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Abstract

Over the past two decades, ab initio nuclear structure calculations of atomic nuclei have seen
major advances. The use of systematically improvable methods with controlled truncations
has enabled studies over a large range of mass numbers and for a diverse set of nuclear
observables. These developments were mainly driven by wave-function expansion methods
that are based on a many-body expansion around a reference state, while admitting a mild
computational scaling in mass number. However, substantial increases in computational cost
and memory requirements when describing heavier and more exotic nuclei or when aiming at
more precise predictions still present severe challenges in ab initio theory.

In this thesis, we address these challenges and present promising approaches that allow to
extend current frontiers and enable converged ab initio calculations for higher mass numbers
and with increased precision. We study light, medium-mass, and heavy closed-shell nuclei
within the in-medium similarity renormalization group (IMSRG) using two- and three-body
interactions derived within the framework of chiral effective field theory.

In particular, we investigate optimizations of the reference state using the natural orbital
basis, employ importance-truncation techniques to compress many-body operators, and apply
a new normal-ordering framework that allows to circumvent standard truncations when
including three-nucleon interactions. The natural orbital basis, defined as the eigenbasis
of a perturbatively improved one-body density matrix, is explored in detail. Significant
benefits in many-body calculations are obtained using truncated natural orbitals that are
constructed in a large space and applied in a reduced space for the many-body solution. This
approach results in faster model-space convergence and frequency-independent ground-state
observables. Furthermore, we demonstrate how importance-truncation techniques can be
applied in the IMSRG to compress many-body operators and to substantially reduce the
memory requirements. Considering only the most important contributions of the two-body
operators, a major part of the matrix elements can be neglected while introducing only
minor errors in medium-mass nuclei. Both advances using natural orbitals and importance-
truncation techniques are also of great interest for relaxing the presently established many-
body truncation in the IMSRG approach, which is currently prohibitive beyond small model
spaces due to the tremendous increase in computational costs.

The explicit inclusion of three-body operators provides additional computational challenges
for ab initio calculations. Standard normal-ordering applications to approximate three-body
interactions typically necessitate a truncation on the number of three-body matrix elements,
which becomes significant for calculations of heavy nuclei. The novel normal-ordering frame-
work in this thesis avoids this truncation and requires substantially less memory by performing
the normal ordering directly in the Jacobi basis. We systematically study the convergence
behavior and explore benefits of the new framework for light up to heavy nuclei, especially
targeting '32Sn and 2%Pb.

These developments open new ways for extending first-principle calculations of atomic
nuclei to heavier and more exotic systems over the whole range of the nuclear chart.
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Zusammenfassung

Die In-Medium Similarity Renormalization Group fur die ab initio
Kernstrukturphysik: Methodenentwicklung und neue Anwendungen

Im Laufe der letzten zwei Jahrzehnte haben ab initio Berechnungen von Atomkernen in
der Kernstrukturphysik erhebliche Fortschritte gemacht. Vor allem die Verwendung von
systematisch verbesserbaren Methoden mit kontrollierten Approximationen erméglicht Unter-
suchungen iiber einen groflen Bereich der Nuklidkarte. Vorangetrieben wurden diese Entwick-
lungen hauptséchlich durch Néaherungsverfahren, welche auf einer Vielteilchenentwicklung
um einen Referenzzustand beruhen. Jedoch stellen signifikant ansteigende Rechenzeiten und
Speicheranforderungen fiir die systematische theoretische Beschreibung von schwereren und
exotischeren Kernen nach wie vor eine grofle Herausforderung in der Kernstrukturphysik dar.

Die vorliegende Dissertation befasst sich mit diesen Herausforderungen und konzentriert
sich im Besonderen auf die Verbesserung und Beschleunigung von Vielteilchenrechnungen. Wir
stellen vielversprechende Ansétze vor, die es erlauben, derzeitige Grenzen zu erweitern und kon-
vergierte ab initio Berechnungen fiir héhere Massenzahlen sowie mit verbesserter Genauigkeit
zu ermoglichen. Hierzu untersuchen wir leichte bis schwere Kerne mit abgeschlossenen Schalen
innerhalb der In-Medium Similarity Renormalization Group (IMSRG) unter Verwendung von
chiralen Zwei- und Dreiteilchenwechselwirkungen.

Insbesondere untersuchen wir Optimierungen des Referenzzustands unter Verwendung der
natiirlichen Orbitalbasis und Anwendung von Importance-Trunkierungstechniken zur Kom-
primierung von Vielteilchenoperatoren. Die natiirliche Orbitalbasis, welche als Eigenbasis
einer stérungstheoretisch verbesserten Einteilchendichtematrix definiert ist, wird im Detail
erforscht. Die Verwendung trunkierter natiirlicher Orbitale, konstruiert in einem groflien Mod-
ellraum, angewendet in einem reduzierten Modellraum, fiihrt zu einer verbesserten Modell-
raumkonvergenz sowie zu frequenzunabhéngigen Grundzustandsobservablen. Dariiber hinaus
zeigen wir, wie Importance-Trunkierungstechniken in der IMSRG angewendet werden kon-
nen, um den Speicherbedarf erheblich zu reduzieren. Beriicksichtigt man nur die wichtigsten
Beitréage der Zweiteilchenoperatoren, kann ein Grofiteil der Matrixelemente vernachléssigt wer-
den, was zu lediglich geringen Fehlern fiir mittelschwere Kerne fithrt. Sowohl die Fortschritte
basierend auf der natiirlichen Orbitalbasis, als auch die Importance-Trunkierungsmethoden
stellen vielversprechende Methoden dar, um die gegenwartig etablierte Vieleteilchentrunk-
ierung in der IMSRG zu verbessern, welche derzeit aufgrund des enormen Anstiegs des
Rechenaufwands auf kleine Modellrdiume beschrénkt ist. Die explizite Einbeziehung von
Dreiteilchenoperatoren stellt zusétzliche rechnerische Herausforderungen fir ab initio Berech-
nungen dar. Standard Normalordnungsmethoden erfordern iiblicherweise eine Begrenzung der
Anzahl von Dreiteilchenmatrixelementen, was einen erheblichen Einfluss bei Berechnungen
von schweren Kernen haben kann. Wir stellen eine neue Normalordnungsmethode in der Ja-
cobibasis vor, welche diese Trunkierung vermeidet, wesentlich weniger Speicherplatz benttigt
und studieren Vorteile fiir leichte bis schwere Kerne, insbesondere fiir 13?Sn und 2°*Pb.

Die in dieser Arbeit vorgestellten Entwicklungen eréffnen neue Wege zur Erweiterung und
Verbesserung der Grundlagenrechnungen von Atomkernen, besonders hinsichtlich schwererer
und exotischerer Systeme.
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Introduction

1.1 Low-energy nuclear physics

Understanding how atomic nuclei are bound and how their constituents compound matter
is the main endeavor of modern nuclear physics. The challenging task of describing the
fundamental force of strong interaction among protons and neutrons is therefore one of the
central goals of theoretical nuclear physics. As a result, nuclear theory calculations aim for
the description of a large variety of systems, ranging from a small system consisting of only
two bound particles, over light, medium-mass, and heavy nuclei up to stellar objects with
extreme conditions, such as neutron stars. In particular, nuclear structure calculations for a
variety of observables, e.g., ground- and excited-state properties, charge radii, or electromag-
netic observables can be compared to experimental results, where available, and allow for a
comprehensive check of the theory. Furthermore, theoretical predictions for cases presently
still outside the reach of experiments are key for astrophysics and guide future experimental
efforts.

Approximately 3300 bound nuclei are experimentally known today [1, 2]. The nuclear
chart displays these nuclei characterized by their proton number Z and neutron number N,
with the proton and neutron drip lines determining the limits of bound nuclei on the top and
bottom of the nuclear chart, respectively. These limits are defined as the one- or two-proton
and one- or two-neutron separation energy becoming negative and consequently prohibiting
the existence of bound nuclei beyond the drip lines (see Fig. 1.4 for a subset of the nuclear
chart). Theoretical calculations predict the existence of about 7000-9000 nuclei, depending
on if continuum effects are included in the description or not [1, 3]. This highlights the
importance of reliable nuclear theory predictions, especially towards the (neutron) drip line
and higher mass numbers, where a large part of the nuclear chart is still unknown.

Systematically improvable ab initio methods with controlled approximations provide a
promising and powerful tool to drive progress towards these directions by performing nuclear
structure calculations with predictive power and an assessment of theory uncertainties.

In addition to nuclear structure, nuclear reaction theory and studying how nuclei react
in different decay and reaction processes provides an essential aspect of the field of nuclear
theory. For example studies of the formation of heavy elements in the nucleosynthesis is an
important part of our understanding of the evolution of stars and formation of neutron stars.
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Quantum chromodynamics

Lattice QCD

Figure 1.1: Workflow towards the calculation of nuclear observables and theoretical predictions
starting from the underlying theory of QCD. The right path shows the direct application of lattice
QCD methods, which is currently still limited to very small mass numbers. The left path shows the
strategy pursued in this thesis: Nuclear interactions that are derived within chiral EFT and possibly
softened by a subsequent SRG evolution provide the input for various exact and approximate ab initio
many-body methods to solve the nuclear many-body problem and calculate observables (see text for
details). We emphasize that the many-body methods on the right-hand side of the blue box in general
are also exact and we here refer to their approximate counterparts within a given truncation scheme.
The leftmost panel indicates the importance of uncertainty quantification and systematic estimates of
the errors introduced by truncations and approximations of the theory and the many-body method.
Figure adapted from Ref. [4].

1.2 Ab initio nuclear structure theory

In order to describe the structure and properties of finite nuclei, the nonrelativistic many-body
Schrodinger equation for an A-body system is solved, requiring two ingredients: a nuclear
potential describing the interaction among the constituent protons and neutrons, also referred
to as nucleons; and a framework to numerically solve the resulting equation. Figure 1.1
summarizes the general idea of ab initio calculations, starting from the underlying theory of
the strong interaction, quantum chromodynamics (QCD), and displays two possible paths
to arrive at predictions for nuclear observables, which are discussed in more detail in the
following. This thesis follows the left path with a particular emphasis on developments and
applications of the many-body method to calculate nuclear observables, displayed by the blue
box in Fig. 1.1.

Even though in low-energy nuclear theory we mainly focus on protons and neutrons,
as being the constituents which compound nuclei, the nucleons themselves are composite
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particles consisting of quarks, which are fundamental spin-1/2 particles. The fundamental
force of the strong interaction between quarks mediated by gluons is described by QCD. It has
two key properties: the asymptotic freedom for very large energies on the one hand, caused
by the coupling constant approaching zero for high-energy scales; and the rapid growth of
the coupling constant for low energies on the other hand, causing the quarks to be confined
in color-neutral objects, called mesons and baryons, consisting of two and three quarks,
respectively. The large coupling constant at the low-energy regime, where nuclear structure
theory is situated, significantly complicates a direct description based on the fundamental
theory and makes the application of any perturbative approaches unfeasible.

Approaches to directly solving nuclear theory problems from the underlying theory QCD,
following the right path in Fig. 1.1, are of course desirable and in practice realized by
discretizing space and time on a four-dimensional grid in lattice QCD calculations [5]. However,
the tremendous computational demands for such calculations currently limit their applicability
to single mesons, baryons, or very light nuclei [6-8]. Therefore, calculations for a wide range
of nuclei directly based on the underlying theory are still not feasible at present.

These problems can be remedied by the formulation of a low-energy effective theory of
QCD, which is directly connected to the fundamental theory. In this thesis, we specifically
focus on chiral effective field theory (EFT), the orange box in Fig. 1.1. Chiral EFT is a
low-energy effective theory, based on the pioneering works of Weinberg in the 1990s [9-11],
that is consistent with the symmetries of QCD, in particular the spontaneously and explicitly
broken chiral symmetry. The effective degrees of freedom at low energies of chiral EFT are
nucleons and pions instead of the fundamental degrees of freedom of QCD, quarks and gluons.
While the low-energy details are described explicitly, the high-energy physics are not resolved
by the theory and enter the description by so called low-energy constants (LEC) that are fitted
to experiment. In recent years, chiral EF'T has become the dominant approach for deriving
nuclear interactions that are based on the underlying theory and can be constructed in a
systematically improvable way, with many-body forces entering naturally [12]. Interaction
models based on phenomenological approaches, such as the Nijmegen [13], Argonne vig [14],
or CD-Bonn [15] potential, even though yielding a good description of experimental data, lack
this clear connection to the underlying theory provided by chiral potentials and do not allow
for consistent many-body potentials and currents. Commonly, (similarity) renormalization
group [(S)RG] methods [16, 17] are used along with chiral interactions to obtain low-resolution
Hamiltonians, which lead to faster model-space convergence in practical calculations or enable
perturbative descriptions [18].

Multiple computational frameworks can be applied to numerically solve the many-body
Schrodinger equation. The key idea behind ab initio many-body methods is to solve the
A-body problem in a systematic expansion, where going to higher order of the many-body
expansion in a given truncation scheme results in more precise calculations, and truncations
at a finite order allow for uncertainty quantification. This approach enables one to perform
calculations for nuclear observables and make theoretical predictions with predictive power
by using just few-body input to describe the many-body system, most commonly employing
chiral nucleon-nucleon (NN) and three-nucleon (3N) potentials with a clear connection to the
underlying theory.

Generally speaking, we can distinguish two classes of many-body methods to solve the A-
body Schrodinger equation (see the two columns in the blue box in Fig. 1.1): exact approaches
that yield numerically exact results and scale exponentially in the mass number on the one
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Figure 1.2: Accessible mass number A by ab initio methods with exponential (orange) and polynomial
(blue) scaling from 1995 to 2020. Figure taken from Ref. [4] with data from Ref. [19].

hand; and approximate methods that perform a systematic correlation expansion around a
chosen reference state with controlled approximations, resulting in a polynomial scaling with
system size on the other hand.

Examples of exact methods with an exponential scaling in A are the no-core shell model
(NCSM) [20-23], which directly diagonalizes the Hamiltonian in the space of configurations, or
quantum Monte Carlo (QMC) calculations [24-27]. Examples for approximate methods that
employ a given truncation scheme and therefore scale polynomially in A (at low truncation
orders) are given by coupled-cluster (CC) theory [28, 29], the in-medium similarity renormal-
ization group (IMSRG) [30-32], self-consistent Green’s function (SCGF) methods [33, 34],
and many-body perturbation theory (MBPT) [18, 35-37]. Their difference in scaling behavior
is highlighted in Fig. 1.2

The variety of different computational approaches to solve the A-body problem allows
for a meaningful comparison between various ab initio many-body methods by calculating
the same observable using identical input interactions and a range of mass numbers that can
be targeted by all considered methods. The oxygen isotopic chain provides an ideal testbed
for such benchmark calculations. By being a rather light system, it is accessible for exact
and approximate methods and the existence of experimental data provides an additional
possibility of comparison. In Fig. 1.3, ground-state energies of the oxygen isotopic chain are
compared for a large set of many-body methods, showing the remarkable consistency between
all methods as well as good agreement with experiment [19].

Quantifying uncertainties of nuclear theory calculations is an area of active research and
constitutes an essential step towards more accurate predictions and calculations. These devel-
opments are leading nuclear theory into a precision era and allow for a meaningful comparison
between experiment and theory within error bars. Systematic errors and approximations
for both the chiral potential and the ab initio method arise by truncations at finite order
in the chiral expansion, different fitting protocols as well as regulator characteristics in the
construction of the interaction, and truncations in the many-body expansion. The system-
atically improvable approach of chiral EFT offers the possibility to estimate the uncertainty
based on the discarded information at the next order in the order-by-order expansion [38].
Typically the EFT truncation error gives the most dominant contribution to the total un-
certainty. More elaborate approaches use Bayesian methods for an improved uncertainty
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Figure 1.3: Ground-state energies of the oxygen isotopic chain, using the same consistently SRG-
evolved chiral NN+-3N input interaction [22, 46, 47] for all employed many-body methods. Results
are shown for the importance-truncated NCSM (IT-NCSM), multi-reference (MR) and valence-space
(VS) extensions of the IMSRG(2), CC with singles and doubles (CCSD), CC with approximate triples
[A-CCSD(T)], the Algebraic Diagrammatic Construction [ADC(3)] within the SCGF method, and
lattice EFT calculations. Additionally, the grey bars indicate experimental values from Ref. [48].
Figure taken from Ref. [19].

quantification [39-42] based on a statistical analysis. Recently, the use of emulators, e.g.,
eigenvector continuation [43], has shown to be a highly efficient and versatile tool to help with
quantifying errors [44] and studying ground-state observables for a large parameter space of
LEC combinations in a computationally inexpensive way [45].

1.3 Status and frontiers of ab initio nuclear structure

Over the last decade, computational methods for the ab initio solution of the nuclear many-
body Schrédinger equation have witnessed major improvements, extending their reach of
accessible closed- and open-shell nuclei over a wide range of mass numbers in the nuclear
chart. The tremendous progress over the last ten years is summarized in Fig. 1.4, showing
the reach of ab initio methods covering only light and selected medium-mass nuclei in 2010
(yellow), and improving up to mass numbers A &~ 132 accessible in 2020 (blue) [49, 50]. Very
recently, even exploratory studies of heavier nuclei, such as 2*Pb came into reach [51]. These
advances are mainly based on three aspects: the construction of improved high-precision
chiral NN and 3N interactions together with the application of SRG techniques to evolve
nuclear interactions to lower resolution scales, leading to improved accuracy and acceler-
ated model-space convergence; the developments of wave-function expansion methods with
a polynomial scaling in mass number; and the strong increase in computational resources,
enabling larger memory and more computing power. In particular the difference in the scaling
behavior was a key factor for extending the range of ab initio methods by overcoming the
severe computational limitations for increased mass numbers and led to an explosion in the
amount of accessible nuclei.

Nevertheless, multiple frontiers in ab initio theory remain. Improved chiral input Hamil-
tonians that lead to more consistent calculations for multiple observables over a large range
of mass numbers need to be constructed. Additionally, developments for the many-body

5
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Figure 1.4: Nuclear chart with proton number Z and neutron number N on the y-, and x-axes,
respectively. The colored boxes show the accessible mass numbers for ab initio nuclear structure
calculations in the corresponding years over the last decade, from 2010 (yellow) to 2020 (blue). Dashed
horizontal and vertical lines indicate good shell closures, referred to as magic numbers, based on the
nuclear shell model for proton (neutron) numbers Z (N) = 2, 8, 20, 28, 40, 50, and 82. Figure taken
from Ref. [19].

methods are required to extend their reach to heavier and more exotic systems and achieve
theoretical predictions with higher precision. We highlight some of our current understanding
on these issues in the following.

When moving to higher mass numbers, the consistency between different ab initio methods,
observed for the oxygen isotopes in Fig. 1.3, remains unchanged, as can be seen for the calcium
isotopic chain in Fig. 1.5. However, the predictions significantly deviate from experiment and
show a strong overbinding for this particular outdated chiral interaction employed in Ref. [37].
Similar trends of overbinding ground-state energies and underestimating charge radii, can be
observed for predictions of higher mass numbers and other chiral Hamiltonians. This signals
that the reason for the mismatch of theory and experiment is not rooted in the choice of the
specific many-body method but in the chiral potential. Interactions leading to good agreement
with experimental data for one region, e.g., light or medium-mass nuclei typically fall short of
reproducing heavy nuclei or infinite nuclear matter saturation properties, and vice versa [29,
37, 52, 53]. Nuclear matter is an idealized theoretical construct with an infinite number
of nucleons in an infinite volume, where the density is uniform and Coulomb interactions
are neglected. Depending on the fraction of protons, we distinguish infinite neutron matter,
for a proton fraction of zero, and (symmetric) nuclear matter for equal proton and neutron
densities. One exception of the characteristics mentioned above, is an interaction constructed
in Ref. [54], often called the “magic” interaction, which leads to a remarkably good description
of ground-state energies over a large range of mass numbers, from “He to '32Sn [49, 50, 55],
while simultaneously reproducing realistic saturation properties, despite only being fit to
few-body data.
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Figure 1.5: Ground-state energies for the calcium isotopic chain for different many-body methods,
using the same interaction as in Fig. 1.3, compared to experimental (black bars). Results are shown
for the Bogoliubov many-body perturbation theory up to second order (BMBPT(2)), the Algebraic
Diagrammatic Construction within Gorkov SCGF theory (ADC(2)), IMSRG(2), closed-shell coupled
cluster (CR-CC(2,3), perturbatively-improved NCSM (NCSM-PT(2)), and the IT-NCSM. Figure
adapted from Ref. [37].
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Figure 1.6: Ground-state energy per particle calculated in the IMSRG for selected closed-shell nuclei
using four different Hamiltonians compared to experimental results. The purple curve corresponds to
the “magic” 1.8/2.0 EM interaction. Figure taken from Ref. [55].

The good performance of this interaction can also be identified by the purple line in Fig. 1.6,
nicely agreeing with experiment. However, the reason for the exceptional performance of
this particular chiral interaction, which treats NN and 3N forces at inconsistent chiral orders,
until now remains an open question. A detailed study of the Hamiltonians, constructed in
Ref. [54], and their predictions for finite nuclei was performed in Ref. [55] and is shown in
Fig. 1.6, suggesting that the good performance of the “magic” interaction is connected to
its nuclear matter saturation properties. Following this indication, chiral 3N interactions
together with NN interactions of Ref. [56] were fit to the empirical saturation point of nuclear
matter and the *H binding energy [57], where reasonable saturation properties were obtained
for all interactions. Applications of these interactions in ab initio many-body calculations
however revealed that a clear understanding of the connection between nuclear matter and
finite nuclei is still lacking [52, 53].

7
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All these observations reveal shortcomings of chiral Hamiltonians and provide room for
improvements in the construction of chiral NN and 3N interactions. This motivates ongoing
efforts for the construction of high-precision chiral interactions with the goal of consistent
predictions for nuclear observables over a large range of mass numbers all the way up to
reasonable saturation properties of nuclear matter. In practice, various approaches, e.g.,
using different observables and fitting protocols for the determination of the LECs, applying
different functional forms of the regulator and ranges of the cutoff value, or additionally
incorporating the A-isobar degree of freedom in the description are performed [24, 58-64].
This results in a variety of chiral interactions being applied to both nuclear structure studies
for finite nuclei and investigations of infinite matter. Furthermore, recent studies for the
error propagation of 3N LECs to observables of light systems using Bayesian methods and
eigenvector continuation emulators showed that in the future more sophisticated uncertainty
quantification should be applied for a comparison of theory and experiment [65].

Three-nucleon forces, in addition to NN forces, have been shown to play a major role
for realistic predictions of finite nuclei [22, 66-68] as well as to obtain reasonable saturation
properties of symmetric nuclear matter [54]. Therefore, incorporating the effects of 3N
interactions is an essential step towards accurate theoretical calculations. Storing three-body
operator matrix elements however requires a tremendous amount of memory, especially when
represented in a single-particle basis, as usually done for ab initio methods. This motivates the
use of approximate treatments and storing schemes by introducing an additional truncation
in three-body space, referred to as Fs3pax, which tames the memory requirements to more
reasonable quantities. This approach has been proven to work very well for light and medium-
mass nuclei. However, when approaching heavy nuclei, 3N contributions from larger model
spaces become important and are required to obtain converged calculations. Consequently,
results more sensitively depend on the applied cuts, and the tremendous increase in memory
for larger Fsmax limits the scope of ab initio many-body methods. Only recently, developments
for storing three-body operator matrix elements [50] allowed one to extend the model-space
truncations to larger values and enabled converged calculations of heavier nuclei, see Fig. 1.7.
Nevertheless, memory limitations still prevent ab initio methods from going to very heavy
nuclei and alternative approaches and approximation schemes to incorporate 3N forces are
investigated.

The wave-function expansion methods discussed in this thesis generally aim at approxi-
mating the exact wave function by starting from a chosen reference state and account for the
missing correlation effects in the many-body expansion. The reference state can be a simple
harmonic oscillator state or a more refined estimate, such as a Hartree-Fock (HF) or natural
orbital basis state. While closed-shell nuclei are well described with symmetry-conserving
single Slater-determinant approximations of the ground state, open-shell nuclei require more
general reference states and still provide challenges for ab initio calculations [37, 69-76]. Es-
pecially once approaching open-shell mid-mass and heavier systems, where exact methods are
not feasible anymore, refined reference states as well as many-body expansion methods are
required. This leads to increased computational demands and necessitates formal develop-
ments. In practice, most commonly multi-reference and symmetry-breaking reference states
are employed, e.g., breaking the conservation of particle number by Bogoliubov vacua or using
deformed reference states, breaking the conservation of the total angular momentum. Formal
progress of extending the many-body methods to incorporate such reference states allows one
to systematically target open-shell systems in nuclear theory. Extensions of closed-shell ab
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Figure 1.7: Ground-state energy of '3?Sn as a function of the Esp.y truncation in the space of
three-body matrix elements. Recent advances of extending the Fs,.x cut to higher values of up to
Esmax = 28 [50], allow one to obtain converged results for heavier systems, here shown by applications
in the IMSRG (purple curve) for an eyax = 14 truncation of the single-particle basis. Figure taken
from Ref. [50].

initio methods that are with success applied to nuclear structure are, e.g., Gorkov SCGF [69,
77], Bogoliubov MBPT [37, 78], deformed CC [74] as well as Bogoliubov CC theory [79],
or the projected generator coordinate method perturbation theory [80-82]. However, the
nucleus, as a finite quantum systems, technically does not break any symmetries. Eventually
restoring the symmetry in actual calculations still presents a major challenge on a formal and
computational level and is subject of ongoing research in nuclear theory, see, e.g., Ref. [83]
for first applications of angular-momentum-projected CC calculations.

Moreover, multiple challenges of describing nuclear observables in ab initio theory remain,
and we list some key aspects in the following. Predicting nuclear matrix elements with rigorous
uncertainty estimates plays an important role for the investigation of beyond standard model
physics. In particular the hypothetical neutrinoless double-8 decay provides a promising
candidate to observe such effects by breaking the lepton number conservation [84-86]. Precise
theory predictions of the involved nuclear matrix elements are crucial to guide next-generation
experiments. Current calculations in different many-body methods however still vary by
approximately a factor of three and require large model spaces to obtain converged results [87—
89]. Studying excited-state properties, 27 excitation energies of closed-shell nuclei have been
found to be sensitive to higher excitations of the reference state [55, 90], which are usually
not incorporated in standard working truncations of the many-body method. Moreover,
calculations of electromagnetic observables, in particular the strength of electric quadruple
transitions, even though showing qualitative agreement with experiment, typically predict
too small values in ab initio calculations [91, 92]. This highlights the need for more precise
ab initio calculations, consistent currents, and improved many-body methods.

In principal, more precise results for wave-function expansion methods can be obtained by
capturing the correlation effects in more detail, either going to higher orders in the correlation
expansion, or applying more refined reference states that possibly already account for parts
of the correlation. Although extending the many-body expansion to higher orders is a highly
preferable goal, efforts along these lines are severely limited by high computation times and
large memory requirements.
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Figure 1.8: Nuclear chart with ground-state energies calculated in the VS-IMSRG. The colored
boxes show the probability for each nucleus to be bound with respect to one- or two-neutron as
well as one- or two-proton removal in the corresponding area of the nuclear chart. The gray area
indicates all calculated mass numbers and the inset shows the difference of ground-state energies to
the experimental values, with a root-mean-square deviation of 3.29 MeV. Figure taken from Ref. [75].

Future developments in ab initio theory in general go in two directions: First, the construc-
tion of improved nuclear forces for high-precision calculations with an appropriate uncertainty
quantification. The goal for these forces is that they lead to reasonable agreement of theory
and experiment over a wide range of mass numbers and consistently reproduce observables for
light, medium-mass and heavy nuclei, as well as realistic saturation properties of nuclear mat-
ter, which is currently still lacking [18, 29, 37, 52, 53|. Second, advances for the many-body
methods themselves will enable more precise calculations by going to higher orders in the
many-body expansion with controlled approximations being able to target larger model-space
truncations and obtain converged results in heavier systems. These efforts are however cur-
rently limited by the substantial increase in computational cost for higher-order calculations
and the required memory for storing many-body operators in large model spaces.

This thesis addresses some of the current major challenges for ab initio theory, specifically
focusing on developments and applications for the many-body approach, applying the IMSRG
as the primary many-body method. The ab initio IMSRG is a powerful tool to calculate a
diverse set of nuclear observables in a computationally efficient way by decoupling the reference
state from all excited states, applying a continuous sequence of unitary transformations to
the normal-ordered Hamiltonian. We focus on studying ground-state observables of closed-
shell nuclei using the single-reference IMSRG, however extensions of the standard IMSRG
that use shell-model approaches to diagonalize an effective valence-space Hamiltonian in
the valence-space IMSRG (VS-IMSRG) [30, 93, 94] or employ multi-reference states in the
multi-reference IMSRG (MR-IMSRG) [68, 72] are capable of targeting open-shell nuclei and
excited-state properties. Figures 1.6 and 1.8 highlight the strength and versatility of the
IMSRG by showing ground-state energies for a variety of closed-shell nuclei using different
Hamiltonians, and a recent study of ground-state energies of about 700 closed- and open-shell
nuclei in the VS-IMSRG [75], respectively. The latter additionally calculates predictions for
the proton and neutron drip lines over a large range of mass numbers.
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1.4 Scope of this thesis

In this thesis, we propose advances for the IMSRG, aiming at improved model-space con-
vergence, optimized memory consumption, and controlled approximation schemes that allow
for more accurate ab initio calculations and higher mass numbers, as well as pushing the
many-body truncation to the next order.

It has been realized that optimizing the employed reference state can significantly improve
the many-body calculation. We show how incorporating correlation effects beyond the mean-
field level into the reference state yields results with improved convergence behavior with
respect to the model-space size and significantly lowers or even completely resolves the
dependence on basis set parameters of the employed single-particle basis. This is accomplished
by using the natural orbital basis constructed from a perturbatively improved density matrix.

Furthermore, memory requirements, especially for storing three-body operator matrix
elements in large model spaces, provide a fundamental limitation for ab initio theory, e.g.,
limiting converged results for heavy nuclei. Tensor-factorization approaches and importance-
truncation (IT) techniques offer a possibility to compress and approximate many-body op-
erators, thereby effectively lowering the computational cost and memory consumption. We
demonstrate their benefits and derive first applications to the IMSRG.

Going to higher order in the many-body expansion of the IMSRG and including three-body
operators in the IMSRG(3) truncation is currently still limited to rather small model spaces,
based on the computational cost and high memory requirements for the three-body operators.
Improving the convergence behavior for full and approximate IMSRG(3) calculations is hence a
crucial step towards the goal of more precise calculations in large spaces. The benefits observed
from the natural orbital basis provide a promising tool along these lines. Additionally, the
application of importance-truncation techniques is of great interest for pushing the IMSRG
to the IMSRG(3) truncation, where compressed or truncated operators could bring large
model-space applications into reach.

Normal-ordering techniques allow to approximate three-body interactions in a computa-
tionally efficient way by incorporating them as effective interactions of lower many-body rank.
However, standard approaches still require three-body operators stored in a single-particle
basis, consequently being limited by the large memory requirements of the employed basis.
We display how using the Jacobi basis circumvents these limitations and present a novel
normal-ordering framework that avoids the Fsnay truncation in the single-particle basis (see
also Ref. [95]) and study its application in IMSRG calculations.

This thesis is structured as follows. In Ch. 2, we introduce chiral EFT as a low-energy
effective theory of QCD and outline the construction of chiral interactions, specifically consid-
ering NN and 3N interactions using different regularization schemes and fitting approaches.
We show how the free-space SRG can be used to soften nuclear potentials by evolving them
to lower resolution scales and how tensor-factorization techniques, in particular the singular
value decomposition, can be applied to obtain low-rank approximations of chiral potentials.

In Ch. 3, we define operators in a second-quantized form and introduce the concept of
normal ordering with respect to a chosen reference state. Typically, HF states, stemming from
a mean-field solution, yield a good estimate for the reference state. We therefore outline the
general approach to derive the HF solution, before shortly discussing three selected many-body
methods relevant for this thesis: the no-core shell model, coupled-cluster theory, and many-
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body perturbation theory. The many-body workhorse of this thesis, the ab initio IMSRG,
is afterwards explained in detail. By using the fundamental commutator expressions of the
IMSRG, we derive the flow equations for two truncation schemes, given by the IMSRG(2)
and IMSRG(3), and discuss possible generator choices that lead to the desired decoupling of
the ground state.

The dependence on different reference states is studied in detail in Ch. 4 by applications of
the natural orbital basis, defined as the eigenstates of the one-body density matrix. Specially,
we employ a perturbatively improved density matrix up to second-order perturbation theory.
Finally, we investigate different basis sets for the IMSRG(2) and apply the natural orbital
basis for approximate and full IMSRG(3) truncations in small model spaces.

The framework of importance truncation a priori measures the importance of different
contributions of the many-body operator and provides an alternative approach to the singular
value decomposition to effectively reduce the size of the many-body problem. In Ch. 5, we
show how importance-truncation techniques can be applied to the IMSRG and investigate
predictions for ground-state observables using importance-truncated operators.

Chapter 6 presents a novel way of normal ordering the three-body interaction directly in
the relative Jacobi momentum-space basis, in contrast to the traditional approach of normal
ordering in the single-particle basis. New quantum numbers, describing the additional center-
of-mass dependence of the normal-ordered two-body interaction, have to be introduced. The
convergence behavior with respect to these quantum numbers and the benefits of the new
normal-ordering framework are explored in detail, using the IMSRG to study ground-state
observables of light, medium-mass, and heavy nuclei.

Finally, we conclude this thesis by giving a summary and outlook in Ch. 7.



Nuclear Forces and Chiral
Effective Field Theory

The construction of nuclear interactions that describe the force between nucleons is a key
element for microscopic investigations of nuclear observables and has a long history in nuclear
physics. Early approaches were mostly based on phenomenological models, with meson-
exchanges models, as described in Refs. [15, 96], or combined with a hard-core for the
short-range repulsion, as e.g., for the Argonne vig [14] potential, and a Yukawa one-pion
exchange interaction [97] for the long-rang part. In the early 1970s QCD was established as
the underlying theory of the strong interaction, which describes the interaction between the
fundamental degrees of freedom, quarks and gluons. However, the nonperturbative character
of the theory at the low-energy regime, where nuclear physics is situated, prevents a direct
construction of nuclear interactions. Furthermore, the fact that the nuclear interaction is
not unique and its construction is scheme and scale dependent complicates the derivation
of nuclear forces. Realistic phenomenological interactions, even though being capable of
describing nuclear observables in good agreement with experiment, evidently lack a clear
connection to the underlying theory. Chiral EFT provides a remedy to this issue by deriving
nuclear interactions based on a low-energy effective theory of QCD, with the same underlying
symmetries. It therefore offers the key advantages of a systematically improvable description
with controlled uncertainty estimates that is directly connected to the fundamental force of
the strong interaction. In this thesis, we use two- and three-nucleon forces constructed within
the framework of chiral EFT and apply them in many-body calculations to investigate the
structure of finite nuclei.

This chapter is organized as follows. In Sec. 2.1, we discuss the main properties of QCD,
with its spontaneous and explicit chiral symmetry breaking and the problems that arise at low
energies due to the running coupling constant of the theory. We then review the construction
of nuclear interactions in chiral EFT in Sec. 2.2. We closely follow Refs. [12, 98, 99] and
refer to these publications and references within for further details. Finally, we conclude
this chapter with a discussion of the free-space SRG as a method to soften the chiral input
interactions by evolving them to lower resolution scales in Sec. 2.3, and an introduction to
the singular value decomposition to obtain low-rank approximations of chiral interactions in
Sec. 2.4.
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2.1 Quantum chromodynamics

The degrees of freedom of the underlying theory of the strong interaction QCD are quarks,
which are elementary spin-1/2 particles, and gluons, the gauge bosons of the theory as media-
tors of the force. QCD is a local, non-Abelian gauge theory with the special unitary group of
degree three [SU(3)]. Six quark flavors, which carry different mass and electric charge labeled
up (u), down (d), strange (s), charm (c), bottom (b), and top (t), are the ingredients that
compound matter together with their corresponding antiparticles, indicated by a bar on top
of the abbreviation. We start to take a closer look at the underlying theory by writing down
the Lagrangian and discussing its symmetries and characteristics. The QCD Lagrangian is
given by

1
Loop= > 4 (P —my)q - 59.,0"", (2.1)

j:u7d787c7b7t

where g¢; is the quark field with corresponding quark mass m;. The term ) = y* (Ou +igsAp)
represents the covariant derivative, using the Dirac matrix y* for the Feynman-slash notation,
the strong coupling constant gs, the gluon field A, and GJj,, is the gluon-field-strength tensor
given by

G5, = 0, AY — 9, A% + g f** AL AS (2.2)

using the definition A, = Af{T* with the generators of the SU(3) group T for the indices
a,b,c=1,...,8 and the structure constant f?°. The sum in Eq. (2.1) in general runs over all
quark flavors, u, d, s, ¢, b, and t. However, in the low-energy regime only the lightest quarks,
the up, down, and strange quark, are most important, such that we limit the sum to the
subset u,d, s in the following. Table 2.1 summarizes the masses and electric charges of the
six quark flavors, showing the significant increase in mass when going from the strange to the
charm quark, justifying the limitation of the sum in Eq. (2.1) to only three quark flavors for
low energies. For comparison, the nucleon mass is given by M =~ 939 MeV, well below the
masses of charmed hadrons, e.g., the J/1¢ meson is three times as heavy as the nucleon. In
addition to the electric charge, quarks carry a quantum “number” called color charge, given
by red (r), green (g), or blue (b). Any combination of color charge with its corresponding
anticolor (7, g, b) carried by an antiquark, or a combination of all three (anti)color charges
is color neutral (white) as in the RGB color model for light. The number of color variations
nc = 3 also explains the degree of the SU(3) symmetry group of the theory.

The coupling constant as of QCD varies as a function of the scale @ [100]. It is therefore

called a running constant

2
as(Q) = ’
O ) n (L)

Aqcp

(2.3)

with the number of quark flavors ny and the characteristic QCD scale Aqcp, which is scheme
dependent and typically in the range of 200-300 MeV. Note that Eq. (2.3) just gives as
approximately and higher-order terms in the renormalization group equation of the running
coupling constant are neglected (see Ref. [101] for details).



2.1 QUANTUM CHROMODYNAMICS

quark flavor  mass (MeV) electric charge (e)

up 2.16 042 +2
down 4.67 T8 -1
strange 93 t11 —%
charm 1270 4 20 +2
bottom 4180 f%g —%
top 172760 + 300 +2

Table 2.1: Quark flavors with their masses and electric charges. Values are taken from the Particle
Data Group [102].
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Figure 2.1: Coupling constant ag of QCD as a function of energy scale @ for the world average
value a,(Q = Mzo) = 0.1189 4 0.0010 at the Z° boson mass (status of the year 2006). The open
and filled symbols show experimental values at next-to-leading order and next-to-next-to-leading
order perturbation theory for different experimental approaches, given by deep inelastic scattering
(green), positron-electron annihilation (red), hadron collisions (blue), and heavy quarkonia (purple)
experiments. See Ref. [101], where this figure is taken from, for further details.

In Fig. 2.1, we show the coupling constant of the strong interaction as a function of @
together with experimental values based on different experimental approaches. One can
identify two important regimes: First, for high energies, the coupling becomes small allowing
for perturbative QCD calculations and eventually leading to the phenomenon of asymptotic
freedom in the limit of very large energies, indicated by the flattening of the curve in the
lower right of Fig. 2.1. Second, for low energies, the coupling constant grows rapidly and

eventually ag > 1, making any perturbative description of the theory in this regime unfeasible.
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Related to the strong coupling at low energies, the observation of individual quarks at low
temperature and low density is not possible due to the confinement given by the strong
interaction in this regime. As a result, hadronic degrees of freedom composed of color-neutral
combinations of quarks arise and are the observed degrees of freedom at low energies. We
distinguish between different hadrons based on the number of constituent quarks: hadrons
consisting of three quarks with neutral color charge called baryons, e.g., neutrons or protons,
and states of a quark and antiquark pair called mesons, e.g., pions or p mesons. More exotic
combinations such as pentaquark [103-105] or tetraquark [106, 107] states with five and four
quarks, respectively, are possible and have been observed or suggested in experiments, e.g.,
at the Large Hadron Collider (LHC). See also Ref. [108] for a recent review on experimental
evidence of such more exotic states.

Approaches to calculate nuclear observables in the low-energy regime directly from QCD
and deriving, e.g., properties of light and heavy mesons [6], nucleon-nucleon scattering [109],
baryon-baryon interactions [110, 111], or the axial coupling of the nucleon to high preci-
sion [112] have been very successful by using lattice QCD (LQCD). This method employs a
discretized lattice in space-time and uses Monte-Carlo methods for the solution of the resulting
path integrals. For a more detailed discussion of the method and its application to nuclear
physics, we refer to Refs. [5, 113]. Even larger systems like light nuclei or hypernuclei with
A < 4 have already been calculated from LQCD by the Nuclear Physics with Lattice QCD
(NPLQCD) collaboration [7, 8] but at larger pion masses. However, due to the complexity
of the systems and the computational challenges involved, LQCD calculations for nuclear
many-body problems are currently still limited to very small system sizes with just a few
particles and mostly large values for the quark masses, leading to unphysical pion masses.
Chiral effective field theory, a low-energy effective theory of QCD introduced in the next
section, makes the connection to the underlying theory based on the global symmetries of
the QCD Lagrangian, where the key global symmetry of QCD (in the low-energy regime) is
chiral symmetry, which we explore now.

In the following, we assume that quark masses are exactly equal to zero such that the
mass term for the quark fields ¢; in Eq. (2.1) vanishes and we only have to consider the
kinetic part with the covariant derivative. Applying projection operators for the right- and
left-handed components of the quark fields, given by

Pr=-(1+7), (2.4a)

N =N =

Pr = (1 - '75) ) (24b)

respectively, we can rewrite the QCD Lagrangian for zero quark masses, here indicated by
the 0 superscript, in terms of separate right- and left-handed quark fields

qr; = Pry;, (2.5a)
qr; = Prgj, (2.5b)
resulting in
o o 1 }
ﬁOQCD = Z (qrjiPqr; + qrjilar;) — igﬁygu “, (2.6)

Jj=u,d,s
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with the trace over the gluon field strength tensor being unaffected. This form of the La-
grangian is now invariant under separate transformations of the right- and left-handed compo-
nents of the quark fields, as no term couples the two components. The underlying symmetry
group is U(3), x U(3)g, which can be reformulated as a U(1)4 x U(1)y x SU(3)r x SU(3)[,
symmetry. The baryon number conservation is reflected by the U(1)y symmetry, and the
SU(3)r x SU(3) symmetry is called chiral symmetry, which can also be written in terms of
SU(?))L_R X SU<3)L+R = SU(3)A X SU(3)V.

However, chiral symmetry is spontaneously broken. This can be seen by identifying parity
doublets, states with equal quantum numbers but opposite parity, which are supposed to have
identical masses in case of an exact chiral symmetry. Considering, e.g., the p vector meson with
mass M, = 775 MeV and negative parity (J ' — 17) compared to the a; pseudovector meson
with equal quantum numbers but positive parity, i.e., JI' = 17, and mass M,, = 1230 MeV
signals a mass difference and the resulting spontaneously broken symmetry. According to
the Goldstone theorem [114], every spontaneously broken (continuous) symmetry implies the
existence of massless excitations of the vacuum, so-called Goldstone bosons, one for each
generator of the symmetry, resulting in eight Goldstone bosons for the spontaneously broken
chiral symmetry.

In addition to the spontaneous symmetry breaking, chiral symmetry is also explicitly
broken by the nonvanishing quark masses, as can be seen from the mass term of the Lagrangian
in Eq. (2.1) for the right- and left-handed fields

uen
Z qim;iq; = Z qriMijqr; + H.c., M = md ; (2.7)
Jj=u,d,s j:u,d,s M
i=u,d,s

where M is the mass matrix for the u, d, and s quark, mixing right and left-handed compo-
nents in contrast to E%CD. The explicit symmetry breaking gives rise to massive Goldstone
bosons, so-called pseudo-Goldstone bosons. In QCD, these eight pseudo-Goldstone bosons
are the 71, 7=, 70, K+, K, K°, KO, and n mesons, with the pions being the lightest of these
particles consisting only of u and d quarks. Taking into account the small mass difference
of the u and d quark, compared to the s quark, the subgroup SU(2)y C SU(3)y is a good
approximate symmetry, corresponding to the isospin symmetry of two quark flavors, explain-
ing e.g., the small mass difference between the proton (M, = 938.27 MeV) and the neutron
(M, = 939.57 MeV).

2.2 Chiral effective field theory

2.2.1 Formalism and hierarchy of nuclear forces

In this subsection, we introduce an effective field theory that is consistent with the low-energy
symmetries of QCD and provides an efficient and powerful tool to derive nuclear forces and
currents, enabling calculations of nuclear properties and observables with a direct link to
the underlying fundamental theory. Specifically, we focus on chiral EFT, which was first
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introduced in the seminal works of Weinberg [9-11] in the early 1990s. We do not aim to
give a complete account of all aspects of the theory here, instead, we focus on the elementary
ideas and concepts for the derivation of nuclear forces within the framework of chiral EFT.
We refer to Refs. [12, 99, 115] for more detailed reviews about this topic.

A key concept of any effective field theory is the separation of scales, where typically a soft
scale @ and a hard scale A are identified with @ < A. The soft scale defines the phenomena to
be resolved by the theory, whereas the hard scale sets a resolution limit with physics beyond
this scale not explicitly resolved by the theory. This allows for an order-by-order expansion
in @/A, where at order v the contributions scale like (Q/A)”. A schematic illustration of this
approach is the multipole expansion of an extended charge distribution, where one expands
the potential far away from the source by different multipole orders. Incorporating the next
order increases the precision of the description, and one can truncate the expansion at a
chosen order to obtain a desired accuracy.

In the following, these general ideas are applied to a low-energy effective theory of QCD.
The details of the high-energy physics, related to short-range phenomena, are not explicitly
resolved by the low-energy expansion but can be incorporated in terms of contact interactions,
whose strength is determined by low-energy constants (LECs), which have to be determined
by fitting to experimental data or, if possible, calculated based on the underlying theory,
see, e.g., Refs. [116-120]. In chiral EFT, nucleons and pions are the relevant degrees of
freedom, rather than the fundamental degrees of freedom quarks and gluons of QCD. The
important scales are given by the soft scale of typical momenta of the order of the pion mass
My = 140 MeV and the hard scale by the physics that is left, roughly of the order of the
mass of the next heaviest meson, the p meson M, = 775 MeV. This results in an estimated
breakdown scale of chiral EFT of Ay ~ 500 MeV.

The relevant task for deriving nuclear interactions consists of constructing the most general
Lagrangian based on the relevant degrees of freedom consistent with chiral symmetry

Eeﬁ" = £7r7r + ‘CTFN + ﬁNN +.., (28)

where we have expanded the Lagrangian into three contributions, given by the pion-pion (77),
pion-nucleon (7N), and NN parts, with the ellipsis denoting higher-order terms. In general,
an infinite number of terms contribute to the chiral Lagrangian, but by expanding £ in terms
of (Q/A)” and using a power counting to organize the arising terms by their importance,
only a finite number of terms contributes to each order v. Based on such a power-counting
scheme, we can organize the arising nucleon-nucleon, three-nucleon, and higher many-body
interactions and order the complete chiral Lagrangian in terms of orders of v to obtain a
hierarchy of nuclear forces. The idea is that with every additional order v the theory becomes
more accurate, where lower orders are more important. The most commonly applied power
counting scheme is Weinberg power counting [9-11], which for A nucleons is given by

v=—2+424-2C+2L+> A;, (2.9)
i
with the number of separately connected diagrams C', the number of loops L, the sum over

all vertices 7, and A; defined as

&:@+%—1 (2.10)
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where d; is the number of derivatives or insertion of pion masses, and n; the number of
nucleon fields at a given vertex. An important fact is that A; > 0 ensures v > 0 such that
the low-energy expansion is bounded from below. There are ongoing discussions about what
the correct power counting scheme for nuclear interactions is, see, e.g., Refs. [121-126] for
more detailed information and some alternative approaches. For all interactions used in this
thesis Weinberg power counting discussed above is the underlying power counting scheme.

At leading order (LO), v = 0, the only contribution to the potential is given by the
one-pion exchange (OPE) potential and the two-nucleon contact interaction

2 . .
Vore(Q) = —491}472 (Ungj_(?\Zg @

Vcontact = CS + C’T o102, (2.12)

T1 T2, (2.11)

with the momentum transfer Q = p’ — p given by the initial and final relative momentum p
and p’, respectively, the axial-vector coupling constant g4 = 1.27, the pion decay constant
Fr =92.4 MeV, the spin and isospin Pauli matrices o; = (04,0y,0.) and 7; = (74,7, ;) of
the first (¢ = 1) and second (i = 2) nucleon, and the two LECs Cg and Cr of the contact
interaction. The LEC combination with the operators 1 and o - o9 is a particular choice,
related to the Fierz ambiguity [127, 128] and only two out of four operator structures are
required for the LO contact interaction. The LO chiral potential is consequently given by

ViR (Q) = Cs + Cr 01 - 02 + Vore(Q) - (2.13)

Note that the contact interaction is momentum independent, meaning that it only contributes
to S-wave channels. Two LECs for the two S-waves occur at this order. Going to higher
orders, momentum-dependent interactions and three-body forces contribute. These depend
on additional LECs, which have to be fitted to experiment as well. Even though the direct
determination of LECs from first principles by, e.g., lattice QCD calculations is desirable
and an active field of research, the tremendous computational prerequisites make such an
approach unfeasible at present [129].

A detailed overview of the diagrammatic expansion of the nuclear interaction at each
order in the expansion based on the power counting in Eq. (2.9) is shown in Fig. 2.2, where in
general we distinguish two main contributions: nucleon contact interactions, which cover the
short-range part of the nuclear interaction; and one- and multiple-pion exchange diagrams,
which parameterize the long- and intermediate-range part of the interaction. The different
LECs are given by white and colored symbols, where white symbols only contribute to the
NN force and colored symbols additionally (or exclusively in some cases) contribute in the
description of the 3N force.

Going from LO to next-to-leading order (NLO) at v = 2, seven additional LECs enter
for the NN force, see the red box in the top right corner for the NLO NN panel in Fig. 2.2,
and the description of the interaction at intermediate distances becomes improved by the
leading-order two-pion exchange (2PE) potential. Note that there are no contributions for
v = 1 due to parity conservation and time-reversal symmetry [12]. Explicit forms of the
potential at NLO, or higher orders will not be given here for brevity, and we refer to Refs. [12,
99, 115] for an in-depth derivation of the individual 77, 7N, and NN contributions to the
chiral potential.

Using the power counting, we can directly predict the orders at which three- and higher-

19



20

CHAPTER 2 - NUCLEAR FORCES AND CHIRAL EFFECTIVE FIELD THEORY

_ _
i T b _ _
a3 FLR KT | THEX —
B2 X Fh b | B DX | KT HH
T b DO

Figure 2.2: Hierarchy of nuclear forces for the individual orders of the chiral expansion (Q"/A")
starting at LO, v = 0, up to next-to-next-to-next-to-next-to-leading order (N*LO) at v = 5 in rows
one to five. Note that NLO starts at v = 2, as v = 1 is not allowed due to parity conservation and time
reversal symmetry. The columns indicate two-nucleon, three-nucleon, and four-nucleon interactions.
Solid and dashed lines represent nucleons and pions, respectively. Colored symbols (diamonds, squares,
circles, penta-, and hexagons) indicate vertices of different order, where white vertices only enter the
NN interaction and colored vertices also enter the 3N interaction. The years in the yellow ellipsis
in the top left corner show the date the contributions in the corresponding panel have been worked
out, and the colored boxes in the top right corner of each panel give the number of additional LECs
entering the many-body force at this order. Figure taken from Ref. [130].

body forces enter in the expansion. By setting L = ), A; = 0 and C' = 1, we see that
three-nucleon (3N) forces first enter at NLO, but their contribution cancels at this order [131].
First nonvanishing 3N forces appear at next-to-next-to-leading order (N?LO). Four-nucleon
(4N) forces first enter at v = 4, corresponding to next-to-next-to-next-to-leading order (N3LO).

At N2LO, the description of the intermediate-range improves by incorporating the sub-
leading two-pion exchange potential and nonvanishing 3N forces enter for the first time.
Nucleon-nucleon forces have currently been derived up to fifth order (N*LO) in the chiral
expansion [56]. While 3N forces at this order are still under development, 3N forces at N3LO
(subleading 3N forces) have been derived [132-134] and partial-wave decomposed [130, 135,
136], allowing for consistent interactions up to the 3N level at fourth order in the chiral
expansion.

The systematically improvable approach of chiral EFT has the key advantage that it
can be used to derive uncertainty estimates arising from the EFT truncation in the order-
by-order expansion. The concept of uncertainty quantification (UQ) has become a crucial
ingredient for high-precision calculations in nuclear theory and is key for a reliable comparison
to experiment and predicting observables. While earlier approaches were mostly based on
parameter variations (e.g., varying the LECs) and studying the resulting changes for nuclear
observables, the EFT uncertainty can be estimated by the discarded contributions at the
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Figure 2.3: Same as Fig. 2.2 but for the additional diagrams contributing in A-full chiral EFT.
Double solid lines denote virtual excitations of the nucleon to the A isobar. Figure taken from
Ref. [130].

next higher order [38]. A more refined uncertainty estimate is obtained by modern methods
that employ advanced statistical tools, resulting in sophisticated UQ approaches based on,
e.g., Bayesian methods (see Refs. [39, 41, 42, 137]) and are further capable of quantifying
correlated uncertainties.

Alternative choices of the low-energy degrees of freedom give rise to slightly different
effective theories, e.g., pionless EFT [138] (see Ref. [118] for an application to finite nuclei),
with just nucleon contact interactions, and A-full chiral EFT, which incorporates the delta
isobar A(1232) as an explicit low-energy degree of freedom [60, 62, 139, 140]. The three most
common nuclear EFTs are discussed in detail in a recent review [126]. With a mass splitting
of approximately 293 MeV between the delta and the nucleon, the energy scale associated
with a virtual excitation of the nucleon to the delta is ~ 2M,, which is well below the chiral
breakdown scale Ay. The diagrammatic expansion for A-full chiral EFT slightly changes
compared to the A-less chiral EFT presented in Fig. 2.2, and the LECs have to be readjusted

in some cases. We show the additional diagrams occurring for the A-full theory in Fig. 2.3.

Note that there is no change at LO, but 3N forces already enter at NLO by the so-called
Fujita-Miyazawa term [141].

In this thesis, we focus on chiral NN and 3N forces up to N3LO derived within A-less
chiral EFT. We neglect contributions of 4N forces, which first enter at N3LO. Based on the
hierarchy of nuclear forces Vyn > Van > Vyn their impact is expected to be small compared
to the NN and 3N contributions [142, 143].

2.2.2 Construction of nuclear interactions

Evaluating the individual contributions of the chiral interaction gives rise to ultraviolet (UV)
divergences, e.g., in the evaluation of loop integrals for high momenta, which have to be
regularized. When applying a given chiral potential in the Lippmann-Schwinger equation, the
high-momentum contributions in the integral can be cut off by using a regulator function with
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a chosen cutoff value A, usually of the order of the chiral breakdown scale Ay. In theory, in
the limit of infinite chiral order, the regulator and its specific functional form and cutoff value
would not affect the final result for observables. However, in practical calculations at finite
order, results do depend on the regulator, giving rise to so-called regulator artifacts, such as
cutoff artifacts. Variations of the cutoff value offer the possibility to study their impact on
the final result.

Typically, one distinguishes regulators applied to the contact interactions and the pion-
exchange parts of the potential, given by the short- and long-range regulator, respectively. The
freedom to choose any appropriate functional form for the regulator together with variations
of the specific cutoff value results in a large variety of regularized potentials. Often the cutoff
value A in momentum space is used in the name specifier of the interaction, e.g., the EMN 450
interaction of Ref. [56] with A = 450 MeV.

We can distinguish three families of chiral interactions, depending on the different regu-
larization schemes applied to the short- and long-range part: local, semilocal, and nonlocal
interactions. Local potentials (see, e.g., Refs. [24, 144, 145]), only depend on the momentum
transfer Q = p’ — p in momentum space, or the relative distance r in coordinate space and
require a regulator that preserves this locality. Local interactions are especially applied in
QMC calculations, which rely on local input Hamiltonians. Semilocal interactions (see, e.g.,
Refs. [38, 146, 147]) employ a mixture of local and nonlocal regulators, where typically the
long-range part is regularized locally and the short-range part nonlocally. Finally, nonlocal
potentials (see, e.g., Refs. [46, 56, 59]) use a nonlocal regulator for both the short- and
long-range part, which only depends on the magnitude of the relative momenta p = |p| and
p’ = |p’| without any angular dependence as observed for local regulators. Table 2.2 shows a
selected set of examples for these three types of interactions with the corresponding functional
form of the regulators. Both regularization in coordinate and momentum space are used in
practice. In Ref. [38], an estimate of the relation between the cutoff values in the two spaces
is given by A = 2/Ry based on the Fourier transform of a Gaussian. However, a universal
relation between the two cutoff values is not always directly possible and the functional form
of the regulator should also be considered for a meaningful comparison [148].

Throughout this thesis, in the majority of calculations we use (nonlocal) chiral interactions

with a nonlocal regulator as, e.g., used for the NN potential by Entem, Machleidt, and Nosyk
(EMN) of Ref. [56]

oo (£)]. o

with regulator exponent n and cutoff value Axy for the NN interaction given in the name
specifier. The 3N interaction is regularized in a similar fashion by

2 3 2\ "
f(D,q)asy = exp [— (W) ] , (2.15)

using the magnitude of the Jacobi momenta p = |p| and ¢ = |q|, the regulator exponent n
(mostly set to n = 4), and the 3N cutoff value Asn, set to the same value as used in the NN
potential when using the EMN potentials. The Jacobi momenta p and q are given by the
relative momentum of the particles one and two and the momentum of the third particle
relative to the center-of-mass momentum (cm) of the first two particles, respectively. The
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regulator functions regulator chiral order
short-range long-range exponent(s) cutoff range
contact ion exchanges
p g
local
_n ) B up to N?LO
GT+ [24, 144] ae 1—e n=4 Ro— 09— 12 fm
semilocal
=1 _=m o7 _ up to N*LO
EKM [38, 146] | e Pl e P™ (1—e™)" m2 Ro=0.8— 1.2 fm
2= Axn & 493 — 329 MeV
nonlocal
=2n =/2n =2n =/2n 4
—p*"M =P/ —pn2 _p'na ny >v/2 up to N*LO
EMN [56] € € € na=2(4)  Axn = 450 — 550 MeV

Table 2.2: Short- and long-range regulators in coordinate and momentum space for selected local [24,
144], semilocal [38, 146], and nonlocal [56] NN potentials with 7 = /Ry and p = p/Ann in the first and
second and column, where o = (7I'(3/4)R3)~! is a normalization constant and v is the order of the
chiral expansion. We use the abbreviations GT+ for the local potentials of Gezerlis, Tews et al., EKM
for the semilocal potentials of Epelbaum, Krebs, and Meifiner, and EMN for the nonlocal potentials of
Entem, Machleidt, and Nosyk. For the EMN potentials, the regulator exponent no = 2 is applied to
the pion exchanges and ny = 4 for the one-pion exchange beyond NLO. The highest available chiral
order and the cutoff ranges are given in the fourth column. Table adjusted from Ref. [148].

particular functional form of Eq. (2.15) is motivated by the relative kinetic energy of the
three-body system, which can be written in terms of the Jacobi momenta p and q [130, 149].

In addition to the regularization, which results in different families of chiral interactions,
the fitting protocol of the LECs as outlined in Sec. 2.2 plays a key role in constructing nuclear
interactions and has a critical impact on predictions for finite nuclei or nuclear matter. Most
commonly, the NN LECs are fit to nucleon-nucleon partial-wave phase shifts using laboratory
energies up to Fla, ~ 300 MeV, e.g., based on the Nijmegen partial-wave analysis (PWA) [13].
The determination of the 3N low-energy couplings requires additional information from three
or higher-body systems, resulting in various fitting procedures that use different few- and
many-body observables as well as nuclear matter properties in practical applications. For
the leading 3N force at N2LO five LECs contribute. Three of these, labeled by ¢1, ¢3, and ¢4
are already determined in the NN sector as can be seen by the blue circle in Fig. 2.2 for the
27m-exchange potential of the NN force at N?2LO. The remaining two LECs are given by the
1m-exchange contact c¢p and the 3N contact cg, shown by the green square and red pentagon
of the corresponding diagrams in Fig. 2.2, respectively. They have to be determined explicitly
in the 3N (or higher-body) sector. The two contributions to the 3N potential are given by

oj- Qj
Vir—cont. = 8F2 F2Ab ;k Q2 T M2 j)(ai : Qj)7 (216)
C
‘/3N cont. — QFfAb Z(Tj : Tk) ) (2'17)
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Figure 2.4: Combinations of the 3N couplings ¢p and cg reproducing the triton binding energy
E(H) = —8.482 MeV for the NN+3N EMN interaction [56, 57] at N°LO (red) and N3LO (blue) for
the cutoff values A = 450 MeV (dashed lines) and A = 500 MeV (solid lines). The three points on each
line with annotated c¢p/cg values indicate the best reproduction of the empirical saturation density
and energy. Figure taken from Ref. [57].

with the momentum transfer Q; = k! —k; given by the initial and final single-particle momenta
k; and k| of the i-th particle, respectively, and the chiral breakdown scale set to A, = 700 MeV
in Ref. [149].

Two observables, ideally with minimal correlation, are required for the determination of cp
and cg. In practice, this is commonly done by using two few-body observables. In particular,
the triton ground-state energy together with, e.g., its S-decay half-life or the charge radius
of *He. Fitting first to the 3H ground-state energy results in combinations of ¢p and cp
values which all reproduce E(*H), as exemplarily shown in Fig. 2.4 for the EMN interaction
at N?LO and N3LO. A second observable is required to fix a specific point on the cp-cg curve
for the final determination of the 3N force. A naive first guess would be the ground-state
energy of He in addition to the triton, but these two observables are not independent of each
other with their correlation given by the Tjon line [150, 151]. A possible choice for two less
correlated observables is the ground-state energy of >H and the charge radius of “He as used
in Ref. [54]. Remarkably, the interactions derived in Ref. [54], which are just fit to few-body
data, lead to good reproduction of empirical nuclear matter properties in terms of saturation
density and energy.

Another choice in the fitting procedure is the g-decay half-life of the triton in addition
to its ground-state energy as was first done in Ref. [152]. Chiral EFT has the advantage
that nuclear currents can be derived consistently to the nuclear interactions and consequently
depend on the same LECs. These nuclear currents are then used to calculate electroweak
observables, like the H S-decay. Recently, also empirical saturation properties of infinite
nuclear matter have been employed in the fitting strategies of the 3N force [57]. The three
combinations of ¢p/cp values annotated next to the circles in Fig. 2.4 lead to the best
reproduction of the empirical saturation point for each interaction in terms of both saturation
density and energy.

Predictions using chiral interactions that are fit to only NN data and few-body observables
usually considerably deviate from experiment for medium-mass and heavy nuclei [29, 58, 59].
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Therefore approaches to obtain an improved description of light- and medium-mass nuclei are
performed by incorporating properties of nuclei beyond the few-body sector (of only three-
and four-body systems) into the fit of the 3N force. This strategy was first employed in
Ref. [58], where energies and charge radii of selected carbon and oxygen isotopes were used
in a simultaneous fit of the 3N and NN force. This particular interaction only reproduces
NN phase shifts to rather low energies, but predicts nuclei up to the medium-mass regime
in better agreement with experiment. A very recent A-full interaction derived in Ref. [61],
which also performs a simultaneous fit of the 2N and 3N force using ground-state properties
of A = 24 systems as well as saturation properties of nuclear matter, leads to promising
results of ground-state energies and charge radii for a large range of finite nuclei up to mass
numbers A = 132. However, its predicted NN phase shifts deviate from experiment in the
P-wave channels [153].

In order to obtain a reliable extraction of the 3N couplings ¢p and cg in the large
parameter space, the various sources of uncertainties, including EFT truncation errors, should
be considered in the fitting procedure of statistical methods. Taking advantage of the method
of eigenvector continuation [43, 44] for the construction of emulators, Ref. [154] analyzed the
statistical uncertainties for the consistent solution of the triton binding energy, its -decay
rate, and the ground-state energy and charge radius of *He for fitting ¢p and cg using a
Bayesian framework including theoretical and experimental errors. This analysis provides
clear evidence that EFT truncation errors should be included in the fit to obtain meaningful
and consistent results.

In this thesis, we mainly focus on two chiral interactions: The first given by the EMN
NN interaction derived in Ref. [56] up to N*LO with cutoff values from A = 400-550 MeV
together with 3N forces constructed in Ref. [57] up to N3LO by fitting the 3N LECs to the
3H binding energy and nuclear matter saturation properties, utilizing the same cutoff value
as for the NN force. This allows for a consistent treatment of two- and three-body forces at
N3LO. We will refer to this interaction by “N3LO” followed by the cutoff value and indicate
cases where we use the NN-only interaction. The second interaction, constructed in Ref. [54],
is based on an NN force at N®LO and a 3N force at N2LO, with the 3N couplings fit to only
few-body data, specifically the *H binding energy and the charge radius of *He. We refer to
this interaction by “1.8/2.0 EM” in the following. Even though the many-body forces are
treated at inconsistent chiral orders (N3LO and N2LO) and the NN and 3N cutoffs are given
by different values (Axy = 500 MeV and Azy = 2.0 fm~! [394 MeV]), this interaction leads
to a remarkably good reproduction of ground-state energies of finite nuclei over a wide range
of masses [49, 55, 75], while underpredicting their charge radii [55].

2.3 Renormalization group methods

Nuclear interactions are often characterized in terms of their perturbativeness (or softness),
which indicates the degree of decoupling between high- and low-momentum modes in the
potential and is closely related to its order-by-order convergence behavior in a perturbative
many-body expansion [18]. Typically, chiral interactions show strong low- to high-momentum
couplings as indicated by the dark red off-diagonal area in the left panel of Fig. 2.5. These
couplings significantly complicate investigations at low-energy scales, as most basis-expansion-
based methods profit from rather soft input interactions to achieve converged results in
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Figure 2.5: SRG evolution of the N®LO 500 NN interaction in momentum space in the 'S,

partial-wave channel as a function of the magnitude of the initial and final relative momenta p and
/

p’, respectively. The initial (unevolved) potential is shown in the left panel, and the SRG-evolved
potentials to resolution scales A = 2.6 fm~! and A = 1.4 fm~! are shown in the middle and right
panels, respectively.

reasonable model-space sizes, and perturbative calculations get more involved or even unfea-
sible at all for nonperturbative (hard) potentials [155]. Simply neglecting the troublesome
couplings by cutting off all contributions from high momenta, e.g., by a regulator function,
does not remedy the problem, as low-energy observables and phase-shifts do not stay invari-
ant. A powerful method to decouple the momenta and obtain (softer) nuclear interactions at
reduced resolution scales, while leaving low-energy observables invariant, is the SRG devel-
oped by Wegner [156, 157] as well as Glazek and Wilson [158, 159] in the 1990s. The SRG
employs flow equations to drive the Hamiltonian to a band-diagonal form. Specifically, low-
to high-momentum couplings with momentum transfers larger than the SRG resolution scale
A are exponentially suppressed. Figure 2.5 demonstrates the application of the SRG to a
chiral NN interaction. Starting from the initial potential with strong off-diagonal couplings
in the left panel, it shows the decoupling and resulting band-diagonal form as the potential
is evolved to lower resolution scales A in the middle and right panel.

The high-momentum couplings of the Hamiltonian get decoupled by a continuous sequence
of unitary transformations U(s) with the flow parameter s

H(s) =U(s)H(0)U(s), (2.18)

and we obtain the flow equation for the Hamiltonian by differentiating with respect to s

dH(s) dU dut
= —HO)U +UH(0)——
ds ds (O)T*+ (0) ds
dU dU"
= —UUH((0)U' + UH(0)UTU——
ds O+ 0) ds (2.19)
dU dut
= —U'H H(s)U—
T U'H(s)+ H(s)U T
= [n(s), H(s)],
where we dropped the s-dependence of the transformation for brevity, used 1 = UTU,
4(UUt) = 0, and replaced “2UT by the anti-Hermitian generator n(s). The SRG reso-

lution scale A, also shown in Fig. 2.5, is directly related to the flow parameter by A\ = s~1/4
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and characterizes the degree of decoupling as well as the width of the band diagonal.

An alternative approach to decoupling high- and low-momenta is given by the RG method,
which leads to a block-diagonal form of the low-momentum interaction, usually referred to
as Viow k- In this method, a set of coupled differential equations is solved to achieve the
decoupling and contributions above a chosen cutoff value are set to zero afterwards, therefore
reducing the size of the block matrix for smaller cutoff values A. Moreover, RG methods have
recently been applied to short-range correlation physics to investigate the relation between a
high- and low-resolution description [160, 161]. The following discussion and all applications
in this thesis focus on the SRG approach.

In general, any anti-Hermitian operator can be employed for the generator in Eq. (2.19),
where the specific form defines the decoupling pattern for the Hamiltonian. The generator
can be expressed in terms of a commutator relation

n(s) = [G(s), H(s)] , (2.20)

with a Hermitian operator G(s) and the flowing Hamiltonian. A widely used choice for G(s)
is the intrinsic kinetic energy operator Ti,;. This choice will lead to the desired decoupling,
as the kinetic energy operator is diagonal in momentum space. We obtain a fix point of
the evolution once the Hamiltonian is diagonal and therefore commutes with Ti,; and the
generator 1(s) = [Tint, H(s)] turns zero. A large variety of generator choices is possible and
has been investigated in the literature, see, e.g., Refs. [162-164].

However, this decoupling is not achieved for free and many-body forces get induced during
the flow. Based on the commutator equation in Eq. (2.19), we induce many-body operators
of higher ranks during the commutator evaluation, with the maximum rank r given by

r([A, B]) = r(A) + r(B) — 1. (2.21)

This can most easily be seen by the schematic example of a two-body force and a two-body
generator in second quantization (see Sec. 3.1 for an introduction to operators in second
quantization and operator products). The result of the commutator reads

{Z a'a'aa, Z aTaTaa} =...+ Z a'alaa + Z a'a'alaaa, (2.22)

where we highlight the induced three-body contribution in red that results from evaluating one
contraction between the operators. Truncating the unitary transformation at a chosen many-
body rank (smaller than the system size A) breaks its unitarity and calculated observables
of higher-particle rank do not remain unchanged by this truncation and consequently show
a resolution-scale dependence on the SRG parameter A\. Nevertheless, observables up to
the chosen many-body rank still remain invariant under the transformation. For instance,
consistently evolving the NN and 3N contributions and applying a truncation at the three-
body level keeps the binding energy in A = 3 system, i.e., the triton, invariant, while
ground-state energies of finite nuclei with mass numbers of A > 3 may show sensitivity
to A. Figure 2.6 shows the invariance of the triton binding energy if all induced terms
are kept up to the three-body level by comparing the triton binding energy as a function
of A for an SRG-evolved NN-only force with and without keeping the induced three-body
contributions, and a consistently SRG-evolved NN+3N interaction with keeping the induced
3N contributions. Consequently, one does not aim for a completely diagonal form of the
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Figure 2.6: Triton ground-state energy as a function of the SRG resolution scale \ for the chiral N2LO
NN interaction of Ref. [165] (EGM) and N2LO 3N forces [149]. Results are shown for the evolved NN-
only interaction (black diamonds), the evolved NN interaction keeping the induced 3N contributions
labeled NN+4-3N-induced (red squares), and the consistently evolved NN and 3N interaction again
keeping the induced 3N contributions labeled NN+3N-full (blue circles) compared to the experimental
value (black-dotted line). Adjusted Figure of Ref. [166] taken from Ref. [72] with data courtesy of
K. Hebeler.

potential in the limit s — oo (A — 0), as induced many-body forces will get significantly
enhanced, but rather evolves to a finite value of s, where the interaction is reasonably soft
and the induced many-body forces are mostly small or of negligible size. Typical values for
soft SRG-evolved interactions are around A = 1.8 fm ™.

In this thesis, we use the SRG to soften the chiral input interactions and obtain potentials at
lower resolution scales. Considering the two interactions introduced in Sec. 2.2, we investigate
both unevolved and consistently SRG-evolved NN+3N forces in momentum space for the
N3LO interaction, which also incorporate the induced 3N contributions [166]. Higher many-
body forces beyond the three-body level, which are induced during the evolution, are neglected.
The 1.8/2.0 EM interaction consists of a mixture of evolved NN and unevolved 3N interactions,
with the NN force being SRG-evolved to A = 1.8 fm~' and the 3N interaction being fitted in
combination with this NN interaction.

2.4 Singular value decomposition

Nuclear many-body interactions are conveniently stored in a relative momentum-space basis
using a discretized Gauss momentum mesh. Especially storing three-body operator matrix
elements, which are important for a quantitative description of finite nuclei and nuclear mat-
ter properties (see, e.g., Refs. [130, 167]), provides a key challenge regarding the required
memory. This becomes even more severe for operator matrix elements stored in a single-
particle basis (see Sec. 3.1), which is the standard input to most many-body basis-expansion
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Figure 2.7: Schematic representation of the SVD approach. The upper panel shows the full SVD
considering all singular values, yielding an exact decomposition of the matrix V. The lower panel
shows the truncated SVD, truncating all singular values beyond rank Rgyp, leading to an approximate
representation of V' indicated by f/, a truncated diagonal matrix Y of dimension Rsvp X Rsvp, and
truncated matrices of left and right singular vectors, L and R, respectively, where we assumed the
initial matrix V' to be of dimension N.

methods. Hence, finding alternative suitable operator basis choices to effectively reduce the
memory footprint of the employed many-body operators would allow for substantial benefits
in practical applications.

In this section, we introduce tensor-factorization techniques, which provide a powerful
tool to approximate high-dimensional objects by sums of low-dimensional ones (see, e.g.,
Refs. [168-170]). This reduces the required storage and possibly lowers the computational
cost for calculations involving the compressed objects. In particular, we present the singular
value decomposition (SVD) following our work in Ref. [171] as one possible application of

tensor-factorization methods to approximate chiral interactions by a low-rank decomposition.

These low-rank interactions discard unimportant information of the full interaction matrix,
given by small decomposition factors of the SVD, and hence significantly reduce the required
storage at the price of a small decomposition error. Applications of the SVD have already been
successfully applied in sensitivity studies of energy density functionals [172], for investigations
of shell-model interactions [173-175], in electrodisintegration studies [176], or as tools for
generalized eigenvalue problems [177]. Moreover, low-rank interactions have also been obtained
based on expansions in Weinberg eigenvalues [148, 178, 179].

The SVD of a matrix V is defined by
V = LYR', (2.23)

where L and R' are the matrices of left and right singular vectors, respectively, and the
diagonal matrix ¥ = diag(s;) contains the set of nonnegative singular values s; in descending
order. The columns of the matrices of left and right singular vectors L and R, respectively,
are orthonormal, i.e., L and R! are unitary matrices. The SVD is a particularly versatile
factorization ansatz because it naturally extends to non-Hermitian and nonsquare matrices
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based on the decomposition using distinct matrices L and R. This is a feature not shared by
some other common matrix decomposition approaches, such as the eigenvalue decomposition
V = QDQ', where Q is a square matrix with columns given by the eigenvectors and D is
the diagonal matrix of eigenvalues, or the Cholesky decomposition V = KK, where K is a
lower triangular matrix. These methods typically require one single matrix and its inverse or
transposed for the decomposition as well as additional prerequisites for V.

In the following, we apply the truncated SVD
V =LYR', (2.24)
where all singular values s; beyond a chosen decomposition rank Rgyp are discarded, i.e.,
¥ = diag(s1, - - -, SReyps 0,5 0) (2.25)

such that only the first Rgyp columns of L and Rgyp rows of Rf need to be stored, indicated
by the tilde on top of the objects in Eq. (2.24). The truncated matrices consequently have
dimensions of N x Rgyp, Rsvp X Rsyp, and Rgyp X N, for L, 3, and R, respectively.
This is schematically shown in Fig. 2.7, where the upper panel shows the decomposition for
the full matrix, taking into account all singular values in ¥, and the lower panel shows the
truncated SVD, considering only the first Rgyp singular values. According to the Eckart-
Young theorem [180], the truncated SVD matrix V provides the best rank- Rgyp approximation
to V in the sense of minimizing

IAVIE =11V = V][, (2.26)

where || - || denotes the Frobenius norm. Comparing the storage requirements of the full
interaction matrix, given by N? for a matrix of dimension N, to the storage requirements of
the truncated factors, given by 2N Rgyp + Rsyp [see Eq. (2.24) and Fig. 2.7], allows one to
define the compression

N2

C = 2.27
fsvo = 9N Rgvp + Rsvp (227)

as the ratio of the initially required storage divided by the storage after factorization. The
higher the compression, the higher the computational savings. However, higher compression
typically comes at the price of inducing higher decomposition errors by truncating at smaller
Rsvp, such that in practice a balance has to be found.

In this thesis, we apply the SVD to chiral NN interactions in a partial-wave decomposed
momentum-space basis, defined as

(p(LS)JTMr|Vaxlp' (L'S)JTMr), (2.28)

with the initial (final) orbital angular momentum L (L’), the two-body spin S, the total-
angular momentum J, whose projection M; we omit as the NN interaction does not depend
on it, and the two-body isospin T" with projection Mr. In particular, we investigate the
magnitude of the singular values as well as the predictions of low-rank chiral potentials
stemming from a truncated SVD for NN phase shifts. We additionally apply low-rank
interactions in the IMSRG in Sec. 3.6 and study their performance for calculations of ground-
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Figure 2.8: Singular values s; of the unevolved (left) and SRG-evolved to A = 2.0 fm~! (right)
EMN 500 interaction of Ref. [56] on a logarithmic scale as a function of SVD rank. We show the
different partial-wave channels 'Sy, 25;-2D;, 3P,, and ' D, in orange, green, blue, and red, respectively,
and consider the potentials at multiple chiral orders from LO to N*LO indicated by different symbols.
In the coupled 25;-3D; deuteron channel, the rank was divided by two in order to account for the
effective doubling of the matrix dimension. Figure taken from Ref. [171].

state energies of finite nuclei. All results shown in this section and in Sec. 3.6 are part of
our already published work in Ref. [171] and we refer to this reference for more details and
further applications.

In Fig. 2.8, we show the magnitude of the singular values s; for the unevolved and SRG-
evolved EMN 500 NN interaction of Ref. [56] at different chiral orders, ranging from LO to
N4LO, and in different partial-wave channels. We observe a rapid fall-off of singular values
down to magnitudes below 1074107 from rank Rgyp ~ 20 on. This behavior is the same in
all partial-wave channels. The rank is effectively doubled in the deuteron channel due to the
coupling of the 351-3D; blocks and we divided the rank by two for a better comparison of the
different partial-wave channels. Moreover, partial waves with higher angular momenta, e.g.,
the 3Py and ' D, channels, generally have smaller singular values. All of the above features
are independent of the chiral order, and no systematic differences arise at different chiral
orders. This shows that the low-rank properties of chiral interactions are not spoiled by the
presence of more complicated operator structures that enter with higher-order pion exchanges
or higher-order short-range interactions. Comparing the two panels in Fig. 2.8 indicates that
the SRG-evolution does not affect the singular value behavior either. Although momentum-
space matrix elements are different for the unevolved and SRG-evolved interaction, the SRG
has little effect on the SVD fall-off of singular values.

As a next step, we benchmark the predictions of low-rank nuclear potentials in the two-
body system and investigate NN scattering phase shifts obtained by solving the Lippmann-
Schwinger integral equation for the truncated SVD interaction V'

(p(LS)J|T|p'(L'S)J) = (p(LS)J|V|p'(L'S)J)

00 (7 " " 1T/ 2.29
+% 5 /O dg g2 PELSIVIg(L §>j>q<2q<jS>J|Trp (L'S)J) (2.29)
I72 a7 T LE
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Figure 2.9: Nucleon-nucleon phase shifts of the N°LO 500 interaction as a function of the laboratory
energy Fi.p, for the partial-wave channels 1Sy, 25y, 2Dy, 2Py, and ' D, as well as the mixing angle
€1 for the deuteron channel in the bottom left panel. We show results for different SVD ranks of
Rgyp = 1-5 indicated by different line styles and colors compared to exact results given by the black
solid line. Figure taken from Ref. [171].

where T denotes the scattering 1" matrix that is evaluated right-on-shell, i.e., F = %, and

we suppress the dependence on the isospin and its projection for brevity.

In Fig. 2.9, we compare NN scattering phase shifts for different low-rank approximations
of the unevolved N3LO 500 interaction to exact results up to laboratory energies of Eyp, =
300 MeV, using the same set of partial-wave channels as in Fig. 2.8. For very small SVD
ranks, i.e., Rgyp = 1 or 2, scattering phase shifts obtained from the low-rank potentials
show significant deviations compared to the exact calculations in the shown energy range.
By including more components in the decomposition, the deviation to the exact result is
systematically reduced, and at ranks Rgyp = 5 we observe a very quantitative reproduction
of the exact phase shifts over the entire energy regime. The difference Ad to exact results for
Rsyp = 5 is below 1 degree in all partial-wave channels, with only noticeable differences at
higher Fj,1,. In the deuteron channel, we also show the mixing angle €1, which is sensitive to
all contributing subblocks in the 351-3D; channel (including the off-diagonal 38D, and 3DS;
blocks with L =0, L’ =2 and L = 2, L' = 0, respectively). For energies Ep,p, > 150 MeV, the
difference to the exact mixing angle is about Ae; = 1 degree for Rgyp = 5. When increasing
the rank to Rgyp = 15 (not shown in Fig. 2.9) virtually exact results are obtained. These
benchmarks clearly demonstrate the low-rank properties of the chiral two-body interaction.



In-Medium Similarity
Renormalization Group

In this chapter, we introduce the nonperturbative IMSRG as a versatile and powerful tool
to solve the nuclear many-body problem for a large range of mass numbers from light up to
medium-heavy nuclei of A ~ 132 [49, 50, 55]. The IMSRG aims at decoupling the ground state
from all excited states by a continuous sequence of unitary transformations of the normal-
ordered Hamiltonian. It therefore allows to study ground- and excited-state observables
of finite nuclei in a computationally efficient way. Considering all A-body operators in an
A-body system would result in an exact solution of the many-body problem. However,
the computational challenges involved in treating all A-body operators make a complete
consideration intractable, and a reasonable truncation scheme of including only a restricted
number of many-body operators is required. Practical calculations in converged model-space
sizes are currently limited to the normal-ordered two-body level for the operators and allow for
a mild polynomial scaling in mass number. The IMSRG in a given truncation scheme belongs
to the class of approximate many-body methods (see Fig. 1.1) accounting for additional
correlation effects on top of an A-body reference state, such as CC, SCGF, and MBPT theory.
In this thesis, we focus on the application to closed-shell nuclei with a single Slater determinant
reference state and limit our studies to ground-state observables. Extensions of the closed-
shell single-reference IMSRG in terms of the valence-space IMSRG (VS-IMSRG) [32, 70, 94],
the multi-reference IMSRG (MR-IMSRG) [72], and the Bogoliubov IMSRG (BIMSG) are
however capable of targeting open-shell systems, with both the VS- and MR-IMSRG being
successfully applied to finite nuclei (see, e.g., Refs. [68, 75, 181, 182]). Additionally, the
diagonalization of an effective valence-space Hamiltonian in the VS-IMSRG allows for the
study of excited-state observables, such as excitation energies or electromagnetic transition
strengths.

The structure of this chapter is as follows. In Sec. 3.1, we discuss the general representation
of operators and states in second quantization as well as the framework of normal ordering
with respect to a chosen reference state in a single-particle basis. The Hartree-Fock approach
is outlined in Sec. 3.2, and we give a short overview of three selected many-body methods:
the NCSM, CC theory, and MBPT in Sec. 3.3, before focusing in more detail on the IMSRG
in Sec. 3.4. We introduce the commonly employed truncation scheme of the ab initio IMSRG
at the two-body level, the IMSRG(2), give the corresponding fundamental commutators, and
show possible generator choices to obtain the desired decoupling of the ground state. Finally,
we conclude this chapter by discussing the extension of the IMSRG many-body truncation to
the next order by including three-body operators in the IMSRG(3) in Sec. 3.5.
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3.1 Second quantization and normal ordering

In this section, we introduce the basic concepts of operators and many-body states in a
second-quantized form and discuss the framework of normal ordering with respect to a chosen
reference state. The fermionic creation operator ' and annihilation operator a either create
or destroy a particle, respectively, in a specified single-particle state,

a}0) = [p) , (3.1)
Oq Ip) = pq 0) ,
where |0) is the vacuum state containing no particles and |p) is a single-particle state with

one fermion in the state indicated by the collective index p. The operators obey the anticom-
mutation relations given by

{a;r,, aq} = Opq s (3.3a)
{a},al} =0, (3.3b)
{ap,aq} =0. (3.3¢)

Making use of the creation and annihilation operators, we formulate an A-body state |®) in
the Hilbert space constructed by the product of A single-particle states, indicated by a string
of creation operators acting on the vacuum

A
@) = |p1p2---pa) = aj,ab, --af  10) = [ af, 10) . (3.4)
i=1

Such an antisymmetrized product state of single-particle states is called a Slater determi-
nant [183], with the antisymmetry immediately following from the anticommutation relations
in Eq. (3.3). In addition to the single-particle and many-body states, any general A-body
operator can be represented in second-quantized form. For example, a two-body operator,
such as the two-body interaction V(2| in second-quantized form reads

1
v = W};:S (pg| V@ |rs) a;a;asaT ; (3.5)

where we assume that the matrix elements (pg| V2 |rs) = Vs are fully antisymmetrized.
The formulation naturally extends to three- and higher n-body operators by the prefactor
(1/n!)? and the corresponding n creation and n annihilation operators together with the
n-body matrix elements. We can thus write a three-body interaction V®) as

1
V(S) _ % Z <pq7a’ V(3) \stu> a;a(gaiauatas . (3.6)

pqrstu

The two-body operator in Eq. (3.5) [as well as three-body operator in Eq. (3.6)] is already in
normal-ordered form, denoted by sorting all creation operators to the left and all annihilation
operators to the right-hand side. This is accomplished by using the anticommutation relations
in Eq. (3.3). The string of creation and annihilation operators normal-ordered with respect
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to the vacuum always vanishes,

(0] : aLa;aSaT :10) =0, (3.7)
due to Egs. (3.1) and (3.2), where the colons indicate the normal ordering of the string of
operators.

A more generic representation of normal-ordered operators can be obtained by performing
the normal ordering with respect to a chosen reference state |®) instead of the vacuum state
|0), leading to an in-medium optimized form of the operator [184]. In general, this can be any
A-body state, but in this thesis we focus on single Slater-determinant reference states, as e.g.,
an HF reference state (see Sec. 3.2). Employing more sophisticated reference states, such as
a multi-reference or symmetry-breaking reference state in the normal ordering leads to more
complicated expressions (see, e.g., Refs. [72, 185, 186]) and will not be discussed in detail
in this thesis. Normal ordering with respect to a given reference state is obtained by using
Wick’s theorem [187], summing over all possible single, double, ..., and full contractions,
where one contraction is defined as the reference-state expectation value of the contracted
operators
iy = (@] ala, |2) (38)
For the case of one pair of creation and annihilation operators we just have one possible
contraction and consequently Wick’s theorem gives

1
a};aq =: azaq ) —i—a;f,aq, (3.9)

with the colon index indicating the normal ordering with respect to the reference state |®).
Using Wick’s theorem for a generic string of A creation and A annihilation operators, we are
able to obtain the normal-ordered expression

Toal oot SN T .
Oy Oy~ * oy Ay~ ** GgyQgy = 2 Ay gy =~ Ay Ggy " Qo Oy (D)
ot t !
+ Z COp Apy t Ay, Qgy 00 QgaGgy 2| @)
single contractions
ko -
+ Z Slp Gpy t Ay, Qgy t 0 Aga Gy 2| D) (3.10)
double contractions
+ ...
PR ; 1
+ Z FOp Opy = ApQqg " Qga gy 2 D)
full contractions
where the sums indicate all possible single, double, ..., and full contractions. Note that

the contractions are just defined for neighboring operators and we have to anticommute the
corresponding operators next to each other in the normal-ordered string, leading to additional
phases in the evaluation. The same arguments as for the vacuum normal ordering in Eq. (3.7)
yield

(] a;gla;gQ : --a;Aan Qg iy |[P) =0 (3.11)

for an operator normal ordered with respect to the reference state |®). We will drop the

35



36

CHAPTER 3 — IN-MEDIUM SIMILARITY RENORMALIZATION GROUP

reference state index of the normal-ordered operators for brevity in the following. By apply-
ing the anticommutation relation for the contractions, we can determine two nonvanishing
contributions for the reference state |®)

1
a;;aq = <‘1>|a;;aq|‘1>> = Ypq > (3.12&)
M
apal = (®|ayal|®) = (P9[0, — alay|®) = 6pg — Ypq (3.12b)

where 7,, is the one-body density matrix, and two vanishing contributions
1
apaq = (Playay|®) =0, (3.13a)

n
Tal = (®|alal|®) =0, (3.13b)

with the two terms in Eq. (3.13) vanishing independently of the reference state. Working in the
eigenbasis of the one-body density matrix ~,, = n,d,, with occupation numbers n, € {0,1}
given by the eigenvalues, allows for simplifications of the following expressions. We can
distinguish two classes of single-particle states, hole and particle states, depending on their
occupation number in the reference state

1, if pis a hole state,
np = e . (3.14)
0, if pis a particle state.
The two nonvanishing contractions in Eq. (3.12) in the eigenbasis can be written as

[
a;ﬂaq =Np0pq , (3.15a)
e
apay =0pg(1 —np). (3.15b)

The contractions in Egs. (3.15a) and (3.15b) only contribute for hole and particle states,
respectively, due to the corresponding occupation number. We will come back to the eigenbasis
of the one-body density matrix in more detail when defining the natural orbital single-particle
basis in Sec. 4.1.1.

A key factor when solving the many-body Schrédinger equation and deriving the IMSRG
flow equations is the intrinsic Hamiltonian. In vacuum normal order, the Hamiltonian, here
up to the three-body level, is given by

H= (1 — D TW + 7@ 1 v@ L y© (3.16)

with the two-body interaction V()| the three-body interaction V), and the one- and two-
body parts of the kinetic energy 7™ and T®@, respectively, defined by

2

T =5 P (3.17a)
—~ 2M

T® = —% pﬁ?q : (3.17b)

p<q
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where p, and p, are the momenta of particles p and g, respectively, and M is the nucleon
mass. In the following, we write all operators in second quantization and utilize Wick’s
theorem to derive the normal-ordered intrinsic Hamiltonian with respect to a single-reference
state. The application of Wick’s theorem is exemplarily illustrated for the normal ordering
of the two-body interaction V(?), employing the anticommutation relations of Eq. (3.3) and
the contraction definitions of Eq. (3.15):

1
1 Zqursa;ﬂaj]aSar

pgrs

1
:1 Z Vogrs ajoa;asar :

pqrs
1 - —
pqrs
1 Al
+ Z Z vaqrs ( : a;agasar 4 a;r,aj]asar :>
pqrs

1

pars pgs

where we used that the matrix elements Vs = (pg| V) |rs) are fully antisymmetrized to
simplify the four (two) terms arising from the single (double) contractions. The final three
terms in the last row contribute to the normal-ordered two-, one-, and zero-body part of
the Hamiltonian, respectively, as indicated by the corresponding number of normal-ordered
creation and annihilation operators.

Applying Wick’s theorem to all operators on the right-hand side of Eq. (3.16), the complete
normal-ordered Hamiltonian up to the three-body rank reads

H = E—i—prq al O prqm aT ayasa, : + Z Wgrstu © @}, ala Tauatas 0,

PQ"'S pqrstu

(3.19)

with the normal-ordered zero-, one-, two-, and three-body parts E, fi;, I'ijri, and Wijkimn,
respectively, given by

1 2
- (1 B A) Z Tp T'Lp +5 Z ngq}))q + V;M]pq npnq + = Z pqrpqrnpnan 5 (320&)
P pqr
1 1 1 5
p Pq
2 2 3
T1231 = Tiahy + Vighs + > ‘/1(2;33410”1? ; (3.20¢)
p
Wiossso = Viz 3.20d
123456 123456 » ( . )

where external indices of the Hamiltonian are indicated by numbers and internal indices by
p, q, and r. We emphasize that the normal-ordered zero-, one-, and two-body part contain
contributions from the three-body interaction V) due to the normal ordering.
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The product of two normal-ordered operators can be calculated by applying the so-called
generalized Wick theorem to evaluate contractions between two normal-ordered operators.
The product of an A- and B-body operator, both normal-ordered with respect to the same
reference state, can therefore be expressed as

el T —— T .
Dy Oy Gy Qg X DAL ) Oy Oy
— AB . f Tl T .
== ray, ...a},al .0 G, Qg asp .. Qs
AB ol t oot f -
+(—1) Z Dy A A A Oy Oy O - Oy
single contractions (3.2 1)
AB ot at at ! L
+(—1) Z SQp Gy AL Ay Gy Qg G - Oy

double contractions

+.,

with contractions only being evaluated between the operator strings of the A- and B-body
operator and not within the same operator. Ordering all B creation operators of the initial B-
body operator to the left past the A annihiliation operators of the A-body operator results in
the phase prefactor (—1)AB in the above equation. Multiplying normal-ordered operators by
using the generalized Wick theorem will become important when we derive the flow equations
for the IMSRG framework in Sec. 3.3.

3.2 Hartree-Fock method

The Hartree-Fock method is a variational mean-field approach to determine the single Slater-
determinant approximation to the ground-state wave function that results in a minimization
of the ground-state energy (see, e.g., Ref. [188]). Each nucleon moves in a mean-field poten-
tial given by the average interaction with all other nucleons and no explicit two-, three- or
higher-body interactions among the single particles are considered. The “best” single Slater
determinant is found using the variational principle, leading to the lowest energy expectation
value in the space of single Slater determinants. The HF reference state therefore provides
a good starting point for any many-body calculation that performs a correlation expansion
around a single-reference state. Hartree-Fock approaches are not only limited to applications
in nuclear theory but are also standard methods in other research fields, e.g., quantum chem-
istry. In the following, we introduce the main concepts and the application of the HF method
to nuclear theory (for finite nuclei).

The exact many-body ground-state wave function |¥) minimizes the energy functional

Euw—w,

(3.22)
where the denominator ensures the normalization. In general, the ground-state wave function
can be very complicated in structure depending on the studied system and is given by a
superposition of many Slater determinants. Considering the many-body state in terms of a
single Slater determinant is therefore only an approximation and the energy functional for
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the approximate state |W#PP'%) i given by

<\I/approx ’ H | \Ilapprox>

E [ | ‘;[Iapproxﬂ = <\I/approx ‘ \I/approx>

(3.23)

We aim to solve for the single Slater determinant |¥?PP**) = |HF) with the lowest energy
expectation value or, in other words, find the wave function that minimizes the energy
functional (3.22) in the space of single Slater determinants.

The Slater determinant for A nucleons is constructed from the corresponding number of
single-particle states in the HF basis

A
HE) = |p1p2---pa) = [[ ¢}, 10) , (3.24)
i=1

where each single-particle state in the HF basis can be expressed in terms of the underlying
chosen single-particle basis. Most commonly, the harmonic oscillator (HO) basis presents an
appropriate choice. Expanding the single-particle HF states in the HO basis gives

P ur = Z Cop |‘I>HO ) (3.25)

with the expansion coefficients Cy, of the basis transformation

Cyp = 1o (alp) g (3.26)

where the subscripts HO and HF identify states in the corresponding single-particle basis and
the creation operators c}T, in the HF basis and azg in the HO basis are given by

c; = Z qua; ) (3.27a)
q

al =3 Crel, (3.27b)
p

respectively. The transformation is unitary, with C*C' = 1, and consequently the resulting HF
single-particle states constitute an orthonormal basis. We used a collective label to represent
the quantum numbers of the single-particle states in the above equations with

P)uo = In(ls)impmi, )yq (3.28)

where n denotes the radial quantum number, [ the orbital angular momentum, s = 1/2 the
spin, j the total angular momentum with its projection m, = —j,...,j, and my, the isospin
projection distinguishing proton and neutron states with my, = +1/2 and m;, = —1/2,
respectively. Note that the unitary transformation from the HO to the HF states only
mixes radial excitations and all other quantum numbers are identical for the single-particle
states [p)yo and |p)yp, due to the spherical symmetry and conservation of the total angular
momentum exploited for all calculations in this thesis.

In order to solve for the HF Slater determinant |HF) that minimizes the energy functional
in Eq. (3.23), we use the nuclear Hamiltonian in vacuum normal order [compare Eq. (3.16)]
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up to the two-body part written in second-quantized form

H:ZH(U. apaq : +- Z WS. a §asar < (3.29)
pd

pqrs

with the one-body matrix elements H}%) and the antisymmetrized two-body matrix elements
nggls. The one- and two-body density matrix for the HF Slater determinant are defined by

Ypq = (HF| a;[,aq HF) (3.30a)
Ypgrs = (HF| a;agasar |HF) = YqsVpr — YarVps (3.30b)

respectively, where we assumed that the HF state is normalized (HF|HF) = 1. The two-
body density matrix factorizes for the case of a single Slater determinant by using Wick’s
theorem into a combination of one-body density matrices. Using the creation and annihilation
operators c;, and ¢, in the HF basis based on Eq. (3.27a), the one-body density matrix in
Eq. (3.30a) can be rewritten in terms of the transformation coefficients:

’qu Z qs HF’ CS ‘HF Z qz ) (331)

where we assumed that the one-body density matrix is diagonal in the HF basis, with
Ypq = Nplpg and eigenvalues (occupation numbers) n, = 1 for hole and n, = 0 for particle
states. Due to the occupation number, the sum on the right-hand side of Eq. (3.31) only
runs over hole states i, with n; = 1 occupied in the reference state. Note that the occupation
numbers are defined by n, with the single-particle index p, not to be confused with the radial
quantum number n of the single-particle state defined in Eq. (3.28). The one-body density
matrix has to fulfill the constraints of Hermiticity and idempotency leading to

=9, (3.32a)
v =, (3.32b)

Using the above definition of the density matrices, we rewrite the functional in Eq. (3.23)
for the HF Slater determinant to a functional of the one-body density matrix by multiplying
|HF) from the left

Z q qu Z rqs%"s’}/pq ) (3.33)
2 Jars

where we used that the two-body matrix elements are antisymmetric and relabeled the indices
of the two-body interaction.

The variational principle with small variations § of y is employed to find the single-particle
states that construct the HF Slater determinant leading to the lowest energy expectation
value

SEy]=E[y+dy]—-E[]. (3.34)
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By keeping only terms up to linear order in ¢, Eq. (3.34) reads

Z &Yp +5 Z prqs '77“55’qu +(5’Yrs 'qu)

pqrs
= Z Hu)d’)’ + Z rqs’}’rs57pq
pars (3.35)
Z( pq )+ Z rq37r5>57pq

= Z hpq 5’qu

We again employed the antisymmetry of the matrix elements H}(,,Q%s and defined the one-body
HF mean-field operator h [v]

Whl = (H ”+Z Drsvrs ) - (3.36)

pq

The one-body HF operator consists of the one-body part of the Hamiltonian and an effective
one-body potential based on averaging over the two-body interaction of all constituent nucleons
by summing over the density. This can be straightforwardly extended to three- and higher-
body terms, based on the many-body rank of the starting Hamiltonian in Eq. (3.29). We
briefly discuss the inclusion of three-body forces at the end of this section.

In order to minimize the energy functional and obtain the HF Slater determinant, we
solve the stationary condition

SE[y] =0, (3.37)

resulting in
0= Z g [7] 0%pq - (3.38)

The variation of the density matrix v + 4+ still has to fulfill the same idempotency and
Hermiticity constraints as the original density matrix in Eqs. (3.32a) and (3.32b) with the
idempotency (v + §v)? = v + §v leading to

Oy =0y + 6y . (3.39)

Multiplying v or (1 — «) from left and right on both sides of Eq. (3.39) and using the
idempotence of the density matrix results in

vy v =0, (3.40a)
(1=7)6v(1=~) =0, (3.40b)

indicating that variations for the hole-hole and particle-particle block vanish based on the
occupation number n,, = 1 and n,, = 0 for hole and particle states, respectively. Consequently,
only variations for particle-hole and hole-particle combinations contribute to the sum in the
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stationary condition in Eq. (3.38)

0= Z hia [7] 7ia + H.c. | (3.41)

where, as before, we used the notation of i and a running over hole and particle indices,
respectively, and H.c. stands for Hermitian conjugate. This equation can be restated as a
commutator expression of the one-body HF operator and the one-body density matrix

[h[v],7] =0, (3.42)

showing the existence of a common eigenbasis for h[y] and . We formulate the eigenvalue
problem for h[y], allowing us to solve for the corresponding eigenvectors and eigenvalues

A P e = p [Phur (3.43)

with the HF single-particle state |p);r and the eigenvalue €, of p given by the so-called
single-particle energy (SPE). The associated eigenvectors correspond to the transformation
coefficients (), of the single-particle state from the HO to the HF basis, as outlined in
Eq. (3.25). The SPEs are given by

2
ep=HY +>S HE (3.44)
i
and the total HF energy by
1
B =Yy S A, (349
i ij

where again the indices 7 and j run over occupied states in the reference state. Note that Fyp is
not simply given by the sum of the single-particle energies but additionally incorporates effects
of the two-body interaction. The self-consistent eigenvalue problem in Eq. (3.43) can be solved
by iteration, with the one-body HO density matrix as a possible starting point. The iteration
procedure is as follows: We first update the one-body HF operator in Eq. (3.36) based on the
previous one-body density matrix and diagonalize hly| afterwards. The resulting eigenvalues
correspond to the new SPEs and the eigenvectors to the transformation coefficients of the
single-particle states in Eq. (3.25). Based on the new transformation coefficients we construct
the updated one-body density matrix as shown in Eq. (3.31), and start the next iteration step.
These steps are iterated until a convergence criterion is reached. Most commonly, the change
of the SPEs in each iteration step is used as a reasonable indicator to identify a convergence
threshold. Typical values of the norm difference, once convergence is reached, are of the order
of ~ 1078 MeV. The initial Hamiltonian (in HO basis) can be transformed to the HF basis
by applying the unitary transformation, given by the final eigenvectors, to the one-, two-,
and any possible higher-body part. Obviously, the one-body part, also referred to as Fock
matrix, of the HF Hamiltonian is diagonal. A basis that diagonalizes the Fock matrix is called
canonical basis. By solving for the HF basis, we additionally diagonalize the one-body density
matrix simultaneously. Such basis choices that lead to a diagonal one-body density matrix
are called natural orbitals. Consequently, the canonical and natural orbital basis coincide for
the HF approach.
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One advantageous property of working in a canonical basis is given by Brillouin’s theo-
rem [188] stating that all 1plh excitations of the reference state vanish. The matrix elements
for such excitations are given by

fia = (HF| H : ala; : [HF) = (HF| H [HF?) , (3.46)

with the singly-excited HF Slater determinant |HF{), also known as 1plh excitation. These
matrix elements are zero in the case of a canonical basis with a diagonal Fock matrix, as
Eq. (3.41) ensures that all off-diagonal matrix elements h;, and h,; are 0. The HF Slater
determinant therefore does not mix with any singly-excited states. Nevertheless, couplings
off higher-excited states to other single excitations, e.g., (HF}| H |HF§‘;’> still contribute. Bril-
louin’s theorem is especially beneficial for many-body perturbation theory applications in
a canonical basis, e.g., an HF basis as discussed in Sec. 3.3.3, by reducing the number of
contributing expressions at each order based on the vanishing one-body part for singly-excited
states.

The above derivation can be straightforwardly extended to consider three-body interactions
by keeping the three-body contribution H®) for the Hamiltonian in Eq. (3.29) and applying
similar arguments as for the two-body interaction. The additional three-body density matrix
also factorizes for a single Slater determinant, yielding

Ypgrstu = <HF’ a;,agalauatas ‘HF>

(3.47)
= 'YTU('th'Yps - ’VqS'th) + Yrt (’VqS’Vpu - ’Yqu’YpS) + Vrs ('YqU'th - 'th'Ypu) )

and the HF mean-field operator gets an additional contribution of the three-body interaction
averaged by the sum over two one-body density matrices

Wl = (Hf, + 20 Highes + 5 H i) (3.48)

Prq rstu

The resulting single-particle energies and total HF energy considering up to three-body
interactions are given by

(3)

Ep - pp + Z plpl Z le]pl] ? (349)

EHF - Zgl Ty Z H’L]lj Y Z 74jkl]k I (350)
zgk

respectively.

3.3 Selected many-body approaches

Even though the IMSRG is the workhorse for most of the results presented in this thesis, we
briefly outline three selected many-body methods here that will be considered in this thesis
and offer additional benchmark possibilities, consistency checks, as well as comparisons of
computational scaling and final results. We first discuss the NCSM as an exact method for
solving the nuclear A-body problem. Given the computational costs and exponential scaling
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the accessible mass numbers within this method are, however, limited to light nuclei. In
contrast to that, CC theory and MBPT (in a given truncation scheme) are approximate
many-body methods that perform an expansion of the wave function and nonperturbatively
and perturbatively, respectively, build in correlation effects on top of a reference state. These
methods have the key advantage that they scale polynomially in mass number, enabling the
description of systems of up to A ~ 132 interacting nucleons. The HF solution given in
Sec. 3.2, serves as a good starting point for most of such many-body expansion methods
that are based on a single Slater-determinant reference state, starting from the lowest energy
expectation value.

3.3.1 No-core shell model

A direct way to solve the nuclear many-body problem is to construct the Hamiltonian in a
basis of many-body states, given by the reference state and its particle-hole excitations, and
diagonalize the Hamiltonian. This results in an exact solution of the many-body Schrodinger
equation in terms of the eigenvalues and corresponding eigenstates of the A-body Hamiltonian.
These can then be used to calculate observables, e.g., ground- and excited-state energies. In
the NCSM [20, 23], this is typically done by using a finite harmonic oscillator single-particle
basis with a truncation of the many-body model space Np.x that limits the maximal number
of single-particle excitations on top of the minimum excitation number Ny, of the target
nucleus

A
ZQni + l; £ Nnax +Nmin7 (351)
=1

with the radial quantum number n and the orbital angular momentum [ of orbital i. The
minimal excitation number depends on the number of particles and is, e.g., given by Ny, = 0
for “He or Nyin = 8 for '2C. All particles are treated as active, meaning that they can be
excited to any single-particle state allowed by Npya.x. This is indicated by the term “no-
core” and the summation bound from ¢ =1 to i = A in Eq. (3.51), in contrast to standard
shell-model approaches, where typically only the valence particles on top of a static core
are active. It is important to note that the Ny, truncation of the many-body model space
limiting the single-particle excitations is different from the truncation of the single-particle
basis emax = (21 + l)max that limits the number of single-particle states, which will be used
for the IMSRG in Sec. 3.4. The NCSM is a variational method and therefore the binding
energy increases for increased basis truncation Ny .y, allowing for an extrapolation to infinite
basis size and a final Np,x-independent result. On the other hand, a major drawback of the
NCSM is its exponential scaling with system size, leading to rapidly growing basis dimensions
for increased mass numbers. Even though one does not perform the full diagonalization
and is only interested in the first (few) smallest eigenvalues, diagonalization approaches
based on Krylov subspace methods, e.g., the Lanczos algorithm [189], are still fundamentally
limited by the basis size. Hence, the NCSM is only applicable to rather light systems with
mass numbers around A ~ 12. Importance-truncation techniques, which select the most
important configurations in the many-body space and diagonalize the Hamiltonian in the
subsequent subspace, have pushed this boundary and enabled calculations of mass numbers
up to A ~ 25 for the importance-truncated NCSM (IT-NCSM) [21, 190]. We will come back
to the topic of importance truncation when discussing its general ideas in more detail and
possible applications to the IMSRG in Sec. 5.
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3.3.2 Coupled cluster theory

Coupled cluster theory, introduced in the 1960s in Refs. [191-194], has undergone a revival
in nuclear theory and has been with great success applied to the ab initio calculation of
atomic nuclei [28, 29, 74]. The many-body wave function for the solution of the many-
body Schrédinger equation is derived by an exponential ansatz, accounting for particle-hole
excitations on top of a chosen reference state |®)

[Wec) = el [D) (3.52)

with the many-body wave function |¥cc) and the cluster operator T’ = TM + 72 4 4 7(A)
containing up to A-body contributions in an A-body system. The individual contributions,
here shown up to the three-body operator T®), are defined by

1 1
T = Ztm : a:rlai : +1 Ztubij : alalajai : —i—% Z tabeijk - alaZaiakajai +..., (3.53)
at abij abcijk

with the so-called cluster amplitudes given by the matrix elements ¢,._; . for the corresponding

many-body rank and indices i, j, k, ... (a,b,c,...) running over hole (particle) states. Note
that the cluster amplitudes are antisymmetric under the exchange of indices in the hole and
particle space separately. From Eq. (3.53) it is clear that the cluster operator generates 1plh,
2p2h, three-particle-three-hole (3p3h), and higher particle-hole excitations of the reference
state, defined by \@Zb) =: aLaZ ---aja;--- : |®). In practice, the inclusion of all particle-
hole excitations up to the A-body level is unfeasible and truncating the cluster operator to
a limited number of particle-hole excitations gives rise to different truncation schemes of
CC theory. By truncating T after the 2p2h level, we obtain CC with singles and doubles
(CCSD), while incorporating the 3p3h term yields CC with additional triples (CCSDT). Due
to the tremendous computational requirements for the full inclusion of triples excitations
in CC theory, calculations with full triples effects are currently still unfeasible for mid-mass
applications. However, various techniques to approximately include triples effects have been
derived, e.g., by iterative and noniterative triples [195-198]. Even if the cluster operator T is
truncated at the 2p2h level, as is done in CCSD, the exponential ansatz of the transformation
in Eq. (3.52) mixes arbitrarily high particle-hole excitations to the reference state. This
can be easily seen by expanding e’ in terms of a Taylor series that generates particle-hole
excitations of the reference state beyond the 2p2h level.

A key object in CC theory is the similarity-transformed Hamiltonian, motivated by the
transformation of the wave function in Eq. (3.52), given by

Heo =e THe™ . (3.54)

Here H is the normal-ordered Hamiltonian with respect to an A-body product reference
state, most commonly a single Slater determinant, e.g., an HO or HF reference state. The
transformed Hamiltonian Hcc, or so-called coupled cluster effective Hamiltonian, is evaluated
by applying the Baker-Campbell-Hausdorff (BCH) expansion using nested commutators

Heo :H+[H,T]+%[[H,T],T]+%[[[H,T],T],T]+%[[[[H,T],T],T],T}+... ,
(3.55)
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Figure 3.1: Initial Hamiltonian H (left) compared to the similarity transformed CC Hamiltonian
Hce (right), which indicates the decoupling of the reference state in the first column and the non-
Hermiticity of the final operator by the remaining couplings in the first row. Note that the two-body
Hamiltonian here only couples (n £ 2)p(n + 2)h states. Figure adapted from Ref. [31].

where the series terminates naturally after a given order, as the individual contributions of
T commute. Furthermore, only connected diagrams contribute in the above commutator
expansion, making CC a size-extensive many-body method, meaning that calculations scale
linearly in mass number A.

Depending on the many-body truncation of the operators H and 7', the series truncates
after fourfold (sixfold) nested commutators for the case of two-body (three-body) operators,
corresponding to CCSD (CCSDT). This is in contrast to the application of the BCH series
in the Magnus approach of the IMSRG, which is discussed in Sec. 3.4.4, where a convergence
threshold has to be set in order to truncate the BCH series. Note however that —T # T, and
consequently the transformation is not unitary and the resulting transformed Hamiltonian
Hce is non-Hermitian. Nevertheless, the transformation leaves the (energy-)eigenvalues
invariant.

The ground-state wave function is obtained by decoupling all particle-hole excitations for
the transformed Hamiltonian, which in the case of CCSD read

(®le THeT |0) = E, (3.56a)
(@ e THeT |®) =0, (3.56b)
(@l THe" |®) =0, (3.56¢)

where E is the ground-state energy corresponding to the eigenvalue problem Hel |@) =
EeT |®). The above system of coupled nonlinear equations, also called amplitude equations,
has to be solved to obtain the cluster amplitudes of T for the desired decoupling. This is
accomplished by iterative approaches. The resulting decoupling for the CC Hamiltonian is
schematically shown in the right panel of Fig. 3.1. While the left column clearly indicates
the decoupling of the reference state from 1plh and 2p2h excitations as demanded in the CC
equations (3.56), the first row shows the remaining couplings to particle-hole excitations due
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to the non-unitarity of the transformation. Identifying the various contributions that arise by
solving the CC equations, one can show that CCSD is complete up to third order in MBPT
while additionally nonperturbatively incorporating many diagrams of higher order [199].

3.3.3 Many-body perturbation theory

For perturbative interactions, the HF solution already provides a good approximation to the
exact solution of the many-body problem and the remaining (small) correlation effects can be
accounted for in a perturbative way. This is the main ansatz for (many-body) perturbation
theory, where the Hamiltonian is split into an unperturbed part Hy and a perturbation H;
with the auxiliary dependence on the parameter A

H = Ho+ \H; . (3.57)
The exact unperturbed solution to the many-body problem is known and given by
Hy |(I)n> = E’r(LO) |(I)n> ) (3.58)

where |®,,) is the unperturbed wave function and given by the reference state. For example,
|®g) = |®) can be an HO, HF, or natural orbital single Slater-determinant reference state.
The exact solution to the many-body Schréodinger equation for the full Hamiltonian is given
by

H |\I}n> = En |\Ijn> ) (359)

where |U,,) is the n-th eigenstate of the system. We will focus on ground-state observables
here and therefore limit the discussion to the ground-state wave functions and energies by
omitting the index n = 0 in the following.

We use the power series ansatz

E=Y \EW, (3.60a)
p=0

) =" N (el (3.60b)
p=0

for the exact energy and many-body state, respectively, and set |[¥(?0)) = |®) to the unper-
turbed wave function at p = 0 with intermediate normalization

(®T) =1. (3.61)

In practical calculations, the series in Eq. (3.60) are truncated at finite order and we consider
MBPT energy corrections up to third order in this thesis. Higher-order contributions are
expected to give only small corrections when using soft (perturbative) interactions. We define
the projection operators P and () on the reference state and the residual states, respectively
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by

P =) (®], (3.62a)

Q=1-P=) |0,) (D], (3.62b)
n#0

which give P |®) = |®) and @ |®) = 0 for the reference state. Applying the operator 1 = P+Q
to the exact wave function yields

) =[2) +Q[¥), (3.63)
and subsequently multiplying |®) to the Schrodinger equation (3.59) from the left results in

(@ E|9) = (@] H|®) + (3| HQ|V) | (3.64a)
E = B + (3| HQ|V) (3.64b)

where we defined the reference state energy F,..r as the reference state expectation value of the
full Hamiltonian By, = (®| Hy |®) 4 (®| Hy |®) = E(©) + EM. The expansion of the energy
correction in MBPT is commonly done for AE = E — FE,o. By using a Slater-determinant
reference state, the difference AFE corresponds to the correlation energy of the system that is
missing on top of the reference state energy F,..r to obtain the exact energy.

The specific splitting into Hy and H; in Eq. (3.57) gives rise to different MBPT partitioning
schemes. Most commonly, the partitioning is performed with Hy being the diagonal one-body
operator of the Hamiltonian, also referred to as the diagonal case of perturbation theory,
which may results in the so-called Mgller-Plesset (MP) partitioning, which will be used for
all perturbative energy and state corrections for the rest of this thesis. Using this choice of
partitioning, the unperturbed Hamiltonian can be written in its eigenbasis as

Hy =Y epalap, (3.65)
p

with the SPE ¢, of orbital p given by the diagonal elements of the Fock operator €, = f,.
An alternative partitioning, which will not be further discussed here, is given by the Epstein-
Nesbet choice, where the diagonal part of the Hamiltonian in a given many-body basis is
chosen for the unperturbed Hamiltonian H.

One can use Rayleigh-Schrodinger perturbation theory and the many-body resolvent
operator

Q |Pn) (P
R= o =Y o 3.66
E© — Hy 7;0 EO — gO (360

to obtain the formal expressions of the energy and wave function corrections. We just give
the final results here and refer to Ref. [199] for the technical and detailed derivation. The
power series ansatz in Eq. (3.60) using the resolvent operator, Q? = Q for the projection
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operator, and A — 1 can be rewritten to

) = i (R, — AE))" |3) | (3.67a)
n=0

AE = i (@| Hy(R(H, ~ AB))" @) (3.67b)
n=0

for the wave function and the correlation energy, respectively. As AF is just a number and
commutes with the resolvent operator, and R |®) = 0 due to the action of the projection
operator @ (3.62b), the energy corrections to the lowest orders are given by

E© = (®| Hy |®) , (3.68a)
EW = (®| H, |®) , (3.68b)
E®) = (| HRH, |®) , (3.68¢c)
E®) = (®| H R(H, — EY)RH, |®) , (3.68d)

By using Eper = E© 4+ EW| the first correction to the energy enters at second order. For
the Mgller-Plesset partitioning and using Slater determinants constructed from single-particle
states, the energy denominators in the resolvent operator are simply given by the difference
of the single-particle energies of the reference state and the n-th unperturbed wave function

D)
EO_EO —¢ i tei+... —ca—ep—..., (3.69)

assuming |®,) = |<I>§Jb>, which most of the time involves one-particle-one-hole (1plh) |®¢)
and two-particle-two-hole (2p2h) \@;‘Jb> excitations of the reference state. We employ the short
hand notation

z—:fjl»’ =€ +€j — €4 — €y, (3.70)
for the energy denominators.

Working in the eigenbasis of the unperturbed Hamiltonian Hy and employing a single
Slater-determinant reference state, we can rewrite the resolvent operator using the formulation
of particle-hole excitations on top of the reference state |®)

o) (Pe] 1 Paby (pab
R:ZWJFLLZWQEUJFW’ (3.71)
p & I

where as before the labels a, b, ...and 4, j, ...run over particle and hole indices, respectively.

Employing a perturbation Hamiltonian H; with only two-body interactions, we obtain the
second-order energy correction in Mgller-Plesset partitioning for a canonical reference state
by inserting Eq. (3.71) into Eq. (3.68¢):

1 T T
E®=-%}" LZ@ZM , (3.72)

abij ]
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where I is the normal-ordered 2-body part of the Hamiltonian with respect to the reference
state |®) and contributions from the one-body part vanish in a canonical basis due to Bril-
louin’s theorem [188]. For a noncanonical reference state an additional one-body contribution
occurs based on the 1plh excitation in the first term of the resolvent operator

with the normal-ordered one-body part f of the Hamiltonian. At third order, three terms
contribute for a canonical reference state

E®) = (®| HLRH,RH, |®)
_ E(z) + E(S) S})

_1 Z Fzgabrabcdrcdij

8 y gbecd
abcdu V] (374)
+ Z mabrklzg abkl
abzykl 61] Ekl
1—‘ijatbrkbzcraclcj
_ Z Ztjadb kbiet acky
ab )
abcijk 8” gkj

where one can distinguish the pp, hh, and ph expressions for the particle-particle (T'gpeq), hole-
hole (T'ki5), and particle-hole (I'yp;.) contributions of the two-body Hamiltonian, respectively
in Eq. (3.74). Employing a noncanonical reference state results in 11 additional diagrams
(14 diagrams in total) for the third-order energy correction. Following the diagrammatic
expansion in Ref. [199], the additional energy corrections at third order are given by

E(g) o 1 Z Fabz] abcjfci _1 Z Pabzg zgkbfak Z alnjfac cbij
noncan. — 9 Sabz? 6 6 ab bc
abcij (/) abijk k abm] Z] Z]

1 abz]fzkrabkj Z faz a]cbrcbz] Z faz zbk] abkj
D e

abijk El] gjk abczj 2 ZJ abz]k ]k’

(3.75)
Fabzgfjbfai fazfjbrabzg fazfjbrabz]
+ Z Eabg + Z £a 5 + Z e
abij LV abij ] abij &i ”LJ
fazfabsz fajfwfaz
* Z et a Z efed
abi aij

Equations (3.72)-(3.75) demonstrate the benefits of using a canonical (e.g., an HF) reference
state for MBPT applications, with just one diagram contributing to the energy correction at
second order and three diagrams at third order, in contrast to two and 14 diagrams at second
and third order, respectively for noncanonical reference states. Deriving the MBPT formulas
up to high orders in the expansion and explicitly calculating all possible contractions by
using Wick’s theorem can become quite cumbersome. Therefore, a diagrammatic expansion
is often used that can be straightforwardly translated into an equation for each diagram with
a small set of rules. In this expansion, only linked diagrams contribute based on the linked-
diagram theorem of Goldstone [200]. We refer to Ref. [199] for a detailed derivation of the
diagrammatic expansion of antisymmetrized Goldstone diagrams in MBPT and a proof of the



3.4 IMSRG APPROACH

linked-diagram theorem. Especially when going to higher orders, the number of contributing
diagrams increases rapidly. Therefore, the automated generation of many-body diagrams on
a computer provides substantial benefits for the derivation and calculation of higher-order
contributions (see, e.g., Refs. [57, 201-204]).

Considerable savings in the computational cost and scaling behavior can be obtained by
using the conservation of the total angular momentum for closed-shell nuclei and working in an
angular-momentum-coupled basis with spherically symmetric reference states. The working
equations grow more complicated in the angular-momentum-coupled scheme with operator
matrix elements of more involved structure. All energy corrections given in this subsection are
shown in an uncoupled (m-scheme) form, however the angular-momentum-coupled expressions
can be straightforwardly derived by using the AMC tool [205] of Ref. [206].

Even though we focus on applications to finite nuclei in this thesis with the framework of
MBPT being successfully applied to nuclear structure calculations in a wide range of different
mass numbers [35, 37, 207, 208], the general ideas and concepts of MBPT discussed here
can also be applied for studies of infinite nuclear matter (see, e.g., Refs. [54, 57, 136, 142,
209-212)).

3.4 IMSRG approach

In the following, we give a comprehensive introduction to the nonperturbative IMSRG and
discuss its commonly used working truncation, the IMSRG(2), with operators truncated at
the normal-ordered two-body level. In addition, we review different generator choices to
obtain the desired decoupling of the ground state. The ab initio IMSRG, in a given trunca-
tion scheme, falls into the same category of approximate many-body methods with a mild
polynomial scaling in mass number, as MBPT and CC theory discussed in the previous
section. Similarly to the free-space SRG in Sec. 2.3, we evolve the nuclear Hamiltonian by a
continuous sequence of unitary transformations in the IMSRG. However for the in-medium
SRG, we transform the normal-ordered Hamiltonian with respect to a chosen reference state,
i.e., a single Slater determinant in our case, indicated by the term in medium. In contrast to
the free-space counterpart, we decouple the reference state from all particle-hole excitations
in the limit s — oo for the in-medium method, thereby approximating the exact ground state
and allowing for calculations of nuclear observables. The transformed Hamiltonian can be
written as in the free-space case [cf. Eq. (2.18)]

H(s) = U(s)H(0)U(s), (3.76)

with the initial normal-ordered Hamiltonian H(s = 0) and the unitary transformation U(s).
As for the free-space counterpart, we derive the flow equation for the Hamiltonian

dH (s)
ds

= [n(s), H(s)] , (3.77)
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Figure 3.2: Initial normal-ordered Hamiltonian H(0) (left) at the beginning of the IMSRG flow
compared to the IMSRG Hamiltonian H(co) (right) after decoupling all particle-hole excitations in
the limit s — oo in the flow. Note that the two-body Hamiltonian here only couples (n &+ 2)p(n + 2)h
states. Figure adapted from Ref. [31].

where the anti-Hermitian generator 7(s) that defines the decoupling pattern is given by

n(s) = Ul(s). (3.78)

The generator will be discussed in more detail in Sec. 3.4.1. The initial coupling of the ground
state |®), to npnh excitations (|®¢), |<I>?]’?>, |11>?]’?,§>, ...) is schematically shown in the left panel
of Fig. 3.2 by the gray and light-gray squares. After solving the IMSRG flow equations, the
decoupling of the reference state in the limit s — oo is depicted in the right panel of Fig. 3.2,
showing the suppression of the off-diagonal parts of H(oo) in the first row and column by the
white squares. Additionally, Fig. 3.2 depicts the unitarity of the transformation, preserving
the Hermiticity of the Hamiltonian. This is in contrast to the similarity-transformed CC
Hamiltonian shown in Fig. 3.1, which is non-Hermitian as discussed in Sec. 3.3.2. To fully
decouple the reference state from all particle-hole excitations, the flow equation in Eq. (3.77)
has to be solved for the limit s — co with the normal-ordered Hamiltonian at s = 0 given
by Eq. (3.19) (up to the three-body rank). The repeated evaluation of the commutator
expressions during the flow induces many-body operators up to the A-body level in an A-
body system by calculating the product of normal-ordered operators using the generalized
Wick theorem [186, 187]. This is analogous to the discussion of induced many-body forces
in the free-space SRG in Sec. 2.3. The commutator of two generic normal-ordered operators
ATE) and B with particle rank K and L, respectively, can be evaluated to a normal-ordered
operator C'™) by using the generalized Wick theorem (3.21) with many-body parts from
particle rank |K — L| up to K + L — 1 contributing to C'

K+L-1
[A(K),B(L)]z Y otn, (3.79)
M=|K—L|
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For example, the commutator of two two-body operators would lead to a zero-, one-, two-,
and three-body contribution. Solving the flow equation and including up to A-body forces
and A-body operators is computationally intractable in practical applications. Consequently,
a truncation scheme for the commutator expansion is required. Currently, the standard
truncation scheme for the IMSRG is the IMSRG(2) truncation, where all operators and com-
mutators are truncated at the normal-ordered two-body (NO2B) level (see, e.g., Refs. [213,
214]). This leads to two effects for the IMSRG: First, the residual three-body force W of the
normal-ordered operator in Eq. (3.19) is neglected. Second, all normal-ordered three-body
(and higher-body) parts that would arise during the flow, i.e., the three-body part of the com-
mutator {A@), B(Q)} discussed above, are neglected as well. Some attempts to approximately
capture the effects of neglected induced three-body contributions in the IMSRG(2) have been
explored [215], but a systematic understanding has not been formed. Notice however, that
contributions from the 3N interaction are still considered in actual calculations by the normal-
ordered two-body approximation and affect the normal-ordered zero-, one-, and two-body
part, as can be seen in Egs. (3.20a)-(3.20c). We will come back to the IMSRG truncation
and the inclusion of three-body operators when discussing the extension of the many-body
method to the IMSRG(3) truncation in Sec. 3.5. For the moment, we limit the discussion
to the normal-ordered Hamiltonian up to the two-body level and normal-ordered generators
with a one- and two-body part n(s) = n(1)(s) + n?(s).

With the IMSRG(2) truncation at hand, we derive the corresponding flow equations in
order to solve the many-body problem, where the commutator expression of Eq. (3.77) can
be expanded to

dE(s) + df (s) +dT(s)
ds

= [n(s) + ()@, B(s) + f(s) +T(s)| (3.80)

Following Eq. (3.79), the fundamental commutators of the IMSRG(2) are given by

[n(s) Df}:h )]+ )@, 1] " (3.81)
()0, 10(5)] = [n()V,0(8)] " + [n(s)V, 1()] * (3.82)
[n(s ”f]zh 7]+ [, 1) (3.83)
h@ﬁnﬂ=h@®ﬂﬂ@+h@@wﬂ“+h@Wnﬂw, (3.8

where the resulting many-body ranks on the right-hand side are indicated by the commutator
superscript and the term [1(s)®), I'(s)]® in the last row is neglected in the IMSRG(2) and
therefore not shown in Eq. (3.84). The commutator of the generator with the scalar value
E(s) in Eq. (3.80) vanishes. We order the fundamental commutators by their many-body rank
and assign the corresponding terms to the zero-, one, and two-body parts dB(s) - df(s)

ds ' ds ?
dl:i(s) of the flowing Hamiltonian, respectively, to obtain a set of coupled ordinary differential

and

equations. These equations can be simplified by using the generalized Wick’s theorem to
evaluate the product of normal-ordered operators and working in the eigenbasis of the one-
body density matrix, as defined in Egs. (3.15a) and (3.15b). In the following, we explicitly
derive the fundamental commutator of the one-body generator and the one-body Hamiltonian
that contributes to the one-body part of the flowing Hamiltonian, given by the last term in
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Eq. (3.81) and drop the s-dependence for brevity

1) 1 1
[77(1), f} — Z {nqurs( a aanaS D+ azaqaias ) = frstpg(: aiasa;aq D+ aiasa;roaq : )}

pgrs
:anqfrp(np Qg Gy al : —Np af g 1) + Zﬁquqs L af pQs - —Tg * asa;) :)

pqr pgs (3.85)
:anpfpr(ﬁp : aiaq Sy @Iaq )+ anquS(ﬁq : Q;Taas NGt a;as )

pqr pgs
= Z Napfor + Mrpfpg) af rlq

pgr

where ny, is the occupation number of orbital p, and n, = 1 —n,. We appropriately relabeled
the summation indices of the second term in the third row and used that the matrix elements
fpq and 1, are Hermitian and anti-Hermitian, respectively. In a similar fashion, all fundamen-
tal commutators in Eqs. (3.81)-(3.84) can be calculated to derive the complete IMSRG(2) flow
equations in a symmetry-unrestricted (so-called m-scheme) form. We additionally use the
permutation operator P;;, which exchanges the indices 7 and j of the matrix elements in the
subsequent term, and exploit the Hermiticity of the Hamiltonian and the anti-Hermiticity of
the generator to simplify the expressions. The resulting m-scheme IMSRG(2) flow equations
are given by

dE
ds ng)Mpafap + 5 Z NNy T pgrt L rtpg » (3.86)
5 pq?"t
dfi2
ds Z (1 + Pri2)mpfp2 + Z np — 1g) (MpgLq1p2 — FpgMq1p2)
" e (3.87)
+ B Z(”p”qﬁr + fipngne ) (1 + Pi2)0r1pglpgra
pqr
arl
d15234 = Z ((1 — Pr12) (mpl'p2sa — frpnp2sa) — (1 — Psa) (p3liops — fp37712p4)>
+35 Z (7712pqrpq34 - F12;10(177}7(]34) (388)

+ Z (np —ng)(1 = Pr2)(1 — Psa)nigpal'p2sq -
pq

Numbers (1,2, 3,4) in the above equations indicate external indices of the flowing Hamiltonian
and internal summation indices are given by characters (p, g, r,t). The commutator derived
in Eq. (3.85) can be identified in the first sum of the flowing one-body part in Eq. (3.87) by
replacing the indices 1 and 2 with ¢ and r, respectively. The commutator expansion of the
flow equation ensures that only connected diagrams contribute for the IMSRG, making it
a size-extensive many-body method [31]. The computational cost of solving the IMSRG(2)
scales like O(N®) with N being the size of the single-particle basis. One can show that the
IMSRG(2) truncation is complete up to third order in perturbation theory and additionally
nonperturbatively resums particle-particle- and hole-hole-ladder as well as particle-hole-ring
diagrams [31].

In practice, the set of coupled ordinary differential equations (ODE) is solved by integrating
Egs. (3.86)-(3.88) from s = 0 to s — oo applying standard ODE solver methods, such as
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a Runge-Kutta approach [216-218]. The ground-state energy of the system is then given

by the expectation value of the transformed Hamiltonian (®| H(s — o0) |®) = E(s — 00).

Instead of solving the flow equations up to the limit s — oo, it is more convenient to define

a convergence criterion for the decoupling and stop the calculation at a finite value of s.

Commonly employed criteria are the norm of the generator ||7(s)|| or the energy correction at
second-order perturbation theory E), which both signal the size of the matrix elements that
couple the ground state to higher particle-hole excitations. Values below a given threshold
indicate only small remaining coupling to particle-hole excitations and therefore only minor
changes to H(s) for the rest of the flow. An alternative method for solving the IMSRG
flow equations is given by the Magnus approach, which will be discussed in more detail in
Sec. 3.4.4.

3.4.1 Generator choices

In general, any functional form of the generator that fulfills the anti-Hermiticity constraint
and leads to the desired decoupling of the reference state from all particle-hole excitations
is imaginable in the IMSRG flow equations. This results, as for the free-space SRG, in a
variety of possible generator choices, where some may perform better or worse in terms of
their computational efficiency, convergence, or suppression and decoupling behavior. In the
following, we list the most commonly applied generators to decouple the Hamiltonian and
solve the IMSRG flow equations.

In order to decouple the ground state, we strive to suppress the off-diagonal part of the
flowing Hamiltonian, given by the particle-hole excitations, indicated by the gray squares in
Fig. 3.2. In the case of a two-body Hamiltonian, these are defined by all one-particle-one-hole
(1plh) and two-particle-two-hole (2p2h) excitations |®¢) and |<I>§JI»’>, respectively. The matrix
elements of these excitations can be written by

(DYH|D) = (@] : alag : H|®) = fai, (3.89a)
(BIH|®Y) = (@ H : ala; : |®) = fia, (3.89b)
(@3 | H|®) = (@] : Iajabaa H |®) = gy, (3.89¢)
(B|H|DY) = (®| H : alafaja; : |®) = Tijap ., (3.89d)

such that the off-diagonal Hamiltonian based on these matrix elements reads

HY(s me ala; : += Zrabw aaba]al +H.c., (3.90)
abzy

where H.c. indicates the Hermitian conjugates defined in Eq. (3.89).

The first generator choice we present here is the so-called White generator motivated
based on the work of White in Ref. [219], which combines the one- and two-body matrix
elements of the off-diagonal Hamiltonian in Eq. (3.90) with an energy denominator A

1(8)White = Jails) . 1 Z ab” )

T
a a;ja; : —H.c., 3.91
ai Aai(s) abz] 5) bR ( )

abz]

where the denominators have to change sign under transposition of the first and second index
of the one-body part and the first two and last two indices of the two-body part to fulfill the
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constraint of anti-Hermiticity of the generator. A fixed point of the flow equation is reached
once the off-diagonal part of the flowing Hamiltonian is fully suppressed. As a result, the
matrix elements of the generator become 0, and thus, the generator and the Hamiltonian
commute. A possible choice of the energy denominators is the Mgller-Plesset denominators

Agi =ea—¢i, (3.92a)
Agpij = €a +6p — € — €j, (3.92b)

with the SPEs ¢; = f;; given by the one-body part of the flowing Hamiltonian. Note that
the SPEs and therefore the energy denominators depend on the flow parameter s, but we
drop the dependence here for simplicity. Equations (3.92a) and (3.92b) obey the required
antisymmetry under transposition, Ay = —Ajq and Agpij = —Ajjep. An alternative choice
is the Epstein-Nesbet denominators, which additionally incorporate the two-body matrix
elements I'pgrs,

Am' =€q— & + (na — ni)l“aim- , (393&)
Agpij = €a+ ey —€i — &5 + (1 —na — np)lapas — (1 — ni — ny)lijij

(3.93b)
+ (na - ni)raiai + (na - nj)rajaj + (nb - ni)Fbibi + (nb - nj)Fbjbj .

Again both expressions change sign under transposition.

Problems in the IMSRG flow using this generator can arise when the energy denominators
become small or even vanish completely, leading to an enhancement of the off-diagonal
elements during the flow instead of a suppression. This is, e.g., the case for systems with
small energy gaps between the highest occupied and the lowest unoccupied orbitals. A remedy
for this complication is given by the so-called arctan version of the White generator. The
arctangent function tames possibly large matrix elements of the one- and two-body generator
caused by small energy denominators to values in the interval (—m/2,7/2),

_1 2fai()\ | 5,
U(S)arctan D) %:ar(?tan (Aai(s)) F0g

1 20 s (s
+ 3 Zarctan (Aabl]()> : alaZajai :—H.c.,

abij abij ()

(3.94)

where the prefactors for the one- and two-body part can be understood by the Taylor series
expansion of the arctangent function for small arguments.

In a similar fashion, the problem of very small or vanishing energy denominators can be
circumvented by employing the signum function, as is done for the so-called imaginary time
generator motivated by the quantum Monte Carlo method

1mag t —ngn faz( ) az :

T (3.95)
ngn abij () Tapij(s) : a];abajai :—H.c..
abl]

In this thesis, we employ the arctan generator to solve the IMSRG flow equations, if not
stated otherwise, but also investigate the dependence of the results on the generator choice
in selected cases.
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3.4.2 Angular-momentum-coupled flow equations

Nuclear Hamiltonians obey a set of symmetries that can be explicitly exploited to lower
computational requirements for storing operator matrix elements and performing many-body
calculations. These symmetries are: rotational invariance ([H,.J?| = [H,J,] = 0) for the
total angular momentum J and its projection on the z-component J,, parity conservation
([H,11] = 0), and isospin conservation ([H,T,] = 0) for the projection T, of the total isospin
T. Exploiting these symmetries leads to a block-diagonal structure in the quantum num-
bers (JIIT,), where off-diagonal matrix elements vanish and we store, e.g., the two-body
matrix elements in separate blocks. The block structure is preserved for the normal-ordered
Hamiltonian if a symmetry-conserving reference state is employed, which is the case for all
systems and computational bases considered in this thesis. Applications of symmetry-broken
reference states lead to many-body operators with reduced symmetries compared to their
non-normal-ordered representations (see, e.g., Refs.[220, 221]).

In the following, we adapt our previous definition of the single-particle states
Ip) = n(ls)jmpmy,) of Eq. (3.28) and write |[p) = |n(ls)jmy,) for single-particle states in-
dependent of the angular momentum projection m,,, with [pm,) = |p).

Operator matrix elements, independent of the total angular momentum projection m, in
the so-called j-coupled scheme are given by an additional superscript, indicating the total
angular momentum. The one-body matrix elements are given by

O%‘i = 5mpmq6jqu <]3mp’ O ‘qmq> 3 (396)

and are diagonal in the angular-momentum projection m, = m, and the angular momentum
itself j, = j, = J.

The coupled two-body basis states are obtained by coupling the individual angular mo-
menta j, and j, to the total two-body angular momentum .J,, with projection M,, by a
Clebsch-Gordan coefficient [222],

1(50) Jpg M) = 3 ( o Ja

mpmyg mp My

J\Jf; ) pg) - (3.97)

Using the coupled basis, we can rewrite the two-body matrix elements of a scalar operator in
a j-coupled form by coupling the angular momenta of the bra and the ket state,

Os = ((pq) T M| O |(753) T M)

pgrs
Jp Jq | J JrooJs | J 0 (3.98)
= E rs) ,
T ( my, mg | My ) ( my ms | My ) (pal Ors)
rMs

where the superscript J denotes the total two-body angular momentum of the reduced
(unnormalized) two-body matrix element. The conservation of the total angular momentum
leads to J,; = Jrs = J and the matrix element is diagonal in this quantum number and
its projection M; = M,, = M,s as well as independent of the latter and we set M,, =
M,s = J. Two-body operators stored in the j-coupled form (the so-called “me2j” format)
typically require about 0.7 GB memory in a compressed format. We drop the tilde over the
momentum indices in the following for simplicity when working with angular-momentum-
coupled states, the difference to the uncoupled expressions will be clear depending on the
superscript. Applying the symmetry reduction to the m-scheme IMSRG flow equations
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in Egs. (3.86)-(3.88), we obtain the IMSRG(2) “j-scheme” flow equations for the angular-
momentum-coupled expressions. This can be most easily accomplished by using the amc
tool [205] of Ref. [206].

dE
ds Z 0 nquqp +3 Z Ry npqﬁrﬂpq? (3.99)
pqrtJ
df} Coay ] .J
Tf = Z(l + P12) (n{pfgjﬂ) + D) Z(np - nq)J (npqrqpo fgqunqpo)
P - 7" pat (3.100)
+ 55 Z (npnan + npnan)(l + P12)J nrlpqrquQ ’
pqrJ
dF1J234

2 = (L= (<1 ) (], s — fyisa)

p
- Z(l - (—1)j3+j4_JP34) (n;f)3r{2p4 - fggﬂi]2p4)
(3.101)
J J J
+3 Z L —ny— (7712pqrpq34 1112;;6177;)(134)

+ Z Ny — Ng) (1 — (=) Py — (=) Py 4 (—1)j1+j2+j3+j4P12P34)
pgJ’

g2 J\_y =
X J/ {]3 ] J/}n14qupq327

where J = v/2J + 1 and we dropped the indices of the total two—body angular momentum

J of the j-coupled matrix elements. The overlined operators n14pq and T”, 5 in the last

pq3
row of Eq. (3.101) are the Pandya-transformed matrix elements obtained by the Pandya

transformation [223]

=7 _ g1 ga '
Mz = — Z J? { } 1234 5 (3.102)

5 Js j2 J

with the 6j-symbol reordering the coupling of the angular momenta (see, e.g., Ref. [222]). This
transformation allows one to perform the tensor contraction in the last line of Eq. (3.101) as
a matrix matrix multiplication, thus, being computationally more efficient. The resulting two-
body matrix element is initially given in the form fﬁw, however the Pandya transformation
is its own inverse, such that we employ an additional Pandya transformation to obtain the
desired output matrix element F{234 indicated by the sum over J’ and the 6j-symbol in
the last line of Eq. (3.101). Typical IMSRG(2) calculations in converged model spaces of
emax = 14 take about 16 hours on a supercomputing node with around 24 cores.

3.4.3 General operators and charge radii in the IMSRG

The unitary transformation and flow equation of the Hamiltonian in Egs. (3.76) and (3.77) can
be adapted to any other additional operator O of interest. Applying the unitary transformation
U(s) to the normal-ordered operator O with respect to the same reference state as the
Hamiltonian yields

O(s) = U(s)O(0)UT(s), (3.103)
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and can be expressed as a flow equation for the transformed operator O(s)

dO(s)
ds

= [n(s),0(s)] . (3.104)

The set of flow equations for each additional operator results in an increased number of
coupled differential equations that have to be solved together with the Hamiltonian. This
increases computational expenses in terms of both memory requirements and runtime, which
is why typically the number of additional operators in the IMSRG is limited to very few
operators.

In the following, we demonstrate the advantages of the IMSRG to calculate other observ-
ables than just the ground-state energy by considering the point-proton mean-square radius
operator, which is the main component for the calculation of charge radii of finite nuclei. The
operator is given by

A (4)
1 147
2 3 2
%:ZZ 5 (ri—R)", (3.105)
i=1

with proton number Z, the isospin projection Téi) of the i-th particle with (l—l-T?Ei)) /2 projecting
on protons, the coordinate r; of the i-th particle, and the cm coordinate R. The charge
radius based on the point-proton radius operator is obtained by adding the relativistic Darwin-
Foldy correction 3/(4M?) = 0.033 fm? [224-226], the spin-orbit correction (r?)_ [227], and

considering the mean-square radius of the proton and neutron <r2

p> and (r2) , respectively,

N 3
Rch = \/RI% + <T‘%> + ? <T727,> + M + <r2>so7 (3106)

where N = A — Z is the neutron number and M is the nucleon mass. Different experimental
techniques to measure the proton charge radius produce different values, giving rise to the so-
called proton-radius puzzle. To be precise, measurements performed on muonic hydrogen [228,
229] disagree significantly with measurements performed on atomic hydrogen [230]. These
controversies led to ongoing investigations [231-233] in order to find an explanation, however,
new evidence has not been able to fully resolve the proton-radius puzzle so far [234, 235]. In
this thesis we use the values <7“12)> = 0.770 fm? and (r2) = —0.1149 fm?. Note that two-body
currents, which would give additional corrections to the charge radius, are not considered

here. The spin-orbit correction is calculated by

1 & Hi
<7"2>50 = ; 15 (ki + 1) (3.107)

with the magnetic moment y; of particle 4, given by p, = 2.793ux and g, = —1.913un [102]
for protons and neutrons, respectively, and the nuclear magneton py and the parameter x;
defined by

li if ji =1li— %,
ki = = 2 (3.108)
—li+1) ifji=l+3.
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The IMSRG charge radius R, is obtained by evolving the operator RIQ) along with the
Hamiltonian up to a finite value of the flow parameter s, where the chosen convergence criteria
are met and the ground state is decoupled. Adding the corresponding corrections given in
Eq. (3.106) to the evolved operator finally gives the charge radius for the studied system.

3.4.4 Magnus approach

In practice, the solution of the set of coupled ODEs, given by the flow equations in Egs. (3.99)-
(3.101), can be quite involved and requires the usage of high-order ODE solvers, e.g,. Runge-
Kutta solvers [218] or other sophisticated solver methods, to obtain numerically stable results.
These solvers necessitate the storage of multiple copies of the solution vector throughout
the flow, leading to tremendous memory costs in model-space sizes required for converged
results. Any additional operator targeted in the IMSRG, e.g., the point-proton mean-square
radius operator for calculations of the charge radius described in Sec. 3.4.3, has to be evolved
in parallel with the Hamiltonian, roughly leading to a doubling of the computational costs
and memory demands. An alternative approach to solving the IMSRG flow equations, with
the possibility to circumvent some of the key challenges mentioned above, is the Magnus
expansion of Refs. [236, 237], which results in significantly reduced memory footprints and
lowered computation costs. In this method, one directly solves for the unitary transformation
based on a simple first-order Euler method, while preserving the same numerical accuracy
as for standard ODE solver applications, see also Ref. [160] for a recent free-space SRG
application of the Magnus expansion. In the Magnus approach, the solution to the differential
equation of the unitary transformation

dU(s)
ds

= —n(s)U(s), (3.109)
is given by an exponential ansatz
U(s) = )| (3.110)

with the anti-Hermitian Magnus operator Q(s), which fulfills Q(s)T = —Q(s) and Q(0) =
0, such that U(s)U'(s) = 1 and U(0) = 1, as required. This allows one to write the
transformation of the Hamiltonian or any other operator in the IMSRG as

H(s) = ) H(0)e %) (3.111)

In contrast to the standard approach of solving the flow equations for the Hamiltonian, we
solve the flow equations for the Magnus operator

HUs) 5~ B (n(s)). (3.112)

with the Bernoulli numbers By, and the nested commutators adg( 5) defined as

adg(s)(n(S)) n(s), (3.113a)
adgy) (0(s)) = [s), adfy ) (n(s))] - (3.113b)
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Technically, the differential equation for the Magnus operator in Eq. (3.112) is solved by
a naive first-order Euler method and provides numerically stable results that are rather
insensitive to the Euler step size and, at convergence, in agreement with exact methods. This
allows for a simplified solution of the IMSRG flow based on a computationally cheaper and
straightforward method compared to standard ODE solvers. Knowing the Magnus operator
Q(s), the transformed Hamiltonian in Eq. (3.111) can be obtained by using the BCH formula
<1
H(s) = kzo Had’g(s) (H(0)), (3.114)

with the definition of the nested commutators as before. This series involves an infinite
number of terms and does not terminate naturally, in contrast to, e.g., the transformation of
the Hamiltonian in CC theory in Egs. (3.54) and (3.55) discussed in Sec. 3.3.2, such that a
truncation scheme is required. In the Magnus(2) approach all operators and commutators are
truncated at the NO2B level, in consistency with the IMSRG(2). It is important to note that
even though the Magnus operator €)(s) is truncated, the transformation stays unitary due to
the exponential ansatz. However, even in the Magnus(2) the series for the Magnus operator
in Eq. (3.112) and the transformation of the Hamiltonian in Eq. (3.114) do not terminate
automatically and still involve an infinite number of terms. In practical calculations, these are
truncated beyond a chosen threshold value, as the magnitude of higher-order terms typically
decreases monotonically. The truncation criteria may be defined by

Byllads ) (n(s))]
< €deriv » 3.115
| F0())] a (3.115)
(0)
ol < €BCH , (3.116)

for the truncation of Eq. (3.112) and Eq. (3.114), respectively, where we use the zero-body
part of the nested commutator expression in Eq. (3.116). Additionally, we can split up the
application of the Magnus expansion to solve the IMSRG flow equations in multiple steps of
updating the Magnus operator each time the operator (or its norm) gets large. This approach
more closely resembles the solution of using standard ODE solvers. In practice, we solve
Eq. (3.112) and transform the initial Hamiltonian based on Eq. (3.114) until the norm ||Q(s)||
exceeds a chosen threshold value. We now use the transformed Hamiltonian H(s) at this
point in the flow as new initial Hamiltonian, update the Magnus operator based on the new
Hamiltonian, and continue solving the flow equations with the updated operators until we
reach the next update step of Q(s).

Having direct access to the unitary transformation based on Eq. (3.110), the Magnus ex-
pansion provides a desirable feature: Any additional operator O can now be transformed with
minimal additional cost of only evaluating the BCH formula for the operator [cf. Eq. (3.114)]

O(s) = 2)0(0)e ) = ’i adb, (0(0)). (3.117)

This is in contrast to evolving the operator along with the Hamiltonian, which results in
additional flow equations and an extended set of coupled ODEs. In this thesis, we use
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the Magnus expansion with the arctan generator of Eq. (3.94) to solve the IMSRG(2) flow
equations.

3.5 IMSRG with three-body operators

The IMSRG(2) predicts nuclear observables, e.g., ground-state energies and charge radii, of
medium-mass (and up to some heavy) nuclei in good agreement with experiment and is with
great success applied for ab initio investigations of finite nuclei, see, e.g., Refs. [49, 50, 55,
75]. However, it has been shown that triples effects that are neglected in the IMSRG(2)
truncation are important for many observables and theoretical predictions, e.g., 2% excitation
energies [55, 90], nuclear -decay matrix elements [238], or the dipole polarizability [239, 240].
Incorporating these effects in the many-body method by means of three-particle-three-hole
(3p3h) excitations of the reference state is therefore key for meaningful comparisons and theo-
retical predictions. Extending the IMSRG to the next order in the many-body truncation, the
IMSRG(3), and including initial and induced three-body operators up to the three-body rank
during the flow, provides an important step towards more accurate results and systematically
improves the many-body method. In this section, we review the basic steps necessary to
obtain the extended set of fundamental commutators and derive the IMSRG(3) flow equations.
We define different approximate truncation schemes of the IMSRG(3) based on computational
cost and perturbative arguments. These results are part of our publication [241], to which
I contributed with support for the implementation, especially regarding the use of different
single-particle bases. Here, we only review the basic aspects and show selected results in
Sec. 4.5, but refer to Ref. [241] for further details.

By including three-body operators in the IMSRG, two effects occur: The initial (normal-
ordered) Hamiltonian as well as the generator can contain residual three-body interactions,
given by the three-body term W in Eq. (3.19) for the Hamiltonian and n®) for the generator.
Additionally, new commutator contributions arise and we truncate the commutator expressions
at the three-body level, now also including the induced three-body terms during the flow that
have been neglected in the IMSRG(2) in Eqgs. (3.81)-(3.84). The extended set of fundamental
commutators in the IMSRG(3) based on the flow equation (3.77) for a three-body Hamiltonian
and three-body generator includes 15 new terms compared to the IMSRG(2) commutator
expressions (however only ten of these consist of new analytic structure) and is given by

()W F&] = &V F] T+ o 1] (3.118)
1(5)D,10(s)] = [n(s)D,0(s)] " + [(s)V.1()] . (3.119)
1), 1)) = (9@, 1)) + [n()?, ()] 7, (3.120)

152, 765)] = [, 0] + [, 1) + ()@, 15)]
S (3.121)

(2) (3)
+ [n(s)®,1(s)]

[0, W(@)] = [6) D W] ¥ + [, W) (3122
()@, 7)) = [n(), 7)) + [n9)®, 7)) (3123)
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()@ W(s)] = [ w(s)] " + [n<s><2>,w<s>}( @ we] Y, (a2
(9)®.0(5)] = [0 0] + [0 @.0)] 7 + [0 (3.129)
(@ W (s)] = o) W(5)]"” + ) wis)] " + ), wis)]

(3.126)

where the three-body term {77(3)(2), F(s)}@) in Eq. (3.121) vanishes in the IMSRG(2) trun-
cation. Induced many-body contributions beyond the three-body level, e.g., the four-body
term [n(s)(2), W(s)}(@, which would arise in Eq. (3.124), are neglected in the IMSRG(3).
The three-body Hamiltonian now additionally couples 3p3h excitations to the reference state,
with the corresponding matrix elements written as

<®‘~1bc\ H|P) = (D] : aja}aiacabaa c H | ®) = Wapeiji » (3.127a)
(®| H| ) = (®| H : alafalaraja; : [®) = Wijkase, (3.127h)

similar the two-body case in Eq. (3.89). The off-diagonal Hamiltonian is accordingly given by

HOd Zfaz cal Ta; :+= ZFabU alalajai :

abZ]

—i—% Z Wabeiji(s) : Jralcﬁaka]az +H.c..
abcijk

(3.128)

In order to obtain the correct decoupling behavior and also decouple 3p3h excitations from
the reference state during the IMSRG flow, the generator definitions in Sec. 3.4.1 have to be
extended by the three-body part 7(s)®). The matrix elements of the White generator are

given by
(3) Wabcijk(s)
sy = T 3.129
77( )abcz]k Aabcijk(s) ( )
with the Mgller-Plesset energy denominator
Agpcijk = €a+Ep+€c — & —€j — €k - (3.130)
The arctan generator is defined as
3) 1 2Wabeijk ()
arctan | ————= |, 3.131
77( )abczyk,’ 2 < Aabcijk(s) ( )
and the imaginary-time generator reads
3
0(8) 55 = 580 (Aabeiji(5)) Wabeiji(s) (3.132)

The Hermitian conjugate matrix elements of the three generator types are obtained by
transposition of the particle and hole indices, and again, the energy denominator ensures the
anit-Hermiticity of the generator.

In the following, we derive the IMSRG(3) m-scheme flow equations to decouple the
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reference state and drive the off-diagonal Hamiltonian in Eq. (3.128) to zero. As before, we
sort the commutator contributions by their particle rank, now going up to rank three, to
obtain a set of coupled ordinary differential equations. For simplicity, we first give a schematic
derivation of the individual IMSRG(3) fundamental commutators of Eqgs. (3.118)-(3.126) by
two generic many-body operators A and B of rank K and L, respectively and resulting
operator C. For [A(K ),B (L)} — C, the operator C' contains all possible many-body ranks M
allowed by the commutator evaluation [cf. Eq. (3.79))] and the IMSRG(3) truncation. The
many-body rank of the operator C™) is implicitly given by the number of indices of the
matrix element and we only indicate the zero-body part with a superscript (0).

m A0, B0] 5o

o) — Z(npﬁq — png)ApgByp (3.133a)
Pq
Cio =3 (A1pBya — BipAp) - (3.133b)
P
m [40,52)] 5o
Cio = Z(np’ﬁq — ﬁpnq)ququgp, (3134&)
Pq
Chasa =2 (A1pBpass — ApsBiops) - (3.134b)
P
n [A@),B(?)} So
1
C(O) = i Z(npnqﬁrﬁs — ’ﬁpﬁanns)qursBrqu ) (3.135&)
pars
1 _ _
Ci2 = B} Z(npnan + npnan) (AlrquthQT - Blrqupq?r) J (3.135b)
pqr
1 _
Cra3a = B} Z(”p”q — npng) (A12pqBpgss — Bi2pgApgsa)
Pq (3.135¢)
—4 Z(”pﬁq — Npng) Apasq Bigpa ,
Pq
C123456 = 9 Z (Aspas Biaep — BspasAi26p) - (3.135d)
P
m [A(l),B@)} o
C11234 - Z(npﬁq - ﬁpnq)quBl2q34p y (31363‘)
Pq
Chasass = 3, (AspBiopass — ApsBiasasp) - (3.136b)

p
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m [A(2>,B(3>} o

1

Cio = Z Z(npnqﬁTﬁS - ﬁp'ﬁanns)qursBrslqu , (31373‘)
pars
01234 = Z(npnqﬁr + ﬁpﬁan) (Arlqupq234r - qur3312rpq4) 5 (3137b)
pgr
3 _
C123456 = B Z(npnq — npng) (A12pg Bpgaase — Apgas B123pg6)
pq (3.137C)

+ 92 Npng — Nphg) Azpes B12qasp -

1

C(O) = — Z (npnanﬁsﬁtﬁu - ﬁpﬁqﬁrnsntnu)quT‘StuBStuqua (3.138&)
pgrstu
1 o _
Cio = E Z (npnannsnt + npnannsnt) (AstlpqupqrstQ - BstlpqrqurstQ) , (3138b)
pgrst
1 o _
Chogs = = Z(npnanng - npnanns) (A12$pq7‘quT34s - Blepqrqur34s)
pars (3.138c¢)
+ Z (npnqﬁrﬁs - ﬁpﬁannS)qulTS3BT82pq4 y
pars
1 o
C123456 = 6 Z(npnqn,« + npnan) (A123pqupqr456 - B123pqrqur456)
o (3.138d)
+ 5 Z(npnqﬁr + ﬁpﬁan) (qu345r-812’r’pq6 - qu345rA12rpq6) .
par

The computational cost of each commutator scales naively like O(NE+L+M) in the size of
the single-particle basis N, with M being the many-body rank of the resulting operator C.
The cost of the full IMSRG(3) solution is dominated by the most expensive commutator, the
{A(g’), B(3)] — C®) commutator, and as a result scales like O(N?).

In a next step, we utilize the generic expressions derived above for the fundamental IM-
SRG(3) commutators given in Egs. (3.118)-(3.126) and ensure the antisymmetry of the two-
and three-body matrix elements throughout the IMSRG evolution by applying the permuta-
tion operator. We use the permutation operator Pjs for the two-body matrix elements and
additionally introduce the permutation operator P(12/3) = 1 — P13 — Pa3 for the combination
of three indices to antisymmetrize the three-body contributions. The m-scheme flow equations
for the IMSRG(3) are then given by

E Z NpNg — NpTg)Npg fop + 1 Z NpNgNy e — TipNgNy T ) NpgriLripg
. part (3.139)

+ = § (npnanﬁtﬁuﬁv - ﬁpﬁqﬁrntnunv)npqrtqutuqur 3
pgriuv

65



66 CHAPTER 3 — IN-MEDIUM SIMILARITY RENORMALIZATION GROUP

d _ _
$f12 = Z (mpfp2 — fipmp2) + Z(”pnq — npng) (Mpgl'192p — FpaMazp)
p Pq

1 _ _
+ B Z(np”an + fipTignr) (NrpgL pg2r — TirpgTipg2r)
pqr (3.140)

+ — Z NpNgNyeTy — T_Lpﬁqnfrnt) (UPQTtWrtlqu - qurtnrtlpcﬂ)
pqrt

1 o _
+ — E (npnanntnu + npnanntnu) (ntulpqrwpqrtu2 - Wtulpqrnpqrtu2) >
pgrtu

£F1234 =(1- Pr2) Z (mpL'pasa — fipnpaza) — (1 — Psa) Z (Mp3T12pa — fp3mizpa)
p p

+5 Z npig — Npng) (M2pgl pg3s — T12pgMpg34)

— (1= P12)(1 — Ps4) Z(”pﬁq — Npng)Tp23ql 1gpa
pq
+ Z nphg — Tipng) (NpgWi2gsap — fpaagsap)
(3.141)
+ 5(1 — P12) Z(npnqﬁr + npngny) (MripgWpg2sar — TripgTipg23ar)

pgr

1 _ o
- 5(1 — P3y4) Z(”p”q”r + fipngnr) (Npgr3Wizrpga — Upgramizrpga)
pqr

+ - Z(ﬁpﬁqﬁrnt - npnanﬁt) (7712tpqupqr34t - W12tpqr77pqr34t)
pqrt

1 _ _
+ Z(l - P12)(1 - P34) Z(npnannt - npnannt)npqlrt3Wrt2pq4 s
pqrt

d
£W123456 = P(12/3)P(45/6) Z (M3pasT126p — I'3pasnizep)

p

+ P(12/3) > " (n3pWizpase — fapmapase) — P(45/6) > (11psWiasasp — fpemi2345p)
) )

~P(12/3) Z(ﬁpﬁq — npng) (M2pgWpgsase — '12pqipg3ase)
pq

1 -
— 5P (45/6) > (pig — npng) (1pgas Wiaspes — Upgasm2spgs) (3.142)
pq

+ P(12/3)P(45/6) > _(1yng — niping) (N3pg6Wi2gasp — L3pg6n2gasp)
pPq

+ 6 Z(npnan + ﬁpﬁqﬁr) (n123ququr456 - W123pqr77pq7“456)

pgr

1 _ o
+ §P(12/3)P(45/6) Z(”pnan + NpTignr) (Tpg3asr Wi2rpg6 — WpgsasrMi2rpgs) -
pqr

Exploiting the conservation of the total angular momentum and working in an angular-
momentum-coupled basis for spherically symmetric systems (e.g., closed-shell nuclei), as
outlined in Sec. 3.4.2, significantly reduces the memory requirements of storing matrix ele-
ments. This is especially important for the three-body operators and their multiple copies,
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which are required when solving the IMSRG flow equations that dominate the memory costs.
Additionally, working with the coupled expressions for the fundamental commutators also
lowers the computational efforts for the commutator evaluation. However, the equations
get more involved and more complicated expressions arise for the antisymmetrization of the
j-coupled terms. The coupled one- and two-body basis states as well as the one- and two-body
operator matrix elements in an angular-momentum-coupled basis have already been discussed
in Egs. (3.96)-(3.98) for the IMSRG(2). The coupled three-body basis states can be written

as
Ipg Jpg  Jr
Mpq Mpg my

where we couple the angular momentum of particle p and g to Jp, as in the two-body case, and

|[(ﬁQ)JqupqﬂjMJ> = Z ( Jp o ]\\475 ) ‘qu> ) (3-143)

mpMg mp Mg

pqMr

subsequently couple Jp, with the angular momentum j, of particle r to the total three-body
angular momentum J with its projection M. Note that in general, also other coupling
orders are possible, e.g., first coupling the angular momenta of ¢ and r and then coupling J,
with j, to the total angular momentum. The corresponding three-body matrix elements for
a scalar operator and the j-coupled basis are given by

OL Tt — ([(53) J g Mg} T Mg | O |[(38) Jot My @) T M7)

= Z Z (jp Jq Jpq><Jpq Jr
mp Mg Mpg my

MpMg MMy mq

’)
Mg (3.144)

pgMy MstTMy
js jt Jst Jst ]u J
X r| O |stu) ,
(ms my Mst><Mst Moy Mj><pq‘ |stu)

where the superscripts indicate the total three-body angular momentum J and the interme-
diate angular momenta J,, and J of the bra and ket state, respectively. Due to angular-
momentum conservation both J,, with j,. and Jg with j, couple to the same total angular
momentum J and we set M7 = J. Note however that J,, and J,s in general can be different
and that the matrix element is independent of M 7. We will not give the angular-momentum-
coupled expressions for the fundamental commutators here, but refer to the Appendix of
Ref. [241] for the analog of the fundamental commutators in Egs. (3.133)-(3.138) in a j-
coupled form. The IMSRG(3) j-scheme flow equations can then be derived based on the
coupled expressions and applying the antisymmetrizer to the angular-momentum-coupled
terms.

3.5.1 Approximate IMSRG(3) truncation schemes

The full inclusion of triples corrections in the IMSRG presents a major challenge in terms
of both computational costs and memory requirements, and scales like O(N?) including all
fundamental commutators of Egs. (3.118)-(3.126). Therefore finding a way to approximate
the IMSRG(3) truncation would pave the way to large model-space IMSRG calculations that
approximately include the effects of three-body operators. Approximate triples have already
been successfully used in other many-body methods, such as CC theory [28, 198, 242-245],
and are standard approaches in quantum chemistry, e.g., the iterative CCSD-T(1) truncation
scales like O(A3N?) (with mass number A) opposed to the O(A3N) scaling of CCSDT. In
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Commutator Cost  Perturbative order
[2,2] — 3 O(NT) g*
[2,3] — 2 O(NT) gt
[1,3] = 3 O(NT) gt
[3,3] =0 O(NY) gt
2,3] — 1 O(NY) q°
[1,3] — 2 O(N®) g°
[3,3] = 1 O(NT) g8
[2,3] — 3 O(N?®) q°
3,3] — 2 O(N?®) q°
(3,3] — 3 O(N?) g8

Table 3.1: Computational cost and perturbative order of the IMSRG(3) fundamental commutators
of Egs. (3.133)-(3.138). The perturbative order is based on a perturbative analysis of the individual
contributions in Ref. [241], following Ref. [31].

the following, we present approximate IMSRG(3) truncation schemes by including in each
scheme selected fundamental commutators (see Table 3.1) on top of the IMSRG(2). The
different truncation schemes are then summarized in Fig. 3.3.

In Ref. [31], a perturbative analysis of the IMSRG is presented for the case where the
NO2B approximation and an HF reference state are used. This analysis reveals the MBPT
diagrammatic content of the many-body method, and we use it as a tool to understand the
contributions of different commutators in the IMSRG(3) and estimate their perturbative order.
In the following, we use the results derived in Ref. [241] and refer to this reference and Ref. [31]
for a more in-depth discussion of the perturbative analysis and formal derivation. We list

NEHLAMY a5 well as the perturbative order of the ten additional

the computational cost O(
fundamental commutators entering the IMSRG(3) in Table 3.1, where g is the auxiliary
parameter of the perturbed Hamiltonian and we use the shorthand notation [K, L] — M for

the commutators [A(K), B(L)} — CM) of corresponding many-body rank.

A key result of the analysis in Ref. [31] is that the IMSRG(2) is complete up to third
order in MBPT and additionally contains many fourth-order diagrams. At the NO2B level,
the IMSRG(3) accounts for the induced three-body effects, which are what is missing for
the complete inclusion of fourth-order diagrams in the IMSRG(2), making the IMSRG(3)
fourth-order complete (at the NO2B level) [31].

The first major truncation beyond IMSRG(2) we use, includes the minimum commutators
necessary to make the truncation fourth-order complete in MBPT. These are the [2,2] — 3,
2,3] — 2, [1,3] — 3, and [3,3] — 0 commutators. We refer to this truncation as the
IMSRG(3)-MP4 approximation. The IMSRG(3)-MP4 is most similar to iterated coupled-
cluster methods like CCSDT-1 [28, 242, 244], as both methods are fourth-order complete.
However, CCSDT-1 scales like O(A3N*), while the IMSRG (3)-MP4 scales like O(NT).

Beyond the IMSRG(3)-MP4 truncation, we consider two approaches to including further
commutators. The first is inclusion based on computational cost, including first the cheapest
of the remaining commutators before including the more expensive commutators [246]. The
rationale here is that by using this approach one can include as much “physics” as possible
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Figure 3.3: Approximate IMSRG(3) truncations schemes. We show the IMSRG(3)-MP4, the
computational-cost-based IMSRG(3)-N" and IMSRG (3)-N® (left), and the perturbative-order-based
IMSRG(3)-¢° (right) truncations in orange, green, and red, respectively. The additional fundamental
commutators included on top of the previous truncation are given at the corresponding arrows.

while increasing the computational cost incrementally, hopefully leading to a fairly faithful
reproduction of the full IMSRG(3) results. The second approach is based on the perturba-
tive analysis, where remaining commutators are included in the order of their perturbative
importance. This physically motivated approach attempts to capture as best as possible the
available physics in a consistent manner before including “higher-order” effects. One would
hope to see that these higher-order effects generate only small changes in energies and in
practical calculations some “complete” lower-order approximation could be used.

Following the first approach (the left path in Fig. 3.3), including the [2,3] — 1, [1, 3] — 2,
and [3,3] — 1 commutators on top of the IMSRG(3)-MP4 approximation yields a truncation
that includes all IMSRG(3) commutators that cost O(N7) or less. We refer to this truncation
as the IMSRG(3)-N7 truncation. The inclusion of the [2,3] — 3 and [3, 3] — 2 commutators
on top of this truncation yields the IMSRG(3)-N?® truncation, which includes all commutators
that cost O(N?®) or less. This truncation differs from the full IMSRG(3) only by the missing
[3,3] — 3 commutator.

Following the second approach (the right path in Fig. 3.3), we note that the IMSRG(3)-
MP4 truncation already follows this approach, including all of the IMSRG(3) commutators
that are O(g?) or less, with the exception of the [1,2] — 2 commutator, which is O(g®) and is
included in the IMSRG(2) truncation. The next truncation we present includes the remaining
O(g®) commutators, the [2,3] — 1, [1,3] — 2, [2,3] — 3, and [3,3] — 2 commutators, on top
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of the IMSRG (3)-MP4 truncation. We refer to this truncation as the IMSRG (3)-g® truncation.
This truncation includes two commutators that cost O(N®), which subsequently defines the
cost of the truncation. The two remaining commutators are O(g®), so this is the only complete
perturbatively guided truncation between the IMSRG(3)-MP4 and full IMSRG(3) truncation.
All four approximate truncation schemes discussed above are systematically studied in Sec. 4.5
and compared to full IMSRG(3) calculations for *He and 190 in small (epa, = 2) model spaces.

3.6 Applications of low-rank potentials in the IMSRG

In this section, we apply low-rank approximations of chiral NN interactions, using the SVD
approach introduced in Sec. 2.4, to the IMSRG and study their performance and predictions
for ground-state energies of finite nuclei. The results presented here have been published
in Ref. [171], where I contributed with performing the many-body calculations to test the
SVD rank-reduced interactions in medium-mass nuclei. We carry out the truncated SVD
for the potential in the partial-wave momentum-space basis and subsequently transform the
interaction to a single-particle HO basis as suitable input to the IMSRG. We emphasize that
in this exploratory application, we do not fully take advantage of the low-rank structure
of the potential in the many-body calculation, but rather reconstruct the full matrix from
the approximate interaction by filling the truncated blocks with zeros. By this approach we
can straightforwardly use the standard transformation codes to the single-particle basis and
the standard IMSRG solver of Ref. [247]. Completely exploiting the power of the SVD and
using the low-rank properties of the interaction would require reformulating the many-body
method itself based on the factors in the decomposition. This is beyond the scope of this
thesis, however work along these lines is in progress [248].

In Fig. 3.4, we compare the HF and IMSRG(2) ground-state energy per particle at various
SVD ranks Rgyp = 1-5 to exact results using untruncated NN interactions for selected closed-
shell oxygen, calcium, and nickel isotopes employing the N3LO 450 and 500 NN interactions.
The IMSRG(2) calculations are performed using an HF reference state and we employ a
model space of ey = 14 with hw = 28 MeV. From the top panel we see that the ground-
state energy per particle converges rapidly as a function of SVD rank and the full result is
quantitatively reproduced already when keeping only five singular values in the decomposition
in each partial-wave channel. In most cases, lower values of Rgyp yield less binding both at
the HF and IMSRG(2) level. Although in all cases the full potential provides a bound HF
solution, for 220 and "®Ni the HF determinant is unbound for the EMN 500 interaction at
Rsvp = 1. This pathology is cured when increasing the decomposition rank to Rgyp = 2. We
did not find a similar behavior when using the EMN 450 interaction. Moreover, the quality
of the low-rank approximation is stable as a function of mass number, i.e., the energy per
particle is equally well reproduced at low ranks for the closed-shell oxygen and nickel isotopes.

A more careful analysis of the relative error in the lower panel of Fig. 3.4 reveals that
already at Rsyp = 3 the decomposition error for the IMSRG energy is only about three
percent for all studied nuclei. Further increasing the rank to Rgyp = 5 yields excellent
reproduction of the exact results indicated by the black dashed line. We stress that the
convergence in general is not variational and that the relative error in the lower panel can be
smaller or larger than zero for different ranks. For the heaviest nucleus investigated so far the
error on the IMSRG(2) binding energy for Rgyp = 5 is 2.5 MeV. For the systems studied here
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Figure 3.4: Ground-state energy per particle (upper panel) of selected closed-shell oxygen, calcium,
and nickel isotopes at the HF level (circles) and using the IMSRG(2) approximation (diamonds) based
on the N3LO 500 (open symbols) and N3LO 450 (solid symbols) NN interactions for SVD ranks
Rsyp = 1-5 compared to exact results (black symbols). We additionally show the corresponding
relative errors for the HF and IMSRG(2) energies of the low-rank potentials compared to their exact
counterparts in the lower panel. All calculations use a model space of e.x = 14 and an oscillator
frequency of hw = 28 MeV. Figure taken from Ref. [171].

the relative error of IMSRG(2) ground-state energies seems to be smaller compared to the
HF results at the same Rgyp. However, the absolute error in both cases is comparable and
the decrease in relative error reflects the larger magnitude of the IMSRG(2) binding energy
due to the additional correlations accounted for by the IMSRG solution.

While the decomposition was performed in momentum space, the various basis transforma-
tions may potentially spoil the low-rank properties of the tensor factorization. In particular,
the basis transformations involving couplings of cm and intrinsic degrees of freedom may
require the SVD to be reformulated. However, since the SVD is performed in individual
partial-wave channels, fundamental symmetries of the nuclear interaction, e.g., rotational
invariance and parity conservation, are automatically preserved. This is particularly impor-
tant, since the conservation of spatial symmetries in a tensor-factorization environment is
highly nontrivial and more complex tensor formats will generally break symmetries of the
many-body operators.
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Natural Orbital Basis

Most many-body frameworks that perform a correlation expansion around a reference state
require the introduction of a computational (single-particle) basis for the representation of
the many-body operators, which are commonly written in a second-quantized form. In the
limit of a one-body Hilbert space of infinite dimension, different choices of the computational
basis yield identical results. However, due to computational limitations, in practice one is
always restricted to using a finite basis size and, consequently, calculated observables will
depend on the underlying computational basis.

It has been recently realized in nuclear physics that the optimization of the single-particle
basis provides a powerful tool to stabilize many-body calculations and enables a more reliable
extraction of physical observables from large-scale calculations [249, 250]. Choosing the
single-particle basis in nuclear many-body theory primarily requires addressing the following
questions:

B What is the best choice for obtaining rapid convergence with respect to the model-space
size?

B What is the best strategy to minimize the dependence of physical observables on basis
set parameters?

B To what extent is the factorization of center-of-mass and intrinsic motion contaminated?

In practice, optimizing with respect to all of the above points simultaneously is not possible.
Historically, most many-body calculations either employ HO or HF single-particle states.
Harmonic oscillator basis states rigorously ensure factorization of center-of-mass and intrinsic
degrees of freedom of the many-body wave function when combined with a Npy.x truncation,
as in NCSM approaches [20, 23]. However, in practice, a strong dependence on the basis set
parameters such as the oscillator frequency of the confining potential is observed, especially
for heavier nuclei or for observables that are more sensitive to the long-range part of the
nuclear wave function. This makes the extraction of such observables challenging. Using HF
orbitals based on a prior mean-field solution typically lowers the frequency dependence, while
numerically still leading to a factorization of the center-of-mass and intrinsic wave function
in large enough model spaces [251]. However, selected nuclear observables may still show
sensitivity to the oscillator frequency in the HF basis as observed, e.g., for charge radii of
medium-mass nuclei in IMSRG calculations [52].

Recently, applications of natural orbitals (NAT), defined as the eigenvectors of the one-
body density matrix, revealed faster model-space convergence and significantly reduced sen-
sitivity to basis parameters in large-scale NCSM calculations [250]. Furthermore, they have
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been shown to drastically reduce the required amount of 3p3h amplitudes in CC applica-
tions [74], allowing for novel calculations with leading triples corrections, e.g., for deformed
nuclei [74] and nuclear matrix elements of the neutrinoless double-3 decay [238].

In this chapter, we present the natural orbital single-particle basis as an efficient basis
choice for many-body applications based on our publication in Ref. [252], leading to signifi-
cant improvements such as faster model-space convergence and lower sensitivity to basis set
parameters. Specifically, we systematically compare HF and NAT orbitals and benchmark the
advantages observed in NCSM calculations using the NAT basis for the IMSRG. Substantial
computational savings in practice are obtained by the construction of natural orbitals in a
large single-particle basis. This step enables for performing the many-body calculation in a
reduced space of much lower dimension, thus offering help to extend the reach of ab initio
methods towards heavier masses and higher orders in the many-body expansion.

Most of the results presented in this chapter are part of our already published work in
Refs. [241, 252], and we closely follow the course of these publications in the following. In
Sec. 4.1, we review the construction of the NAT single-particle basis based on a perturbatively
improved density matrix. The HO, HF, and NAT single-particle bases are compared in detail
in Sec. 4.2, and the HF and NAT bases are studied for applications to medium-mass systems
using the IMSRG formalism in Sec. 4.3. Mixed basis sets using orbitals from an energy
density functional (EDF) calculation are explored and compared to the HF and NAT basis
in Sec. 4.4. Additionally, we show results for using the NAT basis in the IMSRG(3) for small
model spaces in Sec. 4.5.

4.1 Single-particle basis and basis optimization

While HO basis sets have been used extensively for a long time in various many-body frame-
works, they constitute an agnostic choice with respect to any specific properties of the target
system, e.g., in terms of mass number or mean-field effects. This can be addressed by using HF
orbitals instead. Hartree-Fock orbitals account for bulk properties of the nucleus stemming
from a variational minimization of the ground-state energy. Observables like the energy or
the radius are therefore well captured at the HF level as long as the nuclear interaction is
soft enough, and the single-particle wave functions possess an improved radial dependence
as opposed to the Gaussian falloff of HO eigenfunctions. Proton and neutron single-particle
potentials in general differ in the HF approach, thus accounting for mean-field contributions
induced by Coulomb and isospin-breaking effects. Still, the HF procedure by construction
only provides an optimization of hole single-particle states while leaving the particle states
untouched beyond fixing the normalization. However, wave-function expansion methods aim
at capturing dynamic correlations linked to particle-hole excitations, which also involve single-
particle orbitals that are not optimized by the HF approach. Therefore, incorporating such
effects in the construction of the computational basis is key when trying to robustly determine
observables to high precision. In this chapter, we discuss one possible way to incorporate
such effects in the basis construction by calculating natural orbitals based on a perturbatively
improved density matrix up to second order in MBPT, which additionally optimizes the
particle orbitals in contrast to the HF approach.

Nucleon-nucleon as well as 3N interactions are conveniently stored in a partial-wave
decomposed form in relative momentum space that allows for storage in a relatively cheap
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way. However, most many-body methods require input two- and three-body interactions
formulated in a single-particle basis to solve the nuclear many-body problem. We refer to
Refs. [253-255] for a detailed derivation of the transformation of the NN and 3N potential
matrix elements from a relative momentum-space basis to a single-particle basis, where
especially the transformation of the 3N interaction to the single-particle HO basis can be
computationally challenging.

4.1.1 Natural orbital basis

Natural orbitals are defined as the eigenbasis of the one-body density matrix with its matrix
elements given by

(Y :a;f,aq W)

M1 = T ey (4.1)

where |U) denotes the exact ground state and the denominator ensures the normalization, i.e.,
tr(y) = A. The calculation of the exact one-body density matrix requires the full solution
of the Schrodinger equation, which is out of reach beyond the lightest systems. However,
early attempts in quantum chemistry revealed that approximate natural orbitals can be very
useful [256, 257]. Such basis sets are obtained by using an approximate many-body state
| WaPPrOX) to obtain an approximate one-body density matrix,

approx — <\I;approx’ : azaq : ‘\IIaPpTOX>

pq - <\I;approx | \I;approx.>

(4.2)

In regions of the nuclear chart where the exact wave function is computationally inaccessible,
this provides an alternative option for defining a basis for the many-body calculation. In
practice, a reasonable trade-off between the accuracy of the many-body truncation for the
construction of the approximate wave function and the associated computational cost needs
to be found.

In the case where the approximate wave function is an HF Slater determinant |HF) the
density matrix

YA = (HF| : ala, : [HF), (4.3)

already derived in Eq. (3.30a) in Sec. 3.2, has the particularly simple form

HF ]lhh 0
= 4.4
Y ( 0o ol (4.4)

where 1 denotes the identity matrix in the subblock of hole states and we assumed that the
HF state is normalized to unity by (HF|HF) = 1. Furthermore, the density matrix corresponds
to a normalized many-body state, meaning that its trace yields the particle number of the
state, i.e., tr(y1F) = A.

For an HF reference state, the canonical orbitals, defined as the eigenbasis of the one-body
(HF) Hamiltonian, and the natural orbitals based on the HF density matrix in Eq. (4.4)
coincide. Therefore, one must include correlations beyond mean field in the construction of
the density matrix to gain a benefit from the natural orbitals.
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4.1.2 Perturbatively improved density matrix

As discussed at the beginning of this section, accounting for particle-hole couplings in the
density matrix is essential for providing a more refined computational basis. The simplest
approach to including such effects is by employing a perturbatively corrected one-body density
matrix. Following the description in Ref. [258], the one-body density matrix up to second
order in the interaction (\?), based on expanding the eigenstate of the approximate wave
function up to second order in MBPT (MP2), can be written as

AMP2 = JHE 4 (02) 4 1 (20) 4 (1) 4 ()3 (4.5)
where
VISZm) = (@) a;aq c ™) (4.6)

is the MBPT contribution for the density matrix arising from the bra and ket wave function
corrections of the reference state |®) at orders m and n, respectively. Terms of order A% or

10) are absent when

higher in the interaction are discarded. Moreover, terms of the form ~(©1/(
using a canonical HF reference state due to Brillouin’s theorem [188] (see Sec. 3.2). Explicit

expressions for the various contributions in terms of single-particle orbitals are given by

1 Tiriavlabari
Dz(/};I;h _ 5 Z ) Zabeaabba 7 7 (4.7&)
abi e
(hp) _ ’LG/L] zgaa
plp: — 2 z S (4.7b)
aij
(hh) _ 7 zabrab] 7
Di'j/ Y Z " _aboab (47C)
abz i ’Lejll
1 TyraiiTii
DYy = 3 Lot (47

aij iy i

where the labels i, j, k, ... (a, b, ¢, ...) correspond to single-particle states occupied (unoccupied)
in the reference determinant, i.e., the HF state in our case. The matrix elements I',q.s of
the normal-ordered Hamiltonian are given in the HF basis, thus corresponding to an HF
partitioning in the MBPT expansion of the density matrix [18]. Furthermore, the shorthand
notation

ef}’ =€+ € —€ — ¢ (4.8)

as for MBPT in Eq. (3.70) is used, with ¢, = f,, denoting the HF SPE of orbital p. Conse-
quently, the MP2 density matrix is given by

hh  ,hp
Mp2 _ (7 v
T = <7ph pr> ’ (4.9)
where the hole-particle and particle-hole blocks are nonzero and given by

p — D(hp)l + D(hp)2 = (,yph)T , (410)
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Figure 4.1: Correlated one-body proton density matrix yMF? in the HF basis for 160 in an e = 4
model space using the N3LO 450 interaction based on the N3LO NN potential from Ref. [56] with
N3LO 3N forces constructed in Ref. [57]. The first three proton orbitals (0s1/2, Op3/2, and Op; /)
are occupied in the 90 reference state, while the remaining ones are unoccupied. The perturbative
corrections beyond HF can be seen in the diagonal particle-particle contributions and the off-diagonal
particle-hole and hole-particle contributions. Note that for this N = Z nucleus the neutron one-body
density matrix is very similar.

and the hole-hole and particle-particle blocks given by

APP = D(PP) (4.11b)

respectively. Note that in contrast to the HF density matrix, the MP2 density matrix contains
particle-particle and particle-hole couplings as shown for 160 in Fig. 4.1. Since

S DY+ > DR =0, (4.12)

the second-order density matrix still fulfills the trace normalization condition tr(yMF?) = A
as in the HF case.

In practice, the construction of the MP2 density matrix is realized using a spherically
constrained scheme, i.e., enforcing angular-momentum conservation throughout the initial HF
solution and the following MBPT calculation. Specifically, the single-particle orbitals, which

are (27 + 1)-fold degenerate, are characterized by the quantum numbers n, I, j, and m; [cf.

Egs. (3.28)]. As before, n is the radial quantum number, [ the orbital angular momentum,
J the total angular momentum, and m; the isospin projection. In actual calculations, we
truncate the single-particle states at e < epax, with quantum numbers e = 2n + [ and
emax = (2n + Dmax.

Consequently, the resulting MP2 density matrix is block diagonal in the quantum numbers
ljt as only states with different radial quantum number n couple. The diagonalization of the
MP2 density matrix is performed in [jt subblocks to ensure symmetry conservation. The
resulting eigenvectors and eigenvalues correspond to the transformation coefficients from the
HF to the NAT basis and the occupation numbers of the natural orbitals, respectively.
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Figure 4.2: Occupation numbers n,, of the single-particle proton orbitals for the HF and NAT basis
n 160, using the 1.8/2.0 EM interaction [54] and an oscillator frequency fiw = 16 MeV. We show
results for two model-space truncations e,y = 2 and e., = 10 in the NAT basis construction. As
for Fig. 4.1, the occupations of the neutron orbitals are nearly identical.

4.1.3 Basis transformation

The natural orbital states are obtained as linear combinations of the HF states, mixing radial
excitations only:

[nap)NAT = Z NATC | o) (4.13)

n'

where a, is a collective index for the quantum numbers I, j,, and my, and NATCT?Z, denotes
the expansion coefficients in the HF basis obtained by the diagonalization, i.e.,

HF(n’ap|nap>NAT = NATCOCP (4.14)

nn'

where the projection m,, of the total angular momentum is suppressed since the transformation
coefficients and single-particle states do not depend on it as long as rotational symmetry is
enforced. By expanding the HF states in the HO basis, we can also express the natural orbital
states in the HO basis:

[noap)NaT = Z NATger HECO | In" o) io

(4.15)
= Z NATHECE [n" ap)uo

where the coefficients NAT/ HFC’Z‘TPL,, now combine the transformation from the HO to the HF

and from the HF to the NAT basis.

Note that the set of occupation numbers for the natural orbitals n, € [0,1] obtained from
the eigenvalues now leads to a fractional filling of all orbitals, in contrast to the occupation
numbers n, € {0,1} obtained from the HF solution discussed in Sec. 3.2. This feature is
illustrated in Fig. 4.2 comparing the NAT and HF occupation numbers for an 'O reference
state.

Since the reference state for the MP2 density matrix is not a single Slater determinant due
to mixing of particle-hole excitations, the occupation numbers must differ from the mean-field
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picture. As discussed in the following, this also affects the normal-ordering procedure with
respect to natural-orbital basis states.

While the employed MP2 density matrix provides a simple approximation to the exact
one-body density matrix, nonperturbative many-body schemes can be used to refine the
approximation, e.g., a A approach in CC theory [199], dressed propagators from Green’s
function theory [259], or a fully correlated configuration interaction (CI) calculation [260]. A
balance between accuracy and computational complexity needs to be found, and a low-order
MBPT approach provides a reasonable approximation to the one-body density matrix at low
computational cost.

4.1.4 Intrinsic kinetic energy

The intrinsic Hamiltonian, here as before considered up to three-body contributions, can be
split into a kinetic part and an interaction part,

H=T T +VP VO =T, + VO 4 v | (4.16)

with the intrinsic kinetic energy Ti,¢, obtained by subtracting the cm kinetic energy T, from
the full kinetic energy T'. The intrinsic kinetic energy can be represented either as a sum of
one- and two-body operators, as shown in Eq. (3.17),

1 P, 1PpP
7+ _ (1 _ ) Py 1Py Py 4.1
e A 2 2M A M (4.17)
P p<q
or as a pure two-body operator,
2
(2 1 (pp - pq)
Tl = 32 "5qf (4.18)

p<q

Of course, both cases are equal and can be transformed into each other by

(Pp—Py)* (P +DP; 2P, P,)
D =20

o7 2M o7 2M

2
_ Pp Pp Py
=(A-DY -2 T
p p<q

(4.19)

The one- and two-body matrix elements of the Hamiltonian obviously differ depending on
the choice of Ti,;. Nevertheless, both cases result in the same HF determinant with identical
total HF energy, as studied in detail in Refs. [261, 262]. The HF single-particle energies are
different for both choices and can be related by a unitary transformation of the occupied
single-particle states [261]. These findings are based on the assumption of a reference state
with well-defined particle number A. For a discussion of particle-number breaking theories,
e.g., the Hartree-Fock-Bogoliubov approach, see Ref. [263].

The partitioning of the kinetic energy operator also affects the construction of the natural
orbital basis. By employing 7%

int » the initial Hamiltonian (before normal ordering) no longer

MP2

has a one-body part, and the two-body matrix elements in the construction of ~ [see

Egs. (4.7a)—(4.7d)] differ from the ones obtained by using the one- plus two-body form of the

kinetic energy, resulting in altered transformation coefficients and NAT occupation numbers.
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The partitioning also changes the single-particle energies, further changing the resulting yMF?
density matrix.

In general, we apply the intrinsic kinetic energy operator of Eq. (4.17) with a one- and
two-body part for the IMSRG calculations performed in this thesis. However, in the following
we additionally study the impact of using a pure two-body kinetic energy operator T; 2)

int *

4.1.5 Normal ordering in the NAT basis

When employing a multi-reference state that is no longer a single Slater determinant, the
notion of normal ordering introduced in Sec. 3.1 needs to be extended to cope with the
multi-configurational character of the vacuum. Such an extension can be naturally addressed
in terms of the generalized Mukherjee-Kutzelnigg normal ordering [185]. Even though this
scheme is not used for practical applications in this thesis, it is still worth anticipating the
additional complications that arise from normal ordering with respect to a multi-reference
state.
For an arbitrary many-body operator O containing up to two-body contributions:

0=0041+00 0@ (4.20)

performing the normal ordering with respect to a non-product-type vacuum yields [190]

- 1

O(OB) = O(OB) —+ Z Oéqu)'qu + Z Z Oé%?g'qurs ) (4213)
pq pqrs

G = 0hg”) + Y ot rs (4.21b)
rs

Ooers = Ofard » (4.21¢)

involving one- and two-body density matrices 7, and 745, respectively, and we use the
tilde to distinguish the reference-state normal-ordered matrix elements from the initial ones.
The two-body density matrix, which contributes to the zero-body part of the normal-ordered
operator, is given by

- (¥ : a},azgasar D)
(W|w)

(4.22)

and can be decomposed into a factorized part of products of one-body density matrices and
an irreducible two-body part Apgrs,

Ypgrs = (%ﬂm - ’VqWPS) + Apgrs - (4.23)

The appearance of \,,.s is a consequence of the reference state being no longer of mean-field
character [see Eq. (3.30b) for the two-body density matrix of an HF reference state]. In
practice, such states are obtained, e.g., from particle-number-broken and -restored Hartree-
Fock-Bogoliubov vacua [68] or small-scale CI diagonalizations [264]. In the following, the
irreducible two-body part is discarded for simplicity and a mean-field-like approximation is
employed:

Vpgrs = VasVpr — VqrVps - (4'24)
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Equation (4.24) is exact as long as a many-body state of product type is used. While in

principle it is straightforward to derive two-body density matrices in MBPT, the factorized

approximation is expected to provide a reasonably good choice for the basis optimization.
Considerable simplifications are obtained by working in the natural orbital basis, i.e.,

Vg = MpOpq » np € [0,1], (4.25)

where the lack of a well-defined particle-hole picture means that the occupation numbers
are no longer strictly zero or one. Expressions for the normal-ordered matrix elements in
Eq. (4.21) in the natural orbital basis are

6% = o) 4 Z oy + 5 Z Ofapap (4.26a)
( _|_ Z quTnT R (426b)
523) = 01(331133 7 (4.26¢)

now involving single-particle summations running over the full one-body Hilbert space for the
summation indices p, ¢, and 7 instead of hole orbitals only, a consequence of the smeared-out
Fermi distributions in the occupation numbers n,, as shown in Fig. 4.2.

4.1.6 Single-reference case

In the simplest case, a single Slater-determinant reference state, see Eq. (3.4), is employed in
the many-body expansion, and we use the definition of hole and particle states with n, =1
and n, = 0, respectively of Eq. (3.14). Performing the single-reference normal ordering with
respect to this reference state, the corresponding normal-ordered matrix elements of the
operator are obtained as (see, e.g., Ref. [184])

6% = ol%) 4 Z O(IB T3 Z zm '+ 2 Z Ozykmkv (4.27a)
7,jk

o1B) = o(1B) 4 Z 0;353 Z WW , (4.27b)

O = Obard + Z o (4.27¢)

6;5)z;]§s)tu = Oé?ﬁztu , (4.27d)

where the labels 7 and j indicate hole states occupied in the reference state |®). In Eq. (4.27),
three-body contributions are explicitly included. In practice, the NO2B approximation is
employed [213, 214], where the residual three-body part in Eq. (4.27d) is discarded to lower
the computational complexity.

Because the MP2 density matrix does not correspond to a single Slater determinant, an
auxiliary many-body state |[NAT) is constructed by filling the first A states with the highest
occupation numbers. Similar to Eq. (3.4), these orbitals are filled with updated occupations
ny, € {0, 1} to conserve the particle-number expectation value, thus establishing a well-defined
particle-hole picture. Consequently, in the following applications standard Slater-determinant-
based codes can be used for the many-body expansion. Note that, even though this reference
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state has product-type character, the information about the correlated density matrix is
encoded in the transformation matrix from the HO to the NAT basis [see Eq. (4.15)] for the
one- and two-body parts of the intrinsic Hamiltonian. By using such an auxiliary vacuum,
the reference-state expectation value is larger than the HF expectation value since there is
no underlying variational principle, i.e.,

(NAT|H|NAT) > (HF|H|HF) . (4.28)

4.2 Diagnostics for the density matrix

In this section, natural orbitals, given by the eigenstates of the one-body density matrix, are
studied in detail and compared to the commonly used HF single-particle basis. We demon-
strate, how using natural orbitals constructed from a perturbatively improved density matrix
lead to significantly reduced frequency dependence of the single-particle wave functions. These
results allow us to gain a better understanding of the relationship between the various com-
putational bases and their sensitivity to the nuclear Hamiltonian used in their construction.
We focus on the two chiral interactions discussed in Sec. 2.2.2, the N3LO interaction with
the NN potential from Ref. [56] and N®LO 3N forces constructed in Ref. [57] using the cutoff
values A = 400-500 MeV and the 1.8/2.0 EM interaction of Ref. [54].

4.2.1 “Softness” of the interaction

“Soft” interactions are low-resolution interactions that show weak coupling between low- and
high-energy states. The softness of an interaction, i.e., the degree of decoupling between low
and high momenta in the Hamiltonian, can be varied by changing the regulator scale for
Hamiltonians constructed from an EFT as well as by applying SRG methods to decouple or
integrate out high-momentum degrees of freedom [184, 265] (see Sec. 2.3). Soft interactions
applied in many-body methods have been shown to improve convergence with respect to basis
truncation and order in the many-body expansion. In particular, the use of an SRG-evolved
Hamiltonian is required to enable a perturbative solution even for closed-shell systems [18]. A
Weinberg-eigenvalue analysis, which provides a metric of the perturbativeness of an interaction,
shows that the softness is intimately linked to the SRG resolution scale [148, 178].

Because the one-body density matrix is constructed from an MBPT expansion, we expect
the density matrix and the resulting NAT basis to be more sensitive to the basis frequency
and truncation for hard interactions. For unevolved chiral potentials, the mean-field wave
function may exhibit unphysical properties, giving rise to an unbound HF solution. With
such a poor reference state, the many-body expansion is significantly more complicated, in
particular if perturbative techniques are employed. The key idea of a many-body expansion
is to start from a qualitatively correct reference state while residual dynamic correlation
effects are brought in as (small) corrections. This rationale is obviously broken once the
mean-field reference is unbound or not under control, manifesting in final results via, e.g.,
strong frequency dependence.
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Figure 4.3: Squared absolute value of the radial wave function u(r) of °O as a function of r for
different proton orbitals in the HO, HF, and NAT bases. We show results for the occupied Ops /5 orbital
(first row) and some of the first unoccupied orbitals (second through sixth rows) for the N3LO 450
interaction (left) and the 1.8/2.0 EM interaction (right) using oscillator frequencies fiw = 16-36 MeV
for the HO, HF, and NAT basis. The HF and NAT orbitals include single-particle HO states up to
emax = 10 and Fsp.c = 14, as well as up to epax = 14 for the NAT basis in last column of the right
plot.

4.2.2 Single-particle wave functions

While the HF approach targets the optimization of the occupied single-particle states from
a variational approach, the unoccupied orbitals are left unmodified up to normalization.
Therefore, the HF basis is expected to properly describe occupied orbitals while failing
for unoccupied ones. The natural orbital basis, however, accounts for particle-hole admix-
tures and particle-particle couplings and therefore may qualitatively improve the description
of unoccupied states as will be tested in the subsequent calculations. In the following, a
single-particle basis is employed including states up to a principal quantum number e,,.
Additionally, we introduce a truncation E3p,.x in three-body space keeping only configurations
with e1 + e2 + e3 < E3max < 3emax due to the extensive size of three-body matrix elements.

In the left plot of Fig. 4.3, we show the squared absolute value of the radial wave functions
for different oscillator frequencies using the HO, HF, and NAT bases and the N3LO 450
interaction. Different rows correspond to different single-particle orbitals; only the first row
(Op3 /2) corresponds to an occupied orbital in '60. Clearly, using a HO basis leads to strong
frequency dependence in all cases, even for the occupied Opg/; state. Hence, HO wave functions
are ruled out as a reliable computational basis and are not considered further in this thesis.
While the Opz /o orbitals are more robust in the HF case as expected, unoccupied HF orbitals
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show frequency dependence comparable to that of HO orbitals, a consequence of the fact
that unoccupied orbitals are not optimized in the HF approach. Switching to natural orbitals
nicely resolves many of the remaining artifacts, revealing only minor frequency dependence
for both occupied and unoccupied states.

As the softer 1.8/2.0 EM interaction from Ref. [54] leads to much better reproduction of
ground-state energies at the HF level [55], this also improves the quality of the MP2 density
matrix. In the right plot of Fig. 4.3, we compare HF (left) and natural orbitals (middle) in a
model space with epax = 10 for this interaction, while additionally benchmarking the effect
of natural orbitals when going to a larger basis size of eyax = 14 (right). While the frequency
dependence for this softer interaction is much milder in the HF case, high-lying single-particle
states still significantly depend on fw. A residual frequency dependence is still seen in the
1py /2 orbital at emax = 10 in the natural orbital basis, but fully vanishes when going to larger
spaces of epax = 14.

In summary, properties of the HF solution strongly impact the qualitative behavior of
the natural orbital single-particle wave functions and a bound mean-field solution is key for
providing a reliable reference point for a many-body expansion.

4.2.3 Positive definiteness as diagnostic tool

The density matrix is a positive-definite operator and thus its eigenvalues, the occupation
numbers, are nonnegative. Therefore, unphysical negative occupations or occupations larger
than one should not show up during the diagonalization. Previous investigations in quan-
tum chemistry showed that the appearance of negative occupation numbers can be linked
to a breakdown of a single-reference description and hint at the onset of strong static cor-
relations [266]. Therefore, we aim to utilize occupation numbers as a diagnostic tool and
investigate their sensitivity to the softness of the nuclear interaction. As the HF ground-state
energy is directly related to the softness of the interaction, a correlation between the HF
energy and the size of negative occupations is expected.

Figure 4.4 depicts the magnitude of the negative occupations using the N3LO interactions
for various cutoff values in 10, 220, and 'C. In both oxygen nuclei, we observe a decrease
in size for softer interactions, as indicated by going from the harder potentials with cutoff
A =500 MeV to A = 400 MeV, in both the NN-only and the NN+3N cases. Consequently,
an unbound HF solution strongly affects the appearance of unphysical negative occupations.
In general, using the two-body form of the kinetic energy operator T, 151213 results in smaller
negative occupations for both nuclei. We also verified that softening the interaction by a
consistent SRG evolution of NN and 3N contributions [52, 166] significantly reduces the
magnitude of the negative occupations, eventually letting them vanish completely. Increasing
the model-space size seems to increase the magnitude of these occupations. Moreover, the
effect is generally less pronounced for heavier nuclei, e.g., in "®Ni (not shown).

In addition, we investigate the size of negative occupations in the case of '2C. Due to
the cluster structures and weak shell closure in '2C, the quality of single-reference many-
body approaches is expected to deteriorate in comparison to the doubly magic nucleus 0.
An analysis of the single-particle spectrum revealed only a small shell gap in the single-
particle spectrum, thus significantly enhancing the size of perturbative corrections to the
MP2 density matrix in the particle-particle and hole-hole channel [see Eqgs. (4.7¢) and (4.7d)].
Consequently, highly erratic occupation numbers are observed in the bottom panel of Figéi 4.24)1.
i+

int ’

Empirically, we find that the use of 7% with a slightly larger shell gap was superior to

int
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Figure 4.4: Negative occupations of the p orbitals scaled by (2j; + 1) in the NAT basis for °O
(top), 220 (middle), and 2C (bottom) as a function of the HF energy. We show results for various
cutoffs A = 400-500 MeV with the NN-only N*LO EMN and NN+3N N3?LO interactions indicated by
triangles and circles, respectively. We apply both choices for the kinetic energy operator, Ti(nltﬁ) (solid
symbols) and Tl(th) (open symbols), and use a model space of emax/Esmax = 14/14 with fiw = 20 MeV.
All negative occupations arise only for high radial quantum number. Note that there are no negative
occupations for the softer NN-only EMN 400 and 420 interactions for the oxygen isotopes.

significantly reducing, though not fully resolving, the large negative occupations. The results
of this analysis for the occupation numbers is also evidence for the challenges of the single
reference-state starting point for a description of 2C.

4.3 Natural orbital basis in the IMSRG

Before discussing IMSRG applications using natural orbitals, it is worth addressing the in-
terplay of the correlations built into the MP2 density matrix and the correlations that are
resummed within the IMSRG flow. Using a natural orbital reference determinant yields
a higher ground-state energy at s = 0 compared to an HF vacuum due to the variational
optimization of the HF orbitals in the space of single Slater-determinant reference states [see
Eq. (4.28)]. Moreover, the ground-state energy at s = oo using the MP2 density matrix does
not improve upon the IMSRG(2) results obtained in any other single-particle basis. The
MP2 density matrix only incorporates correlations to one-particle-one-hole and two-particle-
two-hole excitations. Within the IMSRG(2) approximation such effects are resummed to
all orders [31] such that no improvement on the final observable is expected. Once higher-
body excitations are included, additional correlations will enter the description which are
absent in the IMSRG(2) scheme. Practically, this is achieved by including third-order terms
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Figure 4.5: Ground-state energies (upper rows) and charge radii (lower rows) of 0 and °Ca in
the left and right plots, respectively, as a function of the oscillator frequency fuw, for the NN-only
(triangles) and NN+3N (circles) N3LO 450 interactions. We show results for the HF and NAT bases
in the left and right panels of each plot, respectively, using various single-particle truncations epax
with Esmax = 14. Experimental values are taken from Refs. [48, 267].

in the MBPT expansion, i.e., A3, or allowing three-body operators in the normal-ordered
Hamiltonian, thus generating additional contributions in the first-order state correction. Both
options will generate the leading contributions to three-particle-three-hole excitations (see
also Sec. 3.5 for the IMSRG(3) truncation).
After addressing in detail properties of the single-particle basis itself, the various choices
are benchmarked for medium-mass closed-shell systems using the IMSRG framework, focusing
n 160, 4Ca, and "®Ni. All many-body calculations employed the publicly available IMSRG
solver by Stroberg [247]. We compare results for ground-state energies and charge radii of
160 and *°Ca in the HF and NAT bases in Fig. 4.5 for a large range of oscillator frequencies
for the NN-only and NN+3N N3LO 450 interactions. For the NN-only potential, we observe
nearly no change when going from the HF to the NAT basis on this scale. Since the HF
solution is bound, bulk properties are well captured at the mean-field level and applying the
NAT basis does not yield an improvement in final results. Both energies and radii are almost
flat as a function of Aw for the largest model space and rapidly converge with model-space
size in both the HF and natural orbital bases. When 3N forces are included, the NN+3N
results similarly to the NN-only case show almost no change from the HF to the NAT basis,
but the hw dependence becomes more pronounced for the radii.
In order to systematically understand the difference between the basis sets, we examine
the converged IMSRG(2) ground-state energies in greater detail. In Fig. 4.6, we show the
difference of the results in the HF and NAT bases as a function of the SRG evolution scale



4.3 NATURAL ORBITAL BASIS IN THE IMSRG

C T T T L
10 ¢ N3LO 450 7

0.8 [

0.6 F

0.4 F
02 F

0.0 F

Enxatr — Enr (MeV)

-0.2 F
—-0.4 [

-0.6 |

20.0 10.0 50 35 26 2016
A (fm=1)

Figure 4.6: Difference of the ground-state energies in the NAT and HF bases for ¢0O, 4°Ca, and
"8Ni as a function of the SRG resolution scale A using the NN-only N®LO EMN 450 interaction and a
model space of e = 14 with Aw = 20 MeV.

for three closed-shell nuclei 160, 4°Ca, and "®Ni for the NN-only interaction. The analysis is
performed in absence of three-body interactions to eliminate the sensitivity of the different
reference states to the NO2B approximation. For harder interactions (large A) the difference is
of the order of 1 MeV with the natural orbitals yielding stronger binding for 10 and 4°Ca and
slightly weaker binding for "®Ni. Softening the potential (small \) significantly reduces the
effect such that, eventually, only differences of the order of tens of keV remain at A = 1.6 fm .
These differences are marginally enhanced when including 3N forces; i.e., natural orbitals
provide slightly more binding compared to the HF basis and lead to a minor decrease of the
hw dependence of charge radii. We emphasize again that this NN+4-3N interaction leads to an
unbound HF solution, such that the total binding has to be produced by correlation effects
during the IMSRG flow and the mean field provides a poor reference state as discussed in
Sec. 4.2.1. The minor differences in converged energies are assumed to be driven by induced
many-body contributions that differ in HF and natural orbital bases. A further investigation
requires systematic evaluation of leading three-body contributions beyond the IMSRG(2)
approximation which is beyond the scope of this thesis.

In summary, we do not observe the desired independence of the oscillator frequency in
the smaller model spaces, which one could have guessed from the left plot of Fig. 4.3, and do
not improve on the frequency dependence in the largest model spaces shown here compared
to the HF basis.

4.3.1 Differences between NCSM and IMSRG

Given the great performance of MP2 natural orbitals in NCSM results, as shown in Ref. [250],
the above results seem surprising at first since no substantial improvement over HF orbitals is
obtained. The key difference between the IMSRG calculations performed in this thesis so far

and the NCSM calculations is the model space in which the many-body solution is obtained.

In the NCSM, one conveniently employs an Np.x truncation, where only many-body
configurations up to a given relative excitation level are included [23]. In this case, constructing
the correlated one-body density matrix in a large single-particle basis includes excitations
that are absent from the NCSM configuration space and, therefore, improves the frequency
dependence. On the other hand, this is inherently different from an IMSRG application, where
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both the reference-state construction and IMSRG flow typically take place in the same model
space, parametrized by ema.x. Since the high-lying states are included already in the initial
single-particle basis for the HF calculation, we cannot expect significant improvement for the
simplest natural-orbital-based IMSRG calculations over HF-based IMSRG calculations.

Consequently, the key idea in the following will be the construction of the MP2 density
matrix in a large space, while solving the many-body problem in a reduced space in the
presence of the full-space correlations embedded into the basis transformation.

4.3.2 Reduced-basis calculations from NAT/HF constructed in full space

In the following, the initial MP2 density matrix is built in a large model space My, while a
smaller subspace M edquced € M is used for performing the IMSRG evolution. While the
basis transformation is performed according to

napinar = > YATHECY 10 o no (4.29)
TL/

we construct a reduced basis set by keeping only a small number of the natural orbital states
emax even though the density matrix construction is performed in a large space characterized
by egég MME With this approach, the orthonormalization of the individual basis states in the

reduced space is still guaranteed.

As an example, the construction of the NAT basis states in Eq. (4.29) in an eiﬂﬂ /HE _

10
model space gives the optimized s orbitals 0s;/, through 5sy /5, based on the transformation
of the HO states up to the 5s; /5 orbitals. A subsequent truncation to an emax = 6 model

space discards the 4s; /5 and 5s; /o NAT orbitals after the unitary transformation. This is to

be contrasted with the construction of the en.x = 6 NAT basis in an eﬁéf /HE _ 6 model

space, where there are no 4s;/5 and 5s1/5 HO orbitals present in the transformation for the
natural orbital basis states.

Even though parts of the information contained in the natural orbital basis are lost
during this reduction process, the resulting matrix representation of operators in Myequced
still contains information about the large space due to the mixing of radial excitations up to a
maximum radial quantum number ngy; included in Mg,y that are otherwise not contained in
Meduced- As a result, this approach accounts for high radial excitations in the construction
of the reduced NAT basis and leads to a better optimization of the low-lying wave functions.
Excluding higher-lying states from M educed 18 also motivated by the intuition that for low-
resolution Hamiltonians we expect the many-body expansion to be dominated by excitations
to low-lying states.

For the following calculations, Miequceda and My will be parametrized by two values,

€max for the IMSRG evolution (in M equced) and egi/(NAT for the basis construction (in Mgy).
We employ eﬂi,{NAT = 14 for the 1.8/2.0 EM interaction, corresponding to the radial wave

functions in the last column in the right plot of Fig. 4.3 that show the desired frequency
independence for this soft interaction (see Sec. 4.2.1). Comparable results are expected for
the consistently SRG-evolved N3LO interactions. We investigate the impact on ground-state
energies and charge radii by considering IMSRG calculations in various reduced model spaces
with truncations ema = 6,8, and 10 for 00, 4°Ca, and “®Ni in Figs. 4.7 and 4.8.
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Figure 4.7: Ground-state energies (upper rows) and charge radii (lower rows) of 0 and #°Ca in
the left and right plots, respectively, as a function of the oscillator frequency in the HF and NAT bases
for the 1.8/2.0 EM interaction. We use a model space My, with eﬁiﬁNAT = 14 to construct the NAT
basis, whereas the IMSRG calculations are performed for e, = 6, 8, 10, and 14, with E3,., = 16 in

both cases. Experimental values are taken from Refs. [48, 267].
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Constructing the NAT basis in the full space leads to a significant reduction of the fw
dependence for both ground-state energies and charge radii as well as improved convergence
behavior with respect to emax. The resulting improvement is similar to what was seen in
NCSM calculations for 160 [250] with nearly frequency-independent energies and radii, shown
in the right column of the first plot in Fig. 4.7.

Analogous conclusions hold for heavier nuclei, where the convergence pattern is improved
and we obtain converged results already in smaller model spaces epax. Although we cannot

F/NAT

improve the results beyond the model space of egax employed for the initial transformation,
we only have to solve for the natural orbital basis once in the largest possible eﬂﬂ){NAT space
without having to solve the computationally more expensive IMSRG equations in the full
space. Assuming we can obtain comparable results in ey, = 10 (1140 single-particle states)
using an MP2 density matrix constructed in ey = 14 (2720 single-particle states), we save
a factor R ~ 2-3 in single-particle dimension. Consequently, the use of large-space natural
orbitals combined with reduced-space many-body expansions provides a computationally

efficient alternative to the full-space IMSRG calculations.

4.4 Exploration of Skyrme EDF' basis sets

In addition to the HF and NAT single-particle bases discussed in great detail in the previous
sections, we explore the effects of applying single-particle basis sets stemming from a den-
sity functional theory (DFT) calculation [268, 269] together with chiral interactions in the
IMSRG. In particular, the orbitals are constructed from a Skyrme-HF calculation with the
SLy4 EDF parametrization [270-272]. We subsequently apply these orbitals to the 1.8/2.0
EM interaction in IMSRG applications. The Skyrme orbitals have the possible advantages
that they are available even for heavy nuclei and can easily be calculated for large model
spaces. Furthermore, the underlying EDF yields a good description of ground-state energies
and leads to realistic density profiles. Therefore, predicted charge radii are in good agreement
with experiment for a large range of medium-mass to heavy nuclei.

We additionally explore the effects of mixed single-particle basis sets by combining the
occupied Skyrme orbitals with the unoccupied NAT orbitals, where the goal is to capitalize
on the advantages of both basis sets for the occupied and unoccupied orbitals, respectively.
As these two basis sets are not orthonormal to each other, we carry out an orthogonalization
with minimal adjustment (OMA) of the new basis by using the “cos-max” version outlined
in Ref. [273]. This procedure generates a set of orthonormal orbitals where the overlap of the
1-th generated orbital and the ¢-th input orbital is maximized and we weight all input orbitals
equally. In general, this approach can be applied for any combination of basis sets.

The squared absolute value of the radial wave function for selected orbitals in the HO,
HF, NAT, SLy4, and combined SLy4 + NAT basis is shown in Fig. 4.9. As expected, the
occupied Skyrme orbitals are frequency independent, based on the underlying HF calculation,
whereas the unoccupied orbitals show a frequency dependence that is comparable to the
unoccupied HF orbitals. This issue is resolved for the combined OMA orbitals that are
frequency independent in all shown cases. As a next step, we perform IMSRG calculations,
comparing the HF, NAT, SLy4, and OMA basis for three test case nuclei, *°Ca, 48Ca, and
132G, In Table 4.1, we show the normal-ordered zero-body part of the Hamiltonian and
charge radius operator as well as the corresponding results after the IMSRG evolution. We
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Figure 4.9: Same as Fig. 4.3 but for *°Ca and e,.x = 14 using the 1.8/2.0 EM interaction. We
show the HO, HF, NAT, SLy4, and combined SLy4 + NAT OMA bases (see text for details) in the
first through fifth columns, respectively. The first three rows (Ops/2, 0ds/2, and 1s;/3) correspond
to occupied orbitals in 4°Ca, whereas the fourth through sixth rows (0f7/3, 1p12, and 1ds,9) are
unoccupied.

find that the normal-ordered zero-body part for the Skyrme SLy4 basis is always slightly
smaller for the energies and larger for the radii, which is expected as the consistent HF
solution of the chiral interaction by construction yields the lowest reference-state expectation
value for this interaction. However, the final results for both energies and radii are very close
in all three basis sets and the combined OMA basis lies between the NAT and SLy4 basis.
In particular, the charge radii remain too small compared to experiment for the SLy4 basis
that leads to a more realistic density profile. Even though the SLy4 and combined OMA
orbitals do not immediately yield a benefit over the HF or NAT basis, they can still serve as a
measure for the reference-state dependence in the IMSRG, based on a reasonable (physically
motivated) reference state.

In order to investigate the reference-state dependence in more detail, we compare ground-
state energies and charge radii for 10 and '?C in Figs. 4.10 and 4.11, respectively, for a large
set of model-space truncations epnay and oscillator frequencies. The energies for 160) are very
similar for all three basis sets, with the Skyrme SLy4 results showing similar convergence
behavior as the HF results and leading to slightly more binding and slightly larger radii
compared to the HF and NAT basis. This changes drastically for '2C in Fig. 4.11. While
the HF and NAT basis lead to comparable results close to the value suggested by NCSM
calculations in small Ny, model spaces (extrapolated to approximately —91 MeV but not
shown here), the SLy4 orbitals lead to about 7 MeV more binding and about 0.5 fm larger
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40Caq, HF NAT SLy4 OMA

Fo (MeV) 2247181 -247.023  -235.234  -243.866
Ren, o (fm) 3.292 3.287 3.495 3.391

Frasra (MeV) | -344.458  -344.049  -344.538  -344.043
Ra, (fm) 3.320 3.318 3.325 3.323
48Ca HF NAT SLy4 OMA

Ey (MeV) -303.475  -303.188  -286.189  -298.723
Ren, o (fm) 3.260 3.273 3.509 3.390

FEnvsra (MeV) | -415.838  -415.424  -416.695  -415.862
Ry (fm) 3.299 3.297 3.306 3.302
132Gy HF NAT SLy4 OMA

Ey (MeV) -759.558  -759.141  -706.452  -744.020
Ren, o (fm) 4.342 4.358 4.681 4.516

Fnasra (MeV) | -1058.384  -1057.868 -1064.818 -1061.076
R, (fm) 4.392 4.390 4.409 4.402

Table 4.1: Normal-ordered zero-body part Ey and Ry, o of the Hamiltonian and the charge radius
operator, respectively, in the HF, NAT, SLy4, and OMA basis for 4°Ca, 48Ca, and '3?Sn. The ground-
state energy and the charge radius after solving the IMSRG in each basis is shown by Ervsrg and
R, respectively. All results use the 1.8/2.0 EM interaction and a model space of ey = 14 with

hw = 16 MeV.
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Figure 4.10: Same as the left plot of Fig. 4.7 but we additionally show the results for using the

Skyrme SLy4 orbitals in the rightmost panel.
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Figure 4.11: Same as Fig. 4.10 but for '2C.

charge radii. By comparing the individual orbitals in each basis, we find that the squared
radial wave function of the occupied orbitals in the HF (NAT) and SLy4 basis have the largest
differences for the 0sy/, orbital. Constructing an artificial reference state with the 0sy /o
HF orbital for the SLy4 basis brings the results in the different bases in better agreement
(—92.2 MeV), but still showing a nonnegligible difference in energy. The missing difference
is probably related to the weak or even vanishing shell closure and cluster structure of 2C,
making single-reference calculations of this nucleus extremely challenging compared to doubly
closed-shell nuclei, such as 160.

4.5 Systematic study of IMSRG(3) truncations

In the following, we investigate the solution of the full IMSRG(3) and its approximate trun-
cation schemes introduced in Sec. 3.5 for ground-state energies of *He and 60 using the HF
and NAT basis. The natural orbitals are constructed in a large model space eNAT = 14 and
truncated to a smaller model space epax = 2 for the many-body calculation. All results shown
in this section are based on our publication in Ref. [241], where I in particular contributed
to the application of the NAT basis for the implementation of the IMSRG(3). The following
calculations employ the imaginary time generator of Eq. (3.95) with the three-body part of
Eq. (3.129) and directly integrate the flow equations without using the Magnus expansion
approach. We tested the sensitivity of our results to the generator choice and found differences
of only less than 1 keV for each truncation scheme. Due to the tremendous computational

cost, the calculations are limited to small model spaces of epax = 2.
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Figure 4.12: Ground-state energies of *He obtained in various truncation schemes using the 1.8
EM NN-only Hamiltonian and a NAT reference state with an oscillator frequency of hw = 28 MeV,
following the computational (left panel) and perturbative (right panel) truncation ordering for the
fundamental commutators. Thicker, darker bars correspond to the major truncations summarized in
Fig. 3.3. Thinner, lighter bars correspond to intermediate truncations where a single fundamental
commutator has been added relative to the truncation scheme to the left. The dashed line indicates
the epax = 2 FCI result obtained for this Hamiltonian. The blue band indicates the range spanned by
the results obtained from the IMSRG(3)-N7 and IMSRG(3)-¢g® truncations. The NAT reference-state
expectation value is provided in the bottom right corner.

4.5.1 Application to ‘He and '°O

Figure 4.12 shows the ground-state energies of *He for the major truncations introduced
in Fig. 3.3 by thick bars, using the NN-only interaction 1.8 EM of Ref. [46], SRG evolved
to A = 1.8 fm~!. We additionally introduce minor truncations that include additional
fundamental commutators on top of a major truncation specified on the = axis and visualized
by thinner bars. For example, one minor truncation scheme we consider is the IMSRG(3)-N T4
2,3] — 3 truncation, which has all O(N") commutators and the [2, 3] — 3 commutator, which
is O(N®). For the NN-only calculations we provide exact results from a full configuration
interaction (FCI) diagonalization of the e,y = 2 Hamiltonian. In the absence of a many-body
truncation, the IMSRG would be able to obtain the exact result, and comparing against this
result for different approximations allows us to gain insight into the effect of the many-body
truncations at play. In both panels of Fig. 4.12, we start from the IMSRG(2) truncation and
add commutators until we reach the IMSRG(3) truncation on the right.

In the left panel, we follow the computational approach to organizing the IMSRG(3)
fundamental commutators. At the IMSRG(2)-truncation level, the ground-state energy only
differs from the FCI result by 27 keV. The first truncation we consider beyond the IMSRG(2)
is always the IMSRG(3)-MP4 truncation in both panels, which in all systems we investigated
delivered a sizable repulsive correction to the energy. This is consistent with our understanding
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Figure 4.13: Ground-state energies of He obtained in various truncation schemes using the 1.8/2.0
EM Hamiltonian and a NAT reference state with an oscillator frequency of hw = 32 MeV. The blue
band indicates the range spanned by the results obtained from the IMSRG(3)-N7 and IMSRG(3)-¢°
truncations. The NAT reference-state expectation value is provided in the bottom right corner.

of the diagrammatic content of the IMSRG(2) and the nature of the missing fourth-order
MBPT energy corrections. The inclusion of fundamental commutators up to the IMSRG(3)-
NT truncation gives only small repulsive shifts to the energy. The next two commutators that
are included in the IMSRG(3)-N® truncation provide slightly larger attractive contributions
and the contribution of the [3, 3] — 3 commutator to arrive at the full IMSRG(3) truncation is
repulsive and only small. The final IMSRG(3) ground-state energy differs from the FCI result
by 9 keV, which is a considerable improvement over the IMSRG(2) result, although all of the
results discussed here are close to the exact result (sub-1% error). In the right panel, we show
the same information for the case where the perturbative ordering of fundamental commutators
is used. We see that the general size of energy contributions follows the perturbative counting.
In particular, because the sixth-order commutator contributions are so small, the IMSRG(3)-
g° approximates the full IMSRG(3) extremely well.

When discussing the contributions of commutators, it is worth noting that the contribu-
tion of an added commutator to the energy also depends on which other commutators are
also included in that truncation. In this context, the one-by-one inclusion of fundamental
commutators formally does not commute. In practice, however, we see that the size of the
contribution of a specific commutator is not strongly sensitive to the order in which it is
included relative to other commutators. One can see this behavior when comparing the two
panels of Fig. 4.12.

In Fig. 4.13, we present *He ground-state energies obtained using the NN+3N 1.8/2.0
EM Hamiltonian and a NAT reference state for various IMSRG truncation schemes. For the
treatment of the three-body part of the NN+3N Hamiltonian we use the NO2B approximation.
Overall, the corrections offered by approximate IMSRG(3) truncations are larger in magnitude
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Figure 4.14: Ground-state energies of 10 obtained in various truncation schemes using the 1.8/2.0
EM Hamiltonian and a NAT reference state with an oscillator frequency of hw = 20 MeV. The blue
band indicates the range spanned by the results obtained from the IMSRG(3)-N7 and IMSRG(3)-g°
truncations. The NAT reference state energy is provided in the bottom right corner.

than in the NN-only case, with the IMSRG(2) and IMSRG(3) results differing by 112 keV
(compared to the difference of 36 keV in the NN-only case). We see similar trends as in the
NN-only case, with a large repulsive correction from the IMSRG(3)-MP4 truncation and a
smaller repulsive correction from the IMSRG(3)-N7. The O(N?®) fifth-order commutators
provide attractive corrections, and the final IMSRG(3) result lands between the IMSRG(3)-N"
and IMSRG (3)-¢° results, as indicated by the blue band spanned by the results of these two
truncations.

Next, we investigate the IMSRG solution for the ground-state energy of 10 and compare
the IMSRG(3) and its approximate truncation schemes to the IMSRG(2) for the NN+3N
1.8/2.0 EM Hamiltonian and the NAT basis in Fig. 4.14. In this case, the IMSRG(3)-
MP4 truncation result is about 270 keV more repulsive than the IMSRG(2) result, and the
IMSRG(3)-N7 provides only small corrections to the IMSRG(3)-MP4 result. These results
differ substantially from those obtained from the remaining truncation schemes, which contain
all the O(N?®) fifth-order commutators. Of the systems we studied, this is the system with
the largest contribution by these commutators, making the IMSRG(3)-¢°, for example, a
substantial improvement over the IMSRG(3)-N" due to its inclusion of these higher-cost fifth-
order commutators that are neglected in the IMSRG(3)-N7. We see that again the large band
resulting from the IMSRG(3)-N7 and IMSRG(3)-g® results includes the IMSRG(3) result as
for “He in Figs. 4.12 and 4.13. Note that the final IMSRG(3) energy differs by about 160 keV
from the IMSRG(2) result.
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Figure 4.15: Ratios of correlation energies obtained in IMSRG(2) and approximate IMSRG(3)
calculations relative to the IMSRG(3) correlation energies for “He and °O in the HF and NAT basis,
using the NN-only 1.8 EM and NN+3N 1.8/2.0 EM Hamiltonian for e;,,x = 2. We show results for the
major truncations given in Fig. 3.3 and include the results of Figs. 4.12-4.14. The gray band indicates
the range spanned by the IMSRG(3)-N7 and IMSRG(3)-g° results.

4.5.2 Analysis of truncation performance

We consider the relative performance of the different IMSRG truncations for both nuclei
studied above, the HF and NAT basis, as well as the NN-only and NN+3N Hamiltonian and
summarize the observed trends in Fig. 4.15. We compare the correlation energy, defined as

Ecory = E(s — o0) — E(s =0), (4.30)

for the IMSRG(2) and approximate IMSRG(3) truncations relative to the IMSRG(3) correla-
tion energy. The vertical line at x = 1.0 indicates the IMSRG(3) correlation energy. In the
previous section, we saw that for “He and the NN-only Hamiltonian the IMSRG(3) energy
was closer to the exact result obtained via FCI calculations. This intuitively matches the
expected behavior of the many-body expansion, where including higher many-body ranks in
the many-body expansion allows the truncated methods to systematically approach the exact
result. In Fig. 4.15 and the following discussion, we frame things relative to the IMSRG(3)
results, as the IMSRG(3) truncation is the “most complete” IMSRG result we have available.

Considering the performance of the IMSRG(2) relative to the IMSRG(3), we see that the
difference in the correlation energy is about 1-2% for most systems, with the exception of
about 0.1% difference for the 'O N N-only NAT case. We also see that the IMSRG(2) results
are systematically overbound relative to the IMSRG(3) results.

Turning our attention to the IMSRG(3)-MP4 truncation, we find that these results differ
from the IMSRG(3) results by up to 1%. The results are also all less bound than the IMSRG(3)
results, making the IMSRG(2) and IMSRG(3)-MP4 results lower and upper bounds on the
IMSRG(3) result. Considering that the IMSRG(3)-MP4 is the least computationally expensive
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approximate IMSRG(3) truncation we considered, this provides a relatively cheap way to set
a weak bound on where the IMSRG(3) result lands. Turning our attention to the next two
truncations, the IMSRG(3)-N" and IMSRG(3)-g° truncations, we find that the IMSRG(3)-N7
results are generally less bound than the IMSRG(3) results by about 0.5% (1% in one case)
and the IMSRG(3)-¢° results are generally more bound by about 0.1%. The gray bands
in Fig. 4.15 show the range of energies bounded by the results from these two truncations,
where we see that these bands always contain the IMSRG(3) results. The IMSRG(3)-N"
is of comparable expense and quality to the IMSRG(3)-MP4 truncation. However, the
IMSRG(3)-g° is considerably more expensive and nearly as expensive as the full IMSRG(3).
This means that even once large-scale IMSRG(3)-MP4 and IMSRG(3)-N" calculations are
possible, IMSRG (3)-g° calculations may still be out of reach. Still, if both IMSRG(3)-N7 and
IMSRG(3)-¢g° calculations are possible, then these can be used to provide a robust bound on
what the IMSRG(3) results could be and offer possibilities for studying uncertainties due to
the many-body truncation in IMSRG calculations.



Importance Truncation

Ab initio nuclear many-body frameworks require extensive computational resources, especially
when targeting heavier nuclei or more exotic systems. Even though impressive results have
been obtained, e.g., ab initio calculations of systems with approximately 100 particles [49, 50]
or calculations of a diverse set of nuclear observables [51, 55, 86, 91, 274, 275], several frontiers
still remain: the extension of ab initio nuclear theory to heavy nuclei well above mass numbers
A =~ 100; many-body calculations for deformed nuclei that are not well approximated by a
spherical reference state; and the systematic inclusion of higher-order terms in the many-body
expansion for high-precision studies. Some of the limiting factors common to all of these
efforts are the computational and storage costs of the many-body calculation. Calculations
of larger systems require larger single-particle bases to converge calculations. Similarly,
calculations using symmetry-broken reference states (for instance, with axial symmetry rather
than spherical symmetry) have to employ single-particles bases about an order of magnitude
larger than standard spherically restricted calculations [74, 83]. Additionally, relaxing the
many-body truncation in methods like the IMSRG and CC theory increases the scaling of
both the computational and storage costs with respect to the basis size, as e.g., discussed
for the IMSRG(3) in Sec. 4.5. Significant truncations have to be employed to make these
calculations tractable [74, 241]. Considering the computational challenges shared among the
points above, strategies to temper the storage and computational costs of the many-body
expansion method would accelerate the progress for all of these developments.

It is well known that correlations are not uniformly distributed in the A-body Hilbert
space and that certain configurations are more important for a quantitative reproduction
of a given observable than others. In a simplistic picture this is already implicitly used
in the Nyax truncation commonly employed in the NCSM that favors many-body states
with low-lying excitations. A more refined selection of the configuration space was first
employed by the IT-NCSM, which uses a perturbative selection measure to a priori gauge
the relevance of a given configuration for the final NCSM eigenstate. With the aid of the IT
it was first possible to extend the accessible mass range of configuration-interaction-based
techniques to the oxygen drip line [68]. Similar ideas have since been employed in open-
shell studies using particle-number-broken Hartree-Fock-Bogoliubov reference states. While
initially applied to Bogoliubov MBPT (BMBPT) [169], the IT concept was recently extended
to nonperturbative Gorkov SCGF calculations [276]. Simpler selection ideas based on natural
orbital occupation numbers were used with great success in deformed CC applications [74].
Alternative approaches, such as the SVD introduced in Sec. 2.4, based on tensor-factorization
techniques to decompose the many-body operators and therefore lower the storage and
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computational requirements are, e.g., studied in Refs. [169-171, 277, 278] for applications in
nuclear structure calculations.

In this chapter, we develop the IT ideas to the IMSRG framework and especially focus
on the sensitivity of the importance-truncated results on the selection procedure and the
interaction details for a wide range of I'T measures. All results presented here have been
published in Ref. [279]. Based on our findings, we identify the importance-truncated IMSRG
(IT-IMSRG) as a promising candidate to reduce the costs of many-body calculations and,
thus, extend the scope of ab initio studies along the lines discussed above.

We introduce the general IT approach in Sec. 5.1 with different interaction blocks and
importance measures applied to the IMSRG in Sec. 5.2 and present results for selected mid-
mass systems using different IT measures and chiral interactions in Sec. 5.3. All results
shown in this chapter use the NAT single-particle basis. We employ the 1.8/2.0 EM [54]
and N3LO 500 NN+3N [56, 57] Hamiltonians and study both the unevolved and consistently
SRG-evolved interaction for the latter.

5.1 Basic principle

The aim of importance-truncation techniques is to effectively reduce the size of the problem
by only considering the most important contributions based on a predefined importance
measure. Significant benefits are obtained by combining measures that are computationally
cheap to construct with computationally more challenging many-body methods. By trun-
cating unimportant parts of the many-body problem the cost of the IT-adapted many-body
method is reduced. The discarded information can further be approximately accounted for
in a perturbative way in order to minimize the information loss due to the IT. Improving
the quality of the I'T measure or the approximation used to account for truncation effects
can be used to reduce the systematic error introduced by the IT. In practice, however, a
reasonable balance between accuracy and complexity of the I'T measure construction and the
approximate treatment of I'T-truncated parts has to be found.

To understand how we approach IT in the IMSRG, it is instructive to review how impor-
tance truncation is performed with great success in the IT-NCSM [21, 280]. In the NCSM,
the matrix elements of the Hamiltonian are evaluated in a basis of Slater determinants (con-
figurations) {|®)}, and a subsequent diagonalization provides access to low-lying energies and
corresponding eigenstates. The IT approach is based on defining an importance measure x
that gives an estimate of the importance of a particular configuration |®). This measure is
used to find the corresponding subspace M of the A-body Hilbert space H(4)

M T (Rin) = {|@) 2 5(|P)) = min}  HW (5.1)

of the most important configurations with «(|®)) above a chosen threshold fpip.

The reduced size of the I'T-selected subspace crucially reduces the computational cost
of the following diagonalization, which roughly scales like the size of the subspace squared.
Residual effects from truncated configurations are approximately incorporated via a low-order
multi-configuration perturbation theory treatment [281, 282]. In the limit of Ky, — 0 the
full configuration space is recovered and no approximation is induced by the importance
truncation.



5.1 BASIC PRINCIPLE

Nuclear Hamiltonians obey a set of symmetries that one can explicitly exploit to lower
computational requirements when storing operator matrix elements and performing many-
body calculations. These symmetries are rotational invariance ([H,.J?| = [H, J,] = 0), parity
conservation ([H,II] = 0), and isospin conservation ([H,T.] = 0). Exploiting these symmetries
leads to a block-diagonal structure, where we store the two-body matrix elements in separate
(JIIT,) blocks. This block structure is preserved for the normal-ordered Hamiltonian if
a symmetry-conserving reference state is employed, which is the case for all systems and
computational bases we consider in this thesis. Application of symmetry-broken reference
states leads to many-body operators with lesser symmetries compared to their non-normal-
ordered representations [220, 221].

Many-body operators in a single-particle basis can be further decomposed in terms of their
individual single-particle labels. For a Slater-determinant reference state |®), single-particle
states [see Egs. (3.4), (3.24), and (3.28)] can be characterized as hole (h) or particle (p) states,
depending on their occupation number in the reference state. In the case of the two-body part
of the operator, this leaves us with six interaction blocks of single-particle index combinations:
hhhh, hhhp, hhpp, hphp, hppp, and pppp (plus their Hermitian conjugates and symmetry
related blocks). The notation we use here indicates that, e.g., for the hhpp block the two
single-particle states in the bra two-body state are hole states and the two single-particle
states in the ket two-body state are particle states. In model-space sizes required for converged
calculations, the number of particle states typically significantly exceeds the number of hole
states. Consequently, the pppp and hppp blocks drive the computational complexity of the
many-body calculation, and blocks like the hhhh or hhhp blocks have a relatively small
cost in terms of memory and computation. We investigate the various two-body interaction
blocks, their contributions to the perturbative energy corrections and different diagrams in
the IMSRG, and their role in the IT-IMSRG in more detail in the following.

5.1.1 Perturbative analysis

When following the standard Rayleigh-Schrodinger formulation of perturbation theory using
the Mgller-Plesset partitioning [35, 199] as outlined in Sec. 3.3.3, the canonical second-order
(MP2) energy correction is given by Eq. (3.72). Here and in the following we use the same
notation as before, with indices 4, j, ... (a, b, ...) denoting hole (particle) states, while p, g,
... denote generic single-particle states. From Eq. (3.72) we see that the second-order energy
correction is only sensitive to the hhpp block of the interaction. The third-order (MP3) energy
correction in a canonical basis, as defined in Eq. (3.74), consists of three terms

3) ijabt abedt cdij
EQ) = 5 3 T (5.2a)
abedij L/
3 1 Cijabl abkil' ki
e D L (5.2b)
abijkl  CigCkl
Too  Tpri T
B - 3 T (520
abeijk €ijCkj

defining the pp (particle-particle), hh (hole-hole), and ph (particle-hole) diagrams, respectively.
Consequently, the third-order energy correction is sensitive to the hphp, pppp, and hhhh
blocks in addition to the hhpp block. Through a wide range of mass numbers it was shown
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that correlation effects from the particle-hole diagram dominate the third-order contribution
for Hamiltonians that are amenable to MBPT [18]. This will become important later for
selecting the most relevant subblocks for the preprocessing in the I'T approach.

When working in a noncanonical basis, e.g., the NAT basis, the one-body part of the
Hamiltonian is not diagonal anymore and additional contributions to the perturbative energy
corrections have to be considered that also include one-body vertices. For the second-order
energy correction, there is one additional diagram [see Eq. (3.73)], and at third order eleven
new diagrams arise [199] [see Eq. (3.75)]. The new third-order diagrams are now also sensitive
to the two-body matrix elements in the hppp and hhhp blocks. Consequently, all interaction
blocks contribute to the energy correction up to third order in a noncanonical basis.

5.2 Application to the IMSRG

The IMSRG differs from the NCSM by employing a Fock space rather than a configuration
space formulation. As a result, the implementation of the IT approach in the IMSRG needs
to be adapted to work with many-body operators. In the following, we focus the discussion of
our approach on its application to two-body operators as in the IMSRG(2) they dominate the
storage costs and contribute to the computationally dominating commutators. The approach
is, however, general and could be easily applied to one-body operators or three-body operators
in IMSRG(3) calculations (with appropriately adapted importance measures).

To implement IT on two-body operator matrix elements, we analyze whether the matrix
element at the single-particle index combination pqrs is important or not. The result of this
analysis is a “mask” based on our importance measure and chosen importance-truncation

threshold:

) 1 if pgrs is important
sk = pare RO (5.3)
0 otherwise.

This is similar to how in the IT-NCSM configurations are analyzed and are either kept or
removed (“masked”) from the model space. The task is then to figure out which index
combinations are “important.” We use importance measures « that take as input two-body
matrix elements of some operator (typically the Hamiltonian) and give a value for the measure
Kpgrs for each single-particle index combination. If Kpqrs > Kmin for our chosen threshold Kpyin,
we say that the index combination pgrs is important, and the mask /-@I‘}}ﬁik in Eq. (5.3) takes
on a value of one. In Sec. 5.2.2, we discuss different possible importance measures.

Given such a mask, the matrix elements of a two-body operator Opq,s can be split into

an important part,

Opabs = Hpars Opgrs » (5.4)
and a residual part,
Oy = (1= Kpit) Opgrs - (5.5)

Keeping only the important part of all two-body matrix elements in the IMSRG amounts
to solving the flow equation for only a subset of single-particle index combinations, which
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Figure 5.1: Total number (left y axis) and corresponding storage requirements (right y axis) of
nonzero two-body matrix elements for different compression ratios R¢ [see Eq. (5.6)] as a function
of the model-space size €. For Ro = 1 the number of matrix elements corresponds to the initial
Hamiltonian without any IT.

gives us the IT-IMSRG. The residual part may be treated approximately independent of the
IT-IMSRG solution to capture the main effects neglected by its removal.

More concretely, in the IMSRG(2) we apply the IT approach discussed above to the
two-body part I' of the Hamiltonian, see Eq. (3.19). Additionally, the same truncation (i.e.,

mask)

using the same k is applied to the two-body part of the generator and any two-body

parts arising from commutator evaluations. The initially removed matrix elements from the

Hamiltonian will be treated perturbatively, and are not considered in the IMSRG solution.

Moreover, the evaluation of commutators in the IMSRG induces contributions to I'T-neglected
matrix elements in the resulting operator. These are discarded and not treated further in our
approach.

The storage benefits of an IT-preprocessed operator are conveniently characterized by
defining a compression ratio

B # of nonzero MEs
~ # of nonzero MEs — # of IT-neglected MEs ’

Rec (5.6)
given by the ratio of the number of initial nonzero two-body matrix elements (MEs) over
the number of remaining nonzero two-body matrix elements after the I'T. In the case of no
truncation R = 1 and no compression is obtained. Once the IT selection is performed, R¢
exceeds unity indicating a possibly lower memory footprint; truncating 90% of the matrix
elements gives Rc = 10 and truncating 99% of the matrix elements gives Rc = 100. In
this way the compression ratio provides an estimate of the scaling gained by the IT. For
example, a compression ratio of Ro = 70 in an epn,x = 14 model space corresponds to
truncating approximately 485.7 million of the total 492.7 million matrix elements. The
displayed dimensionalities assume full exploitation of rotational invariance, parity and isospin
conservation, and permutation symmetries. This leaves just 7 million nonvanishing matrix

elements, which is roughly equivalent to an effective single-particle model space of epax = 8.

This feature can also be clearly identified in the scaling example in Fig. 5.1, where we show
the number of nonvanishing two-body matrix elements for different compression ratios R¢
obtained in different model-space sizes emax. In general, the application of IT techniques
is expected to be most efficient in large model spaces since high-lying excitations typically
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Figure 5.2: Ground-state energy of *He in the optimized eNAT = 14 NAT basis truncated to
emax = 12 for different IT compression ratios Ro and the IT measure /¢ (see Sec. 5.2.2) compared
to the full IMSRG(2) result and MBPT results up to second and third order, using the 1.8/2.0 EM
interaction. The third-order energy correction of the IT-neglected entries (as introduced in Sec. 5.2.3)
is given by the (cyan) colored band. The black dashed line indicates the extrapolated NCSM result
(see text for details).

contribute less to ground-state observables and, thus, larger compression ratios can be obtained
without introducing significant errors with respect to the exact result.

A first example for what can be expected from the IT-IMSRG is shown in Fig. 5.2. While
the specific details are explained in the following, the general trends we observe from IT-
IMSRG (2) calculations at different R are clear. We compare ground-state energies of “He for
a chosen IT measure, which is detailed in Sec. 5.2.2, to the full IMSRG(2) result as well as to
the second and third-order MBPT energy. The colored band perturbatively incorporates the
IT-neglected matrix elements, as outlined in Sec. 5.2.3. We additionally show the extrapolated
NCSM result for comparison, which is obtained by an extrapolation to Nyax — 00 based on
calculations up to Nyax = 14 using the BIGSTICK code [283].

5.2.1 Interaction blocks

Before introducing the individual I'T measures and investigating them in detail, we perform
a more careful analysis of how sensitive the IT-IMSRG(2) solution is to truncations in the
different two-body interaction blocks. In all following applications, we use the IMSRG(2)
solver by Stroberg [247] as in the previous chapter. We note that the IT-IMSRG(2) imple-
mentation used in this thesis does not profit from the potential computational benefits of
the IT framework by evaluating only important matrix-element index combinations in the
flow. Instead, we use the standard solver and set unimportant matrix elements to zero. First
computational studies for the advantages of an IT-IMSRG(2) solver using a sparse storage
format are discussed in Sec. 5.3.3.

In Fig. 5.3, we consider the IT-IMSRG(2) solution of %°Ca when different combinations of
blocks are truncated (indicated by the different lines) using the IT measure ' based on the
magnitude of the two-body matrix elements, which is introduced in Sec. 5.2.2. For each line,
each point corresponds to a chosen kpin, which gives a compression ratio Rc and produces
an error to the exact IMSRG(2) solution. This error is shown in terms of the relative error
on the correlation energy Eco; [see Eq. (4.30)] on the left y axis and in terms of the absolute
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Figure 5.3: Relative error on the correlation energy of 4°Ca as a function of compression ratio R¢
for IT-IMSRG(2) calculations truncating in various two-body interaction blocks. The green curve
for truncating in all two-body interaction blocks additionally incorporates the second-order energy
correction of the neglected matrix elements. For comparison, we also show the results without the
energy correction by the green dashed line with open squares. In the left (right) panel the 1.8/2.0 EM
(N3LO 500) Hamiltonian is used. The left y axis indicates the relative error on the correlation energy
Ecorr, and the right y axis shows the absolute error on the ground-state energy. For comparison the
correlation energy is given by FEeor = —96.88 MeV and Fo,r = —303.02 MeV for the left and right
panel, respectively. All calculations are performed in an ey, = 10 model space using the NAT basis
and the IT measure k! (see Sec. 5.2.2 for details).

error on the ground-state energy on the right y axis. The two panels differ in the interaction
used: the left panel features the 1.8/2.0 EM Hamiltonian and the right panel the N3LO 500
Hamiltonian. In this figure, the truncated residual part of the two-body Hamiltonian is not
treated approximately except when all blocks are truncated. In this case, the second-order
energy correction based on the hhpp block of the residual part is added to the IT-IMSRG(2)
result.

In both panels, truncating all interaction blocks (the green curve) leads to the largest
error at small and intermediate compression ratios. Fully truncating the entire two-body part
of the Hamiltonian causes the IT-IMSRG(2) to produce a ground-state energy that is exactly
Ey+ E®@ thanks to the perturbative treatment of the truncated hhpp part of the Hamiltonian.
In the left panel this is remarkably close to the full IMSRG(2) result, but in the right panel
the relative error to the full IMSRG(2) correlation energy is nearly 10%. This behavior can
be systematically improved by restricting importance truncation to selected blocks.

The first blocks we remove from the importance truncation are the hhpp and hhhh blocks,
which gives the orange curves in Fig. 5.3. We observed that truncating the hhpp block leads
to large errors at intermediate compression ratios, motivating its exclusion from the I'T. The
hhpp block [and the hhhppp block in the IMSRG(3)] have previously been observed to be
quite important for the IMSRG [31, 241], and this finding supports that intuition further. The
hhhh block is the smallest block and, as a result, does not offer much room for compression,
so we also leave it untruncated. We find that the removal of these two blocks from the IT
reduces the error at intermediate compressions substantially. Still, the error grows large as
we approach the maximum compression ratio.

Additionally removing the hphp block from the truncation yields the blue curve, which

offers a substantial reduction in the error relative to the orange curve at all compression ratios.

As a reminder, the hphp block contributes at third order in MBPT (see Sec. 5.1.1), and in
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MBPT studies it was found that the third-order particle-hole diagram, which is sensitive to
this block, dominates the third-order contribution [18]. In the IMSRG, it has been observed
that the high-order generalizations of the particle-hole diagram, the ph-ring diagrams, which
are resummed nonperturbatively in the IMSRG(2), are particularly important [31, 32]. The
substantial reduction in the IT-induced error we find when the hphp block is excluded is
consistent with these observations. Further restricting the IT to only the hppp and pppp
blocks (leaving the small hhhp block untruncated) gives the red line, and truncating only
in the pppp block gives the purple line. In our studies, we found that restricting the IT to
just the hppp and pppp blocks (i.e., the red curves in Fig. 5.3) allowed us to achieve large
compression ratios while introducing relatively small errors for appropriate IT thresholds.
Hence, in the following we concentrate on this approach.

5.2.2 Definition of importance measures

In the following, various importance measures for the flowing two-body part of the Hamiltonian
in the IMSRG(2) approach are investigated. We note that in principle similar studies can be
performed for the one-body part as well. However, since the computational gain is negligible,
we will focus on the two-body part here. All measures are constructed once at the beginning of
the flow based on the initial Hamiltonian at s = 0. Important combinations of single-particle
indices p, g, r, and s of I'y4s are identified by the IT measure and kept over the course of the
flow, while matrix elements with unimportant index combinations are set to zero throughout
the flow. Note that this also includes matrix elements which are potentially induced during
the flow by the IMSRG. An alternative approach would be to dynamically update the measure
during the IMSRG evolution, which could possibly better account for the changing structure
of the evolving Hamiltonian. We leave the exploration of such strategies to future studies
and focus instead on different measure choices and their relative performance for different
systems.

Matrix-element-based measures

The simplest way of estimating the relevance of a given two-body matrix element is its initial
magnitude, giving rise to the first importance measure,

“gqrs(r) = ’qurs .

(5.7)

This measure encodes the expectation that the largest matrix elements are expected to be
most important for the evolution of the Hamiltonian and the smallest ones will be relatively
unimportant. However, this naive estimate does not take into account specific information
about the target nucleus (beyond the information from the single-particle basis transformation
when working with matrix elements in an HF or NAT basis).

A more refined measure can be obtained by taking inspiration from MBPT. In MBPT,
the matrix elements that are summed over are accompanied by energy denominators, and our
measure based on this idea is

Fipaes (D) = |Cgre /€sum| - (5.8)

The additional appearance of an energy denominator g, accounts for the lower importance
of highly excited configurations associated with large single-particle energies. The measure
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KL/

is very closely related to the first-order estimate of the MBPT wave-function expan-
sion and similar in spirit to previously used measures in importance-truncated NCSM [21],

BMBPT [169], or Gorkov SCGF [276] frameworks.

The energy denominator for the hhpp block is simply given by 5?}’, defined in Eq. (3.70)
and used in the second-order MBPT energy correction in Eq. (3.72) . However, in the IMSRG
other interaction blocks than only the hhpp block are present and the energy denominator of

the importance measure has to be generalized accordingly. This is done by defining

dep — €4 —€p — . —€q for pppp,
Esum = (5.9)
2¢p +6€; — €4 —€p — €. for hppp,

where er is the Fermi energy, i.e., the energy of the energetically highest-lying hole orbital
and the indices a, b, ¢, and d (i) denote particle (hole) states. Generally, the Fermi energy
er is different for protons and neutrons in proton-rich or neutron-rich systems. While in
this thesis, we show results for the simple definition of an isospin-independent Fermi energy
given above, we have explored using isospin-differentiated Fermi energies and found that
the different approaches give quantitatively very similar results in a broad range of systems.
Equation (5.9) can be trivially extended to include the hphp, hhhp, and hhhh blocks, but we
focus our discussion in this thesis on truncations of the pppp and hppp blocks, as explained
in Sec. 5.2.1.

Occupation-based measures

In the natural orbital basis, additional information about the system is available in the form
of the noninteger occupation numbers nNAT € [0, 1] of the individual orbitals (see Sec. 4.1.3).
We can use this information to construct alternative truncation measures that only work
when such noninteger occupation numbers, resulting from the diagonalization of an improved
one-body density matrix beyond the mean-field level, are available. The simplest choice is the
use of products of occupation numbers, as used in CC applications to improve convergence
in the triples amplitudes truncation [74],

[nNAT| if i is a particle state,

s = |1 (5.10)
i€{pars} |1 — nNAT| if i is a hole state,

where the product is given by the natural orbital occupation numbers nNAT for the p, ¢, r, and

NAT _ (1— nyAT) for hole states. This measure

s orbitals, with nNAT for particle states and 7}
gives the greatest importance to matrix elements where bra and ket indices lie close to the
Fermi surface. This reflects the intuition that for low-resolution Hamiltonians the correlation
expansion is dominated by low-energy excitations around the Fermi surface. Again, this
measure is rather simplistic since no explicit information from the two-body matrix elements

enters the IT selection.

A further refinement is obtained by accounting for the magnitude of the associated two-

107



108

CHAPTER 5 - IMPORTANCE TRUNCATION

body matrix element as is done in Eqs. (5.7) and (5.8) via

InNAT| if 7 is a particle state,

< I1 (5.11)

ie{puquvs} ’1 _ nNAT|
7

“5(;«5 () = ‘qurs

if 7 is a hole state.

In both cases, the natural orbital occupation numbers contain additional information about
the shell structure, such that contributions from, e.g., high orbital angular momentum (large
l) or high radial excitations (large n) will typically be suppressed.

Derivative-based measures

While the matrix-element- and occupation-based measures above are inspired by other many-
body frameworks, the notion of derivative-based measures is specific to the IMSRG approach.
By defining the I'T measure as

dHN ?)
or _ | (e
K‘pqrs(r‘> - ‘ < ds )

pgrs

, (5.12)

= ) [, H]](fqis

the importance of two-body matrix elements is based on the magnitude of their expected
change. Matrix elements with a large derivative are expected to change significantly over the
course of the evolution, and the initial value will be a poor approximation. Note, however,
that this measure does not directly account for the size of the matrix element but only its
expected dynamics independent of the starting value. It is also worth mentioning that the
construction of this measure is more expensive than the previously discussed measures, as
the evaluation of the required commutator scales like O(N®) in the size of the single-particle
basis V.

5.2.3 Perturbative treatment of truncated Hamiltonian

In order to perturbatively consider the IT-neglected contributions, we apply a modified version
of the MP3 energy correction with all diagrams sensitive to the pppp and hppp truncated
interaction blocks. We consider the pp-ladder diagram EI()?{)) shown in Eq. (5.2a), which is
sensitive to the pppp matrix elements, as well as the two noncanonical diagrams that are
sensitive to the hppp matrix elements [see Eq. (3.75)], when working in a natural orbital basis.
Combining the IT matrix elements of the two relevant interaction blocks with the initial hhpp
elements results in an adapted third-order I'T energy correction of the neglected contributions

3 = ~(3
EY =B+ EY) (5.13)
with the two parts given by
_ 1 T Tres T ...
3) ijab bed * cdij
E@=-3%" o ed : (5.14a)
abedij /Y]

.. res. . . Jres. ..
E,(g) B 1 Z Fz]ab Fabcj fcz +1 Z faz Fajcb Fcbz]
bppp g £ gabee 2 &= ggghe
abcij LV abcij 7Yy

(5.14b)
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Figure 5.4: Relative error on the correlation energy of 4°Ca as a function of compression ratio Rc
for IT-IMSRG(2) calculations using the five IT measures defined in Eqs. (5.7)-(5.12). In the left (right)
panel the 1.8/2.0 EM (N®LO 500) Hamiltonian is used. The left y axis indicates the relative error on
the correlation energy FE.o.y, and the right y axis shows the absolute error on the ground-state energy.
All calculations are performed in an ey, = 10 model space using the NAT basis and the dashed
vertical line indicates the maximum compression ratio for truncating in the hppp and pppp blocks.

where the IT-neglected matrix elements are given by I'"* as defined in Eq. (5.5) and the
matrix elements I" and f without superscript correspond to the initial two- and one-body
contributions of the normal-ordered Hamiltonian in Eq. (3.19).

5.3 Medium-mass applications

The five different IT measures x introduced in Sec. 5.2.2 are studied for *°Ca using two
different Hamiltonians in Fig. 5.4. For both Hamiltonians one finds that at the maximum
compression accessible for the chosen interaction blocks (indicated by the dashed vertical
line) all measures give the same error to the exact IMSRG(2) result, which reflects that
at this compression ki, for each measure has been chosen such that the hppp and pppp
blocks are completely truncated. At intermediate compressions, however, the various mea-
sures give different results. Of particular interest is the growth in the error to the exact
IMSRG(2) result when going from small to intermediate compressions. Concentrating first on
the matrix-element-based measures (red squares and orange circles), we find that they follow

I'/e gives smaller errors than s at small and

T'/e

the same qualitative trend. The more refined s
intermediate compressions, especially for the 1.8/2.0 Hamiltonian. The fact that ' /¢ works
so well for the 1.8/2.0 Hamiltonian reflects the perturbativeness of the Hamiltonian, but the

I' seems to be effective for harder interactions as well.

MBPT-inspired refinement over s

Turning to the occupation-based measures (green diamonds and blue thin diamonds), we
find that they produce smaller errors than /¢ and s for the 1.8 /2.0 EM Hamiltonian and
larger errors for the N3LO 500 Hamiltonian. This can also be understood due to the relative
softness of the two Hamiltonians, as the natural orbitals are constructed using second-order
MBPT. It is likely that for harder Hamiltonians this construction does not approximate the
one-body density matrix well enough for the I'T measure based on its occupation numbers
to be effective. We also find that refining ™ by including the matrix element size to give
k'™ produces smaller errors at all compression ratios. We find that the derivative-based

measure £ (purple triangles) performs similarly to the other measures investigated, but
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Figure 5.5: Relative error on the correlation energy of °Ca as a function of the compression ratio
R¢ for the model-space sizes epa.x = 6, 10, and 14 in orange, blue, and red, respectively, using the
NAT basis and the 1.8/2.0 EM Hamiltonian. We show results for the IT measures '/ (circles) and
k'™ (diamonds). The right y axis indicates the absolute energy difference between the ., = 14
IT-IMSRG(2) results and the exact IMSRG(2) result. The MP3 energy correction for the x'/¢ IT-
neglected contributions is indicated by the corresponding band for each model-space truncation and
the vertical dashed lines correspond to the maximum Ro for the given model spaces.

costs substantially more to construct.

As outlined in Sec. 5.1, we utilize the underlying symmetry of the Hamiltonian to store
the two-body matrix elements in a (JIIT,) block structure and apply the IT in the individual
symmetry blocks. Although the resulting energy can be quite different depending on the
chosen I'T measure, we observe nearly identical suppression of the number of matrix elements
in the (JIIT,) blocks for the three IT measures ', x1/¢, and x'™ at comparable compression
ratios. In the rest of this thesis, we focus our explorations mostly on the two best performing
measures, /¢ and £ [see Eqs. (5.8) and (5.11)].

In Fig. 5.5, we study the effect of going to different model-space sizes on the achievable
compression ratios and their associated errors on the correlation and ground-state energy
of 40Ca with the 1.8/2.0 EM Hamiltonian. Going from e,y = 10 to epmax = 14 increases
the number of two-body matrix elements by a factor of roughly 15, which allows for higher
maximum compression. However, at the same compression ratio, the epa = 14 IT-IMSRG(2)
calculations have much smaller errors to the exact result, because many of the matrix elements
that are added when going from epax = 10 to epmax = 14 can be truncated. This also means
that the IT-IMSRG(2) is less effective in small model spaces (such as emax = 6 in Fig. 5.5)
because in these model spaces the maximum compression is lower and truncating a lot of
matrix elements quickly leads to larger errors.

In Fig. 5.5, we include the perturbative treatment of the truncated part of the Hamiltonian
introduced in Sec. 5.2.3 for x'/¢. The points on the lines are the result of IT-IMSRG(2)
calculations without any extra treatment of the truncated part. The MP3 correction due to
the IT-neglected matrix elements is included as a band on top of this IT-IMSRG(2) result.
We understand this correction to be an indication of the magnitude of the missing third-order
and higher-order contributions that are discarded by the truncation. This can be used as an
estimate of the IT uncertainty relative to the full IMSRG(2) for a given truncation threshold,
which is important in cases where exact results are not readily available for comparison. We
see that in this case the uncertainty indicated by the MP3 correction is reasonable up to
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Figure 5.6: Same as Fig. 5.5 but for the N3LO 500 Hamiltonian.

relatively high compression ratios. As an example, for an ey, = 14 IT-IMSRG(2) calculation,
we can achieve a compression ratio of 100 while keeping the IT uncertainty below 0.5% on
the correlation energy.

5.3.1 Interaction sensitivity

We now turn our attention to how the observed trends are affected by the choice of Hamiltonian.

In Fig. 5.6, we again show the IT-IMSRG(2) errors in several model-space sizes for 4°Ca,
this time using the N®LO 500 Hamiltonian. We see that, compared to the softer 1.8/2.0
EM Hamiltonian, the relative error on the correlation energy is similar, which is due to the
large correlation energy for the N®LO 500 Hamiltonian. Accordingly, the absolute errors
in the energy are larger than in Fig. 5.5. We see that the IT-IMSRG(2) results based on
1/¢ are better than using x'”, and the uncorrected results for x'/¢ lie very close to the
exact IMSRG(2) results up to compressions near 100 for en,x = 14. However, the MP3
correction due to the IT-neglected matrix elements is much larger for the harder N3LO 500
Hamiltonian, suggesting a sizable uncertainty in the IT-IMSRG(2) results even at relatively
small compression ratios.

In Fig. 5.7, we compare ground-state energies for “°Ca obtained via various different
many-body approaches for the N3LO 500 and 1.8/2.0 EM Hamiltonians in an ega, = 10
model space. We compare IT-IMSRG(2) results at different compression ratios against
untruncated IMSRG(2) results and provide results from second- and third-order MBPT for
comparison. Looking first at the results for the 1.8/2.0 Hamiltonian, we see that second- and
third-order MBPT energies differ from the IMSRG(2) result by less than 5 MeV. Overall,
the IT-IMSRG(2) results also agree well with the IMSRG(2) results. In particular, for
intermediate compression ratios (Rc = 10, for instance) the estimated uncertainty from the
treatment of IT-neglected matrix elements is very small. For the N3LO 500 Hamiltonian, this
picture changes substantially. The second-order MBPT, third-order MBPT, and IMSRG(2)
results span an energy range of about 65 MeV. Here the IT-IMSRG(2) performs quite well,
giving errors to the IMSRG(2) of up to roughly 7 MeV for the largest compression ratio
considered in Fig. 5.7. The estimated uncertainty, however, is much larger than the actually
observed errors. It seems that the correction we obtain from the IT-neglected matrix elements
for this interaction overestimates the size of the missing physics, which we understand to
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Figure 5.7: Ground-state energy of “°Ca for the IT measures x'/¢ (blue) and '™ (red) for different
compression ratios R¢ compared to the full IMSRG(2) result and calculations from second- and third-
order MBPT. We show results for the N3LO 500 interaction (top) and the 1.8/2.0 EM interaction
(bottom) for a model-space size of epayx = 10 in the NAT basis. The third-order energy correction of
the IT-neglected contributions for both measures is given by the correspondingly colored band.
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Figure 5.8: Same as Fig. 5.7 but for the consistently SRG-evolved N®LO 500 interaction to
A=2.0fm™ !

be an artifact of the perturbative approach we take in conjunction with a nonperturbative
Hamiltonian.

To confirm this, we consider the same system using the N*LO 500 Hamiltonian consistently
SRG evolved to a resolution scale of A\ = 2.0 fm~! in Fig. 5.8. This SRG-evolved potential
is very soft, as also suggested by the small differences between second-order MBPT, third-
order MBPT, and IMSRG(2) results. Here the difference between the IT-IMSRG(2) and the
IMSRG(2) results is about 1.5 MeV for Rc = 45, and the estimated uncertainty is also of
approximately the same size as the error. This suggests that our uncertainty estimate is quite
reasonable for soft Hamiltonians and the IT results for an intermediate compression ratio of
about Rc = 10 lie very close to the full IMSRG(2) result for such interactions.
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Figure 5.9: Ground-state energies for selected calcium and nickel isotopes in the IT-IMSRG with
compression ratios Rc = 10, 50, and 100 for the measure x'/¢. Results are shown for the NAT
basis and the unevolved (top) and SRG-evolved to A = 2.0 fm~! (bottom) N3LO 500 interaction in
€max = 14.

5.3.2 Mass number sensitivity

After our investigation of the interaction blocks and IT measures for *°Ca as a reasonable
test case, we extend our studies to closed-shell nuclei ranging from “°Ca up to "®Ni. In the
top panel of Fig. 5.9, we show ground-state energies for different compression ratios in the

IT-IMSRG(2) compared to the full IMSRG(2) result when using the N3LO 500 Hamiltonian.

At intermediate compressions (here Rc = 10), we find that the IT-IMSRG(2) results match
the exact IMSRG(2) results within a few MeV. The largest deviation is found for ™®Ni with
an error of 5 MeV. The uncertainty indicated by our third-order treatment of truncated
matrix elements is also of about the same size. Going to larger compressions, we find that at

R¢c = 50 the IT-IMSRG(2) results still lie remarkably close to the exact IMSRG(2) results.

The 12 MeV error for "®Ni is the exception here, and most errors are still below 5 MeV. For
Re = 100, the deviation to exact IMSRG(2) results tends to be larger. However, for both
Rc = 50 and Rc = 100 the indicated uncertainty is much larger than the observed error,
growing to beyond 50 MeV in some systems. We emphasize that for these results Rc = 50 and
Rec = 100 are being used to explore the truncation error for heavily truncated calculations
and would not be considered adequate for practical nuclear structure calculations.

We perform the same study across a variety of systems in the lower panel of Fig. 5.9,
but this time using the SRG-evolved N3LO 500 A = 2.0 fm~! Hamiltonian, which in the last
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section showed substantially smaller errors in I'T-IMSRG(2) calculations than the unevolved
N3LO 500 Hamiltonian. For this Hamiltonian, we see that even with Rc = 100 the error
to the exact IMSRG(2) result is very small in all systems (with a maximum of 2.5 MeV for
"8Ni). Moreover, the uncertainty indicated by the third-order treatment of truncated matrix
elements is also quite small, only growing up to 1.4 MeV for ®Ni with R = 100. These
results show the promising performance of the IT-IMSRG over a wide range of mass numbers
and up to large compression ratios when using softer or SRG-evolved interactions. While

I'/e

Fig. 5.9 only shows results obtained using the «"/¢ measure, the results are very similar for

KE™.

5.3.3 First computational investigations

For all results shown in this chapter, we applied the IT-IMSRG formalism by taking the
IMSRG solver by Stroberg [247] and explicitly setting truncated matrix elements to zero.
However, an implementation that fully takes advantage of the new structure of importance-
truncated operators will be necessary to take advantage of the storage and computational
benefits of the IT-IMSRG. We performed an initial exploration of this by adapting the solver
mentioned above to use a modified storage format.

An optimized IT-IMSRG solver must not store the zeros associated with truncated matrix
elements, and it must be able to do so flexibly as different I'T measures will truncate different
matrix elements. This naturally suggests the use of sparse matrices and sparse linear algebra
operations (as is available in, e.g., the C++ ARMADILLO library [284, 285]). We were able
to adapt the storage format of our IT-IMSRG(2) solver to use sparse matrices, and the
computational operations were adapted to use sparse linear algebra routines. We observed the
expected reduction in memory requirements in our calculations, but our initial implementation
was unable to substantially speed up the IT-IMSRG(2) solution over the IMSRG(2) solution.
Profiling and detailed benchmarks led us to suspect that this lack of performance is due to
suboptimal handling of data around the sparse matrix format (e.g., random matrix element
access in sparse matrices is slow, unlike with dense matrices). These computational slow
downs affected our implementation most heavily in the particle-hole part of the two-body
commutator (see, e.g., Ref. [31]), where the Pandya transformation is naturally implemented
using unordered accesses in the input and output matrices. However, given the speed-ups
observed in other parts of the solver when using sparse matrices (e.g., the particle-particle
and hole-hole parts of the two-body commutator), we fully expect an optimized IT-IMSRG(2)
solver to also reduce the computational cost of IMSRG(2) calculations in addition to the
memory savings.



Normal Ordering in the Jacobi
Basis

Three-nucleon interactions play an important role in nuclear theory calculations, not only to
obtain reasonable saturation properties in nuclear matter [54], but also for realistic predictions
of finite nuclei with good agreement to experiment [22, 52, 66-68]. However, the memory
requirements for storing three-body operators and the computational demands in large model
spaces significantly complicate their use in ab initio many-body methods and necessitate
approximate treatments. Normal-ordering techniques to approximate 3N interactions by
density-dependent 2N interactions have proven to be a powerful and efficient tool to include
the effects of the three-body force. This is accomplished by summing one particle over
occupied states in the reference state. In particular, the NO2B approximation, which discards
residual 3N contributions is very successful for calculations of nuclear matter [211, 259, 286,
287] and studies of finite nuclei [29, 190, 213, 214].

Most many-body methods, e.g., the IMSRG, CC theory, or MBPT, rely on many-body
operator inputs in a single-particle basis. Usually, the 3N matrix elements calculated in a
plane-wave Jacobi basis [135, 286] are transformed to a relative HO basis, antisymmetrized
in this basis, and then transformed to a single-particle HO basis using a three-body Talmi-
Moshinsky transformation [288-291]. Note that the antisymmetrization step can as well be
carried out already in the Jacobi basis. Only after these steps, the normal ordering of the
three-body operator with respect to a given reference state, e.g., an HO, HF, or NAT state,
is performed in the single-particle basis.

Due to the tremendous computational requirements for incorporating 3N interactions, in
practice, approximate treatments and truncations have to be employed. One possible way is to
introduce a truncation in the space of three-body single-particle orbitals e; 4+ €2 4+ €3 < F3max,
as discussed in Sec. 4.2.2. Figure 6.1 shows the required memory for storing three-body
operators in different bases as a function of E3p.x. Clearly, storing matrix elements for all
angular-momentum quantum numbers of the single-particle basis in the m-scheme format
(blue points in Fig. 6.1) does not present a feasible choice. Exploiting symmetries and working
in an angular-momentum and isospin coupled JT' basis [see Eq. (3.144)] is beneficial (red
triangles in Fig. 6.1) and has become the standard approach for storing three-body matrix
elements in a single-particle basis. Nevertheless, memory requirements still grow rapidly as
a function of Fspax and exceed current memory limitations for high Fspa. Typically used
values of E3nax = 16 already require ~ 20 GB of memory. Especially for heavy nuclei, where
large model spaces are required to obtain converged results, the storage cost can easily exceed
100 GB for large Fsmax. Just recently, the range of accessible Esax was significantly increased

115



116 CHAPTER 6 - NORMAL ORDERING IN THE JACOBI BASIS

3 m-scheme
10% / ]
JT-coupled
m e
@)
. 100k
S
QE) 3 3ntisg!11metrized
E 10_2 L acobi ]
3 3
1074k 1
0 5 10 15 20 25

E3max

Figure 6.1: Memory requirements for storing 3N matrix elements in different computational bases as
a function of E3pax, assuming single-precision floating-point values. We compare three-body operators
stored in the m-scheme (blue), JT-coupled scheme (red), and antisymmetrized Jacobi scheme (purple).
Figure taken from Ref. [291].

to values of F3max = 28 at the NO2B level in Ref. [50]. This allowed for converged calculations
in nuclei as heavy as ¥2Sn and enabled first exploratory ab initio studies for even heavier
systems, such as 2°8Pb [51]. Even though performing the normal ordering in the single-particle
basis is computationally cheap, the major drawback of high memory consumption for large
FE3max still hinders the full inclusion of 3N interactions without an active F3nax truncation.
Incorporating these contributions provides an important step towards converged calculations
of heavier nuclei, where they become particularly important.

In this chapter, following Ref. [95], we develop an alternative way of obtaining the normal-
ordered two-body contribution of the 3N interaction by performing the normal ordering
directly in the plane-wave Jacobi basis. This framework has the substantial benefit that we
do not rely on a single-particle representation of the 3N force and consequently allows for
calculations without an FEspax truncation. The difference in the required memory can be
clearly seen in Fig. 6.1 by comparing the purple squares and red triangles for the antisym-
metrized Jacobi basis and JT-coupled basis, respectively. Normal-ordering in the Jacobi basis
introduces a cm dependence for the effective two-body interaction and new quantum numbers
arise to describe this additional dependence. The only possibly remaining effect of the E3pax
truncation in the new framework is given by the dependence on the reference state, which is
calculated in the single-particle basis. In the following, we investigate the performance of the
novel framework in detail by benchmarking calculations against the standard single-particle
approach and investigating the convergence behavior with respect to truncating the new
quantum numbers.

This chapter is structured as follows. In Sec. 6.1, we outline how 3N interactions are
normal ordered in the plane-wave Jacobi basis, and how the additional cm dependence is
considered by the new quantum numbers. Afterwards, the effective two-body interaction is
transformed to the Jacobi HO and eventually to the single-particle basis, yielding a suitable
input for most ab initio many-body calculations. First benchmark calculations of ground-state
energies using the IMSRG are performed in Sec. 6.2 for light and medium-mass nuclei and
compared to the single-particle normal ordering, before targeting heavier systems in Sec. 6.3.



6.1 NORMAL ORDERING IN PLANE-WAVE JACOBI BASIS

6.1 Normal ordering in plane-wave Jacobi basis

The computationally most time-consuming operation in the normal-ordering procedure out-
lined in Sec. 3.1 is the calculation of the contributions from 3N interactions to the two-body
operator I' [see Eq. (3.20¢)]

T8 = > nin(iim| ViR [kim) (6.1)

where we use single-particle labels i, j, ..., the 3N superscript indicates the three-body con-
tribution to the normal-ordered two-body operator (ij|TN|kl) = I‘g’}\}gl, (ijm|V&|klm) are
the antisymmetrized three-body matrix elements, and n,, is the occupation number of the
single-particle state m in the reference state. We emphasize that the reference state is given by
a single Slater determinant, as shown in Eq. (3.4). This formally requires the representation
of the 3N force in a single-particle basis, ideally sufficiently large to converge many-body
calculations. All further 3N contributions that enter the normal-ordered Hamiltonian in
Egs. (3.20b) and (3.20a) can be easily computed in a computationally inexpensive way once
N is calculated. Successively performing the additional contractions over one and two
densities yields the normal-ordered one- and zero-body part, respectively.

We now turn to the novel Jacobi-based framework [95] that circumvents the need to
represent 3N interactions in a single-particle basis at any point of the normal-ordering proce-
dure. To do so we perform the normal ordering in a Jacobi momentum representation and
only transform to a single-particle HO basis at the end in Secs. 6.1.1 and 6.1.2. As a first
step, we formulate the three-body contribution to the normal-ordered two-body interaction
in a single-particle momentum-space basis, before using the benefits of representing the 3N
interaction in the Jacobi basis. In the following, we use single-particle states defined by

where k; denotes the momentum of particle i, and m,, and my, are the spin and isospin

projection quantum numbers, respectively. Hence, we can write the normal-ordered expression
N as

dksdK! S T
Wi = [ Tome 3 70k ) (KRR kaRoks ) (6:3)
ms3mg3
mt3m;3

with the density matrix v(ks, k) defined as

7(E3, lN{g) = 6mt3m23 Z ns <l~{g’¢)n13j3mj3mt3> <¢)n13j3mj3mt3 ’123> ’ (64)

nl3jsmg

where we specified the single-particle states in the reference state |®) by |®3) = ’¢nl3j3mj3mt3>
with occupation numbers ng. The occupation number n3 should not be confused with the
radial quantum number n of the single-particle state |®3). Note that the density matrix
is diagonal in the isospin projection m; but not in the spin projection quantum number
ms. Projecting the reference state onto the single-particle momentum-space basis defined in
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Eq. (6.2) leads to

<kim8imti |(I)nlijimjimti > Z lemjl Zml (12) nlijimjimti (k) ) (65)

1ml 2 Mms;

where Y, (1A<) is the spherical harmonic of degree [ and order m; with the angular orientation
k of k and we introduced the shorthand notation of the Clebsch-Gordan coefficients

Ji ) : (6.6)

g,

. l 1

C]zm]i _ 7 2
1

limliimsi mp Mg,

for the sake of simpler presentation in the following.

For practical calculations, Eq. (6.3) is however not very useful due to the complexity
and redundancy of the representation of the 3N interaction in the single-particle momentum
basis. Significant benefits can be obtained by exploiting the symmetries of the three-body
interaction, i.e., Galilean, rotational, and isospin invariance. In particular, we explicitly make
use of the Galilean invariance of the nuclear force by representing it in terms of the relative
and cm momenta, with the interaction being independent of the (three-body) cm momentum
P3n. We therefore switch to a Jacobi momentum-space representation, as already introduced
for the regulator of the 3N interaction in Eq. (2.15), by defining the relative Jacobi momenta

(kl kQ) y (67&)

l\.')[\t)\}—A

1
a=7 ks —5 (k1 +ka)| . (6.7b)

3

The corresponding states including the spin and isospin quantum numbers are given by

p) = [pPSMsTMr) , (6.8)

|(~1> = ‘qmsmt> = |qm53mt3> s

with S (T') denoting the two-body spin (isospin) and its projection Mg (M), and mg (my)
the spin (isospin) quantum number of the third particle. We highlight that the spin and
isospin quantum numbers of the third particle are identical to m,, and my,, respectively,
of |k3) defined in Eq. (6.2). The cm momenta for the two-body subsystem and three-body
system read

P =k + ko, (6.10a)
Psn =ki + ko + kg3, (6101:))

respectively, and we can write the momentum of the third particle by ks = 3/2q + 1/2P.
We reexpress the 3N interaction in the single-particle momentum-space basis in Eq. (6.3) by
the Jacobi momenta. The resulting V53 in the Jacobi basis only depends on four momenta
instead of six by factoring out the cm dependence on P3xy = P + k3 of the interaction

dk dk’
I'Ps /pp—/ 2 > ks, kb) (p'd'|ViRIpa) (2m)°0(P + ks — P/ —k3).  (6.11)

mé3m
Mg mt3
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Note however that only the three-body cm momentum is conserved, while the two-body cm
momentum P does not have to be conserved, as ks # kj, and consequently, the two-body
interaction I'*N will depend on P and P’.

Our starting point for all applications and transformations of the three-body interactions
are partial-wave decomposed 3N matrix elements computed in the Jacobi momentum-state
basis (see, e.g., Refs. [135, 211, 286] for details). Advances for deriving three-body interactions
in a partial-wave decomposed form allow for a complete consideration of 3N interactions up to
N3LO [135]. The 3N matrix elements are conveniently written by using a shorthand notation
for the three-body partial-wave states

pga) = |Ipa(LS)J(1s)]1T (TH)T) , (6.12)

here p = |p| and g = |q| are given by the magnitudes of the Jacobi momenta, L is the relative
two-body angular momentum, J the total relative two-body angular momentum, lowercase
letters (I, s = 1/2, j, and t = 1/2) denote the quantum numbers of the third particle with
momentum ¢, and J and j as well as T" and ¢ are coupled to the total three-body angular
momentum 7 and total three-body isospin T, respectively. We emphasize that the three-body
force is diagonal in J and 7 and independent of the corresponding projections M s and M
due to rotational and isospin invariance.

Our next steps involve the partial-wave decomposition of the 3N interaction in the Jacobi
momentum-space basis, with the goal to obtain a partial-wave decomposed two-body interac-
tion I'3N on the right-hand side of Eq. (6.11). Using the notation of Eq. (6.12), we decompose
the plane-wave Jacobi basis states into partial waves

Z ZYLML Y}ml( )

LMy, Imy

X D232 > Cittlsus zjn??ms (6.13)

SMg ms JMy jm;

X0 320 D ot Crnga, P20

JMJ TMp m¢ TMT

with capital (lowercase) M (m) letters denoting projections of the corresponding index for
two- or three-body (single-particle) quantum numbers as given in Eq. (6.12). The partial-wave
decomposed interaction hence reads

PAVERPD = D D D Vi, (0)Yi, (@)Y (B)Yrm (@)

LI My, M} mym;

JM; Jm; Jm;
x> >0 D Cintlswus L'M'S'Mgclml G
My MYy mym!; JJ' 55 278 1273 (6.14)
I M 7 JMJ T My T Mt
> Contyim, © JI MYy 5'm CTM m CT/M’ 1
TMy TMr T2 ‘3 T2 M3

x (p'q'a’|VaRIpge) |
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where we used mg, and my, for the quantum numbers of q. Note that there are no sums over
S, Mg, mg, T, M7, and m;, and that the 3N interaction in general is off-diagonal in 7" and
Mr.

As already discussed for Eq. (6.11), the normal-ordered 3N contribution to the two-body
force breaks Galilean invariance and we have to explicitly incorporate additional quantum
numbers that describe the cm dependence. In the following, we indicate quantum numbers
of the two-body basis by an overline to distinguish them from the three-body basis and use a
collective index  for the two-body states. The modified partial-wave decomposed two-body
state including the additional quantum numbers Lem and Jiot [see Eq. (2.28) for the standard
notation] is defined as

pPB) = [pP [(L8)J Lewm| Jiot My, TMz ) (6.15)

with the total two-body angular momentum Jio; obtained by coupling the relative angular
momentum J and the two-body cm orbital angular momentum Ley,. The effective two-body
interaction I'*N transforms like a scalar under rotations in spin and space, is diagonal in the
total angular momentum Ji., does not depend on its projection M Jio» and is diagonal in the
isospin projection My, as long as the reference state is spherical.

By inserting the partial-wave decomposed interaction of Eq. (6.14) into Eq. (6.11) and
projecting the two-body states of I'*N onto the partial-wave decomposed states, taking into
account the additional cm dependence in Eq. (6.15), we obtain the final expression of the
normal-ordered three-body contribution in the relative momentum-space basis

/ Dl o T3N
(p'P'B'IT" |pPB)
_ 1 Z Z Cij Cj'M'J— C,jthjmt CjtotMJt .
g 4+ 1 LMpSMg  L'MLS' ML~ JMsLemMyp_ ~ J' MLl M.
tot Mj Mz ,Mg,M;7,M; L= om 7
tot ’ ’ cm

Lem
M’ M’ M’ M’
C

m

/dP/dP Vi, (P)Y* N (P’)/(;l::)”g

Lem

S O sl RV, ()i, (o) (6.16)

lamy, 5ms lam)_ sm/
nl3]3m]3mt3 32Ms3 132

my mlsms?)m%

XD D 2 D D2 > D 0nidumy S Ony aey Y, (@)Y (@)
IMg TMy LL'U JJ'j5" My M mym; MM/, mjm;.
> CJMJ CJ/MJ/ Jm; C]/m; CJMJ CJMJ CTMT CTMT

LMLSM L'M} S'" Mg lml%msg l’m;%mgs JM jjm; J’M]/Jm MTém% T/Mf%mt:;

x (p'q | Vax|pgar) |

where we used the orthonormality of the spherical harmonics, the delta function in Eq. (6.11)
to evaluate the kj integral, and that the two-body spin is given by S = S and S’ = 9.
Multiple sums in Eq. (6.16) can be simplified analytically, e.g., the combination of Clebsch-
Gordan coefficients [222]. The remaining sums and integrals have to be solved numerically.
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The simplified expression of Eq. (6.16) can be written as

., dk
(P PRI pPs) = / dPdP’ ® §’3 (p'd' o [Van|pgar)
JIT ™
wij'
aa’ BB TT’M*’T
* Z Z Z AJIJf]f szyjzglymz(k:)nké) (617)

JaJyjz Mg ML mym)
Tedudz Mo Mp .,

Jym J=m F ~ N ~/
ClswLygmM/ mCl’Zm ZLcmMLCInYI:kcmMLcm(P)YL’CmM’ (P) Y, (@) Yy (&)

where the superscripts a and 8 indicate the dependence on any of the quantum numbers as
defined in Egs. (6.12) and (6.15). In the above equation, we introduced the abbreviations

aa’Bp" = (1)~ J+T 4545 +2j0+iy— ]sz A

Jxydz ]j ]y]z]z
7 . 7 . Jz L J
L/ l L l/ o ~“cm -
X { im . ]y} { im . ]z/'} Lcm Jt_ot J ’ (618)
5  Jz 53 Jz ] ;' J T

and

TT/MTT /
jaduizmyms (K3, K3)
_ umu jumu TMT TMT
- Z Z Z ']3Cl3ml3]zmzcl3m; jymy CTM*lmt CT/M,lmt
M7 jumu nlgjzmg, 3 T2Mt3 T Mt3

iy mig (6.19)

Je 5 Jy
X % 13
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l

: . l3
Jz Ju

where the simplification of the product of Clebsch-Gordan coefficients leads to J = J and
J =J. We employed the additional intermediate quantum numbers j., j,, j-, and j, as well
as their projections m,, m., and m,. These intermediate quantities are obtained by coupling
| with I_’lcm to jy, ' with Lem to jz, l3 with Jy OF jz to ju, and s = 1/2 with j, or j. to j,.

We further used the notation of 65 and 95 symbols in Egs. (6.18) and (6.19) and refer to
Ref. [222] for a more in-depth discussion of these symbols and their symmetries and properties.
Note that the values of the Jacobi momenta q and q’ are implicitly fixed by the relations
k3 = 3/2q + 1/2P and kj = P + k3 — P’. Furthermore, A} j/;ﬂ does not depend on m,,
m,, or any of the momenta in the spherical harmonics, such that it can be precalculated
and evaluated independently of the sums and integrals in Eq. (6.17) and easily be prestored.
All other quantities that involve those quantum numbers, like My and my, that also enter
the spherical harmonics need to be recomputed for each point of the momentum integrals.
Numerically, we solve the momentum integrals in Eq. (6.17) on a finite mesh system with Np,
N,, Ny, and Ny, grid points for the corresponding integrals. Typical values for the number
of momentum mesh points are Np ~ 18, N, ~ 14, N, ~ 50 and Ny, ~ 15.

In order to take into account all possible recoupling contributions from the Jacobi repre-
sentation to a single-particle representation, matrix elements for sufficiently large values of
the angular-momentum quantum numbers in the three-body basis need to be computed for
a given single-particle basis size emax. In practice, however, the matrix elements of N get
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quantum description employed
number truncation values
Lem cm two-body angular momentum in 2N basis 8-13
Jeot total angular momentum in the 2N basis 813
J rel two-body angular momentum in 3N PW basis 5-6
[ orbital angular momentum of third particle in 3N PW basis 5-7
j total angular momentum of third particle in 3N PW basis -
J total three-body angular momentum 9/2-15/2
T total three-body isospin -
L rel orbital angular momentum in 2N basis -
T total isospin in 2N basis -
I3 sp orbital angular momentum in reference state -
73 sp total angular momentum in reference state -

Table 6.1: Selected quantum numbers in the Jacobi normal-ordering framework. We use the
shorthand notations rel for relative, cm for center-of-mass, sp for single-particle, and PW for partial
wave. For quantum numbers truncated in practical applications, we additionally give reasonable
maximal truncation values in the third column. Some quantum numbers depend on each other, e.g.,
the maximum value of j depends on the truncation in [, and we only show truncation values for the
actually truncated quantities here.

suppressed as the values of J or Loy increase. In fact, the matrix elements of the partial-wave
3N matrix elements are typically only computed up to values of J ~ 5-8 depending on the
three-body quantum number [J. Such values are typically sufficient for converged many-body
calculations [130]. We again summarize the most important angular-momentum quantum
numbers for the Jacobi normal ordering in Table 6.1 for the sake of clarity and additionally
give a range of employed truncation values for those quantum numbers which are truncated in
the novel framework. In Secs. 6.2 and 6.3, we present detailed benchmarks and investigate the
convergence behavior with respect to the employed truncations for different mass numbers,
specifically focusing on variations of Ly and Jio. Besides these truncations, we employ the
constraints Jyax = lmax = 5 (if not stated otherwise), where Jy., denotes the maximum
total relative angular momentum in the bases |«) and |3) defined in Eqs. (6.12) and (6.15),
and lyax is the maximum value of the orbital angular momentum of the particle with Jacobi
momentum ¢ in the three-body basis |a). These values have been shown to be sufficient to
obtain well-converged results in light and medium-mass nuclei as well as nuclear matter [130].

6.1.1 Transformation to Jacobi HO basis

In the next step, we transform the normal-ordered two-body interaction from the Jacobi
basis to the relative HO basis. This is similar to the standard transformation of the partial-
wave decomposed NN interaction from momentum-space to the relative HO basis (see, e.g.,
Ref. [254]). However, in this case we have to consider the additional cm dependence. The
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corresponding HO basis is given by
|NNewB) (6.20)

where N and N¢y, are the radial oscillator quantum numbers of the relative momentum p and
cm momentum P, respectively, and /3 is the collective index of Eq. (6.15). The plane-wave
Jacobi states are transformed to the relative HO basis by

|N New 3) :/dp/dPP2P2RNE(p7 bRy 1. (Pb)[pPB), (6.21)

(he)?
M hw

oscillator wave function in momentum space given by the overlap

with the oscillator length parameter b = and the radial part R, of the harmonic

Ryz(p,b) = (pL|INL) ,

6.22
_ (<1 (622

13 1
Fot g ot (=5 et) 1 ()
where I' is the gamma function and ij% are the associated Laguerre polynomials. We
emphasize that the dependence on the cm quantum number Ley, allows for more complicated
angular-momentum coupling patterns. Consequently, the number of possible partial-wave
channels is significantly increased compared to the standard two-body transformation. The
total energy quantum number now involves cm and relative quantum numbers and is given

by
E® = 92N, + Lem + 2N + L. (6.23)

This implies that in order to perform a complete calculation in a given single-particle basis
space emax, we need to choose Er(fgx > 2emax- There are no additional limits on the total

energy quantum number E®@_ In particular, the values of the radial quantum numbers Nep,

and N are not truncated for a given choice of e;,x and can be easily pushed to large values.

6.1.2 Transformation to single-particle basis

The final step to arrive at JT-coupled two-body matrix elements is the transformation from
the relative to the single-particle HO basis. Towards this goal, we use Talmi-Moshinsky or
so-called HO transformation brackets [288-290]. The (JT-uncoupled) two-body single-particle
basis can be written using the collective index introduced in Eq. (3.28)

lab) =

, 1 o1
n(laé)]ama2mtan’(lb%)jbmb2mtb> , (6.24)

where we explicitly show the isospin (spin) t; = 1/2 (s; = 1/2), its projection my,, and the
radial quantum numbers n and n’ for particles a and b, respectively. The final JT-coupled
matrix elements of the form

((@b)Ji T M| TN (cd) Jut TM ) | (6.25)
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are obtained by coupling the single-particle angular momenta and isospins of particle a and
b (as well as ¢ and d) to the total two-body angular momentum Ji and total isospin T,
respectively. Note that in general I'>N has nonvanishing matrix elements for off-diagonal T

and T’ and will depend on Mgz, while it is diagonal in Jiot and independent of Mj , as

o )
discussed for Eq. (6.15). However, since the transformation to the single-particle basi; tdoes
not modify the isospin dependence of the states, we will in the following suppress the isospin
quantum numbers for simplicity.

In the first step of the transformation, we factorize the spin part of the states by recoupling

the two-body states to from j- to [s-coupling scheme, using a 9j-symbol

R la Sa ja
|[P(lasa)gan’ (oso)o] ot ) = D GadoAS by 5 o ¢ |[(lan'I)A(sa50)S| Jior)  (6.26)
AS A S Jiot

where the orbital angular momenta [, and [, couple to the total orbital angular momentum
A. In order to make use of the standard definitions of the Talmi-Moshinsky transformation
brackets of Ref. [290], which are given by

(') Ay = Y <(NcmicmNi)>\|(nzan’zb)A> ‘(NcmicmNE) >\> , (6.27)
NemLemNL

we need to recouple also the angular momenta of the Jacobi HO basis defined in Eq. (6.20)
to first couple the relative and cm angular momenta to the total orbital angular momentum:

[N New [(LemD)A3)] ftot>=;<—1>L+S+fo{Lfm B i}

X ’NNcm [(I_zg)jfzcm] jtot> )

(6.28)

where we changed the coupling order of L and Ly, which introduces an additional phase of
(—1)Lem+L=A " Summarizing, this leads to the final transformation relation for the two-body

states:
- “n la Sa ja B B
‘(ab)Jt0t> = ZjaijQSJ lb S_b jb Z <(NcmLcmNL))‘|(nalanblb)/\>
) TNE (6.29)

e {5 L j} N Now [(E5) 7L T
J

Lcm jtot A

The resulting TN two-body matrix elements in the JT-coupled single-particle basis can now
be directly used in ab initio many-body applications, e.g., the IMSRG.
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Figure 6.2: Difference I'jac — I'sp of the normal-ordered two-body matrix element from the 3N
contribution in the Jacobi and single-particle normal ordering for different Ji,; blocks of Jioy < 4
(green), 4 < Jior < 8 (orange) and Jio; > 8 (blue) in the two-body interaction. We show results
for different truncations in the Jacobi normal ordering, using Jia* = L33 = 5 7,9, and 11 in the
first through fourth panel, respectively. The y-axis shows the percentage of matrix elements with the
difference specified on the x-axis in the selected Jio; block. Results are shown for the 1.8/2.0 EM 3N
interaction with emax = 6, Famax = 18, and Aiw = 16 MeV using an 90 HF reference state.

6.2 'Truncation benchmark for light nuclei

6.2.1 Matrix-element comparison

As a first step, we study the performance of the Jacobi normal ordering (NO) by explicitly

N in the single-particle and

comparing matrix elements of the effective two-body operator
Jacobi approaches. The reference state employed for all normal-ordering applications in the
Jacobi basis in this work is given by an HF reference state calculated in the single-particle
basis using the 1.8/2.0 EM interaction. The corresponding model space is characterized by
emax and F3ma.x and the HF orbitals, which are a linear combination of HO orbitals, can then
be applied in the Jacobi normal ordering.

In Fig. 6.2, we show the difference between the normal-ordered two-body matrix elements
N resulting from the three-body contribution in the Jacobi and single-particle basis for
an 00 reference state. We employ a model space of epa.x = 6 with Ezn.c = 18, such
that there is no active Fs3pax cut. The maximum total three-body angular momentum is
set to J = 9/2, which is typically enough to obtain converged results for finite nuclei and
nuclear matter [130]. Using the same HF reference state in both frameworks allows for a
clean comparison of the normal-ordered matrix elements. For a better understanding of the
different contributions to the two-body interaction, we divide the set of matrix elements into
three blocks of total angular momentum Jiot in the two-body basis. We consider blocks of
Jeot < 4,4 < Jeot < 8, and Jiot > 8 and show on the y-axis the percentage of matrix elements

with the specified difference on the x-axis in the corresponding blocks. By consistently varying
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the J22% and LI2X truncations in the Jacobi framework from 5 to 11, we see that increasing
Jiot and Lem systematically brings the matrix elements in the Jacobi NO in better agreement
with the single-particle NO. In general, both truncations can be varied independently and
we truncate them at the same value for simplicity. Smaller Jiot blocks are already more

Tmax

accurate at smaller J2%* and L28% and larger Jio blocks are more accurately reproduced

for increased truncations. For the highest truncation of J@2#* = L18% = 11 shown here, both
methods yield nearly identical matrix elements with only minor deviations, mostly for high
Jiot contributions. This can be understood by the generalized transformation to the single-
particle basis in Sec. 6.1.2 for the Jacobi framework. The two-body cm quantum number Lem
couples with L and S to the total angular momentum Ji., such that for a complete basis we

would need to take LI to J@RaX 4 [MaX 4 GmWax with JMaX — 13 in an ey, = 6 model space

and S™* = 1. However, the contributions from very high Ly, are found to be only small

and the rightmost panel in Fig. 6.2 shows nearly exact agreement for JaX = [1ax — 11 in

all Jior blocks.

We emphasize that the remaining small deviations for the matrix elements could also be
caused by different truncations of the relative two-body angular momentum J in the 3N basis
in Eq. (6.12). While the Jacobi framework uses J = 5 for all three-body partial waves, the
single-particle approach uses a truncation of J =8, J =7, and J = 6 for channels with total
three-body angular momenta of J < 5/2, J = 7/2, and J = 9/2, respectively. However, the
impact of matrix elements beyond J = 5 for calculations of finite nuclei and nuclear matter
is observed to be typically only small [130].

6.2.2 Ground-state properties

We extend our benchmark calculations from a detailed comparison of matrix elements to
ground-state energies of light and medium-mass nuclei using the IMSRG, again comparing
the Jacobi and single-particle NO. For all following calculations, we use a model-space size
of emax = 14, which is sufficient to obtain converged results for light, medium-mass, and
medium-heavy nuclei [55]. We emphasize that in general the mean-field solution converges
faster than the many-body solution with respect to F3max and that any residual dependence
for the ground-state or correlation energy on E3p.x in the single-particle framework is purely
based on correlation effects in the many-body expansion. It is therefore beneficial to study
the convergence behavior of the correlation energy, which cancels out the dependence on the
HF energy. Figure 6.3 shows the correlation energy in the single-particle normal ordering
as a function of F3pax and in the Jacobi normal ordering as a function of LI and Jmax
for 10 and *®Ca. In contrast to the matrix-element comparison for small model spaces in
Fig. 6.2, without an active Es3nay truncation, we employ a significant cut on the three-body
matrix elements by using Esmax = 18 in an enax = 14 model space (only Fspmax = 42 would
be complete). The effect of the E3pax truncation for light and medium-mass nuclei in the
single-particle normal ordering is however known to be only small and we show results up to
Fsmax = 18 in the left panels of Fig. 6.3, and use a E3n.x = 16 reference state for the Jacobi
normal ordering in the right panels.

Converged correlation (and ground-state) energies in the single-particle approach are
observed around Esmax ~ 13 and Esmax ~ 18 for 190 and *°Ca in the top and bottom plot,
respectively. The HF energy is already converged for smaller truncations of Espax = 10 for
160 and E3max = 12 for 8Ca (not shown). In the Jacobi framework we find that truncating

the additional quantum numbers at LB3X = JUax ~ 5 ([max — jmax o 8) is enough to obtain
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Figure 6.3: Correlation energy in the single-particle (left panel) and Jacobi normal ordering (right
panel) as a function of Ezmay, (left panel) and LT3 or Jmax (vight panel), keeping the nonvaried
parameter at the maximal value of L% = 10 or J2#* = 10, respectively. We show results for 60
and *®Ca in the top and bottom plot, respectively, using the 1.8/2.0 EM interaction, an ey, = 14
model space, and an oscillator frequency of hw = 16 MeV in the HF basis. The Jacobi normal ordering
employs an 3.« = 16 HF reference state.

converged energies for 10 (4°Ca). The slightly larger truncations for *°Ca indicate that
increased truncations are required for converged results of higher mass numbers. Comparing
the results in the Jacobi and single-particle normal ordering, we observe perfect agreement
of converged energies in both frameworks. The only remaining dependence on F3p,,x in the
Jacobi framework is given by the reference-state calculation in the single-particle basis. While
we observe no residual dependence on the Esnay cut for the ground-state energies of 160 and
48Ca when using an Espnax = 16 reference state, the dependence on the reference state could
become recognizable when going to higher mass numbers. This will be investigated in more
detail in the following, moving to heavier systems.

6.3 Application to heavy systems

We now turn our attention to heavier nuclei, first exploring the correlation energy of "®Ni in
Fig. 6.4. As discussed before, increasing the Fsp.x cut becomes important to obtain converged
ground-state energies in the single-particle NO when approaching heavier systems. This can
be seen in the left panel of Fig. 6.4, where we study the correlation energy up to F3max = 24
and find converged results for F3max ~ 20. Increasing the Esnay cut to higher values was
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Figure 6.4: Same as Fig. 6.3 but for “®Ni. In addition to using an Es,.x = 16 reference state in the
Jacobi normal ordering, we show results when using an Fsp,.x = 28 reference state by the dashed lines
with open circles in the right plot. The resulting correlation energies lie on top of the calculations
using the reference state constructed with a smaller E3;,,, truncation.
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Figure 6.5: Same as Fig. 6.4 but for 132Sn and Aw = 12 MeV. The Jacobi normal ordering (right)
uses an Fspnax = 28 HF reference state. We additionally show the HF energy and IMSRG energy in
the top and middle panel, respectively, and increased the Fsn.x range in the single-particle normal
ordering (left) to Fsmax = 28.
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possible due to Ref. [50] and 3N matrix elements in the single-particle basis were provided
by T. Miyagi. In contrast to previous calculations in Sec. 6.2.2, which only employed an
Fsmax = 16 HF reference states in the Jacobi normal ordering, we additionally show results
when using a reference state constructed in a significantly larger space of Esmax = 28 (the
currently largest available cut [50]). Remarkably, even though the correlation expansion based
on the single-particle NO is not converged for E3mnax = 16, the results in the Jacobi framework
show no difference for using an Fspna.x = 16 or Espa.x = 28 reference state. This can be
understood by the HF calculation converging faster than the IMSRG calculation, where we
find converged HF energies already around F3max =~ 14 for ™®Ni (not shown). Consequently,
no high-quality reference states of Fsnax =& 28 are needed in the Jacobi NO and a converged
JBax are large
enough. This is in contrast to the single-particle NO, where increased Fsnax values are

HF reference state is sufficient to obtain converged energies, once Lis* and

required to obtain converged calculations.

Again, the Jacobi and single-particle framework lead to the same converged energies, even
when just using an Fsp.x = 16 reference state in the Jacobi NO. We note that by going

to heavier mass numbers, also the truncations L% and J&&* in the Jacobi NO have to be

increased and we observe converged results for LR2% = JMax ~ 9 slightly larger than what
was observed for %0 or Ca. Increasing these truncations leads to increased computation
times in the Jacobi framework, which is why one wants to keep them to the minimal required
values in practical applications.

The trends observed for ®Ni can be further verified for even heavier systems. In Fig. 6.5,
we show a detailed comparison of the HF, IMSRG, and correlation energies of '32Sn in the
single-particle and Jacobi normal ordering. The results in the single-particle basis are shown
up to E3max = 28 based on the recent developments in Ref. [50], and we here show calculations
for a slightly different oscillator frequency of hw = 12 MeV. We increased the total three-body
angular momentum to maximal values of J™** = 15/2, however effects of higher total angular
momenta beyond J = 9/2 are expected to be only small [50, 130]. As anticipated, the HF
energy converges rapidly with respect to Esmax, clearly visible in the top panel of Fig. 6.5.
Consequently, we assume that a reference state with F3a.x &~ 18, where the HF calculation is
converged, is enough to obtain converged ground-state and correlation energies in the Jacobi
approach. Nevertheless, for a better comparison, we employ an Esnax = 28 reference state in
the Jacobi NO. The ground-state and correlation energy in the single-particle NO still depend
on the Esnax truncation beyond Espa.x = 18 and cuts of Espa.x ~ 24 are required to obtain
converged results.

In the Jacobi NO, the L% and J2% truncations required for converged calculations
max Jmax - 11.

follow the trends observed for "®Ni in Fig. 6.4 and slightly increase to LM% = Jmax

We checked that the remaining difference of the HF and ground-state energy between the
single-particle and Jacobi NO is not caused by too small truncations for J and [ in the
three-body partial-wave basis in Eq. (6.12). Increasing the maximum quantum numbers from
JUA = [max = 5 to JM** = 6 and [™** = 7 leads to nearly no change, with only a couple
hundred keV more binding for the HF and ground-state energy. Possible reasons for the
deviation could be that larger mesh systems are required for the momentum integrations in
heaver nuclei to describe the occurring highly oscillating functions. However, studies in this

direction are still work in progress.

We further investigate the benefits of the Jacobi normal ordering for even heavier systems,
studying 2"®Pb in Fig. 6.6. We additionally show calculations for using an increased model-
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Figure 6.6: Same as Fig. 6.5 but for 2°Pb. The Jacobi normal ordering (right) uses an ep., = 14
and Fsnax = 28 HF reference state. We additionally show results in the single-particle normal ordering
(left) when using an eax = 16 model space by the orange curve.

space of epax = 16 in the single-particle approach. As before, the HF energy is well converged
around Fsmax ~ 20 and we find only small effects of using the larger enay truncation for
the mean-field solution. This changes for the many-body solution, where the ground-state
and, thus, the correlation energy are not fully converged with respect to epnax and still show
an Fspax-sensitivity beyond Fspax = 28. The Jacobi framework shows similar trends as for
13281 in Fig. 6.5 employing an emax = 14 and Esnax = 28 reference state. We observe more
binding for the HF and IMSRG energy compared to the single-particle normal ordering and
only slight differences for the correlation energy. Possible reasons for this differences could
again be that larger mesh systems are required in the Jacobi normal ordering, especially when
describing heavier nuclei. Converged results are obtained for LM% = JUa% ~ 13 being only
slightly larger than in '®?Sn. It will be interesting to see what reference states with increased
emax and calculations with larger mesh systems predict in the Jacobi normal ordering. We
emphasize again that the reference-state construction is computationally cheap and that the
final epayx truncation for the effective two-body interaction can be scaled up in the Jacobi
framework.
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Figure 6.7: Same as Fig. 6.6 but for the charge radius of 2°®Pb and an oscillator frequency of
hw = 12 MeV.

6.3.1 Charge radii

In addition to ground-state properties, the interactions derived within the new framework can
be straightforwardly applied to study other observables. We here highlight the application
to the charge radius operator in the IMSRG, following the calculation of the charge radius
as outlined in Sec. 3.4.3, and again compare results in the Jacobi and single-particle normal
ordering for 2°®Pb in Fig. 6.7.

The charge radius operator is known to be already quite well described at the HF level.
With a HF charge radius of Rg, = 5.141 fm, we find only small contributions from the
correlation expansion to the charge radius for both normal-ordering frameworks. The single-
particle normal ordering shows only minor differences when increasing the model space to
emax = 16 and the results are converged in Fs3,.x. We find excellent agreement between both
normal-ordering approaches and slightly faster convergence in the Jacobi framework with
respect to LM% and J22% compared to the energies in Fig. 6.6.

All these results highlight the versatility of the novel normal-ordering approach, being able
to target heavy nuclei in good agreement with standard normal-ordering methods and without
being limited by an Fs.x truncation. The only remaining dependence on the single-particle
basis, due to the reference-state construction, was found to be resolved once the HF solution
is converged.
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Summary and Outlook

In this thesis, we addressed current challenges in contemporary ab initio nuclear structure
theory. In particular, we presented advances for the IMSRG and method developments to
target the challenges of increased computational cost and memory requirements that provide
strong frontiers for ab initio many-body methods moving to higher mass numbers with more
precision.

Especially the improvements for wave-function expansion methods allowed many-body
methods to advance to systems up to heavy nuclei. Improving calculations for these expansion
methods goes in two directions: first, improving the reference state; and second, improving
the many-body method. Both approaches have been studied in detail in this thesis, exploring
ground-state observables of closed-shell nuclei using chiral NN and 3N interactions in the ab
initio IMSRG.

Aiming at the first point, improving the reference state provides a powerful tool to
optimize ab initio calculations. Due to computational limitations, calculations of nuclear
observables typically depend on basis set parameters of the underlying basis, such as the
oscillator frequency. We showed that natural orbital reference states, which are defined
as the eigenstates of the one-body density matrix, can be beneficial to improve the many-
body solution. Specifically, we studied NAT basis states stemming from a perturbatively
improved density matrix up to second order in perturbation theory. These orbitals led to
frequency-independent single-particle wave functions. This makes them superior to standard
single-particle basis choices, such as the HO basis, which does not optimize any frequency
dependence, and the HF basis, which only optimizes occupied orbitals. Additionally, the
natural orbital occupation numbers can serve as a diagnostic to indicate when the NAT
construction might be ill-behaved. We found that a reasonable mean-field solution and
low-resolution Hamiltonians are key factors to construct well-performing natural orbitals
based on a perturbatively improved density matrix. Significant benefits were obtained when
constructing the NAT states in a large model space and truncating them to a smaller space
for performing the many-body calculation. This approach resulted in frequency-independent
results and improved model-space convergence, by informing the basis in the small space
about information from the large model space. Converged results of ground-state energies
and charge radii are already obtained in considerably smaller model spaces of epax ~ 10,
instead of requiring to go to epmax = 14. This saves a factor of approximately 2-3 in single-
particle dimension.

Next, we turned our attention to tensor-factorization and importance-truncation tech-
niques to decompose and compress many-body operators and effectively lower the corre-
sponding memory requirements. This hopefully enables many-body methods to incorporate
many-body operators of high rank at reduced computational and storage cost.
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We showed that singular-value decomposed approximations of the two-body potential lead
to excellent reproduction of ground-state energies over a large range of nuclei. This is already
true for low truncation of the SVD rank, leading to a compression of around 10 compared to
the initial storage cost. It will be interesting to see how advanced many-body methods that
are reformulated to explicitly take advantage of the low-rank structure will perform in future
applications. Work along these lines is already in progress.

In addition to tensor-factorization techniques, importance-truncation techniques have
been applied for the first time to the IMSRG in the IT-IMSRG. Neglecting unimportant
contributions and performing many-body calculations only based on the most important
contributions resulted in significantly compressed many-body operators and computational
benefits at the price of introducing (small) errors compared to the full result. In this thesis,
we focused on applications of the IT to two-body operators. We investigated multiple I'T
measures and studied how different truncations affect ground-state energies of finite nuclei in
the IMSRG. Perturbative approaches at third order in perturbation theory using the neglected
two-body matrix elements were used to estimate the error introduced by the IT. For soft
interactions, these error estimates provided a reasonable correction in agreement with the
actually observed error. The IT generally was observed to perform better in larger model
spaces and yielded best results for soft interactions. Overall, we found that a large part of
the interaction can be neglected while introducing only small errors for the total ground-state
energy, e.g., neglecting 99% of all two-body matrix elements in large model spaces led to
calculations with less than 1 MeV error to the exact IMSRG(2) result in mid-mass systems.
Applications to various mid-mass systems finally showed the great applicability of the IT
framework for a large range of mass numbers. All these results establish the IT-IMSRG as
a promising tool to compress and accelerate many-body calculations. We expect that the
IT-IMSRG approach can also be adapted to work with extensions of the IMSRG that target
open-shell systems, such as the MR- or VS-IMSRG, with appropriately selected importance
measures. Extending the I'T approach to other operators and observables in the IMSRG is a
next natural step, where either the same measure as for the Hamiltonian can be applied or
new operator-specific measures can be developed.

The standard IMSRG approach truncates all operators at the normal-ordered two body-
level, yielding the IMSRG(2). Triple corrections, not included in the IMSRG(2), however have
been observed to be important for many observables. Targeting the second point mentioned
above of improving the many-body method, we showed how the IMSRG can be extended to
the next truncation order in the many-body expansion, including three-body operators in
the IMSRG(3). We additionally derived approximate IMSRG(3) truncation schemes of lower
computational cost and presented results for full and approximate IMSRG(3) truncations for
4He and '90. The IMSRG(3) systematically improves over the IMSRG(2) compared to exact
results. However, given the tremendous computational cost, calculations are limited to small
emax = 2 model spaces and converged calculations in large model spaces are still outside of
reach. Consequently, improving the scaling behavior or providing appropriate approximation
techniques is a key goal towards more precise calculations.

The benefits observed for truncated natural orbitals are of strong interest for the IM-
SRG(3), where further improving the construction of single-particle basis sets will signifi-
cantly help to advance to heavier nuclei and higher precision in ab initio applications. Based
on the observed savings in single-particle dimension for the IMSRG(2), naive speed-ups of
around 103-10% can be anticipated for the IMSRG(3). Advantages for high-order calculations



using the natural orbital basis, have also been observed in other many-body methods. In
Ref. [74], natural orbital occupation numbers are used in CC calculations to tame the di-
mensionality of the space of three-body cluster amplitudes. Moreover, the developments for
using importance-truncation techniques in the IMSRG are especially of great interest for the
IMSRG(3) in order to lower the computational cost of evaluating the additional commutators
and reducing the storage cost of handling three-body operators. In preliminary studies on
three-body matrix elements, we have found that similar choices as for the IT-IMSRG(2) yield
three-body compression ratios of about 100-1000, approximately an order of magnitude larger
than in the two-body case. These substantial reductions in the number of three-body matrix
elements could bring memory requirements associated with three-body operators into the
range accessible with standard supercomputing nodes. An IT-IMSRG(3) solver tuned to
handle the extremely sparse structure of the resulting operators could extend the range of the
many-body method and make large model-space truncations or more expensive approximate
IMSRG(3) truncations accessible.

Additionally, the input interactions, in particular the explicit inclusion of three-body
interactions presents computational challenges for ab initio calculations. Normal-ordering
techniques, which approximate the effect of three-body interactions by an effective two-
body interaction, have been proven to be a key concept to systematically account for three-
body contributions in a computationally efficient way. However, traditional normal-ordering
frameworks require the representation of 3N interactions in a large single-particle basis, which
leads to massive storage costs and necessitates an additional truncation E3pax in three-body
space. Effects of this truncation become significant when approaching heavy systems.

In this thesis, we presented a novel normal-ordering framework in the Jacobi plane-wave
basis that circumvents this drawback by requiring substantially less memory and allows to
perform calculations without any truncation on three-body energy quantum numbers. Bench-
mark calculations for ground-state energies of light and medium-mass systems, comparing
both frameworks, showed perfect agreement already for rather small truncations in the Jacobi
normal ordering. Exploring heavier systems, we found that a fairly converged HF reference
state, at F3max values where ground-state energies in the single-particle normal ordering are
still far from convergence, is sufficient to obtain converged results in the Jacobi framework.
This is based on the mean-field solution converging faster than the many-body solution with
respect to the model-space size. Comparing converged results in both frameworks again led to
good agreement of ground-state and correlation energies. These findings were highlighted by
calculations of "®Ni, 132Sn, and 2°®*Pb, demonstrating the versatility and benefits of the new
normal-ordering approach. The framework can in future be straightforwardly applied to more
refined reference states, such as a natural orbital reference state. Next steps and extensions of
the Jacobi framework involve the application to open-shell systems, hence additionally being
able to study excited-state properties. One possible approach towards this goal is, e.g., an
equal-filling approximation with fractional occupied orbitals in the reference state, as applied
in the VS-IMSRG in Ref. [94].

In summary, we accomplished improvements for some of the major challenges of rapidly
increasing computational cost and memory demands in ab initio theory today. All the
developments presented in this thesis pave the way for more precise many-body calculations
and possibly allow to push the range of ab initio methods to higher mass numbers and more
exotic systems.
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List of Abbreviations

Abbreviation Complete text
BCH Baker-Campbell-Hausdorff
(B)MBPT (Bogoliubov) many-body perturbation theory
CC coupled-cluster
center-of-mass cm
FCI full configuration interaction
EFT effective field theory
HF Hartree-Fock
HO harmonic oscillator
IMSRG in-medium similarity renormalization group
IT importance truncation
LEC low-energy constant
LO leading order
MP2/MP3 many-body perturbation theory up to second/third order
NAT natural orbitals
NCSM no-core shell model
NLO next-to-leading order
N2LO next-to-next-to-leading order
N°LO next-to-next-to-next-to-leading order
NN nucleon nucleon
NO normal ordering
NO2B normal-ordered two-body approximation
npnh n-particle-n-hole
ODE ordinary differential equation
QCD quantum chromodynamics
QMC quantum Monte Carlo
SCGF self-consistent Green’s function
SPE single-particle energy
(S)RG (similarity) renormalization group
SVD singular value decomposition
3N three nucleon

Table 7.1: List of used abbreviations in this thesis.
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