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Abstract

Graph theory is oneof the truly interdisciplinaryfieldsof research. Notonlydoes
the applicationof graphs lead tonew insights in a variety of disciplines—physics,
biology, sociology, mathematics, and computer science—but all of these disci-
plines, with their different questions and perspectives, actively influence the de-
velopment and research of graph theory itself. Being able to abstract intercon-
nected and interdependent systems anddescribe them in amathematically exact
way offers a different way of describing the problemwhen facing a diverse array
of questions. It favors finding certain “topology-based” approaches while simul-
taneously providing a methodological toolbox; especially statistical physics of-
fers numerous examples for this.

In this thesis, I consider various research questions in the field of distributed
biomedical analysis. In this context, thehealthdatausedposea significant risk to
the privacy of the individuals involved—still, many conditions are socially stig-
matized, so their disclosure could lead to ostracization, occupational disadvan-
tages, and evenphysical harm. This is reflected in legislation,which requires spe-
cial protection for health data—and other data that carry the risk of identifying
an individual.

In this dissertation, I present the design, implementation, and empirical analy-
sis of methods and algorithms that are not only relevant for obtaining medical
knowledge and developing new treatment methods, but at the same time pro-
vide an exceedingly high level of protection concerning sensitive data. The de-
veloped methods presented hereafter use the cryptographic techniques of Secure
Multi-Party Computation (MPC), a class of cryptographic protocols that enables
the joint computation over distributed datasets while simultaneously providing
highest security guarantees regarding the secrecy of the (distributed) input data.
Graphs play a central role in this context: the desired functionalities aremapped
toBooleanor arithmeticDirectedAcyclicGraphs (DAGs),where thenodes represent
operations or interactive protocols.

However, not only do themethodology and techniques employed in this disserta-
tion make use of approaches from statistical physics and graph theory—many
of the medical questions directly relate to graph problems or lead to more ef-
ficient solutions when interpreted as graphs. Specifically, a method is devel-
oped to efficiently analyze epistasis relationships, i.e., non-linear gene-gene and
gene-environment interactions, and the resulting gene regulatory networks in a
privacy-preserving manner. To enable the processing of the required amounts
of genetic datawithin feasible time scales, novel generally applicableMPC build-
ing blockswere developed. Furthermore, the graph optimization problemof kid-
ney exchanges—the efficient and fair allocation of donors’ kidneys for kidney
transplantation—is explored. Since sensitive medical data are involved as well,
these data protection considerations are of central interest here. In addition to
the many boundary conditions to this problem, for example regarding the ro-



bustness of the solutions or the medical compatibility of organ donors and re-
cipients, finding the global solution has been proven to be a problem with su-
perpolynomial complexity. Hence, a locally optimal algorithm to solve this is-
sue is presented in this work. Finally, the problem of probabilistic record link-
age, which is highly relevant in medical research, is considered. Based on the
personal data such as first name, last name, address, and birthday, the similar-
ity between patients in one or more databases is to be assessed, with the goal of
identifying duplicates even in the presence of noisy data, i.e., misspellings and
interchanged identifiers. Via the path of graph representation and the associ-
ated search for approximated subgraph isomorphisms, record linkage is reduced
to a (simpler) database problem with efficiently solvable algorithms. The devel-
oped framework Mainzelliste Secure EpiLinker (MainSEL) provides a means for se-
cure, privacy-preserving probabilistic record linkage between different medical
institutions. However, it is also capable of comparing other data types for their
respective similarity. At the end of this dissertation, three promising but not yet
extensively explored extensions are presented that allow the matching of phar-
macologically relevant small molecule graphs, the search for similar patients in
clinical databases for nonspecific diagnoses, or the identification of disrupted bi-
ological regulatory pathways by comparing transcriptome networks.



Zusammenfassung

Die Graphtheorie ist eines der wirklich interdisziplinären Forschungsfelder.
Nicht nur führt die Anwendung von Graphen zu neuen Erkenntnissen in ei-
ner Vielzahl von Disziplinen – Physik, Biologie, Soziologie, Mathematik, Infor-
matik –, sondern all diese Disziplinen wirken mit ihren unterschiedlichen Fra-
gestellungen und Sichtweisen aktiv auf die Entwicklung und Erforschung der
Graphtheorie selbst ein. Vernetzte und mit Interdependenzen behaftete Syste-
me abstrahieren undmathematisch exakt beschreiben zu können, bietet für vie-
le Fragestellungen eine Art der Problembeschreibung, die das Finden gewisser
»topologie-basierter« Lösungswege begünstigt und gleichzeitig einen methodi-
schenWerkzeugkoffer zurVerfügung stellt – gerade die statistische Physik bietet
zahlreiche Beispiele dafür.

In dieser Arbeit werden verschiedene Fragestellungen aus dem Bereich der ver-
teilten Analysen der Biologie und Medizin betrachtet. Dabei stellen die verwen-
deten Gesundheitsdaten oft ein erhebliches Risiko für die Privatsphäre der Be-
troffenen dar – noch immer sind zahlreiche Erkrankungen gesellschaftlich stig-
matisiert, sodass ein Bekanntwerden zu Ausgrenzung, beruflichen Nachteilen,
bis hin zu körperlichenGefährdungen führen könnte. Daswird auch von derGe-
setzgebungwidergespiegelt, dieGesundheitsdaten—und anderenDaten, die das
Risiko der Identifikation eines Individuums bergen—einen besonderen Schutz-
bedarf attestiert.

Daherwerden in dieser DissertationMethoden undAlgorithmen entworfen, im-
plementiert und empirisch untersucht, die nicht nur für die Erlangungmedizini-
scher Erkenntnisse und der Entwicklung neuer Behandlungsmethoden relevant
sind, sondern die zeitgleich ein überaus hohes Datenschutzniveau bezüglich der
sensiblen Daten aufweisen. Dazu bedienen sich die entwickelten Methoden der
Techniken des kryptografischen Feldes der Secure Multi-Party-Computation (MPC)
– einer Klasse kryptografischer Protokolle, die die gemeinsameBerechnung über
verteilte Datenbestände ermöglicht und zeitgleich höchste Sicherheitsgarantien
bezüglich der Geheimhaltung der (verteilten) Eingabedaten gibt. Dabei spie-
len Graphen eine zentrale Rolle: Die abzubildenden Funktionalitäten werden
als Boolesche oder arithmetische ungerichtete azyklischeGraphen repräsentiert,
bei denen die Knoten Operationen oder interaktive Protokolle darstellen.

Dochnicht nur dieMethodik unddie eingesetzten Techniken in dieserDissertati-
on bedienen sich der Methoden der statistischen Physik und der Graphtheorie –
viele der medizinischen Fragestellungen sind ganz direkt Graphprobleme oder
führen über die Betrachtung als Graph zu einer effizienteren Problemdarstel-
lung. So wurde ein Verfahren entwickelt, um Epistasisbeziehungen, also nicht-
lineare Gen-Gen- und Gen-Umgebungs-Interaktionen, sowie die daraus resul-
tierendenGenregulationsnetzwerke effizient und die Privatsphäre schützend zu
analysieren. Um die Verarbeitung der erforderlichen Mengen genetischer Da-
ten in für den Einsatz akzeptablen Zeitskalen zu ermöglichen, wurden neue, all-



gemein verwendbare MPC-Bausteine entwickelt. Des Weiteren wurde das Gra-
phoptimierungsproblem der effizienten und fairen Zuteilung von Spendernie-
ren für Nierentransplantationen bearbeitet. Auch hier sind sensible medizini-
sche Daten betroffen, sodass Datenschutzaspekte eine bedeutende Rolle spielen.
Nicht nur bestehen bei dieser Fragestellung viele Randbedingungen, zum Bei-
spiel bezüglich der Robustheit der Lösungen oder der medizinischen Kompati-
bilität von Organspendern und -empfängern sondern das Finden der globalen
Lösung ist ein Problemmit superpolynomialer Komplexität, sodass in dieser Ar-
beit ein lokal optimalerAlgorithmus vorgestelltwird. Schließlichwird das in der
medizinischen Forschung hochrelevante Problem des probabilistischen Record-
Linkage betrachtet. Dabei soll basierend auf personenbezogenen Daten wie Vor-
und Nachname, Adresse und Geburtstag die Ähnlichkeit zwischen Patienten in
einer oder mehreren Datenbanken beurteilt werden, mit dem Ziel, selbst bei
»verrauschten«Daten, alsoSchreibfehlernundderVerwechslungvonKennzeich-
nern, Duplikate zu identifizieren. Über den Weg der Graphrepräsentation und
die damit verbundene Suche nach approximierten Subgraph-Isomorphismen
wird Record-Linkage auf ein (einfacheres) Datenbank-Problemmit effizient lös-
baren Algorithmen zurückgeführt. Das entwickelte Framework Mainzelliste Se-
cure EpiLinker (MainSEL) bietet eine Möglichkeit zum sicheren, die Privatsphäre
schützenden probabilistischenRecord-Linkage zwischen verschiedenenmedizi-
nischen Institutionen. Es ermöglicht zudemweitereDatentypen auf Ähnlichkeit
zu vergleichen. Am Ende dieser Dissertation werden drei vielversprechende, je-
dochnochnicht umfänglich erforschte Erweiterung vorgestellt, die denAbgleich
von pharmakologisch relevanten kleinen Molekülgraphen, die Suche nach ähn-
lichen Patienten in klinischen Datenbanken für unspezifische Diagnosen oder
die Identifikation von gestörten biologischen Regulationspfaden durch den Ver-
gleich von Transkriptomnetzwerken erlauben.
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CHAPTEr 1

Preface

Graph structures are present in many areas of scientific research. Ranging from
puremathematical problems over sociological communitymodels and photonic
networks to the dynamics of complex systems—for many research questions
graph structures and interconnected information flow are useful methodologies
(and epistemologicalmodels) to formalize interactions and gain insights into the
system’s behavior. This dissertation explores distributed analyses with biomed-
ical applications and interconnected biological systems—logical candidates for
graph formalization.

The representation of a problemnot onlymight lead to “obvious”ways of solving
it, changing representationsmight entirely shape the complexityof apossible solu-
tion. Hence, while the construction, analysis, and transformation of graph struc-
ture are the overarching subjects of this work, in some cases the projection of a
graph problem onto a different representation space leads to a more efficiently
computable solution (as we will show in Chapter 5).

By itsverynature, thefieldofMedical Informaticsdealswithhighlysensitivedata—
data, whose accidental or malicious disclosure might have serious effects on the
social standing, informational autonomy, or evenphysical security of the individ-
ual. This places amoral burden on everyone handling and processing these data,
including the researchers developing and implementing analysis algorithms. In
this dissertation this obligation is addressed by designing and implementing al-
gorithms with privacy as a primary concern in their design. This does not fulfill
the responsibilityonceand for all, butdetermines clear “coordinates” in the space
betweendata utility andprivacy protection andhelps to assess possible risks and
their impact. Thiswork strives to limit the need for centralized storage aswell as
(most of) the transmission of said sensitive data by developing, integrating and
analyzing novel cryptographicmethods for SecureMulti-Party Computation (MPC).
This approach allows the joint analysis while providing provable security guar-
antees under clearly defined assumptions.

The research subject of this dissertation mirrors the diverse roots and applica-
tions of graph theory itself, since it is located at the interdisciplinary boundaries
of physics,mathematics, cryptography, computer science,medicine, and biology.
In the following chapters I demonstrate, that graph theory is a suitable model to
understand and analyze the specific needs in the area ofmedical informatics and
provide privacy-preserving and computationally efficient solutions enabling fu-
ture treatments while respecting personal privacy and informational autonomy.



iv GrAPH STrUCTUrES In PrIVACY-PrESErVInG BIOmEDICAL AnALYSES

1.1 THESIS OUTLInE

Thisdissertation is structured in threemajorparts. The remainderof the “Prelim-
inaries” Part I—Chapter 2—introduces the context and background knowledge
from the various fields included in this thesis; specifically:

• Section 2.1 introduces the fundamentals of graph theory,
• Section 2.2 discusses the relevant legal and technical aspects when it comes to
data protection in the (bio-)medical realm, and

• Section2.3 gives a concise primer of concepts, techniques, andprimitives used
formulti-party computation.

• Section 2.4 introduces the general notation used throughout this dissertation.

Part II presents themain research questions and results of this dissertation.

• Chapter 3 describes the design, implementation, and experimental evaluation
of protocols for privacy-preserving analysis of non-linear interactions in com-
plex genetic regulation networks to find relevant gene–gene interactions driv-
ing the expression of certain diseases. For the efficient design of the protocols,
novel cryptographic building blocks are introduced.

• Chapter 4 discusses a secure protocol for solving the Kidney Exchange Problem
(KEP), a graph optimization problem for optimally distributing kidney donor
organs to treat patients with chronic kidney failure. As the calculation of the
globally optimal solution to this problem is not tractable, we design a locally
optimal heuristic generating and operating on graph structures, which offers
the flexibly to bemodified bymedical experts.

• Chapter 5 introduces a ubiquitous problem in medical analyses, the prob-
lem of performing patient de-duplicationwhile dealingwith noisy, uncertain,
and possibly missing information (known as probabilistic record linkage in med-
ical informatics parlance). The solution’s algorithmic design requires the def-
inition and formalization of novel (mathematical) similarity order and tie-
solving strategies. As an extension, three still ongoing applications involv-
ing the embedding of graph structures into binary fields are described: (1)
the privacy-preserving calculation of a chemically meaningful similarity of
smallmolecules, applicable for virtual screeningprocedures for de novodrug de-
velopment, (2) a structural patient similarity measure to find “unspecifically”
similar patients—a problem occurring for example during molecular tumor
boards, and lastly (3) the identification of defects in transcriptome pathways.
These extensions are still under research andpose apromising outlook regard-
ing the applicability of the introduced solution outside its intended core do-
main.

Finally, Part III concludes this dissertation, summarizing the achieved insights,
and presenting some promising future directions for continuing research.



PrEFACE v

1.2 PUBLICATIOnS

The following thesis draws on the ideas andwriting of the following published or
submitted research articles. They are the result of my own research, performed
jointly with several coworkers and collaborators, duringmy doctoral studies:

Stammler, S., Kussel, T., Schoppmann, P., Stampe, F., Tremper, G., Katzen-
beisser, S., Hamacher, K., and Lablans, M. (2020)
Mainzelliste SecureEpiLinker (MainSEL): Privacy-Preserving Record Linkage
UsingSecureMulti-PartyComputation.Bioinformatics 38.6, pp. 1657–1668.DOI:
10.1093/bioinformatics/btaa764.

Hamacher, K., Katzenbeisser, S., Kussel, T., and Stammler, S. (2020)
Genomische Daten und der Datenschutz.Datenschutz und Datensicherheit (DuD)
44.2, pp. 87–93. DOI: 10.1007/s11623-020-1229-9.

Wirth, F., Kussel, T., Hamacher, K., and Prasser, F. (2021)
ASimplebutPowerfulNo-CodeApproach toPractical SecureMultipartyCom-
puting in Medical Research: Development Study. BMC Bioinformatics. In Re-
view.

Birka, T., Kussel, T., Möllering, H., and Schneider, T. (2021)
“An Efficient and Practical Privacy-Preserving Kidney Exchange Problem Pro-
tocol”. 33. Kryptotag (crypto day matters). Gesellschaft für Informatik e.V. / FG
KRYPTO. DOI: 10.18420/cdm-2021-33-31.

Hamacher, K., Kussel, T., Landesberger, T. von, Baumgartl, T., Höhn, M.,
Scheithauer, S., Marschollek, M., and Wulff, A. (2022)
Fallzahlen, Re-Identifikation undder technischeDatenschutz.Datenschutz und
Datensicherheit (DuD) 46.3, pp. 143–148. DOI: 10.1007/s11623-022-1579-6.

Kussel, T., Brenner, T., Tremper, G., Schepers, J., Lablans, M. *, and
Hamacher, K. * (2022)
Record Linkage-based Patient Intersection Cardinality for Rare Dis-
ease Studies using Mainzelliste and Secure Multi-Party Compu-
tation. BMC Journal of Translational Medicine. In Review, Pre-Print:
https://www.researchsquare.com/article/rs-1486673/v1. DOI: 10 . 21203 /
rs.3.rs-1486673/v1.

Birka, T., Hamacher, K., Kussel, T., Möllering, H., and Schneider, T. (2022)
SPIKE: Secure and Private Investigation of the Kidney Exchange prob-
lem. BMC Medical Informatics and Decision Making. In Review, Pre-Print:
https://arxiv.org/abs/2204.09937.

Wettstein, R. *, Kussel, T. *, Hund, H., Fegeler, C., Dugas, M., and Hamacher,
K. (2022)
“Secure Multi-Party Computation Based Distributed Feasibility Queries - A
HiGHmedUse Case”. 64. Jahrestagung derDeutschenGesellschaft fürMedizinische In-
formatik, Biometrie und Epidemiologie e. V. (GMDS). Accepted.

Hamacher, K., Kussel, T. *, Schneider, T., and Tkachenko, O. * (2022)
“PEA: Practical Private Epistasis Analysis using MPC”. European Symposium on
Research in Computer Security (ESORICS). Accepted.

* indicates equal contribution.

http://dx.doi.org/10.1093/bioinformatics/btaa764
http://dx.doi.org/10.1093/bioinformatics/btaa764
https://doi.org/10.1093/bioinformatics/btaa764
http://dx.doi.org/10.1007/s11623-020-1229-9
https://doi.org/10.1007/s11623-020-1229-9
https://doi.org/10.18420/cdm-2021-33-31
http://dx.doi.org/10.1007/s11623-022-1579-6
https://doi.org/10.1007/s11623-022-1579-6
http://dx.doi.org/10.21203/rs.3.rs-1486673/v1
http://dx.doi.org/10.21203/rs.3.rs-1486673/v1
http://dx.doi.org/10.21203/rs.3.rs-1486673/v1
https://doi.org/10.21203/rs.3.rs-1486673/v1
https://doi.org/10.21203/rs.3.rs-1486673/v1




PrELImInArIES 1

CHAPTEr 2

Preliminaries

By definition, interdisciplinary research draws from ideas of many different
fields. In this chapter we will describe the context in which the research of this
thesis canbeplaced, aswell asabrief introduction to thefieldspecificbackground
knowledge required for this thesis.

Some chapters require additional background knowledge only relevant for that
specific chapter. This informationwill be presented in the respective chapters, as
needed.

2.1 GrAPH THEOrY

Some citizens of Königsberg
Were walking on the strand
Beside the river Pregel
With its seven bridges spanned

“O Euler, come and walk with us,”
Those burghers did beseech.
“We’ll roam the seven bridges o’er,
And pass but once by each.”

“It can’t be done,” thus Euler cried.
“Here comes the Q.E.D.
Your islands are but vertices
And four have odd degree.”

-William T. Tutte

Graph theory entered the stage of mathematics with EULEr’S pioneering solu-
tion of the “Bridges of Königsberg” problem in 17351. At that time itwas a favorite

1 Alexanderson (2006)

pastime of the burghers of Königsberg (whose two islands in the Preugel river
were connected with each other and the main land via seven bridges) to muse,
whether it was possible to cross all bridges exactly once. Not only did EULEr
answer this question in his work “Solutio Problematis Geometriam Situs Perti-
nentis”, he abstracted it to find an intuitively correct solution for any number of
islands and any number of bridges. By counting the bridges in and out of an area
heexplained, thatonly twoareas—one if thepathmustendat thestartingpoint—
areallowed tohaveanunevennumberof connections, asall areasbeside the start-
and endpoint must be entered and left again. In today’s graph terms, he viewed
the city of Königsberg as a (planar) graph with the landmasses being vertices, the
bridges edges and found a beautiful proof by counting the vertex degrees. All those
terms will be formally introduced in the following sections.

Since then, graph theory found many applications in different fields of science,
as graphs turned out to be a very useful epistemologicalmodel of interconnected
entities, abstractingproblems fromsocial sciences, e.g., friendshipnetworks and
community development, medicine, e.g., epidemic spread models, biology, e.g,
food and pollination networks, modelling of ion channel dynamics, to engineer-
ing science, e.g., traffic congestion analysis, and informatics, e.g., computer net-
works. All those fields can be analyzed using methodology deeply rooted in sta-
tistical physics and discrete mathematics.

Graph structures are the primary way of problem description throughout this
dissertation. All research projects can be understood in terms of graph theory
and graph dynamics. The following sections give an overview of some basic
graph properties.



2 GrAPH STrUCTUrES In PrIVACY-PrESErVInG BIOmEDICAL AnALYSES

2.1.1 Formal Definition of Graphs

Formally defined, aGraph is a pair of setsG = (V,E), whereV is the set of vertices
(also called nodes), and E the set of edges e = (u, v) : u, v ∈ V connecting the
vertices of the graph. If the direction of the edges are considered—in a directed
graph, or digraph—the pairs of vertices (u, v) describing the edges are considered
ordered, that is (u, v) 6= (v, u). The starting vertex of an edge in adigraph is called
source, the endpoint sink, invoking the image of flows.

For some applications multiple “types” of vertices exists and edges are only al-
lowed between different vertex types. An example are pollination networks de-
scribing the relationship between multiple pollinating insects and plants in an
ecosystem. Theexample canbe representedas a bipartitegraphG = (U, V,E)with
edge pairs consisting of exactly one vertex inU and one in V . In the sameway tri-
partite, etc. graphs can be constructed.

In many applications it is useful to denote the “importance” of an edge by as-
sociating a scalar value—a weight—with each edge. Especially while analyzing
the dynamics of graph systemsweighted graphs contain important information,
e.g., regarding flows or capacities on edges. Figure 2.1 shows an example for a
weighted digraph, the thickness of the arrows indicate the edge’s weight.

1

2

3

4

5

Figure 2.1: Example of a weighted
digraphwith five vertices.

Further generalizations of graphs include multigraphs, where multiple edges be-
tween the same pair of vertices can co-exist and “self-edges” are allowed, or
hypergraphs, where an edge can connect more than two vertices. Hypergraphs
are commonly used in cooperative game theory and social choice theory. Meta
networks—networks between networks—can be described as multilayer graphs.
Many more extensions are defined for special applications, e.g. dipole graphs, col-
ored graphs, and ancestral graphs. While all those types of graphs extend the orig-
inal definition, dynamic graphs add another dimension, by introducing time de-
pendency in the graph structure, that is G(t) = (V (t), E(t)), allowing vertices or
edges to appear or disappear dynamically. Dynamic graphs play an important
role for example in the analysis of infectionmodels2.2 Peixoto and Gauvin (2018)

A sequence of vertices consecutively connected by edges form a walk, if the walk
is self-avoiding—that means it does not intersect itself—it is called a path. The
length of a walk is often defined as its geodesic distance—the number of edges in
the walk. A closed path starting and ending at the same vertex forms a loop or
cycle. A subgraphH of a graphG is fully contained inG: VH ⊆ VG, EH ⊆ EG and
the sinks of all edges inEH are in VH .

Figure 2.2: The fully connected K5

graph

One prerequisite for many theorems in graph theory is that the graph is planar,
thatmeans that it can be embedded in a two-dimensional planewithout crossing
edges. KUrATOWSKI’S theorem shows, that a graph is only planar, if and only
if (iff) it does not contain the fully connected K5 graph (Figure 2.2) or the fully
connected bipartite graphK3,3 (Figure 2.3) as aminor—aminor being a graph ob-
tained by removing vertices or edges, or by contracting edges andmerging their
endpoints.
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2.1.2 Representation of Graphs

The definition of graphs in terms of sets allows for easy formalization and exten-
sion, however, themathematical manipulation of specific graphs is unwieldy.

Figure 2.3: The fully connected bipar-
titeK3,3 graph

The most common representation of graphs as a mathematical structure is the
adjacencymatrix. It’s an×nmatrix, wheren = |V | is the number of vertices in the
graph. In its most basic form the adjacencymatrix entries are:

aij =

1, if (i, j) ∈ E,
0, otherwise.

In multigraphs other integer values can occur, denoting the number of edges be-
tween two vertices. Weighted graphs encode the edge weights as real values in
the adjacency matrix (Aij = 0 still means, that no edge exists between the two
vertices). Adjacency matrices of undirected graphs are by construction symmet-
ric, that isA = AT . This is not necessarily the case for digraphs3. As the order of

3 The following adjacency matrix de-
scribes the example graph in Figure 2.1:

A =


0 3 0 1 0
1 0 2 0 0

0 0 0 1.2 0

0 0 0 0 7
0 0 0 0 0



vertices in a graph is arbitrary4, different permutations of the vertex order lead

4 Although, an appropriate enumera-
tion of vertices may be important to ef-
ficiently compute the solution to some
graph problems.

to different adjacencymatrices describing the same graph.

The adjacencymatrix is by nomeans the only possible representation of a graph
utilizing structures from linear algebra, for example the incidencematrix is an×m
matrix, with n = |V |,m = |E|. The matrix entryBij indicates, whether vertex i
is part of edge j. In directed graphs, the starting vertex is marked by a negative
entry, so the semantics of outgoing and ingoing flows seems obvious5. Incidence

5 The following incidence matrix de-
scribes the example graph in Figure 2.1:

B =


−3 1 0 1 0 −1
3 −1 −2 0 0 0

0 0 2 −1.2 0 0
0 0 0 1.2 −7 1

0 0 0 0 7 0



matrices are useful representations for performing projections of graphs.

From a computational perspective, the graph property of sparsity / density is of im-
portance. By normalizing the number of edgesm = |E| in a graphwith the num-
ber of edges in a complete graph—agraphwhere every possible edge is present—
we define the density of a graph as d = 2m

n(n−1) , with n being the number of ver-
ticesn = |V |. A graphwith d < 1/2 is called sparse, otherwise dense. The adjacency
matrix for sparse graphs savesmany zero entries, decreasingmemory efficiency
as well as algorithmic performance. For these cases the representation as an ad-
jacency listmight be beneficial, saving the neighboring vertices for every vertex as
(linked-)list of lists (see, Figure 2.4).

1 2 4

2 1 3

3 4

4 5

5
Figure 2.4: Adjacency list for the exam-
ple graph in Figure 2.1. Theweights are
omitted for brevity and canbe included
by saving vertex–weight pairs.

2.1.3 Properties of Graphs

Graphs provide a framework to analyze various properties. In this section, some
basic properties of graphs, vertices, and edges are shown.

One property of vertices already introduced in the “Bridges of Königsberg” prob-
lem is the vertex degree, the number of edges attached to this vertex. In an un-
weighted, undirected graph the degree ki of vertex i is easily calculable using the
adjacencymatrix:

ki =

n∑
j=1

Aij .
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In directed graphs, the degree is divided into out-degree and in-degree:

kini =

n∑
j=1

Aij ,

koutj =

n∑
i=1

Aij .

Using the adjacency matrix representation, the number of paths of a certain
length L between two vertices i and j is easy to calculate. By raising the (un-
weighted) adjacencymatrix to theL-th power, thematrix elements give the num-
ber of paths: #p(i, j, L) =

[
AL
]
ij
. Of special importance are the diagonal ele-

ments giving thenumber of paths starting and ending at the samevertex—cycles.
Note, however, that cycles are invariant under cyclic shift—a cycle 1→ 2→ 3→
1 is identical to the cycle 2→ 3→ 1→ 2—leading to duplicates in the count.

The diameter of a graph is the length of the “longest shortest path.”6—in formal6 Newman (2018)

terms d = max
i,j∈V

argmin
r

[Ar]i,j > 0, where argmin
r

[Ar]i,j > 0 gives the length of

the shortest path between vertices i and j.
1

2

3

4

56

7 8

Figure 2.5: A “barbell” graph with one
edge connecting two components.

By looking at the graph in Figure 2.5 and envisioning a some kind of “flow” be-
tween the nodes, it becomes obvious, that not all vertices are equally “important”
in a topological sense. All flows between the two components must flow over
the bridging edge between vertices 4 and 5. Removing one of those two vertices
would stop all cross-component communication, while the removal of one “leaf”
nodewould only decrease the amount of flow. The centralityproperty tries tomea-
sure the “importance” of a vertex or edge with regard to a specific property. A
simple centrality measure is degree centrality, measuring the importance of a ver-
tex by its number of connections. Related but more intricate is the eigenvector cen-
trality, weighting anode’s importancenot onlybasedon thenumberofneighbors,
but their importance as well. The eigenvector centrality can be found by solving
the eigenwert problemAx⃗ = κx⃗, where x⃗ is the eigenvector giving the centrality
scores andκ is the largest eigenvector7. Amodified formof eigenvector centrality

7 This is only true for connected graphs
with positive edge weights. In this case
the PErrOn-FrOBEnIUS theorem as-
sures, that all components of the eigen-
vector to (only) the largest eigenvalue
are positive.

is the PageRank centrality, famous for being the original ranking algorithm in the
internet search engine “Google”8. Going back to the “flow” idea in Figure 2.5, the

8 Bryan and Leise (2006)

importance of nodes 4 and 5 is not well captured using the introduced centrality
measures. Betweenness centrality however, directly captures the idea: it measures
what fraction of the shortest paths between every vertex in the graph includes
the respective vertex: xi :=

∑
k,ℓ∈V

ni
kℓ

gkℓ
, where nikℓ is the number of the shortest

pathsbetweenk and ℓusingvertex iand gkℓ the totalnumberof the shortestpaths
between k and ℓ. This shows, that the appropriate metrics are highly dependent
on the underlying research question and problemmodel.

One important structural property of graph systems is the number of existing
components. A component in an undirected graph is a subset of vertices, such
that there exists a path between every member of this subset. Unconnected ver-
tices form a component of size one by themself. If only one component exists,
the graph is a connected graph. Graphs with more than one component can be
represented—by permuting the vertex order—in block diagonal form9.

9 Adjacency matrix of a disconnected,
undirected graph with three compo-
nents:

A =


B1 0 0

0 B2 0

0 0 B3
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In directed graphs, a distinction between weakly and strongly connected compo-
nents ismade, whereweak connectivity is achieved, if a path between all vertices
exists when ignoring the edge directions. If all vertices are reachable from any
other vertex even when taking edge direction into account, the graph is strongly
connected. Cliques on the other hand, are small groups of vertices that are fully
connected to each other.

2.1.4 CommonGraph Topologies

Figure 2.6: Example of a 4 × 4 lattice
graph.

Figure 2.7: Example of a ring graph.

Figure 2.8: Example of a binary tree
graph.

Some graph topologies are prevalent enough to warrant an own name. This in-
cludes fairly simple topologies, like lattices (Figure 2.6) or rings (Figure 2.7). Lat-
tices play an important role in statistical physics, e.g., for Ising spin glasses10, as

10 Baxter 2016, pp. 88.

well as in cryptography, where the computational hardness comes from lattice-
based graphproblems11. Other important “simple” graph topologies are trees (Fig-

11 Micciancio and Goldwasser (2002)

ure 2.8). Trees are acyclic, undirected, connected networks. The vertices with de-
gree k = 1 are called leafs. Often trees are visualized with a dedicated root vertex
as the base, however, in principle every vertex, even leaf vertices, can function as
a root. An important subtype often encountered in computer science are binary
trees, where every vertex “splits into two”, i.e., the root vertex has degree k0 = 2,
every interior vertex has degree ki = 3, and the leaf vertices have degree kl = 1.
The example graph in Figure 2.8 shows a binary tree.

Other graph topologies are defined by their generation algorithm. This is es-
pecially true for the various random graphs, whose topology is randomly gener-
ated according to a generative algorithm. Examples are Erdős-Rényi graphs12—

12 Erdös and Rényi (1959)

generated by creatingN vertices withM randomly placed edges—Watts-Strogatz
graphs13—generated by starting with a ring ofN vertices that are regularly con-

13 Watts and Strogatz (1998)

nected toK other vertices in the ring and then rewiring existing edges based on
a random process—or Barabási-Albert graphs14, where the generation starts with

14 Albert and Barabási (2002)

a small connected network and adds vertices one by one, each newly added ver-
tex randomly connected to the already present vertices with a probability that is
proportional to the (current) vertex degree. These random graphs are valuable
to model real systems or study the properties of graphs themselves, as they all
exhibit specific, but different properties. For example, Erdős–Rényi graphs are
simplemodels for systems exhibiting percolation phase transitions allowing the
analytic description of many properties, Watts-Strogatz graphs all exhibit small-
world characteristics—that is the average distance between two randomly cho-
sen vertices scales with the logarithm of the number of vertices—important for
the study of social graphs or computer chip architectures, and Barabási-Albert
graphs are scale free, that is exhibiting a power-law degree distribution—as for
example found in internet topologies. Furthermore, random graphs connect the
study of graph systems, via an adjacencymatrix representation, to the rich body
of work in the field of randommatrix theory15. 15 Akemann, Baik, and Di Francesco

(2011)
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2.2 METHODS FOrDATA PrOTECTIOn

While being subject to societal changes16—as most social values—the right for16 Bezanson (1992); Jones (2003)

privacy and informational autonomy are strongly embedded in European laws.
With the ability to quickly “percolate” informationonaglobal scale, pairedwith a
newkind of “permanence” of data, the introduction of (quantitative) information
technologies in every area of our lives lead to privacy concerns on a new scale.
This is especially true concerning personal medical data17.17 Goldsmith (2000)

Going back to telemedicine ideas in the early 1900s18, telematics, as well as pa-18 Bashshur and Shannon (2009)

tient and inmate administration during world war two19 introduced comput-19 Black (2001); Aly and K. H. Roth
(2018) ers and automated data processing into the medical realm and fundamentally

changed the field. Ultimately it led to the emergence of the field of medical in-
formatics in the 60th and 70th, and the ubiquity ofmedical data in present days20.20 Ambinder (2005)

This kind of data has to be considered especially sensitive, as the disclosure could
seriously affect the involved individuals regarding social standingandevenphys-
icalwell-being. TheprimaryEuropean governing framework for data protection,
theGeneralData ProtectionRegulation (GDPR) acknowledges the sensitive nature of
health data and contains special restrictions to the transfer and processing of ge-
netic, biometric, and health related data21.

21 §4 1. GDPR

Research endeavors, on the other hand, rely on the availability and processing of
data. Manymedical and genomic studies require a vast informationbase to reach
statistically significant conclusions. In this area of tension, a plethoraof laws and
regulations—ranging from the GDPR to national, e.g., the German Federal Data
ProtectionAct (Bundesdatenschutzgesetz, BDSG) or even regional laws, e.g., theGer-
man State Hospital Act (Landeskrankenhausgesetz, LKHG)—regulate privacy risk
assessments, methods, and causes that allow the access of protected data.

This section of the dissertation draws upon work published in HAmACHEr, K.,
KATZEnBEISSEr, S., KUSSEL, T., STAmmLEr, S. (2020) “Genomische Daten
und der Datenschutz”. Datenschutz und Datensicherheit (DuD) and HAmACHEr,
K., KUSSEL, T., VOn LAnDESBErGEr, T., BAUmGArTL, T., HöHn, M.,
SCHEITHAUEr, S., MArSCHOLLEK, M., WULFF, A. (2022) “Fallzahlen, Re-
Identifikation und der technische Datenschutz”. Datenschutz und Datensicherheit
(DuD). The authorwasdeeply involved inbothpublications contributing sections
concerning technical data protectionmethods andGDPR related implications to
the first and being the primary author of the latter.

Five Safes Framework WHILE THIS DISSErTATIOn concentrates on algorithms for technical data pro-
tection, the secure analysis is only one step of providing data privacy and mini-
mizing individuals’ risks. A widespread and more “holistic” framework provid-
ing a frame of reference for all data access and data privacy considerations, is the
Five Safes framework22. The framework distinguishes five, mostly orthogonal di-22 T. Desai, F. Ritchie, and Welpton

(2006) mensions of data access (taken from T. Desai, F. Ritchie, and Welpton (2006)):
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• Safe Projects: Is the use of the data appropriate?

• Safe People: Can the researchers be trusted to use the data in an
appropriate manner?

• Safe Data: Is there a disclosure risk in the data itself?

• Safe Settings: Does the access facility limit unauthorized use?

• Safe Outputs: Are the statistical results non-disclosive?

It stresses, that security is not a binary state, but a measure with many interme-
diate values onmultiple axes.

Most of those dimensions have been accounted for in medicinal research for a
long time, for example, data usage for research purposes must be cleared by the
Institutional Review Board (IRB) and an Use and Access Committee (UAC) of the data
owning party, casting an ethics vote with regard to the appropriate data usage
(Save Projects). Additionally, most data access request procedures mandate user
training concerning data protection (Save People). As a last example, data protec-
tion regulation such as Health Insurance Portability and Accountability Act (HIPAA)
and the GDPR require some kind of re-identification protection for the use of co-
hort data, such as k-anonymity, introduced in the next (sub)section (Save Out-
puts).

The algorithms and methods introduced in this dissertation are concerned with
providing a very high security level in the areas of “SafeData” and “Safe Settings”.

2.2.1 Pseudonymization and Anonymization

The storage of Identifying Personal Data (IDAT) together withMedical Data (MDAT)
is generally only permitted in an explicit medical care context. For the use of
clinical data for research purposes, public health, and epidemiology, the Ger-
man Federal Data Protection Act (Bundesdatenschutzgesetz, BDSG) requires the
pseudonymization or anonymization23 of the data. Both concepts pursue the

23 §§48, 50 BDSGsame goal: the utilization of the sensitive datawhile taking the data protection of
the individual entries into account, but under different “boundary conditions”.

When data records are pseudonymized, the fields that are considered to be per-
sonally identifying are removed from the data record and a pseudonym is in-
cluded as an identifier. That way no conclusions can be drawn about the
identity of the individual “without the use of additional information”24. The

24 §46 5. BDSG, translation by the au-
thor

pseudonymizeddataset canbeanalyzedand, if necessary, individual persons can
be re-identified byback-translating the pseudonyms—provided the access to the
IDAT–pseudonym mappings. This back-translation is subject to severe legal re-
strictions. These pseudonyms are referred to as first-order pseudonyms.

To further protect the identity of the individual, e.g., in specific cohort studies,
the first-order pseudonym is subsequently replaced by a different pseudonym,
unique to this study—the use-case specific second-order pseudonym. This step in-
creases the difficulty to correlate the datasets between independent studies, thus
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allowing the re-identificationof a commonsubset ofpatients—avector exploited
in so-called linkage attacks. This additional pseudonymization is usually per-
formed by fiduciary-operated and -certified pseudonymization services.

Data records are considered anonymized if they aremodified in suchaway that the
“individual information regarding personal or factual circumstances”25 cannot

25 §3 (1) BDSG, 2009 Version, transla-
tion by the author

be assigned to an individual—or only with disproportionate effort. This defini-
tion includes so-called quasi-identifiers, i.e., data that is not considered identifying
per se, but is in combinationwith other quasi-identifiers unique enough to allow
the re-identification of a person. Hence, anonymization guarantees a stronger
form of privacy than pseudonymization, as the possibility to link pseudonyms
back to IDAT is not allowed under the definition of anonymization26.

26 §46 5. BDSG, §4 5. GDPR

One central area of tension in the legal domain is whether a relative or an ab-
solute interpretation of personal reference (German term of art: “relativer oder
absoluter Personenbezug”) is required for anonymization27. These positions dif-27 Klar and Kühling (2018)

fer in the assessment of what external knowledge an adversary might use with
the absolute position being an extreme position of assuming that an adversary
might have all external knowledge, including illegally acquired information and
full access to all computer systems. This position would not count securely en-
crypted data as anonymized, as long as a decryption key is known to anyone, in-
cluding authorized parties. The relative position excludes illegalmeans—such as
hacking—from the “reasonable” ways for an adversary to acquire external infor-
mation. Both extreme positions—and intermediate positions—are valid inter-
pretations of legal texts and currently no resolving precedence exists28.28 Klar and Kühling (2018)

In an American study29 it was shown that almost 90%of the records of the 199029 Sweeney (2000)

U.S. Census can be linked to an individual person using the characteristics “zip
code”, “gender,” and “date of birth”. Using the characteristics “county”, “sex,” and
“date of birth”, still nearly one-fifth of U.S. citizens can be uniquely identified.

To characterize the extent of anonymization, different measures are used. The
most relevantmeasures for this StatisticalDisclosure Control (SDC) inmedical prac-
tice are k-anonymity, ℓ-diversity, and t-closeness.

k-anonymity
A DATASET SATISFIES k-anonymity30 if all combinations of attributes are satis-

30 Sweeney (2002)
fied by at least k entries in the dataset. Depending on the privacy requirements
of the application, a specific value for k is chosen—in medical practice values of
k = 5, in rarer cases k = 3 or k = 11, are deemed sufficient31. To achieve k-31 European Medicines Agency (2017);

Oswald (2013) anonymity, datasets are “binned” into equivalence classes, such that each class con-
sists of at least k entries. For example, an equivalence class ”A” could include all
male patients between 30 and 40 of age in the 64XXX zip code area.

Themeasure of k-anonymity is easy to attack if the sensitive characteristic is dis-
tributed homogeneously within an equivalence class (e.g., if almost all the pa-
tients in equivalence class ”A” suffer from COVID-19). That way the medical con-
dition of a specific person could be inferred with high likelihood—even if only
a few, coarsely binned quasi-identifiers are known to the attacker. The largest
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attack vector, however, consists of associating the k-anonymous dataset to addi-
tional, external information32.

32 See thediscussionof absolute andrel-
ative interpretation of personal refer-
ence above.

ℓ-diversityTOCOUnTErACTTHE described risks, the ℓ-diversitymeasure33 requires that the
33 Machanavajjhala et al. (2007);
Stammler, Katzenbeisser, and

Hamacher (2016)

sensitive feature within each equivalence class has some variability. The mod-
els for measuring this variability range from very simple (e.g., “there must be at
least ℓ different diagnoses be included”) to mathematically more complex, e.g.,
entropy-based methods. The ℓ-diversity can be further generalized to the more

t-closenessadvancedmeasure of t-closeness34 in which the frequency distribution of the sen-
34 N. Li, T. Li, and Venkatasubrama-
nian (2007)sitive features in each equivalence class must match the frequency distribution

of the Features in the entire dataset, up to a threshold t.

2.2.2 Utility and Re-identification

Theanonymitymeasurespresentedaboveare conceptually simple tounderstand
and easy to use, unfortunately, all suffer—albeit to varying degrees—from vul-
nerabilities that allow the re-identification of individuals. Furthermore, the
choice of appropriate parameters is difficult, as the data loses utility for param-
eter choices with higher anonymization. For example, higher values of the k-
parameter for k-anonymity, group the data into coarser and coarser classes to en-
sure the higher anonymity, thus removing information. Finally, all of the above
measures aredifficult to apply if not onlyone, butmultiple sensitive features, like
a primary and a secondary diagnosis, have to be protected.

In the following, we present two different attacks on anonymized datasets that
are by no means theoretical in nature, but their attack vectors are actively ex-
ploited and can be used against anonymized datasets of real production systems:
linkage attacks and tracker attacks.

Linkage attacksA l inkage attack is an attempt at re-identification inwhich the pseudonymized
or anonymized data are correlatedwith other information known to the attacker.

The canonical exampleof a linkageattack is the successful re-identificationofU.S.
Gov.WilliamWeld in 1997. According to thenarrativeWeld’smedical records in a
pseudonymized insurance dataset were correlatedwith the public voter registra-
tion records of Cambridge,Massachusetts, thereby re-identifyingWeld. System-
atic research35 indicates, however, that this sequence of events is probablymore 35 Barth-Jones (2012)

of amyth. Muchmore likely, the linkingof the insurancedatawith thepublichos-
pitalization of the governor led to the re-identification—a different story, yet a
successful linkage attack.

Another,more recent example is the re-identificationof users of theNetflix Prize
dataset. In October 2006, the streaming company issued a prize to improve the
system for suggesting new movies based on previous viewing habits. Included
in the call for entries was an anonymized dataset containing the movie ratings
of half a million users over a period of five years. Using the film ratings from the
“InternetMovieDatabase” (IMDB)36 asanadditionaldata source, tworesearchers

36 https://imdb.com

https://imdb.com
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from the University of Texas were able to identify users from the anonymized
database37—includingstrong indicationsofpolitical andreligiousbeliefs, aswell37 Narayanan and Shmatikov (2007)

as sexual preferences.

These two examples illustrate a fundamental aspect that is exploited in linkage
attacks: a data owner can only control the pseudonymization and anonymiza-
tion of its own data. Even if a data owner anonymizes the data considering addi-
tional datasets known at the time of publication, it cannot be ruled out that this
anonymizeddatasetwill be completelyde-anonymizedbynewavailabledatasets
at some point in the future.

Tracker attacks DATASETS THAT ArE not published in full, but rather allow interactive queries,
for example the query of a hospital information system for the blood pressure
of all patients between 30 and 40 with the diagnosis “liver abscess,” are threat-
ened by so-called tracker attacks38. In this attack, the query results are stored by a38 D. E. Denning, P. J. Denning, and

Schwartz (1979) tracker, thus systematically expanding knowledge of the database over the course
of multiple queries. The individual queries can be designed in such a way that
they fulfill the usual anonymization measures but, for example, their intersec-
tion or difference sets reveal sensitive information. For example, the query of all
diagnosesmadewould presumably be k-anonymouswith a high value for k. The
problem ariseswith a second query like “The diagnoses of all patients not named
John Doe”, which—k anonymous in itself as well—allows leakage by comparing
both results.

Even if databases are carefully pseudonymized, sensitive information can be ex-
tracted or patients can be re-identified using trackers. Two pragmaticmitigation
measures are:

1. Query rate limiting: A user of the database can only make a limited number
of queries in a period of time. This prevents automated and fast executions of
complex attacks, which require a high number of queries.

2. Preservation of an audit history: The queries of all users are stored, so that in
case of misuse of the database themisbehaving user can be traced.

These countermeasures are either reactive or prevent only certain attacks. More
advanced procedures that analyze the request history of users and thus prevent
trackers are complicated, aimed against known attacks, and for large databases
computationally and storage-wise expensive.

2.2.3 Differential Privacy

One Statistical Disclosure Control (SDC) technique defeating not only the described
attacks, butprotecting thedata against any correlationsormultiple queries, isDif-
ferential Privacy (DP)39. Albeit related to the previously discussed anonymitymea-39 Dwork, McSherry, et al. (2006)

sures, DP allows for mathematical exactness in the risk assessment. It is based
on the statistical perturbation of the data with the goal that the same query re-
sult must be obtained regardless of the presence or absence of a specific dataset. This re-
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quirementwas formalized into a rigorousmathematical framework by DWOrK,
MCSHErrY,ETAL.40 in2006 inwhich thecontrolledadditionof stochasticnoise 40 Dwork, McSherry, et al. (2006)

is used to not only hide the exact result but to prevent the inference of individual
datasets, even with additional sources.

This method is comparable to a technique used for sociological surveys for the
investigation of, for example, illegal or socially unacceptable behavior: plausible
deniability. The following protocol for yes/no questions shows an intuitive exam-
ple:

The respondent tosses a coin. If the result is “heads”, he answers the question
truthfully. If the result is “tails,” a second coin is tossed. If the second toss result
in “heads,” the answer is “yes”; if the result is “tails,” the respondent answers “no”.

A respondent can justify his answerwith the randomprocess at any time. As the
inserted noise follows a known statistical distribution, the “true” distribution can
be inferred from a sufficiently large number of samples.

The perturbation of the results follows a strict privacy budget defined by the pa-
rameters ϵ and δ, both quantifying the level of anonymization and the loss of
utility. Two formal definitions form the basis of DP. Firstly41, a mechanism is

41 Dwork, McSherry, et al. 2006, p. 270.ϵ-indistinguishable if for all pairs x,x′ which differ in only one entry, for all ad-
versariesA, and for all transcripts t42:

42 A transcript is the result of an in-
teraction between user and a privacy
mechanism, such as the result of a sin-
gle query function. The definitions pre-
sented generalize to more abstract no-
tions of transcripts.

∣∣∣∣ln( Pr[TA(x) = t]

Pr[TA(x′) = t]

)∣∣∣∣ ≤ ϵ.
As ϵ is small, a Taylor approximation results in the roughly equivalent formula-
tion Pr[TA(x)=t]

Pr[TA(x′)=t] ∈ 1± ϵ, meaning that the probability of an attacker receiving the
same transcript fromquerying either the database or one differing in exactly one
entry is arbitrarily close to one.

Secondly43, a randomized algorithmM is (ϵ, δ)-differentially private, if for all
43 Dwork and A. Roth 2013, p. 17.S ⊆ Range(M) and for all databases x,x′ such that ||x− x′||1 ≤ 1:

Pr[M(x) ∈ S] ≤ exp(ϵ)Pr[M(x′) ∈ S] + δ,

where ||x−y||1 is definedas the ℓ1 distancebetweendatabases, giving thenumber
of differing entries.

This second definition allows the precise control over the amount of noise to add
(most often sampled from a Laplace distribution—A symmetric version of the ex-

ponential distribution with Probability Density Function (PDF) f(x) = 1
2σ e

−
|x−µ|

σ —
but not restricted to this distribution) and leads to elegant composeablility theo-
rems.

The introduction of noise, while leading to both safe data and safe outputs, is
not appropriate for all analyses and data types. Especially in the analysis of ge-
nomic data, statistical perturbation is generally problematic, even though efforts
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in some applications, such as Genome-Wide Association Study (GWAS) successfully
used DP (e.g., Simmons and Berger (2016)44 and M. Wang et al. (2017)45). An-44 Simmons and Berger (2016)

45 M. Wang et al. (2017) other example aremany analyses in the field of rare diseases. Here, the data lose
much of their significance due to the small number of cases.

For many other applications, however, these specific limitations do not apply,
such that the methods and error estimates of DP could be used without further
issues.

2.3 SECUrE MULTI-PArTY COmPUTATIOn AnD HOmOmOrPHIC EnCrYP-
TIOn

Most fields of cryptography consider incomplete trust inmessage channels. Two
parties, traditionally called Alice and Bob, want to transmit information and
want to prevent an adversary, Eve, to gain access to that informationwith respect
to some measure and security model (cf. Section 2.3.1). The goal of this kind of
cryptography is to achieve all or some of the following communication proper-
ties46:46 Stinson (2005)

• Confidentiality: An eavesdropper may not gain any information when ob-
serving the communication over an insecuremedium.

• Authenticity: The communicating parties can validate, that they are actually
communicating with the intended party.

• Integrity: Anymodification and tempering with amessage can be detected.

These means can be achieved using (symmetric or asymmetric) encryption
schemes, signature schemes, or message authentication codes. One principle
that underlies modern cryptography is Kerckhoffs’ Principle:

TH E SYST E M M U ST N OT R E Q U I R E S E C R E C Y A N D C A N B E STO L E N BY
TH E E N E M Y W I TH O U T C AU S I N G T RO U B L E
— AU G U ST E K E RC K H O F F S47 (translation by AUmASSOn48)47 Kerckhoffs (1883)

48 Aumasson 2017, p. 40.
This means, that the construction must be secure even if the exact algorithm,
the parameter values, and so on except the secret key are publicly known. Fur-
thermore, the field of steganography tries to hide the presence of a message in a
medium, e.g., by hiding a (text) message in the least significant bits of a digital
image, which leads to an image indistinguishable to the original for a human ob-
server.

MPC andHE Secure Mult i-Party Computat ion (MPC) and Homomorphic Encryption (HE) ex-
plore a different trust model: a number of parties want to jointly engage in a
calculation but do not trust each other. This setting is orthogonal to the security of
the communication channel, however, as we will see the security of the channel
might lead to different security guarantees achievable. Note, thatwhile this trust
relationship is also true for the usage ofΣ-protocols and Zero Knowledge Proofs and
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those techniques are sometimes used in MPC to “force” a participant to behave
honestly49, this interesting and rich field of research is outside the scope of this

49 Hazay and Lindell 2010, pp. 147.work.

SecureMulti-Party protocols enable the joint computation of an ideal functionality.
That means, that any calculation, that is possible by sending every party’s secret
inputs to a Trusted Third Party (TTP), which performs the calculation and only dis-
closes the result, is possible without a TTP, emulating it in a cryptographic proto-
col. These protocols strive to achieve the following properties:

• Privacy: No partymay learn anythingmore than the computation output, in
particular regarding the parties’ private inputs.

• Correctness: Each party is guaranteed, that the received calculation result
is correct. Note, that this is, of course, related to the correctness of inputs. A
corrupted inputmay lead to a wrong result.50

50 “On twooccasions Ihave beenasked, ‘Pray,
Mr. Babbage, if you put into the machine
wrong figures, will the right answer come
out?’ I am not able rightly to apprehend the
kind of confusion of ideas that could provoke
such a question.”

—Charles Babbage

• Independenceof Inputs: Corrupted, i.e., adversarial partiesmaynot choose
an input, that depends on the honest parties’ inputs. Due to differingmalleabil-
ity guarantees, otherwise it might be possible for a corrupted party, e.g., in a
sealed auction, to create an input bid (x + 1)e, based on an (encrypted) bid x,
without knowing what value x takes.

• Guaranteed Output Delivery: Adversaries may not be able to prevent an
honest party to receive its output.

• Fairness: The corrupted partiesmight only receive their outputs, iff the hon-
est parties do so as well. Fairness is implied with guaranteed output delivery,
however, as the corrupted party might opt to abort the calculation (and the
output disclosure) the reverse is not necessarily true.

Note, that not all protocols fulfil all guarantees, neither are all guarantees impor-
tant for every application. More on that is described in Section 2.3.1.

BothMPCandHEwork by representing the desired function as aBoolean orArith-
metic Circuit, that is a Directed Acyclic Graph (DAG). The vertices encode two kinds
of operations, in the case of Boolean Circuits the logical AND (∧) and XOR (⊕) op-
erations, for Arithmetic Circuits the MUL (·) and ADD (+) operations. Further bor-
rowing thenomenclature fromelectrical engineering, the vertices are called gates
and the edgeswires. Using (∧,⊕) and (·,+), as basis operations, respectively, arbi-
trary (bounded) functions canbe represented. The functionsmust bebounded, as
the circuits must be constructed independent of the inputs, to prevent informa-
tion leakages through side channels, like execution timings. Thatmeans, that all
loops must be completely unrolled and in cases of branching functionalities all
branches are evaluated. Unfortunately, this prohibits large classes of common
optimization techniques and reinforces the similarity to electrical engineering,
as hardware circuits are subject to these same restrictions51.

51 Cf. Songhori et al. (2015)

Generally speaking,mostMPCprotocols provide to varyingdegrees a separation
between two distinct phases, a setup phase in which all initial, input independent
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computations are performed. The following online phasemarks the evaluation of
the functionality on the distributed inputs. In some applications only the run
time of the online phase is of importance, for example if a rare but periodic cal-
culationmust be performed. In other applications only the combined runtime is
of significance, e.g., for one-off analyses. To generalize further, the size of com-
munication data constitute the major bottleneck when it comes to runtime per-
formance of circuit-basedMPC.Most modern software implementations are op-
timized to use mostly symmetric cryptographic operations and the hardware’s
cryptographic instruction sets or coprocessors. This is not necessarily true for
Fully Homomorphic Encryption (FHE) schemes, which are often bound by memory
bandwidth52.52 Castro et al. (2021)

Homomorphic Encryption provides computations under encryption. That means,
that some operation can be performed on the cipher text without decrypting it,
that leads to the encrypted result. Inmore formal notation: Enc (m1)� Enc (m2) =

Enc (m1 ⊕m2), where the operations denoted with � and ⊕ depend on the spe-
cific crypto system used. More details regarding homomorphic encryption are
presented in Section 2.3.9.

2.3.1 SecurityModels

One of themost important aspects ofmodern cryptography is the formal rigidity,
allowing security proofs. Thismakes a rigorous definition of the threatmodel, that
iswhat is tobeprotected,what capabilities does anadversaryhave, etc., aswell as
the clear statements of the underlying assumptions an important necessity. Both
aspects allow or require statements in a number of dimensions.

One coarse but important dimension describes the computational capabilities of
the adversary. A protocol or algorithm can be information theoretically secure, that
means that even an adversary with infinite time and unbounded computational
performance can not break the encryption. This is the strongest possible guar-
antee in terms of adversarial abilities and comeswith awide range of conditions,
e.g., in case of an encryption scheme the secret keymust be at least as long as the
message.

One example is the One-Time Pad (OTP) encryption: For every character of the
message a character is randomly chosen and both characters are “added”, where
addition means adding the ordinal numbers of the respective characters in the
alphabet, modulo the total numbers of possible characters. Even if the attacker
tries to brute force the decryption by enumerating all possible key-character se-
quences, depending on the key all messages with the given length can be de-
crypted53. Due to the equal length of message and key the problem of securely

53 Consider the ciphertext EUAYOUIYCW.
Using the key PKAMHKRMOY it decodes
to SECRETTEXT, a seemingly valid mes-
sage. Using the key HOTGDGLWPI it
decodes to LITERATURE. Without addi-
tional information it is impossible to
determine the correct message.

transmitting a message is only evaded: now the question becomes “How to se-
curely transmit the key?” To make matters worse, the usage of a Pseudorandom
Number Generator (PRNG) is insufficient for achieving information theoretic secu-
rity with the OTP, the characters in the key must be truly random. As the name
suggests, a keymay only be used once.
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Aweakermodel is computational security, whereboth timeandcomputational pow-
ers of an attacker are restricted. A scheme is deemed secure under this model,
when a “realistic” attacker has only “negligible” chance to break the scheme in
“feasible” time. As all these things are moving targets, a more rigorous security
definition is required and concepts of complexity theory are useful. If a crypto-
graphic system takespolynomial time to execute regularly but super-polynomial
time to break, the user gains a systemic advantage over the adversary54. Even if 54 Vadhan (2011)

the gap is initially small, increasing, e.g., the length of the keywidens the gap un-
til a successful attack is sufficiently unlikely. However, new algorithms or better
computing hardware might require an increase in key length or even break the
cryptosystem in its entirety.

When considering cryptographic protocols, additional adversarial capabilities
are to be considered. These capabilities limit the adversary in howmany protocol
participants they can corrupt and when, as well as how those corrupted parties
participate in the protocol’s execution.

In the dimension of allowed behavior, the space is spanned by semi-honest ad-
versaries on one and malicious adversaries on the other end. In the setting with
a semi-honest adversary—also called passive security—the corrupted parties cor-
rectly follow the protocol’s specification. However, they try to gain information
that should remain private. This setting mostly protects against accidental data
leakage and curious, but unauthorized technical personnel with access to the
computing system. Malicious adversaries on theotherhand—in the active security
setting—are allowed to arbitrarily deviate from the protocol. Informally speak-
ing, in this setting adversaries can dowhatever theywish. A settingmore closely
modelling real-world threat actors, is the model of covert adversaries. Those ad-
versaries may arbitrarily deviate from the protocols, however, each deviation is
detected—and hence punished—with a certain, non-negligible probability.

When it comes to the time domain, this work mostly deals with static corruption,
where the adversary-controlled parties are fixed at the beginning of the protocol
execution. Corrupted parties stay corrupted and honest parties remain honest.
In othermodels, for example adaptive corruption or proactive security, the adversary
may corrupt parties dynamically based on the state of the protocol, in the latter
case a corruptionmight be “cleaned”, allowing for “temporary” compromising.

The number of corrupted participants plays an important role in which security
guarantees are achievable. For example, in the dishonest-majority case where the
number of corrupted parties t is more than half of all n participants (t ≥ n/2), the
properties of “fairness” and “guaranteed output delivery” cannot be achieved. In
the honest-majority case (t < n/2), all guarantees can be given, assuming all par-
ticipants have additional access to a broadcast channel. Without that broadcast
channel, the full set of guarantees is achievable for t < n/3, if the protocol runs
ona synchronouspoint-to-pointnetworkwith either privateor authenticated chan-
nels, achieving information-theoretic security or computational security, respec-
tively55. 55 Lindell (2020)
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Figure 2.9: Schematic functionality of
Oblivious Transfer: one party prepares
two messagesm0,m1. A second party
provides a choice bit i, receiving the
correspondingmessage. Thepreparing
partymust not learn the choice bit, the
choosing partymust not learn the non-
selectedmessage.

While considerably weaker than active security, the semi-honest security model
is appropriate for many applications. The research projects in this work deal
mostly with computations between known medical institution within the same
legal domain with contractual agreements. That way protocol participants can rea-
sonably be expected to behave honestly. Additionally, active security imposes
a considerable runtime penalty, often more than one order of magnitude. This
renders security infeasible for many complex applications. However, for inter-
national computations with participants in different jurisdictions the European
Data Protection Board recommends active security56.

56 European Data Protection Board
2021, pp. 33.

2.3.2 Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic primitive used in most MPC protocols.
Originating in physics under the name Conjugate Coding57 it described a commu-57 Wiesner (1983)

nication protocol for quantummechanical systems. Later, it was popularized in
cryptography by RABIn 58,59.58 Rabin (1981)

59 RABIn first developed this idea to
simulate noisy communications chan-
nels, closely following WIESnEr’S
work.

Figure 2.9 shows the functionality of (basic) Oblivious Transfer schematically:
One party prepares twomessages,m0 andm1. By sending a choice bit i ∈ {0, 1},
the other party receives the selected message, however, the message-providing
party is not allowed to learn the choice bit and themessage-receiving party is not
allowed to learn the non-selectedmessage.

Wiesner’s Conjugate Coding
WIESnEr DEVELOPEDHIS ideas on conjugate coding around 197060, however,

60 Brassard (2005) hisworkwas publishedmore than a decade later in 198361. In themanuscript, he
61 Wiesner (1983) develops, in fact, aOTprotocolbasedon the transmissionofparticles in conjugated

bases—that is for two orthonormal bases |ai〉, |bi〉, i = 1, 2, . . . , N of a N dimen-
sional Hilbert space |〈ai|bi〉|2 = 1

N holds for all i. This protocol is described for
two or three conjugated bases, furthermore WIESnEr proves, that the protocol
is—in theory—extendable toN messages.

The protocol in the twomessage case works by first choosing two conjugated or-
thonormal bases—for example (1) linear polarization in horizontal and vertical
direction and (2) right- and left-hand circular polarization. Next, a randombit se-
quence is sampled with the same length as the (binary encoded) messages. This
random sequence chooses from which message to transmit a bit, e.g., if bit i in
the random sequence is 0, transmit bit i of messagem0, and of messagem1 oth-
erwise. If the bit of messagem0 is 0, transmit a single photon in vertical polar-
ization. If it is 1 transmit the photon in horizontal polarization. For messagem1

choose right-hand and left-hand circular polarized photons, respectively. The
protocol is schematically displayed in Figure 2.10.

i random
bit
th

i digit of
second
message

thi digit of
first
message

th

0

0 0

1

1 1

Figure 2.10: Schematic protocol for
two-party conjugate coding using lin-
early polarized and circular polarized
light as conjugate bases.

The receivingpartyhas to choosewhichbasis to use forhismeasurements, losing
theability tomeasurephotons in theconjugatedpolarization. If the receiver is set
to elliptical polarization in an attempt to receive bothmessages, less information
is received. Note, that even for “correct” polarization choices on average onlyhalf
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of the bits of the message are learned. WIESnEr adds this information loss to
channel noise, photon shot noise, and photomultiplier noise and proposes the
usage of error correcting codes. However, he also admits that theoretical, albeit
unpractical attacks against his protocol exist62.

62 Later in the paper, he describes a
scheme for unforgable currency suffer-
ing from the opposite problem—being
theoretically sound but utterly imprac-
tical.

CHOUAnD OrLAnDI 63 provideanOTprotocol, designed for simplicity (seePro-
63 Chou and Orlandi (2015)tocol 2.1). H() denotes a (keyed) hash function64, g a generator of a prime-order

64Modelled as a random oracle in their
security proofs. The random oracle
model is a weakening of the security
model, compared to the cryptographic
standard model. In the cryptographic
standard model the adversary is only
bound by its computational power and
available time—cf. Naccache (2011).

group G in which the computational Diffie-Hellman problem is hard. Note the
similarity to the Diffie-Hellman key exchange protocol. In their work, the au-
thors describe several extensions and variations to the protocol, e.g., 1-out-of-n
OT65, where arbitrarily many messages are prepared and are selectable, random

65 Kolesnikov and Kumaresan (2013)

OT, where one out of two random messages are selected (as used in the GMW
protocol, cf. Section 2.3.4), or XOR and arithmetically correlated OT66, where the

66 Asharov, Lindell, et al. (2017)

messages showachosencorrelation—Figure2.11 shows theexampleof XOR corre-
lated OT, used for example in the free XOR optimization of Yao’s Garbled Circuits
(cf. Section 2.3.3).

C-OT

(x₀,x₀⊕x)x

x₀⊕rx

r

Figure 2.11: Schematic functionality
of XOR-correlated Oblivious Transfer:
The message preparing party prepares
(random) messages, that include a de-
fined correlation.

Unfortunately, Oblivious Transfer is computationally expensive, as it can not be
reduced to symmetric cryptography operations only67. For a complex MPC pro-

67 Impagliazzo and Rudich (1989)

tocol millions of OT invocations are required, as they might—depending on the
protocol—be necessary for every AND or every input bit. However, due to OT pre-
computation68, “seeded” OT69, and OT Extension70, only a few expensive “base OTs”

68 Beaver (1995)
69 Beaver (1996)
70 Ishai et al. (2003)

must be performed, to allow large numbers of fast OT computations using only
symmetric crypto and one-time pad operations.

Beaver’s OT precomputation uses OT on random inputs during a setup phase to
enable OT operations with only XOR operations during an online phase. “Seeded”
OTs and OT Extension reduce the required communication in two different di-
mensions (see Figure 2.12): “Seeded” OTs allow to only transmit a short seed via
OT to “transfer” long strings and OT Extension allows acquiring many OTs from
a few base OTs. One recent construction for efficient OT Extension is Silent OT
Extension71, trading computational cost for less communication. 71 Boyle et al. (2019)

Base
OTs

OT-E

"Seeded" OTs

k bit

k OTs

mOTs

n bit

Figure 2.12: Schematic relationship be-
tween “seeded” OTs and OT Extension.
“Seeded”OTsuse thebaseOTs to extend
the bit length, OT Extension uses them
to provide many “cheap” OTs. Both
variants are compatible.

2.3.3 Yao’s Garbled Circuits

AnDrEWC.YAO’S 1986 seminalwork “HowtoGenerate andExchangeSecrets”72

72 Yao (1986)

founded the field of secureMulti-Party computation. It describes theMillionaire’s
Problem: A group of (fictive)millionaireswant to knowwho of them is thewealth-
iest. However, being naturally distrusting they don’t want to disclose their net-
worth. YAO proceeds to describe the Yao’s Garbled Circuits (GC) protocol, not only
the first MPC protocol but (with many optimizations) still in use and important
for practical applications ofMPC. The protocol operates on aBooleanCircuit rep-
resentation of the functionality, as described in the introductory text of this sec-
tion.

The two-partyprotocolworksbyassigningdifferent roles to theparticipants: one
party assumes the role of the garbler, preparing the circuit, and the other party
performs the duties of the evaluator, evaluating the circuit without having any in-
sight regarding the semantics of the performed calculation.
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Protocol 2.1: “The Simplest Protocol for
Oblivious Transfer” Chou and Orlandi
(2015)

Sender Reciever
m0,m1 c

a←$Zp b←$Zp

A = ga

if c = 0 : B = gb

if c = 1 : B = Agb

B

k0 = H (Ba) kc = H
(
Ab

)
k1 = H

((
B
A

)a)
ϵ0 ← Enck0 (m0)

ϵ1 ← Enck1 (m1)

During the setup phase the garbler first translates the desired functionality into
a Boolean Circuit. Next, the garbling takes place: The garbler assigns a random
symmetric key to each possible (bit)value on every wire (i.e., k0 for the bit value
0 on this wire and k1 for bit value 1, accordingly). Now, the truth tables of the
gates are garbled by doubly encrypting the output keys representing the logical
outputswith the combinationof both input keys, according to thegate’s function-
ality. Lastly, the positions of truth table entries are shuffled to deny a reconstruc-
tion of the bit values due to the position of the decoded elements. The truth table
of a (unpermuted) AND gate is shown in Table 2.1.

Table 2.1: Truth table of a garbled, un-
permuted AND Gate for Yao’s Garbled
Circuits protocol Inputw0 Inputw1 Outputw2 Garbled Value

kw0
0 kw1

0 kw2
0 Enckw0

0 ,k
w1
0

(kw2
0 )

kw0
0 kw1

1 kw2
0 Enckw0

0 ,k
w1
1

(kw2
0 )

kw0
1 kw1

0 kw2
0 Enckw0

1 ,k
w1
0

(kw2
0 )

kw0
1 kw1

1 kw2
1 Enckw0

1 ,k
w1
1

(kw2
1 )

This garbled circuit, that is the garbled truth tables73, are sent alongside the keys
73 The function f , including its circuit
representation, is publicly known.

corresponding to the garbler’s secret inputs to the evaluator. This marks the be-
ginning of the online phase. Due to the randomly assigned keys and the decou-
pling of keys and bit values achieved by the garbling, the evaluator cannot learn
anything regarding the true input values from these keys. UsingOblivious Trans-
fer (see Section 2.3.2), the evaluator acquires the keys corresponding to its own
secret inputs. As now all first-layer input keys are known to the evaluator, he is
now able to gate-wise decrypt the output keys, until the outputwires are reached.
In a last interaction step, the output keys of those wires are retranslated to bit
values by the garbler, thus generating the plain text output.
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Optimizations of Yao’s GCSInCE ITS OrIGInAL introduction, the original protocol has been heavily opti-
mized, rendering more and more real-world applications computationally fea-
sible. We will introduce three representative, influential optimizations: Point-
and-Permute, Free XOR, and Half-Gates. Of course, GC also profits from efficient
OT-Extension schemes, especially for large inputs of the evaluator.

Point-and-PermuteOnE DrAWBACK OF garbled and permuted truth tables are, that the evaluator
must decrypt up—in the worst case—to four entries to find the correct output
key—on average still 2.5 entries. Point-and-Permute74 eliminates this overhead to 74 Beaver, Micali, and Rogaway (1990)

the cost of one additional (random) bit per wire, used as a signal (or permutation)
bit. The combination of the signal bits of both input wires point to the correct
truth table entry, hence only one entry needs to be decrypted. In addition, Point-
and-Permute simplifies the output decryption, as the garbler just needs to reveal
the permutation bits for each output wire to enable the evaluator to decrypt the
output.

Free XORTHE SECOnDOPTImIZATIOn , Free XOR75, further reduces the need to perform
75 Kolesnikov and Schneider (2008)symmetric crypto operationswhile evaluating the garbled circuit. The garbler in-

serts correlation into the wire keys76, such that the resulting key of an XOR is the
76 See Section 2.3.2XORof the inputkeys. Theevaluatornever learnsbothkeys forawire, thatway the

randomly chosen fixed correlation remains secret. While reducing the computa-
tional cost of the evaluator this optimization incurs a cost: an additional (weak)
cryptographic requirement, the circular 2-correlation robustness assumption, is
added to the security model77. This is a very technical security assumption; suf- 77 Choi et al. (2012)

fice to say that it is weaker than the random oracle model.

Half-GatesLASTLY, HALF-GATES78 rEDUCE the required entries in the truth table of AND
78 Zahur, Rosulek, and Evans (2015)gates to two (previous state-of-the-art was three79), while remaining compatible 79 Naor, Pinkas, and Sumner (1999)

with the Free-XOR optimization. The idea is, that each AND gate is “broken” into
twohalves forwhicheachpartyknowsone input. Eachof thesehalvesaregarbled
using one ciphertext. Unfortunately, instead of using only one symmetric crypto
operation during evaluation (as it is the casewith Point-and-Permute), the evalu-
ator must perform two operations. However, benchmarks show, that this trade-
off allows for most real-world circuits a significant increase in performance. A
new advancement of this optimization—Three-HalvesGarbling (3HG)80—that fur- 80 Rosulek and Roy (2021)

ther reduces the required ciphertexts to 1.5 + 5 bit per ANDworks by garbling the
gates in such a way, that linear combinations of the slices of the input keys re-
sult in the correct output key. It trades higher computational complexity for less
communication and is used in Chapter 3.
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Communication Rounds of Yao’s GC OnECHArACTErISTICOF GC is, that it only performs a constant number of in-
teractions between both parties: The initial transmission of the garbled circuit,
the OT invocations for the input-key retrieval, and during the output reconstruc-
tion. During the online phase large numbers of symmetric cryptography oper-
ations must be performed, although in the optimized protocol variants only for
AND gates. Thus, solely the number of AND gates is responsible for the (significant)
performance cost.

2.3.4 Boolean and Arithmetic GMW

The GMW protocol81, named after its founders ODED GOLDrEICH, SILVIO MI-81 Goldreich, Micali, and Wigderson
(1987) CALI and AVIWIDGErSOn, was introduced in 1987, shortly after Yao’s Garbled

circuits. It exists in twovariations, thefirst operationonBooleanCircuits and the
second being an extension to algorithmic rings, working on Arithmetic Circuits.

Both variantsworkby secret sharing the input values, that is “breaking” it intomul-
tiple parts where each part in itself contains only random information and only
by combining all shares of a value that secret can be reconstructed. The exact
method of how to generate a share differs between the variants—implementing
the same idea on different algebraic structures. There is an equivalency between
the operations of both variants. Namely, additions onZp correspond to XOR oper-
ations on binary values (when ignoring a possible carry) and themultiplications
corresponds to the logical (i.e., binary) AND operation.

In addition to the inner workings described below, modern implementations in-
cludemany optimizations, such as efficient bit packing, usage of randomOT, Sin-
gle InstructionMultipleData (SIMD) instructionvectorization, andmanymore (e.g.,
see SCHnEIDEr AnD ZOHnEr 82 and BrAUn ET AL.83).82 Schneider and Zohner (2013)

83 Braun et al. (2021)

Boolean GMW
BOOLEAn GMW OPErATES, as the name implies, on Boolean Circuits, that is
DAGs composed of AND and XOR operations. The wires signify single bit values
and all inputs are bit values.

The secret values are secret sharedbetweennparties by samplingn−1uniformly
independent and identically distributed (i.i.d.) bit values and blinding the secret value v
for the last share by XOR-ing it with all generated random shares:

si←$ {0, 1}, ∀i ∈ {1, . . . , n− 1},

sn ←
n−1⊕
i

si ⊕ v.

The notation “x←$D” signifies the random sampling of a value from domainD.

This construction ensures, that the secret value is reconstructible by XOR-ing all
shares: v =

⊕n
i si.
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One share is distributed to each party, such that every party holds one share of
every party’s input values. Note, this implies that every party retains one share
of each own input value. This way the input privacy guarantees hold, even if all
other n− 1 parties collude.

The circuit’s XOR operations are non-interactively, i.e., locally, computable as the
XOR of all locally held shares equate to one share of the result. Without loss of
generality consider the XOR operation between two parties p1 and p2 with secret
inputs v1 and v2, respectively. The parties secret share their inputs (with random
bits r1 and r2) and exchange one share, say si2. The local operations yield:

Party p1 Party p2

S1 = s11 ⊕ s22 S2 = s21 ⊕ s12
= r1 ⊕ v2 ⊕ r2 = r2 ⊕ v1 ⊕ r1

Reconstruction:
S1 ⊕ S2 = s11 ⊕ s22 ⊕ s21 ⊕ s12
= r1 ⊕ v2 ⊕ r2 ⊕ r2 ⊕ v1 ⊕ r1
= v2 ⊕ v1

The computation of an AND requires an interactive protocol, e.g., in the two-party
case the usage ofMultiplication Triples (MT)84—sometimes called Beaver Triples: in 84 Beaver (1991)

the setup phase (see introductory text to this chapter) both parties generate a se-
cret share triple ai, bi, ci, with i ∈ {0, 1} indicating the party, such that c1 ⊕ c2 =

(a1 ⊕ a2)(b1 ⊕ b2) = a1b1 ⊕ a2b1 ⊕ a1b2 ⊕ a2b2. This is possible by performing a
randomOT protocol twice85. 85 Asharov, Lindell, et al. (2013)

These triples are used for the calculation of x ∧ y in the online phase—x and y
being secret shared, of course. Both parties exchange intermediary values di =

xi ⊕ ai and ei = yi ⊕ bi. After that exchange both parties can reconstruct the
plain text values of e and d. Note, that this reconstruction does not reveal any
secret value, as they are still blinded with unknown random values.

In a last step, bothparties arenowable to calculate the result of the ANDoperation:
z1 = d · b1 ⊕ e · a1 ⊕ c1 ⊕ d · e and z2 = d · b2 ⊕ e · a2 ⊕ c2. As in the XOR case,
the correctness is easily provable by reconstructing z1 ⊕ z2 and substituting the
equivalent terms.

With those two operations the circuit can be evaluated and the output recon-
structed.

Arithmetic GMWTHE ArITHmETIC GMW protocol is an extension to the Boolean case, operat-
ing on values in the (finite) algebraic ring Zp with p elements and representing
the desired functionality as arithmetic circuits consisting of multiplications and
additions. Due to the underlying ring structure, we are dealing with modular
arithmetic, i.e., multiplications are defined as x · y mod p and additions as x+ y

mod p. Arithmetic GMW is sometimes calledArithmetic Sharing.
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The secret sharing procedure is mostly equivalent:

si←$Zp, ∀i ∈ {1, . . . , n− 1},

sn ← v −
n−1∑
i

si mod p.

The sum of all shares reconstructs the secret value.

As in the Boolean case, additions can be computed locally, that is non-
interactively, and themultiplication requires an interactiveprotocol, againbased
on an (arithmetic) MT for the two party case.

Communication Rounds in GMW AS DISCUSSED In the sections above, the GMW protocol requires multiple in-
teraction rounds formost non-trivial computations86. These interactions can be

86 The joint computation of histograms
over distributed data is a notable excep-
tion, as the only required interactions
occur during secret sharing and recon-
struction. All other operations can be
performed locally. This is a main con-
sideration for theEasySMPCproject, cf.
Wirth et al. (2021).

“aggregated” according to the dependencies in the circuit, such that all interac-
tions in a circuit “layer” are performed simultaneously. Hence, the relevant met-
ric for assessing the performance of the protocol execution is not the number of
AND/MUL gates—as in the GC case, but themultiplicative depths of the circuit—that
is the number of AND/MUL gates on the longest path between input- and output
gates.

Furthermore,with thepre-computationof allMTsand the setupofOT-Extension
beforehand, most computationally expensive tasks are performed in the setup
phase, independent of the parties’ input data. The online phase, while requiring
communication for each layer of AND gates, only involves fast, local XOR/ADD op-
erations.

2.3.5 Hybrid Protocols

As seen in the previous sections, themost efficient choice of a protocol87 depends
87 Assuming the same security level among other factors on the circuit layout (high multiplicative depths or large

size), the types of operations (arithmetic operations or Boolean operations and
comparisons), and the desired communication characteristics (constant number
of large rounds ormultiple smaller rounds).

Most non-trivial applications performdifferent subtasks requiring different pro-
tocols formaximumefficiency. It is possible to convert betweendifferent sharing
types, however,most conversions incur additional computationandcommunica-
tion costs. For details regarding conversion methods and costs, see DEmmLEr,
SCHnEIDEr, AnD ZOHnEr 88.88 Demmler, Schneider, and Zohner

(2015)

2.3.6 OutsourcedMulti-Party Computation

Contrary to “full” n-party protocols with n parties participating in the computa-
tion, many applications can be designed to work in an outsourced computation
model. In this model only a small subset of partiesm perform the joint compu-
tation and the other parties are data providers. This model has multiple advan-
tages:
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• The complexity of the outsourced computation isO(m2), instead ofO(n2). As
usually n� m, e.g.,m = 2, n = 100, outsourcing improves the efficiency by a
factorO

((
n
m

)2).
• The data providers donot participate in the calculation itself and are therefore
not able to attack the computation—other than breaking the correctness by
providingwrong ormalformed inputs. Even if the computation is only secure
against semi-honest adversaries, malicious data providers can not compromise
privacy.

• By being able to freely choose the computing parties, choices can be made,
e.g., to ensurehigh-bandwidth, low-latencynetwork connectionsbetween the
computation parties, hence, improving the overall performance.

These advantages come at a cost. An additional security assumption is added, as
the computation parties are not allowed to collude. For a detailed analysis of out-
sourcedMPC, see KAmArA, MOHASSEL, AnD RAYKOVA 89. 89 Kamara, Mohassel, and Raykova

(2011)

2.3.7 MPC Programming Frameworks

The circuit representations of non-trivial functions require many thousands
to millions of gates90. The construction of those circuits “by hand” is infea-

90 The AES-128 circuit, for example,
requires 36,663 gates and even a “sim-
ple” function, such as the 64-bit adder
requires 376 gates. For details, see
https://homes.esat.kuleuven.be/
~nsmart/MPC/ accessed: 2022-05-19.

sible. Fortunately, many compiler and programming frameworks allow the
construction of MPC circuits at a higher abstraction level. Compilers, like
Fairplay91, CBMC-GC92, or hardware synthesis based compiler93 translate do-

91 Malkhi et al. (2004)
92 Franz et al. (2014)
93 Songhori et al. (2015); Demmler,
Dessouky, et al. (2015)

main specific languages, standard C code, or hardware definition languages
to circuits and provide optimization. Programming frameworks on the other
hand provide some language programming interface to construct and evalu-
ate circuits, often including the networking tasks as well. For an actively
updated overview over MPC compiler and frameworks, see https://github.
com/rdragos/awesome-mpc (accessed: 2022-05-19) and the repository https:
//github.com/MPC-SoK/frameworks (accessed: 2022-05-27) associated with
HASTInGS ET AL.94. 94 Hastings et al. (2019)

ABYTHE SECUrE TWO-PArTY computation framework ABY95 is a C++ framework
95 Demmler, Schneider, and Zohner
(2015)

implementing three MPC protocols under the semi-honest adversary model:
Arithmetic GMW, Boolean GMW, and Yao’s Garbled Circuits. Furthermore, it
allows the efficient conversion between these protocols. The main focus of ABY
is high performance and the ability tomodify and optimize low-level primitives
and building blocks. While providing state-of-the-art optimizations, this focal
point leads to a comparably low abstraction level, requiring more MPC expert
knowledge for the implementation of secure algorithms.

MOTIONMOTION96 IS A full-threshold, semi-honest adversary n-party frameworkwrit-
96 Braun et al. (2021)ten in C++. It implements the n-party GMW protocol in both Boolean and arith-

metic variant, as well as the BMR protocol and the conversions between those
protocols. We extend this framework in Chapter 3 to provide Yao’s Garbled Cir-

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://github.com/rdragos/awesome-mpc
https://github.com/rdragos/awesome-mpc
https://github.com/MPC-SoK/frameworks
https://github.com/MPC-SoK/frameworks
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cuits in a two-party setting, these extensions will be included in the public ver-
sion of the framework as well. Like ABY, MOTION favors high efficiency over
a high abstraction level as well, however, newer software architecture patterns
and an additional focus on modularity provide some abstractions for common
uses without losing the ability to access and optimize low-level structures.

MP-SPDZ MP-SPDZ97 IS A Python framework implementing many protocols across the

97 Keller (2020)
MPC security space. This includes protocols against malicious adversaries with
both honest and dishonest majority. Its main goal is to allow the performance
comparison of a MPC functionality across many protocols. Providing function-
alities for the Python programming language, it provides a high level of abstrac-
tion and the simple “switching” between different protocols. Being primarily a
benchmarking framework, however, poses challenges for embedding MP-SPDZ
as aMPC-providing component into full software applications.

2.3.8 MPC and Data Protection Laws

As introduced in Section 2.2, the transfer and processing of sensitive (medical) or
identifying data is regulated according to strict data protection laws. For many
research questions in the medical realm, gathering the patients’ informed con-
sent is the only possibility to conduct a study involving the aggregation of many
datasets—a difficult to impossible task in retrospective studies or for datasets in-
cluding deceased patients. The high, provable security guarantees ofMPCmight
allow researcher to tap into those previously unusable datasets for distributed
computations, given that the computation results do not reveal individuals’ data
or risk the re-identification of patients. Unfortunately, the legal examination is
still inconclusive at the time of writing.

Decisions of the European Court of Justice and the German Federal Court of Jus-
tice predating the GDPR suggest the possibility of record linkage98 without in-

98 See chapter 5 formed consent, as encrypted data was only considered “personal data” for par-
ties with access to the encryption key or third parties with the legal right to de-
mand disclosure of said key99. Whether this ruling holds under GDPR is not as-99 The Court of Justice of the European

Union (2016); Federal Court of Justice
of Germany (2017)

sessed, yet. Amore recentwork100 pursues a different reasoning: The authors ar-
100 Helminger and Rechberger (2022) gue, that the usage of—at least secret sharing based—MPC techniques does not

constitute a transfer of data as defined in the GDPR. This assessment is depen-
dentonmany factors, suchas the safetyof the specific implementation, the safety
of the outputs, and the processual framework. These additional considerations
must be assessed on a case-by-case basis.

2.3.9 Homomorphic Encryption

Homomorphic Encryption (HE) is a group of techniques providing computation under
encryption—a party can perform computations on a ciphertext without decrypt-
ing it—based on the homomorphic properties of the underlying crypto system—
that is Enc (m1)� Enc (m2) = Enc (m1 ⊕m2), where�,⊕ denote operations spe-
cific to the used crypto system. For a detailed survey, see HALEVI 101.101 Halevi (2017)
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Based on what operations can be performed under encryption, HE schemes are
grouped into multiple groups, the most important being Somewhat Homomorphic
Encryption (SWHE) and FHE. SWHE can only perform some limited operations
and is known for some time—starting with RIVEST, ADLEmAn, DErTOUZOS,
ET AL.102 andmore explicitlywith ELGAmAL 103 and PAILLIEr 104—while FHE 102 Rivest, Adleman, Dertouzos, et al.

(1978)
103 ElGamal (1985)
104 Paillier (1999)

can compute any operation. As we have seen in Section 2.3.4, being able to per-
form multiplication and additions is sufficient to calculate every function in an
arithmetic circuit. SWHE schemes are only homomorphic with respect to one of
those operations or are limited in the number of possible successive operations.
For example, protocols based on the Learning with Errors (LWE) hardness assump-
tion are limited in the number of operations, as they rely on the presence of noise
for their security. The error accumulates or multiplies with each operation, lead-
ing to an eventual loss of the encrypted value at somepoint. The LWE-based fully
homomorphic BGVprotocol105mitigates this problemby specifically employing 105 Brakerski, Gentry, and Vaikun-

tanathan (2014)noisemanagement techniques.

Paillier Cryptosystem
THE PAILLIEr CrYPTOSYSTEm106 is an additively homomorphic system, pro-

106 Paillier (1999)viding the following functionality: Enc (m1)·Enc (m2) mod n2 = Enc (m1 +m2)

mod n2 and Enc (m1)
k mod n2 = Enc (k ·m1), where n is the product of two

large primes p and q. It is an asymmetric encryption scheme with a public key
pk = (n, g) and a secret key sk = (p, q). The original paper describes two encryp-
tion functions: First,m 7→ gmrn mod n2, where r < n is a random value, and
second,m 7→ gm+nr mod n2. Using the first function and twomessagesm1,m2

the identity

Enc (m1) · Enc (m2) mod n2

= gm1gm2rn1 r
n
2 mod n2

= gm1+m2(r1r2)
n mod n2

= gm1+m2r′n mod n2

= Enc (m1 +m2) mod n2

holds. However, using this encryption scheme there is noknownnon-interactive
way tomultiply two ciphertexts under encryption.

Fully Homomorphic EncryptionFHE HAS BEEn a long unsolved problem until the first fully homomorphic sys-
tem designed by GEnTrY 107. However, while muchmore powerful, FHE is—to 107 Gentry (2009)

this day—computationally very expensive, hence, qualifying for only limited ap-
plications. In recent years, FHE has become feasible for more and more applica-
tions, dedicated programming libraries matured108, and standardization efforts

108 For example, Halevi and Shoup
(2014), Dai and Sunar (2016), and Mi-
crosoft Research (2022)

were undertaken109.

109 See https://
homomorphicencryption.org/

2.3.10 Quantum Secret Sharing

As we have seen in Section 2.3.2, cryptography profited of ideas in the realm of
physics by translating WIESnEr ’s conjugate coding to the cryptographic primi-
tive of OT. However, the reverse can be observed as well—the re-convergence of
physics and cryptography. One such example is quantum secret sharing. The first

https://homomorphicencryption.org/
https://homomorphicencryption.org/
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work in this field by HILLErY, BUŽEK, AnD BErTHIAUmE 110 in 1999, describes110 Hillery, Bužek, and Berthiaume
(1999) the usage of entangled multi-particle quantum states to “split” a secret—either

classical or a quantum state—in such a way, that only having all information al-
lows the recombination of the secret.

This field is an active field of research, e.g., with GOTTESmAn 111 derivingmany111 Gottesman (2000)

theoretical insights, such as that “the size of each share in a quantum secret shar-
ing scheme must be at least as large as the size of the secret”112—very similar112 Gottesman (2000)

to the OTP length restrictions—while when sharing classical secrets, each share
can potentially be as small as half the classical secret’s size. Furthermore, Z.-J.
ZHAnG, Y. LI, AnD MAn 113 derived a scheme connecting n parties using sin-113 Z.-j. Zhang, Y. Li, and Man (2005)

gle photons instead of multi-particle states. Given the promising results, it is to
hope that the protocols and methods devised in this work may be implemented
in quantumphysical systems one day, even further optimizing the required com-
munication.

Greenberger-Horne-Zeilinger
(GHZ) States

THIS FIrSTWOrK uses aGreenberger-Horne-Zeilinger (GHZ) triplet to distribute a
secret held byAlice between Bob andCharlie. The combination of three particles
is the smallest form of GHZ state, larger entangled systems are possible as well.
For a combination ofn two-dimensional systems, theGHZ state is the superposi-
tion of all particles being in the one state and its inverse:

|GHZ〉 = 1√
2

(
|0〉⊗n + |1〉⊗n

)
.

TheHBB Protocol USInG THESE GHZ states for quantum secret sharing is not directly straight-
forward and requires an additional classical channel between Alice and Bob and
Alice and Charlie. Using quantum cryptography, the quantum channel is pro-
tected against eavesdropper “by default”, as adversarialmeasurements can be de-
tected as noise in the system, skewing the expected experiment probability dis-
tributions, hence, being detectable.

The protocol by HILLErY, BUŽEK, AnD BErTHIAUmE 114 begins by assuming,114 Hillery, Bužek, and Berthiaume
(1999) that all three parties have one particle of the GHZ triplet |ψ〉 = 1√

2
(|000〉+ |111〉).

All three parties decide randomly whether to measure their particle in the x or
in the y direction. The chosen direction, but not the results of themeasurements,
are made public in the following way: Bob and Charlie announce their chosen
direction to Alice, who then returns the directions of all three parties. This dis-
closure proceduremitigates a possibility for Bob or Charlie to cheat.

The x and y eigenstates can be defined as:

|+ x〉 = 1√
2
(|0〉+ |1〉), |+ y〉 = 1√

2
(|0〉+ i|1〉),

| − x〉 = 1√
2
(|0〉 − |1〉), | − y〉 = 1√

2
(|0〉 − i|1〉).
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Using this notation and the relationships |0〉 = 1√
2
(|+ x〉+ | − x〉) and

|1〉 = 1√
2
(|+ x〉 − | − x〉), we can express the triplet state as:

|ψ〉 = 1

2
√
2
[(|+ x〉a|+ x〉b + | − x〉a| − x〉b)(|0〉c + |1〉c)

= (|+ x〉a| − x〉b + | − x〉a|+ x〉b)(|0〉c − |1〉c)].

Given thisdecompositionof |ψ〉, one cancreate a tableofCharlie’s result (measur-
ing in thexdirection) basedon themeasurements ofAlice andBob—asdisplayed
in Table 2.2.

Alice
+x −x +y −y

Bo
b

+x |0〉+ |1〉 |0〉 − |1〉 |0〉 − i|1〉 |0〉+ i|1〉
−x |0〉 − |1〉 |0〉+ |1〉 |0〉+ i|1〉 |0〉 − i|1〉
+y |0〉 − i|1〉 |0〉+ i|1〉 |0〉 − |1〉 |0〉+ |1〉
−y |0〉+ i|1〉 |0〉 − i|1〉 |0〉+ |1〉 |0〉 − |1〉

Table 2.2: The influence of Alice’s and
Bob’s measurements on the result of
Charlie’s measurement in the x direc-
tion following the HBB protocol by
Hillery, Bužek, and Berthiaume (1999).

Two things are visible from the table: First, from having its own measure-
ment and the direction of measurements of Alice and Bob, Charlie can deter-
mine whether Alice’s and Bob’s state are correlated or anti-correlated, and, Sec-
ond, when each party chooses the direction of measurement at random, Charlie
chooses the right direction to gain any information regarding Alice’s and Bob’s
state half of the time. By announcing all measurement directions, all parties
know whether to discard or accept this measurement. The first thing is actually
the completed secret sharing of this qbit: on his ownCharlie knowsnothingwith
regard to Alice’s secret. However, when combining his information with Bob’s,
the secret state of Alice is revealed.

The original publication extends this protocol to sharing arbitrary quantum
states and to four participating parties.

2.4 GEnErALNOTATIOn

Although, the individual chapterswill introduce chapter-specific notation, some
abbreviations and symbols are used throughout this dissertation:

The Boolean operations are concisely noted using logic symbols: ∧ is AND,∨ is OR,
¬ is Not, and⊕ is XOR. 0/1 signify False/True. |x| is used to indicate the length of a
vector x, i.e., the number of elements.

Non-trivial variable names in protocols are written in sans serif, function names
(and calls) monospaced.

Branching, implementedwith MUX (multiplex) Gates, is written using ternary no-
tation: condition ? true statement : false statement. The MPC protocols Arith-
metic GMW, BooleanGMW, and Yao’s Garbled Circuit are abbreviatedwithA,B,
and Y , respectively. Secret shared values are (mostly) written as 〈x〉S , where
S ∈ {A,B,Y}. The symmetric security parameter is denoted with κ115.

115 Throughout this work κ = 128.
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Differentmodes of arithmetic rounding are used: dxemeans roundingxup to the
nearest integer, bxcmeans rounding x down to the nearest integer, and, accord-
ingly, bxemeans rounding x to the nearest integer.

Finally, the uniform (random) sampling of a froma setA is denotedwith a←$A.



Part II

Results





EFFICIEnT PrIVACY-PrESErVInG EPISTASIS AnALYSIS 31

CHAPTEr 3

Efficient Privacy-Preserving
Epistasis Analysis

One field of medical research showing great progress in recent years is personal-
ized health. Afield, promising a significant paradigmshift inhealthcare. Thebasic
premise of personalized health is to develop and adapt novel drugs specifically
based on the genetic profile of an individual patient, hence, providing better in-
tervention outcomes and fewer side effects.

This field is founded on the analysis of vast amounts of genetic data, as the
dependencies between observable traits, the phenotype, like the onset of a dis-
ease or the expression of a severe drug side effect, and the person’s genetic in-
formation, the genotype can be complex and hard to qualify. By applying sta-
tistical analysis methods to those growing genomic databases correlations—or
in rarer cases even causal links—between genetic variations and phenotypical
traits can be found. Due to the decreasing cost, full genome sequencing is at the
brink of becoming a standard procedure1. This would open up many research 1 Biesecker et al. (2021)

opportunities—while requiring strong data protection frameworks.

Onemethod, theGenome-Wide Association Study (GWAS), leads to notable insights
into the associations of genome and diseases. However, the expression of a phe-
notype, e.g., the outbreak of a disease, is often not linkable to a single genotyp-
ical variant (allele). The various biological processes form complex regulatory
networks leading to non-linear gene-gene dependencies. Furthermore, environ-
mental influences (epigenetic effects), that is gene-environment interactions, can
drive or suppress important biological mechanisms.

By quantitatively analyzing those regulatory networks, the expression of certain
proteins, enzymes, or other molecules can be probabilistically described, condi-
tioned on the presence or absence of certain genetic features. Furthermore, the
concentrations of these proteins, that is the balance between expression, degra-
dation and transport processes, influence the probability of expressing other
molecules. While an omniscient observer could model the relevant biological
processes involved as this BayesianNetwork, a graphmodel of interconnected con-
ditional probabilities—for all human researchers large portions of the graph
topology are hidden. The aim ofmethods for Epistasis Analysis (EA) are to identify
probable interactions—edges—between those vertices—features like the pres-
ence or absence of gene variations, environmental factors, and so on—based on
large databases of labeled graphs. In other words, the recognition of correlating
pattern in those graphs. It is a practical application of the general problem of
reconstructingProbabilistic GraphicalModel (PGM) encoding the causal flowof con-
ditional probabilities.
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The number of possible edges quickly render the statistical tools used in GWAS
computationally infeasible. Our goal in this project was first to reduce the vertex
set by removingnoisy andprobablyunrelated features. For this taskwe chose the
Relief-F2 feature selection algorithm, an iterative, multicategorical information2 Kononenko (1994)

gain maximization algorithm. This reduced dataset then was used to fulfill our
second goal, the extraction of a probable edge set. For this goal we projected the
high-dimensional dataset to one dimension using a technique calledMultifactor
Dimensionality Reduction (MDR)3.3 M. D. Ritchie et al. (2001)

Fromaprivacy perspective, genomic data is highly sensitive, as it constitutes the
ultimate personal identifier4. Furthermore, the statistical evaluation requires4 Hamacher et al. (2020)

vast amounts of genomic data—posing a privacy risk for large numbers of pa-
tients. The utility loss by using anonymized data or approaches like statistical
disclosure control5make those techniques difficult to apply to genomic data.5 Duncan (2011)

To retain full utility of the data and perform a full-precision computation while
providing high levels of data privacy, we designed, implemented and experimen-
tally evaluated Practical Private Epistasis Analysis using MPC (PEA), a Secure Multi-
Party Computation (MPC) protocol for privacy-preserving EA. While MPC has
beenapplied tomanyreal-worldapplication, the strongprivacyguarantees come
with acute limitations: MPC protocols require substantially more communica-
tion bandwidth and computational resources than the corresponding clear text
analysis—often multiple orders of magnitude more. Hence, the design of effi-
cient, optimized protocols for complex applications is challenging. PEA employs
a composition of a feature selection protocol—either Relief-F or its variation
Tuned Relief-F (TuRF)—andMDR for private and secure EA.

While the exploration of gene-gene and gene-environment interactions allowed
notable insightsusing thosealgorithms, forexampleanalyzingspecificdiseases6,6 H. Zhang et al. (2017); Yang et al.

(2017); Meng et al. (2017); Y. M. Cho
et al. (2004); Liu et al. (2009)

in statistical tests7, orwhile adjusting them for novel challenges, like the amount
7 J. He et al. (2011); Lee et al. (2018) of Single Nucleotide Polymorphisms (SNPs) in GWAS datasets8, no prior research
8 Kim and Park (2015) aimed to improve the privacy in decentralized, partitioned datasets.

This chapter of the dissertation draws upon work accepted for publication in
HAmACHEr, K., KUSSEL, T., SCHnEIDEr, T., TKACHEnKO, O. (2022) “PEA:
Practical Private Epistasis Analysis using MPC”. ESORICS 2022. The author was
deeply involved in all aspects of the described work contributing significantly to
the design, implementation, experimental setup, andmanuscript of the publica-
tion. The author and O. Tkachenko contributed equally to this work.

3.0.1 RelatedWork

Recent work explored Private Epistasis Analysis (PEA)9 and Private Feature Selection9 Chen, X. Zhang, and R. Zhang (2019)

(PFS)10 usingDifferentialPrivacy (DP), however, sinceDPrelies conceptuallyon the10 T. T. Le et al. (2017)

trade-off between privacy and utility the achievement of adequate privacy levels
in DP-based genomic analyses remains a well-known problem11.11 Naveed et al. (2015)

While several articles on privateGenome-WideAssociation Study (GWAS) have been
published12, there have—to the best of our knowledge—been no research efforts12 H. Cho, Wu, and Berger (2018);

Tkachenko et al. (2018); Bonte et al.
(2018)



EFFICIEnT PrIVACY-PrESErVInG EPISTASIS AnALYSIS 33

investigating PEA or PFS outside statistical disclosure control, that is achieving
exact results. While GWAS tries to answer similar research questions than EA,
it only considered marginal probabilistic links—that is linear 1-Single Nucleotide
Polymorphism (SNP) interactions.

Lastly, private genomic “utility” functions—for example private genome variant
query protocols—have been studied extensively13 with still ongoing research ac- 13 Demmler, Hamacher, et al. (2017);

Asharov, Halevi, et al. (2018); Schnei-
der and Tkachenko (2019)

tivities.

3.0.2 Our Contribution

This chapter describes PEA, a privacy-preserving protocol for epistasis analysis.
While it enables novel opportunities for biomedical research, PEA provides the
following research contributions:

• Design and implementation of the first secure protocol with fully retained ac-
curacy for:

– Relief-F 14 and TuRF15, two popular feature selection algorithms EAs 14 Kononenko (1994)
15 Moore and White (2007)that complete in less than a day for real-world database sizes containing

a=10,000 SNPs andL=100 records16. 16 Chen, X. Zhang, and R. Zhang
(2019)

– Multifactor Dimensionality Reduction (MDR)17, a wide-spread exponential- 17 M. D. Ritchie et al. (2001)
time algorithm for EA with (extrapolated) runtimes of around three days
for real-world database sizes—dimensioned as stated before. The commu-
nicationof ourprivateMDR(PMDR)protocol is independent of thenumber
of records.

• New efficient, generic arithmetic GMWbuilding blocks:

– A
(
N
1

)
-OT18-based custom protocol for Arithmetic Greater Than (AGT)— 18 Kolesnikov and Kumaresan (2013)

that is, a GT operation on arithmetic shares, that, while incurring slightly
more rounds of communication, achieves 1.5× less communication than
the current state-of-the-art19. 19 Rathee et al. (2020)

– Arithmetic Swap (ASWAP), a generalization of the Boolean swap gates by
KOLESnIKOV AnD SCHnEIDEr 20 for the arithmetic GMWprotocol with 20 Kolesnikov and Schneider (2008)

4× less communication than the naïve design.

– Batched versions of both building blocks introduced before withO(κ) less
communication for afixedbit-length,whereκ is the symmetric security pa-
rameter.

• The first actual implementation of three-halves garbling21, including its per- 21 Rosulek and Roy (2021)

formance analysis. The analysis shows an unexpected slowdown, as three-
halves garbling exhibits a higher degree of branching compared to the prior
best garbling scheme. Nevertheless, thenetwork communication still remains
a protocol’s bottleneck.

• Design and analysis of secure outsourcing for PEA, which considers settings
withmore than two input owners and adds less than 1% communication over-
head.
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3.1 BACKGrOUnD

Being at the intersection of statistical physics, genetics, and cryptography, PEA
requires somebackground information inall thosefields. This section introduces
the PEA-specific subjects not already described in Chapter 2. Throughout this
chapter we use the notation displayed in Table 3.1

Table 3.1: Notationused throughout the
description of PEA.

Genetics

L Number of combined loci, i.e., interaction depth
a Total number of attributes, i.e., SNPs
A The set of all attributes, i.e., SNPs
R The set of all records, i.e., database records
rj Data record j
W Weights generated by feature selection (see Section 3.1.4)
s Number of cross-validation steps
λ Locus
gj,λ Genotype of person j at locus λ
∆ Distancemetric in Relief-F (see Equation 3.3)

SecureMulti-Party Computation

κ Symmetric security parameter, κ=128 in PEA
N Number of parties
M Number of outsourcing (computation) servers
Pi Party i
〈x〉S Secret-share of value x in sharing S ∈ {A,B,Y}
〈x〉Si Secret-share of value x in sharing S held by Pi(
N
1

)
-OT 1-out-of-N Oblivious Transfer

3.1.1 Genomic Primer

All livingbeingsencode the “blueprints” forbiological structuresand functions in
molecular forms—inmost organisms in the formof desoxyribonucleid acid (DNA), a
double-helical macromolecule. Each of the two helix strands consists of a sugar-
phosphate backbone and a sequence of nucleotides—also called bases. The four
nucleotides creating the DNA’s alphabet are: Adenine, Cytosine, Guanine, and
Thymine. Usually, the bases between the complimentary DNA strands form
Watson-Crick-pairs—base pairs—i.e., hydrogen bonds pairing preferably ade-
nine with thymine and cytosine with guanine. This implies, that one strand re-
dundantly encodes the same informationas theother—asa complementarybase
sequence. DNA helices combined with other biomolecules form more involved
macrostructures, such as chromatin and chromosomes.

The central dogma of molecular biology describes the processes necessary to
form proteins based on the DNA “instructions”. The process of transcription con-
verts the genotype—the nucleotide sequence stored on the DNA—into amessenger
ribonucleid acid (mRNA)molecule, a “working copy” of the specific information. In
the translation the mRNA molecules are used by ribosomes to construct an amino
acid sequence, thus, forming proteins. Proteins are the biomolecules required for
function of the cell and organism. Ribosomes translate every codon—a triplet of
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nucleotides on the mRNA—into one of the 20 standard amino acids. Additional
codons encode start and stop symbols.

This relatively simple system drastically gains complexity by the introduction
of transcription factors, proteins inhibiting or promoting the transcription of DNA
regions, hence, forming complex regulatory networks22 where the interaction 22 Monod, Changeux, and Jacob (1963)

ofmultiple genes influence the expression of some phenotypes—observable traits,
like eye and hair color, or, as in this context, the occurrence of a disease. While
oftenmodeled as “KauffmanNetworks”23—Boolean networks encoding the state 23 Kauffman (1969)

of a gene as “switched on” or switched of—or continuous concentration networks
with associated ordinarydifferential equations (ODEs) governing thedynamics of the
system24, these regulatorynetworks canbemodeled asProbabilisticGraphicalMod- 24 Del Vecchio and Sontag (2007)

els (PGMs)25, due to the probabilistic nature of individual biological events—of 25 Larrañaga, Inza, and Flores (2005)

course influenced by concentrations, temperature, steric effects, etc.

The human genome consists of roughly 3.2 billion base pairs26 with a small vari-
26 In comparison, peas have a vastly
larger genomewith around4.45 billion
base pairs ( Kreplak et al. (2019))

anceofonly0.1%ofbasepairsvarybetween two individuals 27. Variationsof spe-

27 Barbujani and Colonna (2010);
Schuster et al. (2010)

cific loci—positions in the DNA sequence—are called alleles. As most base pairs
are identical between individuals, it is more efficient to store only the variations
in comparison to a common reference genome. A specific form of genomic vari-
ation is the Single Nucleotide Polymorphism (SNP). It is the change of exactly one
nucleotide, for example “rs248”28 denotes the change G → A on base position

28 https://www.ncbi.nlm.nih.gov/snp/rs248
accessed: 2022-04-13

chr8:19953315. As humans are diploid, two allelesmay occur for every locus—one
on each of the two duplicate chromosomes. A useful shorthandnotation for pres-
ence or absence of a gene variation or SNP is to denote the double occurrence
of the major allele with “AA”, the presence of both major and minor allele with
“Aa”—the chromosome pair is unordered—and the presence of the minor allele
on both chromosomes with “aa”.

3.1.2 GWAS and Epistasis

Genome-WideAssociation Study (GWAS) try tofind correlations betweenphenotypi-
cal expressions and genotype traits. Often times thatmeans linking the presence
of specific SNPs to the probability of the occurrence of a specific disease, for ex-
ample the first published GWAS29 linked five SNPs to multiple mechanisms in- 29 Ozaki et al. (2002)

creasing the risk ofmyocardial infarction. As the name suggests, GWASanalyses
the whole or at least a significant fraction of the genome, while candidate-driven
analysis concentrate on specific genes, based on amodel.

The penetrance of a SNP—the probability of a genome variant affecting the trait—
is analyzed by performing statistical tests on large labeled datasets. Many statis-
tical tests are used, from simple odds ratio analysis tomore complex tests like aχ2

hypothesis test30. By comparing themost correlated loci to known regulatory path- 30 M.H. Wang, Cordell, and VanSteen
(2019)ways, GWAS can provide a starting point for determining causal links between

genotype and phenotype31. 31 Newton-Cheh et al. (2009)

Section 3.1.1 briefly describes regulatory networks. Unsurprisingly, many
diseases—especially complex systematic diseases like cancer—do not only de-
pend on one single genetic variation, but are caused by the non-linear interplay
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ofmany factors, such as the (simultaneous) presence of one SNP and the absence
of another while a third locus is methylated. This gene-gene and gene-environment
interaction is called epistasis. The analysis of epistasis effects becomes computa-
tionally expensive very quickly, as combinatorics very quickly expand the search
space. For gene-gene interaction, the algorithmic complexity scales exponen-
tially in the number of interactions considered—a parameter we call interaction
depth.

As a result, exact and exhaustive analysis methods are only practical for small
fractions of the genome or—as for GWAS—low interaction depths. In PEA,
the two feature-selection algorithms Relief-F32 and TuRF33 (see Section 3.1.4), as32 Kononenko (1994)

33 Moore and White (2007) well as the dimension reduction algorithmMDR34 (see Section 3.1.5) are used to
34 M. D. Ritchie et al. (2001) achieve practical runtimes for privacy-preserving epistasis analysis.

3.1.3 Probabilistic Graphical Models

The seminal work of PEArL 35 started the notion of a Probabilistic GraphicalModel35 Pearl (1988)

(PGM). PGMs provide a general framework formany aspects of probabilistic the-
ory, namely the representation and modelling of probabilistic relationships, the in-
ference based on statistical models, and the learning of said models based on em-
pirical evidence. PGMs come in a variety of forms and are useful tools in many
disciplines, such as physics36, bioinformatics37, andmachine learning38.36 Pelizzola (2005)

37 Joung and Fei (2009)
38 Arnab et al. (2018) Generally, PGMs represent the probabilistic relationships between states or enti-

ties in a graph structure. Undirected graphs are calledMarkov networks, directed
graphs are called Bayesian networks39. The (computationally and epistemologi-

39 Note, that “Bayesian network” are
called that way because of their usage
of Bayes’ rule for inference. It im-
plies no usage of Bayesian statistics in
the stricter sense—in fact conditional
probabilities are often acquired using
frequentist methods.

cally) most basic Bayesian network is aDirected Acyclic Graph (DAG).

Multiple extensions exist, for example a Cyclic Bayesian network allows the forma-
tion of cycles in a directed network or Dynamic Bayesian networks, introducing a
temporal dimension and generalizing Hidden Markov Models and Linear Dynamic
Systems, further introducing Gaussian models and Kalman filters into the PGM
domain. Of course, various non-linear variants, mixture models, hierarchical
models, and combinations of all those are used in different applications.

Onede-factodefault toyexampleof a (simple)BayesianPGMis the studentmodel
in Figure 3.1, described by KOLLEr AnD FrIEDmAn 40. In this model, it is de-40 Koller and Friedman (2009)

scribed, how the difficulty of a test and a student’s intelligence determine the
grade of a test. The grade in turn determines the probability of the professor giv-
ing a favorable letter of recommendation. Additionally, the student’s intelligence
also influences their SAT score.

The graph representation makes it easy to locate statistically inde-
pendent random variables and to construct joint probabilities using
the chain rule for Bayesian networks—for the example P (I,D,G, S, L) =

P (S|I)P (L|G)P (G|I,D)P (I)P (D). Once constructed, both causal reasoning,
where “upstream” observations are used to infer causally linked outcomes and
evidential reasoning, where “outcomes” are used to predict cause probabilities, can
be constructed “mechanically”.
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d0

0.6

d1

0.4

Difficulty Intelligence

Grade SAT

Letter
i0, d0
i0, d1
i1, d0
i1, d1

g1

0.3

0.05

0.9

0.5

g2

0.4

0.25

0.08

0.3

g3

0.3

0.7

0.02

0.2

i0

0.7

i1

0.3

i0
i1

s0

0.95

0.2

s1

0.05

0.8

g1
g2
g3

l0

0.1

0.4

0.99

l1

0.9

0.6

0.01

Figure 3.1: Example Bayesian network,
taken from Koller and Friedman
(2009). The conditional probability
distributions for each node state are
shown in the tables.

Example inferenceTHE PrOBABILITY OF a student totally unbeknownst to us to get a favorable
letter of recommendation is P (l1) ≈ 0.502. If, somehow, the information that
the student’s intelligence is not up to par—that is I = i0—is gained, the proba-
bility becomes P (l1|i0) ≈ 0.389—an example of causal reasoning. An example
of evidential reasoning would be a hiring manager seeing only the students test
results—adisappointingg3. Basedon theavailable information—thegrade—the
probability of the student being intelligent is P (i1|g3) ≈ 0.079. At the same time
the probability that the test was difficult rises to P (d1|g3) ≈ 0.629.

EA in this formulation is a learning task, that is a model’s topology and condi-
tional probability distributions is to be inferred based on observed samples. Of
course, the networks for EA are much more complex, vastly larger and possibly
cyclic. With unknown structure and (hopefully) full observability—that is all rel-
evant genome loci are measured—the EA objective of structure reconstruction
is—evenwhen only allowing acyclic solutions—NP-hard41.

41 This is evident, as the number
of DAGs with N nodes is super-
exponential inN .To nevertheless tackle the problem efficiently, we first employ a feature selection

algorithm to reduce the problem space and then employ a heuristic dimensional-
ity reduction.

3.1.4 Feature Selection

Typical epistasis studies require vast amounts of genomic data to reach signif-
icant results, often thousands of patients, each contributing hundreds of thou-
sands or evenmillions of SNPs. In comparison, single digits to a few dozen SNPs
are connected to the phenotype of interest—the overwhelming majority of fea-
tures are “noise” with respect to the research question. To make matters worse,
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all those unrelated SNPs contribute massively to the combinatorial explosion of
the search space. Hence, feature selection algorithms are used as a heuristic to
select the potentially most significant SNPs. Typical estimators like information
gain42, Gini index43, and j-measure44 assume independence between attributes—42 Hunt, Marin, and Stone (1966)

43 Breiman et al. (2017)
44 Smyth and Goodman (1990)

an assumption not true in the case of epistasis, by definition.

Relief Algorithm
KIrAAnD REnDELL 45 introducedRelief, a feature selection algorithm for nom-45 Kira and Rendell (1992)
inal andnumerical features in two-class classificationproblems. Relief proved to
work efficiently in estimating the intended information gain for dependent and
(lightly) noisy data. The key concept of Relief is that important attributes differ
between records in different classes but show similar values for records in the
same class. The algorithm creates weightsW for the attributesA and “neighbor-
ing” records i, j with classes α according to:

W (A) = P (Ai 6= Aj |αi 6= αj)− P (Ai 6= Aj |αi = αj) (3.1)

= P (Ai = Aj |αi = αj)− P (Ai = Aj |αi 6= αj). (3.2)

A neighboring instance—that is, record—in the same class is called near hit and a
neighboring instance from the complimentary class is called nearmiss. Theneigh-
borhood (and as we will see the conditional probability) is estimated using a de-
finable difference function ∆(A, ri, rj). In the most basic case, that is for nominal
values with two possible classes and no missing values, the difference function
used here and in PEA is defined as:

∆(A, ri, rj) :=

1 ifAi 6= Aj

0 otherwise.
(3.3)

Relief-A to Relief-F KOnOnEnKO 46 EXTEnDSRELIEF in various dimensions. The first variation—
46 Kononenko (1994) Relief-A—increases the algorithm’s robustness against noisy datasets. “Noisy”

means in this context, that a certain percentage of records are mislabeled. This
robustness is achieved by not only considering the nearest hit-and-miss, but the
k-neighborhood around a chosen instance. By introducing a shorthand nota-
tion Peqval, Psameclass and using Bayes rule on Equation 3.1, it can be shown, that
the weights calculated by Relief-A are highly correlated to the Gini indexG and,
hence, information gain47:

47 For the full derivation see
Kononenko (1994).

W (A) =
PeqvalG(A)

Psameclass(1− Psameclass)
, where

G(A) =
∑
V

(
P (V )2∑
V P (V )2

·
∑
C

P (C|V )2

)
=
∑
C

P (C)2.

Furthermore, the correlation between the measures increase with increasing k,
the number of considered neighbors. The author shows, that for dependent
attributes the estimation quality of Relief-A exhibits a maximum as it first in-
creases and then, when k gets so large, that records from other “clusters” in the
distribution space are taken into account, decreases again. In accordance to the
literature body usingRelief and “mdr”, we use k = 10 throughout this chapter. To
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further increase the performance in presence of class noise, KOnOnEnKO note,
that by increasingm, the number of randomly sampled records used in the calcu-
lation (see Protocol 3.1), the robustness increases. This causes him—and follow-
ing works using Relief—to choose amaximumm and iterate over every record.

1 Input: AttributesA = A1, . . . , Aa,
2 RecordsR = r1, . . . , rn

3 Wi ← 0, ∀i
4 for i = 1 . . .m do

// randomly select record
5 ri ←$ [r1, rn]

6 H,M ← kNN(ri, k)
7 for j = 1 . . . k do
8 for l = 1 . . . a do
9 Wl ←Wl −∆(Al, r

i, Hj)/m+∆(Al, r
i,Mj)/m

10 returnW

Protocol 3.1: Relief-F/A protocol. The
difference function ∆ used in those
variations is shown in Equation 3.3.

By modifying the∆ difference functions, KOnOnEnKO introduces Relief-B to
Relief-D, which are able to deal with missing values. For example, the best per-
forming Relief-D uses

∆(A, ri, rj) = 1− P (Aj |αi)

if—for example—r1 has unknown value, and

∆(A, ri, rj) = 1−
#values(A)∑

V

(P (V |αi)P (V |αj))

if both records aremissing the value for attributeA.

Lastly, heextends thealgorithmtomulti-classproblemswithRelief-EandRelief-F.
Relief-Fuses the averageof onenearmiss of every class for theweight calculation
and weights this contribution, again, using the prior probability of each class:

W (A) =W (A)−∆(A, ri,H)/m+
∑
C ̸=αi

P (C)∆(A, ri,M(C))/m.

Whilemost followingwork using a Relief variation andMDR for EA claim to use
Relief-F—often written without the hyphen—the binary class case of affected by
disease / not affected, technically, represents Relief-A. However, Relief-F turns into
Relief-A in the two-classes case. To follow the nomenclature of the literature
body, we designate the used variant in PEA as “Relief-F”.

Tuned Relief-FA SUBSEQUEnT OPTImIZATIOn, Tuned Relief-F (TuRF)48, iteratively performs
48 Moore and White (2007)theRelief-F algorithmandafter each chosen record it prunes the least significant

attributes—the SNPswith the least weight. This (potentially) speeds up the com-
putation as the number of features decreases for each iteration and increases the
robustness against noisy attributes, as badly performing attributes do not influ-
ence subsequent iterations. This variation is shown in Protocol 3.2. The details of
our privacy-preserving implementations of Relief-F and TuRF are given in Sec-
tion 3.2.
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Protocol 3.2: TuRF protocol 1 Input: AttributesA = A1, . . . , Aa,
2 RecordsR = r1, . . . , rn

3 for i = 1 . . . n do
4 W ← ReliefF(A,R)

5 W ← sort(W )

// remove last α/n attributes
6 W ←W [0 : a− (α/n)]

7 A← A[0 : a− (α/n)]

8 returnW

3.1.5 MDR

Multifactor Dimensionality Reduction (MDR)49 is a model-free, non-parametric sta-49 M. D. Ritchie et al. (2001)

tistical method for dimensionality reduction, explicitly developed for the detec-
tion andmodelling of epistasis. Since its introduction in 2001, it has become one
of the standardmethods inEAused to successfully identifyhigher-ordergen-gen
interactions linked to the onset of diseases, such as sporadic breast cancer, essen-
tial hypertension50, type 2 diabetes51, and coronary atrial calcification52.50 Meng et al. (2017)

51 Y.M. Cho et al. (2004)
52 Liu et al. (2009) The idea behind the algorithm is to reduce the interaction dimensionality to one

by categorizing groups of loci into high and low risk combinations. These one-
dimensional combinations are ranked measuring classification and prediction
errors. To avoid typical artifacts caused by the statisticalmethod itself, Leave-one-
out cross validation is usually employed. Thatmeans that the dataset is partitioned
inton equally large sets and themodel is trained onn−1of those sets. The last re-
maining partition is used to determine prediction error. This process is repeated
for all partitions. Thefinalmodel error is the average of all prediction errors. Fig-
ure 3.2 shows an exemplary overview of themethod.

3.2 PrIVATE RELIEF-F AnD TUnEDRELIEF-F FEATUrE SELECTIOn

Section 3.1.4 described the principle of the employed feature selection algo-
rithms: relevant features—features useful for the distinction between classes—
are given a high weight, irrelevant features are reduced in weight. PEA imple-
ments both Private Relief-F (PRelief-F) and Private Tuned Relief-F (PTuRF). The de-
scription of PRelief-F is shown in Protocol 3.3 and the description of PTuRF—as
it is comparatively similar—is shown in Protocol C.1 in Appendix C.1. As TuRF—
andPTuRF—iteratively prunes features, the ordering of recordsmight introduce
a sampling bias. To avoid this, we randomly shuffle the datasets before feature
selection. As both algorithmsmake extensive use of comparisons and the k Near-
est Neighbors (kNN) sorting (cf. Section 3.2.1) generates a circuit with linear (multi-
plicative) depth in the number of records, the feature selection ismost efficiently
implemented using Yao’s Garbled Circuits53. For that, we employ the—to our53 Demmler, Schneider, and Zohner

(2015) knowledge—first implementation of the three-halves garbling54 (cf. Section 3.5.1).
54 Rosulek and Roy (2021)
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Figure 3.2: High-level exemplary
visualization of the MDR analysis
method (adapted from M. D. Ritchie
et al. (2001)).
Step 1 consists of the partitioning of
the data into a training set (e.g., 90%
of the data) and a cross-validation set
(e.g., 10%of the data).
In Step 2, possible combinations are
chosen from all possible locus combi-
nations. In this figure, combinations
between two loci are shown.
Step 3 shows the number of cases
and controls in the (usually) high-
dimensional dataset.
In Step 4, all combinations where the
ratio of affected and unaffected pa-
tients exceed a configurable threshold
are labled as “high-risk”.
Step 5 ranks the models using the
misclassification error.
The prediction error of the best
model is then tested against the
cross-validation set in Step 6.
Steps 1 trough 6 are repeated for every
cross-validation interval. The bars
represent hypothetical distributions
of affected (left) and unaffected (right)
patients. Light gray shaded cells indi-
cate low-risk combinations, dark gray
shaded cells high-risk combinations.
White cells show combinations with
no observed occurrences.

The PTuRF implementation allows for an optional approximation: Instead of re-
calculating the distances between features in each iteration, it might be consid-
ered constant. As only a small fraction of features is removed in each iteration,
the introduced error is small, while reducing the identification cost of the algo-
rithm.

3.2.1 Private kNN

Relief, as well as the Relief-A to F variants, require the identification of the near-
est or the k nearest neighbors for all classes. PRelief-F and PTuRF us an adapted
version of the linearly scaling kNN clustering described by JÄrVInEn ET AL.55. 55 Järvinen et al. (2019)

Thedistancemetric used for sorting the records is theHamming distance, as it runs
with comparatively low runtime cost and performs well with nominal features.

3.2.2 Hamming Distance

The Hamming distance between two bit vectors x and y is the number of set bits
in the element wise conjunction: Hd(x, y) =

∑
i xi ∧ yi. This procedure is not

useful for PRelief-F and PTuRF for two reasons: First, we need the negation of
the element wise AND—the NAND, as per the definition of the∆ distance function
in Equation 3.3—and second, we need to reuse parts of the computation for the
weight calculation, namely the bit vector resulting from the element wise NAND.
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Protocol 3.3: PEA’s PrivateRelief-F pro-
tocol

1 Function PReliefF(R,φ):
2 The datasetR is the concatenation of each data owner’s Pi raw datasetRi.
3 The dataset consists of all recordsR := (r1, . . . , rk), where the record

rj := ((gj,1, . . . , gj,m), αj) : rj ∈ Rwith each genotype gj,λ ∈ {1, 2, 3} of
person j at locus λ and each group α ∈ {+,−}, denotes the case and control
group, respectively. The function returns the index positions of themost
weighted genotypes. φ = 1− α/a denotes the ratio of attributes to return.

4 for j = 1 . . . k do // For all records in the Dataset
// Initialize distance and difference matrices to the
// numerical maximum value and zero, respectively

5 ⟨mhit
dist⟩Y ← [⟨MAX_VALUE⟩Y , . . . , ⟨MAX_VALUE⟩Y ]

6 ⟨mhit
ineq⟩Y ← [[⟨0⟩Y , . . . , ⟨0⟩Y ], . . . , [⟨0⟩Y , . . . , ⟨0⟩Y ]]

7 ⟨mmiss
dist ⟩Y ← [⟨MAX_VALUE⟩Y , . . . , ⟨MAX_VALUE⟩Y ]

8 ⟨mmiss
ineq ⟩Y ← [[⟨0⟩Y , . . . , ⟨0⟩Y ], . . . , [⟨0⟩Y , . . . , ⟨0⟩Y ]]

9 for i > j do // For all pairs of records
10 ⟨Dji⟩Y ← ∅
11 for λ = 1 . . .m do // For all genotypes
12 ⟨Dji⟩Y .append

(
∆

(
⟨gj,λ⟩Y , ⟨gi,λ⟩Y

))
13 for ∀i ̸= j do // For all (unordered) pairs
14 if j < i then
15 ⟨d⟩Y ← Hw(⟨Dji⟩Y)
16 else
17 ⟨d⟩Y ← Hw(⟨Dij⟩Y)

18 if ⟨αj⟩Y == ⟨αi⟩Y then // If records have same label
19 ⟨mhit

dist⟩Y , ⟨mhit
ineq⟩Y ← kNN(⟨mhit

dist⟩Y , ⟨mhit
ineq⟩Y , ⟨d⟩Y , k)

20 else
21 ⟨mmiss

dist ⟩Y , ⟨mmiss
ineq ⟩Y ← kNN(⟨mmiss

dist ⟩Y , ⟨mmiss
ineq ⟩Y , ⟨d⟩Y , k)

22 ⟨W ⟩Y ← ⟨W ⟩Y + ⟨mmiss
ineq ⟩Y − ⟨mhit

ineq⟩Y

23 for ∀j do
// The features are sorted by weight and only the first
// (best) φ · a are retained

24 ⟨g′j⟩Y ← kNN(⟨gj⟩Y , ⟨W ⟩Y , φ · a)
25 ⟨r′j⟩Y ← (⟨g′j⟩Y [1 : φ · a]), ⟨αj⟩Y)

26 ⟨R′⟩Y := {⟨r′1⟩Y , . . . , ⟨r′k⟩Y}
27 return ⟨R′⟩Y
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To accommodate both arguments, we first calculate all absolute values of the dif-
ferences between the genomes (Protocol 3.3, line 12) and calculate the Hamming
weight of this resulting bit vector (lines 15 and 17), that is The Hamming distance
to a zero vector Hw(x) =

∑
i xi, where xi ∈ {0, 1}.

3.3 PrIVATEMULTIFACTOrDImEnSIOnALITY REDUCTIOn

The base operations of Private Multifactor Dimensionality Reduction (PMDR) (Pro-
tocol 3.4) are aggregations of (integer) allele frequencies and prediction errors.
Hence, arithmetic secret sharing—allowing the non-interactive, local aggrega-
tion of values—is the obvious protocol choice. However, the required “utility
functions”—comparisons and swaps—are so much more efficient in a protocol
operating onBoolean circuits, that the evaluation of PMDR in pure Boolean shar-
ing is faster, than the arithmetic version which converts to Boolean sharing for
those operations. To optimize the computation, we develop twonovel arithmetic
building blocks, enabling us to construct PMDR in arithmetic secret sharingwith
twoordersofmagnitude improvementsover thepureBooleanconstruction—see
Section 3.6.3. A local pre-processing aggregating the counts of (locally) occurring
combinations is performed (Protocol 3.5).

3.3.1 Secure Arithmetic Greater Than

Boolean Greater Than (GT) gates can be constructed either optimized for multi-
plicative size—requiring ℓ AND gates56—or for multiplicative depth—requiring 56 Kolesnikov, Sadeghi, and Schneider

(2009)3ℓ− dlog2 ℓe − 2 AND gates at an AND depth of dlog2 ℓe+ 1. In this section, we will
introduce a baseline protocol for the Arithmetic Greater Than (AGT) operation, an
optimized protocol for small bit lengths, and extend this optimized protocol to
arbitrary bit length. We compare our novel AGT protocol to the current state-of-
the-art57, which efficiently compares Boolean values. A version of our novel pro- 57 Rathee et al. (2020)

tocol for batch operation (Appendix C.2), as well as the security discussion (Ap-
pendix C.3) is given in Appendix C.

Baseline Arithmetic Greater Than
ProtocolA BASELInE PrOTOCOL for an AGT operation comparing two integers x0, x1 ∈

Z2ℓ : x0, x1 < 2ℓ−1 in arithmetic sharing is shown in Protocol 3.6. It requires the
Boolean re-sharing of ℓ bits for both the garbler and the evaluator—2ℓ in total—
and ℓ − 1 AND gates. Overall, this protocol requires ℓ(4.5κ + 5) − 1.5κ − 5 bits
of communication—κ is the chosen security parameter. Of this total size, the re-
sharing takes up 3ℓκbits and the following sum (inYao’sGC) takes (ℓ −1) ·(1.5κ+
5) bits. Using 1-out-of-N OT58 and the insight, that only theMost Significant Bit 58 Kolesnikov and Kumaresan (2013)

(MSB) is required, we will improve this protocol. However, this version provides
a performance baseline for evaluating the novel, optimized construction. Note,
that this baseline version requires only one round of communication and is re-
stricted to input values smaller than 2ℓ−1.

Optimized AGT Construction with
Low CommunicationTHE OPTImIZED AGT protocol is inspired by constructions by DESSOUKY ET

AL.59 and RATHEEETAL.60. Asmentioned before, the general idea for optimiza- 59 Dessouky et al. (2017)
60 Rathee et al. (2020)tion is, that it is sufficient to compute theMSB of the difference to determine the
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Protocol 3.4: Private MDR protocol.
The Count used in line 10 is the lo-
cal pre-processing described in Proto-
col 3.5.

1 Function PMDR(Ri):
2 Each data owner Pi locally randomly permutes its raw dataset

Ri := (r1i , . . . , r
ki
i ), where the record rji := ((gj,1i , . . . , gj,ai

i ), αj
i ) : r

j
i ∈ Ri

with each genotype gj,λ ∈ {1, 2, 3} of person j at locus λ and each group
α ∈ {+,−}, denotes the case and control group, respectively, and splits it
into s equal partsR1

i , . . . ,R
s
i .

3 for j = 1 . . . s do // For each of s cross-validation steps
4 for i = 1 . . . N do // Each party splits its dataset for

cross-validation.
5 Rval

i := {rji }
|Ri|·(j+1)/s

j=|Ri|·j/s

6 Rtest
i := Ri \Rval

i

7 for λ1 ∈ [a] do // For each pair of loci λ1 and λ2

8 for λ2 ∈ [a] \ {λ1} do
// Each party locally counts the observed genotypes
// for test (T ) and validation (V ) sets.

9 for i = 1 . . . N do
10 (T λ1,λ2,+

i , T λ1,λ2,−
i , V λ1,λ2,+

i , V λ1,λ2,−
i )←

Count(Rtest
i ,Rval

i , λ1, λ2)

// All parties share and aggregate their counts using
Arithmetic

// sharing. Remark: Sharing is done locally using a
PRG.

11 ⟨Xλ1,λ2,g⟩A ←
∑N

i=1⟨X
λ1,λ2,g
i ⟩A forX ∈ {T ,V } and

g ∈ {+,−}
// Compute the high risk prediction model as Boolean

matrix Hλ1,λ2.
// If #cases/#controls is greater than a public

threshold th = t+h /t
−
h ,

// the cell that corresponds to the genotype
combination (i, j) is

// marked as high risk, indicated with ⟨1⟩B.
12 for i, j ∈ {1, 2, 3} do // For each combination of genotypes

// This is equivalent to computing
(T λ1,λ2,+[i, j]/T λ1,λ2,−[i, j]) > th.

13 ⟨num_cases⟩A ← t+h · ⟨T
λ1,λ2,+[i, j]⟩A

14 ⟨num_controls⟩A ← t−h · ⟨T
λ1,λ2,−[i, j]⟩A

// Mark this cell as high risk if #cases/#controls
> th.

15 ⟨Hλ1,λ2 [i, j]⟩B ← AGT(⟨num_cases⟩A, ⟨num_controls⟩A)

// Swap validation counts if the current cell is
high risk.

16 ASWAP(⟨Hλ1,λ2 [i, j]⟩B, ⟨V λ1,λ2,+[i, j]⟩A, ⟨V λ1,λ2,−[i, j]⟩A)

// Compute number of correcly and incorrectly
classified samples.

17 ⟨num_correct⟩A ←
∑

i,j⟨V
λ1,λ2,−[i, j]⟩A for i, j ∈ {1, 2, 3}

18 ⟨num_wrong⟩A ←
∑

i,j⟨V
λ1,λ2,+[i, j]⟩A for i, j ∈ {1, 2, 3}

// Store a bit indicating good/bad accuracy given a
public accuracy

// threshold ta = t+a /t
−
a .

19 Aj [λ1, λ2]← AGT(t+a · ⟨num_correct⟩A, t−a · ⟨num_wrong⟩A)

20 for λ1 ∈ [a] do // For each pair of loci λ1 and λ2

21 for λ2 ∈ [a] \ {λ1} do
// Output 1 if at least one of the cross validation steps

λ1 and λ2

// were marked as high risk.
22 O[λ1, λ2] =

∨s
j=1 A

j [λ1, λ2]

23 returnO
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1 Function Count(Rtest,Rval, λ1, λ2):
2 // Each party counts the observed genotypes in the clear.
3 T λ1,λ2,+, T λ1,λ2,−, V λ1,λ2,+, V λ1,λ2,− ← 03×3

4 for rk ∈ Rtest do // Count genotype occurrences in the test set
5 Extract group αk, and genotype expressions gk,λ1 and gk,λ2 from record

rk.
6 T λ1,λ2,α

k

[gk,λ1 , gk,λ2 ] += 1

7 for rk ∈ Rval do // Count genotype occurrences in the validation
set

8 Extract group αk, and genotype expressions gk,λ1 and gk,λ2 from record
rk.

9 V λ1,λ2,α
k

[gk,λ1 , gk,λ2 ] += 1

10 return (T λ1,λ2,+, T λ1,λ2,−, V λ1,λ2,+, V λ1,λ2,−)

Protocol 3.5: PEA’s local pre-
processing algorithm to count
combination occurrences.

1 Function AGTB(⟨x0⟩A, ⟨x1⟩A)
2 ⟨δ⟩A = ⟨x1⟩A − ⟨x0⟩A

3 ⟨δ⟩B ← a2b(⟨δ⟩A)

// MSB indicates whether x0 > x1

4 return ⟨δ⟩B[ℓ]

Protocol 3.6: Baseline AGT protocol

order of the input values. By utilizing 1-out-of-N OT61, the calculation of inter- 61 Kolesnikov and Kumaresan (2013)

mediate carrybits in the (Boolean) summationchaincanbeskippedand thecalcu-
lation of theMSB can be performedwith substantially less communication than
the baseline version. The optimized protocol is shown in Protocol 3.7.

Example for Small Bit LengthsLET ℓ BE SmALL —for example ℓ=4—and denote the arithmetic shares of δ =

x1−x0 : x0, x1 < 2ℓ−1with 〈δ〉A0 , 〈δ〉A1 ∈ Z2ℓ . Thefirst party—P0—uses theObliv-
ious Transfer (OT) choice bit 〈δ〉A0 . The second party—P1—samples a uniformly
random masking bit r←$ {0, 1} and prepares messages {(i + 〈δ〉1 mod 2ℓ >

2ℓ−1 − 1)⊕ r}2
ℓ−1

i=0 .

Using the receivedmessage,P0 sets 〈MSB〉B0 := (〈δ〉A0 +〈δ〉A1 mod 2ℓ > 2ℓ−1−1)⊕
r, and P1 sets 〈MSB〉B1 := r. This concludes the protocol, as both parties now hold
a share of the MSB, which gives the ordering of both input values. The protocol
requires2κ+2ℓ bits of communication—that is272bits forbit length ℓ=3—and is
7.5×more efficient than the baseline Protocol 3.6. Unfortunately, this only holds
for small bit lengths. For ℓ=31 the protocol requires 4.29GBof communication—
orders of magnitude larger than the baseline.

Optimized AGT for Integers of Arbi-
trary Bit Length

USInG An ITErATIVE approach by splitting the input integers into chunks,
the communication size of the optimized AGT protocol can be reduced signifi-
cantly. It is sufficient to calculate the carry bits for every intermediate chunk to
extract the MSB from the last chunk. The minimal (amortized) communication
cost per bit is achieved by instantiating the 1-out-of-N OTs with N = 26 with
(2κ + 26)/6 = 53.3 bits. However, choosingN=27 while incurring a higher 54.8
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Protocol 3.7: Optimized AGT protocol
1 Function AGT(⟨x0⟩A, ⟨x1⟩A, ℓs):
2 // ⟨x0⟩A, ⟨x1⟩A are secret-shared

// in Z2ℓ but x0, x1 < 2ℓ−1

3 ⟨δ⟩A = ⟨x1⟩A − ⟨x0⟩A

// Counter for the previous chunk
4 ℓprev = 1

5 if ℓ > ℓs then
6 sel← ⟨δ⟩A0 [1 : ℓs]

7 M ← (j + ⟨δ⟩A1 [1 : ℓs] > 2ℓs)
2ℓs
j=1

8 r ←$ {0, 1}
9 c←

(
N
1

)
-OT(sel, {m⊕ r}m∈M )

10 ℓprev ← ℓs + 1

11 while ℓprev < ℓ− 1 do
12 ℓ′s ← min(ℓs − 1, ℓ− ℓprev−1)

13 ℓnext ← ℓprev + ℓ′s
14 sel← ⟨δ⟩A0 [ℓprev : ℓnext]

15 sel← sel+ c · 2ℓ
′
s

16 ⟨δ′⟩A1 ← ⟨δ⟩A1 [ℓprev : ℓnext]

17 M0 ← {j + ⟨δ′⟩A1 > 2ℓ
′
s}2

ℓ′s
j=1

18 M1 ← {j + ⟨δ′⟩A1 + 1 > 2ℓ
′
s}2

ℓ′s
j=1

19 M ←Mr ∪M1−r

20 r ←$ {0, 1}
21 c←

(
N
1

)
-OT(sel, {m⊕ r}m∈M )

22 ℓprev ← ℓnext + 1

23 ⟨b⟩B = (⟨b⟩B0 , ⟨b⟩B1 ) := (c⊕ ⟨δ⟩A0 [ℓ], r ⊕ ⟨δ⟩A1 [ℓ])

24 return ⟨b⟩B
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bits of amortized communicationperbit leads to less communication rounds and
is preferable in our use case.

The optimized AGT protocol for arbitrary bit lengths invokes two subprotocols:
First, theOToperationon thefirst chunkandsecond, theOTson the intermediate
chunks and carry bits. The result is computed by XOR-ing the last computed carry
bit with the calculatedMSBs of the shares of difference δ.

The first subprotocol requires (2κ+ 2ℓs) bits—ℓs being the bit length of the split
chunk. The second subprotocol requires γ(2κ + 2ℓs) + 2κ + 2ϵ bits, where γ =

d(ℓ− ℓs)/(ℓs − 1)e − 1 is the number of the intermediate chunks and ϵ = ℓ− ℓs −
1 mod ℓs − 1 corresponds to the size of the remainder.

For ℓ ≥ ℓs the total communication is equal to (γ+1)(2κ+2ℓs)+dϵ/(ℓs−1)e(2κ+
2ϵ) and the number of communication rounds is γ + dϵ/(ℓs − 1)e + 2, due to se-
quential calls to the OT functionality. Specifically, for the discussed lengths ℓs=7

andN=2ℓs OT messages this translates to 384 bits and 2 rounds of communica-
tion. ℓ=15 results in 1,028 bits and 4 rounds, ℓ=31 in 1,920 bits and 6 rounds,
and, finally, ℓ=63 in 4,100 bits and 12 rounds. Note, that while ℓ denotes themax-
imum bit-length of the integers to be compared, the inputs are elements of the
ring Z2ℓ+1 .

Comparison to State-Of-The-ArtTHE OnLY OTHEr secure protocol for comparing additively secret shared inte-
gers recently introduced by RATHEE ET AL.62 was shown to be more efficient

62 Rathee et al. 2020, p. 5, Algorithm 1.than the best comparison operation on XOR-shared integers63. While their pro-
63 Couteau (2018)tocol compares two clear text integers to generate a secret shared result, our pro-

tocol can be interpreted as an extension of their protocol for comparing (arith-
metically) secret shared integers 〈x〉A > 〈y〉A by restricting the allowed inputs
tox, y < 2ℓ−1−1 and computing the comparisonvia thedifference 〈x〉A−〈y〉A <

2ℓ−1. This effectively “sacrifices” onebit for the result. The subtraction canbeper-
formed locally, hence our optimized AGT can be seen as a MSB extraction from
a secret shared integer—corresponding to Algorithm 2 in Rathee et al. (2020)
which, in turn, is based on their Algorithm 1.

That being said, byutilizing 1-out-of-N OTweavoidusingANDgates and improve
the required communication for ℓ=32-bit inputs bya factor of 1.5while requiring
one more round of communication—we require 1,920 bits and 6 rounds, while
Algorithm 2 of Rathee et al. (2020) requires 2,914 bits and 5 rounds.

3.3.2 Secure Arithmetic Swap

The ability to swap two arithmetic shares based on a (Boolean) choice bit is im-
portant for the efficient construction of the arithmetic PMDR protocol. ASWAP
implements the following functionality: Let (〈x0〉A, 〈x1〉A)be two inputs in arith-
metic secret sharing and 〈b〉A a choice bit in Boolean sharing, then ASWAP out-
puts the pair (〈x′0〉A, 〈x′1〉A) := (〈xb〉A, 〈x1−b〉A).
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While the complexity of both the following naïve implementation and our opti-
mized version is, admittedly, low, PEA uses—to the best of our knowledge—the
first efficient implementation, as the “hybrid”multiplication 〈b〉B · 〈x〉A between
a Boolean shared bit and an arithmetically shared integer has only been recently
constructed64. The construction of a batched ASWAP function (Appendix C.4),64 Schneider and Tkachenko (2019)

the security analysis (Appendix C.5), and a correctness proof (Appendix C.6) are
given in Appendix C.

Naïve ASWAPProtocol THEnAÏVE ASWAP function uses fourmultiplications to calculate:

〈x′i〉A := (¬〈b〉B · 〈xi〉A + 〈b〉B · 〈x1−i〉A), ∀i ∈ {0, 1}.

As described by SCHnEIDEr AnD TKACHEnKO 65, the hybridmultiplication of65 Schneider and Tkachenko (2019)

a Boolean bit with an arithmetic value can be instantiated by two additively cor-
related OTs. This basic ASWAP protocol requires 8(κ+ ℓ) bits of communication
in total.

Optimized ASWAPProtocol InSPIrED BY THE Boolean “X gate”66—a swap function operating on Boolean
66 Kolesnikov and Schneider (2008) shares—we design an optimizedASWAP function requiring only onemultiplica-

tion. This reduces the required communication by a factor of 4 to 2(κ + ℓ) bits.
While the X gate is the special case of an ASWAP for bit length ℓ = 1, it is not
easily extendable to values in Zℓ with ℓ > 1. The optimized protocol is shown in
Protocol 3.8.

Protocol 3.8: Arithmetic Swap Protocol
1 Function ASWAP(⟨b⟩B, ⟨x0⟩A, ⟨x1⟩A):
2 ⟨δ⟩A ← ⟨b⟩B · (⟨x1⟩A − ⟨x0⟩A)

3 ⟨x′
0⟩A ← ⟨x0⟩A + ⟨δ⟩A

4 ⟨x′
1⟩A ← ⟨x1⟩A − ⟨δ⟩A

5 return (⟨x′
0⟩A, ⟨x′

1⟩A)

Other Application for ASWAP WHILE DEVELOPED FOr PEA’s PMDR function, ASWAP is a general building
block with versatile applications. One high-impact application might be the
implementation of highly efficient arithmetic sorting circuits by combining it
with the optimizedAGT operation (cf. Section 3.3.1) and constructing sorting net-
works67.67 Haslop (2020)

3.3.3 Communication of PMDR

To compare the performance of the optimized PMDR protocol using—thanks to
thenovelAGTandASWAPprotocols—mostlyarithmetic secret sharing (denoted
as PMDRA+), we translate the MDR algorithm (see Figure 3.2) into a baseline
Boolean protocol (denoted as PMDRY ) using Yao’s Garbled Circuits and three-
halves garbling68. In both cases the lengths of integers are fixed to ℓ = 32—68 Rosulek and Roy (2021)

allowing the comparison of 231 genome samples—and s = 10 cross-validation
steps are performed. The costs of the individual operations are listed in Schnei-
der and Zohner (2013), Demmler, Schneider, and Zohner (2015), and Rosulek
and Roy (2021). The final communication cost comparison is shown in Table 3.2.
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PMDRYFOr EACH COmBInATIOn of L loci and each of 3L possible combination of alle-
les, this protocol requires (1)N − 1 additions for aggregation of allele counts, (2)
two multiplications and one comparison for determining the risk category, and
(3) one swap operation—implemented as an X gate69—to set low and high risk 69 Kolesnikov and Schneider (2008)

counts in the validation set. The aggregation of validation counts for the accu-
racy determination requires additional 2 · 3L − 1 additions, twomultiplications
and one comparison. Finally, s − 1 AND gates combine the results of all cross-
validation steps todetermine the success of themodel in at least one step. In total,
for each combination of loci the protocols requires

2s(3L(8ℓ2 + s− 1)− ℓ(4ℓ− 1))− s+ 1

AND gates. As three-halves garbling requires 1.5κ + 5 bit of communication per
AND gate, this results in 1,394,891 AND gates or 34.34MB of communication for
L=2 loci, and 4,347,251 AND gates or 101.05MB of communication forL=3 loci.

PMDRA+THE PMDRA+ PrOTOCOL on the other hand requires one AGT and one ASWAP
invocation for each combination of L loci and each of 3L possible combination
of alleles. Afterwards, for each combination of L loci another AGT operation is
required. The combinationof all cross-validation steps is—as inPMDRY—isper-
formed in Boolean sharing and requires s− 1 AND gates. All other operations are
performed locally and do not incur any communication cost.

The overall communication cost of PMDRA+ of s(3L(ℓ(4κ+1)+2(κ+ℓ))+ℓ(4κ+

1))+s−1bits—that is208.8 kBof communication for an interactiondepthofL=2

and 585.3 kB forL=3—improve the baseline PMDRY by a factor of 164 forL = 2

and 172 forL = 3.

Table 3.2: Comparison of the commu-
nication costs of the baseline PMDRY

protocol to theoptimizedPMDRA+ for
interaction depthsL = 2 andL = 3.

L = 2 L = 3

PMDRY 34.34MB 101.05MB
PMDRA+ 208.8 kB 585.3 kB

3.4 OUTSOUrCEDDATAMODEL

As described in Section 2.3.6, MPC can be performed in an outsourced setting
allowing arbitrary many data sources to participate in a computation between
M computation parties. This is beneficial for the practical application of PEA
in many scenarios. In this section, the computation overhead incurred by em-
ploying an outsourced data model withM = 2 computation parties in PEA is
discussed.

3.4.1 Outsourcing of PTuRF& PReliefF

Both PRelief-F and PTuRF share the same outsourcing analysis, as they operate
on the same input encoding—for each record each feature is encoded as a 2 bit
allele. With a being the number of features and R being the vector of records,
2a|R| bits of data must be secret shared for each party. The outsourcing could be
implemented in twoways:
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1. The outsourcing could be performed completely in Yao’s Garbled Circuits, as
the data owner sends the keys corresponding to the inputs to the garbler com-
putationparty and the correspondingkeys to the evaluator computationparty.
Neither party can infer the clear text input values from the keys. This out-
sourcing scheme requires 3κ bits of communication for each shared bit, that
is 6a|R|κ bits per data sharing party.

2. Otherwise, the data owners could distribute the inputs as Boolean GMW XOR
shared bits between both computation parties. These XOR shares can be con-
verted into Yao’s GC without the participation of the data owning party. By
transmitting Pseudorandom Number Generator (PRNG) seeds to one party the
computation can be further reduced, leading to 2a|R| bits of communication
between a data source and the computation parties and additional 6κa|R| bits
to re-share the data.

For a=1,000 SNPs andR=10 records, the first—all Yao’s GC—approach requires
1.92MBof communication between the input owner and the outsourcing servers
and the second approach requires 2.5 kB between the input owner and the out-
sourcing servers and additional 1.92MB between both servers. The optimal
choice depends on the constraints imposed by the network connectivity of the
data sources.

3.4.2 Outsourcing of PMDR

PMDR takes 3L arithmetically shared frequency counts per combination of loci
as an input—L being the interaction depth. By expanding a transmitted PRNG
seed, an ℓ-bit long input value can be securely transmitted to the computation
parties using ℓ bit of communication. By sending a PRNG seed σi to computation
server Si ̸=0, the computation server then can generate the randomness required
for 〈x〉Ai and further inputs. Finally, the data source party generates the remain-
ing share 〈x〉Ai := x −

∑
i ̸=0〈x〉Ai and sends it to the other computation party S0.

Note, that the aggregation in the secret sharing process is a non-interactive oper-
ation, hence, the communication complexity does not depend on the number of
data source parties.

Given s cross-validation steps anda attributesper record, the required communi-
cationperdata source is s·3L ·ℓ·

(
a
L

)
bitsusing this scheme. Fora=1,000SNPs, this

results in 180MB of communication for an interaction depth of L=2 and 60GB
for an interaction depth of L=3—significantly less than the required communi-
cation in a “true” n-party computation (cf. Section 2.3.6).

The required communication for transmitting the outputs tally up to—in com-
parison nearly negligible—

(
a
L

)
bits per party. For L=2 this translates to 0.5MB

and forL=3 to 166MB (cf. Table 3.5).

The overall very small communication overhead incurred by the outsourced
model demonstrates its viability for practical data pooling and analyses over dis-
tributed genomic datasets.
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3.5 ImPLEmEnTATIOn

Practical Private Epistasis Analysis using MPC (PEA)—our protocol for Private Epis-
tasis Analysis (PEA)—is implemented in C++ using the MOTION MPC frame-
work70. As the protocol required the implementation of various new building 70 Braun et al. (2021)

blocks and low-level schemes—for example three-halves garbling71,
(
N
1

)
-OT72, 71 Rosulek and Roy (2021)

72 Kolesnikov and Kumaresan (2013)and Boolean/arithmetic hybrid multiplication73—only MOTION provided both
73 Schneider and Tkachenko (2019)the required flexibility to incorporate structural changes to the frameworks ar-

chitecture and the performance of a low-level, compiled programming language.

3.5.1 Three HalvesMake aWhole Garbling

PEA’s complete feature selection, as well as some (small) parts of the PMDR al-
gorithm are constructed using Yao’s garbled circuits. To optimize the runtime
performance of these building blocks, we implemented the current state-of-the-
art garbling scheme—Three-Halves Garbling (3HG)74. This is to our knowledge the 74 Rosulek and Roy (2021)

first implementation of this garbling scheme. Three-Halves Garbling (3HG) sacri-
fices some computational efficiency to reduce the required communication.

Whenbenchmarking our implementation, our 3HGengine achieves AND gate gar-
bling and evaluation rates of 11.2Ms−1 and 27.5Ms−1. The MOTION imple-
mentation of the previous state-of-the-art half-gate garbling75 (cf. Section 2.3) 75 Zahur, Rosulek, and Evans (2015)

achieves higher rates for both operations—3HG garbles 4.7× slower and evalu-
ates 2.5× slower. This is slightly worse than predicted by ROSULEK AnD ROY
76. 76 Rosulek and Roy (2021)

As a microbenchmark, we evaluated 512 AES circuits in parallel using 5 threads
to fully saturate a 10Gbit/s network connection given the garbling and evalua-
tion rates. While the benchmark results should be taken with a grain of salt—
the implementation of 3HG introduced substantial changes to MOTION’s inner
workings that might not be accounted for here—3HG achieves a 2.2× speedup
compared to half-gate garbling (0.22 s vs. 0.5 s).

Detailed profiling of 3HG’s performance identifies both its 1.5× higher number
of AES invocations and the substantially higher degree of branching as the prin-
cipal bottlenecks. By employing advanced vectorization instructions, such as
_mm256_permutevar8x32_epi3277 usingAVX2or_mm512_permutexvar_epi6478

77 https://www.intel.com/
content/www/us/en/docs/
intrinsics-guide/index.html#
text=_mm256_permutevar8x32_
epi32

78 https://www.intel.com/
content/www/us/en/docs/
intrinsics-guide/index.html#
text=_mm512_permutexvar_epi64

using AVX512, the performance impact of the branchingmight be mitigated. Be-
ing outside the scope of PEA, we leave this as future work.

3.6 PErFOrmAnCE EVALUATIOn

3.6.1 Test Setup

The performance evaluations of PEA were performed on two servers in a lab en-
vironment with Intel Core i9-7960X processors and 128GB of RAM each. The

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar8x32_epi32
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar8x32_epi32
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar8x32_epi32
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar8x32_epi32
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar8x32_epi32
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_permutexvar_epi64
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_permutexvar_epi64
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_permutexvar_epi64
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_permutexvar_epi64


52 GrAPH STrUCTUrES In PrIVACY-PrESErVInG BIOmEDICAL AnALYSES

servers were connected via a local 10Gbit/s network connection with a median
latency of 0.2ms. All reported measurements are averaged over 10 runs. As the
protocols in PEA are either highly parallelized or have a constant number of in-
teraction rounds,weexpect thenetworkbandwidth tobe themost critical param-
eter.

The experiments use synthetic input data for two reasons: First, as MPC and
the circuit generation is independent of the specific inputs, all performancemet-
rics only depend on the structure of the data—for example bit lengths—and not
on the data itself. Second, the implemented algorithms perform exact computa-
tions, hence, using real, difficult to obtain, and privacy-sensitive datasets brings
nodiscernible advantageor additional insights. Theusageof synthetic data is the
least privacy intrusive way and follows the principle of “privacy by design”.

The PEA benchmarks are performed in two network settings: First, aWide Area
Network (WAN) setting and second, aLocalAreaNetwork (LAN) setting. Thedescrip-
tions and rationale behind the settings are described in Appendix B, the chosen
parameters for bandwidth and latency are given in Table 3.3.

Table 3.3: Network parameters for the
experimental evaluation of PEA

Setting Bandwidth Latency

WAN 10Gbit/s 50ms
LAN 10Gbit/s 0.2ms

The benchmarks donot include a “true”n-party setting—that is, withn computa-
tion parties—asmost practicalMPC protocols scale quadratically in the number
of parties79, which—added to the high asymptotic complexity of PEA—quickly

79 Exceptions, like the linearly scal-
ing variation in the SPDZ protocol (
Damgard et al. (2012)) are so computa-
tionally intensive, that the linear scal-
ing becomes practically beneficial if
several thousands of parties partici-
pate in the computation.

renders analyses of real-world workloads infeasible.

3.6.2 Performance of PReliefF and PTuRF

The setup and online phase runtimes for both private feature selection
algorithms—Private Relief-F (PRelief-F) and Private Tuned Relief-F (PTuRF)—are
shown for both network settings in Figures 3.3 and 3.4. One plot shows the run-
times for varying numbers of records and the other for varying numbers of fea-
tures. Table 3.4 shows themeasurements in tabular form.

As PEA’s implementation is optimized for runtime and communication perfor-
mance, it is not surprising that RAM utilization was a bottleneck in the exper-
iments. Because of RAM exhaustion, PTuRF was not benchmarked across the
complete parameters space. The dashed lines show the extrapolated runtimes
based on a power-function fit using f(x) = axb + c as a functionalmodel. The fit
parameters and their uncertainties are listed in Appendix C.7.

After a steep, initial increase in runtime, the expected linear asymptotic depen-
dencies on both the number records and the number of features is visible for
PRelief-F and PTuRF. By employing Yao’s GC—a constant-round protocol—the
impact of high network latencies ismitigated and shows only amoderate impact
on the feature selection runtime. While small in comparison to the total runtime,
the effect of the network latency is best observed by comparing the setup times
between both settings.

The development of Tuned Relief-F80 was driven by first, improving the robust-80 Moore and White (2007)

ness in the presence of noisy features and second, to speed up the calculation.



EFFICIEnT PrIVACY-PrESErVInG EPISTASIS AnALYSIS 53

10−1

100

101

102

103

Se
tu

p
Ph

as
e

LAN WAN

0 50 100

10−1

100

101

102

103

O
nl

in
e
Ph

as
e

0 50 100

Number of Records

R
un

tim
e[

s]

PReliefF PTuRF

Figure 3.3: Setup and online runtime
in seconds of both private feature selec-
tion algorithms with varying numbers
of records and both network settings.
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Figure 3.4: Setup and online runtime
in seconds of both private feature selec-
tion algorithms with varying numbers
of features and both network settings.
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In the privacy-preserving setting, PTuRF fails to achieve the second goal (while
contributing the same advantage to the first as the clear text protocol). Although
the number of features is reduced in each iteration, the additional sorting and
filtering negates all possible performance gains.

Extrapolated from the parameter dependencies, datasets of sizes encountered in
real-world applications—for example∼ 100 records with∼ 10,000 features81—81 Chen, X. Zhang, and R. Zhang

(2019) can be processed using PRelief-F in under a day.

|R|=4 |R|=8 |R|=20.00 |R|=40.00 |R|=60.00 |R|=80.00 |R|=100.00

Setup 0.23 s 0.25 s 0.23 s 0.24 s 0.23 s 0.26 s 0.27 s
LAN

Online 0.77 s 1.49 s 4.90 s 12.91 s 20.96 s 33.26 s 49.87 s

Setup 0.90 s 0.71 s 2.82 s 2.19 s 3.40 s 4.34 s 3.65 s
WAN

Online 1.08 s 1.59 s 5.17 s 12.95 s 20.28 s 31.87 s 48.64 s

Comm. 3.75MB 9.63MB 40.98MB 138.93MB 294.13MB 506.45MB 775.93MBPR
el
ie
fF

Y

Comm. outs. 3.84 kB 7.68 kB 19.20 kB 38.40 kB 57.60 kB 76.80 kB 96.00 kB

Setup 0.21 s 0.22 s 0.24 s 0.24 s — — —
LAN

Online 0.88 s 1.91 s 13.41 s 83.13 s — — —

Online 0.56 s 0.62 s 1.57 s 2.30 s — — —
WAN

Online 0.93 s 1.89 s 12.77 s 83.24 s — — —

Comm. 4.11MB 11.13MB 107.15MB 510.77MB — — —PT
uR
FY

Comm. outs. 3.84 kB 7.68 kB 19.20 kB 38.40 kB — — —

Table 3.4: Runtimes and communica-
tion (incl. outsourcing) for PEA’s pri-
vate Relief-F (PReliefFY ) and private
Tuned Relif-F (PTuRFY ) protocols (see
Protocol 3.3 and Protocol C.1) filtering
|R| records containing 10 SPNs each.
Dashes “—” indicate not benchmarked
parameter values.

3.6.3 Performance of PMDR

Figure 3.5 and table 3.5 report the performance measurements of PEA’s Private
MultifactorDimensionality Reduction (PMDR) algorithm for varying numbers of fea-
tures a, both network models and two interaction depths L = 2 and L = 3. The
exponential influence of the number of interacting loci L is visible both in the
runtime and communication size. The latter reaches for L=3, |R|=1,000 nearly
100TB.

For smaller numbers of SNPs or lower interaction depths—for example
a=1,000, L=2 or a=100, L=3—PMDR completes in under an hour in both net-
work settings. This demonstrates the importance of the preceding feature selec-
tion stage.

Table 3.5: Runtimes and communica-
tion (incl. outsourcing) for PEA’s Pri-
vate Multifactor Dimensionality Re-
duction (PMDRA+) protocol (see Pro-
tocol 3.4) with s=10 cross-validation
steps using ℓ=32-bit integers, combin-
ing L loci on databases containing a

attributes—that is SNP’s. We report to-
tal runtimes only, since PMDR is not
optimized for improved online phase
times. Experiments that ran longer
than a day are excluded and marked
with dashes “—”.

PMDR #comb. a=10 a=100 a=1,000.00

L=2 1.71 s 24.85 s 43.08min
LAN

L=3 3.29 s 33.68min —

L=2 10.88 s 42.71 s 1.04h
WAN

L=3 10.01 s 47.71min —

L=2 9.39MB 1.03GB 104.29GB
Comm.

L=3 70.23MB 94.64GB 97.25TB

L=2 16.20 kB 1.78MB 180.50MB
Comm. outs.

L=3 129.60 kB 174.83MB 60.16GB
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Figure 3.5: Runtimes in seconds for
PMDR, for L = 2 and L = 3. Both
interaction depths are benchmarked in
two network environments.

3.6.4 Total Performance

As seenbefore inSection3.6.3, the exponential complexityofPMDRstrongly sug-
gest the combination with a feature selection algorithm. This not only substan-
tially improves the efficiency of the subsequent epistasis analysis, but improves
the results by fostering robustness against noisy attributes and class noise82—at

82 See Section 3.1.4.the cost of revealing the number of filtered features. As discussed by Moore and
White (2007), the optimal choice of filtered features is dependent on the amount
of noise, the size of the dataset, and even the heritability of the target phenotype.
Because of this it is hard to give exact estimates, but TuRF showed over 80% ac-
curacy while filtering out 95%of the SNPs83—reducing a set of 1,000 SNPs to 50 83 Moore and White (2007)

SNPs.

However, the empirical data in the previous section show that the runtime cost
of PRelief-F and PTuRF lead only to performance gains in a composed system
for large numbers of features—the slope of PMDR runtimes rise with increasing
numbers of features—or interaction depths L > 2. In these cases even a moder-
ate reduction of the numbers of features lead to a notable speedup—for a=10,000

features a reduction by 10% leads to a 20% improvement, reducing the analyzed
combinations from 50 to 40million.

3.7 OUTCOmE AnD PrOSPECTS

This chapter details the context, design and implementation of PEA, the first se-
cure and privacy-preserving epistasis analysis protocol. To mitigate the super-
exponential complexity of unknown-structure, full observability PGM struc-
ture reconstruction, PEA implements twoMPC protocols for feature selection—
PrivateRelief-F (PRelief-F) andPrivateTunedRelief-F (PTuRF)—andoneprotocol for
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Private Multifactor Dimensionality Reduction (PMDR). These protocols, heuristically
calculating themost influential nodes in theBayesiannetworks, are important el-
ements for privacy-preserving Epistasis Analyses (EAs), thus enabling scientists
to perform inter-institutionalmedical researchotherwise oftennot possible, due
to data protection regulation. Our highly efficient outsourcing algorithm allows
the joint computation between arbitrary numbers of parties, while only occur-
ring a (comparatively) minor communication overhead.

To achieve practical runtimes, we designed two new, efficient building blocks for
generic arithmetic MPC. PEA’s

(
N
1

)
-OT84-based custom protocol for Arithmetic84 Kolesnikov and Kumaresan (2013)

Greater Than (AGT) uses 1.5× less communication at slightly more interaction
rounds than the state-of-the-art85, and Arithmetic Swap (ASWAP), a generaliza-85 Rathee et al. (2020)

tion of the Boolean swap gates by KOLESnIKOV AnD SCHnEIDEr 86 for the86 Kolesnikov and Schneider (2008)

arithmetic case, uses 4× less communication than the naïve design.

Furthermore,wepresent andanalyze thefirst implementationof thenovel three-
halves garbling87, which showsagreater slowdown thanexpecteddue to ahigher87 Rosulek and Roy (2021)

degree of branching compared to the prior best garbling scheme. However, the
network bandwidth still remains the bottleneck.

Lastly our experimental performance evaluations show that our solution for se-
cure andprivacy-preservingEpistasisAnalyses achieve practical runtimes of un-
der a day for real-world dataset sizes.
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CHAPTEr 4

Private Solution
to the Kidney Exchange Problem

End-stage renal diseases pose a significant burden on the public healthcare sys-
tem1 affecting around 7%ofU.S. adult citizens2. With increasing risks due to age, 1 Thurlow et al. (2021)

2 Murphy et al. (2016)kidney replacement therapy is an ever-increasing aspect of medical care. Apart
fromchronic dialysis, the cleansing of blood in externalmachines simulating the
functionsof thekidneys, kidney transplants are theonlyviable long termoptions
for those patients.

Unfortunately the demand significantly exceed the supply of transplants3, thus 3 Eurotransplant (2021)

findingawilling, livingdonor is the only timelyway to receive a transplant. Even
after finding a donor, the projected success of a procedure, i.e., the survival of
the recipient, depends on the medical compatibility of donor and recipient, that
is immunological and morphological compatibility. To help as many patients
as possible, voluntary donors and “their” recipients are often registered in kid-
ney exchanges. The biomedical compatibility of all donors and recipients is calcu-
lated according tomedical evidence-based guidelines and a bipartite compatibility
graph is constructed, linking donors to possible recipients. “Fairness” in this con-
textmeans, that if a donor ismatchedwith a recipient, the donor’s “original” but
incompatible recipient will receive a compatible transplant as well. This corre-
sponds to finding exchange cycles in the graph4. Regulatory and practical circum- 4 Biró, Klundert, et al. (2021)

stances apply additional constraints, e.g., on the cycle length as all procedures
should be performed (almost) simultaneously. The final result is the set of cy-
clesmaximizingbothgraphcoverage and the accumulated edgeweights, as those
weights represent medical compatibility and with that long-term success prob-
ability. An overview of the protocol with its “building blocks” is shown in Fig-
ure 4.1.

As we are dealing with highly sensitive medical health data, this computation
should be performed in a decentralized, privacy-preserving manner. The rea-
soning for that is two-fold: First to limiting the privacy damage inflicted by ac-
cidental data leakage or breaches in one institution and second to lessen the legal
burdens and supporting compliance of the participating institutions by provid-
ing strong privacy guarantees allowing smaller medical facilities to participate
in the kidney exchange.

Of course, medical questions are often outside of full algorithmic evaluation. It
is important to note, that medical professionals must evaluate the results of any
algorithmically determined treatment plan and the algorithm should allow the
flexible adaptation to situational necessities and updatedmedical guidelines.

This chapter describes the design and implementation of Secure and Private Investi-
gation of the Kidney Exchange problem (SPIKE), a distributed privacy-preserving pro-
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Figure 4.1: Overview of the Privacy-
Preserving Kidney Exchange Protocol
SPIKE and its algorithmic parts. It cal-
culates the best set of exchange cycles—
that is accommodating the most pa-
tients while achieving the highest com-
bined success probability—while keep-
ing the patients’ data strictly private.
This figure was created by the author
and used in Birka et al. (2022), licensed
under CC-BY.
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tocol for solving the Kidney Exchange Problem (KEP) assuming the semi-honest se-
curity model. It draws upon the work submitted for publication in BIrKA, T.,
HAmACHEr, K., KUSSEL, T., MöLLErInG, H., SCHnEIDEr, T. (2022) “SPIKE:
Secure and Private Investigation of the Kidney Exchange Problem”. Submitted to
BMCBioinformatics andDecisionMaking. The author was deeply involved in nearly
every aspect of the described work, notable exception being the implementa-
tion done by T. Birka, but otherwise contributing significantly to the design, ex-
perimental setup, and manuscript of the publication, as well as supervising T.
Birka jointly with H. Möllering. SPIKE improves the medical quality of the re-
sults by considering more compatibility factors than the current state-of-the-
art5, namely, age, sex, human leukocyte antigens, and weight. By considering5 Breuer, Meyer, Wetzel, and

Mühlfeld (2020); Breuer, Meyer, and
Wetzel (2022)

these factors, the risk of failing procedures is reduced increasing the robustness
of the solution.

To demonstrate practical runtimes, the open source implementation6 of SPIKE
6 Available under the GNU LGPL v3
license here: https://encrypto.de/
code/PPKE

is comprehensively empirically evaluated benchmarking runtime and communi-
cation costs. Due to the carefully optimized hybrid SecureMulti-Party Computation
(MPC) protocols using the ABY7 (cf. Section 2.3.7) framework, we achieve about7 Demmler, Schneider, and Zohner

(2015) 30,000× speedup over Breuer, Meyer, Wetzel, and Mühlfeld (2020) and 400×
over Breuer, Meyer, and Wetzel (2022).

4.0.1 RelatedWorks and current State of the Art

The kidney exchange system was introduced in 1991 in South Korea. In Europe,
the first kidney exchange programwas developed in 1999 in Switzerland8. Over8 Ellison (2014)

https://encrypto.de/code/PPKE
https://encrypto.de/code/PPKE
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the years many different research groups explored various aspects of the KEP.
Most solutions to the KEP are based on Integer Linear Programming (ILP), an op-
timization techniques often applied to graph problems. While there are some
works to provide privacy-preserving ILP solver and MPC graph algorithms, the
scale of the KEP is—currently—prohibitive for those techniques. Nevertheless,
all those works explore the problem space and thus relate to SPIKE. Further-
more, two works represent the current state-of-the-art with regard to privacy-
preserving kidney exchange protocols— Breuer, Meyer, Wetzel, and Mühlfeld
(2020) and Breuer, Meyer, and Wetzel (2022), both directly interested in the
privacy-preserving solution of the KEP.

Privacy-Preserving (I)LP SolverMOST WOrK ATTEmPTInG to solve ILP and related problems in the privacy-
preserving domain rely on substituting the discrete nature of integer ormixed lin-
ear programmingwith the linear relaxation, allowing continuous variables and so-
lutions. While the relaxed solution might not be a solution to the integer prob-
lem, it gives bounds for an exact solution while transforming theNP-hard ILP
problem into apolynomial bound computation. TwoearlyworkspublishedMPC-
based LP solvers using the Simplex algorithm—in a two-party outsourced compu-
tation scenario9 and in a “true” n-party computation10 (the latter even providing 9 J. Li and Atallah (2006)

10 Toft (2009)information theoretic security). While being prohibitively slow for real-world
dataset and constraint set sizes, other researches improved upon these solutions,
e.g., by utilizing a fixed-point transformation to trade accuracy against runtime
performance11. Lastly, the research linked to the European SecureSCM program, 11 Catrina and Hoogh (2010)

researching algorithms for secure, distributed supply chainmanagement, devel-
oped efficient solutions based on problem transformation and the design of a do-
main specific programming language12. However, none of these works provide 12 Schroepfer, Kerschbaum, and

Mueller (2010); Kerschbaum et al.
(2011); Dreier and Kerschbaum (2011)

the ILP solution capabilities needed for solving the KEP.

Privacy-Preserving Graph Frame-
works

THE PUBLICATIOn OF “Graphsc”13 started the research inMPC-based graph al-

13 Nayak et al. (2015)
gorithms. The body of work is mostly focused on graph parallel algorithms, that
is distributed computation on graph structures where vertices perform compu-
tations and diffusing the results, potentially for usage in multiple computation
rounds. Examples for algorithms implementable in a graph parallel fashion are
matrix factorization, histogram calculations, PageRank calculation, and (paral-
lel) Breadth-First Search (BFS). Themain computation paradigm is themessage pass-
ingwith three distinct phases: First, in the scatter phase, each vertex distributes—
scatters—its own data. Second, in the gather phase, each vertex gathers the data
scatteredby incidentverticesand, third, applies it to its internal computationstate.
Hence, this paradigm is sometimes called SGA and is used in (parallel) big data
architectures such as MapReduce. One benefit of oblivious graph structure over
Oblivious Random Access Memory (ORAM) schemes is the vastly improved perfor-
mance.

Since Graphsc14 many improvements have been achieved, for example perfor- 14 Nayak et al. (2015)

mance optimizations by allowing differentially private leakage of vertex degree
information15, introducingarithmetic circuitswith four-party computation16, or 15 Mazloom and Gordon (2018)

16 Mazloom, P. H. Le, et al. (2020)recently, by replacing secure sort with secure shuffle operations17.
17 Araki et al. (2021)
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Robustness of Exchange Cycles THEPOTEnTIALCAnCELLATIOn of transplantations after the determination of
(approximately) optimal exchange cycles is a major concern in kidney exchange
programs. Many reasons can lead to the cancellation of a procedure: frommedi-
cal professionals overruling the algorithmically determined compatibility, logis-
tical issues, or a donor’s consent withdrawal, e.g., because “his” original incom-
patible recipient already received a deceased donor organ18.18 Pansart et al. (2014)

Tomitigate these disruptions, a solution to the KEPmust be as robust as possible,
that means that either the probability of a failing donor-recipient connection is
reduced or the algorithm shows resilience towards these disruptions and can re-
cover.

CArVALHOET AL.19 pursue the second solution and propose three policies to al-19 Carvalho et al. (2021)

low the mitigation of or recovery from dropouts within an exchange cycle. The
first policy penalizes uncertainty in the success of a procedure, thus taking the
costs—including opportunity costs—of failing edges into account. The other two
policies propose recovery strategies to reduce the impact of failing edges. All pre-
sented algorithms are computationally expensive rendering themunsuitable for
theMPC adaptation.

ASHBY ET AL.20 examine the importance of many demographic and (bio) medi-20 Ashby et al. (2017)

cal factors, such as age, sex, obesity, weight, height, number of HLAmismatches
andblood type based onover 230,000kidney-only transplants. The results of this
systematic exploration are published in form of a kidney graft survival probabil-
ity calculator.

SPIKE increases the robustness by including themost important factor identified
by Ashby et al. (2017), thus decreasing the risk of misjudgments in the algorith-
mic compatibility determination. Furthermore, we follow the recommendation
of Pansart et al. (2014) to use cycle length of only two or three to reduce the im-
pact of failing edges. While this reduction in cycle length benefits the logistical
challenges of the kidney exchange—according to best practices21 all procedures21 Abraham, Blum, and Sandholm

(2007) of one exchange cycle should be performed simultaneously—the “vertex cover-
age” of the found solutions decrease22.22 Ellison (2014)

Privacy-Preserving Kidney
Exchange Protocol

TWO PUBLICATIOnS BY BrEUEr, MEYEr, WETZEL, AnD MüHLFELD 23 de-

23 Breuer, Meyer, Wetzel, and
Mühlfeld (2020); Breuer, Meyer, and
Wetzel (2022)

scribe decentralized privacy-preserving protocols for the KEP in a semi-honest
security setting.

Privacy-preserving KEP with HE. The first Privacy-Preserving Kidney Exchange Protocol
(PPKEP)24 is based onHomomorphic Encryption (HE)25, more specifically a thresh-24 Breuer, Meyer, Wetzel, and

Mühlfeld (2020)

25 See Section 2.3.9

old variant of the Paillier cryptosystem26. Each donor–recipient pair is instanti-

26 Fouque, Poupard, and Stern (2000)

ated as a computing party, effectively creating a HE-basedMPC protocol.
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The protocol uses an extensive pre-computation phase to generate an ensemble
of all possible exchange graph configurations. Although user configurable, the
work examines cycles of length L = 2 and L = 3. The compatibility graph adja-
cencymatrix is calculated in the joint computationusingHumanLeucocyteAntigens
(HLA)-crossmatch and ABO blood type compatibility as edge connection crite-
ria. This resulting adjacency matrix is compared to the pre-computed ensemble
and the graph with maximum size is delivered as the protocol’s output. Unfor-
tunately, the runtimes of the protocol prohibit the real-world application. Due
to the protocol’s exponential runtime complexity with regard to the number of
pairs, the calculation takes 14 s for two pairs and 13h for nine pairs—the maxi-
mumnumber of pairs benchmarked in the publication.

Privacy-preserving KEP with Shamir’s Secret Sharing. Concurrently with the develop-
ment of SPIKE, BrEUEr, MEYEr, AnD WETZEL 27 introduced a PPKEP for 27 Breuer, Meyer, and Wetzel (2022)

crossover kidney exchanges—avariation searching for the one best exchange pair for
each pair, effectively evaluating cycles of lengthL = 2. For that it uses the graph
matching algorithm by PAPE AnD COnrADT 28. This limitation enables amore 28 Pape and Conradt (1980)

efficient protocol design, leading to polynomial runtime complexity. The system
is complimented by protocols for an online mode, allowing the addition and re-
moval of donor–recipient pairs without complete recalculation of the exchange
graph. The PPKEP is implemented using the MP-SPDZ MPC framework29 and 29 Keller (2020)

its implementation of semi-honest Shamir’s Secret Sharing (SSS). It reduces the run-
time for 15pairs and cycle lengthL = 2 from 8.5h in Breuer, Meyer, Wetzel, and
Mühlfeld (2020) to 30min.

Our privacy-preserving KEP protocol SPIKE allows freely configurable cycle
length, results in medically better (and robuster) solutions by including four
additional biological factors, and outperforms both state-of-the-art protocols
in comparable parameter and network settings by several orders of magnitude.
The increased performance is achieved by efficiently combining three MPC
techniques and carefully designing optimized circuits (described in Section 4.2).

4.1 MEDICAL COnSIDErATIOnS FOr KIDnEY TrAnSPLAnTATIOnS

The first successful surgical replacement of a dysfunctional kidneywas achieved
195430. Onemajor factor for the positive outcome of this procedurewas, that the 30 Hatzinger et al. (2016)

patient had an identical twin brother voluntarily donating one functioning or-
gan31. Since then, new procedure methods and drug treatments allow the trans- 31 Leeson and S. P. Desai (2015)

plant between unrelated donors and recipients, however,many factors influence
themedical compatibility and survival rate post transplant.

Patients in need of a kidney replacement treatment suffering from certain
diseases—HIV, hepatitis B and C, cytomegalie, and the Eppstein-Barr virus, for
example—can only receive organs from a donor with the same condition. Pa-
tients requiringbothkidneyand liver transplants aremost of the time ina special
waiting list, as it is beneficial to replace both organs simultaneously. Further-
more, anatomical considerations come into play, like the exact position of vein
connections. Most of these aspects must be evaluated by medical specialists on
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a case-by-case basis, however some criteria may be evaluated algorithmically to
generate a set of potential candidates to be evaluated by experts.

Human Immune System MOST CrITErIA SPIKE evaluates to determine the medical compatibility be-
tween donors and recipients are related to a possible immunological rejection
of the transplant. Every human is in possession of two immune systems, an in-
nate, static system which is fully developed at birth, and an adaptive, dynamic
system which evolves during the lifetime due to the exposure to pathogens32—

32 And, in pathological cases, due to the
exposure to endogenous substances—
leading to autoimmune disorders.

harmful substances, organisms and viruses. Special types of white blood cells—
lymphocytes—are primarily responsible for the adaptive immune system’s func-
tion. Lymphocytes detect exogenous substances, potential pathogens, by special,
identifyingmolecular structures on the surface of those substances—antigens. By
producing antibodies, antigen-specific molecules that can attach to those struc-
tures, they prevent the pathogens from docking, thus inhibiting their harmful
effect33. However, antigens do not only exist on pathogens but are naturally pro-33 Alberts et al. (2002)

duced endogenousmolecules as well.

4.1.1 Prohibitive Immunological Compatibility

SPIKE follows evidence-based guidelines to assess the immunological compati-
bility between donors and recipients. While most immunological criteria grad-
ually influence the probability of a successful transplant, SPIKE uses one assess-
ment as a compatibility prohibitive factor: a positive HLA crossmatch.

Human Leukocyte Antigens (HLA)
crossmatch THE ImmUnOLOGICAL “FInGErPrInT” recognized as normal, the “default”

antigens, is genetically determined. One important group of antigens in that re-
gard, theHumanLeucocyteAntigens (HLA), are genetically encoded in theMajorHis-
tocompatibiliy Complex on the sixth chromosome (with one exception encoded on
chromosome 15). The HLA are grouped into classes and further split into groups
according to their loci34 and site of expression35. Only classes I and II encode34 Sung (2007)

35 Nguyen (2021) HLA and are of interest for transplantation immunology.

SPIKE assesses the general compatibility between recipients and donors by per-
forming an HLA crossmatch—the matching of the donor’s human leukocyte anti-
gens to the recipient’s corresponding human leukocyte antibodies36. A positive36 Eurotransplant (2018)

HLA crossmatch means, that the transplantation would cause a severe immune
reaction including possible allograft rejection and death37. While an accompany-37 Lefaucheur et al. (2010); Ntokou et al.

(2011) ing treatment with modern immunosuppressant drugs might provide a chance
of successfully performing such a procedure38, such specialized cases are not in38 Santos et al. (2014)

scope of an automated algorithmic evaluation.

As recommended by Eurotansplant’s guidelines39, SPIKE considers the HLA39 Eurotransplant (2018)

groups most frequently screened for kidney replacement therapy40: HLA-A, -B,40 Eurotransplant (2018)

and -DR. Additionally, the HLA-DQ antigens are considered, as they are linked
to post-operative antibody-mediated rejection events41. The list of HLA consid-41 Leeaphorn et al. (2018)

ered in the default configuration is shown in Table 4.1, although this list is user
configurable.
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Class I Class II

HLA-A HLA-B HLA-DR HLA-DQ

A23 B38 B60 DR11 DQ5
A24 B39 B61 DR12 DQ6
A25 B44 B62 DR13 DQ7
A26 B45 B63 DR14 DQ8
A29 B49 B64 DR15 DQ9
A31 B50 B65 DR16
A32 B51 B71 DR17
A33 B52 B72 DR18
A34 B54 B75
A66 B55 B76
A68 B56 B77
A69 B57
A74 B58

Table 4.1: HLA assessed in SPIKE’s
donor–recipient compatibility testing.

4.1.2 Match quality estimation

In addition to the prohibitive compatibility estimation using HLA crossmatch-
ing, a multitude of other factors influence the probability of allograft rejection.
To generate amedicallymoremeaningful, gradual compatibility estimation than
using HLA crossmatching alone, we process additional factors, based on the em-
pirical findings of ASHBY ET AL.42: 42 Ashby et al. (2017)

(i) HLA match. Not only the human leukocyte antigen/antibody combination in-
fluences the probability of antibody-mediated organ rejection, but the simi-
larity of the donor–recipient “HLA footprint” as well. If the donor expresses a
subset of the recipient’s HLA, the probability of a successful organ transplant
is increased. The higher the number of “mismatches”, the higher the risk that
the recipient will develop antibodies against the donors HLA in the future43. 43 Opelz and Döhler (2012)

HLAmismatchesarenotanexclusioncriterion. Treatedwith immunosuppres-
sants the rejectionprobability canbe lowered. However, the usage of immuno-
suppressants itself is linked to possible adverse health effects44. Mismatches 44 Opelz (1997); Lim et al. (2012)

involving the HLA-DQ group are particularly linked to antibody-mediated re-
jections45. 45 Leeaphorn et al. (2018)

As eachHLA group is encoded in one locus, each person can only inherit up to
twoHLAper group46, meaning that per group atmost twomismatches can oc- 46 Nguyen (2021)

cur. Having no mismatches is a very rare case, usually only occurring in twin
donor–recipient pairs. We group the number of mismatches into four groups:
0 mismatches, 1 to 2 mismatches, 3 to 4 mismatches, and 5+ mismatches47. 47 Opelz and Döhler (2012)

The last group shows a more than 6% cumulative risk for death with a func-
tioning graft during the first year.

(ii) ABO blood type. The blood type in the ABO system is dependent on the pres-
ence or absence of two different antigens on the surface of the red blood cells
leading to four combinations. The relative frequency of the blood types varies
across different populations. The absence of both type A and type B anti-
gens mark blood type O (a universal donor), the presence of both mark blood
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typeAB (auniversal recipient), and thepresenceof onlyonemarkblood typeA
and B, respectively. The immune reaction caused by the contact of incompati-
ble blood results in blood clumping andpossibly failing transplants—the com-
patibility between types is shown in Table 4.2. While 43 systems describing
blood types are listed48 by the International Society forBloodTransfusion49—

48 As of 06.04.2022
49 ISBTWorking Party for Red Cell Im-
munogenetics and Blood Group Termi-
nology (2021)

themost important ones beingABO,Rh, andKell system—SPIKEonly consid-
ers the (most important) ABO blood type.

By draining all blood residues and pre-treating the donor organ, ABO incom-
patible organ transplants are feasible. In thefirst year after theprocedure they
show a higher risk of adverse reactions such as severe viral infections, post-
operative bleeding, or antibody-mediated rejections. However, excluding this
first year, long-term survival rates are comparable to ABO compatible donor–
recipient pairs50.50 Weerd and Betjes (2018)

Table 4.2: ABO blood transfusion com-
patibility

Blood Group Can Receive From Can Donate To

O O O, A, B, AB
A O, A A, AB
B O, B B, AB
AB O, A, B, AB AB

(iii) Age. Age disparity between organ donors and recipients influence transplant
survival rates51. By observing the outcomes in all combinations of two age51 Waiser et al. (2000)

groups—junior participants aged below 55 years and senior participants aged
55 years or above—intra-categorical transplant showed the highest survival
rates. Junior donors and senior recipients showed the next best outcomes and,
finally, pairings with senior donors and junior recipients fared worst.

(iv) Sex. ZHOUA ET AL.52 examined the influence of donor and recipient sexes on52 Zhoua et al. (2013)

the transplant failure probabilities. The lowest survival rates witnessed for
male recipient receiving female donor organs. The best chances for a success-
ful transplant were observed for same-sex donor–recipient pairs, closely fol-
lowed by female recipients receivingmale donor organs.

(v) Weight. Clinical observations show higher allograft loss rates for recipients
who receive an organ from a significantly lighter donor53. According to EL-53 Miller et al. (2017)

AGrOUDY ET AL.54, this is causally linked as the donated kidney of a lighter54 El-Agroudy et al. (2003)

donormight be unable to support sufficient organ function in a heavier recip-
ient’s body.

4.2 DESIGn AnD ImPLEmEnTATIOnOF SPIKE

The formal objective for SPIKE is to fulfil the ideal functionality shown in Fig-
ure 4.2 in a provably secure fashion, while satisfying additional functional re-
quirements. The ideal functionality to be translated into aMPCprotocol assumes
a perfectly ideal Trusted Third Party (TTP). Hospitals send their patients’ medical
and demographic data to the Trusted Third Party (TTP) which calculates exchange
cycles that a) include themost pairs and b) exhibit the highest (aggregated) prob-
ability for transplant success. Finally, the TTP returns for each recipient the in-
formation about their donor to the respective medical institution. Note, that the
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evaluation bymedical experts is—of course—still required. We strive to acceler-
ate the process, hence, help in fairly maximizing the available resources such as
medical personnel, time, and donor organs.

IDs Ideal TTP

IDsIDs

IDs

Figure 4.2: Ideal Functionality for a
secure privacy-preserving Kidney Ex-
change Problem (KEP). This figure was
createdby the author andused in Birka
et al. (2022), licensed under CC-BY.

Functional RequirementsAS SAID ABOVE, the list of functional requirements for a successful PPKEP in-
cludes more than the implementation of the ideal functionality. We propose the
following requirements for a secure privacy-preserving KEP protocol:

• Privacy. The privacy-preserving KEP protocol must implement the same
functionality asdescribed in the ideal functionalitywithout relyingonaTTP—
that is it must not leak any information beyondwhat can be inferred from the
output.

• Efficiency. The privacy-preserving KEP protocol must achieve practical effi-
ciencywith respect to communication and computation. Itmust be able to run
typical workloads in appropriate time on (the domain’s) standard server hard-
ware.

• Decentralization. The sensitive medical data of donors and recipients must
not leave the respectivemedical institutions. Theprivacy-preservingKEPpro-
tocolmust be conducted fully decentralized. This complies with the datamin-
imization principle.

• Adaptability for Medical Experts. The privacy-preserving KEP protocol
must be adaptable for medical experts to react to case-specific requirements
and updated treatment guidelines. The protocol must be easily extendable to
new factors and HLA groups while allowing the adjustment of their selection
and relative importance.

SPIKE is designed to fulfill all above requirements.

4.2.1 Protocol Overview

SPIKE performs four separate algorithmic parts as displayed in Figure 4.1. In
addition to conforming to the “separation of concerns” principle55, this allows 55 Dijkstra (1982)
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storing (secret shared) intermediate values to reduce memory consumption and
speeding up parts of the calculation. It is possible, for example, to calculate the
best solution for multiple cycle lengths without re-calculating the compatibility
graph. Due to this design, SPIKE is able to operate in a dynamic setting similar to
the online systemmode in Breuer, Meyer, and Wetzel (2022).

The first phase—the compatibility matching—generates the (weighted) adjacency
matrix of the compatibility graph by evaluating the donors and recipients of
all pairs according to the six biomedical factors introduced in Section 4.1. The
second phase—cycle detection—calculates the total number of occurring cycles in
the graph. Next, the cycle evaluation phase calculates the combined weight—that
is transplant success probability—for each cycle and, finally, the forth phase—
solution evaluation—finds the best set of (vertex-) disjoint cycles.

4.2.2 CompatibilityMatching

The construction of the compatibility graph is performed by calculating the pair-
wise medical compatibility as a weighted sum (see Protocol 4.1). The evaluation
of each medical factor—HLA mismatches, ABO, age, sex, and weight—are de-
scribed in Subprotocols D.1 to D.5 in Appendix D.1. By weighting the individual
contributions, medical examiners can exclude certain criteria and modify their
individual relative importance. Note, that the circuit is built independently of
the actual inputs. This implies, that the edge weights must be calculated for ev-
ery vertex pair—that is |pairs| ·(|pairs|−1) times as generally compGij 6= compGji

and self loops are forbidden by construction. Depending on the result of theHLA
crossmatch (Subprotocol 4.1)—the prohibitive compatibility factor—the respec-
tive entry in the adjacency matrix is set to the calculated weight or zero. The
weighted sum evaluation contains five multiplications and additions per adja-
cency graph entry, hence, this protocol is evaluated in Arithmetic Sharing (A)
requiring conversions for the results of the compatibility evaluations.

Protocol 4.1: Protocol
computeCompatibilityGraph
computes the adjacency matrix of the
compatibility graph. Note, that all
compatibility factors are evaluated
regardless of the HLA crossmatch
status.

1 Function computeCompatibilityGraph(⟨pairs⟩B , ⟨w⟩A):
2 ⟨compG⟩A ← matrix ∈ {⟨0⟩A}|pairs|×|pairs|

3 for i = 1 . . . |pairs| do
4 for j = 1 . . . |pairs| do
5 d← pairs[i].d ; // Extract donor
6 r ← pairs[j].r ; // Extract recipient
7 ⟨edge_w⟩A ← ⟨1⟩A+

8 ⟨w⟩A[0] · b2a(evalHLA(⟨d.hla⟩B, ⟨r.hla⟩B))+
9 ⟨w⟩A[1] · b2a(evalABO(⟨d.bg⟩B, ⟨r.bg⟩B))+

10 ⟨w⟩A[2] · b2a(evalAge(⟨d.a⟩B, ⟨r.a⟩B))+
11 ⟨w⟩A[3] · b2a(evalSex(⟨d.sex⟩B, ⟨r.sex⟩B))+
12 ⟨w⟩A[4] · b2a(evalWeight(⟨d.weight⟩B, ⟨r.weight⟩B))
13 ⟨compG⟩A[i][j]← b2a(matchHLA(⟨d.hla⟩B, ⟨r.ahla⟩B) > ⟨0⟩B ?
14 a2b(⟨edge_w⟩A) : ⟨0⟩B)

15 return ⟨compG⟩A

While the HLA crossmatch functionality in Subprotocol 4.1 is straight forward,
two opportunities for optimized circuit generation arise: All |HLA| AND gates in
the first “loop” can be vectorized in a single Single InstructionMultiple Data (SIMD)
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instruction. Furthermore, the foldof the resultingbit vector is constructedasabi-
nary tree to reduce the circuit’smultiplicativedepth from |HLA|+1 to log2(|HLA|).
The output is inverted to align the boolean value to the semantic meaning. Due
to the shallow construction of the circuit it is evaluated using Boolean GMW (B).

1 Function matchHLA(⟨HLAd⟩B, ⟨aHLAr⟩B):
2 ⟨comp⟩B ← [⟨0⟩B]|HLA|

3 for i = 1 . . . |HLA| do // SIMD
4 ⟨comp⟩B[i]← ⟨hlad[i]⟩B ∧ ⟨ahlar[i]⟩B

5 ⟨combined⟩B ← ORTree(⟨comp⟩B)[1]
6 return¬⟨combined⟩B

Subprotocol 4.1: The matchHLA subpro-
tocol determines general compatibility
between donor and recipient by per-
forming an HLA crossmatch.

4.2.3 Cycle Computation

To increase the efficiency of the following algorithmic parts of SPIKE, it is impor-
tant to calculate (and reveal) the total number of cycles in the given compatibility
graph. This provides a—in most cases—much smaller upper bound for loops it-
erating over cycles compared to the theoreticalmaximumnumber of cycles. This
calculation is performed in Protocol 4.2.

1 Function determineNumberCycles(⟨compG⟩A):
2 ⟨compG⟩B ← a2b(⟨compG⟩A)

3 ⟨uG⟩A ← removeWeights(⟨compG⟩B)
4 ⟨cG⟩A ← pow(⟨uG⟩A, cLen)
5 ⟨|cycles|⟩A ← ⟨0⟩A

6 for i = 1 . . . |pairs| do
7 ⟨|cycles|⟩A ← ⟨|cycles|⟩A + ⟨cG⟩A[i][i]

8 return ⟨|cycles|⟩A

Protocol 4.2: determineNumberCycles
calculates thenumberof cycles existing
in the compatibility graph.

The technique for cycle count computationbycalculatingpowersof theadjacency
matrix (cf. Section 2.1.3) onlyworkswith unweighted—that is binary—adjacency
matrices. Hence, the weighted matrix is stripped of its weights using Subproto-
col D.6 and then raised to the cLen-th power. For the exponentiation a naïve ma-
trixmultiplication is used, as this algorithmic part’s performance—even though
exhibiting a cubic runtime complexity—is small compared to the following two
parts (cf. Section 4.3.2). The number of cycles containing the respective vertex
are encoded in the diagonal elements of the resultingmatrix, hence the trace con-
tains an upper bound for the total number of cycles in the graph. As a result of
duplicate counting—cyclically shifted loops56 are counted multiple times, even

56 For example cycles (A,B,C) and
(B,C,A) are the same, while (A,C,B)
differs from those.

though enumerating the same cycle—it is only an upper bound. The duplicates
are pruned later. Note, that even though the trace calculation could have been
performed in a binary tree structure the costs associated with the additions are
already negligible inA sharing.

4.2.4 Cycle Evaluation

The third phase is concerned with filtering out all duplicate cycles and finding
the most promising (unique) cycles in the graph—based on transplant success
probability.
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Protocol 4.3: The central protocol of
SPIKE’s third phase, evaluateCycles,
removes duplicate cycles and finds the
most promising cycles in the graph.

1 Function evaluateCycles(⟨compG⟩Y):
2 ⟨allCycles⟩Y , cCycle← ∅
3 for i = 1 . . . |pairs| do
4 cCycle.append(i)
5 ⟨allCycles⟩Y ← findCycles(⟨compG⟩Y , cCycle,
6 ⟨allCycles⟩Y , ⟨weight⟩Y , ⟨valid⟩Y)
7 cCycle.remove()

8 |allCycles| ← totalCycles()
9 ⟨sortedCycles⟩Y ← kNNSort(⟨allCycles⟩Y , |cycles|)

10 |unique| ← ⌊ |cycles|
cLen ⌋

11 ⟨filteredCycles⟩Y ← removeDuplicates(⟨sortedCycles⟩Y)
12 return ⟨filteredCycles⟩Y

Protocol 4.3 is the central protocol of SPIKE’s cycle evaluation phase. First it cal-
culates recursively the (aggregated) cycle weight for all cycles and all “start” ver-
tices (Subprotocol 4.2). This resulting list of all (weighted) cycles still contains
duplicate cycles. As the de-duplication of cycles (Subprotocol D.8) is computa-
tionally expensive, the set of cycles is first partially sorted and reduced to the k
“best” cycles with the largest combined edge weights (Subprotocol D.7)57.

57 The kNN circuit is inspired by Järvi-
nen et al. (2019).

The first subprotocol—Subprotocol 4.2—creates a list of all cycles in the graph—
duplicates included—with length cLen togetherwith their combined edgeweight.
This cycleweight is ameasure of the cycle’s success probability. Note, that nonor-
malization is required for thisweight, as thepossiblemaximumweight is onlyde-
pendent on the length of the cycles and this length is the same for all cycles. This
means, that all weights are relatively comparable and in the same scale without
the need of a (computationally expensive) division.

Without being able to rely on often employed graph traversal techniques such
as vertex coloring, SPIKE’s MPC protocol must exhaustively inspect all paths of
length cLen, checking whether it is a “valid” cycle—that is a closing edge exists—
after cLen− 1 edges. For best efficiency, this circuit is called recursivelywith par-
allel execution for each starting vertex. However, this requires to pass each call
the index of the current cycle cCycle, the current secret shared weight 〈weight〉Y ,
a secret shared edge counter 〈valid〉Y indicating when the desired cycle length
is reached, and the output vector 〈allCycles〉Y to which all valid cycles and their
weights are appended. As this subprotocol is somewhat complex, wewill explain
it inmore detail.

The first check testes, whether the currently examined cycle already reached the
desired length. If it has, the weight of the last edge is added to the cycle weight,
and it is checked, whether the considered, closing edge is present in the graph.
Invalid, open “cycles”—better called paths—are given a cycle weight of 0. As they
do not contribute to the solution’s optimizationmetric, they are, thus, never con-
sidered again. After appending the cycle to the 〈allCycles〉Y vector, the previous
steps—the addition of the weight and counting of the edge—are reverted to pre-
pare all parameters for the next call analyzing a different edge.
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1 Function findCycles(⟨compG⟩Y , cCycle, ⟨allCycles⟩Y , ⟨weight⟩Y , ⟨valid⟩Y):
2 if |cCycle| == cLen then
3 ⟨weight⟩Y ← ⟨weight⟩Y + ⟨compG⟩Y [cLen− 1][0]

4 ⟨valid⟩Y ← ⟨compG⟩Y [cLen− 1][0] > ⟨0⟩Y ?
5 ⟨valid⟩Y + ⟨1⟩Y : ⟨valid⟩Y

6 ⟨addC⟩Y ← ⟨cLen⟩Y == ⟨valid⟩Y

7 ⟨cWeight⟩Y ← ⟨addC⟩Y ? ⟨weight⟩Y : ⟨0⟩Y

8 ⟨cycle⟩Y ← ⟨cCycle⟩Y

9 ⟨allCycles⟩Y .append((⟨cWeight⟩Y , ⟨cycle⟩Y))
10 revert()
11 ⟨weight⟩Y ← ⟨weight⟩Y − ⟨compG⟩Y [cLen− 1][0]

12 ⟨valid⟩Y ← ⟨compG⟩Y [cLen− 1][0] > ⟨0⟩Y ?
13 ⟨valid⟩Y − ⟨1⟩Y : ⟨valid⟩Y

14 else
15 if cCycle.contains(i) then
16 continue

17 else
18 ⟨weight⟩Y ← ⟨weight⟩Y + ⟨compG⟩Y [−1][i]
19 ⟨valid⟩Y ← ⟨compG⟩Y [−1][0] > ⟨0⟩Y ?
20 ⟨valid⟩Y + ⟨1⟩Y : ⟨valid⟩Y

21 cCycle.append(i)
22 ⟨allCycles⟩Y ← findCycles(⟨compG⟩Y ,
23 cCycle, ⟨allCycles⟩Y , ⟨weight⟩Y , ⟨valid⟩Y)
24 cCycle.remove()
25 revert()
26 ⟨weight⟩Y ← ⟨weight⟩Y − ⟨compG⟩Y [−1][i]
27 ⟨valid⟩Y ← ⟨compG⟩Y [−1][0] > ⟨0⟩Y ?
28 ⟨valid⟩Y − ⟨1⟩Y : ⟨valid⟩Y

29 return ⟨allCycles⟩Y

Subprotocol 4.2: Subprotocol
findCycles performs the “heavy
lifting” by recursively evaluating the
“cycleness” of all paths of length cLen
and calculating an aggregate cycle
weight in case of a closed loop.
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Cycles that have not reached the desired length yet are first checkedwhether the
current vertex is already part of the cycle. This is possible, because all paths of
length cLen are evaluated. As we only allow vertex disjoint cycles, these cycles
are discarded. Otherwise, the new vertex is added, the cycle weight is increased
by the weight of the edge between the last vertex and the current, and 〈valid〉Y is
set according towhether or not the edge exists in the graph. Next, a recursive call
to findCycles happens to evaluate the subsequent possible edges. As in the last
paragraph, the “state” of all parameters is reverted to allow the evaluation of the
other possible edges. Finally, after all calls succeeded, 〈allCycles〉Y contains all cy-
cles and their associated cycle weights, including cyclic rotations of the vertices.

The removal of duplicate cycles (Subprotocol D.8 in Appendix D.1) works effi-
ciently, because both cLen and |cycles|, the total number of cycles in the graph,
calculated in part two58 of SPIKE, are public knowledge. It reduces the vector of

58 See Protocol 4.2 all cycles to#unique = b#cycles
cLen cunique cycleswhere thefirstk elements are sorted

according to decreasing cycleweight—that is the highest cycleweight in the first
position. The public revelation of the total number of cycles |cycles| is considered
acceptable, as it only reveals a very high-level property, aggregated over all ver-
tices, thus, not revealing information regarding the compatibility graph’s topol-
ogy59.

59 Except for fully connected or empty
graphs—scenarios not at risk of leak-
ing sensitive data. The recursive execution and large amount of branching leads to multiplicatively

deep circuits. For example, findCycles (Subprotocol 4.2) exhibits a depth of or-
derO(|allCycles| × |cycles| × cLen). All (sub-)protocols in this algorithmic part of
SPIKE exhibit a high depth, which is why this complete part is evaluated using
Yao’s Garbled Circuit (Y).

4.2.5 Solution Evaluation

In the last part of SPIKE, the found cycles are combined to a complete solution
with locally optimal combinedweights. The calculation of a globally optimal solu-
tion is proven to be a NP-hard problem60, hence today computationally out of60 Biró and Cechlárová (2007)

reach for numbers of participants relevant in practical application. Donors and
recipients can only participate in one exchange cycle, that means that the solu-
tion set may only include vertices with either degree zero or two.

Protocol 4.4 describes this functionality. It delegates the determination
whether a potential cycle contains already included vertex to disjointSet
(Subprotocol D.10) and the choice of the best solution from the set of candi-
dates to findMaximumSet (Subprotocol D.11). The performed tasks are mostly
comparison-based “bookkeeping”, hence, the efficient comparisons in Y are
used.

4.2.6 Complexity Assessment

Table 4.3 shows the asymptotic runtime complexity for the four algorithmic
phasesof SPIKE.Overall, the runtimecomplexity ismost importantlydependent
on the number of pairs |pairs|, the number of consideredHLA |HLA|, the length of
cycles cLen, and the number of unique cycles |cycles|. Note, that the number of
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1 Function evaluateSolution(⟨filteredCycles⟩Y):
2 ⟨sets⟩Y ← ∅
3 ⟨weights⟩Y ← ∅
4 ⟨dummyC⟩Y ← {⟨|pairs|⟩Y}cLen

5 for i = 1 . . . |unique| do
6 ⟨tempSet⟩Y ← ∅
7 ⟨tempSet⟩Y .append(⟨filteredCycles⟩Y [i][2])
8 ⟨weight⟩Y ← ⟨filteredCycles⟩Y [i][1]
9 counter← 1

10 for j = 1 . . . |unique| do
11 if i == j then
12 continue

13 ⟨cCycle⟩Y ← ⟨filteredCycles⟩Y [j][2]
14 ⟨disjoint⟩Y ← disjointSet(⟨tempSet⟩Y ,
15 ⟨cCycle⟩Y)
16 ⟨vertices⟩Y ← ∅
17 ⟨vertices⟩Y .append(⟨disjoint⟩Y ?
18 ⟨cCycle⟩Y : ⟨dummyC⟩Y)
19 ⟨weight⟩Y ← ⟨disjoint⟩Y ? ⟨weight⟩Y : ⟨0⟩Y

20 ⟨tempSet⟩Y .append(⟨vertices⟩Y)
21 counter← counter + 1

22 ⟨sets⟩Y .append(⟨tempSet⟩Y)
23 ⟨weights⟩Y .append(⟨weight⟩Y)

24 return findMaximumSet(⟨sets⟩Y , ⟨weights⟩Y)

Protocol 4.4: Protocol evalSolution
combines possible cycles while check-
ing for cycle disjointedness and returns
the set of compatible cycles with the
highest combined weight.

cycles is indirectly dependent on the number of pairs, however by revealing the
upper bound of cycles in the graph in phase two (cf. Protocol 4.2), we are not re-
quired to evaluate all

(
n
L

) (L−1)!
2 theoretically possible number of cycles61. Also

61 The proof of this equation is straight
forward: letCL

i beacycleof lengthL =
cLen starting (and stopping) at vertex i:
CL

i = (i → [j → k → . . . →
ℓ] → i), where i, k, ℓ are the other ver-
tex indices in the cycle. Note, that the
first and last vertex are identical. In
the square bracket are L − 1 vertices.
Hence, there are (L − 1)!/2 possibili-
ties to cyclically shift the vertices in the
square brackets. Finally, there are

(n
L

)
possible ways to choose all p vertices of
a cycle, each having (L − 1)!/2 cyclic
shift variations.

note, that in the default configuration, |HLA| is 50.

Name Protocol Time Complexity

Part 1 CompatibilityMatching Subprotocol 4.1 O(|HLA|)
Subprotocol D.1 O(|HLA|)
Subprotocol D.2 O(1)
Subprotocol D.3 O(1)
Subprotocol D.4 O(1)
Subprotocol D.5 O(1)
Protocol 4.1 O(|pairs|2 × |HLA|)

Part 2 Cycle Computation Subprotocol D.6 O(|pairs|2)
Protocol 4.2 O(cLen× |pairs|3)

Part 3 Cycle Evaluation Subprotocol D.9 O(1)
Subprotocol 4.2 O(|pairs|cLen)

Subprotocol D.7 O(|cyclesSet| × k× cLen)
Subprotocol D.8 O(|cycles|2)
Protocol 4.3 O(|pairs|cLen)

Part 4 Solution Evaluation Subprotocol D.10 O(|cycles| × cLen)
Subprotocol D.11 O(cycles|2)
Protocol 4.4 O(|cycles|3 × cLen2)

Table 4.3: Complexity Assessment
of all (sub-)protocols composing the
SPIKE PPKEP.
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Composing all individual protocols and subprotocols to perform SPIKE’s full
functionality, SPIKE’s overall asymptotic runtime complexity becomes

O(|pairs|2 × |HLA|+ cLen× |pairs|3 + |cycles|3 × cLen2).

4.3 PErFOrmAnCE EXPErImEnTS

Togauge thepracticality of SPIKE,we evaluate theperformancemetrics of SPIKE
in experiments simulating a variety of application scenarios. Lastly, we exam-
ine SPIKE’s runtime performance in comparison with the current state-of-the-
art and inspect the runtime cost incurred by the extendedmedical compatibility
matching.

4.3.1 Test Setup

We benchmarked SPIKE’s performance in a lab environment using two servers
with Intel Core i9-7960X CPUs, 128GiB RAM each and a local 10Gbit/s network
connection with a median latency of 0.2ms. All reported measurements are av-
eraged over 10 runs.

SPIKE is designed for the application in different environments. This is reflected
in the benchmarks by providing experimental data for two different network set-
tings:WideAreaNetwork (WAN) and Local AreaNetwork (LAN). Additionally, SPIKE
is compared to the runtimeperformance of the current state-of-the-art62. As the62 Breuer, Meyer, Wetzel, and

Mühlfeld (2020); Breuer, Meyer, and
Wetzel (2022)

software implementation of their work was not available at the time of writing,
we replicated their publishednetwork settingwith 1Gb/s bandwidth and 1msof
latency and compared SPIKE with the published runtimes. The details and rea-
soning behind theWAN and LAN settings are given in Appendix B, the used net-
work parameters are shown in Table 4.4.

Table 4.4: Network parameters for the
experimental evaluation of SPIKE

Setting Bandwidth Latency

WAN 100Mbit/s 100ms
LAN 10Gbit/s 0.2ms
Comparison 1Gbit/s 1ms

4.3.2 Performance Benchmarks

The total runtime of SPIKE for varying numbers of pairs, the two described net-
work settings, and cycle lengthL = 2 andL = 3 are shown in Figure 4.3. The full
results are shown in Tables D.2 to D.7 in Appendix D.2.

For longer cycles—L ≥ 3—RAMusage limited the experimental evaluation. The
benchmarkswere performedup toRAMexhaustion and then extrapolated based
on a power-law fit of the observed experimental data63. The extrapolated graphs

63 All fits used the Trust-Region algo-
rithm and the model function f(x) =
axb + c with fit-determined param-
eters a, b and c. The model is based
on the complexity assessment in Sec-
tion 4.2.6.

are drawnwith a dashed line. The fit coefficients are shown inAppendixD.3. The
sudden runtime increase for L = 3 between 12 and 13 can be explained by the
occurrence of memory swapping with the associated performance hit.

Asexpected, apolynomial relationshipbetween thenumberofpairs and theover-
all runtime can be observed. ForL = 2 the calculation of 40 participating donor–
recipient pairs finishes in under 4min in the LAN setting, and in under 40min in
theWAN setting. This increase of aroundone order ofmagnitude between ahigh-
performancenetworkanda severelydegraded connectiondemonstrates the real-
world applicability of SPIKE across multiple deployment settings and even with
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Figure 4.3: Overall runtime of SPIKE
for cycle lengths L = 2 and L =

3 in both network scenarios. The
dashed line shows the extrapolated
power function forL = 3.

residential internet connections. For larger cycle lengths (L = 3) the runtime in-
creases significantly. Even then, the computation completes in around 1h for 25
pairs.

The separation of the overall runtime for L = 2 into the individual algorithmic
parts’ contribution inFigure4.4 shows, thatmedical compatibility testing, graph
creation, and the computation of the number of cycles quickly become negligi-
ble compared to cycle and solution evaluation. Note the logarithmic scale on the
y-axis. In an online mode of operation, where setup and online phase are exe-
cuted separately, a 134% performance increase can be achieved, as only the on-
line phase times are relevant in this scenario.
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Figure 4.4: Runtime composition of
SPIKE forL = 2 separated by algorith-
mic parts, protocol phase, and network
setting.
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Comparison to State-Of-The-Art FIGUrE 4.5 SHOWS THE overall runtimes of SPIKE for L = 2 and L = 3 in
comparison to the two implementations from BrEUEr, MEYEr, WETZEL, AnD
MüHLFELD 64 using the same network setting as published—1Gb/s bandwidth64 Breuer, Meyer, Wetzel, and

Mühlfeld (2020); Breuer, Meyer, and
Wetzel (2022)

and 1ms of latency. The first state-of-the-art implementation Breuer, Meyer,
Wetzel, and Mühlfeld (2020) uses a Pallier-based Threshold HE scheme and al-
lows the arbitrary choice of cycle lengths. The displayed runtimes correspond to
L = 3, the highest benchmarked cycle length in the original publication. The sec-
ond implementation— Breuer, Meyer, and Wetzel (2022)—only allows L = 2

and is based on a three-party semi-honest Shamir’s Secret Sharing (SSS) MPC pro-
tocol implemented using the MP-SPDZ65 framework. As both implementations65 Keller (2020)

are not publicly available, the performance data are taken from the referenced
publications.

Figure 4.5: Runtime comparison be-
tween thisworkwith cycle lengthsL =

2 and L = 3, and both Breuer,
Meyer, Wetzel, and Mühlfeld (2020)
(L = 3) and Breuer, Meyer, and
Wetzel (2022) (L = 2). All mea-
surements use a LAN network setting
with 1Gb/s bandwidth and 1ms la-
tency. The dashed line shows the ex-
trapolated power function for our algo-
rithm atL = 3.
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SPIKE and the SSS based state-of-the-art follow a polynomial pairs–runtime re-
lation, while theHE-based implementation scales exponentially. ForL = 3 and 9
pairs—themaximumnumberofpairs benchmarked in theoriginalpublication—
SPIKE achieves a 29,828× speedup. Compared to the SSS-based protocol and
L = 2, SPIKE achieves a 414× performance improvement.

Runtime Impact of Additional Med-
ical Factors

TO ImPrOVE THE robustness of the calculated solution—that is lower the prob-
ability of a failing edge—SPIKE compares more medical criteria for compatibil-
itydetermination thanall otherprivacy-preservingkidneyexchangeprotocols66.

66 See Section 4.1.2 Even though the performance impact of the compatibility assessment and graph
generation is negligible compared to the cycle and solution evaluation (cf. Fig-
ure 4.4), we experimentally compared the runtime difference between the two
compatibility criteria used by BrEUEr, MEYEr, WETZEL, AnD MüHLFELD
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and SPIKE’s full set of six criteria. As the graphs of the results displayed in Fig-
ure 4.6 show, both curves assume nearly the same slope after a short “transient
phase” for the full set of medial factors and small numbers of pairs. The “base-
line” runtime caused by the network delay is clearly observable in the graph of
theWAN network setting.
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Figure 4.6: Runtimes of the compati-
bility matching for L = 2 and both
the reduced set of criteria—as imple-
mentedby Breuer, Meyer, Wetzel, and
Mühlfeld (2020)—and SPIKE’s full set
of criteria. The remaining algorithmic
parts are not affected by this choice.

4.4 PrIVACY- AnD SECUrITY SETTInG

SPIKE is implemented using theABY67 framework for secure Two-Party Compu- 67 Demmler, Schneider, and Zohner
(2015)tation. It provides semi-honest security—a corrupted party is assumed to still

follow the protocol while trying to learn secret information—preventing against
two major security concerns: First, the inadvertent disclosure of sensitive data
or curious personnel. Second, in case of a security incident at one of the partici-
pating parties only this party’s data can be exfiltrated, compared to a centralized
computation where all datamight be disclosed.

The outsourcing scenario allows arbitrary numbers of data sources performing
the computation via two computation parties. As described in Section 2.3.6, this
adds a non-collusion assumption to the security model—if both computation par-
ties collude the security of the complete system is compromized—however, no
such assumption exists for the data sources. The privacy guarantees hold with
any numbers of colluding ormaliciously adversarial data sources. Of course, the
computationofa correct result relieson the truthful executionof theprotocol and
malformed inputsmight (very likely) lead to incorrect results. For details regard-
ingMPC’s place in a comprehensive data protectionmodel please see Section 2.2.
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Semi-honest security is certainly not sufficient for every application—for exam-
ple the European Data Protection Board recommends active security for compu-
tations with parties in different jurisdictions68. However, for the intended set-68 European Data Protection Board

(2021) ting of SPIKE, namely the joint computation among fixed, national medical in-
stitutions, semi-honest behavior and non-collusion can be enforced by law and
policy.

The primary security concern is the privacy of all patient’s data and their asso-
ciation to the numerous data sources. The number of donor–recipient pairs and
an upper bound of the total number of cycles in the graph are treated as public
information, substantially increasing the performance of the system. If in some
case the total number of patients is considered sensitive, it couldbeobfuscatedby
padding each party’s input to a fixed length using “dummy” entries—incurring
the expected performance hit due to a larger number of pairs than functionally
necessary.

4.5 OUTCOmE AnD PrOSPECTS

With SPIKE we introduced a protocol for the privacy-preserving solution of the
kidney exchange problem. Empirical data support the feasibility and applicabil-
ity of the protocol for real-world applications. SPIKE meets all proposed func-
tional requirements with regard to security and privacy, efficiency, decentral-
ization, and adaptability, flexibly supportingmedical professionals in the fulfill-
ment of their tasks.

More specifically, SPIKE enables the periodic batch-processing for cycle lengths
of L = 3with large numbers of donors and recipients involved. SPIKE achieves
a 30,000× and 400× speedup compared to the current state-of-the-art69 for cy-69 Breuer, Meyer, Wetzel, and

Mühlfeld (2020); Breuer, Meyer, and
Wetzel (2022)

cle lengths of L = 3 and L = 2, respectively, completing within a total runtime
of under 4min for 40 pairs at L = 2 and around 1h for 25 pairs at L = 3. The
real-world feasibility with regard to performance holds even under suboptimal
network connectivities, such as residential internet connections, allowing local
residential nephrology experts and regional hospitals to directly participate in
kidney exchanges. This could considerably increase the access and the quality
of rural kidney replacement care. As the protocol still requires substantial com-
munication sizes, the participation in a two-party computation using metered
or cellular data connections is not recommended. However, the participation as
a data source in an outsourced SPIKE computation over metered or cellular con-
nections is reasonable.

Privacy of patients’ medical and demographic data is the primary objective.
SPIKE’s security guarantees rely on formally defined assumptions of the hard-
ness of mathematical problems, protecting the input data using state-of-the-art
provably secure cryptographic techniques. By fully decentralizing the computa-
tion the privacy risk regarding data leaks both due to accidental data disclosure
as well as security incidents at one of the participating parties is substantially re-
duced. This holds especially in comparison to central data repositories and trust
agencies.
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As transplantation medicine is a complex and fast evolving field, the algorith-
mic evaluation must allow the flexible adjustment based on expert assessments.
SPIKE allows the weighting of the individual compatibility assessment subpro-
tocols and the modification and extension of considered HLA to react to specific
case requirements or updated evidence-based guidelines. By providing an open
source implementation and clear architectural boundaries, the addition of user-
defined criteria and functionalities is easily achievable.

While meeting all formal requirements, SPIKE leaves room for further improve-
ments and novel research opportunities. Due to the protocol’s optimization for
runtime performance, the highmemory consumption is expected. Furthermore,
largermedical institution are usually able to scale hardware without issues, nev-
ertheless, this is not ideal for residential experts and regional hospitals. By
developing algorithms for graph cluster batch processing and space-optimized
data structures, thememory utilizationmay be substantially lowered. The adop-
tion of recentMPC-based graph analysis and -structure approaches—ArAKI ET
AL.70, for example—might allow the inclusion of more advanced and more effi- 70 Araki et al. (2021)

cient graph algorithms for cycle detection, such as the Bellman-Ford71 or Floyd- 71 Bellman (1958); Ford Jr (1956)

Warshall72 algorithms. For L = 2 maximum matching algorithms, such as 72 Floyd (1962); Warshall (1962)

the Hungarian Method73, the Blossom74 algorithm, or the Hopcroft-Karp75 al- 73 Kuhn (1955)
74 Edmonds (1965)
75 Hopcroft and Karp (1973)

gorithm could be pursued. Lastly, for real-world adoption widespread medical
standards, such as HL7 FHIR R476, the addition of audit- and authentication ca-

76 https://www.hl7.org/fhir/R4/pabilities, the development of deployment packages, and full (legal) documenta-
tion must be pursued. However, as an academic research project resulting in a
prototypical software artifact, this is not in the scope of this work.

Byadvancing the state-of-the-art inprivacy-protectinggraphapplications in the
field of kidney transplantationmedicine,wehope to increase thequality of—and
in rural areas the access to—possibly live changing procedures.

https://www.hl7.org/fhir/R4/
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CHAPTEr 5

Secure Record Linkage

Data quality is an important requirement of meaningful data analysis. While as-
suring high data quality in local data is a strenuous task, it becomes even more
challenging for distributed datasets located in multiple owner domains. Dis-
tributed analysis in the biomedical field suffer from this issue in particular, as
most data transfer is strictly regulated.

Onebasic taskofdataquality assurance—de-duplication—isknownas record link-
age in medical informatics, as records belonging to the same human being are
being linked between databases or institutional boundaries. The features used
for identifying the individual—Identifying Personal Data (IDAT)—are themselves
protected under various legal regulations, such as Health Insurance Portability and
Accountability Act (HIPAA) or the General Data Protection Regulation (GDPR). Hence,
either substantial legal contracts for independent trustee operations or privacy-
preserving analysis protocolsmust be used tomitigate any re-identification risk.
Of course, central fiduciary repositories constitute a “single point of failure”—
data exfiltrationdue to a security incident put theprivacyof all held records from
multipledataownersat risk. Hence, our focus isonprivacy-preservingdecentral-
ized record linkage algorithms.

Record linkage in rare disease
analyses

WHILE rECOrD LInKAGE often is used as a method for data quality assurance,
it is an important prerequisite for the aggregation of vertically partitioned data1

1 Vertical partitioned data include dif-
ferent attributes of the same patients
in multiple datasets. The opposite is
horizontal partitioning, where the full
set of attributes are present in each
database but for different patients. A
fitting visualization is a tabular view of
the dataset where the partition direc-
tiondesignation indicates,whether the
datasets are “sliced” between rows or
columns.

as well. Some fields of research rely predominantly on some form of record link-
age. One example is the field of rare diseases. One of the more than 6,000 rare
diseases, that is diseases with a prevalence of under 5 in 100,000 (based on the
definition of the EuropeanUnion2), affect, albeit individually rare, around 5%of

2 Commission of the European Com-
munities (2008)

the German population3. The medical research in this field faces multiple chal-

3 Bundesgesundheitsministerium
(2021)

lenges caused by data sparsity. One obvious challenge is, that for most studies
patient records from multiple institutions must be aggregated, as a single hos-
pital most certainly does not observe enough cases for valid statistical analysis.
Due to the difficulties in diagnosing rare diseases, most patients were registered
and treated inmultiple hospitals leading to notable patient overlaps in registries
andhospital information systems. Record linkage and the related record-linkage
based set intersection cardinality is used to exclude the duplicates in those joint
study databases to reduce the possible biasmadeworse by the small cohort sizes.
Additionally, it can be used as an analysis in itself, for example examining the
“trajectory” of patients through the public health system and their path to a suffi-
cient treatment.

This chapter of the dissertation draws upon work published in STAmmLEr, S.,
KUSSEL, T., SCHOPPmAnn, P., STAmPE, F., TrEmPEr, G., KATZEnBEISSEr,
S., HAmACHEr, K., LABLAnS, M. (2020) “Mainzelliste SecureEpiLinker (Main-
SEL): Privacy-Preserving Record Linkage using Secure Multi-Party Computa-
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tion”. Bioinformatics, and KUSSEL, T., BrEnnEr, T., TrEmPEr, G., SCHEPErS,
J., LABLAnS,M., HAmACHEr, K. (2022) “Record Linkage based Patient Intersec-
tion Cardinality for Rare Disease Studies using Mainzelliste and Secure Multi-
Party Computation”. Submitted to BMC Journal of TranslationalMedicine. The author
was deeply involved in all aspects of both publications contributing significantly
to the design, implementation, experimental setup, and manuscript of the first
publication, and being the primary contributing author in all those aspects of the
latter.

Record Linkage against “Pure” Set
Intersection

THEmOSTEFFICIEnT way to determine commonpatients or calculate the num-
ber of common patients in a privacy-preserving fashion are specialized Private
Set Intersection (PSI) and Private Set Intersection Cardinality (PSI-C) protocols, for ex-
ample Pinkas et al. (2018) and De Cristofaro, Gasti, and Tsudik (2012). How-
ever, while very efficient, these protocols are only applicable to perform the de-
duplication using a trans-institutional uniquemaster patient index. In some coun-
tries, unique identifiers such as the social security number or the patient’s health
insurance number could be used. In Germany, however, only statutory health
insured patients are issued such an insurance ID—less than 90%of all patients4.4 GKV-Spitzenverband (2021)

While slower than those specialized PSI protocols, our record-linkage based pro-
tocolsutilize the full set of identifiablepatientdata toachieveoptimal record link-
age quality—as discussed in Section 5.5.1—while maintaining privacy.

Record linkage as a graph problem COnSIDErInG THE FEATUrES as vertices in a multipartite graph, connected
according to the feature combinations of the patients IDAT, we strive to find sub-
graph isomorphisms between multiple graphs. These multiple graphs are ar-
ranged as a peer-to-peermulti-layer “meta” graph. This already is a hard compu-
tational problem, exhibiting superpolynomial asymptotic complexity. To make
mattersmore challenging, real-worlddata qualitymakes it impractical tofindex-
act subgraphs. People change their last names (e.g., due tomarriages), birthdays
and birth months might be swapped, and—of course—the data entry is prone
to transcription errors. To enable linking between databases with thousands of
noisy, incomplete records nevertheless, we transform the problem to a measure
problem and implement privacy preserving algorithms to calculate feature wise,
similaritymeasures which are combined to a record similaritymeasure.

The MainSEL Record Linkage Sys-
tem

In “USUAL” rECOrD linkage operation, correlated (second order) pseudonyms
are generated according to the match status. These pseudonyms can be used for
(later) data transfer processes or as an analysis in itself, e.g., to track a patient’s
trajectory through medical institutions (with consent). One “aggregate” statis-
tic resulting from record linkage processes useful in other research questions is
the cardinality ofmatches—the set intersection cardinality based on probabilistic,
fuzzy matching. We implemented both modes of operation extending the well-
known pseudonymization framework Mainzelliste 5 and achieved substantially5 Lablans, Borg, and Ückert (2015)

stronger privacy guarantees compared to other record linkage systems, prac-
tical runtimes by careful optimization of the developed Secure Multi-Party Com-
putation (MPC) protocols, and a polished, easy to deploy open source software
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package—Mainzelliste SecureEpiLinker (MainSEL).This softwarewas testedandvet-
ted throughoutmultiplemedical use cases and its nationwide rollout is discussed
for the next funding phase of the (German)Medical Informatics Initiative (MI-I).

5.1 RELATEDWOrKS

Record linkage algorithms are an established field of scientific research for over
fifty years6. With progressing digitalization, data protection concerns have be- 6 Fellegi and Sunter (1969)

come the focus of discourse, shifting the research endeavors to Privacy-Preserving
Record Linkage (PPRL) techniques. Additional areas of research are scalability of
record linkage systems7 and the inclusion of additional data types, such as clini- 7 Vatsalan, Sehili, et al. (2017); Rohde

et al. (2021)cal and genomic data8.
8 Baker et al. (2018)

Many established PPRL implementations9 employ a (central) comparison of 9 Lablans, E. Schmidt, and Ückert
(2018); Heidt, Hund, and Fegeler
(2021)

Bloomfilters containing hashes of the IDAT or hashes of combined fragments of
IDAT10. Unfortunately, both the basic cryptographic method—Bloom filters of 10 Schnell, Bachteler, and Reiher

(2009); Vatsalan, Christen, and
Verykios (2013)

hashed IDAT and Hash-based Message Authentication Codes (HMAC)—and the cen-
tralized system architecture are vulnerable. As any centralized approach the in-
tegrity of the Trusted Third Party (TTP) is a single point of failurewith the potential
to compromise the privacy of all data records. Furthermore, frequency analysis
and cryptanalysis vulnerabilities against Bloom filter-based PPRL systems are
described in the literature11. While recent developments claim resistance against 11 Kuzu et al. (2011); Vatsalan, Sehili, et

al. (2017); Christen et al. (2017)those known attacks12, the development of previously unknown exploits has to
12 Schnell and Borgs (2018)be expected13.
13 Zabicki and Ellis (2017)

An alternative to Bloom filter-based PPRL algorithms are MPC-based
techniques—starting with LAUD AnD PAnKOVA ’s14 entry to the 2017 14 Laud and Pankova (2018)

iDASH competition15—only evaluating exact matches between records—to the
15 http://www.humangenomeprivacy.
org/2017/

previous state-of-the-art by LAZrIG ET AL.16 and Mainzelliste Secure EpiLinker
16 Lazrig et al. (2018)(MainSEL) described in this chapter. This class allows the joint record linkage

without central component with clearly defined security guarantees, possibly—
legal analysis pending—even record linkage without explicit patient consent,
e.g., using records of deceased patients.

For a recent survey of PPRL solutions, see Gkoulalas-Divanis et al. (2021)17, for a 17 Gkoulalas-Divanis et al. (2021)

discussion on the relationship between cryptographic security and Statistical Dis-
closure Control (SDC) for record linkage see X. He et al. (2017)18. 18 X. He et al. (2017)

Related to parts of the work described here are Private Set Intersection Cardinality
(PSI-C) protocols19. While highly efficient and optimized, PSI and PSI-C algo- 19 De Cristofaro, Gasti, and Tsudik

(2012); Kolesnikov, Kumaresan, et al.
(2016); Kales et al. (2019)

rithms enable only the calculation of exact intersections, rendering themunsuit-
able for noisy real-word patient datasets. The PPRL-based private set intersec-
tion cardinality in this chapterutilizes all error-tolerancemechanismsemployed
in probabilistic record linkage.

http://www.humangenomeprivacy.org/2017/
http://www.humangenomeprivacy.org/2017/
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5.1.1 Comparison to State-of-the-Art

LAZrIGETAL.20 published a PPRL systembased on aMPCDice-coefficient sim-20 Lazrig et al. (2018)

ilarity comparison of Bloom filters—following SCHnELL, BACHTELEr, AnD
REIHEr 21. While this methodology for fault-tolerant matching is similar to21 Schnell, Bachteler, and Reiher

(2009) MainSEL’s approach—Mainzelliste’s record linkage is based on a combination of
ideas from Schnell, Bachteler, and Reiher (2009) and Contiero et al. (2005)22—22 Contiero et al. (2005)

MainSEL differs fundamentally in two key aspects.

First, LAZrIGETAL.use fourBloomfilters combiningdifferentfieldsof the IDAT
or fractions thereof. These combinations are determining using expert knowl-
edge to estimate themost probable encountered error scenarios. For comparison,
MainSEL follows a much more general approach of comparing every IDAT field
in a separate Bloomfilterwithout relying on pre-determined (fragmentary) field
combinations. Additionally, this enables MainSEL to deterministically and reli-
ably handlemissing field values and erroneously interchanged fields—the latter
by introducing configurable exchange groups.

Second, the PPRL solution of LAZrIG ET AL. does not perform the whole record
linkage operation in a MPC setting. Only the calculation of the Bloom filter
comparisons is performed as a multi-party computation, especially the post-
processing, that is the match-classification based on the publicly reviled similarity
scores, is performed publicly, potentially leaking information23. MainSEL per-

23 The knowledge of the per-filter
scores makes the identification of par-
tial information possible. For example
by observing, that only Bloom filters
containing the last name do not match
one can infer that the same patient
with a different last name is registered
in the other database, not only leaking
this information but possibly maritial
status, etc.

forms alloperations in a secure andprivacy-preserving fashion, consideringonly
the total number of records as public information. Note, that the MPC sections
of Lazrig et al. (2018) constitute a subset of MainSEL’s functionality, specifically
Circuit 5.5.

To these twomajor differences in the principles of operation, many details differ
between the two PPRL solutions. MainSEL implements a novel tie-solving order
to choose the best matching candidate when multiple records exhibit the same
similarity score. This order is stable and semantically meaningful in the pres-
ence of emptyfields. Furthermore,MainSEL allows the configuration of the used
comparison mechanism. The probabilistic Dice-Bloom comparison is useful for
fields containing strings but inappropriate for numeric types such as integers or
floats. MainSEL’s usage of the ABY24 MPC framework25 results in a very adapt-24 Demmler, Schneider, and Zohner

(2015)

25 see Section 2.3.7

able and extendable implementation providing four protocol variants, whereas
LAZrIG ET AL. implements a custom Yao’s Garbled Circuits protocol. Lastly, the
solution of LAZrIG ET AL. compares each individual Bloom filter’s similarity to
a threshold and assumes a match if at least one similarity exceeds the threshold.
The record-score aggregation in MainSEL weighing each individual field allows
not only statisticallymoremeaningful similarities but provides flexibility to em-
ploy MainSEL in different applications and with (semantically) different record
types.

In contrast to LAZrIG ET AL., for MainSEL we chose to not implement block-
ing techniques to reduce the computational workload. A result of this deci-
sion is the extremely high privacy level achieved by MainSEL, as many block-
ing techniques—especially blocking based on Locality-Sensitivity Hashing (LSH)
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and Differential Privacy (DP)—are not composable with MPC techniques without
jeopardizing the security level26. Even using DP-based blocking in a local pre-

26 For DP this is intuitively understand-
able, as MPC is concerned with find-
ing exact results of a given calculation,
while DP aims to only reveal (bounded)
approximate results.

processing stage27—the approach chosen by LAZrIG ET AL.—fail to achieve

27 Inan et al. (2010)

strong overall security guarantees and might leak sensitive information. See X.
HE ET AL.28 for a detailed discussion and security proofs of the composition of

28 X. He et al. (2017)

DP andMPC in a record linkage context.

All this makes MainSEL’s security guarantees and match quality unique. For an
empirical analysis ofMainSEL’s record linkage quality—including a comparison
to Lazrig et al. (2018)—seeSection5.5.1. By extendingMainzelliste,MainSELpro-
videsnot only a record linkage solution, but a full pseudonymizationand IDman-
agement solution.

5.2 RECOrD LInKAGE

The process of finding duplicates in one or between many databases is called
record linkage. Most of the time the term is used in a medical informatics setting
to describe the identification of duplicate patients based on IDAT such as name,
birthdate, or address. However, the process is extendable to arbitrary types of
data, as long as some meaningful similarity measure can be defined (see Sec-
tion 5.7). The record linkage process can be divided into two phases: First, a sim-
ilarity calculation between all records and second, the classification of the com-
pared records as duplicates (match) or unrelated (nonmatch)29. 29 Fellegi and Sunter (1969)

As described in the introductory text of this chapter, the record linkage problem
can be modeled as a graph problem of finding probabilistic subgraph isomor-
phisms on multipartite (hyper-)graphs. Possibly interchanged vertices, such as
first-, last-, and surname, build a fully connected clique.

LetAbean×nadjacencymatrixandB am×m (sub) graph, then theoptimization
problem

PEX = argmin
P

||B − PAPT ||22

is called the subgraph isomorphism problem with the m × n (pseudo) permutation
matrix PEX. This optimization problem finds exact subgraphs. M. SCHmIDT ET
AL.30 developed a probabilistic subgraph isomorphismalgorithm—“SICOR”—as 30 M. Schmidt et al. (2020)

a ribonucleid acid (RNA) similarity algorithm. The abstract nature of the underly-
ing mathematical problem however, allows the application to other graph struc-
tures. SICOR employ a convexly relaxed problem statement transforming the
permutationmatrix PEX into a pseudo bi-stochastic matrix S of the same dimen-
sion that is found via local optimization methods. The defined similarity mea-
sure uses the re-projection of S to the space of the (pseudo) permutation matrix
PEX. Unfortunately, the runtime performance of the SICOR algorithm is pro-
hibitive for the usage in a MPC setting, as the clear text analysis of graphs with
200 vertices and a subgraph size of 10 vertices takes tens to hundreds of seconds.
The estimated graph sizes in real-world applications are around 10,000 vertices
and small subgraphs with around 10 vertices—8 to be precise, according to the
fields defined byMainzelliste.
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To find a practical solution note, that the graph structure represents a fully nor-
malized structureof a (relational) database. Themainbenefitsof thegraphmodel
over such a record-based “database view” are:

• The resilience against interchanged data fields, as they are considered un-
ordered by forming a fully connected clique, and

• the independence fromtheactual includeddata types, as theprocess isdefined
on an abstract data structure.

TheEpiLink record linkagealgorithm31 is able to includebothaspectsby including31 Contiero et al. (2005)

all permutations between defined fields into the similarity calculation (Exchange
groups, cf. Section 5.2.1) and by being easily extendable to include similarity mea-
sures between other data types. This way we can transform the graph problem
into a record-wise measure problem, a concept useful for the efficient inclusion
of other graph structures in Section 5.7.

Formal objective statement THEPrInCIPALOBJECTIVE of record linkage is to determine the similarities be-
tween a record x and a datasetwithN records {yj}0≤j<N (abbreviated {yj}), and
output the bestmatching database record. The similarity between two records is
given by a functionS(x, y), resulting in a similarity score between 0 and 1. A sim-
ilarity of 1 signifies identical records, 0 complete independence. The similarity
score of the best matching entry in the database is then compared to two thresh-
olds 0 < T1 ≤ T2 ≤ 1. Records with scores below the first threshold are con-
sidered distinct and thus classified as non matches. For scores above the second
threshold, the two entries are classified as a likely match. If the threshold falls
between the two thresholds32 the records are marked as a tentative match. This

32 For brevitie’s sake we will consider
only one threshold T from here on, as
the extension of all formulas and cir-
cuits to more than one threshold value
is trivial.

primary functionality is called bestMatch(x, {yj}).

To enable, for example, the privacy-preserving cohort size estimation, we intro-
duce a second functionality. This functionality counts the number of records clas-
sified asmatches in a bestMatch({xk}, {yj}) comparison between twodatasets—
the match-cardinality or intersection-cardinality. We denote this functionality with
matchCardinality({xk}, {yj}).

In conclusion, we care about the following two functionalities:

bestMatch(x, {yj}) := (j∗, S(x, yj
∗
) > T )

∈ {0, . . . , N − 1} × {0, 1}, j∗ := argmax
0≤j<N

(S(x, yj)) (5.1)

matchCardinality({xk}, {yj}) := |
{
k : ∃j : S(xk, yj) > T

}
|

∈ {0, . . . ,min(M,N)} (5.2)

To be a useful advancement for real-world applications in (bio)medical research,
the following constraints must be satisfied:
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• The sensitive patient data must be protected, no information allowing the re-
identification of the patient may leave the data owner’s network.

• No trusted party should be used for record linkage. This constraint simplifies
the patient consent process as well and, thus, allow recruiting more patients
for the research for rare diseases.

• Even in the case of an IT security incident in one of the participating party’s
protected networks, the patients’ data of all other institutions must remain
private.

• The proposedmethodmust exhibit high precision and full coverage of dataset
comparison in order to operate satisfactory in sparse data environments, e.g.,
the field of rare diseases.

Today’s commonly used Bloom filter-based solutions fail to meet the first three
requirements, while non-record linkage basedMPCprivate set intersection algo-
rithms cannot provide the probabilistic comparison required for sufficient preci-
sion on noisy real-world datasets. We approach these challenges by designing a
method for record linkage and record linkage-based patient intersection using
MPC.

5.2.1 Match Classification

For its local data de-duplication, Mainzelliste uses a record linkage algorithm,
which is inspired by the EpiLink software33 and resembles a threshold-based 33 Contiero et al. (2005)

similarity join34. To achieve the best compatibility within the German medical 34 Cohen (2000)

research ecosystem, we implemented the same algorithm forMainSEL.

TheEpiLinkalgorithmsubdivides the recordsimilarity calculation into twoparts.
First, the similarity of each field is calculated. Subsequently, the similarity score
S(x, y) for the two records x and y is the normalized weighted sum of the indi-
vidual field similarities. Both field similarities and record similarity scores lie
between 0 and 1:

S(x, y) :=

s(x,y):=︷ ︸︸ ︷∑
i∈I

δi,iwi simi(xi, yi)
/ w(x,y):=︷ ︸︸ ︷∑

i∈I

δi,iwi . (5.3)

Both records x and y have n = |I| field values xi and yi, each, for i ∈ I , where I is
the field index set. δi,j is 1 if both fields xi and yj are non-empty and 0 otherwise.
The field similarity of fields i are calculated using the functions simi, which will
be described in Section 5.2.2. Following COnTIErO ET AL.35, the weights are 35 Contiero et al. (2005)

chosen using the error rate ei and average frequency of values fi, according to
the formula wi = log((1 − ei)/fi). Those values are statistically derived once
for a (gold standard) set of fields and then fixed. The values used in this work are
listed in Appendix E.2.

The ability to weight field similarities allows researchers to reflect the state of
data quality in the used datasets and enable flexible adaptation to specific use
cases. Based on user-configurable thresholds, the records are determined to
match or tentativelymatch according to their similarity score.
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Equation (5.3) introduces the definitions s(x, y) and w(x, y) for the numerator
anddenominator—called the field-weight andweight component of a (partial) score–
because often individual processing is required, especially when describing the
MPC solution. As divisions are computationally expensive—even more so in
MPC—the actual division S = s/w is never evaluated.

Tie-solving order WE OFTEn nEED to determine the maximum of a set of quotients. This seem-
ingly trivial operation is complicated by the possible presence of empty fields.
Forexample, considera recordwithonlyonefieldnon-empty: xfirst name = “John”.
This recordxwouldmatch perfectly—that isS(x, yi) = 1—with all records having
the same first name, regardless of the other fields. To allow amore sensible com-
parison,we introducea special order. OnquotientsS1 = s1/w1 andS2 = s2/w2—
written as numerator-denominator pairs (s1, w1) and (s2, w2)—we define the tie-
solving order as

(s1, w1) > (s2, w2) :⇔ (s1w2 > s2w1) ∨ (s1w2 = s2w1 ∧ w1 > w2), (5.4)

which returns true even if the numerical values of the quotients are the same,
but numerator and denominator of the “left” quotient are nominally larger. In
this case, more entries contributed to the “left” quotient’s score—the “right” con-
tainedmore empty fields. It also solves the problemof zero denominators, favor-
ing the quotient with non-zero denominator in such a case. If both numerator
and denominators are zero, the ordering is irrelevant, as the contribution to the
final sumwould be zero anyway.

Exchange groups In rEAL-WOrLD rECOrD linkage applications, data entry might introduce ad-
ditional errors. One class of error is the accidental swapping of similar fields, like
first, sur- and birth name. Additionally, fields might change legitimately, e.g., last-
and birth name due tomarriages. The linkage quality can be improved by group-
ing some fields into so-called exchange groups—like thementioned name fields.

As described above, in the graph view this is dealt with by fully connected
subgraphs—K3 in the case of the three name fields—topologically excluding the
ordering for thosevertices. In thedatabaseview this canbe replicatedby thepair-
wise comparison of all field combinations in the similarity score calculation (5.3).

All the permutations of a set of fields G are included in the symmetric group
Sym(G), which has | Sym(G)| = |G|! entries. Although all fields inGmust be of
the same type, e.g., numerical or strings, they can have different weights. Hence,
we define the similarity score elements for an exchange groupG ⊂ I and permu-
tation σ ∈ Sym(G) as:

sσG :=
∑
i∈G

δi,σ(i)wi,σ(i) simi(xi, yσ(i)),

wσ
G :=

∑
i∈G

δi,σ(i)wi,σ(i),

wi,σ(i) :=
wi + wj

2
.

(5.5)
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The group’s sub-score for permutation σ reads now Sσ
G(x, y) := sσG

/
wσ

G. Using
the identity as a permutation and all fields results, of course, in the similarity
score without consideration of exchange groups: S = SidI . The contribution of
the exchange group to the final similarity score is the score of the best-matching
permutation—themaximumof all sub-scores. As the described intricacy of com-
parisonswithpossible emptyfieldsarenowpresent inevenmore individual com-
parisons, the application of the tie-solving order (5.4) is crucial:

SG(x, y) = (sG, wG) := max
σ∈Sym(G)

(sσG, w
σ
G). (5.6)

To formally includeall exchangegroups score calculation into the similarity score
equation, we define E as the set of all exchange groups and Ĩ := I \ ∪G∈EG as he
set of all fields not in any exchange group. The similarity score of two records x
and y now becomes the combination of both sets’ contributions:

S(x, y) = s(x, y)/w(x, y) =
(∑

G∈E
sG + sid

Ĩ

)/(∑
G∈E

wG + wid
Ĩ

)
, (5.7)

where sG andwG are the numerator and denominator of the group scores SG, as
defined in eq. (5.6).

5.2.2 Field Similarity

For some field types a simple equality test is sufficient as a similarity measure—
yielding 1 if both compared fields are identical and 0 otherwise. To allow prob-
abilistic, “fuzzy” matching, however, more intricate field comparisons are re-
quired. Asmany PPRL solutions (e.g., LABLAnS, E. SCHmIDT, AnD ÜCKErT 36 36 Lablans, E. Schmidt, and Ückert

(2018)and HEIDT, HUnD, AnD FEGELEr 37), we useDice-coefficients onBloomfilters
37 Heidt, Hund, and Fegeler (2021)(introduced below) as an appropriate, nevertheless quickly computable similar-

ity measure. Contrary to those existing solutions, however, we compare Bloom
filters of complete fields—as opposed to Bloom filters filled with fragments of
different fields—and only use them as data structures, not relying on them as a
securitymechanism38.

38 In fact, Christen et al. (2017) show
weaknesses in many Bloom filter-
based data privacy mechanisms. Our
privacy guarantees are provided by the
utilizedMPC protocols.

BloomfilterTHE USUAL APPLICATIOn of Bloom filters is to efficiently index a dataset with
large numbers of records, such that is very quickly decidable, whether one ele-
mentx is part of that set. The reverse—whether the element is not included in the
set—is only answered probabilistically based on the chosen internal structure of
the Bloomfilter. Thismeans, that using Bloomfilters in that fashion false positives
may occur. Bloom filters are applied in many applications, such as (computer)
virus detection39, advanced data structures like log-structuredmerge trees40, or 39 Erdogan and Cao (2007)

40 O’Neil et al. (1996)as a component in genetic optimizations of computationally hard problems such
as the search for ground-states of Ising spin glasses41. 41 Worring, Mayer, and Hamacher

(2021)

Structurally Bloom filters are bit vectors of length m with elements
B0, B1, . . . , Bm−1, initially all set to 0. When inserting an element x into
the filter, this element gets hashed by k independent hash functions Hi, modulo
the filter length: xi = Hi(x) mod m. Instead of using a full set of indepen-
dent hash function, those can be constructed using only two independent
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hash functions: Hi(x) = H0(x) + i · H1(x), i ∈ {0, 1, . . . , k − 1} following
KIrSCH AnD MITZEnmACHEr 42. In any case, x gets associated with k values42 Kirsch and Mitzenmacher (2006)

x0, . . . , xk−1 ∈ {0, 1, . . . ,m− 1}—indices of bits in the Bloomfilter. Those bits are
set to one.

The false positive rate for a Bloom filter of lengthm using k hash functions and
including n elements is often given as

pk = (1− (1− 1/m)kn)k,

which is incorrect, albeit a reasonable approximation formany cases43.

43 The work of Bose et al. (2008) exam-
ines this question in great detail and
gives upper and lower bounds for the
false positive rate of Bloom filters.

Figure 5.1: Visual example of a Bloom
filter-based Dice similarity measure-
ment between the strings “SMITH” and
“SMYTHS”. Differences in the set bits
are colored. This example assumes k =

2 independent hash functions and a 12
bit Bloom filter. Note that a change of
one letter leads to atmost2k changes in
the Bloomfilter. This means that small
changes in the strings lead to small
changes in the bit vector.

␣S SM MI IT TH H␣

␣ S SM MY YT TH HS S␣

1 1 1 0 0 1 0 0 1 1 1 0

0 1 1 0 1 1 1 1 1 1 0 1

Sørensen-Dice similarity THE BLOOm FILTEr Dice similarity—introduced to record linkage research by
SCHnELL, BACHTELEr, AnD REIHEr 44—areused to compare stringfields like44 Schnell, Bachteler, and Reiher

(2009) first-and surnameonamoregradual scale than the equality test. The conversionof
a string x into a Bloom filter Bl(x) is not performed by directly hashing the char-
acters of the string, but by first tokenizing the string into n-grams—groupings
of n characters, usually n = 2—and inserting those n-grams into the Bloomfilter,
thereby setting the corresponding bits in the Bloom filter bitmask.

A useful function to compare bit vectors is the Hamming weight—the number of
bits set in a bit vector, denoted by Hw. As useful abbreviations, letX ∧ Y denote
bitwise AND of the bit vectors X and Y , Hx := Hw(Bl(x)) the Hamming weight
of the Bloomfilter of string x, andHx∧y := Hw(Bl(x) ∧ Bl(y)). The Sørensen-Dice-
coefficient45,46, the similarity of two strings is now calculated as45 Dice (1945)

46 Interestingly, the Dice-coefficient
was originally developed to de-
scribe set associations in the field of
theoretical ecology.

simstring(x, y) =
2 ·Hw(Bl(x) ∧ Bl(y))
Hw(Bl(x)) +Hw(Bl(y))

=
2 ·Hx∧y

Hx +Hy
. (5.8)

Oftenonly calledDice-coefficient, it has the advantage of being insensitive to the
number of zero bits. Thatmeans, that the used Bloomfilter size can be increased
to reduce the false positive rate, while yielding consistent values. As the exam-
ple in Figure 5.1 demonstrates, it captures the relative similarity of strings. Small
changes in the string lead to small numbers of bigrams changed, lead to a small
difference in bits set. Note that the Dice-coefficient could also have been applied
directly to the bigrams of two strings, however Bloom filters constitute a data
structure which can bemanipulated efficiently in aMPC context.
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5.2.3 Mainzelliste IdentityManagement and Pseudonymization Framework

Mainzelliste47 is a web-based identity management and pseudonymization 47 Lablans, Borg, and Ückert (2015)

framework. It is actively employed for record linkage within a multitude48 of
48 At the time of writing, around 20
projects. See https://bitbucket.
org/medicalinformatics/
mainzelliste/src/development/
README.md (accessed 12.03.2022) for
details.

German and European medical research infrastructures49, biobanks50 and pa-

49 Joos et al. (2019); Medizin et al.
(2019); Prokosch et al. (2018)
50 Bernemann et al. (2016)

tient registries51.

51 Kronfeld et al. (2021)

Mainzelliste is able to manage primary and secondary pseudonyms along IDAT
and it can operate as a master patient ID generator. Its local probabilistic record
linkage module for patient de-duplication uses a highly optimized52 version of

52 Rohde et al. (2021)

the EpiLink53 algorithm. MainSEL extends Mainzelliste’s record capabilities by

53 Contiero et al. (2005)

providing adapters between the RESTful APIs of bothMainzelliste and SEL, thus
forming a pseudonymization, record linkage and ID management system fit for
MPC-based trans-institutional PPRL. MainSEL, including the algorithms and
software described in this work, are freely available as open source software un-
der https://github.com/medicalinformatics/MainSEL.

5.3 CIrCUIT DESIGn

For the MPC implementation, the main functionalities (5.1) and (5.2) must be
translated in Boolean and arithmetic circuits54. As MPC circuits may not have

54 See Section 2.3dynamic controlflow—all branchesare evaluatedandall loopsunrolled—the im-
plementation is carefully optimized. For example, Single Instruction Multiple Data
(SIMD) vectorization and parallelization is heavily employed, and all sums are
constructed as balanced-binary trees to minimize the circuit depths. Further-
more, the computational representation of real values plays an important role:
althoughfloating-point calculations are supported inbothMPC ingeneral and in
the employed MPC framework—ABY55—specifically56, their usage is computa- 55 Demmler, Schneider, and Zohner

(2015)
56 Demmler, Dessouky, et al. (2015)

tionally expensive. This work uses fixed-point representation of decimal values
in a performance–precision trade-off.

Unfortunately, due to the lack of dynamic control flow the possible usage of block-
ing mechanisms—the pre-filtering of records to reduce the amount of compar-
isonsneeded—isanongoingfieldof research. X. HEETAL.57 show, that common 57 X. He et al. (2017)

blocking techniques using LSHare incompatiblewithMPC’s security guarantees.
As a result, blocking is not considered in this work.

In the following sections the circuit designs for similarity score calculation (5.7)
and the classification of bestMatch (5.1) are explained inmore detail.

Given a record x byAlice and the records {yj} by Bob, the task of the “high-level”
circuits (C1) to (C4) are:

C1. calculates all scores’ numerators s(x, yj) and denominatorsw(x, yj),

C2. determines the highest score and its index j∗ := argmaxj S(x, yj),

https://bitbucket.org/medicalinformatics/mainzelliste/src/development/README.md
https://bitbucket.org/medicalinformatics/mainzelliste/src/development/README.md
https://bitbucket.org/medicalinformatics/mainzelliste/src/development/README.md
https://bitbucket.org/medicalinformatics/mainzelliste/src/development/README.md
https://github.com/medicalinformatics/MainSEL
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C3. tests for amatch by calculating thematch bit

m =


1, if S(x, yj∗) = s(x, yj

∗
)/w(x, yj

∗
) > T

⇐⇒ s(x, yj
∗
) > Tw(x, yj

∗
),

0, otherwise,

C4. calculates the (optional) set intersection cardinality by summing all match
bits.

Due to the computational cost of (integer) divisions, (C2) and (C3) are
carefully designed, such that the field-weight- and weight sums s and
w—calculated in parallel—are only required as components. The ac-
tual division S = s/w is never performed. The sequential execution of
(C1) to (C3) implement the bestMatch(xk, {yj}). This result can be used for
thematchCardinality({xk}, {yj}) functionality in (C4).

5.3.1 Notation

To differentiate between different domains, additional (typographical) notation
is used in the following sections. For individual circuit component x = C(x) s
used to denote that x is the encoding of value x. Sans-serif font is used for circuit
variables, typewriter for circuit functions and algorithms.

To abbreviate bit-length considerations, we define bitlen(x) := bitlen(C(x)) :=

bitlen(x) := l, for x ∈ {0, 1}l or x : ∗ → {0, 1}l.

The three used MPC protocols Arithmetic GMW, Boolean GMW, Yao’s Garbled
Circuits are abbreviatedA,B and Y58, respectively. The spaces of bit-length val-

58 The same abbreviation is used in the
ABY publication Demmler, Schneider,
and Zohner (2015).

ues l in these protocols are written as SlA, SlB and SlY .

The annotation 〈x〉lp for a variable’s or function’s output bit-length l in the pro-
tocols p ∈ {A,B,Y} is mostly restricted to the section discussing bit-length and
precision considerations. Where unambiguously determinable from the context,
the l superscript or p subscript is omitted for brevity.

5.3.2 Fixed-Point Representation

Weights, thresholds, and field similarities are the only occurring real values in
the calculation. Asdiscussed inSection 5.3, those real valuesmust be represented
in fixed-point representation, that is a specific number of bits in the value is used
for the integral part of the value and a specific number of bits is used for the
fractional part. The number of bits used for each part determines the achievable
precision and range of number representation. The weight precision is written as
lw := bitlen(wi) and the similarity or Dice precision, which is the same for all fields
i ∈ I as ls := bitlen(simi).
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As theoutput of thefield similaritymeasures simi are real numbersbetween (and
including) 0 and 1, their fixed-point representations are calculated as C(simi) =⌊
simi ·2ls

⌉
. In case of equality, which outputs either 0 or 1, the rounding can

be foregone. Their transformation is just a left-shift by ls. The circuit imple-
mentation of the Bloom filter Dice-coefficient simstring requires the only evalu-
ation of an (integer-) division. To reduce the performance impact, we use a cus-
tom integer-division where the numerator is left-shifted by ls before the integer-
division. The operation yields a result between 0 and 2ls.

The scaling of the real-valued thresholds T depends on the field-similarity scal-
ing, as they are compared in inequality (C3). To attain the fixed-point represen-
tation for T , it is multiplied with 2ls and subsequently rounded to the nearest in-
teger: T = C(T ) =

⌊
T · 2ls

⌉
.

Lastly, the real weights wi > 0 are transformed into numbers wi = C(wi) ∈
{0, 1}lw by rescaling them to use the full available bit range. That means normal-
izing so that the highestweight has value 2lw−1 and then rounding to thenearest
integer:

wi :=

⌊
wi

wmax
(2lw − 1)

⌉
, wmax := max

i∈I
wi. (5.9)

Using this construction, the highest possible precision is achieved because the
full range of {0, 1}lw is used for the occurring weights.

5.3.3 Circuit Implementation Variants

One of the key contributions of HEnECKA ET AL.59 and DEmmLEr, SCHnEI- 59 Henecka et al. (2010)

DEr, AnD ZOHnEr 60, apart from the software implementations, was the key 60 Demmler, Schneider, and Zohner
(2015)insight that performing subsequent operations in differentMPCprotocolsmight

bemore efficient than staying in the same protocol—evenwhen considering the
conversion costs. This insight can be translated to this work, as some parts per-
formmore logic operations—that is Boolean operations—and some more arith-
metic operations. As the optimal efficiency depends onmore factors, such as net-
work bandwidth and latency, we left the choice to the user, enabling them to se-
lect protocols for the Boolean parts (protocol β) and arithmetic parts (protocolα).
The possible conversion functions are denotedwith a2b and b2a. These functions
operate as identity-functions if the same protocol is chosen for α and β.

The Boolean sections may be performed in either Yao’s Garbled Circuits (GC) or
BooleanGMW, i.e.,β ∈ {B,Y}. The arithmetic componentsmaybeperformed in
the chosen Boolean protocol or in arithmetic GMW, i.e., α ∈ {A, β}. This results
in four circuit variants:

GMW: β = α = B, i.e., the whole circuit implemented in the Boolean GMW
protocol.

GMW/A: β = B and α = A, i.e., Boolean/logic components implemented in the
Boolean GMWprotocol and arithmetic components in Arithmetic Sharing.

Yao: β = α = Y , i.e., the whole circuit implemented in Yao’s Garbled Circuit.
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Yao/A: β = Y andα = A, i.e., Boolean/logic components implemented in Yao’s
Garbled Circuit and arithmetic components in Arithmetic Sharing.

Specifically, Circuits 5.2 and 5.3 are of arithmetic nature while Circuits 5.4 and
5.5 are of Booleannature. Circuit 5.6 is ofmixednature: after twomultiplications,
several Boolean operations are performed.

5.3.4 Circuit Components

Noweachcircuit implementationrequired toattain themain functionalities (C1)–
(C3) are described. The inputs for each component are only mentioned for the
component using it. They are omitted in “parent” components. A high-level
overview of the composition of circuits is shown in Circuit 5.1

Circuit 5.1: High-level circuit calcu-
lating (C1)–(C3), consequently imple-
menting functionality bestMatch. The
scores Sj := S(x, yj)—the results
of (C1)—are calculated by evaluating
Circuit 5.2 (Score) for all record in-
put pairs x and yj from Alice and
Bob in parallel. The best match (C2)
is then determined by running circuit
MaxQuotient on all scores, which, for
performance reasons, is a balanced
binary-tree fold of Circuit 5.6. Finally,
the match bit (C3) is determined by
evaluating the threshold comparison(s)
s(x, yj

∗
) > Tw(x, yj

∗
) on the best

match.

input (private) :Records x; {yj}
x

y0

...

yN−1

Score

...

Score

(C1) S0

(C1) SN−1

Ma
xQ

uo
ti

en
t s > Tw

(C2) best match (s(x, yj
∗
),w(x, yj

∗
), j∗)

Sj∗

(C3) match bit

The circuit implementation of Score is composed of subcomponents, operating
on a single pair of records x = {xi}i∈I = C(x) and y = {yi}i∈I = C(y) provided
(privately) by Alice and Bob. To improve readability, the index j designating the
record of Bob’s input yj is omitted. zi denotes an individual field of a single record z.

Circuit 5.2 (Score) calculates the score numerators s = C(s) and denomina-
tors w = C(w) concurrently, using protocol α (cf. eq. (5.7)). Subcomponents
GroupFieldWeight (Circuit 5.3) and MaxQuotient (Circuit 5.6) are used for ex-
changegroupscore evaluation. The circuits calculate agroup’s sub-score andfind
themaximum value of all group sub-scores (cf. eq. (5.6)), respectively.

Circuit 5.2: Score–similarity score (C1)
of input records x and y (eq. (5.7)), eval-
uated in protocolα.

input (public) :field indices I , exchange groups E
output (shared) :sum of field-weights s(x, y), sum of weights w(x, y)

1 foreachG ∈ E do
2 foreach σ ∈ Sym(G) do
3 sσG,w

σ
G ← GroupFieldWeight(G, σ);

4 sG,wG, _← MaxQuotient((sσG,wσ
G)σ∈Sym(G));

5 sĨ ,wĨ ← GroupFieldWeight(Ĩ , id);
6 s(x, y)← sĨ +

∑
G∈E sG; w(x, y)← wĨ +

∑
G∈E wG;

Similarity Circuits THE FIELD SImILArITY sim applies the type dependent comparison function–
either the simple equality Circuit 5.4 or the probabilistic Bloom filter Dice-
coefficient Circuit 5.5—on field entries xi, yσ(i). If field i has Dice similarity type
the (locally) pre-computed field entry’s Bloom filter is expected as the circuit’s
input: xi = C(xi) = Bl(xi). The bit-length of field i is denoted by lbi.
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input (public) :groupG ⊂ I , permutation σ ∈ Sym(G), weights w∗ ∈ {0, 1}lw

input (private) :empty-field bits δxi ; δyi
output (shared) :sum of field-weights sσG(x, y), sum of weights wσ

G(x, y)

1 foreach i ∈ G do
2 w′

i ← δxi · δyσ(i) · wi,σ(i);
3 si ← wi · b2a(sim(i, σ(i)));

4 sσG ←
∑

i∈G si; wσ
G ←

∑
i∈G w′

i;

Circuit 5.3: GroupFieldWeight – evalu-
ates eq. (5.5) in protocol α. The empty-
field bits δzi are 0 if entry i of record z
is empty and 1 otherwise. If one of the
entries is empty, then w′

i = si = 0.
Note that ifα = B orY , themultiplica-
tion between the (single bit) δ’s in line 2
is equivalent to and implemented as a
logical AND.

input (private) : Field values x; y
return (x == y) ≪ ls

Circuit 5.4: Equal – equality field com-
parison, evaluated in protocol β.

Both circuits output the similarity as values in protocol β with identical bit-
lengths (i.e., fixed-point precision) ls, implementing all multiplications and di-
visions by 2 as locally computable—free—bit-shifts. The components in dice
marked by a dashed box were implemented using the CBMC-GC-2 compiler61 61 Franz et al. (2014); Buescher et al.

(2016)which exhaustively optimizes the resulting circuit. The function compiled to a
Boolean circuit is x, y 7→ ((x� ls + y/2)/y), the rounding integer division. Both
“/” and IntDiv denote the C integer division. For all sensible input and output bit-
lengths 2 ≤ lh + 1 ≤ 12 and 2 ≤ ls ≤ 22 = d64/3e a circuit optimized for the
specific parameter combination was compiled—covering Bloom filters of up to
2,047 bit length. TheHammingweight of bit vectors—Bloomfilters in our case—
use lh = dlog(lb + 1)e bits, as this number of bits is sufficient to represent the
maximum value resulting from a sum of lb bits.

MaximumQuotient CircuitAS PrEVIOUSLY DEFInED, a group’s sub-score is the quotient sσG/wσ
G. The

group’s score then is the maximum of all sub-scores (cf. eq. (5.6)). This maximum
fold uses the tie-solving order as defined in eq. (5.4). The implementation of the
“buildingblock” for theMaxQuotientoperation,whichoutputsnotonly the larger
of two quotients following the tie-solving order but its index as well is shown in
Circuit 5.6.

input (private) : Bloom filters x; y and their Hamming-weights
hx = Hw(x); hy = Hw(y)

⟨x⟩lb

⟨y⟩lb

⟨hx⟩lh

⟨hy⟩lh

&

+

hw

≪ 1
lh

≪ ls

≫ 1
lh + 1

+

IntDiv ⟨dice(x, y)⟩ls

numerator

denominator

CBMC-GC compiled per lh and ls

Circuit 5.5: Dice– schematic of the dice
similarity field comparison (eq. (5.8)),
evaluated in protocol β. The annota-
tions display the bit-length.
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Circuit 5.6: MaxQuotient′ – maximum
of twoquotientswith index, performed
in mixed protocols. The Mux operation
Mux(c, a, b) returns a if c is 1 and b oth-
erwise. Note, that this circuit does not
implement the full MaxQuotient func-
tionality. For that it is chained in a tree
structure.

input (shared) :Quotients (si,wi, i), (sj ,wj , j)

1 zi, zj ← a2b(si · wj), a2b(sj · wi);
2 c← (zi > zj) ∨ (zi = zj ∧ a2b(wi) > a2b(wj));
3 return Mux(c, si, sj), Mux(c,wi,wj), Mux(c, i, j)

The index isnotnecessary for the calculationof agroupweight, however, the later
bestMatch circuit (C2) uses it to determine the bestmatching record inCircuit 5.1.

The actual MaxQuotient circuit constructs a binary-tree fold of a list of quotients
using the building block MaxQuotient′ as the fold operation.

5.3.5 Precision Parameter Choices

Theconscious choiceof thebit-lengthL for arithmetic circuit components, result-
ing in the fixed-point precisions lw and ls, is important to avoid overflows while
achievingmaximum precision.

The weight sum w(x, y) yielded by Circuit 5.2 is a sum of n weights of bit-length
lw. As such, its maximum value can be represented with dlog(n)e + lw bits. Like-
wise, s(x, y)has length dlog(n)e+ lw+ ls. However, the largest values occurring in
any arithmetic circuit component result from a multiplication—both zi’s in Cir-
cuit 5.6, line 1 are the product of a s and aw. In this expression a sum of nweights
of length lw are multiplied with a sum of n field-weights of length lw + ls. Hence,
the length of both zi’s is dlog(n2)e+ 2lw + ls—the length not allowed to overflow
the used data types62. When lw and ls are chosen to fully use the bit-length L of

62 ABY supports L ∈ {8, 16, 32, 64} if
arithmetic GMW is used for the arith-
metic circuit components,
that isα = A.

space SLα while avoiding overflows, r := L−dlog(n2)e bits remain unused. These
are evenly divided between both bit-lengths by setting lw = dr/3e, ls = br/3c if r
mod 3 = 2 and lw = br/3c, ls = dr/3e otherwise.

Our comparisonbetween the similarity score calculationperformedusing thede-
scribed fixed-point representation and the same calculation using double preci-
sionfloatingpointvalues63 yieldonly small deviations: Using large randomnum-63 IEEE Standards Board and Ameri-

can National Standards Institute (1985) bers as inputs, the observed introduced errors are < 1% for L = 16 bit, < 0.1%
for L = 32 bit and negligible for L = 64 bit. Most benchmarks in Section 5.5.3
were performedwithL = 32 and n = 8 fields. This results in lw = 9 and ls = 8.

5.4 SYSTEmSArCHITECTUrE

The complete MainSEL record linkage system is composed of multiple software
packages—Figure5.2 showsanoverviewover thearchitecture. Coreelementsare
Mainzelliste as the data source and management unit and SEL as the MPC com-
pute unit, communicating via JSON REST interfaces. Apart from the relational
database used by Mainzelliste, all additional components are required to allow
the deployment in restricted network environments, such as hospital data inte-
gration centers. The following sections—Sections 5.4.1 and 5.4.2—describe the
couplingbetweenMainzelliste andSEL, aswell as the record linkage and IDman-
agement process. The networking and deployment considerations are discussed
in Section 5.4.4.
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VPNFrontendInternal

Private Network

OpenVPN
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PostgreSQL
Database

Secure EpiLinkerStunnel

OpenVPN
Client

Party A

PostgreSQL
Database

Secure EpiLinker Stunnel

OpenVPN
Client

Encrypted

Figure 5.2: MainSEL architectural
overview. The diagram shows two
MainSEL Docker Compose stacks,
both interacting in a virtual, private
network established by a OpenVPN
server. The MainSEL core components
use stack-internal networking. Only
the Stunnel and OpenVPN container
are exposed to the outside network.
Note, that for the ID management
process a Linkage Service component
may be used, which is not displayed
here. This figure was created by the
author and used in Kussel et al. (2022),
licensed under CC-BY.

5.4.1 Communication

The SEL component is designed for maximum flexibility, hence it starts with
onlyaminimal configurationnecessary for establishing theRESTendpoints, e.g.,
listening port(s), network interface to bind to, certificates for HTTPS communi-
cation. The remaining “business-logic” configuration—what fields to compare
withwhich comparison function, weights, connection details for the data source,
connection details for the remote computation party, and so on—are configured
during runtime via the REST interface. Thus, two general phases can be dis-
cerned: an initialization phase and the linkage/matching phase. An arbitrary
numberof remote computationparties canbe configured. In the current releases,
all parties are authenticated using pre-shared keys. The communication is exe-
cuted using a secure channel, e.g., TLS-secured64. 64 Rescorla (2008)

The test of the connections between the local SEL and the (multiple) remote SELs,
as well as the linkage service, mark the completion of the initialization phase. In
the tests, not only network connectivity is assured, but the compatibility of the
algorithm configuration—that is the same fields with the sameweights are com-
pared.

The linkage and thematching phase are similar and differ only in the used REST
resources and the result—one returning a linkage ID and the other the set inter-
section cardinality. Both varieties are displayed in Figures 5.3 and 5.4. Note, that
steps (1) to (3) are identical.

The linkage/matching phase starts with the local Mainzelliste initiating a link-
age or matching task by sending one or more records to the local SEL, as well as
a callback address to receive the result (step (1)). Some properties are considered
public knowledge, as they are required for efficient circuit creation. Local and
remote SEL exchange the numbers of records on each side (step (2)). During this
exchange, the remote SEL queries all records from “its” Mainzelliste. As the con-
structionof the circuit and the executionmight beperformedat different times65,

65 See Section 2.3thenumber of records transferred could bebasedonestimates or padded to allow
for database growth between circuit generation and execution.
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After these prerequisites are satisfied, the actual MPC is performed between the
local and the remote SEL (step(3)). At the end of the computation, the execution
of linkage andmatching start to differ.

In the linkage process (cf. Figure 5.3), both parties hold one share of the index of
the best matching (remote) record for each local record, as well as shares of all
match bits. These shares are sent to the linkage service, which reconstructs the
clear text values (step (4)). Additionally, the remote SEL transmits the encrypted
IDs for its records to the linkage service. Note, that the linkage service is not aTTP
and the IDs are specifically constructed to assure confidentiality. The details are
discussed in Section 5.4.2.

The linkage service de- and re-encrypts the best matching IDs with the match
bit appended. This Linkage ID (LID) is in all outcomes—match, tentative match,
andnon-match—indistinguishable fromarandomstring. It is transmitted to the
local SELwhich, in turn, sends it to the pre-configured callback address (step (5)).

‘

time

transfer records

request database
database

send record count

return database size

Multi-Party Computation

send share send share, encrypted IDs

send linkage IDsend linkage ID

local ML
local SEL LS remote SEL

remoteML

(1)

(2)

(3)

(4)

(5)

Figure 5.3: Communication sequence
diagram of the linkage phase. ML
stands for Mainzelliste, the patient
database and pseudonymization
framework, SEL stands for the MPC
computation unit and LS stands for
Linkage Service. The numbers in
parentheses enumerate the protocol’s
steps described in Section 5.4.1. This
figure was created by the author and
used in Stammler, Kussel, et al. (2020),
licensed under CC-BY.

The matching phase (cf. Figure 5.4), calculating the set intersection cardinality,
doesnot requirea linkage service. As theMPCcircuit sumsallmatchbits, it yields
directly the number of common dataset records. Both local and remote SEL send
this result to the configured callback addresses (step (6)).

5.4.2 ID Generation andManagement

MPC provides strong safety guarantees regarding input privacy, however, the
privacy of the outputs66 is not guaranteed. The record linkage output—LIDs—

66 See Section 2.2 pose, in fact, a re-identification risk if two colluding actors on both sides com-
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time
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database
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return database size

Multi-Party Computation

send resultsend result

local ML
local SEL remote SEL

remoteML

(1)

(2)

(3)

(6) (6)

Figure 5.4: Communication sequence
diagram of the matching phase. ML
stands for Mainzelliste, the patient
database and pseudonymization
framework, SEL stands for the MPC
compute unit. The numbers in paren-
theses enumerate the protocol’s steps
described in Section 5.4.1.

pare those IDs. To mitigate this attack vector, the returned ID must not reveal
any information about thematching status, however, this very information is the
primary computation objective and required for de-duplicaton and pseudonym
assignment.

We achieve confidentiality in the record linkage process, by introducing the Link-
age Service (LS), amanagement component concernedwith generating, validation
and encrypting LIDs. Note, that the LS is not a TTP, it does not participate in the
record linkage calculation and never receives any private information. It gener-
ates randomIDs in the setupphase, holds a secret key for eachparticipatingparty
and re-keyes the resulting LIDs and random IDs. As a result of its introduction,
the colluding adversaries at both parties can no longer infer the matching status
from the LIDs.

An additional benefit of the LS is, that it enables the easy introduction of a LID
disclosure policy involving the Institutional Review Board (IRB) and Use and Access
Committee (UAC) by only allowing the decryption of the LIDs after a positive deci-
sion of these bodies.

The process steps involving the LS are the following:

1. During setup, the LS generates “raw” LIDs for the data source by drawing ran-
dom IDs and adding a party specific random but fixed number of zeros. This
zero padding enables easy ID validation, later on. These IDs are encrypted
with the corresponding party’s secret key and transferred to the data source.

2. At the end of a record linkage calculation, the LS receives both secret shares
encoding the match bit and the indices of the best matches, as well as the list
of all (encrypted) LIDs from the data source.

3. The secret shares are reconstructed and the bestmatching LIDs are decrypted
using the data source’s secret key.
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4. Comparing the number of appended zeroeswith the previously fixed number,
the now decrypted IDs are validated.

5. In case of amatch, thematch bit is appended to the LID. Otherwise, a new ran-
dom ID is sampled.

6. In both cases, the resulting ID is re-encrypted using the client’s secret key and
sent to the client.

This procedure ensures, that every ID, regardless of its matching status, is in-
distinguishable from randomness. Without decrypting the IDs, nothing can be
learned from them, even if malicious actors in both parties compare them.

The linkage results can be transformed into a usable result by decrypting them, a
procedure that can be restricted—as described before—by an IRB andUAC clear-
ance.

Linkage ID Generation without
Linkage Service

WHILE THE DESCrIBED record linkage process using a LS for ID management
is desirable for easy oversight and policy, the LS is not required from a protocol
perspective. Nearly the same functionality could be implemented in theMPC cir-
cuit, only the resulting LIDwould change—both parties would either receive the
same LID (match) or a random ID (non-match). This protocol variant could be
implemented in the following way:

Both parties input additional per-record randomness into the circuit. If
bestMatch results in a match, the randomness of both parties is XORed to obtain
the LID, identical for both parties. If no match is found, each party receives the
otherparty’s randomnessas anLID.Thisway, bothparties receive seemingly ran-
dom LIDs as an output. Thematches can only be identified after comparing both
sets of IDs. In other words, the process is used to generate a trans-institutional
master patient identifier.

5.4.3 Record Linkage based Private Set Intersection Cardinality

Using circuit-based MPC protocols provides versatility and easy extensibility to
MainSEL.Anexample is theextensionof thebestMatch functionality toallowthe
calculation of a “fault-tolerant PSI-C”—thenumber of commonpatients between
the two datasets—by summing up the match bits. This common patient count
functionality—matchCardinality—has important real-world applications. In
this chapter, we focus on research and study planning applications in the field
of rare diseases.

Patientswith rare diseases are often registered inmanyhospitals and othermed-
ical facilities, as it is difficult to obtain expert treatment or even diagnosis—
leading to not only distributed duplicate entries, but to noisy datasets attesting
differing or uncertain diagnosis.

As case numbers at a given institution aremost likely too low to conduct statisti-
cally significant research, joint cohort studies are a regular studydesign—astudy
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design especially biased by duplicate entries when concerned with low sample
sizes67. The currently required legal process to assess study feasibility—that is 67 Cheng (1998)

cohort sizes—is often comparable to the processes required for full data transfer
and often unreasonably complex for this early stage. The privacy guarantees of
MPC-based cohort size estimations might reduce those regulatory barriers and
lead to faster andmore cost-effective rare disease research.

5.4.4 Networking and Deployment

Previouspublication68 describe the complexityandcosts involvedwhencarrying
68 For example, Lablans, E. Schmidt,
and Ückert (2018) and Stammler, Kus-
sel, et al. (2020).

out deployments of biomedical applications in clinical networks. This complex-
ity stemsmostly fromnon-standard network topologies, high network compart-
mentalization and strict regulatory requirements69. 69 Bundesministerium des Inneren

(2007); Bundesministerium des
Inneren (2009)

The sensitivity of the data processed inside those networks require high security
levels, commonly restricting direct TCP connections using firewall systems and
proxies. Ingress network traffic inparticular is severely restricted, if not outright
filtered out. Computer systems operating in those restricted spaces needing to
communicate with outside systems need special design considerations to work
as intended. These restrictions unfortunately apply toMainSEL as well.

We solve these challenges by employing an OpenVPN70 overlay network in the
70 https://openvpn.netMainSEL systemarchitecture, thus abstractingnetwork connectivity for the core

components (cf. Figure 5.2). OpenVPN is awell-knownopen sourceVPNsolution,
highly regarded for its security and simplicity of operation. A full security au-
dit was performed in 201771. Additionally, all outgoing network traffic is routed 71 Raynal et al. (2017)

through “Stunnel”72. Stunnel encapsulates all traffic in a valid HTTPS context 72 Wong (2001)

withoutneeding tomodify anyof theother components. The introduced (system)
complexity is “hidden” from the user by usingDockerCompose73 to orchestrate the

73 https://github.com/docker/
compose

containerized components..

5.5 BEnCHmArKS AnDREAL-WOrLD TESTS

The experimental assessment ofMainSEL includes three parts: first the analysis
of record linkage quality. This includes the comparison to LAZrIG ET AL.74 in 74 Lazrig et al. (2018)

terms of match classification error rate. The second set of experiments measure
MainSEL’s runtimeperformance in a laboratory environment and lastly, the real-
word deployment in eight German university hospital centers is evaluated.

5.5.1 Record Linkage Quality

The synthetic datasets used in the record linkage quality analysiswere generated
with theMockaroo synthetic data generation tool (https://www.mockaroo.com).
Mockaroo provides numerous predefined field types, however not all field exists
exactly as required. Somepost-processing of the raw generated datasets is neces-
sary toadapt themto this analysis, e.g., theMockaroofield type “Datetime”needs
separation into the fields “day”, “month” and “year”.

https://openvpn.net
https://github.com/docker/compose
https://github.com/docker/compose
https://www.mockaroo.com
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This procedure resulted in a datasetwith 50,000 records, using theMockaroo con-
figuration in Table 5.1.

Table 5.1: The Mockaroo configuration
used to generate the rawdataset for the
record linkage quality analysis. The
ZIP code range follows theGermanZIP
code scheme, with “01001” being the
lowest issued code.

Field name Type Range

First Name First Name (European)
Surname Last Name
Birth Name Last Name
Birthdate Datetime 01.01.1930 – 31.12.2019
ZIP code Number 01001 – 99999
City City

The comparison ofMainSEL’s record linkage qualitywith LAZrIGETAL.’s state-
of-the-art PPRL implementation75 needs a different dataset layout, as the one75 Lazrig et al. (2018)

described above is not compatible with their system. We followed the directions
given in the publication to generate a second dataset with 50,000 records as well.
Table 5.2 shows the secondMockaroo configuration.

Table 5.2: The Mockaroo configura-
tion used to create the raw dataset
for the record linkage quality compar-
ison betweenMainSEL and the current
state-of-the-art ( Lazrig et al. (2018)).
The configuration follows their dataset
structure.

Field name Type Range

First Name First Name (European)
Surname Last Name
Birthdate Datetime 01.01.1930 – 31.12.2019
SSN SSN

Data Selection and Perturbation TOrEFInETHE rawdataset for record linkagequality analysis, itmust be split in
multiple setswith a known overlap. Furthermore, the recordsmust be permuted
to benchmark the quality of the probabilistic record linkage algorithms.

For that, first N records are randomly sampled from the complete, raw dataset
whereN is the total number of unique records. As the field “birth name” is often
empty in real-world datasets, 60% of “birth name” fields are then removed. The
described algorithm of ( Lazrig et al. (2018)) neither uses a “birth name” field, nor
is able tohandleemptyfield. Asa result, this step isomitted for thedirect compar-
ison between the algorithms. Lastly, the dataset is split into two sets with sizes
N1 and N2 where the second dataset has an adjustable amount of records also
included in the first dataset. To avoid biasing the benchmarks by introducing a
fixed structure, the records of the second dataset are randomly shuffled.

To introduce errors, every field in the second dataset is stochastically perturbed.
With equal but modifiable probability the following perturbations may be ap-
plied:

1. the deletion of a random symbol in the field,

2. the exchange of two random symbols in the field,

3. the field is set to empty.

After this field-wise perturbation, entire fields in a record may be exchanged us-
ing the same perturbation probability. This exchange is only applied to compat-
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ible fields, e.g., first name and surname, or birth day and birth month. Exchang-
ing, e.g., the city name and the birth year is not permitted, as the fields contain
different data types. The application of each modification is independent of the
others, i.e., each field or record can be subjected to multiple variations. The ex-
change between day andmonth data fields might introduce invalid dates. These
fields are sanitized by setting out of bound field values to the nearest valid value.

To be comparable to LAZrIG ET AL.’s testing procedure, the individual varia-
tions’ probability is chosen such that an adjustable overall field perturbation rate
is achieved.

Quality of Record LinkageTHE CHOSEn PArAmETErS used for the generation of the datasets used for the
valuation of our EpiLink implementation are the following: Both datasets con-
tain 10,000 records with an overlap of 60%. The probability of an empty “birth
name”-field is set to 60%. For the varying error rate experiments the probability
of each individual perturbation is set to 2.6%and 5.4%, corresponding to a total
field perturbation probability of 10%and 20%, respectively.

The configuration of the EpiLink algorithm is shown in Appendix E.2. A bit pre-
cision of L = 32 bit was used in all benchmarks. The results are shown in Ta-
ble 5.3. “TP”, “FP” and “FN” denote “True Positives”, “False Positives” and “False
Negatives”, respectively. “Recall” is the True Positive RateR = TP

TP+FN and “Pre-
cision” is P = TP

TP+FP . The “F1-Score” and “Matthews Correlation Coefficient”
(MCC) are combined evaluationmetrics for binary classification with the follow-
ing definition:

F1 = 2TP
2TP+FP+FN

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Error Rate TP FP FN Recall Precision F1 MCC

0.1 5967 0 33 0.994 1.0 0.997 0.993

0.2 5820 4 179 0.970 0.982 0.984 0.963

Table 5.3: Record linkage results using
MainSEL’s EpiLink implementation.
The error rate is given per field. Each
dataset has 10,000 records with 60%
overlap between sets. “TP”, “FP” and
“FN” denote “True Positives”, “False
Positives” and “False Negatives”,
respectively. The “F1-Score” and
“Matthews Correlation Coefficient”
(MCC) are combined evaluation
metrics for binary classification.

The direct comparison of MainSEL with the current state-of-the-art— Lazrig et
al. (2018)—is complicated by the fact, that no implementation of their algorithm
is publicly available. Therefore, we implemented the algorithm following the de-
scription in the publication. The algorithm works by generating Bloom filters
using the following fields or fragments of fields:

1. First name + Last name + Date of Birth,

2. Date of Birth + SSN,

3. Last name + SSN,

4. Three letters first name + Three letters last name + Soundex first name+
Soundex last name + Date of birth + SSN.
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The parameters are chosen according to the publication aswell, that is, Bloomfil-
ters of length 1,000 bit, 30 hash-functions and a random salt. As record linkage
quality and not performance is benchmarked, we chose to not implement their
differentially private blocking and their Bloom filter partitioning scheme. These
components would improve runtime performance at the cost of decreased accu-
racy. MainSEL uses the parameters shown in Table E.2 where applicable. For
field “SSN” a frequency of 10 × 10−9—based on assumed uniformly i.i.d. digits
in the SSN—and an error rate of 0.088 is chosen—the same as for the first name.
MainSEL’s Bloom filters use 15 hash-functions at a length of 500bit.

Remember that the datasets used in this comparison do not allow empty fields.
That means, that fewer perturbations can be applied, and the individual pertur-
bation probability is adjusted accordingly. Table 5.4 shows, that both algorithms
perform verywell, so that an exaggerated field perturbation probability is neces-
sary for the differentiation of linkage quality. The results shown are based on a
field perturbation probability of 40%, two datasets with each 10,000 records and
60%overlap.

Table 5.4: Comparison of record
linkage quality between the state-of-
the-art algorithm and MainSEL. The
error rate is per field is set to 40%.
Each dataset has 10,000 records with
60% overlap between sets. “TP”, “FP”
and “FN” denote “True Positives”,
“False Positives” and “False Negatives”
respectively. The “F1-Score” and
“Matthews Correlation Coefficient”
(MCC) are combined evaluation
metrics for binary classification.

TP FP FN Recall Precision F1 MCC

Lazrig et al. (2018) 5917 2 63 0.989 0.999 0.993 0.986

MainSEL 5970 1 31 0.995 0.999 0.997 0.993

5.5.2 Performance Benchmarks Experiment Setups

Two different lab setupswere used forMainSEL’s performance evaluation, as the
first setup, used for evaluating the record linkage mode of operation, was not
available any longer for the matching mode of operation. However, the result-
ingmeasurements are compatible between both setups, thus the reevaluation of
the record linkage experiments is not necessary.

The first lab environment—used for evaluating the record linkage mode of
operation—consisted of two identical servers with Intel Xeon E5-2690 CPUs
(2.90GHz), 256GiB RAM each and a local 1Gbit/s network connection. Both
servers ran a recent Arch Linux OS with vanilla Kernel version 4.20.7 and gcc
version 8.2.1 for source code compilation.

The second lab environment—used for evaluating the matching mode of oper-
ation and the complete containerized system—consisted of two virtual servers
withvirtual 6Coreprocessor, 24GiBofRAMeachanda local 1Gbit/s connection.
Both servers ran a Debian 10.12 Linux OS with vanilla Kernel version 4.19.208-1
and gcc version 8.3.0 for source code compilation. We averaged all benchmarks
over 10 independent runs.

All ABY security parameterswere chosen to achieve a symmetric security level of
128 bit. Furthermore, the bit-length of the arithmetic circuit components were
set to L = 32 bit, resulting in a score accuracy within 0.1% (cf. Section 5.3.5).
All reported record linkage timings are averaged over at least five iterations,
the set intersection cardinality timings are averaged over ten iterations. All
benchmarks—except where specifically noted—are using the default EpiLink
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configuration that is shipped with the Mainzelliste software (see Appendix E.2),
consisting of fourDice-compared and four equality-comparedfields. Theparam-
eters of this default configuration follow SArIYAr, BOrG, AnD POmmErEn-
InG 76. 76 Sariyar, Borg, and Pommerening

(2011)

Threedifferentnetworkmodels areof special interest: A:LocalAreaNetwork (LAN)
B:Restricted throughput (100Mbit/s), but no imposed latency.
C:Wide Area Network (WAN).
For details please see Appendix B, the used network parameters are shown in Ta-
ble 5.5.

Table 5.5: Network parameters for the
experimental evaluation ofMainSEL

Setting Bandwidth Latency

A 1Gbit/s <0.4ms
B 100Mbit/s <0.4ms
C 1Gbit/s 100ms

Furthermore, we analyze the behavior of four different protocol variations,
namely:

GMW: The system is using the GMW without conversion to arithmetic secret
sharing during score evaluation.
Yao: The system is using Yao’sGarbledCircuitswithout conversion to arithmetic
secret sharing during score evaluation.
GMW/A: The system is using theGMWprotocol and conversion to arithmetic se-
cret sharing during score evaluation.
Yao/A: The system is using Yao’s Garbled Circuits and conversion to arithmetic
secret sharing during score evaluation.
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Figure 5.5: Setup and online record
linkage runtime in seconds for varying
database sizes and four circuit variants
(cf. page 103), in three network en-
vironments: A: 1Gbit/s;<0.4ms,
B: 100Mbit/s;<0.4ms,
C: 1Gbit/s;100ms. The Epilink
configuration of DKFZ’s Mainzelliste
(Table E.2 in Appendix E.2) was used in
all benchmarks.

5.5.3 Performance Benchmarks

Figure 5.5 reports MainSEL’s record linkage runtimes for varying database sizes
andMPCcircuit implementations, in three different network environments. The
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Database Comm. [MiB] Setup Phase [s] Online Phase [s]

Size #Rounds Setup Online A B C A B C

1 266 0.6 0.1 0.018 0.036 0.72 0.052 0.054 13

10 330 5.5 0.7 0.097 0.15 1.4 0.072 0.072 16

25 346 13.5 1.7 0.18 0.29 1.6 0.093 0.094 17

100 378 53.7 6.7 0.43 1.7 2.5 0.17 0.17 18

250 394 133.9 16.8 0.87 5.3 4 0.29 0.3 19

1,000 426 555.2 47.1 3 23 11 0.77 0.87 22

2,500 458 1,394.1 119.5 7.3 60 25 1.6 1.9 27

10,000 490 5,577.4 459.4 28 240 96 6.1 8.2 48

25,000 506 13,917.9 1,150.3 69 610 240 15 23 88

Table 5.6: Comparison of the setup
and online record linkage runtimes of
the MPC linkage procedure of a single
record with a remote database in cir-
cuit variant GMW/A. Compared are
the three networking configurations
shown in figure 5.5, for varying database
sizes. The reported network communi-
cation cost is the sum of sent and re-
ceived data. See appendix E.1 for the
complete set of tables.

database sizes ranged from 1 to 10,000 records. The four assessed circuit variants
aredescribedonpage 103. The tables containingall benchmark results are shown
in Appendix E.1.

As one of the network settings exhibit an exaggerated network latency of
100ms—network setting C—the number of communication rounds plays an im-
portant part in the overall protocol performance evaluation. Remember, thatGC
has a constant number of communication rounds while both Boolean and arith-
metic GMWrequires one interaction round per layer of AND gates—that depends
on the circuit’s multiplicative depths77. Table 5.6 shows the circuit’s multiplicative

77 See Section 2.3

depth for varying database sizes and shows a logarithmic relationship between
the two parameters. Starting with 266 rounds for one record and GMW/A, the
number of rounds grows to 506 for 25,000 records. This logarithmic relationship
can be explained by the algorithmic design of the record linkage circuits: While
the first parts of any circuit runs in parallel for all database record—thus with a
fixed circuit depths independent of the number of database entries—the second
part, themaximumscoredetermination, is constructedasabalancedbinary-tree,
explaining the logarithmic growth.

After a “transient phase”—a ramp-up for small database sizes—all circuit vari-
ants exhibit a linear asymptotic runtime complexity. The transient phase ismost

Figure 5.6: Setup and online record
linkage runtime in seconds for varying
number of fields and varying field types: 1)
only 12 bit integer fields with equality
comparison 2) only 500 bit Bloom fil-
ters with Dice comparison or 3) both,
counted as pairs. Network environ-
ment A: LAN was used with a database
size of 1,000 records and the GMW/A
circuit variant.
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Figure 5.7: Setup and online match-
ing runtime in seconds for vary-
ing database sizes and four circuit
variants in three network envi-
ronments: A: 1Gbit/s;<0.4ms,
B: 100Mbit/s;<0.4ms,
C: 1Gbit/s;100ms. The Epilink
configuration of DKFZ’s Mainzelliste
(Table E.2 in Appendix E.2) was used in
all benchmarks.

pronounced for the high-latency network setting C and all GMW protocol vari-
ants. Each communication round induce an additional runtime penalty due to
the network delay. For larger database sizes, this effect is no longer dominant,
as the larger communication size per round amortize themultiple-rounds influ-
ence. Bandwidth becomes the limiting resource—compare network settings B
and C. In conclusion, the GMW/A protocol mixture performs best in nearly all
networks settings, both in the setup and in the online phase.

A similar pattern can be observed for a growing number of fields—shown in
Figure 5.6—keeping the database size fixed at 1,000 records. A similar tran-
sient phase occurs for smaller communication sizes per round. By comparing
the runtimes for Dice-compared Bloom filter fields to the runtimes of the com-
bined “Equality + Dice” experiment it is visible, that the equality-compared in-
teger fields do not contribute considerable to the overall runtime—not surpris-
ing considering thedifference in complexity betweenbothfield- and comparison
types78.

78 cf. Circuit 5.4 and Circuit 5.5.

Set Intersection Cardinality
BenchmarksTHESAmESET of network settings and protocol variants are compared inmatch-

ingmode—that is calculating the set intersectioncardinalitybetween twodatasets.
As before, one record is matched against a database of varying size. The re-
sults are shown in Figure 5.7. The results are—irrespective of more noise 79—

79 Probably caused by varying work-
loads in other virtual server instances
on the same physical server.

compatible with the record linkage mode. This is not surprising, as the sole cir-
cuit difference is the sum over all matching bits. The experiments show, that a
matchingcomputationwith10,000 comparisons is concluded inroughlyfivemin-
utes considering theworst casenetworkmodel and around 20%faster in the best
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Database Comm. [MiB] Setup Phase [s] Online Phase [s]

Size #Rounds Setup Online A B C A B C

1 266 0.6 0.1 0.014 0.01 0.8 0.063 0.063 13

10 330 5.7 0.7 0.078 0.073 1.5 0.085 0.081 16

25 346 14.1 1.7 0.14 0.14 1.8 0.081 0.1 16

50 362 28.1 3.4 0.73 0.69 2.3 0.1 0.1 17

100 378 53.7 6.7 1.9 1.9 4.9 0.14 0.14 19

500 410 279 25.6 12 11 13 0.34 0.34 21

1,000 426 557.8 47.1 24 23 28 0.57 0.6 23

2,500 458 1,394.4 115.5 60 60 64 1.3 1.3 32

5,000 474 2,788.6 222.5 120 120 120 2.5 2.5 39

10,000 490 5,577.4 444.9 240 240 250 5.8 5.7 51

Table 5.7: Comparison of the setup and
online runtimes of the MPC RL based
intersection cardinality procedure of
varying numbers of records in circuit
variant GMW/A. Compared are the
three networking configurations from
figure 5.7, for varying database sizes. The
reported network communication cost
is the sum of sent and received data.

setting. Table 5.7 displays the results of theGMW/A protocol variant.

5.5.4 Real-World Deployment and Tests

In the context of the (German) Medical Informatics Initiative (MI-I) use case Collab-
oration On Rare Diseases (CORD_MI) we had the opportunity to conduct several
real-world evaluations in eightGermanmedical centers and university locations
(shown in Table 5.8). The assessments which legal conditions govern the process-
ing of real patients’ data usingMPC protocols are still pending. Hence, synthetic
datasets were used for these evaluations.

Two goals were pursued with these tests: first the collection of feedback from
(bio)medical researchers regarding the user experience ofMainSEL andhowwell
it solves their requirements. Second,wewanted to enable researchers and techni-
cal personnel to gather experience with MPC applications. Unfortunately, MPC
is often seen as an experimental technology only suited to academic research and
not as a well understood, mature set of techniques based on decades of research.
We are convinced, that MPC techniques are able to solve pressing problems in
medical research, especially in the field of rare diseases.

As we were interested in the feedback from a broad range of researchers, we
tried to lower the barriers to participate in the experiments by supplying helper
scripts, pre-setup configuration files and a free-to-use OpenVPN server. The
Extract, Transform, Load (ETL) processes employed in these “ad hoc” setups differ
from a future production deployment. For the evaluationsComma Saparated Value
(CSV) files were used as data sources.

Mainzelliste, and therefore MainSEL, can directly couple with Health Level Seven
International (HL7) Fast Healthcare Interoperability Resources (FHIR) R480 based

80 https://www.hl7.org/fhir/R4

Table 5.8: Institutions triplet teamspar-
ticipating in the synthetic data, real
world evaluations.

Party 1 Party 2 Party 3

UniversityMedical CentreMannheim RTWHAachen University Berlin Institute of Health
University Hospital Carl Gustav Carus, Dresden University Hospital Frankfurt UniversityMedical CentreMannheim
University Hospital Tübingen University HospitalWürzburg University Hospital Regensburg
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pipelines, which is a preferred and highly encouraged way of data loading for
permanent installations. HL7 FHIR R4 is an established standard in medical in-
formatics, and actively supported as an interface language in many hospital or
laboratory information systems.

Synthetic Data GenerationFOr THE PrOmOTIOn of specialized rare disease documentation—like Orpha
codes—and interoperability, the CORD_MI project created a synthetic dataset
for usage in Germanmedical facilities. The synthetic datasets for the real-world
evaluation ofMainSEL are loosely based on those “gold-standard” data.

The CORD_MI dataweremodeled to cover the “MI-I Kerndatensatz”81 (common- 81 Ganslandt et al. (2018)

core dataset of the German medical informatics initiative) following real world
hospital statistics distributions—including vastly more information than re-
quired in MainSEL’s evaluation. We extracted the attributes of the module “Per-
son”—the demographic and identifiable data of a patient. Around 54,000 records
were prepared as CSV tables. As the CORD_MI dataset records is not suitable for
a record linkage evaluation82, we increased the variance in thefields “first name”,

82 The fields “first name” exhibits only
two different values followed by a ran-
dom number, e.g., “Hans_143” and
“Grete_322”. The fields “last name” and
“city” show similar restrictions.

“last name”, and “city” by sampling those fields from the list of 50,000 random
records, used in the record linkage quality evaluation (cf. Section 5.5.1). Includ-
ing a pairwise overlap and a small common overlap between all fragments, we
split this database into three parts with around 18,000 records each—shown in
Figure 5.8.

SystemRuntime PerformanceInADDITIOnTO the “bare”MPCperformance benchmarked in Section 5.5.3, the
runtime performance of the composed MainSEL system is of interest for real-
world deployment as well. Calculating the set intersection cardinality between
two parties with 100 patients each—requiring 10,000 comparisons in total—we
measured the runtime of the additional cryptographic elements—namely Stun-
nel and the OpenVPN components. The composition of the overall runtime is
displayed in Figure 5.9. Both parties used the system specifications outlined in
Section 5.5.3. The central OpenVPN server ran on a dedicated server using an
AMDEPYC™7702processorwith 4 dedicated cores running on 3.34GHz, 16GiB
RAM and a 2.5Gbit/s network interface. Note, that the network bandwidth is
sufficient to fully saturate both clients’ network interfaces.

Party A

Party C

Party B

Figure 5.8: All three generated datasets
consist of roughly 18,000 records in-
cluding a pairwise overlap of around
200 records. In addition, 8 records are
included in all three datasets. This fig-
ure was created by the author and used
in Kussel et al. (2022), licensed under
CC-BY.

5.6 DISCUSSIOn

5.6.1 Setup and Online Phases Division

The separation of a MPC calculation into two distinct phases—the input data
independent setup phase and the subsequent online phase when all inputs are
known83—enables a useful onlinemode of operation. The designed record link-

83 cf. Section 2.3age andmatchingmode circuits only depend on the number of input records and
the field structure—that is the EpiLink configuration—but not on the data itself.
Assuming that this information remains—more or less—immutable, twoMain-
SEL instances can run the setup phase ahead of time and only need to perform
the quicker online phase84 once the computation is actually triggered. One pos-

84 The online phase usually requires an
order of magnitude less communica-
tion, thus, runningmuch faster.
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sible application of usingMainSEL as an online systemwould be the continuous
record linkage between two databases with updating the LID’s every time a new
record is inserted—i.e., a new patient is admitted. In this mode of operation the
division of setup and online phase would turn the online phase runtimes to be
the significant, observable ones. However, one initial full database cross-linkage
would be required nonetheless.
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Figure 5.9: Composition of the full
MainSEL system runtime for the set
intersection cardinality calculation be-
tween two databases with 100 patients
each. The “Bare MainSEL” setup con-
sists of only the PostgreSQL, Mainzel-
liste, and Secure EpiLinker containers.

5.6.2 Performance and Complexity Discussion

Using circuit variant GMW/A and the fastest network environment—network
setup A—a full cross-linkage of two medium-to-large-sized databases with
10,000 patients eachwould take 78h for the setup and 17h for the online phase—
approximately 4 days in total. In the high latency networking setup C, it would
take almost 17 days. These runtime extrapolation remain applicable to the cal-
culation of the record linkage-based private set intersection cardinality. How-
ever, for many matching mode use cases—e.g., cohort size estimations for rare
disease research—the expected number of records in both databases is consider-
ably smaller.

For privacy reasons85 we do not incorporate blocking techniques in our record85 X. He et al. (2017)

linkage procedure, whichwould drastically reduce record linkage runtimes. Cur-
rently, allM records from one database are compared toN records of the second
one. This quadratic number of comparisons scale very quickly, hence, even a “fac-
torial” decrease in the number of comparisons, i.e., by binning, would notably
benefit the performance.

Formany applications this full linkagewould only beneeded to runonce initially,
when two parties enter the secure record linkage system. Once the systems are
linked, updating by including a newly admitted patient to an existing database
of size 10,000would take 6.1 s online time for circuit variantGMW/A or 4 s in the
pure GMW protocol, assuming network setting A. In high-latency network envi-
ronment C, it would take 48 s for protocol variantGMW/A.

The runtime complexity differs between full cross-linkage and online usage
mode: due to the exhaustive pair comparisons, the computation- and communi-
cation complexity isO(M · N) for full initial cross-linking, while during normal
operation the complexity becomesO(N), i.e., linear in the size of the data source.
This linear complexity results inpractical runtimes forMainSEL in abroad range
of practical applications.

From a runtime perspective, the inclusion of, for example, equality-compared
Medical Data (MDAT) in addition to the demographic data would not heavily im-
pact runtime performance. As Figure 5.6 shows, the impact of simple equality
comparisons is nearly negligible compared to Bloom-Dice comparisons.

Protocol Variants and Network Set-
tings BASED On THE usage scenario requirements the choice of an optimal configu-

ration varies. As discussed before, for many environments the optimization for
fastestonlinephaseruntimes is sensible, as thesetupphasescanbeperformedbe-
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tween timing critical online phases. Excluding the edge-cases of small databases
and very high latencies, the GMW/A protocol mixture constitutes a balanced de-
fault configuration. This observation enables non-technical personnel to deploy
and useMaiSEL without benchmarking extensively beforehand.

These results are in agreement with DEmmLEr, SCHnEIDEr, AnD ZOHnEr
’s86 insight, that the hybrid usage of mixedMPC protocols proves more efficient 86 Demmler, Schneider, and Zohner

(2015)in most applications. The runtime improvements gained by choosing the appro-
priate protocol for each algorithmic section outweighs the additional computa-
tion and communication incurred by the protocol conversions.

As it is widely known, network communication presents itself as MPC’s princi-
pal bottleneck. By restricting the network bandwidth or incurring additional
latency between both parties—or both—runtimes substantially increase. For
10,000 record comparisons the runtime of matching differs more than 20% be-
tween the best and theworst networkmodel. This is unsurprising, as, first, large
amounts of datamust be transmitted87, and second, the latency incurs a runtime

87 Table 5.7 shows, that for 10,000 com-
parisons the required communication
size exceeds 6GiB.

penalty for each of the multiple hundred interaction rounds in the GMW proto-
col.

ImpactofFirewall andProxyTraver-
salTHE LABOrATOrY88 AnD real-world performance benchmarks89 attest Main-

88 See Section 5.5.3

89 See Section 5.5.4

SEL practical and feasible performance for real-world workloads, showing it to
be useful tool for medical researchers. However, the composition of the runtime
shown in Figure 5.9 reveal the high overhead of the components included for fire-
wall and proxy traversal. Compared to the “bare” systemusing onlyMainzelliste
andSEL, the completeMainSEL systemperforms approximately 5.6 timesworse.
Removing OpenVPN would result in a 259% performance boost, further remov-
ing Stunnel would result in an additional 214% runtime improvement. A future
direction of research and engineering strongly suggested by this fact is the explo-
ration of other proxy and firewall traversal mechanisms90, as well as the decou-

90While the commonly used protocols
and methods, e.g., STUN (RFC 8489),
TURN (RFC 5766), and ICE (RFC 8445),
work with TCP traffic, most implemen-
tations only handle UDP traffic, as me-
dia streaming is the most common use
case.

pling of ABY’s network layer to directly implement authenticated communica-
tion channels. These steps would further increaseMainSEL’s capability to adapt
to larger workloads.

Results fromReal-World TestingTHEDEPLOYmEnTAnD evaluation ofMainSEL in eightGermanuniversity hos-
pitals and universities91 was successful as all test sites managed to perform the

91 see Table 5.8complete test suitewith correct results. Thanks to the feedbackof the researchers
gathered during the tests we were able to improve MainSEL’s robustness and
adapt it better to the researchers’ needs.

While technically interoperable with all institutions’ firewalls, the used Open-
VPN network can be used to circumvent the firewall rules and network policies.
For the trial experiments using synthetic data this was acceptable, however, for
operational deployments specialized gateways defined and configured collabora-
tively with the institutions’ IT security teams aremandatory.

https://datatracker.ietf.org/doc/html/rfc8489.html
https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc8445
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5.7 BEYOnDDEmOGrAPHIC DATA

Although this work describes only record linkage operations based on IDAT, the
algorithm is easily generalizable to include other types of data.

Inspired by the success of the strategy to transform problems originating firmly
in the graph theory realm to similarity measure spaces, we identified three re-
lated data types which are not thoroughly explored yet but show promising first
results. All three applications are based on a transformation “pipeline” instead
of finding approximate subgraph isomorphisms: The graph is decomposed into
fragments or paths of a certain length, those fragments, including vertex- and
edge properties, are inserted into a binary data structure by means of locality
sensitive hashing, and lastly probabilistic similarity measures are computed. It
turns out, that this approach is promising for finding “broad” similarities—that
is, where a certain generality is required and no specific criteria of similarity can
be given. This section introduces and sketches three possible expansions: Com-
parison of small molecules with regard to chemical similarity, the discovery of
similar patients based on electronic health records, and the identification of dis-
turbed biological pathways using transcriptome similarity comparisons.

5.7.1 Chemical Similarity of Small Molecules

Small molecules play an important role in pharmaceutical research. Finding
promising substances to bind to specific protein sites is an expensive and time-
consuming procedure. Pharmaceutical companies want to collaborate in this en-
deavor, but are unwilling to disclose their database of candidates. By calculating
the overlap “in the chemical space” in a privacy-preserving fashion, the develop-
ment of new targeted drugs in personal health could be performed quicker and
more expedient.

One real-world use case is the classification and comparison of cystic fibrosis
drugs in the CandActCFTR database92. This database collects information re-92 Nietert et al. (2021)

garding the chemical structure of published drug trials, and additional annota-
tions, such as the tested cell lines, mutation variant of the CFTR gene, etc. Un-
fortunately, pharmaceutical companies are seldomwilling to share their negative
experiment results and have neither commercial nor publication incentives to
disclose those substances. However, providing privacy-preserving means to de-
marcate the sampled chemical space could lead to a more open flow of knowledge
and help with allocating research funds tomore promising drug candidates.

This application requires a broad concept of chemical similarity. However, fo-
cusing on specific properties, such as charge distribution, limits the measure’s
expressiveness, hence, its utility for the given application.

Fragment-based molecule fingerprints93—that is, the molecule graph is sepa-93 Cereto-Massagué et al. (2015)

rated into paths of a certain length and these fragments are hashed to generate a
bit vector representing themolecule—are fast structures formolecular similarity
calculation and Tanimoto coefficient94 comparisons T (X,Y ) = |X∩Y |

|X|+|Y |−|X∩Y |
9594 Tanimoto (1958)

95 Compare to theDice-Sørensen coeffi-
cient in Section 5.2.2

achieve a good correspondence to chemical similarity in many applications96.

96 Sheridan and Kearsley (2002); Ba-
jusz, Rácz, and Héberger (2015)
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There are suitable fragment-based fingerprinting algorithms available97, how-
97 For example, the “FP2” fingerprint-
ing algorithm, implemented in the
open source package “Open Babel”:
https://openbabel.org/docs/dev/
Fingerprints/fingerprints.html.

ever for this application they need modification, e.g., to allow configurable
length.

5.7.2 Similar Patient Discovery

For certain groups of patients, e.g., undiagnosed patients or cancer cases outside
establishedmedical guidelines, the discovery of similar patients open theway to
diagnoses or promising treatments. Unfortunately, most of the time those cases
are individually rare, that means a similar patient is most likely to be found in
the records of a different hospital, and most of the time it is not clearly defined
what the relevant criteria of “similar” are.

Based on the assumption, that similar diseases cause similar trajectories or “ar-
tifacts” in the medical history, one could undertake the identification by mod-
elling the patients’ medical history as a graph. In an “arborescent” modelling all
labvalues,medical images, hospital encounters, demographicdata, etc. are struc-
tured hierarchically into an acyclic graph. By “similar trajectories or artifacts”
we assume, for example, that patients that havemultiple chest NMR images, lab-
oratory values for inflammation markers, and gene sequencing of the BRCA1/2
genes, are highly likely suffering from breast cancer, in some kind, form, or fash-
ion.

Aspatient similarity is an important research topic, for example in clinicalmolec-
ular tumor boards or for the detection of disease subtypes98, a large body ofwork 98 L. Li et al. (2015)

exists99. However, to the best of our knowledge, no privacy-preserving similar 99 Parimbelli et al. (2018)

patient analysis algorithm exists.

5.7.3 Transcriptome Pathway Defect Identification

Between genomic information and expressed phenotype laymany distinct steps
and “realms”, all with their own regulatory dependencies and malfunction op-
portunities. One of those “realms” is the domain of transcriptomes. Transcrip-
tome measurements consist of snapshots of all transcription processes within
a cell, that is concentrations of RNA strands. From these concentrations a reg-
ulatory graph can be constructed, linking genomics to proteomics. Edges, that
is dependencies in the system, can be inhibitory or activating. Through privacy-
preserving similarity matching of transcriptome graphs, using the graph simi-
larity techniquesdescribed above, against a curated, labeleddatabase, previously
undetected defects in transcription pathways could be identified100. 100 Xu et al. (2016)

5.8 OUTCOmE AnD PrOSPECTS

MainSEL, the MPC-based Privacy-Preserving Record Linkage (PPRL) framework de-
scribed in this chapter, is the first practical probabilistic PPRL solution allowing
the linkage and calculation of record linkage-based Private Set Intersection Cardi-
nality (PSI-C) without information leakage101 while handling noisy, incomplete

101 In the semi-honest setting and the
absenceof a sufficientlypowerfulquan-
tum computer.

and heterogeneous data. By usingMPC techniques the functionality is easily ex-
tendable and provably secure under rigorously defined threatmodels. With that

https://openbabel.org/docs/dev/Fingerprints/fingerprints.html
https://openbabel.org/docs/dev/Fingerprints/fingerprints.html
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MainSEL fulfills the requirements of the real-world medical research environ-
ment.

By exploiting structural similarities between the probabilistic record linkage
graphproblemand the corresponding table-basedproblem—namely the insight,
that the fully normalized relational database structure matches the graph struc-
ture of the problem—wewere able to transform theNP-hard task of finding ap-
proximate subgraph isomorphisms to a less general but application appropriate
problem space exhibiting polynomial complexity.

Using highly optimized hybrid MPC circuits for the functionality—including
a novel high-level approach to generate optimized integer division circuits—
MainSEL achieves practical runtimes for medium to large sized databases102

102 In an onlinemode of operation even
for very large databases.

completing 10,000 comparisons in around 5min—including all overheads orig-
inating in the usage of OpenVPN and Stunnel.

To allow the production deployment, we provide an open source containerized
software package ready to be used with minimal configuration in real hospi-
tal networks. To assure easy integration and up-to-date deployments we follow
the Continuous Integration/ContinuousDeployment (CI/CD) paradigm utilizing auto-
mated build and containerization pipelines.

The laboratory performance measurements as well as the real-world experi-
ments conducted between eight German university medical centers in cooper-
ation with researchers in the rare disease’s community attest MainSEL practi-
cality when it comes to applications in medical research. The feedback collected
during these tests helped us customizeMainSEL and its documentation to better
satisfy the research needs. Evaluations using real patient data are in preparation
and scheduled for the second half of 2022.

The focus of MainSEL on data privacy leads to vastly higher security guarantees
than existing PPRL solutions—often based on centralized bloom filters. In par-
ticular:

• The processing of sensitive patient data usesmodern, tried-and-tested crypto-
graphic techniques for protection.

• Nocentral component andnoTTP is required in the computation. Nosensitive
information leaves the institution’s network perimeter, no IDAT of any kind is
centrally collected.

• Even in the case of a data breach in a participating party, only the compro-
mised parties’ data is at risk—the input data of all other parties remains pri-
vate.

These improved security guarantees elevate the state-of-the-art in record link-
age and opens up innovative research opportunities by potentially being able to
perform record linkage without data transfer consent and associated high regu-
latory burden.
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During the work on MainSEL, we identified possibilities for further improve-
ment and research that fall into two broad categories: First, improvements of the
secure record linkage algorithms and second, extensions of the interfaces and ap-
plication.

One often requested feature is the inclusion of more than two parties. While
the usage of MainSEL with more than two data owners and two computation
parties—an outsourcing scenario103—is easily achievable, “real” multi-party

103 See Section 2.3.6record linkage is not trivial, as most probabilistic record linkage similarity mea-
sures are not transitive—Alice matching Bob and Bob matching Carol does not
imply a match between Alice and Carol. The naïve application of the EpiLink
similarity to that scenario could lead to reduced matching quality and conflict-
ing matching status between multiple parties. On a more technical side, most
(practical) MPC protocols scale quadratic in the number of participating parties,
leading to challenges when it comes to runtime performance of those possible
n-party protocols.

A major performance detriment of MainSEL is the exhaustive pairwise compar-
ison of records leading to N · M record linkage operations when linking two
databases of size N and M , respectively. Computation reduction strategies—
blocking—are not easily applicable, as often used techniques, such as Locality-
Sensitivity Hashing (LSH), are known to impair MPC’s strong security guaran-
tees104. ThedevelopmentofObliviousRandomAccessMemory (ORAM)-basedblock- 104 X. He et al. (2017)

ing constructions might provide a way to reduce computational workload while
providing full security.

While MainSEL is tested in real clinical networks, the utilization of the firewall
and proxy traversal using (TCP-based) variants of, e.g., STUN105, ICE106, and

105 RFC 8489, Accessed 2022/05/08.

106 RFC 8445, Accessed 2022/05/08.

TURN107 would increase performance up to 557% and we consider this the next

107 RFC 5766, Accessed 2022/05/08.

step to improve hospital deployment.

Lastly, to further enhance the flexibility of MainSEL and allow the usage with
non-IDAT data types, the development and implementation of additional simi-
larity measures and matching classifiers is necessary. Section 5.7 sketches three
promising extension possibilities.

https://datatracker.ietf.org/doc/html/rfc8489.html
https://datatracker.ietf.org/doc/html/rfc8445
https://datatracker.ietf.org/doc/html/rfc5766
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CHAPTEr 6

Conclusion

In this dissertation, privacy-preserving biomedical distributed analyseswere ex-
plored through the lens of graph theory and statistical physics. While some
research questions did not deal with “graph problems” in the strictest sense,
the methodology and associated epistemology of the fields mentioned were em-
ployed to find efficient, secure solutions and—if required—transform the prob-
lem to amore effectively solvable problem space.

PrIVACY-PrESErVInG EPISTASIS AnALYSIS

Circuit-based Secure Multi-Party Computation (MPC) techniques, as well as novel
cryptographic building blocks, were used to design, implement, and experimen-
tally evaluate a protocol suit for privacy-preserving epistasis analysis (Chap-
ter 3).

Previous (unencrypted) analyses of epistasis (gene–gene and gene–environment
interactions) led to valuable insights regarding the complex regulatory genetic
networks associated with certain diseases, paving the way for novel treatments1. 1 H. Zhang et al. (2017); Yang et al.

(2017); Meng et al. (2017); Y. M. Cho
et al. (2004); Liu et al. (2009)

As large datasets of sensitive genomic data are required for this kind of analy-
sis, privacy-preserving distributed computations are a natural fit. However, due
to the computational complexity of the analysis of large, coupled systems, the
only recent advances considering privacy are based on StatisticalDisclosureControl
(SDC) techniques—more specifically based on Differential Privacy (DP)2—hence 2 T. T. Le et al. (2017); Chen, X. Zhang,

and R. Zhang (2019)reducing the data’s utility3.
3 Naveed et al. (2015)

By designing and implementing the novel, efficient cryptographic building
blocksArithmetic Greater Than (AGT) (Section 3.3.1) and ASWAP (Section 3.3.2), we
were able to design, implement, and evaluate a suit of privacy-preserving MPC
protocols for the performance of feature selection on large genomic datasets
(Section 3.2) and utility-lossless Multifactor Dimensionality Reduction (MDR) (Sec-
tion 3.3). Both tasks work in conjunction. While the final analysis of the
non-linear models is performed using Private Multifactor Dimensionality Reduction
(PMDR), the feature selection algorithms remove noisy features, hence, increas-
ing thequality of the resulting correlations andoptimizing runtimeperformance
(Section 3.6.4).

While providing researchers with algorithms and tools to perform research not
possible before, due to data protection regulations, we contributed to a powerful
generalMPC framework by extending its functionality and provided the first im-
plementation of a novel garbling scheme4 (Section 3.5.1). 4 Rosulek and Roy (2021)
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PrIVACY-PrESErVInG SOLUTIOn TO THE KIDnEY EXCHAnGE PrOBLEm

By designing privacy-preserving,MPC-based protocols for the construction and
evaluation of a medical compatibility graph, a heuristic (local) optimizer for the
graph problem of kidney exchange was developed (Chapter 4). The developed
software—Secure and Private Investigation of the Kidney Exchange problem (SPIKE)—
meets all functional requirements with regard to privacy, efficiency, decentral-
ization and (medical) flexibility, providing medical professionals with a tool to
speed up and reduce the cost of kidney exchanges, thus allowing more patients
to access a potentially live-saving procedure.

SPIKE achieves a 400× to 30,000× speedup compared to the state-of-the-art (Sec-
tion 4.3.2) and enhances the medical quality of the solutions by implementing a
more thorough compatibility assessment of donors and recipients during com-
patibility graph construction, following recent transplantation guidelines and
medical evidence (Section 4.1).

SECUrE RECOrD LInKAGE AnD PrIVATE GrAPH SImILArITY

The problem of federated record linkage was solved with a fully decentralized
MPC solution, which combines the highest security requirements with feasible
runtimes. A Trusted Third Party (TTP) has thereby been entirely omitted (Chap-
ter 5).

The problem of record linkage can be viewed as the search for approximate sub-
graph isomorphisms (Section 5.2). Preliminarywork is devoted to this topic5, but5 M. Schmidt et al. (2020)

this approach is not a suitable candidate for translation into a privacy-protecting
MPC protocol due to its inherent superpolynomial runtime complexity. The in-
sight that the graph structure considered in this approach resembles that of a
fully normalized database leads to the implementation of a solution that, while
not as general, can be executed efficiently in polynomial time.

The developed framework—Mainzelliste Secure EpiLinker (MainSEL)—allows for
fault-resistant similarity analysis (Section 5.2.2). In addition to the Institutional
Review Board (IRB)-compliant issuance of linkage IDs via a cross-site linkage ser-
vice (which is not a TTP, since it does not participate in the computation), a pro-
tocol for the direct generation of linkage IDs was also presented (Section 5.4.2).
The use of circuit-based MPC leads to the easy extension of the protocol. As an
example of this, a use case from rare disease research is addressed and a record
linkage-based Private Set Intersection Cardinality (PSI-C) computation is described
(Section 5.4.3). Extensive experimental evaluations of the record linkage quality
and the runtime behavior ofMainSEL acrossmultiple network andprotocol vari-
ations attest toMainSEL’s practicality (Section 5.5). The deployment ofMainSEL
has been simplified and automated to the point that it has been successfully field-
tested in eight university hospitals’ real IT context. The use of real patient data is
targeted for the second half of 2022.

Based on the matching methods developed for MainSEL, ultimately three addi-
tional extension scenarios not yet conclusively exploredwerepresented inwhich
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graph systems are compared for similarity (Section 5.7). A reliable comparison
of pharmacologically relevant small molecules is a requested use case from cys-
tic fibrosis research. The molecular structure of potential drugs is to be evalu-
ated for similarity in a chemically meaningful way without giving out any infor-
mation. One promising approach is to use (customized) graph fragment finger-
prints in theMainSELEpiLinkalgorithm. Asa secondextension, similarpatients
should be identified in distributed databases, where the similarity criterion is
not sharply defined. By modeling the patient record and their medical history
as a graph system, a path-based embedding in binary data structures and thus
an efficient comparison is possible as well. As a final possible research avenue,
the detection of defects in gene regulatory networks via the use of transcriptome
analyses is outlined.

Where does the research presented in this work lead us? While the detailed ac-
complishments have been described above, three “intangible” aspects have been
achieved: First, a way of embedding diverse graph structures with associated
data into structures suitable for established, powerful similarity comparison al-
gorithms has been shown. More applications for this technique, in addition to
the three given research opportunities, are sure to come. Second, the presented
researchhas real-world impact. Medicinal researchers are introduced to the exis-
tence of privacy-preservingMPC techniques and have been using the developed
tools in test settings. The application to real medical research, protecting real
patients’ data is scheduled. Furthermore, data protection officers, legal scholars,
and legislators have been involved and familiarized with these techniques and
are starting to see the high protection levels, as well as the numerous applica-
tions of MPC. Third and ultimately, a connection has been established between
methods andmodels from graph theory and statistical physics to cryptographic
protocols and data protection in the field of medicine. The successfully finished
researchprojects give evidenceof thepotential of this interdisciplinary approach
and promise further algorithms and protocols following this path.
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CHAPTEr A

Abbreviations

3HG Three-Halves Garbling
AGT Arithmetic Greater Than
BFS Breadth-First Search
CI/CD Continuous Integration/Continuous Deploy-

ment
CORD_MI Collaboration On Rare Diseases
CSV Comma Saparated Value
DAG Directed Acyclic Graph
DNA desoxyribonucleid acid
DP Differential Privacy
EA Epistasis Analysis
ETL Extract, Transform, Load
FHE Fully Homomorphic Encryption
FHIR Fast Healthcare Interoperability Resources
GC Yao’s Garbled Circuits
GDPR General Data Protection Regulation
GHZ Greenberger-Horne-Zeilinger
GT Greater Than
GWAS Genome-Wide Association Study
HE Homomorphic Encryption
HIPAA Health Insurance Portability andAccountability

Act
HL7 Health Level Seven International
HLA Human Leucocyte Antigens
HMAC Hash-basedMessage Authentication Codes
i.i.d. independent and identically distributed
IDAT Identifying Personal Data
ILP Integer Linear Programming
IRB Institutional Review Board
KEP Kidney Exchange Problem
kNN k Nearest Neighbors
LAN Local Area Network
LID Linkage ID
LS Linkage Service
LSH Locality-Sensitivity Hashing
LWE Learning with Errors
MainSEL Mainzelliste Secure EpiLinker
MDAT Medical Data
MDR Multifactor Dimensionality Reduction
MI-I (German)Medical Informatics Initiative
MPC SecureMulti-Party Computation
mRNA messenger ribonucleid acid



144 GrAPH STrUCTUrES In PrIVACY-PrESErVInG BIOmEDICAL AnALYSES

MSB Most Significant Bit
MT Multiplication Triples
ODEs ordinary differential equations
ORAM Oblivious RandomAccessMemory
OT Oblivious Transfer
OTP One-Time Pad
PDF Probability Density Function
PEA Practical Private Epistasis Analysis usingMPC
PEA Private Epistasis Analysis
PFS Private Feature Selection
PGM Probabilistic Graphical Model
PGMs Probabilistic Graphical Models
PMDR PrivateMultifactor Dimensionality Reduction
PPKEP Privacy-Preserving Kidney Exchange Protocol
PPRL Privacy-Preserving Record Linkage
PRelief-F Private Relief-F
PRNG PseudorandomNumber Generator
PSI Private Set Intersection
PSI-C Private Set Intersection Cardinality
PTuRF Private Tuned Relief-F
RNA ribonucleid acid
SDC Statistical Disclosure Control
SIMD Single InstructionMultiple Data
SNP Single Nucleotide Polymorphism
SNPs Single Nucleotide Polymorphisms
SPIKE Secure and Private Investigation of the Kidney

Exchange problem
SSS Shamir’s Secret Sharing
SWHE Somewhat Homomorphic Encryption
TTP Trusted Third Party
TuRF Tuned Relief-F
UAC Use and Access Committee
WAN Wide Area Network
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CHAPTEr B

Experimental Network Settings

To gain significance for a wide variety of application settings, the experimental
evaluations of the protocols in this dissertationwere designed to have high infor-
mative value for deployment in aWide Area Network (WAN) and a Local Area Net-
work (LAN) setting. The rationale behind the parameter choice is—albeit slightly
differing between the protocols—always the same, hence generally described in
this chapter. The chosen network performance parameters, as well as additional
evaluated network settings are detailed in the respective chapters.

The two common network settings are:

WAN TheWANscenariomodelsa rangeofapplications. Thesimilarity is, thatall
computational parties are geographically spread. Most largermedical institu-
tions are connected via high-bandwidth network connections—for example
the German research network (“Deutsches Forschungsnetz”, DFN), a research
exclusive high-performance carrier network. As we hope Secure Multi-Party
Computation (MPC) protocols to reduce the legal effort required to participate
in a computation, smaller, local hospitals andmedical practices might partic-
ipate directly in those computations. For these institutions residential inter-
net access with reduced bandwidth is realistic. Typical cross-European net-
work latencies are around 13ms and across North America 30ms1. Higher la-

1 https://www.verizon.com/
business/terms/latency Accessed:
2022-04-20

tencies might be assumed, as present proxy systems and firewalls, as well as
packet loss and connection unreliabilitiesmight increase the network latency.
Hence, the assumedWAN network setting consists of a connection between
100Mbit/s and 10Gbit/s bandwidth and a conservatively restricted latency
between 50ms and 100ms simulated by using the tc commandline tool2.

2 https://man7.org/linux/
man-pages/man8/tc.8.htmlLAN This setting is relevant for large, institutions interconnected in close dis-

tance and high-performance network connections or multiple medical insti-
tutions perform the protocol in an outsourced model using two computation
parties. As the computation parties can not infer any sensitive information—
non-collusionassumed—servers from, for example, competing cloudcomput-
ing providers co-located at the same internet exchange point can be chosen,
thus having a high-bandwidth connection with no additional network delay.
The benchmarks in this LAN setting use between 1Gbit/s and 10Gbit/s band-
width network with an average latency of under 1ms.

https://www.verizon.com/business/terms/latency
https://www.verizon.com/business/terms/latency
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
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CHAPTEr C

Epistasis Analysis SupplementaryMaterial

C.1 PrIVATE TUnEDRELIEF-F FEATUrE SELECTIOn

PEA’s Private Tuned Relief-F (PTuRF) protocol (Protocol C.1) works similar to Pri-
vate Relief-F (PRelief-F) (Protocol 3.3). The key difference is, that in each iteration
the “weakest” features—the features with the lowest weight—are pruned. This
speeds up subsequent iterations, as the number of features is reduced and de-
creases the influence of noisy attributes. However, this filtering requires a partial
sort—implemented following thekNNdesignof JÄrVInEnETAL.1 like inPRelief- 1 Järvinen et al. (2019)

F—in every iteration. Additionally, the removal of features potentially introduces
an order and with that a sampling bias. This is mitigated by randomly shuffling
the records before feature selection.

C.2 BATCHOPErATIOnOF AGT

One optimization of our novel ATG protocol is the possibility to efficiently com-
pare one value with β others, formally {x > yi}βi=1. Instead of using 1-bit mes-
sages in the 1-out-of-N OTconstruction, it ismore efficient to “pool” and concate-
nate allmessage buffers for all batched comparisons and evaluate one, combined
1-out-of-N OT. For large values of β this improves the communication size by

(γ + 1)(2κ+ 2ℓs) + dϵ/(ℓs − 1)e(2κ+ 2ϵ)

(γ + 1)2ℓs + dϵ/(ℓs − 1)e2ϵ
.

The improvements in communication size for varying bit lengths are shown in
TableC.1. At the cost of increasing the communication rounds to 3, and for ℓ=63 a
factorof3.1. At the cost of increasing ℓ−1 the communication size canbe reduced
to 2ℓ− 2 bits.

ℓ (bit) 7 15 31 63
Improvement 3.0× 3.9× 3.0× 3.1×

Table C.1: Communication improve-
ment due to batching for AGT

Possible application of Batch-AGT includes the counting of arithmetic values
greater than a certain threshold by invoking a Hamming weight calculation on
the Batch-AGT results.

C.3 SECUrITY OF THEnOVEL AGT

Informally, ourAGTprotocol’s security is obvious, as it only ablack-box composi-
tion of multiple

(
N
1

)
-OT operations producing uniformly distributed output val-

ues in each step.

More specifically, the first call to the
(
N
1

)
-OT functionality takes in the

first ℓs bits of 〈δ〉A and results in a secret share (c, r) ∈ {0, 1}2, where
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Protocol C.1: PEA’s Private TuRF proto-
col

1 Function PTuRF(R,α):
2 The datasetR is the concatenation of each data owners Pi raw datasetRi.
3 The dataset consists of all recordsR := (r1, . . . , rk), where the record

rj := ((gj,1, . . . , gj,m), αj) : rj ∈ Rwith each genotype gj,λ ∈ {1, 2, 3} of
person j at locus λ and each group α ∈ {+,−}, denoting the case and control
group, respectively. The function returns the index positions of themost
weighted genotypes. θ = n−

⌊
aα
n

⌋
denotes the number of features to retain

in each iteration, where ⌊·⌋means rounding down to the nearest integer.
4 for j = σ(1) . . . σ(k) do // For all permuted records in the Dataset

// Initialize distance and difference matrices to the
// numerical maximum value and zero, respectively

5 ⟨mhit
dist⟩Y ← [⟨MAX_VALUE⟩Y , . . . , ⟨MAX_VALUE⟩Y ]

6 ⟨mhit
ineq⟩Y ← [[⟨0⟩Y , . . . , ⟨0⟩Y ], . . . , [⟨0⟩Y , . . . , ⟨0⟩Y ]]

7 ⟨mmiss
dist ⟩Y ← [⟨MAX_VALUE⟩Y , . . . , ⟨MAX_VALUE⟩Y ]

8 ⟨mmiss
ineq ⟩Y ← [[⟨0⟩Y , . . . , ⟨0⟩Y ], . . . , [⟨0⟩Y , . . . , ⟨0⟩Y ]]

9 for ℓ > j do // For all pairs of records
10 ⟨Djℓ⟩Y ← ∅
11 for λ = 1 . . .m do // For all genotypes
12 ⟨Djℓ⟩Y .append

(
∆

(
⟨gj,λ⟩Y , ⟨gℓ,λ⟩Y

))
13 for ∀ℓ ̸= j do // For all (unordered) pairs
14 if j < ℓ then
15 ⟨d⟩Y ← Hw(⟨Djℓ⟩Y)
16 else
17 ⟨d⟩Y ← Hw(⟨Dℓj⟩Y)

18 if ⟨αj⟩Y == ⟨αℓ⟩Y then // If records have same label
19 ⟨mhit

dist⟩Y , ⟨mhit
ineq⟩Y ← kNN(⟨mhit

dist⟩Y , ⟨mhit
ineq⟩Y , ⟨d⟩Y , k)

20 else
21 ⟨mmiss

dist ⟩Y , ⟨mmiss
ineq ⟩Y ← kNN(⟨mmiss

dist ⟩Y , ⟨mmiss
ineq ⟩Y , ⟨d⟩Y , k)

22 ⟨W ⟩Y ← ⟨W ⟩Y + ⟨mmiss
ineq ⟩Y − ⟨mhit

ineq⟩Y

23 for ∀ℓ do
// The features are sorted by weight and only the first
// (best) φ · a are retained

24 ⟨g′ℓ⟩Y ← kNN(⟨gℓ⟩Y , ⟨W ⟩Y , φ · a)
25 ⟨gℓ⟩Y ← ⟨g′ℓ⟩Y [1 : φ · a]

26 return ⟨R⟩Y
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c := (〈δ〉A0 [1 : ℓs] + 〈δ〉A1 [1 : ℓs] ≥ 2ℓs)⊕ r. The uniformly random bit r is only
known to the OT sender and “blinds” c, hence, forming a uniformly distributed
secret share (c, r).

The following
(
N
1

)
-OT calls process the remaining substrings of 〈δ〉A: Parties P0

and P1 call
(
N
1

)
-OT, resulting in a new (c, r) share pair, where c := (〈δ〉A0 [ℓprev :

ℓprev + ℓ′s − 1] + 〈δ〉A1 [ℓprev : ℓprev + ℓ′s − 1] + (cprev ⊕ rprev) ≥ 2ℓ
′
s)⊕ r. The results

of the previous OT calls are written as (cprev, rprev) and r again is a random bit
generated and known only by the OT sender.

The resulting final secret share is constructed locally using the intermediate
shares described above.

A formal proof can be derived trivially from the security proof of Algorithm 2 by
RATHEE ET AL.2. 2 Rathee et al. (2020)

C.4 BATCHOPErATIOnOF ASWAP

ASWAP is easily generalizable to a batch construction taking one (fixed) 〈b〉B

and for batches of size β a vector {〈xi,0〉A, 〈xi,1〉A}βi=1 as inputs. The replace-
ment of the multiplication in the computation of 〈δ〉A by a batched multipli-
cation inspired by SCHnEIDEr AnD TKACHEnKO 3 reduces the communica- 3 Schneider and Tkachenko (2019)

tion size from 2β(κ + ℓ) to 2(κ + βℓ). This results in an improvement factor of
β(κ + ℓ)/(κ + βℓ), approximately∼ 1 + κ/ℓ for large values of β. Note, that for
PEA the security factor is set to κ=128.

Batch-ASWAP is useful in combination with AGT to achieve some kind of k-
anonymity4 by suppressing arithmetic values smaller than some thresholds. If

4 See Section 2.2the number of communication rounds is not critical, e.g., for very large numbers
of input values or negligible network latency the parallelization of the computa-
tion can result in amortized communication sizes of∼ 4ℓ bit. The blinding of one
million 32-bit values against a common threshold would result in only 16MB of
communication.

C.5 SECUrITY

The security of both ASWAP and batch-ASWAP follow from the security of the
correlated OT construction5, as they only compose C-OTwith unmodified secret 5 Asharov, Lindell, et al. (2017)

shares in a black-box fashion.
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C.6 COrrECTnESS OF ASWAP

Both Arithmetic Swap (ASWAP) and batch-ASWAP, compute the same expres-
sion using different primitives for oblivious computation. The prove of correct-
ness, however, is equivalent for both protocol variants:

〈x′0〉A = 〈x0〉A + 〈δ〉A

= (〈b〉B + ¬〈b〉B) · 〈x0〉A + 〈b〉B · (〈x1〉A − 〈x0〉A)
= 〈b〉B · 〈x0〉A + ¬〈b〉B · 〈x0〉A + 〈b〉B · 〈x1〉A − 〈b〉B · 〈x0〉A)
= 〈b〉B · 〈x1〉A + ¬〈b〉B · 〈x0〉A

〈x′1〉A = 〈x1〉A − 〈δ′〉A

= (〈b〉B + ¬〈b〉B) · 〈x1〉A − 〈b〉B · (〈x1〉A − 〈x0〉A)
= 〈b〉B · 〈x1〉A + ¬〈b〉B · 〈x1〉A − 〈b〉B · 〈x1〉A + 〈b〉B · 〈x0〉A)
= 〈b〉B · 〈x0〉A + ¬〈b〉B · 〈x1〉A

C.7 FIT PArAmETEr

For all extrapolations of PEA’s runtimes and all network settings the following
power-functionmodel was used:

f(x) = a · xb + c

The parameters shown in Tables C.2 and C.3 were computed in Matlab 2021a
(9.10.0.1602286) with the Trust-Region algorithm with a maximum of 400 iter-
ations. All coefficients are given with 95% confidence bounds. The fitting was
perfomed based on timingsmeasured inmilliseconds.

LAN setting
Parameter Setup Phase Confidence Bounds Online Phase Confidence Bounds

a −304.1 (−3.4× 104,3.409× 104) 3.842 (1.261, 6.424)
b −0.051 (−6.641,6.539) 2.703 (2.523, 2.884)
c 496.5 (−3.417× 104,3.516× 104) 775.2 (−201.3, 1,752)
r2 0.9735 0.9999

RMSE 3.93 96.02

WAN setting

a 225.1 (−6,366,6,816) 2.787 (0.3154, 5.258)
b 0.6419 (−6.003,7.287) 2.791 (2.552, 3.029)
c −74.56 (−1.286× 104,1.271× 104) 877.6 (−329.6, 2,085)
r2 0.9773 0.9999

RMSE 216.89 120.08

Table C.2: Fit parameters for varying
numbers of records using PTuRF
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LAN setting
Parameter Setup Phase Confidence Bounds Online Phase Confidence Bounds

a 0.2905 (−1.82,2.401) 28.88 (19.47, 38.28)
b 0.8467 (−0.6702,2.364) 1.6 (1.53, 1.671)
c 221 (212,230) 579.8 (40.56, 1,119)
r2 0.8289 0.9998

RMSE 2.90 266.16

WAN setting

a 1,208 (−4,008,6,424) 25.92 (6.041, 45.8)
b 0.2527 (−0.3819,0.8873) 1.618 (1.452, 1.784)
c −966.4 (−6,833,4,900) 538.6 (−679.2, 1,756)
r2 0.9166 0.9991

RMSE 346.69 604.59

Table C.3: Fit parameters for varying
numbers of features using PTuRF
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CHAPTErD

Kidney Exchange SupplementaryMaterial

D.1 SPIKE SUBPrOTOCOLS

As many subprotocols of Secure and Private Investigation of the Kidney Exchange prob-
lem (SPIKE) are either similar to the ones shown in the main text or structurally
repetitive, they are presented in the following sections.

D.1.1 Subprotocols for CompatibilityMatching

The subprotocols in the compatibilitymatchingphaseof SPIKEcalculate the indi-
vidualmatchquality factors’ contributions to the edgeweight. A recurring theme
is the categorization according to the medical factor in question and a category
associated return value.

1 Function evaluateHLA(⟨hlad⟩B, ⟨hlar⟩B):
2 ⟨mm⟩B ← {⟨0⟩B}|HLA|

3 for i = 1 . . . |HLA| do
4 ⟨mm⟩B ← ⟨hlad⟩B[i]⊕ ⟨hlar⟩B ; // SIMD

5 ⟨sum⟩B ← HammingW ({⟨0⟩B}|HLA|, ⟨mm⟩B)
6 ⟨c⟩B ← ⟨sum⟩B < ⟨5⟩B

7 ⟨b⟩B ← ⟨sum⟩B < ⟨3⟩B

8 ⟨a⟩B ← ⟨sum⟩B == ⟨0⟩B

9 return ⟨a⟩B ? ⟨A⟩B
(
⟨b⟩B ? ⟨B⟩B :

(
⟨c⟩B ? ⟨C⟩B : ⟨0⟩B

))

Subprotocol D.1: Subprotocol evalHLA
compares the number of Human Leu-
cocyte Antigens (HLA) mismatches be-
tween donor and recipient.

HLAAntigen Comparison. Subprotocol D.1 calculates the number of HLAmis-
matches between the donor and recipient. Depending on the number of mis-
matches, the weight associated with the respective classes is returned. The num-
ber of comparisons and MUX gates suggest the usage of a Boolean circuit-based
protocol. To avoid conversions, the circuit is evaluated in Boolean GMW (B).

1 Function evaluateABO(⟨bgd⟩B, ⟨bgr⟩B):
2 ⟨a⟩B ← ¬

((
⟨bgr⟩B[1]⊕ ⟨bgd⟩B[1]

)
∨
(
⟨bgr⟩B[2]⊕ ⟨bgd⟩B[2]

))
3 ⟨b⟩B ←

(
⟨bgr⟩B[2] ∧ ¬⟨bgd⟩B[1]

)
∨
(
⟨bgr⟩B[1] ∧ ¬⟨bgd⟩B[2]

)
4 ⟨v⟩B ← ⟨a⟩B ∨ ⟨b⟩B

5 return ⟨v⟩B ? ⟨bestage⟩B : ⟨0⟩B

Subprotocol D.2: Subprotocol evalABO
checks the donor’s and the recipient’s
blood group on compatibility.

ABO blood group comparison. In Subprotocol D.2, the blood group of the
donor bgd and thebloodgroupof the recipient bgr—bothencodedaccording toTa-
ble D.1—are checked on compatibility1. Using said encoding, compatibilityman-

1 See Table 4.2

ifests in the truthful evaluation of at least one of the conditions: (1) bgd = bgr, (2)
bgr[1] > bgd[0], or (3) bgr[0] > bgd[1]. This subprotocol is evaluated in B. Table D.1: Encoding of the different

blood groups

Encoding Blood Group

00 O
01 A
10 B
11 AB

AgeComparison.Following the age groups of WAISErETAL.2, SubprotocolD.3

2 Waiser et al. (2000)
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Subprotocol D.3: Subprotocol evalAge
categorizes the match quality accord-
ing to the three categories by Waiser et
al. (2000).

1 Function evaluateAge(⟨ad⟩B, ⟨ar⟩B):
2 ⟨eq⟩B ← ⟨ad⟩B == ⟨ar⟩B

3 ⟨yg⟩B ← ¬⟨ad⟩B ∧ ⟨ar⟩B

4 return ⟨yg⟩B ?
(
⟨eq⟩B ? ⟨A⟩B : ⟨B⟩B

)
:
(
⟨eq⟩B ? ⟨A⟩B : ⟨0⟩B

)

evaluates theage-groupmembershipsof thedonorsandrecipients to returncom-
patibility scores according to the combination optimality. This subprotocol uses
B, due to its lowmultiplicative depth.

Subprotocol D.4: Subprotocol evalSex
categorizes the match quality accord-
ing to the sex disparities following
Zhoua et al. (2013).

1 Function evaluateSex(⟨sd⟩B, ⟨sr⟩B):
2 ⟨eq⟩B ← ⟨sd⟩B == ⟨sr⟩B

3 ⟨fdmr⟩B ← ⟨sd⟩B ∧ ¬⟨sr⟩B

4 return ⟨fdmr⟩B ?
(
⟨eq⟩B ? ⟨A⟩B : ⟨0⟩B

)
:
(
⟨eq⟩B ? ⟨A⟩B : ⟨B⟩B

)

Sex Comparison. Subprotocol D.4 returns a match quality score based on the
combination of biological sexes of the donors and recipients following the rec-
ommendations of ZHOUA ET AL.3. This subprotocol is logically identical to Sub-3 Zhoua et al. (2013)

protocol D.3, hence, it is also evaluated in B.

Subprotocol D.5: Subprotocol
evalWeight compares the weight
of the donors and recipients to deter-
mine a match quality following Miller
et al. (2017).

1 Function evaluateWeight(⟨wd⟩B, ⟨wr⟩B):
2 return ⟨wd⟩B < ⟨wr⟩B ? ⟨0⟩B : ⟨A⟩B

Weight Comparison. MILLEr ET AL.4 describe the transplantation success4 Miller et al. (2017)

probabilities with regard to the weight differences of donors and recipients,
hence, SubprotocolD.5 evaluates the compatibilityof adonorandrecipientbased
on their weight. While Y allows for a more efficient comparison, the cost of con-
verting the result toB for processing in the calling proceduremakes the complete
evaluation in Bmore efficient.

D.1.2 Subprotocols for Cycle Computation

(Edge) Weight Removal. For the calculation of the numbers of cycles in the
graph a unweighted adjacency matrix is required. Subprotocol D.6 creates an
(arithmetically shared) unweighted adjacency matrix by setting all matrix ele-
ments with a non-zero weight to one. While this operation could be performed
in constant time—allmatrix elements are independent—the runtime of this sub-
protocol is nearly negligible for realisticmatrix sizes, such that no premature Sin-
gle InstructionMultiple Data (SIMD) optimization was attempted.

kNN Sort Protocol. For partially sorting the list of cycles based on the cycle
weight, Subprotocol D.7 performs a kNN-Sort, based on the kNN protocol of
JÄrVInEnETAL.5. The k cycler with themost weight are sorted to the first array5 Järvinen et al. (2019)

positions. Note, that the length of cycles cLen is a public parameter. Because the
multiplicative operations are mostly dependent on each other, kNNSort results
in a rather deep circuit. This leads to amost efficient evaluation inY , even if con-
version costs are included.



KIDnEY EXCHAnGE SUPPLEmEnTArYmATErIAL 155

1 Function removeWeights(⟨compG⟩B):
2 ⟨uG⟩A ← matrix ∈ ⟨0⟩A|pairs|

3 for i = 1 . . . |pairs| do
4 for j = 1 . . . |pairs| do
5 ⟨uG⟩A[i][j]← b2a(⟨compG⟩B[i][j] > ⟨0⟩B ? ⟨1⟩B : ⟨0⟩B

6 return ⟨uG⟩A

Subprotocol D.6: Subprotocol
removeWeights converts a weighted
adjacencymatrix to a unweighted one

1 Function kNNSort(⟨cyclesSet⟩Y , k):
2 ⟨sortedW⟩Y ← ∅
3 ⟨sortedC⟩Y ← ∅
4 for i = 1 . . . k + 1 do
5 ⟨sortedW⟩Y .append(⟨0⟩Y)
6 ⟨vertices⟩Y ← ∅
7 for j = 1 . . . cLen do
8 ⟨vertices⟩Y .append(|⟨pairs⟩Y |)

9 ⟨sortedC⟩Y .append(⟨vertices⟩Y)

10 for i = 1 . . . |cyclesSet| do
11 ⟨sortedW⟩Y [k]← ⟨cyclesSet⟩Y [i][1]
12 ⟨sortedC⟩Y [k]← ⟨cyclesSet⟩Y [i][2]
13 for j = 1 . . . k do
14 ⟨sel⟩Y ← ⟨sortedW⟩Y [j] > ⟨sortedW⟩Y [j − 1]

15 ⟨tmp1⟩Y ← ⟨sortedW⟩Y [j]
16 ⟨tmp2⟩Y ← ⟨sortedW⟩Y [j − 1]

17 ⟨sortedW⟩Y [j]← ⟨sel⟩Y ? ⟨tmp2⟩Y : ⟨tmp1⟩Y

18 ⟨sortedW⟩Y [j − 1]← ⟨sel⟩Y ? ⟨tmp1⟩Y : ⟨tmp2⟩Y

19 for l = 1 . . . cLen do
20 ⟨tmp1⟩Y ← ⟨sortedC⟩Y [j][l]
21 ⟨tmp2⟩Y ← ⟨sortedC⟩Y [j − 1][l]

22 ⟨sortedC⟩Y [j][l]← ⟨sel⟩Y ? ⟨tmp2⟩Y : ⟨tmp1⟩Y

23 ⟨sortedC⟩Y [j − 1][l]← ⟨sel⟩Y ? ⟨tmp1⟩Y : ⟨tmp2⟩Y

24 ⟨result⟩Y ← ∅
25 for i = 1 . . . |cycles| do
26 ⟨result⟩Y .append(tuple(⟨sortedW⟩Y [i], ⟨sortedC⟩Y [i]))

27 return ⟨result⟩Y

Subprotocol D.7: Subprotocol kNNSort
partially sorts the array of cycles based
on the cycle weights. It is based on
Järvinen et al. (2019).

1 Function removeDuplicates(⟨sortedCycles⟩Y):
2 for i = 1 . . . |cycles| do
3 ⟨c1⟩Y ← ⟨sortedCycles⟩Y [i][2]
4 ⟨combDup⟩Y ← ⟨0⟩Y

5 for j = 1 . . . i do
6 ⟨c2⟩Y ← ⟨sortedCycles⟩Y [j][2]
7 for k = 2 . . . cLen do
8 ⟨duplicate⟩Y ← ⟨1⟩Y

9 for l = 1 . . . cLen do
10 ⟨same⟩Y ← ⟨c1⟩Y [l] == ⟨c2⟩Y [(l + k) mod cLen]
11 ⟨duplicate⟩Y ← ⟨duplicate⟩Y ∧ ⟨same⟩Y

12 ⟨combDup⟩Y ← ⟨combDup⟩Y ∨ ⟨duplicate⟩Y

13 ⟨sortedCycles⟩Y [i][1]← ⟨isDuplicate⟩Y ? ⟨0⟩Y : ⟨sortedCycles⟩Y [i][1]

14 return kNNSort(⟨sortedCycles⟩Y , |unique|)

Subprotocol D.8: Subprotocol
removeDuplicates removes all
duplicate cycles.
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Duplicate Removal. Subprotocol D.8 iterates over all (sorted) cycles and re-
moves all duplicates—that is cycles “seen” before. This results in |unique| =

b |cycles|
cLen c cycles remaining. The removal works by setting the cycle weight to 0,

hence, assuring—after another kNN-sort that these “zeroed” cycles are never in-
cluded in a solution. The serial structure and the number of comparisons and MUX
gates necessary form a circuit with highmultiplicative depth. Because of that, it
is evaluated in Y .

Subprotocol D.9: Subprotocol
#TotalCycles calculates the total
number of cycles. All inputs are
publicly known, hence, this protocol is
performed locally in clear text.

1 Function #TotalCycles():
2 |allCycles| ← |pairs|
3 for i = 1, . . . , cLen− 1 do
4 |allCycles| ← |allCycles| · (|pairs| − i)

5 return |allCycles|

Total Number of Cycles. Subprotocol D.9 computes the maximum number of
cycles in the compatibility graph, basedon thenumber of vertices. As only vertex
disjointed cycles are allowed, each vertex can be member of only one cycle set.
The parameters |pairs| and cLen are publicly known, hence, this calculation can
be performed locally and in clear text.

D.1.3 Subprotocols for Solution Evaluation

Subprotocol D.10: Subprotocol
disjointSet checks, whether a given
set of cycles is vertex disjointed.

1 Function disjointSet(⟨cycles⟩B, ⟨cCycle⟩B, count):
2 ⟨disJ⟩B ← ∅
3 for i = 1 . . . count do
4 ⟨c⟩B ← ⟨cycles⟩B[i][2]
5 for j = 1 . . . cLen do
6 for k = 1 . . . cLen do
7 ⟨tmp⟩B ← ⟨c⟩B[j] == ⟨cCycle⟩B[k]
8 ⟨disJ⟩B.append(⟨tmp⟩B)

9 ⟨disJ⟩B ← ORTree(⟨disJ⟩B)

10 return¬⟨disJ⟩B[1]

DisjointCycles. SubprotocolD.10 checks a given set of cycles for disjointness. To
reduce the circuit depth, the final OR-fold of bits is performed in a tree structure.
Because of this optimization, the circuit is most efficiently evaluated in B.

Maximum Set. Finally, Subprotocol D.11 aggregates the cycle weighs in a pos-
sible solution set. This aggregated weight is the optimization target, as it repre-
sents an solution set-wide transplantation success probability. Another invoca-
tion of a kNN-sort returns the (locally) optimal solution set—that is the set with
the highest aggregated weight. As in the circuits using kNN-sorting before, the
high circuit depth leads to amost efficient evaluation in Y .



KIDnEY EXCHAnGE SUPPLEmEnTArYmATErIAL 157

1 Function findMaximumSet(⟨cyclesSets⟩Y , ⟨cycleW⟩Y):
2 ⟨weights⟩Y ← ∅
3 ⟨tmp⟩Y ← ∅
4 for i = 1, 2 do
5 ⟨weights⟩Y .append(⟨0⟩Y)
6 ⟨sets⟩Y ← ∅
7 for j = 1 . . . |unique| do
8 ⟨vertices⟩Y ← ∅
9 for l = 1 . . . cLen do
10 ⟨vertices⟩Y .append(⟨|pairs|⟩Y)

11 ⟨tmp⟩Y .append(⟨vertices⟩Y)

12 ⟨sets⟩Y .append(⟨tmp⟩Y)

13 for i = 1 . . . |unique| do
14 ⟨weights⟩Y [2]← ⟨cycleW⟩Y [i]
15 ⟨sets⟩Y [2]← ⟨cycleSets⟩Y [i]
16 ⟨sel⟩Y ← ⟨weights⟩Y [2] > ⟨weights⟩Y [1]

17 ⟨tmp1⟩Y ← ⟨weights⟩Y [2]
18 ⟨tmp2⟩Y ← ⟨weights⟩Y [1]
19 ⟨weights⟩Y [2]← ⟨sel⟩Y ? ⟨tmp2⟩Y : ⟨tmp1⟩Y

20 ⟨weights⟩Y [1]← ⟨sel⟩Y ? ⟨tmp1⟩Y : ⟨tmp2⟩Y

21 for j = 1 . . . |unique| do
22 ⟨tmp1⟩Y ← ⟨sets⟩Y [2][j]
23 ⟨tmp2⟩Y ← ⟨sets⟩Y [1][j]
24 ⟨sets⟩Y [2][j]← ⟨sel⟩Y ? ⟨tmp2⟩Y : ⟨tmp1⟩Y

25 ⟨sets⟩Y [1][j]← ⟨sel⟩Y ? ⟨tmp1⟩Y : ⟨tmp2⟩Y

26 return (⟨weights⟩Y [1], ⟨sets⟩Y [1])

Subprotocol D.11: Subprotocol
findMaximumSet calculates the aggre-
gate weight of the solution sets and
returns themaximum set.
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D.2 DETAILED BEnCHmArKRESULTS

Table D.2 to D.4 show the complete benchmark results for all three network set-
tings (A: LANwith 10Gbit/s, B: LANwith 1Gbit/s, C:WAN) and a cycle length of
L = 2. Table D.5 and D.6 show the results for a cycle length ofL = 3.

Table D.7, presents the benchmark results of both reduced medical compatibil-
ity factor set and the full set. This benchmark was performed in LAN andWAN
network settings.
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Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Total

2 0.1 0 0.021 0.021 0.78 0.04 0.039 2.1

4 1.1 0.1 0.052 0.051 1.7 0.075 0.08 3.1

6 3.4 0.3 0.1 0.11 2.5 0.15 0.15 4.3

8 5.6 0.4 0.13 0.17 3 0.17 0.18 4.4

10 12.7 0.8 0.22 0.24 4 0.28 0.29 5.8

12 19.5 1 0.37 0.34 4.4 0.46 0.37 6.6

14 55.8 2.3 0.61 0.68 7.4 0.8 0.88 12

16 95.4 3.4 0.94 1.1 11 1.2 1.3 15

18 159 5.1 1.4 1.6 15 1.8 1.9 18

20 412.1 11.8 2.9 4.9 34 4.2 7.4 30

22 617.8 16.6 4.2 5.2 47 6.3 6.4 36

24 823.3 21.1 5.5 6.7 64 8.4 8.5 42

26 1,104.8 27 7.2 8.7 81 11 11 49

28 1,281.6 30.2 8.3 10 93 13 13 53

30 1,608.3 36.5 10 13 120 17 17 59

32 2,202.9 48.3 14 19 150 24 24 71

34 2,999.7 63.8 18 22 200 33 33 85

36 3,971.7 82.2 24 26 260 44 43 100

38 5,036.2 101.8 29 35 320 57 57 120

40 6,394 126.6 37 45 400 75 75 140

Phase 1: CompatibilityMatching

2 0 0 0.0071 0.0065 0.31 0.015 0.015 0.85

4 0.1 0 0.0093 0.0087 0.42 0.016 0.015 0.85

6 0.2 0 0.012 0.013 0.52 0.017 0.017 0.85

8 0.4 0 0.016 0.016 0.62 0.019 0.018 0.84

10 0.6 0 0.02 0.021 0.62 0.021 0.021 0.85

12 0.8 0 0.026 0.025 0.65 0.024 0.024 0.85

14 1.2 0 0.031 0.032 0.72 0.028 0.028 0.86

16 1.5 0 0.036 0.038 0.75 0.034 0.031 0.86

18 1.9 0 0.047 0.045 0.82 0.033 0.033 0.86

20 2.4 0 0.053 0.054 0.85 0.039 0.039 0.88

22 2.9 0.1 0.055 0.065 0.87 0.045 0.046 0.88

24 3.4 0.1 0.071 0.073 0.9 0.05 0.049 0.89

26 4 0.1 0.075 0.083 1 0.051 0.056 0.9

28 4.6 0.1 0.077 0.085 1 0.059 0.06 0.91

30 5.3 0.1 0.081 0.088 1.1 0.068 0.067 0.97

32 6.1 0.1 0.084 0.09 1.1 0.071 0.069 0.98

34 6.8 0.1 0.087 0.092 1.1 0.079 0.083 0.97

36 7.7 0.1 0.093 0.099 1.2 0.085 0.089 0.97

38 8.6 0.2 0.093 0.11 1.2 0.091 0.098 0.99

40 9.5 0.2 0.094 0.11 1.2 0.1 0.1 1

Table D.2: Comparison of the commu-
nication costs and setup and online
runtimes of SPIKE for the three
networking settings A: LAN with
10Gbit/s, B: LAN with 1Gbit/s, C:
WAN, for cycle length L = 2. This
table contains both the aggregated
total results and the results of Phase 1
(CompatibilityMatching).
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Table D.3: Comparison of the commu-
nication costs and setup and online
runtimes of SPIKE for the three
networking settings A: LAN with
10Gbit/s, B: LAN with 1Gbit/s, C:
WAN, for cycle lengthL = 2. This table
contains the results of Phases 2 and 3
(Cycle Computation and Evaluation).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Phase 2: Cycle Computation

2 0 0 0.0099 0.0099 0.43 0.013 0.012 0.75

4 0.2 0 0.013 0.013 0.54 0.014 0.014 0.76

6 0.4 0.1 0.02 0.02 0.83 0.017 0.018 0.76

8 0.9 0.1 0.028 0.031 1 0.021 0.021 0.85

10 1.7 0.2 0.043 0.047 1.2 0.024 0.027 0.77

12 2.8 0.3 0.06 0.059 1.3 0.033 0.031 0.79

14 4.3 0.4 0.082 0.087 1.6 0.034 0.04 0.8

16 6.2 0.5 0.1 0.12 1.8 0.047 0.048 0.82

18 8.6 0.7 0.12 0.12 1.8 0.048 0.054 0.84

20 11.6 0.8 0.13 0.14 2 0.063 0.061 0.87

22 15.3 1 0.13 0.17 2 0.075 0.072 0.9

24 19.6 1.2 0.15 0.19 2.9 0.078 0.083 1.1

26 24.6 1.5 0.17 0.23 3.2 0.088 0.1 1.3

28 30.5 1.7 0.19 0.27 5 0.1 0.11 2.4

30 37.2 2 0.22 0.3 4.8 0.11 0.12 2

32 44.8 2.3 0.24 0.35 5.7 0.12 0.14 2.2

34 53.4 2.6 0.27 0.42 6.5 0.13 0.15 2.3

36 63 3 0.3 0.48 7.1 0.13 0.16 2.3

38 73.7 3.4 0.34 0.55 7.9 0.14 0.17 2.3

40 85.6 3.8 0.38 0.63 8.8 0.16 0.18 2.4

Phase 3: Cycle Evaluation

2 0.1 0 0.0023 0.0027 0.022 0.0086 0.0082 0.3

4 0.7 0.1 0.019 0.02 0.29 0.026 0.03 0.35

6 2.2 0.1 0.054 0.061 0.56 0.068 0.07 0.47

8 3.8 0.2 0.066 0.1 0.74 0.089 0.096 0.48

10 8.6 0.4 0.12 0.13 1.2 0.14 0.16 0.56

12 13.4 0.5 0.21 0.2 1.6 0.22 0.2 0.66

14 35 0.9 0.38 0.41 3.6 0.37 0.43 0.94

16 57.3 1.3 0.62 0.66 5.6 0.6 0.69 1.2

18 90.2 1.8 0.98 1 8.5 0.87 0.95 1.4

20 181.2 3.3 1.9 2.2 17 1.7 1.9 2.3

22 255.2 4.4 2.7 2.9 23 2.4 2.5 3

24 332.8 5.3 3.6 3.8 30 3.1 3.1 3.7

26 431.8 6.5 4.7 4.9 39 4 4 4.5

28 514.4 7.2 5.5 5.7 46 4.7 4.7 5.3

30 635.1 8.4 6.9 7.3 57 6 5.9 6.4

32 815.8 10.4 8.9 12 73 7.5 9.7 8

34 1,037.4 12.8 11 12 92 9.4 9.3 10

36 1,292.4 15.4 15 14 110 12 10 12

38 1,567.8 18 18 19 140 14 14 15

40 1,894.4 21.2 22 23 170 18 18 18
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Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Part 4: Solution Evaluation

2 0 0 0.002 0.0016 0.0071 0.0038 0.0037 0.22

4 0.2 0 0.01 0.01 0.42 0.02 0.021 1.2

6 0.5 0.1 0.019 0.019 0.63 0.044 0.045 2.2

8 0.5 0.1 0.018 0.019 0.62 0.045 0.045 2.2

10 1.8 0.2 0.043 0.041 0.96 0.088 0.088 3.6

12 2.4 0.2 0.078 0.055 0.84 0.18 0.11 4.3

14 15.4 0.9 0.12 0.15 1.5 0.37 0.39 9.4

16 30.4 1.6 0.18 0.26 2.5 0.55 0.55 12

18 58.2 2.6 0.27 0.44 4 0.8 0.84 15

20 216.9 7.6 0.84 2.5 14 2.4 5.4 26

22 344.5 11.2 1.3 2 21 3.8 3.9 31

24 467.5 14.5 1.7 2.7 30 5.2 5.3 36

26 644.4 19 2.3 3.5 38 7.2 7.4 42

28 732.1 21.1 2.5 3.9 41 8.3 8.4 44

30 930.7 26 3.2 4.8 53 11 11 50

32 1,336.2 35.5 4.5 5.7 73 16 14 60

34 1,902.1 48.2 6.4 9.2 100 23 23 72

36 2,608.7 63.7 8.7 12 140 32 32 86

38 3,386.1 80.2 11 16 180 43 43 100

40 4,404.4 101.4 15 21 230 57 57 120

Table D.4: Comparison of the commu-
nication costs and setup and online
runtimes of SPIKE for the three
networking settings A: LAN with
10Gbit/s, B: LAN with 1Gbit/s, C:
WAN, for cycle length L = 2. This
table contains the result of Phase 4
(Solution Evaluation).
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Table D.5: Comparison of the commu-
nication costs and setup and online
runtimes of SPIKE for the three
networking settings A: LAN with
10Gbit/s, B: LAN with 1Gbit/s, C:
WAN, for cycle length L = 3. This
table contains the aggregated total
result and the results of Phases 1 and
2 (Compatibility Matching and Cycle
Computation).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Total

3 0.5 0.1 0.029 0.028 0.97 0.054 0.056 2.2

5 4 0.3 0.096 0.11 2.2 0.13 0.15 2.9

7 19.7 0.7 0.26 0.27 4.1 0.3 0.34 4.3

9 52.6 1.5 0.63 0.66 7.3 0.63 0.73 5.3

11 182.5 3.3 2 2.1 19 1.9 2 9.4

13 1,215.8 16.3 12 13 110 12 12 34

15 2,084.4 22.8 21 23 180 19 20 45

17 5,428.5 58.1 52 56 440 54 54 93

18 9,537.2 107.6 88 95 740 100 100 150

Phase 1: CompatibilityMatching

3 0.1 0 0.0079 0.0075 0.32 0.015 0.015 0.85

5 0.1 0 0.011 0.01 0.42 0.016 0.016 0.85

7 0.3 0 0.014 0.014 0.52 0.018 0.018 0.85

9 0.5 0 0.019 0.018 0.61 0.019 0.02 0.85

11 0.7 0 0.023 0.024 0.64 0.023 0.023 0.86

13 1 0 0.029 0.029 0.72 0.025 0.024 0.86

15 1.3 0 0.034 0.036 0.74 0.029 0.029 0.86

17 1.7 0 0.041 0.043 0.77 0.035 0.034 0.87

18 1.9 0 0.042 0.049 0.82 0.035 0.034 0.87

Phase 2: Cycle Computation

3 0.1 0 0.013 0.012 0.54 0.014 0.013 0.76

5 0.4 0 0.018 0.019 0.83 0.016 0.016 0.76

7 1.1 0.1 0.029 0.031 1 0.019 0.019 0.77

9 2.2 0.2 0.052 0.053 1.3 0.024 0.023 0.77

11 3.8 0.3 0.072 0.079 1.5 0.026 0.029 0.78

13 6.2 0.4 0.1 0.11 2 0.032 0.034 0.84

15 9.3 0.5 0.1 0.13 1.8 0.036 0.04 0.81

17 13.4 0.7 0.12 0.15 2 0.049 0.049 0.86

18 15.8 0.8 0.13 0.16 2.2 0.047 0.054 0.91

D.3 FIT PArAmETEr

For all extrapolations of SPIKE’s runtimes and all network settings the following
power-functionmodel was used:

f(x) = a · xb + c

The parameters in Tables D.8 and D.9 were computed in Matlab 2021a
(9.10.0.1602286) with the Trust-Region algorithm with a maximum of 400 iter-
ations. All coefficients are given with 95% confidence bounds. The fitting was
perfomed based on timingsmeasured inmilliseconds.
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Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Phase 3: Cycle Evaluation

3 0.3 0 0.0061 0.0068 0.1 0.022 0.022 0.42

5 3.4 0.2 0.06 0.071 0.6 0.089 0.1 0.53

7 17.9 0.6 0.2 0.21 2 0.22 0.27 0.71

9 49.1 1.2 0.54 0.56 4.8 0.53 0.63 1.1

11 172.4 2.6 1.8 2 16 1.7 1.7 2.2

13 1,005.9 9.1 11 12 89 9.1 9.1 9.6

15 1,773.8 12.8 19 21 160 16 16 16

17 4,213.3 26.5 47 50 370 38 38 39

18 6,735.8 42 79 82 590 65 65 65

Phase 4: Solution Evaluation

3 0 0 0.0024 0.0022 0.011 0.0038 0.0059 0.22

5 0.1 0 0.0083 0.0082 0.32 0.014 0.014 0.75

7 0.5 0.1 0.016 0.017 0.54 0.039 0.04 1.9

9 0.8 0.1 0.024 0.025 0.64 0.057 0.056 2.6

11 5.5 0.4 0.078 0.087 1 0.19 0.19 5.5

13 202.7 6.9 0.81 1.4 14 2.4 2.5 22

15 300 9.5 1.1 1.8 18 3.6 3.7 27

17 1,200.1 30.9 4.1 6 64 15 16 53

18 2,783.8 64.8 9.2 13 150 36 36 87

Table D.6: Comparison of the commu-
nication costs and setup and online
runtimes of SPIKE for the three
networking settings A: LAN with
10Gbit/s, B: LAN with 1Gbit/s, C:
WAN, for cycle length L = 3. This
table contains the results of Phases 3
and 4 (Cycle and Solution Evaluation).



164 GrAPH STrUCTUrES In PrIVACY-PrESErVInG BIOmEDICAL AnALYSES

Table D.7: Comparison of the setup
and online runtimes of SPIKE for the
reduced medical factor compatibility
matching and the full set in the LAN
and WAN networking setting A: LAN
with 10Gbit/s, C:WAN.

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A C A C

ReducedMedical Factor Set

2 0.1 0 0.0084 0.34 0.045 3

50 14.9 0.3 0.14 1.7 0.26 3.4

100 59.8 1.1 0.29 4.4 0.81 4.4

150 134.7 2.5 0.55 8.5 1.9 5.8

200 239.5 4.4 0.91 15 3.8 7.7

250 374.4 6.9 1.4 23 6.4 11

300 539.2 9.9 2 31 9.4 14

350 734 13.4 2.5 41 14 20

400 958.8 17.5 3.2 53 18 26

450 1,213.6 22.1 4.2 65 25 32

500 1,498.3 27.3 5.3 80 31 37

550 1,813.1 33 6.3 96 38 48

600 2,157.8 39.3 7.2 110 45 56

650 2,532.5 46.1 9 130 53 64

FullMedical Factor Set

2 0.1 0 0.013 0.88 0.047 3.4

50 44 11.8 0.51 4.6 1 5.2

100 177.1 47.1 1.3 14 4.7 12

150 399.2 105.9 2.8 29 12 24

200 710.5 188.3 5.1 48 22 41

250 1,110.9 294.3 7.6 71 35 64

300 1,600.4 423.8 12 100 51 92

350 2,179.1 576.8 14 140 66 120

400 2,846.8 753.4 18 180 86 160

450 3,603.7 953.5 23 230 110 200

500 4,449.6 1,177.2 28 280 140 250

550 5,384.7 1,424.4 35 340 170 300

600 6,408.9 1,695.2 41 410 200 350

650 7,522.2 1,989.5 48 480 240 420

Parameter LAN Confidence Bounds WAN Confidence Bounds

a 5.437× 10−6 (−1.1162× 10−5,2.249× 10−2) 0.000259 (−0.000441, 0.00096)
b 8.484 (7.392,9.576) 7.658 (6.718, 8.598)
c 1,721 (−3,373,7,815) 1.335× 104 (−8,887, 3.3559× 104)
r2 0.9907 0.9915

RMSE 7,167 3.042× 104

Table D.8: Fit parameters for the to-
tal runtime of SPIKE with cycle length
L = 3

Table D.9: Fit parameters for the com-
parison of SPIKE and the state-of-the-
art with cycle lengthL = 3

Parameter LAN, 1Gbit/s Confidence Bounds

a 1.032× 10−5 (−9.383× 10−7,2.159× 10−5)
b 8.285 (7.906,8.663)
c 329.3 (−1,314,1,973)
r2 0.9994

RMSE 2,079
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CHAPTEr E

Record Linkage SupplementaryMaterial

E.1 FULL BEnCHmArK TABLES

Database Comm. [MiB] Setup Phase [s] Online Phase [s]

Size #Rounds Setup Online A B C A B C

GMWcircuit variant

1 370 2.7 0 0.047 0.1 0.85 0.11 0.17 19

10 530 25.2 0.4 0.19 0.42 1.5 0.15 0.24 27

25 570 62.5 1 0.35 1.9 2.1 0.17 0.24 29

100 650 248.8 3.9 1.2 10 5.5 0.23 0.37 33

250 690 621.2 9.8 3 27 12 0.32 0.48 36

1,000 770 2,483.4 39.3 12 110 44 0.63 1.7 40

2,500 850 6,207.9 98.3 29 270 110 1.3 4.2 45

10,000 930 24,830.6 393 120 1,100 450 3.9 17 53

25,000 970 62,076.2 982.5 300 2,700 1,100 8.8 44 66

GMWcircuit variant with arithmetic conversions

1 266 0.6 0.1 0.018 0.036 0.72 0.052 0.054 13

10 330 5.5 0.7 0.097 0.15 1.4 0.072 0.072 16

25 346 13.5 1.7 0.18 0.29 1.6 0.093 0.094 17

100 378 53.7 6.7 0.43 1.7 2.5 0.17 0.17 18

250 394 133.9 16.8 0.87 5.3 4 0.29 0.3 19

1,000 426 555.2 47.1 3 23 11 0.77 0.87 22

2,500 458 1,394.1 119.5 7.3 60 25 1.6 1.9 27

10,000 490 5,577.4 459.4 28 240 96 6.1 8.2 48

25,000 506 13,917.9 1,150.3 69 610 240 15 23 88

Yao circuit variant

1 5 0 2.4 0.055 0.09 0.15 0.065 0.092 0.85

10 5 20.3 3.8 0.26 0.3 0.67 0.2 0.34 1.8

25 5 52.8 7.6 0.61 0.61 1.1 0.38 0.7 2.8

100 5 227.3 42.3 2.1 2.2 2.5 1.2 2.5 8.7

250 5 576.8 119.2 4.9 4.6 5.2 2.9 6.4 20

1,000 5 1,905.1 558.8 17 19 19 14 25 76

2,500 5 4,762.1 1,430.8 43 52 44 35 64 190

10,000 5 19,538.8 5,729.7 170 200 170 140 280 750

Yao circuit variant with arithmetic conversions

1 40 0.1 0.6 0.017 0.033 0.4 0.022 0.026 1.7

10 76 1.2 5.8 0.084 0.1 0.94 0.099 0.11 3.1

25 85 11.1 6.4 0.18 0.21 1.2 0.16 0.2 3.5

100 103 52.3 17.7 0.63 0.7 2 0.42 0.59 5.4

250 112 139 40.2 1.3 1.9 3 0.93 1.3 8.6

1,000 130 554.4 231.1 4.6 10 7 3.8 5.9 24

2,500 148 1,412.2 546.2 12 27 16 9 16 54

10,000 166 4,860.8 2,285.6 42 110 60 39 67 200

Table E.1: Full comparison of the setup
and online runtimes for the three net-
workingconfigurations fromFigure5.5,
for varying database sizes, and all four cir-
cuit protocol variants.
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E.2 FIELD COnFIGUrATIOn

Table E.2 displays the default configuration of Mainzelliste and following that
Mainzelliste Secure EpiLinker (MainSEL). The comparison field indicates either
“Equality” (Eq.) or “Bloom-Dice” (B.D.) comparison and theweightw is calculated
according tow = log ((1 − e)/f).

Field name Type Comparison Frequency f Error Rate e Weightw Bitlength

First Name String B.D. 0.000235 0.01 12.04 500

Surname String B.D. 0.0000271 0.008 15.16 500

Birth name String B.D. 0.0000271 0.008 15.16 500

Day of birth Integer Eq. 0.0333 0.005 4.90 5

Month of birth Integer Eq. 0.0833 0.002 3.58 4

Year of Birth Integer Eq. 0.0286 0.004 5.12 11

ZIP code String Eq. 0.01 0.04 6.58 40

City String B.D. 0.01 0.04 6.58 500

Table E.2: Default EpiLink field con-
figuration used in the reported bench-
marks.
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