!{l1(S1).p2?l(S), l2(S2).p2?l(S)} ⇂p2 = p2?l(S).
The last rules handle end and recursion in the expected way.
Next we define (h)p→q to filter h to generate (1) the normal message types sent from p

heading to q , and (2) the notifications heading to q .
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∀m ∈ ht.∃F.m = ⟨[F ]⟩ no other rule is applicable
L – ht = L

l ̸∈ labels(L)

L – q?l(Sk) · ht = L – ht

ϕ ̸∈ L ⟨ψ⟩ϕ ∈ ht

L – ht = L – ht \ ⟨ψ⟩ϕ
F ′ = ∪{A | A ∈ dom(H↓) ∧ F ⊂ A ⊆ Fset(ht, p)} F ′ : L′ ∈ H↓

E [
(︁
L▶H↓)︁(κ,F )

.L′′] – ht = E [
(︁
L′▶H↓)︁(κ,F ′)

.L′′] – ht

⟨ψ⟩ϕ ∈ ht

E [
(︁
end▶H↓)︁ϕ.L′] – ht = E [L′] – (ht \ ⟨ψ⟩ϕ)

k ∈ I

E [q?{li(Si).Ti}i∈I ] – q?lk(Sk) · ht = E [Tk] – ht

Figure 3.14.: The Effect of ht on L.

Definition 13 (Message Types to q). We define (h)p→q by selecting message types and
notifications in h which are (sent from p) heading to q . Let

mt ::= p?l(S) | ⟨[F ]⟩ | ⟨ψ⟩ϕ

and
ht ::= ∅ | ht · mt

; then we define (h)p→q as follows:

(∅)p→q = ∅ (m · h)p→q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p?l(S) · (h)p→q if m = ⟨p, q , l(S)⟩ · h
⟨[F ]⟩ · (h)p→q if m = ⟨[q , F ]⟩ · h
⟨ψ⟩ϕ · (h)p→q if m = ⟨ψ, q⟩ϕ · h
(h)p→q otherwise

For example (⟨p, q , l(S)⟩·⟨[q , F ]⟩·⟨ψ, q⟩ϕ ·⟨[p, F ′]⟩)p→q = p?l(S)·⟨[F ]⟩·⟨ψ⟩ϕ. The message
types are abbreviated so that they contain essential information only.

Effect of ht on L

We define L – ht, i.e., the effect of ht on L, in Definition 14. The concept is similar
to the session remainder definition [MY15, CVB+16], which returns an updated local
type after consuming messages in the global queue. We define typing contexts as E ::=

[ ] |
(︁
E ▶H↓)︁ϕ.L, Fset(ht, p) analogously to Definition 7, and the permutation of ht

analogously to Definition 6.

Definition 14 (The Effect of ht on L). We define L – ht, taking into account message type
permutations, in Figure 3.14
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The behavior defined in L – ht aligns closely with the network reduction relation (see
Figures 3.8 and 3.9). The first rule returns the final L once the effect of ht is calculated;
the queue is either empty or contains only failure notifications; remember that a reduction
never removes failure notifications sent by the coordinator. The next two rules clean normal
message types or done notification types, similar to their reduction counterparts (RcvDone)
and (Cln) (see Figure 3.9). The two rules after that calculate the effect of failure handling
activation and leaving a try-handle, similar to their reduction counterparts (TryHdl) and
(RcvDone) (see Figure 3.9). The last rule calculates the effect of receiving a message.
E.g.,

(︁
q?{li(Si).Ti}i∈I ▶H↓)︁ϕ.L′ – q?lk(Sk) · ht =

(︁
Tk▶H↓)︁ϕ.L′ – ht where k ∈ I.

Duality

We write s[p] : L ▷◁ s[q ] : L′ to state that actions of the two types are dual:

Definition 15 (Duality). We define s[p] : L ▷◁ s[q ] : L′ as the minimal symmetric relation
defined by:

s[p] : end ▷◁ s[q ] : end s[p] : end ▷◁ s[q ] : end s[p] : end ▷◁ s[q ] : end

s[p] : t ▷◁ s[q ] : t
s[p] : L ▷◁ s[q ] : L′

s[p] : µt .L ▷◁ s[q ] : µt .L′
∀i ∈ I. s[p] : Li ▷◁ s[q ] : L

′
i

s[p] : q! {li(Si).Li}i∈I ▷◁ s[q ] : p? {li(Si).L
′
i}i∈I

s[p] : L1 ▷◁ s[q ] : L2

s[p] : L′
1 ▷◁ s[q ] : L

′
2 dom(H↓

1 ) = dom(H
↓
2 ) ∀F ∈ dom(H↓

1 ). s[p] : H
↓
1 (F ) ▷◁ s[q ] : H

↓
2 (F )

s[p] :
(︁
L1▶H

↓
1

)︁ϕ
.L′

1 ▷◁ s[q ] :
(︁
L2▶H

↓
2

)︁ϕ
.L′

2

The rules on the first line state that end and end are dual to themselves and each other.
The next two rules define duality for recursion in the standard way. The rule after that
states a selection is dual to a branching if sender and receiver match, both use the same
data types and labels, and all continuations are dual. The last rule states two try-handles
are dual if they currently handle the same task (ϕ), they handle the same set of failures,
and the active handler, the continuation, and all handler bodies are dual.

Coherence

Now we define what it means for ∆ to be coherent under Γ:

Definition 16 (Γ ⊢ ∆ coherent). Γ ⊢ ∆ is coherent if the following conditions hold:

1. If s : h ∈ ∆, then ∃G :s (Fq, hd) ∈ Γ and {p | s[p] ∈ dom(∆)} ⊆ roles(G) and G is
well-formed and ∀p ∈ roles(G), G↾p is defined.
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2. ∀s[p] : L, s[q ] : L′ ∈ ∆ we have s[p] : L⇂q – (h)q→p ▷◁ s[q ] : L
′ ⇂p – (h)p→q .

In condition 1, we require a coordinator for the session s so that the coordinator can
ensure consistent failure handling. Condition 2 requires that, for any two endpoints, say
s[p] and s[q ], in ∆, equation s[p] : L ⇂q – (h)q→p ▷◁ s[q ] : L

′ ⇂p – (h)p→q , must hold. This
condition asserts that interactions of non-failed endpoints are dual to each other after
the effect of h. Failed endpoints are removed from ∆, therefore this condition is satisfied
immediately for those.

3.7. Properties

We show that our type system ensures the property of subject reduction. The article
“A Typing Discipline for Statically Verified Crash Failure Handling in Distributed Sys-
tems” [VCE+18] provides a progress property for the calculus.2 The progress statement is
no contribution of this thesis. Therefore, we do not present it here.
Before we present Theorem 2 (Subject Reduction), we introduce the reduction relation

over session environments that describes how the environments are updated in relation
to asynchronous network reduction. In other words, the reduction relation over session
environments mimics the interaction dynamics of network reductions at the type level.
Then we present Theorem 1 (Preservation of Coherence), which establishes that the

reduction relation over session environments preserves coherence. The reduction relation
over session environments and preservation of coherence is the basis for establishing
subject reduction.
Appendix A.2 contains the proofs details, auxiliary formal definitions, and lemmas.

3.7.1. Preservation of coherence

We now define the reduction over session environments,

Ψ ⊢ ∆ →L Ψ ′ ⊢ ∆′

and establish Theorem 1 (Preservation of Coherence).

Definition 17 (Reduction relation over session environments). We define Ψ ⊢ ∆ →L Ψ ′ ⊢
∆′, taking into account message type permutations, in Figure 3.15.
2The calculus we present here contains cosmetic changes and minor corrections compared with the calculus
presented in our publication [VCE+18].
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s[p] : E [q !{li(Si).Li}i∈I ], s : h →L s[p] : E [Lk], s : h · ⟨p, q , lk(Sk)⟩ k ∈ I [[Snd]]

s[p] : E [q?{li(Si).Li}i∈I ], s : ⟨q , p, lk(Sk)⟩ · h →L s[p] : E [Lk], s : h k ∈ I [[Rcv]]

∆, {s : h} →L ∆ \ {s[p] : L}, {s : remove(h, p) · ⟨[ψ, p]⟩} p non-robust [[Crash]]

F ′ = ∪{A | A ∈ dom(H ) ∧ F ⊂ A ⊆ Fset(h, p)} F ′ : L′ ∈ H↓

s[p] : E [
(︁
L▶H↓)︁(κ,F )

.L′′], s : h →L s[p] : E [
(︁
L′▶H↓)︁(κ,F ′)

.L′′], s : h
[[TryHdl]]

s[p] : E [
(︁
end▶H↓)︁ϕ.L], s : h →L s[p] : E [

(︁
end▶H↓)︁ϕ.L], s : h · ⟨p, ψ⟩ϕ [[SndDone]]

⟨ψ, p⟩ϕ ∈ h

s[p] : E [
(︁
end▶H↓)︁ϕ.L], s : h →L s[p] : E [L], s : h \ {⟨ψ, p⟩ϕ}

[[RcvDone]]

s[p] : E [L], s : ⟨q , p, l(S)⟩ · h →L s[p] : E [L], s : h l ̸∈ labels(E [L]) [[Cln]]

⟨ψ, p⟩ϕ ∈ h ϕ ̸∈ E [L]
s[p] : E [L], s : h →L s[p] : E [L] | s : h \ {⟨ψ, p⟩ϕ}

[[ClnDone]]

∆ →L ∆′

∆,∆0 →L ∆′,∆0

[[Str]]

p̃ = roles(G) \ (F ∪ {p}) h′ = h · ⟨[p̃, {p}]⟩
G : (F, hd) ⊢ ∆, s : ⟨[ψ, {p}]⟩ · h →L G : (F ∪ {p}, hd) ⊢ ∆, s : h′

[[F]]

h′d = hd · ⟨p, ψ⟩ϕ

G : (F, hd) ⊢ ∆, s : ⟨p, ψ⟩ϕ · h →L G : (F, h′d) ⊢ ∆, s : h
[[CollectDone]]

roles(hd, ϕ) ⊇ roles(G,ϕ) \ F ∀F ′ ∈ hdl(G,ϕ).(F ′ ̸⊆ F ) h′d = remove(hd, ϕ)
G : (F, hd) ⊢ ∆, s : h →L G : (F, h′d) ⊢ ∆, s : h · ⟨ψ, roles(G , ϕ) \ F ⟩ϕ

[[IssueDone]]

Figure 3.15.: Reduction relation over session environments.
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When Ψ is not changed during reduction, i.e., Ψ ⊢ ∆ →L Ψ ⊢ ∆′, we simply write the
reduction relation as ∆ →L ∆′. If Ψ ⊢ ∆ →L Ψ ′ ⊢ ∆′ and Γ = Γ0,Ψ and Γ′ = Γ0,Ψ

′,
then we write Γ ⊢ ∆ →L Γ′ ⊢ ∆′. The reduction Ψ ⊢ ∆ →L Ψ ′ ⊢ ∆′ closely follows the
reduction of networks (see Figures 3.8 to 3.10).
The following property states that a coherent session environment will reduce to another

coherent session environment.

Theorem 1 (Preservation of Coherence). Γ ⊢ ∆ coherent and Γ = G :s (F, hd),Γ
′ and

G :s (F, hd) ⊢∆ →L G :s (F
′, h′d) ⊢∆′ imply that Γ′, G :s (F

′, h′d) ⊢∆′ is coherent.

We prove the statement by mechanically proving each case. We present proof details
in Appendix A.2.2. The main idea is as follows. In every case, we start with a session
environment that is coherent for s, i.e., all participants in s are dual to each other and s is
guided by a coordinator, say G :s (Fq, h) – G is well-formed; after the reduction, we show
that the new session environment is still coherent. We consider that the reduction may
only use parts of the coherent session environment – the session environment was split by
[[Str]]. We now discuss some proof details around failure handling.
Obsolete messages. The reductions [[Snd]] and [[F]] can result in message types that are not

received but instead must be cleaned – well-formedness Condition 3 is required here. In
[[Snd]], say p sends to q, assume a try-handle, say (κ, F ) encloses the selection type of p
or the matching branching type of q; and the queue type contains failure notifications
that trigger failure handling, e.g., for F ′, in the try-handle (κ, F ). Then the effect of (see
Definition 14 (Effect of)) changes the try-handle to (κ, F ′), i.e., [[Snd]] reduces a selection
type enclosed by the try-handle (κ, F ), for which effect on activates failure handling for
F ′. By coherence (duality), the types of p and q, taking into account the queue type (effect
of), are dual to each other before the [[Snd]] reduction, i.e., for duality both types have the
try-handle (κ, F ′), note the F ′. After the reduction, we show that the sent message that
under the try-handle (κ, F ′) has no matching branching type in q, cannot cause harm;
well-formedness Condition 3 ensures that the sent label does not occur in q’s type (see
labels(L)), therefore effect of removes the sent message and coherence is preserved after
reduction.
In [[F]] the send failure notification types can activate failure handling (see Definition 14

(Effect of)), which potentially makes message types inside the queue type obsolete.
Following the argumentation in [[Snd]], those message types can be safely cleaned.
Consistent failure handling. The reduction [[F]] adds failure notifications to the queue

type that can activate (see Definition 14 (Effect of)) different failure handlings at different
participants. The proof relies on two key facts to show that the session environment
remains coherent. First, well-formedness Conditions 1 and 2 ensure that for any failure
set, say F , and any pair of participants, say p and q, a unique outermost try-handle exists;
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or alternatively there is no try-handle that is triggered by F . Secondly, [[F]] and [[IssueDone]]
ensure that either all relevant participants or no participant have notification types in the
queue. Together with Proposition 1, this ensures agreement on when to leave a try-handle
and what failures to handle.

3.7.2. Subject reduction

Subject reduction states that: a network N that is well-typed under a coherent session
environment remains well-typed under a coherent session environment after reduction.
Similarly, a network N that is well-typed under an empty session environment remains
well-typed under an empty session environment after reduction.

Theorem 2 (Subject Reduction).

(a). Γ ⊢ N ▷ ∆ with Γ ⊢ ∆ coherent and N → N ′ imply that ∃∆′ such that Γ′ ⊢ N ′ ▷
∆′ and Γ ⊢ ∆ →L Γ′ ⊢ ∆′ or ∆ ≡ ∆′ and Γ′ ⊢ ∆′ coherent.

(b). Γ ⊢ N ▷ ∅ and N → N ′ imply that Γ ⊢ N ′ ▷ ∅.

The proof is by structural induction over the evaluation relation, relying on Theorem 1
for preservation of coherence. We present proof details in Appendix A.2.4. The proof is
relatively straightforward; Theorem 1 does the heavy lifting. We show (a) first, then (b)
follows from (a) immediately.
Subject reduction ensures communication safety, because subject reduction ensures

that the coherence invariant is preserved. The coherence invariant ensures that types
of a received messages match the expected message types, failures are handled, and
participants perform consistent failure handling.

3.8. Implementation

Based on the calculus presented previously we developed a domain-specific language (DSL)
and corresponding runtime system in Scala, using Apache ZooKeeper as the coordinator.
In the following, we show that our introduced abstractions match our implementation.
In particular, we show that Zookeeper together with our runtime system provide the
coordinator abstraction and that our failure detector assumption (which in practice can
be weakened by program-controlled crash) is reasonable.
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Apache ZooKeeper as coordinator

Our coordinator is an abstraction for a coordinator like Apache ZooKeeper. Similar to global
queues, which are an abstraction for pairwise channels like TCP. Before describing how
ZooKeeper and our runtime implement the coordinator abstraction, we provide a high-level
description of the important ZooKeeper functionalities that we use. In essence, ZooKeeper
provides a hierarchical namespace similar to a classical file system which guarantees
sequential consistency and atomicity. Clients that work with ZooKeeper enter into a
ZooKeeper session (the runtime system ensures that during (Link) every linking process
enters a ZooKeeper session). ZooKeeper sessions are essential for so-called ephemeral
nodes, which allow clients to save non-persistent data for as long as their ZooKeeper
session is active, in contrast to normal nodes which are persisted. ZooKeeper exchanges
heartbeats with all clients and if ZooKeeper does not receive heartbeats from a client for a
configuration timespan, it disconnects that client (i.e., ends the ZooKeeper session of that
client and removes all its ephemeral nodes).

When participants create a new session via the (Link) rule, the runtime system creates
a unique namespace for the new session and saves the following information in it: (i) a
persistent queue (the notification queue) for all done and failure notifications sent to the
coordinator, which ensures that all participants see notifications sent to that queue in the
same order; (ii) for every participant a node which contains the information whether that
participant has terminated (i.e., successfully finished its involvement in the session); (iii)
an ephemeral node for every participant that indicates whether the participant has an
active ZooKeeper session.

Done and failure notifications

ZooKeeper, by itself, does not directly implement the reduction rules (CollectDone),(IssueDone),
and (F). However, ZooKeeper ensures that every participant sees the done and failure
notifications in the same order. That makes it straightforward for the runtime system to
provide the coordinator abstraction by applying these rules in order of the notifications.
The rules (CollectDone),(IssueDone) and (F) provide a deterministic outcome ((IssueDone)
processes done notifications based on the order in which they arrive). In cases in which
more than one of these rules is applicable, the runtime system selects a rule based on the
following order: (CollectDone) over (IssueDone) over (F).
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Failure detection and false suspicions

The operational semantics model a perfect asynchronous failure detector (cf. (Crash)). In
practice, false suspicions occur (i.e., non-perfect failure detection). The failure detection
in our implementation works as follows: if the runtime system of a participant p suspects
that participant q has failed, it only issues a failure notification if participant q has no
active ZooKeeper session (the ephemeral node of q does not exist) and the saved status of
q in ZooKeeper is not terminated. The key point here is that a failure notification for a
participant q will only be issued if q lost its ZooKeeper session.
A participant q can lose its connection with ZooKeeper without failing, e.g., the network

drops too many heartbeat messages. After q loses its ZooKeeper session, other participants
can issue failure notification for q; therefore, q assumes that it is suspected and stops, i.e.,
it performs a controlled crash. As mentioned, this occurs very infrequently in practice but
is a feature used in many distributed systems as a last resort.
When a participant finishes its actions inside a session, it sets its status to terminated

before disconnecting from ZooKeeper. This ensures that other participants cannot detect
it as failed.

Automatically inferring try-handle levels and semi-unique labels

In order to simplify the formalism, we require that every try-handle in a well-formed
global type is annotated with a unique level. For the formal development we believe this
is a reasonable assumption, but our runtime system provides functionalities to remove
this burden from the programmer. Concretely, we implemented a deterministic traversal
for global types which assigns unique and deterministic levels to all try-handles in a given
global type and we allow writing a global type which only contains labels required for
branching, adding others automatically.

Type checking

The prototype performs dynamic type checking in a way similar to Chen et al. [CBD+11].
The session channel, which provides the session communication primitives, contains a
session monitor that monitors and controls session action performed on the channel. When
an endpoint program performs a session action, the channel first verifies that this action is
permitted. If that is the case, it performs that action. Otherwise, it raises an exception,
and consequently, the endpoint fails. Such a failure then triggers failure handling the
same way as a process crashes. Note, our formalism performs static typing, and we could,
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e.g., adopt the code generation approach of Zhou et al. [ZFH+20] to provide static type
checking in our prototype.

3.8.1. Evaluation

We evaluated our prototype on the LR model, explained in Section 3.1.4. We compare
the performance of a session typed LR model implemented in our prototype, which we
call SessionLR, with failure agnostic baselines, which use plain TCP sockets (i.e., not the
session runtime). We call the different baselines Baseline-xW (x indicates the number of
workers the baseline uses).
The SessionLR follows the global type from Figure 3.2, which we slightly extended to,

e.g., accommodate more workers. It implements the following behavior: The driver process
divides the data points evenly between the workers, provides the current model parameter
to the workers, collects the partial model updates, and updates the model parameter in
every iteration. The workers calculate the partial model update over the assigned data
points using the current model parameter and send it to the driver. SessionLR consists of
one driver process and three worker processes. The communication pattern and behavior
of the baseline Baseline-xW is similar to that of the SessionLR implementation, except
that it has no logic for handling failures, uses x workers, and is implemented over plain
TCP sockets.
We train the LR model over 30 training iterations on one million data points, with 10

dimensions and a binary label. The data points are drawn from a normal distribution
with a standard deviation of 1.0 and a mean of −0.7 and 0.7 for the two binary classes.
All servers have local access to the data points. The evaluation is repeated 10 times, and
we provide the average and standard derivation for the 10 runs. The different processes
run on dedicated servers with the following specification: Ubuntu 18.04.3 LTS, Intel(R)
Xeon(R)E -2278G CPU @ 3.40GHz and 64 GB of RAM.
Figure 3.16 shows the runtime characteristic of the SessionLR and the three failure

agnostic baselines. The x-axis shows the 30 training iterations, and the y-axis shows the
average time (and standard derivation out of 10 runs) taken to finish each iteration. It
shows the following evaluation scenario: SessionLR starts with three workers, and over the
30 training iterations, we induce two worker failures. The three baseline implementations
(Baseline-3W, Baseline-2W and Baseline-1W) use a fixed number of worker processes
(1− 3 workers) for all iterations. We induce failures in the following way: In iteration 11
and iteration 21 we let one worker fail, i.e., SessionLR uses three workers for iteration 1 -
10; starts iteration 11 with 3 workers but due to a failure finishes with 2 workers; uses 2
workers for iterations 12− 20; starts iteration 21 with two workers but due to a failure
finishes with one worker; and continues until iteration 30 with one worker.
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Figure 3.16.: Comparison of the SessionLR (a session typed version of an LR model) with
three failure agnostics baselines (Baseline-xW) over 30 training iterations.
SessionLR starts with three workers and we induce a worker failure in itera-
tion 11 and in iteration 21. The three baselines execute the LR model with 3
workers (Baseline-3W), 2 workers (Baseline-2W) or 1 worker (Baseline-1W)
– without any failure.
The spike in iteration 1 is due to the initial reading of the data points. The
spikes at iterations 11 and 21 for SessionLR include, the failure detection,
activation of failure handling, and a partial and complete model update
calculation.
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The first iteration in Figure 3.16 takes longer for all implementations because the
processes load the data points. All four implementations perform the training iterations
at a relatively constant speed that depends on the number of workers. In the iterations
without a failure, SessionLR has a processing speed similar to the baseline that uses the
same number of workers. In other words, SessionLR performance is initially comparable
with Baseline-3W, which uses three workers. After the first failure, its performance is
comparable with Baseline-2W, which uses 2 workers. And after the second failure it is
comparable with Baseline-1W, which uses 1 worker.
The two peaks of SessionLR (iteration 11 and 21) contain the time for a partial model

update calculation, the failure detection, the coordination to activate failure handling,
and a recalculation of the model parameter for the new data point assignment.

3.9. Related Work

Several session type works study exception handling [CHY08, CYH09b, DHH+15, KY14].
However, to the best of our knowledge, this is the first theoretical work to develop a
formalism and typing discipline for the coordinator-based model of crash failure handling
in practical asynchronous distributed systems.
Structured interactional exceptions [CHY08] study exception handling for binary ses-

sions. The work extends session types with a try-catch construct and a throw instruction,
allowing participants to raise runtime exceptions. Global escape [CGY16] extends previous
works on exception handling in binary session types to MPSTs. It supports nesting and
sequencing of try-catch blocks with restrictions. Reduction rules for exception handling
are of the form Σ ⊢ P → Σ′ ⊢ P ′, where Σ is the exception environment. This central
environment at the core of the semantics is updated synchronously and atomically. Fur-
thermore, the reduction of a try-catch block to its continuation is done in a synchronous
reduction step involving all participants in a block. Lastly, this work can only handle excep-
tions, i.e., explicitly raised application-level failures. These do not affect communication
channels [CGY16], unlike participant crashes.
Similarly, our previous work [CVB+16] only deals with exceptions. An interaction

p → q : S ∨ F defines that p can send a message of type S to q. If F is not empty then
instead of sending a message p can throw F . If a failure is thrown only participants
that have casual dependencies on that failure are involved in the failure handling. No
concurrent failures are allowed, so all interactions which can raise failures are executed
in a lock step fashion. Therefore, the model cannot be used to deal with crash failures.
Adameit et al. [APN17] propose session types for link failures, which extend session

types with an optional block which surrounds a process and contains default values. The
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default values are used if a link failure occurs. In contrast to our work, the communication
model is overall synchronous whereas our model is asynchronous; the optional block
returns default values in case of a failure (providing a form of failure masking) but it is
still the task of the developer to do something useful with it.

Demangeon et al. study interrupts in MPSTs [DHH+15]. This work introduces an
interruptible block {|G|}c⟨l by r⟩;G′ identified by c; here the protocolG can be interrupted
by a message l from r and is continued by G′ after either a normal or an interrupted
completion of G. Interrupts are more a control flow instruction like exceptions rather than
an actual failure handling construct, and the semantics cannot model participant crashes.
Neykova and Yoshida [NY17] show that MPSTs can be used to calculate safe global states
for a safe recovery in Erlang’s let it crash model [Arm03]. That work is well suited for
recovery of lightweight processes in an actor setting. However, while it allows for elaborate
failure handling by connecting (endpoint) processes with runtime monitors, the model
does not address the fault tolerance of runtime monitors themselves. As monitors can be
interacting in complex manners, replication does not seem straightforwardly applicable,
at least not without potentially hampering performance (just as with straightforward
replication of entire applications).

Failure handling is studied in several process calculi and communication-centered
programming languages without typing discipline. The conversation calculus [VCS08]
models exception behavior in abstract service-based systems with message-passing based
communication. The work does not use channel types but studies the behavioral theory
of bisimilarity. Error recovery is also studied in a concurrent object setting [XRR+95];
interacting objects are grouped into coordinated atomic actions (CAs) which enable safe
error recovery. CAs cannot be nested, however. PSYNC [DHZ16] is a domain specific
language based on the heard-of model of distributed computing [CBS09]. Programs
written in PSYNC are structured into rounds which are executed in a lock step manner.
PSYNC comes with a state-based verification engine which enables checking of safety and
liveness properties; for that programmers have to define non-trivial inductive invariants
and ranking functions. In contrast to the coordinator model, the heard-of model is not
widely deployed in practice. Verdi [WWP+15] is a framework for implementing and
verifying distributed systems in Coq. It provides the possibility of verifying the system
against different networkmodels. Verdi enables the verification of properties in an idealized
fault model and then transfers the guarantees to more realistic fault models by applying
transformation functions. Verdi supports safety properties but not liveness properties.
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3.10. Final Remarks

This chapter introduces a formal model of verified crash failure handling that features
a lightweight coordinator, as is common in many real-life systems. The model carefully
exposes potential problems that may arise in distributed applications due to partial failures,
such as inconsistent endpoint behaviors and orphan messages. Our typing discipline ad-
dresses these challenges by building on the mechanisms of MPSTs, e.g., well-formedness of
global types for sound failure handling specifications, modeling of asynchronous permuta-
tions between regular messages and failure notifications in sessions, and the type-directed
mechanisms for determining correct and orphaned messages in the event of failures. We
adapt coherence of session typing environments (i.e., endpoint consistency) to consider
failed roles and orphan messages, and show that our type system statically ensures subject
reduction in the presence of failures. Furthermore, this chapter introduces a prototype
based on our formal model. The prototype is implemented in Scala and uses Apache
ZooKeeper as a coordination service. Our evaluation shows that a session-type LR model
has a runtime performance comparable to failure agnostic baselines in non-failure cases.
Interesting future research would include studying of our model in a wider range of

applications. We believe dynamic role participation and role parameterization would be
valuable for failure handling, especially in crash-recovery scenarios. Another interesting
direction for research would be the development of an option to use the coordinator as
part of the protocol so that the coordinator can persist pertinent runtime information.
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4. A Multiparty Session Typing Discipline for
Fault-tolerant Event-driven Distributed
Programming

This chapter presents our article “A Multiparty Session Typing Discipline for
Fault-tolerant Event-driven Distributed Programming”, which appeared at
Proceedings of the ACM on Programming Languages 2021 [VHEZ21]. The
chapter presents for most parts that work directly, i.e., the chapter is for most
parts a verbatim copy of our article.
Correctly designing and implementing distributed systems software is noto-

riously difficult. Multiparty session types (MPSTs) is a typing discipline for
concurrent processes that statically ensures properties such as freedom from
message reception errors and deadlocks. The existing approaches in MPSTs
cannot, however, be applied to a significant class of real-world distributed
systems because they do not support practical specification and verification of
protocols that handle and recover from partial failures.
This chapter presents the first formulation of MPSTs for practical fault-

tolerant distributed programming. We tackle the long-standing challenges faced
by session types in this context: bringing structure to communication patterns
involving asynchronous and concurrent partial failures, and integrating the
range of features required to express fault-tolerant protocols in practice, that
involve dynamic replacement of failed parties and retrying failed protocol
segments in the presence of imperfect failure detection. Key to our approach
is that we develop the first model of event-driven concurrency for multiparty
sessions, to unify the session-typed handling of failures and regular I/O events.
Moreover, the characteristics of our model allow us to prove a global progress
property for well-typed processes engaged in multiple concurrent sessions,
which does not hold in traditional MPST systems. To demonstrate its practical-
ity, we implement our approach as a toolchain for Scala, and use it to specify
and implement a session-typed version of the cluster manager (CM) system of
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the widely employed Apache Spark data analytics engine. Our session-typed
CM integrates with the other vanilla Spark components to give a functioning
Spark runtime; e.g., it can execute existing third-party Spark applications.

4.1. Introduction

Correctly designing and implementing distributed systems is notoriously difficult. Even an
idealized setting requires reasoning about independent program components concurrently
executing on a set of physically remote processes, separated by a network that offers
communication only via asynchronous message passing. More realistically, the distributed
system will also be subject to partial failures where some processes may fail while others
continue operating.
Multiparty session types (MPSTs) [CHY08, HYC16] is an active area of research on

typing disciplines for concurrent processes; see Ancona et al. [A+16]; Gay and Ravara
[GR17]; Hüttel et al. [HLV+16] for surveys of session types and the broader area of be-
havioral types. The idea is to apply type systems to message passing programs to statically
ensure properties such as absence of message reception errors and deadlocks. MPSTs is a
promising technique for distributed systems: a key notion in MPST theory is projection,
which derives a decoupled (i.e., distributed) view of a protocol from the perspective of
each participant. Existing approaches in MPSTs are, however, not applicable to a signifi-
cant class of real-world distributed systems, as they do not support the specification and
verification of practical protocols dealing with partial failures.
Reasoning about failures is a long-standing challenge for MPSTs and related techniques.

First, the chaotic nature of communication patterns involving partial failures among
concurrent, asynchronously interacting participants is at odds with the traditional ethos of
session types, which seeks to ensure safety by strictly regulating all potential interactions.
Second, protocols for fault-tolerant distributed systems often require a combination of
relatively advanced features for handling failures, e.g., dynamically replacing failed
participants and retrying failed protocol segments in an application, often in the presence
of imperfect failure detection. These challenges must be overcome for techniques like
session types to be applicable to practical distributed systems.
In the existing literature on MPSTs, there are two main works on the topic of failure

handling [APN17, VCE+18]. We elaborate on related work in Section 4.8, but to sum-
marize, both are theoretical works and limited in practical applicability. The system of
Adameit et al. [APN17] is essentially based on a synchronous communication model. Our
previous work [VCE+18], which is also part of this thesis (see Chapter 3), assumes in its
formalism perfect failure detection (unimplementable in an asynchronous system) and
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proposes a new programming model based on an asynchronous variant of try-catch that
is remote from existing practices. Crucially, neither support the range of features required
to express dynamic participant replacement and retrying in an on-going fault-tolerant
application.
This chapter develops the first MPST-based theory for practical programming of fault-

tolerant distributed applications. Our aim is to support MPST-based specification and
verification of multiparty asynchronous protocols that deal with crash-stop process failures,
to ensure the key properties of communication safety and progress. We present our
approach through the use case of a substantial system from an industry-strength data
processing framework – the distributed cluster management (CM) system of Apache
Spark1 [ZCD+12b].
Our theory draws inspiration from one of the major paradigms for distributed pro-

gramming in practice, event-driven programming (EDP), as employed, for instance, in
Spark’s runtime. Event-driven concurrency allows for highly concurrent and asynchronous
programming commensurate with the nature of the network, and the event abstraction
captures the notion of failure as a particular kind of event. We exploit these characteristics
of EDP to develop the first model of event-driven concurrency for multiparty sessions. It
enables us to integrate the range of necessary practical features by unifying the handling of
all the “regular” session I/O and failure events under a uniform session-typeable program-
ming interface. Moreover, it enables us to prove a global progress property for well-typed
processes engaged in multiple concurrent sessions, which does not hold in traditional
MPST systems.
To demonstrate the practicality of our approach, we implement our system as a toolchain

for fault-tolerant distributed programming in Scala and use it to specify and implement
a session-typed version of Spark’s CM. Our session-typed CM is compatible with other
vanilla Spark components and provides a functioning Spark runtime to execute existing
third-party Spark applications without any code modification. This is enabled by the
design of our theory, in (1) targeting EDP as a practical, established programming model
for asynchronous I/O, (2) supporting the combination of features needed for practical
fault-tolerant protocols, and (3) appropriately abstracting failure detection mechanisms,
including catering for unreliable failure detection (i.e., false suspicions of remote process
failures). We use a Spark implementation of the industry-standard TPC-H benchmark
suite2 to test and evaluate the runtime performance of our session-typed CM. Measuring
the time it takes from submitting a Spark application to its completion, the results show
our prototype implementation incurs an average overhead below 10%.

1Apache Spark. http://spark.apache.org.
2TPC-H benchmark. http://www.tpc.org/tpch/
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The roadmap and the concrete contributions of this chapter are as follows. We present

– the first MPST-based framework to support the combination of novel features needed to
specify practical fault-tolerant protocols. Section 4.2 illustrates these features, including
failure-aware subsessions, role parameterization, and dynamic role assignment, using the
Spark CM use case.

– the first model of event-driven concurrency for multiparty sessions. Section 4.3 demon-
strates endpoint projection and implementation of distributed, event-driven processes
using our Scala toolchain.

– a formalization of our framework in Section 4.4 and Section 4.5, and proofs of key
properties of communication safety and global progress for an entire well-typed system of
multiple, concurrent subsessions in Section 4.6. Safely integrating the range of features
needed to meet our aims in a tractable formalism is a significant challenge. Global
progress does normally not hold in MPST systems.

– a practical evaluation of our framework. We use our Scala toolchain to specify and
implement a selection of examples from MPSTs literature in addition to the Spark CM
use case, and present the runtime performance of using the latter to execute the TPC-H
benchmark in Section 4.7.

Section 4.8 discusses related work. Section 4.9 concludes with future work. The Appendices
provide additional examples, auxiliary definitions and proof details (see Appendix B.1 for
an outline of the appendix contents).

4.2. MPSTs for Fault-tolerant Sessions

We now describe the Apache Spark use case and using that use case, we illustrate our new
features, including failure-aware subsessions, role parameterization, and dynamic role
assignment.

4.2.1. Running example: Apache Spark’s standalone cluster manager

Apache Spark [ZCD+12b] is a big data analytics framework for distributed clusters. Spark
supports several types of cluster managers – e.g., Spark’s standalone cluster manager (Spark-
CM), Mesos [HKZ+11] or YARN [VMD+13b] – for managing the distributed resources in
running Spark applications3. We use the Spark-CM as a concrete use case (Section 4.7)
3Apache Spark cluster mode overview. https://spark.apache.org/docs/latest/
cluster-overview.html
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Figure 4.1.: Stages in an Apache Spark cluster management scenario: (a) application
driver assigned; (b) the driver and one executor assigned; (c) original executor
process failed and a replacement executor assigned.

and a running example.
Figure 4.1 depicts the execution of a Spark application as managed by the Spark-CM,

including recovery from a process failure. An application involves the manager (called
master in Spark’s source code) and a pool of distributed worker processes. The Spark-CM
launches a new application by (a) first assigning a worker process as the application driver,
and then (b) assigning multiple workers as executors (we depict just one for simplicity).
The driver hosts the main user program while the executors perform their allocated
computations. If a driver or executor process fails, as in (c), the Spark-CM preserves the
running application by assigning another worker to replace the failed one. The cause of a
process failure may be the failure of its host machine (the latter can be represented by
the former).
The application as a whole thus comprises a set of concurrent, collaborative subtasks that

these distributed processes carry out via asynchronous message passing over the network.
E.g., in (b) the master and driver may continue the task of spawning further executors,
while concurrently engaging with the existing executor in a separate computation subtask.
This use case demonstrates a general class of distributed systems and the combination
of features they depend on, which existing MPSTs do not support. Systems such as the
Spark-CM depend on:

– dynamically initiating new concurrent tasks between subsets of the existing participants
(e.g., allocating and performing work across different workers in parallel).

– dynamically assigning the participants for the above (e.g., when assigning executors);

– handling of and recovery from participant failures (e.g., replacing a failed executor);

– accounting for the fact that, in general, failure detection is asynchronous and potentially
unreliable, i.e., a participant may be falsely suspected of failure even as it continues
operating.
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4.2.2. Limitations of standard MPSTs

The standard workflow of MPSTs [HYC16, CDYP16] starts from the user specification of
a global type, describing all possible interactions between participants from a global per-
spective. Consider this global type (written in a practical notation for later comparisons):

RunEx(roles master, driver, exec) {
... master → driver: InitDr. driver → exec: InitEx ...

}

This protocol, named RunEx, is between three participants, abstracted as roles master (the
manager), driver, and exec. The above fragment specifies that master sends an InitDr
message to driver, which in turn then sends an InitEx to exec.
We can use this minimal example to clarify some limitations of the session abstraction

developed in standard MPSTs. First, a session involves a fixed set of participants, one
participant playing each role, that are all fixed when the session is first initiated: there is
no notion of dynamically (i.e., during an ongoing session) assigning a participant to a role,
nor losing or replacing assigned participants. Second, there is no notion of a failure event
nor how the protocol should proceed in such an event – standard MPSTs support protocol
branching (choice) and recursion, but their strictly regulated nature (to conservatively
ensure safety) cannot capture the asynchronous nature of failures. Standard MPSTs thus
cannot express protocols involving failure handling and recovery, nor verify processes that
engage in such behaviors.

4.2.3. MPSTs for fault-tolerant sessions (initial overview)

This chapter develops a generalized notion of session to address the limitations of standard
MPSTs and better support real-world distributed systems such as the Spark-CM. In our
setting, a session is generalized as a system of failure-aware, concurrent subsessions. We
first explain individual subsessions, then inter-subsession concurrency.
Role sets. We introduce an abstraction of session participants called role sets. In standard
MPSTs, a role represents a participant process (participant, for short) with a certain
behavior. By contrast, a role set in our model (written with an initial uppercase letter, e.g,
Masters or Workers) represents a non-empty set of participant processes that are capable
of the same behavior. In this setting, a role (initial lowercase letter, e.g., a master m, a driver
worker wD, or an executor worker wEm, wD, wE) represents a single participant dynamically
assigned from its role set (as explained shortly). In addition to the standard role-to-role
message passing, e.g., master → driver, a role can multisend a message to a whole role
set, e.g., master → Workers.

92



Role sets provide a practical, lightweight form of participant parametricity. Our frame-
work abstracts from the run-time size of a role set (i.e., the number of participants) and
how processes are spawned; it assumes only that a sufficient number of participants are
available at run-time.
Subsessions. The following subprotocol illustrates our general notion of failure-aware
subsession:
// A (sub)protocol
RunEx(roles m: Masters, wD: Workers; assign wE: Workers; rosets Workers) {
// The "normal activity"
... m → wE: InitEx ...

// wE is monitored by m for potential failure
with wE@m.
// The "failure handling activity", if wE is _suspected_ by m
... m → Workers: FailEx ...

}

It specifies a communication (sub)session whose participants are the individual processes
playing roles m, wD and wE, combined with all member processes of the role set Workers.
Each role is annotated by its role set (e.g., wD: Workers). The assign declaration specifies
this participant (i.e., playing wE) should be dynamically assigned from its role set when
this subsession is initiated; we say it is assigned to this role. roles specifies participants
already assigned prior to this subsession, and rosets specifies role sets. Our framework
is agnostic of how the assign mechanism is implemented, provided that the assigned
participant is not also playing one of the roles in this subsession.
The main subprotocol definition has two parts: the normal activity written before

the with, and the failure handling activity after. The wE@m clause specifies that, in this
subsession, m is responsible for monitoring wE for failure. (In general, any one of roles
may be the monitor.) By default, the subsession proceeds following the interactions in the
normal activity. However, if m suspects wE of failure, m will switch to the failure handling; it
may do so at any point during the subsession. Global type well-formedness requires all
other participants (i.e., except wE) to be notified of wE’s failure via explicit interactions in
the failure handling; these participants also switch to the failure handling upon receiving
such a notification (i.e, FailEx), and (barring other failures) the remaining participants
in this subsession will proceed following the failure handling.
To simplify the presentation of our theory, we restrict a subsession to one assign;

multiple assignments can be expressed via nested subsessions (see below) or supported
as a syntactic sugar.
Our framework is agnostic of any particular failure detection mechanism. Our theory

simply models failure suspicions asynchronously and non-deterministically – this is a key
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design choice for broader practical applicability, including settings with unreliable failure
detection.
Concurrent subsessions. In our framework, a session is a system of one or more concurrent
subsessions. Any one participant process may be involved in any number of concurrent
subsessions, playing an individual role and/or as a generic role set member in each.
A session starts from a root (or entry) subsession, i.e., an instance of the root subprotocol,

which collects together every participant that may be involved at some point in the overall
session.

// Root subprotocol
root RunDr(roles m: Masters; assign wD: Workers; rosets Workers) {

... with wD@m ...
}

We refer to the roles in the root subsession as robust roles. They are the only roles that
are not explicitly monitored for failure within the session: we can assume their failure is
handled by some external mechanism, or simply causes the session as a whole to fail.
More generally, a subsession is a child subsession spawned by an initiation interaction

between the relevant subset of participants in its parent subsession. E.g., from within the
root RunDr, we can spawn a new subsession instance of RunEx (from above) by:

// from inside RunDr; RunEx is as above
... spawn RunEx(m, wD; Workers; Workers) ...

The arguments correspond to the parameter declarations of RunEx. The roles arguments
may be any existing role from the specified role set, and the assign argument is the role
set from which to assign a participant. The spawned subsession runs concurrently with its
parent (i.e., with the parent’s interactions following spawn), meaning that any processes
participating in both do so concurrently.
A running session thus forms a tree of parent-child subsessions, which we refer to as

the monitoring tree. Excluding the robust role, every individual role that occurs in some
subsession has a monitor, in that subsession or an ancestor (i.e., the subsession in which
the role was first assigned). In other words, every case of (non-robust) participant failure
is safely covered within the session as a whole. This gives some intuition of how our
framework incorporates subsessions, dynamic role assignment, and failure handling while
retaining the desired MPST safety and progress properties (Sections 4.3.3 and 4.6.2). We
explain this further using the Spark-CM example below.
Note, spawn actions may occur within both normal and failure handling activities. The

latter are crucial to express fault-tolerant protocols that replace failed participants and
retry failed subsessions.
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1 root RunDr(roles m: Masters; assign wD: Workers; rosets Workers) {
2 m → wD: InitDr(d: DrInfo).
3 wD → m: Ack(appID: Int).
4 mu t. m → Workers {
5 AddEx(): spawn RunEx(m, wD; Workers; Workers). t,
6 Ok(): end }
7 with wD@m. // Replace driver and retry
8 m → Workers: FailDr(appId: Int).
9 spawn RunDr(m; Workers; Workers). end }
10

11 RunEx(roles m: Masters, wD: Workers;
12 assign wE: Workers;
13 rosets Workers) {
14 m → wE: InitEx(e: ExInfo).
15 wE → m: ExDone(appId: Int, exId: Int).
16 m → wD: ExFinished(appId: Int, exId: Int).
17 end
18 with wE@m. // Replace executor and retry
19 m → Workers: FailEx(appId: Int, exId: Int).
20 spawn RunEx(m, wD; Workers; Workers). end
21 }
22

Figure 4.2.: Global type for the Session-CM: a session-typed Spark-CM. RunDr is the root
subprotocol.

4.2.4. Global type for the component Interactions in the Spark-CM

We can now express the message passing behavior of fault-tolerant protocols as MPST
global types. Figure 4.2 specifies a global type for a simplified but representative version
of the Spark-CM, which we refer to as the Session-CM; our full version (Appendix B.7)
is compatible with the actual Spark framework and supports existing third-party Spark
applications. The Session-CM has two subprotocols, RunDr and RunEx, for handling the
lifecycle of a driver and an executor in a Spark application, respectively.
The root subprotocol, RunDr, involves these participants: a (robust) manager role m, a

driver role wD assigned from role set Workers, and the role set Workers as a whole. To
launch a Spark application, RunDr dynamically assigns a driver process (as part of session
initiation) and initializes it (lines 2–3). RunDr then spawns a number of concurrent child
subsessions that assign executors to carry out the subtasks of the application in parallel
(lines 4–6).
Line 2 is the standard role-to-role message passing of MPSTs [HYC16, CDYP16]: role m

sends an InitDr message (carrying a DrInfo payload) to role wD to initialize the driver;
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wD then replies to m with an acknowledgment on Line 3. As standard in MPSTs, and
crucial for real-world applications, messaging in our framework is asynchronous, meaning
output actions do not block (but input actions do block until a message is received).
Lines 4–6 specify a standard branch type m → Workers { AddEx(): ..., Ok(): ... }:
role m makes an internal choice to, in this instance, multisend either AddEx or Ok messages
to the whole of Workers, who will follow the received message case as an external choice.
Note that wD belongs to role set Workers, so the participant playing wD receives the branch
message this way.

On line 4, mu t ... is a standard recursive type: the recursion is enacted by the t in the
AddEx case (causing the subsession to “loop back” to line 4), while Ok leads to subsession
termination end. As part of the recursive branch case, line 5 may be repeated to spawn
multiple RunEx subsessions, all running concurrently with the RunDr subsession. Each child
subsession involves: m and wD from RunDr as roles, an assigned Workers participant to
play the new role wE, and the role set Workers. Our spawn is novel to MPSTs in supporting
(i) unrestricted spawning of child tasks, where participants may be involved inmultiple such
tasks, that are (ii) fully concurrent with the parent task. Notably, our theory ensures global
progress for the entire system of all subsessions: prior work on nested protocols [DH12] in
MPSTs ensures progress only for a single session.

Lastly, lines 7–9 specify the failure handling behavior for the RunDr subsession. If the
monitor m suspects the participant playing wD has failed (by whatever failure detector it
employs), it switches from the normal to the failure handling activity in this subsession
and stops its activity in all descendent subsessions. Our framework requires the monitor
to explicitly notify all (potentially) remaining participants as part of the failure handling:
m does so by a multisend to Workers (this implicitly excludes the suspected participant),
who switch to failure handling and stop any descendent activities upon receiving the
notification. A new RunDr subsession is then spawned between m and the remaining Workers,
with some other participant assigned to wD (i.e., a replacement).

The structure of RunEx is similar. It dynamically assigns and initializes an executor to
carry out some of the actual application work. By default, our theory permits the same
participant to play wE in multiple RunEx subsessions. Note, a failure of wD during RunEx
is handled by the parent RunDr subsession (as mentioned, remaining participants stop
activity in all descendent subsessions when failure handling is activated); to reiterate, all
roles (except robust roles) are necessarily monitored in the subsession where they were
first assigned.
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Global subprotocols
(e.g., RunDr, RunEx)

Local subprotocols
(e.g., for Masters)

Scala API
(for Masters)

Fault-tolerant event-driven
Scala program (for Masters)

Projection API generation User implementation + type checking

Figure 4.3.: Scala toolchain for MPST-based fault-tolerant distributed programming. Gray
is written by the user.

1 2 3
4

5

wD!InitDr wD?Ack
Workers!AddEx

RunEx(...)

Workers!Ok

(a)

6 7 8 9
wD@m Workers!FailDr RunDr(...)

(b)

r!l Output
r?l Input
SubProto(...) Spawn
r@r’ Suspicion
End (Performs a final sync.

between all subsess. participants)

Figure 4.4.: CFSM pair for the (a) normal and (b) failure handling activities, respectively,
of role m in RunDr.

4.3. Event-driven Programming for Fault-tolerant Sessions

We now illustrate endpoint projection and distributed, event-driven processes in our
toolchain.

4.3.1. Scala toolchain overview

Figure 4.3 shows the main stages and artifacts in our MPST-based toolchain for fault-
tolerant distributed programming in Scala. It is designed to support concurrent subsessions,
failure handling, and event-driven programming (EDP) following a standard MPST top-
down workflow. It starts from a user specification of the fault-tolerant application protocol
as a global type, i.e., a set of interdependent subprotocols. We continue the Session-CM
example (Figure 4.2) to illustrate the subsequent stages.
Local types and communicating finite state machines (CFSMs). A global type is
projected to a local type describing the view of the protocol from each kind of participant.
In our setting, each participant kind (e.g., a master) must support its behavior as a
generic role set member (i.e., Masters) and as all its (potential) roles (i.e., m) – note, in
this instance, Masters has no explicit generic behavior (unlike Workers). Section 4.4.2
presents projection in detail; here, we first illustrate the concept by showing the CFSM
representation for local types used internally by our toolchain implementation.
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In a nutshell, our toolchain represents each localised subprotocol as a pair of CFSMs,
for the normal and failure handling activities; e.g., Figure 4.4 depicts the CFSM pair for
role m in RunDr. Each state represents a point in the subprotocol where this participant
performs one of the localized interaction types: select (output choice, subsuming the basic
send), branch (input choice, subsuming receive), failure suspicion (by a monitor), spawn
(subsession initiation), or end (subsession termination). By the design of our framework,
spawn and suspicion states have exactly one outgoing transition, and end is a terminal
state. Each transition represents an I/O action from that state to the next. Output ! is
a non-blocking action. The potentially blocking actions are input ? and spawn (denoted
by the subprotocol name). Following session initiation in standard MPSTs, spawn is a
synchronization between the relevant participants; we also treat subsession termination
as a similar synchronization.
A participant behavior starts from the initial state of its normal activity CFSM. The

suspicion action @ may switch the monitor (e.g., m) to its failure handling CFSM from
any state of the normal activity, including end (i.e., state 5) if the subsession is not yet
terminated. The other subsession participants (e.g., wD) switch to their failure handling
CFSMs on receiving the initial message (i.e., a failure notification) in those CFSMs; the one
exception is the monitored participant, whose failure handling is empty. See Appendix B.2
for all local types and CFSMs for Session-CM; e.g., wD/wE/W in RunEx.
Figure 4.4 thus represents the behavior of m. In the normal activity (a), m first performs

a send to, then a receive from, wD. It then selects (by some internal decision) between the
spawn loop (i.e., sending Ack to Workers and spawning RunEx) or the terminal case. In
the failure handling (b), m multisends the failure notification, then joins the spawning of
the replacement RunDr subsession.
Scala API generation. For practical programming, we implement our theory as a toolchain
in Scala. Our toolchain uses the CFSM representation of each local type to generate a
type-directed API [HY16] for MPST-based EDP. The basic idea is: for each state, it generates
a state-specific channel type; and for each transition, it generates a transition-specific I/O
method on the associated channel type. Each I/O method takes the arguments, if any,
required by the action (e.g., a message), and returns the channel type for its successor state
in the CFSM; input methods additionally return the received message. For each transition,
it also generates a transition-specific singleton type to serve as a type-level identifier for
that event, which we refer to as event types.
Figure 4.5 summarizes the key API elements generated for m in RunDr, i.e., from the

CFSM pair in Figure 4.4. Select and branch states (including the unary cases) have methods
named ! and ?, respectively. The single method of a spawn or suspicion state is named
init and failure, respectively. The corresponding event type is given next to each I/O
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State Channel types Chanel method signatures Event types
1 M1 !(InitDr): M2 SndInitDr
2 M2 ?(): (Ack, M3) RcvAck
3 M3 !(AddEx): M4 SndAddEx

!(Ok): End SndOk
4 M4 init(...): M3 SpwRunEx
5, 9 End
6 M6 failure(): M7 SuswD
7 M7 !(FailDr): M8 SndFailDr
8 M8 init(...): End SpwRunDr
(Note: ! and ? are method names.)

Figure 4.5.: Generated Scala API for session-typed EDP implementation of a Masters
participant by the user.

method signature. To simplify this presentation, we assume message labels are unique
across the subprotocol, and event type values are referred to by same name as their type.
We illustrate how a programmer may use this API next.

4.3.2. MPST-based event-driven programming in Scala

MPST theory has primarily been developed in the context of the π-calculus, where the
model of concurrency centers on parallel composition of sequential processes. From a
practical perspective, it is akin tomultithreaded programming with message passing, where
each user process (or thread) calls the runtime system to perform its I/O (and may be
blocked until the action is completed).
This chapter proposes a novel event-driven model of concurrency for multiparty sessions.

It is characterized by an inversion of control: the user relies on the runtime system to
monitor a set of concurrent event sources (e.g., channels), and dispatch the processing of
each event occurrence (e.g., message arrivals) by calling back the appropriate routines
in the user code; user code is never blocked because it is only called when the event is
ready. Our approach is inspired by the fact that EDP is a major paradigm for distributed
programming in practice; it used to implement applications featuring all the features we
have discussed, including the Spark CM4. As we shall see, event-driven concurrency is key

4 For example, for event loop of master see lines 228–554 in https://github.com/apache/
spark/blob/1c3bdabc03117494ffbf8fd6863ea82d4961379b/core/src/main/scala/
org/apache/spark/deploy/master/Master.scala
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to realizing our framework by unifying the handling of all the “regular” session I/O and
failure events under a uniform session-typeable programming interface.
The central abstractions in EDP are the event loop and event handlers. In our setting, each

participant process is a session event loop that monitors a set of (sub)session channels for
I/O events and dispatches each by firing its corresponding session-typed event handler.
Session-typed event handlers. Our framework provides a library function for creating
handlers:
λ(event1, event2) {

case (s, c: ChanType) =>
/* handler body: return the channel after event2 */

}

The above is a function call that takes three arguments. We have named it λ here to assist
comparison with our formal notation (Section 4.4.3). In parentheses are values of the
singleton event types. The first specifies the immediate event type to be handled (i.e., the
event that triggers the firing of this handler). The second specifies the last I/O action that
this handler will perform before handing the resulting channel back to the event loop for
monitoring. We refer to these as the initial and return events of this handler. The return
event must be reachable from the initial in the CFSM, and every action after the initial
must be non-blocking (i.e., output). A handler that performs only an initial I/O action
specifies the same event for both.
The third argument is the handler function itself, partial function written in Scala as

{ case (s, c) => ... }. Its parameters (s, c) are supplied by the framework when the
event loop calls this function to handle the specified event: c is the subsession channel on
which the event has occurred and is ready to be handled, and s is just a plain data object
for storing and retrieving data across separate handlers. Guided by static Scala typing on
the channel types, the user implements the handler body to handle the initial event and
perform any subsequent I/O actions up to and including the return event. The framework
and generated APIs are designed such that static type checking ensures: (i) the type of the
channel parameter c corresponds to the initial event, and (ii) the handler returns a pair
(s2, c2) back to the event loop, where s2 is the (possibly updated) data object and c2 is
a channel whose type corresponds to the return event, i.e., the channel yielded by the last
I/O method performed. We write the type annotations on c but they may be omitted.
Figure 4.6 demonstrates a set of minimal handler implementations for Masters in

RunDr (Figure 4.2); in general, handlers may also contain other arbitrary Scala code.
The first handler performs the single output action of its sole event. Its channel parame-
ter type M1 corresponds to its initial event SndInitDr; static typing ensures we perform
! with the message InitDr(...) (payload arguments omitted) and return the result-
ing channel to satisfy the return event. The second handles its input event similarly.
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(Initial, Return) events
Initial-to-Return event handler functions

λ(SndInitDr, SndInitDr) // Payload args omitted
{ case (s, c: M1) => (s, c ! InitDr(...)) }

λ(RcvAck, RcvAck) // ._2 accesses 2nd tuple element
{ case (s, c: M2) => (s, (c?())._2) }

λ(SndAddEx, SndAddEx)
{ case (s, c: M3) if s.workRemaining() => (s, c ! AddEx()) }

λ(SndOk, SndOk)
{ case (s, c: M3) => (s, c ! Ok()) }

λ(SpwRunEx, SpwRunEx)
{ case (s, c: M4) => (s, c.init(...)) }

λ(SuswD, SndFailDr)
{ case (s, c: M6) => (s, c.failure() ! FailDr(s.appId)) }

λ(SpwRunDr, SpwRunDr)
{ case (s, c: M8) => (s, c.init(...)) }

Figure 4.6.: User-written event handlers for a Masters endpoint program using the gener-
ated API.

The (SuswD, SndFailDr) handler is an example of performing multiple I/O actions in
one handler. In the SndAddEx handler, we use this Scala syntax for partial functions:
{ case (s, c) if /*cond*/ => ... }. Scala checks the additional if clause at run-time
before allowing the function to be applied; i.e., this SndAddEx handler is only fired if
s.workRemaining() is true then.
Session event loops. A user constructs an endpoint program by registering event handlers
like the above with the event loop runtime provided by our framework as a library. The
handlers must cover all possible events that the endpoint may participate in according to
the protocol. Our theory checks such event coverage, and that each handler is non-blocking
apart from the initial event, as part of static type checking (Section 4.6.1). Our prototype
implementation checks these dynamically when the list of handlers is registered (i.e.,
when the endpoint is first initialized); however, these are simple to check and would be
straightforward to implement statically, e.g., as a compiler plugin.
The event loop library uses a lightweight internal representation of the CFSMs (built by

the API generation) to track the current state of the local endpoint in each of its subsessions
at run-time, and thereby determine which handlers are eligible for firing. The current
state is the only precondition for firing an output handler (i.e., outputs are non-blocking).
In addition to the current state, the event loop fires an input handler when a message
is available in the input queue. A spawn handler is fired when the subsession initiation
synchronization is complete. Following our theory, our prototype separates the mechanism
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for failure detection from the event loop itself. The former may be implemented in various
ways (e.g., heartbeats); the latter simply reacts to a failure suspicion event by switching to
the failure handling CFSM and firing the suspicion event handler (e.g., SuswD).

4.3.3. Failure model and properties

We make the following practical assumptions on distributed systems (see Appendix B.3 for
details): asynchronous system – there are no upper bounds on processes’ relative speeds or
message transmission delays [FLP85]; crash(-stop) failures – processes can fail by halting
prematurely, except robust roles – roles played by failure-resilient processes, one being
minimally required for our (progress) properties to hold; reliable FIFO communication –
messages between non-failed processes are received eventually, in the order sent [BCT96];
monitors – failures of non-robust roles are detected by designated (possibly failure-prone)
peers, with the possibility of false suspicions – inevitable in the above model [CT96]. Note
that suspicions are not reverted.
The next sections present a formal model of our framework as a novel event-driven for-

mulation of a multiparty session π-calculus, and establish the properties that it guarantees.
Formally, a well-typed system – i.e., a system of multiple, dynamically spawned concurrent
subsessions – is guaranteed to enjoy communication safety and global progress. In short:
a participant will never receive a message for which it does not have a handler, and the
system as a whole will never be stuck (some subsession can always progress), despite
processes concurrently engaged in multiple subsessions. Prior MPST systems offer progress
only when individual participants engage in a single session; e.g., the “simple” condition
of Deniélou et al. [DYBH12, p. 30, item 1] and Demangeon and Honda [DH12, Prop. 3]
(e.g., consider two well-typed processes p1, p2 in two sessions s1, s2, where p1 first receives
on s1 but p2 on s2 – deadlock). We note Coppo et al. [CDYP16] study global progress using
an additional interaction type system on top of MPSTs. The intuition for global progress
in our framework is that event-driven processes by definition never engage in an I/O
action unless the event is ready for processing, and this characteristic is independent of the
number of active (sub)sessions. Second, our framework ensures that a protocol is safely
structured (Section 4.4.1) in both “regular” interactions and handling of all potential
participant failures, and every participant process safely provides compliant handlers for
every potential event it may engage in (Section 4.6.1).
Using our Scala toolchain, the generated API types ensure communication safety via

the native Scala type system modulo linear usage of each channel instance, i.e., the user
should call exactly one I/O method on each channel instance in a handler until the return
event is reached. Our theory integrates linearity into the static type system, as standard
in session types. Our implementation checks linearity at runtime [Pad17, CHJ+19] and
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G ::= {gi(r; r;R) = G with r@r . G}i∈I z ::= r | R
G ::= r → z {li : Gi}i∈I | g(r;R;R) . G | µt . G | t | end

L ::= {giz(r; r;R) = L}i∈I
L ::= u!{li : Li}i∈I | y?{li : Li}i∈I | g(y;R;R) . L | L with L

| y↓ . L | −with L | µt . L | t | end | endL
u ::= y | R y ::= r | p:r

Figure 4.7.: Global types and local types.

can safely treat violations as failures. Note, this is not a fundamental limitation (it is
straightforward to adjust the API design so channels are never directly exposed to the
user, e.g., [ZFH+20]), but we opt for the current style to correspond with our formal
presentation. Regarding progress: since a user may include arbitrary Scala code within
handlers and the if-clause of partial functions, the practical progress guarantee is modulo
termination of handler code and exhaustiveness of the relevant handler if-conditions.
Regardless of linearity and progress, however, our toolchain guarantees a well-typed Scala
endpoint program will never perform session I/O that is not compliant with the source
global protocol, other than premature termination due to failure.

4.4. Global Types, Local Types and Event-Driven Session
Processes

This section formally defines our global types, local types, and event-driven session
processes.

4.4.1. Global types for specifying fault-tolerant, multiparty protocols

Figure 4.7 defines the syntax of global types. Message labels range over l, l1, l2, .... Type
variables range over t, t1, t2.... Subprotocol names range over g, g1, g2, .... A role set repre-
sents a set of participant processes that support a common behavior, e.g., a set of worker
processes. A role represents a participant drawn from a role set to fulfill some additional
individual behavior, e.g., a worker that runs a Spark driver. Role set names range over
R,R1, R2, ..., and role names range over r, r1, r2, .... We may write r∈R to clarify that
R is the role set of r. A role set R, always refers to all participant processes in the set,
whereas a corresponding role r refers to one of these participants. An overbar, e.g., R
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denotes a sequence, and may be empty unless explicitly stated otherwise. In examples,
role set names start with an uppercase letter and roles with a lowercase.
A top-level global type G describes a complete protocol comprising a set of distinctly

named subprotocols. g(r; r;R) = G1 with r@r′ . G2 defines a subprotocol, named g, be-
tween the participants given by the three parameter segments: (1) a non-empty sequence
of distinct roles r; (2) a role r assigned from R (r∈R) when g is spawned; and (3) a
sequence of distinct role sets R. Note, a role r and its role set Rmay both be present, mean-
ing the participant assigned to r fulfills both behaviors concurrently; e.g., the participant
assigned to wD in RunDr (see Figure 4.2) behaves as wD and a member of Workers. Multiple
roles r1, r2 may be from the same role set R. G1 is the normal activity of g, whereas the
shaded parts relate to failure handling. r@r′ specifies that r′ is themonitor of the assigned
r, and G2 is the corresponding failure handling activity (or simply, failure handling); r
is not permitted to occur in its own failure handling. Note: our formalism assumes the
message labels (resp. subprotocol names) in the normal activity are disjoint from those in
the failure handling.
A spawn type g(r;R;R) . G specifies spawning a new subsession instance of subprotocol

g that runs concurrently with the continuation G. The spawn arguments are in three
segments corresponding to the parameters of g: non-empty, distinct roles r; a role set R
from which to assign a participant; and distinct role sets R. Spawns in failure handlings
and recursive spawns are permitted. A branch type r → z {li : Gi}i∈I specifies that r
decides which case the protocol will follow by sending a message labeled li to another
role z = r′ or by multisending messages labeled li to a role set z = R′; the protocol then
proceeds according to Gi. Following MPSTs tradition, for the former we assume r ̸= r′

(note, no two roles in one subsession are ever played by the same participant); for the
latter, we assume R′ ̸=R, where r∈R. We may write r → z l . G for short when I is a
singleton. µt . G and t allow recursive types (our model adopts an iso-recursive approach).
We assume type variable occurrences are bound and guarded in the usual way (e.g., µt . t
is not permitted). Lastly, end denotes subprotocol termination (often elided for brevity).

Example 14. The top-level global type GCM corresponding to Figure 4.2 comprises two
subprotocols:

gRunDr (m;wD ;W ) =
m→ wD lInitDr . wD →m lAck . µ t . m→ wD { lAddEx : gRunEx (m,wD ;W ;W ) . t ,
lOk : end } with wD@m. m→W lFailDr . gRunDr (m;W ;W ) . end

gRunEx (m,wD ;wE ;W ) =
m→ wE lInitEx . wE →m lExDone . m→ wD lExFinished . end
with wE@m. m→W lFailEx . gRunEx (m,wD ;W ;W ) . end

Well-formedness. Following the standard approach in MPSTs, we impose basic constraints
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to prevent global types that are not safely realizable as distributed protocols. (1) As
standard, our system considers only global types for which projection (Section 4.4.2) is
well-defined for every participant kind: a key point is to ensure consistency of multiparty
branching, which leads to the next condition. (2) We require the G in a monitor term
r1@r2 . G to start with the monitor (r2) sending some label (i.e., failure notification) to all
other roles (except the monitored role r1) and role sets in the subprotocol. This ensures
that the monitor soundly informs all other participants if it suspects a failure. E.g., in
both failure handlings in Example 14 and Figure 4.2, the monitor m informs all workers
W about the failure (note, wD ∈W ). Appendix B.4 provides the straightforward formal
definition of well-formedness.

4.4.2. Local types and endpoint projection

Figure 4.7 defines the syntax of local types, which represent the view of a protocol localized
to one kind of participant, i.e., the combined view of a role set and its role assignments.
Local types are used to statically ensure that a participant process (i.e., an event loop)
safely implements the full behavior of its role set and potential role assignments. Parts
related to failure handling have darker shading, and runtime terms (i.e., only occurring
during execution) are lightly shaded; some terms are both. As explained in Sections 4.4.3
and 4.5, our formalism also reuses local type syntax as an artifact for recording the current
state of subprotocols at runtime, to drive event loops and handler firing.
Participant names (i.e., process identifiers) range over p, p1, p2, ..., q, q1, q2, .... Meta

symbol u stands for a role r or role set R; and y for a role r, or the additional runtime
annotation p:r specifying that participant p is playing role r in a given subsession. E.g.,
assume participants {p1, .., pn} constitute a worker role setW and the protocol involves
a role w∈W . Although any of {p1, .., pn} may play w, the specific pj picked to play w at
runtime is recorded by the annotation pj :w .
A top-level local type L describes a complete localized protocol comprising a set of local

subprotocols, as yielded by projection (explained shortly). gz(r; r;R) = L defines the
local subprotocol view of g from the annotated z, i.e., a local role or role set. g(y;R;R).L
is a local spawn type for subprotocol g. The three argument/parameter segments are
as explained for their global type counterparts: non-empty, distinct roles y to play r; a
role set R from which to assign a participant to play r; and distinct role sets R. The
send/select type u!{li : Li}i∈I specifies: select and (multi)send li to u, then proceed as
Li. Receive/branch y?{li : Li}i∈I is the dual: receive an li, then proceed as Li; note, we
receive only from a role (not a role set). L1 with L2 represents a normal activity L1 under
execution and the as yet inactive failure handling L2. For the monitor, L2 is (initially) a
suspicion type y↓ . L specifying: monitor y and switch to L (i.e., switch from the normal

105



to the failure activity) upon the suspected failure of y. There is no dual to y↓ . L because
failing is an implicit action that can occur at any time. −with L represents an active
failure handling, and only occurs at runtime. µt.L and t are for recursive types. end (often
elided) represents the termination of a normal or failure handling activity. A stopped type
endL represents a behavior that is (prematurely) halted due to failure handling being
activated in some ancestor subsession, causing all child subsession activities to be halted.
The L annotation specifies the point at which the behavior was halted.
We use a context notation E [·] for local types (defined: E ::=[] | E with L | −with E)

to access a normal or active failure handling activity in with terms, e.g., in reduction rules
(Section 4.5).
Projection. Our typing statically associates every participant with a role set. However, a
safe implementation of a participant process must also be capable of all potential role
assignments. Our notion of endpoint projection [HYC16, CDYP16] is thus the projection
of a top-level global type onto a role set together with the projections onto each of its
role assignments. E.g., for the subprotocol gRunEx in Example 14 and Figure 4.2, the top-
level local type of a Workers participant includes multiple local subprotocols: gRunExwD

,
gRunExwE

and gRunExW
(see Appendix B.2 for all).

Definition 18 (Projection G ↾R=L). The projection of a top-level global type G onto a role
set R is G ↾R= {g ↾R | g(r; r1;R)∈G ∧ R∈R} ∪ {g ↾ r2 | g(r; r1;R)∈G ∧ r2 ∈ r · r1}.

The LHS of the union projects subprotocol g onto role set R (g ↾R) if g uses R. The RHS
projects g onto role r2 (g ↾ r2) if g uses r2. We define g ↾ r below. We leave the definition of
g ↾R to Appendix B.4.1; it is very similar but simpler than g ↾ r.

Definition 19 (Projection g ↾ r = gr). The projection of a subprotocol g onto a role r, and
the projection of a global type G onto a role r (i.e., G ↾ r = L), are respectively defined:

g ↾ r = gr(︁
g(r; r1;R) =G1 with r1@r2 . G2

)︁
↾ r =

⎧⎨⎩
gr(r; r1;R) =G1 ↾ r with r1↓.G2 ↾ r if r= r2,
gr(r; r1;R) =G1 ↾ r with G2 ↾ r if r∈ r,
gr(r; r1;R) =G1 ↾ r with end if r= r1

G ↾ r = L

r1 → z {li : Gi}i∈I ↾ r =

⎧⎨⎩ z !{li : Gi ↾ r}i∈I if r= r1,
r1?{li : Gi ↾ r}i∈I else if z= r ∨ r∈ z,
G1 ↾ r else if ∀i, j ∈ I . Gi ↾ r=Gj ↾ r

(g(r;R;R) . G) ↾ r =

{︃
g(r;R;R) . (G ↾ r) if r∈ r ∨ ∃R′ ∈{R, R} . r∈R′,
G ↾ r otherwise

}︃
µt.G ↾ r=

{︁
µt.(G ↾ r) if G ↾ r ̸= t, end otherwise

}︁
t ↾ r = t end ↾ r = end
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P ::= (H, p) | c[u]!l.P | c[r]?l.P | c[r;R;R](g) | c[r]↓.P | loop
N ::= P | N ||N | (νs :G)N | s[p] : (L, b) | 0
H ::= [L]λx.P c ::= x | s[p] b ::= [p ↦→ l] Θ ::= [s ↦→ (˜︁p, ˜︁s)] F ::= ˜︁p

Figure 4.8.: Syntax of participant processes and networks.

The top rule projects the normal activity of a subprotocol onto r, and projects the failure
handling according to r’s involvement in monitoring. If r is the monitor, the projection
of G2 is prefixed by a monitor type r1↓. If r is neither the monitor nor the monitored
role, then we just project G2. If r is the monitored role, then failure handling is set to
end – r is not involved in the handling of its own failure! We explicitly project the failure
handling of the monitored role r as end, even if the role set R of r occurs in the global
failure handling. The rule below the dashed line is the standard projection (e.g., Coppo et
al. [CDYP16]) of an interaction according to the role’s involvement, with the additional
clause for a multisend to the role set R of r (via the condition r∈ z) – the latter projects to
a receive because the participant playing a assigned role r is still a member of R. The next
rule projects a spawn term and its continuation onto r: the spawn is retained if r or the
role set of r occurs in the arguments. The recursion and termination rules are standard.

Example 15. The projection GCM ↾M = { gRunDr ↾m, gRunEx ↾m } (i.e., both as role m), yield-
ing:

gRunDrm(m;wD ;W ) =
wD !lInitDr . wD ?lAck . µ t . W !{ lAddEx : gRunEx (m,wD ;W ;W ) . t , lOk : end }
with wD↓ . W !lFailDr . gRunDr (m;W ;W ) . end

gRunExm(m,wD ;wE ;W ) =
wE !lInitEx . wE ?lExDone . wD !lExFinished . end
with wE↓ . W !lFailEx . gRunEx (m,wD ;W ;W ) . end

Our toolchain represents local types as CFSMs as explained in Section 4.3.1; simply put,
each action in the local type is a CFSM transition, and the normal and failure handling
activities are represented as separate CFSMs. E.g., gRunDrm is represented by the CFSM pair
in Figure 4.4. See Appendix B.2 for GCM ↾W , which includes both role (gi ↾wD and gi ↾wE)
and generic role set (gi ↾W ) behaviors.

4.4.3. Event-driven session processes and networks

Figure 4.8 defines the syntax of participant processes (or simply processes), denoted by
P, P1, P2, ..., and networks, denoted by N,N1, N2, .... Failure handling terms have darker
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shading, and runtime terms (i.e., that arise only during execution) are lightly shaded;
some are both. (Sub)session names range over s, s1, s2, .... Meta symbol c denotes a session
channel (or simply, channel) s[p] , or a channel variable ranging over x, x1, .... We write ˜︁x
for a potentially empty set {xi}i∈I .
The heart of a participant process is an event loop and its event handlers (or simply,

handlers). (H, p) is an event loop for participant p with handlers H. As discussed in
Section 4.5, an event loop encapsulates and monitors a set of channels for I/O events, and
handles each event occurrence by firing a handler, which is executed to completion before
the event loop resumes. The handler is dynamically selected according to the event, e.g.,
the message received, and the current state of the participant in the subprotocol for this
subsession. As mentioned, every participant p is statically associated with a role set R: we
write Rids for the set of all participants associated with R.
A handler [L]λx.P defines a session computation. Channel variable x is substituted

for the event-ready channel when the handler is fired, P is the handler body, and guard
type L specifies the initial event type and I/O behavior to perform on x in P . For com-
parison, a handler is written using our toolchain (Section 4.3.2): λ(/*guard type*/)
{ case (..., x) => /*P*/ }. (The “initial” and “return” events there correspond to our
single guard type L here.) The idea is that a handler is only fired if it will not block –
P may contain a blocking action like receive, but is only fired if the expected message
is present. To this end, our type system (Section 4.6.1) restricts the guard type to use:
(a) at most one blocking action, which must be the initial action; (b) no recursion; (c)
no branching or selection, i.e., be flat. These restrictions are natural to EDP and help
ensure progress without limiting expressiveness: branching and selection are expressed in
our system via separate handlers, and recursion manifests as recurring events and repeat
handler firings (see Examples 16 and 20).
The other P terms occur inside handler bodies. c[u]!l.P performs a (multi)send of label

l on channel c to a role or role set u, followed by P ; c[r]?l.P is the receive counterpart.
For simplicity, we do not model message payload types/values. A spawn c[r;R;R](g) uses
channel c to initiate a new subsession for g. The participants joining the new subsession
from the current subsession are: roles r, a participant assigned from R, and role sets
R. c[r]↓.P is the action by a monitor signifying it suspects r has failed and will switch
to P . loop denotes the completion of a handler execution and resumption of the event
loop: loop is substituted for the original event loop term when a handler is fired, hence
we distinguish it from the typical 0 term. We may omit loop in examples; e.g., we write
λx . x[wD ]!lInitDr with the trailing . loop omitted.

Example 16. Let (H, p) be an event loop for anM participant from Example 14 and Fig-
ure 4.2. p is the participant identifier.H contains, e.g., the handlers [W !lAddEx ]λx . x[W ]!lAddEx
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and [W !lOk ]λx . x[W ]!lOk – cf. the SndAddEx and SndOk handlers in Figure 4.6 (similarly for
the others; see Appendix B.2.4 for all). These two handlers implement the selection from
RunDr (i.e.,W !{ lAddEx : ... , lOk : ...}); the first covers the lAddEx choice, and the second covers
lOk . Compared to Figure 4.6, our formalism omits the if-clause – we abstract from the
internal decision procedure and simply model it non-deterministically.

Network N ||N is a standard parallel composition, for composing participant event loops
and configurations into a complete session system. We write ||p∈ ˜︁p (N) for a composition
of N terms for each p. For each process P in a network, we assume all terms within P
relate to a single participant p. In our system, restriction (νs :G)N is applied only to the
root session, to annotate the G; for simplicity, we assume subsessions are always created
with fresh names. An endpoint configuration (or simply, configuration) s[p] : (L, b) records
the runtime information used by participant p to execute its part in subsession s: a local
type L, called the current subprotocol state, and an asynchronous input buffer b, which
holds a FIFO per subsession peer for incoming messages. An empty buffer is written ε.
The subprotocol state serves two purposes: to designate the next set of events expected in
subsession s and thereby direct (in conjunction with the event occurrence) which handler
to fire, and to record the binding of (peer) roles to participant names. We opt to represent
the notion of subprotocol state by reusing local type syntax; however, this mechanism may
be implemented in various ways (e.g., we use an FSM), and we emphasize our system is
fully statically typed.

Example 17. Take the event loop from Example 16, for an M participant p, and two
configurations s[p] : (E [p1:wD !lInitDr . p1:wD ?llAck

.L′], b1) and s[p] : (E [p1:wD ?llAck
.L′], b2) for

some L′. The event loop can fire the handler [wD !lInitDr ]λx . x[wD ]!lInitDr under the first
configuration, but not the second. The subprotocol state in the first (resp. second) expects to
send lInitDr (resp. to receive llAck

).

The remaining items are runtime environments for process reduction: Θ is the moni-
toring tree, i.e., the parent-child subsession relation. F is the fail set, which records all
suspected participants. We can model these environments in a global fashion since their
decomposition into local views (as implemented in our prototype) is straightforward and
has no significant impact on the overall design. Regarding Θ , a participant is concerned
only with the subtree pertaining to the subsessions itself is involved in: a lookup in a
local or a global view is no different. Regarding F , as we shall see, participants are only
ever added to F (i.e., crash-stop failures): it is straightforward (even in an asynchronous
system) to have participants converge on a consistent view, which is all we require.
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Normal activity Failure handling suspected stopped
green s: gRunDr blue s′: gRunEx purple s′′: gRunDr

p1 p2 p3 p4

m wD W W

(a) initial system (RunDr)

p1 p2 p3 p4

m wD W W

m wD wE W

(b) RunEx spawned

p1 p2 p3 p4

m wD W W

m wD wE W

(c) p1 suspects p2

p1 p2 p3 p4

m wD W W

m m wD wE wD W W

(d) RunDr restarted; p3 replaces p2

Figure 4.9.: Participant engagement in subsessions in a scenario where the driver process
fails (following Figure 4.2).

4.5. Operational Semantics for Event-Driven Concurrent
Subsessions

We define a reduction relation on systems of the form (Θ,F , N). Relation (Θ1,F1, N1)→
(Θ2,F2, N2) reduces a network N1 under environments Θ1 and F1 to N2 and updated
environments Θ2 and F2. We streamline our formalism by assuming the root subsession to
be already established in an initial system: this allows us to omit the usual “shared channel”
prefixes used to bootstrap a session – that aside, our model freely supports concurrent
subsession spawning, based on the standard session initiation in MPSTs. We present the
reduction rules in three parts: event loops and handler firing, subsession spawning, and
failure handling. On notation: we (1) omit Θ and/or F , for brevity, from a rule definition
if they are neither used nor modified; (2) write ‘_’ to denote an irrelevant element.
We continue with the session-typed CM (Session-CM) as running example. Figure 4.9

illustrates the system over a few reduction steps in a scenario where the driver participant
fails after a gRunEx subsession has already been spawned: Figure 4.9 (a) shows the initial
system from Example 18; Example 21 demonstrates spawning the gRunEx protocol, leading
to (b); and in Example 22, the participant playing wD fails and gRunDr is restarted,
corresponding to (c) and (d).

Example 18. Figure 4.9 (a) depicts an initial system for Session-CM. This root subses-
sion s involves participants p1 in role set M and p1..3 in W : the monitoring tree is Θ0 =
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[s ↦→ {p1, p2, p3, p4}]. No failures have occurred yet: the failure set is F0 = ∅. This system is
thus (Θ0,F0, N0), where I = {1..4}, N0 = (νs :GCM )

(︁
||i∈I (Hi, pi) ||i∈I s[pi] : (Li, ε)

)︁
and

L1 = p2:wD !lInitDr . p2:wD ?lAck . µt.W !{lAddEx : gRunEx (p1:m, p2:wD ;W ;W ). t , lOk : end} with ...
L2 = p1:m?lInitDr . p1:m!lAck . µt. p1:m?{lAddEx : gRunEx (p1:m, p2:wD ;W ;W ). t , lOk : end} with ...
Lk = µt. p1:m?{lAddEx : gRunEx (p1:m, p2:wD ;W ;W ). t , lOk : end} with ... k ∈ {3, 4}

The (νs :GCM ) specifies that s is an instance of the root subprotocol gRunDr . Example 16
gave an example of H1, i.e., a handler list for anM participant; H2..4 may be implemented
similarly. Every configuration has an empty buffer. The initial subprotocol state L1 of p1 is
essentially the projection of gRunDr onto m annotated with the runtime bindings of roles to
participants, i.e., p1 is playing m (i.e., p1:m) and p2 is playing wD (i.e., p2:wD); similarly
for L3/4. Subprotocol state L2 differs from L3/4 because p2 has been assigned to wD whereas
p3/4 are still generic members of role setW . That is, L2 describes the combined behavior of
wD andW , whereas L3/4 describesW only.

4.5.1. Event loops and handler firing

The main reduction rules are defined in Figure 4.10–4.13. We leave the standard structural
rules (for parallel composition, restriction and structural congruence) to Appendix B.5.1.
Figure 4.10 gives the core rules for event loop and handler execution. Fire is the key
rule for the event loop (H, p) of participant p to fire a handler [L2]λx. P . Premise L1 ≍ L2

checks that the current subprotocol state L1 of s matches the handler’s guard type L2,
and fire(L1, L2, b,F) checks that for the required runtime information (e.g., the expected
message) to ensure the handler will not block. The event loop term is then replaced by
the handler body P with the session channel substituted for x (written {s[p]/x}), and the
event loop itself substituted for loop, to return control back to the event loop after the
handler is completed. When in this form, we say the event loop has an active handler.
The match predicate L≍L′ holds when local type subtraction L−L′ is defined for these

types. (We define L≍L′ via L−L′ because the latter is anyway needed again later in the
type system.)

Definition 20 (Subtraction). L subtracted by guard type L′ (L − L′=L′′) is defined in
Figure 4.11.

L − L′ is defined when L′ is a “prefix” of the normal or failure handling activity in L.
It yields the “remainder” of L after subtracting L′, and converts it to an active failure
handling if an initial failure notification is consumed. Two actions are matched if they are
of the same kind and use the same roles; participant names (i.e., p in p:r) are ignored.
As an example: p1:r1?{l1 : p2:r2 !l. L′

1, l2 :L
′
2} − r1?l1 . r2 !l= L′

1, by consuming the l1 and
then the l within that branch case.
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(Θ,F , N)→ (Θ′,F ′, N ′)

Fire
[L2]λx. P ∈H L1 ≍ L2 fire(L1, L2, b,F) N = s[p] : (L1, b)

(F , (H, p) ||N)→ (F , P{s[p]/x}{(H, p)/loop} ||N)

Send
j ∈ I b′q = bq[p ↦→ bq(p) · lj ]

s[p][r]!lj .P || s[p] : (E [q:r!{li : Li}i∈I ], _) || s[q] : (_, bq) → P || s[p] : (E [Lj ], _) || s[q] : (_, b′q)

Recv
(q ↦→ lj · l)∈ b j ∈ I b′ = b[q ↦→ l]

s[p][r]?lj .P || s[p] : (E [q:r?{li : Li}i∈I ], b)→ P || s[p] : (E [Lj ], b
′)

MSnd
L= E [R!{li : Li}i∈I ] ˜︁p=Rids \F j ∈ I ∀q ∈ ˜︁p. b′q = bq[p ↦→ bq(p) · lj ]

(F , s[p][R]!lj .P || s[p] : (L, _) ||q∈˜︁p s[q] : (_, bq)) → (F , P || s[p] : (E [Lj ], _) ||p∈˜︁p s[q] : (_, b′q))
Unfold (H, p) || s[p] : (E [µt.L], _)→ (H, p) || s[p] : (E [L{µt.L/t}], _)

Figure 4.10.: Event loops (We omit Θ and/or F where irrelevant; N is always present).

L− L′ = L′′ L− Lg = L′′

L with L′ − Lg = L′′ with L′
L− Lg = L′

−with L− Lg = −with L′

L′ − Lg = L′′

L with L′ − Lg = −with L′′
lj ∈ {li}i∈I y ≡ r Lj − Lg = L † ∈ {!, ?}

y†{li : Li}i∈I − r†lj .Lg = L

lj ∈ {li}i∈I Lj − L′
g = L

R!{li : Li}I −R!lj .L
′
g = L

y ≡ r L− L′
g = L′

y↓.L− r↓.L′
g = L′

r ≡ y

g(y,R, R).L− g(r,R, R).end = L

L− end = L (y≡ r means y= p:r ∨ y= r)

Figure 4.11.: L subtracted by guard type L′.

Predicate fire(L1, L2, b,F) intuitively checks whether any potentially blocking action
in guard type L2 (the initial action, at most) is executable without blocking under the
given b and F . The subprotocol state L1 provides the binding of roles to participants. E.g.,
consider fire(p1:r1?l1, L, b,F) with L = r1?l1.r2 !l2. The predicate holds iff b(p1)= l1 · l ;
i.e., it is false if b(p1)= ε or b(p1)= l′ · l ∧ l′ ̸= l1. The definition of fire is straightforward
and left to the supplement (Appendix B.5.1).

Example 19 (Handler firing). Let N = (H, p) || s[p] : (L, b) where L= L1 with ... and
[L′]λx. x[r1]?l1 . x[r2]!l

′
1 . loop∈H L′ = r1?l1 . r2 !l

′
1 L1 = p1:r1?{l1 : p2:r2 !l′1 . L, l2 :L′

2}.
Then L≍L′, as L′ is a “prefix” of the normal activity L1. Given b(p1) = l1 · l and some F , then
fire(L,L′, b,F) holds. Hence, N may be reduced by Fire to activate this handler, i.e.,

(F , N1)→ (F , s[p][r1]?l1 . s[p][r2]!l2 . (H, p) || s[p] : (L, b)).

112



(Θ,F , N)→ (Θ′,F ′, N ′)

Spawn˜︁p1 = q ∪ ((R′
ids ∪ Rids) \F) p0 ∈R′

ids \ q ˜︁p2 = q ∪ p0 ∪ (Rids \F) ˜︁p2 ∩ F = ∅
s2 fresh Θ′ =Θ[s2 ↦→ (˜︁p2, ∅), s1 ↦→ Θ(s1) ∪ s2] L= g(q:r;R′;R) . Lp L′ = gq;p0↾p

(Θ,F , ||p∈˜︂p1

(︁
(Hp, p) || s1[p] : (Ep[L], _)

)︁
)→

(Θ′,F , ||p∈˜︂p1

(︁
(Hp, p) || s1[p] : (Ep[Lp], _)

)︁
||p∈˜︁p2

s2[p] : (L
′, ε))

Sess-GC
Θ(s1) = (˜︁p1, ˜︁s) Θ(s2) = (˜︁p2, ∅) ˜︁p= ˜︁p2 \F s2 ∈ ˜︁s ∀p∈ ˜︁p. done(Lp)

(Θ,F , ||p∈˜︁p (︁(Hp, p) || s2[p] : (Lp, _)
)︁
)→ (Θ[s1 ↦→ (˜︁p1, ˜︁s \ s2)] \ s2,F , ||p∈˜︁p (Hp, p))

Root-GC
s is the root Θ(s) = (˜︁p1, ∅) ˜︁p= ˜︁p1 \F ∀p∈ ˜︁p. done(Lp)

(Θ,F , ||p∈˜︁p (Hp, p) ||p∈˜︁p s[p] : (Lp, _))→ (Θ \ s,F , 0)

Figure 4.12.: Subsession spawning and garbage collection.

I/O actions are performed by event loops with active handlers. Send dispatches label li
from p to the participant playing r. The subprotocol state of p must have a send type with
an li case as its normal or active failure handling activity, and provide the q bound to r;
then li is appended to the buffer for p at q. Recv consumes a label li from the participant
playing r, if the subprotocol state of p has a corresponding receive type, and there is
an available li from the q bound to r. MSnd dispatches a label li to each non-suspected
participant associated with role set R (i.e., Rids \F ; see Section 4.4.3 for Rids). In these
three rules, the local participant p updates its subprotocol state and continues as P . Unfold
unfolds a recursive subprotocol state. Note, recursive behaviors are driven by recurring
subprotocol states and event occurrences, leading to repeat handler firings.

Example 20 (Recursion). LetN ′=(H′, p)||s[p] : (E [µt. q:r !l. t], _)||...with appropriate handlers
H′. By unfolding the recursive subprotocol state, N ′ allows repeated handler firing like:
N ′ Unfold−−−−−−→ N ′

1
Fire−−−→ N ′

2
Send−−−−→ N ′′ Unfold−−−−−−→ N ′′

1
Fire−−−→ N ′′

2
Send−−−−→ ... (showing only the main

rules).

4.5.2. Subsessions and spawn

In Figure 4.12, Spawn performs a subsession initiation to spawn a new concurrent instance
of a subprotocol g. We base it on session initiation in standard asynchronous MPSTs (e.g,
[CDYP16]), i.e., a synchronization (e.g., a multiparty handshake) that collects all the
participants needed to conduct the (sub)session. Spawn is straightforward but involves
several aspects: (1) ensure that all participants involved in the spawn have reached their
corresponding subprotocol states and perform the spawn together; (2) determine which
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participants join the new subsession; and (3) create the new subsession and update/create
the configurations. We first illustrate (1)–(3).

Example 21. Assume a step (F0,Θ0, (νs :GCM )N1)
Spawn−−−−→ (F0,Θ

′, (νs :GCM )N2) that spawns
a new gRunEx subsession. The LHS system (reached from Example 18 by some steps) may
have

N1 = ||i∈I (Hi, pi) ||i∈I s[pi] : (Li, ε) Li = gRunEx (pm:m, p2:wD ;W ;W ). L′′
i with ...

with I = {1..4}, F0 = ∅ and Θ0 = [s ↦→ {p1, p2, p3, p4}]. For (1), Spawn requires in N1 that no
event loop of any spawn participant has an active handler, and all subprotocol states (Li)
are at the corresponding spawn type. For (2), Spawn determines the participants of the new
subsession, say s′, based on the above spawn arguments (inherited from GCM ) and target
subprotocol parameters, i.e., gRunEx (m,wD ;wE ;W ). Thus: (i) p1 playing m in s will play
m in s′, and p2 playing wD in s will play wD in s′; (ii) Spawn assigns a participant fromW ,
say p3, to play wE in s′; (iii) allW participants that do not play named roles in s′ (i.e., p4)
will behave as plainW in s′.
Figure 4.9 (b) depicts the RHS system (i.e, that containing N2) after the spawn, where:

N2 = ||i∈I(Hi, pi) ||i∈I s[pi] : (L
′′
i with ..., ε) ||i∈I s

′[pi] : (L
′
i, ε)

L′
1 = p3:wE !lInitEx . p3:wE ?lExDone . p2:wD !lExFinished with ...

L′
2 = p1:m?lExFinished with ... L′

3 = p1:m?lInitEx . p1:m!lExDone with ... L′
4 = end with ...

For (3), Spawn updates the subprotocol states L′′
i in the s configurations. It creates new

configurations for s′ with these subprotocol states: p1 (playing m) has gRunEx projected onto
m (L′

1); p2 has gRunEx projected onto wD (L′
2); p3 has gRunEx projected onto wE (L′

3); and
p4 has gRunEx projected ontoW (L′

4) – with role-to-participant bindings p1:m,p2:wD , p3:wE

embedded in all these projections. It adds the new subsession s′ to the monitoring tree, i.e.,
Θ′ =Θ[s′ ↦→{p1, p2, p3, p4}].

We now explain the Spawn rule and (1)–(3) in more detail. For (1), premise ˜︁p1 =
q∪((R′

ids ∪Rids) \F) determines all of the parent subsession (s1) participants involved
in the spawn event; i.e.: the participants bound to role arguments (q:r), all unsuspected
participants in the assigned role’s role set (R′), and all unsuspected participants in the
role set arguments (R). We model participants ˜︁p1 as synchronized when each has no
active handler and its subprotocol state designates the spawn event (i.e., its configura-
tion for s1 has the form (s1[p] : (Ep[L], _), L = g(q:r;R′;R) . Lp). For (2), we assign a
participant (p0 ∈R′

ids \ q) that is not already bound to a role in the new subsession. Then˜︁p2 = q∪ p0 ∪(Rids \F) is the set of participants joining the subsession; the non-assigned
members ofR′ do not join (unlessR′ ∈R). We also check that all participants bound to roles
are non-suspected (˜︁p2 ∩F =∅). For (3), we update the subprotocol states of each p∈ ˜︁p1 in-
volved in the spawn (i.e., s1[p] : (Ep[Lp], _)). A fresh name s2 for the new subsession is added
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to the monitoring tree and recorded as a child of s1 (Θ′ =Θ[s2 ↦→(˜︁p2, ∅), s1 ↦→Θ(s1)∪ s2]),
and an initial configuration for s2 is created for each p∈ ˜︁p2. The initial subprotocol state
L′ is given by gq;p0↾p. It simply computes g ↾ r = gr if p is bound to a role r, else g ↾R = gR
where R is p’s role set; then yields the subprotocol body L′ of gr/R, with all the role
bindings of participants q; p0 embedded as p:r annotations.
To simplify Spawn without impacting the overall theory, our formalism does not actually

fire spawn handlers, as the actions described above are driven solely from the subprotocol
states (this is why spawn terms are formalised without a continuation). Our prototype
(Section 4.7) does fire spawn handlers, and implements Spawn as a simple handshake
– coordinated by a designated role using its local fail set (i.e., our implementation de-
composes F into local views). The rules Sess-GC and Root-GC in Figure 4.12 perform
garbage collection of configurations, e.g., s[p] :(Lp, _), and monitoring tree Θ entries for
finished subsessions. Predicate done used in these rules holds if the subprotocol state is
terminated (completed, i.e., Lp= end with _, or Lp=−with end) or stopped (halted due
to active failure handling by an ancestor subsession, i.e., Lp is endL). Sess-GC removes the
configurations (of unsuspected participants) and the monitoring tree entry for subsession
s2 when all unsuspected participants ˜︁p are finished in s2. Root-GC is a special case for the
root subsession that also removes the corresponding event loops. The garbage collection
rules allows a tidier progress statement. The direct practical interpretation of these rules
is a subsession teardown synchronization (as we employ in our implementation). As for
subsession initiation, more elaborate schemes are possible but outside the main topic,
hence we opt for a simpler core formalism.

4.5.3. Failure suspicion and handling

Figure 4.13 gives the rules for failure suspicion and handling. Susp non-deterministically
declares that an arbitrary participant is suspected of failure. For broader applicability, we
expressly abstract from specific kinds of failure and failure detection mechanisms: this
rule reflects the absence of control over failures and unreliability of failure detection in
real-world distributed systems – being suspected has no bearing on whether the participant
continues execution or actually stops.
Rule Mon activates the failure handling at the monitor participant. If p is suspected,

Mon can switch the monitor’s subprotocol state to the failure handling (i.e., −with L).
We write s⇝+

Θ for the set of subsession names that are transitively reachable from the
subsession name s in Θ (i.e., all descendant subsessions of s). All configurations of p
for these si are stopped (si[p] : (endLp , _)), and p will no longer participate in them: a
stopped subprotocol state endL does not match any local type, i.e., endL ≍ L′ is always
false. RcvFN activates failure handling at a non-monitor participant, due to receiving
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(Θ,F , N)→ (Θ′,F ′, N ′)
Susp

p ̸∈ F
(Θ,F , N)→ (Θ,F ∪ p,N)

Mon
q ∈ F s⇝+

Θ{si}i∈I Lp = L′ with q:r↓.L L′
p = −with L

(Θ,F , s[p][r]↓.P || s[p] : (Lp, _) ||i∈I si[p] : (Li, _))→ (Θ,F , P || s[p] : (L′
p, _) ||i∈I si[p] : (endLi

, _))

RcvFN
L1 = L′ with q:r?l.L (q ↦→ l · l)∈ b s⇝+

Θ{si}i∈I b′ = b[q ↦→ l]

(Θ,F , s[p][r]?l.P || s[p] : (L1, b) ||i∈I si[p] : (Li, _))→
(Θ,F , P || s[p] : (−with L, b′) ||i∈I si[p] : (endLi , _))

Clean
b(q) = li · l

(︁(︁
L=−with L′ ∧ li ̸∈L′)︁ ∨ (︁L= L′ with L′′ ∧ li ∈L′ ∧∃l′ ∈ l. l′ ∈L′′)︁)︁(︁
(H, p)||s[p] : (L, b)

)︁
→
(︁
(H, p) || s[p] : (L, b[q ↦→ l])

)︁
Figure 4.13.: Failure suspicion and failure handling activation.

a failure notification, i.e., a message communicated from some other failure handling
activity to convey the suspected failure; it is similar to Mon. Lastly, Clean models that
participants prioritize failure handling over the normal activity. This rule simply discards
messages associated with the normal activity from the front of an input FIFO if p “knows”
of a suspected failure, either because the failure handling is already active (the left side
of the ∨), or a failure notification has arrived in the FIFO (the right side). Prioritizing
failure handling is crucial in asynchronous multiparty systems, where there is no causality
between the arrival of normal messages and failure notifications; e.g., to avoid being
stuck on a blocking action in the normal activity that can no longer be discharged. Recall
that label sets between a normal and failure activity are disjoint, providing the intuitive
condition for safe failure notifications.

Example 22. Assume (F0,Θ
′, (νs :GCM )N2) from Example 21. We illustrate the reductions for

the failure scenario in Figure 4.9 where p2 playing wD is suspected of failure. In Figure 4.9 (c),
monitor p1 activates failure handling in s, stops its activity in s′, and sends lFailDr notifications
to p3 and p4. Let K = {1, 3, 4} (i.e., all unsuspected p’s) and J = {3, 4} (the unsuspected
workers).
(F0,Θ

′, (νs :GCM )N2)
Susp−−−→ ({p2},Θ′, (νs :GCM )N2)

Fire,Mon,MSnd−−−−−−−−−−−→ ({p2},Θ′, (νs :GCM )N3)
N3 = ||k∈K(Hk, pk)

|| s[p1] : (−with gRunDr (p1:m;W ;W ), b1) || s′[p1] : (endL′
1
, b′1)||j∈j s

′[pj ] : (L
′
j , b

′
j)

||j∈J s[pj ] : (... with p1:m?lFailDr . gRunDr (p1:m;W ;W ), bj [p1 ↦→ bj(p1) · lFailDr ]) || ...

Susp sets p2 as suspected, i.e., it adds p2 to F0. Then Fire fires the handler of p1 for the
wD suspicion event, i.e., it fires [wD↓.W !lFailDr ]λx. x[wD ]↓. x[W ]!lFailDr . We then execute
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this handler. First, Mon sets the subprotocol state of p1 in s to active failure handling and
removes the suspicion type prefix, i.e., −withW !lFailwD . gRunDr (p1:m;W ;W ); and it sets
the subprotocol states of p1 in all descendent subsessions of s (i.e., s′) to stopped (i.e., endL′

1
).

Next, MSnd multisends lFailDr to all unsuspected workers, i.e., p3 and p4. Figure 4.9 (c) thus
depicts ({p2},Θ′, (νs :GCM )N3).
In Figure 4.9 (d), p3 and p4 first each activate their failure handling in s.

({p2},Θ′, (νs :GCM )N3)
Fire,Fire,RcvFN,RcvFN−−−−−−−−−−−−−−−−−→ ({p2},Θ′, (νs :GCM )N4)

N4 = ||k∈K(Hk, pk)|| s[p1] : (−with gRunDr (p1:m;W ;W ), b1) || s′[p1] : (endL′
1
, b′j)

||j∈J s[pj ] : (−with gRunDr (p1:m;W ;W ), bj) ||j∈j s
′[pj ] : (endL′

j
, b′j) || ...

p3 and p4 each fire their handler on receiving the failure notification lFailDr in s. Each then
reduce their active handler using RcvFN: they activate failure handling in their subprotocol
states of s, remove the branch prefix from the failure activity (i.e., consume the lFailDr),
and set all descendent subprotocol states to stopped (endL′

j
). The above assumes bj(p1) = ε;

otherwise, Clean would first discard the (now obsolete) normal activity labels from p1 in pj ’s
buffer.
Lastly, p1, p3 and p4 restart gRunDr . We illustrate the Spawn step by spawning a new

subsession s′′. This time, it happens that p3 is assigned to play wD . Figure 4.9 (d) depicts
({p2},Θ′′, (νs :GCM )N5)withΘ′′ = Θ′[s′′ ↦→ {p1, p3, p4}], where: ({p2},Θ′, (νs :GCM )N4)

Spawn−−−−→
({p2},Θ′′, (νs :GCM )N5)

N5 = ||k∈K((Hk, pk) || s[pk] : (−with end, bk) || s′[pk] : (endL′
k
, b′k) || s′′[pk] : (..., ε)) || ...

4.6. Type System and Properties

We now define the typing rules and show that well-typed systems enjoy subject reduction,
session progress, and global progress.

4.6.1. Typing rules

The typing judgments used by our system are of the shapes Γ,Σ ⊢ N ▷ ∆ and ⊢ (Θ,F , (νs :
G)N). The latter is for the top-level system, i.e., a network under the root session restriction;
the former is for all other rules for processes and networks. Standard environment Γ maps
the root session name to a top-level global type (s :G). Configuration environment Σ maps
channel values to configuration types (s[p] : (L, b)), and participant names to role sets
and handler types (p:R : {Li}i∈I). Session environment ∆ maps channels to guard types
(c :L). We write: ∆end for an end-only session environment (i.e., ∆end(c) = end, for all c
in ∆end); Σ1 ·Σ2 for the union of two configuration environments with disjoint domains;
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Γ,Σ ⊢ N ▷ ∆

TELoop
∀i ∈ 1..n . (Hi = [Li]λxi . Pi ∧ s :G, ∅ ⊢ Hi ▷ ∅)
p ∈ Rids ∀gz(...)=L ∈ (G ↾R) . {Li}i∈1..n ⊢ L
s :G, p:R : {Li}i∈1..n ⊢ (H1 · ... ·Hn, p) ▷ ∆end

THandler
Γ, ∅ ⊢ P ▷ x : L wf(L)

Γ, ∅ ⊢ [L]λx. P ▷ ∅

TSnd Γ,Σ ⊢ P ▷ c : L,∆end

Γ,Σ ⊢ c[r]!l.P ▷ c : r!l.L,∆end

TRcv Γ,Σ ⊢ P ▷ c : L,∆end

Γ,Σ ⊢ c[r]?l.P ▷ c : r?l.L,∆end

TMultSnd Γ,Σ ⊢ P ▷ c : L,∆end

Γ,Σ ⊢ c[R]!l.P ▷ c : R!l.L,∆end

TEnd
Γ, ∅ ⊢ loop ▷ ∆end

TMon Γ,Σ ⊢ P ▷ c : L,∆end

Γ,Σ ⊢ c[r]↓.P ▷ c : r↓.L,∆end

TSpawn s : G ∈ Γ g(r;R;R) = ... ∈ G
Γ,Σ ⊢ c[r;R;R](g) ▷ c : g(r;R;R).end

TCfg
Γ, s[p] : (L, b) ⊢ s[p] : (L, b) ▷ ∆end

TEnd
Γ, ∅ ⊢ 0 ▷ ∆end

TPar
Γ,Σ1 ⊢ N1 ▷ ∆1 Γ,Σ2 ⊢ N2 ▷ ∆2

Γ,Σ1 ·Σ2 ⊢ N1 ||N2 ▷ ∆1 ·∆2

⊢ (Θ,F , (νs : G)N)

TSystem
wf(G) s :G,Σ ⊢ N ▷ ∆ (∆,Σ,F ,Θ) coherent

⊢ (Θ,F , (νs : G)N)

Figure 4.14.: Typing rules: (top) event loops, static/active handlers, and networks; (bot-
tom) the top-level system.

and ∆1 ·∆2 for the union of ∆1 and ∆2, provided for {i, j}={1, 2}, c :L∈∆i implies
(c ̸∈∆j ∨∆j(c)= end). Basically, ∆1 ·∆2 is the union if no c is in both ∆i, unless one/both
map to end; else, it is undefined. An append c :L,∆ is defined if c is not in ∆; analogously
for Γ and Σ.
The top three rows in Figure 4.14 give the rules for event loops and handlers. TELoop

types the event loop for participant p of role set R under Γ = s :G. It checks each handler
is well-typed, and the set of guard types together provides sufficient coverage of all
subprotocols projected from G onto R, i.e., ∀gz(...)=L∈(G ↾R).{Li}i∈1..n ⊢ L. Intuitively,
the event loop must cover every possible event in the overall protocol that may involve
p. The coverage judgment {Li}i∈1..n ⊢ L simply asserts that (1) at least one guard type
(and thus handler) on the LHS can be matched to L’s normal activity, (2) similarly for the
failure handling activity, and (3) recursively so for the remaining unmatched portions of
each activity, if any. The event loop is then typed with its set of guard types (p:R : {Li}i∈I)
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as Σ, and ∆end (the event loop becomes the terminal term in an active handler process, cf.
Fire). We leave the full definition of coverage to Appendix B.6.

Example 23 (Coverage). Consider {Li}i∈I ⊢ L with L′ where L= p:a?l1.q:b!l2. Coverage
requires that some prefix of L matches a guard type (i.e., handler) in {Li}i∈I , say, L1 = a?l1.
{Li}i∈I is then required to provide coverage of the remaining portion of L, i.e., b!l2; and
similarly for L′.

THandler types a handler under an empty Σ and empty∆ – it checks that the handler body
uses the channel argument fully according to the guard type. As discussed in Section 4.4.3,
it restricts the guard type to a valid handler behavior: we write wf(L) to simply assert
that L is (1) flat (all selections/branchings must be unary sends/receives), (2) only
the initial action is potentially blocking (receive, spawn or suspicion), and (3) does
not contain recursion. TSnd TMultSnd, TRcv and TMon are for both static handler code
(under THandler) and active handler processes (under TPar). They type a send, multisend,
receive, and monitoring action on c, respectively, if the continuation is typeable. TSpawn
types a spawn action on c with the matching spawn type if the top-level G contains the
subprotocol definition. TEnd types loop (end of a handler body) by ∆end and Σ= ∅.
The fourth row in Figure 4.14 gives the other rules for networks. TCfg types a configu-

ration. TPar types a parallel composition of two typeable networks if their Σi (resp. ∆i),
i∈{1, 2}, have disjoint domains. TEnd types the terminated network 0. Lastly, TSystem
types the top-level system (i.e., root session restriction) together with the reduction en-
vironments Θ and F . It checks that the top-level global type is well-formed; network N
is typeable under the corresponding Γ = s :G, some Σ, and some ∆; and that the tuple
(∆,Σ,F ,Θ) is coherent, discussed next.
Coherence. Coherence (or consistency) is the central typing invariant in MPSTs that
ensures participant interactions remain safe throughout reduction. It is used as an invariant
property of runtime networks to establish subject reduction. In standard MPSTs (e.g.,
[CDYP16]), coherence is based on pairwise duality of endpoint types: duality is the
intuitive compatibility relation between two participants, where any action (e.g., output)
on one side is safely balanced by a corresponding action (e.g., input) on the other. There
are two parts to our approach for the present framework. First, we extend the standard
coherence as intrasession coherence, i.e., for individual (sub)sessions, to cater to our
event-driven model and failure handling. Second, we introduce a notion of intersession
coherence – an invariant property across subsessions to ensure their concurrent execution
and cross-session failure handling remain safe. It ensures: (1) a subsession only involves
participants from its parent subsession; and (2) for unsuspected participants, every stopped
configuration has a non-stopped ancestor configuration with an active failure handling,
and all descendent configurations of a configuration with an active failure handling
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are stopped. The exact definition of intrasession and intersession coherence is a detail
for understanding the proofs of our properties (Section 4.6.2), for which the complete
technical development is available in the supplement (e.g., Appendix B.6.2).

Definition 21 (Coherence). Assuming a well-formed top-level G, the tuple (∆,Σ,F ,Θ),
used to type a system, satisfies coherence if (i) it satisfies intrasession coherence for all s∈Θ,
and (ii) it satisfies intersession coherence. We may simply say (∆,Σ,F ,Θ) is coherent.

4.6.2. Properties

We can now present the key properties of our system. See the supplement (Appendix B.6)
for the more details and proofs. We note the previously discussed assumptions of our
system, namely that (1) participants playing the role(s) declared in the root subsession
are robust, and (2) the runtime infrastructure provides sufficient participants for role
assignments during execution. In failure-sensitive distributed systems (1) is commonly
achieved by making use of a so-called “application master”; this component is typically
made fault-tolerant by managing its critical state with a fault-tolerant coordination service,
e.g., ZooKeeper [Hun10], and (2) is a matter of runtime availability of resources.
Subject reduction states that a well-typed system remains well-typed after any reduction

step.

Theorem 3 (Subject Reduction). Let ⊢ (Θ1,F1, (νs :G)N1) such that (Θ1,F1, (νs :G)N1) →
(Θ2,F2, (νs :G)N2). Then ⊢ (Θ2,F2, (νs :G)N2).

Note that a well-typed system is coherent by TSystem. The proof proceeds as follows. First,
as in Honda et al. [HYC16] and Coppo et al. [CDYP16], we define a typing environment
reduction ((∆, Σ, F , Θ) → (∆′, Σ′, F ′, Θ′)) that describes how the environments
are updated in relation to asynchronous network reduction. In other words, it mimics
the interaction dynamics of network reduction at the local type level. The proof is by
enumerating over all cases of typing environment reduction. Second, we prove type
preservation: a well-typed network (Γ,Σ ⊢ N1 ▷ ∆) remains well-typed after a reduction
step to N2. in some cases the proof requires inductively splitting a network into parts that
are not necessarily coherent. Subject reduction follows from preservation of coherence
and type preservation.
The key session communication safety property in our system, including safe failure

handling, follows as a corollary. For a given session s, we say an unsuspected p: (i) has a
reception error if it has a receive subprotocol state but the queued label is not accepted by
that receive and Clean does not apply; (ii) is stuck if it is blocked on a receive or spawn
due to waiting for another unsuspected p′, and vice versa; and (iii) has a non-covered
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failure if it is blocked on a receive or spawn due to waiting for a suspected p′, and no
failure handling in the entire monitoring tree applies.

Corollary 3.1 (Communication Safety). Let ⊢ (Θ,F , (νs :G)N)). For every session s in Θ
and unsuspected p in s, p has the following properties: (i) p does not have a reception error;
(ii) p is not stuck; and (iii) p does not have a non-covered failure.

Communication safety is a direct consequence of the coherence invariant.
The other key property of our system is global progress: progress for an entire (well-

typed) top-level system of multiple, concurrent subsessions in the presence of concurrent
failures. There are two supporting properties. First, our approach adapts that of Coppo et
al. [CDYP16]: we define (a) global type reduction, which models interaction dynamics at the
global type level, and (b) amirror relation that relates a global type to typing environments
and their configuration types via projection. Fidelity then states that a subsession s in a
(coherently) well-typed network reduces in tandem with its corresponding global type
G, and that the G′ at each step mirrors the configuration types of s. Second, we prove
subsession progress for every individual subsession that is “live”: i.e., the subsession is not
terminated, has no stopped participant (i.e., no participant with a stopped configuration),
and has no outer failure (i.e., no failed participant whose failure is handled in an ancestor
subsession – its role was assigned by the ancestor subsession). Our subsession progress is
a generalization of the standard progress property of MPSTs that is limited to a single
session and does not consider any notion of failure (cf. Section 4.3.3).

Theorem 4 (Subsession Progress). Assume an initial system ⊢ (Θ1,F1, (νs :G)N1) and
(Θ1,F1, (νs :G)N1) →∗(Θ2,F2, (νs :G)N2). Let s′ in Θ2 such that s′ is not terminated,
has no stopped participant, and has no outer failure. Then (Θ2,F2, N

′
2) → (Θ3,F3, N3)

via a reduction in session s′, with either N ′
2 =N2 or (Θ2,F2, N2) →∗ (Θ2,F2, N

′
2).

The proof builds on subject reduction and fidelity by adapting the approach of Coppo et
al. [CDYP16]. By fidelity, for any “live” subsession s′, we have a global type G that has
reduced in tandem with s′. Let p be any participant active in the first action described in
G (i.e., in its active failure handling if applicable, else its normal activity). We show that
this first action ensures a reduction step in s′ is available. The proof is by enumerating
over all possible shapes of the first action, supported by the following. (1) By fidelity, the
configuration type of p contains this first action in their subprotocol state, and in the
case of a receive action the label is present in the queue. (2) If p does not have an active
handler for s′, then coverage ensures that p’s event loop has a handler with a matching
guard type for its subprotocol state (i.e., a handler can be fired for the pending event). (3)
An active event handler (for any subsession s′′) can always reduce back to the event loop
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(this corresponds to the (Θ2,F2, N2) →∗ (Θ2,F2, N
′
2) clause in the theorem). All together,

these ensure that p can always perform a reduction step for this first action.
Global progress states that a system can always progress unless it has completely termi-

nated.

Theorem 5 (Global Progress). Assume an initial system ⊢ (Θ1,F1, (νs :G) N1) and a
reduction (Θ1,F1, (νs :G)N1) →∗(Θ2,F2, (νs :G)N2). Then either Θ2 is empty, or without
using Susp we have (Θ2,F2, (νs :G)N2) → (Θ3,F3, (νs :G)N3).

A completely terminated system is signified by an empty monitoring tree (i.e., when Θ2 is
empty), implying that every subsession was terminated or stopped, and the configuration
terms and monitoring tree entries have been removed via Sess-GC and Root-GC. The proof
idea is as follows. Event-driven concurrency is crucial to global progress in our framework:
despite concurrent subsessions, progress in any given subsession is independent of all other
subsessions (i.e., actions in one subsession are never blocked by those in another). We
thus consider systems where every subsession is not “live” (otherwise subsession progress
would apply to one) – in such cases, however, we show that some other reduction step is
available, e.g., one of the garbage collection rules. Here, intersession coherence ensures
every subsession is safely covered by a failure handling in some ancestor subsession. The
side condition regarding Susp ensures that progress does not abuse failure suspicion to
bypass actually stuck sessions.

4.7. Evaluation

Example applications. Section 4.2–4.3 introduced our session-typed CM, which demon-
strates how all the various features of our system are needed in a practical fault-tolerant
protocol. The table below summarizes further examples from MPST literature that we
have specified and implemented (with added failure handling) using our Scala toolchain
to demonstrate its expressiveness.

(1) Core MPSTs (MP interactions, choice, recursion)
2-Buyers, Streaming [HYC16]
Sutherland-Hodgman [NHYA18]
(2) Dynamic/parameterized participants
3-Buyers [CDYP16]
N -stage Pipe [CHJ+19]
N -stage Ring [CHJ+19]

(3) Application-level exceptions/interrupts
Two Factor [FLMD19]
Resource Control [DHH+15]
WebCrawler [NY17]
Interruptible 3-Buyers [CGY16]
Basic failure handling (cf. Figure 4.16)
Failure-Aware Streaming [VCE+18]
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Figure 4.15.: Comparing mean execution times of our Session-CM to the Spark-CM on
TPC-H queries. The numbers on the bars give the execution time of our
Session-CM normalized to the Spark-CM.

The main takeaways, corresponding to parts (1)–(3), are that our system: (1) subsumes
the core communication constructs of standard MPSTs; (2) by necessity supports com-
munication patterns previously limited to relatively exotic MPST features; and (3) can
express MPST-based application-level exception and interrupt patterns.
Runtime performance (Spark use case). To demonstrate the practicality of our frame-
work, we compare the performance of the full version of our Session-CM (Appendix B.7),
running over our session runtime, to Spark-CM. Our Session-CM is not just a “toy” – it is
compatible with the other Spark Core components and supports the execution of existing
third-party Spark applications without any code modification, enabling this experiment.
Note, we only reimplement the CM, so our session runtime conducts only the Session-CM
internal messaging, not the communications of the Spark application running on top.
The aim is to measure the overheads incurred by our toolchain and session runtime

prototype implementation. Our theory introduces additional mechanisms, i.e., potential
sources of overhead, mainly: (i) the CFSM used to track the session protocol state and
selection of event handlers at runtime, (ii) dynamic checking of linear channel usage, and
(iii) infrastructure used to implement subsessions (e.g., additional message queues). We
note our prototype is not optimized in general (e.g., some abstraction layers around our
message queues could be eliminated), whereas Spark’s CM is a mature, industrial-strength
component.
We use a Spark implementation5 of the industry-standard TPC-H benchmark as the

benchmark application. TPC-H specifies a set of 22 complex queries on a database of 8

5TPC-H queries implemented in Spark, https://github.com/ssavvides/tpch-spark.
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ST & MPST works aMP CSFH FS SubS Par DP RR EDP
This chapter ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[APN17] sync. mask. ✓ ext.
[VCE+18] ✓ ✓
[FLMD19] binary
[DHH+15] ✓ app.
[CGY16] sync. app.
[CHY08] app.
[CAP17] react.
[DH12] sync. ✓ ext.
[CHJ+19] ✓ ✓
[HKP+10] binary ✓

aMP Asynchronous MPSTs
CSFH Partial crash-stop failure

handling
FS False suspicions of failures
SubS Subsessions
Par Participant parameterization
DA Dynamic role assignment
RR Failed role replacement
EDP Event-driven programming

Figure 4.16.: Comparison to related works; Section 4.8 clarifies where entries are neither
“yes” (✓) nor “no” (blank).

tables; we use a database scaling factor of 10 (i.e., database size ∼10GB). Each benchmark
run measures the total time (including application startup time) to execute one query
as an independent application using (a) our Session-CM and session runtime, and (b)
the Spark-CM, for scheduling; all other factors are the same. In both cases each Spark
application (query) has three servers with identical hardware (Intel Xeon E-2278G CPUs,
64GB RAM) and running Ubuntu 18.04.3 LTS.
Figure 4.15 reports the average (arithmetic mean) of the execution times (y-axis) and

standard deviations (error bars) of 10 runs per query. The plot further states the normalized
execution time of the Session-CM for each query, i.e., the result of dividing the average
execution time of the Session-CM by the average execution time of the Spark-CM. Across
all 22 queries, our Session-CM exhibits an average overhead below 10% (and a maximum
below 16.5%) compared to Spark-CM. We repeated the experiment allocating two servers
to a Spark application, where a server running an executor fails after 20s (by killing it) and
is successfully replaced, for a query we picked at random (Q18). The average execution
times of 5 runs are: 99.19s for Spark-CM (std. dev. of 2.23s), and 109.4s for our Session-CM
(std. dev. of 0.44s), i.e., an overhead of ∼10%.

4.8. Related Work

Failure handling in MPSTs. In session types literature, the two main related works on
failure handling in MPSTs, both without performance evaluation, are by Adameit et al.
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[APN17] and Viering et al. [VCE+18]6. Adameit et al. [APN17] extend MPSTs by wrapping
interactions in optional blocks to model communication link failures. They require default
values for input actions that may thusly fail, giving a form of failure masking (mask. in the
CSFH column of Figure 4.16) where the protocol specification outside of an optional block
is agnostic to whether a failure occurs or not. When execution discards the block of some
role due to failure, peer roles must also discard their corresponding blocks: such agreement
in the presence of failures is only possible with synchronous channels (sync. in the aMP
column) or – boiling down to the same – perfect failure detection (no false suspicions).
This limits applicability to real-world distributed systems that are asynchronous. Their
approach includes nested protocols [DH12] for external participant invitations during a
nested session call (ext. in the DA column), offering a form of dynamic role assignment. The
authors argue that the main example, a rotating coordinator algorithm, can be considered
as a distributed asynchronous process; because of its structure, e.g., it uses no choice and
outputs have no continuation different than 0 [APN16].
Viering et al. [VCE+18] (and Chapter 3) extend MPSTs with try-catch handling for

process crash failures. They closely follow traditional MPSTs by directly preserving try-
catch structures across global types, local types, and “multithreaded” session π-calculus
processes. Their approach works by coupling the reduction (i.e., control flow) of the
try-catch construct at the process level to a specific mechanism for detecting distributed
process failures based on a fail-safe coordinator, e.g., ZooKeeper [Hun10]. Their system
assumes perfect failure detection. By contrast, our model makes no assumptions on the
accuracy [CT96] of failure detection (our communication safety and progress are ensured
despite continued actions by falsely suspected peers), and monitors are peers that may be
failure-prone themselves. Our framework thus applies to concrete systems based on (e.g.)
ZooKeeper, but is also not coupled to any specific oracle infrastructure.
Binary sessions, exceptions, and events. Fowler et al. [FLMD19] add an exception
handling process primitive for failures in binary sessions. Type-level treatment of failure
handling behaviors between the remaining (and new) peers, as in this chapter, cannot
be studied in a binary setting (binary in the aMP/CSFH columns). Besides the above, the
existing session types literature (e.g., [CHY08, CGY16, DHH+15]) has only addressed
application-level failures (app. in the CSFH column). These works consider “exceptional”
behaviors in the sense of application logic (e.g., an inappropriate payload value), as
opposed to actual participant process failures – the former deal with exception-like
protocol control flow over a normally functioning session between fixed participants,
while the latter necessitates reasoning about sessions with changing participants due to
failures and replacements. Our work tackles the latter by modeling protocols with explicit

6 We provide a performance evaluation for our previous work [VCE+18] in Chapter 3.
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specification of participant failure detection/notification, asynchronous failure handling
behaviors, and retrying failed interactions with dynamically replaced participants. None
of the works cited above study fault-tolerance in this regard nor event-driven concurrency
for MPSTs.
Hu et al. [HKP+10] present a binary session calculus for encoding EDP patterns. They

add a non-blocking primitive for polling channels for messages and a session typecase
construct based on dynamic typing [ACPP91], while we model event loops and handlers as
first-class concepts. Their work does not consider failures (as mentioned, specification of
fault-tolerant, multiparty communication patterns cannot be studied in a binary setting),
and does not consider the challenges that we address for MPSTs: (partial) projections,
coherence, or fidelity. Cano et al. [CAP17] present a related binary calculus (without
types) for reactive sessions (react. in EDP). Coppo et al. [CDYP16] develop an additional
interaction type system on top of MPSTs to analyze global progress; our system offers
global progress for concurrent (sub)sessions within MPSTs. Our notions of subprotocols
and subsessions are inspired by the nested protocols of Demangeon and Honda [DH12].
We exploit subsessions to (1) incorporate lightweight practical participant parametericity
and dynamic role assignment, and (2) reason about the runtime structure of failure
monitoring between subsessions. Their work does not consider failures, and their progress
property is restricted to a single session.
Outside of session types. This chapter (and more broadly MPSTs) promotes a methodol-
ogy for safe development of message passing applications based on top-down protocol
specification and distributed endpoint implementation. There exists a wide range of
techniques and tools that focus more, in comparison to this chapter, on verification than
software development, in the context of distributed systems and algorithms with failure
handling. They can be considered on a scale from mostly “manual” to automated tech-
niques. In this regard, the verification aspect of our toolchain can be considered as fully
automated (for our specific MPST-based properties) after the user supplies the protocol
specification as a global type.
At the former end of the scale are verification approaches based on interactive proof

tools such as Verdi [WWP+15] and IronFleet [HHK+15]. Recent approaches [SWT18,
TLM+18, vGKB+19] employ modularization of proofs or transformation of asynchronous
programs into synchronous versions to reduce the user effort. These approaches allow
establishing user-defined functional correctness properties for distributed systems, but
can require substantial poof engineering effort. The formal specifications written by the
user can become quite complex [CCE+21].
Semi-automated verification approaches like PSync [DHZ16] and Ivy [PMP+16] can

automate parts of the verification by restricting the underlying model. PSync is a domain-

126



specific language based on the heard-of model [CBS09] and structures programs into
sequentially executed rounds. Ivy verifies safety properties for algorithms; it introduces a
modeling language based on EPR logic [PdMB10] for which the checking of invariants is
decidable. It interactively guides a user via counterexamples to a valid invariant.
At the other end of the scale are fully automated verification techniques that trade off

the supported class of properties and algorithms/systems, and perform full or partial
verification. Model checking tools can transparently check distributed system implemen-
tations [YCW+09], be combined with a tailored programming language [KAB+07], and
automatically verify restricted classes of distributed algorithms [KLVW17, MGJ+19]. Ap-
plications of these tools to concrete implementations of distributed systems may be best
effort (i.e., incomplete).

4.9. Conclusion, Limitations and Future Work

We presented an MPST framework for practical fault-tolerant distributed programming.
We formalized our approach, proving communication safety and global progress, and
demonstrated its practicality by implementing and evaluating a session-typed CM for
Apache Spark.
Our present formulation inherits some of the standard conservative restrictions of MPSTs.

For example, our global type branch is a directed choice, meaning the immediate action
in every choice case is between the same two roles/role sets (e.g., m→W ). We believe
it is possible to port techniques for relaxing such restrictions from recent works into our
setting, e.g., by augmenting global type expressiveness using MPST-based behavioral type
properties [SY19], or by incorporating explicit connection actions [HY17] into subsession
initiation.
As future work, we are considering further reimplementation studies of components from

related middleware systems in the Apache middleware family (e.g., Storm, Fink, Kafka).
We are also considering further performance evaluations, e.g., scalability in relation to
data set size and number of worker processes, as part of improving our toolchain and
runtime implementation.
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5. Conclusion and Future Work

This thesis introduces two formal models, based on MPSTs, for verified partial failure
handling, supporting the specification and verification of protocols that deal with crash-stop
failures. This demonstrates that behavior type disciplines, based on MPSTs, can statically
verify relevant properties of distributed applications that deal with partial failures. We
now conclude the thesis and then discuss some interesting avenues for further research.

5.1. Conclusion

This thesis extends MPSTs to support the specification and verification of fault-tolerant
distributed applications - applications that are challenging to implement correctly and
where lightweight verification could be highly beneficial to developers. Our type systems
ensure relevant properties such as progress and the absence of communication errors. We
show that our two typing disciplines can specify and verify protocols and implementations
that handle partial failures. We provide toolchains for both frameworks that enable
lightweight verification of failure-aware distributed applications. Moreover, we show that
our implementations provide good runtime performance. This thesis demonstrates that
type systems, based on MPSTs, can verify relevant properties of failure-aware distributed
applications and provide developers of distributed applications with lightweight verification
tools. We now draw a more detailed conclusion for each model separately.

Lightweight coordinator-based partial failure handling. Our first model, which we
present in Chapter 3, adds typing support for crash-stop failure handling in a lightweight
coordinator model – a common model of many real-life systems. The model carefully
exposes potential problems in distributed applications due to partial failures, such as
inconsistent endpoint behaviors and orphan messages. Furthermore, to ensure that our
model is practical, it involves the coordination service sparingly because interactions
with the coordination service are more expensive than regular messages. Our typing
discipline addresses these challenges by building on the mechanisms of MPSTs, e.g.,
well-formedness of global types for sound failure handling specifications, modeling of

129



asynchronous permutations between regular messages and failure notifications in sessions,
and the type-directed mechanisms for determining correct and orphaned messages in
the event of failures. We adapt the coherence invariant of session typing environments
(i.e., endpoint consistency) to consider failed roles and orphan messages. The type system
statically ensures subject reduction in the presence of failures. Informally, even under
concurrent failures, we statically ensure that distributed applications remain safe.
We provide a prototype implementation for our model, featuring Apache ZooKeeper as

its coordination service. The evaluation shows that a session-type LR model has a runtime
performance comparable to failure agnostic baselines in non-failure cases, thus validating
the design goal of minimizing the involvement of the coordination service outside of
failure handling.

Practical fault-tolerant protocols. Our second model enables the specification and
verification of practical fault-tolerant protocols in MPSTs. It supports partial failures due
to crash-stop failures, even under non-perfect failure detection, and provides language
features to specify, implement, and verify practical asynchronous fault-tolerant distributed
applications. It is the first work offering an event-driven programming model for MPSTs.
As an MPST theory, the event-driven model facilitates a tractable integration of a host

of features needed to express fault-tolerant communication patterns that can replace
failed processes and restart failed protocol segments. We show that our type system
statically ensures subject reduction, protocol fidelity, progress, and global progress for
concurrent sessions in the presence of failures and their handling. In other words, even
under concurrent failures, we statically ensure that a distributed application with advanced
concepts, such as replacing failed participants will progress safely. It is worth highlighting
that traditionally MPST systems do not provide global progress for interleaved sessions,
even in a setting without failures. We exploit the EDP characteristics to develop our global
progress property.
We demonstrate the practicality of our approach by implementing a prototype of

our framework and realizing the Session-CM, which can schedule real Apache Spark
applications. Apache Spark has an average overhead of around 10% in both the non-failure
and failure evaluation on an industry-standard benchmark using the Session-CM instead
of Spark’s default CM.

5.2. Future Work

We now briefly discuss some interesting directions for future work.
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Expressiveness of global types. Ourmodels build on traditional MPSTs [HYC16, CDYP16]
and inherit their restrictions on well-formed global types. Some recent works increase the
expression of MPST protocols, allowing, in particular, for more flexible branching patterns.
MPST-based behavioral type properties [SY19] and model checking [HY17] can increase
the expressiveness of global types. Enabling more flexible protocols is an orthogonal ques-
tion, and we are convinced that the proposed failure handling in both models will play
well together with more flexible protocols. Nonetheless, we believe that it is a worthwhile
direction to pursue, primarily with the aim of making MPSTs for distributed applications
more accessible to a broader audience.

Local data state. We tackle a significant challenge in this thesis: ensuring consistent
communication even under concurrent failures. In our experience, this can also simplify
the development of applications that ensure consistent data state under concurrent failures.
Nonetheless, we think it could be interesting to combine MPSTs based failure handling
with concepts that ensure data consistency. Potential options include: extending our model
with checkpoints; integrating data state into the types; and establishing and verifying
safe storage patterns that depend on reliable storage, e.g., ZooKeeper [Hun10].

Failure models. There are other failure models besides the standard crash-stop failure
model. Crash-stop with recovery and network partitions generalize crash-stop failures
and play an important role in distributed middleware systems [ATAA18]. Furthermore,
Byzantine failures [LSP82] could be an exciting model, especially with the advent of Intel
SGX and blockchains.

Verification of custom functional properties. Our works establish properties like subject
reduction, which provides communication safety and progress. It could be interesting
to study whether our approach can be combined with techniques such as interactive
theorem proving, e.g., Coq [BC13] or SMT solving, e.g., Z3 [dMB08] to verify custom
functional properties of protocols and their implementations, on top of the ensured typing
properties. Using these tools in combination with our model could be advantageous. Our
frameworks ensure desired properties and restrict the space of possible communications.
Proving behavior properties of distributed algorithms was also a motivating factor for the
work of Adameit et al. [APN17].

Further features. The model that we present in Chapter 4, provides a wide range of
features and is expressive enough to express complex middleware systems such as a
cluster manager. Nevertheless, there are additional features that would be desirable for
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the purpose of implementing failure tolerant middleware systems. Such features include
failure-free addition and removal of participants to and from a session to adjust to changes
in resource demands (explicit connection actions [HY17] could be an option for that);
and external interaction, i.e., interaction with external parties and not just between
participants in a session. External interactions can affect the communication in a session
and commonly occurs in middleware systems.

Further empirical evaluation. We implemented practical algorithms in our models, e.g.,
a distributed logistic regression model and practical systems such as a CM for Apache
Spark. These are essential steps, but we believe that the study of additional middleware
systems that deal with failure is desirable. This would demonstrate the expressiveness of
our models and identify potential shortcomings.

Optimization. The focus of this work was to ensure safe partial failure handling. Per-
formance was not a primary objective. We believe that more efficient synchronization
algorithms that ensure safe failure handling, and optimization techniques, such as the
combination of coordination messages with normal data messages, could improve the
runtime performance of our model.
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A. Appendix for Chapter 3

A.1. Additional Examples: Examples of MPST Types and
Processes with Coordinator-based Failure Handling

We give versions of the main motivating examples in standard MPST literature [HYC16]
extended to support partial failures.

Two-buyers protocol

The Two-Buyers Protocol [HYC16, § 2.3,3.4] derives from a Web services use case. In
the original protocol specification, the roles Buyer1 (B1) and Buyer2 (B2) carry out a
joint transaction to buy a book from an online Seller (S). The role of B1 is to offer to pay
some share of the total price to B2. B2 makes the final choice whether to proceed with the
purchase (by paying the remaining amount) or not.
Figure A.1 extends the original global type to a fault tolerant version of this application

protocol, bearing in mind the asymmetry of the B1 and B2 roles. We shall assume S is
robust.
In the initial exchanges, given by the inner try-block, B2 sends S the name of the book

(l1), S sends B1 and B2 the price (l2), and B1 sends B2 the amount it is willing to contribute
(l3) (as in the original protocol). If B1 crashes during this part, then S acknowledges this
event by resending the price to B2 (l7) in the inner handling enviroment—asynchrony
and inherent concurrency of the interactions between S and the Buyers and this potential
failure means that S cannot be certain about the order of the relevant messages arriving
at B2.
Whether or not B1 crashes, B2 and S proceed to the choice of B2 to buy (ok) or not buy

(quit) the book (this segment is also as in the original protocol). However, if B2 crashes
at any point of the protocol, then the protocol must simply end for S, and also for B1 if it
is live, as given by the outer handling environment.
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GTB =
(︁ (︁

B2→S l1(string).
S→B1 l2(int).
S→B2 l3(int).
B1→B2 l4(int).

B2 → S

{︄
ok1().B2→S l5(string).S→B2 l6(date).end
quit1().end

▶
{B1} : S→B2 l7(int).

B2 → S

{︄
ok2().B2→S l8(string).S→B2 l9(date).end
quit2().end)︁2

.end
▶
{B2} : end,
{B1, B2} : end)︁1
.

end

Figure A.1.: The Two-Buyers Protocol [HYC16, § 3.4] extended with partial failure han-
dling.

Projection to local types

The local type projection (Definition 10) of GTB onto B1, GTB↾B1, is:

(︁ (︁
S?l2(int).B2!l4(int).end▶{B1} : end

)︁(2,∅)
.end

▶{B2} : end, {B1, B2} : end
)︁(1,∅)

.end

The projection onto B2, GTB↾B2, is:
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(︁ (︁
S!l1(string).S?l3(int).B1?l4(int).

S!

{︄
ok1().S!l5(string).S?l6(date).end
quit1().end

▶
{B1} : S?l7(int).

S!

{︄
ok2().S!l8(string).S?l9(date).end
quit2().end)︁(2,∅)

▶{B2} : end, {B1, B2} : end
)︁(1,∅)

.end

The projection onto S, GTB↾S, is:(︁ (︁
B2?l1(string).B1!l2(int).B2!l3(int).

B2?

{︄
ok().B2?l5(string).B2!l6(date).end
quit().end

▶
{B1} : B2!l7(int).end

B2?

{︄
ok().B2?l8(string).B2!l9(date).end
quit().end)︁(2,∅)

▶{B2} : end, {B1, B2} : end
)︁(1,∅)

.end

Processes

We give example of well-typed processes implementing each of roles.
For B1:

a[B1](y).y :
(︁(︁

S?l2(x2).B2!l4(x2 ÷ 2).0▶{B1} : 0
)︁(2,∅)

.0

▶{B2} : 0, {B1, B2} : 0
)︁(1,∅)

.0

For B2:

147



a[B2](y).y :(︁
(

def X(z) = if (z < 100) S!ok1().S!l5(“addr”).S?l6(x6).0
else S!quit1().0

in S!l1(“title”).S?l2(x2).B1?l4(x4).X⟨x2 − x4⟩)
▶{B1} :

def X(z) = if (z < 100) S!ok2().S!l8(“addr”).S?l9(x9).0
else S!quit2().0

in S?l7(x7).X⟨x7⟩
)(2,∅).0

▶{B2} : 0, {B1, B2} : 0
)︁(1,∅)

.0

For S, assuming some helper functions getPrice and getData on data:

a[S](y).y :(︁
(

def X() = B2?{ok1().B2?l5(x5).S?l6(getDate(x5)).0, quit1().0}
in B2?l1(x1).B1!l2(getPrice(x1)).B2!l4(getPrice(x1)).X⟨⟩)

▶{B1} :
def X() = B2?{ok2().B2?l8(x8).S?l9(getDate(x8)).0, quit2().0}

in B1!l7(99).X⟨⟩
)(2,∅).0
▶{B2} : 0, {B1, B2} : 0)︁(1,∅)

.0

Streaming protocol

The original Streaming Protocol [HYC16, § 3.4] demonstrated a recursive global type for a
continuous stream of messages, where two producer roles (DP, KP) independently send to
a middleman role (K) in a join pattern, followed by K forwarding a message to a consumer
role (C). (The role names are taken from the original protocol.)
Figure A.2 extends the protocol to handle the potential failures of the DP and KP; we

assume the other two roles are robust. The idea is if just one of the producers crashes, the
now fault tolerant protocol should attempt to continue with the other producer. We keep
the “once-unfolded” specification from the original protocol definition in the try-block,
but use the shorter folded versions in the handling activities.
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(︁
µt .
DP→K l1(bool).
KP→K l2(bool).
K→C l3(bool).
DP→K l1(bool).
KP→K l2(bool).
K→C l3(bool).
t

▶
{DP} : µt ′.KP→K l4(bool).K→C l5(bool).t

′

{KP} : µt ′′.DP→K l6(bool).K→C l7(bool).t
′′

{KP, KP} : end)︁1
Figure A.2.: The Stream Protocol [HYC16, § 3.4] extended with partial failure handling.

This example also gives some intuition for the complexity in the design of our failure
handling constructs:without any explicit choice construct, adding failure handling naturally
introduces a safe notion of choice into the protocol between distinct paths, and also allows
the normally recursive protocol to end (if both producers crash).

A.2. Proofs

A.2.1. Preservation of coherence: supporting definitions and lemmas

To reason about asynchrony in ∆, we define message types permutation, which is very
similar to Definition 6.

Definition 22 (Permutable Message Types). We define mi · mj ↷ mj · mi, i ̸= j, saying mi · mj
can be permuted to mj · mi, if none of the following conditions holds:

• mi = ⟨p, q , l(S)⟩ and mj = ⟨p, q , l′(S′)⟩ for some l, l′, S, S′.

• mi = ⟨ψ, q⟩ϕ and mj = ⟨[q , F ]⟩ for some ϕ, F .

The following simple lemmas and definitions will be used in the proof for Theorem 1
(Preservation of Coherence).
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Lemma 1. If L⇂p = E [p w {li(Si).Li}i∈I ] and w ∈ {!, ?} for some E and Li, i ∈ I, then for
any p ′ ̸= p we have for any j, k ∈ I, j ̸= k, E [Lj ]⇂p ′ = E [Lk]⇂p′.

Proof. Immediately by Definition 10.

The next lemma states that, given a session environment, if each of its endpoint’s types
is projected from a well-formed global type, then this session environment is coherent.

Lemma 2. Given G is well-formed and ∆s = {s[p1] : L1, ..., s[pn] : Ln, s : ∅} and
{p1, ..., pn} = roles(G) and Li = G↾pi for i ∈ {1..n}. Then Γ, G : (∅, ∅) ⊢ ∆s is coherent.

Proof. By the structure of a well-formed G, the proof is immediate by Definition 10
(Projection), Definition 15 (Duality), and Definition 16 (Coherence).

And, after a failure occurs, if a coordinator has not yet issued failure notifications to
endpoints in a coherent ∆ for handling this failure, the types of all non-failed endpoints
are still dual to each other in ∆.

Lemma 3. Assuming ∆ = ∆0, {s : h} is coherent and ∆ →L ∆0 \ {s[p] : L}, {s :
remove(h, p) · ⟨[ψ, p]⟩} = ∆′. Then ∀s[p] : L ∈ ∆, if s[q ] : L′ ∈ ∆ then s[p] : L⇂q – (h)q→p ▷◁
s[q ] : L′ ⇂p – (h)p→q .

Proof. Assume the non-failed endpoints are {s[pi] : Li}i∈I . Since ∆ is coherent, {s[pi] :
Li}i∈I in ∆ are dual to each other after considering the effect of h on each of them. By the
rules defined in Definition 14, we know ⟨[ψ, p]⟩ will not affect any non-failed endpoints.
So the endpoints of {s[pi] : Li}i∈I in ∆′ are still dual to each other after considering the
effect of remove(h, p) · ⟨[ψ, p]⟩ on each of them.

Lemma 4. Let L− ht = L1, and L− ht = L2 then L1 = L2

Proof. Proof by induction over the length of ht.

A.2.2. Preservation of coherence: proof

Theorem 1 (Preservation of Coherence). Γ ⊢ ∆ coherent and Γ = G :s (F, hd),Γ
′ and

G :s (F, hd) ⊢∆ →L G :s (F
′, h′d) ⊢∆′ imply that Γ′, G :s (F

′, h′d) ⊢∆′ is coherent.

Proof. We prove the statement by mechanically proving each case. The cases can involve
outer [[Str]] which we handle implicitly.
For convenience we sometimes write s[p] : L⇂p − (h)p→q = s[p] : L⇂p for (h)p→q ̸= ∅

if (h)p→q contains only failure notification and they have no effect on s[p] : L⇂p We show
interesting and pragmatic cases.
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(I) Case [[Snd]], there exists s[p] : L ∈ ∆, L = E [q !{li(Si).Ti}i∈I ].
Without loss of generality assume

∆ = ∆0, s[p] : L, s : h

such that

G : (Fq, hd) ⊢∆0, s[p] : L, s : h
→L G : (Fq, hd) ⊢∆0, s[p] : E [Lk], s : h · ⟨p, q , lk(Sk)⟩

for some k ∈ I. Let ∆′ = ∆0, s[p] : E [Lk], s : h · ⟨p, q , lk(Sk)⟩.
Then we have the following cases:

(A) No notification in h makes the send obsolete, i.e. h contains no failure notifica-
tions that activate a handling environment in an enclosing try-handle.
In ∆, by Definition 14 (The Effect of ht) and Definition 16 (2). (a), for any
s[q ′] : L′ ∈ ∆ we have

s[p] : L⇂q ′ − (h)q ′→p = s[p] : E [q !{li(Si).Li}i∈I ]⇂q ′ − (h)q ′→p

▷◁ s[q ′] : L′ ⇂p − (h)p→q ′

In ∆, if q ′ = q , we have

L⇂q − (h)q→p = E [q !{li(Si).Li}i∈I ]⇂q − (h)q→p = E ′′[q !{li(Si).L′′′
i }i∈I ]

for some E ′′ and L′′′
i , i ∈ I. Note that this case assumes h contains no message

which will trigger failure handling at p or q. By Definition 15 (Duality), we
have L′ ⇂p − (h)p→q = E ′[p?{li(Si).L′

i}i∈I ] for some E ′ and

∀i ∈ I. s[p] : E ′′[L′′′
i ] ▷◁ s[q ] : E ′[L′

i].

By Definition 14 (The Effect of ht) and Definition 15 (Duality)

s[p] : E [Lk]⇂q − (h · ⟨p, q , lk(Sk)⟩)q→p

= s[p] : E [Lk]⇂q
= s[p] : E ′′[L′′′

k ]
▷◁ s[q ] : E ′[L′

k]
= s[q ] : L′ ⇂p − (h · ⟨p, q , lk(Sk)⟩)p→q

Since the types of other endpoints are not changed, Γ ⊢ ∆′ is coherent.

151



(B) h contains failure notifications that make the send obsolete.
Without loss of generality let F ⊆ Fset(h, p) be the failure set which triggers
the out most (activatable) try-handle at p.
Without loss of generality assume ∆ = ∆0, s[p] : L, s[q ] : L

′, s : h and assume
L = E [q!{li(Si).Li}i∈I ] and

G : (Fq, hd) ⊢∆0, s[p] : L, s[q ] : L
′, s : h →L

G : (Fq, hd) ⊢∆0, s[p] : E [Lk], s[q ] : L
′, s : h · ⟨p, q , lk(Sk)⟩

In ∆ we observe: L = E ′′′[
(︁
E ′′[q!{li(Si).Li}i∈I ]▶F : LF , H

↓)︁(κ,Fs
′)
], where

LF is the handler body for F , and F = ∪{A | A ∈ dom(F : LF , H
↓) ∧ A ⊆

Fset(h, p)} (notice that ⟨ψ, p⟩(κ,Fs
′) ̸∈ h because endpoint s[p] who is still

taking actions in ϕ), then by Definition 16 and Definition 15 (Duality) and
Definition 14 (The Effect of ht), we have

s[p] : L⇂q − (h)q→p

= s[p] : E ′′′[
(︁
E ′′[q!{li(Si).Li}i∈I ]▶F : LF , H

↓)︁(κ,Fs
′)
]⇂q − (h)q→p

= s[p] : E5[
(︁
L′
F ▶F : LF , H

↓)︁(κ,F )
]

▷◁ s[q ] : L′ ⇂p − (h)p→q

= s[q ] : E4[
(︁
L′′
F ▶H

↓′)︁(κ,F )
]

where L′
F ▷◁ L′′

F by Definition 15.

Now lk ̸∈ labels(E4[
(︁
L′′
F ▶H

↓′)︁(κ,F )
]) due to the occurrence of failure (case

failure makes send obsolete) and Definition 4.
In ∆′ we observe

s[p] : E [Lk]⇂q − (h · ⟨p, q , lk(Sk)⟩)q→p

= s[p] : E5[
(︁
L′
F ▶F : LF , H

↓)︁(κ,F )
]

▷◁ s[q ] : E4[
(︁
L′′
F ▶H

↓′)︁(κ,F )
]

= s[q ] : E4[
(︁
L′′
F ▶H

↓′)︁(κ,F )
]− p?lk(Sk)

= s[q ] : L′ ⇂p − (h · ⟨p, q , lk(Sk)⟩)p→q

= s[q ] : L′ ⇂p − (h)p→q

because ⟨p, q , lk(Sk)⟩ can be removed by Definition 4 (Well-formedness).(3)
and rule [[Cln]] since lk ̸∈ labels(E4[

(︁
L′′
F ▶H

↓′)︁(κ,F )
]) (i.e., ⟨p, q , lk(Sk)⟩ is a

message sent out after failures which can be handled by s[p] and s[q ] occur).
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(C) A done notification makes the send obsolete. This case cannot occur. Assume
this notification exists: ∃⟨ψ, p′⟩ϕ ∈ h for some p′ and ϕ = (κ, Fs).
Let the try-handle of κ inG be

(︁
G0▶H↑)︁κ. If ⟨ψ, pi⟩ϕ ∈ h, then pi ∈ roles(

(︁
G0▶H↑)︁κ).

Without loss of generality assume ∆ = ∆0, s[p] : L, s[q ] : L
′, s : h and assume

L = E [q!{li(Si).L′′
i }i∈I ]

G : (Fq, hd) ⊢∆0, s[p] : L, s[q ] : L
′, s : h →L

G : (Fq, hd) ⊢∆0, s[p] : E [L′′
k], s[q ] : L

′, s : h · ⟨p, q , lk(Sk)⟩

By case (done makes the send obsolete) we have that [[ClnDone]] does not apply
to ⟨ψ, p ′⟩ϕ.
By [[SndDone]], [[IssueDone]] and [[ClnDone]] not applicable we have:

L = E [
(︁
end▶H↓)︁ϕ.L′′′]

Therefore, we have a contradiction as by case we have: L = E [q!{li(Si).L′′
i }i∈I ]

(II) Case [[Crash]], there exists some s[p] : L ∈ ∆ that fails, and a failure notification
⟨[ψ, {p}]⟩ is sent to the coordinator. Definition 16 (duality) is only required between
alive participants and the failure notification only effects Definition 14 (The Effect
of ht) once they are forwarded by the coordinator.

(III) Case [[F]]. The coordinator adds a notification ⟨[˜︁p, F ]⟩ into the queue type to notify
the endpoint acting as roles ˜︁p that F occurs.
This case, particularly, gives reasons for
a) Definition 4 (Well-formedness).(5) ensures either F will be handled or there is
no more interactions involving ∀q ∈ F .

b) Definition 4 (Well-formedness). (1),(2) work for avoiding any confusion among
partners for handling some F .

c) With the above reasons, a coordinator needs to keep a well-formed G as a
global guidance.

Without loss of generality assume
• ∆ = ∆0, s : ⟨[ψ, F ]⟩ · h′′,
• ∆′ = ∆0, s : h

′′ · ⟨[p̃, F ]⟩,
• h = ⟨[ψ,F ]⟩ · h′′
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• h′ = h′′ · ⟨[p̃, F ]⟩

G :s (Fq, hd) ⊢∆0, s : ⟨[ψ,F ]⟩ · h′′ →L

G :s (Fq ∪ F, d) ⊢∆0, s : h
′′ · ⟨[p̃, F ]⟩

G is well-formed ⟨[p, F ]⟩ ∈ h means ∀q ∈ F are non-robust, so a well-formed G shall
handle it (somewhere) by Definition 4.5. For convenience we call all participant
which occur in a try-handle partners for that try-handle.
Pick any p, q with s[p] : Lp, s[q ] : Lq ∈ ∆.
In ∆ we have:

s[p] : Lp ⇂q − (⟨[ψ, F ]⟩ · h′′)q→p

= s[p] : Lp ⇂q − (h′′)q→p

= s[p] : Ep[L′
p]

▷◁ s[q ] : Lq ⇂p − (⟨[ψ, F ]⟩ · h′′)p→q

= s[q ] : Lq ⇂p − (h′′)p→q

= s[q ] : Eq[L′
q]

Let κ be the outer most try-handler inG that contains a handler triggered by a subset
of Fset(h′, p), say F ′, that is present in the partial types of p and q after considering
done notifications in h′ (dually forbiddings the case where its only present in either
p or q). Without loss of generality assume F ⊆ F ′ (i.e., the failure handling gets
activated by the new failure), otherwise we have nothing to show.
Let both Ep[L′

p] and Eq[L′
q] have a try-handle of (κ, Fs

′′) for some Fs
′′, at L′

p and L′
q

respectively.
In ∆′ we have to show that:

s[p] : Lp ⇂q − (h′′ · ⟨[p̃, F ]⟩)q→p ▷◁ s[q ] : Lq ⇂p − (h′′ · ⟨[p̃, F ]⟩)p→q

Let hF ⊆ h and let hF contain all failure notification of h. We have

s[p] : Lp ⇂q − (h′′ · ⟨[p̃, F ]⟩)q→p

= s[p] : (Lp ⇂q − (h′′)q→p)− (hF · ⟨[p̃, F ]⟩)q→p

= s[p] : (Ep[
(︁
L′′
p ▶Hp

)︁(κ,Fs
′′)
.L′′′

p ])− (hF · ⟨[p̃, F ]⟩)q→p

= s[p] : Ep[
(︁
LpF ▶Hp

)︁(κ,F ′)
.L′′′

p ]

▷◁ s[q ] : Lq ⇂p − (h′′ · ⟨[p̃, F ]⟩)p→q

Thus overall, Γ′, G : (Fq
′, hd) ⊢ ∆′ is coherent.
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(IV) Case [[SndDone]], there exists s[p] : L ∈ ∆, L = E [
(︁
end▶H↓)︁ϕ.L′] and the reduction

sends done notification ⟨p, ψ⟩ϕ to the coordinator.
This notification (at this moment), which is abstracted as ⟨p, ψ⟩ϕ, does not affect any
endpoints and end and end are dual (Definition 15). The coordinator G : (Fq, hd)
will eventually handle this notification (see Cases (VI) and (VII)).

(V) Case [[Rcv]]. The receiving case is trivial because coherence has been ensured when
the message/notification was sent out. We only prove the standard receiving case
[[Rcv]], where an endpoint receives a message from the queue. We do not need to
consider here that the sender failed, since by [[Crash]] we know that there is no
message to be consumed (i.e., [[Rcv]] is not applicable).
Without loss of generality assume s[p] : E [q?{li(Si).Li}i∈I ] ∈ ∆ and h = ⟨q , p, lk(Sk)⟩·
h′ and k ∈ I and ∆′ = ∆0, s[p] : E [Lk], s : h

′.

By Definition 16.(2) and Definition 14 (The Effect of ht), for any p ′ ̸= q , with
s[p ′] : L′ ∈ ∆, we have

s[p] : E [q?{li(Si).Li}i∈I ]⇂p ′ − (⟨q , p, lk(Sk)⟩ · h′)p′→p

= s[p] : E [L1]⇂p′ − (h′)p′→p

▷◁ s[p′] : L′ ⇂p − (⟨q , p, lk(Sk)⟩ · h′)p→p′

= s[p′] : L′ ⇂p − (h′)p→p′

Thus in ∆′, we immediately have (E [Lk]⇂p′ = E [L1]⇂p′)

s[p] : E [Lk]⇂p′ − (h′)p′→p ▷◁ s[p′] : L′ ⇂p − (h′)p→p′

Thus Γ ⊢ ∆′ is coherent.

(VI) Case [[CollectDone]]. This case is trivial because only the coordinator collects done
notifications sent from participants; no endpoints are affected.

(VII) Case [[IssueDone]]. By [[IssueDone]],

G : (Fq, hd) ⊢∆ = ∆0, s : h →L G :s (Fq, h
′
d) ⊢∆′ = ∆0, s : h · h′

such that ∀m ∈ h′, m = ⟨ψ, p ′⟩(κ,Fs) and, let
(︁
...▶H↑)︁κ ∈ G, we have p ′ ∈ roles(G, (κ, F )).

Pick any p, q with s[p] : Lp, s[q ] : Lq ∈ ∆.
Without loss of generality p, q ∈ roles(G, (κ, F )). (If either of them is not in the
try-handler then the try-handler is projected out in the partial types)
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In ∆ we have:
s[p] : Lp ⇂q − (h)q→p

= s[p] : L′
p

▷◁ s[q ] : Lq ⇂p − (h)p→q

= s[q ] : L′
q

Either (a) L′
p = Ep[

(︁
end▶ ..

)︁(κ,Fs).Lp2] and L′
q = Eq[

(︁
end▶ ..

)︁(κ,Fs).Lq2], or (b)
κ ̸∈ L′

q ∧ κ ̸∈ L′
p (because of failure activation)

Let hF be all failure notifications in h

(a) In ∆′ we have:
s[p] : Lp ⇂q − (h · h′)q→p

= s[p] : L′
p − (hF · h′)q→p

= s[p] : Ep[Lp2]− (hF )q→p

= s[p] : Ep[Lp3]
▷◁ s[q ] : Lq ⇂p − (h · h′)p→q

= s[q ] : L′
q − (hF · h′)p→q

= Eq[Lq2]− (hF )p→q

= Eq[Lq3]

Note that in L′
p the failure notifications (hF )q→q can not trigger any failure

handling. After the consumption of (hF · h′)q→p either (i) Lp2 contains a try-
handle which gets activated by the failure notification or (ii) the base case
(only failure notification left in the queue and no other rule is applicable) gets
triggered.

(b) In ∆′ we have (Definition 14 (The Effect of ht will remove the added done
notifications):

s[p] : Lp ⇂q − (h · h′)q→p

= s[p] : Lp ⇂q − (h)q→p

▷◁ s[q ] : Lq ⇂p − (h · h′)p→q

= s[q ] : Lq ⇂p − (h)p→q

(VIII) Case [[TryHdl]]. In Case [[F]], we prove that the failure notifications sent out by the
coordinator with a well-formed G can trigger endpoints who are able to handle
failures; moreover, Definition 16(Coherence).(2) ensures that the handler for any
F are coherent in the sense that every participant has a dual interacting party to
handle failures.
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(IX) Case [[RcvDone]]. In Case (VII) the affect of the issued done notification is already
considered.

A.2.3. Subject reduction: supporting lemmas and definitions

Lemma 5 (Inversion Lemma).

(1) If Γ ⊢ c : 0▷ ∆, then ∆ = {c : end}.

(2) If Γ ⊢ c : if e η1 else η2 ▷∆, then Γ ⊢ e : bool and ∀i ∈ {1, 2}we have Γ ⊢ c : ηi ▷ ∆.

(3) If Γ ⊢ a[p](y).P ▷ ∆, then ∆ = ∅ and Γ ⊢ a : ⟨G⟩ and Γ ⊢ P ▷ {y : G↾p}.

(4) If Γ ⊢ c : p! l(e).η ▷ ∆, then ∆ = {c : L} l = lk and k ∈ I and L = p! {li(Si).L′
i}i∈I

and Γ ⊢ e : Sk and Γ ⊢ c : η ▷ {c : L′
k}.

(5) If Γ ⊢ c : p? {li(ei).ηi}i∈I ▷ ∆, then ∆ = {c : L} and L = p? {li(Si).Li}i∈I and
∀i ∈ I. Γ, xi : Si ⊢ c : ηi ▷ {c : Li}.

(6) If Γ ⊢ c : 0 ▷ ∆, then ∆ = {c : L} and L = end

(7) If Γ ⊢ c : X⟨e⟩▷ ∆, then ∆ = {c : L} and Γ = Γ′, X : S L and Γ′ ⊢ e : S.

(8) If Γ ⊢ c : def D in η2 ▷ ∆ and X(x) = η1 ∈ D, then ∆ = {c : L} and Γ, X :
S µt .L′ ⊢ c : η2 ▷ {c : L} and Γ, X : S t , x : S ⊢ c : η1 ▷ {c : L′}.

(9) If Γ ⊢ c :
(︁
η▶H

)︁ϕ
.η′ ▷ ∆, then ∆ = {c : L} and L =

(︁
L′▶H↓)︁ϕ.L′′ and Γ ⊢ c :

η ▷ {c : L′} and Γ ⊢ c : η′ ▷ {c : L′′} and dom(H ) = dom(H↓) and ∀F ∈ dom(H )
we have Γ ⊢ c : H (F )▷ {c : H↓(F )}.

(10) If Γ ⊢ s : ∅▷ ∆, then ∆ = {s : ∅}.

(11) If Γ ⊢ 0▷ ∆, then ∆ = ∅.

(12) If Γ ⊢ s : h · ⟨p, q , l(e)⟩▷ ∆, then ∆ = {s : h · ⟨p, q , l(S)⟩} and Γ ⊢ s : h▷ {s : h}
and Γ ⊢ e : S.

(13) If Γ ⊢ s : h · ⟨p1 , p2 ⟩ϕ ▷ ∆, then (p1, p2) ∈ {(p, ψ), (ψ, p)} for some p and ∆ = {s :
h · ⟨p1 , p2 ⟩ϕ} and Γ ⊢ s : h▷ {s : h}.
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(14) If Γ ⊢ s : h · ⟨[q , F ]⟩ ▷ ∆, then ∆ = {s : h · ⟨[q , F ]⟩} and q ∈ {p, ψ} and Γ ⊢ s :
h▷ {s : h}.

(15) If Γ ⊢ N1 |N2 ▷ ∆, then Γ ⊢ N1 ▷ ∆1 and Γ ⊢ N2 ▷ ∆2 and ∆ = ∆1,∆2 such that
dom(∆1) ∩ dom(∆2) = ∅.

(16) If Γ ⊢ (νs)N ▷ ∆, then Γ ⊢ N ▷ ∆′ and and ∆ = ∆′ \∆′
s and Γ ⊢ ∆′

s is coherent.

(17) If Γ ⊢ Ψ ♦N ▷ ∆, then Γ = Γ′,Ψ and Γ′ ⊢ N ▷ ∆.

Proof. By induction on derivations.

Lemma 6 (Substitution Lemma).

I If Γ, x : S ⊢ N ▷ ∆ and Γ ⊢ v : S, then Γ ⊢ N{v/x}▷ ∆.

II If Γ ⊢ N ▷ ∆, y : L, then Γ ⊢ N{s[p]/y}▷ ∆, s[p] : L.

Proof.

I The proof is by induction on derivation of Γ, x : S ⊢ N ▷ ∆.

II The proof is by induction on derivation of Γ ⊢ N ▷ ∆, y : L.

Lemma 7 (Types of Queues).

1. If Γ ⊢ s : ⟨p, q , l(v)⟩ · h▷ ∆, then ∆ = {s : ⟨p, q , l(S)⟩ · h} and Γ ⊢ s : h▷ {s : h}.

2. If Γ ⊢ s : ⟨[†, F ]⟩ · h ▷ ∆, then † ∈ {p, ψ} for some p and ∆ = {s : ⟨[†, F ]⟩ · h} and
Γ ⊢ s : h▷ {s : h}.

3. If Γ ⊢ s : ⟨†, †′⟩ϕ · h ▷ ∆, then (†, †′) ∈ {(p, ψ), (ψ, p)} for some p and ∆ = {s :
⟨†, †′⟩ϕ · h} and Γ ⊢ s : h▷ {s : h}.

Proof. For all cases, the first step follows from Lemma 5.(10). The induction step follows
from Lemma 5.(12).

Lemma 8. Let Γ ⊢ c : E[η]▷ {c : L} and Γ′ ⊢ c : η▷ {c : L′}, then L = E [L′] for some E .

Proof. The proof is by structural induction on contexts E.

• E = [ ], then immediately E = [ ].
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• E = def D in E′ and X(x) = η′ ∈ D and Γ ⊢ c : η ▷ {c : L′}. By applying
Lemma 5.(8) to

Γ ⊢ c : def D in E′[η]▷ {c : L}

we have

Γ, X : S µt .L′′ ⊢ c : E′[η]▷ {c : L} and Γ, X : S t , x : S ⊢ c : η′ ▷ {c : L′′}

Since Γ, X : S µt .L′′ ⊢ c : η ▷ {c : L′}, by induction, we have L = E [L′].

• E =
(︁
E′▶H

)︁ϕ
.η′ and Γ ⊢ c : η ▷ {c : L′}. By applying Lemma 5.(9) to

Γ ⊢ c :
(︁
E′[η]▶H

)︁ϕ
.η′ ▷ {c : L}

we have
L =

(︁
L′′▶H↓)︁ϕ.L′′′ and Γ ⊢ c : E′[η]▷ {c : L′′}

By induction, we have L′′ = E ′[L′] for some E ′. So we have

L =
(︁
E ′[L′]▶H↓)︁ϕ.L′′′ =

(︁
L′′▶H↓)︁ϕ.L′′′

such that E =
(︁
E ′▶H↓)︁ϕ.L′′′.

Subject Congruence

The property of subject congruence states that if N is well-typed by some session environ-
ment, then an N ′ that is structurally congruent to N is well-typed by the same session
environment up to message type reordering.

Theorem 6 (Subject Congr.). Γ ⊢ N ▷ ∆ and N ≡ N ′ imply Γ ⊢ N ′▷ ∆′ where ∆ ≡ ∆′.

Proof. Both proofs are by induction on ≡. We only list some interesting cases.

• h ≡ h′

s : h ≡ s : h′
.

Given h ≡ h′, we prove that Γ ⊢ s : h▷ ∆ implies Γ ⊢ s : h′ ▷ ∆′ and ∆ ≡ ∆′.
Let h ≡ h′ and Γ ⊢ s : h▷ ∆. The equivalence h ≡ h′ should come from one of the
following cases: (1) h ≡ h · ∅ ≡ h′ or (2) h ≡ ∅ · h ≡ h′ or (3) h ≡ h1 · (h2 · h3) ≡
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(h1 · h2) · h3 ≡ h′ or (4) h ≡ h1 · m · m′ · h2 ≡ h1 · m′ · m · h2 ≡ h′ by given
m ·m′ ↷ m′ ·m.
If the structural congruence comes from cases (1), (2), or (3), since the messages in h
and h′ are the same and they are in the same order, then by Lemma 7, Γ ⊢ s : h′▷ ∆.
If the structural congruence comes from case (4), given m ·m′ ↷ m′ ·m, then by
Lemma 5.(12), Lemma 5.(13), Lemma 5.(14) and Lemma 7,

Γ ⊢ s : h1 ·m ·m′ · h2 ▷ {s : h1 · m · m′ · h2}

imply Γ ⊢ s : h1 ▷ {s : h1} and Γ ⊢ s : m▷ {s : m} and Γ ⊢ s : m′ ▷ {s : m′} and
Γ ⊢ s : h2 ▷ {s : h2}.
By ⌊T-m⌋ or ⌊T-D⌋ or ⌊T-F ⌋, we derive

Γ ⊢ s : h1 ·m′ ·m · h2 ▷ {s : h1 · m′ · m · h2}.

By Definition 22 (Permutable Message Types),

{s : h1 · m′ · m · h2} ≡ {s : h1 · m · m′ · h2}

Thus we conclude this case.

• N ≡ N ′

Ψ ♦N ≡ Ψ ♦N ′ .

By Lemma 5.(17), then G : (Fq, hd) = Ψ and Γ = Γ′, G : (Fq, hd) and Γ′ ⊢ N ▷ ∆.
By induction on ≡, we have Γ ⊢ N ′ ▷ ∆′. By ⌊T-sys⌋, we have

Γ ⊢ Ψ ♦N ′ ▷ ∆′

We conclude this case.

A.2.4. Subject reduction: proof

Theorem 2 (Subject Reduction).

(a). Γ ⊢ N ▷ ∆ with Γ ⊢ ∆ coherent and N → N ′ imply that ∃∆′ such that Γ′ ⊢ N ′ ▷
∆′ and Γ ⊢ ∆ →L Γ′ ⊢ ∆′ or ∆ ≡ ∆′ and Γ′ ⊢ ∆′ coherent.

(b). Γ ⊢ N ▷ ∅ and N → N ′ imply that Γ ⊢ N ′ ▷ ∅.
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Proof. Proof by structural induction over the evaluation relation and relying on Theorem 1
for preservation of coherence.
Given Γ′ ⊢ ∆′ coherent does not ensure Γ ⊢ ∆ coherent where Γ ⊆ Γ′ and ∆ ⊆ ∆′. In

the cases for simplicity we just assume Γ ⊢ ∆ coherent, since we know it comes from Γ′

and ∆′ (∆′ = ∆,∆′′) such that Γ′ ⊢ ∆′ coherent.
The proof is mostly standard and we only cover some interesting cases. We show (a)

first, (b) follows then immediately.

• (Snd). Assume Γ ⊢ s[p] : E[q! l(e).η] | s : h▷ ∆ and e ⇓ v and Γ ⊢ ∆ is coherent.
By applying Lemma 5.(15), we have

∆ = ∆1,∆2 and Γ ⊢ s[p] : E[q! l(e).η]▷ ∆1 and Γ ⊢ s : h▷ ∆2 (A.1)

By applying Lemma 7 and Equation A.1 and ⌊T-m⌋, we have

∆2 = {s : h} and Γ ⊢ v : S and Γ ⊢ s : h · ⟨p, q , l(v)⟩▷ {s : h · ⟨p, q , l(S)⟩} (A.2)

By applying Lemma 5.(4) and Lemma 8 to Equation A.1, we have

∆1 = {s[p] : E [q! {li(Si).L′
i}i∈I ]} l = lk and Γ ⊢ s[p] : E[η]▷ {s[p] : E [L′

k]} (A.3)

By ⌊T-pa⌋ and Equation A.2 and Equation A.3, we derive

Γ ⊢ s[p] : E[η] | s : h · ⟨p, q , l(v)⟩▷ {s[p] : E [L′
k], s : h · ⟨p, q , l(S)⟩} (A.4)

Let ∆′ = {s[p] : E [L′
k], s : h · ⟨p, q , l(S)⟩}. By [[Snd]], we have

G : (Fq, hd) ⊢∆ →L G : (Fq, hd) ⊢∆′

and by Theorem 1 Γ ⊢ ∆′ is coherent. We conclude this case.

• (TryHdl). Assume Γ ⊢ s[p] : E[
(︁
η▶F : η′, H

)︁(κ,Fs
′)
.η′′] | s : h ▷ ∆ and F =

∪{A | A ∈ dom(H ) ∧ Fs ⊂ A ⊆ Fset(h, p)} and Γ ⊢ ∆ is coherent.
By applying Lemma 5.(15), we have

∆ = ∆1,∆2 and

Γ ⊢ s[p] : E[
(︁
η▶F : η′, H

)︁(κ,Fs
′)
.η′′]▷ ∆1 and

Γ ⊢ s : h▷ ∆2 (A.5)
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By applying Lemma 8 and Lemma 5.(9) to Equation A.5, we have

∆1 = {s[p] : L} (A.6)

Γ ⊢ s[p] : E[
(︁
η▶F : η′, H

)︁(κ,Fs
′)
.η′′]▷ {s[p] : L}

L = E [
(︁
L′▶F : L′′, H↓)︁(κ,Fs

′)
.L′′′]

Γ ⊢ s[p] : η ▷ {s[p] : L′} and Γ ⊢ s[p] : η′′ ▷ {s[p] : L′′′} and
Γ ⊢ s[p] : η′ ▷ {s[p] : L′′}
dom(H ) = dom(H↓) and
∀F ∈ dom(H ). Γ ⊢ s[p] : H (F )▷ {c : H↓(F )} (A.7)

By applying Lemma 7 to Equation A.5, we have

∆2 = {s : h} and Γ ⊢ s : h▷ {s : h} (A.8)

By ⌊T-th⌋ and Equation A.6, we have

Γ ⊢ s[p] : E[
(︁
η′▶F : η′, H

)︁(κ,F )
.η′′]▷ (A.9)

{s[p] : E [
(︁
L′′▶F : L′′, H↓)︁(κ,F )

.L′′′]}

By ⌊T-pa⌋ and Eqs. A.6, A.8, A.9, we derive

Γ ⊢ s[p] : E[
(︁
η′▶F : η′, H

)︁(κ,F )
.η′′] | s : h (A.10)

▷ {s[p] : E [
(︁
L′′▶F : L′′, H↓)︁(κ,F )

.L′′′], s : h}

Let ∆′ = {s[p] : E [
(︁
T ′′▶F : T ′′, H↓)︁(κ,F )

.T ′′′], s : h}. By [[TryHdl]] we have

G : (Fq, hd) ⊢∆ →L G : (Fq, hd) ⊢∆′

and by Theorem 1, Γ ⊢ ∆′ is coherent. We conclude this case.

• (Cln). Assume Γ ⊢ s[p] : E[η] | s : ⟨q , p, l(v)⟩ · h ▷ ∆ and l ̸∈ labels(E[η]) and ∆
is coherent. (Note that, Definition 14 (The Effect of ht) defines that this message
⟨q , p, l(v)⟩ will not affect any endpoints in ∆).
By applying Lemma 5.(15), we have

∆ = ∆1,∆2 and Γ ⊢ s[p] : E[η]▷ ∆1 and Γ ⊢ s : ⟨q , p, l(v)⟩ · h▷ ∆2 (A.11)
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By applying Lemma 7 and Equation A.11, we have

∆2 = {s : ⟨q , p, l(v)⟩ · h} and Γ ⊢ v : S and Γ ⊢ s : h▷ {s : h} (A.12)

By ⌊T-pa⌋ and Equation A.11 and Equation A.12, we have

Γ ⊢ s[p] : E[η] | s : h▷ ∆1, {s : h} (A.13)

Let ∆′ = ∆1, {s : h}. By [[Cln]], we have

G : (Fq, hd) ⊢∆ →L G : (Fq, hd) ⊢∆′

and by Theorem 1 Γ ⊢ ∆′ is coherent. We conclude this case.

• (RcvDone). Assume Γ ⊢ s[p] : E[
(︁
0▶H

)︁ϕ
.η] | s : h▷ ∆ and ⟨ψ, p⟩ϕ ∈ h.

By applying Lemma 5.(15), we have

∆ = ∆1,∆2 and
Γ ⊢ s[p] : E[

(︁
0▶H

)︁ϕ
.η′]▷ ∆1 and

Γ ⊢ s : h▷ ∆2 (A.14)

By applying Lemma 8 and Lemma 5.(6) to Equation A.14, we have

∆1 = {s[p] : L} (A.15)
L = E [

(︁
end▶H↓)︁ϕ.L′] and

Γ ⊢ s[p] : 0▷ {s[p] : end} and Γ ⊢ s[p] : η′ ▷ {s[p] : L′} and
dom(H ) = dom(H↓) and ∀F ∈ dom(H ). Γ ⊢ H (F )▷ H↓(F ) (A.16)

By Lemma 7 and ⌊T-D⌋ and Equation A.14 and the condition that ⟨ψ, p⟩ϕ ∈ h, we
have

∆2 = {s : h} and h = h′ · ⟨ψ, p⟩ϕ · h′′ (A.17)

By applying Lemma 8 to Equation A.15, we have

Γ ⊢ s[p] : E[η′]▷ {s[p] : E [L′]} (A.18)

By applying Equation A.17, we derive

Γ ⊢ s : h \ ⟨ψ, p⟩ϕ ▷ {s : h′ · h′′} (A.19)

163



By ⌊T-pa⌋ and Eqs. A.18, A.19, we derive

Γ ⊢ s[p] : E[η′] | s : h \ ⟨p, ψ⟩ϕ ▷ {s[p] : E [L′], s : h′ · h′′}

Let ∆′ = {s[p] : E [L′], s : h′ · h′′}. By [[RcvDone]] we have

G : (Fq, hd) ⊢∆ →L G : (Fq, hd) ⊢∆′

and by Theorem 1, Γ ⊢ ∆′ is coherent.

• (Rcv). Assume Γ ⊢ s[p] : E[q?{li(xi) : ηi}i∈I ] | s : ⟨q , p, l(v)⟩ · h▷ ∆ and Γ ⊢ ∆ is
coherent.
By applying Lemma 5.(15), we have ∆ = ∆1,∆2

Γ ⊢ s[p] : E[q?{li(xi) : ηi}i∈I ]▷ ∆1 and Γ ⊢ s : ⟨q , p, l(v)⟩ · h▷ ∆2 (A.20)

By applying Lemma 7 and Equation A.20, we have

∆2 = {s : ⟨q , p, l(v)⟩ · h} and Γ ⊢ v : S and Γ ⊢ s : h▷ {s : h} (A.21)

By applying Lemma 5.(5) and Lemma 8 to Equation A.20 we have

Γ ⊢ s[p] : E[q?{li(xi) : ηi}i∈I ]▷ {s[p] : E [q? {li(Si).Li}i∈I ]} (A.22)
∀i ∈ I. Γ, xi : Si ⊢ s[p] : E[ηi]▷ {s[p] : E [Li]}

By coherence, applying Lemma 17 (Substitution) and Equation A.22,

Γ ⊢ s[p] : E[ηk{vk/xk}]▷ {s[p] : E [Lk]} (A.23)

By ⌊T-pa⌋ and Equation A.21 and Equation A.23, we derive

Γ ⊢ s[p] : E[ηk{vk/xk}] | s : h · ⟨q , p, l(v)⟩▷ {s[p] : E [Lk], s : h}

Let ∆′ = {s[p] : E [Lk], s : h}. By [[Rcv]], we have

G : (Fq, hd) ⊢∆ →L G : (Fq, hd) ⊢∆′

and by Theorem 1 Γ ⊢ ∆′ is coherent. We conclude this case.
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• (Rec). Assume Γ ⊢ s[p] : E[def X(x) = η in X⟨e⟩]▷ ∆.
By applying Lemma 8 and Lemma 5.(8), we have

∆ = {s[p] : L′′} (A.24)
L′′ = E [L]
Γ, X : S µt .L′ ⊢ s[p] : X⟨e⟩▷ {s[p] : L}
Γ, X : S t , x : S ⊢ s[p] : η ▷ {s[p] : L′}

By applying Lemma 5.(7) to Equation A.24, we have

Γ′ = Γ, X : S µt .L′ and Γ ⊢ e : S (A.25)

By 5.(7) to Equation A.24 and Equation A.25, we have

Γ, X : S µt .L′ ⊢ s[p] : X⟨e⟩▷ {s[p] : µt .L′} (A.26)

By applying Lemma 17.I to Equation A.24 with Equation A.25 and Equation A.26,
we have

Γ ⊢ s[p] : E[def X(x) = η in η{v/x}]▷ ∆ where e ⇓ v

Thus we conclude this case.

• (ClnDone). The proof is similar to the case (Cln)

• (Crash). Assume Γ ⊢ s[p] : η | N | s : h▷ ∆.
By applying Lemma 5.(15) two times, we have

∆ = ∆1,∆2,∆3 and Γ ⊢ s[p] : η ▷ ∆1 and (A.27)
Γ ⊢ N ▷ ∆2 and Γ ⊢ s : h▷ ∆3

By applying Lemma 7 and ⌊T-m⌋ to Equation A.27, we have

∆3 = {s : h} and h = h0 · m1 · h1...hn−1 · mn · hn where p ∈ mi, i ∈ {1..n} (A.28)

Let msg(h, p) collect the messages to and from p. By applying Lemma 7 and ⌊T-m⌋
to Equation A.28, we have

Γ ⊢ s : remove(h, p)▷ {s : (remove(h, p)} (A.29)
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By ⌊T-pa⌋ and ⌊T-F ⌋ to Equation A.27 and Equation A.29, we derive

Γ ⊢ N | s : remove(h, p) · ⟨[ψ, p]⟩▷ (A.30)
∆2, {s : remove(h, p) · ⟨[ψ, p]⟩} (A.31)

Let ∆′ = ∆2, {s : h \msg(h, p) · ⟨[ψ, p]⟩}. By [[Crash]] we have

G : (Fq, hd) ⊢∆ →L G : (Fq, hd) ⊢∆′

and by Theorem 1, Γ ⊢ ∆′ is coherent. We conclude this case.

• (SndDone). Assume Γ ⊢ s[p] : E[
(︁
0▶H

)︁ϕ
.η′] | s : h▷ ∆

By applying Lemma 5.(15), we have

∆ = ∆1,∆2 and
Γ ⊢ s[p] : E[

(︁
0▶H

)︁ϕ
.η′]▷ ∆1 and

Γ ⊢ s : h▷ ∆2 (A.32)

By applying Lemma 8 and Lemma 5.(9) and Lemma 5.(1) to Equation A.32, we
have

∆1 = {s[p] : L} (A.33)
L = E [

(︁
end▶H↓)︁ϕ.L′] and

Γ ⊢ s[p] : 0▷ {s[p] : end} and Γ ⊢ s[p] : η′ ▷ {s[p] : L′} and
dom(H ) = dom(H↓) and
∀F ∈ dom(H ). Γ ⊢ s[p] : H (F )▷ {s[p] : H↓(F )} (A.34)

By applying Lemma 7 and Equation A.32, we have

∆2 = {s : h} (A.35)

By ⌊T-yd⌋ and ⌊T-th⌋ and Equation A.33, we have

Γ ⊢ s[p] : E[
(︁
0▶H

)︁ϕ
.η′]▷ {s[p] : E [

(︁
0▶H↓)︁ϕ.L′]} (A.36)

By ⌊T-D⌋ and Equation A.35, we derive

Γ ⊢ s : h · ⟨p, ψ⟩ϕ ▷ {s : h · ⟨p, ψ⟩ϕ} (A.37)
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By ⌊T-pa⌋ and Eqs. A.33, A.35, A.36, A.37, we derive

Γ ⊢ s[p] : E[
(︁
0▶H

)︁ϕ
.η′] | s : h · ⟨p, ψ⟩ϕ ▷

{s[p] : E [
(︁
0▶H↓)︁ϕ.L′], s : h · ⟨p, ψ⟩ϕ}

Let
∆′ = {s[p] : E [

(︁
0▶H↓)︁ϕ.L′], s : h · ⟨p, ψ⟩ϕ}.

By [[SndDone]] we have

G : (Fq, hd) ⊢∆ →L G : (Fq, hd) ⊢∆′

and by Theorem 1, Γ ⊢ ∆′ is coherent. We conclude this case.

• (F). Assume Γ ⊢ G : (Fq, hd) ♦N | s : ⟨[ψ, F ′]⟩ · h▷ ∆

By applying Lemma 5.(17), we have

G : (Fq, hd) ∈ Γ and Γ′ ⊢ N | s : ⟨[ψ, F ′]⟩ · h▷ ∆ (A.38)
such that Γ = Γ′, G : (Fq, hd)

By applying Lemma 5 and Lemma 7 and Equation A.38, we have

∆ = ∆1,∆2

∆2 = {s : ⟨[ψ, F ′]⟩ · h} and Γ′ ⊢ s : h▷ {s : h}
Γ′ ⊢ N ▷ ∆2 (A.39)

By ⌊T-sys⌋,⌊T-pa⌋ and ⌊T-F ⌋ and Equation A.39, we derive

Γ′, G : (Fq ∪ F ′, hd) ⊢ G : (Fq ∪ F ′, hd) ♦N |
s : h · ⟨[roles(G) \ (Fq ∪ F ′), F ′]⟩ ·▷

∆2, {s : h · ⟨[roles(G) \ (Fq ∪ F ′), F ′]⟩} (A.40)

Let
∆′ = ∆2, {s : h · ⟨[roles(G) \ (Fq ∪ F ′), F ′]⟩}

By [[F]] we have
G : (Fq, hd) ⊢∆ →L G : (Fq ∪ F ′, hd) ⊢ ∆′

and by Theorem 1, Γ′, G : (Fq ∪ F ′, hd) ⊢ ∆′ is coherent. We conclude this case.
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• (CollectDone). The proof is trivial.

• (IssueDone). Assume Γ ⊢ G : (Fq, hd) ♦N | s : h ▷ ∆ and Γ = Γ′, G : (Fq, hd) and
there exists ϕ such that roles(hd, ϕ) ⊇ roles(G,ϕ) \ Fq and ∀F ∈ hdl(G,ϕ).(F ̸⊆ Fq)

By applying Lemma 5, we have

Γ′ ⊢ s : h▷ ∆2

∆ = {s : h}
Γ′ ⊢ N ▷ ∆1 (A.41)

By applying Lemma 7 and Equation A.41 and ⌊T-D⌋, we have

Γ′ ⊢ s : h · ⟨ψ, roles(G , ϕ) \ (Fq)⟩ϕ ▷ {s : h · ⟨ψ, roles(G , ϕ) \ (Fq)⟩ϕ} (A.42)

By ⌊T-sys⌋, ⌊T-Pa⌋, Equation A.41 and Equation A.42, we derive

Γ′, G : (Fq, remove(hd, ϕ)) ⊢ G : (Fq, remove(hd, ϕ)) ♦N |
s : h · ⟨ψ, roles(G , ϕ) \ (Fq)⟩ϕ

▷∆1, {s : h · ⟨ψ, roles(G , ϕ) \ (Fq)⟩ϕ} (A.43)

Let
∆′ = ∆1, {s : h · ⟨ψ, roles(G , ϕ) \ (Fq)⟩ϕ}

By [[IssueDone]] we have

G : (Fq, hd) ⊢∆ →L G : (Fq, h
′
d) ⊢ ∆′

where h′d = remove(hd, ϕ) and by Theorem 1, Γ, G : (Fq, h
′
d) ⊢ ∆′ is coherent. We

conclude this case.

• (Link). Assume Γ ⊢ a[p1 ](y1).P1 | ... | a[pn ](yn).Pn ▷ ∆ and a : G and roles(G) =
{p1 , ..., pn}.

By applying Lemma 5.(15) n times, we have

∆ = {∆i}i∈{1..n} and ∀i ∈ {1..n}. Γ ⊢ a[pi ](yi).Pi ▷ ∆i (A.44)
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By applying Lemma 5.(3) on Equation A.44, we have

∆i = ∅ ⇒ ∆ = ∅ (A.45)
∀i ∈ {1..n}. Γ ⊢ Pi ▷ {yi : G↾pi} and Γ ⊢ a : ⟨G⟩

By applying ⌊T-pa⌋ n times on Equation A.45, we derive

Γ ⊢ P1 | ... | Pn ▷ {y1 : G↾p1 , ..., yn : G↾pn} (A.46)

By applying Lemma 17.II to Equation A.46, we derive

Γ ⊢ P1{s[p1 ]/y1} | ... | Pn{s[pn ]/yn}▷ {s[p1 ] : G↾p1 , ..., s[pn ] : G↾pn} (A.47)

By applying ⌊T-pa⌋ n and ⌊T-∅⌋ to Equation A.47, we derive

Γ ⊢ P1{s[p1 ]/y1} | ... |Pn{s[pn ]/yn} | s : ∅ ▷ (A.48)
{s[p1 ] : G↾p1 , ..., s[pn ] : G↾pn , s : ∅}

By applying ⌊T-sys⌋ to Equation A.48, we have

Γ, G : (∅, ∅) ⊢ G : (∅, ∅) ♦P1{s[p1 ]/y1} | ... |Pn{s[pn ]/yn} | s : ∅▷
{s[p1 ] : G↾p1 , ..., s[pn ] : G↾pn , {s : ∅}} (A.49)

By applying Lemma 2 to Equation A.49, we have

Γ, G : (∅, ∅) ⊢ {s[p1 ] : G↾p1 , ..., s[pn ] : G↾pn , {s : ∅}} coherent (A.50)

By applying ⌊T-s⌋ to Equation A.50 we derive

Γ, G : (∅, ∅) ⊢ (νs)(G : (∅, ∅) ♦P1{s[p1 ]/y1} | ... |Pn{s[pn ]/yn} | s : ∅)▷ ∅

Thus ∆′ = ∅ = ∆. We conclude this case.

For (b).

The proof is immediately because Γ ⊢ ∅ is always coherent.
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B. Appendix for Chapter 4

B.1. Appendix: Overview

The contents of this supplementary appendix are structured as follows:

• Appendix B.2 provides the full collection of global types, local types (and CFSM rep-
resentations), and processes for the Session-CM running example (cf. Sections 4.2
and 4.3).

• Appendix B.3 provides a detailed description of our system and failure model (cf.
Section 4.3.3).

• Appendix B.4 corresponds to Section 4.4.1 (Global Types) and Section 4.4.2 (Local
Types and Projection). It provides:

– the formal definition of global type well-formedness;

– and the projection of a subprotocol onto a role set (g ↾R) omitted from the main
sections.

• Appendix B.5 corresponds to Section 4.4.3 (Endpoint Processes and Systems). It pro-
vides:

– the omitted structural (parallel Par, restriction StrR and structural congruence
StrR – all standard);garbage collection (Sess-GC and Root-GC) rules for system
reduction;

– and some minor auxiliary definitions (fire(L1, L2, b,F), gq;p0↾p and s⇝+
Θ).

• Appendix B.6 corresponds to Section 4.6.1 (Type System) and Section 4.6.2 (Properties).
It provides

– the definition of coverage ({Li}i∈1..n ⊢ L);

– the full definition of coherence and the supporting infrastructure for the proofs;
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– and the proofs of our properties: subject reduction (Appendix B.6.3), fidelity
(Appendix B.6.4) and progress (Appendix B.6.5 – subsession progress and global
progress).

• Appendix B.7 provides and discusses the global type of the full version of the Session-
CM use case (as used in the performance evaluations of Section 4.7). The version of
Session-CM presented in Sections 4.2 and 4.3 and Appendix B.2 is abridged for brevity
in Chapter 4.

B.2. Session-CM: All Global Types, Local Types and Processes

This section provides all the global types, local types and example endpoint processes
for our session-typed Spark cluster manager (Session-CM) example as presented in Sec-
tions 4.2 and 4.3 using the formal notation from Sections 4.4.1 to 4.4.3. We also provide
the CFSM representations for all the local types as used internally by our Scala toolchain,
as explained in Section 4.3.1.

B.2.1. Overview

Our framework starts from a user specification of the protocol as a top-level global type.
The Scala version of the global type for Session-CM was given in Figure 4.2, and the
formal notation version in Example 14. For completeness, we shall repeat the latter in
Appendix B.2.2.
The following summarises how some of the names correspond between the two.

Scala notation RunDr RunEx Masters m Workers wD wE InitDr (etc.)
Formal notation gRunDr gRunEx M m W wD wE lInitDr (etc.)

Here is a high-level outline of how local subprotocols are derived from the global
subprotocols for each participant kind based on the generic role set and assigned role
behaviors.
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M participant kind
Global subprotocol M generic role set m role
gRunDr (m;wD;W ) no explicit behavior gRunDrm

gRunEx (m,wD;wE ;W ) no explicit behavior gRunExm

W participant kind
W generic role set wD role wE role

gRunDr (m;wD;W ) gRunDrW gRunDrwD
n/a

gRunEx (m,wD;wE ;W ) gRunExW
gRunExwD

gRunExwE

The top-level local type for each participant kind (i.e.,M andW ) corresponds to the
collection of local subprotocols in each of those two columns above. More specifically, the
top-level local types are calculated as follows (which shows where each local subprotocol
comes from).

Top-level Projection onto Projection onto
local type participant kind role sets.. ..and roles

(Definition 18) (Appendix B.4.1) (Definition 19)
LM = GCM ↾M = { gRunDr ↾m, gRunEx ↾m }

= { gRunDrm , gRunExm }
LW = GCM ↾W = { gRunDr ↾W gRunDr ↾wD,

gRunEx ↾W, gRunEx ↾wD, gRunEx ↾wE }
= { gRunDrW , gRunExW

gRunDrwD
, gRunExwD

, gRunExwE
}

Endpoint processes, i.e., event loops, are implemented for each participant kind – and
static typing ensures the handlers of each event loop safely cover its local type. The
definitions of every local subprotocol (and the internal CFSM representation used by our
Scala toolchain) and example handlers for the event loops are given in the following
subsections.

M participant kind W participant kind
Local subprotocols Appendix B.2.3 Appendix B.2.3

(and CFSM representations) Figure 4.4, Figure B.8 Figure B.6, Figure B.7, Figure B.9,
Figure B.10, Figure B.11

Endpoint processes
(i.e., event loops and handlers) Appendix B.2.4 Appendix B.2.4
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gRunDr (m;wD ;W ) =
m→ wD lInitDr .
wD → mlAck .
µt .
m→ wD{
lAddEx : gRunEx (m,wD ;W ;W ) . t,
lOk : end}

with
wD@m.
m→W lFailDr .
gRunDr (m;W ;W ) .
end

gRunEx (m,wD ;wE ;W ) =
m→ wE lInitEx .
wE → mlExDone .
m→ wD lExFinished . end

with
wE@m.
m→W lFailEx .
gRunEx (m,wD ;W ;W ) .
end

Figure B.1.: Global type of the Session-CM.

B.2.2. Global type of the Session-CM

We define the top-level global type of the Session-CM in Figure B.1. It aligns closely with
the protocols defined in Figure 4.2. The main difference is that this global type has no
messages with payload and it usesM andW for the role sets of the masters respectively
workers.

B.2.3. Local types of the Session-CM

Master

We give the top-level local type of the M participant kind (Masters in Figure 4.2) in
Figure B.2, projected from the global type via projection, see Definition 18. The top-level
local type contains the protocols gRunDrm and gRunExm, i.e. the projection of gRunDr to
the rolem (m in Figure 4.2) and the projection of gRunEx tom. There is no protocol for the
generic role setM as no protocol uses the role setM . Both protocols contain the action
describe in the global protocol whenever they involve m (which in this example are all
actions).

Worker

We give the top-level local type of the participant kind W (Workers in Figure 4.2) in
Figure B.3, projected from the global type via projection, see Definition 18. The top-level
local type contains the protocols gRunDrwD

,gRunDrW , gRunExwD
, gRunExwE

and gRunExW

i.e. the projection of gRunDr to the role wD and the generic role setW (wD and Workers in
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gRunDrm(m;wD ;W ) = {
wD !lInitDr .
wD ?lAck .
µt . W !{
lAddEx : gRunEx (m,wD ;W ;W ) . t,
lOk : end}

with
wD↓ .
W !lFailewD .
gRunDr (m;W ;W ) .
end}

gRunExm(m,wD ;wE ;W ) = {
wE !lInitEx .
wE ?lExDone .
wD !lExFinished . end

with
wE↓ .
W !FailwEx .
gRunEx (m,wD ;W ;W ) .
end}

Figure B.2.: Top-level local type of the participant kindM of the Session-CM.

Figure 4.2), and the projection of gRunEx to the roles wD , wE and the generic role setW .
Note, the failure handlings for wD in gRunDr (i.e., in gRunDrwD

) and wE in gRunEx (i.e., in
gRunDrwE

) are “empty”, despite the involvement of their role setW there, because a role
canont participate in its own failure handling.

B.2.4. Endpoint process of the Session-CM

Endpoint process of Master

We provide an endpoint process which implements the participant kindM (Masters in
Figure 4.2) in Figure B.4. This was first explained for gRunDr in Example 16, corresponding
very closely with Figure 4.6 (d). The event loop below contains the full set of handlers,
i.e., including those for gRunEx . Points worth highlighting are: the handlers contain no
recursion, instead recursion is handled implicitly; Example 20, Chapter 4 provides further
details on that; and that the selection in the protocol gRunDr is expressed as two send
handlers.

Endpoint process of Worker

We provide an endpoint process which implements the role setW (Workers in Figure 4.2)
in Figure B.5. Points worth highlighting are: that branching in the protocol gRunDr is
expressed as two receiving handlers; and that e.g., [m?lAddEx ]λx . x[m]?lAddEx . loop
implements the receiving of lAddEx both for when p plays wD or when p is just part of the
role setW in the current session.
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gRunDrW (m;wD ;W ) =
µt .
m?{
lAddEx : gRunEx (m,wD ;W ;W ) . t,
lOk : end}

with
m?lFailDr .
gRunDr (m;W ;W ) .
end

gRunDrwD
(m;wD ;W ) =

m?lInitDr .
m!lAck .
µt .
m?{
lAddEx : gRunEx (m,wD ;W ;W ) . t,
lOk : end}

with
end

gRunExW (m,wD ;wE ;W ) =
end

with
m?lFailEx .
gRunEx (m,wD ;W ;W ) .
end

gRunExwD
(m,wD ;wE ;W ) =

m?lExFinished . end
with
m?lFailEx .
gRunEx (m,wD ;W ;W ) .
end

gRunExwE
(m,wD ;wE ;W ) =

m?lInitEx .
m!lExDone .
end

with
end

Figure B.3.: Top-level local type of the participant kindW of the Session-CM.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

/*RunDr normal activity*/
[wD !lInitDr ]λx . x[wD ]!lInitDr . loop
[wD ?lAck ]λx . x[wD ]?lAck . loop
[W !lAddEx ]λx . x[W ]!lAddEx . loop

[W !lOk ]λx . x[W ]!lOk . loop
[gRunEx (m,wD ;W ;W )]λx . x[m,wD ;W ;W ](gRunEx ) . loop

/*RunDr failure handling*/
[wD↓ . W !lFailDr ]λx . x[wD ]↓ . x[W ]!lFailDr . loop

[gRunDr (m;W ;W )]λx . x[m,wD ;W ;W ](gRunDr ) . loop
/*RunEx normal activity*/

[wE !lInitEx ]λx . x[wE ]!lInitEx . loop
[wE ?lExDone . wD !lExFinished . ]λx.Px[wE ]?lExDone . x[wD ]!lExFinished . loop

/*RunEx failure handling*/
[wE↓ . W !lFailwDr ]λx . x[wE ]↓ . x[W ]!lFailDr . loop
[gRunEx (m;W ;W )]λx . x[m,wD ;W ;W ](gRunEx ) . loop

, p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure B.4.: Endpoint process which implements the role setM of the Session-CM.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

/*RunDr normal activity*/
[m?lInitDr ]λx . x[m]?lInitDr . loop

[m!lAck ]λx . x[m]!lAck . loop
[m?lAddEx ]λx . x[m]?lAddEx . loop

[m?lOk ]λx . x[m]?lOk . loop
[gRunEx (m,wD ;W ;W )]λx . x[m,wD ;W ;W ](gRunEx ) . loop

/*RunDr failure handling*/
[m?lFailDr ]λx . x[m]?lFailDr . loop

[gRunDr (m;W ;W )]λx . x[m,wD ;W ;W ](gRunDr ) . loop
/*RunEx normal activity*/

[m?lInitEx ]λx . x[m]?lInitEx . loop
[m!lExDone ]λx.Px[m]!lExDone . loop

[m?lExFinished ]λx.Px[m]?lExFinished . loop
/*RunEx failure handling*/

[m?lFailwEx ]λx . x[W ]?lFailEx . loop
[gRunEx (m;W ;W )]λx . x[m,wD ;W ;W ](gRunEx ) . loop

, p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure B.5.: Endpoint process which implements the role setW of the Session-CM.

B.2.5. CFSM Representations of the local types of Session-CM

CFSM representations of RunDr local types. The CFSM representations of role m in
RunDr were explained in Section 4.3.1. Figures B.6 and B.7 depict the two pairs of state
machines for the protocol RunDr of the participant kind Workers. We have two pairs since
RunDr involves the role wD belonging to Workers, and the generic role set behavior of
(unassigned) Workers.
Figure B.6 depicts the state machine for the named role wD. It represents the following

behavior: In the normal activity (a), wD first performs a receive from, then a send to, m.
It then follows the choice of m between the spawn loop, i.e., receiving Ack from, m, and

1 2 3
4

5

m?InitDr m!Ack
m?AddEx

RunEx(...)

m?Ok

(a)

6

(b)

Figure B.6.: CFSM pair for the local type of role wD in RunDr, i.e., gRunDrwD
: (a) normal

activity, and (b) failure handling. Note: (b) is empty because wD is not part of
the failure handling for itself.
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1
2

3
m?AddEx

RunEx(...)

m?Ok

(a)

4 5 6
m?FailDr RunDr(...)

(b)

Figure B.7.: CFSM pair for the local type of the generic role set Worker in RunDr, i.e.,
gRunDrW : (a) normal activity, and (b) failure handling.

spawning RunEx, or the terminal case. Note, the failure handling (b), is empty since wD is
not part of the failure handling for itself.
Figure B.7 depicts the state machine for the generic role set Workers. It represents the

following behavior: In the normal activity (a), Workers first follows the choice of m between
the spawn loop, i.e., receiving Ack from, m, and spawning RunEx, or the terminal case. In
the failure handling (b), Workers receives the failure notification, then joins the spawning
of the replacement RunDr subsession.
CFSM representations of RunEx local types. The CFSM representations for the local
types of RunEx are for: role m (Figure B.8), role wD Figure B.10, role wE Figure B.9, and
generic role set Figure B.11.

1 2 3 4
wE!InitEx wE?ExDone wD!ExFinished

(a)

5 6 7 8
wE@m W!FailEx RunEx(...)

(b)

Figure B.8.: CFSM pair for the local type of m in RunEx, i.e., gRunExm: (a) normal activity,
and (b) failure handling.

1 2 3
m?InitEx m!ExDone

(a)

4

(b)

Figure B.9.: CFSM pair for the local type of wE in RunEx, i.e., gRunExwE
: (a) normal activity,

and (b) failure handling. Note: (b) is empty because wE is not part of the
failure handling for itself.
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1 2
wD?ExFinished

(a)

3 4 5
m?FailEx RunEx(...)

(b)

Figure B.10.: CFSM pair for the local type of wD in RunEx, i.e., gRunExwD
: (a) normal activity,

and (b) failure handling.

1

(a)

2 3 4
m?FailEx RunEx(...)

(b)

Figure B.11.: CFSM pair for the local type of generic role set Workers in RunEx, i.e., gRunExW
:

(a) normal activity, and (b) failure handling.

B.3. System and Failure Model

This section clarifies our assumptions regarding distributed systems. First, we adopt the
standard asynchronous semantics for session communication: (1) Asynchronous system
[FLP85]: Application processes and the network are asynchronous, meaning that there are
no upper bounds on processes’ relative speeds or message transmission delays. (2) Reliable
message transport [BCT96]: Messages transmitted between two peers are eventually
delivered and in order of dispatch.
The above are achieved in practice by, e.g., TCP-based channels, MPI, various messaging

middlewares, and “local” transports such as message buffers in shared memory (retransmis-
sions etc. can overcome transient message losses). Message delivery can of course fail due
to participants failing by crashing. A process which crashes stops performing any actions.
To overcome the impossibility of agreement in asynchronous systems with such process
crash stop failures [FLP85], our model distinguishes failure-prone roles (the default) from
robust roles. A robust role is one that may be considered as failure-resilient from the
perspective of the protocol or application. In this sense, standard (i.e., non-fault-tolerant)
MPSTs are given by considering all roles robust, whereas our formalism has a minimal
requirement of one robust role for our (progress) properties to hold.
Similarly, failure detection – crucial for fault-tolerance – in general cannot be achieved

reliably in the considered system and failure model [CT96], due to the impossibility of
distinguishing between a failed process and a slow(ly communicating) one. Our system
is therefore built to deal with false (failure) suspicions to overcome these limitations:
(3) Peer-based failure detection and failure notification: The failure of a failure-prone

179



role is determined by one of its (itself potentially failure-prone) peers. We say the latter
monitors the former. Non-monitor roles only enter a failure handling activity if explicitly
notified. (4) Asynchronous and unreliable failure detection: A monitor may deem
a role as failed and initiate the corresponding failure handling activity at any point,
i.e., non-deterministically and concurrently to any other interaction in the session. This
judgment does not depend on whether the participant playing the role in question has
actually failed or not. (5) Consistent and monotonic failure suspicion: A role behaves
consistently in a session according to its current knowledge of peer failures, either following
its normal activity or a failure handling activity. Once a role suspects a peer has failed,
this belief is never reverted, regardless of the actual status of the suspected peer.
Items (1) and (2) and are standard in literature on fault-tolerant distributed sys-

tems [FLP85]. Items (3) and (4) reflect key contributions of Chapter 4 for MPSTs. Item (3)
means our system completely abstracts from any particular failure detection mechanism,
e.g., a heartbeat failure detectors could be used. (3) and (4) also mean that our system
does not hide any implicit synchronization regarding failure detection or notification, and
does not depend on failure detection being reliable. An important consequence is that
our model permits false suspicion scenarios – a monitor and other peers may proceed
as if some role has failed, while the role itself, and possibly some other set of peers,
continue operating as normal. In practice a false suspicion is dealt with by program-
controlled crash, which consists in communicating decisions to disregard supposedly failed
processes also to those processes, prompting them to terminate themselves upon false sus-
picion [CHTCB96, CKV01], justifying (5). To be clear, our model is also fully compatible
with reliable failure detection.
The above considerations are crucial to the applicability of our approach, and tie in

with our observations of distributed programming and EDP in practice.

B.4. Global Types, Local Types, and Projection

This appendix section corresponds to Section 4.4.1 (Global Types, Local Types and Projec-
tion). It provides the omitted projection of a protocol to a role set (cf. Section 4.4.2).

Well-formedness. Global type syntax does not necessarily yield a sensible, i.e., safely
realizable, distributed protocol. Firstly, as standard in MPSTs, our system only considers
protocols for which projection (a partial function) is defined for every participant.
Before defining Well-Formedness, we define a helper predicate to check if the monitor

informs all roles and roles sets correctly.
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Definition 23 (r; r;R ⊢ G). r correctly notifying the roles r and role sets R in G, is defined
as:

r′ ∈ r r; r \ r′;R ⊢ G
r; r;R ⊢ r → r′ l. G

R ∈ R ∀i ∈ I.r; r \R;R \R ⊢ Gi

r; r;R ⊢ r → R l.G r; ∅; ∅ ⊢ G

The following Well-Formedness definition checks that a top-level global type G ensures
the following conditions for every subprotocol in G: (1) the the global type following a
monitor declaration (r1@r2) must start with the monitor (r2) sending some label (i.e.,
failure notification) to all roles, except the monitored role (r1), and roles sets in the
subprotocol; (2) the set of message labels occurring in the normal activity is disjoint
from that of the failure handling activity; (3) the set of subprotocol names occurring
in the normal activity is disjoint from that of the failure handling activity; (4) spawned
subprotocols are defined in the top-level global type; (5) and interactions and spawns
only contain roles and role sets present in the arguments of the subprotocol.

Definition 24 (Well-Formedness). A top-level global type G is well-formed if it is projectable
and all the following conditions hold for every subprotocol g(r; r1;R) = G1 with r1@r . G2

in G:

• (1) r ∈ r and r; r \ r;R ⊢ G2

• (2) ∀r → z{li : Gi}i∈I ∈ G1.∀r′ → z′{lj : Gj}j∈J ∈ G2. {li}i∈I ∩ {lj}j∈J = ∅

• (3) ∀g(r;R;R) ∈ G1.∀g′(r′;R′;R′) ∈ G2. g ̸= g′

• (4) ∀g(r1, .., rn;R;R1, .., Rm) ∈ Gi (i ∈ {1, 2}). ∃g(r′1, .., r′n; r0;R′
1, .., R

′
m) = ... in

G and ∃R′′
1 , .., R

′′
n such that: r1 ∈ R′′

1 , r
′
1 ∈ R′′

1 , .., rn ∈ R′′
n, r

′
n ∈ R′′

n and r0 ∈ R and
R1 = R′

1, .., Rm = R′
m

• (5) (a) ∀r → z{li : Gi}i∈I ∈ Gj (j ∈ {1, 2}). r, z ∈ {r; r1;R} and (b) ∀g(r′;R′;R′) ∈
Gi (i ∈ {1, 2}). ∀z ∈ {r′;R′;R′}. z ∈ {r; r1;R}

B.4.1. Projection

We now define the projection of a global type to a role set.
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Definition 25 (Projection g ↾R). Projection of a global type G to a role set R is defined as
follows:(︁

g(r; r1;R) =
G1 with r1@r2.G2

)︁
↾R

::= gR(r; r1;R) = G1 ↾R with G2 ↾R if R ∈ R

r → z{li : Gi}i∈I ↾R ::=

{︃
r?{li : Gi ↾R}i∈I if R = z
G1 ↾R else if ∀i, j ∈ I Gi ↾R = Gj ↾R

g(r;R′;R).G ↾R ::=

{︃
g(r;R′;R).(G ↾R) if R ∈ R or R = R′

G ↾R otherwise

µt.G ↾R ::=

{︃
µt.(G ↾R) if G ↾R ̸= t
end otherwise t ↾R ::= t end ↾R ::= end

The first rule projects a protocol to the role set R if R is part of the role set parameters.
The body of the protocol is the default activityG1 projected onto R. Role sets are never the
monitor nor are monitored; thus, for the failure handling activity only G2, is projected to
R. The next rule projects a choice to a role set R by either creating a branching statement
r?{li : Gi ↾R}i∈I if R is the receiver (role sets may only occur at the receiving side)
or continues by projecting G1 to R if all branching cases projected to R are the same.
We chose the traditional MPSTs restriction around branching (cf. [HYC16]) instead of a
branch using merging (cf. [CYH09a]) to streamline formal development. The next rule
projects a spawn; it is kept if R is either used to assign a role (R) or is one of the role
set parameters (R). Projection continues with G. Projection of recursion and end are as
expected.

B.5. Endpoint Processes and Systems

This appendix section corresponds to Section 4.4.3 (Processes and Networks) and Sec-
tion 4.5 (Operational Semantics).

B.5.1. Operational semantics

In the following we define the relation fire(L1, L2, b,F) used in the Fire reduction (cf.
Figure 4.10).

Definition 26 (Valid guard type). A local type L is a valid guard type if (i) it is flat (the
label sets of all selection and branching types in L contain exactly one label), (ii) it contains
no with type, (iii) it contains no recursive types (i.e., no µt. or t), and (iv) it contains no
participant names.
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Definition 27 (L≍ L′). The match predicate L≍ L′ holds if and only if L− L′ is defined
for these types.

Definition 28 (fire(L,Lg, b,F)). The fire(L,Lg, b,F) predicate, which checks that Lg will
not block given the buffer b, the fail set F , and L for binding of roles to participant names, is
defined as:

fire(L,Lg, b,F) =

⎧⎪⎪⎨⎪⎪⎩
true if Lg = r!l . L′

true else if Lg = r?l . L′
g ∧ b(p) = l . l where p:r ∈ L

true else if Lg = r↓ . L′
g ∧ p ∈ F where p:r ∈ L

false otherwise

Session and spawn semantics In the following we formally define relations used in
Spawn, Sess-GC and Root-GC (cf. Figure 4.12) that we omitted in the main section.

Definition 29 (Projection gq;p0↾p). Given G, g(r; r0;R) = ... ∈ G, p, and R such that
p ∈ Rids , and L = G ↾R, then gq;p0↾p is defined as:

gq;p0↾p =

⎧⎨⎩
L{q:r, p0:r0/r, r0} if q = q1 · ... · qn, p = qj and grj (r; r0;R) = L ∈ L
L{q:r, p0:r0/r, r0} else if p = p0 and gr0(r; r0;R) = L ∈ L
L{q:r, p0:r0/r, r0} else if p /∈ q · qj ∧ gR(r; r0;R) = L ∈ L

Definition 30. The done(L) predicate is valid when L = end with L2, L = −with end, or
L = endL2

Failure handling semantics. In the following we formally define the relations used in
Mon and and RcvFN (cf. Figure 4.12) that we omitted from the main section.

Definition 31 (s⇝+
Θ). s⇝

+
Θ is defined as:

s⇝+
Θ =

{︃ ˜︁s ∪ (
⋃︁

si∈˜︁s (si ⇝+
Θ)) if Θ(s) = (_, ˜︁s)

∅ else

Omitted reduction rules

Figure B.12 provides reduction rules omitted from Figures 4.10, 4.12 and 4.13. The rules
Par, StrR, and StrR in Figure B.12 are standard structural reduction rules. StrR uses a
(simpler version of) standard structural equivalence.
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(Θ,F , N)→ (Θ′,F ′, N ′)

Par
(Θ1,F1, N1)→ (Θ′

1,F ′
1, N

′
1)

(Θ1,F1, N1 ||N2)→ (Θ1,F1, N
′
1 ||N2)

Res
(Θ1,F1, N1)→ (Θ2,F2, N2)

(Θ1,F1, (ν(s : G))N1)→ (Θ′
2,F ′

2, (ν(s : G))N2)

StrR
N1 ≡N ′

1 (Θ1,F1, N
′
1)→ (Θ2,F2, N

′
2) N ′

2 ≡N2

(Θ1,F1, N1)→ (Θ2,F2, N2)

Figure B.12.: Reduction rules omitted from Figures 4.10, 4.12 and 4.13

Definition 32 (Structural equivalence). StrR exercises structural equivalence for networks,
defined by the rules below. Our calculus uses only the standard rules for rearranging parallel
compositions and 0. We do not have rules for restriction, as we assume exactly one top-level
restriction.

N1 ||N2 ≡ N2 ||N1 (N1 ||N2) ||N3 ≡ N1 || (N2 ||N3) N || 0 ≡ N

B.6. Type System and Properties

B.6.1. Typing judgments

We now define coverage that is used in the typing rule TELoop (cf. Figure 4.14). We use
{Li}i∈I ⊢ g as a short hand for {Li}i∈I ⊢ L where g(r; r;R) = L ∈ L.

Definition 33 (Coverage {Li}i∈I ⊢ L). Let L be the the minimal closed set under the
relation {(L1, L2) | Lj ∈ {Li}i∈I and unf(L1)− Lj = L2} that contains L. The event loop
{Li}i∈I covers the local type L if for all L′ in ({unf(Li) | L1 with L2 ∈ L ∧ Li ̸= end ∧ i ∈
{1, 2}} ∪ {unf(L) | −with L ∈ L ∧ L ̸= end}) exactly one of following is true:

• If L′ = y?{lj : Lj}j∈J , then for all j ∈ J it exists L′′ ∈ {Li}i∈I such that y?{lj :
Lj} ≍ L′′.

• If L′ = y!{li : Li}i∈I , then for all j ∈ J it exists L′′ ∈ {Li}i∈I such that y!{lj :
Lj} ≍ L′′.

• If L′ = R!{li : Li}I , then for all j ∈ J it exists L′′ ∈ {Li}i∈I such thatR!{lj : Lj}≍L′′.

• If L′ = y↓.L, then it exists L′′ ∈ {Li}i∈I such that y↓.L≍ L′′.
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• If L′ = g(y,R, R).L, then it exists L′′ ∈ {Li}i∈I such that g(y,R, R).L≍ L′′.

The definition builds a minimal closed set using the relation L1 − L2 = L3. For every
element in that set, the definition ensures that all non-end, normal activities, and failure
handling activities are covered by at least one event handler. For branching types and
selection types, it further ensures that every case is covered. Furthermore, it ensures that
for spawn types, there is a handler that only implements the spawn (by L≍L′ that builds
on Definition 20).

Definition 34 (wf(L)). A guard type L is well-formed (wf(L)) if all the following conditions
are valid.

• L is a valid guard type and

• if L contains a suspicion type, receive type or spawn type, then that type must be L

Definition 34, defines that a well-formed guard type is flat and contains at most one
type describing a blocking action, which must be the first action in the guard type.

B.6.2. Coherence

We now definition omitted definitions for coherence (cf. Section 4.6.1).
Coherence is the central typing invariant that ensures participant interactions remain

safe throughout reduction – i.e., invariant properties of runtime networks used to establish
subject reduction. There are two parts to our approach. The coherence (or consistency)
property in MPSTs (e.g., [CDYP16]) is based on pairwise duality of endpoint types with
consideration of input queue contents – duality is the intuitive compatibility relation
between two participants, where an output on one side is balanced by an input on
the other. First, we extend this concept as intrasession coherence, i.e., for individual
(sub)sessions, to cater to our event-driven model, failure handling, and our multisend
branching. Second, we introduce a notion of intersession coherence – properties across
subsessions to ensure their concurrent execution and cross-session failure handling remain
safe.

L↾↾p and partial types T A partial type T contains only the parts of L involving one other
participant and a type for multisend receives.

Definition 35 (Partial Types).

T ::= {T with T} | {−with T} | !{li : Ti}i∈I | ?{li : Ti}i∈I | q?{li : Ti}i∈I |
g.T | µt.T | t | end
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Auxiliary definition For ease of presentation, we assume all elements in a global type
are uniquely numbered, and the numbers are carried to the local and partial types. The
numbers allows us to identify local and partial types that are associated with a multisend
send type (i.e., r → R {li : Gi}i∈I).
Partial projection L↾↾p projects local type L to participant p, yielding a partial type T

containing only the parts of L involving p.

Definition 36 (Partial Projection (L↾↾p)). Partial projection of a local type L to a participant
p is defined in Figure B.13.

Partial projection is mostly standard ([CDYP16]) and closely follows the structure of
(normal) projection. We therefore only explain some interesting rules. Partial projection
of a with type or an active with type normally performs partial projection of the normal
activity and failure handling activity. To simplify the next definitions, partial projection
"activates" failure handling in the partial types if the queue contains a label that was sent
in the failure handling activity (see duality for the justification). If we partial project to
the monitored participant then partial projection sets the failure handling activity to end,
because Definition 19 sets the failure handling activity of a monitored role to end.
The partial projection of a branching type has one nonstandard case (cf. [CDYP16]). If

we partial project a branching type (q:r?{li : Li}i∈I) associated with (was projected from)
a multisend to R (r → R{li : Gi}i∈I) and the partial projection is towards a participant
p that belongs to R (i.e.,r, p ∈ Rids) then we create a multisend receive partial type
(q?{li : Li↾↾p}i∈I). The dual of a partial multisend receive type is another partial multisend
receive type. While we do not have an output is balanced by an input we have that both
sides wait for (or have received) a multisend label, i.e., if any participant of R received a
label, say lj ∈ {li : Li}i∈I then all other (unsuspected) participant of R also received the
label lj .

Session remainder for partial types and queue Before defining the session remainder
for partial types we define a helper definition that removes partial multisend receive types
for which we have a multisend label in the local queue.

Definition 37 (T \ b). The removal of multisend labels b from a partial type T is defined as
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endL↾↾p ::= L↾↾p

L with L′↾↾p ::=

⎧⎪⎪⎨⎪⎪⎩
{−with L′↾↾p} if any failure handing label

is queued in the configuration
{L↾↾p with end} else if p is the monitored participant
{L↾↾p with L′↾↾p} else

−with L↾↾p ::=

{︃
{−with end} if p is the monitored participant
{−with L↾↾p} else

p:r′?{li : Li}i∈I↾↾p ::=

⎧⎪⎪⎨⎪⎪⎩
?{li : Li↾↾p}i∈I if p = q
q?{li : Li↾↾p}i∈I else if associated with r → R{li : Gi}i∈I

and p ∈ Rids

L1↾↾p else if Li↾↾p = Lj↾↾p

q:r↓.L↾↾p ::=

{︃
end if p = q
L↾↾p else

q:r!{li : Li}i∈I↾↾p ::=

{︃
!{li : Li↾↾p}i∈I if p = q
L1↾↾p else if Li↾↾p = Lj↾↾p

R!{li : Li}i∈I↾↾p ::=

{︃
!{li : Li↾↾p}i∈I if p ∈ Rids

L1↾↾p else if Li↾↾p = Lj↾↾p

g(q:r,R, R).L↾↾p ::=

{︃
g.(L↾↾p) if p ∈ pidΘ(q:r,R, R)
L↾↾p else

µt.L↾↾p =

{︃
µt.(L↾↾p) if (L↾↾p) ̸= t
end otherwise t↾↾p = t end↾↾p = end

Figure B.13.: Partial projection.
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follows:

∀i ∈ {li}. Ti \ b = T ′
i

!{li : Ti}i∈I \ b = !{li : T ′
i}i∈I

∀i ∈ {li}. Ti \ b = T ′
i

?{li : Ti}i∈I \ b = ?{li : T ′
i}i∈I

no other rule applicable
T \ b = T

b(q) = lj · l lj ∈ {li} b′ = b[q ↦→ l] Tj \ b′ = T ′

q?{li : Ti}i∈I \ b = T ′

T{µt.T/t} \ b = T ′ T{µt.T/t} ≠ T ′

µt.T \ b = T ′

T \ b = T ′

g.T \ b = g.T ′

T1 \ b = T ′
1

T1 with T2 \ b = T ′
1 with T2

b′ = clean default labels from b T \ b′ = T ′

−with T \ b = −with T ′

Definition 38 (multiSndLabels(b, R)). Extracting the multisend labels sent to R from b is
defined as follows:

multiSndLabels(b, R) = [p1 ↦→ mlbl(b(p1)), ..., pn ↦→ mlbl(b(pn))] where{p1, .., pn} = dom(b)

mlbl(l) =

⎧⎨⎩
ϵ if l = ϵ

mlbl(l
′) else if l = l · l′ ∧ l is not a mulitsend label to R

l ·mlbl(l′) else if l = l · l′

We now define the partial type remainder definitions.

Definition 39 (T − b(q)). Let T be p’s partial type and (a) b′ = multiSndLabels(b, R) if
p, q ∈ Rids else (b) b′ = []; then the partial type remainder T−b(q) first calculates T \b′ = T ′
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and then calculates T ′ − l via the rules defined below.

Tj − l = T ′ lj ∈ {li}
?{li : Ti}i∈I − lj · l = T ′

T{µt.T/t} − l = T ′

µt.T − l = T ′ T − ϵ = T

T1 − l1 = T ′ T ′ with T2 − l = T ′′

T1 with T2 − l1 · l = T ′′
T2 − l1 = T ′ −with T ′ − l = T ′′

T1 with T2 − l1 · l = T ′′

T − l1 = T1 −with T1 − l = T ′

−with T − l1 · l = T ′
l1 ̸∈ T −with T − l = T ′

−with T − l1 · l = T ′

l1 ∈ T1 ∃l′ ∈ l. l′ ∈ T2 T1 with T2 − l = T ′′

T1 with T2 − l1 · l = T ′′

Notice that Definition 39 (-) is not defined for spawn. If b and q is clear from context
we sometimes write T − l instead of T − b(q) for b(q) = l

Definition 40 (Duality). T ▷◁ T ′ of partial types is the minimal symmetric relation that
satisfies:
T ▷◁ T ′ ∧TH ▷◁ T ′

H ⇒ T with TH ▷◁ T ′ with T ′
H TH ▷◁ T ′

H ⇒ T ′ with T ′
H ▷◁ −with TH

TH ▷◁ T ′
H ⇒ −with T ′

H ▷◁ −with TH T ▷◁ T ′ ⇒ g.T ▷◁ g.T ′

∀i∈ I. Ti ▷◁ T ′
i ∧ li= l′i ⇒ !{li :Ti}i∈I ▷◁ ?{l′i :T ′

i}i∈I
∀i∈ I. Ti ▷◁ T ′

i ∧ li= l′i ⇒ q?{li :Ti}i∈I ▷◁ q?{l′i :T ′
i}i∈I

T1 ▷◁ T2 ⇒ µt.T1 ▷◁ µt.T2, t ▷◁ t end ▷◁ end

Two partial handling types (T with TH) are dual if their normal and failure handling
activities are respectively dual. A partial handling type and an active partial handling type
(−with TH) are dual if just their failure handling activities are dual: unless an ancestor
session takes over, all participants will eventually converge on the active failure handling
and labels from the normal activity will be cleaned. Two partial spawn types (g.T ) are
dual if they spawn the same subprotocol and their continuations are dual. Two partial
multisend receive types are dual if both receive the same labels and their continuations are
dual. Duality between send and receive is standard, as is recursion and end.

Definition 41 (Unfold). For local types L unfold unf(L) is defined as follows:

unf(L1) with unf(L2) if L = L1 with L2

−with unf(L1) if L = −with L1

unf(L1{µt L1/t}) if L = µt L1

L otherwise

Unfold for partial types is defined analogue to unfold for local types.
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Coherence. We now define our notions of coherence based on the above elements.

Definition 42 (Intrasession Coherence). Assume a well-formed top-level G, (∆,Σ,F ,Θ)
and a session s in Θ. Then (∆,Σ,F ,Θ) satisfies intrasession coherence w.r.t. s if all the
following hold:

1. For all s[p1] : (L1, b1), s[p2] : (L2, b2) ∈ Σ with p1, p2 unsuspected the following must
hold: unf(L1↾↾p2 − b1(p2)) ▷◁ unf(L2↾↾p1 − b2(p1)).

2. For all s[p] : (L, b) ∈ Σ with p unsuspected (i.e., p ̸∈ F) and L not stopped (L ̸= endL′′):
p:R :{Li}i∈I ∈ ∆, and either s[p] ̸∈∆ ∧ {Li}i∈I ⊢ L or s[p] :L′ ∈∆ ∧ {Li}i∈I ⊢
L−L′.

3. All configurations for s are present and respects well-formedness under G.

(1) checks for all pairs of unsuspected participants that the local types and queues are
dual. (2) checks the event loop of every unsuspected participant provides coverage for its
current subprotocol state L, with consideration of the active handler (L−L′) if any. (3) is
basic bookkeeping: it records that configurations respect well-formedness and global types
restrictions, e.g., normal and failure handling activities use disjoint labels and ensures
that all input buffers, in particular from suspected participants, are present, a minor
technicality to ensure Send reduction (cf. Figure 4.10) does not block due to a missing
buffer.
A stopped configuration has a stopped subprotocol state (endL). A configuration for

s[p] is an ancestor (resp. descendent) of a configuration for s′[p] if s is an ancestor (resp.
descendent) of s′.

Definition 43 (Intersession Coherence). (∆,Σ,F ,Θ) satisfies intersession coherence if
both:

1. The parent-child subsession relation in Θ forms exactly one tree, and the participants of
every child session are a subset or equal to those of its parent.

2. For all unsuspected participants, every stopped configuration has a non-stopped ancestor
configuration with active failure handling. All descendent configurations of a configuration
with active failure handling are stopped.

Definition 44 (Coherence). Assuming a well-formed top-level G, (∆,Σ,F ,Θ) satisfies
coherence if (i) it satisfies intrasession coherence for all s∈Θ and (ii) it satisfies intersession
coherence. We may simply say (∆,Σ,F ,Θ) is coherent.
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Well-Formedness of Configurations Lastly we defines the meaning of well-formedness
for configuration types. It is a direct adaption of Definition 24 to the subprotocol states
and the buffer types.1

Definition 45 (Configuration Well-Formedness). Assume (∆,Σ,F ,Θ), a session s, with
s ∈ Θ and a well-formed top-level G. Then the configurations of s respects to well-formedness
under G if all the following conditions are satisfied:

1. The monitor must send at the beginning of the failure handling (after a potential failure
detection) a label to all roles and roles sets except: the monitored role; and roles or
roles sets which are already notified about the failure, i.e. have active failure handling
or the label in the queue which will trigger failure handling.

2. The set of labels used in the default activity and the set of labels used in the failure
handling activity must be distinct. This extends to queue types, i.e. a queue type can
only contain a label associated with failure handling if the sender has active failure
handling.

3. The set of protocols spawned in the default activity and the failure handling activity
must be distinct.

4. The sender and the receiver must be distinct for all interaction.

B.6.3. Property: subject reduction

Reduction of typing environments

Figure B.14 – Figure B.16 define the typing environment reduction rules. They are closely
aligned with the network reduction rules (cf. Figure 4.10 – Figure 4.13). For brevity we
omitted Γ from the reduction and implicitly assume the presence of G associated with the
root session. Some rules contain the premise ̸ ∃s′[p] ̸∈ ∆1 that ensures that the participant
p has no active event handling. We overloaded ∆ = ∆1 ·∆end when it occurs in the premise
of the type environment reduction as follows: it states that∆ is split into the environments
∆1 and ∆end where ∆1 contains no end-only session.

Preservation of coherence

In this section, we show the preservation of coherence an important building block for
subject reduction. We now define supporting definitions and lemmas. We write Σ \ s and
∆ \ s with the meaning of removing all s[p] contained in Σ respectively ∆.
1Definition 49 (Extend global type well-formedness) could be used to make this definition more rigid.
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[[FIRE]]
Lg ∈ {Li}i∈I L≍ Lg fire(L,Lg, b,F) ∆ = ∆1 ·∆end ̸ ∃s′[p] ̸∈ ∆1

(∆, s[p] : (L, b) · p:R : {Li}i∈I · Σ, F , Θ) →
(s[p] : Lg ·∆, s[p] : (L, b) · p:R : {Li}i∈I · Σ, F , Θ)

[[SEND]]
lj ∈ {li}i∈I

(s[p] : r!lj .L ·∆, s[p] : (E [q:r!{li : Li}i∈I ], b) · s[q] : (Lq, bq) · Σ, F , Θ) →
(s[p] : L ·∆, s[p] : (E [Lj ], b) · s[q] : (Lq, bq[p ↦→ bq(p) · l1]) · Σ, F , Θ)

[[RECV]]
(q ↦→ lj · l)∈ b lj ∈ {li}i∈I

(s[p] : r?lj .L ·∆, s[p] : (E [q:r?{li : Li}i∈I ], b) · Σ, F , Θ) →
(s[p] : L ·∆, s[p] : (E [Lj ], b[q ↦→ l]) · Σ, F , Θ)

[[MSend]]
Rids \ F = ˜︁p lj ∈ {li}i∈I ∀q ∈ ˜︁p. b′q = bq[p ↦→ bq(p) · lj ]

(s[p] : R!lj .L ·∆, s[p] : (E [R!{li : Li}i∈I ], b) ∪q∈˜︁p {s[q] : (Lq, bq)} · Σ, F , Θ) →
(s[p] : L ·∆, s[p] : (E [Lj ], b) ∪q∈˜︁q {s[q] : (Lq, b

′
q)} · Σ, F , Θ)

[[UNFOLD]]
∆ = ∆1 ·∆end ̸ ∃s′[p] ̸∈ ∆1

(∆, s[p] : (E [µt.L], b) · Σ, F , Θ) → (∆, s[p] : (E [L{µt.L/t}], b) · Σ, F , Θ)

Figure B.14.: Reduction of typing environments.

[[SPAWN]]˜︁p1 = q ∪ (R′
ids ∪ Rids) \ F ˜︁p2 = q ∪ p0 ∪ (Rids \ F) ˜︁p2 ∩ F = ∅ p0 ∈ R′

ids p0 ̸∈ q
s′ fresh Θ′ = Θ[s ↦→ (˜︁p2, ∅), s ↦→ (˜︁p1, ˜︁s ∪ s) ∆ = ∆1 ·∆end ∀p ∈ ˜︁p1. ̸ ∃s[p] ̸∈ dom(∆1)

(∆, {p:R : {Li}i∈Ip}p∈˜︁p1
∪p∈˜︁p1

s[p] : (Ep[g(q:r;R′;R).Lp], bp) · Σ, F , Θ[s ↦→ (˜︁p, ˜︁s)]) →
(∆; {p:R : {Li}i∈Ip}p∈˜︁p1

∪p∈˜︁p1
{s[p] : (Ep[Lp], bp)} ∪p∈˜︁p2

{s′[p] : (gq;p0↾p, ε)} · Σ,Θ′)

[[SESS-GC]]
(˜︁p1, ˜︁s) = Θ(s1) (˜︁p2, ∅) = Θ(s2)˜︁p = ˜︁p2 \ F s2 ∈ ˜︁s ∀p ∈ ˜︁p. done(Lp) ∆ = ∆1 ·∆end ∀p ∈ ˜︁p. ̸ ∃s[p] ̸∈ dom(∆1)

(∆, {p:R : {Lj}j∈J}p∈˜︁p ∪p∈˜︁p {s2[p] : (Lp, bp)} · Σ, F , Θ) →
(∆, {p:R : {Lj}j∈J}p∈˜︁p · Σ, F , Θ[s1 ↦→ (˜︁p1, ˜︁s \ s2)] \ s2)

[[ROOT-GC]]
(˜︁p1, ∅) = Θ(s)˜︁p = ˜︁p1 \ F ∀p∈˜︁p done(Lp) s is root ∆ = ∆1 ·∆end ∀p ∈ ˜︁p. ̸ ∃s[p] ̸∈ dom(∆1)

(∆, {p:R : {Li}i∈I}p∈˜︁p ∪p∈˜︁p {s[p] : (Lp, bp)} · Σ, F , Θ) → (∆, Σ, F , Θ \ s)

Figure B.15.: Sub session related reduction of typing environments.
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[[MON]]
p′ ∈ F s⇝+

Θ = {si}i∈I

(s[p] : q↓.Lg,∆, s[p] : (L
′ with p′↓.L, b) ∪i∈I {si[p] : (Li, bi)} · Σ, F , Θ) →

(s[p] : Lg,∆, s[p] : (−with L, b) ∪i∈I {si[p] : (endLi , bi) · Σ, F , Θ)

[[RECV-HDL]]
(q ↦→ l · l)∈ b s[p]⇝+

Θ = {si}i∈I

(s[p] : r?l.Lg,∆, s[p] : (L
′′ with q:r?l. L, b) ∪i∈I {si[p] : (Li, bi)} · Σ, F , Θ) →

(s[p] : Lg,∆, s[p] : (−with Lj , b[q ↦→ l]) ∪i∈I {si[p] : (endLi
, bi)} · Σ, F , Θ)

[[CLEAN]]
b(q) = li · l (L = −with L′ ∧ li ̸∈ L′) ∨ (L = L′ with L′′ ∧ li ∈ L′ ∧ ∃l′ ∈ l. l′ ∈ L′′)

∆ = ∆1 ·∆end ̸ ∃s′[p] ̸∈ dom(∆1)

(∆, p:R : {Li}i∈I · s[p] : (L, b) · Σ, F , Θ)→ (∆, p:R : {Li}i∈I · s[p] : (L, b[q ↦→ l]) · Σ, F , Θ)

[[SUSP]]
p ̸∈ F

(∆, Σ, F , Θ) → (∆, Σ, F ∪ p, Θ)

Figure B.16.: Failure handling related reduction of typing environments.

The next lemma states if Def. 42 (Intra. Coherence) holds and a reduction effects only
one session, then after reduction Def. 42 (Intra. Coherence) still holds for all other sessions.

Lemma 9. Given a coherent (∆,Σ,F ,Θ) typing environment and a typing environment
reduction (∆,Σ,F ,Θ) → (∆′,Σ′,F ,Θ) with ∆ \ s = ∆′ \ s and Σ \ s = Σ′ \ s (for some s)
then ∀s′ ∈ Σ′ with s ̸= s′ Def. 42 (Intra. Coherence) holds in (∆′,Σ′,F ,Θ).

Proof. By assumption ∀s ∈ Σ in (∆,Σ,F ,Θ) Def. 42 (Intra. Coherence) holds. ∀s′ ∈
Σ′ with s′ ̸= swe have: s′ ∈ Σ and Σ(s′) = Σ′(s′) ∧ ∆(s′) = ∆′(s′). Therefore, Def. 42 (In-
tra. Coherence) holds for s′ in (∆′,Σ′,F ,Θ)

Lemma 10 (Splitting of prefix local type minus). Given a coherent (∆,Σ,F ,Θ) typing
environments, a subprotocol state L, a guard type L1.L2, and L−L1.L2 being defined, then:
L− L1.L2 = (L− L1)− L2

Proof. Proof by induction. By Definition 20 (-) L1.L2 is a simple type. Therefore, L1 and
L2 must be simple local types. For the basic rules (?, !) it is easy to see that the property
holds. By the assumption L− L1.L2 being defined the “with” cases follow.

Lemma 11. Given a coherent (∆,Σ,F ,Θ) typing environments, a partial local type T
derived by partial projection from a protocol type and a queue b, then the following holds:
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• Given T − b[p ↦→ l](p) and T − b[p ↦→ l · l′](p) then T − b[p ↦→ l · l′](p) = (T − b[p ↦→
l](p))− [p ↦→ l′](p)

• Given T − b[p ↦→ l′ · l](p) and T − b[p ↦→ l′](p) then T − b[p ↦→ l′ · l](p) = (T − b[p ↦→
l′](p))− [p ↦→ l](p)

• Given T − b[p ↦→ l](p) then T − b[p ↦→ l](p) = (T − b[p ↦→ ϵ](p))− [p ↦→ l](p)

• Given T − [p ↦→ l1](q) and T − b[p ↦→ l1 · l](q) then T − b[p ↦→ l1 · l](q) = (T − [p ↦→
l1])− b[p ↦→ l](q)

Proof. Induction on derivations.

Lemma 12. Given a well-formed top level global type G, with gq;p0↾p1, gq;p0↾p2, and p1 ̸= p2
then unf(gq;p0↾p1↾↾p2 − ε) ▷◁ unf(gq;p0↾p2↾↾p1 − ε)

Proof. By definition of Definitions 18, 36 and 40.

Proof: preservation of coherence

Lemma 13 (Preservation of Coherence). Assume a well-formed top-level G, coherent en-
vironments (∆,Σ,F ,Θ), and that (∆,Σ,F ,Θ) → (∆′,Σ′,F ′,Θ′). Then (∆′,Σ′,F ′,Θ′) is
coherent.

Proof. Proof by enumerating over the cases of (∆,Σ,F ,Θ) → (∆′,Σ′,F ,Θ′). Wolg we
assume p is the endpoint performing the reduction step (except in spawn where multiple
endpoints perform a reduction step together).
The proof focuses on showing that Def. 42 (Coherence).1 holds after reduction. We

discuss Def. 42 (Coherence).2 - Def. 42 (Coherence).3 for some interesting cases. However:
Def. 42 (Coherence).2 usually follows directly from Lemma 10; and Def. 42 (Coherence).3
is an administrative property which trivially hold.

• Case [[FIRE]]:
Assume p ̸∈ F (if p ∈ F then coherence holds trivially)
By [[FIRE]]:

Σ = Σ′ and Θ = Θ′ and F = F ′ (B.1)

By [[FIRE]]:

∆ = ∆1 ·∆end

∆′ = ∆′
1 ·∆end

∃s[p] : Ls ∈ ∆′
1 with ∆′

1 = ∆1, s[p] : Ls and s[p] : (L, b) ∈ Σ
(B.2)
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Preservation of Definition 42 (Intra. Coherence) for s: We only show Def. 42 (Co-
herence).2 as the other parts are straightforward.
Before reduction by [[FIRE]] and assumption coherence :

̸ ∃s[p] ∈ ∆1 (B.3)
p:R : {Li}i∈I ∈ ∆ (B.4)

{Li}i∈I ⊢ L (B.5)
Ls ∈ {Li}I (B.6)

L≍ Ls (B.7)

By Definition 27 and Equation (B.7): L is not a µ type in the relevant (normal/failure
handling) activity and therefore unf() has no effect. Furthermore, by Equations (B.5)
to (B.7) and Definition 33, and monotonicity we have:

{Li}i∈I ⊢ L− Ls (B.8)

Preservation of Definition 42 (Intra. Coherence) for the other sessions: Holds by
Lemma 9.

Preservation of Definition 43 (Inter. Coherence): The reduction does not effect
the general tree structure nor performs failure handling.

• Case [[SEND]]: By reduction:

Θ = Θ′ (B.9)
F = F ′ (B.10)
∆ = s[p] : r!l1.L ·∆c (B.11)
Σ = s[p] : (E [q:r!{li : Li}I ], b) · s[q] : (Lq, bq) · Σc (B.12)
∆′ = s[p] : L ·∆c (B.13)
Σ′ = s[p] : (E [L1], b), s[q] : (Lq, bq[p ↦→ bq(p) · l1]) · Σc (B.14)

Preservation of Def. 42 (Intra. Coherence): First we show that duality is preserved
between p and a p′ who is not the receiver. Then we show duality between p and q
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Preservation of duality between p and a p′.
Let p′ ̸= q and wolg p and p′ unsuspected and involved in s (otherwise nothing to
show). Let s[p′] : (Lp′ , b) ∈ Σ. In (∆,Σ,F ,Θ) we have:

unf(E [q:r!{li : Li}]↾↾p′ − b(p′)) ▷◁ unf(Lp′↾↾p− bp′(p)) (B.15)

By Definition 18 (projection) and Definition 36 (↾↾) (Li↾↾p′ = Lj↾↾p′) on Equa-
tion (B.15),

E [q:r!{li : Li}]↾↾p′ = E [Li]↾↾p
′ (B.16)

Therefore, Def. 42 (Coherence).1 in (∆′, Σ′, F ′, Θ′) holds.

Now we show that duality is preserved between p and q. Case distinction over
p ̸∈ F , q ̸∈ F status:
Case a: p ̸∈ F , q ̸∈ F : Def. 42 (Coherence).2 follows from Lemma 10
By assumption in (∆,Σ,F ,Θ):

unf(E [q:r!{li : Li}]↾↾q − b(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.17)

Definition 39 (-) and Definition 40 (duality)

unf(E [q:r!{li : Li}]↾↾q − b(q)) ▷◁ unf(Tpq) (B.18)

Case distinction over the failure handling status:
Case 1: Case both p, q have no active handling (in partial types): By Def. 42 (Co-
herence).3 and Def. 42 (Coherence).3 before reduction and Definition 36 (↾↾),

b(q) = ε (B.19)

By Equation (B.19):

unf(E [q:r!{li : Li}]↾↾q − b[q ↦→ ϵ](q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.20)

By Definition 40 (duality) and Definition 39 (-),

unf(Lq↾↾p− bq(p)) = T ′[?{li : T ′
i}] (B.21)

By Definition 40 (duality)

unf(T [!{li : Ti}]) ▷◁ T ′[?{li : T ′
i}] (B.22)
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Next we show that Def. 42 (Coherence).1 holds in (∆′, Σ′, F ′, Θ′).

unf(E [L1]↾↾q − b(q)) ▷◁ unf(Lq↾↾p− bq[p ↦→ bq(p).l1](p)) (B.23)

By Equations (B.18) and (B.19), Lemma 11 and both non active handling (wolg
Lq↾↾p− bq(p) has no µ type as the prefix):

unf(E [L1]↾↾p− b[q ↦→ ϵ](q)) ▷◁ unf(T ′[?{li : T ′
i}]− [p ↦→ l1](p)) (B.24)

Apply Definition 36 (↾↾) on Equation (B.24), Definition 39 (-)

unf(T [T1]) ▷◁ unf(T ′[T ′
1]) (B.25)

By Equation (B.22) and Definition 40 (duality) Equation (B.25) holds and therefore
Equation (B.23).
Case 2: Case p not active handling, q active handling: By Def. 42 (Intra. Coherence)
in (∆,Σ,F ,Θ):

unf(q:r!{li : Li} with L′
p↾↾q − b(q)) ▷◁ unf(−with L′

q↾↾p− bq(p)) (B.26)

Two cases (i) failure label in b or (ii) otherwise
Case i: By Definition 36 (↾↾) and Definition 39 (-)

q!{li : Li} with L′
p↾↾q − b(q) = {−with Tpq} (B.27)

By Definition 40 (duality) and Definition 41 (unf()) on Equation (B.27)

unf({−with Tpq}) ▷◁ unf(−with Tqp) (B.28)

We show that Def. 42 (Coherence).1 holds in (∆′, Σ′, F ′, Θ′) (b′q = bq[p ↦→ bq(p).l1]):

unf(Li with L
′
p↾↾q − b(q)) ▷◁ unf(−with L′

q↾↾p− b′q(p)) (B.29)

By case, Definition 36 (↾↾), and Definition 39 (-) on Equation (B.29)

unf({−with Tpq}) ▷◁ unf(−with L′
q↾↾p− b′q(p)) (B.30)

By Lemma 11 on Equation (B.30)

unf({−with Tpq}) ▷◁ unf({−with Tqp} − [p ↦→ l1]) (B.31)

By Definition 39 (-) (clean) and Def. 42 (Coherence).3 on Equation (B.31)

unf({−with Tpq}) ▷◁ unf({−with Tqp}) (B.32)

Done.
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Case ii: In (∆,Σ,F ,Θ)

unf(q:r!{li : Li} with L′
p↾↾q − b(q)) ▷◁ unf(−with L′

q↾↾p− bq(p)) (B.33)

By [[SEND]] and Definition 39 (-) on Equation (B.33)

unf(q:r!{li : Li} with L′
p↾↾q − b(q)) ▷◁ unf({−with Tqp})

unf({!{li : Ti} with T ′
p} − b(q)) ▷◁ unf({−with Tqp})

unf({!{li : T ′
i} with T ′

p}) ▷◁ unf({−with Tqp}) (B.34)

We show that Def. 42 (Coherence).1 holds in (∆′, Σ′, F ′, Θ′):

unf(L1 with L
′
p↾↾q − b(q)) ▷◁ unf(−with L′

q↾↾p− bq[p ↦→ bq(p).l1](p)) (B.35)
unf({T1 with T ′

p} − b(q)) ▷◁ unf(−with L′
q↾↾p− bq[p ↦→ bq(p).l1](p)) By Equation (B.34)

(B.36)
unf({T ′

1 with T
′
p}) ▷◁ unf({−with Tqp} − li) (Equation (B.34) and Lemma 11)

(B.37)

unf({T ′
1 with T

′
p}) ▷◁ unf({−with Tqp})

(Definition 39 (-)(clean)
and Def. 42 (Coherence).3) (B.38)

Done.
Case 3: Case p active handling, q non active handling (under consideration of bq)

unf(−with q:r!{li : Li}↾↾q − b(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.39)

Rewriting left side (by case there is no mulitsend label associated with failure
handling in the queue):

unf(−with q:r!{li : Li}↾↾q − b(q)) = unf({−with !{li : Li↾↾q}}) (B.40)

by (duality) and wolg:

unf(Lq↾↾p− bq(p)) = unf({Tqp with ?{li : T ′
i}}) (B.41)

We need to show in (∆′, Σ′, F ′, Θ′):

unf(−with L1↾↾q − b(q)) ▷◁ unf(Lq↾↾p− bq[p ↦→ bq(p).l1](p)) (B.42)
unf({−with L1↾↾q}) ▷◁ unf({−with ?{li : T ′

i}} − l1) (B.43)
unf({−with L1↾↾q}) ▷◁ unf({−with T ′

1}) (B.44)
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Done.

We now show that duality between q and some non suspected participants, say
p1 is preserved (s[p1] : (Lp′1 with Lp′2, bp1) ∈ Σ. This case is interesting if the label
send (by p) is the label that activate failure handling in q’s partial types. Therefore,
we assume l1 is the label that activates failure handling in q’s partial type (otherwise
duality follows easily for p1). We further assume p1 has no active failure handling
(in its partial type). The case where p1 has active handling is similar.

unf(Lq with L
′
q↾↾p1 − bq(p1)) ▷◁ unf(Lp′1 with Lp′2↾↾q − bp1(q)) (B.45)

By Definition 36 (↾↾) on Equation (B.45)

unf({Tq with T ′
q} − bq(p1)) ▷◁ unf({Tp11 with Tp12} − bp1(q)) (B.46)

By assumption both default activity (in their partial types):

unf({T ′′
q with T ′

q}) ▷◁ unf({T ′′′
p11 with Tp12}) (B.47)

After reduction we have to show for b′q = bq[p ↦→ bq(p) · l1]:

unf(Lq with L
′
q↾↾p1 − b′q(p1)) ▷◁ unf(Lp′1 with Lp′2↾↾q − bp1(q)) (B.48)

By Definition 36 (↾↾) on Equation (B.48)

unf({−with T ′
q} − b′q(p1)) ▷◁ unf(Lp′1 with Lp′2↾↾q − bp1(q)) (B.49)

By l1 not a mulitsent label

unf({−with T ′
q} − b′q(p1)) = unf({−with T ′

q} − bq(p1)) (B.50)

By Equation (B.50), clean on Equation (B.49)

unf({−with T ′
q}) ▷◁ unf({T ′′′

p11 with Tp12}) (B.51)

Therefore duality holds by Equation (B.47).
Case 4: Case p, q active handling: similar to the case both p, q non active handling
Case b: p ̸∈ F ∧ q ∈ F . Since q ∈ F we do not require duality.
Case c: p ∈ F ∧ q ̸∈ F . Since p ∈ F we do not require duality. See [[RECV]] and
[[RECV-HDL]] for the treatment of a message from a suspected participant.
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Preservation of Definition 43 (Inter. Coherence): The reduction does not effect
the general tree structure nor performs failure handling.

• Case [[MSend]]: By reduction:

Θ = Θ′ (B.52)
F = F ′ (B.53)
∆ = s[p] : R!l1.L ·∆c (B.54)
Σ = s[p] : (E [R!{li : Li}I ], b) · ∪q∈˜︁p {s[q] : (Lq, bq)} · Σc (B.55)
∆′ = s[p] : L ·∆c (B.56)
Σ′ = s[p] : (E [L1], b),∪q∈˜︁p {s[q] : (Lq, b

′
q)} · Σc (B.57)

Rids \ F = ˜︁p (B.58)
l1 ∈ {li}i∈I (B.59)
∀q ∈ ˜︁p. b′q = bq[p ↦→ bq(p) · l1] (B.60)

Preservation of Def. 42 (Coherence).1: We will show that duality is preserved
between two unsuspected participants p1 and p2 with p1, p2 ∈ ˜︁p. The other cases
are similar to the [[SEND]] case.
Wolg the multisend happens in the default activity and p1, p2, and p are in the default
activity (in their partial types). (The case is similar for a multisend in the failure
handling activity.)
In (∆,Σ,F ,Θ) we have:

unf(Lp1↾↾p2 − bp1(p2)) ▷◁ unf(Lp2↾↾p1 − bp2(p1)) (B.61)

and

unf(Lpj↾↾p− bpj (p)) ▷◁ unf(E [R!{li : Li}I ]− b(pj)) j ∈ {1, 2} (B.62)

By Equation (B.62), Definition 39 (-) and Definition 36 (↾↾):

unf(Lpj↾↾p− bpj (p)) = Tj [?{li : Tji}I ] (B.63)

By Equation (B.62), Equation (B.63), Definition 39 (-) and Definition 36 (↾↾):

unf(Lpj↾↾pk − bpj (pk)) = Tj Tj = T ′
j [T

′
j ] p?{li : Tji}I ∈ T ′

j {j, k} = {1, 2}
(B.64)
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By Definition 36 (↾↾), Definition 39 (-) on Equation (B.61)

unf(T1) ▷◁ unf(T2) (B.65)

After reduction we have to show:

unf(Lp1↾↾p2− bp1 [p ↦→ bp1(p) · l1](p2)) ▷◁ unf(Lp2↾↾p1− bp2 [p ↦→ bp2(p) · l1](p1)) (B.66)

By unf(Lpj↾↾p− bpj (pk)) = Tj being defined (j ∈ {1, 2}):

unf(T1 − [p ↦→ l1](p2)) ▷◁ unf(T1 − [p ↦→ l1](p1)) (B.67)

By Equation (B.64)
unf(T ′

1) ▷◁ unf(T
′
2) (B.68)

Removing "the" partial multisend receive type present in two dual partial types
preserves duality. Therefore, duality holds in Equation (B.68).

• Case [[RECV]]: By reduction of [[RECV]]

Θ = Θ′ (B.69)
∆ = s[p] : r?l1.L ·∆c (B.70)
Σ = s[p] : (E [q:r?{li : Li}i∈I ], bp) · Σc (B.71)
(q ↦→ l1 · l)∈ b (B.72)

∆′ = s[p] : L ·∆c (B.73)
Σ′ = s[p] : (E [L1], bp[q ↦→ l]) · Σc (B.74)

Preservation of Def. 42 (Intra. Coherence): Def. 42 (Coherence).2 hold after
reduction by Lemma 10.
Next we show that Def. 42 (Coherence).1 holds after reduction by a case distinction
over p, q. And separated case if the receive belongs to a multisend for two other
participants associated with that multisend.

Case a: Case p and q unsuspected:
By case assumption and Definition 42 (Intra. Coherence):

s[q] : (Lq, bq) ∈ Σc (B.75)

By Equation (B.75), Definition 42 (Intra. Coherence) and [[RECV]]:

unf(E [q:r?{li : Li}]↾↾q − bp(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.76)

Case distinction based on active failure handling:

201



Case 1: Case p, q have no active failure handling (in partial types):

unf(E [q?{li : Li}]↾↾q − bp(q)) ▷◁ unf(Lq↾↾p− bq(p))

(Equation (B.72) and Equation (B.76)) (B.77)
unf(T [?{li : Ti}]− [q ↦→ l1 · l]) ▷◁ unf(Lq↾↾p− bq(p)) (Definition 36 (↾↾)) (B.78)
unf(T [T1]− [q ↦→ l]) ▷◁ unf(Lq↾↾p− bq(p)) (Lemma 11 and Definition 39 (-))

(B.79)

For (∆′, Σ′, F ′, Θ′) we show:

unf(E [L1]↾↾q − bp[q ↦→ l](q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.80)
unf(T [T1]− [q ↦→ l]) ▷◁ unf(Lq↾↾p− bq(p)) (Definition 36 (↾↾)) (B.81)

Done (Equation (B.81) same as Equation (B.76)). Other p′ ̸∈ F follow trivially.

Case 2: Case p not active handling, q active handling: By case assumption:

Lq = −with L′
q (B.82)

unf(q:r?{li : Li} with L′
p↾↾q − bp(q)) ▷◁ unf(−with L′

q↾↾p− bq(p)) (B.83)

Case distinction on if label from failure handling present in bp.

Case a: No label from failure handling and Definition 36 (↾↾) on Equation (B.83):

unf({?{li : Ti} with Tpq} − [q ↦→ l1 · l]) ▷◁ unf({−with Tqp} − bq(p)) (B.84)

By (Lemma 11)

unf({T1 with Tpq} − [q ↦→ l]) ▷◁ unf({−with Tqp} − bq(p)) (B.85)

After reduction ((∆′, Σ′, F ′, Θ′)) we have.

unf(L1 with L
′
p↾↾q − bp[q ↦→ l](q)) (B.86)

unf({T1 with Tpq} − [q ↦→ l]) Definition 36 (↾↾) & Definition 39 (-) (step 1)
(B.87)

Equation (B.87) is same as Equation (B.85) (left side), therefore Def. 42 (Coher-
ence).1 holds. Other p′ ∈ Θ in both cases follow trivially
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Case b: Label for failure handling present:
Definition 36 (↾↾) on Equation (B.83):

unf({−with Tpq} − bp(q)) ▷◁ unf({−with Tqp} − bq(p)) (B.88)

By Lemma 11, Definition 39 (-)(first part) and clean in Definition 39 (-) (second
part), i.e. removing the l1 label, on Equation (B.88)

unf({−with T ′
pq} − [q ↦→ l]) ▷◁ unf({−with Tqp} − bq(p)) (B.89)

By case assumption

unf({−with T ′′
pq}) ▷◁ unf({−with Tqp} − bq(p)) (B.90)

After reduction ((∆′, Σ′, F ′, Θ′)) we have:

unf({−with Tpq} − bp[q ↦→ l](q)) ▷◁ unf({−with Tqp} − bq(p)) (B.91)

By Definition 39 (-) (first part removal multisend labels)

unf({−with T ′
pq} − [q ↦→ l]) ▷◁ unf({−with Tqp} − bq(p)) (B.92)

By Definition 39 (-) (second part)

unf({−with T ′′
pq}) ▷◁ unf({−with Tqp} − bq(p)) (B.93)

Case 3: Case p active handling, q non active handling. We show that this case can
not happen.

Assume:

unf(−with q:r?{li : Li}↾↾q − bp(q)) ▷◁ unf(Lq with L
′
q↾↾p− bq(p)) (B.94)

unf({−with Ti} − [q ↦→ l]) ▷◁ unf(Lq with L
′
q↾↾p− bq(p)) ([[RECV]] (Equation (B.72)))

(B.95)

By Def. 42 (Coherence).3 (which holds before reduction) we have distinct set of
labels for the normal activity and the failure handling activity. Therefore q needs to
be in active failure handling and we have a contradiction.

Case 4: p, q active handling: Similar to the case both p, q non active handling

203



Case b: p unsuspected and q suspected. Wolg p′ unsuspected and s[p′] : (Lp′ , bp′) ∈
Σc. By Definition 44 (Coherence) before reduction:

unf(E [q:r?{li : Li}]↾↾p′ − bp(p
′)) ▷◁ unf(Lp′↾↾p− bp′(p)) (B.96)

By Definition 18 (projection) for any i:

E [q:r?{li : Li}]↾↾p′ = E [Li]↾↾p
′ (B.97)

After reduction we have (in (∆′, Σ′, F ′, Θ′)) by Equation (B.97):

unf(E [L1]↾↾p
′ − bp[q ↦→ l](p′)) ▷◁ unf(L′

p↾↾p− bp′(p)) (B.98)

Case multisend. Let p, p′ ∈ Rids , p, p′ ̸∈ F and q:r?{li : Li}i∈I be a receive that was
projected from the multisend r → R{li : Gi}. With s[p′] : (L′, bp′) ∈ Σ

By coherence before reduction:

unf(E [q:r?{li : Li}]↾↾p′ − bp(p
′)) ▷◁ unf(L′↾↾p− bp′(p)) (B.99)

By Definition 36 (↾↾) and wolg Definition 36 (↾↾) does not activate failure handling

unf(E [q:r?{li : Li}]↾↾p′ − bp(p
′)) = unf(T [q?{li : Ti}]− bp(p

′)) (B.100)

By Definition 39 (-) (first part, one step)

unf(T [q?{li : Ti}]− bp(p
′)) = unf(T [T1]− bp[q ↦→ l](p′)) (B.101)

After reduction we have to show:

unf(E [L1]↾↾p
′ − bp[q ↦→ l](p′)) ▷◁ unf(L′

p↾↾p− bp′(p)) (B.102)

By Definition 36 (↾↾)

unf(T [T1]− bp[q ↦→ l](p′)) ▷◁ unf(L′
p↾↾p− bp′(p)) (B.103)

By Equation (B.103) being the same as Equation (B.101), duality holds also after
reduction.

Preservation of Definition 43 (Inter. Coherence): The reduction does not effect
the general tree structure nor performs failure handling.

• Case [[CLEAN]]: By reduction:

Θ = Θ′ ∆ = ∆′ F = F ′ (B.104)
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Preservation of Definition 42 (Intra. Coherence) for s: Assume p ̸∈ F (If p ∈ F
coherence holds trivially).
Wolg, before and after [[CLEAN]] reduction:

Σ = s[p] : (L, b),Σ′′ (B.105)
Σ′ = s[p] : (L′, b′),Σ′′ (B.106)

L = L′ b = b′[q ↦→ l1 · b′(q)] (B.107)

Note [[CLEAN]] only removes label associated with default activities.
By Equation (B.104) we have Def. 42 (Coherence).2 after reduction. By Equa-
tions (B.104) to (B.106) we have Def. 42 (Coherence).3 after reduction.
We now show Def. 42 (Coherence).1 for p, q, wolg assume q ̸∈ F (otherwise we
have nothing to show). Note that for s[pi] ∈ Σ with s[pi] ̸= s[q] ∧ s[pi] ̸= s[p]
Def. 42 (Coherence).1 holds trivially by Equations (B.105) to (B.107).
By Def. 42 (Coherence).1 in (∆,Σ,F ,Θ) for s[q] : (Lq, bq) ∈ Σ we have

unf(L↾↾q − b(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.108)

In (∆′, Σ′, F ′, Θ′) we need to show:

unf(L↾↾q − b′(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.109)

By definition of [[CLEAN]], Definition 36 (↾↾) and Definition 39 (-) (If a label is cleaned
then we have active handling in partial types. Therefore clean applies there as well.)

L↾↾q − b(q) = L↾↾q − b′(q) (B.110)

Therefore, Def. 42 (Coherence).1 holds after reduction.

Preservation of Definition 42 (Intra. Coherence) for the other sessions: Holds by
Lemma 9.

Preservation of Definition 43 (Inter. Coherence): The reduction does not effect
the general tree structure nor performs failure handling.

• Case [[SESS-GC]]: Wolg, s is the parent session and s′ was removed.

(˜︁ps, ˜︁s) = Θ(s) (˜︁p1, ∅) = Θ(s′) (B.111)
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Preservation of Def. 42 (Intra. Coherence): By hypothesis that we have Defini-
tion 43 (Inter. Coherence) before reduction:

˜︁p1 ⊆ ˜︁ps (B.112)

By [[SESS-GC]]

∆ = ∆′ ∧ Θ[s ↦→ (˜︁q, ˜︁s \ s′)] \ s′ = Θ′ ∧ F = F ′ ∧ ˜︁p = ˜︁p1 \ F (B.113)

By [[SESS-GC]]

Σ = Σc ∪ {s′[p] : (L′
p, b

′
p)}p∈˜︁p (B.114)

Σ′ = Σc, (B.115)

Def. 42 (Intra. Coherence) holds after reduction since: By ∆ = ∆′ Def. 42 (Coher-
ence).2 holds and by for all configuration in Σ′ there is no change to the protocol
states and queues Def. 42 (Coherence).1 holds. By Equations (B.113) and (B.115)
Def. 42 (Coherence).3 holds.

Preservation of Definition 43 (Inter. Coherence): A leaf of the session tree was
removed and the rest of the session tree remains the same. Therefore, Definition 43
(Inter. Coherence) holds after reduction.

• Case [[SUSP]]:

Wolg, p was removed, by reduction:

∆ = ∆′ Σ = Σ′ Θ = Θ′ F ∪ q = F ′ (B.116)

Preservation of Def. 42 (Intra. Coherence): Holds trivially by Equation (B.116) as
Def. 42 (Intra. Coherence) requires less if q is set to suspected, which is the only
change.

Preservation of Definition 43 (Inter. Coherence): The reduction does not effect
the general tree structure nor performs failure handling.
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• Case [[MON]](p performed the step and p ̸∈ F): By reduction:

c⇝+
Θ = {si}i∈I (B.117)
Θ = Θ′ (B.118)
F = F ′ (B.119)
p′ ∈ F (B.120)
∆ = s[p] : r′↓.Lh ·∆c (B.121)
∆′ = s[p] : Lh ·∆c (B.122)
Σ = s[p] : (L′ with p′:r′↓.L, b) ∪i∈I {si[p] : (Li, bi)} · Σc (B.123)
Σ′ = s[p] : (−with L, b) ∪i∈I {si[p] : (endL′

i
, bi)} · Σc (B.124)

where: endL′
i
= Li or L′

i = Li

Note to Equation (B.124): a subsession, say si, of s is potentially already stopped
and then si[p] already has a stopped local type. If that is the case {si}i∈I contains
an active handling before the reduction.

Preservation of Def. 42 (Intra. Coherence) for s: For non related c, c′ with c, c′ ̸∈
{s, s1, ...sn} trivial satisfied.

We show for (all) s[q] : (Lq, bq) ∈ Σ with p ̸= q, q ̸= p′ and q ̸∈ F that point wise
duality holds.

By hypothesis in (∆,Σ,F ,Θ):

unf(L′ with p′:r′↓.L↾↾q − b(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.125)

Definition 36 (↾↾), Definition 39 (-) and Definition 41 (unf()) on Equation (B.125)
(left side)

unf(L′ with p′:r′↓.L↾↾q − b(q)) = {Tp with T ′
p} (B.126)

Definition 40 (duality) and Equation (B.126) gives for Equation (B.125) (right side)

unf(Lq↾↾p− bq(p)) = {Tq with T ′
q} or {−with T ′

q} (B.127)

{−with T ′
q} not possible by Def. 42 (Coherence).3. By Definition 40 (duality):

{Tq with T ′
q} Tp ▷◁ Tq T ′

p ▷◁ T
′
q (B.128)
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By Equation (B.128) and Def. 42 (Coherence).3

∀l ∈ b l ̸∈ T ′
p (B.129)

In (∆′, Σ′, F ′, Θ′) we have to show:

unf(−with L↾↾q − b(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.130)

using Equation (B.129), and Definition 39 (-) we get

unf(−with L↾↾q) ▷◁ {Tq with T ′
q} (B.131)

By p′↓.L↾↾q = L↾↾q
{−with T ′

p} ▷◁ {Tq with T ′
q} (B.132)

Duality holds.

We now show Def. 42 (Coherence).3: Let {Li} be the set of protocol states in
(∆,Σ,F ,Θ) for s, then (Lp = L′ with p′↓.L) ∈ {Li} and for any Lq ∈ {Li} with
Lq ̸= Lp:

Lp = L′ with p′↓.L Lq = L′
q with p?l.L

′′
q (B.133)

In (∆′, Σ′, F ′, Θ′):

Lp = −with L Lq = L′
q with p?l.L

′′
q (B.134)

which confirms to Def. 42 (Coherence).3.

Preservation of Definition 42 (Intra. Coherence) the other sessions: For si in
{s1, .., sn} the change is setting the local types, say L to endL. Let p be the participant
who activated failure handling in s and let si be an arbitrary sub session of s which
involves p. Further let q be a different unsuspected participant in si.
By (∆,Σ,F ,Θ) being coherent have:

si[p] : (Lp, bp) ∈ Σ si[q] : (Lq, bq) ∈ Σ (B.135)

and
unf(Lp↾↾q − bp(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.136)

By Definition 36 (↾↾) on Equation (B.136) (left side):

unf(Tp − bp(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.137)
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After reduction, by using Equation (B.124), we have to show :

unf(endLp↾↾q − bp(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.138)

Definition 36 (↾↾) (endLp↾↾q = Lp↾↾q) on Equation (B.138) (left side only first partial
projection step)

unf(Lp↾↾q − bp(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.139)

By Equation (B.139) being the same as Equation (B.136) duality holds.

Preservation of Definition 43 (Inter. Coherence): For p ̸∈ F the tree structure was
not changed from Σ to Σ′.

We now show Def. 43 (2) for a si[p]. For s′[p] ̸∈ s[p] ∪ {si[p]}i∈I or any s′′[q] (q ̸= p)
Def. 43 (2) trivially holds after reduction.

Let

si[p] : (Lp, _) ∈ Σ si[p] : (L
′
p, _) ∈ Σ′ (B.140)

By [[MON]] either L′
p = endLp or Lp = endL′′

p
= L′

p

By Equation (B.123) (s[p]’s configuration is not stopped) and Def. 43 (2) if Lp =
endL′′

p
= L′

p then the active failure handling which covers si[p] is in {si}i∈I . Therefore,
both cases are treated simultaneously.

By si ∈ {si}i∈I and Equation (B.124), s[p] configuration is active, is in failure
handling and covers si after reduction.

• Case [[SPAWN]]:
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By reduction with ˜︁p performing the reduction
Θ′ = Θ[s2 ↦→ (˜︁p2, ∅), s ↦→ (˜︁p1, ˜︁s ∪ s2)] (B.141)
F = F ′ (B.142)
∆ = ∆′ (B.143)

Θ(s) = (˜︁p1, ˜︁s) (B.144)˜︁p = q ∪ (R′
ids ∪ Rids) \ F (B.145)˜︁p2 ∩ F = ∅ (B.146)˜︁p2 = q ∪ p0 ∪ (Rids \ F) (B.147)

p0 ̸∈ q (B.148)
p0 ∈ R′

ids (B.149)
Σ ={p : {Li}i∈Ip}p∈˜︁p ∪ {s[p] : (Ep[g(q:r;R′;R).Lp], bp)}p∈˜︁p ∪ Σc (B.150)
Σ′ ={p : {Li}i∈Ip}p∈˜︁p ∪ {s[p] : (Ep[Lp], bp)}p∈˜︁p ∪ {s′[p] : (gq;p0↾p, ε)}˜︁p2 ∪ Σc

(B.151)
∆ =∆1 ·∆∅ (B.152)

∀p ∈ ˜︁p. ̸ ∃s′[p] ̸∈ dom(∆1) (B.153)

Preservation of Def. 42 (Intra. Coherence): By Def. 42 (Coherence).2 before
reduction and [[SPAWN]] (all p ∈ ˜︁p)

{Li}i∈I ⊢ Ep[g(q:r;R;R).L′′
p] (B.154)

By Definition 33, Equation (B.154) and Definition 20 (definition requires spawn
handler with not continuation):

{Li}i∈I ⊢ Ep[L′′
p] (B.155)

i.e. Def. 42 (Coherence).2 holds after reduction.

Preservation of Def. 42 (Coherence).1: Rule [[SPAWN]] together with Def. 42 (Co-
herence).3 ensures that either all participants are in the default activity or the failure
handling activity.
Case distinction: Case a all participants are in the default activity (we further assume
no failure label in the queue; such a label implies we only need duality in the failure
handling activity) or Case b all participant are in the failure handling activity.

210



Def. 42 (Coherence).1 for p ∈ ˜︁p and q ̸∈ ˜︁p follows directly after reduction, since
Definition 36 (↾↾) “removes” spawn in that case from the partial types.
By assumption before reduction (p, q ∈ ˜︁p):
unf(Ep[g(p:R,R′, R).L′′

p]↾↾p− bp(q)) ▷◁ unf(Eq[g(p:R,R′, R).L′′
q ]↾↾q − bq(p)) (B.156)

Case a: Equation (B.156), case assumption and Definition 39 (-) (queue is empty).
Wolg no multisend labels in the queue:

unf(Ep[g(p:r,R′, R).L′′
p]↾↾p) ▷◁ unf(Eq[g(p:r,R′, R).L′′

q ]↾↾q) (B.157)
unf(Tp[g(p:r,R′, R).(L′′

p↾↾q)]) ▷◁ unf(Tq[g(p:r,R′, R).(L′′
q↾↾p)]) (Definition 36 (↾↾))

(B.158)
(L′′

p↾↾q) ▷◁ (L
′′
q↾↾p) (Definition 40 (duality), Definition 41 (unf())) (B.159)

after reduction for p:

unf(Ep[L′′
p]↾↾p− bp(q)) (B.160)

unf(Ep[L′′
p]↾↾p) bp(q) = ε (B.161)

unf(Tp[L′′
p↾↾q]) (B.162)

after reduction for q:

unf(Eq[L′′
q ]↾↾q − bq(p)) (B.163)

unf(Eq[L′′
q ]↾↾p) bq(p) = ε (B.164)

unf(Tq[L′′
q↾↾p]) (B.165)

By Equation (B.158) and Equation (B.159) we have for Equation (B.162) and
Equation (B.165)

unf(Tp[L′′
p↾↾q]) ▷◁ unf(Tq[L′′

q↾↾p]) (B.166)

Case b: Similar to case Case a (the queues can potentially contain labels which can
be cleaned).

Duality for s2: Follows directly from projection of G.

Preservation of Definition 43 (Inter. Coherence): The reduction adds a new leaf
node s2 to session swhich involves ˜︁p2. We have ˜︁p2 ⊆ ˜︁p ⊆ ˜︁p1. Therefore, Definition 43
(Inter. Coherence) is preserved.
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• Case [[RECV-HDL]]: Wolg by reduction:

Θ = Θ (B.167)
F = F ′ (B.168)
∆ = s[p] : rq?l1.L,∆c (B.169)
∆′ = s[p] : L,∆c (B.170)
Σ = s[p] : (L′′ with q:rq?{li : Li}i∈I , bp) ∪i∈I {si[p] : (Li, bi) ∪ Σc (B.171)
Σ′ = s[p] : (−with L1, bp[q ↦→ l])i∈I {si[p] : (endLi , bi)} ∪ Σc (B.172)
(q ↦→ l · l)∈ b (B.173)
s⇝+

Θ = {si}I (B.174)
b′p = bp[q ↦→ l] (B.175)

Preservation of Def. 42 (Intra. Coherence): The Def. 42 (Coherence).2 follows
from Lemma 10.
Case distinction on p, q for Def. 42 (Coherence).1.

Case a: p, q both unsuspected. By well-formedness q is the monitor in session s.
By assumption before reduction

unf({L′′ with q:rq?{li : Li}}↾↾q − bp(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.176)

Definition 36 (↾↾) on Equation (B.176) (bp(q) = l1 · l):

unf({−with ?{li : Ti}} − bp(q)) ▷◁ unf(Lq↾↾p− bq(p)) (B.177)

Definition 39 (-) (first part) on Equation (B.177):

unf({−with ?{li : T ′
i}} − [q ↦→ l1 · l]) ▷◁ unf(Lq↾↾p− bq(p)) (B.178)

Definition 39 (-), Lemma 11 (second part) on Equation (B.178):

unf({−with T ′
1} − [q ↦→ l]) ▷◁ unf(Lq↾↾p− bq(p)) (B.179)

By [[RECV-HDL]], Def. 42 (Coherence).3 (a.o., queue labels adhere to well-formedness),
p is in normal activity (before the reduction), where as q is in the failure handling
activity, together with Definition 36 (↾↾) and Definition 39 (-) (clean) on Equa-
tion (B.179)

unf({−with T ′
1} − [q ↦→ l]) ▷◁ unf({−with Tq}) (B.180)
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After reduction for p, q:

unf(−with L1↾↾q − bp[q ↦→ l](q)) unf(Lq↾↾p− bq(p)) (B.181)

Definition 36 (↾↾) and Definition 39 (-) (right side) on Equation (B.181):

unf(−with T1 − bp[q ↦→ l](q)) unf({−with Tq}) (B.182)

Definition 36 (↾↾) and Definition 39 (-) (left side) on Equation (B.182):

unf(−with T1 − bp[q ↦→ l](q)) = unf(−with T ′
1 − [q ↦→ l](q)) (B.183)

By Equation (B.180) for Equations (B.182) and (B.183):

unf(−with T1 − bp[q ↦→ l](q)) ▷◁ unf({−with Tq}) (B.184)

Def. 42 (Coherence).1 for a p′ with p′ unsuspected, (˜︁p, _) = Θ(s) and p′ ∈ ˜︁p:
Before reduction:

unf(L′′ with q:rq?{li : Li}i∈I↾↾p′ − bp(p
′)) ▷◁ unf(Lp′↾↾p− bp′(p)) (B.185)

Definition 36 (↾↾) on Equation (B.185) (left side)

unf(−with T(pp′)2 − bp(p
′)) ▷◁ unf(Lp′↾↾p− bp′(p)) (B.186)

Case distinction on if p′ is in the default activity or the failure handling activity.
Case i: Case p′ in default activity (in partial types), i.e. we can ignore the multisend
part of Definition 39 (-) since we have no label associated with failure handling in
the queue:
Definition 42 (Intra. Coherence) and using Definition 39 (-) and Definition 36 (↾↾)
on Equation (B.186)

unf(−with T(pp′)2) ▷◁ unf({T(p′p) with T
′
(p′p)}) (B.187)

By Equation (B.187), Definition 41 (unf()) and Definition 40 (duality)

unf(T(pp′)2) ▷◁ unf(T
′
(p′p)) (B.188)

After the reduction for (∆′, Σ′, F ′, Θ′):

unf(−with L1↾↾p
′ − b′p(p

′)) unf(Lp′↾↾p− bp′(p)) (B.189)
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Definition 18 (projection) and Definition 36 (↾↾) (Li↾↾p′ = Lj↾↾p′) on Equation (B.189):

unf({−with T(pp′)2} − b′p(p
′)) unf({T(p′p) with T ′

(p′p)}) (B.190)

Using Equation (B.187), assumption p′ is in the normal activity and - (clean) on
Equation (B.190):

unf({−with T(pp′)2}) unf({T(p′p) with T ′
(p′p)}) (B.191)

By Equation (B.188) Def. 42 (Coherence).1 holds after reduction.
Case ii: Case p′ in failure activity (in partial types):
Case distinction on if we have p, p′ ∈ Rids and the receive belong to a multisend to
R; or we have a normal receive.
(Normal receive): Definition 39 (-) and Definition 36 (↾↾) on Equation (B.186)

{−with T(pp′)6} ▷◁ {−with T(p′p)} (B.192)

By Equation (B.192) and Definition 40 (duality) for :

T(pp′)6 ▷◁ T(p′p) (B.193)

After the reduction for (∆′, Σ′, F ′, Θ′):

unf(−with L1↾↾p
′ − b′p(p

′)) unf(Lp′↾↾p− bp′(p)) (B.194)

Definition 18 (projection) and Definition 36 (↾↾) (Li↾↾p′ = Lj↾↾p′) on Equation (B.199):

unf({−with T(pp′)2} − b′p(p
′)) {−with T(p′p)} (B.195)

Using Equations (B.186), (B.192) and (B.195), assumption p′ in failure handling.

{−with T(pp′)6} {−with T(p′p)} (B.196)

By Equation (B.193) Def. 42 (Coherence).1 holds after reduction.
(Multisend receive): By coherence and case before reduction:

unf(−with q?{li : T(pp′)i} − bp(p
′)) ▷◁ unf(−with Tp′p − bp′(p)) (B.197)

One step Definition 39 (-) (first part) on Equation (B.197) (left side):

unf(−with q?{li : T(pp′)i} − bp(p
′)) = unf(−with T(pp′)1 − bp[q ↦→ l](p′)) (B.198)
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After the reduction for (∆′, Σ′, F ′, Θ′):

unf(−with L1↾↾p
′ − b′p(p

′)) unf(Lp′↾↾p− bp′(p)) (B.199)

By Definition 36 (↾↾) (b′p = bp[q ↦→ l]):

unf(−with T(pp′)1 − b′p(p
′)) unf(−with Tp′p − bp′(p)) (B.200)

Equation (B.200) is dual by Equation (B.198).
Case b: p ∈ F ∧ q ̸∈ F . Straight forward since there is no change at q’s “side“.
Case c: p, q both suspected, trivially as duality does not need to hold if one side is
suspected.
Case d: p ̸∈ F ∧ q ∈ F .2 Wolg p′ ̸∈ F with

s[p′] : (Lp′ , bp′) ∈ Σ (B.201)

In (∆,Σ,F ,Θ) by Def. 42 (Coherence).1:

unf(L′′ with q:rq?{li : Li}i∈I↾↾p′ − bp(p
′)) ▷◁ unf(Lp′↾↾p− bp′(p)) (B.202)

Case distinction based on p′ failure handling:
Case 1: Case p′ in normal activity (partial types) and case on Equation (B.202):

unf(L′′ with q:rq?{li : Li}i∈I↾↾p′ − bp(p
′)) ▷◁ unf(L′

p′ with L
′′
p′↾↾p− bp′(p)) (B.203)

Definition 36 (↾↾) on Equation (B.202)

unf(−with T1 − bp(p
′)) ▷◁ unf(T ′

p′ with T
′′
p′ − bp′(p)) (B.204)

Definition 42 (Intra. Coherence), Definition 39 (-) and case assumption (e.g. no
failure handling multisend labels in queues) on Equation (B.204):

unf(−with T1) ▷◁ unf(T
′′′
p′ with T ′′

p′) (B.205)

After reduction for (∆′, Σ′, F ′, Θ′):

unf({−with L1}↾↾p′ − b[q ↦→ l](p′)) unf(L′
p↾↾p− bp′(p)) (B.206)

2Since q is suspected coherence does not define duality between p and q, however we need to ensure that
the message from q does not disturb duality between p and other participants in that session.
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Definition 18 (projection) and Definition 36 (↾↾) (Li↾↾p′ = Lj↾↾p′) and Equation (B.206)

unf(−with T1 − b[q ↦→ l](p′)) unf(T ′
p′ with T

′′
p′ − bp′(p)) (B.207)

Definition 39 (-) (c.f. clean), Equation (B.206) on Equation (B.207)

unf(−with T1) unf(T ′′′
p′ with T ′′

p′) (B.208)

Definition 40 (duality) and Equation (B.205):

unf(−with T1) ▷◁ unf(T
′′′
p′ with T ′′

p′) (B.209)

Def. 42 (Coherence).1 holds after reduction.
Case 2: Case p′ in active failure handling. See above and Case ii.

Preservation of Definition 43 (Inter. Coherence): Similar to argumentation in
case [[MON]].

Proof: Type Preservation

Lemma 14 (Inversion lemma processes). Inversion lemma for processes.

1. If Γ,Σ ⊢ (H1 · .. ·Hn, p) ▷ ∆ then s : G = Γ, p:R : {Li}i∈I = Σ, ∆ is end only,
p ∈ Rids , L = G ↾R, I = {1, .., n}, ∀i ∈ I. Hi = [Li]λxi . Pi ∧ s : G ⊢ Hi ▷ ∅ and
∀g ∈ L. {Li}i∈I ⊢ g.

2. If Γ,Σ ⊢ c[r]!l.P ▷ ∆ then ∆ = c : r!l.L,∆end and Γ,Σ ⊢ P ▷ c : L,∆end.

3. If Γ,Σ ⊢ c[R]!l.P ▷ ∆ then ∆ = c : R!l.L,∆end and Γ,Σ ⊢ P ▷ c : L,∆end.

4. If Γ,Σ ⊢ c[r]?l.P ▷ ∆ then ∆ = c : r?l.L,∆end and Γ,Σ ⊢ P ▷ c : L,∆end.

5. If Γ,Σ ⊢ c[r]↓.P ▷ ∆ then ∆ = c : r↓.L,∆end and Γ,Σ ⊢ P ▷ c : L,∆end.

6. If Γ,Σ ⊢ c[p:r;R;R](g) ▷ ∆ then ∆ = c : g(r;R, R), G ∈ Γ and g(r; r;R) = ... ∈ G.

7. If Γ ⊢ [L]λx. P ▷ ∅ then Γ ⊢ P ▷ x : L and wf(L)

8. If Γ,Σ ⊢ loop ▷ ∆ then Σ = ∅ and ∆ is end only.
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Lemma 15 (Inversion lemma network). Inversion lemma for the event handling typing.

1. If Γ,Σ ⊢ s[p] : (L, b) ▷ ∆ then Σ = s[p] : (L, b), ∆ is end-only.

2. If Γ,Σ ⊢ N1 ||N2 ▷ ∆ then Γ,Σ1 ⊢ N1 ▷ ∆1, Γ,Σ2 ⊢ N2 ▷ ∆2, Σ = Σ1 · Σ2 and
∆ = ∆1 ·∆2.

3. If Γ, ∅ ⊢ 0 ▷ ∆ then ∆ is end only

Lemma 16 (Inversion lemma environments). Inversion lemma for the a network with the
environments F and Θ.

1. If ⊢ (Θ,F , (ν(s : G))N) then s : G,Σ ⊢ N ▷ ∆, wf(G) and (∆,Σ,F ,Θ) coherent

Lemma 17 (Substitution Lemma).

1. If Γ,Σ ⊢ P ▷ x : L,∆ then Γ,Σ ⊢ P{s[p]/x} ▷ s[p] : L,∆

2. If Γ,Σ ⊢ (H1 · ... ·Hn, p) ▷ ∆end, and Hi = [Li]λxi . Pi then
Γ,Σ ⊢ Pi{s[p]/xi}{(H1 · ... ·Hn, p)/loop} ▷ s[p] : Li ·∆end,

Proof. Induction over type derivation.

Lemma 18 (Type Preservation under Equivalence). Given, Γ,Σ ⊢ N ▷ ∆ and N ≡ N ′,
then Γ,Σ ⊢ N ′ ▷ ∆

Proof. Induction over ≡.

Lemma 19 (Type Preservation). Assume Γ,Σ ⊢ N ▷ ∆, runtime environments Θ and F ,
and (Θ,F , N) → (Θ′,F ′, N ′), then (∆,Σ,F ,Θ) → (∆′,Σ′,F ′,Θ′) and Γ,Σ′ ⊢ N ′ ▷ ∆′.

Proof. The proof is done by induction over the derivation of →, i.e., over the operational
semantic for networks.
For readability, we sometimes drop Θ and or F from the reduction (Θ,F , N) →

(Θ′,F ′, N ′) if Θ and/or F does not change in the reduction step.

Case SEND:

The reduction is (wolg we assume l1):

s[p][r]!l1P || s[p] : (E [q:r!{li : Li}i∈I ], b) || s[q] : (Lq, bq) →
P || s[p] : (E [L1], bp) || s[q] : (L, bq[p ↦→ bq(p) · l1]) (B.210)
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By assumption:

Γ,Σ ⊢ s[p][r]!l1P || s[p] : (E [q:r!{li : Li}i∈I ], bp) || s[q] : (Lq, bq) ▷ ∆ (B.211)

By twice Lemma 15.2 (Inversion) we get:

Γ,Σ1 ⊢s[p][r]!l1P ▷ ∆1 (B.212)
Γ,Σ2 ⊢s[p] : (E [q:r!{li : Li}i∈I ], bp) ▷ ∆2 (B.213)
Γ,Σ3 ⊢s[q] : (Lq, bq) ▷ ∆3 (B.214)

Σ =Σ1,Σ2,Σ3 (B.215)
∆ =∆1,∆2,∆3 (B.216)

By Lemma 14.2 (Inversion) on Equation (B.212):

∆1 = s[p] : r!{l1 : L1} Γ,Σ1 ⊢ P ▷ s[p] : L1 ·∆end (B.217)

By Lemma 15.1 (Inversion) on Equation (B.213)

Σ2 = s[p] : (E [q!{li : Li}i∈I ], bp) ∆2 end only (B.218)

By Lemma 14.1 (Inversion) on Equation (B.214)

Σ3 = s[q] : (Lq, bq) ∆3 end only (B.219)

We now show (∆,Σ,F ,Θ) → (∆′,Σ′,F ,Θ′) via the typing environments reduction
rule [[SEND]] as p. After that we will show that (∆′,Σ′,F ,Θ′) types Equation (B.210)
By [[SEND]] (see Figure B.14) for p on (∆, Σ, F , Θ) we get:

Σ′ = Σ1,
s[p] : (E [L1], bp),
s[q] : (Lq, bq[p ↦→ bq(p) · l1])

By [[SEND]] on Equation (B.215) with
Equation (B.215), Equation (B.218),
Equation (B.219)

∆′ = s[p] : L,∆2,∆3⏞ ⏟⏟ ⏞
end only

·∆end
By [[SEND]] on Equation (B.216) with
Equation (B.217)

Θ′ = Θ By [[SEND]]
F ′ = F By [[SEND]]

(B.220)
We now show that we can type P || s[p] : (E [L1], bp) || s[q] : (L, bq[p ↦→ bq(p) · l1]) with
Equation (B.220) (we use: Pc = s[p] : (E [Lj ], bp) || s[q] : (L, bq[p ↦→ bq(p) · l1])). Typing
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for the configuration of p:

TCfg

Γ, s[p] : (E [L1], bp)⏞ ⏟⏟ ⏞
Σ′

2

⊢ s[p] : (E [Lj ], bp) ▷ ∆end (B.221)

Typing of p′s event loop with active handler:

By Equation (B.217)
...

Γ,Σ1 ⊢ P ▷ s[p] : L ·∆end (B.222)

Typing of q′s configuration:

TCfg

Γ, s[q] : (Lq, bq[p ↦→ bq(p) · l1])⏞ ⏟⏟ ⏞
Σ′

3

⊢ s[q] : (Lq, bq[p ↦→ bq(p) · l1]) ▷ ∆end

(B.223)

TPar
Equation (B.222)

Equation (B.221) Equation (B.223)
Γ,Σ′

2,Σ
′
3 ⊢ Pc ▷ ∆end

TPar

Γ,Σ′ ⊢ P || s[p] : (E [L1], bp) || s[q] : (L, bq[p ↦→ bq(p) · l1]) ▷ s[p] : L ·∆end

(B.224)

Case FIRE: From the case we have:

(Θ,F , (H, p) || s′[p] : (L, bp)) (B.225)
→

(Θ,F , P{s′[p]/x}{(H, p)/loop}⏞ ⏟⏟ ⏞
N ′

|| s′[p] : (L, bp)) (B.226)

with [Lg]λx. P ∈H.

By assumption:
Γ,Σ ⊢ (H, p) || s′[p] : (L, bp) ▷ ∆ (B.227)
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By Lemma 15.2 (Inversion) on Equation (B.227):

Γ,Σ1 ⊢ (H, p) ▷ ∆1 (B.228)
Γ,Σ2 ⊢ s′[p] : (L, bp) ▷ ∆2 (B.229)

∆ = ∆1 ·∆2 (B.230)
Σ = Σ1 · Σ2 (B.231)

By Lemma 15.1 (Inversion) on Equation (B.229):

∆2 = ∆end (B.232)

By Lemma 14.1 (Inversion) on Equation (B.228):

s : G = Γ p:R : {Li}i∈I = Σ1 ∆1 is end only L = G ↾R
∀i ∈ I. Hi = [Li]λxi . Pi ∧ s : G ⊢ Hi ▷ ∅,

∀g ∈ L. {Li}i∈I ⊢ g p ∈ Rids

(B.233)

By Equation (B.233) and Fire we have:

s : G ⊢ [Lg]λx. P ▷ ∅ (B.234)

By Lemma 14 (Inversion) on Equation (B.234) we have:

s : G ⊢ P ▷ x : Lg and wf(Lg) (B.235)

By Lemma 17 (Substitution) we have:

Γ, Σ1⏞⏟⏟⏞
p:R:{Li}i∈I

⊢ P{s′[p]/x}{(H, s[p])/loop} ▷ s′[p] : Lg · ∆1⏞⏟⏟⏞
end only

(B.236)

We show (∆, Σ, F , Θ) → (∆′, Σ′, F ′, Θ′) by applying the rule [[FIRE]] and then
showing that (∆′,Σ′,F ,Θ′) types Equation (B.226).
Reduction rule [[FIRE]] applies to (∆,Σ,F ,Θ) with p activating it in session s′ for
handler Lg since: (a) by Equation (B.233) we have Lg ∈ {Li}i∈I , (b) by case reduc-
tion Fire we have L≍Lg and s′, (c) by case reduction Fire we have fire(L,Lg, b,F),
(d) by Equation (B.233) and Equation (B.230):

∆ is end only (B.237)

and (e) by Equation (B.237) there is no active endpoint for s′[p] in ∆
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After [[FIRE]] reduction:

Σ′ = Σ (B.238)
∆′ = ∆, s′[p] : Lg (B.239)
Θ′ = Θ (B.240)
F ′ = F (B.241)

We now show that we can type Equation (B.226) with the environments (Σ, ∆′, F , Θ)

By Equation (B.236)
Γ, p:R : {Li}i∈I ⊢ N ′ ▷ s′[p] : Lg,∆∅ (B.242)

By Equation (B.229)
Γ,Σ2 ⊢ s′[p] : (L, bp) ▷ ∆2

TCfg
(B.243)

TPar
Equation (B.242) Equation (B.243)

Γ,Σ1 · Σ2⏞ ⏟⏟ ⏞
Σ

⊢ P ′ || s′[p] : (L, bp) ▷ s′[p] : Lg ·∆∅
(B.244)

Case SPAWN: We show a part of this case the rest is relative straightforward.
From the case we have:

(Θ[s ↦→ (˜︁p, ˜︁s)],F , || p∈˜︁p1 (︁(Hp, p) || s[p] : (Ep[g(q:r;R′;R).Lp], bp)
)︁⏞ ⏟⏟ ⏞

N

) →

(Θ′,F , || p∈˜︁p1(︁(Hp, p) || s[p] : (Lp, bp)
)︁
|| p∈˜︁p2s′[p] : (gq;p0↾p, bp)⏞ ⏟⏟ ⏞

N ′

)
(B.245)

By reduction Spawn:

Θ′ = Θ[s ↦→ (˜︁p, ˜︁s ∪ s′), s′ ↦→ (˜︁p2, ∅)] (B.246)˜︁p1 = q ∪ (R′
ids ∪ Rids) \ F (B.247)

By assumption:
Γ,Σ ⊢ N ▷ ∆ (B.248)

By Equation (B.245) and deconstruction via Lemma 14 and Lemma 15:

Σ = {p:Rp : {Li}i∈Ip}p∈˜︁p1 ∪ {s[p] : (Lp, bp)}p∈˜︁p1
∆ = ∆end

(B.249)
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By Equation (B.249) and that the preconditions on Spawn and [[SPAWN]] are roughly
equal, [[SPAWN]] applies to (∆,Σ,F ,Θ). The extra condition ∆ = ∆1 ·∆end ∀p ∈˜︁p1. ̸ ∃s[p] ̸∈ dom(∆1) of [[SPAWN]] is trivially satisfied as ∆ = ∆end. With selecting
the same s′ and extended projection being deterministic it is easy to see that the
result of [[SPAWN]] can be used to type P ′.

Case SESS-GC: By case we have the reduction Sess-GC by that we know [[SESS-GC]] is
applicable. The result of [[SESS-GC]] can be used to type N ′

Case ROOT-GC: Similar to case Sess-GC.

Case CLEAN: Straightforward type deconstruction via Inversion Lemma followed by [[CLEAN]]
which applies by case and easy to see that result of [[CLEAN]] can be used to type
result of Clean.

Case SUSP: No typing rule requires F .

Case MON: From the case the reduction is:

(Θ,F , s[p][r]↓.Pc || s[p] : (L′ with p:r↓.L, _) ||i∈I si[p] : (Li, _)⏞ ⏟⏟ ⏞
N

) (B.250)

→
(Θ,F , Pc || s[p] : (−with L, _)||i∈I si[p] : (endLi , _)) (B.251)

By assumption
Γ,Σ ⊢ N ▷ ∆ (B.252)

By reduction:
p′ ∈ F s⇝+

Θ = {si}i∈I (B.253)

By Equation (B.253), reduction Mon and Equation (B.252) we can apply [[MON]].
Furthermore, as [[MON]] mimics Mon we have the typing after reduction.

Case MSND: By the case the reduction is:

(Θ,F ,
|| s[p][R]!lj .Pc

|| s[p] : (E [R!{li : Li}i∈I ], _)
||q∈˜︁p s[q] : (_, bq)⏞ ⏟⏟ ⏞

N

)→ (Θ,F ,
|| Pc

|| s[p] : (E [Lj ], _)
|| p∈˜︁p s[q] : (_, b′q)

) (B.254)

with ˜︁p = Rids \ F lj ∈ {li}i∈I ∀q ∈ ˜︁p. b′q = bq[p ↦→ bq(p) · lj ] (B.255)
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By assumption,
Γ,Σ ⊢ N ▷ ∆ (B.256)

deconstruction via Lemma 14 (Inversion) and Lemma 15 (Inversion) similar to case
Send:

∆ = s[p] : R!lj .Lc,∆end

Σ = s[p] : (E [R!{li : Li}i∈I ], b) ∪i∈I {s[pi] : (Li, bi)} · Σ′′

Γ,Σ′′ ⊢ s[p][R]!lj .Pc ▷ s[p] : R!lj .Lc,∆end

(B.257)

With Equation (B.255) and Equation (B.257) we can apply [[MSend]] and have:

∆′ = s[p] : Lc ·∆end

Σ′ = s[p] : (E [Lj ], b) ∪i∈I {s[pi] : (Li, b
′
i)} · Σ′′ (B.258)

We have:
Γ,Σ′ ⊢ N ′ ▷ ∆′ (B.259)

UNFOLD By the reduction via Unfold we have:

s[p] : (E [µt.L], _)⏞ ⏟⏟ ⏞
N

→ s[p] : (E [L{µt.L/t}], _)⏞ ⏟⏟ ⏞
N ′

(B.260)

By assumption,
Γ,Σ ⊢ N ▷ ∆ (B.261)

By inversion lemma we have:

∆ = ∅
Σ = s[p] : (E [µt.L], b)
Θ = Θ

(B.262)

With Equation (B.262) we can apply [[UNFOLD]] and have:

∆′ = ∅
Σ′ = s[p] : (E [{µt.L/t}L], b)

(B.263)

We have:
Γ,Σ′ ⊢ N ′ ▷ ∅ (B.264)
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PAR (induction case) By the case we have the reduction:

(Θ1,F1, N1 ||N2⏞ ⏟⏟ ⏞
N

)→ (Θ1,F1, N
′
1 ||N2) (B.265)

and
(Θ1,F1, N1)→ (Θ′

1,F ′
1, N

′
1) (B.266)

By assumption,
Γ,Σ ⊢ N ▷ ∆ (B.267)

By Lemma 14 (Inversion), it exists ∆1 ·∆2 = ∆ and Σ1 · Σ2 = Σ with

TPar
Γ,Σ1 ⊢ N1 ▷ ∆1 Γ,Σ2 ⊢ N2 ▷ ∆2

Γ,Σ ⊢ N1 ||N2 ▷ ∆ (B.268)

By induction hypnosis it exists (∆′
1, Σ

′
1, F ′

1, Θ
′
1) with

(∆1, Σ1, F1, Θ) → (∆′
1, Σ

′
1, F ′

1, Θ
′
1) (B.269)

and
Γ,Σ′

1 ⊢ N ′
1 ▷ ∆′

1 (B.270)

We show: ∆′
1 ·∆2: By assumption on the structure of N (c.f. 4.4.3):

s[p] ∈ dom(∆i) and s[p] is not end implies p:R : {Li}i∈I ∈ Σi (B.271)

Note [[FIRE]] is the only reduction with adds new elements to ∆.
By Equation (B.271) and no type environment reduction adds a new event loop
type:

∀s[p] ∈ dom(∆′
1 \∆end). p:R : {Li}i∈I ∈ Σ1 ∧ s[p] ̸∈ dom(∆2 \∆end) (B.272)

By Equation (B.272),
∆′

1 ·∆2 (B.273)

We show Σ′
1 · Σ2: [[SPAWN]] is the only typeing environment reduction rule which

adds new elements to Σi and [[SPAWN]] assumes a fresh s. Therefore:

Σ′
1 · Σ2 (B.274)
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By Equation (B.273) and Equation (B.274):

Γ,Θ′
1,Σ

′
1 · Σ2 ⊢ N ′

1 ||N ′
2 ▷ ∆′

1 ·∆2 (B.275)

We now show that the following reduction is possible (∆1 ·∆2,Σ1 ·Σ2,F ,Θ) → (∆′
1 ·

∆2,Σ
′
1 · Σ2,F ,Θ′

1). The reductions [[SEND]],[[RECV]],[[MSend]],[[UNFOLD]],[[MON]],
[[RECV-HDL]] and [[SUSP]] are all not effected by larger session environments and or
configuration environments.
The preconditions of the kind: “∆ = ∆1 ·∆end s′[p] ̸∈ ∆1” are still valid in the
composed environment, see argumentation above (e.g. Equation (B.271)). Therefore
reductions [[FIRE]], [[SPAWN]], [[SESS-GC]],[[ROOT-GC]] and [[CLEAN]] also still apply.

Theorem 3 (Subject Reduction). Let ⊢ (Θ1,F1, (νs :G)N1) such that (Θ1,F1, (νs :G)N1) →
(Θ2,F2, (νs :G)N2). Then ⊢ (Θ2,F2, (νs :G)N2).

Proof. By reduction from assumption with Res,

(Θ1,F1, N1)→ (Θ2,F2, N2) (B.276)

By Lemma 16 (Inversion),

s : G,Σ1 ⊢ N1 ▷ ∆1, wf(G) and (∆1, Σ1, F1, Θ1) coherent (B.277)

By Equation (B.276) and Equation (B.277): Lemma 19 (Type Preservation) applies to
reduction Equation (B.276):

(∆1, Σ1, F1, Θ1) → (∆2, Σ2, F2, Θ2)
with

Γ,Σ2 ⊢ N2 ▷ ∆2

(B.278)

Lemma 13 (Preservation of Coherence) applies by Equation (B.277) to Equation (B.278):

(∆2, Σ2, F2, Θ2) is coherent (B.279)

By TSystem applies to Equation (B.276) by Equation (B.278) and Equation (B.279):

⊢ (Θ2,F2, (ν(s : G))N2) (B.280)
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Safety Corollary

The safety corollaries follow directly from Theorem 3 (Subject Reduction).

Definition 46 (Reception Error). Given an unsuspected participant (H, p), a session s with
configuration s[p] : (L, b). Then p has a reception error in s if one of the following cases is
true:

• L = q:r?{li : Li}i∈I with L′
p, b(q) = lj · l, q ̸∈ F , lj ̸∈ {li}i∈I and ̸ ∃l′ ∈ b. l′ ∈ L′

p

• L = −with q:r?{li : Li}i∈I , b(q) = lj · l, q ̸∈ F , lj ̸∈ {li}i∈I and lj ∈ {Li}i∈I

Reception error only covers the case where both sender and receiver are unsuspected.
Failure cases around suspicion will be defined shortly. The first case defines a reception
error in the default activity, which occurs if the first label in the input queue does not match
the receive, can not be cleaned, and is also not consumed in the failure handling; because
of asynchrony, the send can be in failure handling, and p will consume the message once it
is in failure handling. The second case is for failure handling, where we have a reception
error if the first label can not be consumed and cleaning does not apply.
We now define when a participant is stuck, i.e., cannot progress (take a reduction step),

e.g., because of a failure or a blocking action like spawn.

Definition 47 (Stuck). Given (Θ,F , (ν(s′ : G))N), an unsuspected participant (H, p) and
the configuration s[p] : (L, b). Then p is stuck if one of the following is true:

1. L = g(p:r;R′;R).Lp with L
′
p, ∃q ∈ (p∪R′

ids ∪R∈R Rids) \ F with either

a) s[q] : (p:r?{li : Li}i∈I with L′
q, bq) and bq(p) = ϵ or

b) s[q] : (g′(p′:r′;R′′;R′) with L′
q, bq), g′ ̸= g and p ∈ (p∪R′′

ids ∪R∈R′ Rids) \ F

2. L = −with g(p:r;R;R).Lp, ∃q ∈ (p∪R′
ids ∪R∈R Rids) \ F with either

a) s[q] : (−with p:r?{li : Li}i∈I , bq) and bq(p) = ϵ or

b) s[q] : (−with g′(p′:r′;R′′;R′), bq) , g ̸= g′ and p ∈ (p′ ∪R′′
ids ∪R∈R′ Rids) \ F

3. L = q:rq?{li : Li}i∈I with L′
p with b(q) = ϵ and ̸ ∃l ∈ b. l ∈ L′

p if q is unsuspected,
s[q] : (p:r?{li : Li}i∈I with L′

q, bq), ̸ ∃l ∈ bq. l ∈ L′
q, and bq(p) = ϵ

4. L = −with q:rq?{li : Li}i∈I with b(q) = ϵ if q is unsuspected and s[q] : (−with p:r?{li : Li}i∈I , bq)
and bq(p) = ϵ
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G ::= {[˜︁p]G with[˜︁p]p:r@p:r G} p ::= 1 | 2 | ..
p:r → z{li : Gi}i∈I | g(p:r ;R;R).G | µt.G | t | end | R ::= W |M | ...
p:r ‧‧➡lj z[˜︁p]{li : Gi}i∈I z ::= p:r | R

Figure B.17.: Extended global type.

(1) - (4) state that an unsuspected participant p is stuck if pwants to perform a (blocking)
spawn/receive action and another unsuspected participant that is part of that action wants
to perform a blocking action which involves p.
We now define faulty intersession relations.

Definition 48 (Failure not covered). Given (Θ,F , (ν(s′′ : G))N), an unsuspected participant
(H, p) and the configuration s[p] : (L, b). Then p has a not covered failure in s if one of the
following is true:

1. L = E [q:rq?{li : Li}i∈I ], b(q) = ε, q is suspected and there is no session s′ in N in
which q is monitored and s = s′ ∨ s ∈ (s′ ⇝+

Θ).

2. L = E [g(p:r;R;R)], q ∈ p, q is suspected and there is no session s′ in N in which q is
monitored and s = s′ ∨ s ∈s′ ⇝+

Θ.

An unsuspected participant has a failure not covered if it is waiting on a failed participant
and there is no (transitively) parent session which will take over because of that failure.

Corollary 3.1 (Communication Safety). Let ⊢ (Θ,F , (νs :G)N)). For every session s in Θ
and unsuspected p in s, p has the following properties: (i) p does not have a reception error;
(ii) p is not stuck; and (iii) p does not have a non-covered failure.

Proof. Follows directly from coherence.

B.6.4. Property: fidelity

Extended Global Type

Figure B.17 shows the extended global type G, i.e., we reuse the symbol of the “normal”
global type (cf. Figure 4.7). The main differences compared to the global type are that it
uses participant ids and role names instead of just role names and contains new and modi-
fied constructs that occur while reducing an extended global type. The differences are high-
lighted in gray. The two new or modified constructs are {[˜︁p1]G1 with[˜︁p2]pf :rf@pm:rm G2}

227



and p:r ‧‧➡lj z[˜︁p]{li : Gi}i∈I . {[˜︁p1]G1 with[˜︁p2]pf :rf@pm:rm G2} describes thewith type, which
is a representation of the body of a subprotocol. It records the default activity G1 and
the failure handling activity G2. The sets ˜︁p1 and ˜︁p2 contain the participant ids of par-
ticipants in the normal activity, respectively in failure handling. Further, it records the
participant pf , whose failure is monitored, and the participant pm, who monitors that
failure. p:r ‧‧➡lj z[˜︁p]{li : Gi}i∈I indicates that p has sent the label lj to z. Further, all
participants in ˜︁p have already received the label.3
Extended Well-Formedness

Definition 49 (Extended Well-Formedness). A given extended global type G is well-formed
if all the following conditions are true.

1. The structure of G conforms to the structure imposed by the protocol definition and the
global type reduction semantic. I.e., there is a G′ which is derived from a protocol or
an element of a top-level global type, and either G′ = G or F , G −→∗ F , G′.

2. If G = {[˜︁p]G′ with[˜︁p′]p:r@pm:rm G′} then the monitor pm, must immediately send a
label, in G′, to all participants in ˜︁p except p, after the potential failure detection.

3. The set of labels used in the default activity and the set of labels used in the failure
handling activity must be distinct.

4. The set of protocols spawned in the default activity and the failure handling activity
are distinct.

5. The sender and the receiver must be distinct for all interaction.

The extended well-formedness is closely aligned with Def. 24 (Well-Formedness). How-
ever, the global type syntax is a bit more restrictive than the extended global type syntax,
and condition (1) ensures that a well-formed extended global follows the more restrictive
syntax. Further condition (2) is a modification of Def. 24 (Well-Formedness)((1)) which
works for global type reduction. In particular, it caters to the case that some participants
switched from the normal activity to failure handling.

Extended Global Type Reduction

Figure B.18 contains the extended global type labeled reduction relation (F , G1
α−→ F , G′

1).
Its labels ranging over: !plj | ?plj | p@p′ | τ | g(p;R;R).
3Coppo et al. [CDYP16] proposed to model a fired interaction in the global type and the global type reduction.
An interesting difference is that we keep the branching options and record the branching choice (lj).
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WithDef
F , G1

α−→ F , G′
1 sub(α) ⊆ ˜︁p1

F , {[˜︁p1]G1 with _}
α−→ F , {[˜︁p1]G′

1 with _}

Spawn

F , g(p:r;R;R).G
g(p;R;R)
−−−−−→ F , G

WithHdl
F , G1

α−→ F , G′
1 sub(α) ⊆ ˜︁p1

F , {_ withp@p′ [˜︁p1] G1}
α−→ F , {_ withp@p′ [˜︁p1] G′

1}
Mut
F , µt.G τ−→ F , G{µt.G/t}

WithActHdl
F , G2

α−→ F , G′
2 sub(α) = p′′ p′′ ̸∈ ˜︁p2 p′′ ̸= p

F , {[˜︁p1]G1 with[˜︁p2]p@p′ G2}
α−→ F , {[˜︁p1 \ p′′]G1 with[˜︁p2 ∪ p′′]p@p′ G

′
2}

WithActFHdl
p ∈ F

F , {[˜︁p1]G1 with[∅]p@p′ G2}
p@p′

−−−→ F , {[˜︁p1 \ p′]G1 with[p
′]p@p′ G2}

Snd
lj ∈ {li}i∈I

F , p:r → z {li : Gi}i∈I
p!ljz−−−→ F , p:r ‧‧➡lj z[∅]{li : Gi}i∈I

Rcv
p′ ∈ pid(z) p′ ̸∈ ˜︁p1

F , p:r ‧‧➡lj z[˜︁p1]{li : Gi}i∈I
p?ljp

′

−−−→ F , p:r ‧‧➡lj z[˜︁p1 ∪ p′]{li : Gi}i∈I

AsyncSpawn
F , G α−→ F , G′ ˜︁pr = {p,Rids , Rids} sub(α) ∩ ˜︁pr = ∅

F , g(p:r;R;R).G α−→ F , g(p:r;R;R).G′

AsyncSnd
∀i ∈ I. F , Gi

α−→ F , G′
i ˜︁pr = {p, pid(z)} sub(α) ∩ ˜︁pr = ∅

F , p:r → z {li : Gi}i∈I
α−→ F , p:r → z {li : G′

i}i∈I

AsyncRcv
˜︁pr = pid(z) \ ˜︁p F , Gj

α−→ F , G′
j sub(α) ∩ ˜︁pr = ∅

F , p:r ‧‧➡lj z[˜︁p]{li : Gi}i∈I
α−→ F , p:r ‧‧➡lj z[˜︁p]{li : Gi}i∈I\j ∪ {lj : G′

j}

Figure B.18.: Global type reduction.
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We now define the subject of a reduction, i.e. the participant(s) who performed the
global type labeled reduction.

Definition 50 (sub(α) = ˜︁p). The subject(s) associated with a label are defined as:
sub(!plj) = p sub(?plj) = p sub(p@p′) = p sub(τ) = ∅

sub(g(p;R;R)) = p∪Rids ∪R∈R Rids

Lemma 20 (F , G α−→ F , G′ is deterministic). Given a well-formed {[˜︁p1]G1 with[˜︁p2]p@p′ G2},
F , Gi

α−→ F , G′
i, F , Gi

α−→ F , G′′
i , α ̸= τ and i ∈ {1, 2} then G′ = G′′

Proof. Structural induction on F , G α−→ F , G′.

Extended Projection

Definition 51 (b · b′). b · b′ is the concatenation of all queues in b and b′

Definition 52 (Extended Projection).
The projection of an extended global type G to an unsuspected participant p is defined in
Figure B.19.

The extended projection mimics the behavior of “normal” projection. The key differ-
ences are: (a) it uses participant ids and roles instead of only roles, (b) it projects not
only to a local type but also to a queue type, (c) it caters for the extended with type
({[˜︁p1]G1 with[˜︁p2]pf@pm G2}) , and (d) it considers partially completed interactions, i.e.,
interactions where a message(s) was sent but is not yet received. The first point is a minor
technicality, and we will now explain (b) - (d) in more detail.
(b): As the original MPST works [HYC08, HYC16], our system applies an asynchronous

reduction semantic, and therefore duality needs to consider messages in the queue. E.g.,
end should be dual to ?l1.end if we have l1 in the queue. The classical MPSTs works
“merges” the queue type and the endpoint types before duality (cf. [Conc] in Fig 8 page 30
in [HYC16]). Our work draws inspiration from session remainders [MY15], and instead
of “merging” the endpoint type and the queue type, we calculate the effect of the queue
type on the local type (see Definition 39 (-)). Therefore, we require the queue types for
duality, and as a consequence, extended projection extracts both the local type and the
queue type for a participant.
(c): The asynchronous reduction enables cases where some participants perform failure

handling, and others are in the normal activity. Therefore, a participant in the normal
activity needs to consider potential messages from the failure handling. If a participant
has active failure handling, then projection will not produce labels for the default activity,

230



{[˜︁p1]G1 with[˜︁p2]pf@pm G2} ↾ p ::=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(L with pf :rf↓.L′, b) if p ∈ ˜︁p1 ∧ p = pm ∧ p ̸∈ ˜︁p2
(L, b) = G1 ↾ p (L′, ϵ) = G2 ↾ p

(L with end, b) else if p ∈ ˜︁p1 ∧ p = pf ∧ p ̸∈ ˜︁p2
(L, b) = G1 ↾ p

(L with L′, b · b′) else if p ∈ ˜︁p1 ∧ p ̸∈ ˜︁p2
(L, b) = G1 ↾ p (L′, b′) = G2 ↾ p

(−with L′, b′) else if p ∈ ˜︁p2 ∧ p ̸∈ ˜︁p1
(L′, b) = G2 ↾ p

ps:rs ‧‧➡lj z[˜︁p]{li : Gi}i∈I ↾ p ::=⎧⎪⎪⎨⎪⎪⎩
Gj ↾ p if ps = p
(ps:rs?{li : Li}i∈I , [ps ↦→ lj ] · bj) else if p ∈ pid(z) ∧ p ̸∈ ˜︁p

∀i ∈ I.(Li, bi) = Gi ↾ p
Gj ↾ p else

p:r → z {li : Gi}i∈I ↾ p′ ::=⎧⎨⎩
(z !{li : Li}i∈I , b) if p = p′ ∧ ∀i.(Li, b) = Gi ↾ p′

(p:r?{li : Li}i∈I , b) else if p ∈ pid(z) ∧ ∀j ∈ I.(Lj , b) = Gj ↾ p
G1 ↾ p else if ∀i, j ∈ I. Gi ↾ p′ = Gj ↾ p′

g(p:r;R;R).G ↾ p′ ::={︃
(g(p:r;R;R).L, b) if (L, b) = G ↾ p′ ∧ (p′ ∈ p:r ∨ p′ ∈ {Rids , Rids})
G ↾ p′ else

µt.G ↾ p′ ::=
{︁

(µt.L, b) if G ↾ r = (L, b) ∧ L ̸= t, (end, ε) otherwise
}︁

t ↾ p′ ::=(t, ε) end ↾ p′ ::=(end, ε)

Figure B.19.: Extended projection.
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as clean would remove them without advancing the protocol state (cf. Definition 57
(mirroring), will be defined shortly).
(d): In the projection of a fired interaction, we need to differentiate if a message is

in transit or is received. If a message is received, the endpoint type moves forward, e.g.,
E [q:r?{li : Li}i∈I ] goes to E [Lj ] (cf. Recv in Figure 4.10).

Definition 53. The projection of an extended global type to all unsuspected participant,
[[G]]F is defined as:

{p ↦→ (L, b) | G ↾ p = (L, b) ∧ p ̸∈ F ∧ (p ∈ G ∨ (p ∈ Rids ∧ R ∈ G))}

Lemma 21 (Preservation of projection). Given a well-formed extended global type G with
[[G]]F and F , G

α−→ F , G′ then [[G′]]F .

Proof. Proof by structural induction over F , G α−→ F , G′.

Lemma 22 (Preservation of Well-Formedness). Given a well-formed extended global type
G and F , G α−→ F , G′ then G′ is well formed.

Proof. Proof by structural induction over F , G α−→ F , G′

Fidelity

Before defining fidelity, we define some supporting definitions. Furthermore, we state and
prove the main supporting lemma for fidelity (cf. Lemma 23).

Definition 54. g↓p:r transforms the subprotocol g, with gi(r; r;R) = G with r@r.G ∈ G,
into an extended global type using p:r for the association of role to participant ids.

Definition 55 (Reachable). An extended global type G′ is reachable in G if and only if after
replacing all r ‧‧➡lj z[˜︁p]{li : Gi}i∈I with r ‧‧➡lj z[˜︁p]lj : Gj the following is still true: G′ ∈ G

Definition 56 (Outer failure). A session s has an outer failure if it contains a participant p
who is associated with a named role, p is suspected and p is not monitored in s.

Definition 57 (Mirrors). Given a well formed extended global type G, typing environments
(∆, Σ, F , Θ) and a session s with (˜︁p, _) ∈ Θ(s) and no outer failure in s, then G mirrors s
is defined as:
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• if the monitored participant in s is not suspected

∀p ∈ ˜︁p. p ̸∈ F =⇒ s[p] : (L, b) ∈ Σ ∧
G ↾ p = (L′, b′) ∧ b = b′ ∧ DAct(L) ≡unfold DAct(L′) ∧
FAct(L) ≡unfold FAct(L′)

• if the monitored participant in s is suspected

∀p ∈ ˜︁p. p ̸∈ F =⇒ s[p] : (L, b) ∈ Σ ∧
G ↾ p = (L′, b′) ∧ b ≡G cln b

′ ∧ FAct(L) ≡unfold FAct(L′) ∧
isFHdl(L) = isFHdl(L′)

L ≡unfold L′ denotes that two local types are equivalent up to unfoldings. Where L
and endL are considered to be identical under ≡unfold. For example p1:r?l.µtL ≡unfold
p1:r?l.L{µtL/t}. We use equivalent up to unfolding since asynchrony allows endpoints
to proceed independently. Therefore, some endpoints have potentially proceeded further
into a recursion than others. DAct(L) returns the type of the normal activity, and FAct(L)
returns the type of the failure handling activity. isFHdl(L) returns true if L has active
failure handling and false otherwise.

Definition 58 (b1 ≡G cln b2 ). Let G′ = FAct(G). b1 ≡G cln b2 is defined as:

∀p. b1(p) = l1 · l′1 ∧ b2(p) = l2 · l′2 ∧ l′1 = l′2 ∧ ∀l ∈ l1 · l2. l ̸∈ G′

Definition 59 (Partial mirroring). Given a well formed extended global type G, the typing
environments (∆, Σ, F , Θ) and a session s with (˜︁p, _) ∈ Θ(s), no outer failure in s. Then
G partially mirrors s is defined as follows:

• if the monitored participant in s is not suspected

∀p ∈ ˜︁p. p ̸∈ F ∧ s[p] : (L, b) ∈ Σ =⇒
G ↾ p = (L′, b′) ∧ b = b′ ∧
DAct(L) ≡unfold DAct(L′) ∧ FAct(L) ≡unfold FAct(L′)

• if the monitored participant in s is suspected

∀p ∈ ˜︁p. p ̸∈ F ∧ s[p] : (L, b) ∈ Σ =⇒
G ↾ p = (L′, b′) ∧ b ≡G cln b

′ ∧ FAct(L) ≡unfold FAct(L′)

Lemma 23 (Fidelity main lemma). Given (F ,Θ, N), a session s with no outer failure, a well-
formed extended global typeG and (F ,Θ, N) → (F ′,Θ′, N ′) in s, such that Γ,Θ,Σ ⊢ N ▷ ∆,
G partially mirrors s, (∆,Σ,F ,Θ) → (∆′, Σ′, F ′, Θ′) and Γ′,Θ′,Σ′ ⊢ N ′ ▷ ∆′, then:
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• If an unsuspected participant performs one of the following base reductions: Send, Recv,
MSnd, Spawn,Mon or RcvFN and either: the monitored participant is not suspected; or the
monitored participant is suspected, and the reduction happens in the failure handling
activity, then after the reduction s is partially mirrored by G′′ where F , G τ−→

∗
F , G′

and F , G′ α−→ F , G′′. Further, α and sub(α) mirrors the reduction in (F ,Θ, N) →
(F ′,Θ′, N ′).

• If the monitored participant is suspected and the reduction happens in the default
activity, then G partially mirrors s after the reduction.

• If a suspected participant not associated with a named role performs the reduction, then
G partially mirrors s after the reduction.

• If the base reduction is Fire, Unfold, or Clean, then G partially mirrors s after the
reduction.

• If the reduction is Sess-GC with a session s′ (s′ ̸= s) being garbage collected, then G
partially mirrors s after the reduction.

• If the reduction is Susp and the session s has no outer failure after reduction, then G
partially mirrors s after the reduction.

Proof. Induction over (F ,Θ, N) → (F ′,Θ′, N ′).

• Case Fire: No change to any configuration in N , i.e, no change to any protocol state.
Therefore, G partially mirrors after reduction.

• Case Send:
By reduction (before reduction):

N = (B.281)
s[p][r]!lj .P

′ || (B.282)
s[p] : (Lp = E [q:r!{li : Li}i∈I ], bp) || (B.283)

s[q] : (Lq, bq) (B.284)

and after reduction:

N ′ = (B.285)
P ′ || (B.286)

s[p] : (E [Lj ], bp) || (B.287)
s[q] : (Lq, bq[p ↦→ bq(p) · lj ]) (B.288)
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By typing:

s[p] : (Lp = E [q:r!{li : Li}i∈I ], bp) ∈ Σ ∧ s[q] : (Lq, bp) ∈ Σ (B.289)

and by assumption (typing) after reduction:

s[p] : (E [Lj ], bp) ∈ Σ′ ∧ s[q] : (Lq, bq[p ↦→ bq(p) · lj ]) ∈ Σ′ (B.290)

Case 1. p or q suspected. By assumption: no outer failure. Therefore, the interaction
is in the normal activity. Therefore mirroring before reduction is only on the failure
handling activities and only needs to be ensured for failure handling activities after
reduction.

Assume p suspected (q suspected similar and simpler)

G ↾ q = (L′
q, b

′
q) (B.291)

b′q ≡G cln bq (B.292)
FAct(Lq) ≡unfold FAct(L′

q) (B.293)
isFHdl(L) = isFHdl(L′) (B.294)

By well-formedness of G and p being the monitored participant (no outer failure)

∄l ∈ b′q(p). l ∈ FAct(L′
q) (B.295)

By Equation (B.292) and Equation (B.295)

∄l ∈ bq(p). l ∈ FAct(Lq) (B.296)

By Equation (B.296), the newly added label can be removed in≡G cln after reduction.
No mirroring is needed in the normal activity since we have a failure. Therefore, G
mirrors (∆′, Σ′, F ′, Θ′).

Case 2. p and q unsuspected, active failure handling, interaction is in default activity:
By case p not in failure handling.

Lp = q:rq !{li : Li}i∈I with L′′
p (B.297)
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By mirroring:

G ↾ p = (L′
p, b

′
p) (B.298)

b′p ≡G cln bp (B.299)
FAct(Lp) ≡unfold FAct(L′

p) (B.300)
isFHdl(Lp) = isFHdl(L′

p) (B.301)
G ↾ q = (L′

q, b
′
q) (B.302)

b′q ≡G cln bq (B.303)
FAct(Lp) ≡unfold FAct(L′

p) (B.304)
isFHdl(Lq) = isFHdl(L′

q) (B.305)

To show: By case mirroring with G is required after reduction. After reduction:

s[p] : (E [Lj ], bp) ∈ Σ′ E [Lj ] = Lj with L
′′
p (B.306)

By Equation (B.297), and Equation (B.300):

FAct(Lj with L
′′
p) ≡unfold FAct(L′

p) (B.307)

By Equation (B.301), Equation (B.303), Definition 49 and projection:

∄l ∈ b′q(p). l ∈ FAct(Lq) (B.308)

By Equation (B.308): b′q(p) contains no label from the failure activity, further lj ̸∈ L′′
p

therefore ≡G cln discards every message from p before mirroring the queue content.
Case 3. p and q unsuspected and mirroring coves the interaction. Assume no active
failure handling, active failure handling is similar. By Assumption

G ↾ p = (L′
p, b

′
p) (B.309)

bp = b′p (B.310)
DAct(Lp) ≡unfold DAct(L′

p) (B.311)
FAct(Lp) ≡unfold FAct(L′

p) (B.312)
G ↾ q = (L′

q, b
′
q) (B.313)

bq = b′q (B.314)
DAct(Lq) ≡unfold DAct(L′

q) (B.315)
FAct(Lq) ≡unfold FAct(L′

q) (B.316)
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By projection the extended global type contains a reachable type of the form:

Gs = p:rp → q:r{li : Gi}i∈I (B.317)

If Gs is the prefix in the default activity, then WithDef followed by Snd applies to G.
Extended projection ensures sub(l) ⊆ ˜︁p1 in WithDef. When Gs is not a prefix: We
show that Gs can do a step (after potential unfolds, F , G

τ−→
∗
F , G′) via WithDef

followed by an arbitrary number of Async∗ followed by an Snd by contradiction. Gs

cannot do a step if Gb is a prefix of Gs and Gb is blocking. Case distinction over Gb:
– Gb is an interaction and AsyncSnd does not apply:
By projection, p is neither the sender nor the receive of that interaction. Further-
more, the receiver cannot be the role set of p. As p is not the sender or receiver,
by projection, the behavior of p must be the same in all branches. Therefore,
AsyncSnd applies. Contradiction.

– Gb is a blocking fired interaction, i.e. AsyncRcv does not apply: By projection
either: p is not the receiver (neither named nor as a role set); or if p is the
receiver and p already received the message (p is contained in the received set).
Therefore, AsyncRcv applies. Contradiction.

– Gb is a blocking spawn, i.e. AsyncSpawn does not apply: By projection p cannot
be part of that spawn. Contradiction.

LetG′ be the extended global after unfolding as shown above the reductionF , G′ !plj−−→
F , G′′ is applicable, with the effect of “moving” Gs to G′

s = p:r ‧‧➡lj q:rq[∅]{li :
Gi}i∈I . The change of Gs to G′

s mirrors the changes in the types of p and q, i.e.,
advancing the send type of p to the continuation Lj and adding the label lj to the
queue of q.

• Case Recv.
By case before reduction:

N = s[p][rq]?lj .P
′ || s[p] : (E [q:rq?{li : Li}i∈I ], bp) (B.318)

bp(q) = lj · l (B.319)

and after reduction:

N ′ = P ′ || s[p] : (E [Lj ], b
′
p) (B.320)

b′p = bp[q ↦→ l] (B.321)
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By assumption of typing (both before and after reduction):

s[p] : (E [q:rq?{li : Li}i∈I ], bp) ∈ Σ (B.322)
s[p] : (E [Lj ], b

′
p) ∈ Σ′ (B.323)

Case distinct over failure of p
Case 1. p is suspected: Case distinction on if p plays a named role or not

Case 1.1. p plays a named role: By Case Case 1. and Case Case 1.1.: p is in the
default activity. Further mirroring is only required for unsuspected participants
and the reduction Recv does not effect the type of other participants. Therefore,
(∆′, Σ′, F ′, Θ′) is still mirrored by G.
Case 1.2. p is only part of a role set: Assume failure handling is active and p is in the
failure handling activity4. The other cases (failure handling is not active or failure
handling is active and p is in the default activity) are similar.
Mirroring is only required by unsuspected participant and the reduction Recv does

not effect the type of other participants. Therefore, (∆′, Σ′, F ′, Θ′) is still mirrored
by G.

Case 2. p is unsuspected:
Case 2.1. Monitored participant not suspected: By Assumption

G ↾ p = (L′
p, b

′
p) (B.324)

DAct(L′
p) ≡unfold DAct(Lp)(= q:rq?{li : Li}i∈I) (B.325)

FAct(L′
p) ≡unfold FAct(Lp) (B.326)

b′p(q) = lj · l (B.327)

By projection the extended global type contains a reachable type of the form:

Gs = q:rq ‧‧➡
lj p:r{li : Gi}i∈I or Gs = q:rq ‧‧➡

lj R{li : Gi}i∈I (B.328)

the rest of the proof is similar to the Send case (cf. Case 3.).
Case 2.2. Monitored participant suspected: If the receive is covered by partial mirror-
ing, i.e., occurs in the failure handling case is similar to Case 2.1.. If on the other
hand the receive is not covered, i.e. occurs in the normal activity then:

4In this case p is suspected but does not play a named role (only named role can be monitored) and p’s
failure is not an outer failure.
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G ↾ p = (L′
p, b

′
p) (B.329)

FAct(L′
p) ≡unfold FAct(Lp) (B.330)

isFHdl(Lp) = isFHdl(L′
p) (B.331)

b′p ≡G cln bp (B.332)

By Equation (B.332):

bp(q) = l1 · l′1 ∧ b′p(q) = l2 · l′2 ∧ l′1 = l′2 ∧ ∀l ∈ l1 · l2. l ̸∈ G′ (B.333)

By case:
lj ∈ l1 (B.334)

Therefore, N ′ is partially mirrored by G after reduction.

• Case MSnd. Argumentation is similar to Send.

• Case Unfold. Mirroring is up to unfolds.

• Case Spawn. By assumption and projection, spawn is present in the global type for
all participants involved. Async* applies by the same argument as in the Send case
(the argument needs to be repeated for every participant involved in the spawn).
The rule Spawn has no precondition, i.e., step follows trivially.

• Case Sess-GC.
The rule Sess-GC has no effect on the configuration types in s.

• Case Mon.
By case:

N = s[p][r]↓.P ′ || (B.335)
s[p] : (Lp = L′ with q:r↓.L, bp) (B.336)
|| s′∈˜︁s s′[p] : (Ls′ , bs′) (B.337)

and after reduction:

N ′ = P || (B.338)
s[p] : (−with L, bp) (B.339)
|| s′∈˜︁s s′[p] : (endLs′ , bs′) (B.340)
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By typing, the configurations types are present in Σ and Σ′.
By case, q suspected and we have:

G ↾ p = (L′
p, b

′
p) (B.341)

L′
p = L′′

p with q:r↓.L′′′
p (B.342)

b′p ≡G cln bp (B.343)
FAct(Lp) ≡unfold FAct(L′

p) (B.344)
isFHdl(L) = isFHdl(L′) (B.345)

By projection and well-formedness, G must have the form:

{[˜︁p1]G1 with[∅]q:r@p:rp G2} (B.346)

By Equation (B.346) and case, WithActFHdl applies:

{[˜︁p1 \ p]G1 with[p]q:r@p:rp G2} (B.347)

Projection on to Equation (B.347)

−with L′′′
p (B.348)

By Equation (B.342):

FAct(−with L′′′
p ) ≡unfold FAct(−with L) (B.349)

For all participants (in s), excluding p, projection of Equation (B.346) and Equa-
tion (B.347) result in the same local types and same queue types.

• Case RcvFN. Similar to the cases Mon and Recv.

• Case Susp. W.o.l.g p was removed. Case distinction over p’s involvement in s.
Case 1. p not in s. Nothing to show.
Case 2. p does not play a named role. After the reduction partial mirroring needs to
hold for one less participant in the same way as before the reduction.
Case 3. p plays a named role other then the monitored role. Nothing to show since
fidelity does not apply to s after the reduction.
Case 4. p plays the monitored role. After the reduction the second case, instead of
the first case, of partial mirroring must apply. b ≡G cln b

′ required less then b = b′

and DAct(L) ≡unfold DAct(L′) ∧ FAct(L) ≡unfold FAct(L′) implies isFHdl(L) =
isFHdl(L′). Therefore, G mirrors s after the reduction.
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• Case Clean.
By assumption:

N = (H, p) || s[p] : (L, b) (B.350)
b(q) = lj · l (B.351)
(L = −with L′ ∧ l ̸∈ L′) (B.352)

∨
(L = L′ with L′′ ∧ lj ∈ L′ ∧ ∃l′ ∈ l. l′ ∈ L′′)

and after reduction:

(H, p) || s[p] : (L, b′) where b′ = b[q ↦→ l] (B.353)

By typing
s[p] : (L, b) ∈ Σ s[p] : (L, b′) ∈ Σ′ (B.354)

By projection and mirroring before reduction: the monitored participant has failed
and failure handling is active (both at the processes level and in the global type).
Therefore, by partial mirroring:

G ↾ q = (L′
q, b

′
q) (B.355)

b′q ≡G cln bq (B.356)
FAct(Lq) ≡unfold FAct(L′

q) (B.357)
isFHdl(L) = isFHdl(L′) (B.358)

By Equation (B.352) and Equation (B.357) and Equation (B.354):G partially mirrors
N ′

• Case Par: By reduction

(Θ1,F1, N1 ||N2)→ (Θ′
1,F ′

1, N
′
1 ||N2) (B.359)

with
(Θ1,F1, N1)→ (Θ′

1,F ′
1, N

′
1) (B.360)

By induction hypothesis, Lemma 23 holds for Equation (B.360). If we have one of
the cases where G also mirrors N ′

1, i.e., no reduction of G is needed, then we have
nothing to show.

Assume G′′ mirrors N ′
1 with F , G τ−→

∗
F , G′ and F , G′ α−→ F , G′′. Case distinction

over α. The cases are similar. Therefore, we only show a sub-set of the cases.
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Case 1. α =!pl′: By case and induction hypothesis: the base reduction in Equa-
tion (B.359) was Send. By typing, the configurations of the sender and receiver are
present in N1/N ′

1. By extended global type reduction (cf. Snd) and projection: the
projection of G and G′′ results in the same local types (up to unfolds) and queue
types for participants that are neither the sender nor receiver.
Case 2. α = g(p;R;R): By case and induction hypothesis: the base reduction in
Equation (B.359) was Spawn. Therefore, at least the participants involved in the
spawn are in N1 and N ′

1. There can be suspected participants associated with a role
set involved in the spawn in N2. However they are ignored in partial mirroring. Rest
is similar to the previous case.

• Cases Res and StrR: similar to Par.

Theorem 7 (Fidelity). Assume ⊢ (Θ1,F1, (νs :G)N1), with {si}i∈I as the sessions in Θ1,
and well-formed extended global types {Gi}i∈I such that ∀i ∈ I either Gi mirrors si or
si has an outer failure. Let (Θ1,F1, (νs :G) N1)→ (Θ2,F2, (νs :G) N2), with {s′j}j ∈ J as
the sessions in Θ2. Then there exist well-formed {G′

j}j∈J such that ∀j ∈ J either (a) s′j has
an outer failure or (b) G′

j mirrors s′j , and if s′j = si, i∈ I, then either (i) G′
j = Gi, or (ii)

F1, Gi −→τ∗−→α F2, G
′
j . (−→τ∗means recursive unfoldings.)

Proof. By Theorem 3 (Subject Reduction) we have:

⊢ (Θ2,F2, (ν(s : G))N2) (B.361)

By Lemma 15 (Inversion)

s : G,Σ2 ⊢ N2 ▷ ∆2 and (∆2, Σ2, F2, Θ2) coherent (B.362)

Let si be the session that "performed" the reduction. (We cover Susp and rules that
effect multiple sessions in more detail later):
Case 1. si has no outer failure: Therefore, by assumption si is mirrored by Gi. By Equa-
tion (B.362) Lemma 23 applies to the the reduction:

(Θ1,F1, N1) → (Θ2,F2, N2) (B.363)

N1/2 are typed in a coherent environment, i.e.,the endpoint configuration exists for all
participant that are part of a session. I.e., we get (full) mirroring from partial mirroring
which we get from Lemma 23.

Case 2. si has an outer failure: No mirroring after reduction required.
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Let sj be a session in Θ that did not "perform" the reduction. sj is only effected by a
reduction in si if the reduction used one of the following rules: Sess-GC,Mon, or RcvFN. If
the reduction used any other rule in si the endpoint configuration in sj do not change
in (Θ1,F1, N1) → (Θ2,F2, N2) and therefore sj is still mirrored or still contains an outer
failure.
Case distinction over the “special” reduction in si. If (a) sj was removed by Sess-GC then

sj ̸∈ Θ2, i.e. nothing to show. If (b) a local type of a configuration in sj was set to stopped
by either Mon or RcvFN then mirroring is not effect, since L and endL are consider to be
identical in ≡unfold.

Let s′ be a session in Θ2 but not in Θ1. That implies the Spawn reduction was used. By
definition of Spawn s′ is fresh and only contains unsuspected participant. By typing a well
formed global type is used for spawn and therefore the extended version of that global
type mirrors s′.

Lastly we cover the reduction SUSP. The Susp reduction is not associated with any
session. Let p be the newly suspected participant. Case distinction over p’s involvement
in a session: (a) p is not part of a session then setting p to suspected does not influence
mirroring in that session; (b) p is part of a session but not as a named role, i.e., only in a
role set. Then there is one less participant for which mirroring is required but no other
change; (c) p plays a named role but is not monitored, then we have an outer failure
and no mirroring is required; (d) p plays a named role and is monitored. Then mirroring
change to the case of monitored participant is suspected. b ≡G cln b

′ is less restrictive then
b = b′ and by well-formedness of G all participant are in the default activity therefore
isFHdl(L) = isFHdl(L′) is given.

B.6.5. Property: progress

Lemma 24 (Progress active handler). Given ⊢ (Θ1,F1, (ν(s : G))N1) then all active event
handlers will reduce to event handling loops.

Proof. By global assumption initially no handling is active. By typing (in particular
THandler) all handler are well-formed, i.e., the handler contains at most one block-
ing action (spawn, receiver or ̸∈) and if a blocking action exists it is the first action.
Furthermore, a handler contains no recursion and no with statement. In addition, the
reduction rule Fire does not activate any handler which contains a spawn.
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If Fire actives a handler which contains a receive or a ̸∈ then fire(L,L′, b,F) ensures
that a matching message respectively a matching suspicion is present at time of activation.
The only reduction beside Recv that can remove messages is Clean. Clean only applies to
event loops with no active handler, i.e., it is not applicable since we have an active handler.
There is no rule that sets a suspected participant to unsuspected. Therefore, there cannot
be a blocking based on the input.
Furthermore, there cannot be a blocking because of a non-matching between the local

type in the configuration and the action performed in the handler by definition of L≍ L′.
The rule Mon and RcvFN, which can change the local type across session boundaries
cannot interfere as typing ensure that an endpoint can have at most one active handling.
Lastly Spawn together with Definition 44 (Coherence) ensures that the required endpoint

configuration for the reduction of the handler exists, e.g. the configuration of the receiver
in a send reduction.

Definition 60 (Stopped Participant). A session s contains a stopped participant if the
protocol type in configuration of a non-failed participant has the shape: endL.

Proposition 2 (Event loops provide full coverage). Given ⊢ (Θ,F , (ν(s : G)) N), an
unsuspected p, a configuration s[p] : (L, b) ∈ N which is not stopped and (H, p) ∈ N with no
active event handler, then it exist [L′]λx. P ∈H with L≍ L′

Definition 61 (Session is end / Session is terminated). A session s is end/is terminated if
all configuration of unsuspected participants in s either (1) reached end in the normal activity
and the monitored participant is unsuspected or (2) reached end in the failure handling
activity.

Theorem 8 (Subsession Progress). Assume an initial system ⊢ (Θ1,F1, (νs :G)N1) and
(Θ1,F1, (νs :G)N1) →∗(Θ2,F2, (νs :G)N2). Let s′ in Θ2 such that s′ has no outer failure,
no stopped participant, and is not terminated. Then (Θ2,F2, N

′
2) → (Θ3,F3, N3) via a

reduction in session s′, with either N ′
2 =N2 or (Θ2,F2, N2) →∗ (Θ2,F2, N

′
2).

Proof. By assumption Θ1 contains only one session s which is mirrored by the main
protocol in G. By Theorem 7 (Fidelity) on each step from (Θ1,F1, (ν(s : G)) N1) to
(Θ2,F2, (ν(s : G))N2) there is an extendedG for s′ (once s′ exists). Select the prefix action
(after potential unfoldings) in the default activity respectively the prefix in the failure
handling activity if failure handling is active. In the prefix selection we potential skip over
completed interaction, i.e., p:r ‧‧➡lj z[˜︁p]{li : Gi}i∈I with ˜︁p ⊇ pid(z) \ F . A prefix exist by
assumption session not end. In the following we show that the prefix action in G enables
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progress in (Θ2,F2, (ν(s : G))N2), in particular the subject in the prefix is able to perform
a step.
Let p be the subject of the prefix in G with the event loop (H, p). Let either N ′

2 = N2 if
p has no active handler in N2, or alternative we get by Lemma 24:

(Θ2,F2, (ν(s : G))N2) →∗ (Θ2,F2, (ν(s : G))N ′
2)

and p has no active handler in N ′
2. If the reduced active handler was associated with s′ we

are done. By Theorem 3 (Subject Reduction)

⊢ (Θ2,F2, (ν(s : G))N ′
2) (B.364)

with Γ3,Σ3 ⊢ N ′
2 ▷ ∆3

Case distinction over the prefix of G with p unsuspected and a separate case for p is
suspected. Note: Spawn behavior is a bit different compared to other constructs as it has
more then one subject

• Case prefix: p:r → z{li : Gi}i∈I The argumentation is similar for default and failure
handling activity.
By fidelity with extended projection

s′[p] : (L = E [q:r!{li : ...}i∈I ], _) ∈ Σ (B.365)

or
s′[p] : (L = E [R!{li : ...}i∈I ], _) ∈ Σ (B.366)

By assumption p has no active event handler.
By the coverage check in TELoop it exist

[L′]λx. Ph ∈H with L≍ L′ (B.367)

Definition 28 (Fire) is true for Equation (B.367) and Fire can be followed up by
Send. Done.

• Case p playing a named role and p is suspected, i.e. s′ contains a handled failure but
failure handling is not yet active.
By assumption (no outer failure) this session handles the failure of p, i.e. we have:

{[˜︁p]G with[∅]p:r@q:rq G} (B.368)
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Wolg q has no active event handler (Lemma 24 ensures that an active handler of q
could reduce)

(Hq, q) (B.369)

By Theorem 7 (Fidelity) we have

s′[p] : (Lq = Lq with p↓.L′
q, _) ∈ N ′

2 (B.370)

By typing (coverage check)

∃[L′]λx. Ph ∈H with L≍ L′ where L′ = r↓.L′′ (B.371)

By case assumption
p ∈ F (B.372)

By Equation (B.371), Equation (B.372) and Definition 28 (Fire) we can activate
a failure handler. Further Lemma 24 (Progress Handler) ensures progress for that
handler.

• Case prefix: q:rq ‧‧➡lj z[˜︁p]{li : Gi}i∈I with p ∈ pid(z)\˜︁p. There are 3 cases of interest:
(1) prefix is in the default activity, (2) prefix in failure handling activity, and (3)
prefix in failure handing activity and clean applies for p . We cover the last case (a
clean is required before receive) as the other two cases are simpler.

By case and selection (see above) [ignoring potential p′ ‧‧➡lk z′[˜︁p]{lj : Gj}j∈J with˜︁p ⊇ pid(z′)]:

G = {[˜︁p1]G′ with[˜︁p2]p′:rp′@p′′:rp′′
q:rq ‧‧➡

lj z[˜︁p]{li : Gi}i∈I} (B.373)

We have
p ∈ pid(z) \ ˜︁p (B.374)

Case distinct if p ∈ ˜︁p1 or if p ∈ ˜︁p2 (i.e. if p is in the default activity respectively in
the failure handling activity)

Case p ∈ ˜︁p1: The configuration of p and its type is:
s′[p] : (Lp, bp) ∈ N ′

2 s′[p] : (Lp, bp) ∈ Σ′
2 (B.375)
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By Theorem 7 (Fidelity) and projection for Equation (B.375)

G ↾ p = (L′, b′) (B.376)
bp ≡G cln b

′ (B.377)
FAct(Lp) ≡unfold FAct(L′) (B.378)
isFHdl(Lp) = isFHdl(L′) (B.379)

By Equation (B.378) and Equation (B.379)

Lp = L′ with q:rq?{li : Li}i∈I (B.380)

By case “clean”
bp(q) = l′ · l l′ ̸∈ q:rq?{li : Li}i∈I (B.381)

By Equation (B.373) and Equation (B.377)

∃l′′ ∈ bp(q). l
′′ = lj (B.382)

By Equation (B.382) and Equation (B.381) Clean applies. After Clean reduction:

s′[p] : (L′ with q:rq?{li : Li}i∈I , b′p) ∈ P (B.383)
b′p(q) = l (B.384)
l = l1 · l′ (B.385)

Wolg l1 ̸∈ L′ (if l1 ̸∈ L′ then Clean applies with reasoning above). By Theorem 7 (Fi-
delity) and projection

l1 = lj (B.386)

By Theorem 3 (Subject Reduction) and well typed (coverage check)

[L′]λx. Ph ∈H with L≍ L′ (B.387)

can activate handler for failure handling (note the coverage ensure handler for both
default and failure handling)

By Equation (B.386) the Definition 28 (Fire) is true together with Equation (B.387)
Fire applies.

Case p ∈ ˜︁p2:
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By Theorem 7 (Fidelity) and projection

s′[p] : (L = −with q:rq?{li : Li}i∈I , b) ∈ N ′
2 (B.388)

b(q) = l′ · l (B.389)

By case “clean”
l′ ̸∈ q:rq?{li : Li}i∈I (B.390)

By Equation (B.388), Equation (B.390) Clean applies. After Clean reduction:

s′[p] : (L = −with q:rq?{li : Li}i∈I , b′) ∈ N ′
2 (B.391)

b′(q) = l = l1 · l′ (B.392)

The remaining argumentation follows the case of p ∈ ˜︁p1.
• Case prefix: g(p;R;R).G. By case no participant in p is suspected (see case above for
suspicion in p). Let ˜︁p1 = pid(g(p;R;R)) \ F . Wolg all q in ˜︁p1 have no active event
handling (Lemma 24 (Progress Handler) ensure progress for any active handler).
By typing, Theorem 7 (Fidelity), and projection

∀q ∈ ˜︁p1. s′[q] : (Lq = Eq[g(p:R;R;R)], bq) ∈ N ′
2 (B.393)

By all participant have no active handler, Equation (B.393), assumption there are
enough participant to pick and typing (ensures that g is projectable) Spawn applies.

Theorem 5 (Global Progress). Assume an initial system ⊢ (Θ1,F1, (νs :G) N1) and a
reduction (Θ1,F1, (νs :G)N1) →∗(Θ2,F2, (νs :G)N2). Then either Θ2 is empty, or without
using Susp we have (Θ2,F2, (νs :G)N2) → (Θ3,F3, (νs :G)N3).

Proof. Proof by contradiction, we assume no progress for (Θ2,F2, (ν(s : G))N2).

Setup: N2 contains no event loop with an active handler (otherwise Lemma 24 (Progress
Handler) applies and we have a contradiction). All session in (Θ2,F2, (ν(s : G))N2) have
(a) an outer failures and/or (b) a stopped participant and/or (c) the session is end
(otherwise Theorem 8 (Session Progress) provides progress; by assumption we have
enough participant to pick)
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First we show that a leaf session which has (a) an outer failure is also (b) stopped (or we
could do a step, i.e. contradiction). Secondly we show a contradiction for a stopped leaf
session without progress. If a leaf session reached end then by Definition 44 (Coherence)
((Θ2,F2, (ν(s : G))N2) is well type) immediately either Sess-GC or Root-GC applies.
We say: a session a covers a session b if b is spawned in the default activity of a. The top

most session is either the root session or the session closes to the root session.

Leaf session has an outer failure Let s be a leaf session which has an an outer failure.
Let s′ be (a) the top most session which has an active or activatable failure handling which
(b) (transitively) covers s. By well-formedness and Spawn all participant in s also occur in
s′.
s′ has no outer failure (would contradiction (a) or the root participant failed which by

assumption does not fail). Further s′ is not stopped (would contradiction (a) only failure
activation triggers stop). By assumption no progress and therefore s′ is end. Furthermore
by (a) and no progress in s′ is end in failure handling and therefore s must be stopped
(failure handling sets all transitively child session to stop and a stop configuration cannot
spawn new sessions).

Leaf session contains stopped participant Let s be a leaf session with a stopped partici-
pant. Let s′ be (a) the top most session which has an active failure handling which (b)
(transitively) covers s. By well-formedness and Spawn all participant in s also occur in
s′. s′ must be an end session in failure handing or it would have progress. Therefore all
participant in s are stopped. Sess-GC applies and therefore we have a contradiction.

B.7. Global Type for the Full Version of Session-CM

Figure B.20 provides the full global type the full Session-CM. We provide a high-level
explanation here. Section 4.2 explains the scheduling process of Spark applications and a
simplified global type in more detail.
The protocol contains the subprotocols Main, PDriver, PExSchedule, and PExecutor.

The Main subprotocol is the entry point into the Session-CM protocol and describes
the scheduling process of multiple Spark applications. It spawns PDriver protocols. The
PDriver subprotocol is responsible for scheduling one Spark application. It assigns a worker
to run the driver of that Spark application and spawns PExSchedule. The PExSchedule
subprotocol is responsible to assign executors to a Spark application. For each executor, it
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1 Main (roles zk : ZK; assign m : M; rSets M, W) = {
2 mu t.
3 m → zk : {
4 NewDriver(appID: Int) :
5 m → W : PrepSpawn().
6 spawn PDriver(m; W; W). t,
7 DriverDone(appID : Int) : m → W : BMsg(). t,
8 EndCM() : m → W : Terminate(). 0}
9 with m@zk. zk → M : FailMtoM(). zk → W : FailMtoW(). 0
10 }
11 PDriver(roles m : M; assign w : W; rSets W) = {
12 m → w : LaunchDriver(appID : Int driver : SPARK.LaunchDriver).
13 w → m : AckNStatus(appID : Int).
14 spawn PExSchedule(m,w;W ;W).
15 w → m : DriverStateChange(status : SPARK.DriverState).0
16 with w@m. m → W : {
17 FailDriverSpawn(appId : Int newAppID : Int) :
18 spawn PDriver(m; W; W).0,
19 FailDriverEnd(appId : Int ) : 0}
20 }
21 PExSchedule(roles m : M, w : W; assign tw : W; rSets W) = {
22 mu t.
23 m → W : {
24 StartExCase(appID : Int) : spawn PExecutor(m, w; W; W).t,
25 End() : 0}
26 with tw@m. m → W : {
27 FailExScheduleSpawn(appId : Int):
28 spawn PExSchedule(m,w; W; W).0,
29 FailExScheduleEnd(appId : Int) : 0}
30 }
31 PExecutor(roles m : M, w : W; assign wEx : W; rSets W) = {
32 m → wEx : StartEx( appId : Int, exId : Int,
33 launchEx : SPARK.LaunchExecutor).
34 wEx → m : ExStarted(appId : Int, exId : Int).
35 m → w : ExRunning(appId : Int, exId : Int).
36 wEx → m : ExDone(appId : Int, exId : Int).
37 m → w : ExFinishStatus(appId : Int, exId : Int).0
38 with wEx@m. m → W : {
39 ExFailSpawn(appId : Int, exId : Int) :
40 spawn PExecutor(m,w;W;W).0,
41 ExFailEnd(appId : Int, exId : Int) : 0}
42 };

Figure B.20.: Full global type of the Session-CM
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spawns PExecutor. The PExecutor subprotocol handless the lifecycle of an executor for
that it assigns a worker to run an executor and monitors that worker.
The four subprotocols will approximately lead to the following subsession tree during

execution (ignoring failures): the root session follows Main and handles the scheduling of
multiple Spark applications. For every Spark application that is currently scheduled, the
root session has a child session that follows the PDriver subprotocol, i.e., the child session
handles the scheduling for one Spark application. Each session following PDriver has one
subsession following PExSchedule, which is responsible for assigning executors to the
driver. The session following PExSchedule has a subsession PExecutor for each executor
assigned to the Spark applications.
We will now explain the four subprotocols in more detail.
The Main subprotocol is the entry point into the Session-CM protocol and root sub-

protocol. It defines that a master role m from the master role set M is assigned, and the
Zookeeper role zk monitors the newly assigned role m. In the default activity, it defines a
recursive behavior. In it the role m has a choice between three options on how the protocol
continues. In the first option, m selects a Spark application for scheduling and informs the
Zookeeper role zk, via NewDriver(appID: Int), and all workers, via PrepSpawn(). After
that, all participants spawn PDriver, and recurse back to the beginning. In the second
option, m informs the participants of the completion of a Spark application, by sending
DriverDone(appID : Int) to zk and BMsg() to W. Then all participants recurse back. In the
third option, m signals the termination of the protocol by sending EndCM() and Terminate()
to zk, respectively W. In the failure handling activity, the Zookeeper role zk informs all
workers W and all standby masters M about the failure of m and all participants will end the
protocol.
The PDriver protocol is responsible for scheduling one Spark application. It defines

that a worker is assigned to play w that worker w will launch the driver of the Spark
application, which gets scheduled. In the default activity, the master role m sends to
the newly assigned worker role w the required information to launch a Spark driver
(LaunchDriver(appID : Int driver : SPARK.LaunchDriver)). We use SPARK as a short-
hand for a fully qualified package name. The worker will launch the driver and ac-
knowledge the launch via AckNStatus(appID : Int). After that, all participants spawn
the PExSchedule subprotocol, which is responsible for assigning executors to the driver.
Lastly, the worker w informs the master m once the Spark application has finished, via
DriverStateChange(status : SPARK.DriverState). In the failure handling, activity the
master role m has two options, either (a) it restarts this protocol or (b) it safely terminates
the protocol. In the first option (a), the master informs all workers, via FailDriverSpawn,
that m intends to restart the protocol. After that, the master and all workers spawn PDriver,
i.e., restart the failed protocol. In the second option (b), the master informs all workers to
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stop the protocol via FailDriverEnd.
The PExSchedule protocol is responsible for assigning executors to a Spark application. It

assignes a worker to play tw, tw performs no specific behavior – it is a dummy assignment–,
i.e., the assignment is performed since every spawn involves a assignment. The default
activity defines a recursive behavior. In it, the master m has two options. Their first option
is to signal all workers W, via StartExCase(appID : Int), that they will together spawn
PExecutor. After that, they recurse back, i.e., the first option assigns an additional executor
to a Spark application. Their second option is to signal, via End(), the end of this protocol.
The second option, is taken once sufficient executors are assigned to the Spark application.
The failure handling, is similar to the failure handling of PDriver. The master m informing
all workers about the failure and is in control to either restart the subprotocol or to
terminate the subprotocol.
The PExecutor protocol is responsible for the lifecycle of an executor. It assignes a

worker to play wEx, who will launch an executor. In the default block, the master role m
sends the required information to launch the executor to wEx, via StartEx(...). Then wEx
launches the executor and informs the master, via ExStarted(appId : Int, exId : Int).
The master m informs the worker w, which runs the driver associated with the spawn
executor, about the executor launch. Lastly, wEx informs the master m once the executor
has finished, and m forwards this information to w. The failure handling is similar to that
of the last two protocols. The master m informs all workers about the failure and is in
control to either restart the subprotocol or to terminate the subprotocol.
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