Kapitel 2

Die Struktur des Wirtskristalls und die Dotierung

In diesem Kapitel werden zunächst die Struktur des undotierten Kristalls, die Kristallzucht, die bei der Dotierung durch Selten-Erd (SE)-Ionen entstehenden optischen Zentren und einige physikalische und chemische Eigenschaften des CsCdBr₃ zusammenfassend dargestellt. Eine ausführliche Beschreibung der kristallographischen Eigenschaften und der Dotierung findet man in der Dissertation von J. Neukum [Neukum, 1995]. Die Beschreibung der Kristallzucht findet man in der Diplomarbeit von U. Schäfer [Schäfer, 1993].

2.1. Die Kristallstruktur

CsCdBr₃ gehört zur Familie der **AMX**₃-Kristalle, wobei A⁽⁺⁾ für Alkali-Ionen (Cs, Rb), M⁽²⁺⁾ für zweiwertige Metall-Ionen (Mn, Cd, Ni, Co, Mg, Mo) und X⁽⁻⁾ für Halogen-Ionen (Cl, Br, F) steht. Im allgemeinen können die AMX -Kristalle in verschiedenen Strukturen kristallisieren [O. Pilla et al., 1987]. Bei CsCdBr₃ (X⁽⁻⁾ = **Br**⁽⁻⁾, M⁽²⁺⁾ = **Cd**⁽²⁺⁾ und A⁽⁺⁾ = **Cs**⁽⁺⁾) sitzen die Cd²⁺-Ionen in der Mitte eines von den Br⁻-Ionen gebildeten Oktaeders (CdBr₆)⁴⁻. Die Br⁻-Ionen bilden entlang der kristallographischen c-Achse unendlich lange, parallele, hexagonal angeordnete Ketten, die durch die Flächenverknüpfung der oben genannten Oktaeder entstehen (Abb.2.1). Diese insgesamt negativ geladenen Ketten sind durch Cs⁺-Ionen miteinander verbunden, wobei auch diese ein hexagonales Untergitter zwischen den Oktaeder-Ketten bilden. Für die Stabilität einer solchen Struktur spielen die annähernd gleichen Ionenradien der A⁺-und X⁻-Ionen eine Rolle (s. Tabelle 2.1.). In der folgenden Tabelle sind die Koordinaten, die Ionenradien und die Punktsymmetrien der Ionenplätze des CsCdBr₃-Kristalls angegeben.

Ion	Ionen- Radius [Å]	Koor- dination	x/a	y/a	z/c	Anzahl der Positionen	Punkt- Symmetrie
Cd ²⁺	0,95	6	0	0	0	2	D _{3d} (3m)
Br	1,96	6	0.1656	-0.1656	1/4	6	C _{2v} (mm)
Cs ⁺	1,88 / 1.67	12/6	1/3	2/3	3/4	2	$D_{3h}(\overline{6}m2)$

Tabelle 2.1.: Positionsparameter und Symmetrien im CsCdBr₃ (Raumgruppe: P6_{3/mmc} (D⁴_{6h}))

Damit die Angaben über die Kristallstruktur in dieser Arbeit möglichst vollständig sind, sind die schon in der Diplomarbeit [Demirbilek, 1996] angegebenen Tabellen über die Abstände der Ionen und die Bindungswinkel übernommen. (Tab.2.2 und Tabl.2.3)

Betrachtete Ionen	Abstände [Å]
Cd—Cd (in der gleichen Kette)	3.361
Cd—Cs	4.739
Cd — Br	2.770
Br — Br (in der gleichen Ebene)	3.814
Br — Br (in aufeinander folgenden Ebenen)	4.019
Cs — Br (in der gleichen Ebene)	3.838
Cs—Br (in aufeinander folgenden Ebenen)	4.016

Tabelle 2.2.: Ionenabstände im CsCdBr₃

Tabelle 2.3.: Bindungswinkel im CsCdBr₃

Betrachtete Ionen	Bindungswinkel
Cd - Br - Cd	74,7°
Br—Cd—Br (Beide Br-Ionen in gleicher Ebene)	87,0°
Br—Cd—Br (Br-Ionen in aufeinander folgenden Ebenen)	93,0°

Der Winkel (Cd –Br –Cd) unterscheidet sich etwas von dem eines idealen Oktaeders (70,5°) [McPherson et.al., 1980]. Dies führt zu einer leichten Dehnung des Oktaeders längs der c-Achse. Die Br-Br-Abstände entlang der Kette sind etwa um 5% größer als die senkrecht zur Kette (\perp c). Dies deutet auf eine trigonale Verzerrung der Oktaeder entlang der Kette (c) hin, welche aufgrund der elektrostatischen Abstoßung zwischen benachbarten Cd²⁺-Ionen zustande kommt.

Aus den obigen Tabellen und Bild 2.1. erkennt man noch, daß der Abstand *l* zwischen zwei Cd^{2+} -Ionen innerhalb der gleichen Kette (*GK*) (3.361 Å) kleiner ist als die Hälfte des Abstandes zwischen zwei Cd^{2+} -Ionen in Nachbarketten (*NK*) (7,675 Å):

$$\frac{l(Cd^{2+} - Cd^{2+})_{NK}}{l(Cd^{2+} - Cd^{2+})_{GK}} = \frac{7,675\mathring{A}}{3,361\mathring{A}} \cong 2,28.$$

Das bedeutet, daß der CsCdBr₃-Kristall ein quasi-eindimensionales Gebilde von $(CdBr_6)^{4-}$ Oktaedern ist. Diese Quasi-Eindimensionalität ist interessant für die Spektroskopie der Seltenen Erden und Übergangsmetalle. Wegen dieser Eigenschaft bauen die SE³⁺-Ionen paarweise entlang der [CdBr₆]⁴⁻-Kette ein (s. nächsten Abschn.).

2.2. Dotierung

Wie im vorigen Abschnitt erwähnt wurde, können die AMX₃-Kristalle mit verschiedenen zweiwertigen Metallionen (z.B. Cd^{2+} , Mo^{2+} , Mn^{2+} , u.a.) gebildet werden. Dotieren ist das Ersetzen eines bestimmten Prozentsatzes von Ionen einer Art, die zu den Bausteinen des Wirtskristalls gehören (hier Cd^{2+} -Ionen), durch andere Ionen, die als gezielte Verunreinigung eingebaut werden sollen (SE³⁺-Ionen).

Da die SE-Ionen dreiwertig sind, kann diese Ersetzung nur unter Ladungskompensation zustande kommen. CsCdBr₃ ist ein relativ dicht gepackter Kristall (etwa 73%), weshalb eine Ladungskompensation durch Einbau eines Fremdions auf Zwischengitterplätzen ausgeschlossen ist.

Die mögliche Einbauarten der Selten-Erd-Ionen auf Cd²⁺- Plätze sind folgende:

1.) <u>**a</u>-Platz**: Dieser entsteht dadurch, daß ein SE³⁺-Ion ein Cd²⁺-Ion ersetzt, wobei ein benachbartes Cs⁺-Ion fehlt. Dieser Platz kann durch optische Spektroskopie von den anderen Plätzen unterschieden werden [Neukum, 1995; Schäfer, 1993; Demirbilek, 1996]. Er ist auch durch EPR- Messungen nachgewiesen worden [Mc Pherson and Devany 1980].</u>

2.) **<u>b</u>-Platz**: Hier ersetzen zwei SE-Ionen drei Cd^{2+} - Ionen. Wegen der Ladungskompensation entsteht eine Leerstelle, die zwischen den beiden SE^{3+} -Ionen liegt ($SE^{3+} - V_{Cd} - SE^{3+}$). Dieser Platz ist auch durch EPR- Messungen nachgewiesen worden [Mc Pherson and Devany, 1980]. Er ist viel untersucht worden, weil er der hauptsächlich vorkommende Platz ist [Neukum, 1995; Demirbilek, 1996; Tarasov et. al., 1997]. Die SE^{3+} -Ionen sind symmetrisch um die Cd^{2+} -Leerstelle angeordnet und haben die gleiche Symmetrie C_{3v} .

3.) <u>**c</u>-Platz**: Dieser unterscheidet sich von <u>**b**</u> dadurch, daß die SE-Ionen nicht symmetrisch um die Leerstelle angeordnet sind. Ein energetisch günstiger Einbau ist: $SE^{3+} - Cd - V_{Cd} - SE^{3+}$. Die beiden SE-Ionen haben hier auch die gleiche Symmetrie, wobei das eine von beiden Seiten mit Cd²⁺-Ionen und das andere mit einem Cd²⁺- und einem SE³⁺- Ion benachbart ist. Die Zentren sind in der Abb.2.1 dargestellt.</u>

2.3. Kristallzucht

Die in der vorliegenden Arbeit untersuchten Kristalle wurden nach dem Bridgeman-Verfahren hergestellt. Dafür wurde zuerst eine Ampulle vorbereitet, gereinigt und ausgeheizt. Je nach gewünschter Dotierung wurde die Menge der Edukte bestimmt und entsprechend abgewogen. Die abgewogenen Edukte wurden in einem Glasbehälter vermischt und in die Ampulle gefüllt. Dieser Arbeitsschritt wird unter inerter Atmosphäre in einer Argonbox durchgeführt, da alle Substanzen hygroskopisch sind.

Dann wurde das Argongas aus der Ampulle gepumpt, während die Ampulle, in der sich das Stoffgemisch befand, bis etwa 150 °C erhitzt wurde. Damit erzielt man eine Trocknung, falls noch Feuchtigkeit vorhanden ist.

Die ausgetrocknete und wieder auf Raumtemperatur abgekühlte Ampulle wird beim Glasbläser verschlossen.

Die so vorbereitete Ampulle wurde in einen Ofen gehängt und erhitzt. Als Ofentemperatur wird je nach verwendeten Ausgangsmaterialien 750 °C bis 1080 °C gewählt, so daß alle Ausgangssubstanzen schmelzen. Nachdem alle Stoffe geschmolzen und durch eine Quarzfritte, die als Filter dienen soll, (Porengröße 15-40 μ m) getropft sind, wird die Ampulle mit Hilfe eines Schrittmotors mit einer Geschwindigkeit von etwa 1,5 mm/Stunde nach unten gefahren. Dabei beginnt der Kristall von der unteren Spitze der Ampulle her zu wachsen.

Abb.2.1.: Die möglichen optischen Zentren bei Dotierung eines CsCdBr₃-Kristalls mit SE³⁺-Ionen (RE steht für "Rare Earth": Seltene Erden und V für "Vacancy": Leerstelle)

2.4. Zusammenfassend einiges über den CsCdBr₃-Kristall

Im folgenden werden einige physikalische Eigenschaften kurz tabellarisch angegeben. Diese kann man der Literatur entnehmen oder berechnen.

Die Elementarzelle enthält 2 Formeleinheiten. **Die Dichte** beträgt 4,69 g/cm³ gemessen und 4,73g/cm³ berechnet [Schäfer, 1993]. **Die Gitterkonstanten** betragen: a = 7.675 Å und c = 6.722 Å. **Das Volumen der Einheitszelle:** 342,9Å³. **Symmetrie:** hexagonale Symmetrie D⁴_{6h} (P6_{3/mmc}). **Schmelzpunkt:** 450 °C (723 K). **Packungsdichte:** \cong 73 % (Volumen) **Optische Eigenschaften:** hoher Brechungsindex (n=1,775 bei 452 nm) und eine relativ große Doppelbrechung ($\Delta n=n_e-n_0=0,030$) [Neukum, 1995] **Keine Phasenänderung von 77K bis 425 K** [Krishnan, 1991]

1) Die Quasi-EindimensionalitätAufgrund dieser Eigenschaft werden die
dreiwertigen SE-Ionen nicht statistisch, sondern
definiert in einer Richtung und paarweise
eingebaut.2) Relativ große PackungsdichteEs bleibt keine Möglichkeit, Ionen zwischen die
(CdBr₆)⁴-Ketten einzubauen.3) Relativ große Masse der BestandteileDadurch sind die Phononenfrequenzen im
CsCdBr₃ gering, $\omega_{max} = 200$ cm⁻¹.
Aus diesem Grund können durch Multiphonon-
Relaxation nur kleine Energielücken überbrückt
werden.

Die wichtigsten Eigenschaften der CsCdBr₃-Struktur sind:

Literatur zum Kapitel 2:

- **Demirbilek R., (1996),** Diplomarbeit am Institut für Festkörperphysik an der THD; "*Spektren von Eu*³⁺ *im CsCdBr*₃"
- Krishnan V.G., Dou Shi-qi and Weiss A., (1991), Z. Naturforsch. 46a, p. 1063-1082; "Structure and Bonding of Tribromocadmates, AcdBr₃, A=NH₄, Rb, Cs, [CH₃NH₃], [(CH₃)₂NH₂], [(CH₃)₄N], [H₂NNH₃], and [(H₂N)₃C]. An X-Ray Diffraction and ^{79,81}Br NQR Study"
- McPherson G.L and Devany K.O. (1980), J. Phys. C: Solid state Phys. 13 p. 1735; "EPR spectra of Cr³⁺ and Cr⁺ centers in the linear-chain lattices CsMgCl₃, CsMgBr₃, and CsCdBr₃"
- Neukum J. (1995), Dissertation am Institut für Festkörperphysik der THD: "Spektroskopie und Dynamik der Quantenhochkonversion des Pr³⁺ in CsCdBr₃-Eigenschaften des Wirtskristalls"
- Pilla O. Cazzanelli E. Blanzat B. Andraud C. and Pelle F. (1987), Phys.stat. sol. (b)144, p. 845; "Comperative Raman Study of Phonon Linewiths in pure and Lead-doped CsCdBr₃"
- Schäfer U. (1993), Diplomarbeit am Institut für Festkörperphysik der THD; "Zucht von CsCdBr₃-Kristallen dotiert mit Selten-Erd-Ionen und optische Spektroskopie an CsCdBr₃:Pr³⁺ und CsCdBr₃:Na⁺/Pr³⁺"
- Tarasov V. F., Shakurov G. S., Malkin B. Z., Iskhakova A.I., Heber J. and Altwein M. (1997); JETP Lett., Vol.65, No.7, p.559; "Submillimeter electron-nuclear excitation spectra in CsCdBr₃:Ln³⁺ (Ln=Tm, Ho) crystals"