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Abstract

The human pupil diameter is of interest in lighting-related research due to its role in regulating the
retinal irradiance and its impact on the visual acuity. In the field of cognitive psychology, transient pupil
diameter changes could be used to assess physiological body states, such as the cognitive workload,
sleepiness or arousal. Technical concepts are also being explored in medical diagnostics, aiming to
leverage temporal pupil size changes as a non-invasive biomarker, e.g., in pain monitoring to regulate the
administration of anaesthetics or the early detection of neurodegenerative diseases such as Alzheimer’s.
Until the turn of the millennium, it was widely assumed that the pupillary light reflex is controlled by
the same type of photoreceptors responsible for visual processing. However, recent studies revealed that
the afferent pupil control pathway is affected by an interaction of intrinsically photosensitive retinal
ganglion cells (ipRGCs) and photoreceptors in the outer retina (cones and rods). Thus, the spectral
dependence of the pupil cannot be described by the luminous efficiency function V(λ) alone. Although
the last two decades of neurophysiological research revealed new insights into how the pupil control
works, empirical pupil models remained largely unchanged. Hence, they are time-invariant and can
only predict the pupil diameter as a function of a V(λ)-weighted quantity. In fact, after more than 100
years of pupil light response research, still no unified model exists that could predict the temporal pupil
diameter as a function of distinct light spectra. Therefore, one main objective of this work is to develop
an approach to model the time- and spectral-dependent behaviour of the afferent pupil control pathway,
allowing temporal pupil diameter predictions as a function of photometric quantities in the future.

In this work, an end-to-end measurement setup consisting of a temperature-controlled 15-channel
LED luminaire for generating light spectra and a pupillometry system for empirically collecting human
pupil size data was developed for investigating the pupil’s light response. In addition, a novel spectral
optimisation method is presented, useful to control multi-channel LED luminaires and to engineer
arbitrary polychromatic spectra from photometric quantities whose optimised spectra could be used
in pupil examinations. In terms of computation time, the presented metameric optimisation method
is by a factor of ∼32 (113.8± SD 74 optimised spectra per second) faster than the genetic algorithm
(3.6± SD 0.8 optimised spectra per second), a method that is recommended in the literature.

A total of 490 000 metameric spectra were optimised for 561 chromaticity coordinates in the CIEu’v’-
1976 colour space along the Planckian locus (2700 K to 7443 K, Duv 0 to ±0.048 in Duv steps of ±0.
003) with the developed spectral optimisation method to determine the extent to which the melanopic
illuminance of a light spectrum could be varied while leaving the photopic illuminance (Ev = 250 lx)
and chromaticity (∆u′, ∆v′ ≤ 0.001) unchanged. Metameric spectra could be applied, for example, to
affect the pupil size or the human’s circadian system in interior lighting systems without altering
the visual appearance of the illuminated environment concerning chromaticity and (il)luminance.
The larger the melanopic contrast between two metameric spectra, the more a non-visual responses
could be varied. Previous works in the literature tended to leverage a lower number of metameric
spectra for a limited chromaticity range to analyse the capabilities of metamerism, e.g., a recent study
analysed six metameric spectra for three target chromaticity coordinates. Therefore, the built database
of optimised metameric spectra and the scale of analysis conducted in this work can be considered the
most comprehensive in the science of spectral optimisation. Based on the optimised spectra, it was found
that the maximum reachable melanopic Michelson contrast ranges between 0.16 and 0.18 if metameric
spectra are considered that feature a colour fidelity index of Rf ≥ 85 and Rf,h1 ≥ 85. For example, with
a melanopic Michelson contrast of 0.16, the melanopic illuminances could be varied from 135 lx to 185 lx
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without altering the photopic illuminance (Ev = 250 lx) or chromaticity coordinate (∆u′, ∆v′ ≤ 0.001)
of the metameric light spectra. For each used chromaticity target, the upper and lower limits of the
melanopic illuminance were identified while keeping the photopic illuminance steady (Ev = 250 lx).
Then, the metameric limits of the melanopic stimulus space were mapped into a colour space, capable
of indicating the maximum achievable melanopic contrast at steady photopic illuminance (Ev = 250 lx)
for each chromaticity coordinate (∆u′, ∆v′ ≤ 0.001). Such a map might be useful for upcoming spectral
optimisation tasks to specifically identify chromaticity locations where the highest melanopic contrasts
via metameric spectra could be reached without affecting the visual appearance concerning chromaticity
and (il)luminance.

In terms of the pupil modelling topic, a literature review was conducted, revealing that eight relevant
time-invariant pupil formulas have been proposed from 1926 to 2012, which can predict the equilibrium-
state pupil size using a V(λ)-based photometric quantity. Therefore, a benchmarking was performed
as a first step to determine the prediction accuracy of three selected luminance-based pupil models
(Crawford model, De Groot & Gebhard model, Watson & Yellott model). It was found that for white light
spectra with correlated colour temperatures (CCTs) between 2000 K and 10 000 K (L ≈ 100 cd/m2), the
pupil models’ prediction errors are within a pre-defined tolerance range of ±0.5 mm when considering
the equilibrium-state pupil size. Therefore, with longer light exposures (60 to 300 seconds), it could be
possible to empirically describe (approximation) the spectral-dependent sustained pupil size using the
luminance. The results indicate that when using the tested white light stimuli with a steady luminance
of ∼100 cd/m2, the pupil models’ lack of time dependence might be a more significant source of error
than the missing consideration of ipRGCs since the prediction of the short-term pupil light response
(one second after light exposure) yields a deviation of 0.71 mm± SD 0.15 mm (Watson & Yellott model).
If chromatic spectra (peak wavelengths: 450 nm, 530 nm, 610 nm, 660 nm) at a steady luminance of
∼100 cd/m2 are used to trigger the pupil light response, however, the prediction error of the tested
V(λ)-based pupil models could reach about 1.21 mm for the equilibrium-state pupil size.

As an alternative to the existing empirical V(λ)-based pupil models, a novel modelling approach using
feed-forward neural networks was developed, allowing to predict the temporal pupil size in response
to chromatic (L ≈ 100 cd/m2, peak wavelengths: 450 nm, 530 nm, 610 nm, 660 nm) and polychromatic
spectra (L ≈100 cd/m2, CCTs: 2007 K, 4983 K, 10 138 K) with a mean absolute error below 0.1 mm. The
method allows the reconstruction of the pupil’s temporal behaviour as a function of distinct lighting
metrics for the first time. However, the prediction space of the introduced modelling approach is
currently limited to the measured data, which were collected using a steady luminance of ∼100 cd/m2.
Further, for validating the modelling approach, the training dataset was used, as the methodological
development of a pupil modelling approach was the focus of this work. As a next crucial step, the
model’s prediction accuracy needs to be validated more extensively using pupil size data that are not
applied during the training of the neural networks. Thus, the proposed deep learning-based modelling
approach is, in its current state, not capable nor intended to replace existing V(λ)-based pupil models
due to the missing validation and limited prediction space. However, due to the integrated neural
networks, it is hypothesised that the prediction space could be further generalised as the amount of pupil
size data increases in the future. More data must be obtained empirically to face this topic. Compared
to the methodological approach of previously published luminance-based pupil formulas, the proposed
deep learning-based pupil modelling method could account for adaptive receptor weighting, reconstruct
the entire temporal pupil light response, and perhaps pave the way for a unified model of the afferent
pupil control pathway in the future.
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Zusammenfassung

Der Pupillendurchmesser ist unter anderem aufgrund seiner Funktion bei der Regulierung der retina-
len Bestrahlungsstärke und seines Einflusses auf die visuelle Sehschärfe von wesentlichem Interesse
in der Lichttechnik. Auf dem Gebiet der kognitiven Psychologie können transiente Pupillendurch-
messeränderungen zur Charakterisierung von physiologischen Körperzuständen wie der kognitiven
Arbeitsbelastung, der Schläfrigkeit oder Erregung genutzt. Auch in der medizinischen Diagnostik
werden technische Konzepte erforscht, um den Pupillendurchmesser als nicht-invasiven Biomarker
zu nutzen, wie beispielsweise in der Schmerzüberwachung zur Regelung der Anästhetikagabe oder
der Früherkennung von neurodegenerativen Erkrankungen wie Alzheimer. Bis zur Jahrtausendwende
wurde angenommen, dass der Pupillenlichtreflex von denselben Photorezeptoren gesteuert wird, die
auch für die visuelle Verarbeitung des Sehsystems verantwortlich sind. Mittlerweile belegen Studien,
dass der afferente Pupillenkontrollpfad durch eine Interaktion der intrinsischen photosensitiven Gan-
glienzellen (ipRGCs) und Photorezeptoren der äußeren Netzhaut (Zapfen und Stäbchen) gesteuert
wird. Somit kann die spektrale Abhängigkeit der Pupille nicht allein mit der Hellempfindlichkeitskurve
V(λ) beschrieben werden. Obwohl die neurophysiologische Grundlagenforschung der letzten zwei
Jahrzehnte neue Erkenntnisse zum Pupillenlichtreflex offenbarte, blieben empirische Pupillenmodelle
weitestgehend unverändert; sie sind zeitinvariant und können den Pupillendurchmesser nur als Funk-
tion einer V(λ)-gewichteten Größe vorhersagen. Nach mehr als 100 Jahren Pupillenforschung existiert
kein vereinheitlichtes Modell, welches es ermöglicht, den zeitlichen Pupillendurchmesser als Funktion
von unterschiedlichen Lichtspektren vorherzusagen. Daher ist ein Hauptziel dieser Arbeit, einen Ansatz
zur Modellierung des zeit- und spektralabhängigen Pupillenkontrollpfades zu entwickeln, um die
Vorhersage des Pupillendurchmessers aus photometrischen Größen zukünftig realisieren zu können.

In dieser Arbeit wird zur Untersuchung des Pupillenlichtreflexes eine Messplattform, bestehend aus
einer temperaturgeregelten 15-Kanal LED-Leuchte für die Erzeugung von Lichtspektren und ein Pupil-
lometriesystem zur empirischen Erfassung des menschlichen Pupillendurchmessers entwickelt. Zudem
wird ein neuartiges spektrales Optimierungsverfahren zur Ansteuerung von Mehrkanal-LED-Leuchten
vorgestellt, welches aus photometrischen Kenngrößen polychromatische Spektren generiert, die in Unter-
suchungen eingesetzt werden können. Hinsichtlich der Berechnungszeit ist das Optimierungsverfahren
um den Faktor ∼32 schneller (113.8± SD 74 optimierte Spektren pro Sekunde) als der in der Literatur
empfohlene genetische Algorithmus (3.6± SD 0.8 optimierte Spektren pro Sekunde).

Mittels des entwickelten Optimierungsverfahrens werden für 561 Farborte im CIEu’v’-1976 Farb-
diagramm entlang des Plankschen Lokus (2700 K bis 7443 K, Duv 0 bis ±0.048 in Duv-Schritten von
±0.003) insgesamt 490 000 metamere Spektren optimiert, um herauszufinden inwieweit die melanopische
Beleuchtungsstärke eines Lichtspektrums variiert werden kann, während die photopische Beleuchtungs-
stärke (Ev = 250 lx) und der Farbort (∆u′, ∆v′ ≤ 0.001) unverändert bleiben. Metamere Spektren können
beispielsweise dazu genutzt werden, um in der Innenraumbeleuchtung den Pupillendurchmesser oder
das zirkadiane System des Menschen zu beeinflussen, ohne dass Beobachter eine visuelle Änderung der
Beleuchtung wahrnehmen. Je größer der melanopische Kontrast zwischen zwei metameren Spektren
desto stärker könnte sich die nicht-visuellen Wirkung variieren lassen. Vorherige Simulationen in der
Literatur betrachteten eher eine einstellige Anzahl von metameren Spektren für einen begrenzten Farb-
ortbereich. Beispielsweise analysierte eine kürzlich veröffentlichte Studie sechs metamere Spektren für
drei Zielfarborte. Daher kann die in dieser Arbeit entwickelte Datenbank von optimierten metameren
Spektren und deren Analyse zu einer der umfangreichsten in der Disziplin der spektralen Optimierung
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bezeichnet werden. Es wurde festgestellt, dass der maximale erreichbare melanopische Michelson-
Kontrast zwischen 0.16 und 0.18 liegen kann, wenn metamere Spektren berücksichtigt werden, die
eine Farbtreue von Rf ≥ 85 und Rf,h1 ≥ 85 aufweisen. Beispielsweise könnte mit einem melanopischen
Michelson-Kontrast von 0.16 die melanopische Beleuchtungsstärke von 135 lx auf 185 lx variiert werden,
ohne dass die photopische Beleuchtungsstärke (Ev = 250 lx) oder der Farbort (∆u′, ∆v′ ≤ 0.001) der
Lichtspektren verändert wird. Für jeden verwendeten Zielfarbort wurde das obere und untere Limit der
melanopischen Beleuchtungsstärke bei gleichbleibender photopischer Beleuchtungsstärke (Ev = 250 lx)
identifiziert. Die metameren Grenzen des melanopischen Stimulusraums wurden kartiert und in ein
Farbdiagramm projiziert, welcher für jeden Farbort (∆u′, ∆v′ ≤ 0.001) den maximal erreichbaren mela-
nopischen Kontrast bei gleichbleibender photopischer Beleuchtungsstärke (Ev = 250 lx) angibt. Diese
Kartierung könnte für zukünftige spektrale Optimierungsaufgaben genutzt werden, um gezielt Farborte
zu identifizieren, in denen die höchsten melanopischen Kontraste zwischen metameren Spektren erreicht
werden können, ohne eine visuelle Änderung der Lichtfarbe für den Standardbeobachter hervorzurufen.

In Bezug zur Pupillenmodellierung wurde zunächst eine Literaturrecherche durchgeführt die ergab,
dass von 1926 bis 2012 acht relevante zeitinvariante Pupillenmodelle vorgeschlagen wurden, welche
mittels einer V(λ)-gewichteten photometrischen Kenngröße den Pupillendurchmesser im adaptierten
Zustand vorhersagen können. Daher wurde ein Benchmarking durchgeführt, um die Vorhersagegenau-
igkeit von drei ausgewählten Leuchtdichte-basierten Pupillenmodellen (Crawford Modell, De Groot
& Gebhard Modell, Watson & Yellott Modell) zu bestimmen. Es wurde herausgefunden, dass sich für
Weißlichtspektren mit einer ähnlichsten Farbtemperatur zwischen 2000 K und 10 000 K (L ≈ 100 cd/m2)
die Vorhersagefehler innerhalb eines vordefinierten Toleranzbereichs von ±0.5 mm liegen können, wenn
der Pupillendurchmesser im adaptierten Zustand betrachtet wird. Daher könnte es insbesondere bei
längeren Lichtexpositionen (60 bis 300 Sekunden) möglich sein, die spektralabhängige (adaptierte)
Pupillengröße näherungsweise mittels der Leuchtdichte empirisch zu beschreiben. Die ermittelten
Ergebnisse deuten darauf hin, dass bei der Verwendung der getesteten Weißlichtspektren die fehlende
Zeitabhängigkeit existierender Pupillenmodelle eine größere Fehlerquelle sein könnte als die fehlende
Berücksichtigung der ipRGCs, da die Vorhersage des kurzzeitigen Pupillenlichtreflexes (eine Sekunde
nach Lichtexposition) einen Fehler von 0.71 mm± SD 0.15 mm (Watson & Yellott Modell) ergibt. Werden
chromatische Spektren zur Modulation des Pupillenlichtreflexes genutzt (Spitzenwellenlängen: 450 nm,
530 nm, 610 nm, 660 nm), so kann der Vorhersagefehler der Leuchtdichte-basierten Pupillenmodelle
etwa 1.21 mm für den adaptierten Pupillendurchmesser erreichen.

Als Alternative zu den existierenden empirischen Pupillenmodellen, wurde ein neuartiger Modellie-
rungsansatz mit vorwärtsgerichteten neuronalen Netzwerken entwickelt, welcher es ermöglichen kann,
die zeitliche Pupillenlichtreaktion von chromatischen (L ≈ 100 cd/m2, Spitzenwellenlängen: 450 nm,
530 nm, 610 nm, 660 nm) und polychromatischen Spektren (L ≈ 100 cd/m2, ähnlichste Farbtemperatur:
2007 K, 4983 K, 10 138 K) mit einem mittleren absoluten Fehler von unter 0.1 mm vorherzusagen. Damit
ermöglicht der Ansatz erstmals, das zeitliche Verhalten der Pupille als Funktion von unterschiedlichen
Lichtmetriken zu rekonstruieren. Der Vorhersagebereich ist jedoch derzeit auf die gemessenen Daten
limitiert. Außerdem wurde zur Validierung des Modellierungsansatzes der Trainingsdatensatz selbst
verwendet, da in dieser Arbeit die methodische Entwicklung des Ansatzes im Vordergrund stand. In
Zukunft muss die Vorhersagegenauigkeit umfassender und spezifischer mit Daten validiert werden,
die beim Training der neuronalen Netzwerke nicht eingesetzt wurden. Durch die integrierten neuro-
nalen Netzwerke könnte es jedoch zukünftig möglich sein, den Vorhersagebereich mit zunehmender
Datenbasis weiter zu generalisieren. Im Vergleich zum methodischen Ansatz der bisher veröffentlichten
V(λ)-gewichteten Pupillenmodellen könnte der vorgestellte Ansatz die adaptive Rezeptorgewichtung
berücksichtigen, den kompletten zeitlichen Pupillenlichtreflex rekonstruieren und womöglich ein Weg-
bereiter für die vereinheitlichte Modellierung des afferenten Pupillenkontrollpfades sein.
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1 Introduction

The pupil diameter of the human eye has become a promising non-invasive biomarker [1] for assessing
the human’s task-related cognitive load [2–7], early screening of neurodegenerative brain diseases [8–13],
detecting the state of the circadian phase [14–16], or monitoring body conditions such as alertness
[17], arousal [18–21] and sleepiness [22]. Recently published works indicate that major depression [23],
sexual interest [24], attention [25], decision-making [26–28], stress [29], auditory stimuli [30] or cognitive
abilities [31–34] could affect the pupil’s behaviour. In medical diagnostics, the absence of a pupil light
reflex is an established criterion for confirming brain death [35, 36], showing how deep and extensive
the pupil control pathway is linked to the vegetative autonomous nervous system [37–39]. Furthermore,
the pupil response is investigated for pain monitoring [40] to control the supplied anaesthetics during
surgeries [41]. In the field of vision science, the pupil diameter has gained renewed attention [42], as
the temporal pupil response can be used as a measure of the visual non-image-forming pathway’s
mechanism [15, 16, 43, 44]. The increasing interest in the pupil’s behaviour is also reflected through
the rising number of publications [43] in recent years (Figure 1.1). Even if some of the topics and their
applications are still in an experimental stage, they illustrate the interdisciplinary type and possibilities
of today’s pupillometry research.

Figure 1.1: The count of published works containing the
keywords „pupil diameter“ and „pupillometry“ from
1985 to 2019. In the last few years the research about the
pupil’s behaviour has attracted more working groups,
leading to a rising number of publications. The raw
data are based on the Web of Science search engine.(1)
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The main task of the pupil aperture, however, is to act as a regulatory gateway for the amount of photons
reaching the retinal photoreceptor system of the eye [45]. In photometric and visual examinations, the
pupil diameter is an essential metric due to its impact on retinal illuminance and the projected retinal
image quality [46, 47]. In the early days of pupillometry, research primarily focused on the processing
mechanism behind the pupil light reflex and the modelling approaches for predicting the pupil diameter
as a function of photometric quantities [47–53]. In 1993, Irene Löwenfeld’s legendary masterpiece „The
Pupil: Anatomy, Physiology, and Clinical Applications“ was published, consisting of two volumes and
a total of 2223 pages, all about the black appearing disc in the iris [54–56]. After more than 25 years
of preparation and 18 000 references [54–56], the book was considered as almost the final report that
summarises the entire knowledge of pupil research since the 19th-century [55]. At that time, it was
seen as a widely proven fact that the afferent pupil control pathway is managed by the same type of
retinal photoreceptors responsible for vision [57]. These accepted theories on how the pupil response
might work were shattered by the discovery of a new type of photoreceptors in the inner retina, called
intrinsically photosensitive ganglion cells (ipRGCs) [58–63].

(1) Figure 1.1 is reprinted from the author’s publication: B. Zandi, M. Lode, A. Herzog, G. Sakas & T. Q. Khanh. PupilEXT:
Flexible Open-Source Platform for High-Resolution Pupillometry in Vision Research Frontiers in Neuroscience. 15, (2021). DOI:
10.3389/fnins.2021.676220. Licence: CC BY 4.0.
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2 introduction

The identification of photosensitive ganglion cells was a turning point of vision and light science, leading
to a rethinking of the photoreceptors’ neural interconnection and the earlier proposed V(λ)-based pupil
light response models [64]. Photoreceptors are distinct according to their broad spectral sensitivity
and the respective peak response λPeak in the visible spectrum range [64]. Depending on the eye’s
adaptation state, the long- (L, λPeak ≈ 565 nm), middle- (M, λPeak ≈ 535 nm), short-wavelength sensitive
cones(2) (S, λPeak ≈ 420 nm) and rods(3) (λPeak ≈ 498 nm) account for vision [65, 66]. In the outer
retina, photoreceptors can absorb and transform light quanta of different wavelengths λ into a graded
membrane potential, which passes through a retinal network cells to different types of retinal ganglion
cells (RGCs) in the inner retina [64, 67]. Parasol, midget and small bistratified ganglion cells collect
photoreceptor signals and transmit frequency-coded action potentials to the lateral geniculate nucleus
(LGN), the relay station of the image-forming visual pathway [65, 68, 69]. The photoreceptors’ linkage
via the RGC types results in one achromatic (L + M) and two colour opponent channels (red-green:
L−M, blue-yellow: S− (L + M)), each projecting to one of three LGN layer types [65, 69–72].

In classical vision models, the brightness perception is caused by the interaction of the achromatic and
colour opponent channels [72, 73], leading to the fact that a set of light spectra at steady radiance Le in
W/m2 sr does not match the human’s brightness perception. Therefore, the International Commission
on Illumination (CIE) introduced the photopic luminous efficiency function V(λ) in 1924, aiming to
describe the visual efficiency of light spectra with photometric units [64, 74–76]. Light spectra can
be weighted with V(λ) to determine how humans perceive a respective stimulus. For instance, by
weighting and integrating a spectral power distribution (SPD) Le(λ) across the visible spectrum range
with V(λ), the luminance Lv in cd/m2 can be derived. However, Lv is merely a first approximation in
quantifying the brightness sensation, as approximately only the achromatic L + M channel is managed
by V(λ), propagating this issue to the photometric quantities [64, 77, 78].

Starting from the year 1926 to 2012, about eight time-invariant pupil light response models were
proposed, all using a V(λ)-based photometric quantity as the main independent unit [51], assuming
that the pupil’s response could be described with the achromatic L + M channel of the image-forming
pathway [47]. The fact that blind or cone- and rodless mice still exhibit a sustained pupillary light reflex
[79–81] counters against this traditional assumption. Additionally, the pupil’s spectral peak sensitivity
λPeak of the tonic(4) diameter is approximately between 470 nm and 480 nm [81–83], showing that the
pupil’s behaviour cannot be described with V(λ) alone. The retinal mechanism behind this effect was
finally understood after the discovery of the ipRGCs.

This novel type of ganglion cells contains the photopigment melanopsin, exhibiting an absorption
peak at 480 nm and can be intrinsically activated in response to light, even without the outer retinal
photoreceptors [84]. In the inner retina, ipRGCs(5) receive input from rods, inhibitory S-cone signals
and an additive contribution of L- and M-cones [47, 85–94]. Their axons project to the suprachiasmatic
nucleus (SCN) and the olivary pretectal nucleus (OPN), which are capable of modulating the circadian
photoentrainment and pupil light constriction [57, 60, 61, 95–98]. When ablating ipRGCs from the retina
of mice, visual abilities remain nearly functional, but the circadian photoentrainment and regulation of
the pupil aperture are significantly impaired [99]. Therefore, the eye’s visual system was classified into
an image-forming and non-image-forming pathway after the ipRGC’s discovery [60, 95, 100].

The ipRGCs dominate the sustained non-image-forming visual functions, including the pupil light
response. Thus, both the ipRGCs and the equilibrium-state pupil light response approximately match
in their spectral peak sensitivity, indicating that the additive signal contribution of L- and M-cones

(2) Cones operate from mesopic to photopic light conditions.
(3) Rods support vision from scotopic to higher mesopic light conditions.
(4) Phasic responses denote the short-term pupil light response and tonic the sustained.
(5) Six subtypes of ipRGCs are classified in the retina (M1 to M6). The introduction focuses on M1-ipRGCs.
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might not be involved in the sustained pupil size [66, 79]. However, the afferent pupillary control
pathway exhibits a time-dependent receptor weighting in which the L + M contribution, inhibitory
S-cone signals, and the melanopsin activated ipRGCs are involved with different proportions. The
outer retinal photoreceptors manage the phasic pupil light response in the photopic adapted eye,
while the melanopsin activated ipRGC signals dominate the pupil’s afferent pathway for steady-state
light stimuli [101, 102]. This temporal pupil behaviour is reflected in the pupil’s spectral sensitivity, re-
sulting in a peak shift from 510 nm to approximately 470 nm towards higher light exposure time [66, 103].

The last two decades revealed groundbreaking insights into the retina’s temporal mechanism be-
hind the pupil light response and the non-image-forming pathway [104], showing that the impact of
light spectra is even beyond the supposed visual functions of the eye [105]. At the same time, V(λ)-based
pupil models mostly rested in being time-invariant and estimating a steady-state diameter using a
V(λ)-based quantity as the main independent parameter. Neither the adaptive receptor weighting
nor the spectral dependence of the ipRGCs is currently covered in these functions [48]. In fact, after
more than 100 years of pupil research, there is still no valid model or approach that could predict
the temporal pupil diameter as a function of light spectra [48, 64]. Therefore, one key topic in pupil
research is to develop a time-variant model featuring both the spectral dependency and the adaptive
photoreceptor proportion in controlling the pupil aperture. Such a model might be of interest beyond
research purposes because knowing the temporal and spectral behaviour of the pupil would perhaps
make it possible to design light stimuli that could optimise the size of the pupil aperture. This idea is
supported by the results of Tsujimura et al. [106], indicating that by adjusting the melanopsin activated
ipRGC signal, the pupil constriction could be varied by a factor of three times more than the luminance
[47, 106]. Additionally, a pupil model could be integrated into visual perception models for automotive
lighting research applications or in calculating radiation limits for eye safety, as the retinal illuminance
is significantly affected by the pupil aperture. Even for medical or cognitive related pupil applications,
a model that combines the essential dependencies could be a step forward, as light cause the most
significant part of the pupil’s response.

1.1 Main Objectives and Contributions

State-of-the-art pupil light response models might be inaccurate for predicting the temporal pupil
size due to the lack of integrating the adaptive receptor weighting and time-dependency. Further, the
models could be limited in their flexibility to consider additional dependencies, as this might require a
reinvention of the formulas’ equation structure. This thesis aimed to build a pupillometry infrastructure
and investigate the impact of multi-channel LED spectra on the temporal pupil size. One main goal
was to develop a novel approach for pupil modelling to replace conventional V(λ)-based pupil size
formulas in the future.

The work’s content and respective objectives can be classified into two branches. Firstly, a method-
ological branch that pursued the development of an end-to-end hardware and software infrastructure
for triggering and measuring the pupil’s diameter in response to artificially generated light spectra. This
included the construction of a multi-channel LED luminaire for triggering the afferent pupil control
pathway. The developed infrastructure serves as a research platform for upcoming fundamental and
application-oriented pupil investigations.

The second branch of this thesis dealt with the empirical collection of pupil light response data for
developing a mathematical method that could manage the pupil’s most essential dependencies within a
time-variant function. Here, the prediction accuracy of V(λ)-based pupil formulas was investigated and
the requirements for a new model were defined. Next, the impact of brightness perception models on the
temporal pupil diameter was examined. Since the outer photoreceptors control the phasic pupil diameter,
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it might be possible that the pupil aperture could be approximately described (empirically) with cone-
based brightness metrics that map the S-cone contribution. Finally, the thesis worked on developing a
novel deep learning-based pupil modelling method. In the following, the scientific contributions of this
thesis are briefly summarised.

1.1.1 Development of a stable multi-channel LED luminaire

Modelling the pupil light response requires empirically collected data of the temporal pupil diameter as
a function of different light spectra. Selecting a suitable light source for triggering the pupil is crucial
because the higher the number of possible light spectra, the larger the prediction space of a model
could become. For this work, a 15-channel LED luminaire was built in which each LED channel’s
radiance output can be controlled individually, using a constant-current LED driver with Puls-Width-
Modulation (PWM). Each LED circuit board was equipped with a thermal management system, allowing
reproducible stimuli without a significant shift of the spectrum, luminance or respective chromaticity
coordinates caused by temperature fluctuations of the LEDs. A serial communication interface has been
implemented, which can be used to control the luminaire from different programming languages like
Python, Matlab or Julia. The latency time it takes to process a command by the luminaire’s embedded
system is tracked to synchronise the LEDs’ switch-on time with a pupillometry system. The luminaire
was placed on top of a custom-built observation chamber to homogeneously illuminate a wall, serving
as an adaptation field for the pupil light response studies.

1.1.2 Development of an optimisation framework for engineering light spectra

Multi-channel LED luminaires are a powerful tool, but when generating a spectrum, the duty cycle of
each LED channel must be set with the right strategy. The challenge in using such luminaires is to find
the correct duty cycle combination of the n-channels that lead to the desired spectral characteristic. For
instance, in a simple visual experiment, target spectra must be adjusted to match specific lighting metrics
like the luminance and CIEu’v’-1976 chromaticity coordinate. Recent works recommend meta-heuristic
multi-objective optimisation methods such as the genetic algorithm for generating the desired spectra
from different combinations of lighting metrics. These approaches have an extensive computational
load, a long computation time and are limited in the number of objectives. Therefore, one essential goal
of this work was to develop an optimisation approach without the downsides of existing methods.

Here, the first deep learning-based spectral optimisation technique is introduced, designed for real-
time calculations on multi-channel LED luminaires. The proposed method significantly outperforms
the multi-objective genetic algorithm by a factor of ∼32 in terms of computation time (113± SD 47
optimised spectra per second), which could be a striking advance in spectral optimisation, allowing new
fields of application. Furthermore, the developed method can generate metameric light spectra of high
quality after 5.1 s± SD 1.71 s, which could be used to modulate the human’s circadian system without
affecting the light’s visual appearance in an illuminated environment. To showcase the possibilities
of this method, about ∼1.2 million multi-channel LED spectra were optimised for a publication [107],
which is, to the author’s best knowledge, one of the largest existing published dataset in the field
of spectral optimisation. The method was applied to analyse the metameric limits of the melanopic
stimulus space across a larger grid in the CIEu’v’ colour space [108].

The use cases of the developed optimiser could be far beyond the scope of pupil light response
research, as the technology of multi-channel LED systems has increasingly become essential in indoor
illumination. One key requirement for implementing smart multi-channel lighting is a real-time capable
spectral optimisation method. The proposed deep learning-based spectral optimisation pipeline might
be a potential candidate in such applications, revealing new possibilities in adapting light spectra from
environmental sensor data on the fly.
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1.1.3 Development of a high-resolution pupillometry platform

In vision science, pupil measurements are mostly performed using commercial eye-tracking devices,
as identifying the pupil’s contour is necessary before calculating a gaze point. However, such systems
might be associated with high investments of approximately 5000 to 40 000 euros, perhaps due to the
licensing fees for an integrated software environment. Moreover, these systems might rely on closed
software and might not offer an option to validate the pupil measurement’s accuracy, as they are largely
designed for eye-tracking applications. There is currently a lack of an open-source pupil measurement
system that could be used for high-resolution remote pupillometry under laboratory conditions. This
could become a hurdle for future research projects.

Here, a pupillometry system called PupilEXT [64] has been developed and made entirely open-source,
allowing interdisciplinary research groups to perform verifiable pupil measurements in real-time with
high-resolution machine vision cameras. It was made completely free for non-commercial purposes.
The hardware and software platform is easy to set up and available without having to pay the cost of
commercial eye-tracking solutions. PupilEXT integrates six state-of-the-art pupil algorithms, which can
track the pupil size either with stereo cameras or in offline mode using externally acquired images. A
developed demo system was able to detect an artificial pupil of known size within a mean accuracy of
0.0059 mm in stereo mode. Although this project was part of the author’s doctoral research, its results are
not reported in this thesis. The interested reader is referred to the author’s peer-reviewed publication [64]
and to the project’s webpage (https://github.com/openPupil/Open-PupilEXT) for more information.

1.1.4 Prediction accuracy of V(λ)-based pupil light response models

Previously proposed empirical pupil formulas are time-invariant and predict the steady-state pupil
diameter, in which the ipRGCs usually dominate. In this temporal prediction range, the pupil’s spectral
sensitivity differs from V(λ). Accordingly, it could be hypothesised that these models might lead to
estimation errors when light spectra are used as stimuli that do not originate from thermal radiators.
Here, it was found that white light spectra of multi-channel LED luminaires with CCTs between 2000 K
to 10 000 K at a steady luminance of ∼100 cd/m2 could lead to prediction errors of the pupil diameter
within a range of approximately ± 0.5 mm. The results indicate that a models’ lack of time-dependence
might be a more significant source of error than the missing ipRGC consideration for predicting the
pupil’s temporal behaviour in response to the tested white light stimuli. For the tested chromatic spectra
(∼100 cd/m2), however, the estimation error of existing V(λ)-based pupil models could reach 1.21 mm
when considering the equilibrium-state pupil diameter. Thus, the study results indicate that the spectral
sensitivity of ipRGCs needs to be considered in combination with the temporal receptor weighting if
the time-dependent modelling of the pupil light response is of interest [47].

1.1.5 Impact of cone-based brightness perception metrics on the pupil light response

The goal of this topic was to analyse to what extent the pupil diameter could be described with existing
cone-based brightness metrics. It was checked the possibility of using brightness models to achieve
a steady diameter across spectra, revealing the advantage that both the phasic pupil aperture and
brightness perception could be modelled approximately with the same quantity. For this, different
spectral power distributions at a steady brightness, calculated via the equivalent luminance concepts by
Sagawa [73] and Fotios & Levermore [45], were presented while recording the observers’ pupil size.

It was found that the non-image- and image-forming pathway are different when it comes to the retinal
processing path, but for empirical modelling, both processes could be described (empirically) together if
no unnatural chromatic spectra are applied. It was found that a steady brightness calculated through
an equivalent luminance concept was able to keep the population’s temporal pupil size statistically
steady across distinct polychromatic spectra with chromaticity coordinates across the Planckian locus.

https://github.com/openPupil/Open-PupilEXT
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Specifically, no significant pupil size differences were found between light stimuli of ∼10 000 K and
∼5000 K (p = 1 > 0.05), nor among ∼10 000 K and ∼2000 K p = 0.067 > 0.05). Even with chromatic
spectra, however, a pairwise t-test between the population’s pupil size in response to chromatic stimuli
(450 nm and 630 nm) revealed that the pupil diameter is up to 14.9 seconds almost unaffected by the
type of spectra, when the equivalent luminance according to Fotios & Levermore [45] is steady. The
found effect of linking the pupil diameter with a cone-based brightness metric might lead to a useful
oversimplification in pupil modelling.

1.1.6 Deep learning-based pupil modelling approach

There is no approach in the science of pupil modelling which could reconstruct the temporal pupil size
in response to chromatic or polychromatic light stimuli. Relying on the closed equations might not be
future proof. Therefore, this work focused on modelling the temporal pupil light response using artificial
neural networks. The objective was to reconstruct the temporal pupil size up to its equilibrium-state
from photometric values.

Here, a new method was developed in which a neural network was implemented to predict a base
function’s model parameters from a set of light metrics, allowing to reconstruct the pupil’s response
up to its equilibrium state with a high temporal resolution [48]. Based on this method, a novel pupil
modelling approach was developed, which incorporates a second-order differential equation [109] and
the Watson & Yellott pupil model [51] combined with a feed-forward neural network. The concept can
reconstruct the time-dependent pupil diameter up to 300 seconds for the investigated chromatic(6) and
polychromatic(7) spectra at 100.01 cd/m2 ± SD 0.25 cd/m2 with a mean absolute error below 0.1 mm,
making it possible to reconstruct the temporal pupil size in response to the tested light stimuli. However,
the model’s prediction space is currently limited to the measured pupil size data. For validating the
modelling approach, the training data itself was applied, as the development of the methodological
approach was the focus of this work. Future works must expand the prediction space and extensively
validate the model’s prediction using an additional test dataset. However, due to the implemented
neural networks, it is hypothesised that the prediction space could be extended as the amount of
available measured empirical pupil behaviour data increases. Regardless of these restrictions, compared
to previously published pupil modelling methods, the deep learning-based approach could consider the
adaptive receptor weighting and the reconstruction of the complete pupil course, perhaps making it to a
door-opener for modelling the cognitive impact on the pupil behaviour in the future.

1.2 Structure of the Thesis

Including the introduction, the doctoral thesis is structured into six chapters. Chapter 2 deals with the
fundamentals of vision science and reviews the current knowledge of the retinal processing mechanism
behind the pupil light response. Then, the experimental conditions of previously published pupil light
response models will be compared and discussed, used to derive this work’s research questions (see
Section 2.5). Chapter 3 covers the development and characterisation of the multi-channel LED luminaire.
Next, spectral optimisation procedures are discussed, which are necessary to run the luminaire in
pupil experiments. For this, a literature review and performance comparison of the genetic algorithm
concerning spectral optimisation is conducted. Furthermore, the structure of the developed deep
learning-based spectral optimisation approach will be presented and benchmarked against the genetic
algorithm. Finally, one of the largest database for multi-channel LED metamer spectra will be introduced
to outline the proposed optimisation technique’s performance. The spectra are leveraged to analyse the
metameric limits of the melanopic stimulus space. In Chapter 4, the prediction accuracy of existing

(6) The chromatic LED spectra had the peak wavelengths 450 nm, 530 nm, 610 nm and 660 nm.
(7) The CCTs of the polychromatic spectra were 2007 K± SD 1 K, 4983 K± SD 3 K and 10 138 K± SD 22 K.
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V(λ)-based pupil models will be investigated using the measured data of an empirical study. Further,
a deep learning-based pupil modelling approach will be introduced, which could consider the time-
and spectral-dependence of the afferent pupil control path. In Chapter 5, the question is addressed to
what extent equivalent luminance metrics could keep the temporal pupil diameter steady across distinct
spectra. Chapter 6 summarises the contributions and limitations of this work’s results coupled with a
discussion concerning the future research activities that follow this thesis. Care has been taken to ensure
that the thesis is written in a way that the individual chapters can be comprehended separately from
each other, allowing readers to jump to the chapter of interest.

1.3 List of Publications

The following publications were produced during the author’s period as a research assistant and
doctoral candidate at the Laboratory for Adaptive Lighting Systems and Visual Processing from the
Technical University of Darmstadt. It is a common practice at the Department of Electrical Engineering
and Information Technology to publish the achieved scientific knowledge in peer-reviewed journals
or to discuss the outcome of experiments with experts at conferences, before submitting the doctoral
thesis. Thus, most of the scientific contributions, ideas, figures, textual basis and content presented in
this thesis are based on the author’s previously published works. For the scientific qualification of a
doctoral candidate at the Technical University of Darmstadt, a large part of the time is dedicated to the
students’ supervision during graduation, whose thesis objectives mainly consisted of sub-parts from the
author’s doctoral research topics. A full list of the supervised students’ theses is attached to this work.
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2 Pupil Light Response

A processing chain consisting of several stages from the retina to the human’s vegetative nervous system
is involved in balancing the pupil diameter in response to light. This chapter discusses the pupil control
pathway’s sub-processes and reviews proposed pupil light response models. First, the fundamentals of
the visual system will be presented, including the anatomical structure of the eye, the photoreceptors
and their retinal processing mechanisms up to the interconnection in the brain. Then, the discovery of
the ipRGCs and their impact on the image- and non-image-forming pathway are discussed, as they play
a key role in controlling the pupil aperture. Finally, the conventional pupil light response models will
be reviewed, compared with each other, and the downsides will be analysed based on the temporal and
spectral properties of the neural mechanism behind the pupil control pathway.

2.1 Fundamentals of the Visual System

The optical system of the eye (Fig. 2.1a) projects visual stimuli onto the retina (Fig. 2.1b), which let
the photoreceptors in the outer retinal segment respond with graded membrane potential changes.
A stack of interconnected cell layers further processes and transmits these electrical signals to the
ganglion cells that relay frequency-encoded action potentials to retinorecipient neurons in the brain.
This visual processing steps can be divided into four parts: (i) the optical apparatus of the eye that
focuses visual stimuli on the retina; (ii) the photoreceptors, which absorb light quanta and convert them
into electrical signals by a phototransduction mechanism; (iii) the downstream retinal processing layers
that encode spatial stimuli for the brain; (iv) the distribution and processing of the transformed visual
and non-visual stimuli inside the brain. In this Section 2.1, the eye’s optical components (point (i)), the
photoreceptors photon catch (Section 2.1.1), as well as the visual processing mechanism in the retina
(Section 2.1.2) and the ganglion cells’ axon projections to the brain, are discussed (Section 2.1.3).
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Figure 2.1: Schematic from the lateral section of the eye and retina. a) Anatomical structure of the human’s eye
responsible for focussing and mapping two dimensional visual stimuli on the retina. b) The retina is a thin layer
covering the inner segment of the eye and consists of several cell types. In the outer segment of the retina are the
photoreceptors, which can absorb photons and respond with membrane potential changes. Bipolar cells gather the
photoreceptor signals. The ganglion cells synapse with the bipolar cells and transmit electrical action potentials to
the brain via the optic nerve. Fig. 2.1 is adapted from „Structure of the Retina“ and „Anatomy of the Human Eye“
by BioRender.com (2021). Retreived from app.biorender.com/biorender-templates.
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In the outermost layer of the eye, the sclera and cornea (Fig. 2.1a) provide the structural integrity of the
globe and protect the inner components from mechanical damage [110]. The cornea is the transparent
part of the sclera and accounts with approximately 43 dpt [111, 112] for about 70 % [110] of the total
refractive power of the eye. Between the retina and the sclera, the eye is coated with the choroid layer,
which contains blood vessels that supply nutrition and oxygen to the inner components. The elastic
biconvex shaped lens can adjust the total refractive power of the eye depending on the distance of
a visually fixed object to maintain the image distance at the level of the fovea centralis [113]. When
an object is close to the eye, the ciliary muscle surrounding the lens contracts and the tension of the
zonular fibres decreases, causing the lens to curvature more, which can increase the refractive power
[110, 114]. At long-distance viewing conditions, the ciliary muscle relaxes and the zonular fibres pull
the lens surface into a flattened shape, leading to a reduced optical power (Fig. 2.1a) [110, 114]. This
adaptive process is called lens accommodation.

The pupil size regulates retinal illuminance that reaches the photoreceptor system. Its aperture size
can vary between approximately 1.5 mm to 8 mm [47, 112, 115, 116], adjusted by two types of muscles in
the iris, the circular (sphincter pupillae) and the radial muscle (dilator pupillae). In higher illuminated
conditions, the circular muscle constricts and the radial muscle relaxes, leading to a contracted pupil,
which is called miosis. A smaller pupil aperture results in a larger depth of field [117] and can minimise
optical aberrations of the eye’s lens [118, 119], which might also affect the visual acuity [1, 119]. Pupil
dilation, also called mydriasis, can be reached when the circular muscle is relaxed and the radial muscle
constricts. The image of the visible pupil is defined as the pupil entrance. Due to the corneal refraction,
it appears about 13 % larger [120] than the actual pupil size in the ocular system (Fig. 2.1a) [121].

Both the ocular muscles in the iris and the ciliary body are innervated by sympathetic and parasympa-
thetic postganglionic fibres of the autonomous nervous system [38, 110]. The parasympathetic system is
responsible for contracting the ciliary muscle and controlling the circular muscle in the iris. Thus, when
the refractive power in the near-accommodated eye increases, the pupil aperture becomes smaller [120,
122, 123]. The sympathetic nervous system has an inhibitory effect on the ciliary muscle [124] but an
excitatory effect on the radial muscle of the iris [125]. Through this linkage, the pupil diameter also reacts
in response to physiological body conditions. For instance, in fight-or-flight situations, the sympathetic
nervous system becomes active and drives the radial iris muscle, causing a dilated pupil [126]. In
contrast, the pupil diameter becomes smaller in relaxed body conditions as the pupil constriction is
dominated by the parasympathetic innervated ciliary ganglion [22].

2.1.1 Photoreceptors in the outer retina

In the outer retina, rods and cones with distinct photopigments capture and transform light quanta
into graded membrane potentials (Fig. 2.1a). The phototransduction process takes place in the outer
segment of the receptors in which the light-sensitive photopigments are located inside several stacked
layers (Fig. 2.2a) of so-called discs [113]. Without light, the receptor’s inner cell membrane has a relative
potential of approximately −40 mV [113] to the extracellular space. The negative potential at rest is the
result of a balance between a current of Na+ ions pumped out of the cell and K+ ions flowing into
the cell. These ionic channels are influenced by a substance called cyclic guanosine monophosphate
(cGMP), which is transferred from the outer segment of the photoreceptors to the cell membrane
[113]. As the absorption of light quanta increases, the cGMP concentration decreases, leading to less
Na+ current, while the K+ channels stay unaffected (Fig. 2.2b). Thus, the cell membrane’s potential
becomes more negative (up to −70 mV) with an increasing number of absorbed light quanta, denoted
as hyperpolarisation [113].

Rods are shaped for low light conditions as they contain a high concentration of photopigments,
arranged in layered discs with longer axial length (Fig. 2.2a), resulting in a greater possibility of
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capturing individual photons [113]. As a result, rods can even respond to a single photon due to
their high amplification [127]. The photopigment concentration and the number of layered discs in the
outer receptors’ segments are lower in cones (Fig. 2.2a). Therefore, they require more light quanta for
triggering a comparable cell membrane response [113]. The photoreceptors, however, can be classified
according to their spectral absorption sensitivity, respective peak response λPeak, integration time,
temporal resolution and the responding range at different light intensities [113].

a) Morphology of the Outer Retinal Photoreceptors 

Rod 

Cone 

Discs Plasma 
membrane 

Connecting 
cilium Mitochondria Nucleus 

Outer segment Inner segment Synaptic terminal 

b) Light Induces Changes in Photoreceptor Electrical Activity 

In the light:  hyperpolarisation 

Reduction of 
cGMP levels 

K + 

Na + 

Ca 2+ 

cGMP 

In the dark:  depolarisation 

Outer segment Inner segment Synaptic terminal 

Figure 2.2: Morphology and process of phototransduction from the outer retinal photoreceptors(8). a) Photoreceptors
have photopigments in their outer segment, arranged in layered discs. The rods contain a high photopigment
concentration within a structure of closed discs, resulting in a greater possibility of capturing photons. b) At
rest, photoreceptors have a relative potential of approximately −40 mV [113] to the extracellular space, caused
by a balance between Na+ ions and K+ ions. The permeability of the ionic channels is affected by the substance
cyclic guanosine monophosphate (cGMP). With increasing absorption of light quanta, the concentration of cGMP
decreases, leading to less Na+ current. As the K+ channels stay unaffected, the cell membrane’s potential becomes
more negative, denoted as hyperpolarisation [113].

In the photopic adapted eye, the cones account for colour perception and sharp vision. The human retina
has three types of cones with partly overlapping spectral absorption sensitivities (Fig. 2.3), but distinct
peak-responses with (i) the short-wavelength-sensitive cones that contain an opsin called cyanolabe
(S, λPeak ≈ 420 nm), (ii) the medium-wavelength cones that contain the opsin chlorolabe (M, λPeak ≈
535 nm), and (iii) the long-wavelength cones that contain the opsin erythrolabe (L, λPeak ≈ 565 nm) [64,
65, 128, 129]. Due to the pigment rhodopsin [129], rods exhibit a peak response λPeak at ∼500 nm. The
inter-observer’s spectral sensitivities may differ due to pre-receptoral filtering by the crystalline lens
and dens of macular pigmentation in the fovea (see Section 2.2.2), which additionally depends on the
age [130]. For example, when considering the pre-receptoral filtering for a standard observer, the peak
sensitivity of rods is altered to 507 nm, 448 nm for the S-cones, 542 nm for the M-cones and 570 nm for
the L-cones (Fig. 2.3) [129, 131].

Figure 2.3: Spectral sensitivity of the outer retinal
photoreceptors according to the α-opic fundamentals
[131]. The action spectra of the cones are based on the
10°-cone fundamentals of Stockman & Sharpe [128]
with the peak sensitivities λPeak,sc = 448 nm (S-cones),
λPeak,sc = 542 nm (M-cones) and λPeak,lc = 570 nm (L-
cones) [128]. The rod’s absorption sensitivity is based
on the scotopic luminous efficiency function V′(λ) with
λPeak,rh = 507 nm.
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(8) Fig. 2.2 is adapted from „Morphology of Photoreceptors“ and „Light Induces Changes in Photoreceptor Electrical Activity“ by
BioRender.com (2021). Retreived from app.biorender.com/biorender-templates.
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In 2018, the International Commission on Illumination (CIE) introduced the α-opic system (CIE
S026/E:2018) to standardise the photoreceptors’ sensitivity functions(9) with the 10°-cone fundamentals
s10(λ), m10(λ), l10(λ) from Stockman & Sharpe [128] and the rod sensitivity with the V′(λ) function
for scotopic vision, ensuring better comparability between research results [131]. According to the CIE
standard, the photoreceptor’s action spectra should be written as sα(λ) with the α-opic prefix α that
denotes one of the opsin-based photopigments, namely, ssc(λ) for S-cones; (ii) smc(λ) for M-cones, slc(λ)

for L-cones and srh(λ) for the absorption sensitivity of the rods (Fig. 2.3) [131]. These action spectra are
used in this work for evaluating the photoreceptors’ excitation. For example, following the CIE standard,
the photobiological α-opic radiance can be calculated with

Le,α =
∫ 780

380
Le(λ) sα(λ) dλ, (2.1)

where Le(λ) is the spectral radiance and sα(λ) the respective action spectrum of a photoreceptor’s
opsin. The equation (2.1) can also be used to calculate the α-opic irradiance by replacing Le(λ) with the
spectral irradiance Ee(λ) of a light stimulus.

2.1.2 Retinal processing mechanism

The retina is structured into several layers (Fig. 2.1b), containing five major cell classes [132] denoted as
photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells [133]. In the outer plexi-
form layer (OPL), the photoreceptors synapse with the dendrites of the bipolar cells and communicate
through the neurotransmitter glutamate (Fig. 2.4a, b) [134]. The photoreceptors release glutamate at rest
(absence of light), but the amount of neurotransmitter substance decreases with increasing absorption
of photons [113]. According to the review of Masland [135], twelve different bipolar cell types(10) receive
inputs from cones in parallel, which respond differently to glutamate [133], depending on whether it
is an ON-bipolar or OFF-bipolar cell type(11) [113]. However, the rods, synapse exclusively with one
type of bipolar cells [136, 137] and interconnect through the amacrine cells [137, 138] with chemical or
electrical synapses to the cone-bipolar network, leading to a higher light amplification at the expense of
visual resolution, as a larger retinal signalling area is integrated(12) [134].

As discussed, the photoreceptors’ membrane potential becomes hyperpolarised with increasing
light quanta absorption, leading to less glutamate release (Fig. 2.2b). The ON-bipolar cells act as a
sign-inverter [134] as they depolarize in response to a hyperpolarised photoreceptor (Fig. 2.4b). In
contrast, the OFF-bipolar cells preserve and relay the membrane potential sign of the photoreceptors,
resulting in a hyperpolarised bipolar cell with increasing light stimulation (Fig. 2.4a) [113, 133, 134].
Parallel processing by both ON- and OFF-bipolar cells in the retina is an efficient method to discriminate
between light increase increments and decreases [134]. The functional task of the bipolar cells is to
integrate and convey the photoreceptors’ electrical signals to the inner plexiform layer (IPL), the relay
stratum for the synapses of at least ∼20 different ganglion cell types (Fig. 2.1b) [135, 136]. In mammals,
the IPL is sub-grouped into five different layers [136] in which the axons of the distinct bipolar cell
types stratify. For example, the OFF-bipolar cells’ axons terminate in the first and second layer of the
IPL (outer sublamina), whereas the ON-bipolar cell type axons end in the third to fifth stratum (inner
sublamina of the IPL) [136]. Thus, the functionally different cell types are spatially separated from each
other by the distinct IPL strata (Fig. 2.4a, b).

(9) The α-opic concept was firstly published by Lucas et al. [129] with slightly different action spectra, but was replaced by the CIE
standard S026/E:2018 [131].

(10) The number of bipolar cell types varies between the species [136].
(11) Note that depending on the functional properties and synaptic input, the bipolar cell types can be further sub-divided, which is

not covered in this thesis. For more information, see the works of Masland and Euler et al. [133, 135, 136].
(12) The rods’ retinal processing pathway will not be discussed further, as this thesis focuses on the pupil light response under

photopic light conditions. The interested reader is referred to the review by Bloomfield and Dacheux [138].
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The dendrites of the retinal ganglion cells (RGCs) receive excitatory graded membrane potential input
from the bipolar cells in the IPL and generate frequency encoded action potentials (spiking pulses) [132].
Their axons converge into the optic disc, which forms the optic nerve [134] that conveys the encoded
visual information to distinct retinorecipient targets in the brain [139]. The retinal ganglion cells are the
last processing stage in the retina [113] and are highly specialised [140] in extracting motion, direction,
orientation, contrast, or colour features from visual stimuli [132, 139, 141]. In general, the RGC types
are classified according to their morphological structure, physiological properties, response latency
and photoreceptor input through the bipolar cells [132]. Depending on the IPL sublamina (ON/OFF)
in which the dendrites of the RGCs are branching, a functional classification of their light response
can be carried out. Therefore, analogously to the bipolar cells, a major functional distinction can be
made between ON- and OFF-types of RGCs (Fig. 2.4c) [142]. The synaptic connections of the OFF-RGCs
originate in the outer sublamina (ON-plexus), where the axons of the OFF bipolar cells stratify. The
ON-RGC dendrites synapse in the inner sublamina of the IPL with ON-bipolar types (ON-plexus) [134].
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Figure 2.4: Processing mechanism in the retina. a), b) The photoreceptors’ membrane potential becomes hyper-
polarised after photon absorption, leading to less neurotransmitter release. In the outer plexiform layer (OPL),
the bipolar cells connect with the photoreceptors. It is distinguished between the ON-bipolar and OFF-bipolar
cells, placed in the inner nuclear layer (INL). The axons of the ON-bipolar cells terminate in the ON-sublamina
of the inner plexiform layer (IPL), acting as a sign-inverter [134], meaning a hyperpolarised photoreceptor causes
the ON-bipolar cell to depolarise. OFF-bipolar cell axons terminate in the OFF-sublamina of the IPL, relaying the
membrane potential sign of the photoreceptors [113, 133, 134]. The bipolar cells convey graded membrane potentials
to the retinal ganglion cells (RGCs) in the ganglion cell layer (GCL), which are the first stage of cell types that can
generate frequency encoded action potentials (spiking pulses) [132]. c) Retinal ganglion cells are distinguished
between ON- and OFF-types, depending on their bipolar cell counterpart with which they synapse in the IPL.
ON-RGCs respond to light with a firing rate of action potentials. In contrast, the OFF -RGCs are silent during light
exposure but respond after light offset, resulting in the ability of the RGCs to better discriminate between light
onset and offset. d) Horizontal cells make lateral connections in the OPL and affect the neurotransmitter release of
the photoreceptors to the bipolar cells, resulting in a centre-surround receptive field organisation. This figure was
drawn based on the provided information in the literature [110, 111, 113, 139, 143–146].

RGCs are structured in receptive fields, representing the active retinal area in which the signals
from several photoreceptors are gathered into a retinal ganglion cell. The lower the number of cones
converging to a ganglion cell, the higher the visual acuity in the respective retinal area is. For instance,
the spot with the highest visual acuity is located in the fovea centralis that has a diameter of 0.2 mm
and a photoreceptor density of approximately 150 000 cones/mm2 [113]. The fovea accounts for about
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1 % of the total retinal surface but contributes to approximately 50 % of the total signal inputs to the
brain’s visual cortex [147].

The receptive fields in the retina, however, are organised in a center-surround manner(13) in which the
rate of action potential responses depends on the stimulation of the photoreceptors in their surrounding
[133]. The center-surround effect is described as two concentric circles in which the center’s response
behaviour is in relation to a surrounding circle (Fig. 2.4d). There are two categories of center-surround
constellations, firstly the ON-center/OFF-surround and secondly the OFF-center/ON-surround, as the
retina contains the ON- and OFF-bipolar cells. In the case of an ON-center/OFF-surround constellation,
a ganglion cell would respond with spiking pulses to light stimuli in the center, which, however,
would be partly or entirely inhibited when simultaneously stimulating the surrounding area (Fig. 2.4d)
[148]. If, for example, the OFF-surround area is illuminated without the ON-center, the ganglion cell
would be silent. This effect is caused by the horizontal cells that make lateral synaptic connections
between photoreceptors in the OPL. The horizontal cells provide feedback signals, which can inhibit the
photoreceptors’ glutamate release response to the bipolar cells, depending on the stimulation in the
surrounding (Fig. 2.4d) [142].

Therefore, in the case of an ON-center/OFF-surround constellation, a ganglion cell would respond to
light stimulation of the center with action potentials, which, however, would be inhibited or completely
extinguished in the case of simultaneous stimulation of the outer area. According to Masland [135], such
lateral processing in the OPL is thought to contribute, for example, in the encoding of edges from a
visual image or adapting the bipolar cells’ gain to an average brightness in the respective interconnected
retinal region [135].

Amacrine cells provide the second stage of lateral processing [134] by influencing the communication
between RGCs and bipolar cells in the IPL (Fig. 2.1b). Similar to the horizontal cells, they can regulate
the synaptic transmissions by using, for example, the neurotransmitter γ-amino butyric acid (GABA)
[152], which has an inhibitory effect on the glutamate release of bipolar cells to the ganglion cells in the
synaptic cleft. Other types of amacrine cell types, like the dopaminergic amacrine cells (DACs), have
dendrites that can stratify several millimetres [153] in the IPL, thus, influencing different ganglion cell
types over a wide range using the neurotransmitter dopamine [153]. One of their tasks is to adjust the
response adaptation between the ganglion cells under photopic or mesopic light conditions [133]. The
neurotransmitter modulation of the DACs can be affected by the inputs from bipolar cells, ganglion cells
or directly from cones in the outer retina [153]. Additionally, they form gap junction with the ipRGCs
[154, 155] (see section 2.2), which might be a pathway for regulating the light adaptation in the retina
[156]. According to the current state of knowledge, 40 types of amacrine cells [148] have been classified
so far, whose functional working tasks in the retina are diverse [135, 157, 158] and the subject of current
research, as their distinct interactions in the retina are not fully discovered yet(14) [153, 159, 160].

2.1.3 Cone opponency and projections to the brain

The photoreceptors’ action spectra (Fig. 2.3) describe the probability of catching, absorbing and trans-
forming light quanta with a distinct wavelength into a graded membrane potential [65]. Consequently,
individual photoreceptors are colour blind [65, 161–163], as no spectral information can be derived
from an electrical signal at the cell’s dendrites after photon catch. Colour perception originates from the
comparison between the signals of different retinal cone types [164]. This effect is called the principle of
univariance [65, 163], stating that two light stimuli with different spectral power distributions can trigger
the same visual sensation if the α-opic values across the cones are identical. Colour information features
are encoded in the retina with cone-opponency circuits, through which cone signals are compared by

(13) The interested reader is referred to the following reviews for more information about the receptive fields, center-surround
organisation and contrast computing in the retina [133, 148–151].

(14) For additional information about the amacrine cells and their task, read the following works [152, 153, 157, 158, 160].
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either lateral processing in the OPL (center-surround antagonistic) or through RGCs that stratify and
synapse with different types of ON-/OFF-bipolar cells in the IPL [165]. The RGCs can either add or
subtract receptor signals by simultaneously synapsing with bipolar cells in the OFF- and ON-sublamina
[166]. Since the bipolar cells relay cone signals to the RGCs, the shaped L-cone response from OFF-
bipolar cells, for example, can be denoted as −L or L-OFF signal. Ganglion cell types that gather ON-
and OFF-cone signals exhibit an opponent behaviour, meaning that illuminating the OFF-cone branch
decreases the ganglion cell’s action potential response rate. [65, 161].

According to Field et al. [164], three types of ganglion cells, namely, the parasol, midget and small
bistratified ganglion cell account for about 75 % of all RGCs, responsible for transmitting frequency-
coded action potentials to retinorecipient brain nuclei [65, 69]. The ganglion cells’ axons project to the
lateral geniculate nucleus (LGN) of the thalamus, the relay station [65], i.e. gateway to the brain’s primary
visual cortex V1(15) that processes the visual sensory information further (Fig. 2.5). Morphologically, the
LGN is structured into six different layers, of which the lowest two pieces consist of magnocellular (M)
cells and the upper four of the parvocellular (P) cells [71]. In between the M- and P-cells of the LGN, six
additional layers are located containing koniocellular (K) cells (Fig. 2.5a) [71]. Each layer type of the
LGN conveys encoded colour and brightness properties of visual stimuli via the parvocellular (PC),
magnocellular (MC) and koniocellular (KC) pathways [69] to the primary visual cortex (Fig. 2.5a). P-
and K-cells in the LGN show strong opponent colour responses, while the M-cells are mostly sensitive
to luminance information [167]. The cone-opponency is often compared with the early psychophysical
theory of Herring from 1920, who postulated that colour perception is created by a system of separate
antagonistic channels with the complementary colours red-green, yellow-blue, and one luminance, i.e.
brightness channel consisting of achromatic black-white information [168].
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Figure 2.5: Visual pathway of the human’s brightness and colour perception. a) The axons of the RGCs project
from the retina to the lateral geniculate nucleus (LGN), the relay station [65], i.e. gateway to the brain’s primary
visual cortex, which processes the visual information. The sensation of brightness and colour is computed in the
retina using cone-opponency. The midget ganglion cells subtract signals from L- and M-cones (L−M, red-green
opponency), showing significant responses to chromatic modulation by targeting the parvocellular cells in the LGN
[65, 69, 166, 169]. Bistrafied ganglion cells project to the middle koniocellular cells of the LGN, providing excitatory
signals from S-cones with inhibitory L- and M-cone information (S− (L + M), blue-yellow opponency) [70, 71,
169]. Parasol ganglion cells project to the magnocellular layers and convey achromatic luminance signals from L-
and M-cones (L + M) [72]. b) The visual information is relayed from the LGN to the primary visual cortex for
higher cortical processing steps. The hue nomenclature in a), i.e. red-green, has historical reasons but is technically
incorrect, as colour perception results from the processing in the visual cortex. This figure was redrawn based on
the provided information in the literature [110, 111, 113, 120, 143, 145, 170].

(15) Note that the processing mechanism and laminar structure of the primary visual cortex V1 are not covered in this work, as the
pupil control pathway bypasses the cortical visual connectivity.
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When mapping the psychophysical colour-opponency theory into the physiological architecture of
cone-opponency, a similar mechanism can be found at the level of the LGN. Midget ganglion cells
provide cone opponent colour information to the PC-pathway, derived from a subtraction of L- and
M-cones (L−M, red-green opponency), showing significant responses to chromatic modulation [65, 69,
166, 169]. Bistratified ganglion cells target the middle KC-layers and provide excitatory signals from
S-cones with opposed inhibitory information from an additive L- and M-cones signal combination
(S− (L + M), blue-yellow opponency) [70, 71, 169]. Parasol ganglion cells project to the magnocellular
layers of the LGN, providing an achromatic luminance signal from L- and M-cones (L + M, brightness)
(Fig. 2.5a) [72]. Note that the perceptual colour-opponency originally proposed by Hering differs from
the cone-opponency mechanism at the level of the LGN, meaning the nomenclature of the channels with
a hue association, i.e. red-green, has historical reasons but is from a physiological perspective incorrect
[165], as reviewed by Shevell and Martin [171].

Although the cone-opponency behaviour of the PC-, MC-, and KC-pathways are well characterised,
the retinal interconnection that projects to the LGN layers are not conclusively explored [172]. At the
retinal level, the lateral processing of the horizontal cells, i.e. center-surround mechanism of the P-cells
[173], and the synapses between different types of ganglion cells need to be considered. For example,
the bistratified ganglion cells exhibit an S-ON center/L+M-OFF surround receptive field, which receives
input from two other ganglion cell circuits consisting of S-ON center/L+M-OFF surround and L+M-ON
center/L+M OFF surround receptive fields (reviewed by Thoreson and Dacey [148]). Furthermore, the
colour tuning mechanism in the primary visual cortex [174, 175] and higher cortical level [167] are
additional stages of processing that affects colour perception (Fig. 2.5b).

Studies on colour perception capture the output of the entire visual processing system, which is why
the term colour-opponency is used in psychophysical disciplines rather than cone-opponency [148, 165].
Multi-stage colour model approaches [120, 176] are being pursued in the psychophysical modelling of
colour perception, aiming to link the underlying physiological properties at the receptor (stage one), the
retinal (stage two) and the cortical level (stage three) with the mechanism of colour-discrimination and
colour-appearance that are observed in psychological experiments [120, 165, 177].

Apart from the visual processing chain behind the colour perception, the brightness sensation’s quantifi-
cation is essential in photometry since radiometric light quantities are not perceived uniformly across
the visible spectrum range due to the human eye’s quantal catch probability and cone-opponency
mechanism. Although the achromatic luminance channel (MC-pathway) seems to be separated from
the opponent channels (KC- and PC-pathway) at the level of the LGN, visual experiments reveal
cone-opponency influences [165, 178, 179]. The interaction of the achromatic luminance (L + M) and two
opponent colour channels (L−M, S− (L + M)) [72, 73] lead to the fact that humans perceive a different
set of light spectra at steady radiance Le in W/m2 sr, not equally bright. Therefore, the discussed physi-
ological and psychophysical visual response in this section become of practical interest, for example,
in the methodological development of the luminous efficiency function [75], the fundamental basis of
photometry and light science.

Furthermore, the visual system’s cone-opponency behaviour is relevant for the pupil’s control pathway,
as its underlying retinal processing mechanism also exhibits an antagonistic temporal dependent
circuitry, which will be covered in Section 2.2 and 2.3. Knowing the physiological processing steps of the
visual system is crucial when evaluating conventional pupil light response models from the literature or
other colour and brightness-related metrics, as they were developed to map the physiological effects
reported in this section.
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2.2 Photosensitive Ganglion Cells in the Inner Retina

Prior to the 21st century, the classical understanding of retinal ganglion cells was that they gather the
processed signals of the photoreceptors and relay frequency-encoded action potentials via their axons to
retinorecipient nuclei of the brain (Fig. 2.5b) [180]. Based on the standard model of the humans’ eye, it
was widely believed that the rods and cones form the only photosensitive receptors for processing visual
information about brightness, contrast and colour changes in the environment (Fig. 2.5a) [180–184].
Retrospectively, the discovery of an additional third class of photoreceptors in the mammalian retina
was a scientific journey [110] that began with the pioneering work by Clyde Keeler [80]. In his paper
„Iris Movements in Blind Mice“ from 1927, he used a mice strain lacking both types of photoreceptors in
the outer retina and found an active pupillary light reflex, which was not expected due to the absence
of functional vision [80, 185]. Compared to wild-type mice, the pupil reflex of the blind strain had a
higher response latency with a diminished peak constriction, leading to the conclusion of Clyde Keeler
that there might be a pathway independent of vision [80] for controlling the iris muscles.

Further evidence for a new type of retinal photoreceptor has been contributed later from the discipline
of sleep research [181]. It was already known that the day-night cycle of organisms is synchronised
by daylight, acting as the primary zeitgeber(16) for the circadian rhythm [180, 181]. In the standard
model, it has been assumed that visual information is relayed by conventional retinal ganglion cells
via the retinohypothalamic tract to the suprachiasmatic nucleus (SCN) in the brain ([183], see also [187,
188]), responsible for timing the body clock [181]. Studies with blind people, however, showed that
even without visual sight, the circadian rhythm remains in synch, and the sleep hormone melatonin
can be suppressed when exposing those individuals to bright light [189]. Similar results were observed
in animals, showing that the circadian system in blind mice can still be triggered using light stimuli,
but not when the eyes were completely abolished, suggesting an unknown principle behind circadian
photoentrainment [180, 181, 183, 190]. The first results of Clyde Keller and the later evidence from the
field of sleep research were mostly explained by the fact that a few cones and rods could persist in the
mice retina to synchronise circadian rhythms even though the vision was impaired [104, 184].

A significant step forward was finally achieved by the works of Foster et al. (1991) [191] and Provencio
et al. (1994) [192], who used transgenic retinal degenerate (rd) mice that lacked cones and rods almost
completely (determined with high methodological certainty) [182, 193]. It was found that the circadian
rhythm of the (rd/rd) mice can be phase-shifted by short light pulses to the same extent as wild-type
mice with intact retina [182, 193], leading to the famous conclusion by Foster et al. [191] in 1991 that

“...there may exist an as yet unrecognized class of photoreceptive cell in the mammalian retina that is
unaffected by the rd mutation and that functions normally to entrain the circadian system”.

— Russell G. Foster et al. [191] July, 1991.

Five years later, in 1996, when Yoshimura & Ebihara [194] successfully found with rd/rd mice that the
spectral sensitivity of the circadian response had its maximum at 480 nm, there was clear evidence that
there is a yet unknown class of photoreceptor in the retina, as the peak sensitivity did not match that
of the cones or rods [182, 193, 194]. Additional studies by Freedman et al. (1999) [195] and Lucas et al.
(1999) [196] confirmed the conclusion of an unknown photoreceptor type that could drive non-visual
responses such as the circadian rhythm through light innervations [195, 196].

One key step in the quest for this mechanism was the discovery of a novel photosensitive opsin called
melanopsin by Provencio et al., which was firstly found in the dermal melanophors of frogs (Xenopus
laevis) in 1998 [58] and two years later in the inner mammalian retina [59, 197]. Retrograde labelling

(16) The German term „zeitgeber“ was introduced by the chronobiologist Jürgen Aschoff, which is also widely used in the English
literature [186].
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from the SCN, the primary pacemaker of the circadian system, to the rat retina with fluorescent tracer
by Gooley et al. (2001) [60] revealed that most axon projections originate from retinal ganglion cells
that express the photopigment melanopsin [60, 183]. The characterised melanopsin-containing retinal
ganglion cells (mRGCs) in the rat retina (by Berson et al. (2002) [61]) had dendrites that stratified largely
in the off-sublamina of the IPL and a small portion of dendrites that terminated in the on-sublamina
(Fig. 2.4a) [61]. After blocking the outer photoreceptor signals, Berson et al. [61] demonstrated that
these mRGCs could respond intrinsically to light with a wavelength-dependent peak sensitivity λPeak

of 483 nm [61, 182, 183, 198]. This third class of photoreceptors in the inner retina has been termed
intrinsically photosensitive ganglion cells (ipRGCs) [199] as they can respond to light independently
of rods and cones through their photopigment melanopsin [61]. About 1-2 % of the rodents’ retinal
ganglion cells are photosensitive through melanopsin [62, 182, 200, 201] which is primarily located in
the cell body (soma), the dendrites and parts of the axons that stratify to the optic disc [62, 182, 198]. In
the human retina, however, from approximately 1.5 million retinal ganglion cells, about 3000 express
melanopsin in each eye(17), as reported in the review by M. Hatori & S. Panda [198] in 2010.

In terms of the pupil control pathway, experiments by Lucas et al. (2001) [79] with mice lacking rods
and cones (rd/rd cl) revealed that the pupil constriction has a maximum sensitivity at 479 nm, which
matched the action spectrum of the ipRGCs [82, 104, 202]. Compared to the wild-type, the pupil of the
rd/rd cl mice responded with a higher latency to a continuous light stimulus but exhibited a similar
sustained aperture size. In addition to the SCN, the ipRGCs innervate the olivary pretectal nucleus
(OPN) [62, 79, 200, 202], which is part of the pupil constriction pathway [79, 203–206], explaining the
existence of a pupil light response in blind individuals. Thus, the hypothesis of Clyde Keeler [80] in 1927
was finally confirmed, showing that the steady-state photopic adapted pupil aperture can be regulated
by a pathway that can work independently of vision [79, 82].

Unlike the rods and cones, the photopigment melanopsin is not layered in stacked discs (Fig. 2.2a),
leading to a lower quantum catch probability of the ipRGCs and an operating range at higher irradiance
levels [104, 184]. Further, as the dendrites and axons of the ipRGCs in the retina also express melanopsin,
they can integrate the environmental brightness across a broader spatial retinal area [184]. A known
characteristic property of the rods and cones is the adaptation to a stimulus, which lets the action
potential rate decrease during prolonged light innervations (Fig. 2.4c) [207–211]. In contrast, sustained
intrinsic activation of the ipRGCs causes an approximately continuous response of frequency encoded
action potentials, resulting in a larger temporal integration of light [184, 212]. For example, a temporally
decreasing response to a sustained light stimulus could cause an increasing pupil aperture even though
the light conditions have not changed [184]. Thus, the ipRGCs can stabilise physiological responses
across broader time intervals [184]. Furthermore, the ipRGCs maintain their action potential rate
response for several minutes [184] after a light stimulus is turned off, resulting in stable innervations of
non-visual functions, which Michael T. Do [184] compared to a physiological low-pass filter for light
fluctuations in the environment [184, 213].

(17) A recently published review by Ludovic S. Mure [63] in 2021, reported the number of ipRGCs in the human retina with
approximately 4000 to 7000, corresponding to a percentage of about 0.4 % to 1.5 % from all RGCs.



2.2 photosensitive ganglion cells in the inner retina 19

2.2.1 Diverse ipRGC-subtypes in the mammalian retina

The initially found ipRGC types mainly projected to brain areas responsible for circadian responses,
pineal melatonin suppression, and the pupil light reflex [62, 82, 104, 201, 202, 214]. Therefore, this new
class of photoreceptors was accounted to significantly trigger non-visual responses in mammals [43,
215]. It was believed that the ipRGC drive the non-image-forming pathway [183] in parallel and largely
independently of the traditional image-forming vision that is responsible for colour and brightness
perception. Such a strict separation between non-visual modulation by ipRGCs and visual processes by
outer retinal photoreceptors can no longer be made [100, 105, 185, 216], as several subtypes of ipRGCs
have been found that can affect brightness discrimination [217, 218], spatial vision [219], pattern vision
[97, 220] and evoke the primary visual cortex [221] via their projection to the LGN, as reported by Dacey
et al. (2005) [85] and later by other research groups [98, 222–224].

Today, six subtypes of ipRGCs (M1 to M6) are classified in the mice retina, which can be distin-
guished according to their morphologic structure, dendrite stratification in the IPL, response behaviour,
melanopsin expression, spatial distribution in the retina [225–228] and projection targets in the brain
[89, 182, 229–231]. M1-ipRGCs primarily project the brain nuclei responsible for non-image-forming
functions such as the circadian photoentrainment [180, 232, 233], pupillary control, sleep, mood and
regulating the body temperature [226, 231]. The dendrites of the M1-ipRGCs terminate in the OFF-
sublamina of the outer IPL, receiving extrinsic signals from ON-bipolar [94] and amacrine cells [182,
234, 235]. Typically, the cell bodies of the ipRGCs and other traditional RGCs are located in the ganglion
cell layer, but a subgroup of M1-ipRGCs have been found in the inner nuclear layer (INL), where
bipolar cells are usually encountered [226]. This displaced subgroup of M1-ipRGCs are referred to
as M1d (M1 displaced) [63, 226]. Compared with the M2 to M6 subtypes, M1-ipRGCs contain the
highest proportion of melanopsin [104, 231] and are thus the most intrinsically photosensitive [201],
despite their relatively small soma [231]. The circuitry of the M1-subtypes has been most profoundly
analysed to date [184], as circadian rhythms and pupillary light reflexes can be used to characterise their
impact on non-image-forming responses. Additionally, with transgenic mouse lines, the M1-ipRGCs
can be ablated for investigating physiological responses to light effectively [231], showing that the
M1-subtype primarily innervate non-visual brain areas such as the SCN, the shell of the OPN and with
few projections to subcortical nuclei like the superior colliculus (SC), presumably via the ventral lateral
geniculate nucleus (vLGN) [236] of the brain [95, 97, 104, 184, 231]. The M2-subtype ipRGCs, however,
have dendrites in the ON-sublamina of the IPL and innervate both brain regions for image-forming
and non-image-forming vision via projections to the SCN, dLGN, SC and the core of the OPN [231].
They are less photosensitive than the M1-subtype, and it is hypothesised that they can affect visual
responses via the projections to the dLGN [182, 226]. Little is known about the individual role of M3
to M6-ipRGCs(18) beyond the retina as the nuclei projections cannot be selectively labelled [231], but
their operating range is thought to be limited to the visual pathway by affecting contrast detection and
pattern vision [226, 231].

Note that the projections of the six ipRGC-subtypes were mainly labelled in the retina of rodents
or other animal models. The neurophysiological research methods with humans are limited to ex vivo
studies with donated retinal tissues [228, 237–240]. In humans, the M1 to M4-ipRGC subtypes have been
identified so far, and the M1d-subgroup accounts for the largest proportion of M1-ipRGCs, which is
not the case in rodents as discussed by Ludovic S. Mure [63]. Another difference between rodents and
humans is the spatial distribution of the ipRGCs in the retina. A higher density of the M1/M2-ipRGCs
can be found in the rodents’ temporal region of the retina, while the M4 to M6-subtypes dominate in the
ventral area [226, 227], meaning non-visual functions can be modulated in mice more efficiently with
light that is placed off the visual axis in the lower vertical plane. In humans, however, the M1-ipRGCs

(18) A review about the ipRGC-subtypes is provided by Michael T. Do [184], Sondereker et al. [226] and M. Aranda & T. Schmidt [231].
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have a higher density in the lower half of the retina (inferior from temporal to nasal), as shown by
Esquiva et al. (2017) [228]. The dominant M1d-subset is almost equally distributed in the retina with
a higher proportion in the temporal direction. Compared to the other subtypes, the M1d-subset has
the highest density in the superior retinal region [228]. The M2 and M3-ipRGCs are less distributed
in the superior direction but have a higher density in the inferior region of the retina, similar to the
M1-subtypes [228]. Furthermore, Esquiva et al. [228] reported that depending on the human’s age, the
ipRGC density decreases in the groups 50−70 y and >70 y. Even the dendrite stratification decreases in
the stratum and the ipRGCs’ soma becomes smaller, indicating less photosensitivity and connectivity in
the retina with rising age [228].

2.2.2 An action spectrum for quantifying non-visual responses

For decades, static lighting systems in office environments were designed according to their energy
efficiency, colour rendering, and the legally required illuminance of at least 500 lx in occupied and 300 lx
in unoccupied workplaces [241]. For this, the spectral composition of LED light sources was adapted
to meet preferred colour quality values while reaching a high luminous efficacy of radiation (LER) for
energy-saving reasons [107, 242]. One straightforward strategy of saving energy is to match light spectra
to the sensitivity of the achromatic luminance channel [107] that consists, as discussed, of an additive
combination of L- and M-cones. In this way, a higher perceived brightness can be achieved with the
same amount of power consumption. Thus, most traditional lighting systems preferentially address the
retinal cone circuitry of the visual system to effectively push the LER of a lighting system [107].

The discovery of the ipRGCs and their far-reaching importance for circadian responses [243–245] such
as human alertness [246], cognitive performance [247], melatonin suppression [248], sleep [249, 250],
body temperature [251] and subjective comfort ratings [252] has led to the understanding that lighting
should no longer be evaluated solely according to visual parameters but also to their degree of influence
to non-visual processes [253]. Light spectra need to have a certain fraction in the short-wavelength range
to modulate the ipRGCs and promote non-visual physiological responses. From a practical point of
view, a spectral sensitivity function is necessary to evaluate such non-visual impacts of light stimuli. As
the ipRGCs’ intrinsic response to light directly correlates to melatonin suppression, steady-state pupil
diameter and circadian rhythm, different physiological output measures can be assessed to characterise
the non-visual pathway’s action spectrum and respective peak wavelength. A summary of previously
conducted experiments to obtain the spectral sensitivity of non-visual functions is provided in Table 2.1.

The methodological procedure in deriving a sensitivity function for a non-visual physiological re-
sponse is to (i) determine the stimulus-response function as a function of light intensity for different
quasi-monochromatic stimuli; (ii) fitting a sigmoid function to the derived response values for each stim-
ulus wavelength; (iii) estimating the half-maximum response values for each used quasi-monochromatic
light; (iv) using a so-called visual pigment nomogram template to fit the half-maximum response values,
which leads to an action spectrum with a respective peak response. Therefore, a non-visual action
spectrum describes the irradiance per wavelength that is required to obtain the same physiological
response [254].

Visual nomogram templates are predefined functions to describe the absorption behaviour of pho-
topigments, which can be used to derive the spectral shape of a sensitivity function with the measured
empirical data [255–259]. Since several photopigment nomograms are proposed in the literature, it is
essential to know which template was used to fit the half-maximum response values. Different templates
can lead to distinct action spectra or peak response values, although the same raw data set was applied.
For example, the template equation (2.2) by Lamb [260] can be used to determine the spectral sensitivity
S(λ) of a visual photopigment with a fixed shape, which describes the photon absorption probability
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for each wavelength λ of a given peak wavelength λPeak.

S(λ) =
1

exp(a [A− λPeak/λ]) + exp(b [B− λPeak/λ]) + exp(c [C− λPeak/λ]) + D
(2.2)

The constants in equation (2.2) define the slope of the exponentials and are estimated according to Lamb
[260] with A = 0.880, B = 0.924, C = 1.104, D = 0.655, a = 70, b = 28.5 and c = −14.1. Typically, only
the peak wavelength is varied during the fitting procedure to find the spectral shape of the absorption
sensitivity. For determining which visual pigment and peak wavelength are suited to describe the
spectral dependency of ipRGCs, the sensitivities of various non-visual functions can be assessed (Fig. 2.6,
Table 2.1).

Table 2.1: Summary and comparison of the author groups’ determined peak sensitivities of the respective non-visual
functions, derived with different methods and species. In the studies, quasi-monochromatic spectra were used
within a wavelength range between 402 nm to 670 nm (FHWM: 6.8 to 20 nm). Petteri Teikari [261] summarised in
his work the non-visual peak responses with such an approach either, whose references was used as starting point.

Author (Year) Method Species type Exposure time Nomogram Peak response

Bouma (1962) [83] Pupil diameter1) Human Steady - 490 nm
Alexandridis & Koeppe (1969) [262] Pupil diameter1) Human 5 min - 488 nm

Yoshimura & Ebihara (1995) [194] Circadian phase shift Wild-type mice
rd/rd mice

15 min � 500 nm
480 nm

Brainard et al. (2001) [254] Melatonin suppression4) Human 90 min ⊗ 464 nm

Thapan et al. (2001) [263] Melatonin suppression4) Human 30 min � 459 nm lc)

468 nm uc)

Lucas et al. (2001) [79] Pupil constriction Wild-type mice
rd/rd cl mice

Steady � 510 nm
479 nm

Berson et al. (2002) [61] Peak depolarisation2) Rat - ? 484 nm
Hankins & Lucas (2002) [264] Electroretinography3) Human 15 min ⊗ 483 nm lc)

Hattar et al. (2003) [202] Circadian phase shift rd/rd cl mice 15 min � 481 nm lc)

Dacey et al. (2005) [85] Peak depolarisation2) Macaque - � 482 nm

Gamlin et al. (2007) [82] PIPR5) Human
Macaque

10 s � 482 nm
483 nm

Zaidi et al. (2007) [265] Pupil constriction Human (blind) 10 s � 480 nm lc)

476 nm uc)

Gooley et al. (2012) [266] Pupil constriction Human (blind) 4 min • 490 nm

Najjar et al. (2014) [267] Melatonin suppression4) Human 60 min • 484 nm Y)

494 nm O)

Mure et al. (2019) [240] Peak depolarisation2) Human - � 457 - 459 nm

Method - 1) Steady-state pupil diameter. 2) Retina ex vivo. 3) b-wave-implizit time. 4) With dilated pupil using Tropicamide.
5) Post-illumination pupil response: Pupil diameter recording from 15-30 s (human) and from 6-16 s (primate) after light off set.
Nomogram - � Dartnall (1953) [256]. ⊗ Partridge & De Grip (1991) [258]. ? Lamb (1995) [260].
� Vitamin A1 photopigment. • Gaussian function.
Peak response - lc) Lens absorption corrected. uc) Uncorrected. Y) Young group: 24.9±0.6 y. O) Old group: 61.4±0.86 y

The work of Enezi et al. (2011) [268] determined the stimulus-response function of the pupil light reflex
and the circadian phase shift of rd/rd cl mice that lacked cones and rods, using a quasi-monochromatic
(480 nm) and Xenon arc lamp. It was shown that the investigated non-visual responses can be described
well by applying a vitamin A1 visual photopigment template with a peak wavelength of 480 nm for
deriving the spectral shape of the ipRGC’s sensitivity. The reported peak wavelength was corrected
for pre-receptoral transmittance, meaning it represents the ex vivo absorbance of the ipRGCs without
accounting for the transmission of the ocular media (Fig. 2.1a).
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Data from Alexandridis (1969)
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Figure 2.6: Comparing the melanopic action spectrum smel(λ) with the spectral sensitivity of the pupil light
response and nocturnal melatonin suppression. a) The sensitivity function of the ipRGCs is plotted against the
α-opic action spectra of the L-cones, M-cones, S-cones and rods. The smel(λ) function of the ipRGCs was proposed
in the CIE S 026/E:2018 [269] and developed by using the visual pigment nomogram of Govardovskii et al. [257]
with an absorption peak λPeak of 480 nm, denoted as s480nm(λ). The resulting action spectrum smel(λ) was derived
by applying the ocular media transmittance τ(λ) of a 32 year old standard observer to the ipRGC absorption
sensitivity s480nm(λ) with smel(λ) = s480nm(λ) · τ(λ), which shifted the melanopic peak response towards 490 nm.
b), c) Derived spectral dependent response functions of the steady-state pupil light reflex by Bouma (1962) [83]
and Alexandridis & Koeppe (1969) [262]. The raw data from Bouma (1962) were refitted with the rational function
f (x) = (p1 ∗ x3 + p2 ∗ x2 + p3 ∗ x + p4)/(x2 + q1 ∗ x + q2). A spectral sensitivity can be estimated by extracting the
intensities at half-maximum response or using the intensities that are necessary to produce a 5 mm pupil aperture.
d) Comparison of the pupil’s steady-state spectral sensitivity of sighted and blind individuals to the melanopic
action spectrum smel(λ). The raw data from the sighted observer were obtained from Bouma (1962) [83] and
Alexandridis & Koeppe (1969) [262]. The blind individual’s data are from Zaidi et al. (2007) [265]. e) Pre-receptoral
filter corrected spectral sensitivity of the pupil constriction from wild-type and rd/rd cl mice (lacking rods and
cones) by Lucas et al. (2001) [79] are compared to the absorbance sensitivity of the ipRGCs, which is derived by
using the Govadovskii et al. template with a peak response of 480 nm. f) The nocturnal spectral sensitivity raw
data of the human melatonin suppression that were collected by Brainaird et al. (2001) and Thapan et al. (2001)
are compared to the ipRGC absorbance sensitivity s480nm(λ) and the melanopic action spectrum smel(λ). The raw
data from Thapan et al. were not corrected for pre-receptoral filtering, but the data from Brainaird et al. (2001) are
corrected for lens transmittance. The raw data scatter points in b) to f) were manually extracted from the originally
published figures using the WebPlotDigitizer software [270] and redrawn for this thesis. See footnote(19)for more
information about the licensing statements.

(19) The pupil data [83] by H. Bouma (1962) “Size of the Static Pupil as a Function of Wave-length and Luminosity of the Light
Incident on the Human Eye”, Nature, Copyright 1962 Springer Nature, were manually extracted and redrawn for this thesis in
Fig. 2.6b, d with permission from Springer Nature.
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This result was pursued in a consensus paper in 2014 by the leading non-visual response researchers of
its time [66], aiming to propose a standardised ipRGC sensitivity function for evaluating light spectra
by using the vitamin A1 nomogram with a λPeak or 480 nm. In 2018, the proposal was adopted in the
CIE S 026/E:2018 standard [269] as a part of the α-opic sensitivity system (Fig. 2.6a). In the CIE S
026/E:2018 [269] standard, the spectral absorption function of the ipRGCs was derived by applying
the visual pigment nomogram of Govardovskii et al. [257] with a predefined peak wavelength λPeak
of 480 nm. The resulting standardised melanopic action spectrum smel(λ) was further corrected with
the transmittance of a standard observer’s ocular media with an age of 32 years, which shifts the peak
wavelength towards λPeak to 490 nm. In Fig. 2.6f, both the photon absorption of a visual pigment A1
template by Govardovskii et al. [257] with a peak wavelength of 480 nm and the spectral sensitivity of
the ipRGCs that accounts pre-receptoral filtering are compared. To illustrate the extent to which the
melanopic sensitivity function smel(λ) can describe light-induced non-visual physiological responses,
the published experimental data (Table 2.1) from different author groups are assessed in the following.

Bouma determined in 1962 the spectral dependence of the sustained pupil diameter from two human
observers of unknown age, using a continuous light exposure of quasi-monochromatic spectra with the
wavelengths 425 nm, 445 nm, 515 nm, 535 nm, 565 nm and 670 nm. For this, he determined the luminous
flux φv response curves for each wavelength (Fig. 2.6b). The pupil diameter was assessed manually
using the entopic pupillometer method [83] by Cogan, which employs a cardboard with a series of hole
pairs that are placed in front of the observer’s eye for the measurements [271]. The raw data of the
pupil’s spectral sensitivity were determined by comparing the luminous flux that is required to reach a
pupil constriction of 4 to 5 mm across the distinct stimuli [83]. He reported that the peak sensitivity of
the steady-state pupil diameter can be reached at 490 nm. The authors Alexandridis & Koeppe (1969)
[262] performed a similar study (Fig. 2.6c) and found that the steady-state pupil diameter reveals a
peak response at a wavelength of 488 nm. In Fig. 2.6d, the raw data of Bouma (orange points) and
Alexandridis (green points) are compared to the melanopic action spectrum smel(λ). It can be observed
that the spectral sensitivity of the sustained pupil diameter can be described by the melanopic function,
which differs from the visual achromatic luminance channel that would peak at approximately 555 nm.

Similar to the cone-opponency of the visual pathway at the level of the LGN, the ipRGCs exhibit an
antagonistic behaviour by gathering excitatory additive input from L- and M-cones (L+M-ON) and
inhibitory signals from S-cones (S-OFF) [85]. In fact, in the human and primate retina(20), the ipRGC’s
output to the non-visual pathway under photopic conditions can be triggered intrinsically through
the photopigment melanopsin or via extrinsic synaptic input from L+M-ON and S-OFF signals (see
Section 2.3.2) [91]. Interestingly, the study of Zaidi et al. [265] found that the peak sensitivity of pupillary
constriction in a blind human individual was comparable to that in rd/rd cl mice with 480 nm, which is
in line with the discussed intrinsically response capabilities of the ipRGCs that can work without the

The pupil data [262] by E. Alexandridis et al. (1969) “Die spektrale Empfindlichkeit der für den Pupillenlichtreflex verantwortlichen
Photoreceptoren beim Menschen”, Albrecht von Graefes Arch. Klin. Ophthalmol., Copyright 1969 Springer Nature, were manually
extracted and redrawn for this thesis in Fig. 2.6c, d with permission from Springer Nature.
The pupil data [265] by Farhan H. Zaidi et al. (2007) “Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual
Awareness in Humans Lacking an Outer Retina”, Current Biology, CC BY 3.0 licenced, were extracted and redrawn for this thesis
in Fig. 2.6d.
The pupil data [79] by Robert J. Lucas et al. (2001) “Characterization of an ocular photopigment capable of driving pupillary
constriction in mice”, Nature Neuroscience, Copyright 2001 Springer Nature, were manually extracted and redrawn for this this
thesis in Fig. 2.6e with permission from Springer Nature.
The melatonin suppression data [263] by Kavita Thapan et al. (2001) “An action spectrum for melatonin suppression: evidence for
a novel non-rod, non-cone photoreceptor system in humans”, Journal of Physiology, Copyright 2001 John Wiley and Sons, were
manually extracted and redrawn for this thesis in Fig. 2.6f with permission from John Wiley and Sons.
The melatonin suppression data [254] by George C. Brainard et al. (2001) “Action Spectrum for Melatonin Regulation in Humans:
Evidence for a Novel Circadian Photoreceptor”, Journal of Neuroscience, Copyright 2001 Society for Neuroscience, were manually
extracted and redrawn for this thesis in Fig. 2.6f.

(20) Note that the outer photoreceptor connectivity to the ipRGCs for controlling the pupil constriction in mice seems to be different
than in the primate and human retina, as reported by E. Hayter and T. Brown [272].

https://creativecommons.org/licenses/by/3.0/
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outer photoreceptors’ signals. Thus, the spectral sensitivity of pupil response in the blind individual
[265] (grey points in Fig. 2.6d) is comparable to the pupil data of sighted observers that were collected
by Bouma [83] and Alexandridis [262] (Fig. 2.6d). The spectral dependence of the pupil light response
in blind mammals and primates originates under photopic light conditions from the sensitivity of
the ipRGCs, implying that the pupil can be used as a biomarker to create an α-opic function for the
photopigment melanopsin, as carried out by Enezi et al. (2011) [268].

In 2001, Lucas et al. [79] measured the spectral sensitivity of the pupil constriction using wild-type
mice with intact retina and rd/rd cl mice that lacked both cones and rods. It was found that the peak
sensitivity of the pupil constriction can be affected by the outer photoreceptors, as the wild-type mice
had a λPeak of 510 nm and the rd/rd cl mice a peak response at 479 nm [79]. In Fig. 2.6e, the pupil’s
spectral sensitivity of the wild-type (brown points) and rd/rd cl mice (purple points) are compared
to the visual pigment A1 nomogram of Govardovskii et al. [257], as the data by Lucas et al. [79] were
corrected for pre-receptoral filtering. The shift in peak sensitivity of the wild-type mice (Fig. 2.6e)
originates from the M1-ipRGCs’ synapses to the outer photoreceptors via their dendrites in the IPL and
additional horizontal connection with amacrine cells [94, 273].

Brainard et al. [254] and Thapan et al. [263] demonstrated that in humans, the nocturnal melatonin
suppression can be regulated with light whose spectral sensitivity has a peak at ∼450 nm to ∼477 nm
[254]. In Fig. 2.6f, the raw data by Thapan et al. [263] (not corrected for pre-receptoral filtering) about
the wavelength-dependent melatonin suppression are compared to the ipRGC sensitivity smel(λ), which
has a similar outcome to the pupil sensitivity. The data of Brainard et al. [254] (Fig. 2.6f) need to be
compared to the visual pigment A1 template by Govardovskii et al. [257], as their data were corrected
for the ocular media transmittance.

The circadian responses found by Brainard et al. [254] and Thapan et al. [263] have led to the
understanding that spectra applied for human office lighting need to be evaluated with an additional
non-visual dimension, whose effect size is further age-dependent and beyond the sensitivity functions
of the outer retinal photoreceptors and additionally age-dependent (Fig. 2.3).

Age dependence of the melanopic action spectrum

Before light quanta reach the photoreceptors, they must pass the ocular media of the eye consisting
of the cornea, the aqueous humour (anterior and posterior chamber) and the vitreous in the eye body
(Fig. 2.1a) [274]. Therefore, a distinction is made between the ex vivo absorption of a photoreceptor
and the actual in vivo spectral sensitivity. The reflection, absorption and scattering properties of the
eye’s ocular media [275] shift the photoreceptors’ in vivo absorption peak sensitivity towards longer
wavelengths [43]. Cornea and lens have a lower transmittance in the short-wavelength range [276],
primarily affecting the spectral sensitivity of the ipRGCs and S-cones. As discussed earlier, the ex
vivo absorption of the photoreceptors and ipRGCs is calculated by fitting the spectral sensitivity data
with a visual photopigment nomogram template. Then, the melanopic action spectrum smel(λ), as
defined in the CIE S 026/E:2018 [269], is derived by multiplying the transmittance τ(λ) of a 32-year-old
standard observer’s ocular media with the ex vivo absorption sensitivity of the ipRGCs. Usually, the
transmittance τ(λ) is calculated by using optical density functions which are derived from whole eye
measurements or psychophysical experiments [275, 277]. A significant impact on the eye’s spectral
transmittance has the age of an observer. With rising age, the lens becomes yellowish [278], which
leads to higher absorption in the short wavelength range (Fig. 2.7a, b), making the lens a key factor
in the age-dependent transmission of the eye. Therefore, functions describing the age-related spectral
transmittance are denoted lens-density models, although they cover the pre-receptoral filtering of the
whole ocular media.
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Pokorny et al. [278] proposed an age-related transmittance model of the ocular media with the so called
non-linear two-factor lens density model. Its proposed optical density function is separated into two
wavelength-dependent predefined components TL1(λ) and TL2(λ). The TL1(λ) component is weighted
by an age-dependent factor and is intended to account for the absorption change of the crystalline lens,
while TL2(λ) is defined as a baseline, independent of an observer’s age. According to Pokorny et al.
[278], the optical density TL(λ, a) of an averaged observer can be calculated with

TL(λ, a) =





TL1(λ) · [1 + 0.02 · (a− 32)] + TL2(λ) if 20 ≤ a ≤ 60

TL1(λ) · [1.56 + 0.0667 · (a− 60)] + TL2(λ) if a > 60
(2.3)

in which the variable a defines the age of an observer in years. The proposed model is valid for an
age range above 19 years since the growth of the crystalline lens material is not considered [275, 278].
Further, the two-factor lens density function TL(λ, a) is valid from 400 nm to 650 nm. In the original
publication by Pokorny et al. [278], the predefined functions TL1(λ) and TL2(λ) are reported with a
resolution of 10 nm. Fig. 2.7a shows the predicted wavelength-dependent transmittance of the ocular
media according to the two-factor lens density model of Pokorny et al. [278] for an average observer
between 20 to 100 years. Hence, for a 100-year-old observer, the ex vivo peak absorption of the ipRGCs
(480 nm) has a reduction in its relative transmittance of ∼56 %, compared to a 20-year-old observer.
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Figure 2.7: Impact of the pre-receptoral filtering of the ocular media on the spectral sensitivity of the ipRGCs. a)
Two-factor lens density model proposed by Pokorny et al. [278]. The model is valid for a 20-year-old observer and
above. The optical density function can be calculated up to 650 nm. b) Five-factor lens density model proposed
by van de Kraats & van Norren [274]. In contrast to the Pokorny et al. model, this function provides the absolute
optical density and is also valid in the ultraviolet (UV) wavelength range. Here, the revised function according to
CIE 203:2012 [279] was plotted, as updated CIE parameters are also valid for age groups below 20 years, derived
using empirical ocular transmission data from young rhesus monkeys. c) Transmission of the macular pigments for
the 2° and 10° observer, according to the CIE 170-1:2006 [280, 281]. The transmittance data were retrieved using the
Psychophysics Toolbox [280, 282, 283]. d) Pre-receptoral filter correction according to the CIE S 026/E:2018 [269]
by using the five-factor lens density model for calculating the transmittance τ(a, λ). e), f) Age-dependent in vivo
ipRGC sensitivity and shift of the peak response for 20- to 100-year-old observer.
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The transmittance of the 32-year-old standard observer, used in the CIE S 026/E:2018 [269] for deriving
the in vivo α-opic action spectra, is based on an extended version of the two-factor lens density model
[278]. For this, the 10 nm resolution of the TL1(λ) and TL2(λ) functions was interpolated to 1 nm, the
tabulated values were extrapolated below 400 nm and the TL2(λ) values were adjusted accordingly, as
reported in the CIE TN 003:2015 [284].

However, in the CIE 203:2012 [279] and CIE S 026/E:2018 [269], it is recommended to calculate the
age-related transmittance of the ocular media with the five-factor lens density model by van de Kraats
& van Norren [274]. The recommended approach predicts the absolute optical density and is even valid
in the ultraviolet (UV) wavelength range below 310 nm. In the infrared range (above 700 nm), the model
is not valid because, for such spectra, the absorption by the aqueous humour and the vitreous comes
into play [285], which is not considered in the model [274]. Using the van de Kraats & van Norren [274]
approach, the eye’s age-related optical density can be calculated with

Dmedia(a, λ) = dRL(a) ·MRL(λ) + dTP(a) ·MTP(λ)

+ dLY(a) ·MLY(λ) + dLOUV(a) ·MLOUV(λ)

+ dLO(a) ·MLO(λ) + dneutral,

(2.4)

where the Mi(λ) functions are the templates of the spectral density:

MRL(λ) = Rayleigh Loss

MTP(λ) = Tryptophan

MLY(λ) = Lens Young

MLOUV(λ) = Lens Old UV

MLO(λ) = Lens Old

The parameters di define the age-related scaling factors depending on the age a with di = di,0 + c · a2.
The factor dneutral describes the offset for the spectral neutral absorber [274]. To derive the function
values, empirical data from the literature were used. The applied empirical data from the literature
data were collected with different methodologies to contribute to the generalised predictions of the
five-factor density model. In contrast, the Pokorny et al. [278] model was mostly based on empiri-
cal data from psychophysical experiments. The reported Equation (2.5) is the proposed model in the
original publication by van de Kraats & van Norren [274] and is valid for visual field sizes smaller than 3°.

Dmedia(a, λ, ) =(0.446 + 0.000031 · a2) · (400/λ)4

+ 14.19 · 10.68 · exp(−[0.057 · (λ− 273)]2)

+ (0.998− 0.000063 · a2) · 2.13 · exp(−[0.029 · (λ− 370)]2)

+ (0.059 + 0.000186 · a2) · 11.95 · exp(−[0.021 · (λ− 325)]2)

+ (0.016 + 0.000132 · a2) · 1.43 · exp(−[0.008 · (λ− 325)]2) + 0.111

(2.5)

For larger illuminated field sizes greater than 3°, van de Kraats & van Norren [274] recommend using
0.225 for dRL,0 instead of 0.446, which is supposed to consider the increasing amount of intraocular
scattering. However, the values reported in the CIE 203:2012 [279] differ slightly from the original
publication by van de Kraats & van Norren [274] because the optical density for young lenses was
re-evaluated using additional ocular transmission data from rhesus monkeys. In addition, adjustments
were made to the strength of the intraocular scatter and the wavelength-independent offset for the
neutral absorption dneutral. Thus, according to CIE 203:2012 [279], the values dRL,0 = 0.3, dLY,0 = 1.05
and dneutral = 0.17 shall be used for a field of view larger than 3°. In Fig. 2.7b, the wavelength-dependent
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transmittance for the different age groups is plotted according to the approach by van de Kraats & van
Norren [274] and the updated values from CIE 203:2012 [279]. Note that in the pre-receptoral filtering
correction of the cones and rods, also the absorption by the macular pigments are taken into account
Fig. 2.7c, which have a higher absorption in the short wavelength range [286, 287]. The macular is
located in the foveal region of the retina in which no ipRGCs are present, meaning that pre-receptoral
filtering for non-visual functions only takes into account the transmittance of the ocular media.

The increasing absorption in the short-wavelength by the ocular media is reflected in a shift of
the peak sensitivity. To illustrate this effect, the model of van de Kraats & van Norren [274] can be
used to derive the action spectrum smel(λ) for different age groups. The sensitivity of the ipRGCs
smel(λ) is already corrected for the pre-receptoral filtering of a 32-year old reference observer. Therefore,
according to the CIE S 026/E:2018 [269], pre-receptoral filtering is considered by multiplying smel(λ)

with the correction function c(a, λ) = τ(a, λ)/τ(32, λ) (Fig. 2.7d). Accordingly, the transmission τ(λ)

can be calculated using the predicted optical density from the five-component lens density model with
τ(a, λ) = 100 · 10−Dmedia(a,λ). Thus, for the calculation of the age-related ipRGC sensitivity smel(a, λ) the
formula

smel(a, λ) = smel(λ) ·
100 · 10−Dmedia(a,λ)

100 · 10−Dmedia(32,λ)︸ ︷︷ ︸
c(a,λ)

(2.6)

can be leveraged. In Equation (2.6), Dmedia is calculated with the Equation (2.5), which is plotted in
Fig. 2.7b. The age-dependent peak absorption of the ipRGCs smel, Peak(a, λ) shows a linear behaviour
and is 489 nm for an average 20-year-old observer and shifts towards 507 nm for a 100-year-old observer
(Fig. 2.7e, f), corresponding to a difference of 18 nm. In a recently published work, M. Spitschan [43]
calculated the age-related in vivo shift of the peak absorption using the two-factor lens density model of
Pokorny et al. [278] and reported a difference of 9 nm between a 20-year-old and 80-year-old observer.

For example, a phosphor-converted white LED spectrum Ee(λ) with a correlated colour temperature
(CCT) of ∼5500 K and a photopic illuminance Ev of 250 lx has, according to the CIE S 026/E:2018 [269,
288], a melanopic illuminance ED65

mel of ∼187 lx when considering a 32-year old standard observer. The
melanopic illuminance ED65

mel can be calculated with Equation (2.7).

ED65
mel =

(
1.3262
1000

)−1 ∫ 780

380
smel(λ) · Ee(λ) dλ (2.7)

However, for a 70-year-old observer, the melanopic illuminance is reduced by ∼65 % to a ED65
mel of ≈

121 lx, only due to the age-related pre-receptoral filtering. For compensating for such an effect, the
photopic illuminance Ev needs to be increased from 250 lx to 388 lx.

The age-related shift in spectral sensitivity is relevant in empirical experiments on the non-visual
effects of light or pupil light response measurements, especially when a heterogeneous age distribution
is used since the same amount of light stimulus could modulate ipRGCs differently. Therefore, during
the experimental design, care must be taken to ensure a homogeneous age distribution when selecting
subjects for pupil diameter measurements to lower the inter-observer variations caused by pre-receptoral
filtering.
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2.3 The Pupil Control Pathway of the Eye

The adjustment of the pupil aperture’s size is performed by two iris muscles (the circular and the radial
muscle), whose neural control signals are affected by distinct brain nuclei, which in turn are innervated
by the ipRGCs and outer photoreceptors in the retina [126]. Depending on the flow of the signalling
direction, the pupil control system is classified into an afferent and efferent pathway [38, 289]. Processing
mechanisms whose signals travel to the brain nuclei are denoted as the afferent control pathway, which
includes the photoreceptors, bipolar cells and retinal ganglion cells that transmit frequency-encoded
electrical signals through the optic nerve to the midbrain [289, 290]. The efferent pupil pathway describes
the mechanisms that are involved in relaying and shaping the signals from the midbrain back to the two
types of iris muscles in the eye [289].

In the following, the brain’s neuronal circuitry of the pupillomotor control is introduced and the
current state on the non-visual retinal processing that innervates the pupil constriction pathway
is reported, aiming to clarify which temporal and spectral aspects need to be taken into account
when modelling the light-induced size of the pupil aperture. For this, Section 2.3.1 provides a basic
understanding of the parasympathetic and sympathetic circuitry that lead to pupillary dilation or
constriction. Note that the neuroanatomy and its associated brain functions are less relevant for the
objectives of this work and are primarily introduced to emphasise that pupillary responses can also
have non-light-induced origins, which are often manifested as scatter in the measured pupil diameter
data. Section 2.3.2 reports a literature review of the current knowledge on the role of ipRGCs and
its interaction with the outer photoreceptors that lead to a temporal and spectral dependence of the
light-induced pupil response, which is particularly important in the objective of modelling the human’s
temporal pupil light response properties.

2.3.1 Parasympathetic and sympathetic circuitry of pupillomotor responses

The afferent pupillary constriction pathway begins with the ipRGCs in the inner retina, whose axons
project via the optic chiasm to the olivary pretectal nucleus (OPN) in the pretectal area of the midbrain
(Fig. 2.8) [38], which acts as a hub for relaying signals to the oculomotor brain nuclei for the pupillary
light reflex [291]. In the OPN, the retinorecipient luminance neurons exist that respond with a tonic
firing rate of action potentials, proportional to the retinal irradiance [38]. McDougal & Gamlin [38] report
that by externally stimulating the OPN with electrical signals, a pupil constriction can be triggered
[38, 291], showing that this nucleus is a key element in the processing chain of the pupillary control
pathway. The neurons of the OPN also collect inputs from conventional retinal ganglion cells, but the
ipRGCs account for the majority of the inputs [38, 292]. Further, according to the review by McDougal &
Gamlin [38], inputs from the visual cortex and thalamus to the OPN can be detected [293, 294]. Through
this link, one can partially explain why the pupil can be triggered from the subjective interpretation
of images with different content [126], although its radiometric light metrics remain unchanged. For
example, several experiments indicated that the pupil diameter could be significantly modulated with
illusory images that mimic bright-appearing objects [295–298].

From the OPN, signals are transmitted to the preganglionic Edinger-Westphal nucleus (EWN), the
oculomotor control complex of the constrictor muscle in the iris and the ciliary muscle that is responsible
for near accommodation of the lens (Fig. 2.8) [38, 299]. The shared control hub of these two muscle
groups results in the effect that near accommodation of the lens simultaneously activates the sphincter
pupillae constrictor muscle, leading to a non-light-induced reduction of the pupil size [126, 300]. At
the level of the EWN, the efferent pathway begins by the transmission of the signals to the ciliary
ganglion via the oculomotor nerve (III) [126]. The ciliary ganglion is a node of nerve fibres located
approximately 2 mm to 3 mm [38] dorsal to the eye globe [38, 126]. Its axons connect to the pupil’s
constrictor muscle via the short ciliary nerves that enter the eye and terminate in the iris (Fig. 2.8) [38].



2.3 the pupil control pathway of the eye 29

The Edinger-Westphal nucleus is part of the parasympathetic autonomous nervous system, meaning
different states of the human body conditions could result in pupil diameter changes. For example, a
physiologically increased sleepiness or during the rapid eye movement (REM) sleep [301], the pupil
diameter becomes significantly smaller [126], which is in the case of the REM-sleep curious, as in the
absence of light, the pupil should be large [301]. However, such behaviour makes sense from a circadian
point of view, as a smaller pupil diameter during sleep reduces the amount of photons that could pass
through the eyelid to the retina.

Figure 2.8: The afferent pupil constriction pathway orig-
inates from the ipRGCs, whose axons project to the
olivary pretectal nucleus (OPN) in the pretectal area of
the midbrain [38, 291]. The retinorecipient neurons of
the OPN also collect inputs from conventional retinal
ganglion cells, but the ipRGCs account for the majority
of the innervations [38, 292]. From the OPN, signals are
transmitted to the Edinger-Westphal nucleus (EWN),
the oculomotor control complex of the pupil’s constric-
tor muscle and the ciliary muscle, responsible for near
accommodation (lens) [38, 299]. The efferent pupil con-
trol begins at the level of the EWN, where the signals
are relayed to the ciliary ganglion (oculomotor nerve
III) [126] and then to the pupil’s constrictor muscle via
the short ciliary nerves that enter the eye’s iris muscle
[38]. The figure was redrawn based on the provided
information in the literature [42, 110, 126, 302].
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While the sphincter pupillae constriction muscle is stimulated from the parasympathetic Edinger-
Westphal nucleus, the control of the dilator pupillae originates from an indirect pathway that is part of
the sympathetic nervous system [37, 126]. The pupil dilatation pathway has one of its origins in the
locus coeruleus, located above the spinal cord and projects to the hypothalamus and thalamus [37, 126].
As the pupil dilatation pathway is part of the sympathetic system, the transient increase of the pupil
diameter is correlated with the human’s state of arousal [21], stress [29], attention [5], pain sensation
[41], or the size of information recalls from the memory [3, 18, 32, 303]. The dilation’s pathway interacts
with the parasympathetic pupil constriction pathway and will not be further discussed in this work.
The interested reader is referred to the review by Elemer Szabadi [37] or McDougal & Gamlin [38] for
further information about the sympathetic control mechanism of the pupil.

2.3.2 Contribution of outer photoreceptors and ipRGCs to the temporal pupil control

The dendrites of the ipRGCs branch in the ON- and OFF-strata of the IPL receiving and integrating
signals from the outer photoreceptors [199] via the bipolar cells(21). Because of this retinal architecture,
the ipRGCs serve as an independent signal transducer via the photopigment melanopsin and work
as a hub for the outer photoreceptors’ hyperpolarisation responses [202], like classical ganglion cells.
The functional impact of the cones and rods in the ipRGC-circuitry was investigated in detail using
transgenic mice since with these species, individual receptor cascades can be switched off to record the
impact on the light-induced pupil diameter change or the circadian phase shift [106, 304]. For example,
in 2003, Lucas et al. [57] showed that melanopsin knock-out mice (but functional ipRGCs) preserve a

(21) The content in Section 2.3.2 is partly based on the author’s following peer-reviewed publications [47, 48]:
1) Babak Zandi & Tran Quoc Khanh. Deep learning-based pupil model predicts time and spectral dependent light responses.
Scientific Reports. 11, 841 (2021). Nature Research. DOI: 10.1038/s41598-020-79908-5. Licence: CC BY 4.0.
2) Babak Zandi, Julian Klabes & Tran Quoc Khanh. Prediction accuracy of L- and M-cone based human pupil light models.
Scientific Reports. 10, 10988 (2020). Nature Research. DOI: 10.1038/s41598-020-67593-3. Licence: CC BY 4.0.

https://doi.org/10.1038/s41598-020-79908-5
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41598-020-67593-3
https://creativecommons.org/licenses/by/4.0/
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nearly normal temporal pupil reflex in response to chromatic light (480 nm), while at high photopic
adaptation conditions, the short term constriction amplitude, as well as the sustained pupil diameter,
were diminished compared to wild-type mice [1, 57, 106]. These results demonstrated that the pupillary
light reflex could work even without intrinsic melanopsin activated ipRGCs [1]. Moreover, the almost
unchanged pupil constriction at low irradiance in melanopsin knock-out mice points to a dominant
involvement of the rods in controlling the pupil aperture [57]. However, after removing cones, rods
and the photopigment melanopsin, Hattar et al. [202] found that the pupillary light reflex is absent.
The study by Panda et al. [305] also revealed such an effect. Therefore, there is a broad consensus on
the conclusion that light-induced pupil diameter changes are the result of an interaction between the
outer photoreceptors, the integrating mechanism of the ipRGCs, and the intrinsic ipRGC activation in
response to light [1, 202, 305].

As the ipRGCs are specialised to longer continuous durations of light exposure by (i) responding
slowly but with sustained depolarisation signals [199, 306, 307] and (ii) given the saturation behaviours
of cones and rods at different light levels [308, 309], which (iii) even feature faster responsiveness to short
light exposure durations [199, 310], the photoreceptors’ proportion in controlling the pupil diameter
change need to be considered temporally [48, 103]. Further, the pupil’s responsiveness depends on the
eye’s light adaptation state [309, 311, 312]. The temporal pupil diameter course can be divided into a
phasic (short-term) and tonic (sustained) component, whose response behaviour depends on the spectral
power distribution light stimulus, the light’s intensity and the duration of the light’s exposure (Fig. 2.9).
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Figure 2.9: Idealised temporal characteristics of the pupil light reflex in response to distinct luminance levels and
chromatic spectral after dark adaptation. a) The pupil reacts to a short light pulse with a latency between 220 ms to
550 ms [313], whose latency time mainly depends on the intensity of the light source. According to the review of
Hall and Chilcott [314], the minimum latency time that can be reached is 180 ms to 230 ms [314]. With increasing
luminance level, the latency time shortens, and the constriction velocity up to the peak constriction pupil diameter
rises dPeak(L, λ). An increase in light intensity also causes a stronger peak constriction, resulting in a smaller
pupil diameter dPeak(L, λ). After constriction, the pupil has a re-adaptation state in which the aperture dilates
to its pre-stimulus state. b) When using longer light exposure times, the pupil adapts to the light stimulus itself.
Stimulating the pupil with short light pulses, however, the pupil maintains its pupil aperture for a short duration,
although there is no light stimulus. Such phase in time is denoted as post illumination pupil response (PIPR) and is
mainly driven by the ipRGCs, which exhibit a sustained firing rate for a short duration even after light offset. c)
Both the peak constriction and pupil latency are dependent on the light’s spectrum and intensity, since at lower
mesopic adaptation conditions, for example, the rods dominate the pupil control pathway. In contrast, at photopic
adaptation, the cones are responsible for the short-term pupil reflex. The study by Lobato-Rincon et al. [315]
analysed the wavelength-dependent latency time with a corneal illuminance of 5 lx, showing that the pupil’s latency
time at 450 nm, 510 nm and 600 nm is 241 ms± SE 15 ms, 227 ms± SE 15 ms and 259 ms± SE 15 ms, respectively (SE
is defined as the standard error). Note that a spectrum that leads to shorter latencies is not necessarily the stimulus
that leads to the most substantial peak constriction amplitude or the most significant constriction velocity. However,
several studies indicate that the phasic pupil constriction is stronger (smaller pupil diameter) with short-wavelength
light (463 nm to 470 nm) stimulation compared to long-wavelength light (631 nm to 660 nm) [289, 316–319].(22)
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The pupil responds to light stimuli of short exposure time with a delay between 220 ms to 550 ms [313]
and transiently [320] drops to a constriction amplitude dPeak after low light pre-adaptation. This is
followed by the so-called re-adaptation phase, in which the pupil diameter dilates back to its pre-stimulus
state (Fig. 2.9a). With increasing luminance, the latency τ shortens and the constriction amplitude is
reached faster and more robust but with a non-linear relationship between the light intensity and the
pupil response latency [321, 322]. Between the peak-constriction amplitude and the re-adaptation phase,
the pupil nearly retains its diameter for a short period even in the absence of light, which is referred
to as the post pupil illumination response (PIPR), whose responsiveness is primarily attributed to the
intrinsic melanopsin activated ipRGCs, as they exhibit a sustained firing of action potentials after light
offset [82, 320, 323, 324]. If the rods are not saturated, rhodopsin also contributes to the PIPR with
a proportion that depends on the analysed time interval after light offset and light intensity of the
stimulus [312, 319].

When increasing the light’s exposure time beyond the time point of the constriction amplitude dPeak,
the pupil starts to adapt to the stimulus itself (Fig. 2.9b). During the pupil’s adaptation time, the
contribution of the cones decreases and the melanopic activated ipRGC response starts to dominate the
pupil control pathway (photopic conditions) [102, 103]. In the adaptation phase, the time-dependent
adaptive weighting of the photoreceptors that are involved in adjusting the pupil’s aperture leads to
a decrease in pupil size (pupil escape) [325] until a steady equilibrium state is reached from which
the ipRGCs dominate [102, 103]. Brief light pulses are used in pupil examinations whenever the PIPR
itself [319, 323, 325] or the spectral sensitivity of the photopigment melanopsin is of interest since as the
ipRGCs drive the pupil response after light offset for a short period of time [82, 326].

In photometric studies, however, constant light stimuli with a persistent exposure time (Fig. 2.9c)
are preferably applied to bring the temporal pupil diameter into the steady-state, often denoted as
the pupil’s equilibrium state [327] or tonic pupil diameter. According to Mure et al. [327], the pupil’s
equilibrium state can be reached after several minutes of light exposure time. It can be observed that
the time until the steady-state pupil diameter is reached depends on the light intensity and the used
spectral power distribution [14, 327, 328].

A wavelength dependency also arises in the early state of the phasic pupil response (Fig. 2.9c). For
example, the latency τ can be altered with the luminance and by varying the light source’s spectrum
[315]. Recent studies also reported that the peak-constriction dPeak is more substantial when using
chromatic light with a higher intensity in the short-wavelength (463 nm to 470 nm) range than spectra,
with a peak-wavelength between 631 nm to 660 nm (Fig. 2.9c) [289, 316–319]. Further, chromatic short-
wavelength range spectra can be applied to let the pupil reach the equilibrium state faster [48, 327].
In the last decades of pupil modelling, mostly the steady equilibrium state pupil diameter was of
interest. Therefore, studies about the pupil’s adaptation time are of interest in designing pupil research
experiments, as they define the conditions for how long the pupil diameter needs to be recorded within
a experimental test session to log the equilibrium state of the pupil for further analysis.

Temporal behaviour of the pupil’s spectral dependency

The time-dependent contributions of the photoreceptors in interaction with the ipRGCs to the phasic
and tonic pupil response have been addressed in past works by Keenan et al. (2016) [102] and McDougal
& Gamlin (2010) [103]. In the conducted work by McDougal & Gamlin [103], the pupil’s spectral
dependency in response to persistent chromatic (10 stimuli between 450 nm and 650 nm, FWHM: 8 nm
to 10 nm) light exposure was derived by recording the human’s pupil diameter for a duration of 110
seconds. Accordingly, the half-maximal spectral pupil sensitivity was calculated for the pupil diameter

(22) Figure 2.9 is reprinted from the author’s publication: Babak Zandi & Tran Quoc Khanh. Deep learning-based pupil model predicts
time and spectral dependent light responses. Scientific Reports. 11, 841 (2021). Nature Research. DOI: 10.1038/s41598-020-79908-5.
Licence: CC BY 4.0. [48]

https://doi.org/10.1038/s41598-020-79908-5
https://creativecommons.org/licenses/by/4.0/
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at 1 s, 3.16 s, 10 s, 17.8 s, 31.6 s and 100 s, respectively. It was found that the peak sensitivity shifts from
510 nm (pupil diameter at one second) towards 470 nm with increasing exposure time [103], indicating
the discussed increasing dominance of the ipRGCs in the pupil’s equilibrium state. To quantify the
relative contributions of rods, cones and the intrinsic melanopsin activated response of the mRGCs to
the temporal pupil response, the custom derived function SMG(λ) (Eq. 2.8) was applied by McDougal &
Gamlin [103] with

SMG(λ) =

{
{

m · Sopn4(λ)
}k2 +

[(
{c · Scones(λ)}k1 + {r · Srods(λ)}k1

) 1
k1

]k2
} 1

k2

, (2.8)

where Sopn(λ) is the spectral sensitivity of the ipRGCs, Scones(λ) the contributions of the cones, Srods(λ)

the contributions of the rods to the spectral pupil sensitivity. The parameters m, c, r, k1 and k2 were
varied using a solver to fit the SMG(λ) function to the pupil’s spectral sensitivity for each pre-defined
time-step, respectively. Based on this approach, it was reported that the cones and rods contribute to
pupil constriction after 10 seconds, while the ipRGCs start to dominate spectral sensitivity from 17.8
seconds on. According to the fitting results, the rods are involved in both the phasic and the tonic pupil
response, suggesting that the rods can affect the equilibrium pupil size if they are not saturated [103].

The work by McDougal & Gamlin [103] has a unique status in the pupil community because of the
applied methods, since the study methods in humans are limited and individual phototransduction
cascades can not be silenced as in mice. However, a validation of the results might be necessary to check
whether the reported temporal proportions can be considered valid in humans. For example, for the
cones, McDougal & Gamlin [103] considered only the additive contribution of the L- and M-cones in the
Scones (λ) function with

Scones (λ) = 0.62 · Slws (λ) + Smws(λ) · (1− 0.62), (2.9)

where Slws(λ) defines the sensitivity of the L-cones and Smws(λ) the sensitivity of the M-cones. As
noticeable, the previously discussed impact of the S-cones in the afferent control pathway’s ipRGCs
circuitry [87, 91, 329–332] could be not acknowledged in the derived fitting formula proposed by
McDougal & Gamlin [103], which might affect the reported time intervals about the temporal cone, rod
and melanopic ipRGC contribution. Note that the subjects’ right eye was measured and the spectra
were presented to the left pharmacologically dilated eye, which is common in such studies but does not
correspond to the pupil behaviour under natural eye conditions.

Keenan et al. [102] also conducted a comprehensive study on the temporal impact of photoreceptors
in the afferent pupil control pathway, but with genetically modified mice, allowing greater flexibility,
as the cones, rods or the photopigment melanopsin could be switched off individually to compare the
pupil’s response behaviour to wild-type mice. Unlike McDougal & Gamlin [103], a thermal radiator was
applied as a light source, so the spectral influence was not determined. Keenan et al. [102] found that
rods dominate the phasic pupil diameter (first 30 seconds) for illuminance up to 100 lx. Above 100 lx,
cones, ipRGCs and rods are complementarily involved in controlling the phasic constriction up to 30
seconds of light exposure time. For the equilibrium state pupil diameter, it was observed that between
approximately 1 lx to 100 lx, a combination of rods and ipRGCs controlled the pupil diameter, while
the photopigment melanopsin dominated above 100 lx (measured on the area where the mice were
placed), with no contribution from rods. Thus, the influence of the cones is restricted to the phasic pupil
response within the first 30 seconds of light exposure time, in which its weighted contribution decreases
as the light’s exposure time progresses.
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Retinal mechanism for controlling the pupil size

The pupil research community is further interested in knowing how the extrinsic opponent cone signals
that input the ipRGCs are composed [1, 330]. In humans, the pupillary research methods are limited
to the so-called silent substitution method [1], which aims to increase a single receptor type’s α-opic
signal while leaving the remaining photoreceptors unchanged in their modulation [163, 333, 334]. For
instance, from the studies by Woelders et al. [331] and Murray et al. [335] it can be concluded that with
an isolated increase in the α-opic S-cone signal or M-cone signal, the pupil “paradoxically” [331, 335]
dilates, suggesting an M-OFF and S-OFF input to the afferent control pathway. From recent pupil light
response studies with humans, it can be concluded that the ipRGCs responsible for pupil control receive
extrinsic signals from (i) an additive combination of L- and M-cones expressed as L+M [106, 330, 332],
(ii) inhibitory signals from S-OFF cones [91, 331, 332], (iii) rods [266, 336], and (iv) the pupil control
pathway can also be affected by the opponent red-green [332] parvocellular pathway consisting of a
L−M contribution [332, 335, 337]. However, for the latter cone input, Barrionuevo & Cao [332] applied
the silent substitution method with frequency-modulated light signals and found that increasing the
chromatic red-green signals causes a phase shift in the oscillating pupil diameter relative to the other
ipRGC inputs, showing that the L−M contribution may be post-retinal [1].

In addition to the axons of the ipRGCs, conventional ganglion cells also project to the OPN [272],
making a post-retinal impact via the chromatic and opponent channels of the visual processing pathway
possible, but this is subject of future research. However, a study by Tsujimura et al. [106] revealed
that increasing the melanopic signal of a spectrum affects the equilibrium state pupil diameter by a
factor three times more than adjusting the L- and M-cone signals. Such an effect could be of value in
indoor lighting, for modulating the pupil aperture without changing the luminance in an illuminance
environment, perhaps making new applications possible with multi-channel LED luminaires in indoor
lighting to, for example, affect the visual acuity [47].

2.4 Current State on Formulas for Predicting the Pupil Diameter

From 1926 to 2012, about eight empirical pupil models were proposed in the literature [47, 51], which
commonly shared the objective of predicting the equilibrium state pupil size in millimetres in response
to a thermal light source with sustained stimulus exposure time(23). In 1926, Holladay [50] proposed the
first pupil model using empirical data derived from pupil experiments with three subjects of unknown
age by applying two frosted light bulbs in a homogeneously illuminated chamber as a light adaptation
source. His subjects were instructed to stare at the chamber’s adaptation area during the experimental
time. After 10 to 15 minutes, the pupil diameter of the right eye was measured manually as a function
of different luminance levels, respectively, using a double-pinhole pupillometer [50, 338, 339]. The
experimental pupil data were fitted by Holladay [50] with the exponential function DH (Eq. 2.10),
defined in its original proposal as

DH(F) = 7 · exp
(
−0.16 · F0.4

)
, (2.10)

where F is the luminance in the unit millilamberts, which according to Watson & Yellott [51], can be
transformed to the luminance Lv in cd/m2 using Equation (2.11).

DH(Lv) = 7 · exp
(

0.1007 · L0.4
v

)
(2.11)

(23) The content in Section 2.4 is based on the author’s following peer-reviewed publications:
1) Babak Zandi & Tran Quoc Khanh. Deep learning-based pupil model predicts time and spectral dependent light responses.
Scientific Reports. 11, 841 (2021). Nature Research. DOI: 10.1038/s41598-020-79908-5. License: CC BY 4.0.
2) Babak Zandi, Julian Klabes & Tran Quoc Khanh. Prediction accuracy of L- and M-cone based human pupil light models.
Scientific Reports. 10, 10988 (2020). Nature Research. DOI: 10.1038/s41598-020-67593-3. License: CC BY 4.0.

https://doi.org/10.1038/s41598-020-79908-5
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41598-020-67593-3
https://creativecommons.org/licenses/by/4.0/
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A disadvantage of Holladay’s exponential formula approach is that the predicted pupil diameter
approaches zero millimetres for higher luminance levels (Fig. 2.10a, b), which does not correspond to
the natural pupil behaviour, which saturates in its diameter for higher luminance.
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a) Prediction of V( 6 ) based pupil models
 Age a: 30 years,  Field size , : 2°
 Number of eyes:  2
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b) Prediction of V(6 ) based pupil models
 Age a: 30 years,  Field size , : 60°
 Number of eyes:  2
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c) Prediction of Watson & Yellot model (2012)
 Age a: 30 years,  Field size ,2[20°, 100°]
 Number of eyes:  2
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d) Prediction of Watson & Yellot model (2012)
 Age a2[5, 80],  Field size , : 60°
 Number of eyes:  2

Watson & Yellot (2012) Holladay 1926
Moon & Spencer (1944)De Groot & Gebhard (1952)Stanley & Davies (1995)
Barten (1999)Blackie & Howland (1999)Legend a), b)

20°40°60°80°

Size of adaptation field

10 20 30 40 50 60 70 80

AgeLegend c) Legend d)

Figure 2.10: Graphical representation of predicted pupil diameter from the V(λ) based pupil models. a) Predicted
pupil diameter from various proposed models in the literature as a function of luminance for an ideal observer
with a reference age of 30 years. A light source with an adaptation field size α of 2° is assumed in which two eyes
of the observer are stimulated. b) Predicted pupil diameter for an adaptation field size α of 60°. The field size
variation only affects the output of the models from Stanley & Davies, Barten, and Watson & Yellott. c) Simulation
of the pupil diameter behaviour as a function of luminance when varying the adaptation field size α from 1° to 90°,
calculated with the model of Watson & Yellott. d) Pupil diameter as a function of luminance at steady field size α of
60° but different age groups between 5 to 80 years. The data were calculated using the model of Watson & Yellott. It
can be identified that with increasing age, the maximum possible pupil diameter decreases, especially in the lower
mesopic luminance conditions. (24)

Crawford [52] criticised the applied double-pinhole pupillometer method because, during the pupil
measurements, the subjects were probably not solely adapted to the light stimulus. Therefore, in 1936,
Crawford [52] conducted pupil measurements, using images of the subjects’ eyes in combination with a
reference object of known size, aiming to estimate the pupil diameter with higher accuracy. The pupil
diameter of ten subjects of unknown age was observed by applying a light projector shining onto a 55°
sized adaptation screen. Crawford [52] fitted the raw data using a hyperbolic tangent function DC(B)

(24) The data in Figure 2.10 were retrieved using the pupil models’ MathWorks Matlab implementation by William Wheatley & Manuel
Spitschan (License: MIT) that was published on GitHub (https://github.com/spitschan/WatsonYellott2012_PupilSize), which
applied the reported formula from the work of Watson & Yellott [51]. The GitHub repository was accessed on 15th of October
2021.

https://github.com/spitschan/WatsonYellott2012_PupilSize
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(Eq. 2.12) as a function of the luminance B in footlambert with the unit cd/ft2.

DC(B) = 5− 2.2 · tanh
[
0.447 ·

(
log10 (B) + 2.4

)]
(2.12)

However, Equation (2.13) is the transformed Crawford model that can predict the pupil diameter with
the luminance Lv as an independent parameter [51].

DC(Lv) = 5− 2.2 · tanh
[
0.61151 + 0.447 · log10 (Lv)

]
(2.13)

Compared to the Holladay [50] approach, the saturated pupil diameter at high and low luminance
was successfully modelled (Fig. 2.10a, b) by using the hyperbolic tangent function instead of the earlier
proposed exponential function [50]. Crawford [52] also validated his measured raw data with the
earlier pupil studies. He found a variation of about one to two millimetres between the experimental
study results conducted by Reeves [49] and Holladay [50], which he concluded can only be due to
inter-observer differences. However, note that the adaptation times between the authors were different,
as Crawford [52] used about 5 min, Reeves [49] 15 min and Holladay [50] 10 min to 15 min of light
exposure.

In 1944, Moon & Spencer [340] derived the first combined model with previously published pupil
measurement data to propose a more generalised function. For modelling, the data of Blanchard [53]
(published in 1918, two subjects, 5 min of adaptation time), Reeves [49] (published in 1918, six subjects,
15 min of adaptation time), Covreux (published in 1924, one subject), Stiles (published in 1929, one
subject) and Crawford [52] (published in 1936, eight subjects, 5 min of adaptation time) were used. Note
that Moon & Spencer [340] excluded from Crawford’s data two subjects, the age distribution of the used
subjects were unknown and the adaptation times from Reeves and Covreux were not stated. Based on
the data of 18 subjects, Moon & Spencer [340] used the Crawford approach and applied a hyperbolic
tangent function to fit the data. However, the parameters were adjusted so that the maximum dilated
pupil diameter is higher and the minimum constricted pupil diameter is lower than Crawford’s model
(Fig. 2.10a, b). Equation (2.14) is the originally published Moon & Spencer [340] function DMS(F) with
the luminance F in millilamberts as an independent parameter.

DMS(F) = 4.90− 3.00 · tanh
[
0.4 ·

(
log10 (F) + 0.5

)]
(2.14)

The transformed Moon & Spencer [340] formula with the luminance Lv in cd/m2 as the independent
value was stated by Watson & Yellott with Equation (2.15). Note that in Fig. 2.10a, b, the approximated
Moon & Spencer formula (Equation (2.16)) is used, which was proposed by Watson & Yellott [51].

DMS(Lv) = 4.90− 3.00 · tanh
[
0.4 · log10 (Lv)− 0.00114

]
(2.15)

DMS,A(Lv) = 4.90− 3.00 · tanh
[
0.4 · log10 (Lv)

]
(2.16)

In 1952, De Groot & Gebhard [341] also developed a combined model but included pupil data of
eleven more subjects on top of the previously used data by Moon & Spencer. An exponential function
was used to fit the raw data (Fig. 2.10a, b), as De Groot & Gebhard [341] criticised the intense and
non-physiological pupil diameter saturation at high and low luminance when using a hyperbolic
tangential function.
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Equation (2.17) is the proposed formula by De Groot & Gebhard [341] with the luminance F in millil-
amberts. In Equation (2.18), the formula by De Groot & Gebhard is reported with the luminance Lv in
cd/m2, which was provided by Watson & Yellott publication [51].

log10 (DDG(F)) = 0.8558− 0.000401 ·
(
log10 (B) + 8.1

)3 (2.17)

DDG(Lv) = 7.175 · exp
[
−0.00092 ·

(
7.597 + log10 (Lv)

)3
]

(2.18)

In 1995, Stanley & Davies [342] investigated the impact of the adaptation field size, in addition to the
luminance, as the light source’s field of size was not explicitly reported in previous studies and may be
one of the reasons for the high pupil size variance between the research groups according to Stanley &
Davies. [342].

Therefore, Stanley & Davies [342] conducted an experiment to investigate the pupil diameter as a
function of luminance Lv and adaptation field size α (0.4° to 25.4°) with a circular shaped stimulus field
area. As sample size, the pupil diameter of nine subjects was measured with an adaptation time of 60
seconds. Their results showed that the adaptation field size at steady luminance significantly affects
the pupil diameter (Fig. 2.10a, b), which is why the parameter α should be stated in pupil experiments.
Based on the measured raw data, a novel pupil model DSD(Lv, α) was proposed by Stanley & Davies
[342], which, in addition to the luminance Lv, also included the adaptation field size α as a dependent
variable, as stated in Equation (2.19) [51, 342].

DSD(Lv, α) = 7.75− 5.75
(

(Lv · α/846)0.41

(Lv · α/846)0.41 + 2

)
(2.19)

In 1999, Blackie & Howland [343] developed a pupil model with data from Flamant [344], who conducted
pupil experiments back in 1984. The pupil model is valid for the mesopic vision range as the maximum
applied luminance of the stimulus was 10 cd/m2 [343, 344]. Further, experimental conditions, such
as the adaptation field size, light exposure time or age distribution of the subjects were not reported.
Watson & Yellott [51] converted and simplified the Blackie & Howland [343] formula(25) DBH(Lv) to
Equation (2.20), as it was originally proposed using a logarithmic scale of the luminance (Fig. 2.10a, b).

DBH(Lv) = 5.697− 0.658 · log10 (Lv)− 0.07 · (log10(Lv))
2 (2.20)

In 1999, Barten [345] published a book that aimed to model the contrast sensitivity of the human visual
system by combining empirical data from psychophysics experiments and models of the eye’s ocular
components. One part of his work was concerned with the modelling of the pupil light response, in
which, like Stanley & Davies [342], he wanted to develop a model as a function of the luminance and
area size of the adaptation field.

In contrast to Stanley & Davies [342], Barten [345] did not conduct experiments but used Le Grand’s
[346] pupil modelling approach from 1986 as a template and combined the function with the data
from Bouma’s PhD thesis [347], who conducted pupil experiments with varying adaptation field sizes.
However, Barten [345] did not specify the conditions of adaptation time and age distribution of the used
subjects as restrictions for his model DB(Lv) in Equation (2.21) [51].

DB(Lv) = 5− 3 tanh
[

0.4 · log10

(
Lv · α
402

)]
(2.21)

(25) Note that Manuel Spitschan has pointed in his publication "Photoreceptor input to pupil control" [330] (see footnote(1) in
Spitschan’s work) to the fact that Watson & Yellott [51] had a typo in the converted Blackie & Howland [343] formula, which has
been taken into account in Equation (2.20).
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In 2012, Watson & Yellott [51] conducted a comprehensive review of existing empirical pupil models and
converted them, where necessary, to a function dependent on the luminance Lv with the unit cd/m2,
whose updated formulas were reported in this section (see Eqs. 2.11, 2.13, 2.15, 2.16, 2.18, 2.19, 2.20,
2.21). Further, the authors developed a so-called unified pupil formula for the photopic adapted eye,
which, in addition to the luminance Lv and the adaptation field size α also integrates a subject’s age
a and the number of illuminated eyes e (binocular or monocular). For this, the formula by Stanley &
Davies [342] was used as a starting point, which already took into account the luminance Lv and the
adaptation field size α in predicting the pupil diameter. However, for estimating the pupil diameter as a
function of a subject’s age a, the data from Winn et al. [348] were used for modelling, who conducted
comprehensive age-related pupil examinations. Winn et al. [348] used an adaptation time of one minute
and reported the mean of the pupil diameter’s last 10 seconds during the adaptation time. Further, the
dependence of an observer’s illuminated number of eyes was additionally modelled in the Watson &
Yellott pupil model by fitting the raw data from Blanchard [53], Reeves [49], ten Doesschate [349] and
Alpern [350]. Adding such a parameter is non-trivial, as normally, when illuminating a single eye, the
second constricts synchronously, but earlier studies found that the pupil diameter can be affected when
exposing only one eye instead of both [51]. Thus, the pupil model of Watson & Yellott [51] consists of
the modified Stanley & Davies [342] function DSDW(Lv, α, e) (Eq. 2.22) in which the parameter e was
added to integrate the number of exposed eyes. Further, the function DWY (DSDW, a) (Eq. 2.23) performs
the correction for the age-related pupil size.

DSDW(Lv, α, e) = 7.75− 5.75
(

(Lv · α · e/846)0.41

(Lv · α · e/846)0.41 + 2

)
(2.22)

DWY (Lv, α, e, a) = DSDW (Lv, α, e) + (a− a0) · [0.02132− 0.009562 · DSDW (Lv, α, e)] (2.23)

In Equation (2.23), the parameter a0 denotes the reference age, which was set by Watson & Yellott
[51] to 28.58 years. For estimating the pupil diameter after binocular illumination, the value 1 must be
used for e and the value 0.1 for a monocular illumination setting. The value for the adaptation field
size α in the Watson & Yellott [51] DSDW(Lv, α, e) and in the Stanley & Davies [342] DSD(Lv, α) model
denotes the square degree angle in the unit deg2. To convert the field of size from deg to deg2, either
the approximation formula reported by Watson & Yellott [51] with αdeg2 = (αdeg/2) · π or the precise
equation αdeg2 = 6566π(1− cos(αdegπ/360)) can be used.

The groundbreaking work by Watson & Yellott is the most cited paper on pupil modelling, and its
comprehensive review has reopened this topic for new scientific approaches. Its proposed formula
can be leveraged to simulate, for example, the influence of the adaptation field size (Fig. 2.10c) or the
age-related impact on the pupil diameter (Fig. 2.10d). However, the recently proposed empirical pupil
models from 1926 to 2012 apply merely the luminance Lv as the primary proxy to quantify light stimuli.
The luminance can be calculated by weighting the radiance Le(λ) with the photopic luminous efficiency
function V(λ) and accordingly integrating the values across the visible spectrum range.

The V(λ) function was introduced in 1924 by the International Commission on Illumination (CIE)
to provide a tool for estimating the humans’ visual efficiency of light sources [64, 73–75, 107]. Its
derived spectral sensitivity manages approximately the visual pathway’s achromatic channel consisting
of an additive combination of the L- and M-cones [77, 78]. Thus, when evaluating light spectra with
the luminance, the ipRGCs are not considered, which have been shown to contribute to the pupil
control (see Section 2.3). Another restrictive condition of the proposed V(λ)-based pupil models is
that underlying empirical data were derived from measurements with thermal radiators, meaning the
ipRGCs contribution might not be managed fully in the data, as the melanopic contrast might be to low
to trigger a comparable intrinsic ipRGC response between distinct light spectra.
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2.5 Conclusion and Derived Research Questions

New insights about the pupil control pathway were revealed in recent years after discovering the
ipRGCs, leading to the realisation that the visual pathway (see Section 2.1) is only partly needed for
adjusting the human’s pupil size. Today, it is known that the photopic adapted pupil diameter results
from a combination of outer retinal photoreceptors and the melanopsin activated ipRGC input to
the pupil control. Depending on the light’s modality, different weighting proportions of the retinal
photoreceptors can be identified as input for controlling the pupil constriction (see Section 2.3). The
discussed neurophysiological findings are not integrated into the currently proposed empirical pupil
models (see Section 2.4) since mostly the V(λ)-weighted luminance is applied as a proxy for the light’s
spectral power distribution. Recent investigations indicate that the spectral sensitivity of the pupil light
response could not be described using the V(λ) function alone, as the pupil’s peak response shifts from
510 nm towards 470 nm with increasing adaptation time. Further, existing pupil models focused on
predicting the time-invariant equilibrium-state pupil size without considering the temporal response. As
the ipRGCs dominate the equilibrium pupil size under photopic lighting conditions, prediction errors
of V(λ)-based pupil models might be possible when using LED spectra as light stimuli. Based on these
gaps between what is neurophysiologically known about the pupil control and what the discipline of
pupil size prediction provides, the following research questions and objectives can be derived for this
thesis.

(1) Prediction accuracy of V(λ)-based pupil models: Existing pupil models apply a V(λ)-weighted
light metric as a proxy for describing the impact of a light’s spectral power distribution on the pupil
size. This circumstance raises the question of how high the prediction errors of existing V(λ)-based
pupil models are when applying chromatic or polychromatic spectra mixed with multi-primary LED
luminaires. Especially it needs to be evaluated whether the adaptive receptor weighting that adjusts
the temporal pupil response needs to be integrated into a pupil model for more accurate predictions.
Such results might be of value, as it could be deduced to what extent a revision of existing V(λ)-based
pupil models could be necessary and what deviations from the actual pupil diameter need to be expected.

(2) Revised method for modelling the temporal pupil light response: Existing pupil models do not
consider the adaptive receptor weighting of the outer retinal photoreceptors or the ipRGCs contribution
to the pupil control. Further, predicting the temporal time course of the pupil size, i.e. phasic and
tonic, in response to a light stimulus is not possible when using V(λ)-based pupil model approaches
due to their time-invariant nature and integration of the luminance. Therefore, a significant objective
in today’s pupil research is to develop a revisited method capable of deriving an empirical pupil
model that compensates the previous pupil modelling shortcomings by considering the discovered
neurophysiological findings of the afferent pupil control’s processing mechanism. Retrospectively, it
could be concluded that the approach of a closed equation structure for modelling the pupil size might
not be sustainable. Thus, a novel pupil modelling approach needs to ensure refined predictions without
changing the pupil model’s basic structure as new empirical data exists for modelling in the future.

(3) Cone-based brightness metrics for estimating the phasic pupil light response: Neurophysiological
studies reveal that the phasic pupil light response under photopic light conditions mainly depends
on the outer retinal photoreceptors without an intrinsic contribution of the melanopsin containing
RGCs. Therefore, the question arises to what extent a correlation exists between the human brightness
perception and the phasic pupil diameter. With this knowledge, it could be deduced whether a better
prediction of pupil size could be achieved by integrating brightness-related metrics instead of using the
luminance.
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(4) Spectral optimisation for simulating the melanopic limits of polychromatic light: Multi-channel
LED luminaires can generate arbitrary polychromatic spectra by varying the dimming level of individ-
ual primary LED colours, which can differ in both chromaticity and α-opic excitation. The dimming
values need to be calculated using spectral optimisation methods to reach polychromatic light featuring
pre-specified chromaticity and colour fidelity conditions. The method of spectral optimisation is an
essential objective of this work as (i) suitable spectra must be engineered for the pupil measurement
experiments, which feature distinct colourimetric and photometric characteristics; (ii) the question arises
what the capabilities of polychromatic spectra are in modulating the retinal photoreceptors and hence
the pupil size. The latter question can be traced back to the objective of finding the melanopic limits
of the polychromatic stimulus space for multi-channel LED luminaires. However, as the number of
LED channels increases, the solution space with which spectra can be generated increases. Therefore,
for tackling point (ii), an efficient spectral optimisation method for real-time applications is needed as
conventional spectral optimisation methods might be too slow for simulating the melanopic limits of
polychromatic spectra within a reasonable time. The results of such a simulation could also answer the
question to what extent the pupil size could be varied without altering the light’s visual properties, such
as chromaticity or (il)luminance, when using metameric spectra.

In the following, Chapter 3 deals with the characterisation of a 15-channel LED luminaire, which
was developed during this author’s research time at the Laboratory of Adaptive Lighting Systems and
Visual Processing to generate stable polychromatic and chromatic stimuli for the pupil measurement
experiments. Additionally, Chapter 3 covers the topic of spectral optimisation to answer the formulated
research objectives reported in point (4). In Chapter 4, the prediction accuracy of existing V(λ)-based
pupil models is determined. Secondly, in Chapter 4, a deep learning-based modelling method will be
introduced for reconstructing the temporal and spectral dependent pupil light response from photo-
metric characteristics (see research objectives in the points (1) and (2)). In Chapter 5, it is analysed to
what extent cone-based brightness metrics can keep the spectrally dependent pupil size steady across
distinct light stimuli and whether equivalent luminance models could be of value as a substitute for the
luminance in conventional V(λ)-based pupil models (see point (3)).





3 Optimisation of Multi-Channel LED Spectra

Section 3.1 of this chapter presents a temperature-controlled 15-channel LED luminaire, which was
developed for this work to perform the reported pupil examinations in Chapter 4 and Chapter 5.
Multi-channel LED luminaires offer the possibility of generating distinct spectral power distributions
that features specific photometric, colourimetric or α-opic values. The visual and non-visual mechanisms
of the eye can be modulated by polychromatic light from a multi-channel LED system to control the
pupil’s light response. However, to generate a target spectrum for experimental studies, the dimming
values of the luminaire’s individual LEDs must be computed. In Section 3.2, the methodology of
spectral optimisation is covered, with which the LEDs’ dimming levels can be derived to get stimuli
that match pre-defined lighting metrics. Further, Section 3.2 introduces a deep learning-based spectral
optimisation framework, which can mix arbitrary spectra in real-time. The proposed method outperforms
a conventional metaheuristic black-box optimiser concerning the computation time, allowing spectral
engineering tasks on a larger scale. Finally, in Section 3.3, the developed optimisation method is used to
simulate the melanopic limits of the metameric stimulus space on a larger scale(26).

3.1 Light Observation Chamber for Controlling Non-Visual Responses

This thesis primarily deals with the analysis and modelling of the human pupillary light reflex. For this
purpose, empirical pupil diameter values in response to distinct light spectra need to be collected. An
accurate and reproducible pupil light response study requires a stable light source with which suitable
light spectra can be generated. Three lighting technologies are possible for light-induced modulation
of the pupil size: Firstly, a thermal emitter like in the empirical studies on the L- and M-cone based
pupil models can be used (see Section 2.4). However, the disadvantage is that one is limited in varying
the spectral power distribution; hence, the impact of the ipRGCs on the pupil control could be masked
due to a lower melanopic excitation by thermal radiators. Secondly, an arc lamp could be used in
combination with an interference filter to generate narrowband light spectra. Such a technique is often
used in the literature when the spectral sensitivity of the pupil light response is of interest, which has
been already investigated by various author groups in detail (see Section 2.2.2). Thirdly, combining an
array of n-chromatic LEDs behind a diffusor glass makes it possible to additively mix polychromatic
spectra [107]. Such a light source offers a higher degree of freedom to engineer light stimuli for this
thesis and also for future research projects, as both narrowband light can be generated, but also white
light spectra with chromaticity coordinates along the Planckian locus.

Furthermore, by mixing primary LED spectra, the silent-substitution method [163, 333, 334, 351]
can be applied to trigger individual photoreceptors and estimate their temporal contribution to the
pupil control pathway. Another advantage is that multi-channel LED luminaires can produce metameric
stimuli [107, 108], an essential instrument for combining a light’s colour fidelity and chroma of an

(26) The results in Section 3.1 and Section 3.3 are from the author’s following peer-reviewed publications [47, 48, 108]:
1) Babak Zandi, Julian Klabes & Tran Quoc Khanh. Prediction accuracy of L- and M-cone based human pupil light models.
Scientific Reports. 10, 10988 (2020). Nature Research. DOI: 10.1038/s41598-020-67593-3. Licence: CC BY 4.0.
2) Babak Zandi, Adrian Eissfeldt, Alexander Herzog & Tran Quoc Khanh. Melanopic Limits of Metamer Spectral Optimisation in
Multi-Channel Smart Lighting Systems. Energies. 14, 572 (2021). MDPI. DOI: 10.3390/en14030527. Licence: CC BY 4.0.
3) Babak Zandi, Oliver Stefani, Alexander Herzog, Luc Schlangen, Quang Vinh Trinh & Tran Quoc Khanh. Optimising metameric
spectra for integrative lighting to modulate the circadian system without affecting visual appearance. Scientific Reports. 11, 23188
(2021). Nature Research. DOI: 10.1038/s41598-021-02136-y. Licence: CC BY 4.0.
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object while offering an appropriate melanopic excitation for non-visual purposes [108]. For example,
when increasing the melanopic proportion in the short-wavelength range [352], the pupil aperture
could be affected, possibly causing enhanced visual acuity, although the (il)luminance or the CIExy
chromaticity coordinates would remain unchanged. This idea is supported by the results of Tsujimura
et al. [106], indicating that by adjusting the ipRGC signal, the pupil constriction can be varied by a
factor of three times more than the luminance [47, 106]. The recent advancement of multi-channel LED
luminaires applied for indoor illumination [107] pursued improving the human’s visual performance
[242], the light’s colour quality [353–356] and supporting the users’ lighting preference [107] to reduce
impairments and enhance well-being at workplaces [245, 356–358]. Therefore, it was decided to develop
and apply a multi-channel LED luminaire to tackle the research objectives of this work (see Section 2.5).

3.1.1 The developed multi-channel LED lighting system

For triggering the pupil light response, a temperature-controlled 15-channel LED luminaire was de-
veloped (Fig. 3.1a) using nine narrowband chromatic, two phosphor-converted chromatic and four
phosphor-converted white LEDs (Fig. 3.1b). The selection and number of the distinct LED types aimed
to fill the visible wavelength range as much as possible with narrowband chromatic LEDs, allowing
greater flexibility in spectral optimisation and making the luminaire future-proof for other research
projects related to visual discrimination and colour preference.
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Figure 3.1: Setup and spectra of the developed 15-channel LED luminaire. a) The rear view of the luminaire shows
the hardware with which the LED modules (see front view) were controlled. An STM32-Nucleu-F767ZI was applied
to control the LED drivers and serial communication. The front view shows the LED modules arranged in a 4 x
4 matrix. The LED modules were temperature-controlled (30 ◦C) and packed with 15 different LED types. The
luminaire was placed on top of an observation chamber. Inside the observation chamber, a stereo camera system
consisting of two Basler acA640-120gm cameras (659 × 494 pixels) was positioned for the pupil measurements.
Figure is reprinted and modified from the author’s publication [47]. Licence: CC BY 4.0. b) The spectra of each
LEDs were measured using a calibrated spectroradiometer (Konica Minolta CS2000A). [48].

Fifteen different LED types were placed on a single 50 mm x 50 mm aluminium circuit board. The
LED board was equipped with a thermoelectric cooler (Peltier element) and a fan-cooled heat sink.
To monitor the LEDs’ temperature, a PT100 was soldered in the middle of the LED circuit board and

https://creativecommons.org/licenses/by/4.0/
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another temperature sensor was attached with temperature conductive adhesive behind the heat sink.
Thus, a single LED module consisted of 15-LED channels, two temperature sensors and an active-cooling
unit consisting of a Peltier element and a fan-cooled heat sink. By combining several of these LED
modules, the illuminated area can be easily increased. Sixteen LED modules were developed and
arranged in a 4 x 4 matrix to reach an illuminated area of 400 mm x 400 mm. To prevent reflections from
the LEDs back into the luminaire’s housing, the empty spaces between the modules were covered by
3D-printed elements (Fig. 3.1a). Each LED primary was wired with an in-house developed(27)LED driver
(see the rear view in Fig. 3.1a), which used a linear constant-current-sink LED driver for dimming the
LEDs (CAT4101). The radiance output of each LED channel (Fig. 3.2) was controlled using pulse width
modulation (PWM) generated by an STM32-Nucleo-F767ZI microcontroller. The current output of the
LED driver was adjusted by a digital-potentiometer (MCP434X) via serial peripheral interface (SPI),
which was connected to the RSET pin of the CAT4101. However, the current was set to ∼120 mA and
the dimming of the LED channels was primarily conducted using the duty cycle of the PWM.
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Figure 3.2: Measurement of the relative radiance as a function of a set of PWM code values (10 bit) for each
individual LED of the developed multi-channel LED luminaire. For practical reasons, the 10-Bit code value range
(1024) was cropped to 1000, which is handier for spectral optimisation tasks. A constant current of ∼120 mA was
set for the measurement. The reported peak wavelengths were determined from the measured spectra at a duty
cycle of 100 % (maximum code value). For the measurement, a Konica Minolta CS2000 spectroradiometer was used.

To avoid flicker artefacts caused by the observer’s visual perception, the microcontroller’s PWM
frequency was adjusted to 2 kHz. A diffusor glass was mounted in front of the luminaire and the entire
system was attached on top of an constructed observation chamber (Fig. 3.1a), which was used for the
pupil size examinations in Chapter 4 and Chapter 5. Inside the observation chamber, a homogeneous
illumination of a 700 mm x 700 mm adaptation field was reached by providing enough space for diffuse

(27) The LED driver used for the multi-channel LED luminaire were designed and developed by S. Benkner and S. Klir. The viewing
chamber was developed in the master thesis of J. Klabes [359], supervised by Babak Zandi. Furthermore, the following student
assistants supported the construction of the multi-channel LED luminaire: M. Seiler, M. Degünther, F. Wirth, K. Kunst.
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reflections and by painting the bottom and walls of the chamber’s inner segments with custom mixed
white barium sulfate painting. A chin rest was placed on the slot where the subject’s head is positioned
for viewing into the chamber (Fig. 3.1a). Furthermore, a 0.8◦ sized fixation target proposed by Thaler et
al. [360] was added in the centre of the chamber’s adaptation field to stabilise the subject’s gaze point,
as extensive eye movements could affect the measurement accuracy of the stereo camera system. The
distance from a standard observer’s head to the adaptation field is 700 mm, corresponding to a visual
angle of the adaptation field of 53.1◦.

The LED’s circuit board was temperature-controlled (30◦C ± 0.1◦C) by using a commercially available
proportional-integral-derivative (PID) controller (TEC-1123) from Meerstetter, which was connected
to the thermoelectric cooler and the PT100 sensors of the LED modules. Therefore, the luminaire
operated in a stable condition without any significant impact from temperature fluctuations. However
for the pupil measurement experiments, the applied spectra need to be measured before and after each
study to ensure repeatability of the results. Note that with increasing duty cycle, a shift of the LEDs
peak-wavelength can be observed (Fig. 3.2), which also leads to a shift in the chromaticity coordinate
(Fig. 3.3). Especially for the first channel with the peak-wavelength of 423 nm, a chromaticity shift
between ∆u′v′ < 0.033 can be observed, meaning measuring the pupil light response as a function of a
LED’s duty cycle should be avoided.
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Figure 3.3: Chromaticity shift of selected LED channels as a function of the PWM code value. The chromaticity
coordinates of channel 1 shifts within ∆u′v′ < 0.033. In contrast, the chromaticity coordinates of the phosphor-
converted white LEDs are within ∆u′v′ < 0.011. The colour code of the PWM is stated in Fig. 3.2.

The microcontroller of the luminaire was interfaced to a personal computer via a UART communication
protocol, allowing to dim the individual LEDs from a Matlab or Python script. For this, a custom
communication protocol was implemented, with which the duty cycle and the current of the LEDs
can be adjusted from a personal computer. As there are usually slight latencies between transferring
commands from a personal computer up to the execution by the luminaire, a processing procedure was
implemented in the microcontroller that calculates and returns the processing time. These latency times
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were used to synch the luminaire’s light-onset timestamp with the pupil measurement system, allowing
to calculate the pupil’s light response latency (see Section 2.3.2) with a higher precision.

3.2 Rethinking Spectral Optimisation in Lighting Engineering

When using a 10-bit PWM, each LED channel’s (ir)radiance can be adjusted with a resolution of 1024
code value steps. Thus, with the developed 15-channel LED luminaire (see Section 3.1.1), a total of
102415 code value combinations are possible. However, each set of code value XCH can generate spectra
with unique lighting properties. The art of spectral optimisation pursues the idea of computing the
N-channel luminaire’s appropriate code value combination XCH = {XCH,1, XCH,2, . . . , XCH,N}, which
generates a spectrum SLum(λ) that satisfies a set of pre-defined objectives (Fig. 3.4). For example, the
target objectives could be the chromaticity coordinates and the (il)luminance in the simplest case. Since
a light spectrum is sought that fulfils the pre-defined objectives, such tasks are referred to as spectral
optimisation, although the result of an optimisation procedure is the LEDs’ set of dimming values XCH

that can generate the spectrum of interest (Fig. 3.4).

Figure 3.4: Structure and sub-processes of a simpli-
fied optimisation task, aiming to find a light spectrum
that satisfies pre-defined lighting metrics. Firstly, the
objectives must be defined, whose quantities can be
categorised into a light’s chromaticity, colour quality
and degree of non-visual excitation. As a minimum re-
quirement, the chromaticity and (il)luminance need to
be defined to compute a set of code values via spectral
optimisation methods, which generates a spectrum that
matches the target objectives. In reality, a feedback com-
ponent is integrated into the optimisation loop to verify
whether the optimised spectra are within a pre-defined
tolerance range of the objectives. Figure was redrawn
from the author’s own publication [107].
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In lighting engineering, the term spectral optimisation is often used to summarise research purposes with
multi-channel LED luminaires for indoor applications or experiments related to visual and non-visual
responses. Initially, spectral optimisation dealt with the research question of which peak wavelengths
and number of LED primaries must be chosen and combined to balance distinct lighting metrics [242,
353, 355, 361–366]. For this, spectra need to be optimised for different numbers and combinations of LED
primaries, with which an ideal multi-channel luminaire system can be derived. The method of spectral
optimisation is also used to relate distinct lighting metrics when a certain combination of LED primaries
is applied [107, 108, 367–370]. Furthermore, spectral optimisation is helpful in artificially matching the
spectral power distribution of natural daylight using polychromatic spectra of a multi-channel LED
luminaire, denoted as spectral matching. [371–374].

The design of polychromatic stimuli via spectral optimisation is the first step of empirical studies
related to the pupil light response when using a multi-channel LED luminaire. In addition, it needs
to be verified which Pareto optimal solutions can be reached in a multi-objective problem when using
the available lighting system. For example, to what degree can the ipRGCs be modulated via light
when considering the minimum requirement of a light’s colour rendering index (CRI)? The higher
number of used LED channels (see Section 3.1.1) in this work leads to a greater degree of freedom in
designing spectra but also increases the complexity in computing the LEDs’ dimming levels. Therefore,
the methodology of spectral optimisation is a relevant topic, which is addressed in this section.
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3.2a Commonly used lighting metrics in spectral optimisation

The shape of a spectral power distribution (SPD) is a minor criterium outside the discipline of spectral
matching or daylight simulation. Lighting metrics computed from an SPD are more of value as they
can be used to describe the spectrum’s impact on the human’s visual and non-visual pathway (see
Chapter 2). Such lighting metrics aim to specify the human’s perception regarding chromaticity, colour
quality or visual preference for a light source in an illuminated environment. Since the discovery of the
ipRGCs, new class of metrics were introduced with the objective to quantify the light exposure’s impact
on the human’s nocturnal melatonin suppression or other non-visual responses (see Section 2.2.2).
Therefore, the first step in any spectral optimisation procedure is to select the light metrics of interest. In
the following, a brief overview of the values used to quantify SPDs in lighting engineering is provided.

In paragraph i) it is shown how to specify the chromaticity coordinate of a spectrum and how to
choose an appropriate tolerance value for an optimisation procedure regarding the colour shift. The
concept of the colour temperature often used to specify white light spectra is discussed in paragraph ii).
Next, the metrics used to quantify colour rendering or colour fidelity for indoor lighting are covered in
paragraph iii). Finally, in paragraph iv) it is discussed which non-visual metrics are commonly used to
assess the circadian effectiveness of light. The experienced lighting engineer reader may skip these four
paragraphs. After discussing the basics of lighting metrics, a literature review on the applied methods
in spectral optimisation is provided, from which the research objectives for the development of a deep
learning-based spectral optimisation framework will be derived.

i) Quantifying the chromaticity of a light source: In 1931, the CIE proposed the colour matching
functions (CMFs) x(λ), y(λ) and z(λ) based on the experimental results of W. D. Wright [375] and J.
Guild [376] to quantify the human colour sensation in response to a light spectrum [377]. The CMFs can
be used to map the human colour perception of a trichromatic observer in the CIExy-1931 colour space
[378]. Firstly, the tristimulus values X, Y and Z need to be computed from the light spectrum S(λ) with

X = K
∫ 780 nm

380 nm
x(λ) · S(λ) dλ,

Y = K
∫ 780 nm

380 nm
y(λ) · S(λ) dλ,

Z = K
∫ 780 nm

380 nm
z(λ) · S(λ) dλ.

(3.1)

For self-luminous objects where S(λ) is measured in a radiometric unit, the constant K should be set
to luminous efficacy of radiation Km = 683 lm/W. The colour matching function y(λ) is equal to the
luminous efficiency function V(λ) [377]. Hence, the tristimulus value Y is proportional to the photomet-
ric counterpart of S(λ) when using k = Km [377]. For spectra of non-self-luminous objects S′(λ), the
spectral reflectance factor R(λ) or the spectral transmittance factor T(λ) need to be considered [377] with

S(λ) = S′(λ) · R(λ) and S(λ) = S′(λ) · T(λ). (3.2)

In colourimetry, however, the constant K can be neglected as by calculating the chromaticity coordinates
x, y and z of the CIExy-1931 colour space (Eq. 3.3), the K value is shortened.

x =
X

X + Y + Z
, y =

Y
X + Y + Z

, z =
Z

X + Y + Z
= 1− x− y (3.3)

It is sufficient to report only the (x, y) values, since x + y + z = 1 [377, 379]. The underlying experiments
for the trichromatic system of the CIExy-1931 colour space were done using a foveal visual field of
2◦. Therefore, the 2◦-CMFs may not be appropriate to describe colour sensation for visual fields larger
than 4◦ [377] as a greater contribution of S-cones comes into play [380]. In 1964, the CMFs x10◦(λ),
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y10◦(λ) and z10◦(λ) were introduced for a 10◦ standard observer by the CIE, with which the chromaticity
coordinates of the CIExy-1964 colour space can be calculated using the Equation (3.1) and (3.3). Due
to the larger visual field used in colour matching experiments, the colour sensation in an illuminated
environment is approximated better. Thus, in visual experiments with a visual field larger than 4◦, it is
recommended to apply the 10◦-CMFs to compute the tristimulus values. However, the 2◦-CMFs and
hence the CIExy-1931 colour space are commonly used in the literature where only the specification of
an SPD’s chromaticity is of interest.

Individual observers may have distinct colour sensations, although a fixed polychromatic light spec-
trum from a multi-channel LED luminaire is presented. This effect is denoted as observer metamerism
[371]. One reason is that the human’s foveal L:M cone ratio [381–385] can vary between individuals.
Secondly, the human’s lens and macular transmission (see Section 2.2.2) are subject to individual
variations, affecting the colour sensation [386]. In other words, the individual CMFs of a human observer
could deviate from the CIE standard observer [371].

An essential question in colour research is how large the distance between two chromaticity points
can be so that an observer can perceive a just noticeable difference (JND) in chromaticity. A significant
disadvantage of using the CIExy system is that the Euclidian distances between a reference point (xc, yc)
and a second chromaticity coordinate (x, y) at which a JND occurs are not uniformly distributed in the
colour space [377]. Hence, no uniform threshold can be defined for the Euclidian distance

∆xy =
√
(x− xc)2 + (y− yc)2 (3.4)

between the CIExy-1931 chromaticity coordinate (x, y) and a reference (xc, yc) for preventing a noticeable
difference in colour sensation. In 1942, David MacAdam found that the regions in the CIExy colour
space where the chromaticities cannot be distinguished have the shape of an ellipse, which vary in size
and orientation depending on the position of (xc, yc) [377, 387]. The regions where no colour difference
is visible are denoted as McAdam ellipses. In spectral optimisation, tolerance values need to be set to
define how far the chromaticity coordinate (x, y) of an optimised spectrum can differ from the target
chromaticity point (xc, yc). Usually, one wants to select the tolerance so that no colour difference is
visible between the selected target chromaticity point and the optimised one.

In order to retrieve a colour space in which the information is provided whether two chromatic-
ity coordinates can be visually distinguished from each other [388], the CIE uniform chromaticity
scale diagram CIEu’v’-1976 was introduced [377]. The McAdam ellipses can be deduced to circles
in the CIEu’v’-1976 colour space and are perceptually more uniform [377] for white light sources
with chromaticity coordinates placed near the Planckian locus [389]. To project CIExy chromaticity co-
ordinates into the CIEu’v’-1976 colour space, the transformations in Equation (3.5) can be used [377, 378].

u′ =
4X

X + 15Y + 3Z
=

4x
−2x + 12y + 3

v′ =
9Y

X + 15Y + 3Z
=

9y
−2x + 12y + 3

(3.5)

According to the CIE TN 001:2014, for the JND regions in the CIEu’v’-1976 colour space, the definition of
the n-step MacAdam circle should be applied. The radius of a n-step MacAdam circle can be computed
with n · 0.0011 (Fig. 3.3) [389]. If the Euclidean distance between two CIEu’v’-1976 chromaticity points
is ∆u′v′ = 0.0011 · 1.18 ≈ 0.0013, no chromaticity difference is visible with a probability of 50 % [389].
Thus, if the chromaticity coordinate of an optimised spectrum lies within one McAdam step, where
the target chromaticity point (xc, yc) is the centre, an observer may not perceive a colour difference as
∆u′v′ = 0.0011 is below the absolute threshold.
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ii) Using the correlated colour temperature as proxy for chromaticity: Although the human’s colour
sensation in response to a spectral power distribution can be identified using the CIExy-1931 or CIEu’v’-
1976 colour space, it is familiar to report the chromaticity of white light sources using a correlated
colour temperature (CCT). The definition of colour temperature is coupled to the emitted spectra of
a Planckian (blackbody) radiator. According to the CIE 015:2018 (Annex E) [390], the spectrum of the
blackbody radiator can be calculated using the formula

Le,λ(λ, T) =
c1 · λ−5

π

[
exp

( c2

λ · T
)
− 1
]−1

, (3.6)

where c1 = 2πhc2 and c2 = hc/k with h as Planck’s constant. For colourimetric applications, the constant
c1 can be neglected since, for such cases, only the relative SPD is of interest (Fig. 3.5). The chromaticity
coordinates of the SPDs can be computed and plotted into the CIExy-1931 colour space, for example.
The result is a curve denoted as the Planckian locus, with which CIExy-1931 chromaticity coordinates
can be linked to a colour temperature in Kelvin (Fig. 3.5). For example, if the chromaticity point of a test
light source is placed directly on the locus, it is handier to report the associated colour temperature
instead of the (x, y) coordinates. For illustration, the standard illuminants D55, D65, D75 and A were
used as test light sources and their chromaticity coordinate was plotted into the CIExy-1931 colour
space (Fig. 3.5), showing how the chromaticities are linked to the CCT values of the blackbody radiator.
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Figure 3.5: a) Emitted spectra of a blackbody radiator in the visible wavelength range λ ∈ [380 nm, 780 nm] for
CCTs between 2000 K and 4000 K. The spectra were normalised to have an equal energy at λ = 555 nm. With rising
CCT, the spectral power in the long-wavelength range decreases but increases in the short-wavelength range.
Therefore, as the CCT increases, a light source is perceived towards cool-white. b) Spectral power distribution of
the standard illuminants D55, D65, D75 and A, which are used as test light sources for computing the chromaticity
coordinates. The standard illuminants’ spectra were normalised using the maximum value of each spectrum. c) The
chromaticity coordinates of the standard illuminants were calculated and plotted into the CIExy-1931 colour space.
As a reference, the Planckian locus was added into the colour space.

The term correlated colour temperature should be used for chromaticity coordinates, placed above or
below the locus. Since the chromaticity points lie outside of the locus, the CCT is calculated using the
Judd lines, which are in the CIEuv-1960 colour space orthogonal to the Planckian locus [391, 392]. The
associated CCT of a chromaticity coordinate is then defined by the intersection of the corresponding
Judd line with the Planckian locus. Therefore the CCT can also be used to define the chromaticity
of white light sources if the additional information regarding the orthogonal distance (Duv) to the
Planckian locus is provided. If the chromaticity coordinate is below the locus, the Duv value becomes
negative (Fig. 3.5a). As reported by D. Durmus [393], the distance of a test light source’s chromaticity
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coordinate (u′, v′) to the Planckian locus (u′T, v′T) can be maximally

∆u′v′ =

√
(u′T − u′)2 +

4
9
· (v′T − v′)2 = 0.05, (3.7)

otherwise the association to a CCT value is not valid. To calculate the CCT from a chromaticity coordi-
nate of a test light source, different formulas have been proposed in the literature for approximation
[394–403]. For example, C. McCamy [397] proposed the third-order polynomial equation

CCTApprox = 449 ·
(

x− 0.3320
y− 0.1858

)3
+ 3525 ·

(
x− 0.3320
y− 0.1858

)2
+ 6823.3 ·

(
x− 0.3320
y− 0.1858

)
+ 5520.33, (3.8)

where x and y are the chromaticity points of the light source from which the CCT needs to be computed.
The approximation error of Equation (3.8) is between −4.25 K and 3.4 K for the CCT range 2105 K ≤ T
≤ 8000 K [397]. For CCTs greater than 10 000 K, the formula should be avoided as the estimation error
at 12 500 K, for example, is 388 K [397]. The formula of Y. Ohno [399] or the iterative approach by Li et
al. [401] can be used for more accurate calculations. In this work, the method by Li et al. [401] will be
used, which provides with a tolerance of 10−3 K the most reliable approximation of the CCT [393].

In Section 3.3.4, the chromaticity of different light spectra may be reported using the CCT in combina-
tion with the Duv distance to the Planckian locus, as this is more intuitive [404]. However, specifying a
spectrum with CCT and Duv is not recommended for non-visual research purposes, as only a limited
statement can be made about the level of melanopic excitation. Indeed, a higher CCT is associated with
an increase in melanopic radiance, but with multi-channel LED luminaires, even at a steady CCT with
fixed Duv, the melanopic radiance can be modulated by up to 65 % [107]. Therefore, the spectra used for
the pupil experiments in Chapter 4 and Chapter 5 are additionally specified using the α-opic values,
which is a common practice for non-visual response related investigation [405].

iii) Quantifying the colour rendering of light spectra: Artificial lighting is used to illuminate and
render objects in an environment. Thus, one proxy for the quality of an SPD depends on how coloured
objects with different spectral reflection factors R(λ) are rendered. When using multi-channel LED
luminaires, an object’s saturation (also denoted as chroma or gamut) and hue can be affected depending
on a light’s emitted spectral shape. In 1974, the colour rendering index (CRI) was standardised to
evaluate a light’s quality for the colour appearance of coloured samples [406] using a single score. Most
of the colourimetric methods for evaluating light sources apply a reference light representing the ideal
rendition properties for coloured sampled with which a test light source is compared. As reference
light, the CRI applies the Planckian radiator (Eq. 3.7) for CCTs below 5000 K and the mathematical
CIE daylight model for CCTs above 5000 K [407]. In Fig. 3.5b, the daylight illuminants are plotted for
5500 K, 6500 K and 7500 K. According to the CIE 15:2004 [378], daylight spectra for different CCTs can
be computed using the formula

S(λ) = S0(λ) + M1(xD, yD) · S1(λ) + M2(xD, yD) · S2(λ), (3.9)

where S0(λ), S1(λ) and S2(λ) are pre-defined functions, which are reported in the CIE 15:2004 [378]. The
parameter M1(xD, yD) and M2(xD, yD) can be computed using the CIExy-1931 chromaticity coordinates
of the daylight’s target CCT with

M1 =
−1.3515− 1.7703 · xD + 5.9114 · yD

0.0241 + 0.2562 · xD − 0.7341 · yD
,

M2 =
0.0300− 31.4424 · xD + 30.0717 · yD

0.0241 + 0.2562 · xD − 0.7341 · yD
.

(3.10)
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The chromaticity coordinate xD can be calculated using the formula

xD =





−4.6070·109

(T)3 + 2.9678·106

(T)2 + 0.09911·103

(T) + 0.244063, if 4000 K ≤ T ≤ 7000 K

−2.0064·109

(T)3 + 1.9018·106

(T)2 + 0.24748·103

(T) + 0.237040, if 7000 K < T ≤ 25 000 K,
(3.11)

where T is the target CCT of the daylight illuminant in Kelvin. Then, the chromaticity coordinate yD is
calculated with Equation (3.12).

yD(T) = −3.000 · x2
D + 2.870 · xD − 0.275 (3.12)

The CRI Ra method is based on the idea to compute the colour shift ∆Ei of eight Munsell colour
samples i = 1, . . . , 8 under a test light (ut,i, vt,i) and a reference light (ur,i, vr,i) with the same CCT [408].
For calculating the chromaticity coordinates, the Munsell colour samples’ reflected spectra from the
reference and test light are used, respectively (Eq. 3.2). The Euclidian distance between (U∗t,i, V∗t,i, W∗t,i)
and (U∗r,i, V∗r,i, W∗r,i) is computed in the CIEU*V*W*-1960 colour space after correcting for chromatic
adaptation using the Von Kries transformation [379, 407]. Then, by using the colour differences ∆Ei,
the special colour rendering index Ri = 100− 4.6 · ∆Ei can be calculated [408] for each of the eight
Munsell colour samples i = 1, . . . , 8. Finally, the general CRI Ra can be calculated, which is defined as
the arithmetic mean of the eight Ri values (Eq. 3.13).

Ra =
1
8

8

∑
i=1

Ri (3.13)

The maximum CRI Ra value is 100 and indicates that, on average, no colour shift of the Munsell samples
between the reference and the test light source can be perceived for the CIE standard observer [409]. A
CRI Ra of 80 is considered as the minimum requirement for indoor lighting [409, 410]. However, visual
appearance experiments reveal that with a CRI Ra of 95, most observers may not perceive a colour
difference between the reference and test light [409]. Although the CRI Ra is widely used, the metric has
several shortcomings when evaluating polychromatic LED spectra from multi-channel LED luminaires.
The slight peaks by the narrowband chromatic LEDs [406, 411] could lead to flawed evaluations due
to the arithmetic mean of the CRI Ra and the lower number of the applied Munsell samples [409].
Additionally, for large colour differences ∆Ei, the Ri value can become negative. Due to these mentioned
and several other limitations of the CRI Ra (see also Houser et al. [409]), according to the CIE 224:2017
[412], it is recommended to use the colour fidelity index Rf for scientific purposes.

The colour fidelity index Rf is in its intent similar to Ra [413], but due to methodical updates the Rf

value becomes more reliable. Firstly, for computing the Rf metric, 99 colour samples are applied instead
of eight [413], allowing for an unbiased evaluation of colour rendering. Secondly, when calculating
Ra, the reference is switched from the blackbody radiator to the daylight model at 5000 K, whereby
the Rf values provides a smooth transition between 4000 K and 5000 K [413]. Thirdly, the colour shifts
are computed in the CAM02-UCS colour space [406], which leverages the 10° CMFs (1964) [379] and
is perceptually more uniform than CIEU*V*W* [406], allowing to approximate the human’s colour
sensation better. Therefore, this work leverages the colour fidelity index Rf (TM-30-20) as a proxy for
colour rendering, which is also in accordance with the CIE recommendation [412]. Note that there are
several other methods in colourimetry for evaluating the colour quality or visual preference of a light
source in an illuminated environment, which are somewhat outside this work’s scope. The interested
reader is referred to the reviews by Houser et al. [411], David et al. [404, 414] and M. Royer [413].
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iv) Metrics for estimating nocturnal melatonin suppression and other non-visual responses: Early
after the discovery of the ipRGCs, Brainard [254] and Thapan [415] demonstrated that nocturnal
melatonin suppression in humans can be affected by light. Thus, in addition to metrics related to
visual perception, a new metric was needed for quantifying light-induced non-visual responses (see
Section 2.2.2). The initially introduced non-visual related metrics focused on describing the nocturnal
melatonin suppression. For this, Gall and Bieske [416] derived a circadian sensitivity function C(λ)
using the data from Brainard [254] and Thapan [415] (see Fig. 2.6f). The proposed C(λ) function has
a peak sensitivity at 460 nm [417, 418]. In 2009, C(λ) [416] was incorporated into the DIN V 5031-100,
allowing to determine the biological effectiveness of light with the circadian action factor (CAF) acaf (Eq.
3.14) or the circadian efficiency of radiation (CER) acer (Eq. 3.15).

acaf =

∫
λ C(λ) · S(λ) dλ∫
λ V(λ) · S(λ) dλ

(3.14)

acer =

∫
λ C(λ) · S(λ) dλ∫

λ S(λ) dλ
(3.15)

The introduced principle by the DIN V 5031-100 involved that a light spectrum S(λ) is weighted with
the sensitivity function for nocturnal melatonin suppression C(λ) and integrated across the visible
spectrum range to obtain a measure of non-visual effectiveness; hence, Xbiol =

∫
λ C(λ) · S(λ) dλ. In

spectral optimisation, often, the ratio between a V(λ)-weighted spectral power distribution and Xbiol is
computed to estimate the balance between the visual and non-visual excitation (Eq. 3.14). Furthermore,
in applied office lighting, it is of interest to generate spectra with the highest amount of non-visual
excitation while keeping the energy consumption low, which can be evaluated using the acer metric (Eq.
3.15) [366, 418]. Mark S. Rea et al. [419–422] concluded from the ipRGCs’ neurophysiological circuitry
[273] that a metric on light-induced nocturnal melatonin suppression needs to integrate the outer retinal
photoreceptor’s opponent input to the ipRGCs.

Therefore, Rea et al. (2005) [420] proposed a novel sensitivity function based on the data of Brainard
[254] and Thapan [415], exhibiting a sensitivity drop around 500 nm to consider the ipRGCs’ opponent
cone input. The metric was denoted as circadian stimulus (CS) and was updated several times [423]
in 2010, 2012, 2018, 2020 and 2021 [419, 421, 422, 424, 425] to provide a better estimate of nocturnal
melatonin suppression or to integrate additional parameters like the light’s exposure time. According
to the circadian stimulus’ concept (version 2018) [419], the amount of melatonin suppression can be
computed in two steps. Firstly, the so-called circadian light CLA needs to be calculated using the formula

CLA =





1548
[∫

λ smel(λ) · Ee(λ) dλ +

(
0.7 · BY− 3.3 ·

(
1− e

−
∫

λ V′(λ)·Ee(λ)dλ
6.5

))]
, if BY > 0

1548
∫

λ smel(λ) · Ee(λ)dλ, if BY ≤ 0,
(3.16)

where BY is defined as
∫

λ
ssc(λ)
mp(λ) · Ee(λ)dλ− 0.2616 ·

∫
λ

V(λ)
mp(λ) · Ee(λ)dλ. The remaining values [421] in

Equation (3.16) are defined as

Ee(λ) = SPD in W m−2 nm−1,

mp(λ) = Macular pigment transmittance according to Snodderly et al. (1984) [426],

smel(λ) = Melanopsin sensitivity (corrected for pre-receptoral filtering),

ssc(λ) = S-cone sensitivity according to Smith and Pokorny (1975) [427],

V(λ) = Photopic luminous efficiency function and

V′(λ) = Scotopic luminous efficiency function.
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The CLA value was normalised to the CIE standard illuminant A (see Fig. 3.5b), leading to a CLA of
1000 at a photopic illuminance Ev of 1000 lx for such an illuminant [421]. A sigmoidal function, defined
as circadian stimulus, was derived by Rea et al. to predict the nocturnal melatonin suppression for
one-hour light exposure [421]. The CS metric can be computed using the formula

CS = 0.7− 0.7

1 +
(

CLA
355.7

)1.1026 . (3.17)

As the CS is equivalent to the percentage of nocturnal melatonin suppression, a CS of 0.5 corresponds
to a 50 % reduction in melatonin after one-hour light exposure. However, light can also positively
influence task-related performance, sleepiness, heart rate, body temperature or alertness [66, 428–431].
As discussed in Section 2.2.2, such non-visual responses can be primarily attributed to the ipRGCs, which
also control the equilibrium-state pupil size. Originally, the CS was developed to quantify nocturnal
melatonin suppression only; hence, it might not be appropriate to apply this metric as a proxy for other
non-visual responses such as the circadian phase shift [432], although Rea et al. [419] report that an
illumination (during the morning hours) with a CS score of at least 0.3 could improve sleep quality.

In the CIE S 026/E:2018 and the DIN SPEC 5031-100, it is recommended to use the melanopic
sensitivity function of the ipRGCs, which can also be combined with the other α-opic metrics [428].
The proposed α-opic CIE concept provides a more general description of light-induced physiological
responses [129]. The melanopic equivalent daylight illuminance ED65

mel (melanopic EDI), derived by nor-
malising the melanopic irradiance with the CIE standard Illuminant D65 (see Fig. 3.5b), is considered as
an essential proxy to describe melatonin suppression, the circadian phase shift and the equilibrium-state
pupil size for longer and sustained light exposure conditions [268, 288, 428, 433].

ED65
mel =

(
1.3262
1000

)−1 ∫ 780 nm

380 nm
smel(λ) · Ee(λ) dλ (3.18)

The melanopic EDI ED65
mel , also denoted as melanopic illuminance, depends only on the ipRGCs but is in

its intent comparable to the circadian light metric CLA. Thus, the melanopic EDI can be integrated as a
predictor into a sigmoidal function to model nocturnal melatonin suppression [428, 433]. A drawback in
previous modelling attempts was that no distinction was made between artificially dilated and natural
pupil size, as Brainard and Thapan’s data were collected using artificially dilated pupils. For example,
Spitschan et al. [434] found no evidence for an S-cone contribution to acute melatonin suppression,
which might be attributed to the experimental conditions [428]. In 2022, Gimenez et al. [435] analysed 29
peer-reviewed publications and reported that above an illuminance Ev of 21 lx, the melanopic EDI seems
to be the best predictor for nocturnal melatonin suppression. Further, Gimenez et al. [435] proposed a
sigmoidal function (here denoted as MS) to predict melatonin suppression as a function of a dilated
or undilated pupil dP,state (0 = no, 1 = yes) and duration of the light’s exposure ∆tmin in minutes (Eq. 3.19).

MS =
−100

1 +
(

log10(ED65
mel ·106)

9.002−0.008·∆tmin−0.462·dP,state

)7.496 + 100 (3.19)

In this work, the melanopic and α-opic metrics are used since the pupil light response is of interest. Using
a melatonin suppression metric would be unusual, as the pupil’s control circuitry is different. Predicting
the pupil’s size using the melatonin sensitivity function was only attempted in one publication [436]
(see Section 4.2), which might be because the CIE S 026/E:2018 was not published at that time.
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3.2b Current state of spectral optimisation and research question

Optimisation methods attempt to find a variable x in the decision space Rn to maximise (maxx f (x)) or
to minimise (minx f (x)) the function f : Rn → R. In a multi-objective optimisation problem several func-
tions need to be minimised, formulated as min f (x) = min [ f1(x), f2(x), . . . , fk(x)] with x ∈ Rn, where
k defines the number of the objectives. The discipline of spectral optimisation primarily deals with such
multi-objective problems in which, for example, a spectrum is sought that simultaneously features a spe-
cific chromaticity coordinate (xc, yc), luminance Lv,c and colour fidelity index Rf,c. In the following, these
objectives are declared using the indice c. The luminaire’s light spectrum is the result of a set of code
values XCH = {XCH,1, XCH,i, . . . , XCH,N} for each LED channel i in a N-channel lighting system (Fig. 3.4).
Thus, the generated spectral power distribution SLum(λ) with λ ∈ [380 nm, 780 nm] can be defined as
fLum: XCH → SLum(λ), where fLum corresponds to a function describing the additive mixing behaviour
of the individual LED channels in a lighting system. By using the definition fLum: XCH → SLum(λ), the
light metrics fCIExy: XCH → (xLum, yLum), fLv: XCH → Lv,Lum and fRf: XCH → Rf,Lum can be computed
from the luminaire’s code values XCH, respectively. Then, for the spectral optimisation task, the so-called
cost functions need to be derived, defined as

∆ fCIExy(XCH) =
√
(xLum(XCH)− xc)2 + (yLum(XCH)− yc)2,

∆ fLv(XCH) = |Lv,Lum(XCH)− Lv,c|,
∆ fRf(XCH) = |Rf,Lum(XCH)− Rf,c|,

(3.20)

which can be programmatically implemented to solve the optimisation problem

min f (XCH) = min
[
∆ fCIExy(XCH), ∆ fLv(XCH), ∆ fRf(XCH

)
]. (3.21)

Based on a literature review, the number, types and combinations of lighting metrics used as objectives
for spectral optimisation were summarised (Table 3.1). The initial generation of optimisation papers
mainly worked on designing spectra that provide high colour rendering but feature a low energy
consumption, an essential aspect for office lighting systems. In such two-sided optimisation problems,
the luminous efficacy of radiation (LER) was used to quantify energy efficacy and the CRI was leveraged
as a proxy for colour quality [353, 363, 365, 437, 438]. In 2012, Soltic & Chalmers [408] noted that the CRI
has some drawbacks and applied the colour quality scale (CQS) as an alternative to the CRI. However,
from the conducted literature review (Table 3.1), it can be observed that the CRI is still a widely used
metric in spectral optimisation tasks [107, 362, 369, 439, 440], which may be because more experience
exists for setting an appropriate threshold when using the CRI.

For the first time, the works of Zukauskas et al. [366], Oh et al. [242], Zheng et al. [361], Dai et al. [362]
(2016) and Q. Yao [441] leveraged in addition to energy efficiency and colour rendering, a non-visual
metric for spectral optimisation (Table 3.1), leading to a three-sided optimisation problem. The CER
or the CAF, which applies the sensitivity of melatonin suppression C(λ) defined by Gall and Bieske
[416], was used as proxy for the light’s non-visual impact. However, Dai et al. [369] and Tian et al. [417]
used the CS metric in their spectral optimisation tasks. As Rea et al. [419] recommended a CS threshold
of at least 0.3 for lighting purposes, it simplified the selection of a threshold when using this metric.
In 2020, leading researches in the field of non-visual aspects of light recommended a melanopic EDI
of at least 250 lx [442]. The provided threshold may lead to a more frequent use of the melanopic EDI
in spectral optimisation, as the CS was recently used as metric more often (Table 3.1). Regarding the
selection of objectives, it can be observed that the number of applied lighting metrics is increasing as in
today’s modern indoor lighting, spectral optimisation has to combine the aspect of energy consumption,
colour rendering, visual preference and the non-visual impact of a light spectrum [107].
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Table 3.1: Summary of the conducted literature review regarding the topic of spectral optimisation for multi-channel
LED luminaires. The used number of LED channels, the applied optimisation method and the leveraged objectives
by different research groups are listed in the table. Only peer-reviewed publications were considered for the
literature review. The preliminary work on the literature review presented in this table was done in the master
thesis of R. Al Tunisi [443] and A. Kramer [444], supervised by Babak Zandi.

Author (Year) Number of LEDs Computation time Method Objectives

Zukauskas et al. (2002) [437] 2 to 5 - Exploration method LER, CRI
Ries et al. (2004) [353] 4 - Analytical method CIExy-1931, LER, CRI
Y. Ohno (2005) [363] 3 and 4 - Exploration method LER, CRI
Soltic & Chalmers (2012) [408] 4 and 6 - Differential Evolution CQS, CRI, CCT
A. Chalmers (2012) [438] 4 - Differential Evolution LER, CRI
Zukauskas et al. (2012) [366] 2 - - CAF, CER, LER
Oh et al. (2014) [242] 4 - - CAF, CRI, LER
Soltic & Chalmers (2015) [439] 3 and 4 - Differential Evolution CCT, CRI
Bulashevich et al. (2015) [365] 3 and 4 - Nelder-Mead method CRI, LER
Wu et al. (2015) [445] 4 - Analytical method CIExy-1931
Zheng et al. (2016) [361] 3 - - CAF, CRI, LER
Dai et al. (2016) [362] 3 - Interior-point method CAF, CRI
Burgos-Fernandez et al. (2016) [372] 31 - Interior-point method SPD
Q. Yao (2016) [441] 4 - Analytical method CER, LER, CRI
Zhang et al. (2016) [373] 17 - Differential Evolution SPD
Afshari et al. (2016) [354] 5 - Gradien-based method CRI, CQS, LER, CIELab
Zhang et al. (2017) [364] 4 - Differential Evolution TM30, CRI, LER
Dai et al. (2018) [369] 4 - Analytical method CS, LER, CRI, CCT, Ev

Nie et al. (2019) [446] 5 - Analytical method CIExy-1931, CAF, CRI
Soltic & Chalmers (2019) [355] 4 - Differential Evolution TM30, CRI, COI, LER
Saw et al. (2020) [356] 4 and 5 - Genetic Algorithm TM30, CRI, LER, MELR
Aderneuer et al (2021) [352] 5 - - CCT, CRI, CS
Tian et al. (2021) [417] 4 - Analytical method CCT, CRI, LER, CAF, CS
Marin-Donagueda et al. (2021) [440] 4 ∼15 min Genetic Algorithm CCT, Duv, CER, CRI
Evequoz et al. (2021) [370] 4 and 5 - Analytical method CIExy-1931, α-opic
Zandi et al. (2021) [107] 6, 8 and 11 - see Section 3.2.3 CIExy-1931, CCT, CRI, Lv, α-opic
Zandi et al. (2021) [108] 6, 8 and 11 - see Section 3.2.3 CIExy-1931, CCT, TM30, Ev, MEDI, MDER

TM30: Metrics specified in the TM30-20 standard like Rf of Rg, SPD: Spectral matching related optimisation.
LER: Luminous Efficacy of Radiation, CRI: Colour Rendering Index, CCT: Correlated Colour Temperature.
CQS: Colour Quality Scale, CAF: Circadian Action Factor, CER: Circadian Efficacy of Radiation, CS: Circadian Stimulus.
MEDI: Melanopic Equivalent Daylight Illuminance, MDER: Melanopic Daylight Efficacy Ratio.

The number of LED channels in previous works ranged from two to six. However, Burgos-Fernandez et
al. [372] and Zhang et al. [373] used 31 and 16 LED channels, respectively, as they optimised light for
spectral matching purposes. Recently, Saw et al. [356] reported that across several CCT steps, a five-
channel LED luminaire provides a higher variation for a melanopic related metric than a four-channel
system. In Zandi et al. [107] a six-, eight- and eleven-channel LED system were compared regarding
the melanopic tuning limits when considering a CRI > 80. It was reported that with increasing LED
channels, one is more flexible in choosing chromaticities above the Planckian locus while maintaining
a higher level of melanopic radiance [107]. Especially for metameric conditions where the melanopic
radiance is varied without affecting the chromaticity and (il)luminance of a spectrum, an eleven-channel
luminaire has more possibilities than the lower number of tested LED channels [107, 108].

The principle of optimising the LED channels’ code values to achieve distinct lighting conditions has
been solved in the literature using either analytical approaches, gradient-based methods, the interior-
point algorithm, or meta-heuristic optimisation techniques [356] such as the multi-objective genetic and
differential evolution algorithm (Table 3.1). Other population-based approaches like the pattern-search
or particle-swarm optimisation method are also convenient [447]. Analytical methods compromise
individually derived linear or non-linear equations for linking the LED’s code values with the respective
lighting objectives. Such approaches can operate in real-time [448, 449] but they suffer flexibility as the
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equations are adapted to a specific optimisation problem and luminaire system. In addition, there is a
risk that the computed solution is a local minimum rather than the global optimum.

Gradient-based methods [450] and the interior-point algorithm [362, 372] can be grouped into the
class of iterative approaches, in which from an initial starting point, the code values are varied in the
direction of the greatest steepness or gradient. These methods are efficient in terms of computation time
but require a smooth objective function and enough user experience in choosing the right starting point.
Due to the methodology, only the local minimum, close to the initial condition, can be optimised, which
necessarily does not correspond to the global optimum [356]. These methods are suited when using
fewer LED channels in combination with single-objective optimisation problems.

Population-based meta-heuristic methods such as the genetic algorithm or differential evolution are
widely applied approaches, capable of solving multi-objective problems and finding the global optimum
without any requirement on the objective functions [356, 451]. These stochastic methods need a randomly
chosen initial starting population of code values, which, similar to an evolutionary principle to reach the
„survival of the fittest“, perform the operations: mutation, crossover, recombination and selection on the
population’s individuals(28)to approach the global optimum [356, 373, 447, 452]. Meta-heuristic methods
are commonly applied in the literature of spectral optimisation [356] due to their flexibility in terms of
the LED channels’ number and capability of working with different combinations of objective functions.
However, a major drawback is the required computation time [447]. For example, Marin-Donagueda et
al. [440] stated that the optimisation of a single set of objectives took approximately 15 minutes, even
though only a four-channel LED luminaire was used.

Since this work utilised a 15-channel LED luminaire and it is necessary to optimise spectra based
on different combinations of lighting metrics, it can be assumed that the computation time is a limit-
ing factor when using state-of-the-art meta-heuristic optimisation methods. For example, with such
a method, it might not be possible to perform more extensive simulations to analyse how different
light metrics correlate across a grid of chromaticity coordinates. Therefore, a new deep learning-based
spectral optimisation procedure was developed, which could provide the advantages of meta-heuristic
methods but requires less computation time. The method’s scope of application might go far beyond the
topics covered in this work, as it could allow for the first time a black-box optimisation of multi-channel
LED spectra in real-time for either experimental purposes or intelligent smart lighting systems in office
environments. For example, by using this method, the largest count n of optimised metameric spectra
(n > 1.2 million) from different multi-channel LED systems and luminance levels was calculated and
published, which would have previously taken an unreasonable amount of computation time [107]. In
the following, a digital twin of the multi-channel LED luminaire is derived and evaluated, a crucial
step in conducting spectral optimisation. Then, a multi-objective genetic algorithm is benchmarked to
estimate its computation time with real-world problems. Finally, the developed deep learning-based
spectral optimisation framework is presented and compared with the benchmark results of the genetic
algorithm in terms of computation time and quality of solutions.

(28) The interested reader with regard to the mathematical method of the genetic and differential evolution algorithms is referred
to the work of Chalmers & Soltic [408, 438] or Zhang et al. [373]. A review on multi-objective optimisation frameworks with
evolutionary methods is provided by Emmerich & Deutz [452] and Cui et al. [451]



56 optimisation of multi-channel led spectra

3.2.1 Developing a digital twin of the LED luminaire

In an optimisation pipeline, the code values XCH are optimised iteratively in a loop (see Fig. 3.4). After
each iteration step k, the values of the cost function (Eq. 3.20) need to be computed to check whether
the actual value of the used lighting metrics converges to the set value. The magnitude of difference
is calculated using the ∆ fCIExy(XCH), ∆ fLv(XCH) and ∆ fRf(XCH) values, which need to be within a
pre-specified tolerance range to terminate the optimisation loop (see Fig. 3.4). Starting from a randomly
initialised population XCH,0 ∈ RSxN of code values, where S defines the size of the population, the
optimisation loop begins and distinct operations are performed in each iteration k to approach to the
cost functions’ minima. The code values XCH,k of the LED luminaire are adjusted in each iteration cycle
k; hence, the cost functions need to be re-evaluated accordingly. For this, the code values XCH,k are
inserted into the luminaire and the generated spectrum SLum,k(λ) is measured to subsequently calculate
the ∆ fCIExy(XCH,k), ∆ fLv(XCH,k) and ∆ fRf(XCH,k) values for the optimisation’s next iteration cycle. As
the spectra are repeatedly measured on the actual luminaire during each iteration until the tolerance
thresholds are met (see Fig. 3.4), this approach is denoted as online optimisation.

The optimisation’s iteration steps are slowed by the spectral measurements, making such a technique
time consuming. Therefore, a digital twin fLum,DT(XCH) of the actual luminaire fLum(XCH) is often
developed so that fLum,DT(XCH) ≈ fLum(XCH). In other words, a model fLum,DT(XCH) of the luminaire
is used to predict a simulated spectrum SLum, DT(λ) from the code values XCH. As the code values are
optimised using the luminaire’s model rather than the actual one, it is denoted as offline optimisation.
The advantage is that the spectral measurements are bypassed and more importantly, vectorised
operations are possible when using the fLum,DT function. Both aspects reduce the spectral optimisation’s
computation time. However, to derive a digital twin fLum,DT(XCH) of a multi-channel LED luminaire,
the SPD of each individual LED channel needs to be modelled. For this, the LED channels’ base spectra
are measured as function of discrete code value steps (see Fig. 3.2). Then, the missing spectra for the
intermediate code value steps are interpolated for each wavelength λ ∈ [380 nm, 780 nm] (see Fig. 3.6).

Figure 3.6: The luminaire’s digital twin was developed
by interpolating the spectral radiance values of the base
spectra, one for each wavelength and available LED
channel using a polynomial equation. The figure shows
the measured base spectra of the fifth LED channel
(λPeak = 530 nm). Using the radiance values of the base
spectra, 401 models (one for each wavelength) were
derived for the duty cycle to radiance behaviour of each
wavelength λ ∈ [380 nm, 780 nm]. A model of this LED
channel as a function of the code values can be derived
by chaining the 401 models together. This procedure
was also done for the remaining LED channels, which
were then additively combined to derive the luminaire’s
digital twin.
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The spectral deviation between the luminaire’s digital twin and the actual one should be low when the
optimised code values need to be applied for a real-world experiment. Therefore, it is recommended
to use a higher-order polynomial equation for interpolation to consider the LED’s peak wavelength
(Fig. 3.2) and chromaticity shift (Fig. 3.3) with increasing duty-cycle. In Fig. 3.6, for example, it can be
observed that at 630 nm, the relation between the duty cycle and the LED’s radiance can be described
well when using the polynomial fitting function. After the LED channels have been modelled as a
function of the code values, the luminaire’s digital twin can be derived as an additive combination
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of the individual LED channel. In practice, spectra are optimised offline using a luminaire model
fLum,DT(XCH), whose calculated code values are then adjusted into the real luminaire fLum(XCH) for
further visual investigation with observers. Therefore, the discrepancy between the optimised spectrum
SLum, DT(λ) and the actual spectrum at the luminaire SLum(λ) should be in an acceptable range.

In this work, the offline optimisation method was leveraged to engineer the spectra for the pupil
experiments reported in Chapter 4 and Chapter 5. So it needs to be clarified how accurate the digital
twin of the developed 15-channel LED luminaire (see Section 3.1.1) is. To verify the accuracy, a set
of 20 different code values were inserted into the actual luminaire and the spectra were measured
using a calibrated Konica Minolta CS2000 spectroradiometer, respectively. Then, the identical code
values were adjusted into the digital twin of the 15-channel luminaire to retrieve the SLum, DT(λ) spectra.
Next, the Euclidian distance between the CIEu’v’ chromaticity coordinates ∆u′v′ and the luminance
deviation ∆Lv between the simulated spectra and the measured spectra of the luminaire were used as
metrics for benchmarking the accuracy. When using a multi-channel LED luminaire, mostly different
combinations of LED channels are leveraged for mixing arbitrary polychromatic spectra. Therefore, the
accuracy must be determined as a function of different sets of LED combinations. For benchmarking,
the twenty randomised code values were generated either for a 2-, 5-, 6- or 14-channel LED combination,
respectively. In Fig. 3.7a, the measured spectra for the different LED configurations are shown. The
applied LED channels are reported in (Table 3.2).
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Figure 3.7: The accuracy of the luminaire’s digital twin was evaluated by adjusting the identical code values into
both the real-world luminaire and the digital twin. Then, the CIEu’v’ chromaticity coordinates and the luminance
were calculated from the simulated spectrum and the measured one on the actual luminaire. The Euclidian distance
of the CIEu’v’ chromaticity coordinate and the luminance deviation were used as a measure of accuracy. a) To
generalise the benchmarking, different combinations of LED channels (2, 5, 6 and 14) were used to additively mix
the polychromatic spectra. A set of 20 randomised code values were generated for each LED combination, whose
measured spectra on the real-world luminaire are plotted in the figures. These spectra were used as a reference to
evaluate the accuracy of the digital twin. The applied LED channels are reported in Table 3.2. b) Chromaticity and
luminance shift between the digital twin and the actual luminaire when using the identical code values.

From the measured and the simulated spectra, the CIEu’v’ chromaticity coordinates were calculated.
Then, the chromaticity shift ∆u′v′ was derived using the Euclidean distance of each spectral pair. An
ideal luminaire model provides a chromaticity shift of ∆u′v′ = 0, meaning that when the optimised
code values are inserted into the real luminaire, the identical spectrum can be measured as it was
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computed with the offline optimisation. In Fig. 3.7b it can be observed, that the chromaticity shift ∆u′v′

of the twenty randomised spectral pairs for the 2-, 5- and 14-LED channels are within one McAdam-
step. The arithmetic mean of ∆u′v′ for the 2-channel, 5-channel and 14-channel LED combination is
1.96 · 10−4 ± SD 1.40 · 10−4, 4.55 · 10−4 ± SD 2.28 · 10−4 and 5.81 · 10−4 ± SD 1.42 · 10−4, respectively
(Table 3.2). The chromaticity shifts’ median of the 6-channel configuration is outside of one McAdam-
step. This is due to the fact that only chromatic LEDs were used, which are more sensitive to duty cycle
adjustments and its coordinates more affected by measurement inaccuracies. (see Fig. 3.3).

Table 3.2: Benchmarking results of the 15-channel luminaire’s digital twin. Twenty code value combinations for
each LED channel configuration were generated and inserted into both the real and the simulated luminaire. On
the real-world luminaire the spectra were measured using a calibrated Konica Minolta CS2000A and compared to
the simulated spectra of the digital twin. The deviation of the spectral pairs was then evaluated with the Euclidean
distance between the CIEu’v’ chromaticity coordinates ∆u′v′ and the luminance deviation ∆Lv. The reported values
are the arithmetic mean with its corresponding standard deviation, computed from the twenty spectral pairs. Note
that the values were not corrected from the measurement inaccuracies of the spectroradiometer. According to the
datasheet the CS2000A provides an accuracy in luminance of ±2 % (standard illuminant A), ±0 0015 for CIEx and
±0 001 for CIEy. However, as the base spectra and the test spectra were measured in one run, the accuracy in
repeatability is more of interest with ±0.15 % for the luminance and 0.0004 for the CIExy chromaticity coordinates.

Number of LED channels LED channels (λPeak, CCTλPeak, CCTλPeak, CCT) ∆∆∆u’v’ ∆Lv (cd/m2)∆Lv (cd/m2)∆Lv (cd/m2) ∆Lv, rel (%∆Lv, rel (%∆Lv, rel (%)

2 2700 K, 5500 K 1.96 · 10−4 ± SD 1.40 · 10−4 1.51 ± SD 0.80 0.78 ± SD 0.79

5 470 nm, 530 nm, 660 nm, 2700 K,
5500 K

4.55 · 10−4 ± SD 2.28 · 10−4 1.98 ± SD 1.15 0.57 ± SD 0.50

6 450 nm, 470 nm, 530 nm,545 nm,
630 nm, 660 nm

9.05 · 10−4 ± SD 2.92 · 10−4 1.56 ± SD 1.01 0.44 ± SD 0.34

14

420 nm, 450 nm, 470 nm, 505 nm,
530 nm, 545 nm, 590 nm, 630 nm,
610 nm, 630 nm, 660 nm, 2700 K,
4000 K, 5000 K, 5500 K

5.81 · 10−4 ± SD 1.42 · 10−4 5.76 ± SD 4.08 0.54 ± SD 0.44

The just noticeable difference of the human brightness perception follows approximately a logarithmic
function of second degree. For example, a deviation of 5 cd/m2 from an absolute luminance of 10 cd/m2

must be evaluated differently than such a deviation from 1000 cd/m2. Due to the logarithmic relationship
between perceived brightness and luminance, a higher luminance deviation is necessary at, for example,
1000 cd/m2 to perceive a brightness difference. Therefore, it is a better approach to consider the relative
difference in relation to the luminaire’s measured luminance when benchmarking the digital twin. In
Fig. 3.7b, it can be observed that the median of the relative luminance difference is less than one percent
for all LED configurations (Table 3.2).

Based on the reported results, it can be concluded that the developed digital twin of the 15-channel
luminaire is appropriate for offline optimisation procedures. If the computed code values are inserted
into the real-world luminaire, the averaged deviation in chromaticity is within one McAdam-step and the
relative error of the luminance is less than one percent (Table 3.2), allowing for an accurate reproduction
of the optimised spectrum in visual experiments. Due to the digital twin’s higher accuracy, it is possible
to mix arbitrary spectra outside of the laboratory without having to measure individual spectra using
a spectroradiometer. To simplify the process of spectral engineering, a graphical user interface (GUI)
was developed (see Fig. A.10), which enables to set the code values of the LED channels and visualise
the mixed polychromatic spectrum on the fly. In parallel, distinct lighting metrics are computed and
displayed in the GUI. When generating spectra manually, it is denoted as the manual adjustment
method, which is useful when only the chromaticity coordinate is applied as an objective. Spectral
optimisation is not needed for such a single objective as the spectra can be engineered manually using
the developed GUI. A screenshot of the GUI is provided in the supplementary materials (Fig. A.10).



3.2 rethinking spectral optimisation in lighting engineering 59

3.2.2 The genetic algorithm’s performance for spectral optimisation tasks

In this section, the genetic algorithm’s performance will be analysed as this meta-heuristic optimisation
approach is recommended in the literature for spectral optimisation tasks [154, 356, 408, 438]. At the
time of this analysis, the developed 15-channel luminaire (Section 3.1.1) was not ready; hence, a com-
mercially available 11-channel LED luminaire (Fig. 3.8a, b) from Thouslite was leveraged for the spectral
optimisation tasks. The luminaire’s base spectra were measured using a calibrated spectroradiometer
(Konica Minolta CS2000A). Further, the luminaire’s digital twin was developed using the discussed
approach in Section 3.2.1. In the spirit of open science, both the base spectra and the digital twin were
made public, available at the author’s GitHub repository(29).

Legend Optimisation
targetλPeak = 597 nm

λPeak = 638 nm

λPeak = 662 nm

CCT 4655 K

CCT 2740 K

380 480 580 680 780
Wavelength in nm

0

0.5

1

R
ad

ia
nc

e 
in

 a
.u

.

a) 11 Channel LED Luminaire
Chromatic - Channel 1 to 8

380 480 580 680 780
Wavelength in nm

0

0.5

1

R
ad

ia
nc

e 
in

 a
.u

.
b) 11 Channel LED Luminaire
Channel 9 to 11

0.2 0.3 0.4 0.5 0.6
CIEx

0.3

0.4

0.5

0.6

C
IE

y

c) CIExy-1931 colour space
Optimisation targets

λPeak = 419 nm

λPeak = 450 nm

λPeak = 475 nm

λPeak = 504 nm

λPeak = 521 nm

Figure 3.8: a), b) Base spectra of the 11-channel LED luminaire from Thouslite. The luminaire provides eight
chromatic channels, one phosphor-converted chromatic and two phosphor-converted white LEDs. c) Applied
chromaticity targets in the CIExy-1931 colour space, which were leveraged to benchmark the genetic algorithm. The
chromaticity targets were transformed into the CIEu’v’-1976 colour space for the spectral optimisation task.

The computation time for optimising distinct spectra was used as a measure to evaluate the genetic
algorithm’s performance. For this, ten CIEu’v’-1976 chromaticity coordinates, distributed along the
Planckian locus, and a luminance Lv of 220 cd/m2, were defined as target objectives (Fig. 3.8c). The
optimised spectra had to be within a tolerance range of ∆u′v′ < 0.0014 to the target chromaticity
coordinate, while the luminance was not allowed to deviate more than ±0.5 cd/m2. In Table 3.3, the
applied objectives and respective tolerance thresholds used for benchmarking are summarised. Several
solutions can be found when optimising multi-channel LED spectra with the objectives of chromaticity
and luminance. For example, it is possible to optimise at least 1000 spectra for the CIEu’v’ chromaticity
target (0.26166, 0.53168), which are all within the tolerance range ∆u′v′ < 0.0014 and fulfil the luminance
condition Lv = 220 cd/m2 ± 0.5 cd/m2 (Fig. 3.9).

Since the selected tolerances define approximately the threshold of the just noticeable difference, such
optimisation solutions can be considered as metameric. By using metameric spectra, the melanopic
illuminance could be varied without altering the light’s chromaticity or (il)luminance. For example, from
the set of optimised spectra (for a given target condition), one spectrum can be chosen featuring the
lowest melanopic illuminance ED65

mel,min and one with the maximum, defined as ED65
mel,max. The difference

between the upper and lower limit of the melanopic illuminance of a (metameric) spectral pair defines
the modulation range ∆ED65

mel = |ED65
mel,max − ED65

mel,min|, indicating the extent to which the melanopic
illuminance can be varied without affecting a light’s visual appearance with respect to chromaticity and
(il)luminance. In the literature, metameric spectra are considered as an essential avenue for realising
integrative lighting solutions, as they can combine an observer’s visual preference with the non-visual

(29) The luminaire’s digital twin, the implemented code to reproduce the benchmarking and the base spectra were made public.
Interested readers are referred to the author’s GitHub repository: https://github.com/BZandi/Spectral-Optimisation

https://github.com/BZandi/Spectral-Optimisation
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aspect of light [107, 108, 352, 453]. Such types of stimuli may also be leveraged, for example, to vary
the pupil size while keeping a light’s (il)luminance steady. Metameric spectra are essential for the next
generation of spectral optimisation tasks. Therefore, it was analysed how long the genetic algorithm’s
computation time is to find the maximum number of spectra that match the defined target objectives.
(Table 3.3). Additionally, the optimisation’s computation time to find the metameric pair that features the
maximum difference in ∆ED65

mel was evaluated. The latter metric gives rise to the quality of the optimised
spectra since a lower ∆ED65

mel value could indicate that the spectral optimisation procedure does not
provide all possible solutions for the defined objectives in Table 3.3.

Table 3.3: Summary of the used target objectives with which the genetic algorithm was benchmarked. Each objective
was repeatedly optimised (ten times) to specify the variability of the algorithm’s solutions.

Index of objective Luminance Lv (cd/m2)Lv (cd/m2)Lv (cd/m2) CCT (K) Duv CIEu’v’-1976 CIExy-1931 Tolerance conditions

1 220 2700 0.003 (0.26166, 0.53168) (0.46511, 0.42004) ∆Lv < 0.5 cd/m2, ∆u′v′ < 0.0014
2 220 2901 −0.024 (0.26215, 0.48942) (0.41088, 0.34092) ∆Lv < 0.5 cd/m2, ∆u′v′ < 0.0014
3 220 3147 0.015 (0.23975, 0.5391) (0.44832, 0.44804) ∆Lv < 0.5 cd/m2, ∆u′v′ < 0.0014
4 220 3147 −0.006 (0.24799, 0.51013) (0.41907, 0.38313) ∆Lv < 0.5 cd/m2, ∆u′v′ < 0.0014
5 220 3642 −0.027 (0.24589, 0.47342) (0.37504, 0.32093) ∆Lv < 0.5 cd/m2, ∆u′v′ < 0.0014
6 220 4386 −0.027 (0.23581, 0.46309) (0.3534, 0.30845) ∆Lv < 0.5 cd/m2, ∆u′v′ < 0.0014
7 220 4717 0.021 (0.2005, 0.51252) (0.36071, 0.4098) ∆Lv < 0.5 cd/m2, ∆u′v′ < 0.0014
8 220 5552 −0.015 (0.21771, 0.46197) (0.33128, 0.31242) ∆Lv < 0.5 cd/m2, ∆u′v′ < 0.0014
9 220 6702 0.039 (0.16752, 0.49707) (0.29843, 0.39357) ∆Lv < 0.5 cd/m2, ∆u′v′ < 0.0014

10 220 7443 0 (0.19641, 0.45661) (0.301, 0.311) ∆Lv < 0.5 cd/m2, ∆u′v′ < 0.0014

The spectral optimisation was performed repeatedly (ten times) for each target condition (Table 3.3)
to obtain the variability of the benchmarking results. As the optimisation’s termination criterion, an
iteration number of 200 was set. The decision space of the code values XCH = {XCH,1, XCH,i, . . . , XCH,N}
was restricted to be in the range 0 ≤ XCH,N ≤ 1023 as the luminaire’s PWM resolution is 10 bit. Further,
the population size XCH,Pop,0 was adjusted to 3000. A single iteration step of the genetic algorithm
required on average about 2.02 s± SD 0.39 s, which includes both the optimisation’s operations and the
computation of the cost functions(30). Note that the iteration’s computation time increases linearly with
the population size. Therefore, a population of 3000 was chosen as a trade-off between the computation
load and the possibility to optimise sufficient metameric spectra from the initial code values.

In Fig. 3.9, the genetic algorithm’s benchmarking results are reported for all objectives using ten
repetitions, respectively. Two points are highlighted in the plots. Firstly, the time at which the maximum
number of spectra that fulfilled the optimisation constraints was found (green point). Secondly, the
iteration’s number at which the maximum modulation ∆ED65

mel,max in melanopic illuminance is found (red
dot). On average, 1321± SD 1.37 solutions across all objectives were found after a mean computation
time of 380 s± SD 59 s, corresponding to a performance of approximately 3.58± SD 0.78 solutions per
second (Fig. 3.9). The average ∆ED65

mel,max value is 61 lx± SD 22 lx, computed after 111 s± SD 22 s, which
is earlier than the time-point at which the maximum number of solutions occurs (Fig. 3.9). Interestingly,
with increasing computation time, ∆ED65

mel decreases, although the number of solutions increases. Thus,
the number of solutions converges, but the maximum melanopic modulation ∆ED65

mel,max does not. Usually,
a detailed analysis for each iteration step as in Fig. 3.9 is not performed for spectral optimisation tasks,
carrying the risk of optimising a suboptimal pair of spectra for metameric applications. The lack of
convergence for finding the ∆ED65

mel,max value makes it necessary to re-analyse the populations after
each iteration, which is an additional amount of time that must be considered. Furthermore, due to
the variability of the optimisation results, it can be concluded that several optimisation runs might be
necessary for a single objective, which could impacts the overall computation time.

(30) The spectral optimisation was performed on an Intel Core i7 9700K CPU (3.6 GHz) computer with 64 GB RAM and Windows 10
as operating system. The multi-objective genetic algorithm from Mathworks Matlab 2021a was used. See footnote (29).



3.2 rethinking spectral optimisation in lighting engineering 61

Legend

0 50 100 150 200
Number of iterations

0

1000

2000

N
um

be
r 

of
 s

ol
ut

io
ns

0

50

100

"
E

D
65

m
el

in
lx

Objective 1 - CCT: 2700 K, Duv: 0.003
"ED65

mel;max = 32.64 lx after 137.5 seconds
Max. Solutions: 1530.9 after 326.8 seconds

0 50 100 150 200
Number of iterations

0

1000

2000

N
um

be
r 

of
 s

ol
ut

io
ns

0

50

100

"
E

D
65

m
el

in
lx

Objective 2 - CCT: 2901 K, Duv: -0.024
"ED65

mel;max = 62.3 lx after 93.5 seconds
Max. Solutions: 1257.9 after 307 seconds

0 50 100 150 200
Number of iterations

0

1000

2000

N
um

be
r 

of
 s

ol
ut

io
ns

0

50

100

"
E

D
65

m
el

in
lx

Objective 3 - CCT: 3147 K, Duv: 0.015
"ED65

mel;max = 28.16 lx after 148 seconds
Max. Solutions: 1100.9 after 422.5 seconds

0 50 100 150 200
Number of iterations

0

1000

2000

N
um

be
r 

of
 s

ol
ut

io
ns

0

50

100

"
E

D
65

m
el

in
lx

Objective 4 - CCT: 3147 K, Duv: -0.006
"ED65

mel;max = 46.25 lx after 117.1 seconds
Max. Solutions: 1432.8 after 356.8 seconds

0 50 100 150 200
Number of iterations

0

1000

2000

N
um

be
r 

of
 s

ol
ut

io
ns

0

50

100

"
E

D
65

m
el

in
lx

Objective 5 - CCT: 3642 K, Duv: -0.027
"ED65

mel;max = 67.19 lx after 89.4 seconds
Max. Solutions: 1416.3 after 300.7 seconds

0 50 100 150 200
Number of iterations

0

1000

2000

N
um

be
r 

of
 s

ol
ut

io
ns

0

50

100

"
E

D
65

m
el

in
lx

Objective 6 - CCT: 4386 K, Duv: -0.027
"ED65

mel;max = 75.28 lx after 92.6 seconds
Max. Solutions: 1198.3 after 342.2 seconds

0 50 100 150 200
Number of iterations

0

1000

2000

N
um

be
r 

of
 s

ol
ut

io
ns

0

50

100

"
E

D
6
5

m
el

in
lx

Objective 7 - CCT: 4717 K, Duv: 0.021
"ED65

mel;max = 52.01 lx after 101.8 seconds
Max. Solutions: 1322.3 after 433 seconds

0 50 100 150 200
Number of iterations

0

1000

2000

N
um

be
r 

of
 s

ol
ut

io
ns

0

50

100

"
E

D
6
5

m
el

in
lx

Objective 8 - CCT: 5552 K, Duv: -0.015
"ED65

mel;max = 89.35 lx after 130.5 seconds
Max. Solutions: 1208.4 after 443.1 seconds

0 50 100 150 200
Number of iterations

0

1000

2000

N
um

be
r 

of
 s

ol
ut

io
ns

0

50

100

"
E

D
6
5

m
el

in
lx

Objective 9 - CCT: 6702 K, Duv: 0.039
"ED65

mel;max = 63.78 lx after 113.1 seconds
Max. Solutions: 1470.1 after 409.5 seconds

0 50 100 150 200
Number of iterations

0

1000

2000

N
um

be
r 

of
 s

ol
ut

io
ns

0

50

100

"
E

D
6
5

m
el

in
lx

Objective 10 - CCT: 7443 K, Duv: 0
"ED65

mel;max = 93.24 lx after 87.7 seconds
Max. Solutions: 1275.8 after 457.3 seconds

"ED65
mel;max (mean ±SD)"ED65

mel Number of solutions (mean ±SD)Max. number of solutions

Figure 3.9: Benchmarking results of the genetic algorithm’s performance concerning the computation time to find
the maximum number of solutions and the maximum melanopic difference between metameric spectra. In the
figures, the mean and the standard deviation is plotted from the repeated optimisation (10 times) of each objective.
The blue line is linked to the right (blue) y-axis and the black line to the left y-axis. The maximum number of
solutions is highlighted using a green scatter point. It is defined as the point in time at which, on average, no more
than two solutions are found in the next iteration step, since for some objectives, a saturation behaviour of the
optimised solutions occurs. If after the saturation point, more than three solutions are found again at a certain
iteration step, the time at which the maximum number of solutions is found is highlighted.
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3.2.3 Developing a deep learning-driven spectral optimisation method

Spectral optimisation with meta-heuristic methods such as the genetic algorithm (GA) lacks the pos-
sibility of real-time computation. Additionally, the GA optimisation method seems less suitable for
finding metameric spectra with a high melanopic contrast at constant chromaticity and (il)luminance
(Section 3.2.2). Therefore, a new approach with neural networks was developed to optimise multi-
channel LED spectra with higher efficiency and flexibility to make real-time spectral optimisation of
metameric spectra possible. As discussed in Section 3.2, spectral optimisation procedures aim to find the
luminaire’s code values that can generate a spectrum, which matches the photometric and colourimetric
objectives such as, for example, the chromaticity coordinate and luminance (Fig. 3.4).

Such an optimisation problem could be solved with a deep learning approach in which the two
objectives luminance and chromaticity coordinate are used as input for a neural network to predict
the luminaire’s respective code values (Fig. 3.10a). However, in a preliminary work, it was found that
this concept is not promising due to estimation errors caused by the imbalance between the number of
input values and the number of output parameters(31). For example, when using an 11-channel LED
luminaire, eleven code values need to be predicted from three input values (luminance, CIEx and y).
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Figure 3.10: The different concepts, which were tested to perform the spectral optimisation task with neural
networks. a) The first concept consists of a single neural network used to predict the luminaire’s code values from
the objectives, such as the luminance and chromaticity coordinate. b) When computing the channel values directly
from the objectives (concept 1), prediction errors occur. However, the predicted code values can be leveraged as
initial starting population XCH,Pop,0 for a conventional optimiser to fine-tune the code values further and lower
the error. c) The third concept was used for spectral optimisation in this work. Firstly, N-models for an N-channel
LED luminaire need to be trained using neural networks. Then, the models are integrated into a shuffle algorithm,
which can compute the code values iteratively from an initial population.

Another approach is to leverage the neural network’s predicted code values (Fig. 3.10a) as initial start
population XCH,Pop,Sol for the GA (Fig. 3.10b), which would be advantageous because fewer iteration
steps could be needed to approximate the solutions. Usually, the starting population of the GA is
generated randomly. Thus, a neural network could provide an initial guess of appropriate code values
that could be fine-tuned by a conventional optimisation method. Pre-tests have shown that slight
advantage in computation time can be reached with such a method(32). However, the marginal benefit

(31) The pre-tests concerning concept one (Fig. 3.10a) were done in the master thesis of R. Al Tunisi (2019, TU Darmstadt) [443],
supervised by Babak Zandi. For more information, see the curated list of the author’s supervised thesis attached to this work.
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does not justify the increased effort of implementing this concept. In addition, the genetic algorithm’s
weaknesses concerning metameric spectra (Section 3.2.2) would still be an issue.

The fundamental issue of the first concept (Fig. 3.10a) is that the available feature space is too small to
predict the code values of the multi-channel LED luminaire accurately. For solving this issue, a third
concept, called the shuffle algorithm (see footnote(44)), was developed, which leverages several neural
network models for the spectral optimisation task (Fig. 3.10c). The shuffle method consists of two steps,
which will be explained by using the example of a three-channel LED luminaire for which spectra need
to be optimised based on the objectives luminance and chromaticity. A three-channel LED luminaire
has the three code values xCH,1, xCH,2 and xCH,3 with which the light spectrum can be varied. Firstly,
a digital twin (see Section 3.2.1) of the luminaire needs to be developed for generating training data.
The training sample should contain random combinations of code values XCH = {xCH,1, xCH,2, xCH,3}
with its related luminance Lv,c and CIExy-1931 chromaticity coordinates (xc, yc), whose relationship can
be computed using the discussed formula in Section 3.2. Then, the sample can be used to train neural
networks (Fig. 3.10c, Step #1). Three models are needed when using a three-channel LED luminaire.
The first model ( fModel,1), is trained to predict the code value of the first channel x′CH,1 from the input
parameters xCH,2, xCH,3, Lv,c and (xc, yc). The second model fmodel,2 receives the input values xCH,1,
xCH,3, Lv,c and (xc, yc) to predict the code value of the second channel x′CH,2. The third model fmodel,3

receives the input values xCH,1, xCH,2, Lv,c and (xc, yc) to predict the third channel value x′CH,3. In
other words, with the knowledge of two channel values and the corresponding luminance Lv,c and
chromaticity coordinates (xc, yc), the matching code value of the next channel can be predicted using
this modelling approach. After the neural network models have been trained and developed, they need
to be linked together in the shuffle algorithm to perform the actual spectral optimisation procedure
(Fig. 3.10c, Step #2), which works as follows:

Point (i): Firstly, a randomised matrix XCH,Pop,0 ∈ RSxN is generated, which is used as the initial
starting population. The parameter S defines the size of the initial population and N the number of
channels (Fig. 3.10c, Step #2). In our simplified example with the three-channel LED luminaire, the
matrix has three columns (N = 3 ), while each column corresponds to one channel. Thus, the first
column defines xCH,1, the second xCH,2 and the third xCH,3.

Point (ii): Similar to the genetic algorithm, the operations are performed within iterations. In the
first iteration, the model fmodel,1 is used to predict the code value of the first channel x′CH,1 from the
second (xCH,2) and third column (xCH,3) of the matrix XCH,Pop,0. As an additional input to fModel,1,
the desired luminance Lv,c and chromaticity (xc, yc) need to be specified, which are expressed by the
vector XObj (Fig. 3.10c, Step #2). Note that the prediction of the channel values x′CH,1 with fmodel,1 is a
vectorised operation, since xCH,2 and xCH,3 are vectors of size S. Vector operations have the advantage
of using multiple randomised channel combinations in the starting population XCH,Pop,0 to obtain a
larger number of solutions that match the defined target conditions XObj in a single optimisation run.

Point (iii): After predicting the code values x′CH,1, a new matrix XCH,Pop,1 = {x′CH,1, xCH,2, xCH,3}
can be defined, which is used in the second iteration. Next, with fModel,2, the channel values x′CH,2 are
predicted, determined from x′CH,1, xCH,3 and XObj. With the new values, again, the matrix XCH,Pop,2 =

{x′CH,1, x′CH,2, xCH,3} can be derived for the third iteration, in which the third model fModel,3 is leveraged
to predict the code values x′CH,3. This whole procedure is repeated until combinations of code values
are produced whose spectra fulfil the defined target objectives XObj and lie within a pre-specified

(32) The pre-tests of concept two (Fig. 3.10b) were done in the master thesis of A. Kramer (2018, TU Darmstadt) [444]. Further, the
shuffle algorithm (Fig. 3.10c) was originally presented in A. Kramer’s [444] master thesis, supervised by Babak Zandi. The Python
implementation of the shuffle-algorithm was carried out with the support of the student assistant T. Lautenschläger.
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tolerance range (Fig. 3.10c). Typically, the first code value combinations converge to the objectives after
approximately 40 iterations. However, with a rising number of iterations, the solution’s count increases
as more code value combinations in the population converge. The fundamental idea of this procedure
is based on the fact that each of the three models is an “expert” in estimating the optimal direction in
which a channel value must go when the remaining channel values and the objectives are known. As the
models interact with each other, after enough iterations, the randomly generated code values XCH,Pop,0

converge to the solution matrix XCH,Pop,Sol, in which code value combinations can be found that satisfy
the pre-defined optimisation constraints. In the application of this discussed algorithm, the decision
on which channel value needs to be predicted in the next iteration is fully randomised. Therefore, the
iteration’s steps for the procedure are denoted as the number of shuffles.

Testing the performance of the deep learning-based spectral optimisation method

According to the method of the third concept (Fig. 3.10c), neural networks were trained to optimise
spectra for the 11-channel LED luminaire (Fig. 3.8). The neural networks (LSTM’s with 50 hidden
neurons) were trained using 10 million code value data (batch size: 8000) with 1200 epochs (see
Fig. A.11). The mean squared error (MSE) between the predicted and the actual code value was
leveraged as loss. Furthermore, an Adam optimiser [454] with a learning rate of 0.001 was used for
training. The neural networks were implemented in Python using the PyTorch library [455].

The performance of the deep learning-based spectral optimisation method was benchmarked using
the reported method in Section 3.2.2, allowing to compare the results with the genetic algorithm’s
optimisation results. For this, the spectral optimisation was performed repeatedly (ten times) for each
stated objective specified in Table 3.3. As objectives, the luminance and the CIEu’v’-1976 chromaticity
coordinates were used. Similar to the genetic algorithm, the decision space (code values) was restricted
to be within 0 ≤ XCH,N ≤ 1023. If a channel value was predicted above the upper or below the lower
limit in a single shuffle iteration, then the prediction was replaced by the maximum or minimum allowed
code value. A starting population size of 3000 was used for the shuffle procedure. As termination
criterion, 140 shuffles were adjusted into the algorithm (Fig. 3.10c). A single shuffle step of the deep
learning-based optimiser required on average about 0.06 s± SD 0.001 s, which is significantly lower
than the genetic algorithm’s iteration time (2.02 s± SD 0.39 s). The large discrepancy is because no
computational intensive operations are performed in the shuffle algorithm; only the predictions of the
neural networks are used to create new matrices (Fig. 3.10c). Furthermore, there is no need to compute
the cost functions in the shuffle algorithm because by using the trained neural networks, the code values
will converge automatically without needing feedback after each iteration.

In Fig. 3.11, the benchmarking results of the deep learning based shuffle algorithm are reported
for all objectives using ten repetitions, respectively. On average 841 ± SD 318 solutions across all
objectives were optimised after a mean computation time of 7.55 s ± SD 8.7 s, corresponding to a
performance of approximately 113.84± SD 47 solutions per second (Fig. 3.11). It is clear that regarding
the computation time, the proposed deep learning-based shuffle algorithm significantly outperforms the
genetic algorithm, which was limited to 3.58± SD 0.78 solutions per second. In other words, the deep
learning method is on average by a factor of ∼32 faster than the genetic algorithm for the maximum
number of found solutions (Fig. 3.12). The average ∆ED65

mel,max value is 109 lx± SD 38 lx, computed after
5.1 s± SD 1.71 s, which is on average by a factor ∼22 faster than the genetic algorithm. Furthermore,
the found metameric pairs produce significantly higher ∆ED65

mel,max values, which are in a range between
61.24 lx and 170.3 lx (across all objectives). The genetic algorithm could only find metameric pairs
whose ∆ED65

mel,max was between 28.16 lx and 93.24 lx. Overall, it can be concluded that the novel deep
learning-based shuffle algorithm outperforms the state-of-the-art method concerning computation time
significantly while also providing spectra of higher quality.
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Figure 3.11: Benchmarking results of the proposed deep learning-based shuffle algorithm concerning the computa-
tion time and the maximum found melanopic difference ∆ED65

mel,max between metameric spectra. In the figures, the
mean and the standard deviation is plotted from the repeated optimisation (10 times) of each objective in Table 3.3.
The purple line is linked to the right (purple) y-axis and the black line to the left y-axis. The maximum number of
solutions is highlighted using a green scatter point. It is defined as the point at which the maximum number of
solutions is found. The red scatter signals the point in time at which the maximum melanopic difference ∆ED65

mel,max
is reached. On average one shuffle iteration took 0.06 s± SD 0.001 s, allowing real-time optimisation tasks.
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3.2.4 Summary and perspectives of spectral optimisation in lighting applications

Modern indoor illumination attempts to combine the aspect of legal requirements, energy-saving, visual
performance, visual preference and the non-image-forming effects of light [107, 362, 364, 456]. However,
visual preference [368, 457–459] and the circadian system’s spectral sensitivity in the short-wavelength
range can vary between individual observers [241, 460–462]. Thus, lighting systems are required that
can adapt the spectral power distribution to an observer’s preference [463, 464] while at the same
time providing an appropriate level in melanopic illuminance for non-visual lighting purposes [432].
Multi-channel LED luminaires are an essential tool to address these requirements. Such systems are
already applied in experiments concerning vision research [92, 465–467] as they can trigger the retinal
photoreceptor types individually [163, 333] or produce arbitrary light stimuli [368]. A promising research
field of multi-primary lighting systems are metameric spectra [107, 352, 453, 468], with which pairs
of stimuli can be engineered to modulate the circadian system without affecting the light’s visual
appearance regarding (il)luminance and chromaticity [108].

Spectral optimisation is an essential aspect of engineering light on multi-channel LED luminaires.
In the literature, meta-heuristic methods such as the genetic algorithm are recommended for this task.
Here, the genetic algorithm (GA) was benchmarked concerning its computation time in finding the
maximum number of spectral solutions for different chromaticity coordinates at a steady luminance
(see Table 3.3). Further, it was checked whether the GA could find appropriate metameric stimuli
with a maximum difference in melanopic illuminance. It was found that the GA provides on average
3.58± SD 0.78 spectral solutions per second (Fig. 3.12a). While the number of solutions converges
towards higher iteration steps, the melanopic illuminance difference between metameric pairs becomes
lower (Fig. 3.9). In other words, the GA might not be suited for finding metameric spectra in real-time
due to its (Fig. 3.12b) heavy computational load.
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Figure 3.12: Benchmark results from the genetic algorithm and the proposed deep learning-based shuffle algorithm.
The scatter points are the mean values of the optimisation’s ten repetitions for each objective (see Table 3.3).

As an alternative to meta-heuristic methods, this work pursued solving the spectral optimisation
problem using a deep learning approach. For this purpose, a concept was developed in which several
neural networks were combined within the shuffle algorithm Fig. 3.10. The method can find 113± SD 47
solutions per second, which is by a factor of ∼32 faster compared to the GA; hence, a striking advance
in the field of spectral optimisation. In addition, the metameric melanopic differences are about twice
as high, even though they were found by a factor of ∼22 faster (Fig. 3.12b). One iteration (shuffle)
takes 0.06 s± SD 0.001 s, making real-time and black-box optimisation possible as the first solutions are
reached after about 20 iterations (Fig. 3.11). In a recent work, about ∼1.2 million multi-channel LED
spectra were optimised using the proposed method, which is, to the author’s best knowledge, one of
the largest published dataset in the field of spectral optimisation [107].
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3.3 Simulating the Metameric Limits of the Melanopic Stimulus Space

Light spectra with a high melanopic illuminance ED65
mel can affect the body temperature, melatonin

suppression, heart rate, alertness and task-related performance [129, 428–430]. As discussed in Chapter 2
and Section 3.2, such light-induced responses can be attributed to the M1- and M2-subtypes of the
melanopsin containing ipRGCs in the outer retina [233, 251], which are also the main driver of the
equilibrium-state pupil light reflex and circadian responses via the ipRGCs’ projections to the olivary
pretectal nucleus and suprachiasmatic nuclei in the brain [61, 95, 180, 251]. Today’s lighting engineers face
the challenge to design polychromatic spectra that follow the legal guidelines of workplace illumination
[241] and have chromaticities near the Planckian locus with a high colour fidelity while securing an
appropriate amount of melanopic illuminance ED65

mel to support circadian photoentrainment [180, 288,
463, 469]. Polychromatic spectra can be generated by coating blue-emitting diodes with a phosphor layer
[242, 470] or combining multiple chromatic LEDs behind a diffusor glass to mix the light’s primaries
(see Section 3.1.1). Multi-channel LED luminaires appeal with the advantage of adapting the spectral
power distributions; hence, the colour fidelity, chromaticity or chroma of an illuminated object, based
on an observer’s visual preference [107, 108].

In the era of smart integrative lighting [107, 253, 432, 471–475], two approaches exist to integrate
such systems into an office or home environment. Firstly, in a simplified, fully automated lighting
solution, pre-defined dynamic patterns of (il)luminance and CCT could be adjusted, following the
neurophysiological research recommendations for effectively synchronising the circadian rhythm or
enhancing the human’s cognitive performance [476, 477]. However, recent studies found that fully
automated setups are often turned off due to the occupants’ inability to participate or intervene
in the system’s recommendation loop [461, 478–480]. Furthermore, there are individual differences
regarding the preferred CCT, (il)luminance or the non-image-forming pathway’s sensitivity, making a pre-
defined control function for the populations’ mean observer inconvenient for individuals [460, 481, 482].
Therefore, personalised smart lighting concepts are proposed in the literature, utilising reinforcement
learning or neural networks to adapt the temporal dependent lighting settings to the observer’s
individual preferences while providing the option to interfere with the model’s recommendations via a
feedback interface [464, 478, 483, 484].

Such systems will mainly rely on the observer’s visual preferences, limited to metrics like CCT,
(il)luminance, colour fidelity or an object’s chroma. The non-visual effects, however, could only be
influenced indirectly or unintentionally when using light spectra with higher CCTs. Further, with such
a system, it would be possible for occupants to adjust higher CCT levels in the evening since, for
most human observers, only the visual characteristic’s preference is of focus when evaluating a light
setting. From a neurophysiological point of view, however, chromaticity coordinates with a higher CCT
(for example, a few hours before bedtime) are not recommended, as such spectra are likely to have
a higher proportion of melanopic illuminance, affecting to melatonin suppression; hence, it would
be contrary to the human’s circadian rhythm [243, 244, 485]. In other words, there can be a conflict
between an observer’s visual preference and the recommended melanopic content for modulating the
circadian system if the light exposure or the (il)luminance are steady [107, 108]. As a solution, metameric
spectra can be leveraged to modulate the melanopic illuminance silently in the background for actively
controlling the circadian system without affecting a light’s visual appearance concerning (il)luminance
or chromaticity [107, 108, 486]. For this, a set of spectra for a particular chromaticity coordinate with a
fixed (il)luminance could be optimised using a meta-heuristic or gradient-based optimisation method
[355, 356, 450]. Next, two pairs of spectra can be extracted, one featuring a maximum and another with
a minimum in melanopic illuminance. As the two spectra are metameric and the melanopic illuminance
can be used as a proxy for describing non-visual responses [433], the non-image-forming system could
be modulated without altering the light’s visual appearance [468].
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Souman et al. [453] reported that spectra with fixed CCT (2700 K) and illuminance (Ev = 175 lx) can
be applied to modulate the human’s melatonin production by 50 %. For the study, Souman et al. [453]
developed a spectral pair with which the melanopic illuminance was modulated from ED65

mel,Min = 54.6 lx
to ED65

mel,Max = 188.8 lx, leading to a difference in melanopic EDI ∆ED65
mel of 122 lx. However, the CRI of

the applied spectra was lower than 80, which is not suited for interior lighting applications. Further-
more, Allen et al. [468] showed with a 5-channel LED display unit that the melatonin level and the
subjectively reported sleepiness can be modulated with metameric spectra without affecting the visual
appearance of the light. In this study, the melanopic illuminance was altered from ED65

mel,Min = 24.7 lx
to ED65

mel,Max = 77.7 lx, leading to a difference in melanopic illuminance of ∆ED65
mel = 52.9 lx [468]. Based

on these studies, it can be concluded that metamerism could have practical implications and that a
physiological response could be achieved although the human’s visual sensation remains approximately
steady. However, one of the major challenges is to optimise such metameric spectra (see Section 3.2.2).
Moreover, the optimisation problem becomes more complex with an increasing number of LED channels,
although using a higher channel number, more considerable melanopic contrasts can be achieved with
metameric stimuli [107]. Since conventional optimisation methods are computationally intensive, it is
crucial to know with which chromaticity coordinates the highest metameric modulation can be reached
in the melanopic stimulus space.

Recently, Zandi et al. [107] found that the melanopic tuning ranges of metameric stimuli are not
uniformly distributed in the CIExy-1931 colour space; hence, specific chromaticity coordinate spots can
be identified with which higher melanopic modulations can be reached. For example, the maximum
relative change of the melanopic radiance can be found near the Planckian locus between 3292 K and
4717 K inside a Duv range of −0.009 to 0.006. When choosing a chromaticity coordinate as optimisation
objective in this region, the melanopic radiance can be modulated by up to 65 % without affecting the
chromaticity (∆u′v′ ≤ 7.05 · 10−5) or luminance (∆L ≤ 1 cd/m2). Another study by Aderneuer et al.
[352] investigated the capability of non-visual spectral tuning with metameric spectra using the circadian
stimulus as a proxy. It was found that with a 6-channel LED luminaire, the circadian stimulus can
be modulated from 0.20 to 0.41 (ED65

mel,Min = 180 lx to ED65
mel,Max = 237 lx) when using a CCT of ∼3754 K

(Duv: ∼0.0050) as an objective for spectral optimisation. However, the photopic illuminance Ev of the
metameric pairs used by Aderneuer et al. [352] was not steady (∆Ev = 11 lx).

The current state of the literature provides no information about the tunability of metameric spectra
in the melanopic stimulus space for a broader range of chromaticity coordinates around the Planckian
locus when the photopic illuminance is fixed and the recommended guidelines for colour quality are
considered [413]. Such information is of practical interest as in applied lighting research there are
attempts to reach higher melanopic efficacy while maintaining the CCT [356, 369]. Previous works were
primarily limited in their scalability as only a few spectra were optimised for such analysis. In this work,
490 068 spectra for 561 chromaticity targets distributed along the Planckian locus were optimised to
tackle this research question. To the author’s best knowledge, the amount of optimised spectra used
for the analysis is the second-largest(33)published metameric spectral dataset [108]. Here, a systematic
analysis of metameric spectra for non-visual purposes was conducted whose melanopic limits were
mapped into the CIExy colour space, allowing an intuitive way to assess the chromaticity coordinates
with the most potential melanopic tunability. For this, metameric spectra were optimised using the
developed deep learning-based shuffle algorithm (see Section 3.2.3), which is more reliable and even
significantly faster than the state-of-the-art genetic algorithm (see Fig. 3.12), allowing such an analysis
on a larger scale.

(33) To the author’s best knowledge, the largest spectral optimisation dataset for metameric stimuli (∼1.2 million) was published by
the author of this work in [107]: Babak Zandi, Adrian Eissfeldt, Alexander Herzog & Tran Quoc Khanh. Melanopic Limits of
Metamer Spectral Optimisation in Multi-Channel Smart Lighting Systems. Energies. 14, 572 (2021). MDPI.
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3.3.1 Methods and configurations of the multi-channel LED luminaire

A pre-defined uniform grid of 561 CIEu’v’-1976 chromaticity coordinates (Fig. 3.13a) along the Planckian
locus (2700 K to 7443 K, Duv 0 to ±0.048, Duv-steps of ±0.003) were used as objectives for the spectral
optimisation procedure [107, 108, 423]. For each defined chromaticity coordinate, metameric spectra
were optimised repeatedly with at least six repetitions, ensuring that enough solutions were available
for the analysis. The proposed deep learning-based shuffle algorithm was used as optimisation method
(see Section 3.2.3). Only spectra within a tolerance of ∆u′, ∆v′ ≤ 0.001 to the chromaticity objective were
considered for the analysis as the metameric stimuli pairs were of interest.

The spectra were optimised on a 6-channel, 8-channel, and 11-channel LED luminaire, respectively.
For this, the digital twin of the 11-channel LED luminaire from Thouslite was used (see Section 3.2.2).
Then, different LED combinations were chosen to artificially mimic distinct luminaire configurations for
generating the polychromatic spectra. The 6-channel setup consisted of four narrowband LEDs with the
peak-wavelengths λPeak of 475 nm, 504 nm, 521 nm, 662 nm and additionally two phosphor-converted
white light LEDs with a CCT of 4655 K and 2740 K were included. For the 8-channel setup, chromatic
LEDs with the peak-wavelengths 450 nm, 465 nm, 504 nm, 521 nm, 638 nm and 662 nm were selected.
Additionally, two phosphor-converted white LEDS (4655 K and 2740 K) were included. In the 11-channel
system all LED channels were used, consisting of 419 nm, 450 nm, 457 nm, 504 nm, 521 nm, 597 nm,
638 nm, 662 nm, a lime coloured LED and two phosphor-converted white LEDs with 4655 K and 2740 K.
In Fig. 3.13b, the measured base spectra of the distinct luminaire configurations are provided.
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Figure 3.13: a) Selected grid of chromaticity coordinates, which were used as objectives for optimising the metameric
spectra. Few chromaticity coordinates were outside of the colour gamut as the targets were computed to be on a
uniform grid. Thus, for some chromaticity coordinates no spectra were available (see also Fig. 3.14). b) Measured
base spectra for the different LED luminaire configurations, which were applied to generate the polychromatic
spectra in this work.(34)

The purpose of using different LED luminaire setups was to verify whether a higher count of LED
channels could provide also a higher melanopic contrast for metameric spectra. The LED combinations
were selected in a way so that more chromatic LEDs were included towards a higher number of channels.
It was hypothesised that with a rising count of chromatic channels, one is more flexible in generating
polychromatic spectra, potentially leading to higher metameric contrasts in terms of the melanopic
illuminance. However, the number of channels was used as a degree of freedom during the optimisation,
meaning that for a 6-channel LED luminaire it is also possible to generate a polychromatic spectrum
using only four individual primaries.

(34) Figure 3.13 is reprinted from the author’s publication [107]: Babak Zandi, Adrian Eissfeldt, Alexander Herzog & Tran Quoc
Khanh. Melanopic Limits of Metamer Spectral Optimisation in Multi-Channel Smart Lighting Systems. Energies. 14, 572 (2021).
MDPI. DOI: 10.3390/en14030527. Licence: CC BY 4.0.

https://doi.org/10.3390/en14030527
https://creativecommons.org/licenses/by/4.0/
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A total of 490 068 spectra across all selected chromaticity coordinates and luminaire setups were opti-
mised, using a photopic illuminance of Ev of 220 lx± 2 lx as objective. Then, the spectra were linearly
scaled to a fixed illuminance Ev of 250 lx to rule out this influencing parameter when comparing the
melanopic illuminance between the metameric stimuli. The chromaticity coordinates for which spectra
were successfully optimised are highlighted in Fig. 3.14, separately for each applied luminaire configu-
ration. The 6-channel LED setup reached optimised spectra for 464 out of 561 chromaticity coordinates.
On average, 281± SD 30.18 spectra were optimised for each chromaticity coordinate, leading to a total
of 130 385 spectra across all objectives. By using the 8-channel LED setup, a total of 172 693 spectra
were optimised with a mean count of 364± SD 56.85 spectra for each of the found 474 chromaticity
targets (Fig. 3.14). With the 11-channel LED configuration, a total of 186 990 spectra were optimised
with 371± SD 61.57 spectra for each of the 504 found chromaticity targets (Fig. 3.14). All optimised
metameric spectra and the scripts to analyse the data were made public, available on the author’s
GitHub repository(35).
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Figure 3.14: Initially a uniform grid of 561 CIEu’v’-1976 chromaticity coordinates (2700 K to 7443 K ±Duv 0 to
0.048 with 0.003 steps in Duv) were used as objectives for optimisation (see Fig. 3.13b). However, the chromaticity
coordinates for which spectra were successfully found varies between the applied luminaire setups. For example,
the 6-channel LED luminaire could not optimise spectra for chromaticity coordinates in the range between 2700 K
and 3000 K if the Duv value is high. In the figures, the chromaticity coordinates for which spectra were successfully
optimised were transformed into the CIExy-1931 colour space and plotted with scatter points.(36)

3.3.2 Strategies for evaluating the non-visual effectiveness of metameric spectra

The fundamental behind metamerism is the principle of univariance, which states that individual retinal
photoreceptors are colour blind [161, 163] as only via the antagonistic cone-opponency at the level of
the LGN and downstream in the human’s visual cortex colour perception arises. Due to the principle of
univariance, different spectral power distributions can cause the same visual appearance. However, there
is no unified definition for metamerism as it depends on the purpose of evaluation. For example, at the
cone level, metamerism is defined as a set of spectra that trigger the photoreceptor equally, i.e. spectra
that do not differ in their α-opic quantity. In colourimetry, however, those spectra which are within a
pre-defined tolerance concerning their chromaticity coordinate are defined as metameric. Note that
there are also frequent investigations using spectra that feature the same CCT but have different Duv
distances to the Planckian locus, which can no longer be declared as metameric. Since the basic system
of the CIExy colour space relies on the colour matching functions, whose sensitivities are causally
determined by the interaction of the outer retinal photoreceptors, the melanopic illuminance can be
modulated independently without altering the chromaticity coordinate or photopic illuminance.

(35) GitHub repository of this project: https://github.com/BZandi/Metameric-Spectra
(36) Figure 3.14 is reprinted from the author’s publication [108]: B. Zandi, O. Stefani, A. Herzog, L. Schlangen, Q. V. Trinh & T.

Q. Khanh. Optimising metameric spectra for integrative lighting to modulate the circadian system without affecting visual
appearance. Scientific Reports. 11, 23188 (2021). Nature Research. DOI: 10.1038/s41598-021-02136-y. Licence: CC BY 4.0.

https://github.com/BZandi/Metameric-Spectra
https://doi.org/10.1038/s41598-021-02136-y
https://creativecommons.org/licenses/by/4.0/
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For example, for a chromaticity coordinate at 5552 K (Duv: 0.021), 386 spectra can be optimised, which
are all within a tolerance of ∆u′, ∆v′ ≤ 0.001 to the chromaticity target (Fig. 3.15a, point 1). Since the
light’s colour quality is of particular interest in indoor illumination, spectra can be removed according
to the minimum required level of a colour quality metric, which is in this example a CIE Ra of less than
80. However, instead of the CRI other quality metrics would also be conceivable. From the remaining
solutions, two pairs of spectra can be identified, one for the upper limit ED65

mel,Max and one for the lower
limit ED65

mel,Min in melanopic EDI (Fig. 3.15a, point 2). From the two metameric pairs, the melanopic
modulation can then be specified using the ∆ED65

mel = |ED65
mel,max − ED65

mel,min| value. In Fig. 3.15, it can
be observed that the melanopic illuminance can be varied by ∆ED65

mel ≈ 90 lx without affecting the
chromaticity coordinate (5552 K, Duv: 0.021, ∆u′, ∆v′ ≤ 0.001) and photopic illuminance (Ev = 250 lx).
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Figure 3.15: Strategy and metrics used to evaluate the melanopic efficiency of metameric spectra. a) For one
chromaticity coordinate (5552 K, Duv: 0.021), 386 spectra can be optimised, which are within a tolerance of
∆u′, ∆v′ ≤ 0.001. Hence, they can be denoted as metameric. Next, spectra can be filtered according to a minimum
required colour quality metric, which is in this example a CRI Ra < 80. From the remaining solutions, the
upper limit ED65

mel,Max and the lower limit ED65
mel,Min of the melanopic EDI can be identified for a single chromaticity

coordinate. The minimum and maximum melanopic stimulus can also be expressed using the melanopic DER
(γD65

mel,Max and γD65
mel,Min), which is more general. Then, the melanopic Michelson contrast CM, the difference in

melanopic EDI ∆ED65
mel or the difference in melanopic DER ∆γD65

mel can be computed from the spectra that provide
the upper and lower limit in melanopic excitation. b) When plotting the γD65

mel,Max and γD65
mel,Min values across the

Duv steps at a steady CCT of 2901 K, one can observe that the modulation between the upper and lower limit
in melanopic DER highly depends on the chosen chromaticity coordinate. From this set of values, the largest
melanopic excitation across all Duv steps (but steady CCT) will be defined as ÊD65

mel,Max or γ̂D65
mel,Max. In contrast, the

minimum across all Duv steps is denoted as ÊD65
mel,Min or γ̂D65

mel,Min. Furthermore, the largest difference between the
upper and lower limit of the melanopic DER (across all Duv steps) will be denoted as ∆ẼD65

mel or ∆γ̃D65
mel . c) For a

compact visualisation, the computation results across all Duv steps (for a single CCT) will be plotted into a single
group. The figure is reprinted from the author’s publication (Licence: CC BY 4.0) [108].

https://creativecommons.org/licenses/by/4.0/
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The magnitude of difference in melanopic EDI, stated by ∆ED65
mel , is intuitive but not decisive for the

strength of the physiological response that could be elicited, since the starting point ED65
mel,min from which

the value is modulated needs to be considered. Therefore, the melanopic Michelson contrast could be
more meaningful to state the melanopic modulation with metameric spectra (Fig. 3.15a, point 2), which
can be calculated using the formula

CM =
ED65

mel,Max − ED65
mel,Min

ED65
mel,Max + ED65

mel,Min
. (3.22)

The melanopic EDI ED65
mel comes with the disadvantage of being dependent of a light spectrum’s photopic

illuminance Ev. Therefore, often the ratio between ED65
mel and Ev is used to assess the melanopic efficacy,

denoted as the melanopic daylight efficacy ratio (melanopic DER) γD65
mel [288, 487]. The melanopic DER

can be used as a factor to compute melanopic EDI values as a function of different photopic illuminance
levels. For example, if for a given light spectrum γD65

mel is 0.8, then with a photopic illuminance Ev of
500 lx, the melanopic EDI ED65

mel is 400 lx, which can be computed using the formula ED65
mel = Ev · γD65

mel .
In other words, by knowing the γD65

mel of a spectrum, the photopic illuminance can be varied to reach
the required melanopic illuminance. The melanopic DER is of interest as the metric is uncoupled
from the photopic illuminance Ev and provides a more generalised description of a light’s non-visual
effectiveness. In the same way, the difference in melanopic EDI ∆ED65

mel for a set of metameric spectra
can also be expressed as ∆γD65

mel . Therefore, to be independent of the used photopic illuminance Ev, the
melanopic values will be stated primarily in terms of γD65

mel,Min, γD65
mel,Max and ∆γD65

mel .
One essential step in analysing the optimised spectra is to find the lower ED65

mel,Min and upper ED65
mel,Max

limit for each chromaticity coordinate with which the melanopic difference ∆ED65
mel , ∆γD65

mel or the
melanopic Michelson contrast CM can be computed. For each CCT, several Duv steps were used as
objective to optimise the metameric spectra. Thus, the γD65

mel,Min and γD65
mel,Max can be plotted against

the Duv steps at steady CCT. In Fig. 3.15b, it can be observed that a ∆γD65
mel of 0.29 (∆ED65

mel ≈ 73 lx for
Ev = 250 lx) can be reached when using a Duv of −0.018 (2901 K), which is the largest ∆γD65

mel value
across all chromaticity coordinates that have a CCT of 2901 K. However, this chromaticity coordinate
does not provide the largest non-metameric efficacy γD65

mel,Max. Thus, if the objective is to maximise the
γD65

mel,Max value for non-metameric purposes, a Duv of −0.039 should be preferred, resulting in a γD65
mel,Max

of 0.74, but its metameric modulation ∆γD65
mel is significantly lower with 0.236 (∆ED65

mel ≈ 59 lx). Thus,
the ideal chromaticity coordinate at steady CCT used for spectral optimisation depends on whether
metameric modulation ∆γD65

mel or the non-metameric efficacy γD65
mel,Max needs to be maximised. In the

following, the largest melanopic DER across all Duv steps (for a particular CCT) will be denoted
as γ̂D65

mel,Max. Accordingly, the lowest melanopic DER of a particular CCT is expressed with γ̂D65
mel,Min.

Furthermore, the largest difference between the upper and lower limit of the melanopic DER across all
Duv steps at a particular CCT will be denoted as ∆ẼD65

mel or ∆γ̃D65
mel .

The melanopic limits of the metameric spectra need to be analysed while securing an appropriate
colour quality; otherwise, the results would not be of practical relevance for integrative lighting. Here,
the colour rendition of the spectra was evaluated using the TM-30-20 colour fidelity index Rf [488],
whose values were computed with the LuxPy library [489]. In the TM-30-20 Annex E, threshold criterions
for Rf are recommended depending on whether the design goal is colour preference, colour vividness
or colour fidelity [413, 488]. The categories are separated into three priority levels, where priority level
one provides the most strict conditions. For this work, the priority level three (Rf ≥ 85, Rf,h1 ≥ 85) and
priority level two (Rf ≥ 90, Rf,h1 ≥ 90) were selected from the colour fidelity category to evaluate the
optimised spectra, where Rf,h1 is defined as the first bin in the colour vector graphic [413, 488]. In the
next sections of this work’s chapter, the metameric spectra will be analysed with the discussed strategy
and metrics (Fig. 3.15).
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3.3.3 Mapping the melanopic tuning range of metameric stimuli in the colour space

The melanopic tuning range ∆γD65
mel for each chromaticity coordinate (Fig. 3.14) was computed using a 6-,

8- and 11-channel LED luminaire (Fig. 3.13), respectively. Then the results were mapped into the CIExy
colour space, under the constrain of the TM-30-20 Annex E priority level recommendations (Fig. 3.16a),
showing with which chromaticities the most potential metameric spectra can be optimised. Based on
these results, it can be reported that the maximum reachable melanopic tuning range ∆γD65

mel across all
CCTs varies between 0.14 to 0.30 when using metameric stimuli (∆u′, ∆v′ ≤ 0.001).
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Figure 3.16: a) The melanopic tuning range values ∆γD65
mel of each optimised chromaticity coordinate were mapped

into the CIExy-1931 colour space for three luminaire configurations and two different Rf conditions. The red point
indicates the global maximum in ∆γD65

mel,Max across all CCT and Duv steps, whose value is stated in the lower right
corner of the plots. b) The metameric spectral pairs γD65

mel,Max and γD65
mel,Min used to compute the maximum melanopic

tuning limit ∆γD65
mel,Max across all chromaticity targets are plotted for every tested condition, respectively. (37)
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The maximum metameric modulation in melanopic DER ∆γD65
mel,Max (red point in Fig. 3.16a) across all

CCT values can be reached using chromaticity points above or on the Planckian locus. When applying
the third priority requirement of the colour fidelity index (Rf ≥ 85, Rf,h1 ≥ 85), the ∆γD65

mel,Max value
can be reached with the CCTs 6702 K (6-channel, Duv: 0.003), 7443 K (8-channel, Duv: 0) and 6702 K
(11-channel, Duv: 0.006). Generally, towards higher CCT, the melanopic tuning range ∆γD65

mel becomes
larger, but a saturation can be observed from approximately ∼ 4500 K onwards when using the third
priority criterion of Rf (see the online materials(38)). Thus, the degree of the melanopic modulation,
depends on the chosen CCT and the selected distance (Duv) to the Planckian locus. If, for example,
an 8-channel or an 11-channel LED luminaire is used (Rf ≥ 85, Rf,h1 ≥ 85), the Duv area in which a
melanopic modulation ∆γD65

mel of at least 0.2 (∆ED65
mel = 50 lx for Ev = 250 lx) can be achieved widens.

When using a stricter colour fidelity criterion (Rf ≥ 90, Rf,h1 ≥ 90), the maximum melanopic
modulation limit ∆γD65

mel,Max (red point in Fig. 3.16a) decreases to a lower level (0.14 to 0.19), depending on
which luminaire configuration is applied. At ∼3000 K, the melanopic tuning capability of ∆γD65

mel becomes
approximately independent of the CCT (Rf ≥ 90, Rf,h1 ≥ 90). In Fig. 3.16b, the spectra of the upper
γD65

mel,Max and lower γD65
mel,Min limit with which ∆γD65

mel,Max can be reached are plotted for each luminaire
configuration and distinct colour fidelity constraint. These spectra correspond to the chromaticity
coordinates, highlighted as a red point in Fig. 3.16a. It can be observed that with rising channel number,
the melanopic DER can be tuned by increasing the duty cycle of the blue (λPeak = 470 nm) channel, while
the remaining are used to maintain the spectrum’s chromaticity and photopic illuminance (Fig. 3.16b).

The ∆γD65
mel and ∆ED65

mel values are suited for an intuitive visualisation of the melanopic modulation
when using metameric spectra. However, the absolute difference of the melanopic quantity does not
provide the magnitude by which two metameric pairs could trigger a non-visual response. For example,
a melanopic variation of ∆ED65

mel = 50 lx provides a higher non-image-forming impact when ED65
mel,Min is

30 lx instead of 200 lx. Therefore, in addition to the ∆γD65
mel values, the melanopic Michelson contrast CM

was computed and projected into the CIExy colour space to visualise the relative change, which is a
more reliable indicator of the non-visual efficacy of metameric spectra (Fig. 3.17a). As in the previous
analysis concerning ∆γD65

mel , the melanopic contrast can be assessed either isolated for each chromaticity
coordinate with CM or globally across all CCT values using CM,Max. The latter indicates with which
chromaticity coordinate the highest possible melanopic contrast CM,Max can be reached when using
metameric stimuli (see the red point in Fig. 3.17). In other words, the CM,Max reflects the technical limit
of a multi-channel LED configuration with respect to the non-visual metameric tuning possibilities at
steady chromaticity and illuminance. Interestingly, while ∆γD65

mel,Max tend to be achieved with higher
CCT values (Fig. 3.16a), the CM,Max spot is shifted towards lower CCT values (Fig. 3.17a).

The maximum reachable melanopic Michelson contrast CM,Max is 0.16 to 0.18 (Rf ≥ 85, Rf,h1 ≥ 85).
When using a 6-channel LED luminaire, for example, then a CM,Max value of 0.16 can be achieved by
using a chromaticity coordinate below the Planckian locus (3017 K, Duv: −0.018) as objective for spectral
optimisation pipeline. With such a Michelson contrast, the melanopic EDI can be varied from about
135 lx to 185 lx (∆γD65

mel ≈ 0.2) without affecting either the photopic illuminance (Ev = 250 lx) or the
chromaticity coordinate (∆u′, ∆v′ ≤ 0.001). However, with both the 8-channel LED luminaire and the
11-channel LED luminaire, the CM,Max value is 0.18, which can be reached using 3456 K (Duv: 0.009) as
objective for optimisation (Fig. 3.17b). The most significant influence on the melanopic contrast comes
from the applied colour quality constraint. In addition, it may be possible that higher contrasts could be
reached by increasing the ∆u′v′ tolerance as more spectra are available. The ∆u′, ∆v′ ≤ 0.001 tolerance
was chosen so that the ellipses around the objectives do not overlap.

(37) Figure 3.16 is reprinted from the author’s publication [108]: B. Zandi, O. Stefani, A. Herzog, L. Schlangen, Q. V. Trinh & T.
Q. Khanh. Optimising metameric spectra for integrative lighting to modulate the circadian system without affecting visual
appearance. Scientific Reports. 11, 23188 (2021). Nature Research. DOI: 10.1038/s41598-021-02136-y. Licence: CC BY 4.0.

(38) The supplementary materials for this study are available online: 10.3390/en14030527
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Figure 3.17: a) The melanopic Michelson contrast CM of each optimised chromaticity coordinate was projected into
the CIExy-1931 colour space for three luminaire configurations and two different Rf conditions using a heatmap
plot. The red point indicates the maximum CM,Max value across all CCT and Duv steps, whose value is stated
in the lower right corner of the plots. b) The metameric spectral pairs γD65

mel,Max and γD65
mel,Min used to compute

the maximum Michelson contrast CM,Max across all chromaticity targets are plotted for every tested condition,
respectively. (39)

(39) Figure 3.16 is reprinted from the author’s publication [108]: B. Zandi, O. Stefani, A. Herzog, L. Schlangen, Q. V. Trinh & T.
Q. Khanh. Optimising metameric spectra for integrative lighting to modulate the circadian system without affecting visual
appearance. Scientific Reports. 11, 23188 (2021). Nature Research. DOI: 10.1038/s41598-021-02136-y. Licence: CC BY 4.0.
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3.3.4 The melanopic limits of non-metameric spectra

In this section, it is analysed to what extent the melanopic DER can be varied when using a fixed
CCT but variable Duv, meaning under the condition of non-metameric spectra. For this purpose, the
γD65

mel,Min (black dots) and γD65
mel,Max (red dots) for all Duv steps per CCT were plotted in Fig. 3.18. The

representation of the data is exactly as in the discussed example shown in Fig. 3.15c (see Section 3.3.2). It
can be observed that with increasing CCT, the difference between the γD65

mel,Min and γD65
mel,Max distribution

becomes larger but the scatter becomes narrower. Therefore, it can be concluded that above ∼7000 K,
the choice of chromaticity coordinates is not crucial for spectral optimisation if the objective is to reach a
spectrum with a maximum melanopic content in non-metameric conditions. In contrast, at lower CCTs
(< ∼4500 K), selecting the right Duv distance to the Planckian locus is an essential step when needing to
optimse the highest possible melanopic DER for fixed CCT values (Fig. 3.18).
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Figure 3.18: The γD65
mel,Min (black points) and γD65

mel,Max (red points) values were plotted as a function of the CCT
values for the use case of non-metameric spectra. For each CCT several points are plotted as two pairs of melanopic
DER values are available for each Duv distance (see also Fig. 3.15c, in which this data representation ist explained).
However, the black line indicates the lowest melanopic DER for a CCT (across all Duv steps), denoted as γ̂D65

mel,Min
and the red line refers to the largest melanopic DER values γ̂D65

mel,Max. (40)

Further, in Fig. 3.18 it can be observed that across all applied luminaire configurations (i.e. 6-, 8- and
11-channel luminaire), from about 4600 K onwards, spectra can be optimised featuring a melanopic
DER above one when using the priority level three of the colour fidelity criterion (Rf ≥ 85, Rf,h1 ≥ 85).
However, when using a stricter colour fidelity criterion (Rf ≥ 90, Rf,h1 ≥ 90), the melanopic DER values
decrease slightly and the CCT threshold with which a melanopic DER above one can be achieved shifts
towards approximately 6000 K (Fig. 3.18).

In application-oriented illumination solutions, often spectra need to be optimised featuring a max-
imised melanopic DER while maintaining a given CCT, whereby the distance to the Planckian locus
(Duv) becomes negligible. Such spectra are non-metameric as they are visually different and do not
share the same chromaticity coordinate, but the melanopic DER can be tuned more efficiently with such
stimuli as only the CCT must be kept steady. In Fig. 3.18, two trend lines are plotted, one indicating the
lowest possible melanopic DER γ̂D65

mel,Min for a particular CCT (black line) and another illustrating the
largest melanopic DER value γ̂D65

mel,Max. The representation corresponds to the discussed example shown

(40) Figure 3.18 is reprinted from the author’s publication [108]: B. Zandi, O. Stefani, A. Herzog, L. Schlangen, Q. V. Trinh & T.
Q. Khanh. Optimising metameric spectra for integrative lighting to modulate the circadian system without affecting visual
appearance. Scientific Reports. 11, 23188 (2021). Nature Research. DOI: 10.1038/s41598-021-02136-y. Licence: CC BY 4.0.
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in Fig. 3.15c. Note that the difference between γ̂D65
mel,Min and γ̂D65

mel,Max should not be interpreted as the
melanopic tuning with metameric spectra, since only the CCT is steady but not the chromaticity.

Overall, the choice of chromaticity coordinates is an essential factor in spectral optimisation if the
minimum or maximum melanopic DER for non-metameric (steady CCT), as well as metameric (steady
chromaticity coordinate) spectra, need to be reached. In Fig. 3.19, the ideal chromaticity coordinates
(red points) are highlighted with which the largest melanopic DER value γ̂D65

mel,Max (red line in Fig. 3.18)
can be achieved for various CCT when the Duv distance to Planck is left as a free parameter. It can be
observed that the chromaticity coordinates with which γ̂D65

mel,Max can be reached are usually below the
Planckian locus (6-channel: Duv range: −0.039 to −0.009). However, when applying a stricter colour
fidelity criterion (Rf ≥ 90, Rf,h1 ≥ 90), the chromaticity coordinates move closer to Planck. For example,
with the 6-channel configuration spectra with a maximised melanopic DER can be reached when staying
in a Duv area between −0.036 and −0.006, whose Duv distance varies depending on the used CCT.

In contrast, spectra with a minimum in melanopic DER (γ̂D65
mel,Min) can only be achieved if chromaticity

coordinates above the Planckian locus (green points) are selected for spectral optimisation (Fig. 3.19).
However, in the previous section it was reported that the choice of Duv distance depends on whether
the maximum melanopic efficiency γ̂D65

mel,Max is of interest or the maximum modulation of the melanopic
DER (∆γD65

mel,Max) via metameric spectra. In Fig. 3.19, the chromaticity coordinates are highlighted with
which spectra can be optimised that provide a maximum melanopic tuning ∆γ̃D65

mel,Max via metameric
stimuli for each of the analysed CCT steps. These chromaticity coordinates are mostly near the Planckian
locus within a Duv range between −0.027 and 0.009 (6-channel, Rf ≥ 85, Rf,h1 ≥ 85).
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3.3.5 Summary on combining the non-visual needs and visual preferences

For a single chromaticity coordinate at steady (il)luminance, a higher amount of spectra can be optimised
that differ in terms of their visual (colour rendering) and non-visual properties (melanopic content).
Therefore, scientific guidelines for lighting-related studies [405, 490, 491] recommend reporting a light’s
SPD, as the chromaticity or CCT is not sufficient for specifying a stimulus. However, in the field of smart
integrative lighting [107, 108] and in fundamental non-visual lighting research, the topic of metamerism
becomes increasingly essential, as such stimuli can modulate the human’s circadian system without
having to vary the chromaticity or (il)luminance. Metameric spectra could be a powerful tool to reconcile
the conflict between a user’s visual preference and non-visual necessity in illuminated environments.

In this work, one of the largest spectral datasets of metameric stimuli was optimised and analysed
to report the extent to which the circadian system can be influenced independently of a light’s visual
appearance. For the first time, it was shown that the degree in modulating the melanopic DER mainly
depends on the selected chromaticity coordinate. Therefore, the metameric limits of the melanopic
stimulus space were projected into the CIExy colour space to provide a recommendation map for
appropriate chromaticity coordinates, useful for optimisation tasks when the maximum melanopic
modulation via metameric stimuli is of interest. Although a higher CCT level is associated with an
increase in melanopic EDI [492], this work provides evidence that melatonin attenuation could be
diminished by tuning the melanopic EDI without needing to alter a light’s chromaticity or (il)luminance.
Thus, it would be conceivable to use light spectra with a higher CCT in the evening while reducing its
melanopic EDI level to prevent a phase-shift of the human’s day-night cycle.

The results indicate that towards a CCT of approximately ∼4500 K, the melanopic tuning range
∆γD65

mel of metameric stimuli can be increased by using a higher CCT as objective during the spectral
optimisation. However, this effect applies for conditions in which the third priority level of the colour
fidelity criterion is used (Rf ≥ 85, Rf,h1 ≥ 85) and the metameric spectra are within a tolerance range
of ∆u′, ∆v′ ≤ 0.001 to the chromaticity target. This effect becomes saturated from ∼4500 K onwards,
meaning in such a range the melanopic DER can be tuned by at least 0.2 without affecting the photopic
illuminance or chromaticity (Rf ≥ 85, Rf,h1 ≥ 85). When developing a multi-primary LED system, the
number of channels and the selection of LED types plays a decisive role. Previous works indicated
that a 6- or 8-channel LED luminaire might be sufficient for conventional lighting tasks [107, 356].
However, based on this work’s results it can be concluded that with increasing number of LED channels
(8-channel, 11-channel), higher ∆γD65

mel values can be achieved via metamers (Rf ≥ 85, Rf,h1 ≥ 85).
The recent studies conducted by Allen et al. [468] and Souman et al. [453] showed that a melanopic

EDI modulation of ∆ED65
mel of 52.9 lx or 122 lx can significantly affect nocturnal melatonin-suppression.

However, in this work it was found that the melanopic EDI can be tuned by a maximum of ∆ED65
mel,Max ≈

62.5 lx to 75 lx (∆γD65
mel,Max of approximately 0.25 to 0.30) if the chromaticities of the metameric stimuli

are within ∆u′, ∆v′ ≤ 0.001 (Rf ≥ 85, Rf,h1 ≥ 85). Here, both the applied colour fidelity criterion and
the definition for the metameric spectra (∆u′, ∆v′ ≤ 0.001) is significantly stricter, resulting in a lower
modulation in melanopic EDI. For example, in the work of Souman et al. [453], the CRI Ra of the applied
spectra were lower than 80. From this work’s conducted analysis, it can be concluded that the most
substantial limitation factor in optimising metameric spectra is the applied colour fidelity criterion [108].
For example, when using the priority level two of the colour fidelity criterion (Rf ≥ 90, Rf,h1 ≥ 90), the
largest ∆γD65

mel,Max values across all chromaticities are 0.14, 0.17 and 0.19, which is significantly lower
compared to the reachable modulation levels when using the priority level three criterion (see Fig. 3.17).

Generally, choosing chromaticity coordinates towards ∼7400 K for spectral optimisation is recom-
mended if the largest melanopic tuning range ∆γD65

mel between two metameric spectra is of interest

(41) Figure 3.19 is reprinted from the author’s publication [108]: B. Zandi, O. Stefani, A. Herzog, L. Schlangen, Q. V. Trinh & T.
Q. Khanh. Optimising metameric spectra for integrative lighting to modulate the circadian system without affecting visual
appearance. Scientific Reports. 11, 23188 (2021). Nature Research. DOI: 10.1038/s41598-021-02136-y. Licence: CC BY 4.0.
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as ∆γD65
mel correlates to some degree with the CCT level (Fig. 3.16) when using the priority three of

the colour fidelity criterion (Rf ≥ 85, Rf,h1 ≥ 85). As a rule of thumb, one should prefer chromaticity
coordinates near the Planckian locus (depending on the CCT) for reaching metameric spectra of higher
quality as this area makes a larger melanopic tuning range ∆γD65

mel possible (see Fig. 3.19). If the lowest
melanopic efficacy ∆γ̂D65

mel,Min for non-metameric conditions is of interest (i.e. during the evening prior to
bedtime), then chromaticity coordinates above the Planckian locus should be selected (see Fig. 3.19). In
contrast the highest melanopic efficacy ∆γ̂D65

mel,Max can be reached with chromaticity coordinates below
the Planckian locus. In other words, the ideal chromaticity coordinate for each CCT depends on the ob-
jective of the spectral optimisation task such as (i) optimising non-metameric spectra with a maximised
melanopic efficacy γ̂D65

mel,Max, (ii) optimising non-metameric spectra featuring a minimised melanopic
efficacy γ̂D65

mel,Min, (iii) maximising the melanopic tuning range via metameric spectra ∆γ̃D65
mel,Max or (iv)

maximising the melanopic Michelson contrast between two metameric stimuli (see Fig. 3.17).
Here, the 2◦ colour matching functions (CMFs) were used to evaluate the metameric limit of the

melanopic stimulus space for each chromaticity coordinate. Although with ∆u′, ∆v′ ≤ 0.001, the toler-
ance of the metameric spectra can be considered strict, observers might perceive chromaticity differences
in larger illuminated environments. Thus, in a future study, it needs to be verified to what extent the
melanopic contrast of metameric spectra suffers when applying the 10◦-CMFs for computing the chro-
maticity coordinates. The spectral data were made open-source (see footnote(36)), allowing third-party
research groups to conduct extended analysis with the optimised spectra. Another topic involves the
impact of the selected LED combination on the analysed melanopic metrics. For example, in each
luminaire configuration at least two phosphor-converted white LEDs were used. In recent scientific
works that attempt to trigger the photoreceptors individually (i.e. silent substitution method [163, 333]),
only chromatic LEDs were used [92, 466, 467]. Therefore, it must be verified whether omitting the
phosphor-converted white LEDs could result in a disadvantage when metameric spectra are of interest.

Overall, in terms of scale (number of optimised spectra) and its systematic approach this work provides
the most extensive peer-reviewed published analysis concerning metameric spectra in the science of
spectral optimisation [107, 108]. The developed map of the metameric limits in melanopic modulation
could provide a recommendation basis of distinct chromaticity areas, which might be highly useful for
integrative lighting research and industrial applications, as combining the visual appearance of spectra
with melanopic attenuation could be of interest when designing illumination systems [107]. For example,
metameric spectra could be applied for night-shift workers [245, 493] to ensure an appropriate visual
appearance of light for the visual tasks while reducing the melanopic excitation to leave the human’s
circadian system basically in „biological darkness“[494], helpful for minimising the circadian disruption.





4 Modelling the Pupil Light Response

State-of-the-art pupil model approaches do not consider the recently discovered neurophysiological
mechanism behind the spectral and time-dependent afferent pupil control pathway. Estimation errors
of the pupil diameter might be possible due to the missing integration of a melanopic quantity in
recently proposed V(λ)-based pupil models. However, the deviation to a measured ground truth pupil
diameter has not been investigated in detail yet. Therefore, Section 4.1 of this chapter deals with the
prediction errors of existing V(λ)-based pupil models when using narrowband chromatic light stimuli
or polychromatic light spectra with chromaticities along the Planckian locus(42). The results should
provide an assessment under which temporal and spectral conditions empirical pupil models that
integrate the luminance as a proxy for the light stimulus could be applied to predict pupil size within
a pre-defined tolerance range. These results are intended to define the requirements for this work’s
proposed pupil modelling approach, aiming to improve the identified shortcomings of previously
proposed methods. In Section 4.2 of this chapter(43), a deep learning-based pupil modelling approach
is presented, allowing the reconstruction of the temporal and spectral dependent pupil light response
from pre-defined lighting metrics. The scientific background of the research objectives in this chapter
has been covered in Chapter 2, specifically in Section 2.4, and 2.5.

4.1 Prediction Accuracy of V(λ)-Based Pupil Models

As discussed in Chapter 2, the afferent pupil control pathway is controlled by the outer retinal photore-
ceptors and the melanopsin activated ipRGCs in a complementary fashion [102]. The extent to which
either the cones, rods or ipRGCs are involved in the signalling pathway depends mainly on the light’s
exposure time and the eyes’ adaptation level. Under photopic light conditions, the cones (L+M-ON,
S-OFF, L−M) control the phasic pupil response, while the ipRGCs dominate the pupil control with
increasing adaptation time until the equilibrium-state is reached [85, 91, 94, 101, 330–332, 335, 496, 497].
Therefore, it is hypothesised that existing V(λ)-based pupil models yield the most significant deviation
from the actual measured diameter at its tonic-state (see Section 2.3.2) [330]. However, it should be noted
that prediction errors of V(λ)-based models might also occur for the phasic pupil response, as the for-
mulas reflect the equilibrium-state pupil diameter caused by white light from thermal radiators. When
using polychromatic LED spectra, the retinal photoreceptors could be targeted differently, although the
spectrum’s chromaticity matches those of thermal light sources, allowing to increase, for example, the
ipRGCs input [107, 163], whose contribution to the pupil control is not managed by V(λ)-based pupil
models. However, the largest estimation errors could be expected when using chromatic LED spectra, as
such stimuli reveal the most prevalent α-opic contrast between the photoreceptors.

(42) The results in Section 4.1 are from the author’s following publications [47, 495]:
1) Babak Zandi, Julian Klabes & Tran Quoc Khanh. Prediction accuracy of L- and M-cone based human pupil light models.
Scientific Reports. 10, 10988 (2020). Nature Research. DOI: 10.1038/s41598-020-67593-3. Licence: CC BY 4.0.
2) Babak Zandi, Korbinian Kunst & Tran Quoc Khanh. Einfluss der melanopsinhaltigen Ganglienzellen auf die kurz- und
langzeitige Pupillenlichtreaktion. 120. Jahrestagung der deutschen Gesellschaft für angewandte Optik. Germany, Darmstadt. 11.05-
15.05.2019. ISSN: 1614-8436.

(43) The results in Section 4.2 are from the author’s following publication [48]:
Babak Zandi & Tran Quoc Khanh. Deep learning-based pupil model predicts time and spectral dependent light responses.
Scientific Reports. 11, 841 (2021). Nature Research. DOI: 10.1038/s41598-020-79908-5. Licence: CC BY 4.0
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Conventional pupil models (see Section 2.4) that apply the luminance as a proxy for the stimulus will
probably be used frequently in future, as they can calculate the pupil’s diameter without knowing the
spectral power distribution of a light source. Therefore, it is essential to know whether the V(λ)-based
pupil models are still applicable and which estimation errors need to be expected. To tackle this topic,
human observers’ pupil diameter for both chromatic and polychromatic spectra were measured and
compared with the predicted value of V(λ)-based pupil models. A custom build temperature-controlled
multi-channel LED luminaire was used as a light source, which was introduced in Chapter 3, allowing
reproducible light stimuli during the experimental trials. Three out of eight V(λ)-based models were
selected to calculate the models’ deviation to the actual measured pupil diameter. Firstly, Crawford’s
model [52] was selected, as the formula was derived with data from Crawford’s own experiments,
yielding the advantage of having a lower scatter in the measured pupil data. However, Holladay’s
model [50] was skipped as he used a double-pinhole pupillometer, which might lead to inaccurate pupil
diameter estimates as the eye might not be under the sole influence of light during measurements [52].
Secondly, the formula by De Groot & Gebhard [341] was chosen as a proxy for the combined pupil
models, which integrates experimental pupil data from several author groups. The other proposed
combined models by Barten [345] and Blackie & Howland [343] were not considered as the experimental
conditions of adaptation field size, light exposure time or age distribution of the tested subjects is
unknown to the author’s best knowledge. The selected pupil models were discussed in Section 2.4.

The initial hypothesis is that the models by Crawford [52] and De Groot & Gebhard [341] might
perform better for the equilibrium-state pupil diameter caused by polychromatic light stimuli, as these
authors used pupil data with a longer adaptation time. In contrast, at 60 second adaptation time,
the model by Watson & Yellott [51] might yield more accurate prediction, as they used the formula
from Stanley & Davies [342] as a basis who measured the pupil at 60 seconds of adaptation time. In
principle, however, all models might yield prediction errors for chromatic spectra in the short wavelength
range, as with such stimuli, the ipRGCs are essential for the equilibrium-state pupil size, which is not
acknowledged by V(λ)-based pupil models.

4.1.1 Participants

The measured pupil diameter of an individual observer is affected by inter-observer variability as the
dilatation pathway of the pupil branches to the hypothalamus [37, 38, 126, 289]. Therefore, cognitive
parameters like the human’s arousal state, memory load, visual attention and emotional responses
could affect the measured pupil size [2–5, 126, 303, 498, 499]. Such non-light induced modulations of the
pupil size by the sympathetic nervous system have transient impacts on the pupil diameter. Depending
on the degree of cognitive modulation, they could cause a short-term variation in pupil size of up to
∼0.5 mm [51]. However, under isolated laboratory conditions, these effects could be mostly neglected
because endogenous stimulus sources are minimised and usually the measured raw pupil data will be
pre-processed to encounter such non-light induced modulations [500–506].

Parasympathetic modulations of the pupil size by the human’s state of sleepiness or fatigue could
persistently affect the absolute pupil diameter [14, 507–511]. Such non-light-induced circadian mod-
ulations could cause intrasubject pupil size variability of approximately ± 0.3 mm to ± 0.6 mm [512,
513]. Therefore, for statistical analyses the so-called baseline corrected pupil diameter is leveraged
in which the pupil change to a reference spectrum is considered for each individual observer [501].
The intersubject variance across a population is much larger and can be up to ± 1.5 mm, depending
on the applied spectrum [47, 48, 52, 348]. These effects could have two implications for experimental
pupil measurements and subsequent modelling: Firstly, a pupil model might never be more accurate
than the non-light induced cognitive and circadian modulations from the autonomous nervous system
if such pupil size behaviour is not modelled too. Secondly, when recording the pupil diameter both
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intrasubject and intersubject data collection need to be carried out to classify the different types of the
pupil diameter’s scatter.

Therefore, both an intersubject and an intrasubject study was conducted. Each study was separated
into two sessions, where one session was carried out with chromatic and the second with polychromatic
stimuli. The sessions were conducted separately to avoid fatigue during pupil recording or other
light-induced experimental effects, such as photic memory [327]. For the intersubject study, a total of 20
observers were recruited from the Technical University of Darmstadt. The intrasubject study was carried
out with a single subject who repeated each test condition 12 times in order to reach a sufficient sample
size for the statistical evaluation. The prerequisites for participating in the study were an age between
19 to 25 years, no history of ocular diseases and no consumption of medical drugs that could affect
the pupil size. Additionally, the subjects were advised to be free of alcohol or caffeine 48 h before an
experimental session took place. In the polychromatic light conditions, the tested subjects were between
19 and 25 years, with a mean age of 21.95 y± SD 1.73 y. In the chromatic light condition, the subjects
were also between 19 to 25 years with a mean age of 22.2 y± SD 1.77 y. The observer in the intrasubject
study is the author of this thesis and was 33 years old at the time the experiment was conducted. This
study was authorised by the ethics committee of the Technical University of Darmstadt (ID: EK 12/2019).
The ethical principles of the Deceleration of Helsinki and the guidelines of the TU Darmstadt’s ethics
committee were followed [47].

4.1.2 Experimental protocol and photometric conditions

The light stimuli were generated using a temperature-controlled (30 °C± 0.1 °C) 15-channel LED lu-
minaire with 11 chromatic LEDs and four phosphor-converted white LEDs. The peak wavelengths
of the ten narrow-band LEDs were 420 nm, 450 nm, 470 nm, 505 nm, 530 nm, 610 nm, 630 nm, 660 nm,
720 nm with full widths at half maximum of 14 nm, 18 nm, 25 nm, 29 nm, 33 nm, 17 nm, 16 nm, 17 nm
and 29 nm, respectively. Additionally, one chromatic phosphor-converted lime coloured LED. The
phosphor-converted white LEDs had correlated colour temperatures of 2700 K, 4000 K and 5500 K. The
LEDs were arranged on a 50 mm x 50 mm sized aluminium PCB, equipped with a fan-cooled heat sink
and a thermoelectric cooler. Sixteen of these LED modules were placed in a 4 x 4 matrix. Light reflections
into the luminaire’s housing were prevented by equipping the empty spaces between the LED modules
with 3D-printed elements (Fig. 4.1a). A homogeneously illuminated 700 mm x 700 mm rectangular area
inside an observation chamber was used as adaptation area (Fig. 4.1a). The chamber’s illuminated
bottom and walls were painted with custom mixed white barium sulfate painting, allowing diffuse
light reflection and enhancing the homogeneous illumination. The LED luminaire was placed on top of
the observation chamber to avoid bright light spots and achieve sufficient space for diffuse reflection
(Fig. 4.1a). The PWM frequency for dimming the individual LED channels was set to 2 kHz to prevent
possible flicker artefacts during the experiment. A detailed description of the technical components, the
luminaire control and different strategies of spectral optimisation can be found in Chapter 3.

All subjects were instructed to place their head on a chin-rest and stare at a 0.8◦ sized fixation target
in the centre of the adaptation area. The target consisted of a bull-eye and crosshair shaped geometry,
proposed by Thaler et al. [360] to minimise saccades during experiments (Fig. 4.1a). The distance
between the 700 mm x 700 mm sized adaptation area to the observers’ eye was 700 mm, corresponding
to a visual angle of 53.1◦. Both the polychromatic and chromatic stimulus spectra were optimised to
reach a steady luminance of ∼100 cd/m2. If the underlying assumption of the V(λ)-based pupil models
is valid, the pupil size should remain unchanged despite different spectral power distributions, as the
luminance is steady across the stimuli. The applied chromatic and polychromatic spectra (Fig. 4.1b)
were measured twenty times using a calibrated Konica Minolta CS-2000A spectroradiometer at each
experimental day, ensuring repeatability of the experimental outcome. In the polychromatic experi-
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ment, the test spectra had the CCTs 10 138 K± SD 22 K (99.83 cd/m2± SD 0.2 cd/m2), 4983 K± SD 3 K
(100.10 cd/m2± SD 0.4 cd/m2) and 2007 K± SD 1 K (100.17 cd/m2± SD 0.3 cd/m2). For readability, the
polychromatic spectra are labelled as 10 000 K, 5000 K and 2000 K. The chromatic test spectra had the
peak wavelengths 450 nm (99.73 cd/m2± SD 0.4 cd/m2), 530 nm (100.12 cd/m2± SD 0.2 cd/m2), 610 nm
(100.16 cd/m2± SD 0.2 cd/m2) and 660 nm (99.97 cd/m2 ± SD 0.2 cd/m2), as reported in Table 4.1.

Front view
LED-modules

Chamber from 
perspective of subjects

a)

LED-modules

Luminare
cooling fans

Hardware of
lighting control

Mirror

Adaptation field

Stereocamera

Viewing direction
of subjects

1

2

3

1 2 3 Light observation
chamber

b)

380 430 480 530 580 630 680 730 780
0

0.5

1
Polychromatic spectra Anchor spectrum

0

0.5

1

380 430 480 530 580 630 680 730 780R
el

at
iv

e 
ra

di
an

ce

Wavelength in nm

Legend ~ 10 000 K ~ 5000 K ~ 2000 K

Chromatic spectra

0

0.5

1

380 430 480 530 580 630 680 730 780

45
0 

nm

53
0 

nm

61
0 

nm 66
0 

nm ~ 5500 K

Protocol experiment I: Chromatic stimuli - Randomised order

Protocol experiment II: Polychromatic stimuli - Randomised order

Random
Stimuli 1

Anchor

5 min
200 cd/m2 5 min

100 cd/m2

10 000 K

2000 K

CIE 1931-2° color space

3000 K

4000 K
3500 K

5000 K
6000 K

2500 K

7000 K

0.3 0.4 0.5

0.2

0.3

0.4

0.5

Rear view
Hardware of the lighting

c)

Random
Stimuli 2

Anchor

5 min
200 cd/m2 5 min

100 cd/m2

Random
Stimuli 3

Anchor

5 min
200 cd/m2 5 min

100 cd/m2

Random
Stimuli 4

Anchor

5 min
200 cd/m2 5 min

100 cd/m2

Random
Stimuli 1

Anchor

5 min
200 cd/m2 5 min

100 cd/m2

Random
Stimuli 2

Anchor

5 min
200 cd/m2 5 min

100 cd/m2

Random
Stimuli 3

Anchor

5 min
200 cd/m2 5 min

100 cd/m2

d)

Figure 4.1: Protocol of the pupil experiments and setup of the observation chamber with which the study was carried
out. a) The rear view of the multi-channel LED luminaire shows the 15 LED drivers and the Nucleo STM32-F767ZI
with which the luminaire was controlled. On the front side of the luminaire, 16 LED modules with 15 different LEDs,
respectively, were arranged in a 4 x 4 matrix. The middle LED module was not connected. The entire luminaire was
mounted on top of the observation box, ensuring enough space for the diffuse reflections of the rays. The front
wall of the illuminated chamber was used as the adaptation area. b) The experiment was performed with both
chromatic (450 nm, 530 nm, 610 nm and 660 nm) and polychromatic stimuli (10 138 K± SD 22 K, 4983 K± SD 3 K
and 2007 K± SD 1 K). The plots report the relative spectral power distribution. As a reference (anchor), a phosphor-
converted white LED with a CCT of ∼5500 K was used to measure the baseline pupil diameter. c) During the
chromatic session, the subjects were instructed to stare at a target in the observation chamber. Each experimental
session was started with the reference spectrum, which was switched on for five minutes. Then, a test spectrum
was turned on for five minutes. This procedure was carried out for all test spectra. The study was double-blinded,
meaning the order of the test spectra was fully randomised. Since four test spectra were presented in the chromatic
session with one reference in between, the experiment lasted 40 minutes. The protocol in the polychromatic session
was analogue to the chromatic, except that three test spectra were applied, reducing the total experimental duration
to 30 minutes. d) The chromaticity points of the polychromatic spectra in the CIExy-2◦ colour space. (44)

(44) Figure 4.1 is reprinted and modified from the author’s publication [47]: Babak Zandi, Julian Klabes & Tran Quoc Khanh.
Prediction accuracy of L- and M-cone based human pupil light models. Scientific Reports. 10, 10988 (2020). Nature Research. DOI:
10.1038/s41598-020-67593-3. Licence: CC BY 4.0.

https://doi.org/10.1038/s41598-020-67593-3
https://creativecommons.org/licenses/by/4.0/
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Prior to each stimulus spectrum, a reference with a correlated colour temperature of ∼5500 K was
presented (Fig. 4.1c) to measure the individual base pupil diameter with which a baseline correction
[126] can be performed for the statistical analysis. The colourimetric (Fig. 4.1d) and calculated α-opic
metrics of the applied test spectra(45)are provided in Table 4.1.

Table 4.1: On each experimental day, the radiance of the applied spectra was measured 12 times using a Konica
Minolta CS2000A spectroradiometer. The reported values in the table denote the mean value of all repeated
measurements with their corresponding standard deviation. For calculating the cone and ipRGC (melanopic)
receptor signals, the action spectra from the CIE S 026/E:2018 were used, reported in W/m2 sr.

Label Luminance (cd/m2) CIEu’-1976 CIEv’-1976 S-cone M-cone L-cone Melanpoic CCT (K)

10 000 K 99.83 ±0.2 0.1985
± 2.3 · 10−5

0.4333
± 1.1 · 10−5

0.1198
± 2.3 · 10−4

0.1524
± 3.3 · 10−4

0.1652
± 3.7 · 10−4

0.1668
± 3.3 · 10−4

10 138
± 22

5000 K 100.10 ±0.2 0.2123
± 3.4 · 10−5

0.4838
± 6.4 · 10−5

0.0636
± 1.2 · 10−4

0.1396
± 2.8 · 10−4

0.1645
± 3.5 · 10−4

0.1225
± 2.4 · 10−4

4983
± 3

2000 K 100.17 ±0.3 0.3042
± 3.8 · 10−5

0.5430
± 1.5 · 10−5

0.0064
± 2.1 · 10−5

0.1026
± 2.6 · 10−4

0.1709
± 4.1 · 10−4

0.0456
± 1.2 · 10−4

2007
± 1

450 nm 99.73 ±0.4 0.2163
± 3.3 · 10−5

0.0617
± 1.5 · 10−4

3.2458
± 6.2 · 10−3

0.4834
± 1.2 · 10−3

0.2913
± 8.7 · 10−4

1.8173
± 3.9 · 10−3

-

530 nm 100.12 ±0.2 0.0649
± 4.8 · 10−5

0.5787
± 1.2 · 10−5

0.0040
± 1.4 · 10−5

0.1672
± 3.8 · 10−4

0.1409
± 3.3 · 10−4

0.1055
± 2.3 · 10−4

-

610 nm 100.16 ±0.2 0.4951
± 7.5 · 10−5

0.5256
± 3.9 · 10−5

0.0001
± 3.5 · 10−5

0.0471
± 1.0 · 10−4

0.1968
± 4.6 · 10−4

0.0008
± 2.8 · 10−5

-

660 nm 99.97 ±0.2 0.5823
± 3.0 · 10−4

0.5115
± 1.8 · 10−4

0.0008
± 1.1 · 10−4

0.0236
± 7.1 · 10−5

0.2023
± 4.4 · 10−4

0.0011
± 1.3 · 10−4

-

The study was designed in such a way that the temporal pupil diameter was recorded during the
subject’s whole experimental session. For example, the chromatic session began with the reference
spectrum, which was used to adapt the pupil to a baseline. After 300 s of adaptation time, the test
spectrum was presented for another 300 s. This procedure was carried out for each test spectrum,
leading to a total pupil recording time of 40 minutes for the chromatic session (Fig. 4.1c). The chromatic
spectra were explicitly not switched on one by one (without a reference), as this would lead to different
pre-adaptation states, affecting the temporal pupil diameter due to photic memory. Therefore, in such
experiments, a steady reference is necessary for the pupil’s pre-adaptation. The adaptation time of
the reference spectrum and the test spectrum was adjusted to 300 seconds, respectively, ensuring that
the pupil diameter was recorded until its equilibrium-state. However, the test spectrum’s order was
completely randomised, meaning the study was double-blinded.

To achieve a smoother transition between the anchor and test spectrum in the chromatic sessions,
the luminance of the reference was set to 199.45 cd/m2± SD 0.43 cd/m2. Preliminary studies showed
that a steady luminance between the reference and the test stimuli would lead to uncomfortable glare
perception effects by the observers, resulting in increased blink rates and poor measurement accuracy
within the first two seconds of the test spectrum’s switch-on time. The pupillometry protocol in the
polychromatic session was analogue to the chromatic one. However, for comparability, the luminance
conditions were maintained in the polychromatic study as well.

(45) The measured spectra in W/m2sr are available in the online supplementary Table S1 of the author’s published work, available at
10.1038/s41598-020-67593-3.

https://doi.org/10.1038/s41598-020-67593-3
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4.1.3 Pupil measurements and data pre-processing

The pupil diameter was recorded using a commercially available 120 frames/s (∼8.3 ms/frame) eye-
tracking system from Smart Eye Pro, consisting of two Basler acA640-120gm cameras (659 × 494
pixels), each equipped with 8 mm lenses and IR pass filter. On each experimental day, an extrinsic and
intrinsic camera calibration was performed using a checkerboard, with which an average accuracy of
approximately 0.15 mm for edge detections was retrieved. In addition, a gaze calibration was conducted
with each subject prior to the experimental session, allowing to verify that the subjects stared at the
fixation target during the pupil recording. Measured pupil diameter values usually include artefacts
caused by eye blinks, head movements or rapid gaze jumps that need to be removed with pre-processing
techniques. For this, the Smart Eye Pro software provides an accuracy of the ellipse fitting in percent for
each measured diameter value, which can be reliably applied to filter such unnatural pupil changes.

Pupil data with an ellipse fitting accuracy of less than 97% were removed from the time series to
catch most of the non-physiologically induced artefacts. However, remaining unnaturally induced pupil
diameter peaks were identified and removed using a velocity filter. For this, the collected pupil data
were numerically differentiated to receive the velocity profile of the observer’s pupil changes. Then,
all strong outliers outside of a percentile threshold criterion of 99.993% and 0.007% were removed
from the time series. The missing pupil data in the time series were linearly interpolated and the
dataset’s sampling frequency was scaled down to 100 Hz for practicability reasons. Next, the pupil
unrest (oscillation) and other cognitive induced transient pupil changes were cleaned from the time
series, using a Savitzky-Golay filter, which was applied with a window size of 3000 data points. However,
the first three seconds of the pupil recording after the test spectrum’s light onset were not smoothed to
avoid an artificially induced change of the pupil’s phasic light response.

4.1.4 Procedure of calculating the pupil models’ prediction accuracy

The analysis of the collected pupil data followed two objectives. Firstly, it was examined to what extent
the luminance could be applied as a proxy for describing the temporal pupil light response. For this
purpose, a significance analysis was carried out to determine at which adaptation times the pupil
diameter is affected by the type of given light spectrum, although the luminance remained steady. If the
V(λ)-based pupil models’ assumption about the validity of the luminance is correct, the pupil diameter
of the population should not be significantly affected by the type of the applied spectra. Following
the methodological recommendations from the literature [501], the baseline-corrected pupil diameter
was used for the statistical analysis. For this, the temporal pupil diameter from the test spectrum
was subtracted from the mean equilibrium-state diameter at the reference stimuli (see Fig. A.2). The
baseline-correction (see Fig. A.1) was carried out for each subject individually. Secondly, the prediction
errors of V(λ)-based pupil models that apply luminance were analysed. For this, the absolute pupil
diameter from the test spectra was considered without baseline correction, since the pupil models
predict the absolute pupil diameter. By using calibrated cameras, a fixation target and chin rest, possible
head movements, fast gaze jumps during the pupil measurements could be negated, meaning that offset
errors that could significantly affect the absolute pupil diameter were minimised.

For both the statistical analysis and the estimation of the pupil models’ prediction accuracy, the
temporally recorded pupil diameter was considered at 1 second, 60 seconds and 300 seconds of light
adaptation time. The prediction accuracy was calculated by subtracting the predicted pupil diameter of
the Crawford [52], De Groot & Gebhard [341], Watson & Yellott [51] formula from the measured one for
each of the selected adaptation times. However, the decision at which adaptation times the measured
pupil data were compared with the models’ predicted values was based on the pupil measurement
conditions with which the respective pupil models from the literature were derived.
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For example, an adaptation time of 60 seconds was chosen because the empirical pupil data on which
the Watson & Yellott model [51] relies were recorded with such an adaptation time [342]. The 300 second
adaptation time was chosen because the Crawford [52] and De Groot & Gebhard models [341] used
empirical pupil data from the equilibrium-state pupil diameter. Finally, one second of adaptation time
was chosen as with such a light exposure time, the outer retinal photoreceptors dominate the phasic
pupil diameter; hence the luminance could be appropriate for such a period.

For the chromatic experiments, an average luminance of 100 cd/m2 and 99.8 cd/m2 for the polychro-
matic session was set into the pupil models by Crawford [52], De Groot & Gebhard [341] and Watson &
Yellott [51] to calculate the models’ predicted pupil diameter. However, the Watson & Yellott formula
[51] also required the adaptation area’s size, age of the observers, and the number of exposed eyes. Since
the subjects’ both eyes were adapted in the experiments, the value one was used for the parameter e and
a visual angle α of 53.1◦ was applied for the adaptation field size. The age range of the subjects was kept
small to minimise age-related effects. In the following, it was assumed that possible age-related changes
that might influence the pupil diameter would be masked by the population’s pupil size variability.
The assumption was made based on the data of Winn et al. [348], who characterised the population’s
age-dependent pupil diameter. The data indicate that age-related pupil size changes could be neglected
for individual subjects that are within the age group, which is applied in this work. Using a subject’s
individual age for computing the pupil size would have resulted in the assumption that the Watson &
Yellott model can predict the individual age-related pupil size with a resolution within an age interval
of 6 years. However, the model was originally intended to predict a population’s pupil size rather than
the individual. Thus, for the subjects’ age, the mean value of the population was used, which was 22.2
years in the chromatic experiment and 21.05 years in the polychromatic one. However, for the individual
subject (intrasubject study), 33 years was used in the Watson & Yellott model [51]. These parameters
resulted in the following predicted pupil diameter for the chromatic experiment: 3.007 mm with the
Crawford model [52], 3.182 mm with the De Groot & Gebhard model [341] and 3.019 mm according to
the Watson & Yellott model [51].

In the polychromatic session, the subjects’ mean age and the applied luminance varied slightly,
resulting in a predicted pupil diameter of 3.006 mm with the Crawford model, 3.182 mm with the De
Groot & Gebhard model and 3.022 mm when using the Watson & Yellott model. According to the
models of Crawford [52] and De Groot & Gebhard [341], the pupil diameter of the individual observer,
which was tested in-depth, is equal to the intersubject study, as they provide no age dependency in
their formula. However, the Watson & Yellot model [51] predicts a pupil diameter of 2.942 mm in the
chromatic and 2.943 mm in the polychromatic session for the individual subject.

4.1.5 Prediction accuracy and significance analysis for the chromatic stimuli

Results from both the intersubject and intrasubject studies indicate that the impact of the applied chro-
matic spectrum on the absolute pupil diameter becomes more pronounced with increasing adaptation
time (Fig. 4.2a, b), illustrating the temporally input of the photoreceptor types and the rising dominance
of ipRGCs in controlling the pupil diameter at its equilibrium-state. A repeated-measure ANOVA
(rANOVA) was performed to check whether the baseline-corrected pupil diameter (see Fig. A.1) is
significantly affected by the type of the given chromatic spectrum. As discussed, the subtractive baseline
correction was performed using the equilibrium-state pupil diameter after 300 seconds (see Fig. A.2)
adaptation time of the reference light(46), presented before a test stimuli (see Fig. 4.1).

For the statistical analysis, a significance level αp = 0.05 is used. One assumption of the rANOVA is
that the data are normally distributed, which was tested using the quantile-quantile plot and Shapiro-

(46) The baseline-corrected pupil data and the subjects’ pupil diameter caused by the reference spectrum from the chromatic
stimuli are available in the online supplementary Figure S1 A), B) and S2 A), B) of the author’s published work, available at
10.1038/s41598-020-67593-3.

https://doi.org/10.1038/s41598-020-67593-3
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Wilk-Test. Additionally, the variances of the pupil diameter values need to be equal across the light
condition groups, denoted as the sphericity of the data. However, the sphericity can be evaluated using
Mauchly’s sphericity test. If the assumption of sphericity is violated, the degree of freedom needs to be
corrected using the Greenhouse-Geisser or the Huynh-Feldt adjustment, resulting in a corrected p-value.
In this work, the quite conservative Greenhouse-Geisser adjustment was applied if the assumption of
sphericity was violated. As a post-hoc test, the pairwise T-test with Bonferroni correction was carried
out to determine between which groups significant differences exist. According to graphical analysis
using the quantile-quantile plot and Shapiro-Wilk-Test, the assumption of a normal distribution is not
violated for the intersubject experiment with chromatic stimuli. Therefore, a significance analysis using
the repeated-measure ANOVA can be applied. In the following, firstly, the statistical analysis regarding
the intersubject experiment (Fig. 4.2a) will be reported.
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Figure 4.2: Measured absolute pupil diameter and calculated prediction errors of selected V(λ)-based pupil models,
using the intersubject and intrasubject study results with the chromatic spectra. a) The temporally recorded pupil
diameter was picked from the time-series at the pre-defined adaptation times of one second, 60 seconds and 300
seconds. The data from the intersubject study are based on 20 subjects with an age between 19 to 25 years (Mean
age: 22.2± SD 1.77 years) b) The measured pupil diameter from the intrasubject study in which a single subject was
tested with an age of 33 years. In each condition, the subject was tested with 12 repetitions. c) The prediction error
of the Crawford [52], De Groot & Gebhard [341] and Watson & Yellott [51] is shown using barplots. To calculate the
prediction errors, the actual measured pupil diameter of each subject was subtracted from the predicted one. The
barplots represent the mean with its standard deviation. For putting the results into perspective, a pre-defined
tolerance range of ± 0.5 mm is used as an indicator, highlighted as a ribbon in the barplots. Cognitive-related or
other non-light-induced effects could induce a pupil size variability in such a range. d) Calculated prediction error
based on the data of the intrasubject study. (47)
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Spectral impact on the pupil diameter at steady luminance using chromatic stimuli

At one second adaptation time (see left panel in Fig. 4.2a), Mauchly’s test indicated that the assumption
of sphericity had been met χ2(5) = 1.87, p = 0.86 > 0.05 and correcting the degree of freedom is not
needed. According to rANOVA, the pupil diameter is significantly affected by the type of the spectrum
F(3, 75) = 12.24, p = 2.73 · 10−6 < 0.05 with a medium effect size (η2 = 0.22). A post-hoc pairwise
T-test with Bonferroni correction showed that there are significant differences of the pupil diameter
between the chromatic spectra 450 nm and 530 nm (p = 2.49 · 10−4 < 0.05) with a mean difference of
|µB| = 0.32 mm between the subjects’ pupil diameter at 450 nm and 530 nm. Thus, at steady luminance,
only a significant difference occurs between the pupil diameter at 450 nm and 530 nm, but the mean
difference among these two groups is small with 0.32 mm, meaning it could be below a cognitively
induced pupil modulation level. The results indicate that the luminance could be used in a pupil model
to predict the phasic response at one second adaptation time, since the pupil diameter is approximately
not affected by the type of the chromatic spectrum when using a steady luminance.

At 60 seconds adaptation time (see the middle panel in Fig. 4.2a), Mauchly’s test indicated that the
assumption of sphericity had been met χ2(5) = 13.12, p = 0.68 > 0.05 and a p-value adjustment is
not needed. Repeated-measure ANOVA revealed that the pupil diameter is affected by the type of
spectrum F(3, 57) = 42.24, p = 1.67 · 10−14 < 0.05 with a large effect size of η2 = 0.58. However,
pairwise T-test with Bonferroni revealed significant differences between the groups 450 nm to 530 nm
(p = 1.68 · 10−6 < 0.05, |µB| = 0.69 mm), 450 nm to 610 nm (p = 6.4 · 10−8 < 0.05, |µB| = 1.11 mm),
450 nm to 660 nm (p = 6.28 · 10−7 < 0.05, |µB| = 0.92 mm). Compared to the pupil diameter at one
second adaptation time, the mean difference of the subjects’ pupil diameter across the chromatic spectra
increases. The largest mean pupil diameter difference is between the chromatic spectra 450 nm and
610 nm with 1.11 mm, meaning that the luminance could no longer be applied to calculate the spectral
dependent pupil diameter when using chromatic stimuli at such an adaptation time.

At 300 seconds of adaptation time (see the right panel in Fig. 4.2a), Mauchly’s test showed that the
assumption of sphericity had been violated χ2(5) = 18.79, p = 2.14 · 10−3 < 0.05 and the degree of
freedom is adjusted using the Greenhouse-Geisser approach. According to the rANOVA, the pupil
diameter is affected by the applied chromatic spectra F(2.22, 42.2) = 50.81, p = 1.70 · 10−12 < 0.05
with a large effect size of η2 = 0.61. However, the post-hoc pairwise T-test with Bonferroni showed
significant differences between 450 nm to 530 nm (p = 1.58 · 10−7 < 0.05, |µB| = 0.85 ), 450 nm to
610 nm (p = 4.91 · 10−8 < 0.05, |µB| = 1.66 ) and 450 nm to 660 nm (p = 4.03 · 10−7 < 0.05, |µB| =
1.46 ). Interestingly, the pupil diameter at 450 nm hardly changed with increasing light exposure time,
suggesting a short adaptation time to the equilibrium pupil diameter with such a stimulus. However, the
higher the power in the long-wavelength range, the longer the average pupil diameter of the population
takes to reach its equilibrium-state (Fig. 4.2a). Therefore, the mean difference between 450 nm to 530 nm
only marginally changed between the adaptation times of 300 seconds (|µB| = 0.85 ) and 60 seconds
(|µB| = 0.69 mm), while the pupil diameter at 610 nm and 660 nm still dilates from 60 seconds on.

The results of the individual subject are in line with the outcome of the intersubject study, except
that there is less variability in pupil size between the repetitions (Fig. 4.2b). Further, the pupil diameter
at 610 nm and also 660 nm from the individual subject reveals that with increasing exposure time, the
pupil dilates, while with 450 nm the pupil diameter remains steady.(48).

(47) Figure 4.2 is reprinted from the author’s publication [47]: Babak Zandi, Julian Klabes & Tran Quoc Khanh. Prediction accuracy of L-
and M-cone based human pupil light models. Scientific Reports. 10, 10988 (2020). Nature Research. DOI: 10.1038/s41598-020-67593-3.
Licence: CC BY 4.0.

(48) Note that the statistical analysis of the intrasubject experiment using chromatic stimuli is reported in the in the online supplemen-
tary materials of the author’s published work, available at 10.1038/s41598-020-67593-3.

https://doi.org/10.1038/s41598-020-67593-3
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41598-020-67593-3
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Analysing the estimation errors of V(λ)-based pupil models using chromatic stimuli

In Fig. 4.2c, d, the averaged estimation errors of the pupil models for the tested chromatic spectra are
shown. To classify the estimation errors, a pre-defined tolerance range of ± 0.5 mm is highlighted in the
barplots since the pupil diameter could exhibit such a variability in response to a non-light-induced
cognitive trigger. The applied tolerance range is an empirical estimate, determined a priori by the author
of this work based on previously reported results in the literature concerning the pupil’s intrasubject
variability (see Section 4.1.1). However, from a statistical point of view and depending on the use case,
the prediction errors must be ideally within the standard error of the estimate (see Table A.1). Thus, for
the interested reader, the prediction errors are additionally classified using this approach, whose results
are reported in the appendix (see Table A.2). In the following, however, the pre-defined tolerance range
of ± 0.5 mm is used to classify the prediction errors, which is a more liberal threshold.

With a short light exposure time of one second, the prediction errors in the intersubject study remain
nearly steady between 0.77 mm to 1.09 mm across the applied chromatic spectra, depending on the used
pupil model (Fig. 4.2c). The results match those of the previously discussed statistical analysis, in which
the luminance could be used to approximately describe the phasic pupil light response, as in such a
time range, the pupil diameter remains approximately steady across the spectra. However, the pupil
models were derived using the equilibrium-state pupil diameter data. Thus, the prediction error could
be lowered using an offset correction, making it possible to apply a V(λ)-based pupil model to better
estimate the phasic pupil response at a pre-defined point in time.

With rising light exposure time, the differences in the prediction accuracy between the applied
chromatic spectra become apparent (Fig. 4.2c). For example, for the 60 seconds and 300 seconds light
exposure times, the prediction error at 450 nm remains between 1.02 mm and 1.26 mm, while for the
remaining chromatic spectra (530 nm, 610 nm, 660 nm), the pupil models’ prediction accuracy drops
inside the pre-defined tolerance range of ± 0.5 mm. The pupil diameter at 450 nm is shortly in its
equilibrium-state; hence the prediction error remains steady between 1.02 mm and 1.26 mm for such
stimuli. Thus, especially with short-wavelength spectra, increased prediction errors could be expected
since the luminance might not describe the pupil diameter for such longer adaptation conditions due to
the missing ipRGC weighting. To account for the prediction errors at higher adaptation times, a pupil
model would need to consider the pupil control pathway’s adaptive receptor weighting, which was not
mapped within the time-invariant approaches of the V(λ)-based pupil models.

However, the prediction errors in the intrasubject experiment follow the outcome of the intersubject
analysis, except that for a light exposure time of 300 seconds, the estimations errors are beyond the
pre-defined tolerance range of ± 0.5 mm. Note that the V(λ)-based pupil models were derived to predict
the mean pupil size of a population and the pupil diameter of an individual observer is due to the
higher scatter for longer wavelengths challenging to estimate. Even at one second exposure time, the
prediction accuracy across the chromatic spectra revealed a spectral dependency, showing an error
between 0.83 mm to 1.01 mm for the 450 nm, 610 nm and 660 nm stimuli (Fig. 4.2d). However, for the
530 nm stimulus, the prediction accuracy is lower with 0.42 mm to 0.66 mm, depending on the used
pupil model. Similar to the intersubject study, the pupil models’ prediction accuracy with the 450 nm
stimulus remains approximately steady between 0.94 mm to 1.31 mm.

The models proposed by Crawford and De Groot & Gebhard have the advantage of a handier formula
and thus a more straightforward application to calculate an initial guess of the pupil size. It should be
noted that the integrated parameter of the adaptation area in the Watson & Yellott model might not
enhance the prediction, as in this study, a large adaptation field was used, similar to the empirically
derived data behind the Crawford and De Groot & Gebhard models. The Watson & Yellott model might
reveal its advantage for smaller adaptation areas, where Crawford and De Groot & Gebhard would
presumably tend to overestimate the pupil size.
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4.1.6 Prediction accuracy and significance analysis for the polychromatic stimuli

Chromatic stimuli are challenging for pupil response models as these types of spectra yield extreme
lighting conditions. Therefore, inaccurate pupil size predictions need to be expected when using
chromatic spectra. Especially if the adaptive receptor impact or the ipRGC contribution to the pupil
control is not considered. However, chromatic spectra are primarily for research purposes. An evaluation
with polychromatic spectra whose chromaticities are placed along the Planckian locus corresponds more
to typical environmental lighting conditions. However, although the melanopic contrast between the
applied polychromatic spectra is lower than in the chromatic experiment (Table 4.1), it can be observed
that with increasing light exposure time (Fig. 4.3a, b), the pupil diameter dilatation process needs at least
60 or 300 Seconds to be in its equilibrium-state when using lower CCTs (2000 K, 5000 K). In contrast, the
pupil diameter at 10 000 K remains almost unchanged with rising light exposure time.
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Figure 4.3: Measured absolute pupil diameter and calculated prediction errors of selected V(λ)-based pupil models,
using the intersubject and intrasubject study results with the polychromatic spectra. a) The temporally recorded
pupil diameter was picked from the time-series at the pre-defined adaptation times of one second, 60 seconds and
300 seconds. The data from the intersubject study are based on 20 subjects with an age between 19 to 25 years
(Mean age: 21.95± SD 1.73 years) b) The measured pupil diameter from the intrasubject study in which a single
33-year old subject was tested. In each condition, the subject was tested with 12 repetitions. c) The prediction error
of the Crawford [52], De Groot & Gebhard [341] and Watson & Yellott [51] is shown using barplots. To calculate the
prediction errors, the actual measured pupil diameter of each subject was subtracted from the predicted one. The
barplots represent the mean with its standard deviation. For putting the results into perspective, a pre-defined
tolerance range of ± 0.5 mm is used as an indicator, highlighted as a ribbon in the barplots. Cognitive-related or
other non-light-induced effects could induce a pupil size variability in such a range. d) Calculated prediction error
based on the data of the intrasubject study. (49)
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Spectral impact on the pupil diameter at steady luminance using polychromatic stimuli

The statistical analysis was conducted using the baseline-corrected pupil diameter(50)(see Fig. A.1). A
graphical analysis using quantile-quantile plots and the Shapiro-Wilk-Test indicated a normal distribu-
tion of the intersubject pupil data. Therefore, a repeated-measure ANOVA can be applied to test if the
pupil diameter is significantly affected by the type of the polychromatic spectrum.

At one second light exposure time (see left panel of Fig. 4.3a), Mauchly’s test showed that sphericity
of the data can be assumed χ2(2) = 0.77, p = 0.67 > 0.05 and correcting the p-value is not needed.
According to rANOVA, the pupil diameter is significantly influenced by the type of the polychromatic
spectrum F(2, 38) = 24.67, p = 1.36 · 10−7 < 0.05 with a large effect size of η2 = 0.41. However, pairwise
T-test with Bonferroni correction showed a significant difference between the pupil diameter at the
CCTs 10 000 K to 2000 K (p = 1.71 · 10−3 < 0.05), but with a small baseline-corrected mean difference of
|µB| = 0.19 mm between these two stimulus groups, which is within the pre-defined tolerance range
of ± 0.5 mm. Therefore, the phasic pupil diameter in response to polychromatic and chromatic spectra
could be approximately described using the V(λ)-weighted luminance.

At 60 seconds of light exposure time (see middle panel of Fig. 4.3a), sphericity of the data can be
assumed χ2(2) = 0.35, p = 0.83 > 0.05. The rANOVA showed that the pupil’s diameter is significantly
influenced by the tested polychromatic spectra F(2, 38) = 10.24, p = 2.77 · 10−4 < 0.05 with a medium
effect size of η2 = 0.23. According to the pairwise T-test with Bonferroni correction, significant differences
occur between the CCTs 10 000 K to 2000 K (p = 1.55 · 10−3 < 0.05, |µB| = 0.33 mm). However, between
the pupil diameter at 10 000 K to 5000 K no significant difference was found (p = 0.43 > 0.05, |µB| =
0.1 mm). Thus, for the tested polychromatic stimuli, the spectral dependent pupil diameter at 60 seconds
of light exposure time can be approximately described using the luminance as a proxy since the mean
of the baseline-corrected pupil diameter varied with |µB| = 0.33 mm) (between 10 000 K to 2000 K),
which is lower than the tolerance range of ± 0.5 mm. In contrast, with the chromatic stimuli the pupil
diameter difference between the 450 nm to 610 nm stimuli was |µB| = 1.11 mm. The melanopic contrast
between 10 000 K and 2000 K (Table 4.1) is not sufficient to vary the pupil diameter above the pre-defined
tolerance range (± 0.5 mm) at 60 seconds of light exposure time.

At 300 seconds of light exposure time (right panel in Fig. 4.3a), the assumption of sphericity was
violated according to Mauchly’s test χ2(2) = 8.79, p = 0.01 < 0.05. Therefore, the p-value of the
rANOVA was adjusted using the quite conservative Greenhouse-Geisser correction. The rANOVA
showed that the pupil diameter is significantly affected by the type of the applied polychromatic spectra
F(1.44, 27.4) = 20.95, p = 1.68 · 10−5 < 0.05 with a large effect size of η2 = 0.42. A post-hoc T-test
with Bonferroni showed that the significant differences are between the CCTs 10 000 K and 2000 K
(p = 2.13 · 10−4 < 0.05, |µB| = 0.74 mm), but still no significant difference between the stimuli 10 000 K
and 5000 K (p = 0.12 > 0.05, |µB| = 0.17 mm). Thus, when using polychromatic stimuli with a light
exposure time of 300 seconds, the luminance could no longer be applied as a proxy for the spectra, since
the pupil’s mean difference between the groups 10 000 K and 2000 K is with |µB| = 0.74 mm even higher
than the pre-defined tolerance range. Overall, the luminance was not suited to keep the equilibrium-state
pupil diameter statistically steady across the tested chromatic and polychromatic stimuli.

The statistical analysis from the intrasubject data (Fig. 4.3b) yields a similar conclusion for the
difference light exposures, but the individual subject had a higher mean deviation between the spectra.(51)

(49) Figure 4.3 is reprinted from the author’s publication [47]: Babak Zandi, Julian Klabes & Tran Quoc Khanh. Prediction accuracy of L-
and M-cone based human pupil light models. Scientific Reports. 10, 10988 (2020). Nature Research. DOI: 10.1038/s41598-020-67593-3.
Licence: CC BY 4.0.

(50) The baseline-corrected pupil data and the subjects’ pupil diameter caused by the reference spectrum from the polychromatic
study are available in the online supplementary Figure S1 C), D) and S2 C), D) of the author’s published work, available at
s41598-020-67593-3.

(51) The detailed statistical analysis of the intrasubject experiment using polychromatic stimuli is reported in the in the online
supplementary materials of the author’s published work, available at https://doi.org/10.1038/s41598-020-67593-3.

https://doi.org/10.1038/s41598-020-67593-3
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41598-020-67593-3
https://doi.org/10.1038/s41598-020-67593-3
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Analysing the estimation errors of V(λ)-based pupil models using polychromatic stimuli

The results from the pupil models’ benchmarking (Fig. 4.3c) showed that with polychromatic spectra of
multi-channel LED luminaires, the prediction could be more accurate than chromatic spectra. Especially
at light exposure times of 60 and 300 seconds, the deviation to the ground truth is mostly within
the pre-defined tolerance range of ± 0.5 mm. For example, at 300 seconds, the models perform with
an estimation error of 0.2 mm to 0.67 mm, depending on the applied stimulus and model (Fig. 4.3c).
However, the model by De Groot and Gebhard has the highest deviation to the measured pupil diameter
with 0.67 mm at 300 seconds of adaptation time when using 10 000 K and 0.60 mm with an exposure
time of 60 seconds. The prediction of the phasic pupil light response yields the largest estimation error
at a CCT of 2000 K, ranging between 0.86 mm to 1.04 mm. Interestingly, related to 2000 K, the model
prediction is more accurate when using a CCT of 10 000 K, although the 10 000 K stimulus has a higher
melanopic radiance. The prediction accuracy of the individual pupil diameter from the intrasubject
study also tends to a similar outcome as the intersubject study (Fig. 4.3d).

The modelling approaches by Crawford or Watson & Yellott tend to provide better predictions than
the De Groot & Gebhard formula for the used lighting conditions. Generally, the V(λ)-based models’
time-invariant nature might impact the prediction accuracy more than the missing melanopic weighting.
Especially for polychromatic spectra, a model must distinguish between the phasic and tonic pupil
response if the temporal pupil size is of interest. For example, at one second light exposure time (inter-
subject experiment), the mean prediction error of the Watson & Yellott model is 0.94 mm± SD 0.12 mm
for the chromatic spectra, while it is 0.71 mm± SD 0.15 mm for the polychromatic. Thus, the time de-
pendence of a pupil model could be a key factor for accurate predictions. Despite these deficits, it can
be concluded that the pupil diameter can be predicted more accurate when using polychromatic spectra
instead of chromatic.

4.1.7 Summary on the usability of V(λ)-based pupil models

Using the luminance in a pupil model yields the advantage that the pupil’s size can be calculated
without prior knowledge of the spectral power distribution of a light stimulus, making its application
handy. The experimental results in the first part of this chapter followed the objective of quantifying
to what extent a V(λ)-weighted photometric value could be applied to approximately describe the
temporal pupil light response. Furthermore, the prediction accuracy of selected V(λ)-based pupil
models was benchmarked to showcase the estimation error when the ipRGC and temporal influence
of the outer retinal photoreceptors is not considered in a pupil formula. For this, the pupil models
were tested with both polychromatic (∼10 000 K, ∼5000 K, ∼2000 K) and with chromatic light spectra
(450 nm, 530 nm, 610 nm, 660 nm) at a luminance of ∼100 cd/m2, whose stimuli were generated using a
temperature-controlled LED luminaire. The chromatic spectra were intended to test the limits of the
pupil models when a spectrum yields the greatest possible α-opic contrast between the photoreceptor
classes, while the polychromatic stimuli were used to test the models’ output with common indoor
lighting spectra.

It was found that at a light adaptation time of one second, the phasic pupil diameter was significantly
affected by both the tested polychromatic and chromatic spectra when keeping the luminance steady
between the distinct stimulus types. The largest pupil diameter deviation to the predicted one was found
between 530 nm to 450 nm with an estimation error of 0.32 mm and ∼10 000 K to ∼2000 K with 0.19 mm.
However, due to these small effects, which are below the pre-defined tolerance range of ± 0.5 mm, it
could be possible to approximately describe the spectral-dependent phasic pupil response with the
luminance despite the significant differences of the pupil diameter between the tested stimulus types.
Neurophysiologically, this result could be explained by the fact that the short-term pupil response under
photopic adaptation is mainly under the control of the outer retinal photoreceptors, whose dependence
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could partly be described (empirically) using the V(λ)-weighted luminance that approximately covers
the achromatic L+M-channel.

Although the luminance could empirically describe the phasic pupil response, the V(λ)-based pupil
models by Crawford, De Groot & Gebhard and Watson & Yellott yield the highest prediction errors
in this time range. The deviation from the measured pupil diameter, however, is almost independent
of the spectrum and varies between 0.77 mm to 1.03 mm across the chromatic and 0.56 mm to 1.4 mm
across the polychromatic spectra. These deviations occur because the pupil formulas were modelled
with measured data at the pupil’s equilibrium-state using a thermal light source. However, due to the
lower spectral impact on the phasic pupil diameter, the prediction accuracy of conventional pupil model
approaches could be improved by a so-called offset correction. For example, at one second light exposure
time, the mean prediction error for the Watson & Yellott model was in average 0.94 mm± SD 0.12 mm
across the chromatic and 0.71 mm± SD 0.15 mm for the polychromatic stimuli (intrasubject experiment).
Thus, the offset correction can be calculated by subtracting the Watson & Yellott prediction from the
mean deviation values. After such an offset correction, the prediction error is minimised to, for example,
0.12 mm± SD 0.12 mm for the chromatic and −0.12 mm± SD 0.15 mm for the polychromatic spectra.

For the remaining light exposure times, a naive offset correction for improving the models’ prediction
accuracy is not applicable, as the tonic pupil diameter shows an increasing ipRGC dependence, which
the luminance cannot manage anymore. For example, when using chromatic LED stimuli with the
peak-wavelengths 610 nm or 660 nm, the pupil diameter dilates with increasing light adaptation until the
pupil’s equilibrium-state is reached, which can last approximately 200 seconds. However, if a spectrum
with a peak-wavelength of 450 nm is used, the temporal pupil diameter is in its equilibrium-state
after about five seconds, leading to a steady pupil diameter for the remaining adaptation time. This
temporal receptor weighting during the pupil’s adaptation cannot be managed with a time-invariant
pupil formula that only applies the luminance as a proxy for a light’s spectral power distribution.
Interestingly, the equilibrium-state pupil diameter can be predicted within the tolerance range ± 0.5 mm
when using chromatic spectra with the peak-wavelengths 530 nm, 610 nm and 690 nm, whereas with
450 nm the models show a deviation from the actual measured pupil size between 1.02 mm to 1.08 mm.

The pupil models’ prediction with polychromatic stimuli showed that by reducing the melanopic
contrast between the spectra, a variation of the CCT along the Planckian locus affects the pupil diameter
marginally compared to the discussed effects with chromatic spectra. Therefore, it can be concluded
that, particularly for longer light exposure times of 60 to 300 seconds, the predicted pupil diameter
is within the pre-defined (liberal) tolerance range of ± 0.5 mm when using V(λ)-based pupil models
with white light. However, it must be noted that the temporal component could be the most influential
parameter when using polychromatic spectra, as the prediction error varies with light exposure time
due to the adaptive receptor weighting in the pupil control pathway. The modulation capabilities of
the ipRGCs could be lower for polychromatic stimuli that feature chromaticity coordinates near the
Planckian locus.
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4.2 Towards a Deep Learning-Based Pupil Model

The analysis of selected V(λ)-based pupil formulas in this work revealed that due to the missing
integration of the time-dependent adaptive receptor weighting of the pupil control and the missing
ipRGC consideration, prediction errors must be expected in the estimation of the pupil size for both
chromatic and polychromatic stimuli. Further, the empirical models from 1926 to 2012 are time-invariant
and thus do not distinguish between the phasic or tonic pupil state, which is particularly essential
when predicting the temporal pupil size in response to polychromatic light. The spectral dependence
of the pupil control pathway deviates from the luminous efficiency function V(λ) [83, 262, 350], since
the pupil’s peak sensitivity shifts from 510 nm towards approximately 470 nm with the increase in the
light’s exposure time [103, 327]. From a neurophysiological perspective, the pupil size is controlled
by the ipRGCs, whose dendrites receive and integrate the extrinsic input from L+M, S-OFF and rods
from the outer retina [85, 86, 88–94, 213]. In the photopic adapted eye, the short-term pupil response is
modulated by the outer retinal photoreceptors (L+M, S-OFF), while with increasing light exposure time,
the melanopsin activated ipRGCs turns slowly in and dominate the equilibrium-state pupil diameter
[101, 102, 497]. However, the time until the equilibrium-state is reached mainly depends on the applied
light spectrum, as a higher proportion in a light’s short-wavelength range lets the pupil reach a stable
diameter faster than with stimuli of longer wavelengths [14, 318, 514]. These retinal mechanisms were
not considered in the history of pupil modelling that apply the luminance as a main independent
parameter, leading to the discussed prediction errors (see Section 4.1).

To improve the pupil size prediction, Rao et al. (2017) [436] proposed to include, in addition to the
luminance, a so-called cirtopic action factor acv, which is defined as the ratio between the cirtopic and
photopic weighted light spectrum with

acv =

∫
C(λ) Le(λ) dλ∫
V(λ) Le(λ) dλ

(4.1)

where Le(λ) defines the spectral radiance and C(λ) the cirtopic sensitivity. The objective of Rao et
al. [436] was to improve the equilibrium pupil size prediction by integrating the sensitivity of the
non-image forming pathway into a pupil formula. The authors [436] derived a pupil model (Eq. 4.2)
from own empirical investigations using phosphor-converted white LEDs as light source with CCTs of
3000 K, 4500 K and 6500 K and an adaptation time of 80 seconds.

DRao(Lv, acv) = −0.0038 · Lv · (0.8 + 0.2 · acv) + 4.4 · (0.8 + 0.2 · acv) (4.2)

However, one disadvantage of the Rao et al. [436] approach is the integration of the cirtopic action
spectrum C(λ), which describes the wavelength-dependent melatonin suppression. The sensitivity
function is derived from a fitting procedure with the raw data by Brainard et al. [254] and Thapan et
al. [263]. Several approaches are proposed in the literature to calculate C(λ) from the Brainard et al.
[254] and Thapan et al. [263] data [418, 515]. Firstly, a C(λ) has been proposed by Gall and Beiske [416]
and secondly by Rea et al. [419]. It is also possible that neither of these two approaches is applied, and
C(λ) is based on a custom fitting procedure. In fact, C(λ) is not a standardised action spectrum and the
applied C(λ) function was unfortunately not reported in the supplemental materials of Rao et al. [436],
meaning Equation (4.2) cannot be fully reproduced for benchmarking to the author’s best knowledge.

Furthermore, it should be noted that the spectral power distribution of the applied light stimulus must
be known for calculating the pupil size with the Rao et al. [436] formula, which causes an increased effort.
Such extra work needs to be justified by, for example, increased accuracy in the pupil size prediction.
However, from the previously reported results in this work, it is known that especially for polychromatic
spectra the luminance-based models already yield an good estimation within the pre-defined tolerance
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range of ± 0.5 mm, when using CCTs between 2000 K and 10 000 K as a light stimulus. For predicting
the temporal pupil size, however, an additional ipRGC weighting must always be combined with a
time-dependent weighting that considers the adaptive receptor weighting of the pupil control. Therefore,
adding a static ipRGC weighting to only predict the tonic pupil size caused by white polychromatic
spectra might not provide enough value to the prediction accuracy, as such an approach could still not
distinguish between the phasic and equilibrium-state pupil diameter.

It can be concluded that currently, there is no approach in the science of empirical pupil modelling,
which could reconstruct the temporal pupil light response caused by chromatic or polychromatic spectra
from photometric quantities. In this section, a pupil modelling approach is presented, which applies a
neural network, allowing the possibility to increase the prediction accuracy with a higher amount of
data without changing the structure of the model itself. With such a self-learning pupil model approach,
additional dependencies such as cognitive parameters could also be added if sufficient training data
are available. The developed pupil model concept combines neural networks with time-invariant and
time-variant functions to reconstruct the temporal pupil light response from the phasic up to its
equilibrium-state for selected chromatic and polychromatic stimuli, only by using photometric and
colourimetric or receptor-based quantities as input.

4.2.1 Requirements for temporal and spectral dependent pupil light response model

A significant shortcoming of previously proposed pupil model approaches was to apply closed equations,
making an update of a formula’s structure necessary when new empirical data are available or additional
dependencies need to be added to an existing pupil model. For example, Watson & Yellott [51] had to
derive a new function and combine it with the modified Stanley & Davies [342] model to propose their
unified pupil model for the photopic adapted eye, which can predict the age-related equilibrium-state
pupil light response. Such a strategy might not be efficient, as it could be expected that in upcoming
works, cognitive parameter dependencies might also be added into a pupil model to further improve the
prediction accuracy of the intrasubject pupil size. Cognitive parameters can modulate the pupil diameter
from approx. ± 0.3 mm to ± 0.6 mm when looking to an individual observer’s pupil size, captured in a
series of repeated pupil measurements [512, 513]. A higher scatter of ± 1.5 mm [52, 348] is observable
in intersubject studies in which the pupil diameter of a population is recorded, as shown with the
reported results in Section 4.1 of this chapter. Thus, a pupil model could never be more accurate than an
individual observer’s pupil diameter variability if an observer’s cognitive state is not used as input into
a model. However, by using a large sample, the population’s mean can be estimated more accurately,
leading to a more generalised predicted pupil diameter. A novel model approach must therefore be able
to improve its prediction accuracy as the database increases, without having to change the structure
of a derived function. Adding additional dependencies to a pupil model should be possible by using
only new empirical data sets that capture the pupil’s behaviour to the stimulus of interest. Finally,
the temporal pupil size in response to polychromatic and chromatic light must be predicted up to the
equilibrium-state since the short-term pupil size is controlled by different retinal dependencies than the
light-adapted afferent pupil control pathway.

The pupil light constriction and the absolute equilibrium pupil size depends on the luminance L, the
spectral power distribution of a stimulus spectrum Le(λ) in the visible wavelength range λ ∈ [380, 780]
and the light’s exposure time ts. When presenting a short light pulse (0 < ts ≤2 s), the pupil responds
after a latency τ between 220 ms to 550 ms with a brief constriction amplitude dPeak and then maintains
its pupil size for a short period (PIPR), although the test light is no longer present, and finally re-adapts
to the pre-stimulus pupil size (see Section 2.3.2). When using a continuous light exposure, the pupil
responds after its latency time τ with the pupil peak constriction dPeak and then adapts to the light
stimulus itself by dilating (increasing pupil size) until the equilibrium-state is reached. The outer retinal



4.2 towards a deep learning-based pupil model 97

photoreceptors control the first seconds of the pupil’s light response. Their contribution diminishes with
increasing adaptation time by slowly handing over the pupil control to the melanopsin activated ipRGCs,
resulting in a stable pupil diameter across the remaining light exposure after the equilibrium-state
is reached. For spectra with a lower spectral power in the short-wavelength range, the afferent pupil
control pathway takes more time to adapt and reach its steady-state. For the condition of continuous
light exposure with a steady luminous area size α, the pupil size follows a time-variant function of
dP(t, Le(λ)). Current state-of-the-art pupil models predict a time-invariant pupil diameter dP(Lv) for
the equilibrium pupil state. Thus, a new pupil model must consider various aspects of the retinal
photoreceptors’ spectral dependence, adaptive weighting in response to the stimulus duration and
spectral power distribution.

To model these dependencies, it would be conceivable to apply a combined neurophysiological model
that calculates the temporal pupil response from the circuit that begins with the photon capture by
the retinal photoreceptors and whose frequency-encoded signals are relayed via the afferent pupil
control pathway to the Edinger-Westphal nucleus and ends by the modulation of the eye’s iris muscles.
Although such an approach would be physiologically correct by describing the integration of the L+M
and inhibitory S-cone signals to the ipRGCs, applying and adapting such a model would be difficult.
On the one hand, the spectral power distribution of the light stimulus must be known; on the other
hand, the fixed functional structure could yield a lower degree of freedom, resulting in the same issue
as V(λ)-based pupil models got stuck with when needing to add additional dependencies such as
the light’s exposure time or cognitive parameters. Indeed, the prediction accuracy of conventional
V(λ)-based pupil models could yield estimation errors, but such approaches might be preferred when
a new pupil model is challenging in its application or limited in its flexibility.

4.2.2 The concept of modelling the pupil light response

The objective is to compensate for the deficits of currently proposed pupil models while allowing the
flexibility of adding additional dependencies in the future when more empirical data exists and, in
addition, making it possible to omit the use of a light’s spectral power distribution for predicting the
pupil’s temporal size. In this work, the modelling approach was pursued with the method of deep neural
networks, which has not yet been applied in the science of pupil light response modelling, at the author’s
best knowledge. Such a technique could provide enough flexibility for the choice of input parameters
(can also be denoted as features or values) while allowing an ongoing development with expanding
databases in subsequent works about pupil modelling. However, one intended goal of this thesis was to
reconstruct the pupil’s course from photometric and colourimetric quantities like the luminance and
chromaticity to preserve an easy application of the pupil model. From the author’s point of view, this
goal can be solved with two different approaches when using the method of deep learning. Firstly, a
direct approach in which empirically measured pupil data dP,meas(t1, t2, . . . , tn) for t1, t2, . . . , tn ∈ RC

with C for each stimulus condition can be used to train a recurrent neural network. When training
such a network architecture, the input parameters (features) derived from the stimulus spectrum (e.g.
luminance L and chromaticity coordinates) could be used as sequenced abstraction {xi}N

i=1 xi ∈ R while
the neural network’s output would be the predicted pupil diameter dP,pred(t1, t2, . . . , tn) per time unit t.

The number of input parameters N serve as a proxy for the light’s spectral power distribution, which
could be chosen freely, but it should provide enough features to reconstruct the temporal pupil diameter
dP,pred(t). In addition to the luminance and chromaticity, the melanopic radiance could also be added
to the input features of a neural network (N = 4), ensuring a higher accuracy in reconstructing the
temporal pupil diameter when using chromatic stimuli, for example. It would also be conceivable to
apply the α-opic receptor signals as input (N = 5). In both cases, however, the knowledge about the
light’s spectral power distribution would again be required. Note that in an ideally designed architecture
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of a sequence-to-sequence network with recurrent neural networks, the prediction accuracy primarily
depends on the amount of training data and the skew between the number of the input features N and
the number of output values n. Assuming that the luminance and chromaticity of a light stimulus are
used as features for the neural network’s input, then for a model’s output resolution of one second
with t ∈ [0, 300], a neural network needs to predict 300 pupil diameter values dP,pred(t) for each time
step t, only from a set of three feature values {xi}3

i=1. Even if the time step resolution of the pupil
diameter’s prediction dP,pred(t) is halved (n = 150) and the α-opic photoreceptor signals are used as
input values (N = 5), then 150 sequential pupil diameter values would still have to be determined from
only five input features. However, the average estimation error of the predicted temporal pupil diameter
should not exceed the pre-defined tolerance range of ± 0.5 mm, since, for example, the V(λ)-based
pupil models can already predict the pupil diameter with such an accuracy for polychromatic spectra
[47, 495]. Further, if cognitive parameters need to be added as input in a future application, then the
estimation error should even be in a range between ± 0.1 mm or within the standard error of the estimate
as in various research disciplines, the focus is on small transient pupil changes [3]. Thus, the direct
approach that attempts to predict the temporal pupil light response from the input parameters using a
sequence-to-sequence architecture with recurrent neural networks is probably not suitable to face the
previously defined requirements for a pupil model.

Therefore, an indirect modelling approach was developed in this work (Fig. 4.4), aiming to significantly
lower the neural network’s number of output parameters n for bypassing the limitation regarding the
amount of training data and being more flexible about the choice of the input feature number N. For
this purpose, a base function F(y1, y2, . . . , yD) for y1, y2, . . . , yD ∈ RC was developed to fit the measured
pupil diameter data dP,meas(t) in each available spectral light condition C by varying only the base
function’s parameters {yi}D

i=1. With this procedure, it would be possible to reconstruct the temporal
pupil light response by knowing the base function’s parameters {yi}D

i=1 for a given light condition.
However, the key requirement for the base function is to have a sufficient degree of freedom (pa-

rameter number D) to reconstruct dP,pred(t) ≈ F(y1, y2, . . . , yD) using the available empirical data
dP,meas(t1, t2, . . . , tn) that were measured in different light conditions C. As training sample, the collected
pupil data from Section 4.1 of this chapter were used. The sample provides the measured pupil diameter
{dP,meas(ti)}t=300

i=1 for dP,meas(ti) ∈ RS×C, where S denoted the number of the tested subjects in each
of the used light conditions. In the light conditions C, chromatic spectra with the peak-wavelengths
420 nm, 530 nm, 610 nm, 660 nm and polychromatic stimuli with the CCTs of ∼2000 K, ∼5000 K and
∼10 000 K were used to measure the intrasubject and intersubject pupil light response for a duration of
300 seconds. These data were used to derive an individual observer model (intrasubject experiment) and
a pupil model for the population (intersubject experiment), respectively. For modelling, the median of
the measured pupil diameter {d̃p,meas (ti)}t=300

i=1 with d̃p,meas(ti) ∈ RC was used. Therefore, the number
of repetitions in the intrasubject or number of subjects in the intersubject experiment had no effect on
the fitting procedure or accuracy of the fit, as the dataset’s median {d̃p,meas(ti)}t=300

i=1 was used to model
each measured pupil light response with the base function F(y1, y2, . . . , yD).

As a result, the base function’s parameters {yi}D
i=1 (model parameters) for a respective stimulus

condition C can be used to derive dP,pred(t) using the base function F(y1, y2, . . . , yD). However, the
key idea of this approach is that every single temporal median pupil light response {d̃p,meas(ti)}t=300

i=1
receives its own model parameters for each used light condition, leading to a set of parameters {yi}D

i=1
with yi ∈ RC. This approach avoids establishing a direct relationship between the metrics of a light
spectrum {xi}N

i=1 and the median of the measured temporal pupil light response {d̃p,meas(ti)}t=300
i=1 . The

objective of the indirect approach is to determine the base function’s model parameters {yi}D
i=1 from

the light metrics of a spectral power distribution using a neural network, which can then be inserted
into the base function F(y1, y2, . . . , yD) itself, allowing to reconstruct the pupil light response dP,pred(t)
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with a high temporal resolution. However, the number of the neural network’s output values is thus
defined by the degree of freedom of the base function, which needs a sufficient number of parameters
D to fit any measured temporal pupil shape {d̃p,meas(ti)}t=300

i=1 . The basic structure of this procedure is
described in detail in Figure 4.4. In the following sections of this chapter, the development of the base
function and the neural network’s architecture will be covered.
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Figure 4.4: The structure of the proposed modelling procedure to reconstruct the pupil light response from photo-
metric, colourimetric and receptor-based quantities using neural networks in combination with a biomechanical
differential equation of second-order [109] and the time-invariant Watson & Yellott model [51]. An indirect prediction
pipeline was used to reconstruct the spectral and time-dependent pupil diameter using a combined model structure.
Here, the temporal pupil response is modelled using a so-called base function by varying its parameters. Thus, the
temporal pupil size for each light spectrum can be reconstructed by knowing the previously determined parameters
of the base function. The link between the light spectra and the respective parameters of the base function is then
made with a neural network. In other words, the neural network predicts the base function’s parameters from the
different input combinations, e.g. luminance and chromaticity, which are then inserted into the base function to
reconstruct the temporal pupil light response. The base function consists of three sub-functions that were chained
with a masking function to a combined model. The first sub-function consists of the Watson & Yellott [51] model to
predict the initial pupil diameter used for solving the second-order differential equation (second sub-function),
which reconstructs the temporal phasic pupil response. A ninth-degree polynomial function is used as the third
sub-function to describe the tonic pupil response. The steps for reconstructing the temporal pupil size from a light
spectrum are as follows: Step 1) One of the input combinations is selected for the neural network; either (i) the
luminance and CIExy-1931 chromaticity coordinates; (ii) the receptor signals; or (iii) the luminance, CIExy-1931
chromaticity coordinates and melanopic radiance Step 2) The initial pupil diameter is calculated from the luminance
of the light spectrum, using the Watson & Yellott model [51]. Step 3) The base function’s predicted parameters
(output of the neural network) are inserted into the phasic pupil model together with the calculated initial pupil
diameter, allowing to calculate the numerical solution of the second-order differential equation proposed by Fan &
Yao [109]. Step 4) The second part of the base function’s parameters, calculated by the neural network, is inserted
into the tonic model. Step 5) The phasic and tonic models are combined with two masking functions, which can
then reconstruct the whole pupil response as a combined model with the selected light metric combinations. (52)

(52) Figure 4.4 is reprinted from the author’s publication [48]: Babak Zandi & Tran Quoc Khanh. Deep learning-based pupil model
predicts time and spectral dependent light responses. Scientific Reports. 11, 841 (2021). Nature Research. DOI: 10.1038/s41598-020-
79908-5. Licence: CC BY 4.0.

https://doi.org/10.1038/s41598-020-79908-5
https://doi.org/10.1038/s41598-020-79908-5
https://creativecommons.org/licenses/by/4.0/
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4.2.3 Spectral dependency of the temporal pupil adaptation

The previous section discussed that the pupil control pathway exhibits a wavelength-dependent adapta-
tion behaviour, allowing the pupil to reach the equilibrium-state faster for stimuli with a higher spectral
power in the short wavelength range. Since this effect is part of the temporal pupil light response, it
should be managed by a pupil model. Therefore, it was analysed whether the spectrally dependent
adaptation of the pupil control is also present in the recorded pupil data {d̃p,meas(ti)}t=300

i=1 reported in
the first section of this chapter, as these data will be used as sample for modelling. For this, firstly, the
mean pupil light response for each applied chromatic and polychromatic stimuli was calculated for the
intrasubject and intersubject study, respectively. Then, for the chromatic study, the mean pupil diameter
at 450 nm (µ(t)450nm) was used as a reference, meaning the calculated mean pupil diameter from the
remaining chromatic spectra µ(t)530nm, µ(t)610nm, and µ(t)660nm were individually subtracted from the
reference µ(t)450nm to relate the pupil’s spectral adaptation to each other (Fig. 4.5a). However, for the
polychromatic spectra, the mean pupil diameter from ∼10 000 K (µ(t)10 000 K) was used as a reference
(Fig. 4.5b) to anaylse the adaptation behaviour of µ(t)2000 K and µ(t)5000 K.

The mean differences from the intersubject study show that the equilibrium pupil diameter for 610 nm
and 660 nm is reached after approximately 90 seconds of adaptation time, while for the chromatic
spectrum with the peak-wavelength of 530 nm, the pupil needs about 20 seconds to be fully adapted.
The individual subject from the intrasubject study was more sensitive to spectra with a higher power in
the longer wavelength range since more time was needed for completing the pupil’s adaptation process.
For example, the pupil required about 120 seconds to reach the equilibrium pupil diameter when using
chromatic spectra with the peak-wavelengths of 610 nm and 660 nm, but about 10 seconds for 530 nm.
When using polychromatic spectra, the pupil’s adaptation process was completed faster. For example,
in the intersubject study with the light stimulus of 2000 K, the pupil was fully adapted after 30 seconds.
For the single subject in the intrasubject study, the pupil was after 60 seconds in its equilibrium-state.
Thus, the wavelength-dependent adaptation is present in different orders of magnitude in the acquired
data and can be considered for the new pupil model.

Consequently, because of these distinct adaptation behaviours, it was decided to model the phasic and
tonic pupil response separately. For this purpose, it was necessary to break the base function F into two
sub-functions dPhasic and dTonic. However, the phasic pupil response has three notable characteristics:
(i) the initial pupil diameter dP,meas(t0, λ) from which the pupil light response starts, (ii) the pupil’s
latency time τ after which the pupil begins to constrict from the dP,meas(t0, λ) plateau and (iii) the
pupil constriction peak dP,meas(tPeak, λ) where the pupil’s adaptation to the light stimulus starts (ta,start),
meaning the phasic pupil response is restricted to the time interval t0 ≤ t ≤ ta,start. In the captured
pupil data, this phasic time interval has a duration of approximately two seconds, hence ta,start ≈ 2 s.
Thus, the tonic pupil light response is restricted to the time interval ta,start < t ≤ teq in which the pupil
adapts to the light stimulus until the equilibrium-state is reached. During the adaptation process, teq

differs between the applied light spectra, so teq was defined as 300 s since the measured pupil diameter
data were measured for such a duration.

4.2.4 Initial pupil diameter for reconstructing the temporal pupil light response

For predicting the temporal pupil diameter in response to a light spectrum, the initial pupil diameter
dP,meas(t0, λ) is needed as a starting point to reconstruct the phasic and tonic response. Therefore it is
necessary to check whether the initial pupil diameter dP,meas(t0, λ) can be assumed as independent of
the used light stimulus. If so, it would be possible to apply conventional V(λ)-based pupil models to
predict the initial pupil diameter.
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Figure 4.5: Comparison of the pupil’s adaptation behaviour across the different spectra and the initial pupil
diameter for each used stimulus. a) The mean of the temporal pupil diameter is plotted for the chromatic (n:
20, Age: 19-25, Mean age: 21.95± 1.73 y) and polychromatic stimuli experiments (n: 20, Age: 19-25, Mean age:
22.2± 1.77 y) from the intersubject pupillometry study. The mean pupil diameter was subtracted from a reference
pupil course to illustrate the different adaptation times for reaching the equilibrium-state. As a reference, the
mean pupil diameter in response to 450 nm was used for the chromatic pupil course. For the polychromatic
experiment, the pupil diameter at 10 000 K was used as a reference. b) The same procedure as in a) was followed to
illustrate the pupil’s adaptation behaviour for the individual subject from the intrasubject experiment. c) Initial
pupil diameter of the tested subjects from the intersubject experiment for each used light stimulus. According to
repeated measure ANOVA, the initial pupil diameter is not affected by the type of the applied light spectrum
F(6, 66) = 0.85, p = 0.537 > 0.05 d) The initial pupil diameter of the single subject caused by the used chromatic
and polychromatic stimuli. According to repeated measure ANOVA, the initial pupil diameter at t0 of the individual
subject is also not significantly affected by the type of the given spectrum F(6, 66) = 6.23 · 10−2, p = 0.999 > 0.05.
As the measured initial pupil diameter across the used spectra from the intrasubject and intersubject study is
statistically independent of the stimulus type, an offset corrected V(λ)-based pupil model can be applied to predict
the pupil size at t0.(53)

For this, the pupil data from the intersubject and intrasubject experiments were statistically tested. The
pupil datasets from the intersubject and intrasubject experiments are normally distributed according to
graphical inspection using a quantile-quantile plot (Fig. 4.5c, d). For the intersubject data, Mauchly’s test
indicated that the assumption of sphericity has been met p = 0.6 > 0.05, hence a correction of degree is
not needed. According to repeated measure ANOVA, the intrasubject pupil data at the time step t0 are
not significantly affected by the type of the given spectrum F(6, 66) = 0.85, p = 0.537 > 0.05 (Fig. 4.5d).
For the intrasubject data, Mauchly’s test also indicated that the assumption of sphericity has been met
p = 0.41 > 0.05. The repeated-measure ANOVA revealed that the initial pupil diameter dP,meas(t0, λ) is
not significantly influenced by the type of the light stimulus F(6, 66) = 6.23 · 10−2, p = 0.999 > 0.05.

(53) Figure 4.5 is reprinted from the author’s publication [48]: Babak Zandi & Tran Quoc Khanh. Deep learning-based pupil model
predicts time and spectral dependent light responses. Scientific Reports. 11, 841 (2021). Nature Research. DOI: 10.1038/s41598-020-
79908-5. Licence: CC BY 4.0.

https://doi.org/10.1038/s41598-020-79908-5
https://doi.org/10.1038/s41598-020-79908-5
https://creativecommons.org/licenses/by/4.0/
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Thus, for both the intersubject study and the collected data from the intrasubject study, it can be assumed
that dP,meas(t0, λ) ≈ dP,meas(t0, Lv).

Since a reference spectrum was presented for 300 seconds as pre-stimulus before each of the applied
chromatic and polychromatic test spectra, the initial pupil diameter is caused by the polychromatic
reference stimuli that feature a CCT of 5700 K. However, the initial pupil diameter could have been
influenced by the type of the given spectrum if, for example, the adaptation time for the reference
was not long enough. The chromatic and polychromatic spectra were presented in a fully randomised
order; therefore, a short adaptation time during the reference spectrum would have led to deviated
pupil diameter, influenced by the previous stimulus spectrum. So, according to these results, it can be
confirmed that the adaptation time of the reference was sufficiently chosen to let the pupil adapt back
to its baseline and the pupil’s effect of photic memory [327] can be ruled out.

4.2.5 Base functions for modelling the phasic and tonic pupil response

As discussed in Section 4.2.2 and shown in Figure 4.5, the first step towards a novel deep learning-based
pupil model is the use of a time-variant base function with which the temporal pupil light response
can be fitted by adjusting the base function’s parameters. In addition to the reported time-invariant
empirical V(λ)-based pupil models (see Section 2.4), numerous mathematical approaches have been
proposed in the literature from the research disciplines of biomechanics and control engineering to
simulate the phasic pupil response. Such time-variant pupil functions assume the phasic pupil response
as a time-dependent control loop or mechanical feedback system. The proposed formulas are restricted
to a mathematical representation of the temporal pupil response and are mostly not based on extensively
empirically derived data, hence unlike the V(λ)-based pupil models, the time-variant formulas cannot
predict the luminance or spectral dependent pupil size. Therefore, the time-variant functions from the
research disciplines of biomechanics or control engineering will be referred to as pupil formulas rather
than pupil models to clearly distinguish between the existing empirical pupil models (Section 2.4) that
are currently proposed in the literature to predict the absolute pupil size. In the following, existing
time-variant pupil formulas proposed in the literature will be discussed and evaluated. Then the base
function that was used to fit the different temporal pupil light responses measured in the experiments
will be derived.

Previously proposed time-variant pupil formulas in the literature

The pupil functions from control engineering are so-called black box approaches [516] that do not
provide insights into the physiological mechanism of the afferent and efferent pupil control pathway.
In 1957, Stark and Sherman [517] considered the pupillary light reflex as a linear servo-mechanical
control system, aiming to simulate the pupil in response to sinusoidally modulated light stimuli. It was
demonstrated that the light-induced pupil oscillation could be modelled using a delayed third-order
linear transfer function, which was validated by comparing the measured data’s gain and phase shift
with the transfer function’s prediction around the loop in a Nyquist diagram [516, 517]. Subsequent
works by the research group [518–523] modified this approach to integrate the non-linear behaviour of
the pupil oscillation concerning latency, phase shift and amplitude as a function of light intensity or
to additionally manage the pupil unrest [524] (pupil oscillation in the absence of light) in the initially
proposed control loop [516, 525] by Stark and Sherman [517].

The proposed control engineering methods are particularly interesting for simulating the pupil
oscillation behaviour, but they have found little favour outside the engineering community for developing
the approaches into a practically applicable pupil model. As noted by Fan & Yao [109], the control
functions indeed provide a systematical description of the neural feedback circuit, but they are not
intended to be derived into a closed-equation. Therefore, the application of the pupil function is not in



4.2 towards a deep learning-based pupil model 103

line with this work’s objectives of a new pupil model. In addition, due to the black-box approach, no
information can be derived about the physiological process of the iris muscle activity modulated by the
efferent pupil control pathway [109]. Therefore, the methods proposed by Stark et al. were not suitable
with this work’s objectives of a deep learning-based pupil model, hence they were not considered.

In contrast to the black-box method from control engineering, approaches from biomechanics consider
the physiological sub-processes involved in controlling the muscle activity of the iris to describe the
temporal pupil light response. For this, Longtin & Milton [526] proposed in 1989 a pupillary formula
that integrates the neuronal feedback control mechanism, the spontaneous pupil change triggered by
the sympathetic and parasympathetic autonomic nervous system (pupil unrest) and the pupil oscillation
in response to sinusoidally modulated light. Longtin & Milton [526] assumed that pupil size adjusts the
retinal luminous flux φR, which can be calculated by multiplying the pupil area AP with the illuminance
E of a light source at the pupil’s plane (Eq. 4.3).

φR = E · AP (4.3)

The rate of action potentials relayed to the Edinger-Westphal nucleus via the olivary pretectal nucleus
by the retinal ganglion cells depends, according to Longtin & Milton [526], on the retinal luminous flux
and can be described by

N(t) = C1 log
φR(t− τR)

φR
, (4.4)

where N(t) describes the rate of action potentials per time step t of the pupil’s afferent control pathway
and τR the processing delay caused by the photoreceptor’s quantal catch in the retina and the signal’s
delay in arriving the midbrain. However, equation (4.4) follows the Weber-Fechner law in which C1 is
the proportionality factor [527] and φR the absolute threshold, which is defined by the lowest retinal
luminous flux that could trigger a pupillary reaction. The action potential rate of the efferent pupil
control pathway E(t) generated in the Edinger-Westphal nucleus was derived by Longtin & Milton [526]
using the Weber-Fechner law either with

E(t) = C2 log
φR(t− (τR + τE))

φR
, (4.5)

where τE defines the delay in the Edinger-Westphal nucleus to process and generate the action potential
rate E(t). The relationship between the iris muscle activity x(t) and action potential rate of the efferent
pupil control pathway E(t) was approximated by Longtin & Milton [526] with a linear differential
equation of first order

E(t) ' C3(ẋ(t) + αpm · x(t)), (4.6)

where αpm is a constant that defines the rate of the muscle activity [526]. When combining equation (4.5)
and (4.6), a non-linear delay differential equation of first-order can be derived [527] with

ẋ(t) + αpm · x(t) = C · log
φ (t− (τR + τE + τM))

φ
= C · log

φ(t− τG)

φ
, (4.7)

where the total delay in the pupil control pathway is defined with τG = τR + τE + τM. The delay in
the iris muscle is expressed by the term τM and the constant C = C2/C3 is a factor that controls the
neural activity from the photoreceptor’s transduction to the action potential’s firing rate in the pupil
control pathway [526, 527]. To relate the iris muscle activity x(t) with the pupil area AP(t), a S-shaped
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Hill-function was proposed, which firstly satisfied the requirement of a positively bounded pupil area
for lower and upper muscle activity x(t) and secondly reflected, according to Longtin & Milton [526],
the mechano-elastic properties of the pupil dynamic (Fig. 4.6 a). The relationship was proposed with

AP(t) = f (x(t)) =
Λθn

θn + x(t)n + Λ′, (4.8)

where Λ+Λ′ denotes the maximum and Λ′ the minimum pupil area for Λ+Λ′ > Λ′ > 0. The parameter
θ defines the half constriction maximum of the pupil area in the S-shaped Hill function. By adjusting
the parameter n, the oscillation of the pupil area can be controlled. By combining Equation (4.6) with
(4.8) and using g(AP(t)) ≡ f−1(AP(t)) = x(t) to remove the muscle activity x from Equation (4.6) [526,
527], the formula can be rewritten to Equation (4.9).

dg
dA

dAP

dt
+ αpm · g(AP(t)) = C · log

φ(t− τG)

φ
(4.9)

Finally, by assuming that g(AP) is a linear function of AP, Longitin & Milton [526] proposed their
generalised pupil function with Equation (4.10), which satisfies the dynamic of the pupil behaviour [527].

dAP

dt
+ αpm · AP(t) =

Λθn

θn + x(t)n + Λ′ (4.10)

In Fig. 4.6b, Equation (4.10) is plotted with different values of n. By increasing the exponent n in the
Hill-function, the oscillation rate of the pupil response can be adjusted. Although Longtin & Milton [526]
claimed to have derived the pupil control path from a physiological point of view, it cannot be selected
as a base function due to the lower number of free parameters for fitting distinct pupil responses.

Legend a) and b)
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a) Hill-function by Longtin & Milton (1989)
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b) Pupil function by Longtin & Milton (1989)
$ = 200 mm2, =G = 300 ms, ,pm = 3.21 s!1, 3 = 50 mm2

n = 4 n = 10 n = 30

Figure 4.6: Hill-function and time-invariant pupil function proposed by Longtin & Milton [526]. a) To derive
the relationship between the iris muscle activity x and the pupil area AP, Longtin & Milton [526] proposed the
Hill-function using equation (4.8). The plot shows the S-shaped Hill-function using the reported parameters from
Longtin & Milton [526] with Λ = 30 mm2, Λ′ = 0, θ = 10 mm2 and n = {4, 10, 30}. The red dot in the plot signals the
half constriction pupil area θ using the respective iris muscle activity. b) The solution of the non-linear differential
equation (4.10) is plotted for a stepwise increasing parameter n = {4, 10, 30}, which controls the pupil’s oscillation.
The remaining conditions were adopted from the original work by Longtin & Milton [526] with AP(t0) = 15 mm2,
τG = 300 ms, αpm = 3.21 s−1, θ = 50 mm2 and Λ = 200 mm2.

For example, the values Λ, θ and Λ′ are fixed constants and need to be defined once. The remaining
parameters αpm and n will probably not be sufficient to represent the adaptive receptor weighting
depending on different light spectra. Furthermore, the phasic pupil response includes the characteristic
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latency before pupil constriction, which causes the pupil size to remain steady to its pre-state during
the latency time. Both effects cannot be managed when using the Longtin & Milton [526] pupil formula.

Pamplona et al. [322] extended the approach of Longtin & Milton [526] with the objective to develop
a photorealistic dynamic pupil model for computer animations. For this, the Longtin & Milton [526]
pupil function was combined with the Moon & Spencer [340] pupil model (Eq. 2.15) to integrate the
empirically measured pupil data into the original Equation (4.10). For this, g(AP) was replaced with
M(dP) = arctan [(dP − 4.9)/3] = (5.2− 0.45 · ln(φ/φ))/2.3026 with which the following equation was
proposed for the dynamic pupil behaviour

dM
ddP

ddP

dt
+ 2.3026 · arctan

(
dP − 4.9

3

)
= 5.2− 0.45 · ln

[
φ(t− τG)

φ

]
. (4.11)

Instead of using a fixed value for τG, Pamplona et al. [322] proposed to calculate the pupil’s latency
using the empirically derived formula τ(R, B) = 253− 14 · ln(B) + 70 · R− 29 · R · ln(B) by Link & Stark
[521], where B is the luminance in foot-lambert and R the light’s frequency in Hz. The pupil function by
Pamplona et al. [322] successfully integrated the pupil’s luminance dependent latency and predicted
the pupil size from the luminance. However, as the pupil function was adapted to the data from Moon
& Spencer [340], the previously discussed downsides of V(λ)-based pupil models come into play. In
addition, the formula does not offer sufficient parameters to fit an existing series of pupil light response
measurements for the pupil modelling approach pursued in this work.

Another pupil function was developed by Usui & Hirata [516], who derived a formula in which the
constrictor and dilator iris muscles were considered as viscous elastic elements. The pupil function
successfully simulated the phasic pupil response by using the interaction between the two iris muscle
forces. Therefore, it is possible to simulate any physiologically possible phasic pupil light course when
using the Usui & Hirata [516] approach. However, the formula is with a total of 19 different differential
equations relatively extensive [109]. Even if the formulas are combined, the entire pupil function would
still consist of three independent second-order delayed differential equations (according to Fan & Yao
[109]), making the approach difficult to apply in a deep learning-based pupil modelling pipeline.

Following the idea of Usui & Hirata to derive a pupil function using the interaction between iris
muscles forces, Fan & Yao [109] developed in 2011, a more simplified pupil function with the objective
to describe empirically measured pupil light responses. The proposed pupil function by Fan & Yao [109]
consists of a single differential equation of second order

d2r
dt2 = −Kc (l0c − r)2 + Kd (L0d − r)2 − D

dr
dt
− ḟp(t) + fs(t) + P0 (4.12)

where Kc and Kd define the elasticity of the constriction and dilator muscle in the iris, respectively. The
parameter l0c and L0d define the lengths of the two iris muscles, D denotes a viscosity constant and P0

defines the static iris force when the pupil is at rest. However, the shape of the pupil constriction can be
controlled by the time-dependent iris muscle force functions

ḟp(t) =





fp + fp0, τp ≤ t ≤ ∆tp

fp0, t < τp, t > τp + ∆tp
(4.13)

fs(t) =





fs + fs0, τs ≤ t ≤ ∆ts

fs0, t < τs, t > τs + ∆ts
(4.14)

where ḟp(t) is the iris muscle force originated from the parasympathetic pupil control pathway (con-
strictor muscle) and fs(t) the force modulated by the sympathetic nervous system (constrictor muscle).
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The parameters fs0 and fp0 denote the static iris muscle forces at rest, while with ∆ts and ∆tp the
parasympathetic or sympathetic trigger duration can be controlled. However, with τs and τp, the delay
of the respective muscle force can be set. This is of particular interest, as, for example, in the phasic
pupil response up to the peak constriction, the constrictor muscle is mainly active, modulated by the
parasympathetic pathway, while the dilator muscle kicks in during the re-adaptation phase.

Fig. 4.7 shows an example of how the Fan & Yao pupil formula [109] can be applied to successfully
fit a measured phasic pupil response by varying its model parameters. For this, a sample raw data set
from the Fan & Yao [109] publication was reproduced and down sampled to a sampling frequency of
20 Hz so that the individual points are better visualised in the plot (Fig. 4.7a). Then, using a least square
fitting algorithm in Matlab (Fig. 4.7b), the parameters fp and fs were varied until the best fit was found
(Fig. 4.7c). However, to solve the differential equation, it is necessary to know the initial pupil diameter.
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c) Step 3: Choosing the best fit
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Figure 4.7: Steps of using the Fan & Yao pupil formula [109] to fit an empirically measured pupil light response.
a) A measured phasic pupil light reflex was used as a sample, reproduced from the original publication of Fan
& Yao [109]. The data were down sampled to 20 Hz, allowing to visualise the raw data points in the plot. b) A
least-square fitting method combined with an ode45 solver was applied in Matlab to vary the values fp and fs until
the best solution is reached. An initial pupil diameter of 2.68 mm was set into the solver to calculate the solution of
the differential equation. The remaining parameters were adjusted according to the reported values in the original
publication by Fan & Yao [109]. c) By using the optimised model parameters from the least square fitting method,
the pupil light response can be reconstructed to match the measured sample.

Developing the base function

As discussed, the objective is to compose the base function using two sub-function, from which the
first should represent the phasic pupil response dPhasic and the second the tonic pupil response dTonic.
The pupil formula of Fan & Yao [109] offers the possibility to fit any spectral dependent phasic pupil
response by varying the iris muscle forces ( ḟp, fs), which can be fine tuned by using the latency (τp, τs)
and duration parameter (∆tp, ∆ts) of the pupil’s parasympathetic and sympathetic signalling pathway.
In addition, the formula provides a compact structure, allowing an easier application in the deep
learning-based pupil modelling approach. Thus, the phasic pupil response dPhasic can be formulated as

dPhasic(t, L0d, l0c, Kc, Kd, D, ḟp, fs, P0) =
d2r
dt2 = −Kc (l0c − r)2 + Kd (L0d − r)2 . . .

− D
dr
dt
− ḟp(t) + fs(t) + P0,

(4.15)

where the parameters Xk,Ph = [L0d, l0c, Kc, Kd, D] are stimulus independent muscle constants, which need
to be defined only once. However, the phasic part of the measured pupil light response {d̃P,meas(ti)}t=300

i=1
can be fitted by adjusting the muscle force functions’ parameters Xp,Ph = [ fp, fs, τp, τs, ∆tp, ∆ts, P0] as
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defined in Equation (4.13) and (4.14). The pupil modelling concept presented in this work followed the
objective of applying a neural network for predicting the base function’s model parameters from the
stimulus quantities {xi}N

i=1. Thus, the first half of parameters that need to be predicted by the neural
network are in the vector Xp,Ph ∈ RD1 . The iris muscle forces at rest fp0 and fs0 were set to zero.

For solving the second order differential equation by Fan & Yao [109], the size of the initial pupil
diameter r(0) = dP,meas(t0, Lv) is needed. In Section 4.2.4, it was reported that the initial pupil diameter
from {d̃P,meas(ti)}t=300

i=1 is not affected by the type of the used spectrum (Fig. 4.5c, d), as it results from
the anchor spectrum that was used as reference prior to a stimulus. Thus, it is possible to apply a
conventional V(λ)-based pupil model to estimate the initial pupil diameter dP,meas(t0). As the Watson &
Yellott pupil model DWY(Lv, α, e, a) provides a unified framework using several essential dependencies
and its prediction error is the most valuable for polychromatic spectra (Section 4.1), it was considered to
predict the initial pupil diameter dP,pred(t0) = dPhasic(t0) (Eq. 4.16 and 4.17) for solving the differential
equation dPhasic(t, Xp,Ph, Xk,Ph).

dP,meas(t0) = r(0) =DWY(Lv, α, e, a) = . . .

DSDW(Lv, α, e) + (y− y0) [0.02132− 0.009562 · DSDW(Lv, α, e)]
(4.16)

DSDW(Lv, α, e) = 7.75− 5.75
(

(Lv · α · e/846)0.41

(Lv · α · e/846)0.41 + 2

)
(4.17)

By utilising the predicted initial pupil diameter, the phasic pupil response {d̃P,meas(ti)}t=300
i=1 can be

fitted for the period t0 ≤ t ≤ ta,start and subsequently reconstructed again with the found model
parameters of dPhasic. However, for the measured pupil diameter in the interval ta,start < t ≤ teq, the
function of Fan & Yao [109] cannot be used because it starts to oscillate for higher time steps, making
it impossible to describe the wavelength-dependent adaptation behaviour of the tonic pupil response
(Fig. 4.5a, b). Therefore, a separate function dTonic was chosen to fit the tonic pupil response in the
interval t0 ≤ t ≤ ta,start. It was found that the ninth-degree polynomial equation

dTonic (t, a0, a1, . . . , a9) = a0 + a1t + a2t2 + · · ·+ a9t9 (4.18)

is suited to fit any tonic pupil response for each used stimulus condition C in an automated fitting
procedure. It was essential to fit the different adaptation behaviours in response to chromatic stimuli.
For example, the pupil diameter at 450 nm is much faster in the equilibrium-state compared to a 660 nm
stimulus where the pupil dilates for about 200 seconds. Both extreme cases can be managed when using
Equation (4.18). However, the model parameters a0, a1, . . . , a9 of dTonic will be denoted as Xp,Ton ∈ RD2 .

The two sub-functions dPhasic and dTonic need to be combined to reconstruct the whole pupil response,
as each function describes the temporal pupil response in different intervals. Two masking functions were
used to combine the dPhasic and dTonic pupil formulas. For this, the first masking function fMask,1(t, q, r)
(Eq. 4.19) is multiplied with dPhasic(t, Xp,Ph, Xk,Ph) and the second masking function fMask,2(t, q, r) (Eq.
4.20) is multiplied with dTonic(t, Xp,Ton). By adding both masked functions, a smooth superposition is
reached that represents the combined base function dP, dl(t, q, r, Xp,Ph, Xk,Ph, Xp,Ton) (Eq. 4.21), which
can be used to describe any measured spectrally dependent pupil light response {d̃P,meas(ti)}t=300

i=1 .

fMask,1(t, q, r) = 1− (0.5 + 0.5 · tanh(t− q/r)) (4.19)

fMask,2(t, q, r) = 0.5 + 0.5 · tanh(t− q/r) (4.20)

dP, dl(t, . . . ) = dPhasic(t, Xp,Ph, Xk,Ph) · fMask,1(t, q, r) + dTonic(t, Xp,Ton) · fMask,2(t, q, r) (4.21)
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In the masking functions, the parameters q and r are used to adjust the position and smoothness of
the transition between the sub-functions dPhasic(t, Xp,Ph, Xk,Ph) and dTonic(t, Xp,Ton). The parameters are
independent of the stimulus for triggering the pupil response and can be regarded as constants, as they
need to be calculated only once.

In summary, the derived base function dP, dl(t, q, r, Xp,Ph, Xk,Ph, Xp,Ton) can be used to fit any temporal
pupil light response triggered with the polychromatic spectra ∼10 000 K, ∼5000 K, ∼2000 K or the
chromatic LED light spectra with the peak-wavelengths 450 nm, 530 nm, 610 nm and 660 nm. The
objective of such a fitting procedure is to find the base function’s dP, dl model parameters for each light
condition C, allowing to reconstruct the time- and spectral-dependent pupil diameter only by knowing
the constants (t, q, r, Xk,Ph) and the adjusted values Xp = [Xp,Ph, Xp,Ton] for Xp ∈ R(D1+D2) x C that differ
between the applied stimuli.

4.2.6 Computing the model parameters of the selected base functions

As a first step, the derived base function dP, dl(t, q, r, Xp,Ph, Xk,Ph, Xp,Ton) was applied to fit the median
of the measured pupil light responses {d̃P,meas(ti)}t=300

i=1 modulated with the light spectra ∼10 000 K,
∼5000 K, ∼2000 K, 450 nm, 530 nm, 610 nm and 660 nm. The objective was to determine the model
parameters for each light condition (Table 4.2). As sample, the measured pupil light responses from the
intersubject and intrasubject experiments presented in Section 4.1 were leveraged.

1 2 3

5
4

Figure 4.8: The model parameters of the Fan & Yao [109] formula were determined using a graphical user interface
(GUI). For this, the median of the measured temporal pupil reflex can be loaded to approximate its course by
varying the phasic formula’s parameters. Point 1) Plot of the phasic pupil response. The red line denotes the pupil
fit and the black line shows the actual median pupil course. Point 2) Plot of the tonic pupil response overlaid
with the automated fit produced by the ninth-degree polynomial equation. Point 3) Plot of the combined pupil
response by chaining the phasic and tonic pupil model together. Point 4) To combine the phasic and tonic models,
two masking functions were used whose parameters can be varied with control sliders. Point 5) To fit the Fan &
Yao [109] equation to the experimental data, each model parameter could be varied via sliders. In the software,
the corresponding parameters for each measured spectral dependent pupil light response are stored and can be
retrieved. The software is made available online in the sense of open science, allowing third parties to use the base
function with other empirical pupil data (https://github.com/BZandi/DL-PupilModel).

https://github.com/BZandi/DL-PupilModel
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Only the model parameters summarised in the vector Xp = [Xp,Ph, Xp,Ton] were adjusted during the
fitting procedure. The constant values t, q, r and Xk,Ph were determined only once and remained
unchanged. However, the differential equation in the base function was solved using an ode45 solver
in MathWorks Matlab. This procedure was performed separately with data from the intersubject and
intrasubject study, allowing to retrieve two distinct models: one individual pupil model and one for the
population. For adjusting the parameters of the phasic function dPhasic during the fitting procedure, a
graphical user interface (GUI) was programmed in MathWorks Matlab, allowing to easily adjust the
model parameters (Fig. 4.8).

Table 4.2: Calculated parameters of the base function for the intersubject study with 20 subjects in the polychromatic
(n: 20, Age: 19 to 25, Mean age: 21.95 ± 1.73 y) and chromatic experiment (n: 20, Age: 19 to 25, Mean age: 22.2
± 1.77 y), respectively. The values of the phasic model were calculated using a custom-developed graphical user
interface in MathWorks Matlab. Within the timeframe t0 ≤ t ≤ 2 s, a phasic model is applied to describe the
short-term pupil light reflex. For the remaining time within an interval of 2 s < t ≤ 300 s, the tonic model is used to
manage the spectral dependent adaptation process of the pupil light response up to its equilibrium-state. The tonic
response model parameters were retrieved using an automated fitting procedure with the least square method. The
sub-functions of the base function were fitted to the median of the sample from the intersubject experiment. The
initial pupil diameter for each stimulus spectrum was calculated using the offset-corrected Watson & Yellott model
(L = 199.45 cd/m2, a = 22.1 y, α = 53.1◦), to solve the differential equation used in the phasic model. From each
prediction, the offset value 0.41 mm was subtracted to match the model to the experimental condition used in this
work. This table is reprinted from the author’s publication [48] under CC BY 4.0 licence.

Parameter 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K

Phasic model

L0d 3.3403 3.3403 3.3403 3.3403 3.3403 3.3403 3.3403
l0c 1.0710 1.0710 1.0710 1.0710 1.0710 1.0710 1.0710
Kd 1.0714 1.0714 1.0714 1.0714 1.0714 1.0714 1.0714
Kc 0 0 0 0 0 0 0
D 3.4855 3.4855 3.4855 3.4855 3.4855 3.4855 3.4855
fp 19.2070 10.1836 13.5488 15.3903 9.6961 −0.6492 0.9060
fs −1.1900 −0.5688 2.2250 6.1930 0.6127 0.6976 0.5659
P0 −0.8240 −0.8800 −0.8240 −0.8240 −0.8240 −0.8800 −0.8800
τp 0.4878 0.2903 0.3933 0.4898 0.4778 0.1000 0.5197
τs 1.1483 0.7335 1.9925 1.8500 1.3097 0.8967 1.0311

∆tp 0.1342 0.0604 0.1342 0.1342 0.1342 0.0604 0.0604
∆ts 0.5154 0.8696 0.0878 0.0000 0.0878 0.8696 0.8696

Tonic model

a9 1.4156 · 10−21 −3.9611 · 10−20 −4.6147 · 10−19 −5.7966 · 10−20 1.9755 · 10−19 1.7347 · 10−19 −1.6638 · 10−20

a8 −9.3398 · 10−19 3.2991 · 10−17 5.8085 · 10−16 4.5015 · 10−17 −2.8148 · 10−16 −2.3485 · 10−16 1.2313 · 10−17

a7 5.6068 · 10−16 −2.8431 · 10−15 −2.9701 · 10−13 −1.3678 · 10−15 1.6996 · 10−13 1.3235 · 10−13 1.2675 · 10−16

a6 −4.8556 · 10−13 −5.7826 · 10−12 7.8724 · 10−11 −8.8758 · 10−12 −5.6626 · 10−11 −4.0219 · 10−11 −2.7868 · 10−12

a5 2.3860 · 10−10 2.7085 · 10−9 −1.1364 · 10−8 3.6912 · 10−9 1.1357 · 10−8 7.1407 · 10−9 1.1499 · 10−9

a4 −6.0047 · 10−8 −5.4321 · 10−7 8.3751 · 10−7 −6.7883 · 10−7 −1.4032 · 10−6 −7.5079 · 10−7 −2.1832 · 10−7

a3 7.9738 · 10−6 5.6061 · 10−5 −2.1543 · 10−5 6.5070 · 10−5 1.0495 · 10−4 4.5280 · 10−5 2.1931 · 10−5

a2 −5.3820 · 10−4 −2.9133 · 10−3 −6.8455 · 10−4 −3.2814 · 10−3 −4.4745 · 10−3 −1.4382 · 10−3 −1.1314 · 10−3

a1 1.5242 · 10−2 6.6138 · 10−2 5.2281 · 10−2 8.5889 · 10−2 9.6883 · 10−2 2.0114 · 10−2 2.4765 · 10−2

a0 1.8929 2.1785 1.9523 1.7498 2.0172 2.5301 2.4575

The initial pupil diameter dP,meas(t0) was calculated using the Watson & Yellott V(λ)-based pupil model
dP,meas(t0) = DWY(Lv, α, e, a) to solve the differential equation in the base function dP, dl. As reported,
due to the latency of the pupil, it can be assumed that the initial pupil diameter results from the
reference spectrum. Therefore, the averaged luminance from the reference spectrum with 199.45 cd/m2

was inserted into the Watson & Yellott formula. For the age a, the averaged value across the subjects
from the polychromatic (n: 20, Age: 19 to 25, Mean age: 21.95 ± 1.73 y) and chromatic experiments (n:

https://creativecommons.org/licenses/by/4.0/
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20, Age: 19 to 25, Mean age: 22.2 ± 1.77 y) was used, resulting in a ≈ 22.1. With the adaptation field size
α = 53.1◦ an initial pupil diameter of 2.79 mm is predicted according to the Watson & Yellott model.

However, the actual median pupil diameter across all subjects and stimuli is 2.38 mm. Therefore, an
offset correction of 0.41 mm was performed to match the prediction of the V(λ)-based pupil model
with the actual one. Such a procedure was already discussed and recommended in Section 4.1, as the
empirical pupil data behind the Watson & Yellott model originated from experiments with thermal
radiators, but the initial pupil diameter in this study results from a phosphor-converted white LED
spectrum, which could be one source of the observed deviation. The parameters of the tonic formula
dTonic were retrieved using an automated fitting algorithm with the least square method.

Table 4.2 shows the calculated model parameters with which the pupil data from the intersubject
experiment with different light spectra were fitted, respectively. Thus, it is possible to reconstruct the
spectral dependent pupil course with a high temporal resolution with these values. As parameters
for the masking function, the values q = 1.1359 and r = 0.3517 were used, which were determined
manually in the GUI (Fig. 4.8). The values were adjusted with the objective to create a smooth transition
between the phasic and the tonic model at the connection point at two seconds since the tonic model
starts slowly from this point in time. In summary, the result of this section is that with 17 parameters for
each light condition, the temporal pupil response for a given chromatic or polychromatic stimulus can
be reconstructed. Thus, by using the base function as an intermediate step, a neural network no longer
needs to predict 300 pupil diameter values when assuming a temporal resolution of one second, but
only the model parameters of the base function. This fitting procedure was repeated for the pupil data
from the intrasubject study (single subject with 12 repetitions) to determine the model parameters of
the base function for each used light condition. The values are reported in the supplementary materials
of the author’s publication(54).

4.2.7 Predicting model parameters from lighting metrics using neural networks

Knowing the stimulus-dependent model parameters Xp = [Xp,Ph, Xp,Tone] (Table 4.2) is sufficient to
reconstruct the median pupil response for each light condition C, but so far, the possibility to determine
the respective model parameters from the metrics {xi}N

i=1 of a light spectrum is missing. Therefore, in
this work, a feed-forward neural network was used to predict the model parameters from a combination
of photometric and colourimetric light metrics of a spectral power distribution. The objective was to use,
for example, the luminance and chromaticity of a light stimulus as input features for a neural network
to predict the stimulus-dependent parameters Xp of the base function, which should ideally match the
calculated one in Table 4.2. Subsequently, it would be possible to reconstruct the temporal pupil light
response by solving the base function with the predicted model parameters from the neural network.

Since it is unknown which combination of photometric and colourimetric light metrics as input values
into the neural network yields the most accurate prediction of the base function’s model parameters, a
total of three input variations were used to compare its performance with each other. Firstly, from the
measured light spectra Le(λ) used in the pupillometry experiments, the corresponding photometric,
colourimetric and receptor-based values were calculated, which are reported in Table 4.1. From the mean
of the metrics in Table 4.1, the following combinations were used as input for the neural network: (i)
The first input variant consists of the luminance and the CIExy-2◦ chromaticity coordinates denoted as
{xv1,i}N=3

i=1 . (ii) For the second input variant, the signals of the cones and ipRGCs were used, consisting
of the weighted radiance of the L-, M-, S-cones and the melanopic radiance. This input combination
is denoted as {xv2,i}N=4

i=1 . The third variant consists of the luminance and the CIExy-2◦ chromaticity
coordinates like the first input variant, but additionally, the melanopic radiance was added, denoted as

(54) The base function’s model parameters from the intrasubject experiment using the single subject that was tested with 12
repetitions are available in the online supplementary materials of the author’s published work (Table S1), available at
https://doi.org/10.1038/s41598-020-79908-5.

https://doi.org/10.1038/s41598-020-79908-5
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{xv3,i}N=4
i=1 . Note that training data were normalised using the unity-based normalisation formula with

XN = (Xi − XMin)/(XMax − XMin).
The neural networks were implemented using the library PyTorch 1.5 with the PyTorch Lightning

interface in Python. As a loss function, the mean squared error MSE = 1/N ∑n
i=1
(
yp,i − yi

)2 was
leveraged, where yp,i is the output of the neural network and yi is the vector of the actual model
parameters Xp. The weightings of the neurons were iteratively updated during backpropagation using
the Adam Optimisation algorithm with an initial learning rate of 0.001. The batch size was set to 7,
which matches the size of the available sample. As network architecture, three fully connected hidden
layers containing 40, 380 and 80 neurons with a rectified linear unit (ReLu) as activation function were
used, respectively. However, the last layer consisted of 17 neurons to match the vector size of the needed
stimulus-dependent model parameters Xp. The number of neurons in the input layer was adjusted
according to the respective input variant, meaning 3 for variant one (Luminance and CIExy-2◦), 4 for
variant two (L-, M-,S-cones and ipRGCs) and 4 for variant three (Luminance, CIExy-2◦ and ipRGCs).

A total of three different neural networks were trained (4000 epochs) in two distinct versions, which
differed in the input variant and the applied training data (Fig. 4.9). For the first neural network’s
version, the determined model parameters from the intersubject experiment were used (Table 4.2) and
for the second version, the model parameters of the individual subject were applied (see footnote (38)).
Thus, a pupil model was derived for the population (intersubject data) and an individual model for the
single subject’s data. The training process across the epochs is plotted in (Fig. 4.9a, b)
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Figure 4.9: The neural networks should predict the base function’s model parameters from a combination of light
metrics to reconstruct the temporal pupil light reflex caused by the light metrics that were used as an input variant.
For this purpose, three neural networks were trained with different input combinations to test which light metric
yields the most accurate prediction. The loss of the neural network’s prediction accuracy across the training epoch
is plotted using the mean absolute error (MAE) and mean squared error (MSE). In a) the intersubject data were
applied as training data and in b) the intrasubject data, allowing the development of two models: one for the
individual observer and one for the population. (55)

Overall, the trained feed-forward neural networks obtained a robust prediction accuracy of the base
function’s model parameters calculated from the lighting metrics as input features (Fig. 4.9a, b). For
example, when using variant one {xv1,i}N=3

i=1 as input (Luminance and CIExy-2◦) into the neural

(55) Figure 4.9 is reprinted from the author’s publication [48]: Babak Zandi & Tran Quoc Khanh. Deep learning-based pupil model
predicts time and spectral dependent light responses. Scientific Reports. 11, 841 (2021). Nature Research. DOI: 10.1038/s41598-020-
79908-5. Licence: CC BY 4.0.

https://doi.org/10.1038/s41598-020-79908-5
https://doi.org/10.1038/s41598-020-79908-5
https://creativecommons.org/licenses/by/4.0/
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networks, the intersubject model parameters were predicted with the lowest loss after 1139 epochs
(MSE: 2.11 · 10−15, MAE: 3.19 · 10−8 ± SD 3.31 · 10−8). With variant two {xv2,i}N=4

i=1 as input (L-, M-
,S-cones and ipRGCs), a mean squared error (MSE) of 1.07 · 10−14 and a mean absolute error (MAE)
of 7.02 · 10−8 ± SD 7.63 · 10−8 were achieved after 3844 epochs for the intersubject model parameters
(Fig. 4.9a). The third input variant {xv3,i}N=4

i=1 (Luminance, CIExy-2◦ and ipRGCs) obtained a MSE of
2.63 · 10−15 and a MAE of 3.56 · 10−8 ± SD 3.69 · 10−8 after 1056 epochs (Fig. 4.9a). Further, the neural
networks trained with the intrasubject model parameters (Fig. 4.9b) achieved a similar level of prediction
accuracy, but the input variant one (MSE: 3.1 · 10−15, MAE: 3.99 · 10−8 ± SD 3.84 · 10−8, epoch: 2207)
and variant three (MSE: 2.28 · 10−15, MAE: 3.20 · 10−8 ± SD 3.55 · 10−8, epoch: 3163) achieved a slightly
better loss than when using variant two (MSE: 2.87 · 10−14, MAE: 1.08 · 10−7 ± SD 1.31 · 10−7, epoch:
2907) as input. Thus, a neural network can be successfully used to compute the base function’s model
parameters from distinct light metrics, which is a key step in the proposed pupil modelling concept. It
should be noted that during the training process, loss jumps can be observed, which might be due to
the limited size of the training data. Furthermore, no test dataset was used for validating the neural
network’s prediction accuracy since conceptualising the pupil modelling structure was the focus of this
work. Predicting a base function’s model parameters for non-existing light metrics in the training set
was not intended in this first step, as several other aspects need to be considered, which will be covered
in the discussion of this chapter’s results (Section 4.3).



4.2 towards a deep learning-based pupil model 113

4.2.8 Recapping the structure of the deep learning-based pupil model

The structure of the proposed deep learning-based pupil modelling concept for reconstructing the
temporal pupil diameter from a light spectrum is summarised in Fig. 4.4. By using the neural networks,
a link was established between different variations of photometric, colourimetric and receptor-based
input variables with which the dependent model parameters Xp = [Xp,Ph, Xp,Ton] of the base function
dP, dl(t, q, r, Xp,Ph, Xk,Ph, Xp,Ton) can be computed. Thus, the first step of the pupil model is to choose
one of the input variants {xv1,i}N=3

i=1 , {xv2,i}N=4
i=1 or {xv3,i}N=4

i=1 and let the neural networks calculate
the vector of the model parameters Xp for inserting them into the base function (Fig. 4.9: Step 1).
The luminance of the reference spectrum and other experimental conditions need to be inserted into
the offset-corrected Watson & Yellott model [51] DWY(Lv, α, e, a) to predict the initial pupil diameter
dP,pred(t0) from which the temporal reconstruction of the pupil light response will start (Fig. 4.9: Step 2).
Next, the first half computed model parameters expressed by the vector Xp,Ph and the initial pupil size
need to be used to solve the second-order differential equation proposed by Fan & Rao [109], which was
used as a phasic model dPhasic(t, Xp,Ph, Xk,Ph) to reconstruct the pupil’s light response in the time range
t0 ≤ t ≤ 2 s (Fig. 4.9: Step 3).

Then, the second part of the neural network’s computed model parameters Xp,Ton needs to be inserted
into the tonic model dTonic(t, Xp,Ton), which will reconstruct the pupil light response in the time range
2 s < t ≤ 300 s, meaning from the pupil’s peak response up to its equilibrium-state (Fig. 4.9: Step 4).
However, this step is particularly important as by using the tonic model, the wavelength-dependent
adaptation behaviour and adaptive receptor weighting in the pupillary control pathway can be managed.
Finally, the reconstructed phasic response needs to be combined with the computed tonic pupil light
response via two masking functions whose parameters q and r are stimulus-independent and control
the smoothness and position of the transition between the phasic and tonic model (Fig. 4.9: Step 5).

The outcome of these steps is the reconstructed time- and spectral-dependent pupil light response up
to its equilibrium-state with a high temporal resolution only computed from a set of lighting metrics.
Thus, the entire time course of the pupil can be predicted by using a combination of photometric,
colourimetric or receptor-based quantities. To the author’s best knowledge, this is the first pupil
modelling approach that can manage the light-induced effects of the pupil control pathway. This
proposed pupil modelling concept for reconstructing the pupil light response was implemented in
MathWorks Matlab and is publicly available in the sense of open science(56). However, the unique
feature of this method is that in the future, the neural networks could be even trained with additional
empirically measured pupil light response data, aiming to extend the prediction space.

4.2.9 Temporal prediction accuracy of the proposed deep learning model approach

The discussed pupil modelling approach with the integrated neural networks was used to reconstruct
the pupil diameter from the tested light metrics to compare the model’s prediction with the actual
measured pupil light response of the population. In Fig. 4.10a to g, the median of the temporally
measured pupil diameter for each light spectrum is plotted (black line) and compared to the predicted
pupil light response (blue line) of the developed intersubject model using the variant one as an input
combination for the light metrics. The red ribbon represents the scatter of the raw data classified in the
corresponding percentile ranges.

It can be observed that the mean absolute deviation (MAE) between the measured and the predicted
pupil diameter across the entire time range lies between 0.015 mm and 0.069 mm for both the chromatic
and polychromatic stimuli Fig. 4.10a to g. Furthermore, the residuals (difference between the predicted
and actual pupil size) in Fig. 4.10h show that the prediction accuracy is mostly within ±0.2 mm.

(56) The code of the implemented pupil model and trained neural networks can be reached at the author’s GitHub repository, available
at https://github.com/BZandi/DL-PupilModel

https://github.com/BZandi/DL-PupilModel
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Figure 4.10: Prediction of the deep learning-based pupil modelling concept (intersubject model) proposed for
reconstructing the temporal pupil light response. a) to g) The median of the measured pupil diameter (black line)
is plotted for each used chromatic and polychromatic light spectrum. The predicted pupil diameter, which is
reconstructed from the luminance, CIExy-2◦ chromaticity coordinates of the respective light stimulus, is highlighted
as a blue line. The red ribbon represents the scatter of the measured raw data, whose percentile ranges were colour
coded. h) Computed residuals between the measured median pupil diameter and the prediction for all three input
variants of the trained neural networks. It can be observed that regardless of the chosen input combination, the
residuals are mostly within a deviation of ±0.2 mm. i) The residuals of the Watson & Yellott pupil models were
also calculated for each light condition, showing that the estimation error of a time-invariant V(λ)-based pupil
model could provide higher estimation errors due to the missing consideration of the temporal pupil behaviour.
This Figure is reprinted from the author’s publication [48].

For the LED spectrum with the peak-wavelength of 610 nm, the residuals of the pupil diameter yield
a short eruption outside of this tolerance ribbon during the time-range between 240 to 260 seconds.
In Fig. 4.11a to g, the same analysis was performed but with the individual pupil model trained with
the data from the intrasubject experiment. Also in the individual model, the residuals Fig. 4.11h are
within an error range of ±0.2 mm, but the intrasubject variations in pupil size are much smaller than
the intersubject variation, resulting in a smoother temporal course of the computed median. To put the
results into perspective, the residuals of the time-invariant V(λ)-based pupil model by Watson & Yellott
were computed either [51].
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Figure 4.11: Predictions of the proposed modelling concept when using the intrasubject parameters. a) to g) The
median of the measured pupil diameter (black line) is plotted for the chromatic and polychromatic light stimuli.
The predicted pupil diameter (blue line) is reconstructed from the luminance, CIExy-2◦ chromaticity coordinates
and computed from the respective light spectrum. The red ribbon states the data’s raw scatter by colour coding
the percentile ranges. h) Residuals of the measured median pupil diameter and the prediction for all three input
variants of the trained neural networks. Regardless of the chosen input combination, the residuals are within a
range of ±0.2 mm. i) Residuals of the Watson & Yellott models for each light condition reveal that the estimation
error of a time-invariant model is outside of ±0.2 mm tolerance range. This Figure is reprinted from the author’s
publication [48]. Licence: CC BY 4.0.

When focusing on the residuals, i.e. the difference between the actual median pupil diameter and the
predicted one from the Watson & Yellott formula, it can be observed that the estimation error varies
depending on the pupil’s adaptation time. For example, the prediction of the phasic pupil size deviates
about 0.6 mm, whereas the proposed approach is within an accuracy range of 0.2 mm. When checking
the temporal behaviour, an increasing error of up to 1.14 mm with rising adaptation time for stimuli
with a lower spectral radiance in the short-wavelength range can be observed for the Watson & Yellott
model. When evaluating the results, it must be considered that the residuals of the proposed deep
learning-based approach are within a ±0.2 mm range, as the test dataset itself was used for validating
the model. The development of the modelling approach was the focus of this work. In other words, a
direct comparison between the Watson & Yellott and the proposed model might not be appropriate yet.

https://creativecommons.org/licenses/by/4.0/
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Despite these restrictions, however, it can be concluded that the proposed pupil modelling method can
reconstruct the temporal and spectral-dependent pupil light response for known datasets. The model’s
capabilities for expanding the prediction space or validating its predictions with a test dataset must be
analysed in the next phase.

4.3 Discussion

The key idea of the presented pupil modelling concept is that the temporal pupil size in response to
different light spectra is reconstructed using a base function, i.e. a time-variant differential equation
fused with a neural network for computing the base function’s model parameters directly from distinct
lighting metrics. This concept realises the possibility of reconstructing the temporal pupil light response
from its phasic-state up to the equilibrium pupil size with a mean absolute error below 0.1 mm for the
dataset also used for training the model. However, the fact that such a performance is achieved solely
by leveraging photometric, colourimetric or receptor-based quantities as input leads to a unique selling
point for this approach concerning the model’s simplified application while offering a higher level of
precision under ideal conditions. Due to the integrated neural networks, expanding the prediction space
might be possible, aiming to realise the vision of a data-driven pupil modelling method that could
improve its prediction with rising pupil size data.

The neural networks were able to compute the developed base function’s model parameters with
sufficient accuracy regardless of the input variants’ combination, as the model’s residuals were mostly
within a range of ±0.2 mm for every tested feature set. Further, the pupil model, trained with the
intrasubject data, also aligns with this conclusion. Especially the first input combination {xv1,i}N=3

i=1 ,
which leverages the luminance and CIExy-2◦ chromaticity coordinates as input, simplified the application
of computing the temporal pupil size significantly while providing a good prediction accuracy.

Compared to the previous proposals by Holladay [50], Crawford [52], Moon & Spencer [340], De
Groot & Gebhard [341], Stanley & Davies [342], Watson & Yellott [51] or Rao et al. [436], the deep
learning-based pupil modelling concept accounts for the adaptive receptor weighting; an effect which
lets the pupil size be faster in its equilibrium-state for light stimuli with a higher spectral radiance
in the short-wavelength range. Conventional empirical modelling approaches from the literature are
time-invariant, mostly apply the luminance as a proxy and, due to their pre-defined fixed equation
structure, they might not provide the possibility to consider additional properties of the pupil control.
Concerning this aspect of expandability, this work’s proposed deep learning-based concept could make
it possible to use additional data for extending the models’ prediction space or add further influencing
variables without changing the basic structure of the combined modelling approach.

The input values of the neural network are used as a proxy for pattern recognition between the
light spectrum and the base function’s model parameters. However, the current version of the pupil
model only considers the light modalities without including the experimental conditions such as the
adaptation field size α or the subject’s age a. If, for example, the adaptation field size α should be
considered in the model pipeline, too, this parameter needs to be added as an additional input to the
neural network. When adding a new input feature type to the neural network, additional empirical data,
which captures this new dependency, must be added to the training sample. Thus, the neural network’s
input values serve as the identification basis for the used experimental pupillometry condition and
applied characteristics of the light spectrum. In the current work, primarily, the spectrum was varied by
using a limited number of chromatic and polychromatic stimuli without changing the parameters of the
subjects’ age, the adaptation field size or the luminance of the stimuli.

Concerning the spectral dependence, it remains unclear how much the pupil size could be varied
using metameric spectra, as such a type of stimuli was not applied in the experiments. If the melanopic
modulation using metameric spectra could modulate the pupil’s size significantly, then this effect needs
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to be measured empirically and new data need to be added to the training sample of the pupil model.
Under such circumstances, it might be foreseeable that the third input variant, i. e., luminance, CIExy-2◦

chromaticity coordinates and melanopic radiance, needs to be used to capture the metameric responses
of the pupil. Only sufficient data must be available to consider new dependencies in the reconstruction
of the temporal pupil light response, while the structure of the developed model will remain unchanged.

Since the proposed model was trained with pupil diameter data from seven different chromatic
and polychromatic spectra at a constant luminance, it cannot, nor is it intended to replace existing
time-invariant V(λ)-based pupil models. In other words, the pupil model’s prediction is limited to the
used lighting conditions, meaning light metrics that are not integrated into the training sample do not
allow a prediction of the temporal pupil size yet. It remains to be checked how the pupil modelling
concept performs with additional data concerning the expandability of the prediction space. Further, the
model needs to be validated using a separate dataset in the future. Therefore, in the next phase of this
research, the focus must be on collecting additional empirical data to generalise the model’s predictions
continuously. Another limitation of this model is the assumption that the reference light before the test
light source remains unchanged. However, the reference light could be another dependency, leading to
the fundamental issue that the pupil light response has complex dependencies. Therefore, empirical
data must be collected to further maintain this pupil model and integrate the individual dependencies
into the model step by step.

It must be noted that the data collection is relatively time-consuming, as recording the pupil light
response from a stimulus with its corresponding pre-stimulus state during the reference light takes
about 10 minutes. Another difficulty is that subjects are not allowed to avert their gaze from the target in
the centre of the observation chamber during the pupil recording to stabilise the measurement accuracy
and prevent pupil foreshortening error. For example, each subject’s pupil recording lasted 40 minutes
for the polychromatic stimuli. Therefore, collecting sufficient pupil data is the biggest challenge.

In summary, the field of pupillometry is highly interdisciplinary [296, 509–511, 528–532], as the pupillary
behaviour plays a role in clinical diagnostics [8–10, 40, 307, 533], cognitive sciences [5, 18, 30–33, 498,
499], neuroscience [534], vision sciences [535, 536], studying the autonomic nervous system [4, 314, 537]
or quantifying non-visual processes concerning the circadian system [15, 16]. A unified data-driven
model that could integrate the research findings of recent years would be a major step forward. From a
historical perspective, it can be concluded that individual research groups might not be able to fully
model the pupil’s spectral influencing factor alone. It is conceivable that the proposed deep learning-
based pupil model could be connected to a publicly accessible database, where other research groups
could upload their empirical data to continuously expand the pupil model’s prediction space as the
sample size increases. The presented concept might drive such an idea of continuously maintaining
a pupil model with the support of a broader open-source community, which would have been more
difficult with the previous modelling approaches due to their fixed equation structure. Therefore, in the
spirit of open science, the entire programming code and analysis scripts of the deep learning-driven
pupil model were uploaded to the author’s publicly available GitHub repository (see footnote (56)).





5 Pupil Response to Equivalent Luminance Models

The size of the pupil aperture acts as the regulatory gateway for the retinal illuminance that reaches
the eye’s photoreceptor system [45], affecting the innervation strength of cortical, subcortical and
hypothalamic brain nuclei via the the retinal ganglion cells. The discovery of the ipRGCs [58–62] was
a turning point in vision science, as back then the processing mechanism of the visual system was
initially classified into an image-forming and non-image-forming cascade [60, 95, 100] from which the
latter was defined as the primary pacemaker for the pupil control (see Section 2.2). In other words,
a non-image-forming pathway triggered by the M1-ipRGCs modulates the pupil’s size, which in
turn affects the retinal illuminance; hence, the signalling strength in the image-forming pathway that
orchestrates the level of the human’s brightness perception. Thus, based on this chapter’s introducing
arguments, which can be denoted as an initial guess from an application-oriented point of view, it can
be hypothesised that there could be correlation between brightness perception and pupil size. Indeed,
recent neurophysiological studies successfully demonstrate that a clear cut between the non-visual and
visual pathway is no longer valid [81, 231]. On the one hand, the axons of the distinct ipRGC-subtypes
terminate in brain regions that process visual features [184, 224, 231] and, on the other hand, a direct
intrinsic melanopsin-activated ipRGC modulation leads to increased detectable activity in the primary
visual cortex (V1) [221]. However, regardless of research results derived from controlled experimental
settings using artificially generated spectra with unnatural high receptor contrasts, the practical relevance
of the neurophysiological interplay between ipRGCs and visual processing in response to applicable
lighting conditions with respect to the minimum requirements of colour quality for illuminated office or
home environments has not yet been conclusively addressed.

The traditional view concerning the mechanism of the humans’ brightness perception is based on
the fact that in the photopic adapted eye, light quanta are absorbed by the outer retinal photoreceptors
(L-cones: λPeak ≈ 565 nm, M-cones: λPeak ≈ 535 nm, S-cones: λPeak ≈ 420 nm) and converted into a
graded membrane potential, which is passed on to the ganglion cells via an intermediate layer of bipolar
cells [65, 66, 69]. As discussed in Chapter 2, three types of ganglion cells transmit the visual information
using frequency-coded action potentials to the LGN, the relay station of the image-forming vision, from
which the signals are distributed to distinct brain nuclei responsible for higher cortical processing tasks
(see Section 2.1.3) [65, 69]. Parasol ganglion cells carry to both magnocellular and parvocellular layers of
the LGN, multiplexing additive signals from L- and M-cones (L+M), representing achromatic luminance
signals [72, 168]. Midget ganglion cells provide opponent colour information to the parvocellular layer
of the LGN, derived from a subtraction of L- and M-cones (L−M), showing significant responses to
chromatic light modulations [65, 69]. Bistratified ganglion cells target the middle koniocellular layer of
the LGN by integrating signals from S-cones with opposed luminance information from L- and M-cones
denoted as S−(L+M) [65, 69, 70, 538]. According to classical vision models, the perception of brightness
is caused by an interaction between the achromatic L+M and the two chromatic opponent channels
(L−M, S−(L+M)) [72, 76] (see Chapter 2 for further explanation on the retinal processing mechanism).

However, recent studies found that from a neurophysiological point of view, ipRGCs interact in at
least two different ways with the image-forming pathway [539]. Firstly, M4-subtype ipRGCs project to
the LGN of the thalamus and contribute to brightness and contrast sensitivity in a manner that does
not occur after ablation of M1-ipRGC [65, 100, 217, 223]. Secondly, a population of M1-subtype ipRGCs
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has retrograde axon connections with upstream dopaminergic amacrine cells, transmitting luminance
signals to the outermost sublamina of the inner plexiform layer to influence the light adaptation state [97,
154, 156]. Through their diverse connection pattern, ipRGCs can impact other RGC types and influence
the communication between cones and postsynaptic bipolar cells, acting as a “gain control” [539] for
different light adaptation luminance levels [1, 65, 184, 264, 540–543]. Additionally, recent psychophysical
studies show that spectra with high melanopsin signals are perceived brighter than those with a weak
melanopsin proportion [77, 93, 218, 219, 539, 544], but it should be noted that such melanopic contrasts
rarely occur in standard light conditions.

Despite these individual linkage points between the ipRGCs and visual processing, there is still a
significant difference between the pathway of brightness perception and pupil control from a neuro-
physiological point of view. However, when dealing with non-artificially tuned spectra, both the pupil
light response and brightness perception have much in common from an empirical modelling point of
view. For instance, the CIE defined in 1924 the spectral luminous efficiency function V(λ) to describe
the effectiveness of light sources that feature different spectral power distributions [74, 75]. From this,
the luminance L can be computed, representing approximately the achromatic L+M-channel, which can
be applied to quantify the humans’ brightness perception [545]. Although the V(λ) weighted luminance
does not consider the opponent channels consisting of L−M and S−(L+M), this quantity is a sufficient
approximation for white light spectra generated with thermal radiators. Thus, the difference between a
neurophysiological model and an empirical model is that the latter does not claim to account for all
retinal processing mechanisms, as under particular pre-defined light conditions, the chromatic channels,
for example, have no significant impact. In contrast, the equilibrium pupil diameter caused by white
light from thermal radiators can also be described by models that apply the luminance as a dependent
parameter [47, 51]. Again, although the use of luminance in V(λ)-based pupil models does not meet
the neurophysiological interconnection of the pupil control, the pupil diameter can be predicted with
a small error under certain lighting conditions, as the melanopic contrasts from thermal radiators are
too low to justify a melanopic weighting factor. This argumentation applies for application-oriented
empirical modelling perspective.

However, with the concept of luminance, deviation could occur in both V(λ)-based pupil models and
estimated brightness sensation if chromatic, or artificially tuned metameric spectra are used [47, 545].
For example, when using multi-channel LED spectra with chromaticities placed along the Planckian
locus as a stimulus, V(λ)-based pupil models are still an acceptable approximation but yield prediction
errors of up to 0.5 mm for the equilibrium diameter (see Section 4.1). Regarding brightness perception,
one effect of estimation error when using the luminance as a predictor is denoted as the Helmholtz-
Kohlrausch effect (H-K-effect), meaning that highly saturated colours that appear equally bright do
not have the same luminance [73] because the opponent chromatic channels are not managed by V(λ).
To compensate the weakness of V(λ) [75], so-called equivalent luminance models have been proposed
which take into account derived spectral information such as chromaticity coordinates or receptor
signals, aiming to acquire a better approximation of brightness perception with the luminance as a main
independent parameter [546–550]. The key question is whether an equivalent luminance model that
estimates brightness perception better than the luminance itself would also be a better predictor for
conventional pupil models from an empirical point of view?

Therefore, in this part of the thesis, the stimuli were presented with a distinct spectral power dis-
tribution at a constant brightness, calculated via the equivalent luminance concept. The objective was to
check what effect a steady brightness has on the temporal pupil diameter and whether the aperture
could remain steady across spectra with different power distributions when an equivalent luminance
function is used instead of the luminance. A steady pupil diameter across different spectra would
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indicate that such a predictor could be suitable for empirically modelling the time-invariant pupil
size. The study is motivated by the fact that the usage of the V(λ)-weighted luminance in V(λ)-based
pupil models has the shortcoming that chromatic and polychromatic spectra both lead to statistically
significant differences in the phasic and tonic pupil diameter (see Section 4.1). This is mainly due to the
luminance, which cannot keep the pupil diameter steady across different spectra. This could be an issue,
especially for spectra with chromaticities placed along the Planckian locus because the pupil diameter
caused by usual white stimuli can only be calculated with prediction errors. If spectra with a constant
derived intensity value do not allow a steady output, such a quantity is usually unsuitable for describing
a process. An experiment conducted by Werner Adrian [551] showed that using the 10◦-V(λ) function
to calculate an equivalent luminance value did not lead to significant differences in the adapted pupil
diameter at various chromatic spectra in the mesopic vision range. Here, it was checked the possibility
of using equivalent luminance models to achieve a steady diameter across spectra for the photopic
adapted eye, revealing the advantage that both the pupil aperture and brightness perception could be
modelled approximately with the same parameter from an empirical modelling perspective, despite the
neurophysiological difference in the processing mechanisms or retinal contributors.

5.1 Equivalent Luminance Models

The concept of equivalent luminance is used to define a measure of brightness perception, built on the
system of colourimetry and photometry [552]. Several authors proposed equivalent luminance models
for describing the perception of brightness [545, 547–549, 552] (see also Hermans et al. [78] for further
details). In 2011, the CIE published the supplementary system of photometry [552] as an agreement
between the existing proposals of brightness models. It was recommended to use the proposal of
Sagawa [73] as the official CIE luminance equivalent model, which integrated the photopic luminance
L, scotopic-luminance L′ and an achromatic adaptation coefficient a and chromatic contribution c,
where the latter is weighted by the chromaticity coordinate of the stimulus spectrum to compensate the
Purkinje- and H-K-effect from V(λ) [545, 552].

Leq,Sagawa = L′1−a · La · 10c (5.1)

a =
L

L + 0.05 cd
m2

(5.2)

c =

(
1.3 · L0.5

L0.5 + 2.24 cd
m2

)
· ( f (x, y)− 0.078) (5.3)

f (x, y) = 0.5 log
(
−0.0054− 0.21x + 0.77y + 1.44x2 − 2.97xy + 1.59y2 . . .

−2.11(1− x− y) · y2
)
− log(y)

(5.4)

The parameter x and y in Equation (5.4) are the respective chromaticity coordinates of the stimulus
spectrum in the CIExy-1931-2◦ colour space. As the model of Sagawa is proposed by the CIE as an
agreement, it was considered in this work as a proxy for brightness perception. Furthermore, the
equivalent luminance concept of Fotios & Levermore [45] was used in this work, which weights the
luminance L through a brightness modification term [553], consisting of the ratio between S-cone- and
the V(λ)-signal [554] of the stimulus spectrum X(λ).

Leq,Fotios =

(∫
S2◦(λ) · X(λ)dλ∫
V(λ) · X(λ)dλ

)0.24

· L (5.5)
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In Equation (5.5), S2◦ denotes the 2◦ spectral sensitivity of the S-cones provided by Smith and Pokorny
[427] and L is the luminance. The model was chosen because Adrian’s results [551] indicate that a steady
pupil diameter can be achieved across spectra by changing the sensitivity in the short wavelength range,
although such a quantity could still describe the approximated brightness sensitivity.

Note that in recent works on brightness modelling, the concept of equivalent luminance by the CIE is
not pursued further, as custom brightness functions based on receptor signals with the addition of a
melanopsin factor are preferred in describing empirically collected data from self-conducted experiments
[93, 539, 555, 556]. However, the latest proposed brightness functions by Yamakawa et al. [93] and Zele
et al. [539] are of high interest, but still in the phase of concept due to the small sample size, the number
of used stimuli, missing external cross-validation and inconsistency with a recent research finding
[557]. Also, there is a risk that in brightness models, the proportion of ipRGCs will be overestimated
since artificially generated spectra in laboratory experiments are individual cases. Systematically tuned
spectra with unnaturally high short-wavelength ratios rarely occur in reality, so the question of the
practical relevance of such models still has to be answered. In this context, the study of DeLawyer et al.
[558] found that the proportion of melanopic excitation on brightness judgments might be small when
other parameters like luminance and hue are varied [558]. Therefore, only the equivalent luminance
concepts were considered as a proxy for brightness perception for this work.

5.2 Experimental Conditions and Pupillometry Protocol

Chromatic and Polychromatic spectra with chromaticity coordinates placed along the Planckian locus
were used to determine the pupil behaviour at steady luminance and selected equivalent luminance
models proposed in the literature. The chromatic spectra (experiment one) had the peak wavelengths
450 nm, 530 nm and 630 nm with a full widths at half maximum (FHWM) of 18 nm, 33 nm and 16 nm.
The polychromatic spectra (experiment two) had the correlated colour temperatures of 2000 K, 5000 K
and 10 000 K. Each experiment was divided into three sessions. In the first two sessions, stimuli with a
steady brightness, calculated via the equivalent luminance models according to Fotios & Levermore
[45] with Leq,Fotios (first session) and the official CIE equivalent luminance proposed by Sagawa [73]
with Leq,Sagawa (second session) were used. The model of Fotios & Levermore [45] reaches an approx-
imation of the brightness perception by weighting the luminance with a ratio between the S-cone
and photopic luminance signal. The equivalent luminance Leq,Fotios is affected by the spectral radiance
in the short-wavelength range of the stimulus spectrum. The spectra were generated using a the de-
veloped actively temperature-controlled (30◦C± 0.1◦C) 15-channel LED luminaire, which has eleven
chromatic channels (420 nm, 450 nm,470 nm, 505 nm, 530 nm, 545 nm, 590 nm, 610 nm, 630 nm, 660 nm,
720 nm) and four phosphor-converted white LEDs with CCTs of 2700 K, 4000 K, 5000 K and 5700 K (see
Chapter 3). However, the number of primary LEDs allowed a higher degree of freedom in optimising
the polychromatic spectra to achieve a steady brightness. The luminaire was placed on top of the light
observation chamber to mix the rays of the LEDs, ensuring a homogenous illumination of 700 x 700 mm
rectangular adaptation field, corresponding to a 53.1◦ viewing angle (Fig. 5.1a).

In the first session, the polychromatic and chromatic spectra were presented with a steady brightness
Leq,Fotios according to the definition of Fotios & Levermore [45] with 87.12 cd/m2± SD 1.03 cd/m2

(Fig. 5.1b, Table 5.1). The stimuli were switched on consecutively in a fully randomized double-blind
order for 300 seconds, respectively. Between each stimulus, an anchor spectrum with a CCT of ∼5500 K
(L =200 cd/m2) was presented for 300 seconds to avoid pre-stimulation influences [327] and being able
to compute the baseline-corrected pupil size for the statistical analysis. In the supplementary Fig. A.4,
the pupil diameter values of the reference spectra are reported, which were used to compute the
baseline-corrected pupil size for statistical analysis from the subjects’ absolute pupil diameter (Fig. A.5).
The experiment with the chromatic spectra was conducted seperatley from that of the polychromatic
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Table 5.1: Calculated metrics of the stimulus spectra Le(λ). The spectra were measured using a calibrated
spectroradiometer Konica Minolta CS-2000A. The α-opic radiance in W/m2sr of the photoreceptor signals were
computed with the 10◦ cone and melanopsin fundamentals reported in the CIE S026/E:2018.

Label Luminance Leq,Fotios Leq,Sagawa L-Signal M-Signal S-Signal Mel-Signal CIEx-1931 CIEy-1931

L = const.: 450 nm 87.59 184.86 222.45 0.2550 0.4217 2.8356 1.5826 0.1583 0.0202
L = const.: 530 nm 87.39 44.50 96.69 0.1230 0.1459 0.0034 0.0919 0.1870 0.7392
L = const.: 630 nm 87.32 17.82 132.07 0.1744 0.0341 0.0001 0.0005 0.6936 0.3058
Leq,Fotios = const.: 450 nm 41.47 87.23 97.03 0.1204 0.1999 1.3309 0.7504 0.1580 0.0203

Leq,Fotios = const.: 530 nm 168.75 87.16 187.96 0.2379 0.2835 0.0071 0.1829 0.1832 0.7385

Leq,Fotios = const.: 630 nm 324.64 85.11 516.78 0.6486 0.1248 0.0014 0.0029 0.6940 0.3042

Leq,Sagawa = const.: 450 nm 37.83 79.38 87.25 0.1095 0.1820 1.2035 0.6823 0.1579 0.0205

Leq,Sagawa = const.: 530 nm 78.76 40.10 87.06 0.1108 0.1315 0.0031 0.0828 0.1870 0.7392

Leq,Sagawa = const.: 630 nm 58.66 11.05 87.18 0.1172 0.0229 0.0000 0.0003 0.6938 0.3058

L = const.: ∼2000 K 87.49 48.80 79.70 0.1490 0.0880 0.0097 0.0336 0.5245 0.4106
L = const.: ∼5000 K 87.39 73.03 71.74 0.1433 0.1220 0.0542 0.1054 0.3457 0.3542
L = const.: ∼10 000 K 87.62 84.09 74.54 0.1450 0.1379 0.0966 0.1571 0.2803 0.2884
Leq,Fotios = const.: ∼2000 K 158.49 87.66 143.72 0.2702 0.1617 0.0159 0.0732 0.5256 0.4122

Leq,Fotios = const.: ∼5000 K 104.34 87.96 85.38 0.1722 0.1471 0.0648 0.1341 0.3448 0.3518

Leq,Fotios = const.: ∼10 000 K 91.77 87.63 77.93 0.1515 0.1458 0.0987 0.1663 0.2774 0.2931

Leq,Sagawa = const.: ∼2000 K 95.89 52.94 87.19 0.1636 0.0976 0.0096 0.0410 0.5251 0.4138

Leq,Sagawa = const.: ∼5000 K 106.80 90.97 87.38 0.1747 0.1478 0.0701 0.1248 0.3436 0.3479

Leq,Sagawa = const.: ∼10 000 K 103.00 98.39 87.48 0.1683 0.1588 0.1160 0.1689 0.2795 0.2873

spectra. Thus, including the anchor spectra, one trial consisted of six stimuli, each with an adaptation
time of 300 seconds, leading to a total pupil recording time of 30 minutes. For the whole recording
duration, the subjects were advised to stare at a 0.8◦ fixation target [360], placed in the middle of
the observation chamber to minimise saccades and avoid pupil foreshortening error [501, 559]. The
subjects’ pupil diameters were recorded during the complete experimental trial with 120 frames/s with
an extrinsic and intrinsic calibrated stereo-camera system from Smart Eye Pro with two 659 x 494
Basler acA640-120gm cameras, resulting in a validated accuracy of ∼0.15 mm for edge detection. The
participant’s head position and accommodation level were kept still by using a chin rest.

5.2.1 Characteristics of the applied light stimuli

The polychromatic spectra were calculated using a heuristic optimisation procedure in such a way that
the CIExy-2◦ used chromaticity coordinates between the experimental sessions were close to each other
(Fig. 5.1c). Stimuli with steady brightness according to Fotios & Levermore [45] show a higher spectral
radiance for 2000 K and 630 nm compared to the spectral power distribution in the steady luminance
trial (Fig. 5.1b). This effect results in an increased luminance for spectra with a higher spectral radiance
in the longe-wavelength range when keeping the Leq,Fotios steady across the stimuli (Table 5.1). The same
applied for the photoreceptor signals since the melanopsin and the S-cone signals are increased when
comparing the chromatic and polychromatic Leq,Fotios-spectra to the stimuli with a steady luminance L
(Fig. 5.1d, Table 5.1). Even with a steady brightness, according to Sagawa [73], the stimuli with a lower
proportion in the short-wavelength range receive a higher radiance, but the effect is not as pronounced
as for the stimuli which were calculated through the Fotios & Levermore [45] model (Fig. 5.1d). The
CIExy-2◦ chromaticity coordinates and α-opic radiance receptor signals of the applied spectra are
reported in Table 5.1.

In Section 4.1 it was reported that at a steady luminance, a smaller equilibrium-state pupil diameter
can be expected for stimuli with a higher spectral radiance in the short-wavelength range. This effect
occurs in both polychromatic and chromatic spectra and intensifies with the amount of the spectral
radiance in the short-wavelength range. Due to the fact that the brightness models weighted long-
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wavelength spectra more heavily by increasing their luminance (Table 5.1), the possibility of reaching a
steady mean pupil size across different spectral stimuli could be higher. It is assumed that the probability
of achieving a steady pupil diameter across the spectra with a brightness model is higher using the
Fotios & Levermore model [45] since the weighting effect of long-wavelength spectra is more dominant
using such a computing approach.
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Figure 5.1: Multi-channel LED setup and photometric properties of the used stimuli. a) The custom-developed
active temperature-controlled (30◦C± 0.1◦C) 15-channel LED luminaire was placed on top of the observation
chamber to reach a homogeneously illuminated 53.1◦ sized adaptation field. A calibrated stereo camera system
inside the light observation chamber was used to record the temporal pupil diameter. b) Measured chromatic
and polychromatic spectra in W/m2sr (Konica Minolta CS2000A) from the three experimental sessions with a
steady Leq,Fotios, Leq,Sagawa and luminance L. c) Chromaticity coordinates of the polychromatic spectra in the
CIExy-1931-2◦ colour space. d) Photoreceptor excitation of the applied α-opic radiance, computed with the 10◦

cone and melanopsin fundamentals from the CIE S026/E:2018. (57)

5.2.2 Participants

The sample consisted of 13 subjects who participated in each session. Three sessions were conducted
using the set of chromatic spectra, as the stimuli were carried out firstly with a steady luminance,
secondly with a steady brightness according to Fotios & Levermore [45] and thirdly using a steady
brightness according to Sagawa [76]. Additional three experimental sessions were conducted for the set
of polychromatic spectra. Thus, each subject participated in a total of six recording sessions, of which
each lasted 30 minutes, leading to a total pupil recording time of three hours for every subject.

Based on pre-defined quality metrics, subjects were excluded from the sample when low pupil
recording data characteristics were visible. The results from the first session with a steady equivalent

(57) (Fig. 5.1a) is reprinted from the author’s publication: Babak Zandi, Julian Klabes & Tran Quoc Khanh. Prediction accuracy of L-
and M-cone based human pupil light models. Scientific Reports. 10, 10988 (2020). Nature Research. DOI: 10.1038/s41598-020-67593-3.
Licence: CC BY 4.0.

https://doi.org/10.1038/s41598-020-67593-3
https://creativecommons.org/licenses/by/4.0/
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luminance Leq,Fotios according to Fotios & Levermore [45] are based on 12 subjects (22.08 y± SD 1.83 y,
one subject excluded) in the chromatic trial and 11 subjects (21.91 y± SD 2.02 y, two subjects excluded)
in the polychromatic trial. In the second session with a steady equivalent luminance Leq,Sagawa according
to Sagawa [76], the sample consisted of 12 subjects in the chromatic trial (21.83 y± SD 1.9 y, one subject
excluded) and 12 subjects in the polychromatic trial (21.92 y± SD 1.9 y, one subject excluded). The anal-
ysis of the third session, which applied the stimuli with a steady luminance L is based on 10 observers
(21.6 y± SD 1.96 y, three subjects excluded) in the chromatic and 13 observers (21.92 y± SD 1.85 y, three
subjects excluded) in the polychromatic trial.

All participants confirmed that they have no history of ocular disease, were not under the influence of
medication or drugs and had no caffeine at least 84 hours before the respective session took place. The
colour vision was tested by using Ishihara plates. This study was approved by the ethics committee of
the Technical University of Darmstadt and carried out following the ethical principles of the Declaration
of Helsinki. All subjects were informed about the content of the study. Signed consent was obtained
from the participants before the experiment took place.

5.2.3 Pre-processing of the pupil data

Pupil data from both eyes were recorded at 120 frames/s by a calibrated stereo camera system from
Smart Eye Pro, but only the left eye was considered for evaluation and analysis. Unusual pupil data
caused by eye blinks were identified and removed by using the internal algorithms from the Smart
Eye Pro software. Other artefacts were recognized via a stated confidence measure accuracy by the
software. For this, only pupil data with an accuracy higher than 97 % were considered. The remaining
peaks were filtered by calculating the velocity profile and removing the outliers with an upper and
lower percentile threshold of 99.993 % and 0.007 %. Further, the pupil data were smoothed using a
second-order Savitzky-Golay-Filter with a window size of 3000 data points. An artificially induced
change of the phasic pupil diameter was prevented by keeping the first 300 data points untouched
from the smoothing procedure. The smoothed raw data from the experiments are reported in the
supplementary materials (Fig. A.7, Fig. A.8, Fig. A.9)

5.3 Reachability of a Steady Equilibrium Pupil Size Across Spectra

At steady luminance or brightness across distinct spectra, the most substantial differences in pupil
diameter are expected in the equilibrium state, since in this phase, the ipRGCs take over the dominance
in the afferent pupil control path. An analysis of variance is used to determine whether the subtractive
baseline-corrected [501] tonic pupil diameter at 300 seconds of adaptation time is significantly affected
by the type of the spectrum and whether the usage of a brightness model has an impact on keeping the
diameter steady. The baseline correction was performed for each subject by subtracting the absolute
pupil diameter (Fig. A.5), caused by the stimulus spectrum, from the corresponding pupil size of the
reference (anchor) spectrum (Fig. A.4). A graphical analysis with quantile-quantile plot and Shapiro-
Wilk-Test revealed that a normal distribution of the baseline-corrected pupil data (Fig. 5.2 a) could
be assumed. The equilibrium-state absolute pupil diameter from the stimuli and the baseline pupil
diameter caused by the anchor spectrum are reported in Fig. A.4 and Fig. A.5 (supplementary materials).

The pupil data at steady luminance with chromatic spectra have met the assumption of sphericity
according to Mauchly’s test with W = 0.59, p = 0.12 > 0.05. Therefore, a correction of degree is not
necessary. According to rANOVA, the pupil diameter is significantly affected by the type of given
spectrum F(2, 18) = 18.07, p = 4.96 · 10−5 < 0.05 with a large effect size η2 = 0.55. A Post-hoc t-test
with Bonferroni correction revealed that significant differences occured between 450 nm to 530 nm
(p = 1.2 · 10−3 < 0.05), as well as between 450 nm to 630 nm (p = 3.7 · 10−3 < 0.05).
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Figure 5.2: Statistical analysis of the baseline-corrected pupil diameter caused by chromatic and polychromatic
spectra under the conditions of a steady luminance L, steady equivalent luminance by Fotios & Levermore Leq,Fotios
and steady equivalent luminance by Sagawa Leq,Sagawa. a) When using chromatic spectra, all stimulus conditions
showed significant differences between the pupil diameter groups. The spectra with a steady equivalent luminance
did not achieve a constant pupil diameter across the stimuli. Analysis for stimuli with steady luminance L: repeated
measure ANOVA (rANOVA) for the pupil size in response to chromatic spectra at steady luminance revealed that
the pupil diameter is influenced by the type of the spectrum with F(2, 18) = 8.07, p = 4.96 · 10−5 < 0.05, η2 = 0.55.
A pairwise t-test with Bonferroni correction for the polychromatic spectra showed significant differences between
10 000 K to 2000 K (p = 7.60 · 10−5 < 0.05), but not between 10 000 K to 5000 K (p = 1.94 · 10−1 > 0.05). Analysis for
stimuli with steady Leq,Fotios: rANOVA revealed significant differences between the pupil diameter when chromatic
spectra are used F(1.35, 14.87) = 28.46, p = 3.17 · 10−5 < 0.05, η2 = 0.59. However, the pupil diameter is not
affected by the type of the given spectrum when using polychromatic stimuli neither between 10 000 K to 5000 K
(p = 1 > 0.05) nor between 10 000 K to 2000 K (p = 0.067 > 0.05). Analysis for stimuli with a steady Leq,Sagawa:
rANOVA revealed that the pupil diameter is affected by the type of the given spectrum when using chromatic
spectra F(2, 22) = 36.57, p = 1.01 · 10−7 < 0.05, η2 = 0.70. Pairwise comparison with a t-test for the polychromatic
stimuli showed that the pupil diameter is significantly different between 10 000 K to 2000 K (p = 1.4 · 10−3 < 0.05),
but not between 10 000 K to 5000 K (p = 0.76 > 0.05). b) The pupil diameter at 5000 K and 2000 K were subtracted
from the reference pupil size at 10 000 K to get ∆dP,i,2000K and ∆dP,i,5000K for each subject i. In the chromatic session
the pupil diameter at 450 nm was used as reference to calculate ∆dP,i,530nm and ∆dP,i,630nm. A value closer to zero
indicates that the pupil diameter is less affected by the type of the given spectrum. By using the equivalent
luminance Leq,Fotios, a steady equilibrium pupil diameter can be achieved for polychromatic stimuli with a mean
deviation of ∆dP,2000K =0.3 mm and ∆dP,5000K =0.1 mm. The equivalent luminance by Sagawa Leq,Sagawa shows
at dP,5000K a more substantial mean deviation to the reference pupil size at 10 000 K with 0.7 mm. However, both
equivalent luminance models failed for chromatic spectra with a maximum mean difference to the reference pupil
size of dP,630nm of 1.1 mm (Leq,Fotios) and 1.6 mm (Leq,Sagawa).
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In the chromatic session with a steady Leq,Fotios (Fig. 5.2a), Mauchly’s test indicated that the assumption
of sphericity had not been met W = 0.52, p = 0.039 > 0.05. Therefore, a correction of degree
was conducted. According to rANOVA, the pupil diameter is influenced by the type of spectrum
F(1.35, 14.87) = 28.46, p = 3.17 · 10−5 < 0.05 with a large effect size η2 = 0.55. Pairwise comparison
t-test showed that there were significant differences in the pupil diameter between 450 nm and 530 nm
(p = 2.06 · 10−3 < 0.05), as well as between 450 nm to 630 nm (p = 2.5 · 10−4 < 0.05).

At a steady brightness metric Leq,Sagawa according to Sagawa’s model, rANOVA also revealed signifi-
cant differences between the pupil diameter caused by the tested chromatic spectra F(2, 22) = 36.57, p =

1.01 · 10−7 < 0.05 with a large effect size η2 = 0.7 (Fig. 5.2a). The Post-hoc analysis with a pairwise t-test
showed significant differences between 450 nm and 530 nm (p = 6.56 · 10−5 < 0.05), as well as between
450 nm to 630 nm (p = 1.92 · 10−5 < 0.05).

Further, the pupil diameter in response to chromatic spectra was analysed relatively to the pupil
size at 450 nm to assess whether a constant mean aperture could be achieved when using a brightness
model and verify the effect size beyond a significance analysis (Fig. 5.2b). For this, the relative baseline-
corrected pupil diameter values ∆dP,530nm and ∆dP,630nm (∆dP,530nm, ∆dP,630nm ∈ Rn, n = subject count)
were computed, by subtracting the pupil diameter ∆dP,i,530nm(t) or ∆dP,i,630nm(t) from ∆dP,i,450nm(t)
at t = 300 seconds for each observer i. The closer the relative values ∆dP,530nm and ∆dP,630nm are to
zero, the smaller are the pupil diameter differences between the spectra; hence the pupil response
could be spectrally described with such a metric. For example, at a steady luminance, the mean of
the baseline-corrected pupil diameter difference between 450 nm to 630 nm is ∆dP,630nm = 1.5 mm and
∆dP,530nm = 0.9 mm between 450 nm to 530 nm (Fig. 5.2b).

However, the usage of a steady brightness metric according to the Fotios & Levermore model improved
the results by reducing the differences in pupil diameter between the spectra with ∆dP,530nm = 0.4 mm
and ∆dP,630nm = 1.1 mm. When keeping the brightness Leq,Fotios steady, a high luminance gradient is
produced between the spectra with 41.47 cd/m2 (450 nm), 168.75 cd/m2 (530 nm) and 324.64 cd/m2

(630 nm). Thus, the pupil diameter between 450 nm and 630 nm is more balanced between these stimuli
but not steady, although the difference in luminance had a factor of ∼7 when using the brightness metric
Leq,Fotios (Table 5.1). In contrast, the Sagawa model performed similar to the steady luminance condition
with ∆dP,530nm = 0.8 mm and ∆dP,630nm = 1.6 mm, which is due to the low luminance gradient between
the chromatic spectra (Table 5.1). Note that the luminance contrast between the spectra in the Leq,Fotios =
const. condition resulted in a significant difference in the perceived brightness between the chromatic
spectra, as the Fotios & Levermore equivalent luminance model was designed for polychromatic stimuli
with chromaticities along the Planckian locus. However, the results have been expected since chromatic
spectra achieve the highest receptor signal contrasts, highlighting the neurophysiological differences
between the image- and non-image-forming pathway, which cannot be balanced by using an equivalent
luminance model when considering the equilibrium pupil size. In fact, chromatic spectra may not occur
under natural light conditions, so the comparison with polychromatic spectra is a more realistic scenario
what could be found in indoor lighting.

When presenting polychromatic spectra with a steady luminance, the pupil diameter is significantly
affected by the spectrum F(2, 24) = 33.53, p = 1.12 · 10−7 < 0.05 with a large effect size η2 =

0.64. However, the Bonferroni corrected pairwise t-test revealed that significant differences are only
between 10 000 K to 2000 K (p = 7.60 · 10−5 < 0.05), but not when comparing 10 000 K to 5000 K
(p = 1.94 · 10−1 > 0.05). The Michelson contrast of the melanopic radiance CMel,5000K = (smel,10 000K −
smel,5000K)/(smel,10 000K + smel,5000K) ≈ 0.197 is not high enough to cause a significant difference between
the mean pupil diameter when keeping the luminance steady (Fig. 5.2b). In contrast, the Michelson
contrast between 10 000 K to 2000 K is CMel,2000K ≈ 0.648, which is high enough to affect the pupil
diameter between the stimuli types. Even with a steady brightness metric Leq,Sagawa according to Sagawa,
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the melanopic Michelson contrast could not be pushed below the necessary threshold to achieve a pupil
diameter which could be independent of the used spectrum F(2, 22) = 15.35, p = 6.72 · 10−5 < 0.05
with a large effect size η2 = 0.54. Similar to the steady luminance condition, there is a significant
difference between 10 000 K to 2000 K (p = 1.4 · 10−3 < 0.05), but not between 10 000 K to 5000 K
(p = 0.76 > 0.05). However, by using the steady brightness metric Leq,Fotios according to Fotios &
Levermore, the pupil diameter was not affected by the type of the polychromatic spectra. There is
neither a significant difference between 10 000 K to 5000 K (p = 1 > 0.05) nor between 10 000 K to
2000 K (p = 0.067 > 0.05). At a steady equivalent luminance Leq,Fotios, a melanopic Michelson contrast
of CMel,2000K ≈ 0.389 (Table 5.1) was balanced enough to achieve a steady pupil diameter across the
polychromatic spectra (Fig. 5.2b). Further, the mean of the relative baseline-corrected pupil diameter
difference to the reference (10 000 K) with ∆dP,2000K = 0.3 mm and ∆dP,5000K = 0.1 mm showed an almost
steady mean value between the polychromatic spectra (Fig. 5.2b).

The reported results provide evidence that the pupil size in response to polychromatic spectra can be
described by the equivalent luminance metric proposed by Fotios & Levermore, which might cause less
estimation error inside a conventional pupil model than the luminance does. As long as no artificial
chromatic spectra are used, it is possible to describe the perception of brightness (approximated with
the Fotios & Levermore model) and the pupil light response through the same dependent quantity. A
melanopsin weighting is not needed due to the low melanopic Michelson contrasts for the tested spectra
with chromaticities along the Planckian locus.

5.4 Temporal Pupil Light Reponse at Steady Equivalent Luminance

Depending on the light’s exposure time, the pupil aperture is controlled by an adaptive weighting
proportion of the outer and inner retinal photoreceptors. Thus, it is necessary to consider the temporal
pupil light response to assess the pupil diameter’s behaviour at a steady brightness. It is expected that
the chromatically caused short-time (phasic) pupil diameter will be approximately statistically steady
across the spectra when using a steady brightness metric since the outer photoreceptors dominate
the afferent pupil control pathway for the pupil’s phasic responses. The previously discussed relative
baseline-corrected pupil diameter differences ∆dP,i,530nm, ∆dP,i,630nm, ∆dP,i,2000K and ∆dP,i,5000K to the
respective reference (450 nm for the chromatic and 10 000 K for the polychromatic stimuli) are now
analysed temporally using ∆dP(t) for ∆dP(t) ∈ Rn in the time range 0 ≤ t ≤ 30 s. For this, the mean
value ∆dP(t) = 1/n ∑n

i=1 ∆dP,i(t) of the relative deviations were calculated for each time step i. In
Fig. 5.3, the temporal mean values of the pupil diameter’s deviation to its respective reference size
∆dP(t) are reported with the standard deviation for the chromatic and polychromatic light conditions.

When using a steady luminance across chromatic spectra, the relative deviation of the pupil diameter
∆dP, 530nm(t) and ∆dP, 630nm(t) increases with rising adaptation time, but remains below the tolerance
threshold 0.5 mm until 7 s for the 530 nm and 15.7 s for 630 nm (Fig. 5.3). Interestingly, ∆dP, 530nm(t)
increases faster and is earlier in saturation compared to the ∆dP, 630nm(t) course, where the latter has
a lower slope for a longer duration. The deviations across the polychromatic spectra ∆dP, 2000K(t) and
∆dP, 5000K(t) are for a duration of 30 s below the 0.5 mm threshold, meaning that the pupil difference
between 2000 K to 10 000 K and 5000 K to 10 000 K can be assumed approximately independent of the
polychromatic spectrum due to the pupil’s size small mean deviation between the stimuli.

By using the equivalent luminance Leq,Fotios according to Fotios & Levermore, the mean of the relative
difference ∆dP, 530nm(t), ∆dP, 630nm(t), ∆dP, 2000K(t) and ∆dP, 5000K(t) remains below 0.5 mm for both
chromatic and polychromatic stimuli. Compared to the steady luminance condition, it can be shown
that by using the brightness metric Leq,Fotios, an approximately constant pupil size can be achieved even
for the phasic pupil size (0 ≤ t ≤ 30 s) in response to the tested chromatic spectra. However, the use of
Leq,Sagawa causes that ∆dP, 530nm(t) exceeds 0.5 mm after 7.3 s. This is a difference of 0.3 s compared to
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the steady luminance condition, meaning that Sagawa’s proposed brightness metric achieved almost
no improvement in keeping the pupil diameter steady, as the pupil size deviation between 530 nm to
450 nm was only 0.3 s longer below 0.5 mm. However, ∆dP, 630nm(t) reached the tolerance threshold after
16.9 s, which is about 0.9 s longer than the steady luminance condition. Overall, the pupil diameter’s
behaviour caused by the Sagawa model at chromatic spectra is comparable to those in the constant
luminance session. The Sagawa model revealed only for polychromatic spectra an improvement, but
with the Fotios & Levermore approach, the deviations of the pupil size to the respective reference
stimulus are more uniform across the polychromatic and chromatic spectra (Fig. 5.3).
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Figure 5.3: Temporal analysis of the phasic pupil response using spectra that yield a steady luminance L, steady
equivalent luminance by Fotios & Levermore Leq,Fotios and steady equivalent luminance by Sagawa Leq,Sagawa,
respectively. The mean of the baseline-corrected pupil diameter was subtracted from the pupil size at the reference
450 nm (chromatic) and 10 000 K (polychromatic). For chromatic stimuli with a steady luminance L, the pupil
diameter deviations to the reference 450 nm are comparable to those at a steady equivalent luminance value
Leq,Sagawa according to Sagawa. However, when using a steady equivalent luminance according to Fotios &
Levermore, a deviation of less than 0.5 mm can be achieved even with chromatic spectra for an adaptation time of
up to 30 seconds. For polychromatic spectra, the deviations are smaller in all stimuli sessions, but a steady Leq,Fotios
showed a minor pupil size deviation between the polychromatic spectra to the reference at 10 000 K.

In addition to the relative deviation analysis of the pupil diameter, a repeated measure ANOVA and
pairwise t-test with Bonferroni correction was performed every 100 milliseconds to obtain p(t) in the
range 0 ≤ t ≤ 300 s (Fig. 5.4). The time-dependent statistics should clarify at which point in time the
type of stimuli significantly affects the pupil diameter and whether a steady cone-based brightness
metric could make the pupil diameter independent of the stimuli for a longer duration compared to the
steady luminance condition.

For steady luminance, the repeated measure ANOVA shows that after 600 ms, there is a statistical
difference between the chromatic stimuli caused pupil diameter F(2, 18) = 7.58, p = 4 · 10−3 < 0.05,
whereby according to pairwise comparison, this difference occurs between 450 nm to 530 nm (p(t =
0.6 s) = 0.023 < 0.05). Between 630 nm to 450 nm, the first statistical difference occurs at 4.2 s with
p(t = 4.2 s) = 0.044 < 0.05 (Fig. 5.4).

At steady Leq,Fotios, the temporally conducted rANOVA shows that the pupil diameter is affected
by the type of chromatic stimuli after 1.5 s (F(2, 22) = 5.32, p = 0.01 < 0.05). In contrast, a pairwise
t-test between 450 nm to 530 nm revealed that a significant difference appears after 8 s (p(t = 8 s) =
0.049 < 0.05), but does not remain stabilised significant, because it becomes non-significant at 22.1 s
(p(t = 22.1 s) = 0.0504 > 0.05). Between 450 nm to 630 nm, a permanent significant difference occurs
from 14.9 s on with p(t = 14.9 s) = 0.0494 < 0.05 (Fig. 5.4 and Fig. A.6).
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At steady Leq,Sagawa, repeated measure ANOVA shows significant differences at 0.4 s exposure time
with F(2, 22) = 4.91, p = 0.017 < 0.05. A pairwise comparison between 450 nm to 530 nm indicates a
significant difference of the pupil size at 0.7 s (p(t = 0.7 s) = 0.002 < 0.05). Between 450 nm and 630 nm,
a stable significant difference appears at 9.5 s (p(t = 9.5 s) = 0.048 < 0.05) (Fig. 5.4 and Fig. A.6).
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Figure 5.4: A time-dependent statistical analysis using the rANOVA and the Bonferroni corrected pairwise t-test.
The statistic was performed with the recorded pupil data for every 100 milliseconds. When using the equivalent
luminance model, according to Fotios & Levermore, the phasic and tonic pupil response is not significantly affected
by the type of the polychromatic spectrum for most of the time. The equivalent luminance Leq,Sagawa by Sagawa and
the luminance L did not achieve a steady pupil size across the polychromatic spectra for most of the light exposure
time. However, when using the Fotios & Levermore model with chromatic stimuli, the phasic pupil response is
non-significant for a longer duration compared to the luminance and Sagawa model.

In summary, the temporal statistical analysis showed that by using the Fotios & Levermore brightness
metric, the phasic pupil diameter caused by chromatic stimuli remains independent of the spectrum
for a longer duration (450 nm to 630 nm: 14.9 s), when comparing the pupil’s temporal behaviour to
the steady luminance (450 nm to 630 nm: 4.2 s) or steady Sagawa condition (450 nm to 630 nm: 9.5 s).
However, it should be mentioned that a short-term non-significant p-value collapse occurred in the
pairwise comparison between 450 nm to 630 nm when using the Fotios & Levermore brightness metric
(see Fig. A.6). The results indicate that the phasic pupil light response (0 ≤ t ≤ 14.9 s) caused by the
tested chromatic spectra can be described using the cone-based brightness metric Leq,Fotios proposed
by Fotios & Levermore. When using polychromatic spectra, the resulting melanopic and S-cone signal
contrasts between the spectra are lower than with chromatic stimuli. Statistical differences between
2000 K and 10 000 K occur mainly when using the Sagawa model or the luminance. In contrast, again,
the Fotios & Levermore model was able to maintain both the phasic and tonic pupil diameter steady
(0 ≤ t ≤ 300 s) across the used spectra.
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5.5 Discussion

Since the first pupil function by Holladay (1926) [50] until the unified model by Watson & Yellott in 2012
[51], the luminance has been used as a quantity for predicting the tonic pupil light response. However,
integrating the luminance in a pupil model could result in estimation errors of the equilibrium-state
pupil diameter because the aperture does not remain steady for both chromatic and polychromatic
spectra at constant luminance with different spectra (see Section 4.1). Rao et al. [436] proposed in 2017
a pupil model that integrates the melatonin sensitivity function to minimize prediction errors that
occur with polychromatic spectra of correlated colour temperatures 3000 K, 4500 K and 6500 K (see
Section 4.2). Compared to conventional V(λ)-based pupil models, this approach is promising, but using
the melatonin suppression function C(λ) in a pupil model for weighting the short wavelength-range
might not be future-proof, since C(λ) is not a standardized weighting function [242, 254, 263, 416, 419].
Apart from the previously discussed V(λ)-based pupil models (see Section 2.4) and the proposal of Rao
et al. [436], no additional concepts exist as a suitable proxy for the spectral power distribution inside a
pupil model. Such a potential quantity must be able to keep the pupil diameter steady across spectra
with different power distributions, which would be an additional way of calculating the pupil diameter
despite the previously presented deep learning-based pupil modelling concept in Section 4.2.

Therefore, it was examined to what extent the pupil diameter can be kept steady across distinct spectra
by applying a constant brightness metric, revealing the ability to use such an equivalent luminance
for a pupil model. For this, the temporal behaviour of the pupil diameter caused by chromatic and
polychromatic stimuli at a constant equivalent luminance Leq,Fotios from Fotios & Levermore and Sagawa
(Leq,Sagawa) was tested. The results confirmed that the equilibrium-state pupil diameter is not affected
by the type of the spectrum when stimuli are presented with a fixed Leq,Fotios. After 300 seconds
of adaptation time, no significant difference in pupil diameter occurred between 2000 K to 10 000 K
(p = 0.067 > 0.05) or 5000 K to 10 000 K (p = 1 > 0.05). In contrast, when the polychromatic stimuli were
presented at steady Leq,Sagwa or luminance L, the pupil diameter was influenced by the type of the given
spectrum. A constant luminance leads to a mean pupil diameter difference ∆dP, 2000K between 2000 K to
10 000 K of 0.9 mm for the equilibrium pupil size. However, at steady Leq,Sagwa, the deviation ∆dP, 2000K

was 0.7 mm, whereas in the Leq,Fotios condition the pupil size showed only a difference between 2000 K
to 10 000 K of ∆dP, 2000K = 0.33 mm. Thus, the equilibrium pupil diameter could be modelled using the
brightness metric proposed by Fotios & Levermore. By applying this brightness metric, the melanopic
Michelson contrast between the 10 000 K and 2000 K stimulus is reduced to CMel,2000K ≈ 0.389 (Table 5.1),
leading to a statistically constant mean pupil diameter between the used stimuli. Thus, an additional
melanopic weighting is not necessarily needed for an equilibrium-state pupil model that is intended to
predict the diameter based on polychromatic spectra with chromaticities along the Planckian locus.

The situation is different when using chromatic spectra, since the differences between the receptor
signals are greater. Therefore, the equilibrium pupil diameter cannot be kept steady with the luminance
L, Leq,Fotios or Leq,Sagawa. With a fixed brightness metric Leq,Fotios, there was a high luminance gradi-
ent across the chromatic stimuli with 41.47 cd/m2 (450 nm), 168.75 cd/m2 (530 nm) and 324.64 cd/m2

(630 nm), showing that even a factor of ∼7 in luminance between 450 nm and 630 nm is not sufficient
enough to keep the equilibrium-state pupil size statistically steady. Especially with chromatic spectra,
the afferent pupil control path shows a special behaviour, leading to a shift of the peak wavelength
sensitivity from 510 nm to approximately 470 nm with increasing adaptation time [103]. As a result, a
brightness metric may not be able to describe this behaviour with artificially over tuned spectra. Such
chromatic spectra rarely occur in reality. In contrast, it was shown that for polychromatic spectra, the
measured behaviour of the pupil diameter follows approximately the brightness metric by Fotios &
Levermore from an empirical point of view.



132 pupil response to equivalent luminance models

A recent neurophysiological study reported that the outer retinal photoreceptors control the phasic
pupil diameter and the high sensitivity in the short-wavelength range could partly be caused by the
S-cones [94], which is why a temporal pupil analysis is essential when using chromatic spectra. With
such a temporal analysis, the reported results revealed that the phasic pupil size (0 ≤ t ≤ 14.9 s) caused
by chromatic spectra could surprisingly be described (empirically) using Leq,Fotios. The time-dependent
statistical analysis showed that a stabilised significant difference between 450 nm to 630 nm occurs from
14.9 s on (p(t = 14.9 s) = 0.0494 < 0.05), meaning that in this time range Leq,Fotios could be used for
describing (empirically) the phasic pupil size in response to chromatic spectra. However, the phasic
pupil diameter caused by the chromatic stimuli could also be described by the luminance L or Leq,Sagawa,
but the time range of keeping the aperture statistically unaffected by chromatic spectra was longer when
applying Leq,Fotios.

The non-image- and image-forming mechanisms differ regarding the processing pathways. However,
this study indicate that both processes could be described empirically with the same metric if no
unnatural spectra are used, revealing the ability to link the pupil aperture with a brightness metric from
a practical lighting perspective. Although the Fotios & Levermore model has no additional melanopic
weighting, there could be a potential benefit in renewing existing V(λ)-based pupil models with such
a brightness metric. Such an approach could also be denoted as a useful over-simplification in pupil
modelling.



6 Summary, Conclusion and Outlook

The discovery of the intrinsically photosensitive ganglion cells (ipRGCs) was a trigger for rethinking
the visual system’s fundamental mechanisms and reconciling the question on how light can affect
the human’s physiological body conditions concerning non-visual responses. During the last two
decades, new insights were revealed concerning the pupil’s afferent control pathway, leading to the
understanding that the visual pathway is partly needed for adjusting the human’s pupil size (see
Section 2.2). Recent neurophysiological studies provide evidence that the pupil control is managed by
an interaction between the ipRGCs with extrinsic signals from outer retinal photoreceptors, consisting
of an additive contribution of L- and M-cones (L+M) [106, 330, 332], inhibitory signals from S-cones [91,
331, 332], rods [266, 336] and there are indications about a post-retinal impact by opponent L−M cone
signals [332, 335, 337]. Further, the photoreceptors’ contribution to the pupil control is time-dependent.
While the outer retinal photoreceptors (cones) manage the phasic pupil constriction, the ipRGCs control
the tonic pupil size up to its equilibrium-state for photopic light conditions (see Section 2.3). Although
significant research milestones concerning the neurophysiological investigation of the afferent pupil
control pathway were reached, the temporal prediction of the pupil size in response to distinct chromatic
or polychromatic LED spectra is still not possible with existing models (see Section 2.4 and Section 4.2).

Therefore, this work’s main objective was to develop a pupil modelling method, making temporal
and spectral dependent pupil size predictions from photometric quantities possible. Benchmarking the
existing V(λ)-based pupil models was part of this research objective, as it was crucial to determine the
extent of prediction errors caused by the lack of integrating the pupil’s neurophysiological dependencies.
As the pupil size acts as a regulatory gateway for the retinal irradiance and the phasic pupil control is
affected by outer retinal photoreceptors, another objective was to investigate the relationship between
the human’s brightness perception and the pupil aperture. For both research objectives, pupil size
data needed to be collected accurately in a controlled and reproducible environment (see the research
objectives in Section 2.5). Thus, the engineering aspect of the author’s research involved the development
of an end-to-end experimental setup consisting of a temperature-controlled 15-channel LED luminaire
integrated into a homogeneously illuminated observation chamber (see Section 3.1) and the construction
of a pupillometry unit for empirical pupil size measurements (see Footnote(58)). A suitable spectral
optimisation framework had to be developed to control the LED luminaire, meaning a procedure
for engineering polychromatic spectra from distinct photometric quantities. The spectral optimisation
method needed to be efficient concerning its computational load, while allowing to find metameric
stimuli, i.e. light stimuli that share the same chromaticity coordinate and (il)luminance within a pre-
specified tolerance range but provide different spectral power distributions (see Section 3.2.3). This
procedure should then be used to simulate the metameric limits of the melanopic stimulus space (see
Section 3.3), allowing to indicate of whether the pupil size could be modulated via spectra that do not
differ in chromaticity or (il)luminance. Such an application might be useful to enhance human’s visual
acuity by modulating the pupil aperture with metamers. Besides the tasks concerning the development
of the lighting system and pupillometry unit, the key scientific outcomes of this work are:

(58) Developing a pupillometry framework was part of the author’s research, but its results are not reported in this thesis. Please
visit the author’s peer-reviewed publication for more information: PupilEXT: Flexible Open-Source Platform for High-Resolution
Pupillometry in Vision Research Frontiers in Neuroscience. (2021). DOI: 10.3389/fnins.2021.676220 or the project’s webpage (Link).
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Scientific outcome 1): V(λ)-based pupil models provide prediction errors within a tolerance range
of ± 0.5 mm for white light spectra with CCTs between ∼2000 K to ∼10 000 K when considering the
equilibrium-state pupil diameter. Hence, particularly for longer light exposures (60 to 300 seconds), it
could be possible to describe the spectral-dependent (tonic) pupil size using the luminance. When using
white light spectra, the models’ lack of time-dependence could be a more significant source of error
than the missing ipRGC consideration as the prediction of the pupil’s phasic size at one second yield
an error of 0.71 mm± SD 0.15 mm (Watson & Yellott model). However, for chromatic LED spectra, the
estimation error reaches 1.21 mm for the equilibrium-state pupil diameter (see Section 4.1).

Scientific outcome 2): This work introduces the first pupil modelling method that can reconstruct
the temporal pupil size for selected chromatic and polychromatic light spectra. For all tested light
settings, the time-dependent pupil diameter was reconstructed with a mean absolute error below 0.1 mm.
The pupil model’s residuals across the entire period (0 to 300 seconds) are within ± 0.2 mm for the data
also used for training the model. However, due to the integrated neural networks, the expandability of
the model’s prediction space could be possible in the future (see Section 4.2).

Scientific outcome 3): It was found that the cone-based brightness metric proposed by Fotios &
Levermore can keep the population’s temporal pupil size statistically unaffected by the type of the given
spectrum, when using white light spectra with a CCT between ∼2000 K and ∼10 000 K. With chromatic
spectra, the pupil diameter stays up to 14.9 seconds almost unaffected by the type of given spectrum
when conducting a pairwise t-test between the measured pupil diameter data at 450 nm and 630 nm
with a steady brightness according to Fotios & Levermore. For example, a steady luminance leads to
a mean pupil diameter difference between 2000 K to 10 000 K of 0.9 mm for the equilibrium pupil size.
However, at steady Leq,Sagwa, the deviation was 0.7 mm, whereas in the steady Leq,Fotios condition the
pupil size between 2000 K to 10 000 K showed a mean difference of 0.33 mm (see Chapter 5).

Scientific outcome 4): A deep learning-based spectral optimisation method for multi-channel LED
luminaires is presented, which is in terms of its computation time by a factor of ∼32 faster (113± SD 47
optimised spectra per second) than the recommended method in the literature (genetic algorithm:
3.58± SD 0.78 solutions per second). Furthermore, the proposed method is capable of finding metameric
spectra of higher quality, whose ∆ED65

mel,max range between 61.24 lx and 170.3 lx for a set of tested ob-
jectives. In contrast, the genetic algorithm only found metameric pairs whose ∆ED65

mel,max values were
between 28.16 lx and 93.24 lx (see Section 3.2.3).

Scientific outcome 5): Here, the first systematic analysis concerning metameric spectra was conducted,
revealing to what degree the melanopic EDI/DER can be modulated without altering a light’s visual
appearance, i.e., chromaticity (∆u′, ∆v′ ≤ 0.001) and (il)luminance. It was found that the maximum
reachable melanopic Michelson contrast is between 0.16 to 0.18 when considering only spectra that
provide a colour fidelity index of Rf ≥ 85 and Rf,h1 ≥ 85. For example, with a melanopic Michelson
contrast of 0.16 between two metameric spectra, the melanopic EDI can be modulated from about
135 lx to 185 lx (∆γD65

mel ≈ 0.2) without affecting either the photopic illuminance (Ev = 250 lx) or the
chromaticity coordinate (∆u′, ∆v′ ≤ 0.001). As a result of the analysis, the metameric limits of the
melanopic stimulus space were mapped into the CIExy colour space, allowing an intuitive way to select
appropriate chromaticity coordinates for spectral optimisation tasks (see Section 3.3).
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Investigating the V(λ)-based pupil models’ accuracy was an essential step, as it allowed to assess the
practical relevancy of an ipRGC weighting for predicting the equilibrium-state pupil size. When using
white light spectra, the melanopic contrast between two stimuli seems to be too low for triggering a
mean equilibrium-state pupil size difference higher than approximately ± 0.5 mm in an intersubject
study. Previous V(λ)-based modelling approaches lacked to manage the pupil’s temporal dependence
as a function of distinct light stimuli. In that sense, the method of the proposed deep learning-based
pupil modelling approach could be unrivalled and could provide a higher flexibility. However, the
model’s current state is not suited nor intended to replace existing V(λ)-based pupil formulas as the
prediction space of the trained deep learning-based model is limited to the used stimuli, i.e., chromatic
stimuli with 450 nm, 530 nm, 610 nm, 660 nm and polychromatic stimuli with the CCTs 2007 K, 4983 K,
10 138 K at a luminance of ∼100 cd/m2. Thus, the future perspective is to further extend the model by
collecting additional empirical pupil data. Due to the implemented neural networks, an extension of the
model’s prediction space might be possible but needs to be tested in future works. If a generalisation
of the model is possible and a validation with a separate test dataset provides an acceptable temporal
estimation error in the future, new input parameters such as the field of view could be additionally
integrated using datasets that link the parameter of interest with the pupil size.

Note that since the first pupil studies by Blanchard [53] and Reeves [49] in 1918, even after 100 years,
there is no unified pupil model available that could account for the discussed dependencies with an
acceptable prediction space, mainly because of the pupil’s complex temporal behaviour that isolated
studies could not cover. In other words, developing a finished time-dependent pupil model might be a
long-term affair. Therefore, the future of pupil modelling could lie in data-driven approaches, such as
the presented one in this work, as it might be conceivable, for example, to link the deep learning-based
model to an online database in which various research groups upload their empirical data to train
the model further. However, the empirical data collection and the creation of a database of empirical
pupil data is part of an ongoing research project. Overall, it can be concluded that the presented
deep learning-based concept is currently the only proposed method that might lead to a unified pupil
model that could manage the pupil’s temporal neurophysiological dependencies in the future. However,
additional data are needed in the next phase of this project.

Conventional pupil models that only need to predict an equilibrium-state pupil diameter are more
straightforward to develop because the time dependence does not have to be considered, leading to
more efficient empirical pupil experiments. Thus, two parallel strategies could be pursued in the future:
Firstly, empirical pupil data could be collected for the deep learning-based pupil model to generalise
its prediction space. Secondly, the extension of V(λ)-based models could be pursued to improve their
prediction accuracy. However, based on the results in Chapter 5, it can be deduced that an equivalent
luminance by Fotios & Levermore could be better suited to describe the pupil’s spectral sensitivity in
response to white light spectra than the luminance itself (from an empirical point of view). Therefore, it
might be plausible to extend the Watson & Yellott model with a cone-based brightness metric by Fotios
& Levermore to replace the luminance, aiming to reduce the pupil size deviation between distinct white
light spectra with which even the phasic pupil size in response to chromatic spectra could be estimated
more reliable.

Another scientific achievement is reached in this work concerning the proposed spectral optimisa-
tion method, which outperforms the state-of-the-art in both the aspect of computation time and quality
of found metameric spectra. The significance of this method could be beyond the application of pupil
research, as multi-channel LED luminaires are implemented as a tool for Human Centric Lighting,
making spectral engineering a key requirement of such systems. In the next generation of interior
lighting systems, spectra might be adapted to the user’s individual visual preference or to the daylight’s
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outdoor conditions, requiring a real-time capable spectral optimisation method. The proposed spectral
optimisation method could be integrated into such smart lighting systems to also allow the computation
of metameric spectra with which a light’s visual characteristics and the melanopic illuminance could be
targeted separately.
Automated lighting systems envisage that the observers’ individual preferences concerning chromaticity
and illuminance in an illuminated environment are modelled using neural networks, embedded into a
recommender loop for predicting the light setting of interest (see [107]). However, in such a system, the
neural networks adapt only to the illumination’s visual characteristics, such as the light’s chromaticity or
illuminance, while the melanopic efficacy would only be considered indirectly. By using the introduced
spectral optimisation system, metameric pairs can be computed in real-time, allowing to consider the
users’ visual preference, while adjusting the melanopic illuminance silently in the background for
actively modulating the circadian system [108]. Thus, integrating metameric spectra in smart lighting
systems could become an essential avenue to solve the potential conflict between the visual characteristics
of light spectra and the recommended level of melanopic illuminance for health aspects.

Regarding one of this work’s initial hypotheses that metameric spectra could be leveraged to vary the
pupil size without affecting the luminance or chromaticity of a spectrum to enhance, for example, the
human’s visual acuity, the results indicate that this might not be possible, at least for the population’s
mean pupil size. The analysis concerning the metameric limits of the melanopic stimulus space revealed
that the maximum melanopic Michelson contrast that could be reached at steady illuminance and
chromaticity is CM = 0.18 (see Fig. 3.17) when using an 8- or 11-channel LED luminaire with a colour
fidelity criterion of Rf ≥ 85 and Rf,h1 ≥ 85. However, the investigation in Chapter 5 indicated that the
population’s mean pupil diameter of its equilibrium-state is not significantly affected by the type of
given spectrum if the melanopic Michelson contrast CM between two spectra is lower than 0.39. Due to
the pupil’s higher variability, larger melanopic contrasts might be necessary to trigger an effect of the
population’s mean pupil size in intersubject studies. Thus, it is necessary to examine how this result
relates at the individual level since the comparison between the intersubject and intrasubject data in
Section 4.1 indicated that for individuals lower melanopic contrasts might also trigger a significant pupil
difference between two spectra. In other words, the variability of the pupil size values in intersubject
experiments could mask the effect of the melanopic modulations via metameric stimuli.

So far, no study has systematically investigated the effect of true metameric spectra on the pupil’s light
response to the author’s best knowledge. Therefore, an essential research focus could be to investigate
to what extent metameric spectra might be used to modulate a subject’s individual pupil diameter.
Such an investigation could also provide evidence of whether it is sufficient to use the luminance and
chromaticity of a spectrum as input parameters for the proposed deep learning-based pupil modelling
method in Section 4.2, or whether an additional melanopic input variable needs to be added to manage
metameric pupil light responses.



A Appendix

a)

450 nm 530 nm 610 nm 660 nm

450 nm 530 nm 610 nm 660 nm
-2
-1
0
1
2
3

b)

Exposure time
1 second

Exposure time
60 seconds

Exposure time
300 seconds

Exposure time Exposure time Exposure time

c)

450 nm 530 nm 610 nm 660 nm 450 nm 530 nm 610 nm 660 nm

450 nm 530 nm 610 nm 660 nm 450 nm 530 nm 610 nm 660 nm

Correlated colour temperature

B
as

el
in

e 
co

rr
ec

te
d 

pu
pi

l d
ia

m
et

er
 in

 m
m

d)

-2
-1
0
1
2
3

-2
-1
0
1
2
3 Exposure time

-2
-1
0
1
2
3

-2
-1
0
1
2
3

-2
-1
0
1
2
3

Exposure time Exposure time Exposure time

2000 K 5000 K 10 000 K 2000 K 5000 K 10 000 K 2000 K 5000 K 10 000 K

Exposure time Exposure time Exposure time

2000 K 5000 K 10 000 K 2000 K 5000 K 10 000 K 2000 K 5000 K 10 000 K

-2
-1
0
1
2
3

-2
-1
0
1
2
3

-2
-1
0
1
2
3

-2
-1
0
1
2
3

-2
-1
0
1
2
3

-2
-1
0
1
2
3

Peak wavelength

B
as

el
in

e 
co

rr
ec

te
d 

pu
pi

l d
ia

m
et

er
 in

 m
m

Figure A.1: Data of the baseline-corrected pupil diameter, which was used to conduct the significance analysis in
Section 4.1. a) Boxplots of the baseline-corrected pupil diameter from the leveraged data in the intersubject study
with chromatic stimuli (20 subjects, Age: 19 - 25, Mean age: 22.2 SD ± 1.77 y) at the light exposure times of 1 second,
60 seconds and 300 seconds, respectively. The baseline-correction was performed with the subjects’ individual
equilibrium-state pupil size, which was measured during the reference light (see Fig. A.2). b) Baseline-corrected
pupil diameter values from the intrasubject study (one subject with 12 repetitions, 33-year-old) with chromatic
stimuli. c) Baseline-corrected pupil diameter from the conducted intersubject study with polychromatic stimuli (20
subjects, Age: 19 - 25, Mean age: 21.95 SD ± 1.73 y). d) Baseline-corrected pupil diameter for the intrasubject study
data, which was conducted with polychromatic stimuli (one subject with 12 repetitions, 33-year-old). Figure A.1 is
reprinted from the author’s publication (from the work’s supplementary materials) [47]: Babak Zandi, Julian Klabes
& Tran Quoc Khanh. Prediction accuracy of L- and M-cone based human pupil light models. Scientific Reports. 10,
10988 (2020). Nature Research. DOI: 10.1038/s41598-020-67593-3. Licence: CC BY 4.0.
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Figure A.2: Measured baseline pupil diameter from the intrasubject and intersubject experiments, which were
conducted using chromatic and polychromatic stimuli (see Section 4.1). Here, the subjects’ individual average
equilibrium-state pupil size during the reference (anchor) light (CCT: ∼5500 K, L: ∼200 cd/m2) is shown, which
were computed with the pupil size data from the last one second after 300 seconds of light exposure time. The
labels on the x-axis denote the position of the reference light, i.e. before which main stimulus the baseline pupil size
was recorded. a) Baseline pupil size data from the intersubject experiment with chromatic stimuli. Anchor label
one was before the 450 nm stimulus, label two before the 530 nm stimulus, label three before the 610 nm stimulus
and label four before 660 nm stimulus. b) Baseline pupil size data from the intersubject experiment with chromatic
stimuli. The labels follow the same principle as described in the intersubject experiment. c) Baseline pupil size
data from the experiment with polychromatic stimuli. Anchor label one was before the 2000 K stimulus, label two
before the 5000 K stimulus and label three before 10 000 K stimulus. d) Baseline pupil size data from the intrasubject
experiment with polychromatic stimuli. The labels follow the same principle as described in point c). Figure A.2 is
reprinted from the author’s publication (from the work’s supplementary materials) [47]: Babak Zandi, Julian Klabes
& Tran Quoc Khanh. Prediction accuracy of L- and M-cone based human pupil light models. Scientific Reports. 10,
10988 (2020). Nature Research. DOI: 10.1038/s41598-020-67593-3. Licence: CC BY 4.0.
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Variance of the baseline-corrected pupil diameter values

Variance of the measured raw pupil diameter values

Figure A.3: Comparison of the pupil’s variance between the baseline-corrected pupil size and absolute pupil
size data (see Section 4.1 for more information). a), b) Computed variance for the intersubject experiments with
chromatic (20 subjects, Age: 19 - 25, Mean age: 22.2 SD ± 1.77 y) and polychromatic stimuli (20 subjects, Age: 19 -
25, Mean age: 21.95 SD ± 1.73 y). c), d) Computed variance for the intersubject experiments, which were conducted
with one subject (33-year-old, 12 repeated measurements).
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Table A.1: Mean and standard error of the measured data in the intrasubject and intersubject experiments, which
were carried out with chromatic and polychromatic stimuli. The values were computed from the pupil size data
presented in Fig. 4.2 and Fig. 4.3 (see Section 4.1).

Exposure time: 1 second - Intersubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Mean in mm 1.97 2.25 2.08 2.01 2.14 2.44 2.36
Standard error in mm 0.08 0.06 0.08 0.07 0.06 0.05 0.05

Exposure time: 60 seconds - Intersubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Mean in mm 1.97 2.62 3.06 2.85 2.88 2.66 2.57
Standard error in mm 0.04 0.07 0.13 0.12 0.11 0.06 0.06

Exposure time: 300 seconds - Intersubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Mean in mm 1.92 2.70 3.55 3.34 3.22 2.65 2.51
Standard error in mm 0.05 0.07 0.18 0.16 0.14 0.07 0.06

Exposure time: 1 second - Intrasubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Mean in mm 1.99 2.52 2.13 2.11 2.32 2.56 2.46
Standard error in mm 0.07 0.02 0.04 0.06 0.05 0.03 0.03

Exposure time: 60 seconds - Intrasubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Mean in mm 1.95 2.98 3.58 3.39 3.22 2.76 2.61
Standard error in mm 0.01 0.03 0.06 0.06 0.04 0.02 0.02

Exposure time: 300 seconds - Intrasubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Mean in mm 1.86 2.99 4.03 4.03 3.33 2.74 2.52
Standard error in mm 0.02 0.04 0.05 0.07 0.08 0.03 0.03
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Table A.2: Averaged prediction error of the Crawford, De Groot & Gebhard and Watson & Yellott model for the
used chromatic and polychromatic light stimuli. The values correspond to the barplots in Fig. 4.2 and Fig. 4.3. The
highlighted cells indicate that the mean of prediction error is within the standard error of the estimate, whose
values are provided in Table A.1.

Exposure time: 1 second - Intersubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Estimation error: Crawford model (mm) 1.03 0.76 0.92 1.00 0.87 0.57 0.65
Estimation error: De Groot & Gebhard model (mm) 1.21 0.93 1.10 1.17 1.05 0.74 0.82
Estimation error: Watson & Yellott model (mm) 1.05 0.77 0.94 1.01 0.89 0.58 0.66

Exposure time: 60 seconds - Intersubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Estimation error: Crawford model (mm) 1.04 0.39 -0.05 0.15 0.13 0.35 0.43
Estimation error: De Groot & Gebhard model (mm) 1.21 0.57 0.12 0.33 0.30 0.52 0.61
Estimation error: Watson & Yellott model (mm) 1.05 0.40 -0.04 0.17 0.14 0.36 0.45

Exposure time: 300 seconds - Intersubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Estimation error: Crawford model (mm) 1.09 0.30 -0.54 -0.33 -0.22 0.35 0.50
Estimation error: De Groot & Gebhard model (mm) 1.26 0.48 -0.37 -0.16 -0.04 0.53 0.68
Estimation error: Watson & Yellott model (mm) 1.10 0.32 -0.53 -0.32 -0.20 0.37 0.52

Exposure time: 1 second - Intrasubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Estimation error: Crawford model (mm) 1.01 0.49 0.87 0.90 0.68 0.45 0.54
Estimation error: De Groot & Gebhard model (mm) 1.19 0.67 1.05 1.07 0.86 0.63 0.72
Estimation error: Watson & Yellott model (mm) 0.95 0.43 0.81 0.84 0.62 0.39 0.48

Exposure time: 60 seconds - Intrasubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Estimation error: Crawford model (mm) 1.06 0.03 -0.57 -0.38 -0.22 0.25 0.40
Estimation error De Groot & Gebhard model (mm) 1.23 0.21 -0.40 -0.21 -0.04 0.42 0.58
Estimation error: Watson & Yellott model (mm) 0.99 -0.03 -0.64 -0.45 -0.28 0.18 0.34

Exposure time: 300 seconds - Intrasubject study

Stimuli 450 nm 530 nm 610 nm 660 nm 2000 K 5000 K 10 000 K
Estimation error: Crawford model (mm) 1.14 0.02 -1.03 -1.03 -0.32 0.27 0.48
Estimation error: De Groot & Gebhard model (mm) 1.32 0.20 -0.85 -0.85 -0.14 0.44 0.66
Estimation error: Watson & Yellott model (mm) 1.08 -0.04 -1.09 -1.09 -0.38 0.21 0.42
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Figure A.4: The corresponding pupil diameter values which were applied for the baseline correction (see Chapter 5).
The mean of the last five seconds was computed from the subjects’ measured pupil diameter, i.e. from 295 seconds
to 300 seconds adaptation time. For each stimulus spectrum, the corresponding anchor spectrum was logged. In
the chromatic experiments, Anchor 1 was before the 450 nm stimulus, Anchor 2 before 530 nm and Anchor 3 was
before the 630 nm stimulus spectrum. In the polychromatic experiments, Anchor 1 was before 2000 K, Anchor 2
was before 5000 K and Anchor 3 was before 10 000 K. The baseline pupil diameter are at the same level, meaning
that a pre-stimulation influence was eliminated.
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Figure A.5: Absolute pupil diameter values are plotted at 300 seconds adaptation time from the distinct stimulus
spectra in the chromatic and polychromatic experiments (see Chapter 5). The absolute pupil diameter was subtracted
from the subject’s respective baseline pupil diameter for baseline correction.
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Figure A.6: Statistical results of the time-dependent pairwise t-test with Bonferroni correction (see Chapter 5). The
statistics were performed using an automated R script to calculate the p-values every 100 milliseconds. As the data
sample, the baseline-corrected pupil data were used.
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Figure A.7: Pre-processed raw data of the measured pupil diameter values for all subjects in the session with a
steady luminance L across all stimuli (see Chapter 5). The results from the session with steady luminance are based
on 10 observers (21.6 y± SD 1.96 y) in the chromatic and 13 observer (21.92 y± SD 1.85 y). The red ribbon represents
the scatter of the measured raw data, whose percentile ranges were colour coded.
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Figure A.8: Pre-processed raw data of the measured pupil diameter values for all subjects in the session with a
steady equivalent luminance Leq,Fotios according to Fotios & Levermore across all stimuli (see Chapter 5). The
results from the session with steady luminance are based on 12 observers (22.08 y± SD 1.83 y) in the chromatic and
11 observer (21.91 y± SD 2.02 y). The red ribbon represents the scatter of the measured raw data, whose percentile
ranges were colour coded.
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Figure A.9: Pre-processed raw data of the measured pupil diameter values for all subjects in the session with a
steady equivalent luminance Leq,Sagawa according to Sagawa across all stimuli (see Chapter 5). The results from
the session with steady luminance are based on 12 observers (21.83 y± SD 1.9 y) in the chromatic and 12 observer
(21.92 y± SD 1.9 y). The red ribbon represents the scatter of the measured raw data, whose percentile ranges were
colour coded.
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Figure A.10: The developed digital twin of the 15-channel LED luminaire (see Chapter 3) was integrated into a
graphical user interface (GUI), allowing for mixing polychromatic spectra on the fly without having to measure the
spectra in the laboratory. Different sliders can vary the radiance of each LED channel. The LED channel’s impact
on the polychromatic spectrum is visualised in real-time. Various light metrics calculated from the spectrum are
displayed in parallel. Through the GUI, simple polychromatic spectra can be designed for an experiment and the
corresponding code values can be saved for later application in the real-world luminaire.
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Figure A.11: Training progress of the neural networks used for spectral optimisation (see Section 3.2.3). The neural
networks (LSTM’s with 50 hidden neurons) were trained using 10 million code value data (batch size: 8000) with
1200 epochs. The mean squared error (MSE) between the predicted channel value and the actual one was leveraged
as loss function. Further, an Adam optimiser with a learning rate of 0.001 was used for training.
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