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Zusammenfassung

Diese Dissertation beschäftigt sich mit der Definition von derivierten F -zips und der
Analyse dereen Modulraums. Durch Benutzung deriviert algebraischer Methoden as-
soziieren wir zu jedem eigentlich glatten Morphismus von Schemata einen derivierten
F -zip via der zugehörigen de Rham Hyperkohomologie. Wir analysieren den Zusam-
menhang zwischen derivierten F -zips und klassischen F -zips im Fall, dass die Hodge-
de Rham Spektralsequenz ausartet. Ein Beispiel von geometrischen Objekten, deren
Hodge-de Rham Specktralsequenz nicht ausartet, sind supersinguläre Enriques-Flächen
in Characteristik 2. Wir nutzen unsere Theorie der derivierten F -zips um Aussagen
über die Geometrie des Modulraums der Enriques-Flächen zu beweisen, die mit der
klassischen Theorie der F -zips nicht möglich ist.

Um den Sachverhalt besser zu verstehen, fassen wir wichtige Aspekte der derivierte
algebraischen Geometrie zusammen und wiederholen den Beweis, dass der derivierte
Stack der perfekten Komplexe lokal geometrisch ist im Fall der∞-Kategorien nach den
Resultaten von Antieu-Gepner und Toën-Vaquié.

Abstract

We define derived versions of F -zips and associate a derived F -zip to any proper,
smooth morphism of schemes in positive characteristic. We analyze the stack of derived
F -zips and certain substacks. We make a connection to the classical theory and look at
problems that arise when trying to generalize the theory to derived G-zips and derived
F -zips associated to lci morphisms. As an application, we look at Enriques-surfaces
and analyze the geometry of the moduli stack of Enriques-surfaces via the associated
derived F -zips. As there are Enriques-surfaces in characteristic 2 with non-degenerate
Hodge-de Rham spectral sequence, this gives a new approach, which could previously
not be obtained by the classical theory of F -zips.

For this we also recall important aspects of derived algebraic geometry and the
proof that the derived stack of perfect complexes is locally geometric, using the results
of Antieau-Gepner and Toën-Vaquié.
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1 Introduction

The notion of F -zips was introduced by Moonen and Wedhorn in [MW04]. Before
starting with the positive characteristic case discussed in [MW04], let us first look at
the characteristic 0 case, after [Wed08].

Let X → Spec(C) be a proper smooth morphism of schemes. By general GAGA
principals, we can associate a compact complex manifold Xan to X in a “universal”
way (we do not make this explicit here). Important for us, is that the algebraic de
Rham cohomology Hn

dR(X/C) of X is isomorphic to the complex de Rham cohomology
Hn

dR(Xan) of Xan. Complex de Rham cohomology computes the singular cohomology
of Xan with complex coefficients, i.e. Hn

dR(Xan) ∼= Hn
sing(Xan,C) ∼= Hn

sing(Xan,Z)⊗ZC.
Thus, complex de Rham cohomology comes equipped with an integral structure. The C-
vector space given by H1

dR with its integral structure characterizes for example abelian
varieties over C (called the global Torelli property of abelian varieties).

We also have a descending filtration C• on this complex vector space Hn
dR(Xan)

which is induced by the Hodge spectral sequence. It is known that this spectral sequence
degenerates. Therefore, successive quotients are computed by the Hodge-cohomologies
Ci/Ci+1 = Hn−i(Xan,Ωi

Xan). The real structure on the singular cohomology, together
with the complex conjugation on C, induce an R-linear endomorphism onHn

sing(Xan,C).

The image of the Ci under this map are again complex vector spaces and induce an
ascending filtration on Hn

dR(Xan) by Di := Cn−i. One can show that Di−1 ⊕ Ci =
Hn

dR(Xan) for all i ∈ Z. These data, together with the integral structure obtained
via the comparison with the singular cohomology, endow Hn

dR(X/C) with an integral
Hodge-structure. The study of integral Hodge-structures and its moduli can be found
in [BP96] and lead to the notion of Griffiths’ period domains. The study of these data,
enables us to analyze the moduli of geometric objects via linear-algebra data.

These results can be extended to arbitrary smooth proper families in characteristic
zero. In characteristic p > 0 however, we do not have a complex conjugation. But still,
we have an analogous structure on the de Rham cohomology.

Let us fix an Fp-algebra A and a smooth proper A-scheme X. Contrary to the
characteristic zero case, we have a second spectral sequence on the de Rham coho-
mology, the conjugate spectral sequence. This spectral sequence, endows the de Rham
cohomology Hn

dR(X/A) with a second filtration D•. We also have an analogue of
the Poincaré lemma, the Cartier isomorphism. The Cartier isomorphism links the
graded pieces of the Hodge filtration C• with D•. If we assume that the Hodge
cohomologies are finite projective and the Hodge-de Rham spectral sequence is de-
generate, then the successive quotients are isomorphic up to Frobenius twist, i.e. we
have Ci/Ci+1 ⊗A,Frob A ∼= Di/Di−1, where Frob: A → A denotes the Frobenius en-
domorphism a 7→ ap. Putting all of these data together, we have a finite projec-
tive A-module Hn

dR(X/A) equipped with two filtrations C• and D• and isomorphisms
ϕi : C

i/Ci+1 ⊗A,Frob A ∼= Di/Di−1. In good cases Generalizing this by replacing the
de Rham cohomology by an arbitrary finite projective module, we get the following
definition.

An F -zip over a scheme S of characteristic p > 0 is a tuple (M,C•, D•, ϕ•), where
M is a finite locally free OS-module, C• is a descending filtration on M , D• is an
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ascending filtration on M and ϕ• : (gr•CM)(1) ∼−→ gr•DM are isomorphisms, where the
index (1) denotes the Frobenius twist1. The associated stack of F -zips is then a rather
combinatorical object. Associating an F -zip to a geometric object, such as abelian
schemes, one can analyze its moduli by analyzing the moduli of F -zips.

With this method Moonen-Wedhorn extended results of Ekedahl and Oort on the
stratification of families of abelian schemes in positive characteristic. They defined
new stratifications on families of proper smooth morphisms satisfying certain condi-
tions, which generalized the known results for abelian varieties in positive characteristic
(see [MW04]). By attaching extra structure to F -zips, the theory of F -zips can also
be generalized to the theory of so called G-zips, defined in [PWZ15]. Goldring and
Koskivirta used the theory of G-zips to construct group-theoretical Hasse invariants on
Ekedahl-Oort stratum closures of a general Hodge-type Shimura variety (see [GK19]).
They apply this in different cases to the Langlands program and prove for example a
conjecture of Oort.

One major tool to associate an F -zip to a geometric object is by its de Rham
cohomology. Namely, the Hodge and conjugate spectral sequence induce two filtrations
on the k-th de Rham cohomology. If the Hodge-de Rham spectral sequence degenerates
and the Hodge cohomologies are finite projective (and thus also the conjugate spectral
sequence2) the graded pieces are isomorphic up to Frobenius twist via the Cartier
isomorphism. The hypothesis on the Hodge-de Rham spectral sequence restricts us
to a certain class of geometric objects, which for example include abelian schemes,
K3-surfaces, smooth proper curves and smooth complete intersections in the projective
space. But since for example the Hodge-de Rham spectral sequence does not degenerate
for supersingular Enriques surfaces in characteristic 2 (see [Lan95, Thm. 2]), we cannot
use the theory of F -zips to analyze their moduli stack.

One possible solution to this problem is going to the derived world. The idea is
straightforward. If we replace the k-th de Rham cohomology by its hypercohomology,
we get a perfect complex with two filtrations and the Cartier isomorphism still applies
to the graded pieces3. But taking the derived category naively leads us to problems,
since we can not glue in the ordinary derived category. To apply geometric methods,
we want descent on the derived category. This problem is solved by introducing the
language of ∞-categories. So in particular, the idea of this thesis is to use homotopy
theoretical methods to analyze derived versions of F -zips.

A homotopy theoretical version of algebraic geometry was developed in [TV08]. In
the reference Toën-Vezzosi work in the model categorical setting. They use simplicial
commutative rings as a replacement for commutative rings and presheaves of spaces as
a replacement for presheaves of sets (or groupoids). They define model structures on
those (actually in a more general setting, see [TV05]) and use Grothendieck topologies
(in their setting) to define derived versions of stacks, schemes and affine schemes as
fibrant objects in the corresponding model category. They analyze certain properties
such as geometricity, smoothness and the cotangent complex. In this context a derived

1For an OS-module F , we set F (1) := F ⊗OS ,FrobS OS .
2See [Kat72, (2.3.2)].
3See Section 6.1 for the notion of filtrations in the derived category and the graded pieces.
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stack is n-geometric if it has a (n− 1)-geometric atlas by a coproduct of derived affine
schemes. This notion allows us to define notions like smoothness, flatness and étale
by using the atlas and defining it on the level of animated rings. The notion of higher
geometricity comes into play if one wants to work with stacks that take values in higher
groupoids. In [TV07], Toën and Vaquié gave an important example of a geometric stack,
namely the derived stack of perfect complexes. In [AG14], Antieau and Gepner recalled
this fact in detail in the setting of spectral algebraic geometry. This shows that one
can glue perfect complexes and can cover it by affine derived schemes (in a suitable
sense) and therefore the notion of derived F -zips indicated above should also behave
in a similar fashion.

The translation to the world of ∞-categories is rather straightforward using Lurie’s
works [Lur09],[Lur17] and [Lur18]. Since Toën-Vezzosi defined their version of derived
algebraic geometry using fibrant objects in model categories, we get analogous notions
if we look at the ∞-categories associated to the corresponding model categories. Nev-
ertheless, we will recall a lot of the definition ins [TV08] and [TV07] without using
much of the model structure and prove the results purely in the world of ∞-categories.
This shows that the definitions and results obtained this way do not rely on the chosen
model structure but on the underlying ∞-category.

Derived algebraic geometry

The first part of this paper focuses on reformulating the results of [TV08], [TV07]
and [Lur18] in the language of animated rings. The ∞-category of animated rings
ARZ is given by freely adjoining sifted colimits to polynomial algebras. Looking at
over categories for any animated ring A, we can define the ∞-category of animated A-
algebras ARA := (ARZ)A/. The benefit of this definition is that a lot of questions about
functors from ARZ to ∞-categories with sifted colimits can be reduced to polynomial
algebras. Animated rings should be thought as connective spectral commutative rings
(i.e. E∞-rings) with extra structure. Especially, after forgetting this extra structure,
we can also define modules over animated rings (as modules over the underlying E∞-
ring). One important example of such a module is the cotangent complex. This module
arises naturally if we want to define an analogue of the module of differentials as the
module that represents the space of derivations.

The underlying E∞-ring of an animated ring is a commutative algebra object in
spectra. Thus, we can define homotopy groups of animated rings and automatically
see (with the theory developed in [Lur17]) that we can associate to every animated
ring A a N0-graded ring π∗A. Using this, we reduce definitions like smoothness of a
morphism A→ B ∈ ARZ to smoothness of the ordinary rings π0A→ π0B together with
compatibility of the graded ring structure, i.e. π∗A ⊗π0A π0B ∼= π∗B. Analogously to
the classical case, we have that for a smooth morphism of animated rings its cotangent
complex (the module representing the space of derivations) is finite projective. We can
upgrade this to an “if and only if” if we assume that on π0 the ring homomorphism is
finitely presented. This does not hold in the classical world, i.e. a ring homomorphism
with a finite projective module of differentials, may not be smooth, e.g. non-smooth
regular closed immersions.
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Defining derived stacks is rather straightforward now. We set them as presheaves (of
spaces) on ARZ which satisfy étale descent. One important class of examples are affine
derived schemes which we set as representable presheaves on ARZ. We can also define
relative versions, where we replace Z with an animated ring. We will see that they
naturally satisfy fpqc-descent. For affine derived schemes, it is easy to define properties
by using their underlying animated rings. To do the same for derived stacks, we will
need the notion of n-geometric morphisms. This notion is defined inductively, where
we say a morphism f : F → G of derived stacks is (−1)-geometric, if the base change
with an affine derived scheme is representable by an affine derived schemes. A (−1)-
geometric morphism is smooth if it is so after base change to any affine. The morphism
f is n-geometric if for any affine derived scheme Spec(A) with morphism Spec(A)→ G
the base change F ×GSpec(A) has a smooth (n−1)-geometric effective epimorphism by∐

Spec(Ti), where an n-geometric morphism is smooth if after affine base change the
induced maps of the atlas to the base is (−1)-geometric and smooth. For a good class4

of properties P of affine derived schemes, e.g. smooth, flat,. . . 5, we can now say that a
morphism of derived stacks has property p ∈ P if it is n-geometric for some n and after
base change with an affine derived scheme the atlas over the affine base has property
p. Since geometricity is defined by using smooth atlases, we are mostly interested in
this property. One important aspect is that this property is strongly related to the
cotangent complex.

Theorem 1.1 (4.77). Let f : X → Y be an n-geometric morphism of derived stacks.
Then f is smooth if and only if f|(Ring) is locally of finite presentation and the cotangent
complex of f exists, is perfect and has Tor-amplitude in [−n− 1, 0].

The proof of this theorem uses a lot of homotopical algebraic geometric methods
combining ideas of the homotopical world with ideas of the algebraic geometric world.

This theorem allows us to show that the stack of perfect complexes is locally geo-
metric and locally of finite presentation.

Theorem 1.2 (5.14). The derived stack

Perf : ARR → S

A 7→ (Modperf
A )'

is locally geometric and locally of finite presentation.

The idea is to write this stack as a filtered colimit of substacks Perf[a,b], where we
fix the Tor-amplitude of the perfect complexes. These are (b− a+ 1)-geometric stacks
locally of finite presentation. To see this, we will use induction over the difference
b− a and cover it using morphisms of perfect modules with smaller Tor-amplitude by
sending the morphism to its cofiber. Then we are basically finished by showing that

4With “good class” we mean stable under base change, composition, equivalences and smooth local
on source and target.

5Note that the property étale is not smooth local on the source. We have to be careful if we want
to define étale morphisms of n-geometric stacks.
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the stack classifying morphisms of perfect modules with some given Tor-amplitude is
geometric. An interesting substack is obtained by setting a = b = 0, then Perf[0,0] '
Proj '

∐
n BGLn.

Derived F -zips

The second part of this thesis focuses on derived F -zips. To be more specific, we
first define derived F -zips and then analyze the geometry of their moduli spaces. The
definition of derived F -zips is influenced by the natural structure that arises on the de
Rham hypercohomology for some proper smooth scheme morphism X → Spec(A). We
see for example that a the Hodge-filtration is just a functor Zop → D(A)perf that is
bounded. This is what we call a descending filtration. With this notion, we set a derived
F -zip over A ∈ ARFp , for some positive prime p, to be a tuple (C•, D•, φ, ϕ•), where M
is a perfect module over A, C• a bounded descending filtration, D• a bounded ascending
filtration, equivalences ϕ• : (gr•C)(1) ∼−→ gr•D and and equivalence φ : colimZop C

• ∼−→
colimZD•. Varying A, this construction induces a derived stack (even a hypercomplete
fpqc-sheaf). Our main goal is to show that this stack is locally geometric.

Theorem 1.3 (6.42). The derived stack

F-Zip: ARFp → S,
A 7→ ∞-groupoid of derived F -zips over A

is locally geometric.

The idea of the proof is straightforward. We first look at the derived substack
F-Zip[a,b],S , for a finite subset S ⊆ Z and a ≤ b ∈ Z, classifying those derived F -zips
(C•, D•, φ, ϕ•) where we fix the Tor-amplitude [a, b] of all filtered pieces and griC ' 0
for i 6= S. In this way we only have to look at the stacks classifying two chains of
morphisms of modules with fixed Tor-amplitude, that have a connecting equivalence at
the last entry, such that the graded pieces are equivalent after Frobenius twist. Since
perfect modules with fixed Tor-amplitude, morphisms of those and equivalences of those
are geometric, we conclude the geometricity of F-Zip[a,b],S .

We can also look at derived substacks F-Zip≤τ , for a function τ : Z× Z→ N0 with
finite support, classifying those derived F -zips F := (C•, D•, φ, ϕ•) where the fiberwise
dimension of the πi(grj C) are ≤ τ(i, j). If we have equality and the πi(grj C) are finite
projective, we call F homotopy finite projective of type τ . By upper semi-continuity
the dimension of fiberwise cohomology of perfect complexes, we see that F-Zip≤τ is an
open substack of F-Zip and also geometric, as it is in fact open in some F-Zip[a,b],S .
Writing F-Zip as the filtered colimit of the F-Zip≤τ , we conclude the theorem.

Since derived F -zips satisfy descent, we can glue this definition to any derived scheme
S. There is also an ad hoc definition in the derived scheme case, but we can show that
both definitions agree.

The definition is constructed in a way such that every proper smooth morphism
f : X → S induces a derived F -zip Rf∗Ω

•
X/S over S.
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Modification of filtrations and examples of derived F -zips

For the term filtration above, we do not enforce something like a monomorphism con-
dition on the filtration. Even though it seems natural, it actually leads to another
definition of derived F -zips, which we call strong derived F -zips. The difference of
these two becomes apparent if we look at the corresponding spectral sequences.

Theorem 1.4 (6.71). Let f : X → S be a smooth proper morphism of schemes. Let us
consider the Hodge-de Rham spectral sequence

Ep,q1 = Rqf∗Ω
p
X/S ⇒ Rp+qf∗Ω

•
X/S .

Assume that all Rif∗Ω
j
X/S are finite locally free. The derived F -zip Rf∗Ω

•
X/S is strong

if and only if the Hodge-de Rham spectral sequence degenerates.

So, we do not expect the theory of strong derived F -zips to give us any new infor-
mation if we want to consider geometric objects that do not induce classical F -zips.
But, we can show that the derived stack of strong derived F -zips is open in the derived
stack of derived F -zips. Further, looking at very specific types of strong derived F -zips,
we can even make a connection to classical F -zips.

This connection can be generalized by looking at the full sub-∞-category of derived
F -zips with degenerate spectral sequences6 such that the graded pieces attached to the
filtrations have finite projective homotopy groups of type τ , denoted by X τ . It is not
hard to see X τ is equivalent to the product of classical F -zips of type corresponding to
the components of τ (see section 7 for more details).

We remark that we formulate all the results more generally for derived F -zips over
arbitrary derived schemes of positive characteristic.

The above connection to classical F -zips also shows that in the case of K3-surfaces
or proper smooth curves and abelian schemes the theory of strong derived F -zips gives
no new information. In the K3-surfaces and proper smooth curve case, we can be more
specific. Every derived F -zip of K3-type or proper smooth curve type is induced by a
classical F -zip. This is, since in both cases there is only one cohomology group with a
non-trivial filtration. This does not hold for abelian schemes (since they have a more
complicated type), but as remarked earlier, the derived F -zip associated to an abelian
scheme X/A is completely determined by the classical F -zips associated to H1

dR(X/A)
(since the Hodge-de Rham spectral sequence of abelian schemes is degenerate, the
Hodge cohomologies are finite projective and we have Hn

dR(X/A) ∼= ∧nH1
dR(X/A)).

Also one can look at the moduli stack of Enriques surfaces in characteristic 2. In this
case the Hodge-de Rham spectral sequence does not degenerate in general. Hence, we
cannot directly use the theory of F -zips by associating to an Enriques surface its de
Rham cohomology but have to use derived F -zips for this approach. Using the upper
semi-continuity of cohomology, we can see with the theory of derived F -zips that the

6For any animted ring A a functor F : Fun(Z,ModA) with F (n) ' 0 for n � 0 induces by [Lur17,
Prop. 1.2.2.14] a spectral sequence of the form Ep,q1 = πp+q(grp F )⇒ πp+q(colimZ F ). A derived F -zip
over A comes equipped with two filtrations and thus induce two such spectral sequences, which we call
the spectral sequences attached to the derived F -zip.
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substacks classifying Enriques surfaces of type Z/2 or µ2 are open in the moduli of
Enriques surfaces and the substack classifying Enriques surfaces of type α2 is closed.
These results give a new proof of the results of Liedtke [Lie15] who does not use the
derived theory.

Derived F -zips with cup product

Let f : X → S be a proper smooth morphism of schemes in positive characteristic with
geometrically connected fibers of fixed dimension n. Further, assume the Hodge-de
Rham spectral sequence associated to f degenerates and the Hodge cohomologies are
finite locally free. As in the classical case there is extra structure on the de Rham
hypercohomology coming from the cup product, namely a perfect pairing. For classical
F -zips this induces a G-zip structure on the F -zip associated to Hn

dR(X/S), for certain
reductive groups over a field of characteristic p > 0. One could try to define a derived G-
zip, for a reductive group G over a field k of characteristic p > 0, in such a way such that
the cup product induces a derived G̃-zip structure on the de Rham hypercohomology
for some reductive group G̃ over k. As explained in Section 9.1.2 the most obvious
ways to generalize the theory of G-zips to derived G-zips are not quite right. The
problem here is that we do not have a ”good” way of defining derived group schemes.
For example, we would like to have that the derived analogue of GLn-torsors is given
by perfect complexes of Euler-characteristic ±n. But, as far as we know there is no
such analogue.

Alternatively, we show that the symmetric monoidal category of classical F -zips over
a scheme S in characteristic p > 0 is equivalent to the symmetric monoidal category of
vector bundles over a certain algebraic stack XS . The stack XS is given by pinching the
projective line at 0 and ∞ via the Frobenius morphism and then taking the quotient
with the induced Gm,Fp-action. The category of G-zips over S is then equivalent to the
stack of G-torsors on XS . To apply this construction to derived F -zips, we will show
that perfect complexes over XS are precisely derived F -zips. But, we lack a definition
of derived groups and torsors attaching extra structure to perfect complexes. So again,
we did not follows this approach further.

For completion, we naively put the cup product structure into the definition of
derived F -zips leading to the definition of dR-zips. This again is a sheaf and we can
explicitly analyze the projection to derived F -zips.

Proposition 1.5 (9.7). The induced morphism via forgetting the pairing

p : dR-Zip→ F-Zip

is smooth and locally of finite presentation, in particular dR-Zip is locally geometric
and locally of finite presentation.

Depending on the Tor-amplitude of the dR-zips, we can specify the properties of
the above forgetful functor.

The derived world has another benefit. Usually, we can extend results for smooth
objects to objects that are only lci (in fact to any animated algebra via left Kan
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extension). In the case of the de Rham hypercohomology, we know that its lci analogue
is given by the derived de Rham complex (here lci is needed to assure perfectness
of the cotangent complex). This seems like a good generalization of the de Rham
hypercohomology since it comes equipped with two filtrations with Frobenius-equivalent
graded pieces. But, one can show that these filtrations are not bounded in any way
(see Section 9.1.1 for more details). So we would need a notion of derived F -zips with
unbounded filtrations. But, then the obvious problem becomes the geometricity, since
we would have to cover an infinite amount of information with the atlas, which is not
clear at all - geometricity is a priori not preserved under arbitrary limits (and may not
even be for cofiltered limits).

1.1 Structure of this paper

We start by summarizing [Lur17] (see Section 2). We try to show that spectral rings
and modules behave in some sense like expected.

The next step is the introduction of derived commutative algebra, i.e. the theory
of algebras over animated rings (see Section 3). We first define animated rings ARZ,
show that there is a relation to E∞-rings and use this relation to define modules over
animated rings. As a consequence, we can define the cotangent complex and define
what properties of morphisms in ARZ are. We end this section by showing that the
cotangent complex is highly related to smoothness of morphisms.

After talking about derived commutative algebra, we introduce the theory derived
algebraic geometry (see Section 4). Mainly, we introduce the notion of derived stacks,
geometricity of morphisms and derived schemes. We also talk about truncation of those
and how it relates to classical algebraic geometry. Further, we again cover smoothness
of such morphisms and how it relates to the cotangent complex.

We finish the summary on derived algebraic geometry by showing that the stack of
perfect modules is locally geometric and locally of finite presentation (see Section 5).

Next, we talk about filtrations on the derived category and introduce derived F -
zips (see Section 6). We show that the presheaf which assigns to an animated ring the
∞-category of derived F -zips is in fact a sheaf, so a derived stack, and even locally
geometric. After the geometricity, we discuss some important substacks and try to
generalize the notion of derived F -zips to derived schemes. We look at certain substacks
that come naturally by looking at derived F -zips of certain type. Also, we look at the
substack classifying those filtrations that are termwise monomorphisms. In particular,
we show that this condition is under some assumptions equivalent to the degeneracy of
the Hodge-de Rham spectral sequence.

We finish the study of derived F -zips by trying to connect classical F -zips with
derived F -zips (see Section 7). We show that in the case of degenerating Hodge-de
Rham spectral sequence there is no new information coming from derived F -zips. We
lastly apply our theory to the moduli of Enriques surfaces (see Section 8).

We finish this paper by elaborating the problems that appeared while trying to
generalize the theory of derived F -zips to case of proper lci morphisms and trying to
define derived G-zips (see Section 9). For completion, we also naively equip derived
F -zips with extra structure.
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In the Appendix, we discuss the connection of classical G-zips and G-torsors on the
pinched projective space modulo Gm,Fp-action X and look at the perfect complexes over
X.

1.2 Assumptions

All rings are commutative with one.
We work with the Zermelo-Frenkel axioms of set theory, with the axiom of choice

and assume the existence of inaccessible regular cardinals.
Throughout this paper, we fix some uncountable inaccessible regular cardinal κ and

the collection U(κ) of all sets having cardinality < κ, which is a Grothendieck universe
(and as a Grothendieck universe is uniquely determined by κ) and hence satisfies the
usual axioms of set theory (see [Wil69]). When we talk about small, we mean U(κ)-
small. In the following, we will use some theorems, which assume smallness of the
respective (∞-)categories. When needed, without further mentioning it, we assume
that the corresponding (∞-)categories are contained in U(κ).

If we work with families of objects that are indexed by some object, we will assume,
if not further mentioned, that the indexing object is a U(κ)-small set.

1.3 Notation

We work in the setting of (∞, 1)-categories (see[Lur09]). By abuse of notation for any
1-category C, we will always denote its nerve again with C, unless otherwise specified.

A subcategory C′ of an ∞-category C is a simplicial subset C′ ⊆ C such that the
inclusion is an inner fibration. In particular, any subcategory of an∞-category is itself
a ∞-category and we will not mention this fact.

• ∆ denotes the simplex category (see [Lur21, 000A]), i.e. the category of finite
non-empty linearly ordered sets, ∆+ the category of (possibly empty) finite lin-
early ordered sets. We denote with ∆s those finite linearly ordered sets whose
morphisms are strictly increasing functions and with ∆s,+ those (possibly empty)
finite linearly ordered sets whose morphisms are strictly increasing functions.

• With an ∞-category, we always mean an (∞, 1)-category.

• S denotes the ∞-category of small spaces (also called ∞-groupoids or anima).

• Cat∞ denotes the ∞-category of small ∞-categories.

• Sp denotes the ∞-category of spectra.

• For an E∞-ring A, we denote the ∞-category of A-modules in spectra, i.e.
ModA(Sp) in the notation of [Lur17], with ModA.

• For any ordered set (S,≤), we denote its corresponding ∞-category again with
S, where the corresponding ∞-category of an ordered set is given by the nerve
of (S,≤) seen as a 1-category (the objects are given by the elements of S and
HomS(a, b) = ∗ if and only if a ≤ b and otherwise empty).
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• For any set S the ∞-category Sdisc will denote the nerve of the set S seen as a
discrete 1-category (the objects are given by the elements of S and HomS(a, a) = ∗
for any a ∈ S and otherwise empty).

• For any morphism f : X → Y in an ∞-category C with finite limits, we denote
the functor from ∆+ to C that is given by the Čech nerve of f (see [Lur09, §6.1.2])
if it exists by Č(Y/X)•.

• Let C be an ∞-category with final object ∗. For morphisms f : ∗ → X and
g : ∗ → X, we denote the homotopy pullback ∗×f,X,g ∗ if it exists with Ωf,gX. If
C has an initial object 0, then we denote the pullback 0×X 0 with ΩX.

• Let f : X → Y be a morphism in S and let y ∈ Y . We write fiby(X → Y ) or
fiby(f) for the pullback X×Y ∗, where ∗ is the final object in S (up to homotopy)
and the morphism ∗ → Y is induced by the element y, which by abuse of notation,
we also denote with y.

• For a morphism f : M → N in ModA, where A is some E∞-ring, we set fib(f) =
fib(M → N) (resp. cofib(f) = cofib(M → N)) as the pullback (resp. pushout)
of f with the essentially unique zero morphism 0→ N (resp. M → 0).

• When we say that a square diagram in an ∞-category C of the form

W X

Y Z

is commutative, we always mean, that we can find a morphism ∆1 ×∆1 → C of
∞-categories that extends the above diagram.
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2 Overview: Higher algebra

In this section, we want to summarize some important aspects of spectra, E∞-rings
and modules over those presented in [Lur17].

Our main interests are animated rings and modules over those. Animated rings
are presented in Section 3, so we want to focus on modules. These will be defined
over a monoidal ∞-category, in this case the ∞-category of spectra Sp := Sp(S). So,
one should think of Sp as an ∞-category equipped with a tensor product and spectral
modules as modules for this tensor product over some commutative ring, called E∞-
rings.

Let us start by recalling stable ∞-categories. An ∞-category is stable if it has a
zero object, it admits fibers and cofibers and every cofiber sequence is a fiber sequence
(see [Lur17, Def. 1.1.1.9]). This can be seen as an ∞-analogue of an abelian category.
One very important feature of a stable ∞-category is that its homotopy category is
automatically triangulated (see [Lur17, Thm. 1.1.2.14]). Stable ∞-categories have
other nice stability properties, e.g. a square is a pullback if and only if it is a pushout and
there exists finite limits and colimits (see [Lur17, Prop. 1.1.3.4]), but listing everything
concerning stable ∞-categories would be to involved so we refer to [Lur17, §1].

Now let us come to the definition of the spectrum Sp(C) of a pointed ∞-category
C with finite limits. One definition is obtained by setting Sp(C) as the ∞-category of
excisive, reduced functors from7 Sfin

∗ to C (see [Lur17, Def. 1.2.4.8]). Alternatively, one

obtains Sp(C) as the homotopy limit of the tower . . .
Ω−→ C Ω−→ C (see [Lur17, Rem.

1.4.2.25]). Both viewpoints are useful. An important property of Sp(C) is that it is a
stable ∞-category and if C is presentable then so is Sp(C) (see [Lur17, Cor. 1.4.2.17,
Prop. 1.4.4.4]). From now on, we assume C to be presentable. The first definition as
functors allows us to define a functor

Ω∞ : Sp(C)→ C

by evaluation on the zero sphere. In fact, C is stable if and only if Ω∞ is an equivalence.
Another property of Ω∞ is that it admits a left adjoint Σ∞ (see [Lur17, Prop 1.4.4.4]).

Let us set C = S∗, the ∞-category of pointed spaces and let us set Sp := Sp(S∗).
The second definition we gave allows us to identify the homotopy category hSp with
the classical stable homotopy category8 (see [Lur17, Rem. 1.4.3.2]). In fact, one can
show that Sp is the ∞-category associated to the model category of symmetric spectra
(see [Lur17, Ex. 4.1.8.6]). This allows us to define a monoidal structure on Sp using
the monoidal structure on the underlying model category, given by the smash product.

7Here Sfin
∗ denotes the smallest subcategory of S that contains the final object, is stable under finite

colimits and consist of pointed objects, where pointed means objects x ∈ S with a morphism ∗ → x,
(see [Lur17, Not. 1.4.2.5]).

8Symmetric spectra are certain sequences of Kan complexes X0, X1, . . . with maps ΣXn−1 → Xn.
This category is equipped with a model structure (called the stable model structure) and is closed
monoidal. One can also equip certain sequences of pointed topological spaces X0, X1, . . . with maps
ΣXn−1 → Xn with a model structure and endow it with a closed monoidal structure using the smash
product. Both constructions are in fact Quillen equivalent (see [HSS00] for further information about
symmetric spectra).
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One important aspect of this monoidal structure is that its unit element is the sphere
spectrum9 and the tensor product preserves colimits in each variable (see [Lur17, Cor.
4.8.2.19]). This construction shows that for a spectrum object X ∈ Sp we have

HomSp(S,X) ' HomS(∆0, X) ' Ω∞(X),

where S denotes the sphere spectrum. This is nothing new if we think about abelian
groups for example, since Z-module homomorphisms from Z to any abelian group are
uniquely characterized by the elements of the group and since here HomSp(S,X) is a
Kan-complex, we see that it is equivalent to the underlying space of the spectrum X.
An important side remark is that the heart of spectra is naturally identified with (the
nerve of) the category of abelian groups.

Using Ω∞, stability of Sp and homotopy groups of Kan-complexes, we can define
an accessible t-structure on Sp (see [Lur17, Prop 1.4.3.6]). In particular, we can define
the homotopy groups of spectrum objects X ∈ Sp, via πnX ' π0Ω∞(X[−n]) (see proof
of [Lur17, Prop 1.4.3.6]) and if n ≥ 2, then these are given by πnΩ∞(X) (see [Lur17,
Rem. 1.4.3.8]).

Before we can define modules, we start with E∞-rings. We will not go into detail,
since we will work with an analogue, namely animated rings. One should think of
animated rings as E∞-rings with an extra structure. This extra structure vanishes if
we are in characteristic zero but gives us no relation except a conservative functor from
animated rings to E∞-rings in positive or mixed characteristic (see Proposition 3.5).

As stated above, one should think of Sp as an ∞-categorical analogue of abelian
groups. To define commutative rings in this ∞-category one could use the theory of
∞-operads and describe E∞-rings in terms of sections of the operad induced by the
monoidal structure of Sp (see [Lur17, §2] for more information about ∞-operads and
[Lur17, §3, 4] for the construction of rings using this approach). We will not describe
how this is achieved but instead use a rectification argument, i.e. we set E∞-rings as
the∞-category associated to the commutative algebra objects in the underlying model
category of Sp. Both approaches are equivalent (see [Lur17, Thm. 4.5.4.7]) so we can
think of E∞-rings as certain commutative rings in the model category associated to Sp.
Using the Eilenberg-Mac Lane spectrum one can see that for example ordinary commu-
tative rings are discrete E∞-rings. This construction is also vague, since it requires the
∞-categorical localization of cofibrant commutative algebra objects in the underlying
model category. But contrary to ∞-operads, we think it gives a more classical feeling
of commutative rings.

Now let us conclude this section with modules over E∞-rings. Again [Lur17] deals
with modules using ∞-operads (see [Lur17, §3, 4]). Analogous to the E∞-ring case,
we can apply a rectification statement to define modules using the monoidal structure
on the underlying model category, again both constructions are equivalent (see [Lur17,

9We use the convention of [Lur17], where the sphere spectrum is the image of the final object ∗ ∈ S
by Σ∞ (see [Lur17, §1.4.4] for more details).
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Thm. 4.3.3.17]). For an E∞-ring A, we will denote the ∞-category of spectral A-
modules with ModA. By forgetting the module structure, we get a functor ModA → Sp
(induced by the construction using ∞-operads, see [Lur17, Def. 3.3.3.8]). As in the
classical case for abelian groups and modules, the forgetful functor is conservative (this
follows from [Lur17, Cor. 4.2.3.2]). Further, if we restrict ourselves to connective10

modules, then even the composition Modcn
A → Sp

Ω∞−−→ S is conservative (see [Lur17,
Rem. 7.1.1.8]) This is an analogue to the fact that a morphism of classical modules is
an isomorphism if and only if it is a bijection on the underlying sets. Another fact that
is well known in the classical case is that, we have the following equivalence in S

HomModA(A,M) ' HomSp(S,M) ' Ω∞(M)

(see [Lur17, Cor. 4.2.4.7]).
As in the classical case, we can also define E∞-algebras and modules over alge-

bras by setting E∞-AlgA := CAlg(ModA), i.e. we endow A-modules with a monoidal
structure and define A-algebras as commutative object in ModA (see [Lur17, 7.1.3.8]).
Alternatively, we could look at the over category E∞-AlgA/ but both constructions
are in fact equivalent (see [Lur17, Cor. 3.4.1.7]). We also have a forgetful functor
from E∞-AlgA to Sp, which under the identification E∞-AlgA ' CAlg(ModA) factors
through the forget functor E∞-AlgA → ModA which is conservative (again follows from
[Lur17, Cor. 4.2.3.2]). Further, the identification of πnR with π0 HomSp(S[n], R) for an
E∞-ring R, where πnR is defined on the underlying spectrum of R, allows us to endow
π∗R :=

⊕
n∈Z πnR with a graded commutative ring structure (see [Lur17, 7 7.1.1, Rem.

7.1.1.6]). We can also endow π∗M :=
⊕

n∈Z πnM for any R-module M , with a graded
π∗R-module structure (see [Lur17, §7.1.1]).

The ∞-category of A-modules is also stable (see [Lur17, 7.1.1.5]) and has an acces-
sible t-structure induced by the accessible t-structure on Sp. This t-structure allows us
to identify the heart of ModA with the (nerve of the) ordinary category of π0A-modules
(see [Lur17, Prop. 7.1.1.13]) (note that by the above π0A is an ordinary commutative
ring). This is analogous to E∞-algebra case, where for a connective E∞-ring A the
discrete A-algebras are precisely the ordinary commutative π0A-algebras (see [Lur17,
Prop. 7.1.3.18] (note that there is a typo in the statement)).

A key difference to connective E∞-rings is that over ordinary (discrete) commuta-
tive rings R, the R-module spectra are not discrete R-modules but instead we have
ModR ' D(R) as symmetric monoidal ∞-categories, where D(R), denotes the derived
∞-category of R-modules11 (see [Lur17, Thm. 7.1.2.13]). Let us also remark, that
under this equivalence the homotopy groups of module spectra are isomorphic to the
homology groups of the associated complex and since this is an equivalence of sym-
metric monoidal∞-categories this isomorphism also respects the module structure (see
Remark 3.20).

10Here an object c in an∞-category C with a conservative functor f : C → D into a stable∞-category
with t-structure is connective, if f(c) is connective, i.e. πif(c) ∼= 0 for i < 0.

11The derived ∞-category of a Grothendieck abelian category A is the ∞-category associated to the
model category of chain complexes Ch(A) (see [Lur17, Prop. 1.3.5.15.] and [Lur17, Prop. 1.3.5.3] for
the model structure on chain complexes). The homotopy category hD(A) is equivalent to the ordinary
derived category D(A) of A.
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3 Derived commutative algebra

In the following, R will be a ring.
In this section, we want to give a quick summary about animated rings, present the

cotangent complex and analyse smooth morphisms between animated rings. Mainly,
we show that these notions arise from our classical point of view and behave like one
can expect.

3.1 Animated rings

In this section, we summarise important aspects of animated rings, for this we will
follow [Lur18, §25].

By PolyR we denote the category of polynomialR-algebras in finitely many variables.
Then the category of R-algebras is naturally equivalent to the category of functors from
Polyop

R to (sets) which preserve finite products12. Applying this construction to the∞-
categorical case, we obtain ARR the ∞-category of animated R-algebras, i.e.

ARR := Funπ(Polyop
R , S),

where the subscript π denotes the full subcategory of Fun(Polyop
R , S), that preserve

finite products. Alternatively, this ∞-category is obtained by freely adjoining sifted
colimits to PolyR (this is the meaning of [Lur09, Prop. 5.5.8.15] using that any element
in ARR can be obtained by a sifted colimit in PolyR by [Lur09, Lem. 5.5.8.14, Cor.
5.5.8.17]).

For a cocomplete category C that is generated under colimits by its full subcategory
of compact projective objects Csfp, Cesnavicius-Scholze define the ∞-category anima-
tion of C in [CS21, §5.1] denoted by Ani(C). The∞-category Ani(C) is the∞-category
freely generated under sifted colimits by Csfp. In particular, with this definition, we
see that Ani((R-Alg)) ' ARR. This process can also be applied to R-modules, which
we will look at later in Section 3.2, and to abelian groups, where Ani((Ab)) recovers
the ∞-category of simplicial abelian groups (see [CS21, §5.1] for more details). The
animation of (Sets) recovers the ∞-category of ∞-groupoids, i.e. Ani((Sets)) ' S.

We have another description for animated R-algebras. Let A be the category of
product preserving functors from Polyop

R to simplicial sets13. We obtain a model struc-
ture on A by the Quillen model structure on simplicial sets (see [Lur09, 5.5.9.1]) - this
is often called the model category of simplicial commutative R-algebras. This model
category is known to be a combinatorial, proper, simplicial model category (for more

12For a functor F : Polyop
R → (Sets) that preserves finite products we can set F (R[X]) as the under-

lying ring of F , where the multiplication is induced by R[T ] → R[T1] ⊗R R[T2], T 7→ T1T2 and the
addition by T 7→ T1 + T2. Conversely, for any R-algebra A, we can construct a contraviarant functor
from PolyR to (Sets) via A 7→ Hom(R-Alg)(−, A). These constructions are inverse to each other.

13As for product preserving functors from Polyop
R to (Sets) it is not hard to see that a product

preserving functor F : Polyop
R → S defines a simplicial commutative ring, via F 7→ F (R[X]) (the face

and degeneracy maps have to respect the ring structure by functoriality). In particular, in this way we
can identify A with the category of simplicial commutative R-algebras.
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details on these properties, we refer to [Qui67, Ch. II §4, §6]). The ∞-category asso-
ciated to this model category (i.e. Nhc(A◦)) is equivalent to ARR, where A◦ denotes
the full subcategory consisting of fibrant/cofibrant objects (see [Lur09, Cor. 5.5.9.3]).

Definition 3.1. For a ring R, we define the ∞-category of animated R-algebras, de-
noted by ARR as the ∞-category Funπ(Polyop

R ,S). For an animated ring A, we define
ARA := (ARZ)A/ as the ∞-category of animated A-algebras.

Further, if R = Z, we call an animated R-algebra an animated ring.

Remark 3.2. Note that for a ring R, we have ARR ' (ARZ)R/ by [Lur18, Prop.
25.1.4.2].

Remark 3.3. Since ARA is the over category of ARZ which is the ∞-category of a
combinatorial model category (which is explained in the beginning), we see with [Lur09,
Prop. 5.5.3.11, Prop. A.3.7.6] that ARA is a presentable ∞-category.

The following theorem allows us to connect ARR with E∞-Algcn
R . The idea is simple,

as ARR is generated by PolyR under sifted colimits, any sifted colimit preserving functor
is up to homotopy determined by its restriction to PolyR. Since PolyR lies fully in
E∞-Algcn

R (which has sifted colimits), we therefore get a functor θ : ARR → E∞-Algcn
R

corresponding to the inclusion PolyR ↪→ E∞-Algcn
R . We can also use this philosophy to

analyze functors by restricting them to PolyR if they preserve sifted colimits.

Proposition 3.4. Let j : PolyR → ARR denote the Yoneda-embedding. Then we have
an equivalence of ∞-categories

Funsift(ARR, E∞-Algcn
R )→ Fun(PolyR, E∞-Algcn

R ),

where the subscript sift denotes the full subcategory of sifted colimit preserving functors.

Proof. This follows from [Lur09, Prop. 5.5.8.15, Cor. 5.5.8.17] and note that ARR has
small colimits since it is presentable by Remark 3.3.

Proposition 3.5. The functor θ : ARR → E∞-Algcn
R described above is conservative,

has a left adjoint θL and a right adjoint θR.

Proof. This is [Lur18, 25.1.2.2].

Remark 3.6. Let us take a closer look at the left adjoint of θ. We know that per
definition Z[X] is a compact and projective object of ARZ, so in particular the functor
HomARZ(Z[X],−) commutes with sifted colimits (see [Lur09, Prop. 5.5.8.25]) and
since we can write any animated ring as a sifted colimit of polynomial rings, we see
that for any animated ring A, we have HomARZ(Z[X], A) ' Ω∞θ(A). We observe
that for the free E∞-Z-algebra in one variable Z{X} the same equivalence holds, i.e.
HomE∞-Algcn

Z
(Z{X}, θ(A)) ' Ω∞θ(A). Using the adjunction, we therefore see that

θL(Z{X}) ' Z[X].

The functor θ allows us to view any A ∈ ARR as a ring object in Sp. Thus we can
associate fundamental groups to this object and also module objects in Sp.
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Definition 3.7. Let A ∈ ARR. For any i ∈ Z, we set πi(A) := πi(θ(A)) and we set
ModA := Modθ(A). We refer to elements of ModA as A-modules.

Recall from Section 2, that animated rings per definition have no negative homotopy
groups and π∗A is a graded ring.

Notation 3.8. We want to remark that we have the notion of truncation functors for
animated rings (see [Lur18, §25.1.3]), denoted by τ≤n for n ∈ N0 and are induced by
the truncations on the underlying E∞-rings. For an animated ring A we denote τ≤nA
with A≤n.

We denote with (ARR)≤n the full subcategory of n-truncated animated R-algebras.
The elements of (ARR)≤0 ' (R-Alg) are called discrete.

Remark 3.9. The inclusion of n-truncated animated R-algebras (ARR)≤n into ARR,
for some n ∈ N0, has a left adjoint denoted by τ≤n (see [Lur18, Rem. 25.1.3.4]). Since
per definition τ≤0 = π0, we see that passage to the underlying ring of an animated ring
via π0 preserves colimits.

We can view any connective E∞-algebra over R as a connective R-module (more
precisely E∞-Algcn

R ' CAlg(Modcn
R )). This induces a forgetful functor E∞-Algcn

R →
Modcn

R , which has a left adjoint (see [Lur17, Ex. 3.1.3.14]). Using the above left adjoint
θL, we can associate an animated ring to any connective R-module M .

Definition 3.10. Let A be an animated ring. Let M ∈ Modcn
A be a connective A-

module. We denote the image of M under the left adjoint to the forgetful functor
E∞-Algcn

θ(A) → Modcn
A composed with θL by SymA(M) and call it the symmetric ani-

mated A-algebra of M .14

Further, in the following remark we want to explain that there are two possible
ways to define homotopy groups on animated rings, rather naturally. But both notions
are in fact equivalent (in the sense that the two notions produce isomorphic homotopy
groups).

Remark 3.11. The homotopy groups of an animated ring can be defined alternatively
via the following. We have a natural functor from rings to abelian groups and then to
sets by forgetting the ring structure. This induces a functor from

F : ARZ → Ani((Ab))→ Ani((Sets))

(see [CS21, §5.1.4]). The animation of abelian groups is the ∞-category of simplicial
abelian groups and the animation of sets is S. Using this functor, we can also define
the n-homotopy group of an animated ring A via πnF (A) ∈ S. This construction of
the homotopy groups agrees with the construction of the homotopy groups via passage
to spectra.

14By [Lur09, Prop. 5.2.5.1] the adjunction of θ and θL can be transfered to the adjunction of slice
categories, i.e. θ induces an adjunction, which by abuse of notation we denote the same, between ARA

and E∞-Algcn
θ(A).
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The reason for this is the following commutative diagram

ARZ E∞-Algcn

Ani((Ab)) D(Z)cn

S

F

θ

Ω∞

(as all of these functors commute with sifted colimits15, we only need to check commu-
tativity on polynomial Z-algebras, which follows by construction).

We want to conclude this section by explaining localizations of animated rings.

Definition and Remark 3.12. Let C be a presentable ∞-category and let S be a set
of morphisms in C. Then, we say that an object Z ∈ C is S-local if for any morphism
f : X → Y ∈ S, we have that the morphism HomC(Y, Z)→ HomC(X,Z) induced by f
is an equivalence. We say that a morphism f : X → Y in C is an S-equivalence if for any
S-local object the morphism HomC(Y, Z)→ HomC(X,Z) induced by f is an equivalence
(see [Lur09, Def. 5.5.4.1], note that this definition does not need presentability of C but
as explained below presentability allows us to work with the full subcategory of S-local
objects in a nice way).

The inclusion of the full subcategory C[S−1] of S-local objects in C admits a left
adjoint, which we call localization C → C[S−1] (see [Lur09, Prop. 5.5.4.15]). The idea
is to ”complete” S by taking S̄ as the set of S-equivalences in C. Then C[S−1] is the
localization of C by S̄, which is strongly saturated (see [Lur09, §5.5.4] for more details).

This is analogous to the classical localization, where even if we want to localize
at one element of a ring, we have to automatically localize the multiplicative subset
generated by the element.

Proposition and Definition 3.13 (Localization). Let A be an animated R-algebra
and let F ⊆ π0(A) = π0(HomModA(A,A)) be a subset. Then there exists A[F−1] ∈ ARA,
such that for all B ∈ ARA the simplicial set HomARA(A[F−1], B) is nonempty if and
only if the image of all f ∈ F under π0(A) → π0(B) is invertible. Further if it is
nonempty, then it is contractible.

Proof. The proof is analogous to the proof of [TV08, Prop. 1.2.9.1], which treats the
special case where F has only one element.

Let Sym: Modcn
A → ARA be the left adjoint to the map ARA → E∞-Algcn

A →
Modcn

A . Consider the set S := {Sym(f) : Sym(A)→ Sym(A) | f ∈ F}. We set A[F−1]
as the image of A under the localization map ARA → ARA[S−1], where ARA[S−1]
denotes the full subcategory of ARA of S-local objects (note that ARA is presentable
by Remark 3.3).

15For F and θ this follows from construction. That the forgetful functor from connective E∞-rings
to modules commutes with sifted colimits follows from the fact, that the tensor product on spectra
commutes with sifted colimits (see [Lur17, 4.8.2.19, Cor. 3.2.3.2]), for Ω∞ see [Lur17, Prop. 1.4.3.9].
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An object B ∈ ARA is S-local if and only if the induced map

f∗ : HomModA(A,B)→ HomModA(A,B)

is an equivalence for all f ∈ F . Equivalently, f∗ is an equivalence if and only if the
multiplication by the image of f on πiB is an equivalence for all f ∈ F . Therefore, any
A-algebra B is S-local if and only if the image of f under π0A→ π0B is invertible for
all f ∈ F .

Now assume that HomARA(A[F−1], B) is nonempty, then the morphism π0A →
π0B factors through π0A[F−1], so every f ∈ F has invertible image in π0B, since by
definition A[F−1] is S-local. To see that if HomARA(A[F−1], B) is nonempty, then it is
contractible, note that in this case B is S-local and we have

HomARA(A[F−1], B) ' HomARA(A,B) ' ∗

by adjunction.

Remark 3.14. Note that in the proof of Proposition 3.13 if we have a subset F ⊆ π0A
and denote its generated multiplicative subset by S, then by [Lur09, Prop. 5.5.4.15]
an animated A-algebra B is {Sym(f) : Sym(A) → Sym(A) | f ∈ F}-local if and only
if it is {Sym(s) : Sym(A) → Sym(A) | s ∈ S}-local (note that ARA is presentable by
Remark 3.3).

Notation 3.15. Let A be an animated ring and f ∈ π0A. Then we define the local-
ization by an element as A[f−1] := A[{f}−1].

Remark 3.16. Let F be a subset of π0A and let S be the multiplicative subset gen-
erated by F . By the universal property of the localization of rings, we know that
π0A[F−1] ∼= S−1π0A.

Now assume that F is given by a single element f ∈ π0A. After the characterization
of étale morphisms via the cotangent complex, we will see that the πiA[f−1] ∼= (πiA)f
for all i ≥ 0 (see Lemma 4.65)

Definition 3.17. Let A → B be a morphism of animated rings. Then B is locally of
finite presentation over A if it is compact as an animated A-algebra, i.e. the functor
HomARA(B,−) : ARA → S commutes with filtered colimits.

Remark 3.18. Our notion of ”locally finite presentation” is stronger than the notion
of “finitely presented” in the classical sense. What we mean is that if a morphism of
animated rings A → B is locally of finite presentation, then the induced morphism
of rings π0A → π0B is finitely presented. But the other way around is not true, as
we will see that A → B is locally of finite presentation if and only if π0A → π0B is
locally of finite presentation and its cotangent complex is perfect (see Proposition 3.57).
An example of a finitely presented morphism with non-perfect cotangent complex is
the non-lci morphism Fp → Fp[X,Y ]/(X2, XY, Y 2) (the non-perfectness follows from
[Avr99, (1.3)]).
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As open immersions are finitely presented in the classical world of algebraic geom-
etry, we would expect a similar result in the derived world. This will get explicit later
but first we would like to show that the fundamental example of an open immersion,
the localization of a ring along an element, is locally of finite presentation.

Lemma 3.19. Let A be an animated ring and f ∈ π0A. Then A[f−1] is locally of finite
presentation over A.

Proof. We have that A-algebra morphisms from the localization to any other A-algebra
B are either empty or contractible, depending whether f is invertible in π0B. For any fil-
tered system (Bi)i∈I of A-algebras, we have π0 colimi∈I Bi = colimi∈I π0Bi. Therefore,
we see that HomARR(A[f−1], colimi∈I Bi) is empty if f is not invertible in colimi∈I π0Bi
and if f is invertible in colimi∈I π0Bi, then HomARR(A[f−1], colimi∈I Bi) is contractible.
Since π0A[f−1] ∼= π0(A)f is locally of finite presentation as a π0A-algebra, we know
that f is invertible in colimπ0Bi if and only there is an i′ ∈ I such f is invertible in
π0Bi′ . So in particular, if there is such i′, we have

HomARR(A[f−1], colim
i∈I

Bi) ' ∗ ' colim
i∈I

HomARR(A[f−1], Bi)

and if there is no such i′, we have

HomARR(A[f−1], colim
i∈I

Bi) = ∅ = colim
i∈I

HomARR(A[f−1], Bi).

3.2 Modules over animated rings

Let us recall some useful notions about modules over animated ring. In the following
A will be an animated ring.

Remark 3.20. Before we start, let us remark that under the symmetric monoidal
equivalence of stable ∞-categories ModR ' D(R) explained in Section 2, for a ring
R, the homotopy groups are isomorphic to the corresponding homology groups, this
isomorphism respects the module structure (see [SS03, B.1]).

Remark 3.21. We want to make clear that throughout, we will work in homological
notation. This is natural from the homotopy theory standpoint but differs from the
algebraic geometry standpoint which uses cohomological notation. In particular, we
will define notions such as “Tor-amplitude” homologically.

Definition and Remark 3.22. Let P be a connective A-module, then P is called
projective if for all connective A-modules Q, we have Ext1(P,Q) ∼= 0, where Ext1(P,Q)
is defined as π0 HomModA(P,Q[1]) ∼= HomhModA(P,Q[1]).16

Equivalently, P is projective if for all fiber sequences

M ′ →M →M ′′,

16Recall that the homotopy category of a stable∞-categories is an additive category, so the expression
Ext1(P,Q) ∼= 0 makes sense.
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whereM,M ′,M ′′ are connectiveA-modules, the induced map Ext0(P,M)→ Ext0(P,M ′′)
is surjective (see [Lur17, Prop. 7.2.2.6]. This also shows equivalence with the definition
given in [Lur17, Def. 7.2.2.4]).

We denote by Proj(A) the full subcategory of projective A-modules in ModA.

Remark 3.23. From the definition of projective modules it follows that if an A-module
P is projective, then for any connective module Q we have Exti(P,Q) ∼= 0 for all i ≥ 0.
In fact, this condition is equivalent to the same condition with Q assumed to be discrete.
This is also an equivalent definition of projective modules (see [Lur17, Prop. 7.2.2.6]).

Definition 3.24. A connective A-module M is called flat, if π0M is a flat π0A-module
and the natural morphism πiA⊗π0A π0M → πiM is an isomorphism.

The compatibility with the higher homotopy groups is important if we want to define
for example flat morphisms of animated rings. The Tor-spectral sequence below then
shows us that the homotopy groups are compatible with base change.

The following is a direct consequence of the definition of flatness.

Lemma 3.25. Let P be an A-module.

1. If P is projective it is flat.

2. If P is flat, then it is projective if and only if π0P is projective over π0A.

Proof. See [Lur17, Lem. 7.2.2.14] and [Lur17, Prop. 7.2.2.18].

We also have a homotopy equivalence relating projective modules over A and over
π0A.

Proposition 3.26. The base change with the natural map A→ π0A induces an equiv-
alence between hProj(A) and the hProj(π0A)17.

Proof. This follows from [Lur17, Cor. 7.2.2.19].

Definition 3.27. We call an A-module P finite projective, if it is projective and π0P
is finitely presented over π0A.

We can generalize this notion via the notion of perfectness.

Definition and Remark 3.28. An A-module P is called perfect, if it is a compact
object of ModA. Equivalently, P is perfect if and only if there exists an A-module
P∨ such that we have HomModA(P,−) ' Ω∞(P∨ ⊗A −) (see [Lur17, Def. 7.2.4.1] and
[Lur17, Prop. 7.2.4.2]).

Remark 3.29. If A is discrete, then we have ModA ' D(π0A) as symmetric monoidal
∞-categories and a complex of A-modules is perfect in the our sense if and only if it is
perfect in the classical sense (see [Sta19, 07LT]).

17Note, that since projective modules are flat, hProj(π0A) is just the usual category of (classical)
projective π0A-modules.
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Remark 3.30 ([Lur17, Prop. 7.2.1.19]). Let us insert a quick remark about the Tor-
spectral sequence associated to spectral modules. Let A be an E∞-ring and M,N ∈
ModA. Then π∗M and π∗N are graded π∗A-modules and we have a spectral sequence
in graded abelian groups of the following form called the Tor-spectral sequence

Ep,q2 = Torπ∗Ap (π∗M,π∗N)q ⇒ πp+q(M ⊗A N).

Here convergence is in the sense that πp+q(M ⊗A N) has a filtration F • such that
grpF
∼= Ep,q∞ , there is a k ≤ 0 such that Fn ' 0 for n ≤ k and colimn F

n ' πp+q(M⊗AN)
(see [Lur17, Var. 7.2.1.15] for the construction of the Tor-group).

We also have the notion of a Tor-amplitude for A-modules. We will use the homo-
logical notation, since it is in line with the definitions given in homotopy theory.

Definition 3.31 ([AG14, Def. 2.11]). Let M be an A-module. Then we say that M
has Tor-amplitude (concentrated) in [a, b] for a ≤ b ∈ Z if for all discrete A-modules N ,
we have

πi(M ⊗A N) = 0

for all i 6∈ [a, b].

Lemma 3.32. Let M be an A-module. Then M has Tor-amplitude in [a, b] if and only
if the ordinary complex M ⊗A π0A in D(π0A) has Tor-amplitude in [a, b].

Proof. Let F : Modπ0A → ModA be the forgetful functor. This functor comes from the
Cartesian fibration of [Lur09, Cor. 3.4.3.4]. In particular, we see that for a discrete π0A-
module N the underlying spectra of N and F (N) are equivalent. So, their homotopy
groups are isomorphic, so F (N) is discrete and up to equivalence determined by π0F (N)
(see [Lur17, Prop. 7.1.1.13]). Since π0N determines N up to equivalence and π0N ∼=
π0F (N), we see that the diagram

N(π0A-Mod)

Modπ0A ModA

i1 i2

F

commutes on the level of elements up to equivalence. Therefore, we see that for any
N ∈ N(π0A-Mod), we have

M ⊗A i2(N) 'M ⊗A F (i1(N)) 'M ⊗A π0A⊗π0A i1(N)

concluding the proof.

Lemma 3.33. Let A be an animated R-algebra. Let P and Q be A-modules.

1. If P is perfect, then P has finite Tor-amplitude.

2. If B is an A-algebra and P has Tor-amplitude in [a, b], then the B-module P⊗AB
has Tor-amplitude in [a, b].
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3. If P has Tor-amplitude in [a, b] and Q has Tor-amplitude in [c, d], then P ⊗A Q
has Tor-amplitude in [a+ c, b+ d].

4. If P,Q have Tor-amplitude in [a, b], then for any morphism f : P → Q the fiber
of f has Tor-amplitude in [a − 1, b] and the cofiber of f has Tor-amplitude in
[a, b+ 1].

5. If P is a perfect A-module with Tor-amplitude in [0, b], with 0 ≤ b, then P is
connective and π0P ' π0(P ⊗A π0A).

6. P is perfect and has Tor-amplitude in [a, a] if and only if P is equivalent to M [a]
for some finite projective A-module.

7. If P is perfect and has Tor-amplitude in [a, b], then there exists a morphisms

M [a]→ P

such that M is a finite projective A-module and the cofiber is perfect with Tor-
amplitude in [a+ 1, b].

Proof. Since modules over animated rings are defined as modules over their underlying
E∞-ring spectrum, this is [AG14, Prop. 2.13].

Let us conclude this section by specifically looking at connective modules over ani-
mated rings. These will be given by the animation of classical modules. This illustrates
why we work with modules over spectra, as the animation of modules seems natural
but produced only connective objects.

First let us consider the ∞-category Mod(Sp) of tuples (M,A), where A is an E∞-
R-algebra and M is an A-module. This ∞-category comes naturally with a cartesian
fibration Mod(Sp)→ E∞-AlgR (see [Lur17, §4.5] for more details).

Now we can define the ∞-category AR-ModR := Mod(Sp) ×CAlgR(Sp) ARR. Let
us denote the full subcategory, consisting of objects (M,A) ∈ AR-ModR, where M is
connective by AR-Modcn

R . The next proposition shows that AR-Modcn
R is the animation

of the category of tuples (A,M), where A is an R-algebra and M is an A-module.

Proposition 3.34. Let C ⊆ AR-Modcn
R be the full subcategory consisting of objects

(M,A), where A is a polynomial R-algebra and M is a free A-module of finite rank. Let
E be an∞-category, which admits sifted colimits. Let us denote by Funsift(AR-Modcn

R , E)
the full subcategory of Fun(AR-Modcn

R , E) spanned by those functors, which preserve
sifted colimits. Then the restriction functor

Funsift(AR-Modcn
R , E)→ Fun(C, E)

is an equivalence of ∞-categories.

Proof. This is [Lur18, Cor. 25.2.1.3], but since some references are broken, we recall
the proof.
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It suffices to show that PΣ(C) ' AR-Modcn
R , since then the proposition follows from

[Lur09, Prop. 5.5.8.15], where PΣ(C) denotes those presheaves that preserve finite
products.

The following is [Lur18, Prop. 25.2.1.2] (here the references are broken). Note that
C consists of those objects in AR-Modcn

R which are coproducts of finitely many copies
of C := (R[X], 0) and D = (R,R). We especially see that C and D corepresent the
functors AR-Modcn

R → S given by

(A,M) 7→ Ω∞Asp, (A,M) 7→ Ω∞M

respectively. Since both functors preserve sifted colimits, the objects C and D are
compact, projective and C consists of compact projective objects of AR-Modcn

R . It
follows with [Lur09, Prop. 5.5.8.22], that the inclusion C ↪→ AR-Modcn

R extends (see
[Lur09, Prop. 5.5.8.15]) to a fully faithful functor F : PΣ(C) → AR-Modcn

R , which
commutes with sifted colimits. Since the inclusion preserves finite coproducts, we see
that F preserves small colimits (see [Lur09, Prop. 5.5.8.15]) and therefore admits a
right adjoint G, by the adjoint functor theorem (see [Lur09, Cor. 5.5.2.9]). To prove
that F is an equivalence, it suffices to show that G is conservative.

To see this, note that since F is left adjoint and fully faithful, the unit map id→ GF
is an equivalence.

That G is conservative is clear, since the conservative functor

AR-Modcn
R → S× S, (A,M) 7→ (Ω∞Asp,Ω∞M)

factors through G.

Notation 3.35. Again, for an animated ring A, we denote AR-ModA := AR-Mod×Ani

ARA and AR-Modcn
A := AR-Modcn ×Ani ARA.

Remark 3.36. The above proposition also shows that the ∞-category of simplicial
commutative R-modules, which is equivalent to Ani(R-Mod) (the animation of R-
modules), is equivalent to the connective R-modules Modcn

R .

Lastly, we will insert a lemma which will show the uniqueness of the cotangent
complex for derived stacks (see Definition 4.58).

Lemma 3.37. Let j : ModA → P(Modcn,op
A ) be the Yoneda embedding followed by

restriction. Then for all n ≥ 0 the restriction of j to the (−n)-connective objects is
fully faithful.

Proof. We will not prove this here and refer to [TV08, Prop. 1.2.11.3].

3.3 The cotangent complex

We will define square zero extensions and the cotangent complex following [Lur18, §25].
Proposition 3.34 allows us to define square zero extensions. Namely, if we look at

the functor C → (Ring) ' (ARR)≤0 ↪→ ARR, where C is as in Proposition 3.34, given
by (M,A) 7→ A ⊕M , we see that it induces a functor AR-Modcn

R → ARR commuting
with sifted colimits.
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Definition 3.38. For an A ∈ ARR and a connective A-module M , we define the square
zero extension of A by M as the image of (M,A) under the functor AR-Modcn

R → ARR

described above and denote the resulting animated R-algebra by A⊕M .

Remark 3.39. Since the forgetful functor from ARR → ModR preserves colimits,
we see that the underlying module of A ⊕M , for some animated R-algebra A and a
connective A-module M , is equivalent to the direct sum in ModR of A and M .

Remark 3.40. Let A ∈ ARR and M be a connective A-module. In ModA we have
(up to homotopy) unique maps 0→M → 0, these determine maps between animated
rings A→ A⊕M → A. Thus, we can view A⊕M as an element of (ARA)/A.

Since we have defined square zero extensions of an animated algebra by a connective
module, we can now define the notion of a derivation.

Definition 3.41. Let A ∈ ARR and M ∈ Modcn
A . The space of R-linear derivations

DerR(A,M) of A into M is defined as the mapping space Hom(ARR)/A(A,A⊕M).

Definition 3.42. Let A ∈ ARR, M ∈ Modcn
A and d ∈ DerR(A,M). Then we define

A ⊕dM as the pullback of d : A → A ⊕M and the trivial derivation s, i.e. we have a
pullback diagram of the form

A⊕dM A

A A⊕M.

d

s

Next, we want to define the absolute cotangent complex associated to an aniamted
ring A. This should be thought of as an ∞-analogue of the module of differentials. So,
we will characterize it by a universal property.

Proposition and Definition 3.43. Let A ∈ ARR. There is a connective A-module
LA and a derivation η ∈ DerR(A,LA) uniquely (up to equivalence) characterized by the
property, that for every connective A-module M the map

HomModA(LA,M)→ DerR(A,M)

induced by η is an equivalence.
We call the A-module LA/R the cotangent complex of A over R.
If R = Z, then we write LA and call it the absolute cotangent complex of A.

Proof. This is [Lur18, Prop. 25.3.1.5].

Remark 3.44. Let A→ B be a morphism in ARR. Then for any connective B-module
M , we will see that we have a map DerR(B,M)→ DerR(A,M), where we see M as an
A-module via the forgetful functor. This follows from the following.

Note that by functoriality, we have a commutative diagram of the form

A⊕M A

B ⊕M B.
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This induces a map A ⊕M → A ×B (B ⊕M), which is an equivalence when passing
to the underlying R-modules, since the underlying R-module of B ⊕M is the direct
sum of B and M . Therefore for an R-derivation d : B → B ⊕M , we get the following
diagram in ARR with pullback squares

A A⊕M A

B B ⊕M B,

where the composition of the horizontal arrows is the identity on A, respectively B.
Therefore, an R-derivation of B induces an R-derivation of A.

Thus, per definition, we get a map

HomB(LB/R,M)→ HomA(LA/R,M) ' HomB(LA/R ⊗A B,M).

Where the second map is induced by the adjunction of the forgetful functor and the
tensor product. Now Lemma 3.37 induces a map LA/R ⊗A B → LB/A.

Definition 3.45. Let A → B be a morphism in ARR. Then we define the (relative)
cotangent complex of B over A, denoted by LB/A, as the cofiber of the induced map
B ⊗A LA/R → LB/R.

Remark 3.46. Let A → B be a morphism in ARR. For every connective B-module
M the definition of LB/A as the cofiber of LA/R ⊗A B → LB/R induces an equivalence

HomModB (LB/A,M) ' fibd0(DerR(B,M)→ DerR(A,M)),

where d0 is the trivialR-derivation of A intoM . Therefore, seeingB⊕M as an animated
A-algebra, via the trivial derivation and the natural morphism A ⊕M → B ⊕M , we
have an equivalence

HomModB (LB/A,M)
∼−→ fibidB (HomARA(B,B ⊕M)→ HomARA(B,B)).

So the relative cotangent complex represents morphisms B → B ⊕ M , with an
augmentation B ⊕M → B, which are not only R-linear but in fact also A-linear, i.e.
HomModB (LB/A,M) ' Hom(ARA)/B (B,B ⊕M).

Remark 3.47. We claim that the definition of the cotangent complex as the module
representing derivations shows that for any pushout diagram of the form

A′ B′

A B

in ARR, we have LB/A ' LB′/A′ ⊗A′ B.
Indeed, let M be a B-module. Using the arguments of Remark 3.44, we get a

morphism
Hom(ARA)/B (B,B ⊕M)→ Hom(ARA′ )/B′

(B′, B′ ⊕M).

30



Let d ∈ Hom(ARA′ )/B′
(B′, B′ ⊕M), which is given by a diagram

B′ → B′ ⊕M → B′

such that the composition is homotopic to the identity on B′. By the universal property
of the pushout, this induces an A-derivation of B into B ⊕M . Both constructions are
inverse to each other using universal properties, so the morphism

Hom(ARA)/B (B,B ⊕M)→ Hom(ARA′ )/B′
(B′, B′ ⊕M)

is an equivalence and using Remark 3.46, we are done.

Remark 3.48. We defined the cotangent complex of an animated R-algebra as the
∞-analogue of the Kähler-differentials. The same construction can be done for E∞-
algebras (see [Lur17, 7.3]). Thus, we could ask the question whether for a map of
animated R-algebras A→ B the relative cotangent complex LB/A is equivalent to the
relative cotangent complex of the underlying map of E∞-algebras L∞B/A := Lθ(B)/θ(A).

In general, the answer is no, take for example Z → Z[X] (since this morphism in not
formally smooth if we allow non-connective E∞-rings, this follows from [TV08, Prop.
2.4.1.5]).

But we have an induced morphism L∞A/B → LB/A and passing to the homotopy
groups, we see that the map πiL

∞
A/B → πiLB/A is an isomorphism if i ≤ 1 and surjective

for i = 2 (see [Lur18, 25.3.5.1], note that Lurie calls our cotangent complex the algebraic
cotangent complex ).

In characteristic 0 however we have that the map on homotopy groups is an isomor-
phism for all i ∈ Z (see [Lur18, 25.3.5.3]). This is not surprising, since in characteristic
0 we have an equivalence of animated rings and connective E∞-rings.

Remark 3.49. Let R be a ring and A be an animated R-algebra. Let B = SymA(M)
for some connective A-module M . We claim that LB/A is given by M ⊗A B.

Indeed, for any connective B-module M ′, we have

Hom(ARA)/B (SymA(M), A⊕M ′)

' fibidB (HomARA(SymA(M), B ⊕M ′)→ HomARA(SymA(M), B)).

Using the adjunction of the forget functor and SymA, we get a map ι : M → B corre-
sponding to the identity on B. Further, we have

fibidB (HomARA(SymA(M), B ⊕M ′)→ HomARA(SymA(M), B))

' fibι(HomModA(M,B ⊕M ′)→ HomModA(M,B)).

Now the underlying module ofB⊕M is the direct sum ofB withM in ModA. Therefore,
this fiber is equivalent to HomModA(M,M ′) ' HomModB (M ⊗A B,M ′). Hence, by the
universal property the cotangent complex LB/A is given by M ⊗A B.

Proposition 3.50. Let A be an animated R-algebra and write A as the sifted colimit
of polynomial R-algebras P •. Then we have LA/R ' colimLP •/R ⊗P • A.
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Proof. This is [Kha18, Lec. 5 Thm. 2.3]. For the convenience of the reader, we recall
the proof.

Note that each P i is equivalent to Sym(Rni) for some ni ∈ N. Also by Remark 3.49,
we have colimLP •/R⊗P • A ' colimR•⊗R P •⊗P • A ' colimA•, where A• := R•⊗RA.
Thus, we have to show that

lim HomModA(A•,M) ' lim fibι•(HomARR(P •, A⊕M)→ HomARR(P •, A))

for all connective A-modules M , where ι• : P • → A are the natural maps. But now
we will see that both sides can be identified with lim Ω∞(M)•, so we conclude the
equivalence.

Indeed, each Ani is free this is clear for the left hand side and for the right hand
side note that P • is given by symmetric algebras of free algebras and conclude using
the above.

Remark 3.51. Note that the proof of Proposition 3.50 shows that for a discrete ring
R, the cotangent complex LB/R for some B ∈ ARR agrees with the left Kan extension
of Ω1

−/R : PolyR → D(R) along the inclusion PolyR ↪→ ARR. So in particular, our

definition agrees with the classical definition in the discrete case18.
Setting R = Z, we get an analogous description of LB.

We add a little lemma showing that the steps in the Postnikov towers are square-
zero extensions. For E∞-algebras this can be found in [Lur17, Cor. 7.4.1.28]. We will
not prove this lemma, since it would be to involved. But a detailed (model categorical)
proof can be found in the notes of Porta and Vezzosi [PV15].

Lemma 3.52. Let A be an animated R-algebra. There exists a unique derivation
d ∈ π0 Der(A≤n−1, πn(A)[n+1]) such that the projection A≤n−1⊕dπn(A)[n+1]→ A≤n−1

is equivalent to the natural morphism A≤n → A≤n−1 (recall the notation from Definition
3.42).

Proof. [TV08, Lem. 2.2.1.1].

3.4 Smooth and étale morphisms

In this section, we will follow [TV08]. In the reference Toën and Vezzosi deal with
animated rings and derived algebraic geometry (in our sense) in the model categorical
setting. Most definitions however are made in such a way, such that we can easily
translate them to the ∞-categorical setting (for more explanation on how to go from
model categories to ∞-categories, we recommend [Lur09] and [Lur17]).

Definition 3.53. A morphism f : A → B of animated R-algebras is called flat (resp.
faithfully flat, smooth, étale) if the following two conditions are satisfied

18Let LΩ1
−/R denote the left Kan extension of Ω1

−/R : PolyR → D(R) along the inclusion PolyR ↪→
ARR. Then LΩ1

−/R factors through AR-Modcn
R , since Ω1

A/R has an A-module structure for some

polynomial R-algebra A. Thus, we see that LΩ1
B/R has a natural B-module structure and on polynomial

algebras agrees with LB/R (note that this a priori proves the equivalence in D(R) and thus in Sp but
the forget functor AR-Modcn

R → Sp is conservative by [Lur17, Cor. 4.2.3.2]).
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(i) the induced ring homomorphism π0f : π0A → π0B is flat (resp. faithfully flat,
smooth, étale), and

(ii) we have an isomorphism π∗A⊗π0A π0B → π∗B of graded rings.

Note that in the above definition π0f is a morphism of commutative rings, so asking
whether they are flat, étale or smooth is natural. The condition (ii) on the homotopy
groups is a natural compatibility condition that assures that homotopy groups and base
change commute in the sense that πnM ⊗π0A π0B ∼= πn(M ⊗A B) for an A-module M
and a flat animated A-algebra B. (see [Lur17, Prop. 7.2.2.13]).

Let f : A → B be a homomorphism of rings. If f is smooth, we know that the
module of differentials ΩB/A is finite projective. The other direction is in general not
correct, i.e. there are ring homomorphisms locally of finite presentation with finite
projective module of differentials that are not smooth. One example is the projection
k[X] → k[X]/(X) ∼= k for a field k. Its module of differentials Ωk/k[X] vanishes, so
is in particular a finite dimensional k-vector space. But the projection is not smooth.
One way to see this, is that the cotangent complex Lk/k[X] is quasi-isomorphic to
(X)/(X2)[−1]19 (see [Sta19, 07BU]). This condition on the cotangent complex comes
rather naturally in derived algebraic geometry, as we can see the cotangent complex as
the derived version of the module of differentials. In fact, we will make this explicit in
Proposition 3.56 to see that a morphism of animated rings is smooth if and only if it
is locally of finite presentation and its cotangent complex is finite projective.

But for technical reasons, we need to understand the cotangent complex of the
natural maps A≤k → A≤k−1. As these are given by square zero extensions by πkA (see
Lemma 3.52) and isomorphisms on πi for i ≤ k − 1, we will see that the cotangent
complex is easier to understand.

Lemma 3.54. Let A be an animated R-algebra and k ≥ 1. Then there exists natural
isomorphisms

πk+1LA≤k−1/A≤k
∼= πkA,

and πiLA≤k−1/A≤k
∼= 0 for i ≤ k (recall Notation 3.8 for the A≤∗).

Proof. This is [TV08, Lem. 2.2.2.8] translated to ∞-categories.
We can also deduce this lemma using [Lur17] and [Lur18]. Note that the fiber

of A≤k → A≤k−1 as an A-module is given by πkA[k] and thus the cofiber is given
by πkA[k + 1]. Now the first assertion follows from [Lur18, Rem. 25.3.6.5]. For the
vanishing of the lower homotopy groups, note that for i ≤ k+2, we have πiL

∞
A≤k−1/A≤k

∼=
πiLA≤k−1/A≤k by [Lur18, Prop. 25.3.5.1], where L∞A≤k−1/A≤k

is the cotangent complex

associated to the underlying E∞-algebra of A≤k−1 → A≤k (see [Lur17, §7.3] for more
details). Thus, the vanishing follows with [Lur17, Lem. 7.4.3.17].

In the following proof, we want to compute

Torπ∗A∗ (π0A, π∗M)

19As the projection k[X]→ k is a regular immersion, we can use [Sta19, 08SJ].
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for some A ∈ ARR and an A-module M . The Tor-spectral sequence will be an im-
portant tool when calculating tensor products. But first lets talk about graded free
resolutions, which compute the Tor-groups.

Remark 3.55 (Graded free resolutions). Let A ∈ ARR and fix an A-module M such
that there is an n ≥ 0 such that πkM = 0 for all k < n. To compute the graded
Tor group, we need a graded free resolution of π∗M , where a graded free resolution
is an exact sequence · · · → P1 → P0 → π∗M → 0 of graded π∗A-modules with Pi
equal to the direct sum of shifts of π∗A (see [Sta19, 09KK] for details on graded free
resolutions). We can follow the existence of such a sequence inductively with [Sta19,
09KN]. Namely, set M0 := π∗M , then for any i, we can find a short exact sequence of
the form 0 → Mi+1 → Pi → Mi → 0, such that Pi is the direct sum of shifts of π∗A
and is concentrated in degrees ≥ n.

The Pi are constructed as follows, for any m ∈ (Mi)k, we can find a π∗A-linear
map π∗(A)[k] → Mi sending 1 ∈ π∗(A)[k]k to m and d(1) to d(m). The module Pi is
now defined as the direct sum over all non-zero degrees and corresponding elements.
Therefore by construction Pi is a direct sum of shifts of π∗A and further by induction,
we see that if M0 is concentrated in degrees ≥ n, then for all i ≥ 0 the module Pi is
concentrated in degrees ≥ n.

Proposition 3.56. Let f : A→ B be a morphism in ARR.

1. The morphism f is smooth if and only if the B-module LB/A is finite projective
and π0B is of finite presentation over π0A.

2. The morphism f is étale if and only if LB/A ' 0 and π0B is of finite presentation
over π0A.

Proof. This is [TV08, Thm. 2.2.2.6] in the ∞-categorical setting. For the convenience
of the reader, we recall the proof of the first assertion. The proof of the second assertion
is left out and can be reconstructed following the proof of [TV08, Thm. 2.2.2.6].

Let f be a smooth morphism, then it is flat by assumption, thus π0B = π0A⊗AB (by
[Lur17, Prop. 7.2.2.15] B⊗Aπ0A has to be discrete and since on π0 it is an equivalence,
we have the equivalence on the level of animated rings). In particular, we have

π0LB/A = π0(LB/A ⊗B π0B) = π0Lπ0B/π0A = Ωπ0B/π0A[0],

by compatibility of the cotangent complex with base change (see Remark 3.47). Since
f is smooth, we see that π0(LB/A) = Ωπ0B/π0A[0] is finite projective over π0B. By
Proposition 3.26, there is a projective B-module P with P ⊗B π0B ' π0LB/A (thus P
is in fact finite projective). Using the projectivity of P , we lift the natural projection
P → π0LB/A to a morphism φ : P → LB/A (see [Lur17, Prop. 7.2.2.6] and note that
surjectivity of φ on π0 implies that the fiber is connective). We want to show that φ is
in fact an equivalence. For this it is enough to show cofib(φ) ' 0. By construction, it
is clear that π0 cofib(φ) = 0 and we will show by induction on n that πn cofib(φ) = 0.

To see this, let n > 0, assume πk cofib(φ) = 0 for k < n and consider the following
Tor spectral sequence (see Remark 3.30)

Ep,q2 = Torπ∗Bp (π0B, π∗ cofib(φ))q ⇒ πp+q(π0B ⊗B cofib(φ)) = 0.
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To see that π0B ⊗B cofib(φ) ' 0, note that φ ⊗ idπ0B is equivalent to the identity on
Lπ0B/π0A and thus the cofiber of φ⊗ idπ0B which is π0B ⊗B cofib(φ) vanishes. Let P•
be the graded free resolution of π∗ cofib(φ) constructed in Remark 3.55. Then Ep,q2 =
H−p(π0B⊗π∗BP•)q = 0 for q < n, since it is a subgroup of a quotient of (π0B⊗π∗BPp)q,
which itself is a quotient of (Pp)q. Therefore, πn cofib(φ) ' H0(π0B⊗π∗BP•)n = E0,n

2 '
πn(π0B ⊗B cofib(φ)) ' 0.

To see the first equivalence note that H0(π0B ⊗π∗B P•) ' π0B ⊗π∗B H0(P•) '
π0B ⊗π∗B π∗ cofib(φ) ' π∗ cofib(φ) (see [Sta19, 09LL] for the definition of the tensor
product of dg-modules and note that taking the 0th-cohomology is just taking a cokernel
which commutes with tensor products).

Now assume that LB/A is finite projective and π0A→ π0B is of finite presentation.
Consider the pushout square

A B

π0A C.

We want to show that the natural morphism C → π0C ' π0B is an equivalence. For
this assume there is a smallest integer i > 0 such that πiC 6= 0. We get a fiber sequence

LC≤i/π0A ⊗C≤i π0C → Lπ0C/π0A → Lπ0C/C≤i ,

using Lemma 3.54 (actually its proof), we see that

πi(LC/π0A ⊗C π0C) ' πi(LC≤i/π0A ⊗C≤i π0C) ' πi+1(Lπ0C/C≤i) ' πi(C).

But LC/π0A ⊗C π0C is projective over π0C and thus discrete which is a contradiction.
Therefore, we see that π0B ' π0A⊗AB and thus Lπ0B/π0A ' LB/A⊗B π0B is discrete.
Hence, with [Sta19, 07BU], we see that π0A→ π0B is smooth.

It remains to show that the natural map φ : πnA⊗π0Aπ0B → πnB is an equivalence.
But this follows from B⊗Aπ0A ' π0B and [Lur17, Thm. 7.2.2.15] (we have to test that
B ⊗AM is discrete for all discrete A-modules M , but since π0B is a flat π0A-module,
we see that B ⊗AM ' B ⊗A π0A⊗π0AM ' π0B ⊗π0AM is discrete).

The following proposition is in a similar fashion to Proposition 3.56. Namely, we
can characterize finitely presented morphisms by their cotangent complex and their
behavior on the underlying discrete rings (i.e. on π0).

Proposition 3.57. Let f : A→ B be a morphism in ARR. Then f is locally of finite
presentation if and only if the B-module LB/A is perfect and π0B is of finite presentation
over π0A

Proof. We will not prove this and refer to [TV08, Prop. 2.2.2.4] or [Lur04, Prop.
3.2.18].

Corollary 3.58. Let f : A→ B be a smooth morphism of animated R-algebras. Then
f is locally of finite presentation.
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Proof. Combine Proposition 3.57 and 3.56.

One other important fact is that for an animated ring A, we can lift truncated étale
maps B → π0A to étale maps B̃ → A. The idea is to use Postnikov towers and the
compatibility of cotangent complexes and truncations.

Proposition 3.59. Let A be an animated R-algebra. Then the base change under the
natural morphism A→ π0A induces a equivalence ∞-categories of étale A-algebras and
étale π0A-algebras.

Proof. See [CS21, Prop. 5.2.3].

Lastly, we can use Proposition 3.59 to show that any finite projective module P over
an animated ring A is finite locally free.

Corollary 3.60. Let A be an animated ring and let P be a finite projective module
over A. Then there is a finite étale cover (A→ Ai)i∈I , i.e. the Ai are étale A-algebras,
where I is finite and A→

∏
i∈I Ai is faithfully flat, such that P ⊗A Ai is free of finite

rank, i.e. P ⊗A Ai ' Ari for some r ∈ N.

Proof. Let Proj(A) denote the full subcategory of ModA of projective modules. We have
an equivalence of categories h Proj(A) → h Proj(π0A) ' Projπ0A given by the tensor
product (see [Lur17, Cor 7.2.2.19]). By definition, this restricts to an equivalence of
finite projective modules. Since classical finite projective modules on π0A are finite
locally free, we know that there exists an open cover (Ãi) of π0A such that Ãi ⊗π0A

π0A⊗A P is equivalent to some finite free Ãi-module. By Proposition 3.59, we can lift
this open cover to an étale cover Ai of A (certainly A→

∏
i∈I Ai is étale and faithfully

flatness can be checked on π0). Since Ai⊗A π0A = Ãi, the equivalence of the categories
involved shows the claim.
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4 Derived algebraic geometry

For this section, we will closely follow [TV08, §2], [AG14] and the lecture notes of Adeel
Khan [Kha18].

In [TV08] Toën and Vezzosi deal with derived algebraic geometry in the model
categorical setting. This allows us to translate them easily to the∞-categorical setting.

In [AG14] Antieu and Gepner deal with spectral algebraic geometry (in the ∞-
categorical setting). The ideas are more or less the same as we use them and in some
parts, we can transport proofs one-to-one. But it is important to note that there is no
higher principle which concludes derived algebraic geometry (theory of certain sheaves
on animated algebras) as a corollary of spectral algebraic geometry (theory of certain
sheaves on E∞-algebras). This is because there is no fully faithful embedding from
animated algebras to E∞-algebras in general. In characteristic 0 both∞-categories are
equivalent and thus the results from [TV08] and [AG14] agree. In characteristic p > 0
however, we have no such relation. Therefore the translation of [AG14] to our setting
has to be treated with caution.

4.1 Affine derived schemes

In the following R will be a ring and A an animated R-algebra.
Let us define the étale and fpqc topology.

Proposition and Definition 4.1. Let B an animated A-algebra.

(a) There exists a Grothendieck topology on ARop
A , called the fpqc-topology, which can

be described as follows: A sieve (see [Lur09, Def. 6.2.2.1]) C ⊆ (ARop
A )/B ' ARop

B

is a covering sieve if and only if it contains a finite family (B → Bi)i∈I for which
the induced map B →

∏
i∈I Bi is faithfully flat.

(b) There exists a Grothendieck topology on the full subcategory (ARét
A)op of étale

A-algebras, called the étale-topology, which can be described as follows: A sieve
C ⊆ (ARét

A)op
/B ' (ARét

B)op is a covering sieve if and only if it contains a finite

family (B → Bi)i∈I for which the induced map A→
∏
i∈I Bi is faithfully flat (and

étale, which is automatic).

Proof. Let S be the collection of all faithfully flat (resp. faithfully flat and étale)
morphisms in ARR. It is enough to check that S satisfies the properties of [Lur18,
Prop. A.3.2.1]. For this, we note that a morphism of animated rings is faithfully flat
(resp. faithfully flat and étale) if and only if it is after passage to connective E∞-rings.
Since the functor θ : ARA → E∞-Algcn

θ(A) is conservative and commutes with limits and
colimits (see Proposition 3.5), we see that S satisfies the properties of [Lur18, Prop.
A.3.2.1] if and only if the collection of all faithfully flat (resp. faithfully flat and étale)
morphisms in E∞-Algcn

θ(A) does so. But this follows from [Lur18, Prop. B.6.1.3] - see
also [Lur18, Var. B.6.1.7] - (resp. [Lur18, Prop. B.6.2.1]).

Definition and Remark 4.2. An affine derived scheme over A is a functor from ARA

to spaces (i.e. a presheaf on ARop
A ), which is equivalent to Spec(B) := HomARA(B,−)

for some B ∈ ARA.
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Note that Spec(B) is an fpqc sheaf by [Lur18, D. 6.3.5] and Lemma 3.5

Definition 4.3. Let P be one of the following properties of a morphism animated rings:
flat, smooth, étale, locally of finite presentation. We say that a morphisms of affine
derived schemes Spec(B)→ Spec(C) has property P if the underlying homomorphism
C → B has P.

Remark 4.4. Let us remark that the above properties of morphisms of affine derived
schemes are stable under equivalences, composition, pullbacks and are étale local on the
source and target. This follows from classical theory (as found for example in [Sta19])
and Propositions 3.56 and 3.57, noting Proposition 3.26 and that (perfect) modules
modules satisfy descent (see Remark 4.53).

Definition 4.5. For a discrete ring A, we set

Spec(A)cl := Hom(Ring)(A,−) : (Ring)→ (Sets)

to be its underlying classical scheme. We will abuse notation and denote the underlying
locally ringed space of Spec(A)cl the same.

Remark 4.6. The notation (−)cl is introduced since even for a discrete ring A the
corresponding derived stack Spec(A) is a sheaf with values in spaces. Thus, for a
(possibly non discrete) animated ring B the space HomAni(A,B) need not to be discrete,
e.g. HomAni(Z[X], B) ' Ω∞B. But for example if we restrict ourself to discrete rings
C, we have HomAni(A,C) ' Hom(Ring)(π0A,C) by adjunction, even when A is not
discrete.

4.2 Geometric stacks

In this section we closely follow [AG14] and [TV08]. In [TV08] the notion of geometric
stacks can be found in the context of model categories. Our notion agrees with the
notions presented in [TV08] (note that they speak of n-representable morphisms rather
than n-geometric) and we want to remark that the definition of geometric stacks in
[AG14] is different from ours. The main point are the 0-geometric stacks. In our
case, any scheme will be 1-geometric, whereas in [AG14] a qcqs scheme with non-affine
diagonal will not be 1-geometric. Nevertheless, as the principal of the definition is
analogous, the ideas presented in [AG14] often times agree with the ideas presented in
[TV08].

Definition 4.7. Let A be an animated ring. A derived stack over A is a sheaf of spaces
on (ARét

A)op. We denote the ∞-category of derived stacks over A by dStA. If A = Z,
we simply say derived stack and denote the ∞-category of derived stacks by dSt.

Remark 4.8. Let us remark, that this definition makes sense if we do not assume
that ARA for any animated ring A is small. The reason for this is that a priori the
full subcategory of derived stacks in P((ARét

A)op) is defined as the full subcategory of
S-local objects, where S consists of monomorphisms U ↪→ Spec(A) that come from a
covering sieve in (ARét

A)op. But if we assume smallness of ARA one sees that dSt is
a topological localization of P((ARét

A)op) (see [Lur09, Prop. 6.2.2.7]) which can come
quite handy for example in Remark 4.50, where we use [Lur09, Prop. 5.5.4.2].
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Definition 4.9 ([Lur09, §6.2.3]). Let A be an animated ring. A morphism f : X →
Y in dStA is an effective epimorphism if the natural map colim∆ Č(X/Y )• → Y in
P((ARét

A)op) is an equivalence in dStA after sheafifcation20.

Remark 4.10 (Effective epimorphisms). Let f : Spec(B) → Spec(A) be a morphism
of affine derived schemes. By [Lur09, Prop. 7.2.1.14] the map f is an effective epi-
morphism in dSt if and only if its 0-truncation, in the sense of [Lur09, §5.5.6], is
an effective epimorphism. Up to homotopy τ≤0 Spec(A) is given by the sheafification
of π0 HomAni(A,−) (see [Lur09, Prop. 5.5.6.28] together with Remark 4.8). Thus
f is an effective epimorphism if and only if the sheafification of the induced map
π0f : π0 Hom(B,−) → π0 Hom(A,−) is an epimorphism (note that a priori [Lur09,
Prop. 7.2.1.14] tells us that π0f

∼ needs to be an effective epimorphism but in a 1-
topos every epimorphism is effective (see [MLM94, IV 7. Thm. 8])).

We will see in Remark 4.35 that the restriction of an affine derived scheme Spec(A)
onto (Ring) preserves limits and colimits. In particular, any effective epimorphism of
affine derived schemes Spec(A) → Spec(B) induces by adjunction an epimorphism of
étale sheaves of sets Hom(Ring)(π0A,−) → Hom(Ring)(π0B,−), which in turn implies
that the morphism of the underlying topological spaces of affine schemes, denoted by
|Spec(π0A)cl| → |Spec(π0B)cl|, is surjective. So for example if B → A is flat, then the
effective surjectivity implies that it is in fact faithfully flat.

Definition 4.11 ([TV08, Def. 1.3.3.1]). We will define a geometric morphism induc-
tively.

(1) A derived stack is (−1)-geometric or affine if it is equivalent to an affine derived
scheme.

A morphism of derived stacks X → Y is (−1)-geometric or affine if for all affine
schemes Spec(A) and all Spec(A)→ Y the base change X ×Y Spec(A) is affine.

A (−1)-geometric morphism of derived stacks X → Y is smooth (resp. étale) if
for all affine derived schemes Spec(A) and all morphisms Spec(A)→ Y the base
change morphism Spec(B) ' X ×Y Spec(A)→ Spec(A) corresponds to a smooth
(resp. étale) morphism of animated rings.

Now let n ≥ 0.

(2) An n-atlas of a derived stack X is a family (Spec(Ai) → X)i∈I of morphisms of
derived stacks, such that

(a) each Spec(Ai)→ X is (n− 1)-geometric and smooth, and

(b) the induced morphism
∐

Spec(Ai)→ X is an effective epimorphism.

If each of the morphisms Spec(Ai)→ X is étale, then we call the n-atlas étale.

A derived stack is called n-geometric (resp. n-DM ), if

20We can describe dStA as a localization of P(ARop
A ) (see [Lur09, §6.2.2]), so we get a functor

L : P(ARop
A )→ dStA left adjoint to the inclusion, which we denote as sheafification.
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(a) it has an n-atlas (resp. étale n-atlas), and

(b) the diagonal X
∆−→ X ×X is (n− 1)-geometric.

(3) A morphism X → Y of derived stacks is called n-geometric (resp. n-DM ) if
for all affine derived scheme Spec(A) and all morphisms Spec(A) → Y the base
change X ×Y Spec(A) is n-geometric (resp. n-DM ).

An n-geometric morphism X → Y of derived stacks is called smooth, if for
all affine derived scheme Spec(A) and all morphisms Spec(A) → Y the base
change X ×Y Spec(A) has an n-atlas given by a family of affine derived schemes
(Spec(Ai))i∈I , such that the induced morphism A→ Ai is smooth.

An n-DM morphismX → Y of derived stacks is called étale, if for all affine derived
scheme Spec(A) and all morphisms Spec(A)→ Y the base change X ×Y Spec(A)
has an étale n-atlas given by a family of affine derived schemes (Spec(Ai))i∈I ,
such that the induced morphism A→ Ai is étale.

We call a morphism of derived stacks geometric (resp. DM ) if it is n-geometric (resp.
n-DM) for some n ≥ −1.

Remark 4.12. From this definition one can see that an n-geometric morphism of
derived stacks is automatically (n+ 1)-geometric.

Definition 4.13. Let P be a property of affine derived schemes that is stable under
equivalences, pullbacks, compositions and is smooth-local on the source and target,
then we say a morphism of derived stacks X → Y has P if it is geometric and for an
affine (n− 1)-atlas (Ui)i∈I of the pullback along an affine derived scheme Spec(B) the
corresponding morphism Ui → Spec(B) of affine schemes has P.

Lemma 4.14. The properties “locally of finite presentation”, “flat” and “smooth” of
morphisms of affine derived schemes satisfy the conditions of Definition 4.13.

Proof. For flat and smooth this follows from the definition (note that on π0 this follows
from classical theory and since smooth covers are in particular flat and on π0 faithfully
flat, we see that the compatibility of the higher homotopy groups in the definition of
smooth and flat morphisms is also clear).

For locally of finite presentation, we use Proposition 3.57 and the fact that on π0 this
follows from classical theory and that perfectness of modules can be checked fpqc-locally
(we will see this in Remark 4.53).

Our definition above differs from the theory developed in [TV08], where they assume
the property to be étale-locally on the source and base. This would include the property
étale but makes no sense for geometric stacks, since this would imply that a morphism
of affine derived schemes is étale if and only if it is smooth locally étale but the next
remark shows that this can not hold. We assume that there was a mixup in [TV08],
since if one looks at later proofs where the condition étale is used one needs a stronger
condition than geometric. This is not surprising, since this problem occurs even in
the classical theory for Artin stacks. One can solve this for example by assuming that
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étale morphisms are always DM in the sense that after base change to an affine the
resulting stack is actually a DM-stack, i.e. has an étale cover by schemes. We did this
analogously but want to mention that this is only done for completion and is not used
later on in any of the proofs.

Remark 4.15. We want to remark that the property étale is not smooth local on the
base, since if it would be smooth local in our context, then it would be smooth local in
classical theory of schemes which it is not.

Definition 4.16. A morphism of derived stacks is called étale if it is DM and étale.

Definition 4.17. A morphism of derived stacks X → Y is

1. an open immersion if it is a flat, locally of finitely presentation and a monomor-
phism, where flat is in the sense of Definition 4.13 and monomorphism means
(−1)-truncated in the sense of [Lur09], i.e. the homotopy fibers of X → Y are
either empty or contractible.

2. a closed immersion if it is affine and for any Spec(B) → Y the corresponding
morphism X×Y Spec(B) ' Spec(C)→ Spec(B) induces a surjection π0B → π0C
of rings.

Definition 4.18. A morphism f : X → Y of derived stacks is a locally closed immersion
if for all affine derived schemes Spec(A) and all morphisms Spec(A) → Y the base
change morphism X ×Y Spec(A) → Spec(A) factors as a closed immersion follows by
an open immersion.

Remark 4.19. The definition of a closed immersion does not impose any monomor-
phism condition. This makes sense, since we will see that a monomorphism auto-
matically has vanishing cotangent complex (see Lemma 4.64) and in particular, any
closed immersion which is on t0 of finite presentation and a monomorphism will be
étale (this can proven analogously to [TV08, Cor. 2.2.5.6]). But as many naturally
arising closed immersions are not étale, e.g. any regular immersion with non-vanishing
cotangent complex, the above definition seems to be the one suited for the world of
derived algebraic geometry.

Let us give an important example of an open immersion of derived stacks.

Lemma 4.20. Let A be an animated R-algebra and let f ∈ π0A be an element. The
inclusion j : Spec(A[f−1]) ↪→ Spec(A) is an open immersion.

Proof. The proof is given in [Kha18, Lec. 3 Lem. 4.2]. But for the convenience of the
reader, we recall the proof.

We have to check that j is a monomorphism, which is flat and locally of finite
presentation. Locally of finite presentation follows from Lemma 3.19. Flatness, i.e.
π0A[f−1] ⊗π0A πiA ' πiA[f−1] follows from πi(A[f−1]) = πi(A)[f−1]. To see that it
is a monomorphism, we have to show that the homotopy fibers of Hom(A[f−1], B) →
Hom(A,B) for any B ∈ ARR are either empty or contractible. But this follows from
the general property of localization (see Lemma 3.13).
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Definition 4.21. A derived stack is called separated if the diagonal is a closed immer-
sion.

Definition 4.22. A derived stack X is quasi-compact if there exists an n-atlas consist-
ing of a single affine. A morphism f : X → Y of derived stacks is quasi-compact if for
all affine derived schemes Spec(A) and all morphisms Spec(A) → Y the base change
X ×Y Spec(A) is quasi-compact.

Remark 4.23. Since affine schemes are separated, we see that affine derived schemes
are also separated (note that the diagonal of an affine scheme is representable and that
we only have to check that the corresponding ring morphism on π0 is surjective, which
follows from classical theory).

Definition 4.24. A derived stack X is locally geometric if we can write X as the
filtered colimit of geometric derived stacks Xi, with open immersions Xi ↪→ X.

We say that locally geometric stack X ' colimi∈I Xi is locally of finite presentation
if each Xi is locally of finite presentation.

Definition and Proposition 4.25. For a morphism of derived stacks f : X → Y , we
define Im(f) as an epi-mono factorisation X � Im(f) ↪→ Y of f (here “epi” means
“effective epimorphism”). This factorisation is unique up to homotopy.

Proof. The existence of such a factorisation follows from [Lur09, Ex. 5.2.8.16]. The
uniqueness up to homotopy follows from [Lur09, 5.2.8.17]

Remark 4.26. In the reference used in the above proof one shows that the image
of a morphism f : X → Y is equivalent to the (−1)-truncation of f , which in turn is
equivalent to the colimit of the Čech nerve of f (see [Lur09, Cor. 6.2.3.5] and note that
per definition 0-connective morphisms are effective epimorphisms, see. [Lur09, Def.
6.5.1.10]).

The following lemmas are clear from the definitions and may seem unnecessary
complicated but will enable us to give another definition of open immersion, which
shows that we won’t have to deal with geometricity of open immersions.

Lemma 4.27. Let ι : U ↪→ Spec(A) be a monomorphism of derived stacks. Then U
has an affine diagonal.

Proof. Since ι is a monomorphism, we see that the diagonal of ι is an equivalence and
hence we conclude.

Lemma 4.28. Let (Ai)i∈I be a family of animated B-algebras having the property
P, where P is as in Definition 4.13. Let U denote the image of the natural map∐
i∈I Spec(Ai)→ Spec(B) and assume that the base change of Spec(Ai)→ U with any

derived affine scheme and any morphism Spec(C)→ U is smooth (note that this makes
sense by Lemma 4.27) and has property P. Then the

∐
i∈I Spec(Ai) is a 0-atlas for U ,

via the natural map and in particular U ↪→ Spec(B) is 0-geometric and has property
P.
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Proof. This follows from the definitions.

Lemma 4.29. Let U ↪→ X be a monomorphism of derived stacks and let P be a
property as in Definition 4.13. Assume the base change with any Spec(A) → X has a
cover by a disjoint union of affine derived schemes over A such that the conditions of
Lemma 4.28 are satisfied. Then U ↪→ X is 0-geometric and has property P.

Proof. This follows from Lemma 4.28.

Lemma 4.30. Let ι : U ↪→ X be a geometric monomorphism of derived stacks. Then
ι is 0-geometric.

Proof. This follows from Lemma 4.29.

Remark 4.31. Lemma 4.30 implies for example that open immersions and locally
closed immersions are automatically 0-geometric.

Lemma 4.32. A morphism U → X of derived stacks is an open immersion if and only
if for any Spec(A) → X the base change is a monomorphism and there is an effective
epimorphism

∐
i∈I Spec(Ai) → Spec(A) ×X U such that each Spec(Ai) → Spec(A) is

an open immersion.

Proof. This follows from Lemma 4.29.

We can also define derived versions of schemes with the notion of open immersions.

Definition 4.33. Let X be a derived stack. Then X is a derived scheme if it admits
a cover (Spec(Ai) ↪→ X)i∈I such that each Spec(Ai) ↪→ X is an open immersion (in
particular X is 1-geometric).

Remark 4.34. If we have a morphism
∐
i∈I Ui → X of derived stacks where each Ui

is an open immersion, we sometimes write
⋃
i∈I Ui for its image.

If X → Y is a morphism of derived stacks, where the diagonal of Y is representable
and X is a derived scheme, then the image of X → Y is a derived scheme.

If
∐
i∈I Spec(Ai) → X is a morphism of derived stacks, where X has representable

diagonal and Spec(Ai) are affine open in X, then
⋃
i∈I Spec(Ai) is an open substack of

X.

Remark and Definition 4.35 (Truncation). We give a quick summary of [TV08,
§2.2.4].

Let A be the model category of simplicial commutative R-algebras, as explained in
section 3.1. The inclusion (R-Alg) ↪→ A has a left adjoint π0 : A → (R-Alg). This
is a Quillen adjunction for the trivial model structure on (R-Alg). This induces an

adjunction π0 : ARR (R-Alg) : i . We therefore get adjunctions

i! : P((R-Alg)op) P(ARop
R ) : i∗ : P(ARop

R ) P((R-Alg)op) : π∗0

(here i∗ (resp. π∗0) is defined as the restriction of a presheaf and P(C) denotes the
∞-category of presheaves of spaces on C and i! is given by left Kan extension). The
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inclusion (R-Alg) ↪→ A induces an equivalence to the discrete animated R-algebras
and thus the restriction preserves i∗ preserves sheaves and thus composing i! with the
sheafification, we get the adjunction

i! : Shvét((R-Alg)) Shvét(ARR) : i∗ : Shvét(ARR) Shvét((R-Alg)) : π∗0.

For convenience later on, we define t0 := i∗ and ι := i!. Note, that by general theory of
Kan extensions, the functor ι is indeed fully faithful (see [Lur09, §4.3.2]).

For a derived scheme X ∈ Shv(ARR)ét, we denote its image under t0 with Xcl

and call it the underlying classical scheme. Note that t0(Spec(A)) ' Spec(π0A)cl and
ι(Spec(π0A)cl) ' Spec(π0A) (by adjunction and the fact that any morphism from an
animated ring to a discrete ring is characterized by the corresponding morphisms on
discrete rings). Also by adjunction being an effective epimorphism is preserved under
t0. So if

∐
i∈I Spec(Ai) is a Zariski atlas of X, we see that

∐
i∈I Spec(π0Ai)cl is a cover

of Xcl and thus Xcl has values in discrete spaces, i.e. sets (note that étale locally any
morphism Spec(B) → Xcl factors through

∐
i∈I Spec(π0Ai)cl, in particular the points

of Xcl can be computed by the points of its atlas, which are discrete). Hence, Xcl

recovers the classical notion of a scheme.
Let us state a few interesting properties of t0 and i.

1. The functor t0 has a right and left adjoint (see above),

2. the functor t0 preserves geometricity (here geometricity of sheaves in (R-Alg) is
defined similarly to derived stacks, see [TV08, §2.1.1] for further information) and
the properties flat, smooth and étale along geometric morphisms,

3. the functor ι preserves geometricity, homotopy pullbacks of n-geometric stacks
along flat morphisms and sends flat (resp. smooth, étale) morphisms of n-
geometric stacks to flat (resp. smooth, étale) morphisms of n-geometric stacks,

4. if X ∈ Shv((R-Alg))ét is n-geometric and X ′ → ι(X) is a flat morphism, then X ′

is the image of an n-geometric stack under ι.

A proof for these statements is given in [TV08, Prop. 2.2.4.4].

We list some properties of geometric morphisms of derived stacks.

Lemma 4.36. Let X → Z and Y → Z be morphisms of derived stacks. If X → Z is
n-geometric, then so is X ×Z Y → Y .

Proof. This follows immediately from the definition.

Lemma 4.37. A morphism of derived stacks X → Y is n-geometric if and only if the
base change under Spec(A)→ Y for any A ∈ ARR is n-geometric.

Proof. This follows immediately from the definitions.

Lemma 4.38. Let f : X → Y and g : Y → Z be morphisms of derived stacks. If f and
g are n-geometric, then so is g ◦ f .
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Proof. The proof is straightforward using induction on n (see [TV08, Prop. 1.3.3.3
(3)]).

Proposition 4.39. Let f : X → Y be a morphism of derived stacks. Assume X is
n-geometric and the diagonal Y → Y × Y is n-geometric. Then f is n-geometric.

Proof. This is analogous to [AG14, Lem. 4.30].
Let

∐
i∈I Spec(Ai) � X be an n-atlas. Consider a morphism Spec(A) → Y , where

A is an animated ring. Then we have a morphism
∐
i∈I Spec(Ai) ×Y Spec(A) →∐

i∈I Spec(Ai ⊗ A), which is n-geometric, since it is the base change of the diago-
nal under

∐
i∈I Spec(Ai⊗A). Therefore

∐
i∈I Spec(Ai)×Y Spec(A) has an n-atlas, say

given by (Spec(Bj)→
∐
i∈I Spec(Ai)×Y Spec(A))j∈J and by Lemma 4.38, we see that

(Spec(Bj) → X ×Y Spec(A))j∈J is an n-atlas. This finishes the proof, but to make
things clear, we finally get following diagram with pullback squares∐

j∈J Spec(Bj)
∐

Spec(Ai ⊗A)

∐
i∈I Spec(Ai)×Y Spec(A) X ×Y Spec(A) Spec(A)

∐
Ai X Y.

n-atlas

n-geom.

n-atlas

Corollary 4.40. Let X and Y be n-geometric stacks. Then any morphism X → Y is
n-geometric.

Proof. This follows immediately from the definitions and Proposition 4.39

Proposition 4.41. Let X → Y be an effective epimorphism of derived stacks and
suppose that X and X ×Y X are n-geometric. Further, assume that the projections
X ×Y X → X are n-geometric and smooth. Then Y is an (n + 1)-geometric stack. If
in addition X is quasi-compact and X → Y is a quasi-compact morphism, then Y is
quasi-compact. Finally if X is locally of finite presentation, then so is Y .

Proof. This is analogous to [AG14, Lem. 4.29].
Let

∐
i∈I Spec(Ai) � X be an n-atlas. Consider the following diagram with pullback

squares

Spec(Ai)×Y Spec(Aj) X ×Y Spec(Aj) Spec(Aj)

Spec(Ai)×Y X X ×Y X X

Spec(Ai) X Y.
f
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It suffices to show that
∐
i∈I Spec(Ai) → X → Y is an (n + 1)-atlas. Since the pro-

jections X ×Y X → X and Spec(Ai) → X are n-geometric smooth, we will see that
Spec(Ai)→ X → Y is n-geometric smooth, proving our claim.

Indeed, let Spec(C)→ Y be a morphism from an affine derived scheme. Consider the
base change

∐
j∈I Spec(Aj)×Y Spec(C) � Spec(C), which is an effective epimorphism.

In particular, we can find an étale covering Spec(C̃)→ Spec(C), which factors through∐
j∈I Spec(Aj)×Y Spec(C). To show that Spec(Ai)×Y Spec(C) has an n-atlas, it suffices

to check that the base change with C̃ has an n-atlas (see [TV08, Prop. 1.3.3.4]). Now
let us look at the following diagram with pullback squares

Z W Spec(C̃)

∐
j∈I Spec(Ai)×Y Spec(Aj)×Y C

∐
j∈I X ×Y Spec(Aj)×Y C

∐
j∈I Spec(Aj)×Y C

C ×Y Spec(Ai) C ×Y X C

Spec(Ai) X Y.

f ′ f

g′

h l

g

Since g ◦ f is affine étale effective epimorphism, we know that g′ ◦ f ′ is affine étale
effective epimorphism. Since the projections are n-geometric smooth and by the above
the projection Spec(Ai) ×Y Spec(Aj) → Spec(Ai) is n-geometric smooth, we see that
l ◦ h is n-geometric smooth. Therefore, Z has an n-atlas and since g ◦ f ′ is affine étale,
we see that the n-atlas of Z gives an n-atlas of Spec(Ai)×Y Spec(C).

The rest of the statement follows immediately by the definitions.

We conclude this section with an important remark. This remark shows, for an
animated ring A, how open subschemes of Spec(π0A)cl can be lifted to derived open
subschemes of Spec(A). In particular, when we want to show that an inclusion of
derived stacks is an open immersion, it suffices to show that it is an open immersion
after applying t0.

Remark 4.42 (Lifting opens along affines). Let A be an animated ring. Assume we
have an open subscheme U ↪→ Spec(π0A)cl of an affine scheme. Let (Spec(π0Afi)cl →
U)i∈I be an affine open cover by basis elements. Certainly, we can lift this open cover to
an open subscheme V := Im(

∐
i∈I Spec(A[f−1

i ])), where the image is taken in Spec(A).
Let B be a animated A-algebra with structure morphism w : Spec(B) → Spec(A).
Then w factors through an u : Spec(B) → V , i.e. u ∈ V (B), if and only if there is an
étale cover (B → Bj)j∈J such that for every j there is an i with π0wj(fi) invertible,
where wj is the composition of w with the natural map B → Bj .

To see this, assume we have a map u : Spec(B) → V of derived A-schemes. Then
base change with the affine open cover of V gives an affine open

∐
i∈I Spec(Bi) cover

of Spec(B) that maps to
∐
i∈I Spec(A[f−1

i ]) via projection (note that V is an open
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subscheme of an affine scheme and thus separated, so in particular the diagonal of V is
affine). The projection

∐
i∈I Spec(Bi)→

∐
i∈I Spec(A[f−1

i ]) is induced by the termwise
projections (note that coproducts in ∞-topoi are universal). Thus, by the universal
property of localization, we see that π0wi(fi) is invertible in π0Bi.

Now assume there is an étale cover (Spec(Bj)→ Spec(B))j∈J such that for every j
there is an i with Spec(Bj)→ Spec(A[f−1

i ]). In particular, we get a map Spec(Bj)→∐
i∈I Spec(A[f−1

i ]) and by taking coproducts and fiber products, we get a map

Spec(B) ' colim
∆

(Č(
∐
j∈J

Spec(Bj)/B)•)→
∐
i∈I

Spec(A[f−1
i ])→ V.

4.3 Quasi-coherent modules over derived stacks

In this section we will shortly look at quasi-coherent modules over derived stacks. We
show that they behave as “expected”. Namely, quasi-coherent modules over derived
stacks still satisfy descent21. We also have pullback and pushforward functors that are
adjoint to another. Further, we show that the ∞-category of quasi-coherent modules
(in the derived sense) over a (classical) scheme X is equivalent to Dqc(X).

We will closely follow [GR17, §I.3], [Lur04] and [Kha18] and generalize some results
following their ideas.

Definition 4.43. Let X be a presheaf on ARop
R , we define the ∞-category of quasi-

coherent modules over X to be

QCoh(X) := lim
Spec(A)→X

ModA .

An element F ∈ QCoh(X) is called quasi-coherent module over X or OX-module. For
any affine derived scheme Spec(A) and any morphism f : Spec(A)→ X, we denote the
image of a quasi-coherent module F under the projection QCoh(X) → ModA, with
f∗F .

We define the ∞-category of perfect quasi-coherent modules over X to be

QCohperf(X) := lim
Spec(A)→X

Modperf
A .

We say that a perfect quasi-coherent module F over X has Tor-amplitude in [a, b] if for
every derived affine scheme Spec(A) and any morphism f : Spec(A)→ X the A-module
f∗F has Tor-amplitude in [a, b].

Remark 4.44. We see that that by definition QCoh(−) (resp. QCohperf(−)) is a

right Kan extension of Mod− : ARR → Cat∞ (resp. Modperf
− : ARR → Cat∞) onto

P(ARop
R )op along the Yoneda emebdding.

A priori Mod− is a functor from animated rings to the∞-category of not necessarily
small ∞-categories. But for the purpose of this article if we talk about the right Kan
extension along the Yoneda embedding to presheaves on ARZ, we assume smallness of
the module categories.

21We will make this explicit later on, as we did not define Grothendieck topologies on derived stacks.
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Remark 4.45. Note that limits preserve monomorphisms in Cat∞ (as this∞-category
has limits). Therefore, if F,G : ARR → Cat∞ are functors and α : F → G is a natural
transformation such that α(A) is a monomorphism for all A ∈ ARR, we see that for the
induced morphism Rα on the right Kan extensions RF resp. RG of F resp. G under
the Yoneda embedding ARR ↪→ P(ARop

R )op the evaluation on some X ∈ P(ARop
R )op

yields a monomorphism Rα(X) : RF (X) ↪→ RG(X).
This can be applied to see that for example for all ∈ P(ARop

R )op, we have that
the natural morphism QCohperf(X) → QCoh(X) is fully faithful and we can see
QCohperf(X) as a full subcategory of QCoh(X).

Lemma 4.46. Let C be the limit of stable ∞-categories Ck indexed by some simplicial
set K with finite limit preserving transition maps, then C is stable.

Proof. Since Ck have finite limits, we know that C has finite limits. Then the spectrum
of C is stable by [Lur17, Cor. 1.4.2.17], but by [Lur17, Rem. 1.4.2.25], we know that

Sp(C) itself is a limit of the tower · · · → C∗
Ω−→ C∗. In particular, we have

Sp(C) ' Sp(lim
K
C•) ' lim

K
Sp(C•) ' lim

K
C• ' C,

where we use [Lur17, Prop. 1.4.2.21] for the second to last equivalence.

Remark 4.47. By Lemma 4.46, we know that for any X ∈ P(ARop
R ) the ∞-category

QCoh(X) is stable, since it is the limit of stable ∞-categories and the transition maps
are given by base change (the base change functor preserves fiber sequences, as they
are equivalently cofiber sequences, and finite products, that are equivalent to finite
coproducts).

The following proposition is a generalization of [GR17, §I.3 Cor. 1.3.11] but we can
follow the idea of the proof.

Proposition 4.48. Let C be a presentable ∞-category and let F : ARR → C be a
(hypercomplete) sheaf with respect to the Grothendieck topology τ ∈ {fpqc, étale} on
ARR. Let RF denote the right Kan extension of F along the Yoneda embedding ARR ↪→
P(ARop

R )op. Further let us denote the corresponding ∞-topos of (hypercomplete) τ -
sheaves on ARR with Shvτ . Then for any diagram p : K → P(ARop

R ), where K is
a simplicial set, and morphism colimK Xk → Y that becomes an equivalence in Shvτ
after sheafification22, we have that the natural map RF (Y ) → limK RF (Xk) is an
equivalence.

Proof. First, let us note that since C is presentable, we can find a small subcategory
C′ ⊆ C such that C is a localization of P(C′) (see [Lur09, Thm. 5.5.1.1]). In particular,
the elements RF (Y ) and limK RF (Xk) may be regarded as functors from C′ to S and
the natural morphism is an equivalence if and only if it is an equivalence after composing
with the evaluation for every c ∈ C′ (see [Lur21, 01DK]). We note that the inclusion
of C into P(C′) preserves limits and since the evaluation of a functor G ∈ P(C′) at c is

22Recall20 that we can describe Shvτ as a localization of P(ARop
R ) (as seen in the proof), so we get

a functor L : P(ARop
R )→ Shvτ left adjoint to the inclusion, which we call sheafification.
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equivalent to HomP(C′)(j(c), G), where j : C′ ↪→ P(C′) denotes the Yoneda embedding
(see [Lur09, Lem. 5.5.2.1]), we see that also the evaluation preserves limits. So it is
enough to check that for every c ∈ C′, the morphism RF (Y )(c)→ lim∆(RF (Xk)(c)) is
an equivalence. In particular, we may replace F by HomP(C′)(j(c),−)◦F for any c ∈ C′
and so without loss of generality, we may assume that C ' S.

We will first discuss the case of τ -sheaves. By definition of the∞-category Shvτ , we
know that all τ -sheaves are S-local, where S is the collection of those monomorphism
U ↪→ Spec(A), where A ∈ ARR, such that it defines a τ -covering sieve (see [Lur09,
§6.2.2] for details). This in particular defines a localization functor L : P(ARR) →
P(ARR) with essential image given by Shvτ . Using [Lur09, Prop. 5.5.4.2], we see that
any equivalence in Shvτ is local, i.e. any morphism f : U → V in P(ARR) such that
Lf is an equivalence and any Q ∈ Shvτ we have that the natural morphism

HomP(ARR)(V,Q)→ HomP(ARR)(U,Q)

is an equivalence. In particular, in our situation, we have that

HomP(ARR)(Y,Q)→ HomP(ARR)(colim
K

Xk, Q) ' lim
K

HomP(ARR)(Xk, Q)

is an equivalence (note that the colimit in the second Hom is taken in the ∞-category
P(ARR), whereas for Y ' colimK Xk colimit is taken in Shvτ which do not agree in
general since the inclusion Shvτ ↪→ P(ARR) does not preserve colimits in general).

Since F is a sheaf with respect to the topology τ , we therefore have

HomP(ARR)(Y, F ) ' lim
K

HomP(ARR)(Xk, F ).

Since we can write any presheaf on ARR as a colimit of representable ones (see [Lur09,
Lem. 5.1.5.3]) and the Yoneda lemma [Lur09, Lem. 5.5.2.1], we finally have the equiv-
alence

RF (Y )
∼−→ lim

K
RF (Xk).

The case of hypercomplete τ -sheaves is completely analogous, noting that the ∞-
topos of hypercomplete τ -sheaves can be realized as a localization of P(ARR) with
respect to hypercovers (see [Lur09, Cor. 6.5.3.13]).

Definition 4.49. Let C be a presentable ∞-category and let τ be the fpqc or étale
topology on ARR. A functor F : P(ARop

R )op → C is a (hypercomplete) sheaf or satisfies
τ -descent if for any effective epimorphism X → Y (resp. a hypercover X• → Y ), we
have

RF (Y ) ' lim
∆
RF (Č(X/Y )•) (resp. RF (Y ) ' lim

∆s

RF (X•)).

Remark 4.50. In the setting of Proposition 4.48, we see that if F is a (hypercomplete)
sheaf, then so is its right Kan extension RF .

Remark 4.51. An important example of a presentable ∞-category is the ∞-category
Cat∞ of small∞-categories. Presentability of this∞-category follows from the fact that
it is the∞-category of a combinatorial simplicial model category (marked simplicial sets
with the model structure of [Lur09, Prop. 3.1.5.2]), which are precisely the presentable
∞-categories ( [Lur09, Prop. A.3.7.6]).
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Proposition 4.52. Let C be a presentable ∞-category and let F : ARR → C be an
étale sheaf. Let RF denote a right Kan extension of F along the Yoneda embedding
ARR ↪→ P(ARR)op. Then for any derived scheme X over R, the natural morphism

RF (X)→ lim
U↪→X

affine open

F (U)

is an equivalence.

Proof. This lemma is a generalization of [Kha18, Lec. 1 Prop. 3.5] but can be proven
the same. For the convenience of the reader, we give a proof.

Let X be derived scheme and Y :=
∐
i∈I Spec(Ai) → X be a Zariski atlas. By

Remark 4.50 we have
RF (X) ' lim

∆
RF (Č(Y/X)•).

For any affine open U ↪→ X let YU :=
∐
i∈I U ×X Spec(Ai) → U be the induced cover

on U . Thus the question reduces to showing the equivalence

RF (Č(Y/X)n)→ lim
U↪→X

affine open

RF (Č(YU/U)n),

for all [n] ∈ ∆. By cofinality, we may replace X in the limit argument by Č(Y/X)n for
any n.

To see this, note that for every affine open U ↪→ Č(X/Y )n, we get a morphism
U → U ×X U ' Č(Y/X)n ×X U ×Č(Y/X)n

U ' Č(YU/U)n ×Č(Y/X)n
U → Č(YU/U).

Thus
lim

U↪→Č(Y/X)n
affine open

RF (U) ' lim
U↪→X

affine open

RF (Č(YU/U)n).

Assume the pairwise intersection of the Spec(Ai) is affines, then X is affine and the
question is trivial. Now assume the pairwise intersection is not affine then it is open in
an affine scheme and thus separated. Thus they admit Zariski covers, where each of the
pairwise intersection is affine. Repeating the whole process concludes the proof.

Remark 4.53. Let us remark that the functors A 7→ ModA and A 7→ Modperf
A are

hypercomplete sheaves for the fpqc topology. The first assertion follows by [Lur18,
Cor. D.6.3.3]. The second assertion is clear since modules satisfy flat hyperdescent and
since perfect modules are precisely the dualizable ones (see [Lur17, Prop. 7.2.2.4]), we
can construct a dual fpqc locally (see [Lur17, Prop. 4.6.1.11]) - see the proof [AG14,
Lem. 5.4] for a more detailed explanation.

Remark 4.54. Using the definition of the functors QCoh and QCohperf , we see with
Remark 4.53 and Remark 4.50 that these functors satisfy descent in the sense that for
any effective epimorphism of derived stacks X � Y , we have

QCoh(Y ) ' lim
∆

QCoh(Č(X/Y )•) resp. QCohperf(Y ) ' lim
∆

QCohperf(Č(X/Y )•).
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Remark 4.55. Using Remark 4.44 and Proposition 4.52, we see that a quasi-coherent
module over a derived scheme is given by a compatible family of modules (FA)A for
every affine open Spec(A) ↪→ X.

Remark 4.56. Let us recall the derived direct and inverse image. For a morphism
of animated rings Spec(B) → Spec(A), we get a forgetful functor ModB → ModA
(this follows from [Lur17, 4.6.2.17]). This functor is right adjoint to the tensor product
B⊗A−. We can globalize this to the case where we replace the domain by an arbitrary
derived stack X. Namely, any quasi-coherent module F over X is determined by its
underlying C-module ι∗F , for ι : Spec(C)→ X. Since C is naturally an A-algebra, we
can forget the C-structure and view F as a limit in ModA. The tensor product with
each such C also induces a functor from A-modules to quasi-coherent X-modules. We
can also globalize this construction on the base for a geometric morphism of derived
stacks, i.e. if f : X → S is a geometric morphism of derived stacks, we get an adjunction

f∗ : QCoh(S) QCoh(X) : f∗,

note here that the right adjoint comes formally from the fact that the pullback by
construction commutes with colimits. If one adds assumptions to f , then we can say
more about the pushforward but we will not do this here and refer to [Lur04, §5.5]
since it is not of interest for us.

If we work with classical schemes, we will write Lf∗ and Rf∗ to differentiate between
the classical notions.

Proposition 4.57. Let X be a scheme. Then we have an equivalence of ∞-categories
Dqc(X) ' QCoh(X), where Dqc(X) denoted the derived ∞-category of OX-modules
with quasi-coherent cohomologies.

Proof. This is shown in the spectral setting in [Lur18] and can be followed in our setting
from Lurie’s PhD thesis [Lur04]. For convenience of the reader we will show how to
conclude this proposition as a consequence of both references.

A schemeX is per definition a locally ringed space (X,OX). We letX ′ := Shv(Sets)(X)
denote the Grothendieck topos associated to the small Zariski-site of X. The sheaf of
rings OX can be viewed as a ring object of X ′. So in particular, the tuple (X ′,OX)
defines a locally ringed topos. We write X for the 1-localic ∞-topos assocaited to X ′

(which exists by [Lur09, Prop. 6.4.5.7]). As explained in [Lur18, Rem. 1.4.1.5], we can
view OX as a sheaf of connective 0-truncated E∞-rings (which are just commutative
rings) on X , which we denote by OX and hence get a spectrally ringed space (X ,OX ),
which is local (we refer to [Lur18, §I.1.1] for the definitions).

Since OX takes values in commutative rings, we can also view it as a sheaf on X , with
values in animated rings. Therefore (X ,OX ) defines a spectral scheme resp. a derived
scheme in the sense of [Lur18, §I.1] resp. [Lur04]. Note that also the definition of an
OX -module agrees in both references, i.e. in both references, we see an OX -module as
an OX -module object in ShvSp(X ), where OX is naturally seen as a sheaf with values
in spectra.

By [Lur04, Thm. 4.6.5], we have an equivalence of QCoh(X) and ∞-categories of
sheaf OX -modules M on X such that
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1. πiM (which is defined as the sheafification of the presheaf V 7→ πiM(V )) is a
quasi-coherent sheaf on the underlying Deligne-Mumford stack of (X ,OX ), and

2. the underlying sheaf of spaces of M is a hypersheaf (as explained above M can be
seen as a sheaf on X with values in Sp, i.e. a limit preserving functor M : X op →
Sp, and composing with Ω∞ : Sp → S defines the underlying sheaf of spaces of
M).

Using [Lur18, Prop. 2.2.6.1], we see that QCoh(X) is equivalent to the ∞-category of
quasi-coherent sheaves on the spectral Deligne-Mumford stack (X ,OX ). Now [Lur18,
Cor. 2.2.6.2] shows that indeed the derived ∞-category of OX -modules with quasi-
coherent cohomology is equivalent to QCoh(X).

4.4 The cotangent complex of a derived stack

This section is derived from [TV08, §1.4],[AG14, §4.2], [Kha18, Lecture 5].
In this section, we will globalize the results of Section 3.3 and 3.4 to geometric

morphisms of derived stacks. For this, we will define a global version of the cotangent
complex and list properties. Most importantly, we will show that any n-geometric
morphism has a cotangent complex and that smooth morphisms are characterized by
the cotangent complex. Further, we will use the results to show that geometric stacks
are automatically hypercomplete sheaves for the étale topology.

We let R be a ring and assume every derived stack is a derived stack over R.
Let f : X → Y be morphism of derived stacks. Let x : Spec(A)→ X be an A-point,

where A is an animated R-algebra. Let M ∈ Modcn
A and let us look at the commutative

square

X(A⊕M) X(A)

Y (A⊕M) Y (A),

f

where the vertical arrow are given by the canonical projection A⊕M → A. We set the
dervations at the point x as

Derx(X/Y,M) := fibx(X(A⊕M)→ X(A)×Y (A) Y (A⊕M)),

where we see x as a point in the target via the natural map induced by Spec(A⊕M)→
Spec(A)

x−→ X
f−→ Y.

Definition 4.58 ([TV08, Def. 1.4.1.5]). Let f : X → Y be a morphism of derived
stacks. We say Lf,x ∈ ModA is a cotangent complex for f at the point x : Spec(A)→ X,
if it is (−n)-connective, for some n ≥ 0 and for all M ∈ Modcn

A there is a functorial
equivalence

HomModA(Lf,x,M) ' Derx(X/Y,M).

When such Lf,x exists, we say f admits a cotangent complex at the point x. If
there is no possibility of confusion, we also write LX/Y,x for Lf,x. We also write LX if
Y ' Spec(R).
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Definition 4.59. Let f : X → Y be a morphism of derived stacks. We say that
Lf ∈ QCoh(X) is a cotangent complex for f if for all points x : Spec(A) → X the
A-module x∗Lf is a cotangent complex for f at the point x.

If Lf exists, we say that f admits a cotangent complex. We will write Lf,x instead
of x∗Lf if f admits a cotangent complex.

If Y ' Spec(R) and Lf exists, we say that X admits an absolute cotangent complex.

Remark 4.60. By Lemma 3.37, the cotangent complex, for any morphism of derived
stacks, is unique up to homotopy.

Remark 4.61. Note that any morphism of affine derived schemes f : Spec(B) →
Spec(A) admits a cotangent complex. For any point x : Spec(C)→ Spec(B), we have
LSpec(B)/ Spec(A),x := LB/A ⊗B C.

Lemma 4.62. Let f : X → Y be a morphism of derived stacks.

1. If X and Y admit absolute cotangent complexes, then f admits a cotangent com-
plex and we have the following cofiber sequence for any point x : Spec(A)→ X

LY,f◦x → LX,x → Lf,x.

2. If f admits a cotangent complex, then for any morphism of derived stacks Z → Y
and any point x : Spec(A)→ X ×Y Z, we have

Lf,x ' LX×Y Z/Z,x.

3. If for any morphism x : Spec(A) → X the projection pr: X ×Y,f◦x Spec(A) →
Spec(A) admits a cotangent complex, then f admits a cotangent complex and
further we have

Lf,x ' Lpr,x.

4. If for any point x : Spec(A)→ X the stack X ×Y,f◦x Spec(A) admits a cotangent
complex, then f has a cotangent complex and we have

LSpec(A),idSpec(A)
→ LX×Y A,x → Lf,x.

Proof. The proof in the model categorical case is given in [TV08, Lem. 1.4.1.16]. But
these properties are straightforward to check.

Part 1 and 2 follow from the definitions. Part 3 follows from 2 and part 4 follows
from 1, 3 and Remark 4.61

Lemma 4.63. Let X
f−→ Y

g−→ Z be a morphism of derived stacks. Assume Y/Z admits
a cotangent complex, then X/Y admits a cotangent complex if and only if X/Z admits
a cotangent complex. Further, we obtain a cofiber sequence

f∗LY/Z → LX/Z → LX/Y

of quasi-coherent modules over X if the cotangent complexes exist.
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Proof. This is stated in [Kha18, Lec. 5 Prop. 5.7]. But anyway we will give a proof.
Let us take a point x : Spec(A) → X. Then what we impose is that we have a

cofiber sequence
LY/Z,f◦x → LX/Z,x → LX/Y,x.

By Lemma 3.37 it is enough to show that for any connective A-module M the fiber of
Derx(X/Z,M) → Derf◦x(Y/Z,M) at the trivial derivation (given by A ⊕M → A →
X → Y ) is given by Derx(X/Y,M). But this is clear.

Lemma 4.64. Let j : X ↪→ Y be a monomorphism of derived stacks over A, then j
admits a cotangent complex and Lj ' 0.

Proof. The proof is the same as in [Kha18, Lec. 5 Prop. 5.9], but for the convenience
of the reader, we recall the proof.

It suffices to show that at any point x : Spec(B)→ X the cotangent complex is zero,
i.e. the space of derivations at x is contractible. Since j is a monomorphism, i.e. its
fibers are (−1)-truncated (so either contractible or empty (see [Lur09, Def. 5.5.6.8])),
we know that the canonical map

X(B ⊕M)→ X(B)×Y (B) Y (B ⊕M)

is also a monomorphism (note that any point in the fiber of the above morphism
defines a point in the fiber of X(B ⊕M)→ Y (B ⊕M), which per definition has either
contractible or empty fibers). But the canonical map u : Spec(B⊕M)→ Spec(B)→ X
defines a derivation, so the space of derivations is nonempty and thus contractible.

Now we can easily see that the homotopy groups of the localization with respect to
one element is given by the localization of the homotopy groups.

Lemma 4.65. Let A be an animated ring and f ∈ π0A = π0 HomModA(A,A). Then
we have πi(A[f−1]) ∼= (πiA)f as π0A-modules.

Proof. From Proposition 3.13 and Lemma 3.19 it follows that the map Spec(A[f−1]) ↪→
Spec(A) is locally of finite presentation and a monomorphism. Since monomorphisms
have a vanishing relative cotangent complex (see Lemma 4.64), we conclude with Propo-
sition 3.56 that A → A[f−1] is étale. Hence, we conclude using the definition of étale
morphisms.

Lemma 4.66. Let (A→ Ai)i∈I be an étale covering in ARR and let M be an A-module.
Then the family induced by base change (A⊕M → Ai⊕(M⊗AAi))i∈I is an étale cover.

Proof. We only need to show that Ai⊗A (A⊕M) ' Ai⊕ (M ⊗AAi), since étale covers
are stable under base change. But by construction the functors Ai ⊗A (− ⊕M) and
(− ⊗A Ai) ⊕ (M ⊗A Ai) from AR-Modcn

R to ARAi commute with sifted colimits and
thus we are reduced to classical commutative algebra, where it is clear.

Lemma 4.67. Let f : X → Y be a morphism of derived schemes. Then f admits a
cotangent complex.
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Proof. A proof sketch is given in [Kha18, Lec. 5 Thm. 5.12], but since these are lecture
notes, we recall the proof.

We may assume that Y = Spec(R) using Lemma 4.63.
By Proposition 4.52, we know that

QCoh(X) ' lim
Spec(B)↪→X

open immersion

ModB .

For each of the open affines Spec(B) in X, we take LSpec(B) := LB/Z, viewed as a quasi-
coherent sheaf on Spec(B). Since the cotangent complex is compatible with taking
pullbacks, i.e. LB ⊗B A ' LA for a triangle

Spec(A)

Spec(B) X,

where Spec(A), Spec(B) are open in X, we see that this indeed defines an object in the
limit, which we denote with LX (for the compatibility, note that the relative cotan-
gent complexes of monomorphisms vanish by Lemma 4.64). This defines a cotangent
complex on X.

We have to show that LX represents the space of derivations. Since we have glued
the cotangent complex for affine opens, we will use a descent argument for arbitrary
points. For this, we use that modules satisfy fpqc descent and that for any point
x : Spec(B)→ X, the base change with an affine open cover of X gives an affine open
cover (Bi) of B. Hence, for a connective B-module M , it suffices to show that

lim HomBi(LX,Bi ,Mi) ' lim DerBi(X/Z,Mi),

where Mi := M⊗BBi, which is clear termwise, since each Bi factors through some affine
open Ai of X by construction (to write the derivations as a limit use the sheaf property
of X, Spec(Z) and Lemma 4.66). Note that for each affine open the cotangent complex
exists and we claim that LX,Bi ' LX,Ai ⊗Ai Bi ' LSpec(Ai),Ai ⊗Ai Bi ' LSpec(Ai),Bi ,
which concludes the lemma.

To see this, note that DerBi(Ai/X,Mi) ' 0, since Spec(Ai) ↪→ X is a monomor-
phism (see Lemma 4.64). Therefore DerBi(Ai/Z,Mi) ' DerBi(X/Z,Mi) (since its
fiber is DerBi(Ai/X,Mi)), the same holds if we replace the point by Ai. Since the
cotangent complexes at Ai exist, we get LSpec(Ai),Ai ' LX,Ai and after tensoring
with Bi, we see that LX,Bi is a cotangent complex for X/Z at Bi if and only if
DerBi(Ai/Z,Mi) ' DerBi(X/Z,Mi) but this we have seen above, i.e. we have equiva-
lences

HomBi(LX,Bi ,Mi) ' HomBi(LSpec(Ai),Bi ,Mi) ' DerBi(Ai/Z,Mi) ' DerBi(X/Z,Mi).

We remark that by this construction and commutativity of τ≥0 with limits, we have
that LX is connective. In particular, we have shown that LX is a cotangent complex
for X/Z.
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Remark 4.68. Let us give another construction of a cotangent complex. Consider
the functor L− : ARZ → D(R) given by the usual cotangent complex seen as complex
of abelian groups. We denote its right Kan extension along the inclusion ARR ↪→
dSchop

/ Spec(R) with RL−. By the above proof, we see that for a derived scheme X, we

have LX ' RLX in D(R). In particular, by stability of the derived ∞-category, the
same holds for the relative cotangent complex.

Definition 4.69. We recall the notion of an obstruction theory for derived stacks
respectively morphism of derived stacks (see [TV08, 1.4.2.1, 1.4.2.2]).

(i) A derived stack X is called infinitesimally cartesian or inf-cartesian if and only
if for every animated R-algebra A, connective A-module M with π0M = 0 and
derivation d ∈ Der(A,M) the pullback square

A⊕dM A

A A⊕M,

d

s

where s denotes the trivial derivation, induces a pullback square

X(A⊕dM) X(A)

X(A) X(A⊕M).

d

s

A morphism f : X → Y of derived stacks is called infinitesimally cartesian or
inf-cartesian if and only if for every animated R-algebra A, connective A-module
M with π0M = 0 and derivation d ∈ Der(A,M) we have a pullback square

X(A⊕dM) Y (A⊕dM)

X(A)×X(A⊕M) X(A) Y (A)×Y (A⊕M) Y (A).

(ii) A derived stack X has an obstruction theory if and only if it has a cotangent
complex and is infinitesimally cartesian.

A morphism of derived stacks f : X → Y has an obstruction theory if and only if
it has a cotangent complex and is infinitesimally cartesian.

Definition 4.70 ([TV08, Def. 1.2.8.1]). Let f : X → Y be a morphism of derived
stacks, we say f is formally smooth if for any A ∈ ARR, a connective A-module M
with π0M = 0, and derivation d ∈ DerR(A,M) the natural map

π0X(A⊕dM)→ π0(X(A)×Y (A) Y (A⊕dM))

is surjective.
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Lemma 4.71. Let f : X → Y be a morphism of derived stacks.

1. If X and Y have an obstruction theory, then f has an obstruction theory.

2. If f has an obstruction theory, then for any morphism of derived stacks Z → Y
the base change Z ×Y X → Z has an obstruction theory.

3. If for any A ∈ ARR and any morphism Spec(A) → Y the base change X ×Y
Spec(A)→ Spec(A) has an obstruction theory, then f has an obstruction theory.

Proof. This is [TV08, Lem. 1.4.2.3] but nevertheless we recall the proof.
The existence of the cotangent complex follows from Lemma 4.62.
Part 1 and 2 are clear by definition. For part 3 let B be an animated ring, M a

connective B-module with π0M = 0 and d ∈ DerR(B,M). We need to show that the
diagram

X(A⊕dM) Y (A⊕dM)

X(A)×X(A⊕M) X(A) Y (A)×Y (A⊕M) Y (A)

is a pullback diagram. Let x ∈ Y (A⊕dM), we claim that it suffices to show that the
induced morphism of the fibers of the two horizontal arrows at x is an equivalence.

Indeed, assume that we have a commutative diagram

(4.4.1)

F ∗

X(A⊕dM) Y (A⊕dM)

X(A)×X(A⊕M) X(A) Y (A)×Y (A⊕M) Y (A)

x

where the upper square and the outer square is a pullback. Let us also consider the
pullback diagram

Z Y (A⊕dM)

X(A)×X(A⊕M) X(A) Y (A)×Y (A⊕M) Y (A)

α

(note that naturally fibx(α) ' F as the outer square of (4.4.1) is a pullback diagram).
We have a naturally induced morphism of fiber sequences (i.e. a commutative diagram
of the form)

F X(A⊕dM) Y (A⊕dM)

fibx(α) Z Y (A⊕dM).

' '
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The long exact homotopy sequence for fiber sequences in S now implies the claim.
That the upper square and the outer square of (4.4.1) are pullback diagrams follows

from the fact that the pullback of f under the morphism corresponding to x has an
obstruction theory.

The following technical lemma shows, how liftings along square zero extensions
are linked to loops in the space of derivations. This is crucial, when dealing with
formal smoothness of morphisms. Lifts of morphisms along square zero extensions are
controlled by the cotangent complex which is, in some cases, easier to handle.

Lemma 4.72. Let f : X → Y be a morphism of derived stacks, and assume f has an
obstruction theory. Let A ∈ ARR, M be a connective A-module with π0M = 0 and
d ∈ Der(A,M) a derivation. Let x ∈ X(A) ×Y (A) Y (A ⊕d M) be a point and L(x)
the fiber of X(A ⊕d M) → X(A) ×Y (A) Y (A ⊕d M) at x. There exists an element
α(x) ∈ π0 HomModA(Lf,x,M) such that L(x) ' Ωα(x),0 HomModA(Lf,x,M), where we
consider the pullback diagram

Ωα(x),0 HomModA(Lf,x,M) ∗

∗ HomModA(Lf,x,M).

α(x)

0

Proof. This is [TV08, Prop. 1.4.2.6], but for the convenience of the reader we give a
proof.

First, note that x corresponds to a diagram of the form

Spec(A) X

Spec(A⊕dM) Y.

After composition with the natural maps, we get

Spec(A⊕M) Spec(A) X

Spec(A) Spec(A⊕dM) Y,

d

s

which gives a point α(x) ∈ HomdStA//Y (Spec(A ⊕M), X) ' DerA(X/Y,M). Using
that f is inf-cartesian, we get a pullback diagram

L(x) ∗

∗ DerA(X/Y,M).

α(x)

0
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To see this, note the following commutative diagram with pullback squares.

L(x) ∗

X(A⊕dM) X(A)×Y (A) Y (A⊕dM)

∗ DerA(X/Y,M) ∗

X(A)×Y (A) Y (A⊕M) X(A⊕M) X(A)×Y (A) Y (A⊕M)

X(A)×Y (A)×Y (A⊕M)Y (A) Y (A).

x

α

0

'

Lemma 4.73. Any affine derived scheme X ' Spec(B) has an obstruction theory.

Proof. Certainly, X has a cotangent complex by LX,x ' LB ⊗B A, for x : Spec(A) →
X. So we are left to show that X is infinitesimally cartesian. But this follows from
compatability of the Hom functor with limits.

Lemma 4.74. Let f : X → Y be a morphism of affine derived schemes. If f is smooth,
then it is formally smooth.

Proof. This follows from [TV08, Prop. 2.2.5.1], but for convenience of the reader, we
give a proof in our setting.

Let A be an animated R-algebra, M a connected C-module and d ∈ Der(A,M).
Let x ∈ π0X(A)×Y (A) Y (A⊕dM) be a point. We have to show that the fiber of

X(A⊕dM)→ X(A)×Y (A) Y (A⊕dM)

along x is nonempty. By Lemma 4.73 and 4.72, it suffices to show that π0 Hom(LB/C⊗B
A,M) is contractible, where X ' Spec(B) → Spec(C) ' Y . By Proposition 3.56 the
A-module LB/C ⊗B A is finite projective, so especially a retract of a free module (see
[Lur17, Cor. 7.2.2.9]) and therefore π0 Hom(LB/C ⊗B A,M) is a retract of a product
of π0M , which is zero by hypothesis on M .

Remark 4.75. We want to remark that Lemma 4.74 holds more generally. An n-
geometric morphism of derived stacks is smooth if any only if after restriction to (Ring)
via t0 is locally of finite presentation and it is formally smooth. This is a bit technical
but a proof of this is given for example in [TV08, Prop. 2.2.5.1].

The next proposition and corollary show, how smoothness of a geometric morphism
is linked to its cotangent complex. This can be seen as a globalization of Proposition
3.56.
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Proposition 4.76. Let f : X → Y be an n-geometric morphism of derived stacks.
Then f has an obstruction theory. Further if f is smooth, then f is formally smooth
and Lf is perfect with Tor-amplitude in [−n− 1, 0].

Proof. The proof of this lemma in the spectral setting is given in [AG14, Prop. 4.45].
The proof in the derived setting is analogous. But for the convenience of the reader,
we give a proof.

We prove this lemma by induction over n. For the formal smoothness part we will
first reduce to the case where Y is affine.

Indeed, let B be an animated R-algebra. Note that we have to show that for any
point x ∈ π0(X(B)×Y (B)Y (B⊕M)) its fiber under X(B⊕dM)→ X(B)×Y (B)Y (B⊕d
M) is nonempty. The point x corresponds to a commutative diagram of the form

Spec(B) X

Spec(B ⊕dM) Y.

After base change, we get a diagram of the form

Spec(B) X ×Y Spec(B ⊕dM)

Spec(B ⊕dM) Spec(B ⊕dM)id

showing that, we can replace f by the projection X×Y Spec(B⊕dM)→ Spec(B⊕dM),
in particular, we can assume Y to be affine (this reduction is part of [TV08, Prop.
2.2.5.1]).

Further for the existence of an obstruction theory, we may assume without loss of
generality that Y ' Spec(R) (see Lemma 4.71 and use that affine schemes have an
obstruction theory by Lemma 4.74).

Let n = −1, then X ' Spec(A) and each A is a smooth R-algebra. In particular,
we see with Lemma 4.73 and Proposition 3.56 that LA/R exists and is finite projective.
The formal smoothness follows from Lemma 4.74.

Now assume n ≥ 0 and let p : U '
∐
i∈I Spec(Ai) → X be an n-atlas, where Ai

are smooth R-algebras. Let B be a animated R-algebra, M be a connective B-module
with π0M = 0 and d ∈ Der(B,M) a derivation.

Inf-cartesian. For this we will follow [TV08, Lem. 1.4.3.10].
By Lemma 4.66 any étale cover B → B′ gives a cartesian square of the form

B′ ⊕dM B′

B′ B′ ⊕M,

d

s

which covers the square induced by the derivation. So to check if X(B ⊕d M) '
X(B)×X(B⊕M) X(B), we can pass to an étale cover of B. Therefore, we may assume
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that any image x1 ∈ X(B) of x ∈ X(B)×X(B⊕M)X(B) under the projection, lifts to a
point in u ∈ Spec(Ai)(B), for some i. Next, we claim that the point x lifts to a point
y ∈ Spec(Ai)(B)×Spec(Ai)(B⊕M) Spec(Ai)(B).

To see this, consider the following commutative diagram

Spec(Ai)(B)×Spec(Ai)(B⊕M) Spec(Ai)(B) X(B)×X(B⊕M) X(B)

Spec(Ai)(B) X(B).

f

p q

Let F (p) (resp. F (q)) denote the fiber of u (resp. x1) under p (resp. q). We get a
natural morphism g : F (p)→ F (q). Moreover the fiber of f along x receives a natural
morphism from fibx(g). Therefore, to see that fibx(f) is nonempty it is enough to show
that fibx(g) is nonempty. But now g is naturally identified, per definition, with the
morphism Ωd′,0 DerB(Ai,M) → Ωd′,0 DerB(X,M), where d′ is the derivation that is
given by the image of u (note that X(B) → X(B ⊕M) → X(B) is equivalent to the
identity). Thus the fiber of g is given by Ωd′,0 DerB(Ai/X,M), which is equivalent to
Ωd′,0 Hom(LAi/X,B,M) by induction hypothesis. But now, again by induction hypoth-
esis, we can find an étale cover of B such that π0 Hom(LAi/X,B,M) = 0, since M is
assumed to be connected, and therefore Ωd′,0 Hom(LAi/X,B,M) is nonempty.

Now consider the commutative digram

Spec(Ai)(B ⊕dM) Spec(Ai)(B)×Spec(Ai)(B⊕M) Spec(Ai)(B)

X(B ⊕dM) X(B)×X(B⊕M) X(B).

a

By induction hypothesis this square is a pullback sqaure, further a is an equivalence by
affineness. Since x lifts to a point in y ∈ Spec(Ai)(B)×Spec(Ai)(B⊕M) Spec(Ai)(B), we
see that the fiber at x is given by the fiber of a at y, which is nonempty and contractible
(since affine schemes are inf-cartesian by Lemma 4.73).

Existence. Let us look at the fiber Lf of Lf◦p → Lp. By induction hypothesis Lp
and Lf◦p exist and if f is smooth both are perfect with Tor-amplitude in [−n, 0] and
[0, 0] respectively. In particular if f is smooth then Lf is perfect and has Tor-amplitude
in [−n−1, 0]. We have to show that Lf satisfies the universal property of the cotangent
complex for f at any point. Let x : Spec(B) → X be a morphism. We may assume,
that x factors through p, since p is an effective epimorphism, so we can pass to an étale
cover B which factors through U . Let y : Spec(B) → U be such a factorisation. We
get a map

F : Dery(U,N)→ Derx(X,N)

for any connective B-module N , which is surjective.
To see the surjectivity of F , note that by induction hypothesis p is formally smooth.
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Further any element in d ∈ Derx(X,N) corresponds to a diagram of the form

Spec(B ⊕N) X

Spec(B).

d

x

Using the factorization by U , we get an element in U(B) ×X(B) X(B ⊕ N). By for-
mal smoothness of p, we can lift this element to an element in U(B ⊕ N) (note that
B ×0,B⊕N [1],0 B ' B ⊕N). But by construction this element has to be a derivation of
U at y.

The fiber of F along the derivation, which is induced by Spec(B⊕N)→ Spec(B)
x−→

X is given by Dery(U/X,N). Thus, we get a fiber sequence

HomB(Lp, N)→ HomB(Lf◦p, N)→ Derx(X,N).

After delooping23 and surjectivity of F , we see that Derx(X,N) is the fiber of

BHomB(Lp, N)→ BHomB(Lf◦p, N),

where the prefix “B” denotes the deloop, and therefore Derx(X,N) ' HomB(Lf , N).
To see this, note that the map from Derx(X,N) to the fiber of BHomB(Lp, N) →

BHomB(Lf◦p, N) is by the five-lemma an equivalence on the homotopy groups.
Formal smoothness. This is part of [TV08, Prop. 2.2.5.1].
Assume f is smooth and x : Spec(B) → X is a point. By the above f has an

obstruction theory. Therefore by Lemma 4.72 it suffices to show that π0 Hom(Lf,x,M)
is contractible. But this follows from

π0 Hom(Lf,x,M) ' π0(L∨f,x ⊗B M) ' π0L
∨
f,x ⊗π0B π0M ' 0,

by connectedness of M (note that the above construction of the relative cotangent
complex implies that Lf is perfect in the smooth case and therefore dualizable and the
dual is connective).

Corollary 4.77. Let f : X → Y be an n-geometric morphism of derived stacks. Then
f is smooth if and only if t0f is locally of finite presentation and Lf exists, is perfect
and has Tor-amplitude in [−n− 1, 0].

Proof. The proof is the same as in the spectral setting presented in [AG14, Prop. 4.46]
using Proposition 4.76. But for the convenience of the reader, we recall the proof.

We may assume that Y ' Spec(A) is affine (use Lemma 4.62). Let us fix an n-atlas
p :
∐
i∈I Spec(Ti)→ X. The ”only if” part is Proposition 4.76 and the fact that the Ti

are smooth A-algebras by construction and thus are locally of finite presentation (see
Proposition 3.56).

23For a pointed ∞-category C a deloop of an object c ∈ C is an object c′ ∈ C, such that c ' Ωc′. For
C = S the ∞-category of spaces, there is a deloop for every object. This follows from the effectivity of
groupoid objects in S (see [Lur09, Cor. 6.1.3.20]) (the map x → ∗, where x ∈ S, defines a simplicial
object, which extends via the colimit to a Čech nerve).
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For the ”if” part assume the π0Ti are locally of finite presentation over π0B, Lf
exists, is perfect and has Tor-amplitude in [−n− 1, 0]. We have a cofiber sequence

p∗Lf → LU/A → Lp,

where by construction Lf and Lp are perfect with Tor-amplitude in [−n − 1, 0] and
[−n, 0] respectively (for the existence and Tor-amplitude of Lp, we use Proposition
4.76). Therefore, LU/A is also perfect with Tor-amplitude in [−n − 1, 0]. But since U
is the disjoint union of affines the Tor-amplitude of LU/A is concentrated in [0, 0] and
thus LU/A is perfect and finite projective, which implies that Spec(Ti) → Spec(A) is
smooth (see Lemma 3.56).

Corollary 4.78. Let f : X → Y be an n-geometric morphism of derived stacks locally
of finite presentation. Then Lf is perfect.

Proof. Per definition of perfect quasi-coherent modules over a derived stack, we have
to check that for any point x : Spec(A) → X the cotangent complex Lf,x is a perfect
A-module. By Lemma 4.62, we know that the cotangent complex of the projection
pr : X ×Y,f◦x Spec(A) Spec(A) at the point induced by x is equivalent to Lf,x. So
without loss of generality, we may assume that Y ' Spec(B) is affine.

Since f is n-geometric and locally of finite presentation, we know that there exists
an n-atlas (pi : Spec(Ai)→ X)i∈I such that Ai are locally of finite presentation over A.
Since perfect quasi-coherent modules satisfy fpqc descent (see Remark 4.54), we have
that Lf ∈ QCohperf(X) if and only if each p∗iLf is perfect. But by Lemma 4.63, we
have the following cofiber sequence

p∗iLf → LSpec(Ai)/Spec(A) → Lpi .

Since Ai is locally of finite presentation over A, we know by Proposition 3.57, that
LSpec(Ai)/Spec(A) is perfect and since by definition pi is smooth, we have with Proposition
4.76 that indeed p∗iLf is perfect.

The last part of this section is dedicated to show that a geometric derived stack X
is automatically hypercomplete for the étale topology. The idea is to show that for any
animated R-algebra A, we have X(A) ' limnX(A≤n). Then we reduce to the case,
where we look at n-truncated sheaves, which are always hypercomplete.

Lemma 4.79. Let X be an n-geometric derived stack for some n ≥ −1 and A an
animated ring. Then the natural morphism X → limnX ◦ τ≤n is an equivalence.

Proof. This is analogous to [Lur04, Prop. 5.3.7].
We will do this by induction over n. This is certainly true for if X is affine. So

assume that n ≥ 0 and let p : U :=
∐
i∈I Spec(Ai)→ X be an n-atlas.

By definition U ×X U is (n− 1)-geometric, this also holds for every successive fiber
product, i.e. every element of the Čech nerve Č(U/X)• is (n− 1)-geometric. Since p is
an effective epimorphism, we have that the natural map colim∆ Č(U/X)• → X is an
equivalence. By induction hypothesis, we have for every [n] ∈ ∆ that the natural map
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Č(U/X)[n] → lim Č(U/X)[n] ◦ τ≤n is an equivalence. Thus, also its colimit under ∆ is
an equivalence, so we get an induced commutative diagram

colim∆ Č(U/X)[n] colim∆ limn Č(U/X)[n] ◦ τ≤n

X limnX ◦ τ≤n,

where the top arrow and left vertical arrow are equivalences and the right vertical arrow
is a monomorphism. Thus the bottom vertical arrow is an equivalence if limn U ◦τ≤n →
limnX ◦ τ≤n is an effective epimorphism. Let x ∈ limnX(A≤n) and consider the

projection onto X(A≤0), denoted by x0. Then we can find an étale cover π̃0A of

A≤0 ' π0A such that x0 has a lift in U(π̃0A). By Proposition 3.59 there is an étale

cover Ã of A such that π0Ã ' π̃0A. In particular, we see that we can lift the image of
x0 in X(Ã≤0) under U(Ã≤0)→ X(Ã≤0). Now let xn be the image of x in X(A≤n). We
will show the result by induction. Assume the argument holds for n− 1. In particular,
let un−1 be the lift of xn−1 under U(Ã≤n−1)→ X(Ã≤n−1). It is enough to prove that

we can find a lift of (un−1, xn) under U(Ã≤n) → U(Ã≤n−1) ×
X(Ã≤n−1)

X(Ã≤n), since

then for all n ∈ N0 there is a lift un of xn compatible with the maps in the limit, i.e.
we get an element u ∈ limn U(Ã≤n) that maps to the image of x in limnX(Ã≤n). But
this follows from formal smoothness of U → X (see Proposition 4.76) and the fact that
the map A≤n → A≤n−1 is a square zero extension (see Lemma 3.52).

Lemma 4.80. Let X → Y be an n-geometric morphism and A be a k-truncated ani-
mated R-algebra. Then X(A)→ Y (A) is (n+ k + 1)-truncated.

Proof. This is a consequence of Lemma 4.79 and analogous to [Lur04, Cor. 5.3.8].
We have to show that the fiber of X(A)→ Y (A) is (n+k+1)-truncated. By Lemma

4.79 it suffices to show that for all n ∈ N0 the map X(A≤j) → X(A≤j−1) ×Y (A≤n−1)

Y (A≤j) is (n+j+1)-truncated, whenever j ≤ k. But from Lemma 3.52 and Lemma 4.72
the fiber of the previous map is given by the loop of HomModA(LX/Y,A, πjA[j]) which
by adjunction is (n+ j + 1)-truncated, since by definition LX/Y [n] is connective24.

Lemma 4.81. Let X be an n-geometric stack, then X is hypercomplete.

Proof. This is a direct consequence of Lemma 4.79 and 4.80 and the fact that truncated
∞-topoi are automatically hypercomplete. This is analogous to [Lur04, Cor. 5.3.9] but
anyway we will explain this.

By Lemma 4.79, we have X ' X ◦ τ≤n and for any k-truncated animated ring A,
we have that X(A) is (n + k + 1)-truncated (see Lemma 4.80), in particular X ◦ τ≤n
is hypercomplete (see [Lur09, Lem. 6.5.2.9]) and since the ∞-topos of hypercomplete
sheaves has limits, we have that X is hypercomplete.

24Note that πn+j+1+k HomModA(LX/Y,A, πjA[j−1]) ∼= π0 HomModA(LX/Y,A[n+j+1+k], πjA[j+1])
and since LX/Y,A[n+ j + 1 + k] ∈ (ModA)≥j+1+k and πjA[j + 1] ∈ (ModA)≤−j+1, we see by definition
of the t-structures that πn+j+1+k HomModA(LX/Y,A, πjA[j + 1]) ∼= 0 for k ≥ 1.
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5 The stack of perfect modules

In this section, we want to prove that the derived stack of perfect modules is locally
geometric. This was already proven in [TV07] in the model categorical setting and in
[AG14] in the spectral setting, but we recall the proof in its entirety in our setting.

We recall some lemmas needed for the proof, as they will become important later
on when analyzing the substacks of derived F -zips.

Lemma 5.1. Let A be a commutative ring and P be a perfect complex of A-modules
and let n ∈ N0. Further, for k ∈ Z let βk : Spec(A)cl → N0 be the function given by
s 7→ dimκ(s) πk(P ⊗A κ(s)). Then β−1

k ([0, n]) is quasi-compact open.

Proof. By [Sta19, 0BDI] βk is upper semi-continuous and locally constructible. As
Spec(A)cl is affine it is quasi-compact quasi-separated and so we see that β−1

k ([0, n]) is
quasi-compact open.

Remark 5.2. Let A be a commutative ring and P be a perfect complex of A-modules.
Let I ⊆ Z be a finite subset and for k ∈ Z let βk be as in Lemma 5.1 . Assume that
βi 6= 0 for i ∈ I and zero everywhere else. Then using [Sta19, 0BCD,066N], we see that
P has Tor-amplitude in [min(I),max(I)].

Lemma 5.3. Let A be a commutative ring and P be a perfect complex of A-modules.
Then there exists a quasi-compact open subscheme U ⊆ Spec(A)cl with the following
property,

• an affine scheme morphism Spec(B)cl → Spec(A)cl factors through U if and only
if P ⊗A B ' 0.

Proof. Let βk be as in Lemma 5.1. Then we set

U :=
⋂
k∈Z

β−1
k ({0}).

As P is perfect, so in particular has finite Tor-amplitude, this intersection has only
finitely many pieces that are non equal to Spec(A)cl. Therefore, U is a finite intersection
of quasi-compact opens in an affine scheme (see Lemma 5.1) and thus quasi-compact
open.

Now assume we have a morphism Spec(B)cl → Spec(A)cl such that P ⊗A B = 0.
Then certainly for any b ∈ B and all i ∈ Z we have dimκ(b) πi(P ⊗A B ⊗B κ(b)) = 0.
Let a ∈ Spec(A) be the image of b. Then for all i ∈ Z we have the following equalities

dimκ(b) πi(P ⊗A B ⊗B κ(b)) = dimκ(b) πi(P ⊗A κ(a)⊗κ(a) κ(b))

= dimκ(b) πi(P ⊗A κ(a))⊗κ(a) κ(b)

= dimκ(a) πi(P ⊗A κ(a)),

where we use flatness of field extensions in the second equality. Therefore, we see that
Spec(B)→ Spec(A) factors through U .
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For the other direction assume that Spec(B)cl → Spec(A)cl factors through U . Then
for any b ∈ Spec(B) and any i ∈ Z, we have that πi(P ⊗A B ⊗B κ(b)) = 0. By Remark
5.2, we see that P ⊗A B is given by a finite projective module M concentrated in
one degree. The fiberwise dimension of M is equal to 0 by assumption and thus by
Nakayama M = 0.

The next lemma shows that the vanishing locus of perfect complexes is quasi-
compact open. This will be applied to the cofiber of morphisms of perfect complexes. In
particular, the locus classifying equivalences between fixed perfect modules is therefore
quasi-compact open.

Lemma 5.4. Let A ∈ ARR and P be a perfect A-module. Define the derived stack VP
via VP (B) = full sub-∞-category of HomARR(A,B) consisting of morphisms u : A→ B
such that P ⊗A,u B ' 0. This is a quasi-compact open substack of Spec(A).

Proof. This is [TV07, Prop. 2.23] translated to our setting. But for the convenience of
the reader, we give a proof.

Consider Q := P ⊗A π0A. Then Q is a perfect complex of π0A-modules. Lemma 5.3
shows that there is a quasi-compact open subscheme U ⊆ Spec(π0A)cl, such that for
any point u : Spec(R′)cl → Spec(π0A)cl, where R′ is a commutative ring, the module
Q⊗π0A R

′ is isomorphic to 0 if and only if u factors through U .
Let f1, . . . , fn ∈ π0A, such that the π0Afi covers U . Then V := Im(

∐n
i=1 Spec(A[f−1

i ])),
the image of

∐n
i=1 Spec(A[f−1

i ])→ Spec(A), is equivalent to VP .
Indeed, take a morphism u : A → B in ARR. Then u ∈ V (B) if and only if there

exists an i such that π0u(fi) is étale locally invertible in π0B (see Remark 4.42). This
is equivalent to P ⊗A π0B ' 0 by the choice of the fi. This again is equivalent to
P ⊗A B ' 0.

To see this, assume the P⊗AB 6' 0 and take the minimal i ∈ Z with πi(P⊗AB) 6' 0.
Consider the Tor spectral sequence

Ep,q2 = Torπ∗Bp (π∗(P ⊗A B), π0B)q ⇒ πp+q(P ⊗A π0B).

By the definition of the graded tensor product, we see that E0,q
2 = πq(P ⊗AB) for q = i

and 0 for q < i. As explained in Remark 3.55, we can choose a graded free resolution of
P ⊗A B such that each term of the resolution concentrated in degrees ≥ i. Therefore,
the spectral sequence is concentrated in the quadrant where the left lower corner is at
p = 0 and q = i. Thus, πi(P ⊗A B) ∼= E0,i

2
∼= πi(P ⊗A π0B) ∼= 0 contradicting the

assumption.
The geometricity follows from Lemma 4.28.

Next, we show that the stack classifying morphisms between perfect modules25 is
actually geometric and in good cases smooth. Since derived F -zips will come with two
bounded perfect filtrations (i.e. finite chains of morphisms of perfect modules), this
lemma is crucial for the geometricity of derived F -zips.

25Note that for two perfect A-modules P,Q over some animated ring A, we have HomModB (P ⊗A
B,Q⊗A B) ' HomModA(P ⊗Q∨, B) as shown in the proof of Lemma 5.7.

66



Lemma 5.5. Let A be an animated R-algebra. Let P be a perfect A-module with
Tor-amplitude concentrated in [a, b] with a ≤ 0. Then the derived stack

FAP : ARA → S
B 7→ HomModA(P,B)

is (−a − 1)-geometric and locally of finite presentation over Spec(A)26. Further, the
cotangent complex of FP at a point x : Spec(B)→ FAP is given by

LFP ,x ' P ⊗A B.

In particular, if b ≤ 0, then FP is smooth.

Proof. Before showing the geometricity, let us calculate the space of derivations of FP
and hence the cotangent complex.

Let x : Spec(B)→ FAP be a morphism of derived stacks corresponding to a morphism
f : P → B in ModA and M be a connective B-module. We have that Derx(FAP /A,M) is
given by the fiber of HomA(P,B⊕M)→ HomA(P,B) at f . The underlying R-module
of B⊕M is per construction the direct sum of the underlying R-module of B and of M .
Therefore, any morphism P → B ⊕M is uniquely up to homotopy characterized by a
morphism P → B and P →M and thus, we see that Derx(FAP /A,M) ' HomA(P,M) '
HomA(P ⊗A B,M). Hence, we have LFP ,x ' P ⊗A B.

Let us conclude the rest of the proof, which we will prove by induction on a.
If a = 0, then P is connective and FAP ' HomARA(−,SymA P ) which has the desired

properties.
Now assume a < 0. By Lemma 3.33 we have P ' fib(Q→M [a+ 1]), where Q has

Tor-amplitude in [a+ 1, b] and M is a finite projective A-module. Thus we get a fiber
sequence

FAM [a+1] → FAQ → FAP → FM [a].

By induction hypothesis FQ is (−a − 2)-geometric and locally of finite presentation.
We will see that the map p : FAQ → FAP is an effective epimorphism.

Indeed, note that the above fiber sequence and projectivity of M imply that π0p is
surjective and thus p is an effective epimorphism (see Remark 4.10).

The diagonal FAQ ×FAP FAQ is given by FAQ⊕PQ
27, which will be (−a − 2)-geometric

with smooth projections to FAQ .
To see this, note that we have a fiber sequence Q→ Q⊕P Q→M [a+1] which has a

retract. Thus the natural map Q⊕P Q→ Q⊕M [a+1] is an equivalence on the level of
homotopy groups by the splitting lemma (the induced exact sequences are short exact,
using the retract) and therefore Q⊕PQ ' Q⊕M [a+1]. Hence, FAQ⊕PQ ' F

A
Q×FAM [a+1],

which is the pullback of (−a− 2)-geometric stack and thus itself geometric.
Also the projection to FAQ is smooth, because FAM [a+1] is smooth (the smoothness

of FAM [a+1] follows since LFA
M [a+1]

,x 'M [a+ 1]⊗A B at a point x : Spec(B)→ FAM [a+1]

and thus has Tor-amplitude in [a+ 1, 0], which concludes (see Corollary 4.77)).

26Certainly, we can view FAP as a derived stack over R with a morphism to Spec(A). So for any
animated R-algebra C that does not come with a morphism A→ C the value of FAP is empty.

27Here Q⊕P Q is defines as the pushout of the morphism P → Q with itself.
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By Proposition 4.41, we see that FAP → Spec(A) is a quasi-compact (−a − 1)-
geometric stack locally of finite presentation.

If b ≤ 0, then LFAP
is perfect with Tor-amplitude concentrated in degree [a, 0] and

therefore FAP is smooth by Corollary 4.77.

Remark 5.6. A variant of Lemma 5.5 in the spectral setting can be found in [AG14,
Thm. 5.2]. Alternatively, one can look at the proofs given in [TV07, Lem. 3.9] and
[TV07, 3.12] to construct a proof in the model categorical setting.

Lemma 5.7. The diagonal map Perf[a,b] → Perf[a,b]×RPerf[a,b] is (b−a)-geometric and
locally of finite presentation.

Proof. This is part of the proof of [AG14, Thm. 5.6] translated to our setting. For the
convenience of the reader, we give a proof.

A morphism Spec(A)→ Perf[a,b]×RPerf[a,b] corresponds to two perfect modules P,Q
with Tor-amplitude concentrated in [a, b]. The pullback under the diagonal classifies
equivalences between P and Q. This is an open, 0-geometric substack of

HomModA(P ⊗A Q∨,−) ' HomModA(P,Q⊗A −) ' HomMod−(P ⊗A −, Q⊗A −),

(note that perfect modules are dualizable).
To see this, note that for any morphism Spec(B)→ HomModA(P⊗AQ∨,−), given by

a morphism ϕ : P ⊗AB → Q⊗AB, the stack Equiv(P,Q)×HomModA
(P⊗AQ∨,−) Spec(B)

classifies morphisms u : B → C, where cofibϕ⊗B,uC ' 0, which is an open, 0-geometric
substack of Spec(B) by Lemma 5.4.

Now P ⊗ Q∨ is a perfect module of Tor-dimension [a − b, b − a] (see Lemma 3.33)
and thus Lemma 5.5 concludes the proof.

Definition 5.8. Let n ∈ N and A ∈ ARR. We denote the ∞-category of finite projec-
tive A-modules of rank n with BGLn(A).

Lemma 5.9. Let n ∈ N. The functor A 7→ BGLn(A) from ARR to Cat∞ satisfies fpqc
descent.

Proof. We already know that modules satisfy decent so it is enough to check that an
A-module M is finite projective of rank n if it is after base change to an fpqc-cover
(A→ Ai)i∈I . Note that π0A→ π0Ai is faithfully flat for every i ∈ I. Now assume that
M ⊗A Ai is finite projective of rank n. Then it is in particular flat and we will show
first that M is flat over A. By flatness, the natural map

πjAi⊗π0Aπ0M ∼= πjAi⊗π0Ai π0M⊗π0Aπ0Ai ∼= πjAi⊗π0Ai π0(M⊗AAi)→ πj(M⊗AAi)

is an equivalence. By flatness of A → Ai, we have πjAi ∼= πjA ⊗π0A π0Ai. Hence,
we have πjAi ⊗π0A π0M ∼= πjA ⊗π0A π0Ai ⊗π0A π0M . By faithfully flatness the map
πjA⊗π0A π0M → πjM is an equivalence if and only if it so after base change to π0Ai
for all i ∈ I. But the above shows that this base change gives the map

πjA⊗π0A π0Ai ⊗π0A π0M → πj(M ⊗A Ai)
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and flatness of Ai over A shows that πj(M ⊗A Ai) ∼= πjM ⊗π0A Ai (see [Lur17, Prop.
7.2.2.13]) so indeed, πjA⊗π0A π0M → πjM is an equivalence. Therefore, M is flat over
A.

Now a flat module is finite projective of rank n if it is so on π0 (see Lemma 3.25
and use the definition of finite projectiveness) but this follows from classical faithfully
flat descent.

Remark 5.10. The inclusion of S ↪→ Cat∞ is left adjoint to the functor (−)' that
passes to the largest Kan complex contained in an ∞-category (see [Lur09, Prop.
1.2.5.3]). Therefore if F : C → Cat∞ is a (hypercomplete) sheaf for some Grothendieck
topology on C then also F' := (−)' ◦ F is one.

Definition 5.11. We define the derived stack classifying vector bundles as the stack

BGLn,R : ARR → S
A 7→ BGLn(A)'.

Further, we denote by GLn,R the loop under the map Spec(R) → BGLn,R, which is
given for an animated R-algebra A by ∗ 7→ An, i.e. we have the following pullback
diagram in dStR

GLn,R Spec(R)

Spec(R) BGLn,R

(note that for a commutative ring A, we have that BGLn,R(A) is the groupoid of rank
n vector bundles on A and thus GLn,R(A) is indeed given by the points of the general
linear group scheme of rank n).

Lemma 5.12. Let ProjR denote the derived stack classifying finite projective modules.
Then ProjR '

∐
n∈N BGLn,R, in particular ProjR is 1-geometric and smooth.

Further, GLn,R is an affine derived scheme and ProjR has an affine diagonal.

Proof. The proof is the same as [TV08, Cor. 1.3.7.12] but for the convenience of the
reader, we give a sketch.

That ProjR '
∐
n∈N BGLn,R, where BGLn,R denotes the stack of finite projective

modules of rank n, is clear. So it suffices to show that BGLR,n is a 1-geometric smooth
stack. It is enough to show that GLn,R → Spec(R) is 0-geometric smooth. Then
GLn,R → Spec(R) defines a 0-Segal groupoid (see [TV08, Def. 1.3.4.1]) and BGLR,n is
1-geometric (see [TV08, Prop. 1.3.4.2]). That BGLn,R is smooth follows from the fact
that the natural morphism Spec(R)→ BGLn,R gives a 1-atlas.

The claim about GLn,R follows in the following way. The stack GLn,R is equivalent to
the stack classifying automorphisms of Rn, i.e. GLn,R(A) ' EquivA(An), for A ∈ ARR.

But by Lemma 5.4 this is a 0-geometric open substack of F
Rn2 ' Spec(SymR(Rn

2
)),

which is a (−1)-geometric smooth stack.
Alternatively, one could follow [TV08, Prop. 1.3.7.10] and show directly that the

inclusion ι : GLn,R ↪→ F
Rn2 is representable and étale by showing that for any point
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x ∈ F
Rn2 (A), we have ι−1(x) ' Spec(A[det(x)−1]). In particular, we see in this way

that GLn,R is representable by an affine derived scheme. This also shows that BGLn,R
has an affine diagonal, since Spec(R)×Spec(R) Spec(R)→ BGLn,R×Spec(R) BGLn,R is a
1-atlas by the above and so, we have a pullback diagram of the form

GLn,R Spec(R) ' Spec(R)×Spec(R) Spec(R)

BGLn,R BGLn,R×Spec(R) BGLn,R,
∆

which shows that the diagonal is affine, since this can be tested after passing to a cover
by affines (see [TV08, Lem. 1.3.2.8]).

Remark 5.13. For the proof of the next theorem, we want to remark some generalities
about pullbacks of Kan complexes.

Let X,Y be Kan complexes, i.e. elements in S, and assume we have a morphism
X → Fun(∂∆1, Y ) in S. We want to compute the following pullback in S

W Fun(∆1, Y )

X Fun(∂∆1, Y ),

i

where i is given by the restriction. In general this is a pullback in the ∞-categorical
sense, which can also be computed on the level of model categories via the homotopy
pullback (recall that S is the∞-category associated to the model category of simplicial
sets with the usual model structure (weak equivalences are given by weak equivalences
of the underlying Kan complexes and fibrations are Kan fibrations)). We claim that the
homotopy pullback of the underlying Kan complexes is equivalent in S to the ordinary
pullback of simplicial sets if i is a Kan fibration (i.e. i is a fibration in the model category
of simplicial sets and since each simplicial set involved is already a Kan complex they
are per definition fibrant).

Indeed, this is a classical result and remarked in [Lur09, Rem. A.2.4.5] but we
will shortly sketch the idea behind it. Let A be a combinatorial model category (e.g.
the category of simplicial sets with the model structure explained above) and let I be
the diagram category given by three objects {0, 1, 2} together with morphisms 0 → 2,
1 → 2 and identities. One can attach the injective model structure onto the functor
category Fun(I,A) by defining weak equivalences to be pointwise weak equivalences
and defining cofibrations also pointwise (the fibration are then given by certain lifting
properties, which we will not discuss on detail). The homotopy limit is defined as the
right Quillen adjoint of the constant functor A→ Fun(I,A), which is weakly equivalent
to the the limit of a fibrant diagram in Fun(I,A), i.e. for a diagram a → c ← b, the
homotopy limit is defined as an object that is weakly equivalent to ordinary limit of
a′ → c′ ← b′, where a′ → c′ and b′ → c′ are fibrations, c′ is fibrant and we have a
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commutative diagram of the form

a c b

a′ c′ b′,

where the vertical arrows are weak equivalences (this is analogous to the theory of
homotopy pushouts, which can be found in [Lur09, §A.2.4]). Now let IR be the full
subcategory of I generated by the elements 0 and 2 and define IL as the full subcategory
of I generated by the elements 1 and 2. The tuple (IL, IR) makes I into a Reedy
category on I (see [Lur09, §A.2.9] for more on Reedy categories). As explained in
[Lur09, Proposition A.2.9.19] there is a model structure on Fun(I,A) corresponding to
the Reedy structure on I called the Reedy model structure. Important for us is that
a diagram a → c ← b is fibrant for the Reedy model structure if a, b are fibrant and
either a → c or b → c is a fibration. Further, as remarked in [Lur09, Rem. A.2.9.23]
the Reedy model structure and the injective model structure are Quillen equivalent
via the identity functor. Therefore, if we have a fibrant diagram with respect to the
Reedy model structure, then the homotopy limit is per definition weak equivalent to the
ordinary limit in A. Since the homotopy limit in this case is the homotopy pullback,
we are done.

But that i is a Kan fibration follows from [Lur21, Cor. 3.1.3.3] and hence we
can compute the above pullback in the ∞-category S via the limit of the underlying
simplicial sets.

Now assume that Y is an arbitrary ∞-category. We want to compute the following
pullback in S

W Fun(∆1, Y )'

X Fun(∂∆1, Y )',

i

where i is naturally given by applying the functor (−)' to the restriction. If i is
a Kan fibration, then we can apply the argument above. In general it may not be
clear if i is a Kan fibration. But in this case, we have that the natural morphism
F : Fun(∆1, Y ) → Fun(∂∆1, Y ) is an isofibration of ∞-categories (see [Lur21, 01F3]),
meaning that it is an inner fibration on the level of homotopy categories, we have the
following property: if x ∈ hFun(∆1, Y ) and we have an isomorphism u′ : y

∼−→ F (x)
then, there exists a x′ ∈ hFun(∆1, Y ) with an isomorphism u : x′ → x such that
F (u) = u′. In particular, [Lur21, Prop. 4.4.3.7] implies that i is a Kan fibration.

Theorem 5.14. The derived stack

PerfR : ARR → S

A 7→ (Modperf
A )'

is locally geometric and locally of finite presentation.
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To be more specific, we can write PerfR = colima≤b Perf
[a,b]
R , where Perf

[a,b]
R is the

moduli space consisting of perfect modules which have Tor-amplitude concentrated in

degree [a, b] and each Perf
[a,b]
R is (b− a+ 1)-geometric and locally of finite presentation

and the inclusion Perf
[a,b]
R ↪→ PerfR is a quasi-compact open immersion. If b − a ≤ 1

then Perf
[a,b]
R is in fact smooth.

Proof. The proof in the model categorical setting can be found in [TV07, Prop. 3.7]
and in the spectral setting in [AG14, Thm. 5.6]. The latter follows the former with
few changes for readability. We will follow the proof presented in the latter using our
setting.

We show that Perf[a,b] is n+ 1-geometric, where n = b− a, by induction over n.
For n = 0, we are done, since then we have Proj ' Perf[a,a] (see Lemma 3.33), which

is 1-geometric and locally of finite presentation by Lemma 5.12.
Now let n > 0 and assume Perf[a+1,b] is n-geometric and locally of finite presentation.

Let U be defined via the pullback diagram of derived stacks

U Fun(∆1,Modperf)'

Perf[a+1,b] ×R Perf[a+1,a+1] Fun(∂∆1,Modperf)'.

p

Let Spec(A)→ Perf[a+1,b] ×R Perf[a+1,a+1] be given by (P,Q), where P is a perfect A-
module of Tor-amplitude [a+1, b] and Q is the a+1 shift of a finite projective A-module,
then p∗(P,Q) classifies morphisms between those, i.e. p∗(P,Q) ' Spec(Sym(P ⊗AQ∨))
(note that P ⊗A Q∨ is perfect and has Tor-amplitude in [0, b − (a + 1)] and thus
is connective (see Lemma 3.33). Therefore p is (−1)-geometric and locally of finite
presentation and with Lemma 5.7 and 4.38, we see that U is n-geometric and locally
of finite presentation. Note that if b − a ≤ 1 then p is even smooth and using that
Perf[a+1,a+1] is smooth, we see that U is smooth.

By sending a morphism to its fiber, we get a morphism of derived stacks q : U →
Perf[a,b]. Using Proposition 4.39 with Lemma 5.7, we see that q is n-geometric, so it
suffices to show that q is also smooth and an effective epimorphism.

That it is an effective epimorphism follows from Lemma 3.33. To check smooth-
ness let Spec(A) → Perf[a,b] be a morphism classified by a perfect A-module P with
Tor-amplitude in [a, b]. Then q−1(P )(B), for some animated A-algebra B, consists of
morphisms of perfect B-modules f : Q → M [a + 1] such that fib(f) ' P ⊗A B, where
Q has Tor-amplitude in [a + 1, b] and M is finite projective. Since locally every finite
projective module is free of finite rank, we can decompose

q−1(P ) '
∐
m

q−1(P )m,

where q−1(P )m is the substack of q−1(P ), where the classified morphisms have codomain
given by the a + 1 shift of free modules of rank m. The stack q−1(P )m is equivalent
to the stack classifying morphisms Am[a]→ P , where the cofiber has Tor-amplitude in
[a+ 1, b], which is equivalent to Am[a]→ P beeing a surjection on πa.
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To see the equivalence of stacks let us look at q−1(P )m(B). These are all morphisms
f : Q → Bm[a + 1] such that fib(f) ' P ⊗A B, again Q is a perfect B-module with
Tor-amplitude in [a+1, b]. Since ModA is stable, we see that P ⊗AB → Q→ Bm[a+1]
is a fiber diagram if and only if it is a cofiber diagram and thus after shift we see that
q−1(P )m(B) consists of morphisms g : Bm[a] → P ⊗A B such that its cofiber cofib(g)
has Tor-amplitude in [a + 1, b]. By Lemma 3.33 cofib(g) has Tor-amplitude in [a, b].
Since after tensoring Mm[a] → P ⊗A M → cofib(g) ⊗B M , where M is a discrete
π0B-module, we still have a cofiber sequence it is enough to check that πa(g ⊗ idM ) is
a surjection. But since πa(P ⊗AM) = πa(P )⊗π0AM (use the degeneracy of the Tor-
spectral sequence at (0, a)) and the ordinary tensor product of π0A-modules preserves
surjections it is enough to check that πag is surjective. And therefore q−1(P )m(B)
consists of morphisms Bm[a] → P ⊗A B, which are surjective on πa (obviously any
morphism Bm[a]→ P ⊗AB with cofiber having Tor-amplitude in [a+ 1, b] is surjective
on πa).

By this characterization the stack q−1(P )m is an open substack of FA(P∨)m[a] (see

Lemma 5.5 for notation).
To see this, let Spec(B)→ F(P∨)m[a] be given by a morphism ξ : Bm[a]→ P ⊗A B.

Let Z be the pullback of Spec(B) along the inclusion q−1(P )m ↪→ F(P∨)m[a]. In partic-
ular, for any animated A-algebra C, we have that Z(C) consists of those morphisms
f : B → C, such that πaf

∗ξ is surjective. Since P⊗AB is perfect and has Tor-amplitude
in [a, b] its homotopy group πa(P ⊗AB) is finitely presented (see [Lur17, Cor. 7.2.4.5]).
Therefore, being surjective is an open condition on π0B (see [GW10, Prop. 8.4]). Fur-
ther refining by principal affine opens D(fi) ⊆ Spec(π0B), we get an open substack⋃

Spec(B[f−1
i ]) of Spec(B). Now a morphism u : B → C is in Z(C) if and only if étale

locally there is an i such that π0u(fi) is invertible. Therefore, Z '
⋃

Spec(B[f−1
i ]).

Since q−1(P )m is open in FA(P∨)m[a], which itself is smooth by Lemma 5.5, we see

that q−1(P ) is smooth over A, which concludes the proof.
Indeed, let P be a perfect A-module with Tor-amplitude in [a, b]. Then, by Lemma

3.33, we can find a cofiber sequence M [a] → P → Q, where Q is perfect of Tor-
amplitude [a+ 1, b] and M is finite projective. Analogous to the above, we see that P
has Tor-amplitude in [a+ 1, b].

For the open immersion part it suffices by induction to show that for all a < b ∈ Z
the inclusion Perf

[a+1,b]
R ↪→ Perf

[a,b]
R is an open immersion. Let A ∈ ARR and Spec(A)→

Perf
[a,b]
R be a morphism classified by a perfect A-module P of Tor-amplitude [a, b]. By

Lemma 3.33, we have a fiber sequence of A-modules P → M [a + 1] → Q, where Q
is perfect of Tor-amplitude in [a + 1, b] and M is finite projective. Now P has Tor-
amplitude in [a+1, b] if and only if M ' 0. But by Lemma 5.4, we see that the vanishing
locus of M is a quasi-compact open in Spec(A), which concludes the proof.

Corollary 5.15. Let A be an animated R-algebra and let Spec(A)→ PerfR be a mor-
phism given by a perfect A-module P . The cotangent complex LPerfR,A is perfect and if
A/R is étale then the cotangent complex a that point is given by

LPerfR,A ' (P ⊗A P∨)∨[−1].
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Proof. This is analogous to [AG14, Cor. 5.9], but for the convenience of the reader we
recall the proof.

The first assertion follows from Theorem 5.14 with Corollary 4.78.
For the second assertion let ΩPPerfR denote the loop of PerfR along Spec(A) →

PerfR classified by a perfect A-module P , i.e. the ΩPPerfR := Spec(A)×PerfR Spec(A).
We know per definition of the cotangent complex that we have a pullback diagram

LPerf,A LA/R

LA/R LΩPPerfR,∗,

where ∗ is the point corresponding to the canonical map Spec(A)→ ΩPPerfR.
Let T ∈ ARA, then ΩPPerfR(T ) ' EquivT (P ⊗AT ), where EquivT (P ⊗AT ) denotes

the T -automorphisms of P ⊗A T . In particular ΩPPerf is an open substack of

HomA((P ⊗A P∨)∨,−)

(after using adjunctions). By Lemma 5.5, we now have

LΩPPerfR,∗ ' (P ⊗A P∨)∨.

Therefore, if A/R is étale, we have ΣLPerfR,A ' LΩPPerfR,∗, whe finishing the proof.
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6 Derived F -zips

In the following we fix a prime p and an Fp-algebra R. Starting from here it is important
that we have chosen the∞-category of animated rings for our study of derived algebraic
geometry. The main reason is that we want to have a Frobenius in characteristic p > 0.
For E∞-rings it is not clear how to define a Frobenius morphism. But for animated
rings we have naturally a Frobenius. Namely, if we see an animated ring A over Fp as a
contravariant functor from PolyFp to S, then the Frobenius morphism induces a natural
transformation of the animated ring to itself, which we denote by Frob: A → A. For
any animated R-algebra A and any A-module M , we denote the base change of M
under the Frobenius of A with M (1) := M ⊗A,Frob A. If A is discrete, we can see an
M -module via the equivalence ModA ' D(A) as an element in the derived category and
M (1) 'M ⊗LA,Frob A (here we abuse notation and identify A with π0A if A is discrete).

We want to define derived versions of F -zips presented in [MW04]. In the reference
Moonen-Wedhorn define F -zips over schemes of characteristic p > 0 and analyze the
corresponding classifying stack. One application is the F -zip associated to a scheme
with degenerate Hodge-de Rham spectral sequence. Examples of those are abelian
schemes and K3-surfaces. The degeneracy of the spectral sequence is used to get two
filtrations (note that also the conjugate spectral sequence degenerates) on the i-th
de Rham cohomology. Our goal is to eliminate the extra information given by the
degeneracy of the spectral sequences. This information seems unnecessary, since the
two spectral sequences are induced by filtrations on the de Rham hypercohomology
and thus if we pass to the derived categories, we can use perfectness of the de Rham
hypercohomology, the two filtrations and the Cartier-isomorphism to get derived F -
zips, as explained in the following example.

Example 6.1. Let f : X → S be a proper smooth morphism of schemes, where S is an
R-scheme. The complex Rf∗Ω

•
X/S is perfect and commutes with arbitrary base change

(see [Sta19, 0FM0]). The conjugate and Hodge filtrations on the de Rham complex
induce functors conj : Z → D(S) resp. HDG : Zop → D(S) given by28 conj(n) =
Rf∗τ≤nΩ•X/S resp. HDG(n) = Rf∗σ≥nΩ•X/S (recall that we see the ordered set Z as a

1-category (and thus via the Nerve functor as an ∞-category) where we have a unique
map between a, b ∈ Z if and only if a ≤ b). The associated colimits are naturally
equivalent as we have

colim
Z

conj ' Rf∗Ω•X/S ' colim
Zop

HDG.

For n ≥ 0, we have the following exact sequences of complexes of f−1OS-modules

0 τ≤n−1Ω•X/S τ≤nΩ•X/S Hn(Ω•X/S)[−n] 0,

0 σ≥n+1Ω•X/S σ≥nΩ•X/S Ωn
X/S [−n] 0.

28Here τ≤n denotes the canonical truncation and σ≥n the stupid truncation in the sense of [Sta19,
0118].
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These induce fiber sequences in D(S) of the form

conj(n− 1) conj(n) Rf∗Hn(Ω•X/S)[−n],

HDG(n+ 1) HDG(n) Rf∗Ω
n
X/S [−n].

It makes sense to think of Rf∗Hn(Ω•X/S)[−n] resp. Rf∗Ω
n
X/S [−n] as “cokernels” of the

respective maps in the distinguished triangles (as they are the cofibers in the stable
∞-category D(S)).

The notation of conj and HDG is chosen to indicate their influence on the classi-
cal conjugate and Hodge filtration. Using these functors, one can naturally associate
converging spectral sequences (as explained for example in [Lur17, Def. 1.2.2.9, Prop.
1.2.2.14] or [Sta19, 0FM7] for the Hodge filtration) on Rif∗Ω

•
X/S . The filtration on the

i-th cohomology of the colimit of HDG (' Rf∗Ω•X/S), for example is given by

FnRif∗Ω
•
X/S := im(H i(HDG(n))→ Rif∗Ω

•
X/S).

The spectral sequence associated to the Hodge functor is given by

Ep,q1 = Hq(X,Rf∗Ω
p
X/S) = Hq+p(X,Rf∗Ω

p
X/S [−p])⇒ Rp+qf∗Ω

•
X/S .

Therefore, it seems reasonable to think of conj resp. HDG as an ascending resp.
descending filtration (see Definition 6.2 below) with graded pieces

grn conj := Rf∗Hn(Ω•X/S)[−n] resp. grn HDG := Rf∗Ω
n
X/S [−n]

(see Definition 6.4 below).

The Cartier isomorphism gives an equivalence Rf∗Hn(Ω•X/S) ' Rf (1)
∗ Ωn

X(1)/S
. Again

by [Sta19, 0FM0], Rf∗Ω
n
X/S commutes with arbitrary base change and therefore

(grn HDG)(1) ' (Rf∗Ω
n
X/S)(1)[−n] ' Rf (1)

∗ Ωn
X(1)/S

[−n] ' Rf∗Hn(Ω•X/S)[−n] ' grn conj.

We claim that conj and HDG take values in perfect complexes of OS-modules and
their respective graded pieces are perfect.

Indeed, first note that we can check this Zariski locally, so we may assume that S
is affine and in particular quasi-compact. Then for any n ∈ Z the complex grn HDG
is perfect and Rf∗Ω

•
X/S are perfect and their formation commute with arbitrary base

change (see [Sta19, 0FM0]). Since σ≥0Ω•X/S = Ω•X/S , we see inductively using the dis-

tinguished triangles above that for all n ∈ Z the complex HDG(n) is perfect. Now
certainly the base change of perfect complexes is perfect and therefore the Cartier iso-
morphism shows that the graded pieces of conj are also perfect. The quasi-compactness
of S implies that there is an n ∈ N0 such that τ≤nΩ•X/S = Ω•X/S and thus again in-

ductively with the distinguished triangles above, we see that conj(n) is perfect for all
n ∈ Z.
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Note, that we heavily used that Zariski locally there is an n � 0 such that for
any k ≤ 0 and j ≥ 0, we have conj(k − 1) ' 0 ' HDG(n + j) resp. conj(n + j) '
Rf∗Ω

•
X/S ' HDG(k) and conj(n+j)→ conj(n+j+1) resp. HDG(k+1)→ HDG(k)

is equivalent to the identity.

The example above gives us an idea for the definition of derived F -zips (see Definition
6.13). Namely, a derived F -zip should consist of two filtrations (one descending and
one ascending) with perfect values that are locally determined by a finite chain of
morphisms, i.e. functors

C• ∈ Fun(Zop,Perf(S)) and D• ∈ Fun(Z,Perf(S)),

such that their colimits are equivalent and on affine opens are upto equivalence deter-
mined by their values on a finite ordered subset of Z, together with equivalences ϕ•
of their graded pieces up to Frobenius twist, i.e. for grnC := cofib(Cn+1 → Cn) and
grnD := cofib(Dn−1 → Dn) equivalences of the form

ϕn := (grnC)(1) ∼−→ grnD.

The ∞-category of derived F -zips should then be defined as the ∞-category of such
triples (C•, D•, ϕ•).

6.1 Filtrations

In the following A will denote an animated ring.
We will now define the notion of a filtration and graded pieces and look at properties

of filtrations. These definitions are highly influenced by the work of Gwilliam-Pavlov
[GP18] and Example 6.1.

Definition 6.2. An ascending (resp. descending) filtration of A-modules is an element
F ∈ Fun(Z,ModA) (resp. F ∈ Fun(Zop,ModA)).

We call an ascending (resp. descending) filtration F

(i) right bounded if there exists i ∈ Z such that the natural map F (k) → colimZ F
(resp. F (k)→ colimZop F ) is an equivalence for all i ≤ k (resp. i ≥ k),

(ii) left bounded if there exists i ∈ Z such that the natural map 0 → F (k) is an
equivalence for all k ≤ i (resp. k ≥ i),

(iii) bounded, if it is left and right bounded,

(v) perfect if F takes values in Modperf
A ,

(vi) strong if for all i ≤ j (resp. j ≤ i), we have that F (i)→ F (j) is a monomorphism.

Remark 6.3. The definition of a strong filtration seems natural, since for a discrete
module M over a discrete ring A a filtration is usually defined as a filtered chain of
submodules

· · · ⊆Mi ⊆Mi+1 ⊆ · · · ⊆M
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(for we simplicity only consider ascending filtrations). But we can show that the Hodge
filtration HDG of Example 6.1 is strong if and only if the Hodge-de Rham spectral
sequence is degenerate (see Theorem 6.71). Since we are particularly interested in the
cases where the Hodge-de Rham spectral sequence is non-degenerate, strong filtrations
are not used in the definition of derived F -zips. Nevertheless, we include the discussion
of strong filtrations since it seems natural to ask what happens if the filtrations are
given by monomorphisms.

The ∞-category of A-modules is stable. Thinking of stable ∞-categories as analogs
of abelian categories, we may think of cofibers as cokernels. This allows for a definition
of graded pieces of a filtration, that was used in Example 6.1.

Definition 6.4. Let F be a ascending (resp. descending) filtration of A-modules. For
any i ∈ Z, we define the i-th graded piece of F as gri F := cofib(F (i− 1)→ F (i)) (resp.
gri F := cofib(F (i+ 1)→ F (i))).

Remark 6.5. By construction of the category Fun(Z,ModA) one sees that two filtra-
tions F,G are equivalent if and only if there is a morphism F → G such that for all
n ∈ Z the induced morphism F (n) → G(n) is an equivalence of A-modules. However,
one can show that a morphism of bounded filtrations is an equivalence if and only
if it induces an equivalence on the graded pieces (this is an easy consequence using
induction or [GP18, Rem. 3.21]).

Remark 6.6. Note that for a perfect filtration F of A-modules, the graded pieces gri F
are again perfect (since the ∞-category of perfect modules is per definition stable, see
[Lur17, §7.2.4]).

Remark 6.7. We want to attach a monoidal structure to filtrations of A-modules
(we will only consider ascending filtrations but the arguments work analogously for
descending filtrations as explained in the end of the remark).

First, note that for any (symmetric) monoidal∞-category C the∞-category Fun(Z, C)
has two monoidal structures. The first one is simply given by termwise tensor prod-
uct (see [Lur17, Rem. 2.1.3.4]), the other one is given by the Day convolution (see
[Lur17, Ex. 2.2.6.17]). We will not use the monoidal structure given by termwise ten-
sor product, since we want to consider bounded filtrations and for such we do not have
a unit element with respect to the termwise tensor product. Having this in mind, will
look closely into the monoidal structure induced by the Day convolution, which we will
explain in the following.

For the Day convolution, we first need a (symmetric) monoidal structure on Z. For
this, we simply take Z with the usual addition, seen as a symmetric monoidal structure
on Z. Then the Day convolution of two elements F,G ∈ Fun(Z,ModA), denoted by
F ⊗G is given by the formula

(F ⊗G)(k) ' colim
n+m≤k

F (n)⊗A G(m),

where we take the colimit over the category of triples (a, b, a+ b → k), where a, b ∈ Z
and a + b → k is a morphism in Z (recall that this simply means a + b ≤ k), the
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morphisms are given componentwise, i.e. a morphism

(a, b, a+ b→ k)→ (a′, b′, a′ + b′ → k′)

is given by the relations a ≤ a′, b ≤ b′, and k ≤ k′. A unit element for this tensor
product is given by the bounded perfect filtration Atriv

• on A, where Atriv
i ' A for i ≥ 0

and 0 otherwise, the maps Atriv
m → Atriv

n for 0 ≤ m ≤ n are given by the identity and
Atriv
m → Atriv

n for m ≤ n ≤ 0 are given by 0.
If we replace ascending filtrations with descending ones the relations above get

opposed, i.e. we have unique morphisms a→ b in Zop if and only if b ≤ a. Taking this
to account we can dually define the Day convolution for descending filtrations similarly.

Notation 6.8. In the definition of derived F -zips we will have an ascending and a de-
scending filtration. For clarity, we denote for an ascending filtration F ∈ Fun(Z,ModA)
its values with Fn := F (n) for any n ∈ Z and for a descending filtrationG ∈ Fun(Zop,ModA)
its values with Gn := G(n). We also denote the filtrations with F• := F resp. G• := G.

For the gradings we omit the •, i.e. gri F := gri F• resp. griG := griG•

Remark 6.9. Let us visualize the Day convolution using an easy example. Let M,N
be A-modules and let C → M and D → N be morphisms of A-modules. Now let us
look at the filtrations C•, D• given

C• : . . .
0−→ 0

0−→ C →M
id−→M

id−→ . . .

D• : . . .
0−→ 0

0−→ D →M
id−→M

id−→ . . . ,

where we set C0 = C and D0 = D. Then we have (C• ⊗ D•)0 ' C ⊗A D and the
A-module (C• ⊗D•)1 is given by the pushout of the following diagram

C ⊗A D

M ⊗A D C ⊗A N.

The A-module (C• ⊗D•)2 is given by the colimit of the diagram

C ⊗A D

M ⊗A D C ⊗A N

M ⊗A D M ⊗A N C ⊗A N,

id id

in particular, we may forget about the top most module and only look at the colimit
of the bottom zigzag (in the homotopy category). This diagram makes clear that the
(C•⊗D•)2 'M⊗AN . The same visualization works for higher degrees of the filtration
(C• ⊗ D•)• and we will prove in the following proposition that the Day convolution
descends to perfect bounded filtrations having this tree structure in mind.
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Proposition 6.10. The Day convolution on Fun(Z,ModA) descends to a symmetric
monoidal structure on the full subcategory of perfect bounded ascending filtrations.

The same holds perfect bounded descending filtrations.

Proof. That the unit element for the Day convolution is a bounded perfect filtration
on an A-module is shown in Remark 6.7.

Let C• and D• be bounded ascending filtrations of A-modules. We claim that
(C• ⊗D•)• is a bounded ascending filtration.

That (C•⊗D•)• defines a left bounded filtration is clear. To see that it is also right
bounded, fix some integers k, k′ ∈ Z such that the natural morphisms

Ci
∼−→ colim

Z
C• and Dj

∼−→ colim
Z

D•

are equivalences for all i ≥ k and j ≥ k′. For simplicity, let us denote M := colimZC•
and N := colimZD•. First, note that the morphism Ci≤i+1 : Ci → Ci+1 is an equiv-
alence for all i ≥ k. Using this equivalence, we may assume that Ci≤i+1 is given by
idM (it is not hard to find and equivalence of filtrations), analogously we do the same
for D•. Now let us look at (C• ⊗ D•)k+k′ , we claim that this term is equivalent to
M ⊗N . Indeed, Ck ⊗A Dk′ 'M ⊗A N by construction. Now let (i, j) ∈ Z2, such that
i+ j ≤ k+ k′ but i > k or j > k′, so there is no morphism from Ci⊗Dj to Ck ⊗ADk′ .
Without loss of generality assume i > k (in particular j < k′).

Let us visualize what we are going to do. Considering the zig-zag from Remark 6.9,
we will look at the following diagram

Ck ⊗A Dj

... Ck+1 ⊗A Dj

... . . .

Ck ⊗A Dk′ Ci ⊗A Dj

(C• ⊗D•)k+k′ .

id

f
id

id

g

h

By definition of colimits, we automatically get a homotopy between f and h and a
homotopy between f and g. In particular, this diagram shows h is up to homotopy
uniquely determined by f and g. But certainly the morphisms of the filtrations and
g uniquely (up to homotopy) determine f . Using this and the universal property of
colimits, we see that there exists a morphism p : (C• ⊗ D•)k+k′ → Ck ⊗A Dk′ such
that idCk⊗ADk′ ' p ◦ g. But g ◦ p induces a map (C• ⊗ D•)k+k′ → (C• ⊗ D•)k+k′

that is compatible with all transition maps in the colimit diagram and thus g ◦ p '
id(C•⊗D•)k+k′

. In other words M ⊗A N ' Ck ⊗A Dk′ ' (C• ⊗D•)k+k′ .
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The same argument shows that (C•⊗D•)l 'M ⊗AN and that the canonical maps
(C• ⊗D•)l → (C• ⊗D•)l+1 are homotopic to the identity for all l ≥ k + k′. So for all
l ≥ k + k′, we have that the natural map

(C• ⊗D•)l
∼−→ colim

Z
(C• ⊗D•)• 'M ⊗A N

is an equivalence, i.e. (C• ⊗D•)• is right bounded.
The above computations show that the since C• and D• are bounded, we have for

any k ∈ Z that (C•⊗D•)k is equivalent to the colimit taken over a finite filtered subset
of Z (again seen as a category via nerve and morphisms uniqely given by relations).
Since finite colimits of perfect modules are perfect, we see that (C• ⊗D•)• is not only
bounded but also perfect (note stable ∞-categories are closed under finite colimits, see
[Lur17, Prop. 1.1.3.4]).

Combining everything above, we see that the Day convolution descends to bounded
perfect filtrations and therefore gives us a symmetric monoidal structure on bounded
perfect filtrations (see [Lur17, Prop. 2.2.1.1, Rem. 2.2.1.2]).

The proof for descending filtrations works analogously.

Remark 6.11. For two filtrations C• and D• of A-modules, it is known that

grk(C• ⊗D•) '
⊕
n∈Z

grnC ⊗A grk−nD

(see [BMS19, Lem. 5.2]).

Remark 6.12. Let us remark that the construction of the Day convolution can also
be done for Fun(C,D), where C and D arbitrary symmetric monoidal∞-categories (see
[Lur17, Ex. 2.2.6.17]).

An interesting example for us occurs if C ' Zdisc (recall that this means the set
Z as a discrete 1-category and thus an ∞-category via the Nerve functor), where we
endow Zdisc with a symmetric monoidal structure by addition, i.e. a⊗ b := a+ b, and
D ' Modperf

A . Then for functors F,G ∈ Fun(Zdisc,Modperf
A ), we have

(F ⊗G)(k) '
⊕

n+m=k

F (n)⊗A G(m) '
⊕
n∈Z

F (n)⊗A G(k − n).

This will become important, when constructing a symmetric monoidal structure on
derived F -zips, since we have to take the morphisms between graded pieces to account
and the behaviour of graded pieces of the tensor product of bounded perfect filtrations.

6.2 Derived F -zips over affine schemes

We are ready to define derived F -zips and we will do so by axiomatizing the structures
occurring in Example 6.1. We will first restrict ourselves to the local case, i.e. we define
derived F -zips over animated rings. The reason, besides simplicity, is that the theory
of derived algebraic geometry was only developed for animated rings since we want a
“nice” model category, such as the model category associated to animated rings. This
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is not a real issue since globalization of the results is achieved by considering right Kan
extensions. There is also a direct way of defining derived F -zips for derived stacks but
we will see that both constructions agree (see Remark 6.62).

Recall that we fixed an Fp-algebra R in the beginning of this section.

Definition 6.13. Let A be an animated R-algebra. A derived F -zip over A is a tuple
(C•, D•, φ, ϕ•) consisting of

• a descending bounded perfect filtration of A-modules C•,

• an ascending bounded perfect filtration of A-modules D•

• an equivalence φ : colimZop C• ' colimZD•, and

• a family of equivalences ϕk : (grk C)(1) ∼−→ grkD.

The ∞-category of F -zips over A, denoted by F-Zip∞,R(A), is defined as the full
subcategory of

(Fun(Zop,Modperf
A )×colim,ModA,colim Fun(Z,Modperf

A ))

×
((gri−)(1),gri−)i∈Z,

∏
Z Fun(∂∆1,Modperf

A )

∏
Z

Fun(∆1,Modperf
A ),

consisting of derived F -zips over A.
For an animated R-algebra homomorphism A→ A′ we have an obvious base change

functor F-Zip∞,R(A)→ F-Zip∞,R(A′) via the tensor product, where the filtrations are
base changed component wise with induced morphisms.

Remark 6.14. In the above definition we have to fix the equivalence between the
colimit of the ascending and descending filtration. This comes from the fact that we
want to define derived F -zips as a full subcategory, as above. To be more specific let
us look at a pullback diagram of ∞-categories

D A

B C.

g

n

A morphism ∆0 → D is by definition the same as diagram as follows

∆0 A

B C

f

m h g

n

with equivalences g ◦ f ' h and n ◦ m ' h in the ∞-category Fun(∆0, C), i.e. 1-
morphisms in HomCat∞(∆0, C) := Fun(∆0, C)' (resp. 2-morphisms in Cat∞). Impor-
tant here is that we have to fix the homotopy equivalences g ◦ f ' h and n ◦m ' h,
i.e. they are an additional datum. So an object in D is the same as a tuple (A,B,C) ∈
A × B × C together with an equivalence g(A) ' C and n(B) ' C. This is equiv-
alent to giving a tuple (A,B, φ) of objects A ∈ A and B ∈ B and an equivalence
φ : g(A) ' n(B).
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Remark 6.15. Let A be an animated R-algebra. The homotopy category of derived F -
zips over A forgets the extra datum of the equivalence between the colimits. This follows
from the fact the filtrations in the definition of a derived F -zips over A are bounded.
So, any derived F -zip (C•, D•, φ, ϕ•) is isomorphic (not canonically) in hF-Zip∞(S) to
a derived F -zip, where the equivalence between the colimits is actually given by the
identity. In particular, up to equivalence we may replace φ by identity and we will
write (C•, D•, ϕ•) in this case for a derived F -zip, when we work with derived F -zips
up to homotopy.

Example 6.16. Let us come back to Example 6.1. Let f : X → Spec(A) be a proper
smooth morphism of schemes. Then the associated Hodge and conjugate filtration
HDG and conj define a descending resp. ascending perfect bounded filtration of A-
modules. We also have equivalences ϕn : (grn HDG)(1) ∼−→ grn conj between the graded
pieces (up to Frobenius twist), induced by the Cartier isomorphism. Therefore, we get
a derived F -zip associated to the proper smooth map f of schemes

RΓdR(X/A) := (HDG•, conj•, ϕ•)

(note that colimZop HDG• ' colimZ conj naturally by the identity).

Remark 6.17. Let us remark that for any A ∈ ARR the ∞-category of F -zips over A
is essentially small, even if we don’t assume ModA to be small29. This is because the
∞-category ModA is compactly generated (see [Lur17, Prop. 7.2.4.2]) (thus accessible)
and therefore the full subcategory of perfect objects is essentially small (see [Lur09,

Prop. 5.4.2.2]). Hence for any small ∞-category K, the ∞-category Fun(K,Modperf
A )

is again essentially small (see [Lur09, 5.3.4.13, 5.4.4.3]). Finally, since F-Zip∞,R(A)
is a full subcategory of finite limits of those of the form above, we see that indeed
F-Zip∞,R(A) is essentially small (note that by [Lur09, Cor. 4.2.4.8] the ∞-category of
small ∞-categories has small limits).

Lemma 6.18. The ∞-category of derived F -zips over an animated R-algebra A is
stable.

Proof. We know that ModA and Modperf
A are stable and thus also for any∞-category C

the ∞-category Fun(C,Modperf
A ) is stable. Since the limit of stable ∞-categories with

finite limit preserving transition maps is stable (see Lemma 4.46) it is enough to show
that F-Zip∞,R(A) is a stable subcategory of(

Fun(Zop,Modperf
A ) ×colim,ModA,colim Fun(Z,Modperf

A )
)

×
((gri−)(1),gri−)i∈Z,

∏
Z Fun(∂∆1,Modperf

A )

∏
Z

Fun(∆1,Modperf
A )

29We want to remark that we did not assume any smallness of the module categories explicitly and
this remark shows that it is not needed in this section. But as Remark 4.54 shows, we need smallness
of the module categories, for globalization purposes, i.e. when we want to extend derived F -zips to
derived schemes via right Kan extension.
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(note that
∏

Z Fun(∆1,Modperf
A ) ' Fun(Zdisc,Fun(∆1,Modperf

A )) and filtered colimits
preserve finite limits). For this, we have to show that the perfect bounded filtrations,
equivalences between colimits of filtrations and equivalences between the graded pieces
(up to Frobenius twist) are stable under shifts and cofibers.

That perfect bounded filtrations are stable under shift and cofibers follows imme-
diately from the fact that limits and colimits of functors can be computed pointwise
(see [Lur09, Cor. 5.1.2.3]). The same argument implies that equivalences between the
graded pieces (up to Frobenius twist) are stable under cofibers and shifts. Since filtered
colimits comute with shifts and cofibers, we also see that the equivalence between the
colimits is preserved under those operations.

In the following we want to construct a symmetric monoidal structure on derived
F -zips. The idea is very simple. We know that derived F -zips are contained in a
larger ∞-category (see Definition 6.13), let us denote this category with C. This ∞-
category C is constructed by limits of functor categories, that we can endow with the
Day convolution. For the morphisms between graded pieces, we have to be bit careful
but Remarks 6.11 and 6.12 show us that this will be not a problem. Since passing to the
graded pieces and taking the colimit of a filtration are both monoidal functors, we see
that indeed C is symmetric monoidal. Now we only need to show that the unit object of
C is a derived F -zip, which follows immediately, the Day convolution of perfect bounded
filtrations is bounded perfect (this is Proposition 6.10) and the induced morphism of
graded pieces (up to Frobenius twist) is an equivalence, which is also immediate.

Proposition 6.19. The ∞-category of derived F -zips over an animated R-algebra A
admits a symmetric monoidal structure.

Proof. We know that Modperf
A admits a symmetric monoidal structure (see [Lur17, Rem.

2.2.1.2] and note that as an A-module A is perfect and the tensor product of perfect
A-modules is again perfect). We now show how to construct a symmetric monoidal
structure on derived F -zips.

The monoidal structure on the filtrations are given by the Day convolution (see
Proposition 6.10). The monoidal structure on the equivalences of graded pieces is
given in the following way.

We endow Fun(Zdisc,Modperf
A ) with the Day convolution (as explained in Remark

6.12), where we endow Zdisc with a symmetric monoidal structure by usual addi-

tion. The unit object in Fun(Zdisc,Modperf
A ) is given by Adisc

triv , where Adisc
triv(0) ' A

and 0 otherwise. Now we endow the ∞-category Fun(∆1,Fun(Zdisc,Modperf
A )) with

the pointwise tensor product (see [Lur17, Rem. 2.1.3.4]) - we do exactly the same

for Fun(∂∆1,Fun(Zdisc,Modperf
A )). Certainly, by this construction for a derived F -zip

(C•, D•, ϕ•) over A, the family ϕ• defines an element in Fun(∆1,Fun(Zdisc,Modperf
A )).

Now let us note that taking the colimit defines a symmetric monoidal functor from
ascending (resp. descending) filtrations to ModA (as the tensor product of spectra
commute with colimits in each variable, see Section 2). Also sending a filtration to
its graded piece is symmetric monoidal by Remark 6.11. Therefore, we can attach a
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symmetric monoidal structure to

C(A) := (Fun(Zop,Modperf
A )×colim,ModA,colim Fun(Z,Modperf

A ))

×
Fun(∂∆1,Fun(Zdisc,Modperf

A ))
Fun(∆1,Fun(Zdisc,Modperf

A ))

where we use that the∞-category of symmetric monoidal∞-categories has limits (see30

[Lur17, Rem. 2.4.2.6, Prop. 3.2.2.1]).
Since derived F -zips over A forms a full subcategory of C(A), it suffices to check that

the unit element of C(A) is in F-Zip∞,R(A) and that it is closed under the tensor product
(see [Lur17, Rem. 2.2.1.2]). But this follows from Proposition 6.10 and Remarks 6.11
and 6.12. Concretely, the unit element in F-Zip∞,R(A) is given by

1A := (A•triv, A
triv
• , idA, (idA)0),

where Atriv
• is defined as in Remark 6.7, A•triv is defined dually , i.e is given by Antriv ' A

for n ≤ 0 zero elsewhere and the identity as transition maps, (idA)0 denotes the family
of morphisms ϕ•, where ϕ0 ' idA and 0 elsewhere.

Note that for ϕ•, ϑ• ∈ Fun(∆1,Fun(Zdisc,Modperf
A )) which induce equivalences in

Fun(Zdisc,Modperf
A ) their tensor product is still an equivalence, by the explicit descrip-

tion given in Remark 6.12.

Our next goal is to show that the functor that sends an animated R-algebra to the
∞-category of derived F -zips over it is locally geometric. For this we need that it is
a hypercomplete sheaf for the étale topology. We will show that it is a hypercomplete
sheaf even for the fpqc topology. Since every geometric derived stack is hypercomplete
(see Lemma 4.81) the hypercompleteness condition - at least for the étale topology - is
necessary.

Again the idea is very simple and follows the proof of descent for perfect modules
seen in [AG14, Lem. 5.4]. We again embed F -zips into a larger category as in the
proof of Proposition 6.19, which satisfies hyperdescent. Then we only need to check
that the properties bounded perfect of a filtration and the property equivalence of a
morphism between modules satisfy fpqc-hyperdescent. But since our cover is affine
and perfectness is equivalent to dualizability both properties satisfy hyperdescent and
we are done.

To see that the larger category satisfies descent one only needs that perfect filtrations
satisfy descent which will follow from descent of perfect modules.

Lemma 6.20. Let F : ARR → Cat∞ be a hypercomplete fpqc sheaf. Then for any
∞-category C the functor Fun(C, F (−)) : ARR → Cat∞ is a hypercomplete fpqc sheaf.

30The reference shows existence of limits in commutative algebra objects of symmetric monoidal
∞-categories. But using [Lur17, Prop. 4.1.7.10] we can endow the ∞-category of ∞-categories with
the cartesian model structure (a concrete description of the associated ∞-operad is given in [Lur17,
Notation 4.8.1.2]). The commutative algebra objects of the ∞-category of ∞-categories with this
monoidal structure is then equivalent to the ∞-category of symmetric monoidal ∞-categories (defined
for example in [Lur17, Var. 2.1.4.13]).
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Proof. As Fun(C,−) is right adjoint to the product it preserves limits. Since F is
a hypercomplete sheaf, we see that indeed the natural morphism Fun(C, F (A))

∼−→
lim∆s Fun(C, F (A•)) is an equivalence for any fpqc hypercovering A→ A•.

Definition and Proposition 6.21. The functor

F-Zip∞,R : ARR → Cat∞

A 7→ F-Zip∞,R(A)

is a hypercomplete sheaf for the fpqc topology.

Proof. In the following we will denote the functor ARR → Cat∞, A 7→ Modperf
A with

Modperf
(−) to avoid confusion with the notation of the stack of perfect modules over R.

Let A→ A• be an fpqc hypercovering given by a functor ∆+,s → ARR. We have to
show that F-Zip∞(A)→ lim∆s F-Zip∞,R(A•) is an equivalence.

For convenience, we first set

C(−) := Fun(Zop,Modperf
− )×colim,Mod−,colim Fun(Z,Modperf

− )

×
Fun(∂∆1,Fun(Zdisc,Modperf

− ))
Fun(∆1,Fun(Zdisc,Modperf

− ))

For the fully faithfulness let us look at the following diagram

F-Zip∞,R(A) lim∆s F-Zip∞,R(A•)

C(A) lim∆s C(A•).

By Lemma 6.20 and descent of (perfect) modules (see Remark 4.53), we see that C is
a hypercomplete sheaf for the fpqc topology and thus the bottom horizontal arrow is
an equivalence and thus the upper horizontal arrow is fully faithful.

For the essential surjectivity note that we have to check that a filtration is bounded
if and only if it is fpqc hyperlocally. But this follows immediately from the definition
of a hypercovering, since A → A0 has to be an fpqc-covering and thus if a filtration
is bounded on the hypercovering it is certainly on A. Also we have to check that the
induced morphism on the graded pieces (up to Frobenius twist) is an equivalence if and
only if it is so fpqc hyperlocally but again this follows from descent of modules.

Recall that the functor (−)' that sends an ∞-category to its underlying Kan com-
plex is right adjoint to the inclusion and thus preserves limits. In particular the hy-
percomplete sheaf F-Zip∞,R induces a derived stack. We want to show that this stack
is locally geometric. To do so, we have to write it as a filtered colimit of geometric
stacks. In the case of perfect modules, we restricted ourselves to perfect modules of

fixed Tor-amplitude Perf
[a,b]
R . To use the geometricity of Perf

[a,b]
R for our advantage, we

fix the Tor-amplitude of the graded pieces associated to the descending filtration of a
derived F -zip (C•, D•, φ, ϕ•). By boundedness of the filtrations this also fixes the Tor-
amplitude of each Ci and Di for all i ∈ Z (for Di we use the equivalences given by ϕ•).

86



But this is still not enough for geometricity since we would need to cover filtrations that
could get bigger and bigger. To solve this problem, we also fix a finite subset S ⊆ Z,
where the i-th graded piece vanishes for i 6∈ S. This is analogous to fixing the type (see
Definition 6.28), which is done in the classical setting by [MW04]. This approach also
works as seen later in Remark 6.41 but amounts to the same proof.

Definition 6.22. We define the derived stack of F -zips

F-ZipR : ARR → S
A 7→ F-Zip∞,R(A)'.

For a finite subset S ⊆ Z and a ≤ b ∈ Z, we define F-Zip
[a,b],S
R as the derived

substack over F-ZipR, where we restrict ourself to the F -zips (C•, D•, φ, ϕ•), such that
griC ' 0 for i 6∈ S and the Tor-amplitude of griC is contained in [a, b] for all i ∈ S
(note that both conditions can be tested locally and thus F-Zip

[a,b],S
R indeed defines a

derived substack).

Theorem 6.23. Let S ⊆ Z be a finite subset and a ≤ b ∈ Z. The derived stack

F-Zip
[a,b],S
R is (b − a + 1)-geometric and locally of finite presentation. Further, the

functor F-Zip
[a,b],S
R → Perf

[a,b]
R induced by (C•, D•, φ, ϕ•) 7→ colimZop C• is locally of

finite presentation.

We want to remark that in fact F-Zip is locally geometric, which will be shown later
on (see Theorem 6.42).

The idea of the proof is straightforward. We know that perfect modules with fixed
Tor-amplitude, morphisms between those and stacks classifying equivalences between
those are geometric. Since the filtrations have finite length, we can see them as finite
chains between perfect modules with fixed Tor-amplitude, which is also geometric. The
only thing left is to extend finite chains of perfect modules to functors from Z (resp.
Zop) to perfect modules with fixed degree where the graded pieces do not vanish. But
this is also straightforward since the only thing left is to degenerate each vertex in the
finite chain such that it sits in the right degree.

Proof of Theorem 6.23. Let k be the number of elements of S and let us index S in
the following way {s0 < · · · < sk−1}. Let us set n := b− a+ 1. Consider the pullback
square

V Fun(∆1,Modperf
(−) )'

Perf
[a,b]
R ×R Perf

[a,b]
R Fun(∂∆1,Modperf

(−) )'

p

then V is an n-geometric stack locally of finite presentation, since itself classifies mor-
phisms between perfect complexes with Tor amplitude in [a, b] and thus the fiber of

a point Spec(A) → Perf
[a,b]
R ×R Perf

[a,b]
R , classified by perfect A-modules (P,Q) of Tor-

amplitude in [a, b], under p is given by FP⊗Q∨ , which is (n − 2)-geometric and locally
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of finite presentation by Lemma 5.5 (thus using that Perf
[a,b]
R ×R Perf

[a,b]
R is n-geometric

(since Perf
[a,b]
R is n-geometric by Theorem 5.14) we see that V is n-geometric).

We will now glue copies of V together so that we can classify a chain of mor-
phisms, and since F -zips have two filtrations, we will do this twice. Let us start

with codom: V → Perf
[a,b]
R , which sends a morphism to its codomain. This mor-

phism is n-geometric and locally of finite presentation, since it is the composition

of V → Perf
[a,b]
R ×R Perf[a,b] and p2 : Perf

[a,b]
R ×R Perf

[a,b]
R → Perf

[a,b]
R , which both are

n-geometric and locally of finite presentation (analogously the map dom: V → Perf[a,b]

which sends a morphism to its domain is n-geometric and locally of finite presenta-
tion). In particular Ṽ1 := V ×

codom,Perf
[a,b]
R ,codom

V is n-geometric and locally of finite

presentation.
The derived stack Ṽ1 classifies tuples of morphisms of perfect modules (M →

M ′, N → N ′), such M ′ is equivalent to N ′. This is not an extra datum, as codom

from V to Perf
[a,b]
R is pointwise a Kan fibration, so we can use Remark 5.13 to see that

Ṽ1 is pointwise equivalent in S to the ordinary pullback of simplicial sets, where we do
not need to keep track of the equivalence of M ′ and N ′. Since we want to keep track
of the equivalence between the colimits, we define V1 via the pullback square

V1 Fun(∆1,Perf
[a,b]
R )

Ṽ1 Fun(∂∆1,Perf
[a,b]
R ).

p̃

(codom,codom)

Note that for any morphism Spec(A) → Ṽ1, classified by two morphisms (M →
M ′, N → N ′) of perfect A-modules of Tor-amplitude [a, b], the fiber under p̃ is given
by the stack classifying equivalences between M ′ and N ′, which is open in the derived
stack HomModA(M ′ ⊗A (N ′)∨,−) over A by Lemma 5.431 and thus (n − 2)-geometric
and locally of finite presentation by Lemma 5.5. By our construction V1 is n-geometric
and classifies tuples (f, g, ψ), where f, g are morphisms of perfect modules and ψ is an
equivalence between their codomains.

Let us set recursively

Vl := (V ×R V )×
codom× codom,Perf

[a,b]
R ×RPerf

[a,b]
R ,dom× dom

Vl−1,

for l ≥ 2. Let us also set V0 as the stack classifying equivalences between perfect

modules (analogously defined as V ). Here dom×dom: Vl−1 → Perf
[a,b]
R ×R Perf

[a,b]
R is

defined for l > 2 by projecting to V ×R V and then further projecting by dom×dom
and for l = 2 it is directly given by dom×dom (note that we have two projections from
V1 to V ). Using the same arguments as before, we see that Vl is n-geometric and locally
of finite presentation for all l ≥ 0. Now let us look at Vk−1. The stack Vk−1 classifies
two chains of length k−1 of morphisms of perfect modules with Tor-amplitude in [a, b],
with an equivalence of the ends of the two chains.

31This is seen in the proof of Lemma 5.7
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Later in the proof, we will identify Vk−1 with the stack that classifies perfect modules
with Tor-amplitude in [a, b] and two bounded filtrations with graded pieces of Tor-
amplitude in [a, b] (one descending, one ascending) with k non-trivial graded pieces.

We extend the chains by zero on the left by defining

Ṽk−1 := Vk−1 ×dom× dom,Perf
[a,b]
R ×RPerf

[a,b]
R ,p0×p0

W ×RW,

where W is defined via the pullback

W Fun(∆1,Modperf
(−) )'

Perf
[a,b]
R Fun(∂∆1,Modperf

(−) )'.

p0

M 7→(0,M)

Since 0 is the initial object in perfect modules, we see that W ' Perf
[a,b]
R and thus

Ṽk−1 ' Vk−1, but this description will ease the connection to derived F -zips (we have

to add zeroes to get left bounded filtrations and by working with Ṽk−1 this is automatic

if we degenerate the left most vertex). Note that we can identify an element in Ṽk−1(A)
with two functors

C•, D• : S− := {s0 − 1 < s0 < · · · < sk−1} → Modperf
A .

Sending C• to the functor

C• : Sop
+ := {s0 < · · · < sk−1 < sk−1 + 1}op → Modperf

A

si 7→ Csk−1−i

sk−1 + 1 7→ Cs0−1

defines an obvious equivalence between the corresponding functor categories and so we
may see an element Ṽk−1(A) as a tuple (C•, D•, ψ) of a finite descending chain C• of
perfect A-modules, a finite ascending chain D• of perfect A-modules and an equivalence
of their respective colimits, i.e.

ψ : colim
Sop

+

C• ' colim
S−

D•.

With this identification, we get a morphism from Ṽk−1 to the k-fold product of
Fun(∂∆1,Perf), by sending a pair of chains to the graded pieces of the chains (resp. if
we see them as filtrations, we send them to the non-trivial graded pieces), i.e. if the

filtrations of an element in Ṽk−1(A), for some A ∈ ARR, is given by (C•, D•, ψ), we
take ((grsC)(1), grsD)s∈S (here grsC is defined as the cofiber of Csi+1 → Csi , where
si corresponds to s in the notation above, analogously for grsD). With this let us look
at the following pullback square

Ṽ
∏
s∈S Fun(∆1,PerfR)

Ṽk−1
∏
s∈S Fun(∂∆1,PerfR)

p

((grs(−))(1),grs(−))s∈S
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(note the difference to the previous squares: previously we considered morphisms in

Modperf
− , whereas here we consider morphisms in the underlying Kan complex, so only

invertible ones).

Now let Spec(A) → Ṽk be a morphism classified by a perfect A-module with Tor-
amplitude in [a, b] and a descending (resp. ascending) chain C• (resp. D•). Then
p−1(Spec(A)) is given by the stack∏

s∈S
Equiv((grsC)(1), grsD),

where Equiv((grsC)(1), grsD) denotes the stack classifying equivalences between (grsC)(1)

and grsD. This stack is n-geometric and locally of finite presentation (since each term
is n-geometric and locally of finite presentation)32 and therefore, we see that Ṽ is n-
geometric and locally of finite presentation. By construction, we also have that the
morphism

Ṽ → Perf
[a,b]
R

given by sending one of the chains to its colimit is n-geometric and locally of finite

presentation (as it is given by projections down to Perf
[a,b]
R which are all n-geometric

and locally of finite presentation).

We can naturally define a functor F : Ṽ → F-Zip
[a,b],S
R by extending the filtrations

via identity to get non-trivial graded pieces at the points of S and the isomorphisms of
the graded pieces by the essentially unique zero morphism.

To be more specific we will show how to give F as a functor of simplicial sets. The
extension by identity will just be degeneration of simplicial sets. Let σ ∈ Ṽ (A) be an
m-simplex. Then σ is given by functors

D : S− ×∆m → Modperf
A , C : Sop

+ ×∆m → Modperf
A

with
ψ : C|{s0}×∆m ' D|{sk−1}×∆m , C|{sk−1+1}×∆m ' 0 ' D|{s0−1}×∆m ,

and (ϕs)s∈S , where ϕs : ∆1×∆m → PerfR(A) is a functor between simplicial sets, such
that

ϕs|∆{0}×∆{i} ' (grsC)(1) and ϕs|∆{1}×∆{i} ' grsD.

We will show how to define an extension of D, i.e. a functor D̄ : Z ×∆m → Modperf
A ,

that restricted to S− is equivalent to D.
Let (α, σ) be an l-simplex in Z×∆m, note that α is given by a sequence of integers

α0 ≤ · · · ≤ αl−1. We are going to count the number of αi that are between two vertices
in S− and degenerate our finite chain for this amount. This can be thought of adding
the right amount of identities between vertices such that the resulting filtration has
non-vanishing graded pieces precisely at all s ∈ S.

32Again, Equiv((grs C)(1), grsD) is open in the derived stack HomModA((grs C)(1)⊗(grsD)∨,−) over
A by lemma 5.4 and HomModA((grs C)(1) ⊗ (grsD)∨,−) → Spec(A) is (n − 2)-geometric by Lemma
5.5.
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Let us note the degeneracy maps of S− with λ• (here we see the finite ordered set
S− as an ∞-category and set λ−∞ as the degeneracy map corresponding to s0 − 1).
For sd ∈ S− define sets Ad := {αj | sd ≤ αj ≤ sd+1}, where we set sk = ∞ and
A−∞ := {αj | αj ≤ s0 − 1}. Let us further set ni = #Ai. We consider the l-simplex in
S− of the form

ᾱ := λ
nk−1−1
k−1 ◦ · · · ◦ λn−∞−1

−∞ 〈sj | Aj 6= ∅〉,

where λ−1
i := id. Thus, we can set D̄(α, σ) := D(ᾱ, σ). Similarly, this can be done to

extend C, ψ and (ϕs)s which defines the functor F .

We also get a projection P : F-Zip
[a,b],S
R → Ṽ via restricting the filtrations to

{s0 − 1 ≤ s0 ≤ · · · ≤ sk−1} ' S− resp. {s0 ≤ · · · ≤ sk−1 ≤ sk−1 + 1} ' S+ and
the equivalences to Fun(∆1,Fun(Sdisc,PerfR(A))). Since by this construction P ◦ F is
the identity, we see that F is in fact a monomorphism and since it is an effective epimor-
phism (by Remark 6.15 F is pointwise essentially surjective on the level of homotopy
categories), this shows that F is an equivalence of derived stacks.

Corollary 6.24. Let S ⊆ Z be a finite subset and a ≤ b ∈ Z. The derived stack

F-Zip
[a,b],S
R has a perfect cotangent complex

Proof. This follows from Theorem 6.23 and Corollary 4.78.

6.3 On some substacks of F-Zip

In this section, we want to define the type of a derived F -zip and look at the derived
substacks classified by the type. We do the same with those derived F -zips where the
underlying module has some fixed Euler-characteristic. These derived substacks will be
open (resp. locally closed) and we will use these to write the derived stack of derived
F -zips as a filtered colimit of open derived substacks.

We do this in the spirit of the classical theory of F -zips over a scheme S. There the
type of a classical F -zip (M,C•, D•, ϕ•) is a function from S to functions Z→ N0 with
finite support that assigns for a point s ∈ S the function k 7→ dimκ(s)(grkCM ⊗OS κ(s))
(one uses that the graded pieces of a classical F -zip are finite projective and thus the
dimension on the fibers is locally constant with respect to s).

Since we are working with complexes we have to modify the definition of the type.
To be more specific, we will look at fiberwise dimensions of all cohomologies at once.
For a perfect complex P over S the assignment s ∈ S 7→ H i(P ⊗OS κ(s)) defines an
upper semi-continuous function. Since derived F -zips have only finitely many nonzero
graded pieces, we will use this result to analyze the geometry of the derived substacks
classifying derived F -zips with certain type.

Definition and Remark 6.25. Let A be an animated ring and let P be a perfect
A-module. We define the function

βP : Spec(π0A)cl → NZ
0

a 7→ (dimκ(a) πi(P ⊗A κ(a)))i∈Z.

91



Since P ⊗A π0A is perfect and thus has bounded Tor-amplitude, we see that βP
takes values in functions Z → N0 with finite support and β−1

P (([0, ki])i∈Z) is open and
quasi-compact for any (ki)i ∈ NZ

0 (see Lemma 5.1).
Let I ⊆ Z be a finite subset. Assume that Supp(βP (a)) ⊆ I for all a ∈ Spec(π0A)cl.

Recall from Remark 5.2 that this implies that P has Tor-amplitude in [min(I),max(I)].
Further, as explained in the proof of Lemma 5.3, the Lemma of Nakayama implies that
if βP constant with value equal to (0)i∈Z, then P ' 0.

The following definition will be used to ease notation.

Definition 6.26. Let f : Z → NZ
0 be a function. We say f has finite support if the

induced function Z× Z→ N0 given by (n,m) 7→ f(n)m has finite support.

Remark 6.27. A function f : Z→ NZ
0 has finite support if the sets

{n ∈ Z | f(n) 6= (0)i∈Z}, {k ∈ Z | f(n)k 6= 0}

are finite.

Definition and Remark 6.28. LetA be an animatedR-algebra and F := (C•, D•, φ, ϕ•)
be a derived F -zip over A. Consider the function

βF : a 7→ (k 7→ βgrk C(a))

from Spec(π0A)cl to functions with finite support.

1. The function βF is called type of the derived F -zip F .

2. Let τ : Z→ NZ
0 be a function with finite support. We say that F has type ≤ τ if

for all a ∈ Spec(π0A)cl and all n,m ∈ Z, we have βF (a) ≤ τ .33

Further, for any a ∈ Spec(π0A)cl there exists a quasi-compact open neighbourhood
Ua of a (resp. locally closed subset Va containing a) and a function τ : Z → NZ

0 with
finite support, such that βF |Ua ≤ τ in the sense above (resp. βF |Va is constant an equal
to τ) (this follows from Lemma 5.1).

Remark 6.29. Let us come back to our example of a proper smooth morphism f : X →
Spec(A). Let τ : Z → NZ

0 be a function with finite support. Then the derived F -zip
RΓdR(X/A) of Example 6.16 has type ≤ τ if the Hodge numbers

dimκ(a)H
−j−i(Xκ(a),Ω

i
Xκ(a)/κ(a)) ≤ τ(i)j

for all i, j ∈ Z and a ∈ Spec(A) (note that the minus signs in the Hodge-numbers
appears since we use homological notation).

33Again, we view βP (a) and τ as functions from Z× Z to N0 and define the inequality pointwise.
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Definition and Remark 6.30. LetA be an animatedR-algebra and F := (C•, D•, φ, ϕ•)
be a derived F -zip over A. Let us look at the function

χk(F ) : Spec(π0A)cl → Z
s 7→ χ(grk C ⊗A κ(s)).

This is a locally constant function (see [Sta19, 0B9T]). Since the filtrations on derived
F -zips are bounded, we also know that the function χF : a 7→ (k 7→ χk(F )(a)) is also
locally constant as a map from Spec(π0A)cl to functions Z → Z with finite support.
We call χF the Euler-characteristic of F .

If τ : Z→ Z is a function with finite support, we say F has Euler-characteristic τ if
for χF is constant with value τ .

The reason behind the following definition gets clear later on. One problem will
be that we cannot classify F -zips of fixed type, since the type is only “upper semi-
continuous” (we do not explicitly define this notion but hope that the idea is clear from
the previous definitions and remarks). This can be resolved when we assume that the
homotopies of the graded pieces are finite projective.

Definition 6.31. Let A be an animated ring.

1. Let M ∈ ModA be a perfect A-module. Fix a map r : Z → N0. We call M
homotopy finite projective of rank r, if for all schemes S and scheme morphism
f : S → Spec(π0A)cl the OS-module πi(f

∗(M ⊗A π0A)) is finite locally free of
rank ri.

2. Let F := (C•, D•, φ, ϕ•) be a derived F -zip over A and τ : Z→ NZ
0 be a function

with finite support. We say that F is homotopy finite projective of type τ if for
all i ∈ Z, we have that griC is homotopy finite projective of rank τ(i).

Remark 6.32. By the above definition if a derived F -zip is homotopy finite projective
of type τ , for τ like above, then its ascending filtration has type τ .

Definition 6.33. Let A be an animated R-algebra. Let τ : Z→ NZ
0 be a function with

finite support and finite value.

(i) We set F-Zip≤τ∞,R(A) to be the subcategory of F-Zip∞,R(A) consisting of those
derived F -zips with type ≤ τ .

(ii) We set F-Zipτ∞,R(A) to be the subcategory of F-Zip∞,R(A), of those derived F -
zips that are homotopy finite projective of type τ .

The associated functors denoted by F-Zip≤τ∞,R and F-Zipτ∞,R and the associated functors

ARR to S are denoted by F-Zip≤τR respectively F-ZipτR.

Proposition 6.34. The functors F-Zip≤τ∞,R and F-Zipτ∞,R are hypercomplete fpqc sheaves.

In particular, F-Zip≤τR and F-ZipτR are derived substacks of F-ZipR.
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Proof. Using the arguments as in the proof of Proposition 6.21, we only have to show
that if A → Ã is faithfully flat, a derived F -zip over A has type ≤ τ respectively is
homotopy finite projective of type τ if and only if it has so after base change to Ã.
But by faithfully flatness, we know that Spec(π0Ã)cl → Spec(π0A)cl is faithfully flat.
Now the definitions involved easily show the claim noting that for A-module M and
any commutative diagram of the form

κ(a′) Spec(π0Ã)

κ(a) Spec(π0A),

where κ(a) is the residue field of a point a ∈ Spec(π0A) and κ(a′) is the residue field
of a lift a′ ∈ Spec(π0Ã) of a (exists by faithfully flatness), we have

dimκ(a′) πi(M ⊗A Ã⊗Ã κ(a′)) = dimκ(a′) πi
(
M ⊗A κ(a)⊗κ(a) κ(a′)

)
= dimκ(a′) πi (M ⊗A κ(a))⊗κ(a) κ(a′)

= dimκ(a) πi (M ⊗A κ(a)) ,

where we use flatness of field extensions for the second equality.

Definition 6.35. Let A be an animated R-algebra. Let τ : Z→ Z be a locally constant
function with finite support. We set F-Zipχ=τ

∞,R(A) to be the subcategory of F-Zip∞,R(A)
classifying those derived F -zips F with χF = τ .

The associated functor is denoted by F-Zipχ=τ
∞,R and the associated presheaf from

ARR to S is denoted by F-Zipχ=τ
R .

Lemma 6.36. The functor F-Zipχ=τ
∞,R is a hypercomplete fpqc sheaf. In particular, the

functor F-Zipχ=τ
R is a derived substack of F-ZipR.

Proof. The proof is completely analogous to the proof of Proposition 6.34.

In the following, we want to show that the inclusion of the derived substacks F-Zip≤τ ,
F-Zipτ and F-Zipχ=τ into F-Zip are in fact geometric. To show geometricity of F-Zipτ

we will need a proposition from the upcoming book of Görtz-Wedhorn. This proposition
in particular shows the reason behind the definition of homotopy finite projectiveness.
The finite projectiveness of the homotopy groups is needed to have some geometric
structure if we fix the type.

Lemma 6.37 ([GW]). Let S be a scheme, let E be a perfect complex in D(S) of Tor-
amplitude [a, b], and let I ⊆ [a, b] be an interval containing a or b. Fix a map r : I → N0,
i 7→ ri. Then there exists a unique locally closed subscheme j : Z = Zr ↪→ S such that
a morphism f : T → S factors through Z if and only if for all morphisms g : T ′ → T
the OT ′-module πi(L(f ◦ g)∗E) finite locally free of rank ri for all i ∈ I. Moreover,

(1) the immersion j : Z ↪→ S is of finite presentation,
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(2) as a set one has

Z = {s ∈ S | dimκ(s) πi(E ⊗LOS κ(s)) = ri for all i ∈ I},

(3) if f : T → S factors as T
f̄−→ Z

j−→ S, then πi(Lf
∗E ⊗LOT G) = f̄∗πi(j

∗E) ⊗OT G
for all i ∈ I and for all quasi-coherent OT -modules G.

Proof. See Lemma C.2.

We are going to show that derived F -zips of certain type are classified by open
(resp. locally closed) substacks of F-ZipR. We have seen in Remark 4.42 that an open
immersion U ↪→ Spec(π0A) of R-algebras, where A ∈ ARR, can be lifted to an open
immersion Ũ ↪→ Spec(A). Also any morphism Spec(T ) → Spec(A) factors through Ũ
if étale locally Spec(π0T )→ Spec(π0A) factors through U .

We could now try to do the same for closed immersions. So, for a closed immersion,
let’s say induced by an element a ∈ π0A, Spec(π0A/(a))→ Spec(π0A), we get a closed
immersion Spec(A�(a)) → Spec(A), where A�(a) is the derived quotient34. But it
is not clear that a morphism Spec(T ) → Spec(A) factors through Spec(A�(a)) if and
only étale locally on π0 it does. In particular, in the following proposition we cannot
show that F-Zipτ ↪→ F-Zip≤τ is a locally closed immersion, but only after restricting
the functors to R-algebras (we can even show that it is open and closed).

Remark 6.38. In the next Proposition, we will analyze the geometric structure of the
inclusion i : F-Zip≤τR ↪→ F-ZipR. For this, we want to understand the pullback

X Spec(A)

F-Zip≤τR F-ZipR,
i

where Spec(A) → F-ZipR is given by some derived F -zip F := (C•, D•, φ, ϕ•). As
explained in Remark 6.15, we can find an equivalence between F and a derived F -zip
G := (C ′•, D′•, φ

′, ϕ′•), where φ′ is given by the identity on colimZop C ′•. This equivalence
between F and G defines homotopies

Spec(A) Spec(A)

F-ZipR,
G

idSpec(A)

F

Spec(A) Spec(A)

F-ZipR .
F

idSpec(A)

G

34The derived quotient is defined in the following way. An element in a ∈ π0A = π0Ω∞A gives rise
to an element f ∈ Hom(Z[X], A) ' Ω∞A. Thus we can define the derived quotient as

A�(a) := A⊗f,Z[X],X 7→0 Z.

95



So in particular, the pullbacks F-Zip≤τR ×i,F-ZipR,F Spec(A) and F-Zip≤τR ×i,F-ZipR,G Spec(A)
are equivalent. Thus, for geometric properties of the inclusion i, we may only work with
derived F -zips of the form G (i.e. those derived F -zips where the equivalence between
the colimits is given via the identity).

The same reasoning works also for other substacks.

Proposition 6.39. Let τ : Z→ NZ
0 be a function with finite support. Then the inclusion

i : F-Zip≤τR ↪→ F-ZipR is a quasi-compact open immersion (in particular 0-geometric by
Proposition 4.30).

Let further p : F-ZipτR ↪→ F-Zip≤τR denote the inclusion. Then t0p
35 is a closed

immersion locally of finite presentation.

Proof. Let Spec(A)→ F-ZipR be a morphism of derived stacks with A ∈ ARFp classified
by a derived F -zip F = (C•, D•, ϕ•)

36. Then a morphism f : Spec(T ) → Spec(A)
factors through i−1(F ) := Spec(A)×F-ZipR F-Zip≤τ if and only if f∗F has type ≤ τ . By

Lemma 5.1, we know that there is a quasi-compact open subscheme Ũ of Spec(π0A)
classifying those points of Spec(π0A), where F has type ≤ τ (note that the filtrations
are bounded and that perfect complexes have only finitely many non-zero homotopy
groups). We claim that f factors over i−1(F ) if and only if it factors over the lift U of
Ũ constructed in Remark 4.42, i.e. if we write Ũ =

⋃n
i=0 Spec(π0Afi), we define U as

the image of
∐n
i=0 Spec(A[f−1

i ]) → Spec(A) (note that this construction implies that
U is quasi-compact).

Indeed, it is clear that if f factors through U , then it certainly factors through
i−1(F ). Now assume f factors through i−1(F ). In particular, we have

dimκ(t) πi(f
∗ grj C ⊗T κ(t)) ≤ τ(j)i

for all t ∈ Spec(π0T ) and i, j ∈ Z. But we have the following equalities

dimκ(t) πi(f
∗ grj C ⊗T κ(t)) = dimκ(t) πi(grj C ⊗A κ(t))

= dimκ(t) πi
(
grj C ⊗A κ(π0f(t))⊗κ(π0f(t)) κ(t)

)
= dimκ(t) πi

(
grj C ⊗A κ(π0f(t))

)
⊗κ(π0f(t)) κ(t)

= dimκ(π0f(t)) πi
(
grj C ⊗A κ(π0f(t))

)
,

where we use flatness of κ(f(t)) → κ(t) in the fourth equality. This shows that π0f
factors through Ũ . Let us write Ũ =

⋃
j∈J Spec((π0A)fj )cl as a finite union of prin-

cipal affine opens in Spec(π0A). Then f factors though U =
⋃
j∈J Spec(A[f−1

j ]) if
and only if there is an étale cover (T → Tk)k∈I such that Spec(π0Ti) factors through
some Spec((π0A)fj ) (see Remark 4.42). But this is clear since, the base change of∐
j∈J Spec((π0A)fj ) → Ũ to Spec(π0T ) gives an étale cover of Spec(π0T ), which can

be lifted to an étale cover of Spec(T ) (use Proposition 3.59 and note that faithfully
flatness can be checked on π0), where this property holds per definition.

35Recall that t0p is the restriction of p to R-algebras by the inclusion (R-Alg) ↪→ ARR.
36Keeping Remark 6.38 in mind, we do not need to keep track of the equivalence connecting the

colimits of the ascending and descending filtrations.
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For t0 F-ZipτR, let Spec(A) → t0 F-Zip≤τR classified by a derived F -zip F over an
R-algebra A. Then a morphism f : Spec(T )→ Spec(A) factors through the projection
t0p
−1(A) → Spec(A) if and only if f∗F is homotopy finite projective of type τ . By

Lemma 6.37 and finiteness of the filtrations, we can find a locally closed subscheme Z
of Spec(A), where Z ↪→ Spec(A) is finitely presented such that f factors through Z if
and only if f∗F is homotopy finite projective of type τ . So in particular, Z ' t0p−1(A).

What is left to show is that Z is also closed in Spec(A). Using the upper semi-
continuity of the betti numbers (see Lemma 5.1), we see that the image of Z in Spec(A)
is a closed subset and therefore, the immersion Z ↪→ Spec(A) is in fact closed (see
[Sta19, 01IQ]).

Proposition 6.40. Let τ : Z → Z be a function with finite support. The inclusion
i : F-Zipχ=τ

R ↪→ F-ZipR is an open immersion of derived stacks and further, t0i is an
open and closed immersion.

Proof. This completely analogous to proof of 6.39 with Remark 6.75. But nevertheless,
we give a proof for completion.

Let Spec(A)→ F-Zip be a morphism of derived stacks with A ∈ ARFp classified by
a derived F -zip F = (C•, D•, ϕ•). Then a morphism f : Spec(T ) → Spec(A) factors
through i−1(F ) if and only if χ(f∗F ) = τ . Since χ is locally constant, we know that
we can find an open and closed subscheme Ũ of Spec(π0A) classifying those points of
Spec(π0A), where F has Euler-characteristic τ (note that the filtrations are bounded).
Let U be the lift of Ũ on Spec(A) constructed in Remark 4.42. Then by construction
U is open in Spec(A). We claim that f factors through i−1(F ) if and only if it factors
through U .

Indeed if f factors through U then certainly it also factors through i−1(F ). Now
assume f factors through i−1(F ). In particular, we have χ(f∗ grkCM ⊗T κ(t)) = τ(k)
for all t ∈ Spec(π0T ) and k ∈ Z. But analogous to the proof of Proposition 6.39, we
have

χ(f∗ grkCM ⊗T κ(t)) = χ(f∗ grkCM ⊗A κ(π0f(t))).

This shows that π0f factors through Ũ . Now, this factorization can be lifted to a
factorization of f through U (again the argumentation is the same as in the proof of
Proposition 6.39).

That t0i is open and closed follows immediately from the above.

Remark 6.41. By the above F-Zip≤τR ↪→ F-ZipR is a 0-geometric open immersion. In

fact, we can see that colimτ F-Zip≤τR ' F-ZipR, where τ runs through the functions
Z → NZ

0 with finite support. This colimit is filtered, as we can view τ as a function
Z× Z→ N0 and get a pointwise oder.

For the equivalence, note that any F -zip F has finitely many graded pieces, which
all have finite Tor-amplitude, so we can find a function σ : Z→ NZ

0 with finite support,
such that F has type ≤ σ, i.e. F ∈ F-Zip≤σ.

Further, the inclusion F-Zip≤τR ↪→ F-ZipR has to factor through some F-Zip
[a,b],S
R ,

since the filtrations are bounded and by Remark 6.25. By the same arguments as in

the proof of 6.39, we see that F-Zip≤τR ↪→ F-Zip
[a,b],S
R is quasi-compact open immersion,
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which implies, that F-Zip≤τR itself is (b− a + 1)-geometric and locally of finite presen-
tation. In particular, we can write F-ZipR as the filtered colimit of geometric derived
open substacks

F-ZipR ' lim
−→
τ

F-Zip≤τR .

Theorem 6.42. The derived stack F-ZipR is locally geometric and locally of finite
presentation.

Proof. This follows from Remark 6.41.

6.4 Strong derived F -zips over affine schemes

In the following we want to look at derived F -zips, where the underlying ascending and
descending filtration are strong. Since a morphism between modules is a monomorphism
if and only if the diagonal is an equivalence it is not hard to see with Lemma 5.4 that
restricting to those derived F -zips where the underlying filtrations are strong gives an
open derived substack of F-Zip. We can also use this open derived substack to easily
embed the stack of classical F -zips into the derived version.

Definition 6.43. Let A be an animated R-algebra. We set the full sub-∞-category
sF-Zip∞,R(A) of F-Zip∞,R(A) as those derived F -zips (C•, D•, φ, ϕ), where the filtra-
tions C•, D• are in fact strong filtrations. An element in sF-Zip∞,R(A) is called strong
derived F -zip over A.

Remark 6.44. The base change of strong derived F -zips is again strong. We only need
to check that monomorphisms of A-modules are compatible with base change, for some
animated ring A. But a morphism of A-modules M → N is a monomorphism if and
only if the diagonal M → M ×N M is an equivalence37. Since every pullback square
in a stable ∞-category is a pushout square (see [Lur17, Prop. 1.1.3.4]), we see that
the tensor product of A-modules commutes with pullbacks. Therefore, the pullback
induces a functor A 7→ sF-Zip∞,R(A) from ARR to Cat∞.

Remark 6.45. Again, this may seem like a useful definition but as it turns out the
strongness condition is very strong (see Theorem 6.71). This is because in triangulated
categories monomorphisms are automatically split. So a strong filtration is automati-
cally determined by its underlying graded pieces, which indicates that the correspond-
ing spectral sequence should degenerate. But the reason behind the derived F -zips is
precisely the study of those filtrations with non degenerate spectral sequences.

Definition and Proposition 6.46. The presheaf

sF-Zip∞,R : ARR → Cat∞

A 7→ sF-Zip∞,R(A)

is a hypercomplete sheaf for the fpqc topology.
37To see this note that ModA has finite limits (see [Lur17, Cor. 4.2.3.3]), for any animated ring A, and

thus a morphism of A-modules M → N is a monomorphism if and only if the diagonal M →M ×N M
is an equivalence (see [Lur09, Lem 5.5.6.15]).
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Proof. This is completely analogous to the proof of Proposition 6.21 using the fact that
a morphism of modules is a monomorphism if and only if it is after passage to an fpqc
cover (since a morphism of modules is a monomorphism if and only if the diagonal is
an equivalence37).

Definition 6.47. We define the derived stack of strong F -zips as

sF-ZipR : ARR → S
A 7→ sF-Zip∞,R(A)'.

Similarly to Definition 6.22, we define for any finite set S ∈ Z and a ≤ b ∈ Z the derived

substack sF-Zip
[a,b],S
R of sF-ZipR.

Proposition 6.48. Let S ∈ Z be a finite subset and a ≤ b ∈ Z. The inclusion

of derived stacks sF-Zip
[a,b],S
R ↪→ F-Zip

[a,b],S
R is a quasi-compact open immersion. In

particular, sF-Zip
[a,b],S
R is geometric.

Proof. This follows directly from Theorem 6.23 and the fact that the stack classifying
monomorphisms between perfect complexes is open.

To see this let V denote the derived stack classifying morphisms between perfect
modules. Let ι : U ↪→ V be the substack classifying those morphisms that are monomor-
phisms. We claim that ι is a quasi-compact open immersion. Indeed, let Spec(A)→ V
be a morphism of derived stacks, where A is an animated ring, given by a morphism
f : M → N of perfect A-modules. Now f is a monomorphism if and only if the diago-
nal ∆f : M → M ×N M is an equivalence. But the stack classifying those morphisms
A→ B such that ∆f is an equivalence is quasi-compact open by Lemma 5.4, as ∆f is
an equivalence if and only if cofib(∆f ) ' 0.

To finish the proof note that we can extend the quasi-compact openness condition
to derived F -zips since our filtrations are bounded.

Definition and Remark 6.49. For a function σ : Z→ NZ
0 , we can define

sF-Zip≤σR := sF-ZipR×F-ZipR F-Zip≤σR and sF-ZipσR := sF-ZipR×F-ZipR F-ZipσR .

We also see, that we can write sF-ZipR ' colimτ sF-Zip≤τR as a filtered colimit, where
the colimit is over functions τ : Z → NZ

0 with finite support, with the ordering as in
Remark 6.34. Again the sF-Zip≤τR are open in sF-ZipR and t0 sF-ZipτR are closed in

t0 sF-Zip≤τR .

Proposition 6.50. The derived stack sF-ZipR is locally geometric and locally of finite
presentation.

Proof. This follows from Remark 6.49.

In the next proposition, we want to show that the stack of classical F -zips lies quasi-
compact open in t0 sF-ZipR. To do so, we fix some type of a classical F -zip, lets say
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σ (as the classical F -zips is the disjoint union of such, this is enough). Then we only
look at strong derived F -zips, where the graded pieces are all finite projective modules
sitting in one degree. This can be also be achieved by fixing a type τ of the strong
derived F -zips (see Remark 6.25). But if we choose τ nicely in relation to σ, we see
that strong derived F -zips of type τ are precisely classical F -zips of type σ. Since we
only work with derived F -zips corresponding to finite projective modules, we thus see
the quasi-compact openness of classical F -zips in derived ones.

Lemma 6.51. Let σ : Z→ N0 be a function with finite support. Let us set τσ : Z→ NZ
0

to be the function given by k 7→ τσ(k)0 = σ(k) and τσ(k)j = 0 for j 6= 0. Let cl F-ZipR
denote the classical stack of F -zips. Then the inclusion cl F-ZipσR ↪→ t0 sF-ZipR is a
quasi-compact open and closed immersion.

Proof. We know that t0 sF-Zip≤τ
σ

R is open in t0 sF-ZipR but by our construction for an

element F = (C•, D•, ϕ•) given by Spec(A) → t0 sF-Zip≤τ
σ

R , we have that grk C is a
finite projective module sitting in degree 0. In particular, the function βgrk C is locally

constant. Therefore, even t0 sF-Zipτ
σ

R is quasi-compact open and closed in t0 sF-ZipR.
Now we have an equivalence cl F-ZipσR ' t0 sF-Zipτ

σ

R concluding the proof.

6.5 Globalization

6.5.1 Globalization of derived stacks

In the following, we want to look at derived F -zips over derived schemes. We also want
to look at some properties of the corresponding sheaf. Important here is that derived
stacks take affine derived schemes as parameters and not derived schemes. Let us show
how to fix this.

Let R be a ring. We start by extending derived stacks X : ARR → S via right Kan
extension to a presheaf RX : P(ARop

R )op → S. Using Remark 4.50, we see that RX is
in fact an étale sheaf. In particular, since every derived scheme has an open cover by
affines, RX| dSch is uniquely determined by RX|ARR ' X.

In the case of derived F -zips, we could finish this section with the arguments above.
But we can also define derived F -zips over derived schemes analogous to Definition
6.22. We will see that this definition agrees with the definition given by right Kan
extension.

6.5.2 Filtrations over derived schemes

We want to globalize the construction of derived F -zips. We could do this by right
Kan extension but also give a direct definition by globalizing filtrations and defining it
analogously to Definition 6.22. In fact both definitions will agree (see Lemma 6.62).

When working with derived schemes, we always assume that our module categories
are small, i.e. for any animated ring A, we assume that ModA is small. This is, as we
want to use Proposition 4.48 to see that quasi-coherent modules satisfy descent.
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Let us look at the functor from ARR to Cat∞ given by A 7→ Fun(Z,ModA). By
Lemma 6.20, we know that this functor satisfies fpqc-hyperdescent. So its right Kan
extension to derived schemes will still be an fpqc sheaf (see Remark 4.54). Since
Fun(Z,−) commutes with limits (which was used in the proof of Lemma 6.20), we
immediately see that RFun(Z,Mod−)(S) ' Fun(Z,QCoh(S)) for any derived scheme
S.

We have that perfectness of a filtration, boundedness and strongness can be checked
fpqc hyperlocally (which was used in the proof of Proposition 6.21 and Proposition
6.46). So in particular using the same arguments as in Proposition 6.21, we see that
bounded (resp. perfect or strong) filtrations also satisfy fpqc-hyperdescent and we can
right Kan extend to derived schemes and get a sheaf denoted by

Funb(Z,QCoh(−)) (resp. Funperf(Z,QCoh(−)) or Funs(Z,QCoh(−))).

By Proposition 4.52, we see that for a derived scheme S an element in Funb(Z,QCoh(−))
(resp. Funperf(Z,QCoh(−)) or Funs(Z,QCoh(−))) is given by a functor F ∈ Fun(Z,QCoh(S))
such that for any affine open ι : Spec(A) ↪→ S the ascending filtration ι∗F is bounded
(resp. perfect or strong).

Also we have that a functor F ∈ Fun(Z,QCoh(S)) is in Funb(Z,QCoh(−)) (resp.

Funperf(Z,QCoh(−)) or Funs(Z,QCoh(−))) if and only if there is a flat atlas (Spec(Ai)
pi−→

S)i∈I such that p∗iF is bounded (resp. perfect or strong).
Let us note the above stays true if we replace Z with Zop (or in general with any

∞-category but we do not need this).

Definition 6.52. Let S be a derived scheme. An ascending (resp. descending) filtration
of quasi-coherent modules over S is an element F ∈ Fun(Z,QCoh(S)) (resp. F ∈
Fun(Zop,QCoh(S))).

We say that F is

(i) locally bounded if F lies in Funb(Z,QCoh(S)) (resp. Funb(Zop,QCoh(S))),

(ii) perfect if F lies in Funperf(Z,QCoh(S)) (resp. Funperf(Zop,QCoh(S))),

(iii) strong if F lies in Funs(Z,QCoh(S)) (resp. Funs(Zop,QCoh(S))).

Remark 6.53. Note that by Remark 4.45 for any X ∈ P(ARop
R ) the ∞-categories

Funperf(Z,QCoh(S)), Funb(Z,QCoh(S)) and Funs(Z,QCoh(S)) can be seen as full sub
∞-categories of Fun(Z,QCoh(S)) (the same holds with Z replaced by Zop)

Lemma 6.54. Let S be a derived scheme and F an ascending (resp. descending) strong
filtration of OS-modules and let i ∈ Z. Then for all i ∈ Z the morphism F (i)→ F (i+1)
(resp. F (i)→ F (i− 1)) is a monomorphism.

Proof. Note that Fun(Z,QCoh(S)) has finite products by Remark 4.47 and the fact
that limits can be computed pointwise.

Now we are done, since it suffices to show that the diagonal of F (i) → F (i + 1) is
an equivalence (see [Lur09, Lem 5.5.6.15]), which can be checked Zariski locally, where
it is true by definition.

For descending filtrations the arguments are analogous.
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Notation 6.55. Let S be a derived scheme and let F be an OS-module. If F is an
descending filtration on F , we write F k := F (k), for k ∈ Z and F • := F . If G is an
ascending filtration on F , we write G• for G and denote its points by Gk.

Definition 6.56. Let S be a derived scheme and let F be an OS-module. Let F be a
ascending (resp. descending) filtration on F . For any i ∈ Z, we define the i-th graded
piece of F as gri F := cofib(F (i− 1)→ F (i)) (resp. gri F := cofib(F (i+ 1)→ F (i))).

6.5.3 Derived F -zips over schemes

Before defining derived F -zips for derived schemes, we first have to make sense of the
Frobenius of derived schemes. Classically the Frobenius on a scheme X is equivalent
to the morphism given by composition X → X(1) → X of the relative Frobenius and
the natural map. The points of X(1) are given by restriction along the Frobenius. This
can be used to define the Frobenius for derived schemes (even for derived stacks) as in
the following.

Remark and Definition 6.57. Let X be a derived scheme over R. For an animated
R-algebra A we have an R-morphism Spec(A) → X(1) := X ×Spec(R),FrobR Spec(R) if
and only if there is a morphism Spec(AFrobR) → X, where AFrobR is the restriction of
A along the Frobenius38, i.e. X(1)(A) ' X(AFrobR). Also we have an R-algebra map
FrobA : A → AFrobR . Thus X(FrobA) induces a map FX/S : X → X(1), which we call

relative Frobenius of X. The composition with the projection gives FX : X → X(1) → X
called the Frobenius of X.

Remark 6.58. Let S be a classical scheme. As the (nerve of the) category of schemes
lies fully in the ∞-category of derived schemes, we see by construction that FS agrees
with the classical Frobenius morphism. This can be tested on points given by R-
algebras, where it holds per definition.

The definition above also agrees with the definition of the Frobenius on animated
R-algebras, as we have ARR ' Funπ(Polyop

R ,S) (recall that the Frobenius is induced
by the Frobenius on polynomial R-algebras).

Moreover, this argument shows that the Frobenius morphism on derived schemes
defined above is equivalent to the morphism induced by right Kan extension of the
Frobenius on animated rings.

Definition 6.59. Let S be a derived scheme over R. A derived F -zip over S is a tuple
(C•, D•, φ, ϕ•) consisting of

• a descending locally bounded perfect filtration C• of quasi-coherent modules over
S,

• an ascending locally bounded perfect filtration D• of quasi-coherent modules over
S,

38Using the Frobenius on R, we can restrict any R-algebra A along the Froebnius FrobR : R→ R, i.e.
AFrobR is the animated R-algebra obtained by composing the natural morphism R→ A with FrobR.
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• an equivalence φ : colimZop C• ' colimZD•, and

• a family of equivalences ϕk : F ∗S grk C
∼−→ grkD.

The ∞-category of F -zips over S, i.e. the full subcategory of

(Funperf(Zop,QCoh(S)) ×colim,QCoh(S),colim Funperf(Z,QCoh(S))
)

×∏
Z Fun(∂∆1,QCoh(S))

∏
Z

Fun(∆1,QCoh(S))

consisting of F -zips, is denoted by F-Zip∞,R(S).
For a morphism S′ → S of derived schemes over R we have an obvious base change

functor F-Zip∞,R(S)→ F-Zip∞,R(S′) via the pullback.

Remark 6.60. By definition for any affine derived scheme Spec(A), the ∞-category
F-Zip∞,R(Spec(A)) indeed recovers Definition 6.22.

Also, as in Remark 6.15, on affine schemes, up to equivalence we may assume that
the equivalence between the colimits of the filtrations of a derived F -zip is given by
identity.

Remark 6.61. Note that if we have a locally bounded perfect filtration C• over some
derived scheme S, we have that its colimit in QCoh(S) is actually perfect. This can be
checked Zariski locally, where the filtrations actually become bounded (note that the
colimit is filtered) and thus the colimit can be taken over a finite subcategory of Z and
thus is perfect.

The next lemma shows that the ∞-category of derived F -zips satisfies fpqc descent
and that we can extend the definition of derived F -zips to arbitrary derived (pre-)stacks.

Lemma 6.62. Let RF-Zip∞,R be the the right Kan extension of F-Zip∞,R : ARR → S
along the Yoneda embedding ARR ↪→ P(ARop

R )op. Then for any derived scheme S over
R, we have that the natural morphism induced by base change

F-Zip∞,R(S)→ RF-Zip∞,R(S)

is an equivalence.

Proof. Affine locally on S the assertion is certainly true. So it is enough to show that
for an affine open cover (Spec(Ai) ↪→ S)i∈I , we have

F-Zip∞,R(S) ' lim
∆

F-Zip∞,R(Č(
∐

Spec(Ai)/S)•).

This is again completely analogous to the proof in the affine case (see Proposition 6.21),
where we embedded derived F -zips into a larger category that satisfied descent. Here
we have to use that

S 7→ Funperf(Zop,QCoh(−))×colim,QCoh(−),colim Funperf(Z,QCoh(S))

×∏
Z Fun(∂∆1,QCoh(−))

∏
Z

Fun(∆1,QCoh(S))

is given by the limit of right Kan extensions (see discussion in Section 6.5.2) of sheaves
and Remark 4.50.
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The above lemma allows us to globalize the derived stack of derived F -zips and gives
us a direct description of the points of it.

Definition and Remark 6.63. We set

F-ZipR : P(ARR)op → S

as the right Kan extension of F-Zip: ARR → S along the inclusion Ani ↪→ P(ARR)op.
By Remark 4.50, we see that F-Zip is a hypercomplete fpqc-sheaf.
Further, we have for any derived R-scheme S that F-ZipR(S) ' F-Zip∞,R(S)' by

Lemma 6.62 as (−)' commutes with limits.

Example 6.64. Let us globalize Example 6.16. Let f : X → S be a proper smooth
morphism of schemes. Again, the associated Hodge and conjugate filtration HDG and
conj define a descending resp. ascending perfect bounded filtration of quasi-coherent
modules over S. We also have equivalences ϕn : F ∗S grn HDG

∼−→ grn conj between the
graded pieces (up to Frobenius twist), induced by the Cartier isomorphism. Therefore,
we get a derived F -zip associated to the proper smooth map f of schemes

Rf∗Ω
•
X/S := (HDG•, conj•, ϕ•).

Example 6.65. The above construction works analogously for log smooth scheme
morphisms (i.e. schemes with a fine log structure as explained in [Kat89]).

If f : X → S is a proper log smooth morphism of Cartier type (note that f is
per definition integral and thus flat, see [Kat89, Cor. 4.5]), then Ω1

X/S (the sheaf of

log differentials) is locally free of finite rank (see [Kat89, Prop. 3.10]) and because
f is proper and flat the associated Hodge filtrations HDGlog are perfect (use the
distinguished triangle associated to the stupid truncation and conclude via induction
and the fact that f is proper, locally of finite presentation and flat, see [Sta19, 0B91] -
this is analogous to the proof of [Sta19, 0FM0]). We also have a Cartier isomorphism in
this setting (see [Kat89, Thm. 4.12]) (this implies, using the distinguished triangles for
the conjugate filtration conjlog and induction, that the conjugate filtration is perfect)

and so we have equivalences ϕn : F ∗S grn HDGlog
∼−→ grn conjlog thus analogous to the

above, we can attach the structure of a derived F -zip to f via, again,

(HDG•log, conjlog
• , ϕ•)

Let us consider the notion of strong F -zips. The condition that the filtration is given
by monomorphisms seems very natural, but as Theorem 6.71 will show, in this case we
can not expect a generalization from classical theory. Especially, the following lemma
shows that perfect complexes with finite projective cohomologies are particularly easy
to handle.

Lemma 6.66. Let A be a ring and let P be a perfect complex over A such that for all
i ∈ Z the A-module πi(P ) is finite projective. Then there exists a quasi-isomorphism
P
∼−→
⊕

n∈Z πn(P )[n].
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Proof. Since P is perfect, we may assume that there exists a ≤ b ∈ Z such that P
has Tor-amplitude in [a, b]. we further assume that P is represented by the complex of
finite projective A-modules

· · · → 0→ Pb
∂b−→ Pb−1

∂b−1−−−→ . . .
∂a+1−−−→ Pa → 0→ · · · .

Let us define a new complex P≤a given by

· · · → 0→ Pb
∂b−→ Pb−1

∂b−1−−−→ . . .
∂a+1−−−→ im(∂a+1)→ 0→ · · · .

We get a short exact sequences of complexes

0→ P≤a → P → πa(P )[a]→ 0.

Since πa(P ) is projective, this induces a section πa(P )→ Pa and we can extend this to
a morphism πa(P )[a]→ P which induces a section of P → πa(P )[a]. Also, this induces
a retraction of P≤a → P and s in particular, P ' P≤a ⊕ πa(P )[a]. Now we claim that
P≤a is perfect and has Tor-amplitude in [a + 1, b] concluding the proof by induction
over the Tor-amplitude of P .

Indeed, first note that P≤a is equivalent to the complex

· · · → 0→ Pb
∂b−→ Pb−1

∂b−1−−−→ . . .
∂a−→ Pa+1 → 0→ · · ·

which is by construction a complex of finite projective modules concentrated in degrees
[a+ 1, b], i.e a perfect complex of Tor-amplitude in [a+ 1, b].

We can use this lemma to see that a morphism of perfect complexes with finite
projective is a monomorphism if and only if it is so on the cohomologies. This is
clear since if the induced map on the cohomologies is injective, then the long exact
homotopy sequences corresponding to a fiber sequence consists of short exact sequences.
The projectiveness gives us retractions on the level of cohomology groups and thus a
retraction on the whole complex.

Lemma 6.67. Let A be a ring and let P,Q be a perfect complexes over A. Further
assume we have a morphism f : P → Q such that for all i ∈ Z the A-modules πiP , πiQ
and πi cofib(f) are finite projective. Then f is a monomorphism if and only if πif is
injective for all i ∈ Z (or equivalently39 the morphism πiQ → πi cofib(f) is surjective
for all i ∈ Z).

Proof. The only if direction is clear40.
For the if direction let πif be injective for all i ∈ Z. We may assume by Lemma

6.66 that P
∼−→
⊕

n∈Z πnP [n] and Q
∼−→
⊕

n∈Z πnQ[n]. It is enough to find retractions
gi of πif since then this induces a retraction of f implying that f is a monomorphism.

39This follows from long exact homotopy sequence induced by the fiber sequence P → Q→ cofib(f).
40Let P

f−→ Q
g−→ cofib(f) be a cofiber sequence of A-modules and let h : cofib(f)[−1] → P be the

naturally induced morphism. By construction, we have f ◦ h ' 0 and as f is a monomorphism this
implies h ' 0 and so indeed ker(πif) = im(πi+1h) = 0.
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Since πif is injective for all i ∈ Z, we get short exact sequences

(6.5.1) 0→ πiP
πif−−→ πiQ→ πi cofib(f)→ 0.

As πi cofib(f) is projective, we see that the short exact sequence (6.5.1) is split, giving
us the retractions of πif .

We want to show that the Hodge-spectral sequence associated to a proper smooth
morphism degenerates if the Hodge-filtration is strong. For this we want to reduce to
the Artinian case. Before that, we will reduce to the noetherian case. This is standard
for proper smooth morphisms and the finite locally freeness of the E1-page of the
spectral sequence can also be reduced to the noetherian case, as in the proof of [Kat72,
(2.3.2)]. We will worry about the strongness of the filtration. The idea is to use Lemma
6.67, so that we only need to worry about the condition that a surjective morphism of
finite projective modules can be descended along projective limits of schemes. But as
we only work with perfect bounded filtrations this will be a consequence of induction.

Proposition 6.68. Let f : X → S be a proper smooth morphism of schemes, with
S = Spec(A) affine. Assume that all Rif∗Ω

j
X/S are finite locally free and that the

Hodge-filtration HDG is strong. Then there exists an affine noetherian subring A′ ⊆ A,
a proper smooth morphism of schemes f ′ : X ′ → S′ := Spec(A′) such that the diagram

X S

X ′ S′

f

g

f ′

is cartesian, where g corresponds to the inclusion A′ ⊆ A. Further, Rif ′∗Ω
j
X/S is finite

locally free for all i, j ∈ Z and the Hodge-filtration associated to f ′ is strong.

Proof. The existence of a subring A0 ⊆ A and a proper smooth A0-scheme X0 such
that the base change of f0 : X0 → Spec(A0) under Spec(A) → Spec(A0) is equal to
f is standard41. As in the proof of [Kat72, (2.3.2)], we can find a noetherian subring
A0 ⊆ A′ ⊆ A such that Rif ′∗Ω

k
X′/S′ commutes with base change and is finite locally

free for all i, j ∈ Z, where f ′ : X ′ → S′ := Spec(A′) is the base change of f0. Let us also
note that for all i, k ∈ Z the A-module Rif∗σ≥kΩ

•
X/S is finite locally free42.

What is left to show is that after possibly enlargingA′ the Hodge-filtration associated
to f ′ is strong. The idea is to show that Rif ′∗σ≥kΩ

•
X′/S′ is finite projective and the

41Use [GW10, Thm. 10.69] to find an affine noetherian S̃ = Spec(Ã) and morphisms S → S̃ and

X̃ → S̃ such that the induced base change morphism is isomorphic to f . Then write S as a projective
limit of affine S̃-schemes of finite type by adjoining variables to Ã and conclude with [Gro66, (8.10.5)]
and [Gro67, (17.7.8)].

42Indeed, as the Hodge-filtration associated to f is strong, we have for all i, k ∈ Z short exact
sequences of the form 0 → Rif∗σ≥k+1Ω•X/S → Rif∗σ≥kΩ•X/S → Ri−kf∗Ω

k
X/S → 0. Since the Hodge-

filtration is bounded and Ri−kf∗Ω
k
X/S is finite locally free for all k, i ∈ Z, we see inductively that

Rif∗σ≥kΩ•X/S is finite locally free.
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induced maps Rif ′∗σ≥k+1Ω•X′/S′ → Rif ′∗σ≥kΩ
•
X′/S′ are injective for all i, k ∈ Z, so we

can use Lemma 6.67. We will show both simultaneously by descending induction over
k.

Let us first look for any k ∈ Z at the fiber sequence

(6.5.2) Rf ′∗σ≥k+1Ω•X′/S′ → Rf ′∗σ≥kΩ
•
X′/S′

qk−→ Rf ′∗Ω
k
X′/S′ [−k].

Since Ω•X′/S′ is concentrated in finite degrees, we will use induction to see that for all

i, k ∈ Z the formation of Rif ′∗σ≥kΩ
•
X′/S′ commutes with arbitrary base change in the

sense that for any A′-algebra B, the natural base change morphism

Rif ′∗σ≥kΩ
•
X′/S′ ⊗A′ B → H i(Rf ′∗σ≥kΩX′/S′ ⊗LA′ B)

is an equivalence. This will imply that after possibly enlarging A′, that Rif ′∗σ≥kΩ
•
X′/S′

are finite locally free (again with [Gro66, (11.2.6.1)]). It is important, that the Hodge-
filtration is bounded and since Rf ′∗σ≥kΩ

•
X′/S′ is perfect there are only finitely many

non-trivial cohomology groups, so we can indeed use [Gro66, (11.2.6.1)].
Indeed, let fix some k ∈ Z, then the fiber sequence (6.5.2) induces the following long

exact sequence for i ∈ Z

Ri−1−kf ′∗Ω
k
X′/S′ → Rif ′∗σ≥k+1Ω•X′/S′ → Rif ′∗σ≥kΩ

•
X′/S′

Hi(qk)−−−−→ Ri−kf ′∗Ω
k
X′/S′

→ Ri+1f ′∗σ≥k+1Ω•X′/S′ .

Let us assume that the formation of Rif ′∗σ≥k+1Ω•X′/S′ commutes with arbitrary base

change for all i ∈ Z. After possibly enlarging A′, we may assume that Rif ′∗σ≥k+1Ω•X′/S′
is finite locally free for all i ∈ Z (again this follows from [Gro66, (11.2.6.1)]). We claim
that H i(qk) is surjective for all i, k ∈ Z. This is equivalent to the fact that the morphism

Ri−kf ′∗Ω
k
X′/S′ → Ri+1f ′∗σ≥k+1Ω•X′/S′

is zero for all i ∈ Z. Since both domain and target are finite locally free and their
formation commutes with base change, we see that after base change to S = Spec(A)
this holds. But the morphism A′ → A is given by inclusion of rings. So if after base
change to A the morphism is zero it had to be zero before. Therefore, we have short
exact sequences

(6.5.3) 0→ Rif ′∗σ≥k+1Ω•X′/S′ → Rif ′∗σ≥kΩ
•
X′/S′

Hi(qk)−−−−→ Ri−kf ′∗Ω
k
X′/S′ → 0

for all i ∈ Z. This first of all shows that Rif ′∗σ≥kΩ
•
X′/S′ is finite projective for all

i ∈ Z. Not only that, the short exact sequence (6.5.3) stays exact, after base change
to any A′-algebra B (see [Sta19, 00HL]). So the natural base change maps induces the
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following commutative diagram with exact columns

0 0

Rif ′∗σ≥k+1Ω•X′/S′ ⊗A′ B H i(Rf ′∗σ≥k+1Ω•X′/S′ ⊗
L
A′ B)

Rif ′∗σ≥kΩ
•
X′/S′ ⊗A′ B H i(Rf ′∗σ≥kΩ

•
X′/S′ ⊗

L
A′ B)

Ri−kf ′∗Ω
k
X′/S′ ⊗A′ B H i−k(Rf ′∗Ω

k
X′/S′ ⊗

L
A′ B)

0 0.

∼

∼

Thus, the five lemma shows that the formation of Rif ′∗σ≥kΩ
•
X′/S′ commutes with arbi-

trary base change concluding the induction.
Now, as the sequence (6.5.3) is short exact, we can use Lemma 6.67 to see that

indeed the Hodge-filtration associated to f ′ is strong.

Remark 6.69. Let us remark that in the setting of Proposition 6.68, after possibly
enlarging A′, the Rif ′∗σ≥kΩ

•
X′/S′ are finite locally free for all i, k ∈ Z and their formation

commute with arbitrary base change. This follows from the proof of Proposition 6.68.

On the other side, we can show that if the Hodge-de Rham spectral sequence de-
generates, then the Hodge-filtration is strong. Again Lemma 6.67 will be crucial. Also,
we do not need the particular form of the Hodge filtration and thus we will show gen-
erally that a bounded perfect filtration with degenerate associated spectral sequence is
automatically strong. Later on in Section 7, we will use this result to show that the
derived F -zips associated to a proper smooth morphism with degenerative Hodge-de
Rham spectral sequence and finite projective E1-terms is completely determined by the
underlying classical F -zips. So, for example in the abelian scheme case, the theory of
derived F -zips gives us no new information and recovers the classical theory by passing
to the cohomologies of the filtration (in a suitable sense as explained in Section 7).

Proposition 6.70. Let A be a ring and C• be a descending bounded perfect filtration
of A-modules. Assume that πi grk C are finite projective for all i, k ∈ Z and that the
spectral sequence associated to C•

Ep,q1 = πp+q grpC ⇒ πp+q colim
Zop

C•

degenerates. Then the filtration C• is strong and the statement stays true if we replace
C• by an ascending filtration.
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Proof. For convenience, let us set M := colimZop C•.
It is enough to show43

• if for any k ∈ Z the natural map Ck → M is a monomorphism, then the map
Ck+1 → Ck is a monomorphism.

Also, we will see that changing a descending filtration to an ascending one only changes
the indices in the following proof and thus works similarly.

So let us fix some k ∈ Z and assume that Ck →M is a monomorphism. The degen-
eracy of the spectral sequence implies that Ek,q1 = πk+q grk C is naturally isomorphic

to Ek,q∞ for any q ∈ Z. By construction of the spectral sequence (see [Lur17, §1.2.2]),

we see that Ek,q∞ ∼= im(hq)/ im(gq), where hq : πk+qC
k → πk+qM and gq : πk+qC

k+1 →
πk+qM . As Ck → M is a monomorphism, we see that hq is injective and therefore
im(hq) ∼= πk+qC

k. As the filtration on M induced by the spectral sequence is bounded
and the graded pieces are finite projective by degeneracy, we see that πk+qC

k is finite
projective (since it is isomorphic to a filtered piece by im(hq) ∼= πk+qC

k). We claim
that the morphism fq : πk+qC

k → πk+q grk C induced by the fiber sequence

Ck+1 → Ck → grk C,

is surjective for all q ∈ Z.
Indeed, recall from [Lur17, §1.2.2] that

Ep,qr := im(πp+q cofib(Cp+r → Cp)→ πp+q cofib(Cp+1 → Cp−r+1)).

As the spectral sequence is degenerate, the proof of [Lur17, Prop. 1.2.2.7 (2)] shows
that for any r ≥ 2, we get a commutative diagram

πk+q cofib(Ck+r → Ck) πk+q cofib(Ck+1 → Ck−r+1)

Ek,qr−1,
φr

ϑr

where φr is surjective and ϑr is injective. The morphism φr is induced by the natural
morphism cofib(Ck+r → Ck) → cofib(Ck+1 → Ck−r+1). Since C• is bounded, we see
that for r large enough, we have cofib(Ck+r → Ck) ' Ck. Thus, we get a morphism

αq : πk+qC
k → Ek,q1 = πk+p grk C that is surjective using the φr and the degeneracy.

But by construction αq is induced by the natural map Ck → grk C and hence αq agrees
with fq showing the desired surjectivity.

By surjectivity of the fq, we have for all q ∈ Z short exact sequences of the form

0→ πk+qC
k+1 → πk+qC

k → πk+q grk C → 0,

showing that πk+qC
k+1 is finite projective for all q ∈ Z. Therefore, we can conclude

the proof with Lemma 6.67.

43As the C• is bounded, we have that there is exists a n large enough such that Cn → M is an
equivalence and thus also a monomorphism. Hence, induction indeed concludes that C• is strong.
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Combining all the arguments before, we get the connection between the degeneracy
of the Hodge-de Rham spectral sequence and strongness of the Hodge-filtration.

Theorem 6.71. Let f : X → S be a smooth proper morphism of schemes. Let us
consider the Hodge-de Rham spectral sequence

Ep,q1 = Rqf∗Ω
p
X/S ⇒ Rp+qf∗Ω

•
X/S .

Assume that all Rif∗Ω
j
X/S are finite locally free. The derived F -zip Rf∗Ω

•
X/S of Example

6.64 is strong (in the sense that HDG and conj are strong) if and only if the Hodge-de
Rham spectral sequence degenerates.

Proof. The if part follows from Proposition 6.70.
For the only if part let us first assume that S = Spec(A) is the spectrum of a local

Artin ring, then we can check this via comparing lengths of the limit term and the E1

terms of the spectral sequence. But in this case this is clear, since we get a short exact
sequence

0→ H i(X,σ≥n+1Ω•X/S)→ H i(X,σ≥nΩ•X/S)→ H i−n(X,Ωn
X/S)→ 0

for all n ≥ 0 and i ∈ Z (by strongness of our filtration). This implies that

lengthAH
i(X,σ≥nΩ•X/S) = lengthAH

i(X,σ≥n+1Ω•X/S) + lengthAH
i−n(X,Ωn

X/S),

for all n ≥ 0 and i ∈ Z. As H i
dR(X/S) = H i(X,σ≥0Ω•X/S), this implies inductively that

lengthAH
i
dR(X/S) =

∑
n≥0

lengthAH
i−n(X,Ωn

X/S) =
∑
p+q=i

lengthAH
q(X,Ωp

X/S)

Thus, we get for all i ∈ Z the equation∑
p+q=i

lengthAE
p,q
∞ = lengthAH

i
dR(X/S) =

∑
p+q=i

lengthAH
q(X,Ωp

X/S),

so in particular in this case the Hodge-de Rham spectral sequence degenerates.
Now let us show how to reduce to the case, where S is the spectrum of a local Artin

ring (we do this analogous to the proof of [Kat72, (2.3.2)]). First of all the question is
local, since cohomology commutes with arbitrary flat base change, so we may assume
that S = Spec(A) is affine. Using Proposition 6.68 we may assume that S is noetherian.
Localizing further, we can even assume that S is given by the spectrum of a local
noetherian ring (as cohomologies commute with flat base change and filtered colimits
are exact). By faithfully flatness of completion (see [Sta19, 00MC]) we can assume
that S is the spectrum of a complete noetherian local ring (A,m) and therefore if the
Hodge spectral sequence degenerates for all Sn = Spec(A/mn), then it degenerates on
the limit of all A/mn, namely A, since finite modules over complete rings are complete
(see [Sta19, 00MA] and note that the Rif∗Ω

j
X/S are finite projective and therefore their

formation commute with arbitrary base change). Hence, we may assume that A is a
local Artin ring, which we already discussed in the beginning.
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We conclude this section by defining the substacks corresponding to a function
τ : Z→ NZ

0 . Again, we could do this by right Kan extension but as before there is also
an ad hoc definition that agrees with the one given by right Kan extension.

The following definitions are globalizations of the definitions given in section 6.3.

Definition 6.72. Let S be a derived scheme and let F ∈ Perf(S). We define the
function

βF : Scl → NZ
0

s 7→ (dimκ(s) πi(cl∗F ⊗LOScl
κ(s)))i∈Z,

where cl : Scl → S is the natural morphism.
This function is locally upper semi-continuous in the sense that for every s ∈ Scl

there is a neighbourhood Us such that for any family (ki)i ∈ NZ
0 the set β−1

F|Us(([0, ki])i)

is open (see [Sta19, 0BDI]).

Remark 6.73. Note that in the above definition, we implicitly assume that cl∗F is a
perfect complex of quasi-coherent OScl

-module. This makes sense as cl∗F is in Dqc(Scl)
by Proposition 4.57 and by definition perfect.

Definition and Remark 6.74. Let S be a derived scheme. Let F := (C•, D•, φ, ϕ•)
be a derived F -zip over S. Consider the function

βF : s 7→ (k 7→ βgrk C(s))

from Scl to functions Z→ NZ
0 .

1. The function βF is called type of the derived F -zip F .

2. Let τ : Z → NZ
0 be a function with finite support. We say that F has type ≤ τ

if for all s ∈ Scl, we have βF (s) ≤ τ (again the relation is given pointwise as
functions Z× Z→ N0).

Further, for any s ∈ Scl there exists a quasi-compact open (resp. locally closed)
neighbourhood Us of s and a function τ : Z→ NZ

0 with finite support, such that βF |Us ≤
τ in the sense above (resp. βF |Us is constant an equal to τ) (this follows from Lemma
5.1).

Definition and Remark 6.75. Let S be a derived scheme. Let F := (C•, D•, φ, ϕ•)
be a derived F -zip over S. Let us look at the function

χk(F ) : Scl → Z
s 7→ χ(cl∗ grk C ⊗OScl

κ(s)),

where cl : Scl → S is the natural morphism This is a locally constant function (see
[Sta19, 0B9T]). Since the filtrations on derived F -zips are locally bounded, we also
know that the function χF : s 7→ (k 7→ χk(F )(s)) is also locally constant as a map from
Scl to functions Z→ Z with finite support. We call χF the Euler-characteristic of F .

If τ : Z→ Z is a function with finite support, we say F has Euler-characteristic τ if
for χF is constant with value τ .
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Definition 6.76. Let S be a derived scheme.

1. Let M ∈ Perf(S) be a perfect module over S. Fix a map r : Z → N0. We call
M homotopy finite locally free of rank r, if for each scheme f : X → Scl the OX -
module πi(f

∗cl∗M) is finite locally free of rank ri, where we say that it is finite
locally free of rank 0 if it is isomorphic to 0.

2. Let F := (C•, D•, ϕ•) be a derived F -zip over S and τ : Z → NZ
0 be a function

with finite support. We say that F is homotopy finite locally free of type τ if for
all i ∈ Z, we have that griC is homotopy finite locally free of rank τ(i).

Definition 6.77. Let τ : Z → NZ
0 be function with finite support and let S be a

derived R-scheme. We set F-Zip≤τ∞,R(S) (resp. F-Zipτ∞,R(S), F-Zipχ=τ
∞,R(S)) as the full

subcategory of derived F -zips over S of type ≤ τ (resp. homotopy finite locally free of
type τ , of Euler-characteristic τ).

Lemma 6.78. Let τ : Z → NZ
0 be function with finite support. Let RF-Zip≤τ∞,R (resp.

RF-Zipτ∞,R, RF-Zipχ=τ
∞,R) be the the right Kan extension of F-Zip≤τ∞,R (resp. F-Zipτ∞,R,

F-Zipχ=τ
∞,R) along the Yoneda embedding ARR ↪→ P(ARop

R )op. Then for any derived
scheme S over R, we have that the natural morphism induced by base change

F-Zip≤τ∞,R(S)→ RF-Zip≤τ∞,R(S)

(resp. F-Zipτ∞,R(S)→ RF-Zipτ∞,R(S), F-Zipχ=τ
∞,R(S)→ RF-Zipχ=τ

∞,R(S))

is an equivalence.

Proof. This is completely analogous to the proof of Lemma 6.62. We only need to
varify that the properties “has type ≤ τ”, “is homotopy finite locally free of type τ”
and “has Euler characteristic τ” can be checked on an affine open cover of S but this
is clear.

Definition and Remark 6.79. Let τ : Z → NZ
0 be function with finite support and

let S be a derived R-scheme. We set

F-Zip≤τR : P(ARop
R )op → S

(resp. F-ZipτR, F-Zipχ=τ
R ) as the right Kan extension of F-Zip≤τR (resp. F-ZipτR, F-Zipχ=τ

R )
along the Yoneda embedding ARR ↪→ P(ARop

R )op.
By Remark 4.50, these define fpqc sheaves and define subsheaves of F-ZipR.
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7 Connection to classical theory

Again, in the following R will be an Fp-algebra.

7.1 Derived F -zips with degenerating spectral sequences

In Lemma 6.51, we showed that classical F -zips can be included into the theory of
derived F -zips. But what if the homotopy groups of associated to the graded pieces of
a derived F -zip are finite locally free and the associated spectral sequences degenerate
(see Definition 7.1). Then we would expect that we have a functor πn : X → cl F-Zip,
where X is a suitable substack of t0 F-Zip, given by sending the underlying module to
its n-th homotopy group and looking at the associated filtrations.

In fact, we will show that there is even more. For a smooth proper scheme morphism
with degenerating Hodge-de Rham spectral sequence and finite locally free cohomolo-
gies, we get an F -zip. Important here is that the graded pieces and de Rham cohomol-
ogy are finite locally free. For filtrations in our sense, we also get spectral sequences,
i.e. for some R-algebra A and a bounded perfect filtrations C• ∈ Fun(Zop,D(A)) and
D• ∈ Fun(Z,D(A)), we have a spectral sequence

Ep,q1 = πp+q(grpC)⇒ πp+q colim
Zop

C• and Ep,q1 = πp+q(grpD)⇒ πp+q colim
Z

D•

(see [Lur17, Prop. 1.2.2.14]). If we assume that the πp+q(grpC) are finite projective
and that the above spectral sequences are degenerate, we can associate for any n ∈ Z
a classical F -zip to a derived F -zip F := (C•, D•, φ, ϕ•) via

F 7→ πnF := (πn(colim
Zop

C•), C̃•, D̃•, πnϕ•),

where C̃• resp. D̃• is the filtration associated to the spectral sequences induced by C•

resp. D•. Let us verify that (πn(colimZop C•), C̃•, D̃•, πnϕ•) is a classical F -zip.
For convenience let us set M := πn(colimZop C•). By definition, we also have

πn colimZD ∼= M . First of all note that both C̃• and D̃• are finite and their graded
pieces are by degeneracy of the spectral sequences equivalent to

gri
C̃
M = πn(griC), gri

D̃
M = πn(griD).

By homotopy finite projectiveness, we have that all graded pieces of C̃• resp. D̃• are
finite projective44. Since the filtrations are bounded, we see that the pieces of the
filtrations are also finite projective and thus also M . The only thing left to see is
that πnϕi induce isomorphisms (gri

C̃
M)(1) ∼−→ gri

D̃
M . But this again follows from

the degeneracy of the spectral sequences (resp. the description above induced by the
degeneracy) and the fact that homotopy finite projectiveness implies compatibility with
base change (along Frobenius) by Lemma 6.37 (iii).

Further, if the derived F -zip F is homotopy finite projective of some type τ , then
πnF has type τn : k 7→ τ(k)n.

44Note that homotopy finite projectiveness of πn gri C implies compatibility with base change (along
Frobenius) by Lemma 6.37 (iii) and so πn griD ∼= πn(gri C(1)) ∼= πn(gri C)(1) is finite projective.
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Moreover, using the arguments in the proof of Theorem 6.71, we see that a derived
F -zip homotopy finite projective of some type with degenerating spectral sequences
associated to the filtrations (as above) is automatically strong. Let us make everything,
we said above more precise.

Definition 7.1. Let A be an R-algebra. A derived F -zip (C•, D•, φ, ϕ•) is called
degenerate if the spectral sequences

Ep,q1 = πp+q(grpC)⇒ πp+q colim
Zop

C• and Ep,q1 = πp+q(grpD)⇒ πp+q colim
Z

D•

associated to the filtrations (see [Lur17, Prop. 1.2.2.14]) degenerate.

Lemma 7.2. Let A be an R-algebra and let τ : Z→ NZ
0 be a function with finite support.

If a derived F -zip F over A is homotopy finite projective of type τ and degenerate, then
F is strong.

Proof. This follows from Proposition 6.70.

Proposition 7.3. Let A be an R-algebra and let τ : Z → NZ
0 be a function with finite

support. Further, let X τ∞,R(A) ⊆ F-Zipτ∞,R(A) denote the full subcategory of those
derived F -zips that are homotopy finite projective of type τ and degenerate. Then
A 7→ X τ∞,R(A) defines a hypercomplete sheaf for the fpqc-topology.

Moreover, let X τR denote the associated derived stack. Then the inclusion

i : X τR ↪→ t0 F-ZipτR

is a closed immersion.

Proof. Analogous to Proposition 6.46 it suffices to check that the transition maps of
the spectral sequences are zero if and only if they are zero fpqc locally, but as these are
maps between discrete modules, we see that this is certainly an fpqc local property.

Let Spec(A) → t0 F-ZipτR be given a derived F -Zip F that is homotopy finite pro-
jective of type τ . This in particular implies that the formation of the homologies of
the graded pieces commute with arbitrary base change by Lemma 6.37 (iii). Now a
morphism f : Spec(T ) → Spec(A) factors through X τR ×t0 F-ZipτR

Spec(A) if and only
if the spectral sequence associated to the filtrations of f∗F degenerate. Again this is
equivalent to the differentials of the spectral sequences being zero. By commutativity
of the homologies with base change and the fact that being zero for a morphism of
finite projective modules is a closed property (see [GW10, Prop. 8.4 (2)]), we see that
i is in fact a closed immersion.

Remark 7.4. Let A be a R-algebra. Let τ : Z→ NZ
0 be a function with finite support

and let n ∈ Z. As explained in the beginning of this section, we get a map of derived
stacks

πn : X τR → cl F-ZipτnR

that is induced by F 7→ πnF , where τn : Z → N0 is given by the function k 7→ τ(k)n.
Also by Lemma 7.2, we see that the inclusion X τR ↪→ t0 F-ZipτR factors through the open
derived substack t0 sF-ZipτR.
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We can also inlcude cl F-ZipτnR into X τR by considering the following functor

(−)[n] : M := (M,C•, D•, ϕ•) 7→M [n] := (C•n, D
n
• , id

n
M , ϕ

n
• ),

where Ckn := Ck[n], Dn
k := Dk[n], idnM := idM [n] and ϕnk := ϕk[n] (this is just the n-shift

of M [0] in F-ZipR(A)). Thus, πn defines a section of (−)[n].
We see that the morphism given∏

n∈Z
cl F-ZipτnR ↪→ X τR, (Mn)n∈Z 7→

⊕
n∈Z

Mn[n]

is a monomorphism, as it has a section given by
∏
n∈Z πn.

Lemma 7.5. Let τ : Z → NZ
0 be a function with finite support and finitely many val-

ues. Then the monomorphism
∏
n∈Z cl F-ZipτnR ↪→ X τR defined in Remark 7.4 is an

equivalence of derived stacks.

Proof. We have to show that the map
∏
n∈Z cl F-ZipτnR ↪→ X τR is an effective epimor-

phism.
It is enough to show that for an R-algebra A every F ∈ X τR(A) is equivalent to⊕
n∈ZMn[n] for some F -zips Mn ∈ cl F-ZipτnR (A).
Let us set F ' (C•, D•, ϕ•) (see Remark 6.15). We can assume that for ev-

ery k ∈ Z, we have Ck '
⊕

n∈ZC
k
n[n], Dk '

⊕
n∈ZD

n
k [n] by Lemma 6.66. Let

πnF = (M, C̃•, D̃•, πnϕ•) as in the beginning of this section. By strongness of F and
construction of C̃• resp. D̃•, we see that C̃k = Ckn resp. D̃k = Dn

k . Thus, we immedi-
ately see F '

⊕
n∈Z πnF [n].

Lemma 7.6. Let us fix some n ∈ Z. Further, let σ : Z → N0 be a function with finite
support and τσn : Z → NZ

0 be given by k 7→ τσn (k)n = σ(k) and k 7→ τσn (k)m = 0 for
m 6= n. Then the inclusion X σR ↪→ t0 F-ZipσR is quasi-compact open.

Proof. By Lemma 7.5, we have an equivalence X σR ' cl F-Zip
τσn
R which is quasi-compact

open in t0 F-ZipσR by Lemma 6.51 and Proposition 6.48 (note that Lemma 6.51 assumes
n = 0 but the proof for arbitrary n works similarly).

The results in this section show us that for morphisms with degenerating Hodge-de
Rham spectral sequence there is no new information coming from the theory of derived
F -zips. This for example will also show that in the case for abelian schemes, where the
F -zips associated to its de Rham cohomology are already determined by its H1

dR, the
derived F -zip is also determined by H1

dR (see Section 7.2.1).
In the next section, we want to discuss some classical examples, like curves and

K3-surface. Analogous to the abelian scheme case, we can use Lemma 7.5 to determine
the associated derived F -zips by their classical counterparts. We will not do this, as
this is completely analogous but focus on derived F -zips with type given by the types
associated to proper smooth curves and K3 surfaces. As the type Rf∗ΩX/S in these

cases will have a certain form, we will see that any strong derived F -zip with the same
type is equivalent to a derived F -zip coming from a classical one.
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7.2 Classical examples

We want to look at derived F -zips associated to abelian schemes, proper smooth curves
and K3-surfaces, and explicitely show that we do not get anything new from the theory
of derived F -zips.

7.2.1 Abelian schemes

Let X → S be an abelian scheme of relative dimension n. A classical result is that

H i
dR(X/S) = ∧iH1

dR(X/S),

H1
dR(X/S) is locally free of rank 2n (and thus also the H i

dR(X/S) are finite locally

free), the Rjf∗Ω
j
X/S are finite locally free and the Hodge-de Rham spectral sequence

degenerates (see [BBM82, Prop. 2.5.2]).
We can even go further and say that the underlying F -zips of an abelian scheme is

characterized by the underling F -zip associated H1
dR, i.e.

H i
dR(X/S) = ∧iH1

dR(X/S)

(see [PWZ15, Ex. 9.9]).
Therefore Lemma 7.5 (or rather its proof) implies the following.

Proposition 7.7. Let f : X → S be an abelian scheme of relative dimension n. The
derived F -zip RΓdR(X/S) is equivalent to the derived F -zip

⊕2n
k=0 ∧kH

1
dR(X/S)[k] (see

Remark 7.4 for the notation).

Proof. See the discussion above.

7.2.2 Proper smooth curves

Let C be a proper smooth connected curve of genus g over an algebraically closed
field k of characteristic p > 0. The de Rham complex consists of two terms. By the
degeneracy of the spectral sequence, we know that

Hn
dR(C/k) ∼=


Γ(C,OC) = k if n = 0,

H1(C,OC)⊕ Γ(C,Ω1
C/k) if n = 1,

H1(C,Ω1
C/k) = k if n = 2,

0 else.

Further, we know that g = dimkH
1(C,OC) = dim Γ(C,Ω1

C/k). Therefore, the de

Rham hypercohomology of C is a perfect complex of Tor-amplitude in [−2, 0] and the
filtrations are of the form

HDG• : · · · → 0→ HDG1 → RΓdR(C/k)→ RΓdR(C/k)→ . . .

conj• : · · · → 0→ conj0 → RΓdR(C/k)→ RΓdR(C/k)→ . . .
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The graded pieces are given by

gr0 HDG ' RΓ(C,OC) and gr1 HDG ' RΓ(C,Ω1
C/k)[−1]

which are perfect complexes of Tor-amplitude in [−1, 0] and [−2,−1] (in homological
notation).

LetM denote the moduli stack of smooth proper curves X → S (see [Sta19, 0DMJ]).
The map

RΓdR : X/S 7→ RΓdR(X/S)

fromM to t0 F-Zip[−2,0],{−1,0} gives a decompositionM =
∐
gMg into open and closed

substacks classifying smooth proper curves of genus g. This follows from the fact that
the Euler-characteristic of the graded pieces of the de Rham hypercohomology are de-
termined by the genus and from Proposition 6.40.

Consider the function σ : Z → NZ
0 defined as σ(0)0 = σ(1)−2 = 1 and σ(0)−1 =

σ(1)−1 = g and otherwise zero, for some g ∈ N. An example of a strong derived
F -zip homotopy finite projective of type σ is RΓdR(C/k) by the above (strongness
follows from Theorem 6.71). As the de Rham cohomologies are finite projective and
the Hodge-spectral sequence degenerates, we see that locally RΓdR(C/k) is determined
by the graded pieces of the Hodge and conjugate filtration (see Lemma 6.66). This
allows us to construct RΓdR(C/k) from the classical F -zip H1

dR(C/k). But not only
that, since σ is not too complicated (there is only one non-trivial homotopy with non-
trivial filtration) it seems reasonable that any derived F -zip of type σ is equivalent to
one that is induced by a classical F -zip (see below for more details).

First let us show how to extend a classical F -zip of type τ : Z → N0, k 7→ σ(k)−1

to a derived F -zip of type σ.

Construction 7.8. Let A be an Fp-algebra. Recall that the natural morphism A →
A(1) is an isomorphism of rings. Further, let τ be as above.

Let M = (M,C•, D•, ϕ•) be a classical F -zip over A of type τ . We set M+ :=
A[0]⊕M [−1]⊕ A[−2], C+ := C1[−1]⊕ A[−2] and D+ := D0[−1]⊕ A[0] as complexes
in D(A). This defines a descending filtration C•+ : C+ →M+, where M+ is in degree 0
and an ascending filtration D+

• : D+ → M+, where M+ is in degree 1, of A-modules.
We also get natural equivalences between the graded pieces of the filtrations up to
Frobenius twist induced by A(1) ∼−→ A and ϕ•, denoted by ϕ+

• . We define a new derived
F -zip over A via

M+ := (C•+, D
+
• , ϕ

+
• ).

The idea of the above construction is to take a classical F -zip and extend it by a
trivial F -zip into homotopical direction. So in the above construction M+ is a classical
F -zip shifted to degree −1 (homological) and then we add a trivial F -zip via the direct
sum to the homotopical degree 0 and −2. All the information of M+ as a derived F -zip
lies in homotpical degree −1. In particular, we can recover derived F -zips with type as
M+ from classical F -zips.
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Proposition 7.9. Let σ and τ be defined as above. Then for an Fp-algebra A the map

α : cl F-ZipτR(A)→ sF-ZipσR(A)

M 7→M+

induces an effective epimorphism cl F-ZipτR → sF-ZipσR of derived stacks.

Proof. Let A be an Fp-algebra. Consider a derived F -zip F = (C•F , D
F
• , ϕ

F
• ) over A

that is homotopy finite projective of type σ over A. We claim that there is a classical
M -zip M = (M,C•, D•, ϕ) of type τ that induces an equivalence M+ ∼−→ F .

We can apply Lemma 6.66 to the filtrations and graded pieces of F and may only
work with perfect complexes over A that have vanishing differentials, i.e. direct sums
of shifts of finite free modules (note that we use that the filtrations are finite).

Using the explicit type of F , we get a long exact homotopy sequence

0→ (C0
F )0 → A

∂−→ (C1
F )−1 → (C0

F )−1 → Ag
∂′−→ (C1

F )−2 → (C0
F )−2 → 0,

and using the ascending filtration, we get the long exact homotopy sequence

0→ (DF
0 )0 → (DF

1 )0 → 0→ (DF
0 )−1 → (DF

1 )−1 → (Ag)(1) → 0→ (DF
1 )−2 → A(1) → 0.

The strongness of our filtrations show that ∂, ∂′ are zero and we see that we can set

M = F−1,

C• : 0 = C2 ⊆ (C1
F )−1 ⊆ F−1 = C0,

D• : 0 = D−1 ⊆ (DF
0 )−1 ⊆ F−1 = D1, and

ϕ0 = π−1ϕ
F
0 , ϕ1 = π−1ϕ

F
1 .

The acyclicity of the complexes involved give us an equivalence M+ ∼−→ F .

7.2.3 K3-surfaces

Let X be a K3-surface over a field k. It is well known, that the Hodge-de Rham
spectral sequence of X/k degenerates and that the Hodge-numbers are given as follows
h0,0 = h0,2 = h2,0 = h2,2 = 1, h1,1 = 20 and otherwise zero. This in particular gives us
the type of the derived F -zip associated to a K3-surface over an arbitrary scheme in
positive characteristic (which is written out in the following remark).

Using this, we will show as in the case of proper smooth curves that every derived
F -zip of the same type as in the K3-surface case is equivalent to one which comes from
the classical F -zip of type associated to H2

dR of a K3-surface.

Remark 7.10. Let σ : Z → NZ
0 be the function given by σ(0)0 = σ(0)−2 = σ(2)−2 =

σ(2)−4 = 1, σ(1)−2 = 20 and otherwise zero.
Let F := (C•, D•, ϕ•) ∈ t0 F-Zipσ(A). We may assume by Lemma 6.66 that every

perfect complex associated to F has vanishing differentials, i.e. the filtrations and
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graded pieces are perfect complexes of A-modules with vanishing differentials. So, we
can write

C• '
⊕
n∈Z

(C•)n[n] and D• '
⊕
n∈Z

(D•)n[n].

By this C2 ' π−2 gr2
C [−2]⊕ π−4 gr2

C [−4] and we have long exact homotopy sequences

0→ (C2)−2 →(C1)−2 → π−2 gr1
C → 0→ (C2)−3

→ 0→ 0→ (C2)−4 → (C1)−4 → 0,

0→ (C0)0 →π0 gr0
C → 0→ (C0)−1 → 0→ (C1)−2 → (C0)−2 → π−2 gr0

C

→ 0→ (C0)−3 → 0→ (C1)−4 → (C0)−4 → 0.

Further, we have D0 ' π0 gr0
D[0]⊕ π−2 gr0

D[−2] and long exact homotopy sequences

0→ (D0)0 → (D1)0 → 0→ 0→ (D1)−1 → 0→ (D0)−2 → (D1)−2 → π−2 gr1
D → 0,

0→ (D1)0 →(D2)0 → 0→ 0→ (D2)−1 → 0→ (D1)−2 → (D2)−2

→ π−2 gr2
D → 0→ (D2)−3 → 0→ 0→ (D2)−4 → π−4 gr2

D → 0.

In particular, we have that F is a strong derived F -zip as the homotopies are finite
locally free, which allows us to construct sections.

Corollary 7.11. Let X/S be a K3-surface, then the Hodge-de Rham spectral sequence
associated to X/S degenerates.

Proof. Combine Remark 7.10 and Theorem 6.71.

Lemma 7.12. Let σ : Z→ NZ
0 be the function given by some

σ(0)0, σ(0)−2, σ(1)−2, σ(2)−2, σ(2)−4 ∈ N0

and otherwise zero. Then the inclusion

sF-Zipσ ↪→ F-Zipσ

is an equivalence.

Proof. We only have to check that it is an effective epimorphism, which can be checked
locally. Now the argumentation as in Remark 7.10 concludes the proof.

Again, as in the proper smooth curve case, we want to construct a derived F -zip of
type σ out of a classical F -zip and show that all derived F -zips of type σ are given by
those.

In particular, the derived F -zip associated to a K3-surface will carry no additional
information besides the classical F -zip attached to its H2

dR.
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Construction 7.13. Let M = (M,C•, D•, ϕ•) be a classical F -zip over A of type τ ,
where τ(2) = τ(0) = 1 and τ(1) = 20 and otherwise zero. We set M+ := A[0] ⊕
M [−2]⊕A[−4], C2

+ := C2[−2]⊕A[−4], C1
+ = C1

+[−2]⊕A[−4], D+
0 := D0[−2]⊕A[−4]

and D+
1 = A[0] ⊕D1[−2]. This defines a descending filtration C•+ : C2

+ → C1
+ → M+

and an ascending filtration D+
• : D+

0 → D+
1 → M+. We also get natural equivalences

between the graded pieces of the filtrations up to Frobenius twist induced by A(1) ∼−→ A
and ϕ•, denoted by ϕ+

• . We define a new derived F -zip over A via

M+ := (C•+, D
+
• , ϕ

+
• ).

Proposition 7.14. let τ be as in Construction 7.13 and let σ be as in Remark 7.10.
Then for an Fp-algebra A the map

α : cl F-ZipτR(A)→ F-ZipσR(A)

M 7→M+

induces an effective epimorphism cl F-ZipτR → t0 F-ZipσR of derived stacks.

Proof. Using that a derived F -zip of type σ is automatically strong (see Lemma 7.12),
we see that the proof is analogous to the proof of Proposition 7.9 with Construction
7.13.
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8 Application to Enriques surfaces

One of the main reasons behind the theory of derived F -zips is to extend the theory of
F -zips such that we can use it on geometric objects that have non-degenerate Hodge-de
Rham spectral sequence. One example of such geometric objects are Enriques surfaces
in characteristic = 2. Here, we have three types of Enriques surfaces: Z/2Z, µ2 and
α2. The Enriques surfaces of type α2 are in particular interest for us since they have
non-degenerate Hodge-de Rham spectral sequences (for the other types the spectral
sequences degenerate). One can show (see [Lie15]) that the moduli stackM of Enriques
surfaces has three substacks Mα2 , MZ/2Z and Mµ2 that classify precisely these three
types and that they are closed and open resp. open in M. We will come to the
same result using the theory of derived F -zips (see Proposition 8.9) since the substacks
corresponding to the types of Enriques surfaces can be classified by their corresponding
type of the derived F -zip associated to the de Rham hypercohomology.

8.1 Overview

We will shortly recall the definition of Enriques surfaces and some properties. We use
the upcoming book of Cossec, Dolgachev and Liedtke as a reference (see [CDL21]). For
this fix an algebraically closed field k of characteristic p > 0.

Definition 8.1. An Enriques surface is a proper smooth surface over k with Kodaira
dimension 0 and b2(X) := dimQ` H

2
ét(X,Q`) = 10, where ` 6= p is a prime.

Proposition 8.2. Let S be an Enriques surface over k. If the characteristic is p = 2,
then the group scheme of divisor classes which are numerically equivalent to 0, denoted
by PicτS/k is either Z/2, µ2 or α2. In characteristic > 2, we have PicτS/k

∼= Z/2.

Definition 8.3. Let S be an Enriques surface over k and assume p = 2, then we call
S classical (resp. singular or supersingular) or of type Z/2Z (resp. µ2 or α2) if PicτS/k
is isomorphic to Z/2 (resp. µ2 or α2).

Proposition 8.4. Let S be an Enriques surface over k. The associated Hodge-de Rham
spectral sequence degenerates if and only if S is not supersingular.

Proof. This is [CDL21, Cor 1.4.15] but let us recall the arguments (note that there is
a typo in the reference, as they compute the crystalline cohomology and conclude the
de Rham cohomology by the universal coefficient formula, which implies the numbers
in Table (8.1.2)).

In [CDL21, §1.4 Table 1.2, Table 1.3] they give the exact Hodge-numbers and di-
mensions of the de Rham cohomology, which in particular implies the result about
degeneracy.

Let us be a bit more precise and recall the important numbers. Let hi,j denote the
k-dimension of Hj(S,Ωi

S/k) and hidR the dimension of H i(S,Ω•S/k). Then we have the
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following table linking the type of S with the Hodge-numbers.

(8.1.1)

PicτS/k h0,0 h1,0 h0,1 h0,2 h1,1 h2,0

µ2 1 0 1 1 10 1

Z/2 1 1 0 0 12 0

α2 1 1 1 1 12 1

The dimension of the de Rham cohomology is given as follows (this does not depend
on the type of the Enriques surfaces).

(8.1.2)
h0

dR h1
dR h2

dR h3
dR h4

dR

1 1 12 0 1

By Serre duality this table is enough to conclude (non-)degeneracy.

We denote by (PicτS/k)
D the Cartier dual of PicτS/k. Note that αD2 = α2, Z/2D = µ2

and µD2 = Z/2.

Proposition 8.5. Let S be an Enriques surface over k. There exists a non-trivial
(PicτS/k)

D-torsor
π : X → S

In particular, π is finite flat of degree 2. Note that if p 6= 2 or S is of type µ2, then π
is étale.

Proof. See [CDL21, Thm. 1.3.1].

Definition 8.6. A finite flat map X → S of degree 2 is called K3-cover.

Proposition 8.7. Let S be an Enriques surface over k. Let π : X → S be a K3-cover.
Then X is integral Gorenstein, satisfying

H1(X,OX) = 0, ωX ∼= OX .

Further, we have

1. if p 6= 2 or S is of type µ2, then X is a smooth K3-surface, and

2. if p = 2 and S is of type Z/2 or α2, then X is not a smooth surface.

Proof. See [CDL21, Prop. 1.3.3].

Definition 8.8. Let S be a Fp-scheme. An Enriques surface X over S is a proper
smooth morphism of algebraic spaces f : X → S such that the geometric fibers of f are
Enriques surfaces.
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8.2 Derived F -zips associated to Enriques surfaces

In the following every scheme will be in characteristic 2.
We let M denote that stack classifying Enriques surfaces with “nice” polarization,

i.e. the functor that sends an F2-scheme S to the groupoid of pairs (X/S,L) consisting
of Enriques surfaces X → S with “nice” line bundle L on X - the term “nice” means
a polarization such that M defines an Artin stack, examples of such classifying stacks
are given in [CDL21, Thm. 5.11.6] and [Lie15, §5] (we only need that M is an Artin
stack and are not interested in the polarization itself and as there are many different
such polarizations such thatM is an Artin stack, we omit the explicit description). By
our previous constructions, we get a morphism

p : M→ t0 F-ZipS , (X/S,L) 7→ Rf∗Ω
•
X/S .

The Hodge-numbers and dimension of the de Rham cohmology for Enriques surfaces
over algebraically closed fields, define types for the underlying F -zip (see Tables 8.1.1
8.1.2). We denote those by τZ/2, τµ2 , τα2

45 for the types defined by the Hodge-numbers
of Z/2, µ2, α2-Enriques surfaces respectively.

We denote the corresponding loci with MZ/2 and Mµ2 , i.e. these denote the sub-
stacks classifying Enriques surfaces of type Z/2 (resp. µ2). We denote the substack of
α2 Enrique surfaces f : X → S such that Rif∗Ω

j
X/S is finite locally free for all i, j ∈ Z

with Mα2
46. With these definitions, we see that

p−1(t0 F-Zip≤τα2 ) :=M×t0 F-ZipS t0 F-Zip≤τα2 'M

and we will see in the following that the substacksMZ/2 andMµ2 are open inM and
Mα2 is locally closed in M.

Proposition 8.9. The substacksMZ/2 andMµ2 are open algebraic substacks andMα2

is a closed algebraic substack of M locally of finite presentation.

Proof. Let us look at MZ/2 ' p−1(t0 F-Zip≤τZ/2). We claim that this is an open
substack ofM. SinceM is an Artin stack, we know that it is a 1-geometric 1-truncated
derived stack in our sense. In particular, since the base change of open immersions
are open immersion (i.e. flat, locally finitely presented monomorphisms), we know
with Remark 4.35 and Proposition 6.39 that MZ/2 ↪→ M is a flat, locally finitely
presented monomorphism and in particularMZ/2 is 1-geometric. SinceMZ/2 ↪→M is
a monomorphism (i.e. (−1)-truncated), we see that MZ/2 is 1-truncated (see [Lur09,
Lem. 5.5.6.14]). In fact, we claim that this shows that MZ/2 is an algebraic stack.

To see this note that since MZ/2 ↪→M is a monomorphism, the diagonal of MZ/2
is representable by an algebraic space. Further, we claim that 1-geometricity of MZ/2
implies that we have a smooth atlas by a coproduct of affine schemes, so a scheme.

45Recall that the types are given by τ∗(i)j := hi,−j−i (the hodge numbers of the corresponding types).
The table (8.1.1) shows that τµ2 ≤ τα2 and τZ/2 ≤ τα2 and no relation between τµ2 and τZ/2.

46Note that if f : X → S is a locally noetherian reduced Enriques surface, we can use [Gro63, Prop.
(7.8.4)] to see that Rif∗Ω

j
X/S is finite locally free for all i, j ∈ Z.
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To see the last part, let us look at a smooth 0-atlas q :
∐

Spec(Ai) �MZ/2. We
have to check that this is smooth in the classical sense. For that consider the base
change with an affine scheme Spec(B) → MZ/2, denoted by X. This is an algebraic
space and by geometricity has a smooth cover

∐
Spec(Bi) by some smooth B-algebras

Bi such that each g : Spec(Bi) → X is affine. So, we have a diagram of the following
form with cartesian square

∐
Spec(Bi) X Spec(B)

∐
Spec(Ai) MZ/2.

g f

q

As g is smooth and surjective and f ◦ g is smooth, we know by descent that f is
smooth (as the property “smooth” is smooth local on the source for algebraic spaces,
see [Sta19, 06F2]). Certainly f is also surjective, as it is the base change of and effective
epimorphism. Therefore, by definition we see that p is smooth and surjective.

The same argumentation works if we replace MZ/2 with Mµ2 .
For the supersingular locus, we note that the inclusion

t0 F-Zipτα2 ↪→ t0 F-Zipτ≤α2

is a closed immersion locally of finite presentation (again by Proposition 6.39). So,
analogous to the above, we see thatMα2 is an algebraic substackM such thatMα2 ↪→
M is a closed immersion of algebraic stacks locally of finite presentation.
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9 Derived F -zips with cup product

Here we discuss two possible generalizations of derived F -zips. Firstly, we could try to
extend the theory of derived F -zips in such a way such that we can attach a derived
F -zip to an lci morphism. Secondly, we could extend the theory of derived F -zips to
the theory of derived G-zips as in [PWZ15], for a reductive group G and hope that
the extra structure on the de Rham hypercohomology given by the cup product (see
Section 9.2) endows it with a G-zip structure.

We will discuss both cases and show that the naive way of extending derived F -zips
does not work in both cases. But for completion, we will look at derived F -zips with
some extra structure that is given by a perfect pairing. Again, we can not connect this
to the theory of G-zips but this is just a very naive approach we want to discuss.

9.1 Problems

Now let us discuss the problems that occurred when trying to generalize the theory.

9.1.1 Derived F -zips for lci morphisms

We could have defined derived F -zips not over animated rings but over usual com-
mutative rings in positive characteristic. One benefit of the animation process is that
simplicially every commutative ring can be approximated by smooth rings. One often
uses this to generalize theories that work in the smooth case to the non-smooth case. To
define derived F -zips, we looked at the de Rham hypercohomology of a smooth proper
scheme. So to define a theory of derived F -zips that works for non-smooth schemes,
we would need a non-smooth analogue of the de Rham hypercohomology. The most
natural generalization comes from looking at the de Rham complex as a functor from
smooth Fp-algebras and looking at its left Kan extension to animated Fp-algebras. This
is done for example in [Bha12b],[Bha12a] or [Ill71] and is called the derived de Rham
complex, denoted by dRX/R

47 for a scheme X over some ring R of positive characteris-
tic. Let us state some facts about the derived de Rham complex that can also be found
in the mentioned articles by Bhatt or in the book by Illusie.

In the smooth case this gives the usual de Rham hypercohomology RΓdR(X/R). The
derived de Rham complex comes naturally with two filtrations, one is the conjugate
filtration and one is the Hodge filtration. Both come from the conjugate respectively
the Hodge filtration on the de Rham complex by extending via left Kan extension. The
graded pieces are given by

griconj dRX/R ' ∧iLX(1)/R, griHDG dRX/R ' ∧iLX/R,

in particular they are isomorphic upto Frobenius twist.
Even though it seems natural, it is not clear that the Hodge filtration is complete,

i.e. lim
←−i

HDG(i) ' 0. Further, the filtrations may not be finite in any way. This holds

47We define dR−/R as the left Kan extension of the functor P 7→ Ω•P/R along the inclusion PolyR ↪→
ARR. Then, we denote with RdR−/R the right Kan extension of dR−/R along the Yoneda embedding
ARR ↪→ P(ARop

R )op and set dRX/R := RdR−/R(X).
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more or less for any variety with isolated lci singularities. One very generic example is
A := k[ε]/(εp) for some field k of characteristic p > 0. One can show that ∧nLA/k is
not quasi-isomorphic to 0 for any n ∈ N0 (see [Bha12c, Rem. 2.2]). This obstruction
comes from the fact that in the lci case LA/k is a complex concentrated in two degrees
and after base change to k one can see that it is given by the direct sum of exterior
powers and shifts of k (see proof of [Bha12c, Lem. 2.1]). Now the exterior power of
the shift of a module can be computed by its free divided power, which will not vanish
even for higher powers (see [Lur18, Prop. 25.2.4.2]). To avoid problems, we could
define derived F -zips using non-complete filtrations but the problem here is actually
the unboundedness of the filtrations. There is no need for an n-atlas if we allow infinite
filtrations since we would need to cover finitely many data at once, which renders this
approach a priori useless.

9.1.2 Derived G-zips

The theory of G-zips, for a connected reductive group G over a field of characteristic
p > 0, endows the theory of F -zips with extra structure related to the group. The
motivation behind this is that we have a cup product on the de Rham cohomologies of
smooth proper maps, where the relative Hodge-de Rham spectral sequence degenerates.
In even degrees this endows the F -zip associated to the de Rham cohomology with a
twisted symmetric structure and in odd degrees with a twisted symplectic structure.
All of this can be found in [PWZ15].

There are 3 equivalent approaches to the theory of G-zips. The first one is to first
identify the stack of F -zips over a scheme S with the stack of vector bundles on some
quotient stack X, where the quotient stack is defined via the following recipe. We take
P1 and pinch the point at ∞ and the 0 point up to Frobenius twist together. Now
we let Gm act on the affine line around 0 in degree 1 and on the affine line around
∞ in degree −1. Let us make precise what happens here. Vector bundles on [A1/Gm]
are finitely filtered vector bundles, where depending on the action of Gm, in our case
multiplication with an element in Gm resp. with the inverse, we get an increasing resp.
decreasing filtration (see Appendix A for further details). Thus, a vector bundle on
[P1/Gm ] gives a vector bundle with an ascending and a descending filtration. The
pullback to the 0 resp. ∞ gives us the graded pieces. Gluing 0 and ∞ together along
the Frobenius, we see that a vector bundle on X gives us an F -zip. Now a G-zip is just
a G-torsor over X (see Theorem A.5).

Secondly one can realize G-zips as exact fiber functors from finite G-representations
to F -zips. Using that F -zips are the same as finite dimensional vector bundles over the
above quotient stack X and using Tannaka duality, one sees that this description and
the first one agree.

Lastly there is a description of G-zips as a quotient stack [G/E]. We spare the
details for the reader and refer to [PWZ15], where also the equivalence with the second
description can be found.

In our context the first and second approach seem to be the natural ones. The
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first approach seems to be a bit tricky, since we would need to show that there is a
quotient stack, such that that perfect complexes over this stack gives us the derived
F -zips. Naturally one could take X as the desired stack and as explained in Appendix
B the perfect complexes on X recover derived F -zips. But we still lack a good notion
of derived groups and torsors attaching extra structure to perfect complexes.

For the second approach, we would need a replacement for finite G-representations.
Looking at the works of Iwanari and Bhatt on derived Tannaka duality, it seems natural
to replace Rep(GFp) with Perf(BGFp). But even though natural, it will turn out to be
not the right approach. The problem here is BG. It is the classifying stack associated
to a classical group scheme. Thus looking at exact fiber functors and Tannaka duality
(which we do not have) one could argue that it should give us the classical theory of
G-zips embedded into the derived setting. This is not the same as a derived analogue.
For example, Gm-zips are the same as F -zips of rank 1. We would expect derived
Gm-zips to be derived F -zips of of Euler characteristic ±1. But we will see, that this
is not completely true for exact fiber functors from Perf(BGm,Fp) to F-Zip(A) for some
Fp-algebra A. Instead of derived F -zips of Euler characteristic ±1 they give us derived
F -zips, where the cohomologies are finite locally free, meaning that they give us (more
or less) the classical theory.

To make everything we wrote precise, let F be an exact monoidal functor from
Perf(BGm,Fp) to F-Zip(A) for Fp-algebra A. Since over a field any complex is quasi-
isomorphic to a complex with zero differentials, we see that the descent condition
(induced by the Bar resolution of BGm,Fp) for a complex in Perf(BGm,Fp) is a condi-
tion on the cohomologies of the complex. With this, we see that E ∈ Perf(BGm,Fp) is
equivalent to a finite direct sum of Ei[i], where i ∈ Z and Ei are finite projective graded
modules. Since F is exact, we see that F is already determined, up to equivalence, by
its image on vector bundles on BGm, i.e. finite Gm-representations, seen as complexes
concentrated in degree 0. But finite Gm-representations are generated under the tensor
product by the standard representation, hence F is already determined, up to equiva-
lence, by its image of Fp, seen as a graded vector space in degree 1. This is certainly an
invertible element in Perf(BGm,Fp) and thus F (Fp) must also be invertible. Since the
monoidal structure on F-Zip(A) is given componentwise, we see that the underlying
module of the F -zip has to be invertible. But invertible perfect complexes over A are
locally shifts of line bundles and globally given by the direct sum of shifts of finite pro-
jective modules (see [Sta19, 0FNT]). This is too much and would give us the classical
theory of F -zips after passing to the cohomology.

9.2 Extra structure coming from geometry

In this section, we naively put extra structure on derived F -zips by looking at the extra
structure on the de Rham hypercohomology coming from the cup product, namely a
perfect pairing on the underlying module of a derived F -zip.

In the following we fix a ring R of characteristic p > 0.

Definition 9.1. Let A be an animated ring. Let M and N be perfect A-modules. A
perfect pairing of M and N is a morphism M⊗N → A such that the induced morphism
M → N∨ is an equivalence.
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Remark 9.2. Let A be an animated ring. Note that any equivalence between perfect
A-modules M , N of the form M → N∨ induces a perfect pairing M ⊗N → A by ad-
junction. So giving a perfect pairing M ⊗N → A is equivalent to giving an equivalence
M → N∨.

Definition 9.3. Let A be an animated ring. We define the ∞-category of perfect
pairings PPA over A as the full subcategory of X, where X is given by the pullback
diagram

X Modperf
A ×Modperf

A

Fun(∆1,Modperf
A ) Fun(∂∆1,Modperf

A ),

(M,N)7→(M,N∨)

r

of those morphisms M → N∨ that are an equivalence (note that r is given by restriction
and by [Lur21, 01F3] is an isofibration of simplicial sets. Thus X is equivalent in Cat∞
to the usual pullback of simplicial sets48 - so indeedX classifies morphisms of A-modules
M → N∨).

Definition 9.4. Let A be an animated Fp-algebra, a ≤ b ∈ Z and S ⊂ Z be a finite

subset. Let dR-Zip
[a,b],S
∞ (A) denote the ∞-category

F-Zip[a,b],S
∞ (A)×

(colim[b−a],(colim)∨),Modperf
A ×Modperf

A
PPA,

i.e. the ∞-category consisting of tuples (F , ψ), where F := (C•, D•, φ, ϕ•) is a derived
F -zip with M := colimZop C and a perfect pairing ψ : M ⊗M → 1[a− b].49 We set

dR-Zip∞(A) := colim
a≤b,

S⊆Z finite

dR-Zip[a,b],S
∞ (A)

and call its elements dR-zips over A.

Next we want to show that for any proper smooth morphism f : X → S of schemes,
we can attach a dR-zip structure to the derived F -zip Rf∗Ω

•
X/S . This structure comes

naturally from the cup product.

Lemma 9.5. Let A be a ring and X be a proper smooth scheme over A of relative di-
mension n. The de Rham hypercohomology RΓ(X,Ω•X/A) has Tor-amplitude in [−2n, 0].

Proof. Indeed, first of all, we claim that dimκ(a) πi(Xκ(a),Ω
•
Xa/κ(a)) is zero for all a ∈

Spec(A) if i /∈ [−2n, 0].

48To check that X is equivalent to the usual pullback of simplicial sets, we may use Yoneda and check
that for any∞-category C the∞-groupoid Fun(C, X)' is given by the usual pullback of simplicial sets,
but this follows from Remark 5.13

49Again, as explained in the definition of PPA, we have that the pullback diagram defining
dR-Zip[a,b],S

∞ (A) is equivalent in Cat∞ to the ordinary pullback of simlicial sets, as the projection from
PPA to ModA×ModA is an isofibration (since isofibrations are stable under pullbacks of simplicial sets
by [Lur21, 01H4]).
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This follows from Grothendieck vanishing (see [Har77, Thm. 2.7]) in the following
way. The perfect complex RΓ(Xκ(a),Ω

k
Xκ(a)/κ(a))[−k] has by Grothendieck vanishing

nonzero homotopies in degrees −n− k, . . . ,−k.
Now, the distinguished triangle associated to the stupid truncation

RΓ(Xκ(a), σ≥k+1Ω•Xκ(a)/κ(a))→ RΓ(Xκ(a), σ≥kΩ
•
Xκ(a)/κ(a))→ RΓ(Xκ(a),Ω

k
Xκ(a)/κ(a))[−k]

shows by induction that dimκ(a) πi(Xκ(a),Ω
•
Xa/κ(a)) is nonzero if and only if i ∈ [−2n, 0].

Further, it suffices to check Zariski locally on Spec(A) that RΓ(X,Ω•X/A) has Tor-

amplitude in [−2n, 0]. Any point a ∈ Spec(A) has an affine open neighbourhood
U = Spec(Af ) such that RΓ(X,Ω•X/A)|U is by [Sta19, 0BCD] equivalent to a complex
of the form

· · · → 0→ Ad0
f → A

d−1

f → · · · → A
d−2n

f → 0→ · · · ,

where Adif sits in homological degree −i and

di := dimκ(a) πi(RΓ(X,Ω•X/A)⊗LA κ(a)) = dimκ(a) πi(Xκ(a),Ω
•
Xa/κ(a))

(the last equality follows as the formation of the de Rham hypercohomology commutes
with arbitrary base change, see [Sta19, 0FM0]).

Example 9.6. Let A be a ring andX be a proper smooth scheme over A with nonempty
fibers of equidimension n. By Lemma 9.5 RΓ(X,Ω•X/A) has Tor amplitude in [−2n, 0].
Further, the de Rham hypercohomology admits a perfect pairing

RΓ(X,Ω•X/A)⊗LA RΓ(X,Ω•X/A)[2n]→ A

(see [Sta19, 0G8K]). Hence, this induces a dR-zip structure on RΓdR(X/A).

Proposition 9.7. The functor

dR-Zip∞,R : ARR → Cat∞

A 7→ dR-Zip∞(A)

defines a hypercomplete sheaf for the fpqc topology. We denote the associated derived
stack with dR-ZipR.

Let S ⊆ Z be a finite subset, a ≤ b ∈ Z and set n := b−a, then the induced morphism

p[a,b],S : dR-Zip
[a,b],S
R → F-Zip

[a,b],S
R

is 2n-geometric and smooth. Further, dR-Zip
[a,b],S
R is 2n-geometric if n ≥ 1 (resp.

1-geometric if n = 0) and locally of finite presentation .

Proof. Fix a finite subset S ⊆ Z, a ≤ b ∈ Z and set n := b − a. For a derived F -zip
F = (C•, D•, φ, ϕ•), let us set MF := colimZop C•. Let us look at the following pullback
square

X Fun(∆1,Perf)

F-Zip
[a,b],S
∞,R Fun(∂∆1,Perf).

F 7→(MF ,M
∨
F [−n])
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Noting that a perfect pairing of MF and M∨F [−n] is the same as an equivalence

MF
∼−→ M∨F [−n], we see that dR-Zip

[a,b],S
∞ ' X. In particular, dR-Zip

[a,b],S
∞,R satisfies

fpqc hyperdescent.

Finally let p[a,b],S : dR-Zip
[a,b],S
R → F-Zip

[a,b],S
R denote the induced morphism of

derived stacks. For a derived F -zip F over some animated Fp-algebra A, we have
that (p[a,b],S)−1(F ) ' Equiv(MF ,M

∨
F [−n]), which is 2n-geometric and smooth, as

MF ⊗A M∨F [−n] has Tor-amplitude in [−2n, 0] (see Lemma 5.4 and 5.5). Now the
assertions on p follow immediately per definition and by Theorem 6.23, we get the

results on dR-Zip
[a,b],S
R .

Corollary 9.8. The derived stack dR-ZipR is locally geometric and locally of finite
presentation.

Proof. Let τ : Z → NZ
0 be a function with finite support. We know that the inclusion

F-Zip≤τR ↪→ F-ZipR is a quasi-compact open immersion and factors as a geometric mor-

phism through F-Zip
[a,b],S
R for some finite subset S ⊆ Z and a ≤ b ∈ Z (see Remark 6.41).

In particular, we see that the pullback of F-Zip≤τR along p[a,b],S , denoted by dR-Zip≤τ ,
is again geometric by Proposition 9.7 and Theorem 6.23 and quasi-compact open in
dR-ZipR. Since F-ZipR ' colimτ F-Zip≤R, we see that dR-ZipR ' colimτ dR-Zip≤τR and
so is locally geometric.

That dR-ZipR is locally of finite presentation follows analogously from the fact that
F-Zip≤τR is locally of finite presentation.
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Appendix

A Comparison of G-zips and G-torsors

Throughout, we let k be a field of characteristic p > 0.
Let us first construct the quotient stack that will classify F -zips. Let S be a k-

scheme. Consider the two closed subschemes {0} and {∞} inside P1 that are naturally
isomorphic. Let ϕ denote the isomorphism of {∞} and {0} composed with the Frobe-
nius. We know by [Fer03, Thm. 7.1] that the following pushout exists in the category
of Fp-schemes

{∞} q {0} {∞}

P1
S XS

(id,ϕ)

ι

(note that the Frobenius is integral and thus the morphism from the coproduct is
integral and obviously the inclusion of the two points is a closed immersion). The new
space XS is the P1

S where we pinch the point 0 and∞ together. We have a Gm,S-action
on P1

S , where we act on the affine line around 0 via multiplication and on the affine
line around ∞ by multiplication with the inverse. Since Gm,S ×SP1

S
∼= Gm,Fp ×FpP1

S ,
we see that the Gm-action on P1

S as Fp-schemes is the same as the action as S-schemes.
Therefore, we get an induced Gm,Fp-action on X.

Let us note that we have the following pushout diagram

(A.1.1)

Gm,Fp ×Fp{∞} q {0} Gm,Fp ×Fp{∞}

Gm,Fp ×FpP1
S Gm,Fp ×FpXS

id×(id,ϕ)

id×ι

which is induced by the Gm-actions. The following diagram with commutative squares
shows that indeed Gm,Fp ×FpXS fulfills the universal property of the pushout above

{∞} q {0} {∞}

{∞} q {0} Gm,Fp ×Fp{∞} q {0} Gm,Fp ×Fp{∞}

P1
S Gm,Fp ×FpP1

S

(id,ϕ)

s s

ι

s id×(id,ϕ)

id×ι

s

where the morphism s denotes the natural 0-section.
Now let us set XS as the quotient stack [XS/Gm,Fp ]. We claim that XS is an

Artin-stack, which follows from the following lemma and [Sta19, 04TK].

Lemma A.1. The group action of Gm,Fp on XS is smooth.
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Proof. Since the action of Gm,Fp on XS is induced by the pushout diagram A.1.1, we see
with50 [Sta19, 08KQ] that the Gm,Fp-action is smooth if and only if the Gm,Fp-action
on {∞} and P1

S is smooth. The smoothness of the former action is clear. For the latter
it is enough to see that the Gm,S-action on A1

S by multiplication of degree 1 is smooth
(the degree −1 case is completely similar).

Indeed, the question is local, so we may assume that S = Spec(R) is affine. Then
the ring map corresponding to the Gm,S-action is equivalently given by

R[X]→ R[X][Y1, Y2, Z]/(Y1Y2 − 1, ZY1 −X).

The Jacobi-matrix corresponding to this map is given by(
Y2 Y1 0
Z 0 Y1

)
.

For any point in p ∈ Spec(R[X][Y1, Y2, Z]/(Y1Y2−1, ZY1−X)) we have that this matrix
has full rank, as Y1Y2 − 1 ∈ p. Therefore, we see that indeed the Gm,S-action A1

S via
multiplication of degree 1 is smooth of relative dimension 1 concluding the proof.

We will start by showing that vector bundles over X are the same as F -zips. Then
the comparison of G-zips and G-torsors on X is a Tannaka duality like statement.

Theorem A.2. Let S be a k-scheme and let n ∈ N. There is an equivalence

VBn(XS) ' cl F-Zipn(S)

of categories.

Proof. A vector bundle on XS is by descent a Gm,Fp-equivariant vector bundle on XS .
Since XS is the coequalizer of {0}, where one of the morphisms is given by the identity
and the other sends {0} to {∞} and twist by Frobenius, we see that a vector bundle
on X is given by a finite locally free P1

S-modules with an isomorphism after pullback
to {∞} respectively {0} with Frobenius twist (see [TT16, Cor. 6.5]). A vector bundle
of rank n on P1

S is given by a tuple (V,W ) of vector bundles of rank n on A1
S such

that V|D(0)
∼= W|D(∞). Let (V,W ) be such a tuple. Further assume that we have an

isomorphismW
(1)
|{∞} → V|{0} this defines a vector bundle onXS . The Gm,Fp-equivariance

induces a grading on V and W (this is for example explained in [Sta19, 03LE]). Since
Gm,Fp acts on the affine line around {0} by multiplying in degree 1 and on the affine
line around {∞} by multiplying in degree −1, we see that per definition of the grading
the corresponding endomorphisms of V and W seen as k-vector spaces are morphisms
of graded vector spaces in degree 1 resp. −1. This construction gives an ascending
chain

· · · → Vi−1 → Vi → Vi+1 → . . .

50Locally the pushout of schemes is given by the fiber product of the rings corresponding to affine
opens, as one sees in the construction (see for example the proof of the existence given in [Sta19, 0E25]).
So in particular, we can apply the reference.
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and a descending chain

· · · →W i+1 →W i →W i−1 → . . . .

The pullback to {0} gives the direct sum of graded pieces and considering the Frobenius
twist, we see that this isomorphism is the same as the datum of a family of isomorphisms
ϕ : (griW )(1) → griV for each i, also since the pullback to {0} also has to be a vector
bundle, we see that each graded piece has to be finite locally free (since the direct sum
of all has to be finite locally free of rank n). This in particular shows that the filtrations
stabilize, i.e. there only finitely many nonzero graded pieces. The pullback of these
filtrations to D(0) resp. D(∞) gives the underlying module of the filtrations, which
have to be isomorphic, i.e. V• and W • define an ascending resp. descending filtration
on the same module.

Putting all these data together, we see that the category of vector bundles on XS of
rank n is equivalent to the category of F -zips over S of rank n.

Remark A.3. The above proposition shows in particular, that the functor

VB(X) : S 7→ VB(XS)

is a sheaf for the fppf topology and even and Artin stack.

Corollary A.4. There is an equivalence of Artin-stacks

VB(X) ' cl F-Zipk .

Further, for any scheme S, we have a monoidal equivalence of symmetric monoidal
categories VB(XS) ' cl F-Zipk(S)

Proof. This is clear with Theorem A.2. Note that the proof of Theorem A.2 shows this
equivalence respects the symmetric monoidal structures.

Corollary A.5. Let G be a linear algebraic group over k such that its identity compo-
nent is reductive. We have an isomorphism of Artin-stacks

G-Tors(X) ∼= G-zipk.

Proof. Using Theorem A.2, we see with [PWZ15, Thm. 7.13] that it is enough to show
that G-Tors(X) is equivalent to the stack of fiber functors from the symmetric monoidal
category of G representations to the symmetric monoidal category VB(X), which we
denote by Hom⊗(Rep(G),VB(X)).51

Let S be a k-scheme and X•S denote the Čech nerve of XS (which by construction
is termwise given by a scheme). Since BG is a sheaf for the fppf topology, we get by

51The associated pre-stack is given by the assignment S 7→ Hom(Rep(G),VB(XS)). That this is a
stack, follows from [SR72, III.3.2.1.2]. In general, for any symmetric monoidal categories A and B, we
denote with Hom⊗(A,B) the groupoid of fiber functors from A to B.
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definition G-Tors(XS) = HomP ((Sch/k))(XS ,BG) = limn∈N HomP ((Sch/k))(X
n
S ,BG), by

Tannaka duality (see [Zie15, Thm. 2.3]) we have

lim
n∈N

HomP ((Sch/k))(X
n
S ,BG) = lim

n∈N
Hom⊗(Rep(G),VB(XnS))

(here we embed the categories involved, which are (2, 1)-categories, naturally into the
world of ∞-categories (for example via the Duskin-Nerve which is explained in [Lur21,
§I.2.3]), then the limit above is the usual limit in the ∞-categorical sense). Since
the pre-stack of fiber functors Hom⊗(Rep(G),VB(X)) satisfies fpqc decent (see [SR72,
III.3.2.1.2], infact one uses this reference together with [Zie15, Thm. 2.1] to see that
the stack of fiber functors defines a gerbe, which is needed in [Zie15, Thm. 2.3]), we
have

lim
n∈N

Hom⊗(Rep(G),VB(XnS)) = Hom⊗(Rep(G),VB(XS))

concluding the proof.

B Perfect complexes on the pinched projective space

In this section, we want to understand the perfect complexes on the pinched projec-
tive space, i.e. the ∞-category Perf(XS) for any scheme S (See Appendix A for the
notation).

As explained in [HL13, Prop. 4.1.1] quasi-coherent sheaves on
[
A1
S/Gm,S

]
are the

same as Z-indexed diagrams of quasi-coherent OS-modules, so a chain of morphisms of
OS-modules

· · · → Fi → Fi+1 → Fi+2 → . . .

(for vector bundles we showed the computation behind it in Theorem A.2). Equivalently
the category of quasi-coherent sheaves on

[
A1
S/Gm,S

]
is given by the category of graded

OS-modules together with an endomorphism of degree 1 (this endomorphism is induced
by multiplication with X). This gives a description of the category of chain complexes
and so

Dqc(
[
A1
S/Gm,S

]
) ' Fun(Z, Dqc(S))

Now let us endow the abelian category of chain complexes of quasi-coherent modules
over

[
A1
S/Gm,S

]
with the usual model structure and Fun(Z,Ch(QCoh(S))) with the

pointwise model structure. The natural identification of the categories explained above
induces a Quillen equivalence and therefore an equivalence of ∞-categories

Dqc(
[
A1
S/Gm,S

]
) ' Fun(Z,Dqc(S)).

In fact, this equivalence can be upgraded naturally to a symmetric monoidal equiva-
lence.

We will compute Perf(XS) via descent. For this, we want to understand the pullback
of perfect complexes along

[
{0}/Gm,Fp

]
→
[
A1
S/Gm,Fp

]
. We will need the following

proposition to ease computation.
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Proposition B.1. Let X be a scheme and i : Z ↪→ X be a closed immersion. Then
the pushforward i∗ : Dqc(Z)→ Dqc(X) is fully faithful.

Proof. Passing to an affine open cover of X, we may assume that X = Spec(A) is
affine (and hence Z = Spec(A/I) is also affine). As a fully faithful functor in Cat∞
is equivalently a monomorphism, we see that a limit of fully faithful functors is fully
faithful (since Cat∞ has small limits, as it is presentable, see Remark 4.51). Further,
since D(A) is right-complete (see [Lur17, Prop. 1.3.5.21]), we may write it as a limit of
D(A)≥n and replace D(A) and D(A/I) by D(A)+ and D(A/I)+ respectively (the full
subcategories of right bounded objects).

Using [TT90, Lem. 1.9.5], we see that for any M ∈ D(A/I)+, we have that i∗M
is quasi-isomorphic to a complex F •, where F i is an A-module that is annihilated by
I. Let us denote the full subcategory spanned by the essential image of i∗ by DI(A)+.
Let M,N ∈ D(A/I)+ and let us look at HomDI(A)+(i∗M, i∗N). Let J• be a fibrant
resolution of i∗N , i.e. an injective chain complex J• of A-modules that are annihilated
by I and a quasi-isomorphsim J•

∼−→ i∗N . Then, we have

HomDI(A)+(i∗M, i∗N) ' HomD(A)+(i∗M, i∗N) ' HomNdg(Ch+(A))(i∗M,J•).

Since per definition the restriction (A/I-Mod)→ (A-Mod) is fully faithful with essential
image given by the A-modules that are annihilated by I, we see that the same holds
for the restriction ι : Ch+(A/I) → Ch+(A). The fully faithfulness stays true if we
attach a dg-structure on chain complexes. So, we may view ι as a monomorphism of
dg-categories. The category of dg-categories admits a combinatorial model structure
such that the dg-nerve functor Ndg from dg-categories to simplicial sets with the Joyal
model structure becomes right Quillen (see [Lur17, Prop. 1.3.1.19, 1.3.1.20]). Thus,
Ndg induces a limit preserving functor from the ∞-category of dg-categories to Cat∞.

In particular, Ndg(ι) is a monomorphism. Therefore, we can write J• ' ι(Ñ), where

Ñ ∈ Ch+(A/I) is an injective resolution of N and we have equivalences

HomDI(A)+(i∗M, i∗N) ' HomNdg(Ch+(A))(ι(M), J•)

' HomNdg(Ch+(A))(ι(M), ι(Ñ))

' HomNdg(Ch+(A/I))(M,N) ' HomD(A/I)+(M,N).

Hence, i∗ is fully faithful as desired.

Since we are interested in morphisms between algebraic stacks, let us show how to
generalize this result to fit into our picture.

Corollary B.2. Let S be a scheme. Further, let G be a group scheme over S and let
X,Z be S-schemes with a G-action denoted by aX and aZ respectively. Let i : Z ↪→ X
be a G-equivariant closed immersion such that the diagram

G×S Z G×S X

Z X

id×i

aZ aX

i
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is cartesian. Then the restriction functor i∗ : Dqc(Z)→ Dqc(X) is fully faithful.

Proof. Using the Barr-resolution of X and Z, we get a commutative diagram like follows

. . . G×S Z Z

. . . G×S X X,

aZ

p

id×i i

aX

p

where the vertical arrows are all closed immersion. As monomorphism of ∞-categories
are preserved by limits, we conclude with Proposition B.1.

Proposition B.3. Let Gm,S act on A1
S by multiplication of degree 1 (resp. −1) and

trivially on the closed subscheme {0} ⊆ A1
S. We denote with f :

[
{0}/Gm,S

]
→[

A1
S/Gm,S

]
the naturally induced morphism. Further, let M ∈ Dqc(

[
A1
S/Gm,S

]
). Then

we have
Lf∗M '

⊕
i∈Z

griM,

where we consider M as an element in Fun(Z,Dqc(S)).

Proof. By Corollary B.2 it is enough to show that after restricting to Dqc(
[
A1
S/Gm,S

]
),

we have Lf∗M '
⊕

i∈Z griM . In particular, to compute Lf∗, we may resolve OS as a
K-flat complex in Dqc(

[
A1
S/Gm,S

]
), which is straightforward as we are going to see.

We will give a proof in the case that Gm,S acts by multiplication of degree 1. The
degree −1 case is completely analogous and we will note the places where the proof
changes.

Important for us is that as explained above a quasi-coherent Gm,S-equivariant OA1
S
-

module F is equivalently a graded OS-module F =
⊕

i∈ZF i together with an endo-
morphism F → F of degree 1 (resp. -1) that is induced by multiplication with X.

The category of quasi-coherent modules over
[
{0}/Gm,S

]
is analogously equivalent

to the category of quasi-coherent graded OS-modules. As f is equivariant we get a
pullback functor f∗ from the category of cochain complexes of graded OS-modules with
endomorphism of degree 1 (resp. −1) to the category of cochain complexes of graded
OS-modules. Let us write M as (M•, ∂•) = (

⊕
i∈ZM

i
•,
⊕

i∈Z ∂
i
•) (a chain complex of

graded OS-modules) together with an endomorphism X : M → M that is induced by
multiplication with X. The complex f∗M is given by M ⊗OA1

S

OS , where we identify

OS with OS [X]/(X) (which endows OS with a trivial grading and degree 1 (resp. −1)
endomorphism given by 0).

To compute Lf∗M , it is enough to find a cochain complex P ∈ Dqc(
[
A1
S/Gm,S

]
)

with a quasi-isomorphism P
∼−→ OS in Dqc(

[
A1
S/Gm,S

]
), such that the functor P⊗OA1

S

−
in the category of cochain complexes of Gm,S-equivariant OA1

S
-modules is exact. Then

Lf∗M is equivalent to M ⊗OA1
S

P . We claim that P is naturally given by the Koszul

complex of OS .
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Indeed, a flat resolution of OS is given by the complex P • that has zero everywhere
except in degrees −1 and 0, where it is given by the morphism

OS [X]
·X−→ OS [X].

Now OS [X] is endowed with the obvious grading together with an endomorphism
of degree 1 (resp. −1) by multiplication with X. Then P • becomes an element in
Dqc(

[
A1
S/Gm,S

]
) by shifting the grading of P−1 by −1 (resp. 1). Note that the functor

P • ⊗OA1
S

− is exact and therefore we have

Lf∗M ' P • ⊗OA1
S

M.

Now let us explicitly compute Lf∗M . By definition of the tensor product of chain
complexes, we see with the above that M ⊗OA1

S

P • is equivalent to the complex

(Mn+1 ⊕Mn, ιn)n∈Z,

where the ιn differentials are given by(
∂n+1 0

(−1)nX ∂n

)
.

The induced grading is given by (Mn+1 ⊕Mn)i = M i−1
n+1 ⊕M i

n (resp. (Mn+1 ⊕Mn)i =

M i+1
n+1 ⊕M i

n).
Now let us analyze the graded pieces griM . As explained above, we can also consider

· · · → (M i−1
• , ∂−1

• )
·X−→ (M i

•, ∂
i
•)→ . . .

as a filtration in Dqc(S). Let us calculate cofib((M i−1
• , ∂i−1

• )
·X−→ (M i

•, ∂
i
•)). We can do

so, by calculating the cone of multiplication with X, which is given by

(M i−1
n+1 ⊕M

i
n)n∈Z, ι

i
n),

where the differentials ιin are, up to equivalence given by(
∂i−1
n+1 0

(−1)nX ∂in

)
(For cofib((M i+1

• , ∂i−1
• )

·X−→ (M i
•, ∂

i
•)) this is analogous just changes the indices).

Finally, these constructions imply that Lf∗M '
⊕

i∈Z griM in Dqc(
[
A1
S/Gm,S

]
).

We are finally ready to compute the perfect complexes on XS for any scheme S. We
will describe it as a full subcategory of

C(S) := (Fun(Zop,Dqc(S))×colim,Dqc(S),colim Fun(Z,Dqc(S)))

×(
⊕

(gri)(1),
⊕

gri),Dqc(S)×Dqc(S),dom× codom Fun(∆1,Dqc(S)).
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Theorem B.4. For any scheme S the ∞-category Perf(XS) is equivalent to the full
subcategory in C(S) of tuples (C•, D•, φ, ϕ), where

• C• ∈ Fun(Zop,Dqc(S)), such that each griC and
⊕

i∈Z griC are perfect,

• D• ∈ Fun(Z,Dqc(S)), such that each griD and
⊕

i∈Z griD are perfect,

• φ : colimZop C•
∼−→ colimZD

• is an equivalence, and

• and ϕ :
⊕

i∈Z griC(1) ∼−→
⊕

i∈Z griD is an equivalence.

Proof. By Proposition 4.48, we can use the Barr-resolution of XS to see that

(B.1.1) Perf(XS) ' lim(Perf(XS) Perf(XS ×Fp Gm,Fp) . . . ).

We can again use Proposition 4.48 to see that we have a limit diagram of the form

Perf(XS) Perf(P1
S)

Perf({∞}) Perf({∞})× Perf({0}).

Since the Gm,Fp-action on XS is induced by the pushout of the Gm,Fp-actions on P1
S ,

{∞} and {∞} q {0} (see (A.1.1)), we see that an object X ∈ Perf(XS) corresponds to
a tuple (M,N,ϕ), where

• M ∈ Perf(
[
P1
S/Gm,Fp

]
),

• N ∈ Perf(
[
{∞}/Gm,Fp

]
), and

• ϕ is an equivalence of the images of M and N in

Perf(
[
{∞}/Gm,Fp

]
)× Perf(

[
{0}/Gm,Fp

]
).

Using the standard cover of P1
S by affine lines and the discussion in the beginning, we

see that M ∈ Perf(
[
P1
S/Gm,Fp

]
) is equivalently given by a tuple (C•, D•, φ), where

C• ∈ Fun(Zop,Dqc(S)) is perfect, D• ∈ Fun(Z,Dqc(S)) is perfect and an equivalence
φ : colimZop C•

∼−→ colimZD
•.52

Further, (as explained in the proof of Proposition B.3) Perf(
[
{∞}/Gm,Fp

]
) consists

of perfect chain complexes of graded OS-modules. Also, we have seen in Proposition
B.3 that the image of (C•, D•) in Perf(

[
{∞}/Gm,Fp

]
)×Perf(

[
{0}/Gm,Fp

]
) is equivalent

to (
⊕

i griC,
⊕

i griD).
Lastly, we want to remark that by [GP18, Prop. 2.45] an element in Fun(Zop,Dqc(S))

(resp. Fun(Z,Dqc(S))) is perfect if and only if each graded piece perfect.
Putting all of this together, we get the desired description of Perf(XS) as a full

subcategory of C(S).

52By construction P1
S is the pushout of the maps Spec(OS [X,X−1])

x7→x−1

−−−−−→ Spec(OS [X]) and
Spec(OS [X,X−1])

x 7→x−−−→ Spec(OS [X]), where the maps are given on T -valued points. So again, the
description of Perf(P1

S) follows from Proposition 4.48 and the fact that the derived pullback along open
immersions is given by the usual pullback.
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It is clear by construction that F-Zip(S) is a full subcategory of Perf(XS). But let
us show that we have an equivalence. This will follow immediately if we can show that
the filtrations associated to an element in Perf(XS) are locally bounded.

Lemma B.5. Let S be a scheme and let F ∈ Fun(Z,Dqc(S)) be an ascending filtration
such that gri F and

⊕
i∈Z gri F are perfect OS-modules. Then F is locally bounded and

perfect.
The assertion stays true if we replace Z by Zop.

Proof. As this is a local question, we may assume that S = Spec(A) is affine. Fiberwise
the question is clear, since a perfect complex over a field is quasi-isomorphic to a
finite direct sum of finite dimensional vector spaces sitting in one degree. For every
point s ∈ S, we can find an open neighbourhood Us around s such that only finitely
many gri F are nonzero (see [Sta19, 0BCD]). As S is quasi-compact, we conclude the
lemma53.

Corollary B.6. Let R be an Fp-algebra and S an R-scheme. Then we have

F-ZipR(S) ' Perf(XS).

Proof. This follows immediately combining Theorem B.4, Lemma B.5 and that finite
direct sums in Dqc(S) are the same as finite products as it is stable54.

C Miscellaneous from Algebraic Geometry II [GW]

This section is dedicated for propositions of the upcoming book of Görtz-Wedhorn
that are needed in this thesis. Everything is this section is taken out of [GW] made
available for us by the authors and no originality is claimed. We state an prove some
of the results of [GW] for completion, as it is not publicly available.

Lemma C.1 ([GW]). Let R be a ring and let d : M → N be an R-linear map of finitely
generated proejctive R-modules. Then the following assertions are equivalent.

(i) Coker(d) is a finitely generated projective R-module.

(ii) Im(d) is a direct summand of N and for every R-module Q one has Im(d)⊗RQ =
Im(d⊗ idQ).

(iii) Im(d) is a finitely generated projective R-module and for every s ∈ Spec(R) one
has Im(d)⊗R κ(s) = Im(d⊗ idκ(s)).

(vi) Ker(d) is a direct summand of M and for every R-module Q one has Ker(d)⊗R
Q = Ker(d⊗ idQ).

53Inductively any bounded filtration with perfect graded pieces is perfect.
54The equivalence between finite direct sums and products shows that for an element (C•, D•, φ, ϕ) ∈

Perf(XS) the equivalence ϕ :
⊕

i∈Z gri C(1) ∼−→
⊕

i∈Z griD is equivalently given by equivalences

ϕi : gri C(1) ∼−→ griD.
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(v) For every s ∈ Spec(R) one has Ker(d)⊗R κ(s) = Ker(d⊗ idκ(s)).

Proof. If (i) holds, the exact sequence 0→ Im(d)→ N → Coker(d)→ 0 splits and stays
exact after tensoring with any R-module Q (see [Sta19, 00HL]). As Coker(d ⊗ idQ) =
Coker(d) ⊗R Q, this implies (ii). Clearly (ii) ⇒ (iii). If Im(d) is projective, then the
exact sequence 0→ Ker(d)→M → Im(d)→ 0 show with the previous argument that
(ii) implies (iv) and (iii) implies (v). Clearly, (iv) implies (v). It remains to show that
(v) implies (i).

We will show this by recalling another lemma of the upcoming book of Görtz-
Wedhorn [GW]. Namely, for s ∈ Spec(R) the map Ker(d)⊗R κ(s)→ Ker(d⊗ idκ(s)) is
surjective if and only if there is an f ∈ R with s ∈ D(f) such that Coker(d)f is finite
projective.

Assume that Ker(d)⊗R κ(s)→ Ker(d⊗ idκ(s)) is surjective. As Coker(d) is of finite
presentation, it suffices to show that the localization of Coker(d) in s is a free module
(see [GW10, Prop. 7.27]). Therefore, we may assume that R is a local ring and s is
the closed point in Spec(R). Then Ker(d)→ Ker(d⊗ idκ(s)) is surjective and M , N are
free of ranks m, n, say. Set κ := κ(s) and r := rk(d ⊗ idκ). We will show that Im(d)
is a direct summand of N of rank r. Let d̄ : M/Ker(d) → N be the induced injective
map. It suffices to show that d̄⊗ idκ is injective (see [GW10, Prop. 8.10]).

Choose x1, . . . , xr ∈ Ker(d) the map to a basis of Ker(d ⊗ idκ). We also choose
xr+1, . . . , xm in M whose image in M ⊗R κ yields a basis of M ⊗R κ/Ker(d ⊗ idκ).
Then x1, . . . , xm generate M by Nakayama’s lemma and hence form a basis because M
if free of rank m = dimκ(M ⊗R κ). As x1, . . . , xr ∈ Ker(d), for i > r, the images x̄i of
xi in M/Ker(d) generate this module. Now d̄⊗ idκ maps x̄i ⊗ 1 to d⊗ idκ(xi ⊗ 1) for
i > r and these elements are linearly independent. This shows that d̄⊗ idκ is injective.

If Im(d) has a complement L in N , then Coker(d) ∼= L is finite projective. This
shows the necessity of the above assertion and the implication (v) to (i).

The sufficiency of the above assertion follows from the equivalence of the assertions
in the lemma applied to the map d⊗ idRf .

Lemma C.2 ([GW]). Let S be a scheme, let E be a perfect complex in D(S) of Tor-
amplitude [a, b], and let I ⊆ [a, b] be an interval containing a or b. Fix a map r : I → N0,
i 7→ ri. Then there exists a unique locally closed subscheme j : Z = Zr ↪→ S such that
a morphism f : T → S factors through Z if and only if for all morphisms g : T ′ → T
the OT ′-module πi(L(f ◦ g)∗E) finite locally free of rank ri for all i ∈ I. Moreover,

(1) the immersion j : Z ↪→ S is of finite presentation,

(2) as a set one has

Z = {s ∈ S | dimκ(s) πi(E ⊗LOS κ(s)) = ri for all i ∈ I},

(3) if f : T → S factors as T
f̄−→ Z

j−→ S, then πi(Lf
∗E ⊗LOT G) = f̄∗πi(j

∗E) ⊗OT G
for all i ∈ I and for all quasi-coherent OT -modules G.
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Proof. Uniqueness follows from the fact that Z is characterised by a universal property.
Thus, we may work locally and assume that S = Spec(R) is affine. In particular, we
may assume that E is represented by a complex of finite free R-modules concentrated
in degree [a, b]. Let us denote the rank of each Ei with ni and the differentials da : Ea →
Ea−1.

The interval I is either of the form [a, b′] or [a′, b] for some a ≤ b′ resp. a′ ≤ b.
First consider I = [a′, b]. The condition that πb(E) = Ker(db) is locally free and that
its formation commutes with base change is equivalent to Coker(db) beeing locally free
(see Lemma C.1). In this case, πb(E) has rank ra if and only if Coker(db) has rank tb :=
nb−1−nb+rb. Furthermore, in this case Im(db) is a direct summand of Eb−1, it is locally
free of rank nb−1− tb = nb− rb and its formation commutes with arbitrary base change
(again by Lemma C.1). Therefore, we can apply Lemma C.1 to Eb−1/ Im(db) → Eb−2

and see that πb−1(E) is finite locally free of rank rb−1 and its formation commutes with
arbitrary base change, and hence it is a direct summand of Eb−1/ Im(db) if and only if
Coker(db−1) is locally free of rank tb−1 := (nb−2−nb−1 +nb)+(rb−1−rb). Proceeding by
induction on sees that for i ≤ b the R-module πi(E) is locally free of rank ri and that
its formation commutes with arbitrary base change if and only if Coker(di) is locally
free of rank

ti :=

b−i∑
j=−1

(−1)j+1ni−j +

b−i∑
j=0

(−1)jri−j .

In fact Lemma C.1 shows that in this case the formation of Ker(di) and of Im(di−1)
also commutes with tensoring by any R-module Q. Hence,

πi(E ⊗R Q) = πi(E)⊗R Q(C.1.1)

for any R-module Q.
There is a subscheme Zi such that f : T → S factors through Zi if and only if

f∗Coker(di) is locally free of rank ti (see [GW10, Thm. 11.17]). As the formation of
Coker(di), we can take Z =

⋂
i∈I Zi the scheme theoretic intersection.

To construct Z in the case that I = [a, b′], one proceed similarly.
As Coker(di) is of finite presentation, all immersions Zi → S are of finite presentation

(see remark after [GW10, Thm. 11.17]). Hence, Z → S is of finite presentation.
A point s ∈ S is contained in Z if and only if πi(E ⊗OS κ(s)) is of rank ri and its

formation commutes with arbitrary base change T → Spec(κ(s)). But this base change
is flat and the second condition holds automatically, which shows (2).

The last assertion holds by construction of Z and (C.1.1).

141



References

[AG14] Benjamin Antieau and David Gepner. Brauer groups and étale cohomology
in derived algebraic geometry. Geom. Topol., 18(2):1149–1244, 2014. doi:

10.2140/gt.2014.18.1149.

[Avr99] Luchezar L. Avramov. Locally complete intersection homomorphisms and a
conjecture of Quillen on the vanishing of cotangent homology. Ann. of Math.
(2), 150(2):455–487, 1999. doi:10.2307/121087.

[BBM82] Pierre Berthelot, Lawrence Breen, and William Messing. Théorie de
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[GW] Ulrich Görtz and Torsten Wedhorn. Algebraic geometry II (preprint).
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