Supplementary Figures and Tables

Interaction of the Gas Vesicle Proteins GvpA, GvpC, GvpN and GvpO of *Halobacterium salinarum*

Alisa Jost¹ and Felicitas Pfeifer¹

¹Microbiology and Archaea, Department of Biology, Technical University Darmstadt, Darmstadt, Germany

Supplementary Figure S1. Western analysis to determine GvpF in ΔF + F_{mut} transformants. Total proteins were isolated from ΔF + F_{wt} or ΔF + F_{mut} transformants in late exponential growth phase, and 20 µg of proteins were separated by SDS-PAGE, followed by transfer on a PVDF membrane and treatment with an antiserum raised against GvpF. The respective substitution- or deletion variant is indicated on top. Arrows on the right mark the position of GvpF.

ΔF	wt	E03A	E03R	E12A	E12R	E14A	E14R	D15A	D15R	E17A	E17R
				a. 3 4 - 3 - 1	and the second sec	A.			dil.		
	Ò									0	6
					-						
D19A	D19R	E21A	E21R	E27A	E27R	D45A	D45R	D46A	D46R	E50A	E50R
					•				• 8 %. • • °		••••
				0		0		-	ese-		0
									0.5µm	<u></u>	0 <u>5 um</u>
R51A	R51E	D53A	D53R	E54A	E54R	D55A	D55R	E57A	E57R	E65A	E65R
									and and a second	and a state	
	0-	0.				0		P-	P		
<u>05 pr</u>			12- 25m	the .	·///		1111 1111	-	1/1	<u>05µm</u>	1.1
K68A	K68E	E70A	E70R	E71A	E71R	E72A	E72R	R73A	R73E	K85A	K85E
15		1933					2-	and see		89 W. . 1	•
		0			<u> </u>			Ø			
No.		11-						1 -	- 10	All.	
R88A	R88E	K91A	K91E	R95A	R95E	R98A	R98E	R102A	R102E	D123A	D123R
i i Volt							•••		1997 - 19		
	6					<u>_</u> _	•		_		
		0.5 m						1000 - 10 - 10 - 10 - 10 - 10 - 10 - 10			
D124A	D124R	D154A	D154R	R155A	R155E	D184A	D184R	E185A	E185R	R213A	R213E
1.00 1.00 1.00 1.00	••••	-0	••••	• • •	 		9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4	9	·		
				S 00			0-		6		۲
Nan-	**************************************										

Supplementary Figure S2 (previous page). Colonies of $\Delta F+F_{wt}$ and $\Delta F+F_{mut}$ transformants on solid media (top), cells analyzed by transmission electron microscopy (TEM) for the possession of gas vesicles (middle), and isolated gas vesicles analyzed by TEM. The respective GvpF variants tested are indicated on top. The bar equals 0.5 μ m in each case. Further explanations are given in the text.

Supplementary Figure S3. Analysis of the morphology of gas vesicles derived from $\Delta F+F_{mut}$ transformants. (A) Scatter plot of gas vesicles isolated from $\Delta F+F_{mut}$ transformants depending on the length and the diameters of gas vesicles. Approximately 100 gas vesicles were measured with ImageJ and the median was reported. The value determined for wild type gas vesicles is labelled in red. The cluster of shorter gas vesicles is circled in orange; transformants containing longer gas vesicles in green (dashed line: smaller diameter). (B, C) Homology model of GvpF based on the crystal structure of the cyanobacterial GvpF (Xu et al., 2014) and modelled using I-TASSER Server (Zang, 2008; Roy et al., 2010; Yang et al., 2015). Amino acid substitutions leading to smaller gas vesicles are labelled in green (C).

Name	Sequenz (5' \rightarrow 3')
ΔF construct	
Δ_pWL102_fwd	aattacagtcggtcgggttcgagtcggagcCTACAGTTCCTCTTTCATG
ΔF_rv	gcctccttgttgctgCTCAGTCATTGGTCTCTC
ΔF_fwd	agaccaatgactgagCAGCAACAAGGAGGCCGATAATG
Δ_pWL102_rv	gttcctggccttttgctggccttttgctcaTCAGTCCTCTCGCCGATC
GynE substitutions	
$f_{-n}E/E03A$	ΑΓΤαραλλειτλελελε
f-pE/E03R	ΑΓΤ εσσ ΑΔΓΓΤΑΤΑΓΑΓΑΤΑΓΑ
r-nE/E03	
f-pF/E03	GTATCATCOCAGGAAGATCTCGAATTAG
f-nF/F12R	GTATCATCagaCAGGAAGATCTCGAATTAG
f-nE/E14A	GTATCATCGAACAGGAACATCTCGAATTAG
f-nF/F14R	GTATCATCGAACAGagaGATCTCGAATTAG
f-pF/D15A	GTATCATCGAACAGGAAgcaCTCGAATTAG
f-nF/D15R	GTATCATCGAACAGGAAagaCTCGAATTAG
r-nF/F12+F14+ D15	CGTATGTGTATAGGTTCTCAGTCAT
f-pE/E17A	GATCTCgcaTTAGATGTCGAAGGCGTTG
f-pE/E17B	GATCTCagaTTAGATGTCGAAGGCGTTG
f-nF/D194	
f-nF/D19R	GATCTCGAATTAggaGTCGAAGGCGTTG
f-nF/F21A	GATCTCGAATTAGATGTCØCAGGCGTTG
f-nF/F21R	GATCTCGAATTAGATGTCagaGGCGTTG
r-nF/F17+D19+ F21	TTCCTGTTCGATGATACCGTATGTGTGTATAG
f-pE/E27A	GGAGCG ra CAGGTCTATC
f-pE/E27B	GGAGCGCCAGGTCTATC
r-nF/F27	GGCAACGCCTTCGACATCTAATTC
f-pF/D45A	ACATTectACGACCGACCC
f-pF/D45R	ACATTcgtACGACCGACCC
f-pF/D48A	ACATTGATACGACCgcaCCCG
f-pF/D48R	ACATTGATACGACCagaCCCGAG
r-pF/D45+D48	CAGAGACGACAGCGGAGAG
f-pF/E50A	CCCgcaCGCACCGATG
f-pF/E50R	CCCcgaCGCACCGATG
f-pF/R51A	CCCGAGgcaACCGATG
f-pF/R51E	CCCGAGgagACCGATGAG
r-pF/E50+R51	GTCGGTCGTATCAATGTCAGAGACGAC
f-pF/K85A	CGTTCgcaAGTGCGCGCAC
f-pF/K85E	CGTTCgaaAGTGCGCGCAC
r-pF/K85	CCATCCCGAAGCTCATCGG
f-pF/R88A	GTGCG gca ACGCTAAAGGG
f-pF/R88E	GTGCGgaaACGCTAAAGGG
r-pF/R88	TTTTGAACGCCATCCCGAAGC
f-pF/K91A	CACGCTA gca GGTGTATTG
f-pF/K91E	CACGCTAgaaGGTGTATTG
r-pF/K91	CGCGCACTTTTGAACG
f-pF/R95A	GTGTATTG gca GGGGCGC
f-pF/R95E	GTGTATTG gaa GGGGCGC
r-pF/R95	CCTTTAGCGTGCGCGC
f-pF/R98A	GGCG gca CGTGCATTG
f-pF/R98E	GGCGgaaCGTGCATTG
r-pF/R98	CCGCGCAATACACCCTTTAG
f-pF/R102A	CATTG gca AGTACGCTGAATGAC
f-pF/R102E	CATTGgaaAGTACGCTGAATGAC

Supplementary Table S1. Oligonucleotides used in these studies.

r-pF/R102	CACGTCGCGCCCC
f-pF/D123A	CCTGGC gca GATACAGTCC
f-pF/D123R	CCTGGC cga GATACAGTCC
f-pF/D124A	CCTGGCGAC gca ACAGTCC
f-pF/D124R	CCTGGCGAC cga ACAGTCC
r-pF/D123+D124	ACCGAGTATCTTCACGCCAAGTTC
f-pF/D154A	CTTCACAgcaCGCCTGATCATCAATAAG
f-pF/D154R	CTTCACAcgaCGCCTGATCATCAATAAG
f-pF/R155A	CTTCACAGACgcaCTGATCATCAATAAG
f-pF/R155E	CTTCACAGACgagCTGATCATCAATAAG
r-pF/D154+R155	AGATCGTTCTCGGTCTCGTTGATAC
f-pF/D184A	GGAATAC gca GAACTGACGATTCAG
f-pF/D184R	GGAATAC cga GAACTGACGATTCAG
f-pF/E185A	GGAATACGAC gca CTGACGATTCAG
f-pF/E185R	GGAATACGAC cga CTGACGATTCAG
r-pF/D184+E185	GCTTCGACATCGTCGATGGC
f-pF/R213A	TACCTTAT gcg CCTCCTTGTTG
f-pF/R213E	TACCTTAT tcg CCTCCTTGTTG
r-pF/R213	CCCAATTCGCCCTATAGTGAGTC

GvpF substitutions in split-GFP vectors

5'-BspHI-pF/E03A	attc <u>tcATGA</u> CTGCGAACCTATACACATACG
5'-BspHI-pF/E03R	attc <u>tcATGA</u> CTCGGAACCTATACACATACG
3'-BlpI-pF/R213A	attcgctcagcgaTTATGCGCCTCCTTGTTGCTGTTC
3'-BlpI-pF/R213E	attc <u>gctcagc</u> gaTTATTCGCCTCCTTGTTGCTGTTC
3'-Kpnl-pF	attc <u>ggtacc</u> TTATCGGCCTCCTTGTTGC
3'-Kpnl-pF/R213A	attc <u>ggtacc</u> TTATGCGCCTCCTTGTTGCTGTTC
3'-KpnI-pF/R213E	attc <u>ggtacc</u> TTATTCGCCTCCTTGTTGCTGTTC

Split-GFP vectors

5'-BspHI-pC attctcATGAGTACTGCCCGC 5'-BamHI-pC attcggatccATGAGTACTGCCCGC 3'-BlpI-pC attcgctcagcTCATGTTTTATCATCCGGCC 3'-BlpI-pC∆Stop attcgctcagcgaTGTTTTATCATCCGGCC 3'-BamHI-pC∆Stop agttctggatcccTGTTTTATCATCCGGCC 3'-BsrGI-pC attctgtacatcATGTTTTATCATCCGG 5'-BspHI-pN attc<u>tcATGA</u>CGAACGAGTCC 5'-BamHI-pN attcggatccATGACGAACGAGTCCC 3'-BlpI-pN attc<u>gctcagc</u>TTAAGAAAGGGCGACTTC 3'-BlpI-pN∆Stop attcgctcagcgaAGAAAGGGCGACTTC 3'-BamHI-pN∆Stop agttctggatcccAGAAAGGGCGACTTC 3'-KpnI-pN attcggtaccTTAAGAAAGGGCGACTTC 5'-Ncol-pO attcccATGGCAGATCCAGCAAA 5'-BamHI-pO attcggatccATGGCAGATCCAGCAAAC 3'-BlpI-pO attcgctcagcCTACAGTTCCTCTTTCATG attcgctcagcgaCAGTTCCTCTTTCATGTC 3'-BlpI-pO∆Stop agttctggatcccCAGTTCCTCTTTCATGTC 3'-BamHI-pO∆Stop 3'-Kpnl-pO attcggtaccCTACAGTTCCTCTTTCATGTC 3'-BlpI-pC_Nterm attcgctcagctcaGTCGTCCGCATATGCTTC 3'-BlpI-pC Nterm ΔStop attcgctcagcgaGTCGTCCGCATATGCTTC 3'-BamHI-pC_Nterm∆Stop attcggatcccGTCGTCCGCATATGCTTC 3'-Kpnl-pC_Nterm attc<u>ggtacc</u>tcaGTCGTCCGCATATGCTTC 5'-Ncol-pC Cterm attcccatgGAGACAGAGGAAGAGGC 5'-BamHI-pC_Cterm attcggatccatgGAGACAGAGGAAG

P2-split-GFP vectors

	Oligo_P2_antipa	arallel_fwd	${\sf gatccactagtattcacaagcttcgttcgcattccaccgaagtaccctgttgtacttaagggcatcgc}$
	Oligo_P2_antipa	arallel_rv	ccgggcgatgcccttaagtacaacagggtacttcggtggaatgcgaacgaa
	5'-HindIII-pC		attc <u>aagctt</u> ATGAGTACTGCCCGCGATAAG
	3'-Spel-pC		attc <u>actagt</u> TCATGTTTTATCATCCGGCCGAAG
	5'-HindIII-pN		attc <u>aagctt</u> ATGACGAACGAGTCCCGTAAAC
	3'-Spel-pN		attc <u>actagt</u> TTAAGAAAGGGCGACTTCCATG
	5'-HindIII-pO		attc <u>aagctt</u> ATGGCAGATCCAGCAAACG
	3'-Spel-pO		attcactagtCTACAGTTCCTCTTTCATGTCGC
	CBD vectors		
	5'-Xbal-pA		attc <u>tctaga</u> ATGGCGCAACCAGATTC
	5'-Xbal-pC		attc <u>tctaga</u> ATGAGTGTCACAGACAAACGCGACG
	5'-Xbal-pN		attc <u>tctaga</u> ATGACGAACGAGTCC
	5'-Xbal-pO		attc <u>tctaga</u> ATGGCAGATCCAGCAAACG
	3'-Kpnl-pA		agttctggtaccTCAGGCCTCGGGTGC
	3'-BsrGI-pC		attc <u>tgtaca</u> TCATGTTTTATCATCCGG
	3'-Kpnl-pN		attcggtaccTTAAGAAAGGGCGACTTCCATG
	3'-Kpnl-pO		attcggtaccCTACAGTTCCTCTTTCATGTC
ę	underlined:	recognition	sequence for endonucleases

CAPITALS: annealing area

bold: altered nucleotide sequences to obtain the respective aa substitution in GvpF

GvpF wild type $ F/A$ $ mn $ GvpF wild type18.0165376wtE03A-14.594233small GVE03R-14.0166250wtE12A-14.7200460wtE12A-15.0202472wtE14A-15.8127506small θ + longE14A-12.9213619cylinder-shapedD15A-12.0104233small GVE17A-16.4182240wtE17A-16.4182240wtE17A-16.4182234wtD19A-13.6110205small GVE21A-17.3152234wtE21R-15.8172301wtE21R-15.8172301wtE27R-1.1184431wtD45Aloop15.8175383wtD45Aloop15.7163300wtE50Aloop15.7163300wtE50Aloop15.7163300wtE50Aloop15.1188399wtD53A α 112.7205618cylinder-shapedE54A α 113.7154328wtD53A α 115.3188	Substitution	position	rf value	GV width	GV length	GV shape*
GvpF wild type18.0165376wtE03A-14.594233small GVE03R-14.0166250wtE12A-14.7200460wtE12R-15.0202472wtE14A-15.8127506small θ + longE14A-14.3192409wtD15A-12.9213619cylinder-shapedD15A-12.0104233small GVE17R-16.4182240wtE17R-13.6110205small GVD19A-13.6110205small GVE21A-15.8172301wtE27A-1.1184431wtE27A-1.1184431wtE27A-1.1184389wtD45Aloop13.0186383wtD45Rloop15.8175384wtD45Rloop15.1188399wtD45Aloop15.1188399wtD45Aloop15.1188399wtD45Aloop15.1188399wtD53Aα112.7205618cylinder-shapedE50Rloop15.1188330wtD53Aα115.			F/A	[nm]	[nm]	
E03A-14.594233small GVF03R-14.0166250wtE12A-14.7200460wtE12R-15.0202472wtE14A-15.8127506small θ + longE14R-14.3192409wtD15A-12.9213619cylinder-shapedD15R-12.0104233small GVE17A-16.4182240wtE17R-14.7181434wtD19A-13.6110205small GVD19R-12.092235small GVE21R-15.8172301wtE27R-1.1184431wtE27R-1.1184389wtD45Aloop15.8175384wtD45Rloop15.7163300wtE50Aloop15.7163300wtS11Lloop15.1188399wtD53Ra112.7205618cylinder-shapedE50Aloop15.1188399wtD53Ra112.0152413wtD53Ra112.0152413wtD53Ra112.0152413wtD53Ra112.0 </td <td>GvpF wild typ</td> <td>e</td> <td>18.0</td> <td>165</td> <td>376</td> <td>wt</td>	GvpF wild typ	e	18.0	165	376	wt
E03R-14.0166250wtE12A-14.7200460wtE12R-15.0202472wtE14A-15.8127506small $O + \log$ E14R-14.3192409wtD15A-12.9213619cylinder-shapedD15R-12.0104233small $O + 1$ E17A-16.4182240wtE17A-16.4182240wtD19A-13.6110205small $O + 1$ D19A-13.6110205small $O + 1$ D19R-17.3152234wtE21A-15.8172301wtE27A-1.1184431wtE27A-1.1184431wtD45Aloop13.0186383wtD45Aloop15.3183450wtD45Aloop15.7163300wtE50Aloop15.1188399wtD53Aa113.7154328wtD53Aa115.3188433wtD53Aa115.3188433wtD53Aa115.3185831cylinder-shapedE57Aa116.5185831cylinder-shapedE57A <t< td=""><td>E03A</td><td>-</td><td>14.5</td><td><mark>94</mark></td><td>233</td><td>small GV</td></t<>	E03A	-	14.5	<mark>94</mark>	233	small GV
E12A - 14.7 200 460 wt E12R - 15.0 202 472 wt E14A - 15.8 127 506 small θ + long D15A - 12.9 213 619 cylinder-shaped D15R - 12.0 104 233 small GV E17R - 16.4 182 240 wt D19A - 13.6 110 205 small GV D19R - 13.6 110 205 small GV E21A - 17.3 152 234 wt E27A - 1.1 184 431 wt E27A - 1.1 184 431 wt D45A loop 13.0 186 383 wt D48A loop 15.8 175 384 wt D48A loop 15.1 183 450 wt E50A loop 15.1 184 399 wt <td>E03R</td> <td>-</td> <td>14.0</td> <td>166</td> <td>250</td> <td>wt</td>	E03R	-	14.0	166	250	wt
E12R - 15.0 202 472 wt E14A - 15.8 127 506 small θ + long E14R - 15.8 192 409 wt D15A - 12.9 213 619 cylinder-shaped D15R - 12.0 104 233 small GV E17A - 16.4 182 240 wt E17R - 16.4 182 240 wt D19A - 13.6 110 205 small GV D19A - 13.6 110 205 small GV E21A - 17.3 152 234 wt E21A - 17.3 152 234 wt E21A - 1.1 184 431 wt E27R - 2.1 192 451 wt D45A loop 15.8 175 384 wt D45R loop 15.3 183 450 wt	E12A	-	14.7	200	460	wt
E14A - 15.8 127 506 small 0 + long E14R - 14.3 192 409 wt D15A - 12.9 213 619 cylinder-shaped D15R - 12.0 104 233 small GV E17A - 16.4 182 240 wt E17R - 14.7 181 434 wt D19A - 13.6 110 205 small GV E17R - 17.3 152 234 wt E21A - 15.8 172 301 wt E21A - 15.8 172 301 wt E21A - 1.1 184 431 wt E21A - 2.1 192 451 wt D45A loop 12.6 184 389 wt D45R loop 15.3 183 450 wt D45R loop 15.7 163 300 wt <tr< td=""><td>E12R</td><td>-</td><td>15.0</td><td>202</td><td>472</td><td>wt</td></tr<>	E12R	-	15.0	202	472	wt
E14R - 14.3 192 409 wt D15A - 12.9 213 619 cylinder-shaped D15R - 12.0 104 233 small GV E17A - 16.4 182 240 wt D19A - 13.6 110 205 small GV D19R - 12.0 92 235 small GV E21A - 17.3 152 234 wt E21A - 15.8 172 301 wt E27A - 1.1 184 431 wt E27R - 2.1 192 451 wt D45A loop 13.0 186 383 wt D45R loop 15.8 175 384 wt D48R loop 15.3 183 450 wt E50A loop 15.7 163 300 wt D53R a1 12.7 205 618 cylinder-shaped	E14A	-	15.8	127	506	small \emptyset + long
D15A-12.9213619cylinder-shapedD15R-12.0104233small GVE17A-16.4182240wtE17R-14.7181434wtD19A-13.6110205small GVD19R-12.092235small GVE21A-17.3152234wtE21R-15.8172301wtE27R-2.1192451wtD45Aloop13.0186383wtD45Aloop15.8175384wtD45Aloop15.8175384wtD48Aloop15.1183450wtE50Aloop15.1188399wtS1Aloop15.1188399wtD53A α 112.7205618cylinder-shapedE54A α 114.3180657cylinder-shapedE54A α 115.3188433wtD55R α 115.7109654small $0 + \log$ E57R α 116.5185831cylinder-shapedE57A α 115.7109654small $0 + \log$ E57R α 115.7173448wtK68E α 115.7173448wtK68E α 115.7173448 <td>E14R</td> <td>-</td> <td>14.3</td> <td>192</td> <td>409</td> <td>wt</td>	E14R	-	14.3	192	409	wt
D15R-12.0104233small GVE17A-16.4182240wtE17R-14.7181434wtD19A-13.6110205small GVD19R-12.092235small GVE21A-17.3152234wtE21A-15.8172301wtE27A-1.1184431wtE27A-2.1192451wtD45Aloop13.0186383wtD45Aloop12.6184389wtD48Aloop15.3183450wtE50Aloop15.1188399wtE50Aloop15.1188390wtS1Aloop15.1188399wtD53A α 112.7205618cylinder-shapedE54A α 114.3180657cylinder-shapedE57A α 115.3188433wtD55A α 115.3185831cylinder-shapedE57A α 116.6226995cylinder-shapedE57A α 116.5185831cylinder-shapedE57A α 115.3162384wtK68A α 115.7173448wtK68A α 115.7173448wt <td>D15A</td> <td>-</td> <td>12.9</td> <td>213</td> <td>619</td> <td>cylinder-shaped</td>	D15A	-	12.9	213	619	cylinder-shaped
E17A-16.4182240wtE17R-14.7181434wtD19A-13.6110205small GVD19R-12.092235small GVE21A-17.3152234wtE21R-15.8172301wtE27A-1.1184431wtE27A-2.1192451wtD45Aloop13.0186383wtD45Aloop15.8175384wtD48Aloop15.3183450wtE50Aloop15.7163300wtE50Rloop15.1188399wtD53A α 113.7154328wtD53A α 114.3180657cylinder-shapedE54A α 114.3180657cylinder-shapedE57A α 116.5185831cylinder-shapedE57A α 116.5185831cylinder-shapedE57A α 115.3162384wtC57A α 115.7109654small 0 + longE65R α 115.7109654small 0 + longE57A α 116.6226995cylinder-shapedE57A α 116.6226954cylinder-shapedE57A α 116.	D15R	-	12.0	104	233	small GV
E17R-14.7181434wtD19A-13.6110205small GVD19R-12.092235small GVE21A-17.3152234wtE21R-15.8172301wtE27A-1.1184431wtE27R-2.1192451wtD45Aloop13.0186383wtD45Rloop15.8175384wtD48Aloop15.3183450wtE50Aloop15.7163300wtE50Rloop15.7163300wtR51Aloop15.1188399wtD53A α 112.7205618cylinder-shapedE54A α 114.4162412wtD55A α 115.3188433wtE57R α 116.6226995cylinder-shapedE57R α 115.7173448wtK68A α 1<	E17A	-	16.4	182	240	wt
D19A-13.6110205small GVD19R-12.092235small GVE21A-17.3152234wtE21R-15.8172301wtE27R-2.1192451wtD45Aloop13.0186383wtD45Rloop12.6184389wtD48Aloop15.8175384wtD48Aloop15.7163300wtE50Aloop15.7163300wtE50Rloop15.1188399wtD53A $\alpha1$ 13.7154328wtD53A $\alpha1$ 12.7205618cylinder-shapedE54A $\alpha1$ 14.3180657cylinder-shapedE57A $\alpha1$ 16.5185831cylinder-shapedE57A $\alpha1$ 15.3162384wtE57A $\alpha1$ 15.7109654small Θ + longE65A $\alpha1$ 15.7109654small Θ + longE65A $\alpha1$ 15.7173448wtK68E $\alpha1$ 15.7173448wtK68E $\alpha1$ 15.7173448wtK68E $\alpha1$ 15.7173448wtK68E $\alpha1$ 15.7173448wtK68E $\alpha1$ 15.7173448 <td>E17R</td> <td>-</td> <td>14.7</td> <td>181</td> <td>434</td> <td>wt</td>	E17R	-	14.7	181	434	wt
D19R-12.092235small GVE21A-17.3152234wtE21R-15.8172301wtE27A-1.1184431wtE27A-2.1192451wtD45Aloop13.0186383wtD45Rloop12.6184389wtD48Aloop15.8175384wtD48Aloop15.3183450wtE50Aloop15.7163300wtE50Rloop15.1188399wtS1Aloop15.1159316wtD53A $\alpha 1$ 12.7205618cylinder-shapedE54R $\alpha 1$ 14.3180657cylinder-shapedE54R $\alpha 1$ 15.3185831cylinder-shapedE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 15.7109654small θ + longE65A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.5240845cylinder-shapedE70A <td>D19A</td> <td>-</td> <td>13.6</td> <td>110</td> <td>205</td> <td>small GV</td>	D19A	-	13.6	110	205	small GV
E21A-17.3152234wtE21R-15.8172301wtE27A-1.1184431wtE27R-2.1192451wtD45Aloop13.0186383wtD45Rloop12.6184389wtD48Rloop15.8175384wtD48Rloop15.3183450wtE50Aloop15.7163300wtE50Rloop15.7163300wtR51Aloop15.1188399wtD53A α 113.7154328wtD53A α 112.7205618cylinder-shapedE54A α 114.3180657cylinder-shapedE55R α 115.3188433wtD55A α 115.3188433wtE57A α 116.6226995cylinder-shapedE57R α 115.3185831cylinder-shapedE57R α 115.7173448wtK68A α 115.7173448wtK68A α 115.7173448wtK68A α 115.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.5240845 </td <td>D19R</td> <td>-</td> <td>12.0</td> <td>92</td> <td>235</td> <td>small GV</td>	D19R	-	12.0	92	235	small GV
E21R-15.8172301wtE27A-1.1184431wtE27R-2.1192451wtD45Aloop13.0186383wtD45Rloop12.6184389wtD48Aloop15.8175384wtD48Rloop15.3183450wtE50Aloop15.7163300wtE50Rloop15.7163300wtR51Aloop15.1188399wtD53A α 113.7154328wtD53R α 112.7205618cylinder-shapedE54A α 114.3180657cylinder-shapedE57A α 115.3188433wtD55A α 115.3188433wtE57A α 116.6226995cylinder-shapedE57R α 115.7173448wtK68A α 115.7173448wtK68A α 115.7173448wtK68E α 115.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.1162449wtF71Rloop13.8172varvar	E21A	-	17.3	152	234	wt
E27A-1.1184431wtE27R-2.1192451wtD45Aloop13.0186383wtD45Rloop12.6184389wtD48Aloop15.8175384wtD48Rloop15.3183450wtE50Aloop14.8208425wtE50Rloop15.7163300wtR51Aloop15.1188399wtD53A $\alpha 1$ 13.7154328wtD53R $\alpha 1$ 12.7205618cylinder-shapedE54A $\alpha 1$ 14.3180657cylinder-shapedE54A $\alpha 1$ 15.3188433wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 15.3185831cylinder-shapedE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.1162449wtF71Bloop13.817770667Cylinder-shaped16.6240845cylinder-shaped	E21R	-	15.8	172	301	wt
E27R-2.1192451wtD45Aloop13.0186383wtD45Rloop12.6184389wtD48Aloop15.8175384wtD48Rloop15.3183450wtE50Aloop14.8208425wtE50Rloop15.7163300wtR51Aloop15.1188399wtD53A $\alpha 1$ 13.7154328wtD53R $\alpha 1$ 12.7205618cylinder-shapedE54A $\alpha 1$ 14.3180657cylinder-shapedE54A $\alpha 1$ 15.3188433wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 16.5185831cylinder-shapedE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.1162449wtE71Aloop14.5240845cylinder-shaped	E27A	-	1.1	184	431	wt
D45Aloop13.0186383wtD45Rloop12.6184389wtD48Aloop15.8175384wtD48Rloop15.3183450wtE50Aloop14.8208425wtE50Rloop15.7163300wtR51Aloop15.1188399wtD53A α 113.7154328wtD53R α 112.7205618cylinder-shapedE54A α 114.3180657cylinder-shapedE54R α 115.3188433wtD55A α 115.3188433wtD55R α 116.5185831cylinder-shapedE57A α 116.5185831cylinder-shapedE65A α 115.7109654small \emptyset + longE65R α 115.7173448wtK68E α 115.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop13.8172567cylinder-shapedE70Aloop13.8162449	E27R	-	2.1	192	451	wt
D45Rloop12.6184389wtD48Aloop15.8175384wtD48Rloop15.3183450wtE50Aloop14.8208425wtE50Rloop15.7163300wtR51Aloop15.1188399wtR51Eloop10.1159316wtD53A $\alpha 1$ 13.7154328wtD53R $\alpha 1$ 12.7205618cylinder-shapedE54A $\alpha 1$ 14.3180657cylinder-shapedE54R $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 15.3188433wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 15.7109654small 0 + longE65R $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.1162449wtE71Rloop13.8179567cylinder-shaped	D45A	loop	<mark>13.0</mark>	186	383	wt
D48Aloop15.8175384wtD48Rloop15.3183450wtE50Aloop14.8208425wtE50Rloop15.7163300wtR51Aloop15.1188399wtR51Eloop10.1159316wtD53A $\alpha 1$ 13.7154328wtD53R $\alpha 1$ 12.7205618cylinder-shapedE54A $\alpha 1$ 14.3180657cylinder-shapedE54R $\alpha 1$ 14.4162412wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 12.0152413wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 15.3162384wtE57R $\alpha 1$ 15.7173448wtK68A $\alpha 1$ 15.7173448wtK68A $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop14.1162449wtE71Aloop13.8179567cylinder-shaped	D45R	loop	12.6	184	389	wt
D48Rloop15.3183450wtE50Aloop14.8208425wtE50Rloop15.7163300wtR51Aloop15.1188399wtR51Eloop10.1159316wtD53A $\alpha 1$ 13.7154328wtD53R $\alpha 1$ 12.7205618cylinder-shapedE54A $\alpha 1$ 14.3180657cylinder-shapedE54R $\alpha 1$ 14.4162412wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 16.5185831cylinder-shapedE57A $\alpha 1$ 16.6226995cylinder-shapedE57R $\alpha 1$ 15.3162384wtE65A $\alpha 1$ 15.7173448wtK68A $\alpha 1$ 15.7173448wtK68A $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.1162449wtE71Aloop13.8179567cylinder-shaped	D48A	loop	15.8	175	384	wt
E50Aloop14.8208425wtE50Rloop15.7163300wtR51Aloop15.1188399wtR51Eloop10.1159316wtD53A $\alpha 1$ 13.7154328wtD53R $\alpha 1$ 12.7205618cylinder-shapedE54A $\alpha 1$ 14.3180657cylinder-shapedE54R $\alpha 1$ 14.4162412wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 12.0152413wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 15.7109654small $0 + \log$ E65R $\alpha 1$ 15.7173448wtK68A $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Aloop14.1162449wtE71Aloop13.8179567cylinder-shaped	D48R	loop	15.3	183	450	wt
E50Rloop15.7163300wtR51Aloop15.1188399wtR51Eloop10.1159316wtD53A $\alpha 1$ 13.7154328wtD53R $\alpha 1$ 12.7205618cylinder-shapedE54A $\alpha 1$ 14.3180657cylinder-shapedE54R $\alpha 1$ 14.4162412wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 12.0152413wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 15.7109654small $\emptyset + \log$ E65R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop13.8179567cylinder-shapedE71Bloop13.8179567cylinder-shaped	E50A	loop	14.8	208	425	wt
R51Aloop15.1188399wtR51Eloop10.1159316wtD53A $\alpha 1$ 13.7154328wtD53R $\alpha 1$ 12.7205618cylinder-shapedE54A $\alpha 1$ 14.3180657cylinder-shapedE54R $\alpha 1$ 14.4162412wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 12.0152413wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 16.6226995cylinder-shapedE65A $\alpha 1$ 15.7109654small 0 + longE65R $\alpha 1$ 15.7173448wtK68A $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop13.8179567cylinder-shaped	E50R	loop	15.7	163	300	wt
R51Eloop10.1159316wtD53A $\alpha 1$ 13.7154328wtD53R $\alpha 1$ 12.7205618cylinder-shapedE54A $\alpha 1$ 14.3180657cylinder-shapedE54R $\alpha 1$ 14.4162412wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 12.0152413wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 16.6226995cylinder-shapedE65A $\alpha 1$ 15.7109654small $0 + \log g$ E65R $\alpha 1$ 15.7173448wtK68A $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop14.1162449wtE71Aloop13.8179567cylinder-shaped	R51A	loop	15.1	188	399	wt
D53A $\alpha 1$ 13.7154328wtD53R $\alpha 1$ 12.7205618cylinder-shapedE54A $\alpha 1$ 14.3180657cylinder-shapedE54R $\alpha 1$ 14.4162412wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 12.0152413wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 16.6226995cylinder-shapedE65A $\alpha 1$ 15.7109654small $\emptyset + \log 1$ E65R $\alpha 1$ 15.7173448wtK68A $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop14.1162449wtE71Aloop13.8179567cylinder-shaped	R51E	loop	<mark>10.1</mark>	159	316	wt
D53R $\alpha 1$ 12.7205618cylinder-shapedE54A $\alpha 1$ 14.3180657cylinder-shapedE54R $\alpha 1$ 14.4162412wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 12.0152413wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 16.6226995cylinder-shapedE65A $\alpha 1$ 15.7109654small \emptyset + longE65R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop14.1162449wtE71Aloop13.8179567cylinder-shaped	D53A	α1	13.7	154	328	wt
E54A $\alpha 1$ 14.3180657cylinder-shapedE54R $\alpha 1$ 14.4162412wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 12.0152413wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 16.6226995cylinder-shapedE65A $\alpha 1$ 15.7109654small \emptyset + longE65R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop14.1162449wtE71Aloop13.8179567cylinder-shaped	D53R	α1	12.7	205	618	cylinder-shaped
E54R $\alpha 1$ 14.4162412wtD55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 12.0152413wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 16.6226995cylinder-shapedE65A $\alpha 1$ 15.7109654small Ø + longE65R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE71Aloop13.8179567cylinder-shaped	E54A	α1	14.3	180	657	cylinder-shaped
D55A $\alpha 1$ 15.3188433wtD55R $\alpha 1$ 12.0152413wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 16.6226995cylinder-shapedE65A $\alpha 1$ 15.7109654small \emptyset + longE65R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop14.1162449wtE71Aloop13.8179567cylinder-shaped	E54R	α1	14.4	162	412	wt
D55R $\alpha 1$ 12.0152413wtE57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 16.6226995cylinder-shapedE65A $\alpha 1$ 15.7109654small \emptyset + longE65R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE71Aloop13.8179567cylinder-shaped	D55A	α1	15.3	188	433	wt
E57A $\alpha 1$ 16.5185831cylinder-shapedE57R $\alpha 1$ 16.6226995cylinder-shapedE65A $\alpha 1$ 15.7109654small \emptyset + longE65R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE71Aloop13.8179567cylinder-shaped	D55R	α1	12.0	152	413	wt
E57R $\alpha 1$ 16.6226995cylinder-shapedE65A $\alpha 1$ 15.7109654small \emptyset + longE65R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop14.1162449wtE71Aloop13.8179567cylinder-shaped	E57A	α1	16.5	185	831	cylinder-shaped
E65A $\alpha 1$ 15.7109654small \emptyset + longE65R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop14.1162449wtE71Aloop13.8179567cylinder-shaped	E57R	α1	16.6	226	995	cylinder-shaped
E65R $\alpha 1$ 15.3162384wtK68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop14.1162449wtE71Aloop13.8179567cylinder-shaped	E65A	α1	15.7	109	654	small \emptyset + long
K68A $\alpha 1$ 15.7173448wtK68E $\alpha 1$ 15.2223813cylinder-shapedE70Aloop14.5240845cylinder-shapedE70Rloop14.1162449wtE71Aloop13.8179567cylinder-shaped	E65R	α1	15.3	162	384	wt
K68E α1 15.2 223 813 cylinder-shaped E70A loop 14.5 240 845 cylinder-shaped E70R loop 14.1 162 449 wt E71A loop 13.8 179 567 cylinder-shaped E71B loop 16.6 - Vac negative	K68A	α1	15.7	173	448	wt
E70Aloop14.5240845cylinder-shapedE70Rloop14.1162449wtE71Aloop13.8179567cylinder-shapedE71Bloop16.6Vac negative	K68E	α1	15.2	223	813	cylinder-shaped
E70Rloop14.1162449wtE71Aloop13.8179567cylinder-shapedE71Bloop16.6Vac negative	F70A	loon	14 5	240	845	cylinder-shaped
E71Aloop13.8179567cylinder-shapedF71Bloop16.6Vac negative	E70R	loop	14.5	162	<u>44</u> 9	wt
E71R loop 16.6 - Vac negative	F71A	loon	13.8	179	567	evlinder-shaped
	E71R	loop	16.6	-	-	Vac negative

Supplementary Table S2. Results of the ΔF + F_{mut} transformants and F_{mut} /A interaction studies.

Substitution	position	rf value	GV width [nm]	GV length [nm]	GV shape*
E72A	loop	15.1	-	-	Vac negative
E72R	loop	15.5	-	-	Vac negative
R73A	loop	12.3	222	687	cylinder-shaped
R73E	loop	5.9	171	313	
K85A	-	<mark>12.9</mark>	192	684	cylinder-shaped
K85E	-	<mark>10.8</mark>	154	277	wt
R88A	α2	12.4	156	181	wt
R88E	α2	13.6	182	396	wt
K91A	α2	<mark>10.3</mark>	177	227	wt
K91E	α2	12.8	178	361	wt
R95A	α2	15.2	153	316	wt
R95E	α2	15.3	186	350	wt
R98A	loop	17.7	193	274	wt
R98E	loop	17.8	136	225	wt
R102A	α3	15.5	163	256	wt
R102E	α3	16.3	163	335	wt
D123A	loop	18.3	173	403	wt
D123R	loop	16.6	173	451	wt
D124A	loop	16.8	163	435	wt
D124R	loop	16.4	172	436	wt
D154A	loop	11.2	145	324	wt
D154R	loop	14.0	151	360	wt
R155A	loop	19.6	164	301	wt
R155E	loop	18.4	162	332	wt
D184A	loop	13.3	160	393	wt
D184R	loop	15.2	154	316	wt
E185A	loop	17.1	178	324	wt
E185R	loop	11.2	144	280	wt
R213A	-	17.1	172	227	wt
R213E	-	15.8	-	-	Vac negative

*GV, gas vesicle; small, <110 nm ø and <233 nm in length (shaded in yellow); long, > 500 nm (shaded in blue)

Supplementary Table S3. Gvp interactions investigated by split GFP. The fluorescence was measured in LAU/mm² and the relative fluorescence was calculated.

tran	sformant	LAU/mm ²	σ (LAU/mm²)	Relative fluorecescence (rf)		transformant	LAU/mm ²	σ (LAU/mm²)	Relative fluorecescence (rf)
control					NO	O _c	189,956	7,265	10.89
	WR340	17,066	1,687	0.00		0_0	35,669	1,940	1.23
					0 _N	U _c	131,321	4,530	1.22
Interactio	ins of GVpA, C, I	N and O	1	1	-	U ₂	54,747	2,528	1.16
мΑ	Ac	14.172	659	0.00	inte	ractions of GvpA frag	ments with Gv	A, C, N and O	
Nº 4	cA	13.688	1594	0.00				, , , , , , , ,	
A _N	Ac	13,687	1594	0.00	ΝA	A1-22 _C	15,826	1,837	0.04
	сA	15,417	2499	0.03		_c A1-22	12,810	748	0.00
					A _N	A1-22 _c	13,962	526	0.00
NА	Cc	19,032	1,836	0.19		_c A1-22	11,711	431	0.00
	_c C	10,936	1,524	0.00	A ₂	A1-22 _N	11,340	381	0.00
A _N	Cc	13,146	733	0.00	- <u> </u>	NA1-22	11,912	1,533	0.00
	2 ₂	12,218	1,031	0.00	Ac	A1-22 _N	12,006	1,108	0.00
_c A	C _N	11,560	2,708	0.00		NAT-22	20,026	1,903	0.25
•	NC	11,444	1,041	0.00		Δ1-34-	16 171	736	0.03
AC		28.078	2 702	0.07	N	-A1-34	14 529	768	0.00
	NC	28,078	2,703	0.70	AN	A1-34c	13.951	778	0.00
NА	Nc	15.575	846	0.01		cA1-34	14,397	436	0.00
N	cN	13.872	549	0.00	cΑ	A1-34 _N	15,088	748	0.01
A _N	Nc	13,509	1,684	0.01		_N A1-34	12,626	759	0.00
	сN	13,861	623	0.00	A _c	A1-34 _N	15,751	780	0.02
A	N _N	12,681	750	0.00		_N A1-34	22,535	1,427	0.41
	NN	12,915	2,444	0.00					
A _C	N _N	14,101	1,169	0.00	ΝA	A1-43 _c	16,090	1,105	0.04
	_N N	43,322	9,522	1.71		_c A1-43	14,284	1,061	0.00
					A _N	A1-43 _c	13,580	976	0.00
NA	0 _c	21,647	570	0.36		cA1-43	15,288	818	0.00
	0 ₂	27,193	607	0.70	-CA	A1-45 _N	13,391	1 440	0.01
A _N	U _c	16,640	2,860	0.10	Δ.	NA1-45	15.941	1,440	0.00
. ^	05	25,675	1 259	0.62	~	A1-43	17 966	1,033	0.13
CH .	UN	12 874	961	0.03	-	10 10	17,500	2,550	0120
Ac	0 _N	15 987	1 524	0.03	NА	A20-47	16,203	2,180	0.00
	NO	23,269	758	0.46		_c A20-47	21,149	1,226	0.00
					A _N	A20-47 _C	21,927	2,149	0.05
NC	Cc	234,565	6,484	13.81		_c A20-47	22,195	794	0.02
	сC	23,228	793	0.47	A	A20-47 _N	19,927	3,554	0.03
C _N	Cc	174,549	3,767	10.02		_N A20-47	18,256	3,569	0.01
	C	20,355	1,082	0.29	Ac	A20-47 _N	22,685	818	0.03
					_	_N A20-47	21,703	4,770	0.10
NC	N _C	115,598	2,729	6.24					
-	_c N	12,779	1,007	0.00	NA	A44-76c	11,376	3,078	0.00
C _N	Nc	31,279	4,215	0.96	^	CA44-76	13,190	1,960	0.00
6		13,526	791	0.00	AN	-444-70c	11 301	3 089	0.00
cL	N	43,400	2,959	0.11	cA	A44-76.	12 304	1 208	0.00
<u>(</u> -	NN.	17,727	820	0.00		NA44-76	12,496	1,680	0.00
CL	NN	12,751	331	0.00	Ac	A44-76 _N	13,359	752	0.00
	19	,				_N A44-76	14,333	2,252	0.02
NС	Oc	89,422	11,263	4.60	1 [
	0 ₀	13,214	825	0.00	NC	A1-22 _c	27,565	2,234	0.73
C _N	Oc	32,861	1,573	1.06		_c A1-22	13,417	433	0.00
	0 ₀	14,828	916	0.00	C _N	A1-22 _C	16,704	432	0.05
_c C	O _N	34,740	609	1.18		_c A1-22	11,700	2,162	0.00
L	NO	20,469	1,871	0.28	сC	A1-22 _N	66,800	3,325	3.18
Cc	O _N	13,484	1,505	0.00		NA1-22	17,868	1,379	0.12
	NO	14,576	461	0.00	Cc	A1-22 _N	14,736	1,//2	0.02
N	N	200.404	40.720	10.10	┥ ┝──	NAT-22	13,244	1,009	0.00
_N N	Nc	306,481	49,736	18.19		A1-34-	28 687	2 047	0.80
N	CIN N	19,170	030	0.20	NC	Δ1-34c	20,007	1 487	0.80
IN _N	-N	19 250	3,705	0.21	С.,	A1-34	20 622	1 371	0.35
	CIN	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	550	0.21		cA1-34	19,450	694	0.22
NN	0c	215 223	18,985	12 48	<u>ر</u> ۲.	A1-34 _N	19,389	2,403	0.80
N	_0	23.128	2.269	0.45		NA1-34	17,489	1,983	0.11
N _N	0 _c	55.636	5,625	2.48	Cr	A1-34 _N	23,111	2,404	0.45
14	c0	21,054	2,365	0.32		_N A1-34	31,914	3,089	1.00
сN	O _N	21,794	3,803	0.36	1 🗆				
	NO	18,518	2,107	0.16					
Nc	O _N	89,310	10,267	4.59					
	NO	134,117	13,785	7.40					

				Relative		
transformant		LAU/mm ²	σ (LAU/mm²)	fluorecescence (rf)		
-						
NC	A1-43 _c	46,501	3,529	1.91		
6	_c A1-43	37,637	6,435	1.36		
CN	A1-43 _C	32,630	1,393	1.04		
C	_c A1-43	38,048	12,674	1.38		
cL.	A1-43 _N	26,045	2,228	0.63		
6	NA1-43	31,530	1,827	0.92		
C _C	A1-43 _N	27,645	1,963	0.57		
	_N A1-43	64,102	3,656	3.01		
NС	A20-47 _C	19,229	681	0.00		
-	_c A20-47	19,675	1,298	0.03		
C _N	A20-47 _c	19,229	681	0.00		
	_c A20-47	17,015	585	0.00		
cL	A20-47 _N	15,580	420	0.00		
-	_N A20-47	17,433	1,011	0.00		
Cc	A20-47 _N	20,671	4,369	0.09		
	_N A20-47	19,735	739	0.02		
MC.	A44-76	18.984	3.699	0.21		
N	cA44-76	23 609	24 847	0.66		
C.	Δ44-76-	14 589	1110	0.00		
CN	70C	12 704	10/2	0.00		
.(AAA-76	26 027	3022	0.00		
CL	A44-70N	20,037	3023	0.05		
<u> </u>	NA44-/b	∠1,809 12,000	1040	0.37		
ι _c	A44-76	13 821	1337 625	0.00		
	NV.44-70	13,021	525	0.00		
NN	A1-22 _c	42,909	5,851	1.69		
	_C A1-22	24,427	2,508	0.53		
N _N	A1-22 _c	24,377	2,165	0.53		
	_c A1-22	19,353	2,254	0.21		
сN	A1-22 _N	54,368	7,857	2.40		
	_N A1-22	28,056	2,319	0.76		
Nc	A1-22 _N	22,259	1,137	0.39		
	_N A1-22	20,883	3,354	0.31		
N	A1.24	25409	5 602	0.50		
NIN	A1-34c	17 265	1,610	0.39		
NL	(A1-34	1/,203	2 5 2 9	0.10		
INN	A1-34c	14,588	1 / 29	0.04		
N	CA1-34	17,092	1,425	0.15		
CIN	A1-54 _N	17,082	1,405	0.08		
N	NA1-34	15,527	2,319	0.00		
NC	"A1-34 _N	18 964	1 693	0.10		
	Nº · · · · ·					
_N N	A1-43 _C	45,116	2,232	1.82		
	_c A1-43	26,932	8,770	0.69		
N _N	A1-43 _c	39,904	4,756	1.50		
	_c A1-43	26,331	1,409	0.65		
сN	A1-43 _N	22,462	2,279	0.41		
	_N A1-43	22,761	3,078	0.43		
Nc	A1-43 _N	25,932	2,576	0.62		
	_N A1-43	42,928	8,540	1.69		
N	420.47	17.450	1 202	0.00		
NIN	A20-47	17,156	1,202	0.00		
N	CA20-47	19 720	1,143	0.00		
IN _N	A20-47	10,720	849	0.00		
-N	CAZU-47	15,287	1 1 7 7	0.01		
CIN	A20-47	15,427	1,431	0.00		
N	NA20-47	10,072	340	0.00		
INC	A20-47	18,575	883 1 394	0.00		
	NUCC-41	10,100	1,554	0.02		
NN	A44-76 _C	444,722	10,140	1.80		
	_c A44-76	13,047	537	0.00		
N _N	A44-76 _C	18,136	1,700	0.14		
	_c A44-76	12,303	1,727	0.00		
сN	A44-76 _N	17,023	992	0.07		
-	NA44-76	20,433	2,469	0.28		
Nc	A44-76 _N	12,528	1,371	0.00		
~	_N A44-76	12,523	1,082	0.00		
			}			
	1	1	1	l		

transformant			- (1.411/mm2)	Relative		
		LAU/mm-	o (LAU/mm²)	(rf)		
NO	A1-22 _c	15,649	498	0.00		
	_c A1-22	15,363	941	0.00		
O _N	A1-22 _C	13,788	299	0.00		
	_C A1-22	15,123	714	0.00		
_c O	A1-22 _N	15,195	1,181	0.01		
	_N A1-22	16,286	1,251	0.05		
O _C	A1-22 _N	34,687	1,911	1.17		
	_N A1-22	64,398	12,075	3.03		
NO	A1-34 _C	18,171	2,148	0.14		
	_c A1-34	13,056	730	0.00		
O _N	A1-34 _C	14,160	2,448	0.03		
	_c A1-34	15,691	1,636	0.03		
_c 0	A1-34 _N	13,730	3,477	0.04		
	_N A1-34	11,583	747	0.00		
Oc	A1-34 _N	21,103	1,909	0.32		
	_N A1-34	33,205	4,285	1.08		
NO	A1-43 _c	12,699	1,156	0.00		
	_c A1-43	11,649	1,340	0.00		
O _N	A1-43c	11,279	1,653	0.00		
	_c A1-43	11,142	1,417	0.00		
0 ₀	A1-43 _N	12,336	2,850	0.01		
	_N A1-43	11,515	732	0.00		
Oc	A1-43 _N	14,813	1,706	0.02		
	_N A1-43	22,813	1,869	0.43		
NO	A20-47 _c	16,511	852	0.00		
	_c A20-47	15,077	1,711	0.00		
O _N	A20-47 _c	19,434	1,336	0.02		
	_c A20-47	18,386	1,209	0.00		
_c 0	A20-47 _N	18,007	880	0.00		
	_N A20-47	18,408	643	0.00		
Oc	A20-47 _N	18,738	2,177	0.03		
	_N A20-47	19,873	1,930	0.05		
NO	A44-76 _C	25,797	559	0.62		
	_c A44-76	26,852	1,053	0.68		
O _N	A44-76c	27,617	1,035	0.73		
	_C A44-76	26,055	/4/	0.63		
_c O	A44-76 _N	23,271	1,197	0.46		
0	NA44-76	20,870	2,074	0.68		
Uc	A44-70 _N	32,330	1,439	0.94		
	NA44-70	30,304	1,550	0.54		
Interactio	ns between Gv	A fragements				
_N A1-22	A1-22 _C	21,993	1,421	0.38		
	_c A1-22	15,950	753	0.02		
A1-22 _N	A1-22c	16,726	1,066	0.06		
	_c A1-22	14,837	753	0.00		
_N A1-22	A1-34 _C	23,576	478	0.48		
	_C A1-34	14,961	775	0.00		
A1-22 _N	A1-34 _C	14,314	899	0.00		
	_c A1-34	14,519	495	0.00		
_c A1-22	A1-34 _N	14,361	2,068	0.02		
	_N A1-34	12,537	1,788	0.00		
A1-22 _C	A1-34 _N	15,394	1,788	0.00		
	_N A1-34	20,398	776	0.28		
	44.10					
_N A1-22	A1-43c	14,411	558	0.00		
44.32	CA1-43	11,6/1	1,386	0.00		
A1-22 _N	A1-43c	12,026	1,630	0.00		
A1 33	CH1-43	13,205	024	0.00		
CHT-22	A1-43N	14,45U	1,481	0.00		
A1 22	NAT-43	12 202	2,088	0.00		
AT-22C	A1-43 _N	16 510	1,020	0.00		
	NWT-42	10,312	702	0.04		
	<u> </u>		l			
	1					
-	+					
<u> </u>	1			<u> </u>		
	1					
L						

trans	formant	LAU/mm ²	σ (LAU/mm²)	Relative fluorecescence	trans	formant	LAU/mm ²	σ (LAU/mm²)	Relative fluorecescence
				(rt)					(rt)
_N A1-22	A20-47 _c	22,577	4,535	0.01	_N A20-47	A20-47 _c	23,518	438	0.07
	_c A20-47	20,726	1,371	0.00		_c A20-47	20,238	994	0.00
A1-22 _N	A20-47 _c	22,433	4,361	0.01	A20-47 _N	A20-47 _c	25,163	1,192	0.14
	_c A20-47	23,592	3,915	0.02		_c A20-47	23,573	916	0.07
_c A1-22	A20-47 _N	21,664	1,959	0.00					
	_N A20-47	16,571	1,187	0.00	_N A20-47	A44-76 _C	17,282	1,242	0.00
A1-22 _c	A20-47 _N	21,521	2,866	0.00		_c A44-76	15,676	448	0.00
	_N A20-47	16,929	382	0.00	A20-47 _N	A44-76 _C	19,773	796	0.00
						_c A44-76	18,613	975	0.00
_N A1-22	A44-76 _C	13,629	918	0.00	_c A20-47	A44-76 _N	17,872	1,728	0.00
	_c A44-76	10,859	487	0.00		_N A44-76	18,250	1,272	0.00
A1-22 _N	A44-76 _c	14,530	3,837	0.07	A20-47 _c	A44-76 _N	19,786	2,469	0.01
	_c A44-76	10,575	943	0.00		_N A44-76	20,558	1,282	0.00
_c A1-22	A44-76 _N	18,168	2,166	0.15					
	_N A44-76	13,629	320	0.00	Interaction	ns with GvpC fr	agements		
A1-22 _C	A44-76 _N	11,038	1,202	0.00	<u> </u>			2 270	2.02
	_N A44-76	9757	1,121	0.00	NC_N	A _C	44,007	3,379	2.03
		10.010	4.000	0.05		_c A	16,535	1,058	0.14
_N A1-34	A1-34 _C	19,940	1,236	0.25	C_N _N	A _C	22,202	2,650	0.53
	_c A1-34	15,892	1,302	0.04	<u> </u>	_c A	16,911	1,808	0.17
A1-34 _N	A1-34 _C	13,930	1,015	0.00	N	A _N	24,181	1,/36	0.67
	_C A1-34	16,870	354	0.06	<u> </u>	NA	23,550	3,354	0.62
A1 34	A1 42	15 700	1.041	0.05	L_N _C	A _N	18,577	848	0.28
_N A1-34	A1 43	12,720	1,841	0.05		NA	10,323	3,280	0.15
A1 34	CA1-43	13,537	2,415	0.00	C N	C	102 012	24 740	11.01
A1-34 _N	A1-43 _C	13,602	208	0.00	NC_N		183,013	34,749	11.61
A1 24	CAI-43	14,301	1,018	0.01	C N		23,134	1,172	0.59
_C A1-34	A1-43 _N	12,388	479	0.00	C_N _N	C _C	03,802	11,231	3.40
A1 24	NA1-43	12,338	1,530	0.00	C N		23,111	1,089	0.59
A1-54 _C	A1-45N	14 540	1 017	0.00	N	C _N	207,074	20,972	2.25
	NAT-43	14,540	1,517	0.01	C N	NC C	24 250	767	0.68
A1-24	A20-47	10.049	2 1 1 2	0.00	C_N _C	C _N	24,550	1 600	0.08
NAT-34	A20-47c	19,048	2,443	0.00		NC	20,897	1,033	0.44
A1-34	A20-47	19,551	2,423 818	0.00	UC N	N.	81.680	5 780	4.63
AI-34N	-A20-47	19,001	1 202	0.00	NC_N	-N	20,408	567	4.03
م1-3 <i>1</i>	A20-47	18,990	2 025	0.00	C Nu	CIN No	20,408	3 5 2 8	1.41
(A1-24	A20-47	17 15/	2,023	0.00	C_NN	-N	17 791	2 550	0.22
A1-34	A20-47	18 1/3	2 382	0.00	-C N	CIN N.:	90.244	3 217	5.22
A1-34C		15 917	533	0.00	N	N	25 106	1 39	0.73
	N/ 120 47	15,517	555	0.00	C No.	Nu	14 357	1,55	0.04
	A44-76	12.016	1 / 78	0.00	<u> </u>	N	16 580	7/2	0.04
NAT-24	cΔ44-76	13 097	1 382	0.00		NIN	10,500	742	0.14
A1-34.	A44-76	12 959	362	0.00	UC N	0.	80 164	6.053	4 52
MI SHN	م <u>م</u>	11 171	1 181	0.00	<u></u>	-0	18 836	2 570	0.30
cA1-34	A44-76	11 575	1 049	0.00	C N _N	00	45 475	3 480	2 13
0.201	A44-76	14,422	1.578	0.02	N	<u>د0</u>	15,368	1.388	0.07
A1-34-	A44-76	12.091	1.706	0.00	cC. N	0 _N	48.207	4.290	2.32
7.201	A44-76	10.569	1.622	0.00		NO	29.787	5.913	1.05
	N	_0,000	2,022	0.00	C. No	O _N	19.116	4.042	0.32
_N A1-43	A1-43c	17,508	828	0.10	<u> </u>	NO	20,318	5,483	0.41
N	cA1-43	14.560	594	0.00			.,	-,	=
A1-43 _N	A1-43c	15,445	983	0.01	_N C N	A1-22c	27,447	1,156	0.39
NIC.	cA1-43	14,698	300	0.00	<u></u>	cA1-22	14,565	1.879	0.00
		,			C N _M	A1-22c	22,720	1,851	0.15
_N A1-43	A20-47	19,048	2,443	0.00	IN	_c A1-22	14,156	1,315	0.00
	cA20-47	18,391	2,423	0.00	_c C N	A1-22 _N	90,434	1,875	3.57
A1-43 _N	A20-47	19,651	818	0.00		_N A1-22	19,853	3,075	0.07
- 14	_c A20-47	18,996	1,393	0.00	C N _c	A1-22 _N	17,311	1,001	0.00
_c A1-43	A20-47 _N	18,982	2,025	0.00		_N A1-22	14,022	2,611	0.00
	NA20-47	17,154	878	0.00					
A1-43c	A20-47 _N	18,143	2,382	0.00	_N C N	A1-34 _C	17,900	1,194	0.02
	_N A20-47	15,917	533	0.00		_c A1-34	15,487	1,963	0.00
	1	1	1		C N _N	A1-34 _c	16,409	1,684	0.01
_N A1-43	A44-76 _c	13,454	827	0.00		_c A1-34	16,299	1,194	0.00
	_c A44-76	10,883	1,843	0.00	_cC_N	A1-34 _N	21,386	2,240	0.16
A1-43 _N	A44-76 _c	13,857	1,618	0.00		_N A1-34	16,609	1,884	0.00
	_c A44-76	14,367	859	0.00	C_N _c	A1-34 _N	12,428	719	0.00
_c A1-43	A44-76 _N	16,299	2,173	0.07		_N A1-34	12,961	559	0.00
	_N A44-76	11,438	1,641	0.00					
A1-43c	A44-76 _N	13,654	959	0.00					
~	_N A44-76	15,455	2,659	0.07					
	1	1							

trar	nsformant	LAU/mm ²	σ (LAU/mm²)	Relative fluorecescence (rf)
C N	Δ1_/I3	1/ 106	612	0.00
NC_N	Δ1-45 _C	14,100	1 559	0.00
C N _N	A1-43	13.731	2.321	0.00
N	_c A1-43	14,914	737	0.00
_c C_N	A1-43 _N	18,466	1,686	0.12
	_N A1-43	14,003	1,205	0.00
C_N _c	A1-43 _N	12,200	523	0.00
	_N A1-43	13,340	1,771	0.00
C N	A 20.47	12 454	E 9.4	0.00
NC_N	A20-47 _C	12,454	517	0.00
C N _N	A20-47	12,733	1.169	0.00
	A20-47	13,042	1,215	0.00
_c C_N	A20-47 _N	11,847	739	0.00
	_N A20-47	12,779	478	0.00
C_N _c	A20-47 _N	12,334	792	0.00
	_N A20-47	11,984	2,021	0.00
C N	A44.76	22.604	2 790	1 1 5
NC_N	Α44-70 _C	12 720	2,780	1.15
C N _N	A44-76	25.524	2.395	0.68
01N	cA44-76	12.856	1.106	0.00
_c C_N	A44-76 _N	31,792	4,220	1.09
	_N A44-76	33,808	1,722	1.23
C_N _c	A44-76 _N	13,085	1,763	0.01
	_N A44-76	11,156	512	0.00
	-			
NC_N	Fc	56,651	11,317	4.74
C N	cF	9,337	611	0.01
C_NN	-FC	42,300	789	0.00
cC. N	En En	30.075	1.055	2.05
(0_1	NF	61,773	7,350	5.26
C_N _c	F _N	6,948	1,433	0.03
	NF	7,635	833	0.01
_N C_N	Hc	54,982	1,796	5.63
<u> </u>	_c H	7,796	1,528	0.06
C_N _N	H _C	49,483	3,867	4.96
°C N	сп Н.	26 532	2 859	2 20
(c_n	NH	34.482	5.207	3.16
C N _C	H _N	4,786	190	0.00
	NН	6,363	1,557	0.02
N_N_N	I _C	11,815	2,364	0.00
<u>.</u>	cl	14,367	1,054	0.01
C_N_N	lc	12,527	1,415	0.00
°C N	C ¹	14,700 87.463	408 6 996	4 55
ر د_ ۱۳	N	48 659	2,821	2.09
C Nr	I _N	13.219	1,948	0.00
0	N	15,864	1,445	0.04
NC_N	Lc	58,019	11,029	2.68
	сL	14,784	660	0.00
C_N _N	Lc	50,600	7,394	2.21
C N	cL	12,927	828	0.00
_C L_N	LN	143,546	1/,646	9.07
Ć N-	NL Lu	23,183	2,104 52 <i>1</i>	0.00
C_NC	N	12,955	538	0.00
		,000		
N_N ^N	C_N _c	77,698	1,975	4.35
	_c C_N	20,655	1,910	0.42
C_N _N	C_N _c	33,157	12,837	1.29
	_c C_N	22,341	1,192	0.54
	1	1	1	l I

transformant		LAU/mm ²	σ (LAU/mm²)	Relative fluorecescence (rf)
				(11)
NC_C	Ac	70,679	7,701	2.46
	сA	28,831	3,028	0.41
C_C _N	Ac	32,942	2,402	0.61
	A	34,794	3,948	0.70
C_C	A _N	38,940	15,534	1.03
6.6	NA A	29,231	1,266	0.43
C_C	A _N	22,427	4,203	0.13
	147	23,203	2)0	0110
NC_C	Cc	397,952	30,570	18.47
	Ο _Ͻ	24,437	1,120	0.20
C_C _N	Cc	171,764	16,119	7.40
	C ₂	29,926	3,151	0.46
C_C	C _N	118,035	9,876	4.78
6.6	NC	21 629	1,270	1.00
C_C	C _N	21,028	1,303	0.07
	NC	21,014	1,772	0.07
NC_C	Nc	228,695	46,126	10.19
	сN	28,644	6,686	0.40
C_C _N	Nc	94,792	16,078	3.64
	_C N	29,993	2,257	0.47
CC	N _N	93,085	5,475	3.55
6.6	NN Nu	22 051	4,274 2 800	0.02
<u> </u>	NN	18,755	1.156	0.00
	N. S	10,700	2)200	0.00
NC_C	Oc	292,070	9,921	15.98
	_c O	24,511	1,084	0.42
C_C _N	Oc	146,664	18,302	7.53
	0_	20,020	2,685	0.18
_c د_د	0 _N	49,710	4,782	1.89
C (c	NU ON	17 182	2,739	0.77
0_00	NO	17,609	1,331	0.05
	N-		_/===	
NC_C	A1-22 _C	26,085	2,917	0.32
	_c A1-22	19,332	1,832	0.03
C_C _N	A1-22 _c	22,833	516	0.15
<u> </u>	_c A1-22	19,103	809	0.00
	A1-22 _N	42,333	324	0.41
C Cc	A1-22	20.331	1,763	0.06
	NA1-22	18,447	527	0.00
NC_C	A1-34 _C	50,613	4,041	2.07
	_c A1-34	15,273	904	0.00
C_C _N	A1-34 _c	29,512	3,598	0.79
<u>د ر</u>	_C A1-34 Δ1-34	14,340 54 105	1,322 912	2.64
<u></u> L	NA1-34	21,230	673	0.43
C C _C	A1-34 _N	11,602	915	0.00
	_N A1-34	13,160	1,052	0.00
NC_C	A1-43 _c	32,318	1,068	1.17
6.6	_c A1-43	15,575	5,691	0.15
υ_υ _N	A1-43C	20,413	491	0.37
.C C	A1-43	29.105	14.431	1.65
	NA1-43	12,026	1,685	0.00
C_C _c	A1-43 _N	20,108	17,593	0.50
	_N A1-43	23,128	12,338	0.00
	420.17	40.000	4.600	0.00
_NL_L	A20-47	19,203	1,422	0.02
C C:	_C H2U-47 Δ20-47	18 268	2,205	0.04
C_CN	cA20-47	17,381	671	0.00
_c C C	A20-47 _N	23,554	712	0.19
	_N A20-47	20,191	1,849	0.06
C_C _c	A20-47 _N	17,346	655	0.00
	_N A20-47	19,237	705	0.01
			ļ	

trans	formant	LAU/mm ²	σ (LAU/mm²)	Relative fluorecescence (rf)	tra	nsformant	LAU/mm ²	σ (LAU/mm²)	Relative fluorecescence (rf)
				(11)					(11)
NC_C	A44-76 _c	23,134	540	0.00	NC	Gc	126,397	13,111	3.91
	_c A44-76	18,378	1,381	0.00		cG	20,143	441	0.00
C_C _N	A44-76 _C	20,857	792	0.00	C _N	Gc	42,417	2,633	0.65
	_c A44-76	19,320	1,249	0.00		cG	19,403	714	0.00
_د د_د	A44-76 _N	30,463	934	0.15	_c C	G _N	44,828	2,171	0.74
6.6	NA44-76	33,537	1,431 F24	0.27	-	NG	57,836	9,455	1.25
L_LC		19,737	2 358	0.00	ι _c	GN	13,518	8/8	0.00
	NA44-70	17,507	2,550	0.00		Ð _N	15,675	457	0.00
_N C C	Fc	278,322	11,509	18.52	NC	Hc	218.528	18.363	7.49
	cF	19,165	3,139	0.34	N-	cH	19,241	2,248	0.00
C_C _N	Fc	91,787	7,826	5.44	C _N	H _c	114,710	29,539	3.23
	сF	13,140	2,084	0.04	-	сH	20,887	1,836	0.00
D_D ₂	F _N	138,623	2,582	8.72	сC	H _N	119,856	10,453	3.42
	NF	102,558	6,438	6.19		NН	202,966	42,276	6.49
C_C _c	F _N	12,735	805	0.00	Cc	H _N	19,674	734	0.00
	NF	11,832	1,003	0.00		NН	20,041	863	0.00
	He	526 196	147 706	12 50	<u> </u>		10.040	1 1 1 4	0.00
NC_C	-H	19 880	1 878	42.39	NC	IC	10,849	1,114	0.00
C C.N	Hc	254.327	42.437	19.68	<u>C</u>		19,375	282	0.00
	cH	16,504	1,639	0.34	CN	ri,	17 619	1 653	0.00
2_2 ₀	H _N	141,494	32,538	10.50	cC	I _N	366.811	25,862	12.53
	NН	115,989	1,729	8.43		N	190,749	14,747	6.03
C_C _c	H _N	16,506	1,210	0.34	Cc	I _N	23,731	1,375	0.00
	NΗ	15,324	2,626	0.25		N	15,545	1,427	0.00
NC_C	lc	13,639	1,406	0.00	NC	J _C	72,216	3,796	2.97
	cl	22,438	807	0.19		cJ	17,846	394	0.00
C_C _N	I _C	15,413	1,115	0.00	C _N	Jc	40,343	2,571	1.22
<u> </u>	cl	17,274	1,407	0.11		ل ح	16,016	1,335	0.00
<u>دل_</u> ل	I _N	297,812	10,750	18.13	cC	J _N	33,138	3,167	0.82
	NI IN	20 790	4,303	0.34	6	L _N	33,783	1,358	0.86
C_C(NN NI	19 418	327	0.25	L _C	JN	13,200	1,378	0.00
	N.	10)110	527	0.20		L ^N	17,207	1,440	0.01
NC C	L _r	499,920	87,077	31.11	NC	Kc	115,032	12,222	4.98
N	cL	22,109	497	0.42	N -	cK	23,021	2,654	0.20
C_C _N	L _c	354,947	22,555	21.80	C _N	Kc	66,384	3,239	2.45
	сL	19,760	1,270	0.27		сK	20,266	928	0.05
C_C ₂	L _N	449,455	28,319	27.87	сC	K _N	139,009	6,613	6.23
	NL	78,147	7,607	4.02		NК	51,548	7,761	1.68
C_C _c	L _N	21,352	1,513	0.37	Cc	K _N	18,182	517	0.00
	NL	13,610	599	0.00		NK	16,916	964	0.00
	C No	191 027	8 5 7 0	10.10		La.	316 769	29.455	15 /17
NC_C		17.501	840	0.03	NC	<u>در</u>	20.509	857	0.07
C C _N	C Nc	91.964	13.522	4.35	CN	Lc	162.383	6364	7.44
- <u>-</u>	_c C N	18,659	1,039	0.09	-1	cL	16,796	917	0.00
C_C ₂	C_N _N	56,865	3,358	2.31	сC	L _N	570,253	75,955	28.65
	_N C_N	32,266	1,273	0.88		NL	113,629	15,816	4.13
C_C _c	C_N _N	21,760	3,276	0.26	Cc	LN	31,035	875	0.40
	_N C_N	20,276	1,959	0.18		NL	20,813	1,301	0.00
<u> </u>	C C	276 400	66.222	20.72					
_NL_L		3/6,499	1 500	20.73	NC	Mc	39,705	1,744	0.69
C C		27,597	1,590 20.155	0.59		M	15,130	663	0.00
C_CN	<u> </u>	25 560	4 208	0.47	C _N	Mc	18,951	1,819	0.00
	<u>[0_</u> 0	23,500	4,200	0.47		сM	14,570	1,575	0.00
Interaction	ns of GvpC with	accessory prot	eins GvpF - GvpM		_c C	M _N	24,930	1,727	0.07
					<u> </u>	NIVI	18,645	1,431	0.00
NC	Fc	110,199	8,089	3.62	LC LC	M.	14 210	515 478	0.00
	сF	16,912	699	0.00		NIVI	17,213	770	0.00
C _N	Fc	79,813	39,818	2.34	Interacti	ons of GypN wit	h accessory prot	eins GynE - GynW	1
-	cF	18,401	614	0.00	meracti				
_C C	F _N	146,230	2,273	3.91	N	Fc	93 109	12 516	2 52
C	NF	298,162	12,172	9.00	IN T	.ر دF	17.682	897	0.00
ι _c	F _N	23,084	2,014	0.00	N _N	Fc	27,282	1,377	0.04
	NI	21,109	1,303	0.00		cF	20,293	1,127	0.00
					cN	F _N	72,603	11,097	1.75
	<u> </u>					NF	93,675	19,297	2.55
-					N _C	F _N	21,504	1,348	0.00
						NF	24,606	1,986	0.01
							1		

				Polativo					Polativo
	- f	1 411/2	- (1.011/2)	fluence		-f	1 411/2	- (1.011/2)	Relative
trans	sformant	LAU/mm ²	σ (LAU/mm²)	fluorecescence	tran	istormant	LAU/mm ²	σ (LAU/mm²)	fluorecescence
				(11)		-			(rf)
NN	Gc	95,657	8,569	2.62	NO	Gc	84,018	6,308	2.36
	_c G	18,826	1,296	0.00		_c G	12,866	420	0.00
N _N	Gc	21,624	811	0.00	O _N	Gc	48,243	5,351	0.87
	cG	18.517	889	0.00		cG	17.052	2,596	0.00
۰N	Gu	20,099	2 3 2 1	0.00	-0	Gu	42 310	2,000	0.64
CIN	GN	20,033	2,321	0.00	03	GN	42,310	2,437	1.04
	NG	24,472	2,097	0.01	-	NG	05,008	9,355	1.54
Nc	G _N	15,109	1,056	0.00	Oc	G _N	13,769	411	0.00
	NG	18,461	998	0.00		NG	16,672	851	0.00
NN	Hc	114,166	8,098	3.41	NO	Hc	75,462	10,197	1.92
	сH	19.343	2,492	0.00		cH	16,166	322	0.00
N	H.	29 //7	1 9/15	0.14	0	H.	45 263	2 35/	0.75
INN N	11 _C	23,447	1,545	0.14	UN N	110	45,205	2,334	0.75
	сH	17,133	2,768	0.00		CH	15,949	420	0.00
_c N	H _N	32,801	1,638	0.27	CO	H _N	81,350	4,843	2.15
	NН	36,736	3,059	0.42		NН	86,017	3,027	2.33
N _c	H _N	25,145	1,012	0.00	Oc	H _N	18,379	677	0.00
	NН	23,365	2,897	0.01		NН	18,969	742	0.00
N	la.	24.078	777	0.00	0	la.	19 207	1 9 1 9	0.00
NIN	- از ا	24,070	1.012	0.00	NO	ι <u>΄</u>	10,207	1,017	0.00
	CI	20,347	1,912	0.00	-	CI	19,820	1,047	0.00
N _N	Ic	22,957	2,223	0.01	O _N	Ic	18,845	1,008	0.00
	cl	18,659	1,274	0.00		cl	20,944	1,015	0.00
сN	IN	140,825	8,163	4.44	сO	I _N	217,184	31,211	6.85
	N	79.062	6.809	2.05		N	108.712	17.305	2.93
Nc	IN .	28 273	2,443	0.10	0.0	ln.	26 595	3,932	0.05
III.	IN I	20,273	1 572	0.00	UL	IN I	20,335	1 4 2 4	0.00
	N	20,191	1,575	0.00		N	21,140	1,424	0.00
					-				
N	J _c	57,941	8,661	1.55	O _N O	J _c	58,023	2,375	1.10
	ل _ع	14,474	908	0.00		сJ	22,563	2,695	0.00
N _N	J _C	19,099	3,812	0.01	O _N	J _C	39,450	1,644	0.43
	Ъ	13,128	1,441	0.00		Ь	21,355	1,574	0.00
۶N	- In	18,030	749	0.00	cO.	- hu	28 415	1 321	0.04
	- N	18 305	746	0.00		- N	28,111	2,083	0.04
	NJ	18,303	740	0.00	0	N ^J	28,111	2,083	0.04
NC	J _N	13,694	990	0.00	Uc	J _N	21,395	1,388	0.00
	μ	12,970	684	0.00		NJ	19,947	433	0.00
NN	Kc	59,428	6,143	1.35	NO	K _C	45,695	4,661	0.63
	сK	15,725	1,164	0.00		сK	20,819	767	0.00
NN	Kc	24 663	1 848	0.02	ON	Kc	30,470	570	0.09
	-K	15 266	1.046	0.00	01	- 14	21.007	217	0.00
	CK	13,200	1,040	0.00	0	CIN	21,007	0.200	0.00
CIN	KN	47,568	/68	0.88	0 ₂	K _N	58,649	9,306	1.09
	NК	23,069	1,989	0.02		NК	34,302	2,497	0.23
N _C	K _N	16,035	822	0.00	Oc	K _N	19,066	785	0.00
	NК	14,444	421	0.00		NК	20,901	1,265	0.00
NN	Lc	195.931	61.705	7.06	NO	La	126.105	15.489	3.59
	d	16 981	1 434	0.00		d	20 524	1 981	0.00
N	1.	57 200	1 706	1 26	0	1.	55 6/7	6 189	1 03
' N	<u>-c</u>	15 315	4,700	1.30	UN	<u>ьс</u>	10 001	1 1 2 0	1.03
<u> </u>		15,315	/48	0.00	-		19,001	1,130	0.00
сN	L _N	435,927	8,924	16.92	_c O	L _N	280,054	10,160	9.19
	NL	80,543	28,605	2.31		NL	43,044	1,625	0.80
Nc	L _N	27,857	1,020	0.15	Oc	L _N	24,117	1,016	0.02
	м	16.062	1 867	0.00		м	14 955	444	0.00
<u> </u>	11 L	10,002	1,007	0.00		19 E	14,555		0.00
L	1								
NN	Mc	77,137	19,198	2.17	NO	Mc	45,535	2,869	0.91
	сM	14,011	824	0.00	L	сM	14,387	1,300	0.00
N _N	Mc	14,042	590	0.00	O _N	Mc	31,219	2,621	0.31
	cM	13.662	1.381	0.00		cM	15.034	1.316	0.00
٥N	M.	26.274	1 897	0.01	-0	M	27 852	1 368	0.17
		20,274	1 /07	0.01	LO		27,032	016	0.00
	NIVI	20,538	1,497	0.00		NIVI	22,590	940	0.00
N _C	M _N	15,504	506	0.00	0 _c	M _N	16,297	239	0.00
L	ΝM	17,365	1,340	0.00		ΝM	15,131	850	0.00
Interactio	ons of GvpO wi	th accessory pro	teins GvpF - GvpN	1	Interactio	on of GvpF subs	titutions with G	vpA	
		1							
0	Ec	56 5/18	8 / 01	1 26	A.	E E034	254 366	14 575	14 / 7
NU	- с Е	10,040	2 009	1.20		E EOOD	239,300	40.000	14.00
<u> </u>	c ^r	13,351	2,008	0.00		F_EU3KN	229,907	40,082	14.05
ON	Fc	29,518	2,064	0.18		F_E12A _N	248,406	16,983	14.74
L	сF	13,244	1,136	0.00		F_E12R _N	290,666	23,606	14.97
_c O	F _N	125,035	7,187	4.00		F_E14A_N	265,421	17,761	15.82
<u> </u>	NF	181,226	19,959	6.24		F E14R _N	241,919	14,398	14.33
0c	E _N	17 692	723	0.00		F D154.	219 461	10 943	12 91
<u> </u>		16 229	654	0.00		F D158	205 028	11 495	12.05
	N	10,229	034	0.00		DIJNN	203,320	10.050	10.00
L	1	1	1	1		F_EI/A _N	274,410	19,929	10,39

transformant	LAU/mm ²	σ (LAU/mm²)	Relative fluorecescence	
			(m)	
F_E17R _N	247,461	19,232	14.68	
F_D19A _N	230,051	6,471	13.58	
F_D19R _N	236,536	11,488	12.00	
F_E21A _N	289,187	11,360	17.33	
F E27A _N	32,106	2,718	1.10	
F_E27R _N	47,134	2,153	2.08	
F_D45A _N	213,565	27,690	12.98	
F_D45R _N	207,429	43,080	12.58	
F_D48A _N	256,333	52,466	15.78	
F_D48R _N E_E50A	249,983	44,350	15.30	
F E50RN	254.715	43.651	15.67	
F_R51A _N	255,238	62,632	15.09	
F_R51E _N	177,030	3,518	10.16	
F_D53A _N	254,977	12,795	13.69	
F_D53R _N	237,828	17,057	12.70	
F_E54A _N	215,737	11,306	14.30	
F_E34K _N	217,030	10,046	14.43	
F_D55R _N	182.954	14,994	11.97	
F E57A _N	246,579	12,008	16.48	
F_E57R _N	248,599	27,367	16.63	
F_E65A _N	235,983	19,817	15.73	
F_E65R _N	230,331	10,163	15.33	
F_K68A _N	235,037	5,196	15.67	
F_K68E _N	228,357	10,592	15.19	
F_E70A _N E_E70B ₁₁	245,127	14,058 8 179	14.51	
F E71A _N	234,768	17,499	13.85	
F_E71R _N	278,672	12,098	16.63	
F_E72A _N	255,052	6,900	15.14	
F_E72R _N	261,191	14,345	15.52	
F_R73A _N	210,667	6,432	12.33	
F_R73E _N	109,908	5,879	5.95	
F_K85A _N	187 915	7,620	12.91	
F R88A	212.074	26.579	12.37	
F_R88E _N	232,064	59,358	13.63	
F_K91A _N	178,697	29,253	10.27	
F_K91E _N	218,182	42,472	12.76	
F_R95A _N	256,883	10,350	15.20	
F_R95E _N	236,342	39,822	15.35	
F_R98F	294,031	21 083	17.70	
F R102AN	238.481	7.518	15.49	
F_R102E _N	250,330	17,027	16.31	
F_D123A _N	278,861	22,425	18.29	
F_D123R _N	254,684	32,754	16.61	
F_D124A _N	257,670	11,884	16.82	
F_D124R _N	251,521	12,642	16.40	
F_D154A _N	199 222	5 800	11.21	
F R155A	272,917	20,090	19.60	
F_R155E _N	256,900	53,501	18.40	
F_D184A _N	188,955	8,173	13.27	
F_D184R _N	214,994	11,104	15.23	
F_E185A _N	239,742	11,821	17.10	
F_E185R _N	202,311	9,024 17.615	17.12	
F_N213AN F_R213F.	276.644	14.657	15.83	
GvpA dimerization with	additional Gvp			
	45.000		0.00	
NA A _C +C	15,073	1,100	0.00	
$A_{11} = A_{12} + C$	14,327	1,147 1 431	0.00	
-A+C	13.013	1.077	0.00	
0,	10,010	2,577	0.00	
NA A _C + N	35,884	7,123	1.28	
_C A + N	19,114	9,159	0.40	
A _N A _C + N	32,929	2,001	1.09	
_c A + N	25,834	8,000	0.64	

transformant		LAU/mm ²	σ (LAU/mm²)	Relative fluorecescence (rf)
NA	A _c + O	30,874	2,356	0.96
	_c A + O	13,739	3,997	0.06
A _N	A _c + O	27,971	1,451	0.78
	_c A + O	16,181	2,367	0.09
NΑ	A _C + NO	36,627	3,930	1.64
	_c A + NO	17,443	10,308	0.50
A _N	A _c + NO	48,505	6,799	2.49
	_c A + NO	25,647	1,667	0.85
NA	A _C + CNO	14,637	922	0.00
	_c A + CNO	220,807	9,603	5.12
A _N	A _C + CNO	14,870	1,092	0.00
	_c A + CNO	13,929	2,429	0.00