Supplementary Materials (SM)

Assessing Resource Efficiency of City Neighbourhoods: A Methodological Framework for Structuring and Practical Application of Indicators in Urban Planning

Liselotte Schebek¹, Thomas Lützkendorf²

¹ Material Flow Management and Resource Economy, Institute IWAR, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany.

² Chair for Sustainable Management of Housing and Real Estate, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.

SM to Chapter 2.2: Literature Review on the application of Indicators in Urban Planning

For a survey on the application of indicators for sustainability assessment in urban planning, a review of literature was carried out. The databases Web of Science and Google Scholar were searched using the following keywords or combinations: "Indicators in urban planning", "urban planning indicators", "material indicators in urban planning", "environmental indicators in urban planning", "resource indicator in urban planning", "sustainability indicators in urban planning". From the researched papers the following were excluded: exclusively theoretical publications; publications on the topic of building sustainability assessment. Finally, 45 peer reviewed full journal published between 1998 and 2022 were selected for evaluation (Table S1).

No.	Author	Title	Doi	Year
1	Huang, SL.; Wong, JH. &	A framework of indicator system for measur-	10.1016/S0169-	1009
1	Chen, TC.	ing Taipei's urban sustainability	2046(98)00054-1	1998
		``City form and natural process" - Indica-		
2	Whitford, V.; Ennos, A.R. &	tors for the ecological performance of urban	10.1016/S0169-	2001
2	Handley, J.F.	areas and their application to Merseyside,	2046(01)00192-X	2001
		UK		
	Plack I A . Paoz A & Sutha	Sustainable Urban Transportation: Perfor-	10 1061 // ASCE)0722	
3	Diack, J. A., I aez, A. & Sutila-	mance Indicators and Some Analytical Ap-	0.1001/(ASCE)0755-	2002
	llaya, I . A.	proaches	9400(2002)120.4(104)	
4	Huang S. J. & Hen W. I	Materials flow analysis and emergy evalua-	10.1016/S0169-	2003
T	Thuang, 5. L. & Tisu, W. L.	tion of Taipei's urban construction	2046(02)00152-4	2005
		Revisiting the local impact of community in-		
5	Holden, M.	dicators projects: Sustainable Seattle as	10.1007/s11482-007-9020-8	2006
		prophet in its own land		
6	Holdon M	Urban indicators and the integrative ideals of	10 1016/i citios 2006 02 001	2006
0	Tiolden, M.	cities	10.1010/j.cities.2000.03.001	2000
		A Relational Indicatorset Model for urban		
7	Popotti A & Docthioux C	land-use planning and management: Meth- 10.1016/j.landur-		2006
/	odological approach and appl	odological approach and application in two	bplan.2005.02.006	2000
		case studies		
	Hunt D.V. Lombardi D.P.	Application of sustainability indicators in de-		
8	Rogars C D & Jofforson J	cision-making processes for urban regenera-	10.1680/ensu.2008.161.1.77	2008
	Rogers, C. D. & Jenerson, I.	tion projects		

Table S1. Listing of the literature reviewed on the application of Indicators in Urban Planning

9	Li, Feng; Liu, Xusheng; Hu, Dan; Wang, Rusong; Yang, Wenrui; Li, Dong & Zhao, Dan	Measurement indicators and an evaluation approach for assessing urban sustainable de- velopment: A case study for China's Jining City	10.1016/j.landur- bplan.2008.10.022	2009
10	Fernández-Sánchez, G. & Rodrí- guez-López, F.	A methodology to identify sustainability in- dicators in construction project manage- ment—Application to infrastructure projects in Spain	10.1016/j.ecolind.2010.04.00 9	2010
11	González, A; Donnelly, A; Jones, M; Klostermann, J.; Groot, A. & Breil, M.	Community of practice approach to develop- ing urban sustainability indicators	10.1142/S1464333211004024	2011
12	Rosales, N.	Towards the modeling of sustainability into urban planning: Using indicators to build sustainable cities	10.1016/j.pro- eng.2011.11.2060	2011
13	Zhao, C.; Fu, G.; Liu, X. & Fu, F.	Urban planning indicators, morphology and climate indicators: A case study for a north- south transect of Beijing, China	10.1016/j.build- env.2010.12.009	2011
14	Gómez-Baggethun, E. & Barton, D. N.	Classifying and valuing ecosystem services for urban planning	10.1016/j.ecolecon.2012.08.0 19	2013
15	González, A.; Donnelly, A.; Jones, M.; Chrysoulakis, N. & Lopes, M.	A decision-support system for sustainable urban metabolism in Europe	10.1016/j.eiar.2012.06.007	2013
16	Petralli, M.; Massetti, L.; Brandani, G. & Orlandini, S.	Urban planning indicators: useful tools to measure the effect of urbanization and vegetation on summer air temperatures	10.1002/joc.3760	2013
17	Chrysoulakis, N.; Feigenwinter, C.; Triantakonstantis, D; Penyevskiy, I; Tal, A; Parlow, E.; Fleishman, G.; Düzgün, S.; Esch, T. & Marconcini, M	A Conceptual List of Indicators for Urban Planning and Management Based on Earth Observation	10.3390/ijgi3030980	2014
18	Inostroza, L.	Measuring urban ecosystem functions through 'Technomass' – A novel indicator to assess urban metabolism	10.1016/j.ecolind.2014.02.03 5	2014
19	La Rosa, D.	Accessibility to greenspaces: GIS based indicators for sustainable planning in a dense urban context	10.1016/j.ecolind.2013.11.01 1	2014
20	Massetti, L.; Petralli, M.; Brandani, G. & Orlandini, S.	An approach to evaluate the intra-urban thermal variability in summer using an urban indicator	10.1016/j.envpol.2014.04.02 6	2014
21	Michael, F. L.; Noor, Z. Z., & Figueroa, M. J	Review of urban sustainability indicators assessment–Case study between Asian countries	10.1016/j.habitatint.2014.09. 006	2014
22	Piña, W. H. A. & Martínez, C. I. P.	Urban material flow analysis: An approach for Bogotá	10.1016/j.ecolind.2013.10.03 5	2014
23	Behling, R.; Bochow, M.; Foerster, S.; Roessner, S. & Kaufmann, H.	Automated GIS-based derivation of urban ecological indicators using hyperspectral remote sensing and height information.	10.1016/j.ecolind.2014.08.00 3	2015
24	Kitchin, R.; Lauriault, T. P. & McArdle, G.	Knowing and governing cities through urban indicators, city benchmarking and real-time dashboards.	10.1080/21681376.2014.9831 49	2015
25	Pissourios, I. A.	Critical analysis of the official Greek urban planning indicators of private uses.	10.1016/j.landusepol.2014.0 7.007	2015

26	Rodríguez, M. I.; Cuevas, M. M.; Huertas, F.; Martínez, G. & Moreno, B.	Indicators to evaluate water sensitive urban design in urban planning	10.2495/SD150321	2015
27	Triantakonstantis, Dimitrios; Chrysoulakis, Nektarios; Sazonova, Anna; Esch, Thomas; Feigenwinter, Christian; Düzgün, Sebnem; Parlow, Ebwerhard; Marconcini, Mattia & Tal, Abraham	On-line Evaluation of Earth Observation Derived Indicators for Urban Planning and Management	10.14355/updr.2015.03.003	2015
28	King, L. O.	Functional sustainability indicators	10.1016/j.ecolind.2016.01.02 7	2016
29	Medved, P.	A contribution to the structural model of autonomous sustainable neighbourhoods: new socio-economical basis for sustainable urban planning	10.1016/j.jclepro.2016.01.09 1	2016
30	Saarela, S. R. & Rinne, J.	Knowledge brokering and boundary work for ecosystem service indicators. An urban case study in Finland	10.1016/j.ecolind.2015.07.01 6	2016
31	Lina, P.; Siu Yu Lau, S.; Qin, H. & Gou Z.	Effects of urban planning indicators on urban heat island: a case study of pocket parks in high-rise high-density environment	10.1016/j.landurbplan.2017. 09.024	2017
32	Liu, Meng; Zhong, Yiqun; Tan, Jingyue	Impact of Urban Planning Indicator on Spatial Distribution of Residential Heating and Cooling Energy Demand	10.1016/j.proeng.2017.10.15 0	2017
33	Mohamed, R. S., Bakr, A. F., & Anany, Y. M	New Urban Indicators for Evaluating Urban Polices in Egypt: City Capacity and Capability (Capa2)	10.1016/j.proenv.2017.03.01 7	2017
34	Pupphachai, U., & Zuidema, C.	Sustainability indicators: A tool to generate learning and adaptation in sustainable urban development.	10.1016/j.ecolind.2016.09.01 6	2017
35	Chudiniva, O. & Afonina, M.	Formation of "Urban planning" indicators for "Smart City" concept (on the example of SKOLKOVO, Moscow)	10.1051/matecconf/2018170 02021	2018
36	Garau, C. & Pavan, V.	Evaluating Urban Quality: Indicators and Assessment Tools for Smart Sustainable Cities	10.3390/su10030575	2018
37	Badach, J. & Raszeja, E.	Developing a Framework for the Implementation of Landscape and Greenspace Indicators in Sustainable Urban Planning. Waterfront Landscape Management: Case Studies in Gda'nsk, Pozna 'n and Bristol	10.3390/su11082291	2019
38	Musa, H. D.; Yacob, M. R. & Abdullah, A. M.	Delphi exploration of subjective well-being indicators for strategic urban planning towards sustainable development in Malaysia	10.1016/j.jum.2018.08.001	2019
39	Rajaonson, J. & Tanguay, G. A.	Urban Sustainability Indicators from a Regional Perspective: Lessons from the Montreal Metropolitan Area	10.1007/s11205-017-1823-x	2019
40	DiNapoli, B. & Jull, M.	Urban planning sustainability metrics for Arctic cities	10.1088/1748-9326/abc37b	2020

		Enhancing Urban Sustainable Indicators in a		
41	Kramer C & Wagner M	German City-Towards Human-Centered	10 2290/world1020009	2020
41	Krainer, C. & Wagner, M.	Measurements for Sustainable Urban	Aeasurements for Sustainable Urban	
		Planning		
40		Evaluating the heat island effect in a planned	10 1016/ jobo 2021 102472	2021
42 Luo, Y. & He, J.		residential area using planning indicators.	10.1016/J.Jobe.2021.102475	2021
40	Patias, N.; Rowe, F.; Cavazzi, S.	Sustainable urban development indicators in	10.1016/j.landur-	2021
43	& Arribas-Bel, D.	Great Britain from 2001 to 2016.	bplan.2021.104148	2021
	Reicher, O.; Delgado, V. & Arumi, JL.	Use of Indicators in Strategic Environmental		
44		Assessments of Urban-Planning Instruments:	10.3390/su132212639	2021
		A Case Study		
45		Assessing the Contribution of Innovative		
		Technologies to Sustainable Development for		
	Schinkel, U.; Becker, N.; Irapp,	Planning and Decision-Making Processes: A	10.3390/su14041966	2022
	м. & эреск, М.	Set of Indicators to Describe the Performance		
		of Sustainable Urban Infrastructures (ISI)		

For the 45 journal articles the application areas for indicators were evaluated by a structured list of topics related to sustainability assessment presented in (Table S2) The topics addressed include issues directly related to natural resources (e.g. water, land, material flows), but also go beyond (e.g. sociocultural aspects). The term resource efficiency is not used explicitly, but was found as a subtopic, notably in the topics material flows and sustainability assessment.

Table S2: Topics of application areas for indicators in urban planning (total: 46 publications, multiple entries possible)

Issues	Number of entries	Topics
Water	4	water cycle and waste water management
Material Flows	4	material flows analysis based on the concept of urban metabolism. Single au- thors use the term natural resources
Mobility	3	Urban transportation
Climate	10	Inner city climate (e.g. surface temperature), heat islands
Land use, Biodiversity and Ecosystem services	23	Urban land use planning, landscape and green space, Green infrastructure
Sociocultural aspects	6	Social factors of neighbourhoods; sociocultural aspects are often connected to other topics (e.g. as aspects of quality of urban life, How do citizens perceive and react
Sustainability assessment (general)	16	Comprehensive assessment of ecological, social, economic dimensions, (possi- bly further dimensions, e.g. political, cultural). Auch Zertifizierungsschemata für nachhaltige Gebäude. Covers i.a. also resource efficiency
Other	9	Environmental quality, Strategic Environmental Assessment (SEA), Smart City, subjective well-being, governance, infrastructures/technologies

|--|

	Element of Causal network	Examples	Interpretation for neighborhoods	Application in urban development
D	Driving Force	Population development (changes in the number and structure of the population), de- velopment of industry, trade and commerce	 Profile indicators used as background information describing the character of the neighbourhood (residential, industrial, mixed), the status and trend of population development, the status and trend of economic development, and the status and trend of the local climate. As a rule, background aspects cannot be directly influenced in the neighbourhood; they can be interpreted as framework conditions. If in the focus of investigation, alternatively, number and structure of population can also be interpreted as state and the trend of change as state change. 	The description of the "driving forces" can be used, among other things, for the characterisation of the object of assessment ("neighbourhood"). This provides a basis for addressing ques- tions of the (non-)comparability of neighbourhoods. The "driving forces" can thus become part of the "profile indicators as back- ground information. These include the character of the neigh- bourhood (residential, industrial, mixed), the status and trend of population development, the status and trend of economic devel- opment, and the status and trend of the local climate. As a rule, such aspects cannot be directly influenced in the neighbourhood; they can be interpreted as framework conditions.
Р	Pressure	energy and material flows re- suling from the driving forces	energy and material flows triggered by activities in the neighbourhood. Such pressures can be as- sessed both directly (measurements) and indi- rectly (calculations), dependent also from the question whether and with what effort the re- quired data can be determined or which data is al- ready available.	As to pressures", the energy and material flows triggered by ac- tivities in the neighbourhood can be recorded. They can be deter- mined both directly (measurements) and indirectly (calcula- tions). The type and scope of the recording is strongly influenced by whether and with what effort the required data can be deter- mined or which data is already available. "Pressures" usually de- scribe events or activities that can affect states or lead to changes in states.

S	State	Conditions with regard to soil, water, outdoor air	Conditions in the district or neighborhood are of in- terest to be recorded and assessed as initial and final conditions and as changes in condition. By tracking trends, state changes can be identified in terms of magnitude and direction. There is an interest in con- tinuous recording and evaluation of states, prefera- bly via measurements. The results can be summa- rised i.a.as the "local state of the environment in the neighbourhood". This can be interpreted as the ini- tial state. An evaluation is possible through a com- parison with relative or absolute values. Target states can be defined and the pace and degree of tar- get achievement can be analysed as a result of activi- ties and measures.	The "State" always is related to a certain point in time. By tracking trends, state changes can be identified in terms of magnitude and direction. There is an interest in continuous recording and evalua- tion of states, preferably via measurements. The results can be sum- marised, among other things, as the "local state of the environment in the neighbourhood". This can be interpreted as the initial state. An evaluation is possible through a comparison with relative or ab- solute values. Target states can be defined and the pace and degree of target achievement can be analysed as a result of activities and measures.
Ι	Impacts	Effects on the environment, econ- omy and society, in the broader sense as part of a sustainability assessment	"effects on the local but also regional and global en- vironment of districts and neighbourhoods. Envi- ronmental impacts can be recorded as midpoints and/or endpoints. Target values can also be formu- lated for impact categories. In a broader sense in view of sustainability assessment, impacts on the economy and society can be included.	"Impacts" describe the effects on the local and global environment and assess them using evaluation criteria. In a broader sense, im- pacts on the economy and society can be included. Such impacts can be recorded as midpoints and/or endpoints. Target values can also be formulated for impact categories.
R	Responses	Reactions or measures	Organisational, technical or structural measures of urban development (also as part of projects), but sometimes also campaigns, support programmes, legislative initiatives.	"Responses" describe reactions. These are organisational, technical or structural measures, but sometimes also campaigns, support pro- grammes, legislative initiatives.

Table S4: Scheme for classification of indicators into the typology

It is shown how the DPSIR model can be transferred to the area of urban development at neighbourhood level

S	tate indicators in a broader sen	se	Performance	Impact
Drivers	Pressures	State	indicators	indicators
Socio-economic activities (e.g. mobility)	Air pollution Water pollution Soil pollution	Quality of outdoor air Quality of surface water Quality of ground water Quality of soil	Serviceability Technical efficiency ¹ Technical service life Environmental performance Social performance Economic performance	Global warming potential Resource depletion Impact on biodiversity Impact on community Impact on society External cost

¹In the meaning of technical efficiency of measures like filter performance, cleaning performance, evaporation performa

Table S5: Selected examples of indicators

The examples comply to the requirement stated in Schebek et al. 2022 that a complete definition of an indicator shall include at least the following information:

(1) The textual description of the conceptual idea of the indicator,

(2) the procedure for its derivation, including the unit for quantification

(3) the specification of a measurement rule for an indicator

For a Performance Indicator, also the measure to which it refers must be specified.

Example State Indicator

Denomination	Degree of sealing
Description	Percentage of a sealed area in relation to a total area.
	Sealing of surfaces/soil prevents precipitation from seeping into the ground. This has consequences for groundwater recharge, flood risk, and
Background	the local wastewater network, which can become overloaded. At the same time, a high degree of sealing in urban neighborhoods leads to the
	formation of heat islands.
Recording/measurement	The actual coverage of the soil is recorded via evaluated aerial photographs or on the basis of reports from property owners.
Unit	%
Reference unit(s)	-

Example Performance Indicator

Denomination	Rainwater retention
Measure	Installation of Green Roofs
Description	Indicated is the amount of rainwater that can be stored by 1 m ² of green roof.
De des marce d	The retention of rainwater relieves the local sewer system and reduces the risk of flooding. At the same time, green roofs contribute to the
Background	improvement of the local microclimate through their evaporation performance.
Recording/measurement	As a rule, this is a manufacturer's specification or a calculation/measurement result.
Unit	Liter per 1 m2
Reference unit(s)	m² green roof

Example Impact Indicator

Denomination	Biological diversity (Biodiversität)
Description	Development of populations of selected animal species typical for settlement areas (e.g. species of birds), which serve as bioindicators.
Background	Biodiversity forms a natural basis for life. A green roof provides species with additional habitat.
Recording/measurement	Recording the number of selected species (census)
Unit	For each selectes species: number of individuals in the species population per area of observation
Reference unit(s)	Area of observation

References:

Schebek, L.; Lützkendorf, T.; Uhl, M. Handreichung zur Typologie von Indikatoren sowie ihrer Anwendung in Planungsprozessen und Projekten zur nachhaltigen Quartiersentwicklung, Darmstadt / Karlsruhe / Münster, 2022. Available online: https://ressourceneffiziente-stadtquartiere.de/wp-content/uploads/2022/03/Handreichung_Indikatoren_2022_01_18_TUprints.pdf (accessed on 22 April 2022).