
N E W A P P R O A C H E S T O S O F T WA R E S E C U R I T Y M E T R I C S A N D
M E A S U R E M E N T S

nikolaos alexopoulos

Dissertation
Zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertationsschrift in englischer Sprache
von Nikolaos Alexopoulos

aus Darmstadt, Deutschland
geboren in Cholargos, Griechenland

Erstreferent: Prof. Dr. Max Mühlhäuser
Korreferent: Prof. Dr.-Ing. Felix Freiling

Tag der Einreichung: 08.02.2022

Tag der Prüfung: 22.03.2022

Fachgebiet Telekooperation
Fachbereich Informatik

Technische Universität Darmstadt
Hochschulkennziffer D-17

Darmstadt, 2022

Nikolaos Alexopoulos:
New Approaches to Software Security Metrics and Measurements

Darmstadt, Technische Universität Darmstadt
Jahr der Veröffentlichung der Dissertation auf TUprints: 2022

URN: urn:nbn:de:tuda-tuprints-215201

Tag der Prüfung: 22.03.2022

Veröffentlicht unter CC BY-SA 4.0 International
https://creativecommons.org/licenses/

© August 8, 2022

S Y N O P S I S

Meaningful metrics and methods for measuring software security would greatly
improve the security of software ecosystems. Such means would make security
an observable attribute, helping users make informed choices and allowing
vendors to ‘charge’ for it—thus, providing strong incentives for more security
investment. This dissertation presents three empirical measurement studies in-
troducing new approaches to measuring aspects of software security, focusing
on Free/Libre and Open Source Software (FLOSS).

First, to revisit the fundamental question of whether software is maturing over
time, we study the vulnerability rate of packages in stable releases of the Debian
GNU/Linux software distribution. Measuring the vulnerability rate through
the lens of Debian stable: (a) provides a natural time frame to test for matur-
ing behavior, (b) reduces noise and bias in the data (only CVEs with a Debian
Security Advisory), and (c) provides a best-case assessment of maturity (as the
Debian release cycle is rather conservative). Overall, our results do not support
the hypothesis that software in Debian is maturing over time, suggesting that
vulnerability finding-and-fixing does not scale and more effort should be in-
vested in significantly reducing the introduction rate of vulnerabilities, e.g. via
‘security by design’ approaches like memory-safe programming languages.

Second, to gain insights beyond the number of reported vulnerabilities, we
study how long vulnerabilities remain in the code of popular FLOSS projects
(i.e. their lifetimes). We provide the first, to the best of our knowledge, method
for automatically estimating the mean lifetime of a set of vulnerabilities based
on information in vulnerability-fixing commits. Using this method, we study
the lifetimes of ~6 000 CVEs in 11 popular FLOSS projects. Among a number of
findings, we identify two quantities of particular interest for software security
metrics: (a) the spread between mean vulnerability lifetime and mean code age
at the time of fix, and (b) the rate of change of the aforementioned spread.

Third, to gain insights into the important human aspect of the vulnerability
finding process, we study the characteristics of vulnerability reporters for 4

popular FLOSS projects. We provide the first, to the best of our knowledge,
method to create a large dataset of vulnerability reporters (>2 000 reporters for
>4 500 CVEs) by combining information from a number of publicly available
online sources. We proceed to analyze the dataset and identify a number of
quantities that, suitably combined, can provide indications regarding the health
of a project’s vulnerability finding ecosystem.

Overall, we showed that measurement studies carefully designed to target cru-
cial aspects of the software security ecosystem can provide valuable insights
and indications regarding the ‘quality of security’ of software. However, the
road to good security metrics is still long. New approaches covering other im-
portant aspects of the process are needed, while the approaches introduced in
this dissertation should be further developed and improved.

iii

Z U S A M M E N FA S S U N G

Aussagekräftige Metriken und Methoden zur Messung der Softwaresicherheit
können erheblich zur Verbesserung der Sicherheit von Software-Ökosystemen
beitragen. Damit kann Sicherheit sichtbar und nachvollziehbar gemacht wer-
den, wodurch weiterhin Nutzer darin unterstützt werden, bei der Auswahl so-
wie der Interaktion mit Software informierte Entscheidungen zu treffen. Dar-
über hinaus werden starke Anreize für mehr Investitionen in die Sicherheit von
Software geliefert, sodass Software-Anbieter dazu ermächtigt werden, für hö-
here Sicherheit in ihren Produkten Geld zu verlangen. In dieser Dissertation
werden drei empirische Messstudien vorgestellt, die neue Ansätze zur Mes-
sung von Aspekten der Softwaresicherheit vorstellen, wobei der Schwerpunkt
auf Free/Libre and Open Source Software (FLOSS) liegt.

Erstens: Um die grundlegende Frage zu klären, ob Software im Laufe der Zeit
ausgereifter wird, untersuchten wir die Schwachstellenrate von Paketen in sta-
bilen Veröffentlichungen der Debian GNU/Linux Software Distribution. Die
Messung der Schwachstellenrate mit dem Fokus auf von Debian Stable: (a) bie-
tet einen natürlichen Zeitrahmen, um die Entwicklung der Ausgereiftheit zu
testen, (b) reduziert Rauschen und Verzerrungen in den Daten (nur CVEs mit
einem Debian-Sicherheitshinweis) und (c) bietet eine Best-Case-Bewertung der
Ausgereiftheit (da der Debian-Veröffentlichungszyklus eher konservativ ist).
Insgesamt unterstützen unsere Ergebnisse nicht die Hypothese, dass Software-
Sicherheit in Debian im Laufe der Zeit fortschreitet, was darauf hindeutet,
dass mehr Anstrengungen unternommen werden sollten, um die Rate von neu
eingeführten Schwachstellen signifikant zu reduzieren, z.B. durch ‘security by
design’-Ansätze wie speichersichere Programmiersprachen.

Zweitens: Um über die Anzahl der gemeldeten Schwachstellen hinaus Erkennt-
nisse zu gewinnen, untersuchten wir, wie lange Schwachstellen im Code belieb-
ter FLOSS-Projekte (in Bezug auf ihre Lebensdauer) verbleiben. Wir bieten die
unseres Wissens nach erste Methode zur automatisierten Schätzung der durch-
schnittlichen Lebensdauer einer Reihe von Schwachstellen auf der Grundlage
von Informationen in Commits zur Entfernung von Schwachstellen. Mit dieser
Methode untersuchten wir die Lebensdauer von ~6 000 CVEs in 11 populären
FLOSS-Projekten. Unter einer Reihe von Ergebnissen identifizierten wir zwei
Größen, die für Software-Sicherheitsmetriken von besonderem Interesse sind:
(a) die Spanne zwischen der mittleren Lebensdauer der Schwachstelle und dem
mittleren Code-Alter zum Zeitpunkt der Korrektur und (b) die Änderungsrate
der zuvor genannten Spanne.

Drittens: Um Einblicke in den wichtigen menschlichen Aspekt des Schwach-
stellenfindungsprozesses zu erhalten, untersuchten wir die Charakteristika von
Schwachstellenmeldern für vier populäre FLOSS-Projekte. Unseres Wissens nach
ist dies die erste Methode zur Erstellung eines großen Datensatzes von Schwach-
stellenberichten (>2 000 Berichte für >4 500 CVEs) durch die Kombination von

iv

Informationen aus einer Reihe öffentlich zugänglicher Online-Quellen. Wir ana-
lysierten den Datensatz und ermittelten eine Reihe von Größen, die in geeig-
neter Kombination Hinweise auf den Zustand des Ökosystems eines Projekts
zum Auffinden von Schwachstellen liefern können.

Insgesamt haben wir gezeigt, dass sorgfältig konzipierte Messstudien, die auf
wichtige Aspekte des Ökosystems der Softwaresicherheit abzielen, wertvolle
Einblicke und Hinweise auf die ‘Sicherheitsqualität’ von Software liefern kön-
nen. Der Weg zu guten Sicherheitsmetriken ist jedoch noch weit. Neue An-
sätze, die andere wichtige Aspekte des Prozesses abdecken, sind erforderlich,
während die in dieser Dissertation vorgestellten Ansätze weiterentwickelt und
verbessert werden sollten.

v

vi

A C K N O W L E D G M E N T S

This dissertation would not have been possible without the support of many
special people during these almost 6 years of the journey.

First and foremost, I would like to thank my supervisor Max Mühlhäuser. His
continuous trust and support, even in challenging times, made this dissertation
possible.

Of course a big thank you belongs to the whole TK family who made the last
almost-six years of my work-life a pleasure, staying true to the TK spirit. A
special thanks goes to my SPIN colleagues – former and current alike. They
were always there when I needed them. Without them this dissertation would
not have been possible.

I would also like to thank my external collaborators Steffen Schulz and Andy
Meneely for interesting discussions and insightful comments that contributed
to the results presented in this dissertation. A big thanks also goes to my stu-
dents who supported me in my research endeavours.

I also owe a huge thank you to my family, and especially my mother, who
supported me all the way. The same goes for my friends here in Darmstadt as
well as back in Greece.

Finally, I would like to acknowledge the DFG, the BMBF, and the HMWK for
funding my research.

vii

viii

C O N T E N T S

1 introduction 1

1.1 Software security, measurement, and the science of security . . . 1

1.1.1 Motivation (Why to measure security?) 1

1.1.2 Why measuring the security of software is hard 2

1.2 State of the Art . 4

1.2.1 Common Criteria . 4

1.2.2 Vulnerability discovery models and the question of deple-
tion . 5

1.2.3 Measuring other attributes 5

1.2.4 Summary . 7

1.3 Research Goals . 7

1.4 Summary of approaches and contributions 8

1.4.1 General methodology . 8

1.4.2 Maturity . 9

1.4.3 Lifetimes . 9

1.4.4 Effort . 10

1.5 Applicability of the developed methods 10

1.6 Outline . 10

1.7 Peer-reviewed papers, collaborations and statement over own
contributions . 11

1.8 Notes on style . 12

2 terminology and background 15

2.1 Terminology . 15

2.1.1 Terminology on software metrics 15

2.1.2 Terminology on software vulnerabilities 17

2.2 The vulnerability lifecycle . 18

2.3 Data sources . 20

2.4 Challenges with vulnerability statistics 21

2.5 Threats to validity in empirical software engineering 23

3 an empirical study on the maturity of stable releases 25

3.1 Introduction . 25

3.2 Motivation and research questions 26

3.3 Specialized Background & terminology 29

3.4 Related Work . 30

3.5 Dataset creation methodology . 33

3.6 Results . 35

3.6.1 Data overview and distribution 35

3.6.2 Vulnerability trends in Debian (H1) 38

3.6.3 Vulnerability Severity and Types (H2) 45

ix

3.6.4 Bug bounty programs (H3) 50

3.6.5 Summary of main findings 56

3.7 Implications and discussion . 57

3.8 Threats to validity . 60

3.8.1 Threats to construct validity 60

3.8.2 Threats to internal validity 61

3.8.3 Threats to external validity – Generalization 62

3.8.4 Threats to reliability . 62

3.9 Conclusion . 63

4 an empirical study on vulnerability lifetimes 65

4.1 Introduction . 65

4.2 Motivation and research questions 66

4.3 Related work . 68

4.4 Vulnerability lifetime in version control systems 71

4.4.1 Defining a vulnerability’s lifetime 72

4.5 Dataset creation methodology . 73

4.5.1 Mapping CVEs to their VCCs (ground truth) 73

4.5.2 Included projects . 74

4.5.3 Linking CVEs to their fixing commits 74

4.6 Lifetime estimation . 77

4.6.1 Lifetime estimation in previous work 77

4.6.2 Our approach . 78

4.7 Results . 82

4.7.1 General . 82

4.7.2 Distribution . 83

4.7.3 Trends over time . 88

4.7.4 Code age . 89

4.7.5 Types . 90

4.7.6 Case study on impact of fuzzing 93

4.7.7 Summary of main findings 96

4.8 Implications and discussion . 97

4.9 Threats to validity . 101

4.9.1 Threats to construct validity 101

4.9.2 Threats to internal validity 101

4.9.3 Threats to external validity – Generalization 102

4.9.4 Threats to reliability . 102

4.10 Conclusion . 102

5 an empirical study on vulnerability reporters 105

5.1 Introduction . 105

5.2 Motivation and research questions 106

5.3 Related Work . 108

5.4 Dataset creation methodology . 109

5.4.1 Information on included projects 110

5.4.2 Data sources . 111

x

5.4.3 Data cleaning and pre-processing 112

5.5 Results . 116

5.5.1 Distribution . 116

5.5.2 Temporal characteristics . 117

5.5.3 Specialization . 120

5.5.4 Motivations . 123

5.5.5 Summary of main findings 126

5.6 Implications and discussion . 126

5.7 Threats to validity . 130

5.7.1 Threats to construct validity 131

5.7.2 Threats to internal validity 131

5.7.3 Threats to external validity – Generalization 131

5.7.4 Threats to reliability . 131

5.8 Conclusion . 132

6 conclusion 135

6.1 Summary of contributions . 135

6.2 Further discussion . 137

6.3 Future work . 138

a complete list of own publications 141

b appendix of chapter 3 145

b.1 Additional Figures . 145

b.2 Statistical test results . 146

c appendix of chapter 4 153

c.1 Vulnerability categories . 153

c.2 Trends . 153

c.3 Lifetime Distribution . 154

c.4 Project-specific details on mapping CVEs to their fixing commits 156

c.5 Additional figures . 157

c.6 Manual Analysis of Vulnerability-Contributing Commits 160

c.6.1 Introduction . 160

c.6.2 Analysis . 161

c.6.3 Discussion . 165

c.6.4 Conclusion . 166

d appendix of chapter 5 167

d.1 Summary of data sources . 167

d.2 Additional figures . 168

bibliography 171

xi

L I S T O F F I G U R E S

Figure 2.1 Example tree-like diagram of software attributes with a
focus on security quality. 16

Figure 2.2 Simplified plot of a vulnerability’s lifecycle. Continuous
line shows period of possible exploitation. Events that
trigger phase transitions are included. 19

Figure 3.1 Summary of how the hypotheses investigated in this chap-*
ter were derived from the higher level research ques-
tions. Produced following an adapted IBIS (Issue Based
Information System) notation with the designVUE tool.
The main research problem is divided into two sub-problems
and the hypotheses H1–H3 are depicted as positions/an-
swers to these sub-problems. 29

Figure 3.2 DVAF’s extendable architecture and workflow 34

Figure 3.3 The distribution of vulnerabilities per package (years 2001-
2018). Every twentieth package name appears on the x
axis for space reasons. The y axis is logarithmic. Pack-
ages with at least two vulnerabilities are taken into account. 37

Figure 3.4 A log-log plot (complementary cumulative distribution
function) of the distribution of Fig. 3.3. 37

Figure 3.5 Vulnerabilities: distribution and trends. 39

Figure 3.6 Vulnerabilities of php5, during its presence in stable re-
leases, before and after the introduction of the next ver-
sion (php7) in testing. Vulnerability rate: (a) before the
launch of the new version: ≈ 4 vuln./quarter; (b) after
the launch of the new version: ≈ 10 vuln./quarter. . . . 40

Figure 3.7 Vulnerabilities of openjdk-7, during its presence in the
stable release, before and after the introduction of the
next version (openjdk-8) in testing. Vulnerability rate: (a)
before the launch of the new version: ≈ 11.3 vuln./quarter;
(b) after the launch of the new version: ≈ 10.6 vuln./quarter.
41

Figure 3.8 Vulnerabilities that affected packages of the Wheezy De-
bian release. *From Q2/2015 to Q2/2016, both Debian 7 (Wheezy)

and 8 (Jessie) were supported by the regular security team. This was

due to the fact that current Debian practice is that when a new sta-

ble version is released, the previous one (now codenamed oldstable)

is still supported by the regular security team for another year and

then passed to the LTS team. Therefore, the amounts of the regular*

period are a higher bound, as some vulnerabilities may have affected

only the newer release. We note that in the LTS phase, only one

release is supported at a time. 42

xii

Figure 3.9 Vulnerabilities affecting at least two Debian packages. . . 43

Figure 3.10 Summary of main results of Section 3.6.2 in the form of*
arguments pro/against the investigated hypothesis. Pro-
duced following a relaxed IBIS (Issue Based Information
System) notation with the designVUE tool. 46

Figure 3.11 Vulnerabilities severity of the stable release over time. . . 46

Figure 3.12 High severity vulnerabilities of Debian Wheezy. The ir-
regular peak of Q3’17 can be largely attributed to DLA 1097-
1 which contained 86 CVEs affecting tcpdump. Dur-
ing the regular* period 2 releases were concurrently sup-
ported by the security team. 47

Figure 3.13 Vulnerability types per year of Debian stable. Labels cor-
respond to root CWE numbers (research view). 48

Figure 3.14 Main vulnerability types of Debian Wheezy, including LTS. 49

Figure 3.15 Summary of main results of Section 3.6.3 in the form of*
arguments pro/against the investigated hypothesis. . . . 51

Figure 3.16 Number of claimed bounty reports (left) and new re-
porters (right) entering the program for IBB (top row)
and the HackerOne platform overall (bottom row) over
time. 52

Figure 3.17 (5-95%) box plot of USD paid over time for programs in
the IBB (top) and all programs in HackerOne (bottom).
A further distinction is made between vulnerabilities of
any severity (left) and only high/critical (right) severity
vulnerabilities. Trend lines for the average (blue) and
median (dark red). The only significant OLS trend comes
from the top left plot concerning all the bugs reported in
the IBB: a statistically significant decrease of the average
as well as the median bounty. Detailed statistical test
results can be found in Appendix B.2. 53

Figure 3.18 Ratio of bounty amounts (left) and number of reports
(right) of IBB reporters (at least 1 IBB report at some
point in time) comparing reports in the IBB program
against reports for other programs in HackerOne over
time. 54

Figure 3.19 Summary of main results of Section 3.6.4 in the form of*
arguments pro/against the investigated hypothesis. . . . 55

Figure 4.1 Simplified plot of a vulnerability’s lifecycle. Continuous
line shows period of possible exploitation. 66

Figure 4.2 Distribution of heuristic errors in days (Excluding data-
points with no error for readability). Equally sized bins. 80

Figure 4.3 Year trend comparison of ground truth and heuristic data*
for Linux and Chromium. 82

xiii

Figure 4.4 Histograms of lifetime distribution between heuristic and
ground truth data for the same CVEs. The exponential
fit to the histograms and the corresponding Q-Q plots
are also provided. 83

Figure 4.5 Distribution of vulnerability lifetimes. 200 equally sized
bins. 84

Figure 4.6 Q-Q Plot comparing the theoretical exponential distribu-
tion and our data (blue points). The fit is excellent up
to a lifetime of around 4 200 days and then gradually di-
verges. We can say it remains a good fit up to a lifetime
of around 5 000 days. 85

Figure 4.7 Lifetime distribution per project with theoretical expo-*
nential fit (100 equally-sized bins except for the plot for
Wireshark which has 50 so as not to have a significant
number of empty bins). 86

Figure 4.8 Average Lifetime trend (computed with our weighted
average approach) for all CVEs, as well as for Firefox,
Chromium and Linux, in isolation. A lower bound com-
puted similarly to Li and Paxson’s approach is included
for completeness. Vertical error bars show confidence
intervals for each year and “translucent bands around
the regression line” give a confidence interval for the re-
gression estimate. All at a 95% significance level and as
computed by the seaborn python library via bootstrapping. 87

Figure 4.9 Comparison of the evolution of the distribution of Chromium*
and Linux lifetimes over time. 89

Figure 4.10 Distribution fit of lifetimes by year of fix 90

Figure 4.11 Age of vulnerable code vs. all code, along with linear
fits, for Firefox, Chromium, Linux (kernel) and Httpd.
For Httpd, vulnerability lifetimes are calculated in 4 or
5-year intervals to guarantee confidence in the estimation. 91

Figure 4.12 Comparison of lifetime trend in memory related vulner-
abilities vs others. 95

Figure 5.1 Distribution of reports per reporter in linear and double
logarithmic scales (x axis: reporters ordered by number
of reports). 116

Figure 5.2 From top to bottom (all per year): # of CVEs, # of re-
porters, ratio of reports per reporter (# of reports divided
by # of reporters), # of new reporters. Note that the drop
for 2020 observed in all plots is due to the time of data
collection being in early 2021 (information for some 2020

vulnerabilities may not have been published at that point).118

xiv

Figure 5.3 Period/duration of engagement for the top 10 and top*
20 (human) reporters (time in years between their first
and more recent report until now – increased by one),
for each project ([5,95] whiskers). Letters in the x axis
are the initials of the corresponding projects (Mozilla,
Linux, Apache, PHP). The 95% confidence intervals for
the median, calculated via bootstrapping (10 000 times),
are marked with notches. 120

Figure 5.4 Number of different CWEs and categories (cats) for each*
reporter. Third column: for each reporter, what por-
tion of their reports falls into the CWE/category with
the most reports (dominant). 121

Figure 5.5 Affiliations associated to CVEs. Internal is for reporters
affiliated to the organization behind the project, Other
is for reporters affiliated to other organizations, and Un-
known is for CVEs which could not be associated to an
affiliation. We mark with $ the subsets of the two latter
categories that were awarded bug bounties. 124

Figure B.1 Laplace trend tests with 95% significance thresholds (dashed
lines). 145

Figure B.2 Bounty amounts in thousands of USD (left) and number
of reports (right) of IBB reporters (at least 1 IBB report
at some point in time) comparing reports in the IBB pro-
gram against reports for other programs in HackerOne
over time. 145

Figure B.3 The distribution of vulnerabilities in the Debian ecosys-
tem (years 2001-2017), along with the size of the corre-
sponding packages. The scale of axis x is logarithmic.
All packages are taken into account. Every tenth pack-
age name appears on the y axis for space reasons. 146

Figure C.1 Regular code and vulnerability age for PHP. Vulnerable
code seems to be older than regular code for this project. 158

Figure C.2 Regular code and vulnerability age for qemu 158

Figure C.3 Regular code and vulnerability age for ffmpeg 158

Figure C.4 Regular code and vulnerability age for wireshark 159

Figure C.5 Regular code and vulnerability age for openssl. The
refactoring process that took place after the Heartbleed
bug is evident. A shortage of data points does not allow
us to investigate its effect in detail. 159

Figure C.6 Regular code and vulnerability age for postgres 159

Figure D.1 Summary of collected data points and their connections.
K stands for the primary (unique) key of the collection. . 167

Figure D.2 Heavy-tailed distribution fits (complementary cumula-
tive distribution function). 168

xv

Figure D.3 For the top 20 (human) reporters for each project: time
in years between (a) their first and more recent report
until now (last), increased by one to measure period of
engagement, (b) their first report and their first peak
year, and (c) their first peak year and their last report
until now ([5,95] whiskers). Letters in the x axis are
the initials of the corresponding projects (Mozilla, Linux,
Apache, PHP). 95% confidence intervals for the median,
calculated via bootstrapping (10 000 times), are shown as
notches. 169

L I S T O F TA B L E S

Table 3.1 The top twenty packages with the most vulnerabilities
(counted by CVEs) in time periods (i) 2001-2018 and (ii)
2017-2018. 36

Table 3.2 Most common sets of packages jointly affected by vul-
nerabilities. 43

Table 3.3 Vulnerability type classification per root CWE number
with most dominant examples in our dataset. 48

Table 3.4 IBB dataset summary snapshot on November 2018. . . . 51

Table 4.1 Overview of selected related work measuring the dura-*
tion of different phases (also sub-phases and combina-
tion of phases) of the vulnerability lifecycle. 69

Table 4.2 Number of CVEs and mappings per project. First col-
umn gives the total number of CVEs returned from a
search of the NVD. Second column gives the number of
those CVEs for which at least one fixing commit was
found in the project repository. Third column gives the
total number of fixing commits found per project. 76

Table 4.3 Comparison of heuristic performance between the lower-
bound approach of Li&Paxson, “our approach 1” based
on a repurposed version of the VCCFinder heuristic [88],
and “our approach 2” – our optimized heuristic (weighted
average). All against ground truth data and measured in
days (ME: Mean Error). The last column provides the
mean lifetime computed on the ground truth data. . . . 78

Table 4.4 Overview of average lifetimes per project (ordered by
number of CVEs) . 84

Table 4.5 Vulnerability categories and their mean and median life-
times (in days) for all CVEs 92

Table 4.6 Vulnerability categories of Chromium, mean and median
lifetimes in days . 93

xvi

Table 4.7 Vulnerability categories for Firefox, mean and median
lifetime in days . 93

Table 4.8 Vulnerability categories for Linux, mean and median life-
time in days . 94

Table 5.1 Breakdown of information sources. PA stands for project-
specific advisories, DSA for Debian Security Advisories,
USN for Ubuntu Security Notices, RH for the Red Hat
Linux BTS, sf for Symantec’s securityfocus.com, BTS for
the project’s bug tracking system, and h1 for HackerOne.
The last column is the total unique CVEs that we could
obtain any information for (union of all sources). 113

Table 5.2 Breakdown of reporter coverage 115

Table 5.3 Deviations from expected categories. From left to right:
reporters with 20 or more reports; out of them, reporters
with a deviation w.r.t. categories; out of the latter, re-
porters with a specific focus category. Note that the val-
ues in the second column are a subset of the values of
the first, and the values in the third column are a subset
of the values in the second. 122

Table 5.4 Reports with bounties per project. Includes a low esti-
mate of confirmed bounties given and a high estimate of
reports by a reporter who has received a bounty at least
once. 123

Table 5.5 Percentage of vulnerability reporters (excl. reporters marked
as ‘teams’ or ‘organizations’) with non-cve bug reports
and median of such bugs per reporter. 125

Table 5.6 Differences between bugs by vulnerability reporters (reps)
and others (rest) as a percentage of the total for each
class. All statistically significant (p < 0.05 for the Chi-
squared test). Severe are bugs with critical, major or high
severity (except for PHP for which no severity field ex-
ists). Resolved are bugs marked fixed in bug reports (ex-
cept for PHP for which no such field exists, and therefore
we considered bugs with associated fixing commits). . . 125

Table 5.7 Summary of notable parameters identified in this chap-*
ter. The section where the relevant results are presented
is given in brackets. 133

Table B.1 OLS for reliability trends 146

Table B.2 OLS for bug bounty trends (Fig. 3.17) 148

Table C.1 OLS Regression Results: FFmpeg 154

Table C.2 OLS Regression Results: Httpd 154

Table C.3 OLS Regression Results: Chromium 154

Table C.4 OLS Regression Results: Firefox 154

Table C.5 OLS Regression Results: Linux 154

Table C.6 OLS Regression Results: Wireshark 154

Table C.7 OLS Regression Results: Qemu 154

xvii

Table C.8 Comparison of distribution fits with exponential. Pos-
itive R-values mean that the exponential is a better fit.
All comparisons are at a significance level of at least 99%
(p 6 0.01). 155

Table C.9 Numerical comparison of empirical and theoretical CDF.
Values are chosen as the quantiles of the empirical data.
The empirical distribution does not deviate more than
2.5 percentage points from the theoretical one. 156

A C R O N Y M S

BTS Bug Tracking System

(C)CDF (Complementary) Cummulative Distribution Function

CPE Common Platform Enumeration

CVE Common Vulnerabilities and Exposures (identifier)

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DLA Debian Long-term support security Advisory

DSA Debian Security Advisory

F(L)OSS Free(/Libre) and Open Source Software

IBB Internet Bug Bounty (Program)

IBIS Issue Based Information System

LTS Long Term Support

NVD National Vulnerability Database

OLS Ordinary Least Squares

VCC Vulnerability Contributing Commit

VDM Vulnerability Discovery Model

xviii

1
I N T R O D U C T I O N

1.1 software security, measurement, and the science of secu-
rity

Software is nowadays ubiquitous, transcending the boundaries of traditional
computing and affecting multiple aspects of everyday life. Securing software
systems against malicious actors has thus become a necessity. A common av-
enue for malicious actors to compromise a system is to find a flaw in its design
or implementation that would allow them to make it perform unwanted actions.
Such flaws are known as software security bugs or software vulnerabilities1. In-
deed, a large portion of the work by the computer security community focuses
on making software more secure by, e.g. proposing development processes that
reduce the probability that vulnerabilities occur in the code, creating tools to
detect and fix them, and designing hardware features to mitigate the damage
induced by vulnerabilities should they slip through the process. That being
said, a large number of vulnerabilities in popular software projects, affecting
millions or even billions of users, are discovered and disclosed every day [29].

This thesis investigates the simple, yet elusive (as we explain later) question:
How can we measure how secure a given piece of software is? Although there exist
several useful notions of software security, e.g. speed of patching or operating
system security controls, the notion of security that concerns this dissertation
is the difficulty of finding new vulnerabilities in a given piece of software. We
refer to this notion of security as the “quality of security” of the software.

1.1.1 Motivation (Why to measure security?)

After almost two decades of intense research in software security, we still do
not have good means to measure the security quality of software2. Such metrics
would help improve security in many ways:

• First, as a direct consequence, such security metrics could be used to guide
decisions on software selection, making security an observable variable in
decision-making (see e.g. the recent proposal for “Security Update Labels” [72]).

• Second, and related to the first point, transparent security metrics could
transform the market in a way that security rather than being a constant
source of annoyance for software vendors, would now be a marketable (and

1 A vulnerability is a more general term than a software security bug since it can include other
flaws, e.g. in the processes or people operating software systems. Nevertheless, since in this dis-
sertation we focus on software, when we refer to vulnerability we imply software vulnerability.

2 Refer to Section 2.1.1 for terminology regarding (software) metrics and measurement, as well as
information on how our contributions can be expressed with measurement theory notions.

1

introduction

therefore potentially profitable) feature of the software. Overall, this could
lead to significantly more security investment and as a result more secure
software.

• Third, insights gained from such measurements could provide feedback on
the effectiveness of employed tools and processes, and pinpoint weak points
that the community needs to focus on. It is difficult to improve what you
cannot measure, and thus better software security metrics would help us
better choose the most effective tools and processes to apply in each case.

• Fourth, large-scale measurements could shed light on generally recurring
patterns, and thus help us build theories on different aspects of the process.

The final point above, although more subtle, is of significant importance. Al-
though finding vulnerabilities is, to a large extent, based on ad-hoc efforts, at-
taining a deeper understanding of the most influential factors of the process
would help the community’s strategic planning. This kind of understanding,
as a goal, relates to the recently debated need for “more scientific” approaches
in the security community [43]. Although “physics-grade” laws for security
are unlikely to ever emerge, scientific theories, i.e. observation-driven – yet
refutable statements, regarding software security, are possible. For example,
theories like in widely used software projects, each security tester will find on aver-
age one new vulnerability per year, or memory bugs are, on average, harder to find
than other kind of bugs, would, at the same time provide actionable information
regarding long-term planning and shed light on the deeper mechanics of the
process (assuming that such theories existed). Like in physics, these statements
are scientific in the sense that they are refutable/updateable by new experi-
ments. Also, unlike in physics, such theories can only hope to hold on average,
may be temporal, and may leave room for exceptions.

1.1.2 Why measuring the security of software is hard

In their 2010 article titled “Why measuring security is hard” [90], Pfleeger and
Cunningham pinpoint 9 reasons why information security is in general hard
to measure. Among them are: the difficulty to test all security requirements,
evolving systems, and the possible inter-dependencies between systems, adver-
saries and metrics. Such concerns are also reflected in the article on the scientific
nature of security by Herley and van Oorschot [43], which was mentioned in
the previous paragraph. It is clear that a universal measure (either quantitative
or qualitative) of security for a real-world system is presently impossible, and
seemingly improbable in the future.

Even when significantly limiting the object of the measurement to a piece
of code, measurement does not become much easier. Although many “regu-
lar” non-security bugs can come up during the normal operation of a system
– and therefore we can analyze their rate of occurrence borrowing tools from
reliability theory—security bugs are often different. Instead of a deficiency in
functionality, vulnerabilities can be additional unintended features that do not

2

1.1 software security, measurement, and the science of security

come up during the normal operation of the system, and are potentially ex-
ploitable by an adversary. Pfleeger put it nicely [89]:

Whereas most requirements say “the system will do this,” security
requirements add the phrase “and nothing more”.

This “nothing more” postscript means that testing for security properties
would mean trying out all possible inputs to a system or an application. This is
understandably difficult, yet approaches collectively known as formal verifica-
tion can guarantee that a program satisfies a formal specification of its behavior.
However, such approaches generally require a large amount of computational—
as well as manual—effort, and are therefore not at this time applicable to most
programs. Furthermore, they are not impervious to specification errors, and
changes in the functionality of programs might require fresh verification efforts.
Formal verification is thus targeted to small critical components. For example,
the seL4 [50] microkernel—the first fully formally verified operating system
kernel (functional correctness property verified starting from an abstract specifi-
cation down to the C code) – consists of around 10 000 lines of code. In com-
parison, the Linux kernel weighted around 200 000 lines of code in 1994, and
over 27 million at the start of 2020

3. That being said, although proving full func-
tional correctness is only possible for small components, formal tools can also
be used to prove simple attributes of larger codebases, e.g. check for properties
like “all array accesses are in bounds” [48], finding bugs in the process.

Since most programs are not formally verified, they contain vulnerabilities,
which are gradually discovered and—in the case of many open source projects—
publicly disclosed. An attractive approach towards measuring the security of
a program would be to just count these faults: the more vulnerabilities discov-
ered for a program, the less secure it is. However, such an approach would
not provide much information regarding the security of a program, and may
even lead to outright wrong conclusions, especially when used to compare the
quality of different programs. Brian Krebs expresses the last point with a fitting
metaphor [54]:

It’s a bit like trying [to] gauge the relative quality of different Swiss
cheese brands by comparing the number of holes in each: The re-
sult offers almost no insight into the quality and integrity of the
overall product, and in all likelihood leads to erroneous and—even
humorous—conclusions.

A simple way to communicate the fallacies of such an approach is to consider
that a home-brewed cryptographic library is unlikely to have any public vulner-
ability reports—yet it probably is not more secure than its widely used coun-
terparts. People are just not actively trying to find vulnerabilities affecting it.

The above show us that although we can measure a lot of things, it is im-
portant to select what to measure, carefully. For example, Krebs [54] proposed
measuring how many of the vulnerabilities were internally or externally dis-
covered, the amount of time it took for vendors to author patches for known

3 https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019

3

https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019

introduction

vulnerabilities in their products, or the amount of time public exploits existed
for such vulnerabilities. Pfleeger and Cunningham [90] are in the same spirit,
saying that absolute metrics supporting statements like “Program X is more se-
cure than Y” may be doomed to be flawed, however sets of metrics that support
arguments like “the security of X is improving over time” are achievable and
useful. In conclusion, as my advisor Max Mühlhäuser put it:

Measurement is good if and only if we measure the right things.

Therefore choosing what to measure and what information the measurement
conveys is a primary challenge in the area. The art of the contributions pre-
sented in this dissertation largely concerns this challenge.

1.2 state of the art

In this section, we provide a high-level overview of the prior work on software
security metrics and measurement studies, in order to highlight gaps in the
state of the art. We focus on work on empirical metrics aiming at assessing as-
pects of the security quality of software, which is most relevant to our work.
We provide a more detailed analysis and juxtaposition of the prior work most
closely related to the research contributions of each chapter in the “Related
work” section of the respective chapter4. More general overviews of security
metrics (incl. cryptographic strength metrics, system and network security, eco-
nomic operational security metrics and market metrics) can be found in the De-
pendability Metrics book by Eusgeld et al. [32], Verendel’s critical survey [108]
and Pendleton et al.’s survey on system security metrics [86].

1.2.1 Common Criteria

The Common Criteria for Information Technology Security Evaluation5 is a frame-
work for computer security certification rather than measurement. On a high
level, the Common Criteria provide a detailed framework for evaluating whether
or not the processes of specification, implementation and evaluation of a prod-
uct (commonly referred to as the Target of Evaluation) conform to a set of
security requirements (commonly referred to as a Protection Profile). The Com-
mon Criteria therefore provide guidelines on what processes may be required
(following common sense and “best practices”) to achieve a perceived level of
security rather than trying to empirically assess the achieved level of security
and software quality in the real world.

4 Although vulnerabilities are just a subset of the general class of software defects (bugs), they
have been shown to differ in significant ways to other kinds of bugs, mainly regarding their
discovery [40] and patching process [58] (it was shown that patches fixing security bugs were
significantly different than the rest of the patches), as well as regarding the incentives to find
them. Therefore, in this section and for the rest of this dissertation, we focus our related work
analysis on works about security issues.

5 https://www.commoncriteriaportal.org/cc/ (ISO/IEC 15408)

4

https://www.commoncriteriaportal.org/cc/

1.2 state of the art

1.2.2 Vulnerability discovery models and the question of depletion

There have been several works measuring, modeling and analyzing different
characteristics of vulnerability discoveries.

A recurring debate is whether or not there is significant reduction in the vul-
nerability discovery rate during the lifetime of software releases. At the start of
the 2000’s Rescorla [93, 94] performed an empirical study on vulnerabilities in
several popular software projects and observed no significant decreasing trend
in the vulnerability discovery rate. He concluded that since vulnerabilities ap-
pear infinite when considering the lifetime of a release, vulnerability discovery
and public disclosure actually increase the risk of exploitation and are not so-
cially beneficial. The line of work of Ozment [81, 84, 85] came to oppose this
statement. In this line of work it was shown that the probability of independent
rediscovery of the same vulnerability is not negligible (as Rescorla’s model
would imply) and therefore finding and patching vulnerabilities is socially ben-
eficial. Ozment and Schechter [84] also showed that there is a decreasing rate
in the foundational (present since the first release) vulnerabilities in OpenBSD
signaling some improvement in the security of the software.

Apart from the above, there is a long line of work by the Colorado State
University [5, 6, 45, 46, 49, 118] on S-shaped Vulnerability Discovery Models
(VDMs) that model the number of vulnerability discovery events as a function
of time after the release of a software version (some models also use addi-
tional information regarding the installed user base over time). Ozment [82, 83]
also worked on VDMs, pointing out some limitations of existing models (esp.
w.r.t. the dependence between vulnerability discoveries), while Brady et al. [19]
introduced a thermodynamics-based VDM6 that Anderson later employed to
show that the security of open and closed source software is theoretically the
same [12]. Generally, although several VDMs have been shown to fit empirical
data, Massacci and Nguyen [65, 78] showed that none of the considered mod-
els (including all of the ones discussed above) are universally better and even
the simple model of a constant rate of discovery can be considered the best fit
during the first year after a program’s release. Ozment had already noted [81,
83] that although models showing depletion can be considered to be a good
fit in many cases, models that do not show depletion can also fit the data, and
external factors like variations in the effort invested in the vulnerability finding
process may be dominating. Overall, the value of sophisticated VDMs has not
been clearly showcased and there is no clear answer to the question of whether
or not there is vulnerability depletion during the lifetime of a software version.

1.2.3 Measuring other attributes

Measuring characteristics of the vulnerability discovery process has bounded
potential in measuring notions of software security due to a number of exter-
nal factors affecting the number of discoveries (e.g. effort as mentioned above).

6 Also known as the BAB Vulnerability Discovery Model (Brady-Anderson-Ball).

5

introduction

Therefore, there exist several studies measuring different aspects of the vulner-
ability lifecycle. An overview follows.

Speed and quality of patching. Frei [37] and Shahzad [103] performed large
scale studies focusing on the timeliness of vulnerability patching in relation
to: (a) public disclosure and (b) an exploit being made available. Li and Pax-
son [58] also looked at similar metrics in addition to quality indicators of ap-
plied patches. Overall, the speed and quality of patching can be a measurable
indicator of security. Li and Paxson [58] also observed that vulnerabilities live
in the code (time between introduction of vulnerability and patch) for long
periods of time (more than 3 years based on a lower-bound heuristic estimate).
Earlier, Rescorla [94] had roughly estimated (based on available data on affected
versions that are known to often contain errors [77, 79]) a median lifetime of 2.5
years for vulnerabilities in the ICAT database (prior format of the NVD) prior
to 2003

7, while Ozment [85] had measured a similar median lifetime of a small
number of manually analyzed OpenBSD vulnerabilities and commented that
such a large lifetime was unexpected given that the code had been reviewed
multiple times.

Exploitation risk. The line of work of Dumitras et al. [15, 74, 75, 97] measured
indicators of quality in relation to real world attacks captured in the WINE
dataset. They measured the relevance of zero day attacks and the amount of
time before a vulnerability exploited in a zero day attack is patched. They also
measured the speed of patch application in real world systems and how this
affects the security of the systems against exploits used in the wild. Such studies
provide practical indicators of risk. In another related strand of work, Allodi [8,
9] studied vulnerability and exploit marketplaces and showed a correlation
between market activity and real-world exploitation.

Bug bounty programs. There exists a considerable amount of work studying
the characteristics of bug bounty platforms [36, 42, 62, 73, 119] Their aim is to
measure and propose ways to improve the effectiveness of such platforms. Bug
bounty prices offered for a project could be an indicator of quality (reflecting
the difficulty of discovering a vulnerability).

The human factor. Although the human factor (esp. vulnerability reporters) has
been known to be an influential factor in the vulnerability discovery process,
there exists only little work on this issue. Fang and Hafiz [33, 40] performed
questionnaire studies to shed light on vulnerability reporters focusing on the
practices and tools they follow to search for vulnerabilities and their disclosure
processes. No study has yet attempted to capture the effort or scrutiny invested
in the vulnerability discovery process.

Code-level metrics. AVA [109] was an adaptive vulnerability analysis approach
introduced in the 1990’s and adapted from a software failure-tolerance ap-
proach (EPA). This approach, which is based on fault injection (injecting vul-
nerabilities in the code and simulating attacks), can be used to identify regions
of the code that may be more vulnerable to an attack of a certain kind and

7 This part of Rescorla’s analysis is only available in the original workshop paper that I was able
to find online at https://infosecon.net/workshop/downloads/2004/pdf/rescorla.pdf.

6

https://infosecon.net/workshop/downloads/2004/pdf/rescorla.pdf

1.3 research goals

can also assess the fault tolerance of software against security threats. Manad-
hata and Wing [63, 64] introduced an attack surface metric, aiming to measure
the ‘attackability’ of a system. Their attack surface definition and associated
algorithm try to capture the amount or ratio of code-level entities reachable by
an adversary (from outside the system). Finally, Edwards and Chen [31] per-
formed an empirical study on the relation of the output of a static analysis tool
and the discovered exploitable bugs for a number of software projects. They
found that the change in the density of issues generated by the source code
analyzer can be used to predict the change in the number of exploitable bugs
affecting new versions of the same software but cannot be confidently used to
compare different software.

1.2.4 Summary

It is apparent from the wealth of related work in the area that measuring vari-
ous aspects of software security is an important pursuit of the research commu-
nity. However, security metrics and measurement methods are still at an early
stage of maturity, compared e.g. to their software reliability counterparts. We
are still some way off from having useful ways to measure the security of soft-
ware. Our work comes to contribute towards achieving this goal by addressing
three gaps in the state of the art as detailed in Section 1.3.

1.3 research goals

The goal of this dissertation is to to explore new paths towards (classes of) metrics
and measurement methods (i.e. how to empirically measure these metrics) in order to
better measure software security. Based on gaps identified in the state of the art
(see Section 1.2), we focus our efforts towards three yet understudied aspects of
the vulnerability discovery process that are nevertheless promising to deliver
insightful results: maturity in stable releases, lifetimes, and effort. We formulate
our goals as three high-level research questions8:

1 Maturity: Is the security of software improving over time? When consid-
ering stable releases of software, i.e. releases where only critical patches are
applied, one would expect that their vulnerability discovery rate would de-
crease over time, as the number of vulnerabilities in the code dwindles (as
Ozment’s observations [82, 83] would suggest). However, no large-scale mea-
surement study investigating this expectation has ever been performed, to the
best of our knowledge. Observing patterns of maturing behavior, i.e. gradual
decrease of the discovery rate, would indicate that quantitative metrics (e.g.
speed of decrease) could be employed to measure the level of maturity of a
software release. On the other hand, if no maturity is observable (as Rescorla
observed in his work [94]), this would mean that such quantitative metrics are
not applicable (at least for the categories of software where this phenomenon

8 Each of the research questions is implicitly followed by the question: And what can this tell us
about the security of a project?

7

introduction

is observed). Apart from implications in software security measurement, an-
swering this question can have implications regarding the social utility of
finding and patching vulnerabilities and on decision-making regarding se-
curity investment (balance of investment between bug-finding and secure
development).

2 Lifetimes: How long do vulnerabilities live in the code? Prior work [58, 85],
as well as reports in online articles [25, 26] suggest that vulnerabilities remain
in the code for large amounts of time before they are discovered and patched.
However, no large-scale empirical study measuring vulnerability lifetimes—
going beyond rough estimates—exists, to the best of our knowledge. A rea-
son for this knowledge gap is that assessing when a vulnerability was first
introduced in the code of a large project is especially challenging. Measur-
ing vulnerability lifetimes, how they vary between projects and over time,
how they relate to code quality, and investigating what underlying reasons
affect them, would provide valuable insights that could be used to assess the
quality of security of a project.

3 Effort: How can we measure human effort in the vulnerability discovery
process? As we stated above, human effort has been identified as a primary
factor affecting the vulnerability discovery rate. However, quantities used to
indirectly estimate it, like the number of users of a program, are ad-hoc and
not clearly connected to the problem at hand (regular users rarely stumble
upon security issues). Finding ways to estimate the amount of effort invested
in the vulnerability-finding process, and more generally, ways to assess the
health of a project’s vulnerability-finding ecosystem, would provide valuable
indications towards assessing the quality of security of a project.

We approach each of the three research questions above by conducting large-
scale empirical studies. A summary of our methodology and contributions fol-
lows.

1.4 summary of approaches and contributions

In this section, we first go over the general methodology employed for all three
of our empirical investigations. Then, we provide a summary of how we ap-
plied the methodology in each case.

1.4.1 General methodology

In investigating each of the three research questions of Section 1.3, we follow a
consistent general methodology:

I. We narrow and specify the scope of the investigation by mapping the
higher level research question to a set of specific and direct lower-level
research questions.

II. We describe our data source choice and our data collection and cleaning
methodology, emphasizing on our objectives of (a) limiting noise and bias

8

1.4 summary of approaches and contributions

in the analysis and (b) providing open reusable tools and datasets that can
be used to reproduce our results and for further research. Regarding the
latter, a green box at the introduction of Chapters 3–5 contains informa-
tion on where to find the code and/or datasets used.

III. When applicable (in the case of vulnerability lifetimes), we provide our
approach to extract the quantity of our interest from the collected data.

IV. We investigate the research questions set in the first step of the process
(following a data-driven approach).

V. We discuss the implications of the results and the insights attained from
the investigation, as well as the threats to the validity of the study.

We proceed to summarize our approach for investigating each of the three main
research questions.

1.4.2 Maturity

Is the vulnerability rate in popular FLOSS projects decreasing? Is there a decrease in
severe vulnerabilities? Does vulnerability type affect the trend? Are bug bounties for
FLOSS vulnerabilities increasing?

To investigate such questions, we performed a large-scale study on all software
distributed under Debian GNU/Linux. We chose the Debian distribution of
the GNU/Linux operating system mainly due to its conservative release cycle,
which aims at maximum production-level stability and security for its stable
release. We collected a dataset of more than 10 000 vulnerabilities affecting De-
bian stable releases. To the best of our knowledge, this is the first investigation
into the problem that studied a complete distribution of software, spanning
multiple versions.

1.4.3 Lifetimes

How long do vulnerabilities remain in the code? Are there differences between project-
s/types of vulnerabilities? How long does it take to find 25/50/75 percent of ultimately
discovered vulnerabilities? Are lifetimes increasing or decreasing over time? Are there
signs of improved quality?

To investigate such questions, we provided an automatic approach for accu-
rately estimating how long vulnerabilities remain in the code (their lifetimes).
Our method relies on the observation that while it is difficult to pinpoint the
exact point of introduction for one vulnerability, it is possible to accurately
estimate the average lifetime of a large enough sample of vulnerabilities, via
a heuristic approach. With our approach, we performed the first large-scale
measurement of FLOSS vulnerability lifetimes, going beyond the lower bounds
prevalent in previous research.

9

introduction

1.4.4 Effort

Is dedicated resource allocation or community engagement the primary factor behind
vulnerability discoveries? What are the driving factors behind reporting? Are reporters
specialized?

To investigate such questions, we performed what is, to the best of our knowl-
edge, the first large-scale empirical study on the people and organizations who
report vulnerabilities in popular open source projects. Collecting data from a
multitude of publicly available sources (NVD, bug-tracking platforms, vendor
advisories, source code repositories), we created a dataset of reporter informa-
tion for 2 187 unique reporters of 4 677 CVEs affecting the Mozilla suite, Apache
httpd, the PHP interpreter, and the Linux kernel.

1.5 applicability of the developed methods

Although our investigation for each of the research questions is bounded to a
subset of open source projects, our methods can in general be applied to any
open source projects with publicly available code repositories and bug informa-
tion. However, one has to keep in mind that since our main analysis tools are
statistical, enough data points should be available for analysis to be meaningful.
The methods can also be applied by vendors of proprietary software.

1.6 outline

The outline of this dissertation is as follows:

• Chapter 1 (current) introduces the motivation and goals of the research per-
formed in this dissertation.

• Chapter 2 covers useful background information.

• Chapter 3 presents a large scale empirical study addressing the first research
question of Section 1.3: Are stable software releases maturing over time?

• Chapter 4 presents a large scale empirical study addressing the second re-
search question of Section 1.3: How long do vulnerabilities live in the code?

• Chapter 5 presents a large scale empirical study addressing the third research
question of Section 1.3: How can we measure human effort in the vulnerability
discovery process?

• Chapter 6 covers the conclusions and outlook of this dissertation.

• Appendices A–D include a complete list of own publications, in addition to
supplementary material for each of the three contribution chapters.

10

1.7 peer-reviewed papers , collaborations and statement over own contributions

1.7 peer-reviewed papers , collaborations and statement over

own contributions

The main content of this dissertation has been published – or is accepted and
in the process of being published – at peer-reviewed conferences and journals.
Specifically, each of the three main research questions of this dissertation is
investigated in a research paper. In the following, I provide more information
on those research papers, as well as the collaborations that contributed to the
results of this dissertation, also pinpointing my own contributions in relation
to contributions by co-authors.

Maturity. The main contributions regarding this research question are pre-
sented in:

Nikolaos Alexopoulos, Sheikh Mahbub Habib, Steffen Schulz, and Max Mühlhäuser. 2020. The
Tip of the Iceberg: On the Merits of Finding Security Bugs. ACM Trans. Priv. Secur. 24, 1,
Article 3 (ACM TOPS).

I was the main contributor of the research and text of this paper. Sheikh
Mahbub Habib, Steffen Schulz and Max Mühlhäuser contributed with helpful
discussions and insights regarding the main aspects of the work, including
comments on earlier versions of the paper.

An early preliminary version of the paper was published as a technical re-
port9. Some preliminary related ideas were published as the following poster
at CCS 2019:

Nikolaos Alexopoulos, Rolf Egert, Tim Grube, and Max Mühlhäuser. 2019. Poster: Towards Au-
tomated Quantitative Analysis and Forecasting of Vulnerability Discoveries in Debian GNU/Linux.
2019 ACM SIGSAC Conference on Computer and Communications Security (CCS 2019).

Lifetimes. The main contributions regarding this research question are pre-
sented in:

Nikolaos Alexopoulos, Manuel Brack, Jan Philipp Wagner, Tim Grube, Max Mühlhäuser. How
long do vulnerabilities live in the code? A large-scale empirical measurement study on FOSS
vulnerability lifetimes. 31st USENIX Security Symposium (USENIX Sec. ’22) (to appear).

For this paper, I was the primary contributor of the research planning and
specification of the research questions, placement of the work with respect to
the state of the art, identification of the impact and implications of the work,
as well as the text of the paper. Manuel Brack and Jan Philipp Wagner con-
tributed in the context of their respective bachelor’s theses, which I supervised.
Decisions regarding data collection and analysis, design choices regarding the
employed heuristic, as well as the interpretation of the results, were the product
of a collaborative effort of myself, Manuel and Jan, which I led. Manuel Brack
contributed the scripts for data collection and statistical analysis of the research

9 https://arxiv.org/abs/1801.05764

11

https://arxiv.org/abs/1801.05764

introduction

questions. Jan Philipp Wagner contributed the implementation of the heuris-
tic for assessing vulnerability lifetimes, as well as the scripts for assessing its
performance. Tim Grube and Max Mühlhäuser contributed with helpful discus-
sions and insights regarding the main aspects of the work, including comments
on earlier versions of the paper.

Effort. The main contributions regarding this research question are presented
in:

Nikolaos Alexopoulos, Andrew Meneely, Dorian-Benedikt Arnouts, Max Mühlhäuser. Who are
Vulnerability Reporters? A Large-scale Empirical Study on FLOSS.15th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM ’21).

I was the main contributor of the research and text of this paper. Andrew Me-
neely and Max Mühlhäuser contributed with helpful discussions and insights
regarding the main aspects of the work, including comments on earlier ver-
sions of the paper. Dorian-Benedikt Arnouts contributed with the restructuring
of the scripts for data collection and analysis, as well as the investigation of re-
search questions regarding differences between non-security bugs reported by
vulnerability reporters. His contributions were made during his employment
as a student research assistant under my supervision.

The content of the chapters of this dissertation addressing the respective re-
search questions, are modified and extended versions of the contributions pre-
sented in the aforementioned research papers. Specifically, differences in the
text consist of improvements in the statement of the results, additional results
and discussion, as well as changes ensuring the cohesive flow of arguments
throughout this dissertation. Considering the fact that I was the main contribu-
tor of the text in all aforementioned papers, the majority of text in Chapters 3–5

is transferred, most often with minor edits and suitable restructuring, directly
from the published papers10. New content (extending or replacing content from*
the published versions of the papers) is marked with an asterisk on the left bor-
der at the start of each new paragraph or at the point in a paragraph where new
content begins (see asterisk on the left border of this paragraph). New figures
and tables are also marked the same way next to their caption and in the table
of contents.

During my time as a doctoral researcher, I also published a number of other
related papers, the content of which is not included here in order to keep
this dissertation more focused. A complete publication list is provided in Ap-
pendix A.

1.8 notes on style

In this chapter, I used the personal pronoun “I” to express personal statements
and the personal pronoun “we” to refer to the research contributions result-
ing from collaborative efforts as indicated in the previous section. For the rest

10 with the exception of the first sections of each chapter (Sections 3.1, 4.1, 5.1)

12

1.8 notes on style

of this dissertation, I will only use the personal pronoun “we” to refer to all
contributions.

Regarding digit separators, we use a small space to separate thousands (e.g.
9 999) and a dot (in some cases a comma) as a decimal separator.

13

14

2
T E R M I N O L O G Y A N D B A C K G R O U N D

This chapter introduces necessary terminology and useful background informa-
tion.

2.1 terminology

In this section we go over necessary terminology used throughout this doc-
ument. First, we provide a brief overview of terms associated with software
metrics and measurement and how they are used in this document. Then, we
go over common terms associated with software vulnerabilities. Readers famil-
iar with vulnerability management practices can skip the second part of this
section.

2.1.1 Terminology on software metrics

In their seminal textbook on software metrics [35], Fenton and Bieman define
measurement as follows:

Measurement is the process by which numbers or symbols are as-
signed to attributes of entities in the real world in such a way so as
to describe them according to clearly defined rules.

They move on to define an entity as “an object (such as a person or a room)
or an event (such as a journey or the testing phase of a software project) in
the real world” and attribute as: “a feature or property of an entity”. Further,
they define a measure as: “a number or symbol assigned to an entity by this
mapping in order to characterize an attribute [of an entity]”. They use the term
metric both as a synonym for measure and also more generally to describe all
activities related to measuring attributes of software as in “software metrics”.

Interestingly, there is no wide consensus regarding these terms. For exam-
ple, NIST states1: “we use measure for more concrete or objective attributes
and metric for more abstract, higher-level, or somewhat subjective attributes”2.
However, for the rest of this document, we try to adhere to the definitions of
Fenton and Bieman as much as possible.

In this dissertation we want to measure aspects of software security. Specifi-
cally, we want to measure the attribute quality of security (or security quality) of
a software project, defined as the difficulty of finding new vulnerabilities in a
given piece of software. This is a more specific attribute (factor) of the more
general attribute “security” of a software project entity (which can in turn be

1 https://www.nist.gov/itl/ssd/software-quality-group/metrics-and-measures

2 Note that here metric/measure are used as subsets of attribute.

15

https://www.nist.gov/itl/ssd/software-quality-group/metrics-and-measures

terminology and background

thought of as a sub-attribute of dependability). However, this attribute is still
rather high level and abstract. Therefore, we need to measure other factors (re-
lated attributes) of the attribute security quality. These factors can be, e.g. the
“vulnerability discovery rate in stable release” or “the degree of contribution
of bug bounties in vulnerability reporting”. Empirical metrics/measures char-
acterizing these attributes/factors can be the “number of vulnerabilities per
year for stable releases of the software in Debian”, or “the ratio of vulnerabil-
ity reports for which a bounty was awarded”. Figure 2.1 provides an example
tree-like classification of software attributes with a focus on software quality.

Software
project

Entity

Dependability

Complexity

Size

…

Reliability

Security

Maintainability

Attributes
Level 1

Attributes
Level 2

…

Attributes Level 3
(Factors)

Security quality

Metrics

Vulns per year in
Debian stable

(slope)

Severe vulns per
year in Debian
stable (slope)

Correct use of
cryptography

Spread between
average lifetime
and code age

Ratio of reports
with bounties

(1-p)/p ratio

…

Speed of patch
development and

distribution

…

Discovery rate in
stable releases

Vulnerability age

Concentration of
reports

Degree of bug
bounty contribution

…

Attributes Level 4
(Factors)

indication

Figure 2.1: Example tree-like diagram of software attributes with a focus on security
quality.

The major challenge here is how to interpret the relations of such metrics
characterizing factors of security quality (level 4 attributes in Fig. 2.1) with the
overall attribute security quality. Since security is a complex multidimensional
process, these relations are also complex and non-linear. Therefore, the best we
can do is attain metrics (of such factors/sub-attributes of security quality) that
provide indications regarding the security quality of a software project and, over
the length of this dissertation, provide comprehensive discussions regarding

16

2.1 terminology

the relations between the measured factors and the “goal” attribute of security
quality.

2.1.2 Terminology on software vulnerabilities

Vulnerabilities and bugs. According to NIST3 “A vulnerability is a weakness
in an information system, system security procedures, internal controls, or im-
plementation that could be exploited by a threat source”. Thus vulnerabilities
include flaws in a system’s software design and implementation but also other
factors, e.g. issues having to do with hardware or with the personnel controlling
a system. However, for the rest of this document, the term vulnerability will be
used to refer to software vulnerabilities, i.e. software security bugs. A software
security bug is a flaw in a computer program, caused by erroneous, missing,
or superfluous code, that causes the program to behave in ways that could be
exploitable by a threat source.

CVE. The Common Vulnerabilities and Exposures (CVE) program is an in-
ternational community-driven effort overseen by the MITRE corporation4. Its
mission is to “to identify, define, and catalog publicly disclosed cybersecurity
vulnerabilities”5. According to MITRE’s definitions 6:

A CVE ID is a unique, alphanumeric identifier assigned by the CVE
Program. Each identifier references a specific vulnerability. A CVE
ID enables automation and multiple parties to discuss, share, and
correlate information about a specific vulnerability, knowing they
are referring to the same thing.

In the scope of this dissertation, and following common practice in related
work, when we refer to a CVE, we refer to the vulnerability with the respective
CVE ID. The assignment of CVE IDs to vulnerabilities is performed by CVE
Numbering Authoriries (CNAs). According to MITRE:

[A CNA is] An organization responsible for the regular assignment
of CVE IDs to vulnerabilities, and for creating and publishing infor-
mation about the Vulnerability in the associated CVE Record. Each
CNA has a specific Scope of responsibility for vulnerability identifi-
cation and publishing.

A CVE Record contains descriptive data about the vulnerability associated with
a CVE (ID), usually consisting of a short description of the vulnerability and
links to external sources (e.g. vendor security advisories).

CVSS. The Common Vulnerability Scoring System (CVSS) [66] is a popular
open specification for assessing the relative severity of vulnerabilities. Analysts
can assign individual scores for different contributing factors of a vulnerabil-
ity’s severity (e.g. exploitability, impact), and a formula combines these scores

3 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf

4 https://cve.mitre.org/

5 https://cve.mitre.org/about/ (04/03/2021)
6 https://cve.mitre.org/about/terminology.html (04/03/2021)

17

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
https://cve.mitre.org/
https://cve.mitre.org/about/
https://cve.mitre.org/about/terminology.html

terminology and background

into a base score for a vulnerability in the range [0.0, 10.0]. When insufficient
data are present for analysts to assign a score, a worst-case approach is fol-
lowed, e.g. when no data are available, a vulnerability will receive a score of
10.0. Qualitative severity ranking of “Low”, “Medium”, “High” are also com-
mon, e.g. the NVD (see Section 5.4.2) uses the ranges [0.0− 3.9], [4.0− 6.9], and
[7.0− 10.0] of the CVSS (v2.0) base score, for this purpose. For more information
regarding CVSS, refer to citation at the start of this paragraph.

CWE. According to MITRE7: “Common Weakness Enumeration (CWE) is a
community-developed list of common software and hardware weakness types
that have security ramifications”. Weakness types can be hierarchically orga-
nized in tree structures. The reasoning behind a hierarchical organization (which
CWE types are relevant and how they are related) are expressed by a View. For
example:

[The Research Concepts View] is intended to facilitate research into
weaknesses, including their inter-dependencies, and can be lever-
aged to systematically identify theoretical gaps within CWE. It is
mainly organized according to abstractions of behaviors instead of
how they can be detected, where they appear in code, and when
they are introduced in the development life cycle.8

For the purpose of this dissertation, we use the Research Concepts hierarchical
organization of CWE types to organize vulnerabilities where necessary. To give
an example, in this view, a typical vulnerability type “CWE-416: Use After
Free” is a child type of “CWE-825: Expired Pointer Dereference”, which is in
turn a child type of both “CWE-672: Operation on a Resource after Expiration or
Release” and “CWE-119: Improper Restriction of Operations within the Bounds
of a Memory Buffer”. Continuing to climb the tree, CWE-119 is a child of “CWE-
118: Incorrect Access of Indexable Resource (’Range Error’)”, and CWE-118 is
a child of “CWE-664: Improper Control of a Resource Through its Lifetime”,
which is a top-level type (most general category) for the Research Concepts
View.

Bug bounty platforms. Bug bounty platforms work in coordination with orga-
nizations to offer financial rewards (bounties) for the reporting of vulnerabilities
affecting the latter’s products and online services. Notable pioneers include
HackerOne9 and Bugcrowd10. These platforms have succeeded in attracting a
large number of skilled hackers to their programs and have paid out large
amounts of bounties (e.g. more than 100 million USD for HackerOne11).

2.2 the vulnerability lifecycle

The concept of a vulnerability’s lifecycle, as introduced by Schneier [100] and
Arbaugh et al. [13] and further enhanced and discussed in a number of sub-

7 https://cwe.mitre.org/about/index.html

8 https://cwe.mitre.org/data/definitions/1000.html

9 https://www.hackerone.com/

10 https://www.bugcrowd.com/

11 https://www.hackerone.com/sites/default/files/2018-03/HackerOne_Press_Kit.pdf

18

https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/definitions/1000.html
https://www.hackerone.com/
https://www.bugcrowd.com/
https://www.hackerone.com/sites/default/files/2018-03/HackerOne_Press_Kit.pdf

2.2 the vulnerability lifecycle

sequent works [15, 37, 85], describes the succession of phases a vulnerability
goes through, starting with its introduction in a codebase, and ending when all
affected machines have been patched. In Figure 2.2, we provide a rather simple
version of the vulnerability lifecycle, fitting our needs. We proceed to provide
details on the events that define the phase boundaries.

tint tf td tfix tp

vuln. in
tro

duced

vuln. fo
und

vuln. pub. disc
losed

fix
available

all h
osts

 patch
ed

timePhase 1 Phase 2 Phase 3 Phase 4

Figure 2.2: Simplified plot of a vulnerability’s lifecycle. Continuous line shows period
of possible exploitation. Events that trigger phase transitions are included.

Phase 1: The life of a vulnerability starts with the introduction of vulnerable
code in the codebase/repository of a program. This event occurs at Introduction
Time tint (in other literature also called Injection Date [85] or time of vulnerabil-
ity creation [37]). Another milestone in Phase 1 is defined as a vulnerability’s
Release Date by Ozment [85] as “the date of public release for the system that
first contains the vulnerability”. In FLOSS projects with public development
repositories, the Introduction and Release dates can be thought to coincide, since
anyone can download and build the latest development version of a program
immediately after the change introducing the vulnerability. A vulnerability in
this phase is not exploitable, since its existence is not known to anyone.

Phase 2: The second phase of the lifecycle starts when someone finds the vulner-
ability (at time tf in Figure 2.2). This event is commonly known as vulnerability
discovery. After this point, and until the end of its life, a vulnerability is ex-
ploitable. Another event that may occur in this phase is the Private Disclosure
of the vulnerability to the software vendor or security team. The disclosure can
be either due to a report by the initial discoverer (e.g. when the initial discov-
erer is an ethical/white hat hacker or internal to the organization), or due to a
report by someone who re-discovered the vulnerability. Ozment refers to this
event as just “Disclosure”, while Bilge and Dumitras [15] refer to this event as
“Vulnerability discovered by the vendor”. Whether or not exploitation occurs in
this phase depends on several factors, including the intentions of the discoverer,
and the difficulty of implementing an exploit. Attacks exploiting vulnerabilities
in this phase are called zero day attacks12.

Phase 3: The third phase begins with the public disclosure of the vulnerability
(at time td). The disclosure can be either through official security advisories, or

12 Although some definitions of zero day attacks require that the vulnerability is unknown to the
vendor, i.e. the attack happens before the Private Disclosure event, we adopt the definition of
Bilge and Dumitras [15] that classify all attacks prior to the public disclosure of a vulnerability
as zero day attacks

19

terminology and background

public fora and mailing lists. During this phase, attackers have knowledge of
the vulnerability, while defenders have no patch available to protect themselves.
Due to the apparent danger of this asymmetry, common disclosure practices
dictate that a vulnerability should never enter this phase, i.e. it should transition
from Phase 2 to Phase 4 directly.

Phase 4: The fourth and final phase of a vulnerability’s lifecycle begins when
a fix, i.e. patch, correcting the vulnerability is first publicly available, e.g. via
a commit in the development repository (at time tfix). Ozment refers to this
point in time as “Patch Date”. Phase 4 is dedicated to the distribution and
application of the patch to the end hosts. The life of a vulnerability ends when
all vulnerable hosts are patched (at time tp). The same vulnerability can be
resurrected when a host installs an unpatched version of the software. The
vulnerability will enter Phase 4 again until the host is patched.

The order of occurrence of the events defined above is not strict and many
complexities may appear. In addition, some events may never occur. For exam-
ple, a vulnerability may never be discovered, let alone be publicly disclosed.
Also, the fix can be made available and the patching process may commence
prior to the public disclosure of a vulnerability. Interestingly, the fix may be-
come publicly available via a code commit before the public disclosure of the
vulnerability, providing attackers who monitor code commits with an advan-
tage [58]. Overall, the concept of a vulnerability’s lifecycle, as presented in this
section, serves the purpose of familiarizing readers with the terminology, pro-
cesses and stakeholders related to a vulnerability, rather than providing a strict
timeline of events.

2.3 data sources

In general, data-driven studies rely on the existence of good-quality datasets.
Specifically, to investigate the three research questions outlined in Section 1.3,
we require information regarding the existence of a vulnerability, its severity
and type, information about its fix, information about who reported it, etc.

For each of the three research questions, we construct suitable datasets by
combining information from a number of sources. Although the specifics re-
garding the construction of the datasets for each of our three empirical studies
differ (and will be described in the dedicated chapters), here we provide some
general background about the sources we used. Note that our research focuses
on Free(/Libre) and Open Source Software (F(L)OSS).

The NVD. The National Vulnerability Database13 (NVD) keeps track of all vul-
nerabilities which have been assigned a CVE ID by MITRE (see 2.1). It also in-
cludes information regarding a vulnerability’s severity (CVSS score), and type
(CWE), along with links to external sources.

Vendor advisories. Software vendors and distributors publish security advi-
sories regarding security vulnerabilities. Examples include the Mozilla Founda-

13 https://nvd.nist.gov/

20

https://nvd.nist.gov/

2.4 challenges with vulnerability statistics

tion Security Advisories14 and the Debian Security Advisories15. These advisories
often provide additional information (compared to the NVD) for vulnerabilities
assigned a CVE ID.

Bug tracking platforms. Some projects employ bug tracking platforms to track
bugs. Some of those projects, like Mozilla Firefox16 and Chromium17 use their
bug tracking platforms to track vulnerabilities as well. These resources often
provide additional useful information regarding a vulnerability, including de-
tails about how the issue was discovered and patched. These resources can also
provide ways to identify the commit that fixed a vulnerability in a project’s
repository, e.g. by a mention of the commit in the bug report or by the inclu-
sion of the bug identifier in the commit message.

Third-party databases and mailing lists. Further information about vulnerabil-
ities is exchanged and collected in third party mailing lists and databases, e.g.
the BugTraq mailing list18 and the associated SecurityFocus Vulnerability Database.
Specifically, the latter asset is useful for us as it collects information on people
credited with the discovery of a vulnerability.

Bug bounty platforms The HackerOne bug bounty program is one of the pi-
oneers in the area and also covers open source software in the context of its
Internet Bug Bounty program19. Information regarding the people who discov-
ered the vulnerabilities and the financial rewards given can be mined from the
publicly visible portions of the platform.

Code repositories. All of the FLOSS projects that we use in our investigations
use a “commit-based” version control system for development (git, svn or mer-
curial). Obviously such repositories are useful since they provide access to the
codebase of the project. They also provide potentially useful additional infor-
mation via commit messages and metadata, such as the committer and the date
of a commit.

2.4 challenges with vulnerability statistics

Issues that threaten the validity of results stemming from statistical analysis of
data from vulnerability databases are nicely presented by Christey and Mar-
tin [22]20. They present four types of bias that affect the quality of vulnerability
databases, such as the NVD:

• Selection bias. Selection bias affects gathered data in two ways. First, researchers
may focus their efforts in finding vulnerabilities in specific projects, only

14 https://www.mozilla.org/en-US/security/advisories/

15 https://www.debian.org/security/

16 https://bugzilla.mozilla.org/home

17 https://bugs.chromium.org/p/chromium/issues/list

18 https://www.securityfocus.com/archive (note: since the acquisition of SecurityFocus assets
by Accenture Security from its previous owner Symantec, it is unclear whether the mailing list
will continue operating although Accenture Security has indicated that this will be the case
https://www.securityfocus.com/archive/1/542248.)

19 https://www.hackerone.com/internet-bug-bounty

20 Quoted text in this section is taken from this resource.

21

https://www.mozilla.org/en-US/security/advisories/
https://www.debian.org/security/
https://bugzilla.mozilla.org/home
https://bugs.chromium.org/p/chromium/issues/list
https://www.securityfocus.com/archive
https://www.securityfocus.com/archive/1/542248
https://www.hackerone.com/internet-bug-bounty

terminology and background

look for vulnerabilities of a specific type (e.g. buffer overflows), or only use
specific tools. This affects which vulnerabilities are discovered. If nobody
is looking for vulnerabilities in a product, none will be discovered. Second,
collection of information about vulnerabilities in a vulnerability database
is a best effort process. No such database can be considered complete, i.e.
containing all information that has been published in the internet (in all lan-
guages) about all products. People supporting vulnerability databases make
decisions on what products to cover and which sources to prioritize. A spe-
cific manifestation of selection bias pinpointed by Ozment [85] is vulnera-
bility discovery dependence, i.e. selection bias may lead to a large number of
vulnerabilities with some common characteristics to be discovered (and sub-
sequently published) in a short period of time. For example, a vulnerability
researcher may decide to look for a specific type of vulnerabilities on a spe-
cific product for a few days. Vulnerability discovery dependence has a signif-
icant impact on measurements of the time between discovery events (e.g. in
Vulnerability Discovery Models).

• Publication bias. “Publication bias governs what portion of the research gets
published. This ranges from ’none’, to sparse information, to incredible tech-
nical detail about every finding.” Publication affects researchers, vendors, as
well as the vulnerability database maintainers. Each of those parties may
have reasons not to publish a discovered vulnerability.

• Abstraction bias. Abstraction bias is a term crafted by Christey and Martin
“to explain the process that VDBs [vulnerability databases] use to assign
identifiers to vulnerabilities”. The problem here lies in differing conven-
tions regarding what counts as one vulnerability (a unique identifier in the
database). “Depending on the purpose and stated goal of the VDB [vulnera-
bility database], the same 10 vulnerabilities may be given a single identifier
by one database, and 10 identifiers by a different one”. Different abstraction
levels may also be used by vendors when disclosing issues, or by researchers
when reporting issues. The CVE database operates at an intermediate “co-
ordination” level of abstraction, e.g. one CVE may correspond to more than
one Bug IDs of a project’s bug tracking system. Overall, data analysis should
be performed at a consistent level of abstraction.

• Measurement bias. “Measurement bias refers to potential errors in how a vul-
nerability is analyzed, verified, and catalogued”. Regarding a vulnerability
database, this type of bias refers to any errors in vulnerability entries (e.g.
wrong affected versions, wrong CVSS score) or incomplete information. Such
errors can influence vulnerability statistics in seemingly unexpected ways.
For example, CVE entries with no detailed information are assigned a maxi-
mum CVSS score on a worst-case assumption.

Although there is no way to completely eliminate bias in vulnerability stud-
ies, researchers should acknowledge, try to mitigate, and discuss the effect
of different sources of bias on the measurement results. We discuss how we
achieve this in a systematic way in the following section.

22

2.5 threats to validity in empirical software engineering

2.5 threats to validity in empirical software engineering

In this dissertation we follow the systematic approach proposed by Runeson
and Höst [96] in their seminal work “Guidelines for conducting and reporting case
study research in software engineering” to report on threats to the validity of our
results. Runeson and Höst propose a classification consisting of four aspects of
threats and validity-related concerns, that we adopt:

• Threats to construct validity. This aspect of validity concerns issues regard-
ing how the experiment performed is suited to answer the stated research
questions.

• Threats to internal validity. This aspect of validity is usually the most no-
table one in empirical software engineering studies and deals with issues
of correlation vs. causation. Specifically, these are issues regarding whether
the observed effects are caused by the treatment or whether they are caused
by other unidentified factors. The challenges of working with data from vul-
nerability databases described in the previous section largely fall within this
aspect.

• Threats to external validity – Generalization. This aspect concerns issues
regarding the generalizability of the results (e.g. to other software programs
or other programming languages).

• Threats to reliability. This aspect refers to threats arising when the data col-
lection or analysis are dependent on the specific researchers that performed
the tasks. Such threats arise more often in human-subject studies (e.g. when
the interpretation of answers may be subjective to the researchers).

In this dissertation, we address validity-related concerns in respective “threats
to validity” sections for each of the three empirical studies we conduct.

23

24

3
A N E M P I R I C A L S T U D Y O N T H E M AT U R I T Y O F S TA B L E
R E L E A S E S

3.1 introduction

This is the first chapter describing a novel contribution. In this chapter we in-
vestigate the first research question of Section 1.3): Is the security of software
improving over time? We empirically investigate the hypothesis that there exist
observable decreasing trends and patterns in the vulnerability discovery rate
of stable releases of popular Free/Libre and Open Source Software (FLOSS)
projects. Consistent with domain terminology, by stable we mean that only crit-
ical patches resolving discovered issues are applied during the lifetime of a re-
lease, with no new features introduced. In case we indeed observe such decreas-
ing trends, the speed and characteristics of the maturing behavior (decrease in
rate) can provide us indicators useful for assessing the development of software
quality over time and even for making comparative arguments about different
projects. Apart from ‘engineering’ metrics such as the ones mentioned above,
‘economic’ metrics revolving around monetary rewards for vulnerability dis-
coveries have long been known to be a promising avenue towards quantifying
the security quality of software [85, 99]. Therefore, in this chapter, we also seek
trends in prices of bug bounties for FLOSS vulnerabilities that may corroborate
the observed trends in the discovery rate and may also be used as indicators of
quality.

This chapter extends on the content of a research article [3] published at the
ACM Transactions on Privacy and Security (TOPS) journal. The scientific contribu-
tions presented in this chapter are:

• a dataset creation methodology that enables the study of vulnerabilities in
stable releases of Debian GNU/Linux packages

• a large-scale (>10 000 CVEs) empirical study of vulnerabilities affecting stable
releases of 1 195 FLOSS packages

• an empirical study on the development of rewards (bug bounties) awarded
on a prominent bug bounty platform

• a critical interpretation of the presented results and a discussion of their
implications

Chapter organization. This chapter is organized following the steps of the gen-
eral methodology of Section 1.3. We first present the problem and state the spe-
cific research questions that we investigate in this chapter (Section 3.2). Then,
we provide a compact overview of some background knowledge necessary for
the comprehension of the content of the chapter (Section 3.3). Next, we pro-
vide an overview of the related work on the topic (Section 3.4) followed by a

25

an empirical study on the maturity of stable releases

detailed description of the dataset creation methodology (Section 3.5). We then
present the results of our large-scale empirical study (Section 3.6) followed by a
discussion on their implications (Section 3.7). Finally, we discuss some possible
threats to the validity of our results (Section 3.8) before concluding the chapter
(Section 3.9).

Availability

The code for the creation of the dataset, as well as for the analysis
presented in this chapter is publicly available at https://github.com/

nikalexo/DVAF under a free software license.

3.2 motivation and research questions

There is a general feeling among security researchers and practitioners that the
rise in the overall number of reported vulnerabilities in recent years can be
primarily attributed to the sizeable increase in the number of software projects
in use and their complexity [44], and hence the increase of the overall attack
surface, while the quality of established and widely used software components
may be improving. For instance, Ozment and Schlechter [84] reported a gradual
decrease in the number of foundational (present at the initial release) vulnera-
bilities of the OpenBSD operating system. In this chapter, we set out to answer
a fundamental question regarding the state of open source software security: Is
the security of software improving over time? We approach this question from two
angles, an ‘engineering’ and an ‘economic’ one1.

An engineering angle. We ask: Is software maturing over time? From this an-*
gle we primarily consider as maturing behavior a decrease in the vulnerability
discovery rate for a given software program, although we also consider and
discuss a few other indicators of quality (e.g. ratio of severe vulnerabilities). By
over time we primarily consider whether a specific software release shows signs
of maturity within a reasonable amount of time. We ask: Are we finding and
fixing vulnerabilities fast enough to have a measurable impact on security during the
lifetime of a software release? To supplement our insights we secondarily consider
whether successive software releases show signs of maturity.

Since software projects are generally evolving and their codebases are ex-*
panding, in order to get a best-case assessment of software maturity, we focus
on vulnerabilities that affect stable releases of software packages. During the
time of a stable release, only critical patches are applied (mostly security up-
dates) and therefore our results will not be influenced by new vulnerabilities
arising from the introduction of new functionality. Furthermore, focusing on
stable releases also provides a best-case assessment of maturity when consid-
ering bias that may arise from an increase in vulnerability finding effort for a
given software program. White-hat hackers (vulnerability researchers, testers,

1 Ozment [85] introduced the terms ‘engineering’ and ‘economic’ to describe notions similar to
ours in his dissertation.

26

https://github.com/nikalexo/DVAF
https://github.com/nikalexo/DVAF

3.2 motivation and research questions

etc.) tend to focus and test newly released software versions and not versions
that are included in stable releases (which, e.g. in Debian, have to go through
a lengthy ‘freeze’ period). Therefore, only a subset of the vulnerabilities dis-
covered will affect the stable releases of the software. Following this argument,
we expect an increase in the vulnerability finding effort for a program to have
less of an effect on its versions included in stable releases compared to newer
versions.

Considering all the above, we slightly modify and specify our ‘engineering’*
question to now ask: Are stable software releases maturing over time? If we
were not to discern signs of maturing behavior for stable releases, then we
cannot hope to observe such behavior for constantly updated versions. On the
other hand, if we were to observe such signs of maturity in the vulnerability
reporting rate (e.g. a linear drop starting a year after release, or a drop in the
reporting rate for new stable versions compared to previous ones), then we
could use characteristics of the behavior (e.g. speed of decrease) as indicators of
the security quality of projects. As an indirect consequence, such an observation
would also support the social utility of vulnerability finding, in the sense that
discovering and patching vulnerabilities would have a measurable impact on
security.

As a source of stable releases of software, we choose the Debian distribution
of GNU/Linux. We choose Debian for our empirical measurement study due
to three important characteristics: (a) it is one of the biggest (>50 000 software
projects including most popular FLOSS, available as packages) and most pop-
ular collections of FLOSS in existence; (b) its policy of only adopting critical
patches into the stable release makes it very amenable to testing our “matur-
ing” hypotheses; (c) security is handled rather consistently, using a dedicated
team with transparent workflows, public reports and status tracking. While our
investigation is limited to Debian, it is likely that the results can be generalized
to all general-purpose Linux distributions because the vast majority of software
projects and code underlying the various distributions is identical: a vulnera-
bility in a particular software suite will affect the respective package regardless
of how it is distributed. In fact, our dataset likely underestimates the vulnera-
bility rates of many other popular distributions since the Debian release policy
is known to be rather conservative. However, the precise effects of program
selection or release policy are not currently known and their investigation (e.g.
via a comparative analysis of different distributions) is outside the scope of this
dissertation. More information on the processes and release policies of Debian
can be found in Section 3.3. Overall, from an ‘engineering’ angle, we ask: Is*
software in Debian (Stable) maturing over time?

An economic angle. We ask: Are financial rewards for vulnerabilities increasing*
over time? The economic angle is based on the simple premise that in an ideal
vulnerability market, as vulnerabilities would get more difficult to find, the re-
ward for reporting them would increase. Although the potential of vulnerabil-
ity markets to improve software security assessment has long been established
(e.g. [85, 99]), few real-world schemes (so called bug bounty platforms) exist that
would enable an empirical investigation. Since we want to relate results from

27

an empirical study on the maturity of stable releases

this angle to results from the ‘engineering’ angle, we focus on financial rewards
for FLOSS vulnerabilities. As a source of such information we choose the pub-
licly visible reports of the well-known Bug Bounty platform HackerOne2.

HackerOne is a popular source of data for bug bounty research and has been
used in important recent works that generally study the bug bounty ecosystem
(e.g. [62, 119]). The Internet Bug Bounty (IBB) program3 is a community-driven
initiative to award rewards for bugs affecting important FLOSS4 components,
running on the HackerOne platform. The program started in late 2013 and is
ongoing as of the time of writing, consisting of a number of projects targeting
different software components. It is managed by an independent committee
of security specialists and sponsored by technology companies and donations.
Overall, from an ‘economic’ angle we ask: Are financial rewards for FLOSS vul-*
nerabilities in HackerOne increasing over time?

Statement of hypotheses: From the two main research questions formulated in*
the previous paragraphs we extract 3 hypotheses of increasing depth and de-
tail, which we investigate in dedicated sections. Figure 3.1 provides a graphical
summary of the process which led us to these hypotheses following an IBIS
notation (see Section 3.3 for more information on IBIS maps). Confirming any
or all of the hypotheses would provide evidence supporting the claim that the
security of software is improving, on the one hand attesting to the increasing
effectiveness of security processes, and on the other hand potentially providing
metrics (e.g. speed of decrease) suitable for assessing the security of successive
releases of the same software or even comparing different projects. Our three
main hypotheses (the first two referring to the ‘engineering’ angle and the third
to the ‘economic’ angle presented above) are:

– H1: Software in Debian is maturing over time when considering all vulnerabilities
equally (Section 3.6.1). In this hypothesis, by maturity we refer to a consistent
(decreasing) trend in the vulnerability reporting rate during the lifetime of a
Debian stable release (even also including the long-term support phase). As
stated above, such decreasing behavior would suggest that it is getting more
difficult to discover vulnerabilities affecting a specific version of the software,
and thus the release is in some sense maturing.

– H2: Software in Debian is maturing over time when considering only severe vulner-
abilities or vulnerabilities of certain types (Section 3.6.3). With this hypothesis
we want to investigate whether maturing behavior (in the same sense as in
H1) is present when considering specific classes of vulnerability severity (e.g.
"critical" vulnerabilities) or different vulnerability types (e.g. memory issues)
and how it may differ from the general case. If there is significant matur-
ing behavior for high severity vulnerabilities, then we could use this as an
indication for quality. Furthermore, difference in the observed behavior be-

2 https://www.hackerone.com/
3 https://internetbugbounty.org/
4 with the notable exception of Adobe Flash until 2016.Perhaps surprisingly, Adobe’s proprietary

Flash Player was included in the program until August 2016 when it stopped with the argument
that “Flash exploitation no longer has the same impact as when we started”.

28

3.3 specialized background & terminology

tween different types could identify vulnerability classes that may require
additional attention.

– H3: Vulnerability discovery rewards for FLOSS in HackerOne are increasing (Sec-
tion 3.6.4). Although not a traditionally widespread practice for FLOSS, there
exist programs awarding bounties of the discovery of vulnerability in FLOSS
projects. As with trends in the rate of vulnerability reports, (this time increas-
ing) trends in the offered rewards offered for FLOSS vulnerabilities in the
HackerOne bug bounty platform can provide indicators of increasing qual-
ity.

H1: Software in Debian is maturing
over time when considering all
vulnerabilities equally

H2: Software in Debian is maturing over time
when considering only severe vulnerabilities
or vulnerabilities of certain types

H3: Vulnerability discovery
rewards for FLOSS in
HackerOne are increasing

Is software security improving over time?

"over time":
- lifetime of a single version/release
- over successive releases

Is software in Debian maturing over time?
('engineering')

Best case assessment

Are financial rewards for FLOSS vulnerabilities
in HackerOne increasing over time?
('economic')

Monetary value alternative logical & proposed indicator

"maturing": improving in quality over time
- mainly: decrease in the vulnerability discovery rate
- supplementary: other possible indicators of
quality can provide support for a maturing claim

Figure 3.1: Summary of how the hypotheses investigated in this chapter were derived*
from the higher level research questions. Produced following an adapted IBIS (Issue
Based Information System) notation with the designVUE tool5. The main research
problem is divided into two sub-problems and the hypotheses H1–H3 are depicted
as positions/answers to these sub-problems.

3.3 specialized background & terminology

In this section we briefly go over some necessary material for the comprehen-
sion of the contents of this chapter.

The Debian GNU/Linux distribution: Debian is a distribution of the GNU/Linux
operating system including over 40 000 software packages, covering a signifi-
cant portion of the most widely used FLOSS in existence [11] (for comparison
4 000 in Red Hat). All packages are open source and free to redistribute, usually
under the terms of the GNU General Public License [104]. Debian officially sup-
ports 9 different architectures, and several other operating systems (e.g. Ubuntu,
Raspbian) are based on it. It follows a conservative maturing release cycle aim-
ing for maximum production-level stability and security for its stable release.
A new stable version is released about every 2 years and only important patches
are applied to the packages during its lifetime. In the meantime, developers and
testers have time to examine and patch the newer versions of the packages to
be introduced in the next stable release. In this phase, these packages comprise

5 https://www.imperial.ac.uk/design-engineering/research/engineering-design/

engineering-knowledge-and-data/designvue/

29

https://www.imperial.ac.uk/design-engineering/research/engineering-design/engineering-knowledge-and-data/designvue/
https://www.imperial.ac.uk/design-engineering/research/engineering-design/engineering-knowledge-and-data/designvue/

an empirical study on the maturity of stable releases

the testing distribution. Debian releases are characterized by a number and
a name, traditionally from Toy Story6. Security vulnerabilities are handled in
a transparent manner by the Debian security team [28]. The security team re-
views incident notifications for the stable release (only) and after working on
the related patches, publishes a Debian Security Advisory (DSA). The DSAs con-
tain detailed information on the vulnerability, including the affected packages
and the corresponding CVE numbers.

Statistical tests: To support observations made via visual inspection of plots,
it is often required to provide evidence that the observations carry statistical
significance. Therefore, specifically in the field of reliability theory, the Laplace
trend test has been traditionally employed to support evidence of a decrease
in the rate of failures of a system. It tests whether the distribution follows a
Poisson process or there is an increase or decrease in the rate of events (fail-
ures) taking place. Although the Laplace test is mathematically not entirely
suitable for the scenario of vulnerability discoveries [85] (as it does not satisfy
the independence requirement – see also Section 3.8), it has been widely used
by seminal previous work [84, 94, 119] in the area and therefore it is also em-
ployed by us for reasons of comparability with previous work (always with a
pinch of salt). In addition to the Laplace trend test, we fit linear models using
ordinary least squares (OLS) to test for the significance of increasing/decreas-
ing trends in histograms (e.g. CVEs per month). Although statistical tests are
important to support our observations, they do not offer much to the presenta-
tion of the results, and as such, graphical representations of the Laplace tests,
as well as the complete statistical test results are confined to Appendix B.

Issue based information systems (IBIS): We already used an IBIS map to vi-*
sually summarize the process of deriving the hypotheses investigated in this
chapter (Fig. 3.1). To visually capture and summarize the results and argumen-
tation presented in Section 3.6 (Results) we also use suitably adapted issue-based
information systems (IBIS) [55] maps. IBIS maps are graphs that are often used to
facilitate the understanding of complicated problems and to represent conver-
sations as exchanges of arguments for/against a position. IBIS maps/graphs
consist of four types of nodes: (i) questions/issues, (ii) answers/positions, (iii)
arguments for a position, and (iv) arguments against a position. In our context
these nodes correspond to: (i) higher level research questions, (ii) hypotheses,
(iii) result/observation supporting a hypothesis, (iv) result/observation contra-
dicting a hypothesis. A primary result/observation node can in turn contain
other result/observation nodes which document further considerations for/a-
gainst the hypothesis related to the argument of the primary node.

3.4 related work

In this section we provide details on the prior work most related to our study.
We also discuss how related work affected our research question selection and

6 For an overview of Debian Releases see https://www.debian.org/releases/.

30

https://www.debian.org/releases/

3.4 related work

study design choices (research questions and focus on Debian stable distribu-
tion as already introduced in Section 3.2).

Is security improving? Our work is motivated by the results of Ozment and*
Schechter [84], presented more than a decade ago (2006). In the paper, the au-
thors looked for evidence that the quality of software is increasing, by examin-
ing the vulnerability rate of the OpenBSD operating system. Their dataset con-
sisted of 140 vulnerabilities, 87 of which were foundational, i.e. vulnerabilities
that were part of the first release of the product. They concluded that the rate
of foundational vulnerabilities is decreasing with time (statistically significant
decrease after ~6 years), and presented this as an argument that the security of
the software is increasing. This work came as a response to the 2004 paper by
Rescorla [94], who reported no measurable evidence of an improvement in the
security of software (w.r.t. the vulnerability discovery rate), and provocatively
proposed that we should perhaps spend our time otherwise (in the sense that
since vulnerabilities are seemingly infinite, finding and patching some of them
does not really make a difference).

Our study aims to investigate whether more than a decade later, Rescorla’s
concerns still apply (we discuss our insights regarding this in Sec. 3.6.1). It is
interesting future work to see how the vulnerability rate and life span in the
OpenBSD system has involved over time by recreating the measurements of
Ozment and Schechter [84], however looking only into foundational vulnerabil-
ities would provide limited insights since the amount of code of the first stable
release of many FLOSS projects that is also part of the current stable release is
minimal (e.g. for the Linux kernel). For this study instead, we choose to utilize*
a richer dataset (Debian) including most popular FLOSS components running
on billions of devices. Furthermore, the duration of a stable release provides a
natural time frame to seek for evidence of vulnerability depletion that would
lead to a practically significant improvement in security. Therefore, we want to
study the vulnerability discovery rate during a specific stable release (results in
Section 3.6.2).

Vulnerability discovery models. Apart from the ones mentioned above, there
are a lot of works on vulnerability discovery and lifecycle analysis, and the goal
of this section is not to cover it all, but to go over those that connect with our
work. Bugiel et al. [20] used weighted average models with constant weight, in
order to predict vulnerabilities of Debian packages, with the goal to use the
prediction as a trustworthiness score for the component. We follow a similar
methodology to theirs in order to collect a part of our dataset, but our analysis
differs in its goal (which is to investigate the hypothesis of maturing behavior).
Clark et al. [23] studied the effect of code familiarity (i.e. a security tester be-
ing familiar with the code) in the vulnerability discovery process. They found
out that there is a considerable period of time, called a “honeymoon”, before
the first vulnerability of a component is found, and then vulnerabilities are
found at a much faster rate. Our research focus is complementary to theirs, as
we want to study the subsequent stages of the vulnerability discovery process,
from the moment a component becomes part of a stable distribution. Alhazmi
and Malaiya [7] showed that time-based and effort-based vulnerability discov-

31

an empirical study on the maturity of stable releases

ery models (VDMs) are a good fit for the vulnerability time-series of Windows
versions, indicating that these factors certainly affect the vulnerability discov-
ery process. Contrary to their study, we want to investigate a much larger body
of software over multiple stable versions. However, estimating the effect of ef-
fort in the discovery process could be a natural next step in the research line
introduced in this chapter. Kim et al. [49] tried to create vulnerability discovery
models of single versions of Apache and MySQL by taking into account the
shared code of those versions with the following ones. They show that shared
code between successive versions of a component may lead to an increase in
the vulnerability rate of the earlier version, due to an increase in vulnerability
finding effort (scrutiny) typical after the release of a new version. We want to
investigate such effects further and select OpenJDK and PHP as two popular
pieces of software to study that underwent major releases of new versions dur-
ing the lifetime of a Debian stable release. Roumani et al. [95] fit several time-
series models to the vulnerability rate of a number of software components,
and reported reasonable prediction accuracy. Although we do not attempt any
predictions, this could be an interesting future work direction.

Measurements in the wild. The line of work based on the WINE dataset [15, 74,
115] (a large dataset of Symantec anti-virus logs), which provides several mea-
surements on attacks in the wild, is also relevant to our research. Specifically,
Nappa et al. [74] studied the patching behaviours of users and focus on the is-
sue of shared code between different software or different versions of the same
software that can lead to successful attacks, even though users think they have
patched a vulnerability. This work investigates a latter part of the vulnerability
lifecycle (i.e. how fast users install patches after they have been made available),
while we want to investigate an early part of the vulnerability lifecycle (i.e. the
discovery rate and characteristics of new vulnerabilities). The insights provided
by this work on the importance of shared code motivate us to investigate the
issue of shared code in Section 3.6.1.

Other relevant studies. Li and Paxson [58] performed a large-scale study on
security patches based on the NVD and commits in the projects’ version control
systems. They focused on static characteristics of security bugs (e.g. the amount
of time they are present in the code, how this is affected by their type) and their
patches, while we primarily want to investigate longitudinal effects, something
not addressed by them. Thus, our study goals are complementary to theirs. We
will discuss our findings regarding vulnerability types in relation to theirs in
Section 3.6.3.

Shahzad et al. [103] performed a study focusing on exploitation trends. It
is notable that for the overall vulnerability disclosure rate for the large set of
software they considered (with disclosure dates in the range 1998-2011), they
observed a declining trend after 2008. It is interesting to see whether we can
also observe such a stable (even declining) trend for successive stable releases
of Debian.

Edwards and Chen [31] noted a decrease in the vulnerability rate of specific*
series of software releases after 3 to 5 years from the initial release. We want
to investigate whether such a decrease is observable within the lifetime of a

32

3.5 dataset creation methodology

stable release. Finally, Tan et al. [106] studied bugs in three open source projects,
the Linux kernel, Mozilla and Apache. Their study looks at bugs of any kind,
and security bugs in particular are discussed only briefly, mostly focusing on
the effect bug types have on bug severity. We compare our results to theirs in
Section 3.6.3.

Summary. As evident from the above, there has been considerable prior work*
investigating the vulnerability discovery rate of software and trying to attain
insights regarding, among others, how long it takes to observe maturing be-
havior (decrease in the vulnerability discovery rate) for software releases. Our
study, as presented in this chapter, takes a new approach towards investigating
such fundamental questions by focusing on vulnerabilities affecting packages
included in stable (Debian GNU/Linux) distributions of software. As already
stated in Section 3.2, investigating vulnerability rates through the lens of stable
distributions will allow us to mitigate several sources of bias often affecting
similar studies (see Section 3.8) and work towards a large-scale and practically
relevant best-case assessment of software maturity.

3.5 dataset creation methodology

During the dataset creation process, an important goal was to construct a plat-
form that would provide the means for researchers to validate and extend our
results in a reproducible way. Therefore, we offer an extensible platform that
automatically generates up-to-date datasets via parsing relevant repositories.
We also package the relevant analysis scripts together with the dataset collec-
tion ones in a single repository. This Debian Vulnerability Analysis framework
(DVAF), as we coined it, consists of two basic components: Data Collection and
Data Analysis, as shown in Fig. 3.2. Our implementation consists of around
1 000 lines of python3 code and is available as open source on github7. We note
that we used as a basis for our data collection scripts the Perl code that Bugiel
et al. [20] made available to us. Below, we proceed to provide details about the
dataset collection and cleaning process.
The currently implemented modules work as follows:
DSA collect: Debian Security Advisory text is automatically collected via down-
loading the html source from Debian’s security information pages, and then
applying the relevant filters and regular expressions to extract the names of the
affected packages, the date of the advisory, and the associated CVE references.
The URLs of DSA pages are of the form https://www.debian.org/security/

YYYY/dsa-NNNN, with YYYY standing for the year when the DSA was reported,
and NNNN for the unique DSA identifier.
DLA collect: Debian long-term support advisories are automatically collected
by parsing the text of entries of the debian-lts-announce mailing list. The same
information points as in the case of the DSAs are extracted from the mail text.
DLAs are available over https with URLs of the form https://lists.debian.

org/debian-lts-announce/YYYY/MM/msgXXXXX.html.

7 https://github.com/nikalexo/DVAF

33

https://www.debian.org/security/YYYY/dsa-NNNN
https://www.debian.org/security/YYYY/dsa-NNNN
https://lists.debian.org/debian-lts-announce/YYYY/MM/msgXXXXX.html
https://lists.debian.org/debian-lts-announce/YYYY/MM/msgXXXXX.html

an empirical study on the maturity of stable releases

Data Collection

DLA collect

DSA collect

CVE collect

Bounty collect
...

...

Data preparation

Analysis

Plot

Laplace test

Linear Regression

D
a
ta

se
t cre

a
tio

n
S

tu
d
y

Figure 3.2: DVAF’s extendable architecture and workflow

CVE collect: CVE data, including the date of the CVE, and various metadata
(CVSS score, CWE type etc.) are collected by employing the cve-search8 tool,
a tool for local lookups on reported CVEs.
Bounty collect: Bug bounty data are collected by scraping the HackerOne plat-
form’s publicly visible portion. All available information is obtained (product
affected, date, bounty amount, etc.) by utilizing the platform’s API9.
Data cleaning and preparation: Note that by mapping vulnerabilities from the
DSAs/DLAs to the CVEs (i.e. relying on DSAs and DLAs for information re-
garding which CVEs affected which package versions), we already avoid com-
mon errors in the NVD, such as versioning issues. The preparation of the data
consists of manual corrections of known mistakes in the vulnerability reports,
further dealing with package versioning and possible date differences between
the DSA and CVE reports, and formatting the data in a standard, transferable
format.

For example, DSA-2103 does not include a CVE reference, although CVE-
2010-3076 references the DSA and matches its description. We identified a
number of such issues. Furthermore, due to trademark issues regarding the
Mozilla logo, Mozilla products were distributed under alternative names in
Debian from 2006 to 2016 (Iceweasel instead of Firefox, Iceape instead of Sea-
monkey, Icedove instead of Thunderbird). Also, some packages have names
based on the software version they distribute (e.g. php5 and php7.0), while oth-
ers, such as the Linux kernel have changed their naming conventions over time
(from kernel-* to linux).

Note that the manual effort is a one-time process, as appendable lists with
package name changes etc. are maintained as configuration files, and the rest of
the process is automated. As the date of vulnerability disclosure, we choose the
earliest of the dates reported in the DSA and the corresponding CVE. Vulnera-
bilities for source packages are grouped by month and a time-series of vulnera-

8 https://github.com/cve-search/cve-search
9 During the revision process of the paper [3] where the contributions of this chapter were first

presented, we noticed that the new HackerOne API is now only available for a fee, whereas an
older version of the API was available for free during our study.

34

3.6 results

bility incidents is created for each source package. For most of our studies, we
created a single time-series for all the versions of a package using regular ex-
pression rules (e.g. in the overall analysis all vulnerabilities that affected Debian
packages php5 and php7.X appear under the package name of php7.0 – always
counting each CVE once), however this can be configured. All data points are
stored in JSON text representations of python dictionaries. In total the dataset
we used for the analysis in this chapter contains 10 716 CVEs spanning from
2001 to 2018.
Analysis functionality: To check our hypotheses, we developed a number of
analysis and plotting scripts and made an effort to render them re-usable to the
extent possible. The basis of the framework can be used for other studies or as a
starting point for software security metrics and risk assessment methodologies.

3.6 results

In this section we present the results of our large scale empirical measurement
study.

3.6.1 Data overview and distribution

We start off with an overview of the Debian ecosystem w.r.t. its security charac-
teristics before we proceed to investigate our hypotheses. These more general
observations set the context of the study and will help us with the interpreta-
tion of our results in later sections. Note again that contrary to previous studies
(e.g. [7, 23]), we do not investigate the vulnerability rate of specific versions of
software during their development cycle and immediately after their introduc-
tion, but the software versions that are included in the corresponding stable
releases of Debian.

Global observations: Table 3.1 presents the 20 top vulnerable Debian source
packages between 2001 and 2018. An automated procedure was established to
collect the vulnerabilities reported for previous versions of a package and at-
tribute them to its current version in the stable distribution. Manual checks and
small corrections were subsequently performed (again included in the frame-
work as ready-to-use configuration files – see Section 3.5). The Linux kernel
is the most vulnerable component, followed by the two main browsers in use
(Chromium10 and Firefox). The total number of unique vulnerabilities11 re-
ported in the 18 year period was 10 716, with the kernel accounting for around
9 % of the total (948). During the years 2017-2018, a total of 2 366 vulnerabilities
were reported, with Chromium being by far the most affected package, account-
ing for 303 vulnerabilities (around 13 % of the total) compared to the next most
vulnerable package (the Linux kernel) which was affected by 160 (around 7 %
of the total).

10 open source code-base of the proprietary Google Chrome browser – among others.
11 Note that a vulnerability may affect more than one packages. More discussion on this follows

in this section. Also note that we count vulnerabilities by their CVE identifiers (1 CVE id = 1

vulnerability).

35

an empirical study on the maturity of stable releases

2001–2018 2017–2018

package number CVEs rank number CVEs rank

linux 948 1 160 2

chromium 799 2 303 1

firefox-esr 739 3 147 3

icedove 600 4 127 5

php7.0 386 5 28 19

openjdk-8 309 6 89 7

wireshark 303 7 43 14

xulrunner 211 8 – –

mysql 209 9 47 12

imagemagick 195 10 99 6

iceape 178 11 – –

xen 172 12 59 8

tcpdump 156 13 131 4

wordpress 147 14 46 13

openssl 134 15 13 29

tiff 127 16 55 10

qemu 121 17 36 16

mariadb 116 18 51 11

ruby2.3 84 19 39 15

graphicsmagick 82 20 56 9

Table 3.1: The top twenty packages with the most vulnerabilities (counted by CVEs) in
time periods (i) 2001-2018 and (ii) 2017-2018.

In Fig. 3.3, we see the distribution of vulnerability reports (CVEs) among
source packages of Debian for the years 2001-2018

12. In the figure, packages
that had at least two vulnerabilities in the specified time frame are included,
yielding a total of 634 source packages. An additional 561 source packages had
a single vulnerability and were not included in the figure for readability reasons
(the complete figure is available in Appendix B).

The rich club effect: Interestingly, the distribution is characteristically heavy-
tailed (notice that the y axis is logarithmic) with a few packages dominating
the total vulnerabilities reported and a long tail of a large number of packages
with only a few vulnerabilities. Inspecting the plot (Fig. 3.4) of the probability
distribution of the data in (double) logarithmic axes, we can observe a near-
straight line, indicative of a potential power-law (Zipfian) distribution. Power-

12 Our analysis in this chapter is limited to data until the end of 2018 since this was the last
completed year at the time we performed the analysis.

36

3.6 results

lin
ux

sa
m

ba
py

th
on

-d
ja

ng
o

qu
ag

ga wp
a

se
nd

m
ai

l
m

ov
ab

le
ty

pe
-o

pe
ns

ou
rc

e
pd

fk
it

dn
sm

as
q

wg
et

ev
in

ce
eg

ro
up

wa
re

tra
ce

ro
ut

e-
na

no
g

ac
pi

d
tn

ef
cs

co
pe

we
bs

vn
xe

rc
es

-c
w3

m
-s

sl
kd

el
ib

s-
cr

yp
to

lu
rk

er
lib

db
d-

pg
-p

er
l

lib
so

up
2.

4
rtm

pd
um

p
m

tr
ne

th
ac

k
ne

on
sim

pl
ep

ro
xy

cg
iir

c
na

gi
os

-p
lu

gi
ns

ar
ia

2
ex

tp
lo

re
r

m
od

-w
sg

i
tid

y
in

te
l-m

icr
oc

od
e

101

102

103

Vu
ln

er
ab

ilit
ie

s

Figure 3.3: The distribution of vulnerabilities per package (years 2001-2018). Every
twentieth package name appears on the x axis for space reasons. The y axis is logarith-
mic. Packages with at least two vulnerabilities are taken into account.

101 102 103

Vulnerabilities

10−2

10−1

100

cc
d

f

data

power-law fit

Figure 3.4: A log-log plot (complementary cumulative distribution function) of the
distribution of Fig. 3.3.

laws are heavy-tailed distributions that are the result of generative mechanisms
like scale-free networks or the distribution of wealth in society (Pareto distribu-
tion). Following detailed statistical testing using the seminal methodology of
Clauset et al. [24] and the powerlaw statistical package [10], we fit a power-law
of the form p(x) ∼ x−k, x > xmin with k = 2.02 and xmin = 2 , where x is
the number of vulnerabilities of a given package, and p the probability density
function13. In short, we observe that the majority of vulnerabilities is discovered
in a small set of packages, with the rest contributing little to the total number.
Although the distribution of vulnerabilities fits a power-law, other heavy-tailed

13 It is common in literature (e.g. [113]) to ignore the light lower tail and focus on the heavy upper
tail when investigating potential heavy-tailed behavior. In our case, the best fit was achieved for
xmin = 9 with k = 1.94, but the fit for xmin = 2 was deemed good enough and explained most
of our data points.

37

an empirical study on the maturity of stable releases

distributions (power-law with exponential cut-off, lognormal) are also possible
fits, and in general very difficult to statistically disprove [24].

One should not jump to conclusions regarding the mechanism(s) that gen-
erate this distribution. Most likely, a combination of mechanisms leads to our
observations, including economic, social and time-dependent factors. However,
the hypothesis that the vulnerability distribution is attributed entirely to the
size (in KSLoCs) of the packages was indeed statistically disproved (size does
not follow a heavy-tailed distribution; Fig. B.3 of the appendix shows an intu-
ition of this). A high-level generative mechanism of preferential attachment (the
rich get richer), supporting a classic power-law, could be based on “the more we
look the more we find” argument, where more bugs being found for a compo-
nent cause more focus on the component, and thus in turn yet more bugs are
found. Another fitting distribution is the power-law with exponential cut-off,
where the rich get richer up to a point. This would explain the case where there
is a limit on the rate of bug-finding for each package even if more resources are
dedicated to the task. Both of the aforementioned related heavy-tailed distribu-
tions are possible fits with similar generative mechanisms and collecting more
data as time progresses is required for more definitive statistical tests.

3.6.2 Vulnerability trends in Debian (H1)

In this section we investigate Hypothesis 1: Software in Debian is maturing over
time when considering all vulnerabilities equally. We want to see whether there are
signs that the quality of software (w.r.t. security bugs) is increasing over time;
in other words, whether we have reached the point where the vulnerability dis-
covery rate in stable versions of popular software is decreasing. In this section
we do not discriminate based on a vulnerability’s severity or type.

Concerning the total number of vulnerabilities reported in the Debian ecosys-
tem w.r.t. time, Fig. 3.5a shows a clear upward trend as the years go by. Can this
mean that the quality of the software (w.r.t. security) is decreasing, despite the
considerable effort of developers, security researchers and professionals? One
could argue that the amount of software packages in Debian increased dramati-
cally in recent years and that this is the cause of the increase in the total amount
of vulnerabilities reported. Thus, even one or two bugs that slipped the security
measures of the individual development/testing teams, would contribute to a
big yearly sum. That would be a reasonable explanation, as the stable version of
Debian released in 2002 (Woody) contained only 8 500 binary packages, going
up to 18 000 packages with the release of Etch in 2007, significantly increasing to
36 000 in 2013 (Wheezy) and peaking at 52 000 with Stretch, which was released
in June 2017, and at 58 000 with the latest (at the time of the investigation) sta-
ble release named Buster, which was released in June 2019. However, we found
evidence supporting the opposite. Interestingly, the number of vulnerabilities
per package (among the packages that had a vulnerability reported for the
specified year) also follows an upward trend, a fact obvious in Fig. 3.5b. In this
figure we can even see a smoother, clearer upward trend compared to the pre-
viously presented Fig. 3.5a, although the slope of the trend is nearly identical.

38

3.6 results

’01 ’03 ’05 ’07 ’09 ’11 ’13 ’15 ’17

Year

0

200

400

600

800

1000

1200

1400

T
o
ta

l
v
u

ln
er

a
b

il
it

ie
s

(a) Total vulnerabilities reported per calendar year (2001-2018).

’01 ’03 ’05 ’07 ’09 ’11 ’13 ’15 ’17

Year

0

1

2

3

4

5

6

7

A
v
er

a
g
e

v
u

ln
er

a
b

il
it

ie
s

p
er

p
a
ck

a
g
e

(b) Average vulnerabilities per package (that had at least one vulnerability report in that
year) per calendar year (2001-2018).

Figure 3.5: Vulnerabilities: distribution and trends.

These observations, together with our previous assessment that the distribution
of vulnerabilities among the packages can be attributed to a power-law genera-
tion mechanism, indicate that there are specific packages that continue to have
large numbers of vulnerabilities for prolonged periods of time. As we can see
in Table 3.1, the total is dominated by major projects, some of which we like to
think of as leaders in the practice of secure software development. What is the
explanation for this phenomenon?

Do “stable” releases mature?: A typical explanation would be that vulnera-
bilities were induced by software upgrades and the number of vulnerabilities
affecting a specific version of a package gradually dropped to zero. An intuitive
hypothesis would be that at least for certain stable versions of a package, the
rate of vulnerabilities will eventually decrease. In order to test the claim that
specific versions of a package reach a relatively secure state (few vulnerabilities
reported per quarter) and that subsequent vulnerabilities that are attributed to
the package are caused by updates, we perform a case study on two popular
packages, namely PHP and OpenJDK. We pick these two packages because (a)
they are widely used, and (b) they recently underwent major version changes

39

an empirical study on the maturity of stable releases

(translated to significant differences in their codebase, in contrast to other pack-
ages like the Linux kernel which follow a very smooth version transition). The
hypothesis is that each major version of a package becomes more secure as
time passes, as a result of the hard work of the security community and that a
considerable amount of new vulnerabilities affect only the new code inserted
with the major updates. To test this hypothesis we inspected the vulnerabilities
reported for the newer versions of the packages and checked if they also affect
older versions.

(Case study on PHP)
PHP is a popular server-side scripting language that is used by 79% of all web-
sites whose server-side programming language is known14. We will look into
the transition from php5 to the next version php7

15 (php6 never made it to
the public). The vulnerability history of php5 (see Fig. 3.6) indicates that the
component is relatively hardened at the time the next version is released. The
vulnerability discovery rate is relatively low and stable for the last months be-
fore the launch of php7. To support our hypothesis, we would expect a good

Q
1
’0

7

Q
1
’0

8

Q
1
’0

9

Q
1
’1

0

Q
1
’1

1

Q
1
’1

2

Q
1
’1

3

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7
0

5

10

15

20

25

30

p
h

p
5

p
er

q
u

a
rt

er

before php7

after php7

Figure 3.6: Vulnerabilities of php5, during its presence in stable releases, before and
after the introduction of the next version (php7) in testing. Vulnerability rate: (a) before
the launch of the new version: ≈ 4 vuln./quarter; (b) after the launch of the new
version: ≈ 10 vuln./quarter.

amount of vulnerabilities after this point to affect the new version (php7) of
the software but not older versions (php5.x). However, while we can indeed
observe a substantial spike of vulnerabilities, most of those also affected the
previous version (php5.x). The launch of the new version may have instigated
researchers and bug hunters to look for vulnerabilities induced by the new
code, but instead what they found were already existing vulnerabilities from
previous versions - so called regressive vulnerabilities. After detailed inspection
of all security incidents tracked by the Debian Security Bug Tracker16, we found
that in the time window of January 2016 - January 2018, out of the 103 vulner-
abilities that affected php7, 81 (79%) also affected version 5 of the software17.

14 https://w3techs.com/technologies/details/pl-php (July 2020)
15 Official package name php7.0
16 Relying on affected versions information available at https://security-tracker.debian.org/

tracker/

17 Attribution of vulnerabilities to affected versions was made according to information about
patched versions in the Debian Security Bug Tracker.

40

https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/

3.6 results

Further investigation regarding the nature of these vulnerabilities shows that
a great portion of them are usual programming mistakes (e.g. input validation
errors or integer overflows). Hence, their discovery may not be associated with
any advances in the security tools used, rather it may reasonably be attributed
to the fresh eyes that reviewed the code of the newer version (increase in inter-
est – expended effort in bug finding).

(Case study on OpenJDK)
OpenJDK is an open source implementation of the Java Platform (Standard Edi-
tion), and since version 7, the official reference implementation of Java. Version
7 was introduced into the testing distribution of Debian in September 2011 and
became part of stable in May 2013 (Debian Wheezy). It remained part of the
stable until the release of Stretch (June 2017). The next version, OpenJDK-8, be-
came part of the testing distribution in May 2015 and became part of stable with
Debian Stretch (June 2017), replacing version 7. In Fig. 3.7, we see the vulnera-

Q
1
’1

3

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

0

5

10

15

20

25

o
p

en
jd

k
-7

p
er

q
u

a
rt

er before openjdk-8

after openjdk-8

Figure 3.7: Vulnerabilities of openjdk-7, during its presence in the stable release, before
and after the introduction of the next version (openjdk-8) in testing. Vulnerability rate:
(a) before the launch of the new version: ≈ 11.3 vuln./quarter; (b) after the launch of
the new version: ≈ 10.6 vuln./quarter.

bilities of version 7 before and after the introduction of the next version. Again,
there is no statistically significant decline in the rate of vulnerability reports,
and the introduction of the next version seems to contribute to the discovery of
vulnerabilities of the previous version. To put things into perspective, out of a
total of 38 vulnerabilities that were reported for openjdk-8 in the time span of
June-November 2017, only 2 did not affect version 7, and most of them (31/38)
also affected version 6, released almost 10 years prior.

(Case study on Debian Wheezy)
Although the detailed investigation of vulnerabilities for PHP and OpenJDK
gave us some useful insights about the current state of software quality, these
results cannot be generalized to other packages (also due to different release
policies). In order to get a more complete view of the effect of new vulnerabili-
ties on older versions, we study the security history of Debian 7 (Wheezy) that
was released in May 2013 and was supported until recently by the LTS18 team

18 Starting from 2014, Debian includes a Long Term Support (LTS) program, in order to extend
support for any release to at least 5 years in total. For this investigation we also utilize Debian
long-term support vulnerability advisories (DLAs).

41

an empirical study on the maturity of stable releases

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

100

200

300

400

500

V
u

ln
er

a
b

il
it

ie
s

p
er

q
u

a
rt

er regular

regular*

long-term

Figure 3.8: Vulnerabilities that affected packages of the Wheezy Debian release.
*From Q2/2015 to Q2/2016, both Debian 7 (Wheezy) and 8 (Jessie) were supported by the regular
security team. This was due to the fact that current Debian practice is that when a new stable
version is released, the previous one (now codenamed oldstable) is still supported by the regular
security team for another year and then passed to the LTS team. Therefore, the amounts of the
regular* period are a higher bound, as some vulnerabilities may have affected only the newer
release. We note that in the LTS phase, only one release is supported at a time.

(May 2018). In Fig. 3.8, we see the distribution of vulnerabilities per quarter,
starting from the release of Wheezy.

Even for a specific stable release of Debian, we can observe a clear upward
trend that continues in the LTS phase of the software. These results support
our findings for individual packages and show that the rate of vulnerabilities
is not decreasing, and to the contrary is slightly increasing over time, even
for a specific stable release over its whole lifetime of 5 years. This is quite
an unexpected result, as we see that there are no signs of depletion of the
vulnerability pool of a distribution as a whole even after 5 years. More research*
may be beneficial in order to individually analyze a larger number of packages
and potentially identify differences, e.g. between smaller and larger packages
or more popular and less popular packages. More detailed per project analysis
is beyond the goals of this chapter and therefore we leave such analysis for
future work.

The shared code effect: Shared code between applications (packages) can lead
to the same vulnerability affecting more than one of them. Since shared code
has been shown to be an important attack vector [74], we move on to inves-
tigate the prevalence of shared vulnerabilities in Debian. Of a total of 10 716

vulnerabilities affecting Debian packages, 2 462 affect more than one package.
In Fig. 3.9, we see the number of vulnerabilities that affected at least two pack-
ages over time, and in Table 3.2, the most prevalent package sets jointly affected
by vulnerabilities.

We observe that the package sets of jointly affected packages are dominated
by Mozilla products and the duo of mariadb and mysql. This is attributed to
the well-known fact that Mozilla products share a large portion of their source
code (referred to as Core modules19), and mariadb starting as a fork of mysql.
Although for all results presented in this chapter we count each vulnerability
only once even though it may affect one or more packages, we did not see any

19 https://wiki.mozilla.org/Core

42

3.6 results

package sets vuln. #

firefox, icedove 363

firefox, icedove, iceape 87

mariadb, mysql 85

firefox, icedove, iceape, xulrunner 57

firefox, iceape, xulrunner 28

firefox, icedove, graphite2 23

icedove, xulrunner 16

xpdf, kdegraphics 15

php7, file 13

imagemagick, graphicsmagick 11

Table 3.2: Most common sets of packages jointly affected by vulnerabilities.

’01 ’03 ’05 ’07 ’09 ’11 ’13 ’15 ’17

Year

0

50

100

150

200

250

R
ep

ea
te

d

Figure 3.9: Vulnerabilities affecting at least two Debian packages.

qualitative differences when counting vulnerabilities multiple times in any of
the trends we investigated. Therefore, we can conclude that the shared code
effect does not significantly affect the overall trends of vulnerability discoveries
in Debian.

Discussion on the results: In this section, we investigated the longitudinal
development of vulnerabilities in the Debian ecosystem. After an examination
of the vulnerabilities reported for the distribution overall (Fig. 3.5), individual
widely used packages (case studies on PHP and OpenJDK – Figs. 3.6-3.7), and
a specific stable release of Debian (case study on Debian 7 – Fig. 3.8), we did
not observe signs that the vulnerability discovery rate decreases over time. To
the contrary, we discerned a generally increasing rate of vulnerabilities overall.
Therefore, our observations contradict our hypothesis of maturing behavior.

One interpretation could be that we are still in the phase of the more we look
- the more we find. Although automated security tools and manual security in-

43

an empirical study on the maturity of stable releases

spection are becoming more widespread and effective, we have not reached the
point of curbing the vulnerability rate yet.

Our results allow us to draw interesting comparisons to studies performed
over a decade ago. Rescorla claimed [94] that there was no clear evidence that
finding vulnerabilities made software more secure, and that even the opposite
may be true, i.e. that finding vulnerabilities, given that their rate is not decreas-
ing, leads to more risk than good, by allowing hackers to attack unpatched
systems. Another study from 2006 by Ozment and Schechter [84] tried to chal-
lenge Rescorla’s claims and found evidence of a decrease in the vulnerability
rate of the foundational (in the code since the first version) vulnerabilities of
OpenBSD in a 7.5 year interval (statistically significant decrease was observed
after 5 years from the release of the sotware). As stated above, in our study
we did not observe such decreasing trends. Of course, we did not focus on
foundational vulnerabilities since most of the examined software projects are
rapidly evolving and foundational vulnerabilities would provide no actionable
insights. Our results show, that more than a decade later, the security of Debian
as a whole, and for PHP and OpenJDK individually, is not increasing. After the
impressive growth of the security community since 2006, we still either have
not reached the point where vulnerabilities have become substantially more
difficult to find, i.e. we have not seen signs of software maturity. Here, we have
to note that an alternative optimistic interpretation where the effort expended
in the vulnerability discovery process constantly increases over time, would
also fit our results, even if the quality of the software is in fact increasing. In
that case, we would expect to observe maturing behavior at some point in the
future, assuming that vulnerabilities are finite. Therefore, recreating the results
in this section in the future would be worthwhile.

Our results can also be compared to the more recent ones of Edwards and
Chen [31] from 2012. By investigating the vulnerabilities of Sendmail, Postfix,
Apache httpd and OpenSSL, they conclude that although the quality of the
software under question did not always improve with each new release, the
rate of CVE entries generally begins to drop three to five years after release,
indicating a stage of maturity of the software. Our results do not disprove the
fact that the vulnerability rate of a specific version may begin to drop three
to five years after its release. However, for the software packages of our case
study (PHP and OpenJDK), it increased again when the new version entered
the testing phase, likely due to a renowned interest in the new version as a
testing target combined with a significant amount of shared code between the
versions. This hints to the fact that testing scrutiny is a dominating factor of
the vulnerability discovery process, as “fresh” eyes looking at the code seem to
be able to find additional vulnerabilities. This comes back to our the more we
look the more we find interpretation of the results presented in this section. It is
worth noting that this interpretation also implies that the less we look the less we
find, meaning that we expect software programs that are not notable targets of
testing efforts to have very few vulnerabilities discovered.

In another work, Clark et al. [23] found that, out of all the primal vulnerabil-
ities (i.e. first exploitable vulnerabilities to be reported for a software release)

44

3.6 results

discovered, 77% of them affected earlier versions of the software. This result,
along with our observations, indicates that the difficulty of finding a specific
vulnerability may be subjective, and may vary considerably among different
researchers/testers. This would be an explanation of why focus on a new ver-
sion of a package leads to the prompt discovery of a majority of vulnerabilities
also affecting the previous version (that had not been discovered before). Con-
clusions made in [62] that the unique characteristic of each individual offers
unique bug-discovering potential and that each individual can expect to find
a bounded number of bugs, further support this claim. In short, the process is
still more of an art than a well-defined procedure, and the impact of automated
tools requires further investigation.

Looking into the bigger picture of software engineering, we can find inter-
esting relationships between our results and the Laws of Software Evolution,
proposed by Lehman in the 1970’s [56] and revised in the 1990’s [57], with the
addition of, among other, the Law of Declining Quality. This law states that
“The quality of E-type systems20 will appear to be declining unless they are
rigorously maintained and adapted to operational environment changes”. Our
observations could be interpreted as showing that we have not yet achieved
an adequate degree of rigorousness in our development and security processes,
since the vulnerability rate of stable software versions does not show signs of
decrease.

Summary: In Fig. 3.10 we provide a graphical summary of the main results*
of this section in the form of an IBIS map. There are three primary results/ar-
guments against the investigated hypothesis. Each of those arguments has a
number of further negative (against the hypothesis) or positive arguments (in
favor of the hypothesis) attached. Overall, we found no convincing evidence to
support H1.

3.6.3 Vulnerability Severity and Types (H2)

In this section we move on to investigate the same hypothesis as in the previous*
section (that software in Debian is maturing over time) taking into account
vulnerability severity (H2.1) and type (H2.2).

H2.1 Software in Debian is maturing over time when considering only severe*
vulnerabilities: Since we established that there is no observable decrease in the
overall vulnerability rate of FLOSS, we proceed to investigate the hypothesis
that although more bugs are discovered, they are less critical and more difficult
to exploit than before. We formulate the generally stated hypothesis above into
two specific hypotheses: (a) the ratio of high-severity vulnerabilities decreases over
time compared to less critical ones, and (b) the vulnerability discovery rate for critical
vulnerabilities decreases over time.

In Fig. 3.11, we see the progression of the ratio of low, medium, and high
severity vulnerabilities, as classified by their CVSS score. An obvious trend

20 E-type systems are, according to Lehman, real-world systems influenced by the environment
and people.

45

an empirical study on the maturity of stable releases

H1: Software in Debian is maturing over time when considering all vulnerabilities equally

Is software in Debian maturing over time? ('engineering')

Increasing reporting rate in Debian over time (Fig. 3.4)

Increase in the number of available packages unlikely to be the cause since average number of CVEs per
package is increasing over time (Fig. 3.4.b)

Increases in complexity or effort may account for this phenomemon rather than a decrease in quality

Surge in reporting rate of individual Debian packages after release of a new major version

Increase in reporting rate for PHP5 after the release of PHP7 (Fig. 3.5)

Increase in reporting rate for Openjdk-7 after the release of Openjdk-8 (Fig. 3.6)

Results may not generalize - Other packages may behave differently (esp. less popular/ smaller ones)

Increasing reporting rate during the lifetime of Debian 7 (Wheezy) incl. long-term
support (Fig. 3.7)

Increasing effort in the vulnerability finding process can be an optimistic interpretation of this result

Not all components necessarily follow this behavior. Further fine-grained study is needed

Conclusion

Overall, H1 is not supported by our results. Our interpretation is that we are still in "the more
we look the more we find phase". More emphasis should be put on averting the introduction of vuln. in the

first place. We discuss this issue further, along with several promising approaches in Section 3.7.

Figure 3.10: Summary of main results of Section 3.6.2 in the form of arguments pro/a-*
gainst the investigated hypothesis. Produced following a relaxed IBIS (Issue Based
Information System) notation with the designVUE tool.

’01 ’03 ’05 ’07 ’09 ’11 ’13 ’15 ’17
0.00

0.25

0.50

0.75

1.00
N/A

high

medium

low

Figure 3.11: Vulnerabilities severity of the stable release over time.

of domination of medium severity vulnerabilities is observed, with a gradual
decrease of the percentage of high and low severity vulnerabilities. We can also
see that low severity bugs represent a very small percentage (under 10%). This
can be attributed to the fact that the Debian security team only issues advisories
for bugs that warrant immediate patching, and often low severity ones are left
to be fixed as part of the normal release cycle of the package. We saw that

46

3.6 results

the percentage of high vulnerabilities shows a decrease recently compared to
normal and low severity ones, but are high severity vulnerabilities becoming
rarer?

To test this hypothesis, Fig. 3.12 shows the high-severity vulnerabilities dis-
covered during the whole lifetime of Debian Wheezy, including its LTS period.
It is evident that no decrease is observable, and to the contrary a statistically

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

50

100

150

200

V
u

ln
er

a
b

il
it

ie
s

p
er

q
u

a
rt

er

regular

regular*

long-term

Figure 3.12: High severity vulnerabilities of Debian Wheezy. The irregular peak of
Q3’17 can be largely attributed to DLA 1097-1 which contained 86 CVEs affecting tcp-
dump. During the regular* period 2 releases were concurrently supported by the secu-
rity team.

significant increase in the vulnerability discovery rate is observed until the end
of the release’s lifetime. Therefore, there is no sign of maturity even when only
considering critical vulnerabilities of a stable release of Debian. This gives an
overall picture, however it does not mean that all components necessarily fol-
low this trend. More fine-grained study and comparison of the behaviour of
the different packages may offer interesting results, however, as already stated
such comparisons fall outside the goals of this chapter and are left for future
work.

H2.2 Software in Debian is maturing over time when considering vulnerabil-
ities of certain types: If software development is just too fast and tools are still
limited and not widely applied, are we at least making progress on some part
of the problem? Are certain vulnerability types being eliminated as a result of
better practices and tools (e.g. more secure web programming, fuzzing tools)?
To test this hypothesis, we investigate the distribution of vulnerabilities over
time according to their types. Vulnerability type information is derived from
the “Research Concepts” view (CWE-1000) of the Common Weakness Enumer-
ation (CWE) list. According to the CWE documentation, this view is mainly
organized according to abstractions of software behaviors and is intended to
facilitate academic research into weaknesses. It follows a deep hierarchical or-
ganization where all vulnerabilities can be traced back to 11 root classes. In our
study we matched each vulnerability that was attributed a CWE number with
its root class(es). The 7 classes with a significant number of bugs are presented
in Table 3.3.

The progression of bug types over time is shown in Fig. 3.13. The plot starts
from year 2008, as this is the time where type classification of bugs started
becoming standard practice of the NVD. Two observations are made. First, a

47

an empirical study on the maturity of stable releases

root CWE Description

682 Incorrect Calculation, e.g. Integer Overflow

118

Incorrect Access of Indexable Resource (’Range Error’),

mostly Buffer problems

664

Improper Control of a Resource Through its Lifetime,

e.g. Information Exposure, Improper Access Control

691

Insufficient Control Flow Management,

mostly Code Injection, Race Condition

693

Protection Mechanism Failure,

mostly Improper Input Validation (CWE-20)

707

Improper Enforcement of Message or Data structure,

mostly Improper Neutralization (SQL injection, XSS)

710

Improper Adherence to Coding Standards,

mostly NULL Pointer Dereference

Table 3.3: Vulnerability type classification per root CWE number with most dominant
examples in our dataset.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0.0

0.2

0.4

0.6

0.8

1.0
N/A

710

707

693

691

664

118

682

Figure 3.13: Vulnerability types per year of Debian stable. Labels correspond to root
CWE numbers (research view).

big portion of bugs (N/A) did not fall directly under a CWE-1000 root class,
especially before 2015. This is because many vulnerabilities (especially older
ones) were classified in broad categories, such as CWE-16 “Code weakness” and
CWE-17 “Configuration weakness”, which are not compatible with the classes
of the Research Concepts view, and according to CWE suggestions should not
be used for mapping bugs – however NVD still maps to them anyway. Posi-
tively, in recent years the portion of unmapped bugs has fallen to under 20 %
of the total. The second observation is that three types capture most of the clas-
sified bugs, namely Memory Index (118), Improper Resource Control (664) and
Protection Mechanism Failure (693) errors account for more than 70 % of all
Debian bugs in 2017, with their ratio relatively stable since 2008. On the other
hand, message structure enforcement errors (707), in most cases improper neu-

48

3.6 results

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

0

50

100

150
C
W
E
-1
18

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

0

25

50

75

C
W
E
-6
64 regular

regular*
long-term

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

0

20

40

C
W
E
-6
93

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

0

50

100

N
/A

Figure 3.14: Main vulnerability types of Debian Wheezy, including LTS.

tralization of special characters leading to SQL injection (SQLI) or Cross Site
Scripting (XSS), show a decrease in their prevalence from more than 10 % in
2008-2010 to a negligible portion in 2016-2018. This may be a sign that at last
some maturity has been achieved for this specific bug type, which is reasonable
as these vulnerabilities are suitable for automatic detection. In fact, this result
supports the claims of [14], that automated black-box tools were effective at
finding XSS and SQLI since 2010.

We move on to test for trends in the absolute number of vulnerabilities per
type, rather than their ratio. In Fig. 3.14, the absolute number of bugs of the
three most prevalent types plus the unclassified ones, are shown for the whole
lifetime of the Wheezy release. No decreasing behavior can be observed for any
of the four types, and especially memory errors seem to increase dramatically
during the LTS period of Wheezy. However, no strong claims can be safely
made regarding this, as the incompatibility issues of the CWE directives and
the NVD classification hinders reasoning. On the positive side, the number
of unclassified reports significantly drops, signifying the potential for more
complete reasoning in the following years.

Discussion on the results: In this section we sought evidence supporting the
hypotheses that (a) the rate of discovery for severe vulnerabilities is decreasing,
and (b) the rate of discovery for specific vulnerability types is decreasing. Al-
though the ratio of high severity bugs compared to the total is decreasing, the
absolute number of severe vulnerabilities follows a similar statistically signifi-
cant increasing trend as the total number of vulnerabilities, with the positive
factor that the rate of increase is smaller compared to the total number of discov-
eries. Regarding types, we did not find evidence of a decrease of the prevalence
of any of the 3 main types (CWEs 118/664/693), however we noticed that XSS
and SQLI bugs due to improper neutralization are becoming rarer. Memory
bugs are still very prevalent and no maturity has been achieved in this cate-
gory, even though this type of bugs is most suitable for automatic detection
via fuzzers, and fuzzers like the AFL have become rather popular in recent
years. Our result are in agreement with Li and Paxson’s [58] vulnerability life-

49

an empirical study on the maturity of stable releases

time measurements in 2017, where XSS and SQLI were measured to have the
shortest median life span, whereas memory issues, like buffer overflows, had a
median life span around three times longer.

Fuzzing is an active topic of research but, as of now, AFL and libfuzzer21 are
the major / state-of-the-art approaches in practice. AFL, in particular is not new
(although it keeps evolving). If these tools had a significant impact in compar-
ison to manual search, one would expect a sharp increase in the vulnerability
rate, followed by a decline. Chromium and OpenSSL, for example, have been
primary targets for in-depth fuzzing; one would hope these efforts have a sig-
nificant effect. Unfortunately, based on our data and analysis so far, we cannot
confirm this. The promising observations about XSS and SQLI however, provide*
us with some hope that with constant improvements in fuzzing tools (coverage,
automation) we may observe a significant effect on the rate of memory vulner-
abilities in the future. More research on the effectiveness of automated tools in
practice and their impact on software quality is needed.

It is also valuable to compare our observations to the ones of Tan et al. [106]
who investigated bug characteristics of a subset of our dataset, namely the
Linux kernel, Mozilla and Apache, back in 2014. They found that semantic
bugs (defined as non-memory and non-concurrency bugs according to their
CWE classification) were the root cause of most (∼70 %) of the vulnerabilities.
We extend their results by observing trends over time and generalizing them to
a complete software distribution, while getting more detailed insights by using
the complete root CWE vulnerability type classification. Unfortunately, in [106]
there is no trend analysis of security bug types over time to compare with our
findings.

Summary: In Fig. 3.15 we provide a graphical summary of the main results*
of this section in the form of an IBIS map. Although there were some results
indicating a notion of improvement in security, following our main interpreta-
tion of maturity (i.e. decrease in the vulnerability reporting rate after a point in
time), our results contradict H2.

3.6.4 Bug bounty programs (H3)

So far, the security quality of FLOSS does not show clear signs of improve-
ment. Another popular argument, supported by numerous media reports, is
that rewards (offered by vendors, security companies and various bug bounty
programs) for the discovery of vulnerabilities are increasing. This would indi-
cate that they are becoming harder to find and software is indeed becoming
more secure. Their discovery rate may remain high because we invest more
and more in searching for them. In this section, we investigate the argument
mentioned above through the lens of the HackerOne bug bounty program (in-
troduced in 3.2) via our Hypothesis 3: Vulnerability discovery rewards for FLOSS
in HackerOne are increasing.

21 https://llvm.org/docs/LibFuzzer.html

50

https://llvm.org/docs/LibFuzzer.html

3.6 results

H2: Software in Debian is maturing over time when considering only
severe vulnerabilities or vulnerabilities of certain types

H2.1: ... when considering severe vulnerabilties H2.2: ... when considering vulnerabilities of certain types

Decreasing percentage of high severity vulnerabilities
over time (Fig. 3.9)

Could be an indicator of improved mitigation measures that make
exploitation more difficult

Increasing number of high severity vulnerabilities
during the lifetime of Debian 7 (Fig 3.10)

The rate of increase is slower than for vulnerabilities overall

Increasing reporting rate during the lifetime of Debian 7
for the 3 most prevalent types (Fig. 3.12)

No impact yet that can be attributed to the effectiveness of fuzzing in
discovering memory issues before release

Reports without a known type decreasing over time. Thus the increase
could be attributed to better information available in the NVD

Decreasing ratio of "message structure enforcement"
errors, mostly SQL injection and XSS (Fig. 3.11)

Could be attributed to the effectiveness of automated discovery
approaches

Conclusion

Although there exist arguments both for and against the hypothesis, the fact that no decreasing trend can be observed
for severe vulnerabilities or for any of the prevalent types (esp. memory issues) provides little support for maturity (H2).
This results further highlights the need for better prevention approaches and also raises interesting questions regarding

the impact of automated detection tools on software quality. The later is an interesting avenue for future research.

Is software in Debian maturing over time? ('engineering')

Figure 3.15: Summary of main results of Section 3.6.3 in the form of arguments pro/a-*
gainst the investigated hypothesis.

Table 3.4 presents a summary of the software covered by the IBB, as well
as the total and maximum bounties paid in each of the projects. Apart from
the projects that are named after the software components they target, there
exist two more general projects. The Data project was launched in 2017 and
rewards bugs in core infrastructure data processing libraries (e.g. curl), while
the Internet project rewards “the most critical vulnerabilities in the Internet’s
history”, and has famously given rewards for Shellshock ($20 000) and the Key
Reinstallation Attacks ($25 000). A total of 569 reports have been awarded a

Component Bounty # Discl. # Total ($) Max ($) Average ($)

PHP 252 236 170 500 4 000 722

Python 65 58 58 000 9 000 1 000

Data 33 18 11 000 1 000 611

Flash 69 50 175 000 10 000 3 500

NginX 4 2 6 000 3 000 3 000

Perl 12 9 7 500 1 500 833

Internet 89 26 122 000 25 000 4 692

Openssl 36 29 45 500 15 000 1 569

Apache 9 8 5 600 1 500 700

Total 569 436 601 100 25 000 1 379

Table 3.4: IBB dataset summary snapshot on November 2018.

51

an empirical study on the maturity of stable releases

total of more than $600 000 until November 2018 (counting only the 436 reports
with disclosed bounty amounts), with PHP accounting for almost half of all
reports, but less than 30 % of the bounties paid. Although there are interesting
distinctions to be made between the projects under the IBB, for the rest of the
chapter we will consider them as a uniform set of bug bounties, which to the
best of our knowledge represents the most significant bug bounty program for
FLOSS in existence.

First, we investigate whether security bug reports in the IBB follow the same
increasing trend as they do overall. The top left part of Fig. 3.16 presents the

14 15 16 17 18

0

25

50

nu
m

-
IB
B

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

0

5

10

n
ew

-
IB
B

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

0

500

1000

nu
m

-
A
ll

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

0

200

n
ew

-
A
ll

Figure 3.16: Number of claimed bounty reports (left) and new reporters (right) entering
the program for IBB (top row) and the HackerOne platform overall (bottom row) over
time.

number of reports that were awarded bounties by the IBB from 2014 until
November 2018. Notably, the number of bounties paid shows an increasing
trend until 2017 and then a decreasing trend until the end of the period in
question. This behavior shows that the bug bounty program was successful (at
least initially), yielding a large number of reports, and is more similar to the tra-
ditional reliability-style hardening/maturing behavior we expected to see (but
did not) for vulnerability discoveries in Debian (in Sections 3.6.1 and 3.6.3). Is
this a contradiction to our earlier observations? An indicator to support such
an increase in quality (vulnerabilities in components included in the program
are getting more difficult to find) is that the monetary amount of the awarded
bounties increases over time. To test it, we look into the progression of awarded
bounties over time.

Fig. 3.17 shows the trend in the amount of bounties rewarded, both for the
IBB and for the whole of the HackerOne platform. The right side of the fig-
ure considers only high and critical severity bugs as classified by the bounty
project’s security teams (not CVSS scores – but of similar nature). Since only
a few IBB bugs have been classified as either highly or critically severe, the
top right box plot consists of only a few points. In general, Fig. 3.17 shows
no increase in the level of the bounties rewarded in any of the 4 cases. On
the contrary, the mean and quartiles of the rewards are stable over time in all
cases. In combination with Fig. 3.16 and our previous observations, this points
to the fact that the decrease in the number of bounties paid in the IBB may be
attributed to the decrease of the attractiveness of the program in comparison to

52

3.6 results

14 15 16 17 18

100

102

104

IB
B
-a
ll

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

100

102

104

IB
B
-h
ig
h

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

100

102

104

A
ll
-a
ll

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

100

102

104

A
ll
-h
ig
h

Figure 3.17: (5-95%) box plot of USD paid over time for programs in the IBB (top) and
all programs in HackerOne (bottom). A further distinction is made between vulnerabil-
ities of any severity (left) and only high/critical (right) severity vulnerabilities. Trend
lines for the average (blue) and median (dark red). The only significant OLS trend
comes from the top left plot concerning all the bugs reported in the IBB: a statistically
significant decrease of the average as well as the median bounty. Detailed statistical
test results can be found in Appendix B.2.

other programs that have entered the platform, since bugs outside the platform
continue getting reported at a non-negligible rate.

Upon closer re-inspection of Fig. 3.16, we can see that the overall rate of
reporting in the HackerOne platform (bottom left) is almost stable over time
from the start of 2017, and this correlates with an increasing incoming flow of
new reporters over time, as shown in the right part of the figure. For the IBB,
the spikes in reports correlate with the introduction of new reporters in the
program (rather than older reporters finding additional vulnerabilities). This is
an indicator that the continued attractiveness of a program is important for its
success (rather than its attractiveness at its launch).

From the above, we cannot rule out that the IBB may not have a significant
market share of the hacker effort of the platform anymore, and this is the rea-
son its effectiveness is decreasing over time, although initially being successful.
We note here that an external factor that could lead to non-increasing bounties
could be a lack of interest due to a declining user base for IBB software. It is dif-
ficult to estimate the user base of non web-facing software accurately, however
different measurement reports point to a significant user base for software in
the IBB. More specifically, measurement reports on web servers22(Apache and
nginx two leading choices), back-end programming languages23 (“PHP is used
by 79% of all websites whose server-side programming language we know”),
programming languages in general24 (Python is the most popular language
with nearly 30% share), and cryptographic libraries [76] (openssl is dominant)
show dominant market shares for software in the IBB at the time of writing.
Moreover, note that the report rate in the IBB does not show any correlation
with updates and new releases of Debian. This further supports our claim that
the relative monetary attractiveness of a program is the dominating factor in
the process.

22 https://news.netcraft.com/archives/2019/04/22/april-2019-web-server-survey.html
23 https://w3techs.com/technologies/details/pl-php (November 2019)
24 http://pypl.github.io/PYPL.html

53

an empirical study on the maturity of stable releases

To further investigate our interpretation that the IBB declined in attractive-
ness over time, we looked into other aspects of the behavior of IBB reporters
(people with at least one IBB report) in HackerOne. Specifically, on the left
side of Fig. 3.18, we see the ratio of bounties paid to those reporters for IBB
reports, over the total amount they earned in the HackerOne ecosystem over
time. On the right side of the figure, we see the related quantity of the num-
ber of reports filed in the IBB, over the total amount of reports filed by those
reporters over time. Both plots indicate that (except from the anomaly of zero
reports in Q3’15) until 2017, IBB reports came from people that hardly reported
in other programs, hence they were focused only on the IBB. After that point in
time, only a small portion of the reports and associated awards were in the IBB
program, rather they were in other HackerOne programs. This indicates that
reporters may not have expended a large portion of their effort on the IBB after
2017, instead engaging in the program rather superficially.

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0.00

0.25

0.50

0.75

1.00

A
m

o
u

n
t

ra
ti

o

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0.00

0.25

0.50

0.75

1.00

R
ep

o
rt

s
ra

ti
o rest

in IBB

Figure 3.18: Ratio of bounty amounts (left) and number of reports (right) of IBB re-
porters (at least 1 IBB report at some point in time) comparing reports in the IBB
program against reports for other programs in HackerOne over time.

Discussion on the results: Our results presented in this section do not support
our hypothesis that bug bounty prices for FLOSS are generally increasing. It is
valuable to compare our results with some recent important papers in the area.
Zhao et al. [119] (2015) use the Laplace test to show that 32/49 organizations
on HackerOne show a decreasing rate of vulnerability discoveries in the pro-
gram and suggest that this indicates a positive effect and could be used as an
indication of the web security of an organization. Considering that a signifi-
cant amount of vulnerabilities affecting the software under question continue
getting disclosed outside the bug bounty program, we would attribute this de-
crease to (a) most importantly, the limited number of hackers taking part in
these programs – according to Maillart et al. [62] each hacker can only find a
bounded number of bugs and each hacker’s unique talents allow them to find
unique bugs, and (b) a relative lack of incentives to find more difficult vulnera-
bilities – hackers focus on the low-hanging fruit of newly introduced programs
– a claim suggested in both [62, 119]. Allodi’s study of an underground black
marketplace [8] shows that prices in such markets are rising over time, con-
trary to our results for the IBB. Thus, incentives for grey-hats to claim rewards
from black marketplaces may increase. In fact, Zerodium25, a zero-day exploit
acquisition platform selling information to “a very limited number of eligible

25 https://www.zerodium.com/

54

3.6 results

customers”, mainly government organizations, recently increased its rewards
for an iPhone remote jailbreak up to 2 million USD. On the same platform it
is advertised that a Linux PHP or OpenSSL remote code execution (RCE) can
pay up to $250 000, while a Linux NginX RCE can pay up to $200 000. Naturally,
these prices are a multiple of what is offered on ethical programs and by ven-
dors themselves, since many hackers would be reluctant to sell to undisclosed
government organizations. The legitimacy and legal implications of such pro-
grams (as Zerodium) is an issue that has not been discussed enough in the
community.

A bright spot comes from the fact that a considerable part of the FLOSS com-
munity may be considered altruistic and/or content with “swag”/reputation
rewards for discovering vulnerabilities, and therefore the collective effort ex-
pended in the vulnerability discovery process in FLOSS cannot be purely evalu-
ated by the monetary rewards offered in bounty programs such as HackerOne.
In general, we can say that bugs may indeed become more sparse inside a bug
bounty program, however this can be largely attributed to the limitations of the
program participants and may not be safely generalizable to claims about the
overall vulnerability landscape. Overall, the impact of bug bounty programs,
like the IBB is inconclusive at best and warrants further investigation. Further-
more, the motivations of reporters, especially in FLOSS, are still not well under-
stood and also warrant further investigation.

H3: Vulnerability discovery rewards for FLOSS in HackerOne are increasing

Conclusion

Interestingly, bounties for FLOSS in HackerOne do not increase with time even for severe
vulnerabilities. Therefore, our results do not support H3. They suggest that improvements in the

structure and operation of bounty platforms for FLOSS are needed. It would be interesting to
repeat these experiments considering newly introduced bug bounty programs for FLOSS.

Are financial rewards for FLOSS vulnerabilities in HackerOne increasing over time?
('economic')

Number of vulnerabilities in the IBB program of HackerOne drops after 2017 (Fig. 3.13)

Can be attributed to waning attractiveness of the IBB compared to other programs as IBB reporters turned to other
programs (Fig. 3.15)

As we saw for H1 the number of discoveries overall does not behave similarly

No increase in the average and median bounties paid for the IBB as well as for HackerOne
overall (Fig. 3.14)

Average and median bounties stagnant and even decreasing for the IBB even for severe vulnerabilities

Monetary rewards may not be the primary incentive for a large portion of FLOSS security researchers

Rewards in vendor programs as well as "grey" marketplaces such as Zerodium increasing
significantly

Can be attributed to the increasing potential impact of the vulnerabilities rather than the difficulty of finding them

Figure 3.19: Summary of main results of Section 3.6.4 in the form of arguments pro/a-*
gainst the investigated hypothesis.

55

an empirical study on the maturity of stable releases

Summary: In Fig. 3.19 we provide a graphical summary of the main results of*
this section in the form of an IBIS map. Note that the two main positive points
in the map do not directly relate to H3 but we map them nonetheless as they are
arguments that support an increase in the difficulty of finding vulnerabilities
that may be relevant to the reader. Overall, our results contradict H3.

3.6.5 Summary of main findings

We conclude this section with a compact summary of our main findings in this
chapter.

Summary of main findings

– H1: Software in Debian is maturing over time when considering all vulner-
abilities equally (Section 3.6.2): We found no clear signs of maturing be-
havior (i.e. decrease in the vulnerability rate as expected by standard
software reliability models) when looking into the whole Debian dis-
tribution, even when considering a single stable release over its entire
lifetime. More specifically, for popular packages that underwent major
updates, although a maturing behavior was observed until the next
version is released, the introduction of the new version caused a surge
in the vulnerability rate of the older version, indicating that maturity
does not necessarily come with time.

– H2: Software in Debian is maturing over time when considering only severe
vulnerabilities or vulnerabilities of certain types (Section 3.6.3): H2.1 (se-
vere): Although the ratio of high-severity vulnerabilities compared to
the total is dropping, their absolute number does not show a sign of
decrease. Hence, no maturity (in the sense of a decrease in the rate at a
certain point) can be claimed. H2.2 (types): Bug type ratio also appears
stable over time, with memory indexing (CWE-118) and semantic re-
source control (CWE-664) bugs accounting for more than half of all
vulnerabilities in recent years. Again no maturing behavior is observed
for any of the main vulnerability types. Tools and automated detection
methods targeting memory vulnerabilities don’t seem to contribute to
maturity until now, although a decrease in the prevalence of XSS and
SQLI bugs show that automated approaches may indeed potentially
contribute to improving quality.

– H3: Vulnerability discovery rewards for FLOSS in HackerOne are rising (Sec-
tion 3.6.4): Our investigation of the HackerOne bug bounty platform
showed that there is no increase in the rewards paid, even when consid-
ering only high severity vulnerabilities of popular FLOSS. Interestingly,
the (average and median) bounties paid on the platform overall, even
when considering proprietary programs, have remained stagnant over
time. Furthermore, the number of bugs found in the program showed
a decreasing trend, showcasing: (a) its effectiveness in the initial stages,

56

3.7 implications and discussion

and (b) its relative ineffectiveness in the long term (considering bugs
were found at a non-negligible rate outside the program and bounties
did not increase). Our results and their contrast to recent reports of
huge rewards offered for zero-days by offensive-oriented buyers pro-
vide interesting points of discussion for the community.

3.7 implications and discussion

In this section we highlight the implications of the insights gained from our
detailed and large-scale investigation into the vulnerability landscape of open
source software. These affect both development, distribution and testing pro-
cedures and guidelines, as well as tools, bug-finding incentives and security
metrics.

Need for improved procedures.
– Longer-term support: Our measurements point out that the current duration
of long-term/stable branches may not be enough to observe a maturing behav-
ior. The maintenance of longer-term branches may be required for situations
where security is an important factor.
– Stricter application of coding guidelines and testing strategies: Memory er-
rors, like buffer overflows, continue to dominate the landscape. Further educa-
tion of developers on memory issues and requirements to strictly follow guide-
lines could go a long way towards improving the situation. Furthermore, the
improvement and deployment of development-time testing, e.g. commit-based
static analysis methods like VCCFinder [88], that can be readily incorporated
in development processes, should be pursued.
– Threat indicator sharing: Considering that measurements have shown that vul-
nerabilities have been used for zero-day attacks in the wild and have remained
undiscovered for extended periods of time [15], it is valuable for organizations
to share information regarding attacks with each other. Therefore, effective
“real-time” information sharing platforms are required (in addition to detailed
and up-to-date collections of known vulnerabilities such as the CVE/NVD).
Efforts such as MISP [111] are encouraging and should be pursued further.

*

Longer-term security support may be needed in order to have releases
with observable maturity. Improvements in development practices (esp.
regarding memory issues) are required.

Need for new detection tools and improvements. More and better ways of
finding software bugs during all phases of the software lifecycle (especially
in the “testing” phase of the Debian release cycle) are needed. Tools like the
kernel fuzzer syzkaller26 paired with automatic continuous fuzzing of kernel
branches (syzbot) are steps in the right direction. Furthermore, Google’s re-

26 https://github.com/google/syzkaller

57

an empirical study on the maturity of stable releases

cently launched OSS-Fuzz project27 is an interesting positive initiative and may
produce measurable positive results in the near future. Given that memory bugs
are still a large source of vulnerabilities broader and yet faster runtime memory
error detectors like ASan (AddressSanitizer [101]), as well as detectors for other
dangerous behavior (e.g. UBSan28 for undefined behavior), are needed.

*

Continuous fuzzing should be applied to an increasing number of
projects. Novel fuzzing approaches (fuzzing different interfaces, new san-
itizers, better coverage) should be pursued. Further and updated studies
to assess and observe the impact of such tools on software maturity (po-
tentially utilizing the platform and methods presented in this chapter)
should accompany these efforts.

Need for more attractive bug-bounty programs for FLOSS. Our results show-
case that bug bounty programs can be effective, however increasing prices may
be required to guarantee their long-term effectiveness. The Internet Bug Bounty
(IBB) program is a positive initiative that has led to the discovery of many vul-
nerabilities in widely used FLOSS projects. The community should look to in-
crease the attractiveness of FLOSS bug-bounty programs in order to reap long-
term benefits, and not only “low-hanging fruit”. The monetary gap between
bounties paid to white-hat hackers in comparison to “grey” marketplaces, and
the effects of this gap, should also be seriously discussed.

Bug bounty programs for basic FLOSS component should be discussed
both withing the community as well as with policy-makers.

Need for more expressive security metrics and continuous measurement. In
our study, similarly to the vast majority of similar studies in the past, we have
focused on trends and attributes of disclosed vulnerabilities. More accurate
and expressive metrics will further enhance our understanding of the problem
and help set our priorities, and therefore progress in this area is critical. Such
advancements can also enable more effective security assurance. For example,
assessing the effort that was required to discover vulnerabilities (measuring the
difficulty to find them instead of their number), would better capture the secu-
rity quality of software. To the best of our knowledge this is an open problem.
Furthermore, studies investigating the life span of vulnerabilities (e.g. [58, 84])
are either based on manual effort to link vulnerability reports to the commit the
vulnerable code was introduced in, or on heuristics with limited accuracy. We
visit this issue in Chapter 4. Another problem of most empirical measurement
studies is that they analyze a snapshot of data at some point in time. Given
that the security landscape is changing at a high rate, we need studies that
are aimed at continuous measurement and plug-and-play reproducibility over
time.

27 https://google.github.io/oss-fuzz/
28 https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

58

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

3.7 implications and discussion

Overall, the number of discovered vulnerabilities, i.e. the vulnerability
discovery rate, does not convey information regarding the security qual-
ity of software, especially when viewed in isolation. Novel metrics cap-
turing other aspects of the process are required.

Need for more effective mitigation measures. Since vulnerabilities are seem-
ingly not rapidly depleted, continued focus on developing and deploying mit-
igation measures is crucial. Software countermeasures, like control-flow in-
tegrity or sandboxing of components/libraries, coupled with hardware (CPU)
features like NX/XD bits29, SMEP30/SMAP31/CET32, as well as recent low-
overhead isolation techniques [107] limit the effectiveness of a range of vul-
nerabilities that could lead to control-flow hijacking exploits, and make the
development of such exploits more difficult.

Since a steady stream of vulnerabilities are being discovered, hardware/-
software mitigation measures that make the exploitation of vulnerability
classes more difficult are of critical importance.

Need for security by design. Since finding and patching vulnerabilities seems*
to have limited influence in the overall quality of software, we should focus
a larger part of our efforts in ensuring that vulnerabilities (at least of certain
classes) do not make it into the code in the first place. A promising approach
is programming languages designed for safety, such as Rust33. The fact that
the vast amount of systems code is written in “traditional” programming lan-
guages that are not designed with safety in mind (e.g. C/C++) means that such
a countermeasure is more long-term oriented than other mitigations mentioned
above. However, we stress that such approaches of “security by design” that im-
pede the introduction of large classes of vulnerabilities are critical in improving
security and are a prerequisite for the effective utilization of ever-improving au-
tomated vulnerability detection approaches (fuzzing, symbolic execution etc.).
The latter is highlighted by the fact that recent improvements in detection ap-
proaches have led to a large amount of automated reports that require an ever
increasing—and often impractical—amount of effort to be manually inspected
and addressed (see e.g. the more than 10 000 reports of syzkaller for the Linux
kernel34).

Approaches that achieve some notion of “security by design”, like
memory-safe programming languages, seem necessary if we want to im-
prove software security.

29 no execute / execute disable bits to mark areas of memory as non-executable.
30 Supervisor Mode Execution Prevention
31 Supervisor Mode Access Prevention
32 Control-flow Enforcement Technology
33 https://www.rust-lang.org/
34 https://syzkaller.appspot.com/upstream

59

https://syzkaller.appspot.com/upstream

an empirical study on the maturity of stable releases

3.8 threats to validity

In this section we systematically go over the threats to the validity of the study
presented in this chapter following the well-established guidelines of Runeson
and Höst [96]35.

3.8.1 Threats to construct validity

Why not density? Some studies have looked into the vulnerability rate of soft-
ware per X lines of code (vulnerability density). However, this approach does
not fit our goal, as we investigate whether the quality of the stable versions of
software—w.r.t. security bugs—is increasing, or whether vulnerabilities are so
abundant that we are not finding enough of them in a reasonable amount of
time to make a practical difference (as our findings suggest). Additionally, due
to the great range of programming languages employed throughout the pack-
ages of Debian, this approach would not have yielded meaningful results in our
dataset. Interestingly, our findings suggest that the vulnerability density count,
when considering successive releases of a software component may actually be
misleading. This can be attributed to the vulnerability density dropping upon
introduction of new features during the lifetime of a software release, while the
absolute number of vulnerabilities may be increasing. Given our observation
(Section 3.6.2) that most vulnerabilities of PHP and OpenJDK are located in
components inherited by successive releases (can be considered “core” compo-
nents), an observed drop in the vulnerability density rate would convey a false
feeling of increasing quality.

Employed Metrics. The question here is what to measure: the quality of soft-
ware development or the quality of validation/detection/testing? The two are
clearly related, yet “software quality” is difficult to measure objectively. Other
important metrics for software security are the speed, consistency and reach
of patch distribution. In this chapter, we focus on the rate of vulnerabilities
discovered over time. We observe that according to this metric, the procedures
employed in development and validation of popular and widely deployed soft-
ware components is apparently not effective in reducing the rate of vulnera-
bilities found over time. This may be an effect of the employed development
model, constantly improving discovery tools and more effort and skills in the
community. However, the question remains: how can there be such a constant
or even increasing discovery rate over significant time frames, and what can we
do to improve this result?

Security architectures. Modern software protection and isolation technology
can prevent vulnerabilities from interfering with a particular platform or trans-
action, or make it hard to weaponize or scale a software exploit. However, even
mitigated vulnerabilities are typically still reported with a corresponding re-
duced CVSS severity rating, since they may lead to attacks in other contexts

35 Runeson and Höst classify aspects of validity and threats in four classes: Construct, Internal,
External, and Reliability.

60

3.8 threats to validity

and use-cases, or in combination with other vulnerabilities. In that sense, our
dataset reflects the effects of inherent software protections that objectively affect
or prevent a potential software vulnerability, but not situational/non-standard
measures that address the problem only in specific platforms or use-cases. Since
our goal is to analyze trends in software vulnerabilities and not a particular
platform/use-case, we believe this is a fair representation of deployed mitiga-
tion strategies.

3.8.2 Threats to internal validity

Data quality and availability. The challenges and arising biases when perform-
ing studies with data from vulnerability databases such as the NVD were cov-
ered in Section 2.4. Here we present a summary of the issues most relevant to
the analysis of this chapter and how their effect on the conclusions of the study
was mitigated.

• As evident by our observations in Section 3.6.3, the NVD classification of vul-
nerabilities does not closely follow the proposed CWE directives, although in
recent years this situation has improved. Additionally, some CWE leaf nodes
have multiple parents, and some CWEs have hardly any differences between
them. Therefore, we refrain from making strong claims about vulnerability
type trends concerning Fig. 3.14, erring on the side of caution. Fine-grained
analysis of type trends should be performed in the near future.

• The NVD is known to contain inaccuracies regarding the vulnerable pro-
gram versions, e.g. as documented in Nappa et al. [74] (inducing measurement
bias). We expect these inaccuracies not to affect our measurements, since we
used the Debian Security Advisories as the root of our analysis, meaning we
considered only those vulnerabilities which were recognized by the Debian
Security Team to affect the package versions included in the stable release
at any point in time. Of course, we cannot rule out that there exist mistakes
in the Debian Security Advisories or in other fields of the NVD entries (e.g.
severity, type), since these are products of manual work and may include
subjective judgment. What we achieved with our technique is to avoid the
known version-related pitfalls of the NVD, as well as additional bias intro-
duced by different reporting strategies, by only considering vulnerabilities
that had related Debian Security Advisories.

• Another potential source of bias in our measurements is the practice of
silently patching security vulnerabilities (especially for projects that have
automated patch deployment processes) or patching vulnerabilities without
assigning CVE identifiers (inducing publication bias). For the former, although
we cannot rule out that vulnerabilities have been silently patched in projects
distributed in Debian, we consider our Debian dataset less affected by such
bias in comparison to previous studies, as the Debian community is a fierce
advocate of full disclosure and the release cycle of Debian that focuses on sta-
ble releases goes against automated updates whose content is not specified

61

an empirical study on the maturity of stable releases

in detail. Regarding vulnerabilities that are not assigned CVEs, collecting
and including them in large-scale studies (whole distributions) seems im-
practical, however taking them into account when considering a smaller set
of software would be interesting.

• Concerning bug bounties, we only investigated the publicly visible part of
the HackerOne platform, and results may vary when considering the large
number of reports that are classified. Especially the apparent huge difference
in the amount of bounties offered by FLOSS on HackerOne, in comparison
to big companies, e.g. Google, needs to be further investigated.

Dependence of discoveries. As Ozment has pointed out in earlier work [85],*
vulnerability discovery events may be dependent. The discovery of a new vul-
nerability type, the introduction of a new automated tool, or a shift of focus
of an individual (or team) on a target, can result on a number of vulnerabili-
ties (e.g. as counted by their CVE identifiers) being discovered and disclosed
at the same time (inducing abstraction bias). In such cases Ozment argues that
these vulnerabilities should count as a singular detection event. Identifying
such dependencies in the data on a large scale is understandably challenging
and subject to different interpretations (e.g. one could assume that there exists
a dependence relation when the same individual or team reports a batch of
vulnerabilities of the same type, while someone else could assume that any vul-
nerabilities of the same type disclosed together or within an arbitrarily short
amount of time should be considered dependent). While such batches of depen-
dent discoveries can have a significantly detrimental effect on the fit of vulnera-
bility discovery models, we expect their effect on the study of long-term trends
to be less pronounced. Nevertheless, we acknowledge dependent discoveries as
a potential limitation of our study.

3.8.3 Threats to external validity – Generalization

In this study, we cover a wide range of software, based on analysis of auto-
matically collected publicly available data. Naturally, our results hold for the
specific software components under consideration and no general validity is
claimed. However, as stated in Section 3.2 we expect results derived for pack-
ages in Debian to be representative of other Linux distributions and a good
(best-case w.r.t. maturity) sample of the state of security of popular FLOSS pro-
grams. There are many more aspects and hypotheses that could be investigated,
as well as many more interesting targets. We encourage researchers to validate
our results and explore further ideas using our published framework DVAF (see
Section 3.5).

3.8.4 Threats to reliability

We did not identify an threats to the reliability of the study. The publicly avail-*
able code for the data collection and analysis enables reproducibility of the
results.

62

3.9 conclusion

3.9 conclusion

Regarding our main question, we conclude that there is no maturing effect ev-
ident for the security of FLOSS. An interpretation could be that the current
practice of vulnerability discovery is similar to “scratching off the tip of an ice-
berg”: it rises up a little36, but we (developers and the security community) are
not making any visible progress. Our analysis is, to the best of our knowledge,
the first to address the issue looking into such a large variety of software (whole
Debian distribution), spanning multiple versions.

However, not all is bleak. The community is making impressive effort in*
producing new fuzzing and static analysis tools, in addition to hardware secu-
rity features (to make exploitation more difficult), while vulnerability reporting
practices are showing signs of improvement. That being said, the need for bet-
ter metrics and measurement methods, as well as studies going further than
the measurement of the vulnerability discovery rate – since this rate does not
seem to produce meaningful insights – are at an all-time high. Specifically, two
main observations made in this chapter (see also Section 3.7) highlight two
aspects of the vulnerability discovery process that appear promising in provid-
ing indications regarding the quality of security (both comparative as well as
longitudinal) of a software project:

(a.) Vulnerability lifetimes. Vulnerabilities seem to remain in the code for ex-
tended periods of time; measuring how long vulnerabilities live in differ-
ent codebases can provide indications regarding the quality of the devel-
opment and vulnerability finding processes.

(b.) Expended effort. Human effort appears to be the leading factor affecting
the vulnerability discovery rate; assessing the amount of effort expended
in the vulnerability discovery process would allow us to “normalize” the
amount of vulnerability discoveries, e.g. per a unit of effort, and therefore
can help us compare between projects as well as more accurately assess
the evolution of security over time.

The two points above coincide with the second and third research questions*
already presented in Section 1.3, which we investigate in the following chapters.
Observations presented in this chapter help the reader now better understand
the motivation behind these research questions.

*

Key takeaways

There is no clearly observable decreasing trend in the vulnerability dis-
covery rate of stable software releases even five years after becoming
stable. Bug bounty prices for FLOSS do not increase either. Observations
based on the vulnerability discovery rate appear to carry little meaning

36 Typically about one tenth of an iceberg’s volume is above water (the “tip”), while the rest is
submerged. By removing volume (“scratching”) from the tip, part of the previously submerged
portion will rise above the surface, so that the ratio is preserved.

63

an empirical study on the maturity of stable releases

w.r.t. the security quality of a software project. Further investigation of
other aspects of the process is necessary. Two such aspects (vulnerability
lifetimes, human aspect/effort) are investigated in the following chapters
of this dissertation. The results also have important practical implications.
They suggest that more focus should be put into approaches that signif-
icantly reduce the number of vulnerabilities introduced in the code, e.g.
memory-safe programming languages.

64

4
A N E M P I R I C A L S T U D Y O N V U L N E R A B I L I T Y L I F E T I M E S

4.1 introduction

In the previous chapter we investigated the vulnerability discovery rates in
stable releases of popular FLOSS projects. We did not observe maturing behav-
ior (i.e. decrease) of the reporting rate even when considering the Long Term
Support period of individual package versions. This result implies that vulner-
abilities remain in the code for relatively long periods of time. But for how
long?

In this chapter we introduce and investigate the metric of vulnerability life-
time. We try to answer the second research question of Section 1.3: How long
do vulnerabilities live in the code? We do not seek to answer this question only
to appease our curiosity. We rather want to identify what vulnerability lifetime
can tell us about software security. Specifically, we are most interested in identi-
fying whether the metric can provide indications regarding the relative security
of different software projects, the development of security over time, and the
impact of tools and practices. While the relation between vulnerability discov-
ery rate and security may appear intuitively simple: “if the rate drops, security
increases”, the relation between vulnerability lifetimes and security is subtle.
Shorter lifetimes could mean shorter windows of exposure, in the sense that
adversaries have less time to discover vulnerabilities before they are patched –
this may be interpreted as an increase in security. On the other hand, longer
lifetimes could imply an increase in the quality of development, in the sense
that most vulnerabilities being discovered are “ancient” and we are finding vul-
nerabilities faster than we are introducing them (see also Corbet’s article [26])
– this can also be interpreted as an increase in security and code maturity. This
subtle and elaborate relation between vulnerability lifetimes and security will
be one of the main points of discussion in this chapter.

This chapter extends on the content of a research paper [2] to appear at the
USENIX Security Symposium ’22. The scientific contributions presented in this
chapter are:

• a novel heuristic approach for accurately estimating the lifetime of CVEs
without a known vulnerability introducing commit

• a rigorous validation study of the accuracy of the heuristic approach using
ground truth data

• a large-scale (>5.000 CVEs) empirical study of vulnerability lifetimes in 11

popular FLOSS projects

• a critical interpretation of the presented results and a discussion of their
implications

65

an empirical study on vulnerability lifetimes

Chapter organization. This chapter is organized following the steps of the gen-
eral methodology of Section 1.3. We first introduce the vulnerability lifetime
metric and state the specific research questions that we later investigate (Sec-
tion 4.2). Then, we provide an overview of the related work on the topic (Sec-
tion 4.3) and a detailed definition of vulnerability lifetimes for software projects
using version control systems (Section 4.4). Next, we describe in detail our
dataset creation methodology (Section 4.5) and our novel heuristic approach
for estimating vulnerability lifetimes (Section 4.6). We then present the results
of our large-scale empirical study (Section 4.7) followed by a discussion on
their implications (Section 4.8). Finally, we discuss some possible threats to the
validity of our results (Section 4.9) before concluding the chapter (Section 4.10).

Availability

The code for the dataset collection, the estimation of vulnerability life-
times, as well as for the analysis presented in this chapter is publicly
available at https://github.com/nikalexo/VulnerabilityLifetimes

under a free software license. We also make a snapshot of the
data used in this chapter available at https://figshare.com/s/

4dd1130c336f43f6e18c.

4.2 motivation and research questions

To better convey the concept of a vulnerability’s lifetime, we first briefly re-
fresh the reader’s memory of the vulnerability lifecycle, presented in detail in
Section 2.2. A vulnerability’s lifecycle, or window of exposure as introduced by
Schneier [100] and Arbaugh et al. [13], describes the phases between the intro-
duction of a vulnerability in the code, and the point in time when (virtually)
all systems affected by that vulnerability have been patched. There have been
several adaptations of the vulnerability lifecycle concept (e.g. w.r.t. the number
of phases, or their ordering and its non-linearity), but the general concept re-
mains the same, and a simple version is shown in Fig 4.1. The lifecycle of a

tint tf td tfix tp

vuln. in
tro

duced

vuln. fo
und

vuln. pub. disc
losed

fix
available

all h
osts

 patch
ed

timePhase 1 Phase 2 Phase 3 Phase 4

Figure 4.1: Simplified plot of a vulnerability’s lifecycle. Continuous line shows period
of possible exploitation.

vulnerability (or alternatively the window of exposure to a vulnerability) be-

66

https://github.com/nikalexo/VulnerabilityLifetimes
https://figshare.com/s/4dd1130c336f43f6e18c
https://figshare.com/s/4dd1130c336f43f6e18c

4.2 motivation and research questions

gins with its introduction into a product (at time tint). This first phase (Phase 1)
of its lifecycle ends with its discovery by some party (tf). Phase 2 covers the time
period during which a vulnerability is known to at least one individual (and
there is an associated risk of exploitation depending on their intentions), but
is not publicly disclosed yet. Phase 3 begins with the public disclosure of the
vulnerability (td) and ends with the publication of a patch fixing the vulnerabil-
ity (tfix). Finally, Phase 4 ends when all vulnerable hosts have been patched (tp).
The phases described above can be long, short or even non-existent, depending
on the specific vulnerability and the processes of the affected product’s vendor.
For example, if a vulnerability is discovered by an ethical hacker and responsi-
bly disclosed, the software vendor has the opportunity to eliminate Phase 3 by
disclosing the vulnerability together with the fix. This is common practice for
many projects. In some cases (most often concerning proprietary software), a
vulnerability can be silently patched, meaning public disclosure never occurs,
and the phases may differ significantly from the figure.

While the latter phases of the vulnerability lifecycle have received renewed
research attention [37, 74, 103], this has not been the case for the early phases.
A particularly interesting quantity describing the early part of the lifecycle
(Phases 1–3), is the amount of time a vulnerability remains in the (upstream1)
codebase of a project. In the context of a version control system, it is the time
between a Vulnerability Contributing Commit (VCC), and a fixing commit. We
refer to this quantity as a vulnerability’s code lifetime, or just lifetime for the rest
of this document. This quantity can provide valuable insights regarding code
maturity, can guide practical decisions, and can help us investigate fundamen-
tal questions such as: Is the quality of software improving? Are some vulnerabilities
harder to find than others? What impact do automated testing tools have on the lifetimes
of vulnerabilities? Can we use lifetimes to compare software quality?

Previous approaches towards measuring vulnerability lifetimes either relied
on manual mappings of fixing commits to VCCs[25, 26, 84], which meant they
were limited in scale (low number of vulnerabilities affecting one project), or
used heuristics to estimate lower bounds [58, 94]. Li and Paxson [58], in par-
ticular, provided lower bound estimates for vulnerability lifetimes using an
automated approach, as part of their large scale study on security patches.

Research Questions. Although accurately estimating the lifetime of vulnerabil-
ities is a useful contribution on its own, the real power of a metric comes from
the insights that can be derived by its application. The main research questions
we set off to answer in this chapter are summarized by the following points:

– How long do vulnerabilities remain in the code? Do these lifetimes differ for different
projects or different vulnerability types? How long does it take to find certain portions
of ultimately discovered vulnerabilities (e.g. 25/50/75 percent)? Answering these
questions will provide us with insights regarding the duration of the window
of exposure for different projects. Results can aid decisions regarding the
amount of time a “stable freeze” (only critical patches are applied to the

1 The “original” codebase where development takes place. In contrast to downstream, which usu-
ally refers to a packaged version of the software.

67

an empirical study on vulnerability lifetimes

software) should last, and for how long investing on dedicated long-term
security support for a stable version may be necessary. Results could also be
used to derive some notions of quality (of security) useful for comparisons
between different projects.

– Are lifetimes increasing or decreasing over time? Are there signs of improved qual-
ity? How did the introduction of automated tools affect lifetimes? Answering these
questions will help us approach a fundamental question of software security
from a novel angle: is software getting more secure over time?

4.3 related work

In this section, we place related work in the context of the content of this chap-*
ter. There exists a considerable amount of work on measuring different aspects
of software security. Here we provide an overview of the work most closely re-
lated to the topic of this chapter. We set off with a brief overview of prior work
on measuring different characteristics of vulnerabilities and on vulnerability
discovery models (more details on these works can be found in the Related
Work Section of Chapter 3). We then proceed to provide a systematic overview
of notable prior work measuring the duration of different phases of the vulner-
ability lifecycle2, including works that aim to measure vulnerability lifetimes,
which are the ones most closely related to the contributions of this chapter.

Vulnerability characteristics and discovery rates. Studies in this field range
from general measurement studies on bug characteristics [106], to studies on
the vulnerability discovery rate and its trends in various software projects [3, 23,
94]. A notable strand of work focuses on vulnerability discovery models (often
referred to as VDMs) that try to capture the vulnerability discovery rate of
specific software products after their release. Most of these models try to model
the after-release discovery rate as a function of time [5–7, 45, 49], and some as
a function of expended effort, either measured as the market share of a specific
product [7], or the cumulative user months estimated to have elapsed since
its release [114]. These reliability-inspired discovery models most often focus
on a specific version of software (static codebase) and their accuracy against
empirical data has been contested [3, 82, 83]. Specifically, empirical evidence
(including our own – see also Chapter 3) has shown that there might be no
decreasing trend in the rate of vulnerability discoveries, or even if such a trend
is observed, it may be attributed to a decrease in the detection effort, rather
than the depletion of vulnerabilities. Therefore, the community has identified
the need to measure different aspects of the security process. One such aspect
is the time that elapses between events in a vulnerability’s lifecycle, i.e. the
duration of different phases of the vulnerability lifecycle. We address this body
of work in the remainder of this section.

2 For a reminder on the main phases of a vulnerability’s lifecycle the reader can refer to Figure 4.1
of the previous Section.

68

4.3 related work

Duration of vulnerability lifecycle phases. We provide an overview of the*
notable studies that measure the duration of different parts of the vulnerability
lifecycle in Table 4.1.

Reference Phase(s) Details

Nappa et al. [74]
4

Patch application in Microsoft Win-
dows hostsSarabi et al. [98]

Kotzias et al. [51] Patch application in enterprise hosts

Krebs [52, 53]
2,3

Timing of discovery, disclosure, patch
and exploit availabilityFrei [37, 38]

Shahzad et al. [103]

Bilge et al. [15]
2 Zero day attacks in the wild

Albon & Bogart. [1]

Rescorla [94]3

1–3

Lifetimes based on version numbers

Ozment & Schechter [84] Lifetimes and rate of vulnerabilities in
OpenBSD (focus on foundational)

Corbet [26], Cook [25] Lifetimes of Linux vulnerabilities

Li & Paxson [58] Quality and timing of patches – lower
bound for vulnerability lifetimes

Table 4.1: Overview of selected related work measuring the duration of different*
phases (also sub-phases and combination of phases) of the vulnerability lifecycle.

Phase 4 of the lifecycle, namely how fast patches are applied to vulnerable*
systems, and how this relates to attacks in the wild, was studied by Nappa et
al. [74]. They found that patching takes place at a rather slow rate, resulting in
only 14% (median fraction) of hosts is patched when exploits become publicly
available. Sarabi et al. [98] extended the aforementioned study by focusing on
the behaviour of end users. Kotzias et al. [51] later performed a study on patch-
ing speed in enterprise hosts. They found that enterprise hosts gets patched
faster than consumer hosts (comparing their results to Nappa et al.). However,
there was still a significant window of exposure to most vulnerabilities in their
study.

Krebs [52, 53], Frei [37], and Shahzad et al. [103] measured characteristics of*
Phases 2 and 3 of the vulnerability lifecycle, namely how fast patches are made
available in relation to their reporting date, the date of public disclosure of the
respective vulnerabilities, and the date an exploit becomes publicly available.
Shahzad et al. [103] observed that for the years 2008-2011 patches for more
than 80% of total vulnerabilities in their dataset were provided before public
disclosure. Phase 2 of the lifecycle, namely how long vulnerabilities remain
undetected since they have been discovered by attackers and used in zero-day

3 Most of the analysis regarding lifetimes is not part of the published work provided in the ref-
erence but was part of the earlier not formally published workshop paper, which can be found
here: https://infosecon.net/workshop/downloads/2004/pdf/rescorla.pdf.

69

https://infosecon.net/workshop/downloads/2004/pdf/rescorla.pdf

an empirical study on vulnerability lifetimes

attacks, was studied by Bilge et al. [15]. They found that zero day attacks on Mi-
crosoft Windows hosts lasted between 19 days and 30 months, with an average
duration of 312 days.

The main topic of this chapter, vulnerability lifetimes, i.e. the amount of time
vulnerabilities remain in the code in the (upstream) repositories of non-static
projects (combined duration of Phases 1–3), has received attention, but limited
progress has been made to date. A potential reason may be the difficulty of
automatically assessing when a vulnerability was introduced in a codebase.

Rescorla [94] included some rough estimates (based on often unreliable [77,*
79] version information in the ICAT vulnerability database up to 2003) of vul-
nerability lifetimes as part of his seminal study on vulnerability depletion. He
observed a mean lifetime of 2.5 years and an exponential distribution of life-
times for the whole dataset. Ozment and Schechter [84] measured the amount
of time it took for vulnerabilities of OpenBSD to be discovered and patched,
focusing on foundational vulnerabilities (i.e. vulnerabilities that were part of the
code since the first release of the software). They found that the discovery rate
of foundational vulnerabilities was slowly declining over time but these vulner-
abilities had a median lifetime of at least 2.6 years. Their dataset consisted of
140 vulnerabilities (87 of which were foundational) and they computed their
lifetimes by manually inspecting the version control system to identify the
point of introduction of each vulnerability. Their limited dataset rendered it
impossible to study the development of vulnerability lifetimes over time with
confidence. In a short LWN.net article, Corbet [26] presented the results of a
small-scale study on 80 CVEs affecting the Linux kernel. This was followed
by a blog post from Cook [25] on the amount of time 557 Linux kernel CVEs
remained in the code. The latter two studies relied on manually curated data
(either of the author or from the Ubuntu Security Team) and only touched the
surface of the problem, being limited to providing a plot of the data. However,
the interest they raised, expressed in lengthy discussions in their respective
forums, acted as a motivation for our work.

The most relevant study that investigated vulnerability lifetimes is, to the
best of our knowledge, the recent work by Li and Paxson [58]. A small part of
their insightful large-scale study on security patches in open source software,
is dedicated to assessing a lower bound for vulnerability lifetimes. Using an ap-
proximation of the exact value rather than a lower-bound approach, our results
regarding vulnerability lifetimes differ by an order of magnitude compared to
theirs. Also, due to a more detailed per-project analysis, our conclusions do
not support their hypothesis that vulnerability lifetimes and their types are cor-
related. Finally and most importantly, our heuristic method for automatically
estimating vulnerability lifetimes allows us to investigate with confidence cru-
cial aspects of the problem for the first time, e.g. how lifetimes vary between
different projects and how they develop over time.

70

4.4 vulnerability lifetime in version control systems

4.4 vulnerability lifetime in version control systems

A vulnerability’s code lifetime, or just lifetime for the rest of this document, has
been informally defined as the amount of time a vulnerability remains in the code-
base. This is the time that elapses between a change in the codebase that intro-
duces a weakness4, and the change in the codebase that fixes the – in the mean-
time discovered – weakness. In a version control system, such as git, SVN, or
mercurial, these changes are part of commits. These commits include metadata
about each change (e.g. commit timestamp, author) and the complete history
of a repository can be tracked via a tree-like structure of commits (including
branching and merging commits). A commit that contributed to the introduc-
tion of a weakness is known in literature [67, 88] as a Vulnerability Contributing
Commit (VCC), and a commit that helped resolve the issue is referred to as a fix-
ing commit. A vulnerability may have multiple VCCs and fixing commits due
to several reasons, for example:

– a CVE may cover multiple programming errors. For example, CVE-2019-
10207 describes a flaw in the bluetooth drivers of the Linux kernel. The fixing
commit5 indicates that checks were missing in the bluetooth driver files of
several manufacturers, pinpointing 5 responsible VCCs with commit dates
spanning 8 years. Another example is CVE-2015-8550, which describes flaws
in 2 linux kernel virtualization drivers (Xen blktap and Xen PVSCSI), intro-
duced in 2013 and 2014 respectively, and fixed with a patch spread among 7

commits all with the same commit date in 2015
6.

– a vulnerability may be removed and then re-introduced. For example CVE-
2017-18174 describes a double free in the Linux kernel that was introduced
in 2015, removed without being designated as a security issue roughly a year
later as part of a commit that “cleaned the error path”, re-introduced by
a commit that provided new functionality 6 months later, and finally fixed
again within a month of re-introduction7.

– a fix may be extensive, requiring multiple commits. For example the fix of
CVE-2017-9059 included considerable refactoring of the code and changes
spanned 2 fixing commits committed within a day8. Another Linux kernel
vulnerability with CVE-2012-2119, this time a buffer overflow, had a patch
spanning 5 short fixing commits modifying the same file, all committed on
the same day9.

4 What constitutes a weakness is open to definition and often also to discussion among project
contributors/developers. In the empirical part of this chapter, we count vulnerabilities by their
CVE identifier in the NVD, as often done in literature. We note that the CVE identifier is a level of
abstraction higher than individual weaknesses, in the sense that multiple related weaknesses may
be grouped together under a unique CVE identifier. However, for the sake of text simplicity, for
the rest of the chapter, we do no differentiate between the concepts (1 CVE-ID = 1 vulnerability).

5 https://github.com/torvalds/linux/commit/b36a1552d7319bbfd5cf7f08726c23c5c66d4f73

6 more information at https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1530403.
7 more information at https://bugzilla.redhat.com/show_bug.cgi?id=1544482.
8 more information at https://www.spinics.net/lists/linux-nfs/msg63334.html.
9 more information at https://bugs.launchpad.net/ubuntu/+source/linux/+bug/987566.

71

https://github.com/torvalds/linux/commit/b36a1552d7319bbfd5cf7f08726c23c5c66d4f73
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1530403
https://bugzilla.redhat.com/show_bug.cgi?id=1544482
https://www.spinics.net/lists/linux-nfs/msg63334.html
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/987566

an empirical study on vulnerability lifetimes

4.4.1 Defining a vulnerability’s lifetime

Defining a lifetime metric comes down to explicitly defining the start and end
points of the time measurement.

– Which of the potentially multiple VCCs/fixing commits should we consider
as a start/end point? Considering the causes for multiple commits either intro-
ducing or fixing a vulnerability (as discussed in the previous paragraphs), we
decide to use the first of the VCCs as the start of the time measurement and the
last of the fixing commits as the end. For cases like the first example concern-
ing multiple sub-vulnerabilities described in one CVE, we therefore measure
the lifetime of the oldest one. For re-introduction cases, like the one in the sec-
ond point above, we measure the total lifetime. In those cases, this whole period
is most often a period of risk for systems running “stable” software versions
(only applying critical patches), since the premature fix is often not designated
as a security issue, and therefore not considered a critical patch.

– Which timestamp to use? Most projects use a “main” branch of development
(master or main in git) to track their code, and have a public mirror of this reposi-
tory so that users can download the most recent versions of the code10. Changes
are then developed, discussed, and tested in private copies of the repository.
When a change is ready to make it to the main branch, it is either (a) prepared
as a (typically short) series of commits based on a recent reference commit and
then merged into the main branch, or (b) directly committed to the main branch.
For the purpose of measuring the lifetime of a vulnerability as a part of its win-
dow of exposure, we would want to measure the time between the VCC and the
fix becoming widely available to users (including, e.g. maintainers of software
distributions). Following this argumentation, we would use the time a VCC or
a fixing commit was merged into the main branch as its timestamp, rather than
its “commit timestamp” (because the change may potentially be kept private
until merging). This was indeed our first approach. However, from our empir-
ical results we came to the conclusion that this adds unnecessary complexity
to both the definition and the computation of the metric. The time between the
commit and its merging into the main branch is usually very short (average
of ∼20 days) in comparison to the lifetime of a vulnerability (average in years).
This is due to the fact that the usual practice after a fix is prepared and tested,
is to download the most recent version of the code from the main branch of
development and create a patch against this version. Furthermore, more com-
plexity in the definition would have been needed to account for fixes that were
never merged into the main branch because the vulnerability they addressed
only affected older versions of the software (and were therefore merged into e.g.
a stable branch). Considering the above, we backtracked and decided to use the
commit timestamp, which is readily available in the metadata of a commit in
all three popular version control systems (git, SVN, mercurial).

10 see https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git for Linux.

72

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

4.5 dataset creation methodology

4.5 dataset creation methodology

In this section we describe the data collection and cleaning process. This pro-
cess allowed us to create the largest and most complete, to the best of our
knowledge, datasets of (a) mappings between a CVE and its VCC(s), and (b)
mappings between a CVE and its fixing commit(s). We therefore consider the
dataset to be a valuable contribution in itself and have made a snapshot publicly
available for other researchers to use11.

4.5.1 Mapping CVEs to their VCCs (ground truth)

An integral part of our dataset are mappings from CVEs to their VCCs, to be
used as a “ground truth” dataset. These mappings come from manually cu-
rated datasets of researchers and project maintainers and enable us to evaluate
and validate methods that automatically estimate lifetimes of vulnerabilities for
which no such ground truth data are available.

The largest source that we identified for such mappings is the Ubuntu CVE
Tracker [21]. In this project, the Ubuntu Security Team gathers and curates
several data points on vulnerabilities affecting the Linux kernel, often including
their fixing commits and VCCs. Note that we excluded some of the mappings in
the project from our dataset as their corresponding VCC is the first commit of
the git era for the Linux kernel12, leaving us with 824 mappings between CVEs
and their VCCs. Our reasoning is that vulnerabilities found in this commit were
introduced before the beginning of the git era and thus using the timestamp of
the initial git commit would let their lifetime appear shorter than it actually is.

Additionally, we found 295 ground truth mappings for Chromium13, and 74

for the Apache HTTP Server (Httpd) in the Vulnerability History Project [70].
The Vulnerability History Project is, among other things, a data source to ex-
plore the engineering failures behind vulnerabilities, and is maintained by Andy
Meneely, the researcher who introduced the term Vulnerability Contributing
Commit [67]. The project also contains a few additional data points for reposi-
tories other than Chromium and the Apache HTTP Server, however these repos-
itories do not use C/C++ as their main programming language. Since the quan-
tity of those mappings for other programming languages was too low to vali-
date the accuracy of our methodology on them, we decided to limit our dataset
to C/C++ repositories. Overall we were able to collect mappings for 1 193 CVEs
to one or more VCCs, from high-quality sources. These mappings constitue our
ground truth dataset.

11 https://figshare.com/s/4dd1130c336f43f6e18c

12 Linux development moved to git in 2005. The first commit of the git era for Linux
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=

1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.
13 Chromium is a web browser on its own right, but its codebase is also used as a basis for Google

Chrome, as well as other web browsers.

73

https://figshare.com/s/4dd1130c336f43f6e18c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1da177e4c3f41524e886b7f1b8a0c1fc7321cac2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1da177e4c3f41524e886b7f1b8a0c1fc7321cac2

an empirical study on vulnerability lifetimes

4.5.2 Included projects

For our analysis, we want a large representative sample of FLOSS projects that
are compatible with our ground truth dataset and provide enough data points
for our analysis. As starting point, we established the following requirements
for software projects to be included:

a. The project should be free and/or open source with transparent and consis-
tent security workflows. In fact, all projects that were included at the end of
this process are distributed under Debian14 as free/libre software. Nonethe-
less, they are widely used in other operating systems and make up a good
representation of FLOSS in general.

b. The project should have a considerable number of reported CVEs. In order
to enable a thorough analysis of all projects, we limited ourselves to those
with at least 100 CVEs to ensure meaningful results (we expect statistical
arguments to be possible). This condition forced us to discard many projects
we considered interesting, simply because they did not have enough CVEs
to date.

c. The project should be mainly written in C or C++. Intuition suggests that
our methodology would provide results of similar quality for other pro-
gramming languages with similar syntax and semantics, such as Java. How-
ever, we did not have enough ground truth data available to empirically
prove this hypothesis for other programming languages, and therefore fo-
cus on C/C++.

d. Lastly, we require a significant number of a project’s CVEs to be linkable
to a fixing commit. We had to discard some projects because it was not
possible to consistently identify the fixing commit(s) for the project’s CVEs.

In the end, we created a dataset for our evaluation consisting of 11 different
projects of various sizes, ages and areas of application. All included projects and
their respective number of CVEs and corresponding fixing commits are listed
in Table 4.2. We thoroughly investigated (using a combination of automated
scripts and manual effort) commit messages, bug tracking systems and NVD
references, to ensure the highest possible yield of vulnerability mappings. A
general description of the process follows in the next section. Details regarding
the exact number of mappings found in each source for each of the included
projects can be found in Appendix C.4.

4.5.3 Linking CVEs to their fixing commits

Our data collection process is based on information from the National Vulner-
ability Database (NVD) [80]. The NVD is manually curated and represents one
of the largest collections of software vulnerabilities. Consequently, the NVD is
frequently used in research on software security and the analysis of its data

14 https://www.debian.org/

74

https://www.debian.org/

4.5 dataset creation methodology

has generated valuable insights on various topics. On the other hand, the NVD
has some well-known pitfalls that the process described below tries to miti-
gate. This issue is further discussed in Section 4.9. For our work, we relied on
the CVE-Search tool [30] to obtain a local copy of the NVD for querying and
obtaining data.

For our analysis of vulnerability lifetimes, we had to link a vulnerability
entry in the NVD to one or multiple commits resolving the underlying flaw in
the software. These commits are referred to as fixing commits. In order to create
the largest possible dataset for our evaluation, we applied and combined four
different approaches.

1. CVE-ID in Commit Message. Some fixing commits mention the related
CVE-ID in the commit message, establishing a link between CVE and fixing
commit. We investigated all these mappings using a combination of auto-
mated scripts and manual effort. First, we accepted as correct all mappings
that mention the CVE-ID in a project-specific syntax (e.g Bug-Id: CVE-2017-
9992) that clearly denotes a matching CVE. We manually analyzed the re-
maining 176 mappings (mentioning a CVE but not in a standard project-
specific syntax), and removed 17 unjustified mappings, corrected 2, and
added 2

15.

2. Commit in NVD Reference. Entries in the NVD often contain references to
third party websites that include security advisories, bug tracking systems,
and also links to commits in a project’s version control system. In the cases
where a reference to a commit in the respective repository was included, we
considered this commit to be a fixing commit. We manually validated the
mappings obtained using this method by investigating a random subset of
50 samples. We found that all of the sampled commits were indeed fixes for
the respective CVEs.

3. Common Bug ID. Many software vendors use dedicated bug tracking sys-
tems in their development process. Each commit corresponds to a bug iden-
tifier that is denoted in the commit message using a particular syntax. Thus,
most commits can be linked to a certain bug ID. NVD entries, on the other
hand, may contain a link to the vendor’s online bug tracking system in their
references. Using regular expressions, the bug ID can be extracted from such
links and then matched to corresponding commits. We assume that the de-
velopers mentioned the correct bug identifiers in their commit messages and
the curators of the NVD reference the correct bugs as well. We recognize that
this is a potential threat to the correctness of these mappings (see Section 4.9),
but are confident the errors are negligible.

4. Third party mappings.16 As the information provided by linking vulnera-
bilities and fixing commits is useful for various purposes, fellow researchers

15 There were two occasions where a fix belonged to multiple CVEs as indicated in the commit
message.

16 Note the distinction between third party mappings between CVEs and fixing commits (this
paragraph), and between CVEs and VCCs (Section 4.5.1).

75

an empirical study on vulnerability lifetimes

and security experts have collected similar data for some software projects.
In addition to our own analysis, we incorporated this data, especially in
cases where acquiring the information in an automated fashion was partic-
ularly difficult. We relied on three different third party mappings: (a) data
provided by the Linux Kernel CVEs project [61], (b) mappings that were man-
ually curated by Piantadosi et al. [91], (c) information from the Debian Secu-
rity Tracker [27]. We are confident in the quality of data obtained from these
parties, as they are either curated from reliable sources or relied on a data
collection methodology similar to ours.

Project CVEs w/ fix. com. # fix. com.

Linux (kernel) 4 302 1 473 1 528

Firefox 2 179 1 498 3 751

Chromium 2 781 1 580 2 820

Wireshark 600 314 343

Php 663 281 932

Ffmpeg 326 277 373

Openssl 214 144 259

Httpd 248 132 476

Tcpdump 167 115 128

Qemu 340 213 290

Postgres 139 76 141

Total 11 959 5 914 11 041

Table 4.2: Number of CVEs and mappings per project. First column gives the total
number of CVEs returned from a search of the NVD. Second column gives the number
of those CVEs for which at least one fixing commit was found in the project repository.
Third column gives the total number of fixing commits found per project.

These efforts resulted in a dataset of 5 914 CVEs across 11 projects that can be
linked to (one or more of) their respective fixing commits. The corresponding
numbers of CVEs as well as the resulting number of mappings from this pro-
cess are listed in Table 4.2. CVEs with associated fixing commits are a subset
of all of the CVEs in the NVD. For the calculation of vulnerability lifetime, we
could only consider those CVEs for which an associated fixing commit could be
identified in the code repository. Rather than being a limitation of the approach,
this addresses an important problem with the NVD regarding the reliability of
information regarding vulnerable products and versions (highlighted in previ-
ous research [74, 79]).

Contrary to Li and Paxson [58] we focused our efforts on a smaller set of
projects, each with a significant number of NVD entries available (>100). This
allowed us to study lifetimes in a per project basis. We dedicated considerable
effort towards achieving as high a mapping rate (CVEs to fixing commits) as
we could for the included projects. We strove to identify all potential syntaxes

76

4.6 lifetime estimation

for denoting bug IDs and all websites and corresponding hyperlinks belonging
to the same bug tracking system. We also combined multiple of the introduced
techniques. Consequently, we believe our dataset to be the most complete map-
ping for the included projects to date.

4.6 lifetime estimation

In this section, we describe our methodology for automated lifetime estimation
from vulnerability fixing commits. We start off by evaluating a lower-bound
approach used in a previous work [58]. To the best of our knowledge, we are
the first to evaluate this approach against ground truth data.

4.6.1 Lifetime estimation in previous work

Calculating the lifetime of a vulnerability is a non-trivial task, as finding VCCs
can be very difficult [67]. One previously employed approach is to manually
identify VCCs via thorough analysis of the fixing commits of a vulnerabil-
ity [84]. While this method may yield the most accurate results, it is unsuit-
able for large scale studies and requires significant expertise. Therefore, Li and
Paxson [58] opted for an automated approach to solve the problem. They ap-
proximated a lower bound for the lifetime of a vulnerability by appropriately
using the git blame command. Git blame returns the commit that last changed
a specific line in a given file (in a git repository), and so can be used to help
trace a vulnerability back to its origin. Li and Paxson ran the command on each
deleted or modified line of a given fixing commit; this process usually returned
multiple candidate VCCs (at most one for each of the lines that were either
deleted or modified). Then, they selected the most recent of the commit dates
of the returned VCCs as their vulnerability introduction date, going for a lower
bound approach.

Although our empirical evaluation showed that this approach is successful
at calculating a lower bound on the lifetime of a vulnerability, we found it too
conservative for our needs. To be precise, we found that it underestimates the
average lifetime for vulnerabilities in our ground truth dataset by around a
year (346.88 days). Due to the large underestimation of average lifetime and
large deviations of the error on different projects (see Table 4.3) we deem this
approach unsuitable for our study.

A heuristic similar to Li and Paxson’s was used by Perl et al. in VCCFinder [88],
albeit for a different goal. Their git blame-based heuristic aims to pinpoint the
exact VCC, with the goal of creating a dataset suitable for training a classi-
fier that can flag risky commits. Contrary to the Li and Paxson approach (that
only blames lines that were deleted or modified in the fixing commit), the VC-
CFinder heuristic also takes into account lines added by the fixing commit. The
commit that is blamed the most often is then marked as the VCC.

In VCCFinder, the accuracy of the heuristic is calculated at 96%. This figure
was derived by the authors by taking a 15% sample of VCCs (96 in total) that the
heuristic identified, and manually verifying their correctness. Naturally, simply

77

an empirical study on vulnerability lifetimes

applying an almost perfectly accurate heuristic seemed like a good fit for our
use-case. Unfortunately, in our evaluation of the heuristic against ground truth
data, we could not observe similar accuracy (empirical accuracy against ground
truth data: ~40%). We attribute the overly optimistic evaluation of the accuracy
of this heuristic by Perl et al. to the difficulty of pinpointing VCCs manually
(which was their method of validating the results of the heuristic). Furthermore,
we manually compared the output of their heuristic to our ground truth data
for 10 randomly picked CVEs, where the two estimates differed.For 9 out of
10 cases, we found the proposed commit of our ground truth dataset to be the
correct VCC, and for the remaining case we decided that both proposed com-
mits were reasonable VCCs17. Our results seem sensible considering the fact
that software developers put a significant amount of manual effort18 into regres-
sion tracking which includes identifying VCCs. Thus, it seems likely that the
accuracy of a relatively simple heuristic like this, will be limited. However, for
the purpose of training a classifier that pinpoints “risky” commits with the aim
of drastically reducing the search space for subsequent manual auditing, such
accuracy is perfectly acceptable. Indeed, the authors of VCCFinder showed that
their approach was successful in finding previously un-flagged vulnerabilities
and outperformed existing approaches.

Project (CVEs) Li & Paxson our approach 1 our approach 2 Lifetime

ME St. dev ME St. dev ME St. dev Mean

Linux (885) -323.7 1 033.2 157.5 1 127.6 163.1 994.0 1 330.8

Chrom. (226) -370.3 747.5 -15.5 754.1 -38.4 633.4 754.2

Httpd (60) -599.8 1 160.0 257.4 915.8 22.4 868.9 1 890.2

All (1 171) -346.8 993.7 129.2 1 057.9 117.0 932.5 1 248.2

Table 4.3: Comparison of heuristic performance between the lower-bound approach
of Li&Paxson, “our approach 1” based on a repurposed version of the VCCFinder
heuristic [88], and “our approach 2” – our optimized heuristic (weighted average). All
against ground truth data and measured in days (ME: Mean Error). The last column
provides the mean lifetime computed on the ground truth data.

4.6.2 Our approach

A key observation is that we do not need to pinpoint the exact VCCs for our
purposes. It is sufficient to approximate the point in time when a vulnerability
was introduced. We found that an efficient way to achieve this is to re-purpose
the VCCFinder heuristic with some slight modifications (similar to the ones by
Yang et al. [117]). We modify the heuristic in such a way that it returns an ap-
proximation (in days) of how long the code was vulnerable instead of the exact
VCC. This is done by averaging multiple possible dates when the vulnerabil-

17 The results of the complete manual analysis of the 10 CVEs can be found in Appendix C.6.
18 https://lore.kernel.org/lkml/3519198.TemPj1OATJ@vostro.rjw.lan/

https://yarchive.net/comp/linux/regression_tracking.html

78

https://lore.kernel.org/lkml/3519198.TemPj1OATJ@vostro.rjw.lan/
https://yarchive.net/comp/linux/regression_tracking.html

4.6 lifetime estimation

ity could have been introduced, and assigning different weights depending on
how often each individual commit was blamed. Our approach is as follows19:

1) We use git blame20 to map every “interesting” change of a fixing commit to
potential VCCs. In detail, we:

– Ignore changes to test files21, non C/C++ files, comments and empty lines.

– Blame every line that was removed.

– Blame before and after every added block of code (two or more lines) if it is
not a function definition, as these can be inserted arbitrarily.

– Blame before and after each single line added by the fixing commit if it
contains at least one of these keywords ("if", "else", "goto", "return", "sizeof",
"break", "NULL") or is a function call. This approach was shown to perform
well in blaming actual VCCs by Yang et al. [117].

2) We then calculate the estimated introduction date dh from the list of blamed
commits. For n commits we have:

dh = dref +
1∑n
i=1 bi

n∑
i=1

bi(di − dref) (4.1)

where bi is determined by the number of blames the commit i received and
di is the respective commit date22. For easier calculation, the dates are repre-
sented as difference in days to an arbitrary static reference date dref (January
1, 1900). According to Equation 4.1, each of the blamed commits contributes
proportionally to the number of blames it received.

Using this heuristic, we decrease the mean error on our ground truth dataset
(applying the heuristic on CVEs for which we have ground truth VCCs) by 66%
compared to using the lower-bound blaming heuristic of Li & Paxson, effec-
tively overestimating the actual average lifetime on average by 117 days (see
Table 4.3). However, having a low error on the ground truth dataset does not
necessarily mean that the approach is suitable for our needs. We have to address
some additional important points regarding the robustness of the approach, as
follows.

How many data points are needed? A standard deviation of more than 900

days means that individual measurements are generally subject to significant
error and therefore not reliable for drawing conclusions. Thus, we need to rely
on measurements of the mean over larger sample sizes. Treating the errors as in-
dependent random variables sampled from the error distribution of Figure 4.2,
we can compute the expected standard deviation of the sample mean for a

19 A preliminary version of the approach was introduced in Manuel Brack’s Bachelor’s thesis.
20 All projects that we investigated either used git or offered a git mirror of their repositories.

However, the approach is generalizable, as other version control systems offer similar commands
(e.g. svn blame or hg annotate).

21 “test” as part of the file name
22 Note that in equation 4.1, operators are overloaded (to act both on dates and integers). Maybe

more precise notation would be better here, however the calculation is simple.

79

an empirical study on vulnerability lifetimes

2000 1500 1000 500 0 500 1000 1500 2000
Heuristic error (days)

0.0000

0.0005

0.0010

0.0015

De
ns

ity

Figure 4.2: Distribution of heuristic errors in days (Excluding datapoints with no error
for readability). Equally sized bins.

given sample size with the Bienaymé formula. According to the Central Limit
Theorem, the distribution of the sample mean will be normal for a large enough
number of samples. We empirically conclude that at least for 20 or more sam-
ples, this holds for the distribution of the errors. Therefore, we can compute
bounds for the sample mean using normal distribution tables. For example,
for a sample size of 20 and a confidence level of 95%, we expect the sample
mean to approximately lie in the interval [117-395, 117+395] days23. Making
the simplification that the mean error is 0 (useful for generalization), we can
say that for a confidence level of 95%, the margin of error will be +−395 days
for 20 samples, +−250 days for 50 samples, and +−176 days for 100 samples (com-
pared to an average lifetime of almost 1150 days, calculated from the ground
truth data). We consider the margin of error for 20 samples as the maximum
tolerable error for our study, and set the minimum number of data points for
a measurement to 20. We, therefore study means of at least 20 CVE samples,
although for most of our analysis (e.g. average lifetimes per project, vulnerabil-
ity types), we consider means of 60 or more samples. Note that the calculations
above are approximate and their aim is to get a lower bound for the number
of samples required for meaningful estimation. As we will show empirically
in the following paragraphs of this section, the performance of the heuristic is
very good when adhering to this practice (minimum 20 samples).

Does the weighted average heuristic generalize (over time & between projects)?
Although we have a limited number of data points in our ground truth dataset,
we can see that the performance of our heuristic is comparable for the three dif-
ferent projects with ground truth data available (see Table 4.3). Another source
of confidence in the robustness of our heuristic is that its error is symmetrically
distributed around a low mean value (that can be assumed to be zero), as can be
seen in Figure 4.2. Intuitively, this means that the errors “automatically” cancel
out. To understand why this is important, let us consider an alternative ap-
proach. This would be to find a suitable “perfect constant” to add to the lower

23 x +− z
σ√
n

for x=117, σ=900, n=20, and z=1.96 for a 95% confidence interval (from the normal
distribution tables).

80

4.6 lifetime estimation

bound estimation (as computed by the Li & Paxson approach) with the goal
of correcting its output to go nearer to zero. We found that depending on the
data sampled, a perfect constant generally performs worse than our weighted
average approach. Taking Chromium as an example, calculating a constant up
to some date X and then adding it to the output of the lower bound estimation
approach, does not provide a good estimate compared to the weighted average
heuristic. For example, assume the available data for Chromium are split into
two subsets with fixing commits before 2014, and with fixing commits in 2014

and later. Calculating a perfect constant on the first dataset and applying it to
the second (by calculating the mean error of the heuristic in the first dataset
and applying a fixing additive factor to the estimated mean of the second), re-
sults in an average underestimation of 228.58 days, while the weighted average
heuristic underestimates the correct lifetime by only 33.56 days. Also, the calcu-
lated constants between the Linux kernel and Chromium differ drastically (the
kernel constant would be up to 6 times larger), which shows that this approach
cannot be transferred between projects. On the contrary, our “tuning-free” ap-
proach provides good results for all three projects, for which we possess ground
truth data.

Can we use the heuristic to assess trends and distributions? In the next sec-*
tions we will use data points generated by the heuristic to plot and examine
lifetime trends (over time) as well as the characteristics of the distribution of
lifetimes. Therefore, we empirically investigate the accuracy of the heuristic in
such situations.

Figure 4.3a shows the ground truth lifetimes of 867 Linux kernel CVEs (for
which we have ground truth data available), per year from 2011 to 2020. For
the same CVEs, it also shows the estimate by our weighted average heuristic,
in addition to the best linear fits for the trend in each case. Visual inspection
of the plot as well as the relatively small difference in the calculated best linear
fits (gradient of 163 days/year for heuristic, 155 days/year for ground truth)
supports the assertion that the heuristic can be used to study lifetime trends
over time. A similar conclusion can be made by looking at the corresponding
plot for Chromium (Figure 4.3b). The computed gradients are 91.92 days/per
year for the heuristic and 87.85 for the ground truth data in this case.

To assess whether the heuristic is also suitable for estimating the distribution
of vulnerability lifetimes, we plot and compare the histograms of the ground
truth data and the output of the heuristic for the same CVEs. Figure 4.4 shows
the histogram, exponential fit on the histogram24 , and the respective Q-Q plots,
for all CVEs with ground truth data and the output of the heuristic for those
CVEs. From the histograms, we can see that the two distributions are simi-
lar (decreasing exponentially, similar ratio of mean to median). The Q-Q plots
(comparing the distribution of the data to the theoretical distribution of the
best exponential fit) are also subject to the same interpretation: excellent fit up
to around 4 000 days, good fit up to around 5 000 days, and then divergence
from the theoretical distribution.

24 We investigate the goodness of fit to an exponential distribution, as this is the best candidate
distribution we examine later in Section 4.7.

81

an empirical study on vulnerability lifetimes

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
year of fixing commit

0

1000

2000

lif
et

im
e

in
 d

ay
s Heuristic Lifetime

Groundtruth lifetime

(a) Linux

2010 2011 2012 2013 2014 2015 2016
year of fixing commit

0

1000

2000

lif
et

im
e

in
 d

ay
s Groundtruth lifetime

Heuristic Lifetime

(b) Chromium
Figure 4.3: Year trend comparison of ground truth and heuristic data for Linux and*
Chromium.

4.7 results

In this section, we present the results of applying our weighted average heuris-
tic for lifetime estimation on a large dataset of 5 914 CVEs with available fixing
commits25. For 1 171 of those data points we use ground truth data, and for
the rest we use the weighted average heuristic (see Section 4.6 for details) to
approximate their lifetimes.

4.7.1 General

Table 4.4 shows an overview of the computed lifetimes for each project, as well
as for the dataset as a whole. In general, vulnerabilities live in the code for long
periods of time (over 1 900 days on average). This fact has also been indicated by
previous research [3, 25, 26, 84]. More interestingly, we observe large differences
between projects (TCPDump has 4 times the average lifetime of Chromium—
see Table 4.4). There can be multiple possible explanations for these differences
(e.g. better security protocols, general development, code churn) that we fur-
ther touch upon in the following subsections. Also, we observe that the median
is generally lower than the mean. This gives an indication regarding the distri-

25 Due to the restrictions of the heuristic (e.g. it only considers changes in C/C++ files) the total
number of CVEs with an estimated or ground truth lifetime is 5 436.

82

4.7 results

0 1000 2000 3000 4000 5000 6000
Heuristic lifetime (days)

0.0000

0.0005

De
ns

ity Exponential fit
Median
Mean

(a) Histogram for heuristic data

0 1000 2000 3000 4000 5000 6000
Ground truth lifetime (days)

0.0000

0.0005

0.0010

De
ns

ity Exponential fit
Median
Mean

(b) Histogram for ground truth data

0 1000 2000 3000 4000 5000 6000
Exponential theoretical quantiles

0

2500

5000

He
ur

. q
ua

nt
.

(c) Q-Q plot for heuristic data

0 1000 2000 3000 4000 5000 6000
Exponential theoretical quantiles

0

2500

5000

GT
 q

ua
nt

.

(d) Q-Q plot for ground truth data
Figure 4.4: Histograms of lifetime distribution between heuristic and ground truth data
for the same CVEs. The exponential fit to the histograms and the corresponding Q-Q
plots are also provided.

bution of lifetimes within a project. This issue is specifically investigated in the
following subsection.

4.7.2 Distribution

Figure 4.5 shows the distribution of lifetimes for all CVEs, along with an ex-
ponential fit. Upon initial visual inspection of the histogram of Figure 4.5, we
selected the exponential distribution as a potentially good fit to the data.

83

an empirical study on vulnerability lifetimes

Project Lifetime

Average Median

Linux (kernel) 1 732.97 1 363.5

Firefox 1 338.58 1 082.0

Chromium 757.59 584.5

Wireshark 1 833.86 1 475.0

Php 2 872.40 2 676.0

Ffmpeg 1 091.99 845.5

OpenssL 2 601.91 2 509.0

Httpd 1 899.96 1 575.5

Tcpdump 3 168.58 3 236.0

Qemu 1 743.86 1 554.0

Postgres 2 336.56 2 140.0

Average of projects 1 943.48 1 731.0

All CVEs 1 501.47 1 078.0

Table 4.4: Overview of average lifetimes per project (ordered by number of CVEs)

0 1000 2000 3000 4000 5000 6000 7000
lifetime

0.0000

0.0002

0.0004

0.0006

De
ns

ity

Exponential fit
Median
Mean

Figure 4.5: Distribution of vulnerability lifetimes. 200 equally sized bins.

Q-Q plots [112] are commonly used for comparing empirical data to the-*
oretical distributions (they are a more powerful technique than the common
approach of comparing histograms of the two samples). Figure 4.6 shows the
Q-Q plot comparing the distribution of the empirical data to the exponential
fit. Interpreting the plot, we can see an excellent fit for lifetimes up to around
4 200 days that then slowly diverges. The nature of the divergence is that the
empirical data are more concentrated in the region around a lifetime of 5 000

days, while the theoretical distribution expects values to increase faster. We can
say that we have a good fit for lifetimes up to 5 000 days. The theoretical dis-
tribution expects 3.38% of the data points to have a lifetime of over 5 000 days,

84

4.7 results

0 1000 2000 3000 4000 5000 6000
Exponential theoretical quantiles

0

1000

2000

3000

4000

5000

6000

Sa
m

pl
e

qu
an

til
es

Figure 4.6: Q-Q Plot comparing the theoretical exponential distribution and our data
(blue points). The fit is excellent up to a lifetime of around 4 200 days and then gradu-
ally diverges. We can say it remains a good fit up to a lifetime of around 5 000 days.

while 2% of our empirical data have a lifetime of over 5 000 days. We consider
this to be reasonably small yet significant divergence, and thus assess that the
theoretical distribution is a very good fit to the data up to this point (lifetimes
over 4 200 or 5 000 days depending on the required accuracy of the calculation).
The divergence for large lifetimes is expected, as the exponential distribution
generates non-negligible mass for very large variable values (as it goes to in-
finity), whereas vulnerability lifetimes are naturally restricted by the age of a
project.

We then additionally employed the Kolmogorov-Smirnov test as described in
the seminal methodology of Clauset et al. [24] to statistically compare the fit of
the exponential to other candidate distributions, such as the power law or the
lognormal. We found the exponential to be a statistically significant better fit.
Additional details about the fitting process and further evidence supporting the
goodness of fit of the exponential distribution can be found in Appendix C.3.
Given all the above, the distribution of Figure 4.5 can be adequately approxi-
mated by the probability density function below26:

f(x) =
1

1501.47
e−

1
1501.47x (4.2)

This distribution has an average value of 1 501.47 days and a median (re-
ferred to as half-life in nuclear physics) of ln2·1 501.47 = 1 040.74 days. This
is the amount of time required for half of the vulnerabilities to be fixed. Con-
versely, 63% of vulnerabilities are fixed before the average lifetime of 1 501.47

days. Exponential distributions also provide satisfactory fits for the vulnerabil-*
ity lifetimes of single projects, when considered in isolation (with small vari-
ations – see Figure 4.7). This can also be observed in the average and median

26 For most of the probability mass, except the tail (>5 000 days) as discussed above.

85

an empirical study on vulnerability lifetimes

0 1000 2000 3000 4000 5000 6000
lifetime

0.0000

0.0005

De
ns

ity Exponential fit
Median
Mean

(a) Distribution of vulnerability lifetimes for Firefox

0 1000 2000 3000 4000 5000 6000
lifetime

0.00000

0.00025

0.00050

De
ns

ity Exponential fit
Median
Mean

(b) Distribution of vulnerability lifetimes for Linux

0 1000 2000 3000 4000
lifetime

0.0000

0.0005

0.0010

De
ns

ity Exponential fit
Median
Mean

(c) Distribution of vulnerability lifetimes for Chrome

0 1000 2000 3000 4000 5000 6000
lifetime

0.0000

0.0002

0.0004

De
ns

ity Exponential fit
Median
Mean

(d) Distribution of vulnerability lifetimes for Wireshark
Figure 4.7: Lifetime distribution per project with theoretical exponential fit (100 equally-*
sized bins except for the plot for Wireshark which has 50 so as not to have a significant
number of empty bins).

values of Table 4.4. For most projects (especially the ones with many data points
available), the median is close to ln2 (~0.69) times the average.

According to our analysis, for all intended purposes of this study, the empir-
ical distribution of lifetimes in a project can be adequately approximated by an
exponential distribution.

86

4.7 results

2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

1000

2000

lif
et

im
e

in
 d

ay
s

Lifetime
Li&Paxson estimate

(a) All CVEs

2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

1000

2000

lif
et

im
e

in
 d

ay
s Lifetime

Li&Paxson estimate

(b) Firefox

2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

1000

2000

lif
et

im
e

in
 d

ay
s Insufficient data

Lifetime
Li&Paxson estimate

(c) Chromium

2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

1000

2000

lif
et

im
e

in
 d

ay
s

Insufficient data
Lifetime
Li&Paxson estimate

(d) Linux

Figure 4.8: Average Lifetime trend (computed with our weighted average approach)
for all CVEs, as well as for Firefox, Chromium and Linux, in isolation. A lower bound
computed similarly to Li and Paxson’s approach is included for completeness. Vertical
error bars show confidence intervals for each year and “translucent bands around the
regression line” give a confidence interval for the regression estimate. All at a 95%
significance level and as computed by the seaborn python library via bootstrapping.

87

an empirical study on vulnerability lifetimes

4.7.3 Trends over time

To investigate the progression of vulnerability lifetimes over time, we grouped
CVEs by their fixing year (year of their last fixing commits, as also discussed in
Section 4.4) and calculated the average lifetime for each year. Figure 4.8 shows
how vulnerability lifetimes progressed over the years for the dataset as a whole,
as well as for Firefox, Chromium and Linux. These were the projects that had
enough CVEs (>20) for each year to confidently assess their lifetime over an
extended period. Specifically, the grey area in the plots covers the years before
the first year when at least 20 CVEs with fixing commits were available for the
project.

Overall (Figure 4.8a), vulnerability lifetimes show a sign of increase over the
years with some fluctuation. When considering all CVEs, their average vulner-
ability lifetime increases by 42.78 days per year.

Considering each of the selected projects individually, for Chromium (Fig-
ure 4.8c) and Linux (Figure 4.8d) we can observe clear increasing trends, whereas
for Firefox (Figure 4.8b), vulnerability lifetimes are stable, even with a slight
decreasing trend. It is interesting to note that although the overall increasing
trends for Chromium and Linux are similar, lifetimes for Chromium can fluctu-
ate significantly over the years, while the values for Linux fluctuate less around
the linear increasing trend. For the other projects that do not have enough
datapoints for year-by-year analysis, we group CVEs per 2 or more years (for
additional figures refer to Appendix C.5). In total, out of the 11 projects in our
study: 3 (Chromium, Linux, httpd) have a clear and significant (ordinary least
squares linear fit factor > 0 with 95% confidence) increasing trend; 4 (Qemu,
OpenSSL, Php, Postgres) show an increase but with fewer data points available;
4 (Firefox, Wireshark, Tcpdump, FFmpeg) do not exhibit any particular trend.

The findings above urge us to ask: Do increasing vulnerability lifetimes mean that
code quality is getting worse over time? We came up with two possible conflicting
explanations for increasing vulnerability lifetimes. The first is optimistic: we
are fixing vulnerabilities faster than we are introducing them, and thus, there
are less new vulnerabilities to find and the average age of those we are fixing
is increasing, as we are “catching up”. As put forward by Corbet in 2010 [26]
regarding the Linux kernel “[a prominent kernel developer told me that] the
bulk of the holes being disclosed were ancient vulnerabilities which were being
discovered by new static analysis tools. In other words, we are fixing security
problems faster than we are creating them”. The pessimistic explanation is that
we are introducing vulnerabilities at a similar or even greater rate than we are
fixing them, and that the average age of those that are fixed is increasing, along
with the age of the codebase. The optimistic explanation would require a grad-
ual change of the shape of the distribution of lifetimes (with a decrease in the
ratio of “young” vulnerabilities). As can be seen in Figures 4.9 and 4.10, the dis-
tribution remains exponential, with gradually increasing mean over time. Thus,
the optimistic explanation is not supported by the empirical measurements,
making the pessimistic explanation more likely. However, deeper investigation

88

4.7 results

0 1000 2000 3000 4000
lifetime

0.0000
0.0005
0.0010

De
ns

ity Exponential fit <= 2016

(a) Distribution of the lifetimes of 686 Chromium CVEs fixed during 2016 or earlier.

0 1000 2000 3000 4000
lifetime

0.0000

0.0005

0.0010

De
ns

ity Exponential fit 2017 - 2021

(b) Distribution of the lifetimes of 624 Chromium CVEs fixed during 2017 or later.

0 1000 2000 3000 4000 5000 6000
lifetime

0.0000

0.0005

De
ns

ity Exponential fit <= 2016

(c) Distribution of the lifetimes of 677 Linux CVEs fixed during 2016 or earlier.

0 1000 2000 3000 4000 5000 6000
lifetime

0.00000

0.00025

0.00050

De
ns

ity Exponential fit 2017 - 2021

(d) Distribution of the lifetimes of 733 Linux CVEs fixed during 2017 or later.

Figure 4.9: Comparison of the evolution of the distribution of Chromium and Linux*
lifetimes over time.

into the relationship between vulnerability age and code age in general is re-
quired. We present this in the next section.

4.7.4 Code age

To compute the overall code age of a project at a given point in time, we em-
ployed the following method. For each year X, we considered the state of the
repository on the 1st of July in that year (half-way point). Subsequently, we
“blamed” (getting the point in time a line was last changed) every line in the

89

an empirical study on vulnerability lifetimes

0 1000 2000 3000 4000 5000 6000 7000
0.0000

0.0002

0.0004

0.0006

0.0008 Exponential fit <= 2013
Exponential fit <= 2015
Exponential fit <= 2017
Exponential fit <= 2020

Figure 4.10: Distribution fit of lifetimes by year of fix

repository. We consider the time-span between the last change and the half-
way point to be the regular code age for that line in year X. To analyze the re-
lation between regular code age and fixed vulnerable code age (vulnerability
lifetime), we calculate the average code age for each year that we have vulner-
ability lifetime data for (vulnerabilities fixed in that year), and plot the result
in Figure 4.11 for Firefox, Chromium, Linux, and Httpd. Plots for the other
projects with enough data points can be found in Appendix C.5.

We observe a close correlation between average code age and average vul-
nerability lifetime for all projects. Both quantities have an increasing trend over
time for all projects, except for Firefox, for which there is a slightly decreasing
trend for both quantities. We can make two general key observations here. First,
vulnerability lifetime (at the time of fix) is lower than regular code age. Second,
although for most projects the spread between “vulnerable code” and “all code”
appears to remain constant over time, for some projects (e.g. Chromium – see
Figure 4.11b), this spread increases. These observations and their interpretation
carry significant insights that we discuss in Section 4.8. But first, in the follow-
ing subsection, we investigate whether there is a relation between the lifetime
of a vulnerability and the type of bug that introduced it.

4.7.5 Types

CVE entries in the NVD are assigned a Common Weakness Enumeration iden-
tifier (CWE) [71] that denotes the type of error that led to the vulnerability.
However, these identifiers, in their raw form, are not suited for studies involv-
ing multiple projects, since (a) different analysts may assign CWEs on different
depths in the CWE hierarchy27, and therefore CWEs are not directly compara-
ble, (b) one CWE can have multiple top-level (“root”) CWEs, making it difficult
to compare on the root level, (c) depending on the CWE View chosen for the
root level (e.g. CWE VIEW: Research Concepts CWE-1000), some of the CWEs in
the NVD entries may not even be part of the hierarchy.

27 CWE identifiers are organized in a hierarchical structure. More general identifiers, e.g. CWE-682:
Incorrect Calculation, have multiple more specific “children”, e.g. CWE-369: Divide By Zero.

90

4.7 results

2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

2000

4000

lif
et

im
e

in
 d

ay
s Lifetime

Regular code age

(a) Firefox

2010 2012 2014 2016 2018 2020
year of fixing commit

0

2000

4000

lif
et

im
e

in
 d

ay
s Lifetime

Regular code age

(b) Chromium

2012 2014 2016 2018 2020
year of fixing commit

0

2000

4000

lif
et

im
e

in
 d

ay
s Lifetime

Regular code age

(c) Linux

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
year of fixing commit

0

2000

4000

lif
et

im
e

in
 d

ay
s Vul lifetime

Regular code age

(d) Httpd
Figure 4.11: Age of vulnerable code vs. all code, along with linear fits, for Firefox,
Chromium, Linux (kernel) and Httpd. For Httpd, vulnerability lifetimes are calculated
in 4 or 5-year intervals to guarantee confidence in the estimation.

Therefore, we created a mapping between CWE identifiers and 6 custom top
level categories (see Table 4.5) that covers the most relevant research concepts28.

28 This mapping was originally documented in Manuel Brack’s master’s thesis [18].

91

an empirical study on vulnerability lifetimes

The categories are broad enough that each CWE can be assigned to one of them,
and the number of total categories is low to allow for large enough sample sizes
within each.

Code Development Quality refers to vulnerabilities that are introduced due to
violations of standard coding practices like infinite loops, division by zero, etc.
Security Measures includes cryptographic issues as well as flaws related to au-
thentication, permission and privilege management. The Memory Management,
Input Validation and Sanitization, and Concurrency categories are self-explanatory.
Others is the category that includes all CWEs that could not be matched to any
of the five aforementioned categories. The exact mapping between CWE iden-
tifiers and our categories is available in Appendix C.1. The mean and median
vulnerability lifetime per category is shown in Table 4.5.

ID Name Mean Median

5 Others 1 345.64 984.0

2 Input Validation and Sanitization 1 354.07 944.5

4 Security Measures 1 384.05 996.5

6 Concurrency 1 604.10 1 296.0

1 Memory and Resource Management 1 633.60 1 129.0

3 Code Development Quality 1 760.96 1 333.0

Table 4.5: Vulnerability categories and their mean and median lifetimes (in days) for
all CVEs

Analysis of the data for all CVEs indicates a significant29 difference in distri-
bution, agreeing with previous results [58].

More thorough analysis, however, reveals that this can be attributed to dif-
ferences in the prevalence of different types in different projects, rather than
some deeper relation. Specifically, for Linux, Chromium, and Firefox, when in-
vestigating in isolation, no significant difference can be statistically observed30.
The mean and median lifetimes per CVE category for each of these projects are
given in Tables 4.6–4.8.

To better understand the result, consider Table 4.5. Upon inspecting this table,*
one might claim that CVEs of category 3 (Code Development Quality) seem to
be the most difficult to find, possibly due to some specific characteristic of this
type. However, this claim would be far from true. Category 3 CVEs have the
second lowest mean lifetime for Chromium and the lowest for Firefox, while
having the second highest for Linux – but Linux CVEs have a larger lifetime
irrespective of category. This can be viewed as an instance of Simpson’s Para-
dox [17] where a statistical observation made on an aggregate population can
disappear or be reversed when considering data groups individually. Overall,
we observe no significant difference in the lifetimes of different vulnerability

29 Kruskal-Wallis-H test with p-value of 2e-07 and 40% of pairwise comparisons sign. different
(α = 0.05), even with Bonferroni correction.

30 Kruskal-Wallis-H test with p-values 0.492 (Chromium), 0.075 (Firefox) and 0.525 (Linux).

92

4.7 results

ID Name Mean Median

6 Concurrency 597.43 543.0

3 Code Development Quality 647.36 700.0

2 Input Validation and Sanitization 687.92 525.0

5 Others 706.71 576.0

4 Security Measures 736.49 545.0

1 Memory and Resource Management 770.25 618.0

Table 4.6: Vulnerability categories of Chromium, mean and median lifetimes in days

ID Name Mean Median

3 Code Development Quality 714.93 459.0

5 Others 1 116.22 977.0

6 Concurrency 1 170.27 1 137.0

4 Security Measures 1 284.52 1 139.0

1 Memory and Resource Management 1 303.23 954.5

2 Input Validation and Sanitization 1 409.22 1 149.5

Table 4.7: Vulnerability categories for Firefox, mean and median lifetime in days

types. We now move on to present the results of a case study on the impact of
fuzzing.

4.7.6 Case study on impact of fuzzing

To show the utility of vulnerability lifetime as a metric to study issues with
practical implications, we investigate the effect of automated tools (esp. fuzzing
tools) on vulnerability lifetimes. Although fuzz testing in general is not a new
idea, “modern” coverage-guided fuzzing with fuzzers like AFL(++)31, libFuzzer32

and Honggfuzz33 (syzkaller34 for the kernel), combined with sanitizers (e.g.
(K)ASan [102], MSan35, UBSan36) to expose latent bugs, started being widely
used for OSS in around 2016 (AFL introduced to the Linux community in
2015

37, first syzkaller talk in 2016
38, OSSFuzz launched in late 2016

39). One
may expect a measurable impact on vulnerability lifetimes by the adoption of
fuzzing tools. Before approaching this question empirically, we discuss the the-

31 https://github.com/google/AFL, https://github.com/AFLplusplus/AFLplusplus
32 https://llvm.org/docs/LibFuzzer.html

33 https://github.com/google/honggfuzz

34 https://github.com/google/syzkaller

35 https://clang.llvm.org/docs/MemorySanitizer.html

36 https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

37 https://lwn.net/Articles/657959/

38 https://github.com/google/syzkaller/blob/master/docs/talks.md

39 https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.

html

93

https://github.com/google/AFL
https://github.com/AFLplusplus/AFLplusplus
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/honggfuzz
https://github.com/google/syzkaller
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://lwn.net/Articles/657959/
https://github.com/google/syzkaller/blob/master/docs/talks.md
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html

an empirical study on vulnerability lifetimes

ID Name Mean Median

2 Input Validation and Sanitization 1 534.54 1 291.0

4 Security Measures 1 660.90 1 292.0

5 Others 1 681.83 1 166.0

1 Memory and Resource Management 1 756.77 1 390.5

3 Code Development Quality 1 858.60 1 517.5

6 Concurrency 1 904.62 1 663.5

Table 4.8: Vulnerability categories for Linux, mean and median lifetime in days

oretically expected impact on vulnerability lifetimes from the introduction of
fuzzing tools. The introduction of fuzzers in long-lived projects would result in
the discovery of some very old bugs, and thus we would expect an initial in-
crease of the average lifetime of vulnerabilities for a short period of time. Then,
considering these old bugs have been removed, we would expect continuous
fuzzing to result in the discovery of bugs relatively quickly after their intro-
duction, resulting in a drop in the average vulnerability lifetime. Overall, the
expected behaviour would be a surge followed by a considerable decline.

We move on to empirically approach the question. Making the simplifying
assumption that memory-related bugs are the traditional and natural targets of
fuzzing, we plot the trend of memory-related CVEs compared to other CVEs
that fall into other categories (categories as presented in Section 4.7.5) for the
whole dataset as well as for some selected projects. Figure 4.12 shows the com-
parison of lifetime trends between memory-related CVEs and others, for (a) all
CVEs in our dataset, (b) the Linux kernel, (c) Chromium, and (d) Firefox. Over-
all we observe no significant difference in the lifetime trend for the two sets of
CVEs. Also, we do not observe any behaviour consistent with our expectation.
It seems that the introduction of modern fuzzing tools did not have any notice-
able impact on Linux lifetimes in particular. Only for Chromium can we observe
a possibly decreasing trend for memory-related CVEs after a spike at around
2016. This could suggest a level of maturity attained after early adoption of
fuzzing tools (Google was a pioneer in such efforts). On the other hand, the
comparison to the Linux kernel may be unfair since fuzzing kernel software is
known to be harder than user-level applications. Future data may provide more
definitive evidence.

Why would this be the case? We continue the investigation by looking into the
five longest-surviving CVEs in our ground truth dataset for any project. Four
of them are Linux CVEs (CVE-2019-15291, CVE-2019-19768, CVE-2019-11810,
CVE-2019-19524), each with a lifetime of around 5 000 days (more than 13 years).
All CVEs describe memory-related issues. Interestingly, 2 of them (first and last)
describe issues related to USB drivers discovered by syzkaller. Fuzzing of the
USB subsystem of the kernel has a rich history. Andrey Konovalov reported
a batch of Linux USB vulnerabilities in 2017

40, before reporting a new batch

40 https://www.openwall.com/lists/oss-security/2017/12/12/7

94

https://www.openwall.com/lists/oss-security/2017/12/12/7

4.7 results

2010 2012 2014 2016 2018 2020
year of fixing commit

0

1000

2000

lif
et

im
e

in
 d

ay
s Memory vulnerabilities

Others

(a) All CVEs

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
year of fixing commit

0

1000

2000

lif
et

im
e

in
 d

ay
s

Memory vulnerabilities
Others

(b) Linux Kernel

2012 2014 2016 2018 2020
year of fixing commit

0

500

1000

lif
et

im
e

in
 d

ay
s

Memory vulnerabilities
Others

(c) Chromium

2012 2013 2014 2015 2016 2017 2018 2019 2020
year of fixing commit

0

500

1000

1500

lif
et

im
e

in
 d

ay
s

Memory vulnerabilities
Others

(d) Firefox
Figure 4.12: Comparison of lifetime trend in memory related vulnerabilities vs others.

in 2019
41 upon resumption of the USB fuzzing project. Moreover, Peng and

Payer [87] (USBFuzz) used USB device emulation and coverage-guided fuzzing
to discover a number of vulnerabilities in “already extensively fuzzed – ver-
sions of the Linux kernel”, showing that their approach is complementary to

41 https://www.openwall.com/lists/oss-security/2019/08/20/2

95

https://www.openwall.com/lists/oss-security/2019/08/20/2

an empirical study on vulnerability lifetimes

syzkaller. The progressive discovery of vulnerabilities in this one specific sub-
system of the Linux kernel showcases that the notion of “already fuzzed” may
be misleading, even for relatively small subsystems of complex systems. The
lack of observable impact on memory-related CVE lifetimes upon the introduc-
tion of fuzzing tools supports this assertion as very old bugs continue to get
discovered with (possibly new) fuzzing tools years after fuzzing has started
on the specific target. Our evidence suggests that fuzzing complex systems is
not a “one-off” automated task, rather a complex ever-evolving process. A dif-
ferent but similar interpretation is that the “initial increase” in lifetimes that
we expected due to the introduction of fuzzing is prolonged as new tools and
techniques continuously enter the arsenal of testers (e.g. consider the new ap-
proaches to USB fuzzing referenced above).

None of the above imply that fuzzing in general, or as carried out in the
Linux kernel, does not significantly contribute to improving security. Continu-
ous fuzzing finds large numbers of bugs (e.g. >3 000 Linux bugs discovered by
syzkaller and fixed42), in many cases fixed before the next release of a version
and therefore not assigned CVEs even if they have security implications. The
latter fact may explain to an extent the absence of an impact of fuzzing on vul-
nerability lifetimes. Furthermore, some of these bugs are not memory-related
(e.g. KCSAN43 is a sanitizer for Linux concurrency bugs). Overall, this case
study highlights the complicated nature of fuzzing and its relation to vulnera-
bility lifetimes. Quantifying the impact of fuzzing in improving the security of
codebases and its impact on lifetimes is still an open problem that needs further
investigation.

4.7.7 Summary of main findings

We conclude this section with a compact summary of our main findings in this
chapter.

Summary of main findings

Vulnerabilities generally remain in the code for large periods of time,
varying significantly between projects (~2 years for Chromium, ~7 years
for OpenSSL). Vulnerability lifetimes are distributed exponentially over-
all, and for each of the projects. Overall, vulnerability lifetimes grow over
time, however the shape of their distribution remains exponential. A vul-
nerability’s lifetime does not depend on its type. Lifetimes are closely
correlated with the general code age of a repository. However, vulnera-
bility patches fix code that is on average younger than the code in the
repository overall. This spread (between the age of vulnerable and non-
vulnerable code) increases over time for some projects. Fuzzing tools do
not seem to have an effect on vulnerability lifetimes, although more re-
search is required.

42 https://syzkaller.appspot.com/upstream/fixed

43 https://github.com/google/ktsan/wiki/KCSAN

96

https://syzkaller.appspot.com/upstream/fixed
https://github.com/google/ktsan/wiki/KCSAN

4.8 implications and discussion

4.8 implications and discussion

Is software getting more secure over time? In Section 4.7, we presented a num-
ber of results related to this question. We established that there is no evidence to
support that we are introducing (and consequently fixing) significantly fewer
new vulnerabilities over time. We also made the following observations: (a)
vulnerability lifetimes are on average lower than the average age of the code
at the point in time when they are fixed, and (b) for some projects this spread
increases over time (see Figure 4.11).

Observation (a) shows that vulnerable code is on average younger than the*
code in the repository overall at the time when the vulnerability is fixed. This
observation agrees with our expectation that vulnerability finding is partly fo-
cused on newer parts of the code. It is interesting to note though that the spread
between vulnerable code and non vulnerable code is small, suggesting that vul-
nerabilities generally still get discovered in the oldest parts of the codebase.

Observation (b), that for some projects vulnerability lifetimes, on average,
increase slower over time compared to code age, is more interesting. One ex-
planation could be that we are (introducing and) fixing an increasingly large
number of new vulnerabilities each year, in addition to a few very old ones.
Figure 4.10 does not support this explanation, since overall the distribution of
vulnerability lifetimes does not significantly change and remains exponential,
slowly stretching towards higher means over time. The alternative interpreta-
tion would be that there are parts of code that mature, i.e. we do not find
vulnerabilities affecting them anymore, and apart from these parts we continue
finding a similar ratio of new compared to old vulnerabilities. Our observa-
tions (increasing spread between vulnerable and non vulnerable code age and
no change in shape of lifetime distribution) support this interpretation.

Overall, this interpretation suggests that we could be slowly progressing to-
wards a state of relative maturity, where vulnerability lifetimes become stable
over time and not correlated to code age, even if the latter is increasing. In this
state, the older parts of the codebase will be hardened, and we will be finding
vulnerabilities introduced in a possibly large, yet bounded, time period. One
could challenge this interpretation with the argument that vulnerabilities in
older parts of the code are not found because nobody is looking for them. Al-
though new parts of code may come under additional manual scrutiny, we do
not expect that the vulnerability hunting process differs drastically between old
and even-older parts of the code. It would be beneficial to repeat the measure-
ment some years from now, in order to see whether the predicted behavior of a
stop to the constant increase of vulnerability lifetimes will hold for the projects
under question. Furthermore, our method for estimating vulnerability lifetimes
could be used to further investigate the relation of vulnerability lifetimes and
regular code age. For instance, it would be interesting to observe this relation
at the point in time of vulnerability introduction (rather than fixing time as
presented in this study).

97

an empirical study on vulnerability lifetimes

Overall, even though we may not be decreasing the number of vulnerabil-
ities in a given codebase, there are indications that we could be making
progress towards achieving a notion of maturity, where vulnerabilities
will be mostly absent from code older than a specific point in the past.

Can we compare? Meaningful quantitative security metrics are notoriously dif-
ficult to arrive at [108]. Metrics that can meaningfully be used to compare dif-
ferent products/projects are especially rare. Simply comparing vulnerability
lifetimes or trends in lifetimes between projects is not suitable, as they can be
heavily correlated to regular code age.

We put forward the hypothesis that the following two metrics may be
helpful for comparative studies: (a) the spread between overall code age
and vulnerability lifetime, or alternatively the ratio between average vul-
nerability lifetime and code age; (b) the rate of change (increase or de-
crease) of the spread between overall code age and vulnerability lifetime.

Further investigation of these metrics as comparison instruments is a very in-*
teresting avenue for future research. For example, since the spread described
above can be influenced by surges of vulnerability finding effort on newer parts
of the code, to attain a more unbiased indication of maturity, we could disre-
gard vulnerabilities with a very low lifetime (e.g. say 1 year – the head of the
exponential distribution) and consider only older vulnerabilities. For these we
could make the assumption that there is no age-related bias regarding the ex-
pended vulnerability finding effort and extract useful results.

Are vulnerabilities (in a given project) equal? When testing for differences in
vulnerability lifetimes for all CVEs (all projects), we found that there exist sta-
tistically significant differences, even when considering our custom categories.
This result is in line with the observations of Li and Paxson [58]. They stopped
their investigation at this point, however our dataset allowed us to explore fur-
ther and investigate whether the relative frequency of different vulnerability
types in different projects is the cause of the observation above. Indeed, we
found no statistically significant evidence supporting a relationship between
the lifetime of a vulnerability and its type, within a project. For example, Cat-
egory 3 has the highest average lifetime in Table 4.5 (1 760 days for all CVEs)
but by far the lowest in Table 4.7 (752 days for Firefox). We attribute differences
observed in previous studies to differences in the ratios of different types in
different projects. Therefore, the notion that some vulnerability categories are
in general harder to find than others (e.g. memory bugs are harder to find than
input validation bugs), is not supported by our findings.

Different vulnerability categories seem to be equally difficult to find (at
least post release); overall, our results are consistent with the view that
all vulnerabilities in a project are equal, and their order of discovery is
random.

98

4.8 implications and discussion

How much fuzzing is enough? Traditionally, security researchers tend to focus
on new, relatively less tested parts of the code to test for vulnerabilities. Re-
cently, Zhu and Böhme [120] came to the conclusion that with limited resources,
fuzzing code that has recently changed is the best vulnerability discovery strat-
egy. Our results support this statement to an extent, in the sense that the dis-
tribution of vulnerability lifetimes can be described by a decreasing function
(exponential – see Figure 4.5). However, a significant number of vulnerabilities
have large lifetimes and fuzzers keep discovering very old vulnerabilities for
years (see Section 4.7.6). Taking into account the well-known asymmetries of
computer security, finding these vulnerabilities that potentially impact many
legacy systems, is also important. Furthermore, further focused research is re-
quired in order to better understand the impact of fuzzing in improving the
security of codebases and its impact on vulnerability lifetimes.

Overall, fuzzing old code seems to still produce results even for “ex-
tensively tested” targets. Further research is needed to understand and
quantify the impact of fuzzing and its relation to lifetimes. Vulnerability
lifetime can be used as a tool to quantify the impact of security tools.

Vulnerability lifetime and discovery models. Modeling the discovery rate of*
vulnerabilities over time after the release of a software program has been the
topic of extensive research (Vulnerability Discovery Models [5–7, 45, 49, 94]).
These models, among others, try to determine how many vulnerabilities affect-
ing a specific release will be discovered within a future time frame (e.g. next
5 years). The metric of vulnerability lifetime is not directly associated with the
rate of discovery or the number of discoveries in general. However, it can pro-
vide useful information on how far back in the past a vulnerability originated,
signalling whether it affects specific past releases. The exponential nature of
the distribution of vulnerability lifetimes, in conjunction with the observation
that the overall discovery rate for software projects can be quite accurately ap-
proximated as stable over relatively short periods of time (or linearly increasing
over longer periods)44, can be used to produce a simple vulnerability discovery
model.

Assume that the discovery rate (irrespective of affected version) is stable and*
equal to r per time unit, let’s say per day. Also assume that a vulnerability is
fixed instantly when discovered. As observed, the lifetime t of a vulnerabil-
ity follows an exponential distribution with probability density function of the
form f(t) = λe−λt, where λ is the characteristic constant (mean). Then, for each
day after the release of a specific version V , out of the r vulnerabilities that are
discovered, a portion of them will affect V . This portion, for day i after release,
is equal to the probability that a vulnerability (fixed that day) has a lifetime
of i or more days. This probability is Pr[t > i] = e−λi. Then, for each day i
after release, re−λi vulnerabilities of V will have been fixed. This exponential
decay is consistent with the Goel-Okumoto model for software reliability [39]

44 see e.g. www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33,
www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452

99

www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452

an empirical study on vulnerability lifetimes

as proposed by Rescorla [94]. In total, we expect to find
∫∞
0 re

−λxdx = r
λ vul-

nerabilities. As an example, for a specific release of the Linux kernel, if we
assume a rate of 100 vulnerability discoveries per year affecting Linux in gen-
eral (r = 100/365), and an average lifetime of 1 700 days (λ = 1

1700), we expect
to find a total of ~466 vulnerabilities affecting this specific version. Since the
discovery rate and lifetime of vulnerabilities seem to develop relatively pre-
dictably over time, we can substitute the constants with relevant time-related
functions and get more accurate results. Note that as long as there is a strong
correlation between vulnerability lifetime and general code age, we cannot at-
tribute the resulting exponential decay behavior of this model to a depletion
of the total number of existing vulnerabilities for a release (as is the case for
reliability models that exhibit similar decay), rather than to the inherent code
churn.

*

Overall, vulnerability lifetime, as a metric, can support building theories
regarding vulnerability depletion in specific software versions. A simple
model based on our observations in this chapter agrees with the Goel-
Okumoto model for software reliability.

Stable freeze time and long-term support. Intuitively, the fact that vulnerabil-*
ity lifetimes are exponentially distributed would indicate that a relatively short
stable freeze time would be enough to discover a large portion of vulnerabili-
ties for security sensitive applications. Indeed, employing a stable freeze period
of around 1 000 days for security-critical systems, would be sufficient to avoid
half of the ultimately discovered vulnerabilities. However, the high mean of the
distribution (often >1 500 days), along with the defender-attacker asymmetries
of security (the attacker only has to find one weakness before the defender),
indicate that for high levels of perceived assurance (e.g. 80% of the eventually
discovered vulnerabilities have been fixed), large periods of time are needed
(on average ~6 years). Also, note that according to the previous point, code
churn may be the main force behind decreasing vulnerability discovery rates
for older versions at the moment. Thus, there is no guarantee that a motivated
attacker will not be able to discover a vulnerability affecting an older version
that may never be discovered by the white-hat community. That being said,
there is a sizable portion of risk in the patching process, specifically concern-
ing the time between a fixing commit becoming available, its back-porting to
the version compatible with a specific system, and the actual application of the
patch [74, 85]. In that regard, a smaller number of security patches that need to
be applied translates to risk reduction.

The distribution of vulnerability lifetimes can also be used to inform deci-*
sions on end-user support agreements about products with open source com-
ponents. For example, a distributor may be able to say to a customer that they
offer long-term support of X years. Then, the customer would be able to es-
timate the expected number of remaining patches, assess cost of identifying,
developing and applying them in-house, and make a decision.

100

4.9 threats to validity

*

Overall, vulnerability lifetime can provide actionable information to
guide practical decisions, e.g. regarding the duration of the stable freeze
and long-term support phases, that can be especially useful for security-
critical systems.

4.9 threats to validity

In this section we systematically go over the most important threats to the
validity of our results.

4.9.1 Threats to construct validity

Heuristic error. Our main findings are consistent over different projects and
over time. Therefore, we do not believe the error of our lifetime-estimation
heuristic (mean error of ~100 days as discussed in Section 4.6.2) to affect their
validity.

4.9.2 Threats to internal validity

Dataset. The data in vulnerability databases often experience bias from several
sources [22]. Specifically, for our study the following apply:

• Completeness. Although the NVD is one of the largest collections of software
vulnerabilities, it can not be considered complete, since many vulnerabilities
may never get a CVE. Further research may be necessary to investigate how
results differ when also considering such vulnerabilities. Furthermore, al-
though we strove to map as many CVEs to their fixing commits as possible,
our approach is not able to identify a fixing commit for every single CVE
affecting a program. However, the dataset we gathered is big and complete
enough to be representative, and we do not expect our results on vulnerabil-
ity lifetimes and their characteristics to be significantly influenced by some
missing data points.

• Correctness. Entries in the NVD are manually curated and analyzed, but
might still include errors. Additionally, mistakes in the commit message
when including the bug ID or a CVE-ID can lead to incorrect mappings.
We corrected these errors during our data cleaning process, however, some
errors may have evaded detection. We expect these to be few and to not af-
fect our general observations. We share our dataset to be used and improved
by the community.

Independence. Some of our arguments in the Results Section rely on the im-
plied assumption that vulnerability lifetimes are independent. It has been shown
that some vulnerability discovery events can be dependent [85], either due to

101

an empirical study on vulnerability lifetimes

a new class of vulnerabilities being discovered, a new tool or method being
made available, or a new area of code coming under scrutiny. These dependen-
cies manifest themselves as small bursts in the vulnerability discovery rate and
are a particular problem to vulnerability discovery models that try to model
the time between discoveries. It is difficult to imagine (let alone test) how such
dependencies would affect the lifetimes of vulnerabilities, especially in a large
and diverse dataset like ours. Also, our empirical results do not indicate the
existence of any kind of dependency regarding vulnerability lifetimes. There-
fore, we consider the independence of vulnerability lifetimes to be a reasonable
assumption. Some points in the Discussion Section (Section 4.8) also imply an
assumption of independence of discovery events. Again, small bursts of discov-
eries may exist due to dependent discoveries, however they do not affect the
arguments being made, which describe large-scale behaviors.

4.9.3 Threats to external validity – Generalization

Although we do not claim validity of our results for other projects, apart from
the 11 we included in our dataset, we believe that the selected projects are a
large representative sample and the insights gained from our results are, to an
extent, of general significance.

4.9.4 Threats to reliability

We did not identify any threats to the reliability of this study. The publicly*
available code and dataset used in the study enables reproducibility of the
results.

4.10 conclusion

In this chapter we introduced the metric of a vulnerability’s lifetime. This is the
amount of time a vulnerability remains in the codebase of a software project
before it is discovered and fixed. Via a rigorous process we showed that it is pos-
sible to accurately compute the metric when enough data points are available,
via a heuristic code analysis technique. Our technique is of general relevance
and can be used to study lifetimes of bugs and vulnerabilities for a wide vari-
ety of software. We also showed that measurements using the metric can have
theoretical and practical implications. Thus, we believe vulnerability lifetime to
be a promising software security metric.

Notably, although as repeatedly stressed the task of assessing the “quality*
of security” of software is a highly intricate matter, vulnerability lifetimes and
their relation with the average age of a codebase can provide useful relevant
information. We observed that for some projects the mean lifetime of code that
is fixed decreases over time compared to the age of the codebase. As discussed
in Section 4.8, such a development could be an indication of increased quality, at
least for some (older) parts of the code. Therefore, we consider the development
of the spread between the age of vulnerable code and the age of the codebase

102

4.10 conclusion

at the time of the fix to be a promising metric towards assessing the relative
quality of software (“comparing”).

Further research is required to better understand how the metric can be
used to quantify the impact of automated tools on the security of codebases,
as well as how vulnerabilities not assigned CVEs affect the results of the mea-
surement. Moreover, further investigation of the theoretical implications of the
metric w.r.t. vulnerability discovery models and software reliability models in
general (briefly touched upon in Section 4.8), could provide interesting insights.
In addition, further research on the matter from the perspective of a vulnerabil-
ity’s introduction date (rather than its fixing date, which was the focus of the
study presented in this chapter) may provide further interesting results.

*

Key takeaways

We can compute vulnerability lifetimes automatically and accurately. We
showed that vulnerability lifetimes can provide indications regarding the
maturity of codebases, can help identify differences in the performance
of security practices between projects, and can provide means to measure
the impact of security tools. Overall, vulnerability lifetime is a promising
metric towards further understanding software security.

103

104

5
A N E M P I R I C A L S T U D Y O N V U L N E R A B I L I T Y R E P O RT E R S

5.1 introduction

In the previous chapter we investigated vulnerability lifetimes in popular FLOSS
projects. We presented a novel method to automatically calculate the average
lifetime of a large enough set of vulnerabilities. We used this method to per-
form a large scale longitudinal study on the vulnerability lifetimes of 11 FLOSS
projects. We showed that vulnerability lifetime, especially in relation to the
code age of a project, can provide an indicator of maturity. Furthermore, we
discussed several theoretical and practical implications of the metric, showing
that the metric offers a promising way towards better understanding software
security. Now we continue our search for measurable indicators of quality.

In this chapter we try to measure an elusive quantity: vulnerability-finding
effort. We try to answer the research question (third research question of Sec-
tion 1.3): How can we measure human effort in the vulnerability discovery process?
The effort expended in the vulnerability-finding process has long been consid-
ered one of the dominant factors behind the vulnerability discovery rate (see
also our results from Chapter 3). Thus, in this chapter we aim to capture an
aspect of this effort by analyzing the characteristics of the people who report
vulnerabilities in FLOSS projects, and by investigating how these characteristics
can inform us about software security quality.

This chapter extends on the content of a research paper [4] accepted for publi-
cation at the 15th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM 2021). The scientific contributions pre-
sented in this chapter are:

• a novel methodology for creating the first (to the best of our knowledge)
dataset of vulnerability reporters for FLOSS

• a large-scale (>2 000 reporting entities for >4 500 CVEs) empirical study on
the characteristics of vulnerability reporters in 4 popular FLOSS projects

• a critical discussion on what the characteristics of vulnerability reporters
convey about software security quality, along with other implications of our
results

Chapter organization. This chapter is organized following the steps of the gen-
eral methodology of Section 1.3. We first introduce the topic, provide some
motivational background, and state the specific research questions that we in-
vestigate in this chapter (Section 5.2). Then, we provide an overview of the
related work on the topic, especially in relation to the contributions of this chap-
ter (Section 5.3). Next, we describe in detail our dataset creation methodology
(Section 5.4). We then present the results of our large-scale empirical study (Sec-
tion 5.5) followed by a discussion on their implications (Section 5.6). Finally, we

105

an empirical study on vulnerability reporters

discuss some possible threats to the validity of our results (Section 5.7) before
concluding the chapter (Section 5.8).

Availability

The code for the creation of the dataset and the analysis presented
in this chapter is publicly available at https://github.com/nikalexo/

vulnerability_reporters under a free software license. We also make a
snapshot of the data used in this chapter available at https://doi.org/
10.6084/m9.figshare.14986830.v1.

5.2 motivation and research questions

Rather than a deficiency in functionality, a vulnerability is an unintended fea-
ture that can potentially enable attackers to compromise a system. Discovering
a vulnerability involves consideration not just of what the system was intended
to do, but what is possible to exploit. This attacker mindset is not ingrained in ev-
ery developer, so Free/Libre and Open Source Software (FLOSS) projects must
rely on the diverse skillsets of their community to both discover and responsibly
disclose these vulnerabilities. Despite the great efforts of the community in in-
vestigating different aspects of the vulnerability discovery process, the “who”s
of the process have not yet received enough attention, especially outside the
closed environment of bug bounty programs.

Increasing our understanding of the human factor in the vulnerability dis-*
covery process can have important implications for software security metrics.
Characteristics of vulnerability reporters1 (e.g. their number, its progression
over the years, their motivations) can be used to gain insights regarding the
amount of vulnerability finding effort (community engagement) invested into the
process and its variation over time and between different projects. These in-
sights may enable us to derive indicators of health for the security ecosystem
of a project, and as a consequence, indicators for its security quality.

To get a rough idea of how information about vulnerability reporters may be*
utilized as an indicator of quality, consider the following simplified scenario:
“Projects A and B each had an average of 10 vulnerability reports per year
for the last 5 years. All vulnerabilities of project A were reported by a single
person whereas 20 different individuals with 10 different affiliations reported
vulnerabilities for project B during this time”. Based on the information above,
one may claim that the vulnerability-finding effort that led to the discovery
of the vulnerabilities of project B is greater than that of project A. This claim
would imply that it was more difficult to find vulnerabilities in project B, and
therefore it can be used as an indicator suggesting that project B is of higher
quality than project A.

1 Although there is a slight difference between vulnerability reporters and discoverers (we discuss
this in Section 5.7), for the rest of this chapter, we assume the terms reporters and discoverers to
be interchangeable.

106

https://github.com/nikalexo/vulnerability_reporters
https://github.com/nikalexo/vulnerability_reporters
https://doi.org/10.6084/m9.figshare.14986830.v1
https://doi.org/10.6084/m9.figshare.14986830.v1

5.2 motivation and research questions

Complementary to implications regarding security metrics and measurements,
increasing our understanding of the human factor in the process can have fur-
ther implications on development and security practices. FLOSS project coordi-
nators need to know their community of vulnerability reporters if they want to
maintain the health of the project long-term (since this may depend on keeping
them involved). FLOSS maintainers, as well, need to understand who they will
be working with in the disclosure and fixing process.

Overall, the goal of this chapter is to shed light on the human aspect of the vulnerability
discovery process by analyzing historical vulnerability reporting data of mature and
successful open source projects, in order to: (a) identify common trends and practices
that can act as benchmarks of community engagement for new and existing projects,
and (b) examine whether (and to what extent) empirical metrics of community engage-
ment can act as indicators of health and quality (of security) of software.

Research questions: To approach our goal, we structure our investigation by*
asking the following four research questions (each accompanied by a number
of more specific questions detailing the scope of the investigation):

– [Distribution] What is the distribution of reports among the reporters? (re-
sults in Section 5.5.1): Are contributions to the vulnerability discovery process
(reported vulnerabilities) evenly distributed among the contributing entities (decen-
tralized) or significantly concentrated in a small number of reporters (centralized)?
Answering this question can provide insights as to whether (a) "many eye-
balls" (a reference to Linus’s law [92]) is the primary contributing factor be-
hind vulnerability reports, or (b) dedicated security resources (translating to
a large number of vulnerabilities reported by a small number of entities—
attributed, e.g. to the effectiveness of automated tools or the increased spe-
cialization required to discover vulnerabilities) is the primary contributing.

– [Temporal characteristics] How do the characteristics of reporters develop
over time (results in Section 5.5.2): Do more vulnerabilities mean more reporters
over time? For how long do reporters stay engaged? Such temporal characteristics
can provide insights regarding the relation between effort and discovery rate,
as well as the development of practices over time.

– [Specialization] Are reporters specialized? (results in Section 5.5.3): Are pro-
ductive reporters specialized w.r.t. projects or specific types of vulnerabilities? If they
are, then projects would not only need to attract an adequate number of re-
porters but also a set of reporters with a diverse set of specializations.

– [Motivations] What are the motivations of reporters? (results in Section 5.5.4):
We also want to explore the motivations of reporters in the projects of our
study. Does a large portion of yearly reports come from reporters that have otherwise
(e.g. via code commits or non-security bug reports) contributed to the project? Are
most reports coming from reporters internal to the organization behind the project?
Are they employed by other organizations? Did they receive bounties? Answers
to these questions can provide insights into how established open source
projects attract vulnerability reporters, which in turn can be translated to
strategies for new and emerging projects.

107

an empirical study on vulnerability reporters

5.3 related work

In this section, we provide an overview of the related work on vulnerability
reporters and place our contribution in perspective.

User studies on reporters. The most closely related works on vulnerability re-
porters are based on conducting user studies. The work of Fang and Hafiz [33,
40] is especially relevant to ours. They ran an email-questionnaire user study,
collecting 127 responses from a variety of reporters of buffer overflow, SQL
injection, and cross-site scripting vulnerabilities. Their study was, to the best
of our knowledge, the first to target reporters of vulnerabilities. They focused
on the approach, tools and techniques of reporters of different types of vul-
nerabilities affecting a variety of software, as well as their disclosure practices.
One of the results of their user study that our analysis corroborates is that
reporters seem to be specialized w.r.t. the types of vulnerabilities they report
(Section 5.5.3). In their user study, a large proportion of the reporters who re-
sponded to the questionnaire, claimed to have reported a large number of vul-
nerabilities. Our data, on the other hand, indicates that most reporters report a
small number of vulnerabilities 5.5.1). This is probably due to the inherent bias
induced by the user study (it might be easier to contact a reporter with multiple
reports, such a reporter may be more likely to respond to a request, etc.).

Another interesting user study was performed by Votipka et al. [110]. They
used a semi-structured interview technique on a sample of 25 testers (from
within a project) and white-hat hackers to investigate differences in the vulner-
ability finding processes of the two groups. They concluded that the approaches
of the two groups differ significantly and a project would benefit from the en-
gagement of both groups in its community. They also pointed out that hacker
engagement can also be achieved via non-financial rewards and not only with
traditional bug bounties. Our analysis confirms these results, as we see a strong
contribution from both long-term reporters and “come-and-go” hackers, with
bug bounties not necessarily being the incentive (Section 5.5.4).

Overall, the nature of our study (data-driven, large-scale empirical study)*
differs fundamentally to the user studies referenced above, as the scale and
completeness of our collected dataset (see Section 5.4) allows us to investigate
aspects of the process that cannot be investigated via user studies (e.g. devel-
opment over time, differences between projects). Furthermore, the focus of our
study also differs. Previous studies focused on how vulnerabilities were dis-
covered, while we focus on how we can attain estimates of human effort and
indicators of quality.

Bug bounty programs. Most previous large-scale studies providing insights
into vulnerability hunting do so from within the bounds of bug bounty pro-
grams [36, 42, 62, 73, 119]. Although we saw that bug bounty programs are
important in incentivizing vulnerability reporters for some projects, our find-
ings suggest that their effect in the FLOSS ecosystem as a whole seems to be
rather limited (Section 5.5.4). Furthermore, none of these studies focused on the
specific reporters, more on the structure of the bounty programs themselves.

108

5.4 dataset creation methodology

Investigating Linus’ law. Linus’ law is the proposition that a large community
of contributors and testers improves the quality of open source software. Eric
Raymond first formulated the law as “Given enough eyeballs, all bugs are shal-
low” [92]. Meneely and Williams [68, 69] explored the correlation of developer
collaboration metrics and discovered vulnerabilities for popular open source
projects. They found that files co-developed by 2 or more independent devel-
oper groups were more likely to contain a vulnerability than files developed
by collaborating contributors. Also, Linux kernel files with changes from 9 or
more developers were 16 times more likely to have a vulnerability. Favato et
al. [34] found that java projects with more committers on Github tended to have
more bugs. These studies investigated the “developer” aspect of Linus’ law. Our
study, on the other hand, provides insights regarding the “bug-finding” aspect
of the law.

Summary. Overall and to the best of our knowledge, our study differs to prior*
studies on the human factor in the vulnerability discovery process in two fun-
damental aspects:

• (Reach and scale) Previous studies investigated characteristics of vulnerability
reporters either via user studies (small scale) or within the bounds of bug
bounty programs (capturing only a small part of the ecosystem). We aim to
capture characteristics of vulnerability reporters for the whole ecosystem of
popular FLOSS projects by collecting as complete as possible a dataset of
reporters from a large number of sources.

• (Goal) Previous studies either aimed at learning more about how vulnerabili-
ties are discovered in the wild (which tools, techniques, etc.), or how effective
bug bounty programs are. Our study, on the other hand aims at producing
insights regarding indicators of vulnerability-finding effort and of software
quality.

5.4 dataset creation methodology

The following sections describe our methodology for constructing what is, to
the best of our knowledge, the largest and most complete dataset of vulnerabil-
ity reporters in existence.

We focus on four big community-driven open-source projects: the Linux ker-
nel, the Apache HTTP Server Project, the Mozilla suite (including Firefox and
Thunderbird), and the PHP interpreter. We chose these projects as they are pop-
ular community-driven open-source projects with a large number of reported
vulnerabilities and a transparent process for reporting and fixing them. We con-
sidered the number of projects (four) to be a reasonable compromise between
required manual effort and utility of the created dataset. In the following, we in-
troduce a methodology to collect information regarding vulnerability reporters
from a variety of sources, including the NVD, the projects’ bug reporting plat-
forms, and the projects’ version control systems. We note that the process is

109

an empirical study on vulnerability reporters

best-effort and may still be subject to errors, but the dataset2, as well as all our
scripts are open and publicly available under a free software license3.

Such a dataset can be used to investigate a wide range of characteristics
of the vulnerability discovery process (apart from the research questions in
earlier sections). Thus, we consider the dataset collection methodology to be an
indipendent contribution of general importance.

5.4.1 Information on included projects

Different software projects/development teams use diverse approaches regard-
ing reporting, patching and documenting bugs. Their processes differ in the
way they handle vulnerabilities.

– Mozilla suite: The Mozilla suite includes the code for Mozilla products such
as the popular Firefox web browser and Thunderbird email client. The suite is
handled as a whole since these products share a significant underlying code-
base (the Core component). Both security and non-security-related bugs are typ-
ically reported and handled in the Mozilla Bug Tracking System which is im-
plemented as a Bugzilla instance (although security bugs can also be sent to
the security team via email). Commit messages in the repository that fix a bug
should include the bug id (identification number). The Mozilla security com-
munity also publishes security advisories providing more information on the
fixed security bugs4.

– Apache httpd: Apache httpd is a popular web server with a market share of
over 33%5. The Apache security policy6 states that security bugs are to be re-
ported in a dedicated private mailing list and are handled differently than nor-
mal bugs (which are handled via a Bugzilla bug tracking system). The Apache
security team also publishes security advisories for all fixed vulnerabilities af-
fecting released versions.

– PHP: PHP is the most popular server-side programming language in the web
at the time of writing7. The standard PHP interpreter is a community-driven
project written almost entirely in C using git as the version control system. Se-
curity and non-security bugs are both handled by the PHP bug-tracking system
(albeit in different ways and with different priorities and privacy rules). Devel-
opers are requested to add the bug number prepended by a “#” in the commit
message of the fix.

– Linux: The Linux kernel is arguably the most impactful community-driven
project in history, thus being the prototypical example of Eric Raymond’s bazaar [92]

2 https://doi.org/10.6084/m9.figshare.14986830.v1, Data are collected from publicly avail-
able sources whose purpose is to credit vulnerability reporters. Thus, the data were manifestly
made public, and as such processing of the data does not infringe on the privacy rights of the
involved individuals, e.g. see Article 9 of the GDPR.

3 https://github.com/nikalexo/vulnerability_reporters

4 https://www.mozilla.org/en-US/security/advisories/

5 https://w3techs.com/technologies/details/ws-apache. Market share: 33.6% on 14th May
2021.

6 http://www.apache.org/security/

7 https://w3techs.com/technologies/details/pl-php. Market share: 79.2% on 14th May 2021.

110

https://doi.org/10.6084/m9.figshare.14986830.v1
https://github.com/nikalexo/vulnerability_reporters
https://www.mozilla.org/en-US/security/advisories/
https://w3techs.com/technologies/details/ws-apache
http://www.apache.org/security/
https://w3techs.com/technologies/details/pl-php

5.4 dataset creation methodology

model of community-driven software development. Although most contribu-
tors to the project are no longer volunteers (since they are employed by several
organizations to work on the kernel), the general concept of the bazaar, i.e.
decentralized and lightly coupled development, still generally holds. Security
bugs in Linux are to be reported to the kernel security team via email and are
handled separately from normal bugs which are handled via a combination of
(subsystem-specific and general) mailing lists and a Bugzilla instance.

5.4.2 Data sources

Pursuing the goals of the study requires the collection of several data points
for the four FLOSS projects investigated. We proceed to document the data
collection process for each data type:

1. CVE entries: We use the cve-search tool8 to maintain a local copy of the CVE
information available at the NVD.

2. Vulnerability reporters: Information on who first reported a vulnerability is
not available directly in the NVD entries. Upon further investigation, we
located the following sources of information about reporters:

• For Mozilla products, relevant information is available (a) at the "Re-
porter" field of Mozilla Security Advisories9, (b) at the "Reporter" field
of the associated bug report.

• For Apache httpd, relevant information is available at the "Acknowledge-
ments" field of the Apache httpd security advisories10.

• For PHP, relevant information is available at the "Reporter" field of the
associated bug report.

• For the Linux kernel, relevant information is available (a) in Android secu-
rity bulletins11 (for vulnerabilities affecting a supported Android release),
(b) in the description of Debian Security Advisories12 (for vulnerabilities
that affected the kernel version included in the stable Debian distribu-
tion at that point in time), (c) at the "Credit" field of the SecurityFocus
database13, as well as (d) in Ubuntu Security Notices14 and (e) the Red
Hat Linux bug tracking system15. The four latter sources of information
(b) – (e) maintain such references in general for all projects (since they are
reporting outlets for software distributions which include all 4 projects),
and are therefore considered for all of them.

8 https://github.com/cve-search/cve-search

9 See Footnote 4

10 https://httpd.apache.org/security_report.html

11 https://source.android.com/security/bulletin/

12 https://www.debian.org/security/

13 https://www.securityfocus.com/

14 https://ubuntu.com/security/notices

15 https://bugzilla.redhat.com/index.cgi

111

https://github.com/cve-search/cve-search
https://httpd.apache.org/security_report.html
https://source.android.com/security/bulletin/
https://www.debian.org/security/
https://www.securityfocus.com/
https://ubuntu.com/security/notices
https://bugzilla.redhat.com/index.cgi

an empirical study on vulnerability reporters

Although the information of the sources above is not included in the NVD,
references to these sources are often included, making the mining process
easier.

3. Bug reports: We mined all bug reports from the projects’ bug tracking sys-
tems (BTSs). Mozilla, Apache, and the Linux kernel use a Bugzilla BTS, and
therefore we used the provided rest API, while PHP uses a custom BTS, so
we scraped its html pages. In all cases, since the amount of data is large
(several GB), bulk http requests would time out, and therefore we used per-
month requests.

4. Developer data: To obtain data regarding the developers involved in the
respective projects, we cloned the github mirrors of the projects’ repositories.

5. Social network data: To enhance our dataset w.r.t. the affiliation of reporters,
we extracted relevant information from the public profiles of reporters in
the LinkedIn professional networking site. More about the approach can be
found in the following section.

6. Bug bounty platform data: We mined the publicly visible portion of the
Hackerone16 bug bounty platform. The relevant bounty programs for the
chosen projects within Hackerone are the Apache httpd (IBB)17, the PHP (IBB)18

(indefinitely suspended since October 2020), and The Internet19 programs (all
within the scope of the Internet Bug Bounty (IBB) program). We found bounty
information about a total of 161 CVEs in our dataset (4 for Linux, 142 for
PHP and 15 for Apache), including reporter information for 1 Linux CVE
and 35 PHP CVEs, for which no reporters had been retrieved from the other
sources. Note that this data source does not include all bounty-related in-
formation for our study, since such information is also included in the bug
reports for some projects. We present how we extracted bug bounty informa-
tion from bug reports in the related results section (Section 5.5.4).

All data were collected from publicly available sources and the collection scripts
as an open source project, ensuring reproducibility of our results. A graphical
representation summarizing the data points collected and the links between
them is provided in Figure D.1 of Appendix D.1. A summary of the number of
data points collected can be found in Table 5.1.

5.4.3 Data cleaning and pre-processing

Data cleaning was a laborious process requiring considerable manual work. We
strove to make this manual effort a one-time job by encoding the logic of the
process into reusable and extendable scripts.

16 https://www.hackerone.com/

17 https://hackerone.com/ibb-apache?type=team

18 https://hackerone.com/ibb-php?type=team

19 https://hackerone.com/internet?type=team

112

https://www.hackerone.com/
https://hackerone.com/ibb-apache?type=team
https://hackerone.com/ibb-php?type=team
https://hackerone.com/internet?type=team

5.4 dataset creation methodology

Project CVEs PA DSA USN RH sf BTS h1 Total

Mozilla 2 195 992 218 369 1 040 1 421 209 – 2 193

Apache 249 71 27 38 12 177 — 15 197

PHP 638 — 37 31 18 393 198 142 603

Linux 2 566 201 533 562 473 1 555 — 4 1 962

Table 5.1: Breakdown of information sources. PA stands for project-specific advisories,
DSA for Debian Security Advisories, USN for Ubuntu Security Notices, RH for the Red
Hat Linux BTS, sf for Symantec’s securityfocus.com, BTS for the project’s bug tracking
system, and h1 for HackerOne. The last column is the total unique CVEs that we could
obtain any information for (union of all sources).

5.4.3.1 CVEs affecting projects

We found out that attributing CVEs to the affected projects (code-bases) is not
a trivial task. Although the NVD provides information following the Common
Platform Enumeration (CPE) Dictionary, some cleaning was necessary due to
errors in the NVD. First, we filtered CVEs by the CPE identifier for each of the
projects. For Mozilla and Apache, some CVEs reported in the vendors’ security
advisories were missing from the resulting set, and were subsequently added.
For the Linux kernel, there were two issues that were identified and resolved:

– We noticed that the set of CVEs returned when searching with the CPE of
the kernel (linux:linux_kernel) is missing some CVEs. On the other hand, a
free text search with the keyword “Linux kernel” in CVE summaries returns
quite some noise (CVEs that do not correspond to the kernel but mention it).
To overcome this issue, we only added CVEs returned by the keyword search
that included a reference to the git repository of the kernel. This yielded
a total of 6 additional CVEs, e.g. CVE-2007-6712 that includes a CPE for
kernel:linux_kernel (probably a mistake). The low number of additional
CVEs indicates that the effect of this type of NVD errors in previous studies
would be very limited.

– We noticed that some NVD entries utilizing the AND logical operator to
specify vulnerable configurations erroneously labeled the operating system
part of the description as vulnerable. For example, CVE-2015-0312 describes
an Adobe Flash Player vulnerability that affects certain versions of the Player
running on Linux (and other versions of the Player running on Windows).
This is not a kernel bug, yet the json feed of the NVD wrongly labels the CPE
of the operating system as “vulnerable”. We filtered out 35 such instances by
keeping only CVEs that refer to a kernel git repository when both another
application and the kernel are included in the list of affected CPEs.

5.4.3.2 Reporter information

Cleaning reporter data was a multi-step process, consisting of the following:

(i.) Extracting reporter names via regular expressions, such as .*(?= discovered

an issue) for each source (different regular expressions may be needed

113

an empirical study on vulnerability reporters

for each source). At the end of this step, we have a list of strings [s1, ...
,sn], where n is the number of reporter sources (in our case the sources
of Table 5.1). E.g. sourcei: Alice and Bob discovered an issue in the

Linux

kernel...→ si = Alice and Bob.

(ii.) Splitting each of the strings to pieces at the ‘and’ and ‘,’ predicates. E.g.
Alice and Bob→ [Alice, Bob].

(iii.) Keeping track of affiliations in a “smart” way using regular expressions.
If an affiliation follows after several names (identifiers), then the affilia-
tion corresponds to all of the preceding names. E.g. Alice and Bob from

Mozilla→ aff.(Alice) = aff.(Bob) = Mozilla.

(iv.) Keeping track of email addresses and twitter handles using regular ex-
pressions. We keep a list of all emails associated with a reporter as aliases
for the same entity, since people are known to use various email ad-
dresses when filing reports or committing code [16].

(v.) Collecting reporters from all sources into a list, and removing remaining
natural language phrases (that slipped through the initial matching of
step (i.)), like found by.... Then, removing duplicates, after first strip-
ping the strings of leading and trailing whitespaces and special charac-
ters like full stops. At this point we have a list of reporters for each CVE.

(vi.) Removing “reporters” matching generic terms (e.g. the vendor, unknown)
when other reporters (not matching these terms) exist for the same CVE.

(vii.) Merging reporters with at least one overlapping email address or twitter
handle. E.g. [Alice <alice@alice.com>, alice@alice.com].

(viii.) Merging “similar” reporter names, based on their Levenshtein distance,
using the FuzzyWuzzy python library20. E.g. [Michael Jordan, Michael
Jordon]21. We merge entries over 4 characters that are 90% or more simi-
lar (based on the similarity ratio metric of FuzzyWuzzy). Manual inspec-
tion of all matches produced by this (rather conservative) rule revealed
no false positives (according to our best judgment).

(ix.) Manual fixes (This is the only step with no automation scripts). E.g. re-
porter names like Bug report XYZ were deleted. Note that manual post-
processing is most likely necessary in the general case because reporter
nicknames and entries like the one above may be hard to tell apart auto-
matically. A manual pass of the reporter list was then made to assign a
label of human, organization, or team to each reporting entity (to the best
of our judgment based on the name of the reporting entity).

20 https://github.com/seatgeek/fuzzywuzzy

21 The correct spelling is the second. Look closely at https://www.mozilla.org/en-US/security/
advisories/mfsa2011-41/ to see the typo.

114

https://github.com/seatgeek/fuzzywuzzy
https://www.mozilla.org/en-US/security/advisories/mfsa2011-41/
https://www.mozilla.org/en-US/security/advisories/mfsa2011-41/

5.4 dataset creation methodology

(x.) Mining additional affiliation information. To enhance our dataset w.r.t.
the affiliation of reporters and to capture temporal changes in this field,
we use information from LinkedIn. Since this step of the process involves
significant manual effort to clean and validate the discovered profiles,
we narrowed the scope to the top 100 reporters (with most reports) in
our dataset. As these top reporters contribute significantly to the total
number of reports, we judged this to be a reasonable trade-off between
improving our dataset and manual effort. Attempts to fully automate the
process and mine information for all reporters resulted in non-negligible
noise in the returned data. For each reporter in the top 100 (reporting en-
tities that we had not characterized as teams or organizations), we used
the “people search” function provided in LinkedIn’s interface, searching
for each person’s name followed by the key-phrase computer security.
We then cleaned the returned results by only considering individuals
working in related fields (e.g. Computer & Network Security, Computer
Software, Internet) and filtering out profiles that advertise Physical Secu-
rity as a skill. This brought the number of available profiles to 48. We fur-
ther investigated the accuracy of the mappings by manually searching for
characteristics that point to a security researcher, e.g. phrases like “devel-
oped fuzzing tools” or descriptions like “Ethical hacker”. Additionally,
we cross-referenced information from the profiles with information that
we already possessed in our dataset regarding the affiliation of reporters,
as well as information from associated presentations, blog posts, etc. that
were harnessed via web searches. The result was that 40 out of the 48

profiles were classified as correct, while 8 of them as incorrect. For 7 out
of the 8 incorrect cases, we were able to manually identify the correct
profile, while for the remaining case we could not. At the end, we had
manually verified profiles for 47 reporters that were within the top 100

most productive reporters of our dataset.

The cut-off date for the data presented in this study is the 13th of January 2021.
At the end of the cleaning process, we ended up with 2 193 unique reporting
entities (2 060 human reporters with the rest being ‘organizations’ or ‘teams’)
associated with 4 756 CVEs. Considering that the total number of CVEs for
the four projects is 5 648, our dataset has at least one reporter for ∼ 84% of all
CVEs, a figure that surpassed our initial expectations. A breakdown of the final
dataset per project is provided in Table 5.2.

Project CVEs w/ reporter(s) coverage

Mozilla suite 2 195 2 085 95 %

Apache httpd 249 196 79 %

PHP 638 520 81 %

Linux (kernel) 2 566 1 955 76 %

Table 5.2: Breakdown of reporter coverage

115

an empirical study on vulnerability reporters

5.5 results

In the following sections, we present the analysis of the dataset that we con-
structed. We set off by investigating several characteristics of the distribution
of reporters, both statically and over time. We then proceed to investigate in-
dicators of reporter motivations. As stated earlier (see Section 5.2), the goal of
the analysis is (a) to identify patterns and characteristics that can be used as a
benchmark for the health and extent of the vulnerability hunting communities
of open source projects, and (b) to provide indications on whether individual
community engagement metrics can be used as indicators of health. We use
raw numbers (tables), suitable plots and empirical domain-specific reasoning
to assess the strength of relationships in our data. Furthermore, we use suit-
able statistical tests with a typical 5% significance level to assess the statistical
significance of our results when applicable.

5.5.1 Distribution

(Concentration of reports.) We begin our analysis by investigating the distribution
of the total number of reports per each reporting entity. With this investigation
we explore whether the vulnerability reporting ecosystem is more centralized
(suggesting more dedicated resource allocation) or decentralized (suggesting
more community engagement) for the projects under study. Figure 5.1 shows

0 500 1000 1500 2000
0

50

100

150

re

po
rts

100 101 102 103
100

101

102

Figure 5.1: Distribution of reports per reporter in linear and double logarithmic scales
(x axis: reporters ordered by number of reports).

the distribution of reports per reporter for all projects. Observing an almost
straight line in double logarithmic axes in the second plot of Figure 5.1, which
is an indication of a possible power-law distribution, we moved on to investi-
gate the distribution statistically. Power laws (p(x) ∼ x−k, x > xmin) are heavy-
tailed distributions indicative of preferential attachment behavior, which have
received interest in several fields, including software engineering [60] (remem-
ber that we observed a power law distribution already in Chapter 3 when we
investigated the distribution of CVEs among Debian packages). We again fol-
lowed the seminal methodology for fitting heavy-tailed distributions of Clauset
et al. [24] and used the Kolmogorov-Smirnov statistic to compare possible al-

116

5.5 results

ternative distributions. Considering a 95% confidence interval, we found that
a truncated power law (power law with exponential cut-off with a probabil-
ity density function: p(x) ∼ x−ke−λx) is a possible statistical fit when con-
sidering all the projects together and when considering Mozilla CVEs, while
a pure power law is also a possible fit for the other projects (Linux, PHP
and Apache) when considered individually. In all cases, as with most real-*
world datasets [24], other candidate distributions, like the stretched exponen-
tial (p(x) ∼ xβ−1e−λx

β
), cannot be statistically ruled out with the data available.

This is not an issue for our purposes, as we do not focus on explaining the
generative mechanism behind the distribution (which we briefly comment on
in the next paragraph), but rather focus on the imbalance characteristic that
heavy-tailed distributions exhibit. Detailed plots of the fits provided by candi-
date distributions can be found in Figure D.2 of Appendix D.

The generative mechanism of a heavy tailed distribution such as a power*
law is often described by the phrase “the rich get richer” implying a form of
preferential attachment. In our case this could imply that entities who have
already reported many vulnerabilities are more likely to report even more22.
These entities may be individuals or organizations with considerable means
(e.g. computational capacity) or skills that would allow them to discover a large
number of vulnerabilities (e.g. by discovering new classes of vulnerabilities or
by developing a new fuzzer for a specific interface).

The “80/20 rule” or the Pareto principle, where 80% of the contributions
(e.g. wealth, bugs, CVEs) are attributed to 20% of the population is often used
as an example to portray the behavior of a power law distribution. However,
power laws can be more balanced or imbalanced. The generalized principle
can be described by the “(1 − p)/p law” [41]. In fact this ratio describes the
power law distribution uniquely and provides a metric for the concentration of
contributions. We empirically calculate the CVE report concentration metric X/Y
(read as “Y% of reporters contributed X% of reports”) for the projects in this
study with the following results: Mozilla: 78/22, Apache: 59/41, PHP: 70/30,
Linux: 72/28. We see that reports for Mozilla are more concentrated in a “core”
group of reporters in comparison to the other projects. On the other side of the
spectrum, reports for Apache are more balanced. We discuss how this metric
can be used to describe the balance between dedicated reporters and the “many
eyes” of Linus’ law in Section 5.6.

5.5.2 Temporal characteristics

(CVEs and reporters over time.) Figure 5.2 shows several temporal characteristics*
of the reporting process23. The first plot of Figure 5.2 shows the number of
total CVEs (with or without reporter information) per year, for each of the

22 Here we can draw an interesting parallelism to Lotka’s law [59] of scientific productivity (number
of publications in a set period of time).

23 Note that to assign CVEs to years, we used the ‘YEAR’ portion of the CVE identifier (the YYYY
of a CVE identifier that has the format CVE-YYYY-NNNNN). According to MITRE, “the YYYY
portion is the year that the CVE ID was assigned OR the year the vulnerability was made public
(if before the CVE ID was assigned)”.

117

an empirical study on vulnerability reporters

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Years

0
100
200
300

CV
Es

mozilla
linux
apache
php

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Years

0

50

100

150

Re
po

rte
rs

mozilla
linux
apache
php

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Years

1

2

3

4

Re
po

rts
/re

po
rte

rs

mozilla
linux
apache
php

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Years

0
25
50
75

Ne
w

re
po

rte
rs mozilla

linux
apache
php

Figure 5.2: From top to bottom (all per year): # of CVEs, # of reporters, ratio of reports
per reporter (# of reports divided by # of reporters), # of new reporters. Note that the
drop for 2020 observed in all plots is due to the time of data collection being in early
2021 (information for some 2020 vulnerabilities may not have been published at that
point).

118

5.5 results

four projects24. For Mozilla and Linux, we observe an overall increasing trend
over time, whereas for the two other projects (Apache and PHP) we do not
observe a trend, possibly due to the small number of data points available.
The second plot of Figure 5.2 shows the number of reporters per year for each
of the four projects. Focusing on the two projects with the most data points
available (Mozilla and Linux), we can visually observe a correlation between
the number of reporters and the number of reports of the first plot. Statistically,
the time series of the first two plots are strongly correlated for all four projects
(Spearman’s Rank Correlation coefficient ρ > 0.8,p < 10−5). This observation
agrees with our expectation that human effort (here: indirectly expressed by
the number of reporters) may be the dominant factor affecting the number of
discovered vulnerabilities in large projects. However, it is clear that we cannot
claim anything regarding causation between the two variables purely based
on the data available. An alternative interpretation of the observed correlation
would be that vulnerabilities are getting easier to find (e.g. due to an increase
of software complexity, discovery of new vulnerability classes), and therefore
more people are reporting them (while the total effort, e.g. expressed by the
number of people looking for vulnerabilities, remains constant). Most likely,
a combination of several factors is at play here, with human effort having a
significant effect.

The third plot of Figure 5.2 shows the ratio of reports per reporter over time*
(total number of reports divided by total number of reporters per year). The
intention behind this metric is to capture a notion of community engagement,
in the sense of: “on average X people needed to work to find each vulnerabil-
ity”. We discuss whether such a metric can be used as an indicator of quality
in Section 5.6 (short answer: no – at least by itself). As expected (due to the
correlation noted above), we observe no noteworthy trend in the plot, and the
value varies between just under 1 and 4 reports for all projects, with the Linux
kernel having a slightly higher ratio during the last years. Note that a CVE
can have multiple reporters, thus this number is not bounded by 1. The fourth
plot shows an interesting phenomenon: in particular for the Linux kernel and
Mozilla, there is a constant influx of new reporters ranging from 40 to 90 per
year (roughly half of all reporters for each calendar year are first-time reporters).
Thus, new reporters are significant contributors to the process.

(Period of engagement.) Since, as we showed, the distribution of reports per re-
porter is heavy-tailed (most reporters have reported only a few bugs and few
reporters have reported most bugs), for this part of our investigation we focus
on this heavy tail by looking into the top (with most number of reports overall)
reporters for each project. Figure 5.3 includes 2 box plots.

The first plot captures the period of engagement (years between first report*
and latest report, plus one) of the top 10 reporters for each of the four projects.
We observe that top Mozilla reporters have a significantly25 longer period of

24 Since we collected our data in early 2021, the analysis for some 2020 entries had not been pub-
lished yet in the NVD, explaining the lower number of entries for that year compared to previous
ones.

25 Note non-overlapping 95% confidence intervals for the median in Figure 5.3.

119

an empirical study on vulnerability reporters

M L A P
0

2

4

6

8

10

12

14

16

Ye
ar

s

top 10

M L A P
0

2

4

6

8

10

12

14

16
top 20

Figure 5.3: Period/duration of engagement for the top 10 and top 20 (human) reporters*
(time in years between their first and more recent report until now – increased by one),
for each project ([5,95] whiskers). Letters in the x axis are the initials of the corre-
sponding projects (Mozilla, Linux, Apache, PHP). The 95% confidence intervals for the
median, calculated via bootstrapping (10 000 times), are marked with notches.

engagement compared to top Linux reporters. The median for Mozilla is more
than 9 years, whereas for Linux only 3. We can make the same observation
when considering the top 20 reporters for these two projects (second plot). In
this case Mozilla has a significantly longer duration of engagement compared
to the other three projects. Note that a reporter’s last report stands for their
last report until now; we can not know if they make new reports in the future.
Therefore, these plots provide a lower bound on the duration of engagement.
Overall, we see that Mozilla has a more ‘long-serving’ (stable) base of long-term
regular contributors of vulnerabilities, while for the other projects, even their
top contributors report in bursts and stay engaged for a shorter amount of time.

5.5.3 Specialization

(Project specialization.) Only 83 reporters (out of a total of more than 2 000) have
reported a vulnerability for two or more of the projects. This number goes down
to 14 entities who reported vulnerabilities for three or more of the projects,
and only one entity (iDefense, which was a bug-bounty program, so probably
includes multiple entities) reported a vulnerability for all four of the projects
under investigation. Thus, reporters to multiple of these four FLOSS projects
are rare, i.e. reporters are generally specialized w.r.t. the project they are testing.

(Type specialization.) To investigate reporter specialization w.r.t. CVE types, we
extract the Common Weakness Enumeration (CWE) number of each CVE from

120

5.5 results

the information available at the NVD. Since some CWE types are closely related
or have changed over time, and since we are interested in a more high-level
classification of vulnerability types, we follow the approach of Chapter 4 to
map each CWE to one of the 6 following high-level categories:

1. Memory and Resource Management (e.g. CWE-119: “Improper Restriction
of Operations within the Bounds of a Memory Buffer”)

2. Input Validation and Sanitization (e.g. CWE-20: “Improper Input Valida-
tion”)

3. Code Development Quality (e.g. CWE-369: “Divide By Zero”)

4. Security Measures (e.g. category CWE-310: “Cryptographic Issues”)

5. Concurrency (e.g. CWE-362: “Race Condition”)

6. Other

We provide an overview of the number of different CWE types and categories
found by reporters with 20 or more reports (total of 90 reporters related to 1 974

CVEs) in the box plots in Figure 5.4. Half of all these reporters have reported
issues of 10 or more different CWE types, or alternatively 4 or more categories.
Half of the reporters have a specific CWE type that accounts for more than 30%
of their reports, or alternatively they have a specific higher-level category that
accounts for 45% or more of their reports.

0

10

20

30

Nu
m

CWEs/rep

1

2

3

4

5

6
cats/rep

0.2

0.4

0.6

0.8

1.0
CWEs most

0.4

0.6

0.8

1.0
cats most

Figure 5.4: Number of different CWEs and categories (cats) for each reporter. Third*
column: for each reporter, what portion of their reports falls into the CWE/category
with the most reports (dominant).

To investigate whether the distribution of reporters per category varies be-
tween reporters, we compared the distribution of categories of each individual
reporter with at least 20 reports, against the overall distribution of categories
for the project that the reports concern. We only looked into reporters with at
least 20 reports in order to be able to make statistical arguments about the dis-
tributions, and we looked for reports in each project individually to account for

121

an empirical study on vulnerability reporters

different categories being more common in different projects (e.g. the number
of concurrency bugs is negligible in projects other than the Linux kernel). We
employed a Chi-squared test26 to assess whether the distribution of categories
corresponding to reports from a given reporter deviates significantly (p<0.05)
from the expected (taken for the project as a whole). Then, for those reporters
whose distribution deviates, we checked if more than half of their reports fall
into the same category (a simple measure of strength of the significant deviation
observed), signaling a specific focus. The results are summarized in Table 5.3.

Project reporters > 20 # deviate # focused

Mozilla suite 49 33 21

Apache httpd 0 0 0

PHP 4 1 1

Linux (kernel) 18 16 13

Table 5.3: Deviations from expected categories. From left to right: reporters with 20 or
more reports; out of them, reporters with a deviation w.r.t. categories; out of the latter,
reporters with a specific focus category. Note that the values in the second column are
a subset of the values of the first, and the values in the third column are a subset of the
values in the second.

Due to the low number of observations for Apache and PHP, we focus on
Mozilla and Linux. For Mozilla, out of the 21 reporters who exhibited a par-
ticular focus, 13 focused on memory-related issues (category 1), 3 focused on
issues related to security measures (category 4), while 5 focused on “Other”
issues. For Linux, out of the 13 reporters with a significant focus, 3 focused
on memory-related issues while 10 focused on issues related to security mea-
sures. Overall, results indicate that a significant portion of the most productive
reporters are specialized in a specific category of vulnerabilities and that there
are two main categories of specialization: memory and security measures. We can
conjecture that reporters specialized in memory issues are the ones who de-
velop and operate several fuzzing mechanisms that have become popular dur-
ing the last years, while reporters specialized in security measures are the ones
looking specifically for issues that do not usually cause crashes (and therefore
cannot be detected by traditional fuzzing tools); rather these issues have to do
with permissions, cryptographic implementations, data leakage, etc.

Note that in this section we focused on reporters with 20 or more reports,*
corresponding to 90 out of a total of 2 193 reporters, in order to be able to make
statistical arguments regarding reporter specialization w.r.t. vulnerability type.
It would be interesting to study whether reporters with fewer reports are also
specialized, however this is not possible with our dataset, and would likely
require interaction with the reporters.

26 Chi-squared being a non-parametric test, we do not need to make any assumptions about the
distribution of the data.

122

5.5 results

5.5.4 Motivations

(Bug bounty programs.) Apart from bug bounty information collected from the*
HackerOne platform (see Section 5.4) we further investigate the projects’ bug
tracking systems for relevant information. Mozilla, in particular uses a ‘sec-
bounty’ flag to mark bugs that were considered for a bounty in Mozilla’s bug
bounty program. We only consider bugs where the ‘status’ property of this flag
is set to ‘+’, meaning the bounty was awarded27. We collected such bugs and
matched them to their associated CVEs in our dataset (where applicable). For
the other projects that either fully (Apache) or partly (Linux) use a Bugzilla
instance to track bugs, we did not find any bugs that were awarded bug boun-
ties, following the same approach. For PHP, Apache, and Linux we also ran a
regular expression search (string includes ‘bounty’) in the ‘comments’ section of
their bug reports but found no additional information28.

Table 5.4 shows the number of CVEs associated with a bounty for each
project. Because we want to gain insights into the incentives of reporters, we
provide:

• a low estimate, which corresponds to the confirmed number of CVEs for
which a bounty was awarded

• a high estimate, which corresponds to the number of CVEs by a reporter
who was awarded a bounty for at least one of their reports (at any time)

Project CVEs bounties low-high % low-high

Mozilla suite 2 195 589–1 206 27–55

Apache httpd 249 15-16 6-6

PHP 638 142-208 22-33

Linux (kernel) 2 566 4-50 0-2

Table 5.4: Reports with bounties per project. Includes a low estimate of confirmed
bounties given and a high estimate of reports by a reporter who has received a bounty
at least once.

We can observe that the effects of bug bounties vary greatly between the projects,
with Mozilla, being one of the pioneers of bug bounties in the FLOSS commu-
nity, benefiting greatly from the program. However, in each of these projects,
bounties were not given to more than half of the reporters. Furthermore, the
Linux kernel does not depend on bounties for vulnerability discoveries at all
and still maintains a consistent influx of new reports and new reporters. Thus,
while bug bounty programs are helpful, reporters have additional motivations.

27 Personal correspondence with the Mozilla security team confirmed that this approach is valid to
track bounties from mid-2010 onward, however a gap between 2005 and 2010 exists, for which
no data is (and can be) provided.

28 Interestingly, for Linux there were some results returned by the search, however these were
for bug reports that mentioned the existence (or need) of a bounty to fix the issue (see e.g.
https://bugzilla.kernel.org/show_bug.cgi?id=195303#c98).

123

https://bugzilla.kernel.org/show_bug.cgi?id=195303#c98

an empirical study on vulnerability reporters

These motivations may include producing academic research, gaining reputa-*
tion in the security community or volunteering for the health of FLOSS ecosys-
tems. Finally, they may be employed by the organizations that are either behind
the development of the projects or have an immediate interest in their security.
We investigate the latter point in the next paragraphs.

mozilla linux apache php
project

0

20

40

60

80

100 Internal
Other
Other $
Unknown $
Unknown

Figure 5.5: Affiliations associated to CVEs. Internal is for reporters affiliated to the
organization behind the project, Other is for reporters affiliated to other organizations,
and Unknown is for CVEs which could not be associated to an affiliation. We mark
with $ the subsets of the two latter categories that were awarded bug bounties.

(Affiliations.) We linked reporters to affiliations based on (a) information col-
lected from the sources of Section 5.4.2, (b) additional information from re-
porters’ online professional profiles – when applicable (as described in Sec-
tion 5.4.3). A vulnerability is internal iff (a) the reporter matches the organiza-
tion (e.g. “Mozilla” or “Mozilla Corporation”, etc. for the Mozilla suite), or (b)
at least one of its reporters has an affiliation matching the organization (when
temporal data for affiliations is available, e.g. via information from an online
profile, then an additional constraint for the time of employment is applied).

Looking at Figure 5.5, we observe differences between the projects. A signif-
icant portion of Mozilla CVEs originated from within the organization (33%),
while this portion is much smaller for the other projects (<10%). The most sig-
nificant external contributors to Mozilla reports are Tencent and Google. The
Linux kernel has the highest percentage of reports from reporters with known
affiliations that did not receive bug bounties. A number of companies/orga-
nizations contribute significantly to the security of the Linux kernel, with the
most notable being Google, Qihoo 360, and Red Hat. Also for the kernel, a
comparably large number of CVEs could not be associated with an affiliation,
potentially pointing to a higher engagement of hackers working on a volunteer
basis.

(Commits and bug reports.) We found at least one commit in any of the projects
for 730 out of a total of 2060 human reporters in our dataset (35%). 559 re-
porters have made 10 or more commits (27%), while 382 (19%) have made 100

124

5.5 results

or more commits. While reporters are not regular committers in their majority,
a significant percentage is actively contributing to the codebase.

One hypothesis we could make is that most vulnerability reporters find and
report other kinds of bugs (non-CVE) as by-products of the process, and that
these bugs are in some way different than other non-security bugs. If this hy-*
pothesis is true, then related metrics could be used to measure vulnerability-
hunting effort, in the sense that even if no (or few) vulnerabilities (CVEs) are re-
ported, the reporting of such non-security bugs would indicate security-related
efforts. In the following, we investigate this hypothesis.

Project Reporters Bug Reporters (%) Median

All 2060 810 (39%) 5

Mozilla suite 917 394 (43%) 8

Apache httpd 160 34 (21%) 4

PHP 277 65 (23%) 3

Linux (kernel) 790 151 (19%) 2

Table 5.5: Percentage of vulnerability reporters (excl. reporters marked as ‘teams’ or
‘organizations’) with non-cve bug reports and median of such bugs per reporter.

A significant portion (39%) of vulnerability reporters created at least one non-
CVE bug report in one of the projects’ bug tracking platforms. Between the
projects, percentages vary between 19% and 43% (Table 5.5). For the Mozilla
Suite, this value is clearly higher with 43% (19-23% for the other projects).
Mozilla reporters also report more non-CVE bugs than others (median for
Mozilla is 8 compared to 2-4 for the other projects).

Project Severe Resolved Keywords

reps rest reps rest reps rest

Mozilla suite 20% 13% 40% 34% 23% 11%

Apache httpd 12% 20% 47% 32% 15% 10%

PHP - - 46% 11% 22% 12%

Linux (kernel) 11% 16% 31% 27% 21% 15%

Table 5.6: Differences between bugs by vulnerability reporters (reps) and others (rest)
as a percentage of the total for each class. All statistically significant (p < 0.05 for
the Chi-squared test). Severe are bugs with critical, major or high severity (except for
PHP for which no severity field exists). Resolved are bugs marked fixed in bug reports
(except for PHP for which no such field exists, and therefore we considered bugs with
associated fixing commits).

To analyze if bug reports by vulnerability reporters differ from bug reports
by others, we used the fields severity and resolution of bug reports (assuming
that vulnerability reporters report more severe bugs that are also more likely
to be resolved). Additionally we searched for the keywords memory, crash and

125

an empirical study on vulnerability reporters

security in bug descriptions, assuming that these words may occur more of-
ten for bugs discovered during security testing. The results are summarized
in Table 5.6. We observe a higher percentage of severe bugs only for Mozilla,
with the tendency reversed for Apache and Linux. Regarding resolution, for
each of the projects, a higher percentage of bug reports created by reporters
are fixed. For keywords, reporters of all projects have created a (slightly – but
statistically significant) higher percentage of bugs mentioning memory, crash or
security. Overall, although we identified statistically significant differences (see
Table 5.6) between bugs created by vulnerability reporters compared to bugs
created by others, the magnitude of the differences is small. Additionally, as
stated earlier, only a minority of vulnerability reporters also reported other
bugs, with the percentage varying significantly between projects. As a conclu-
sion based on the two previous statements, we cannot support the hypothesis
that by-products of vulnerability hunting in a project’s bug tracking platform
can be identified and utilized, in order to assess the expended vulnerability
hunting effort.

5.5.5 Summary of main findings

We conclude this section with a compact summary of our main findings in this
chapter.

Summary of main findings

The distribution of reporter contributions can be described by a power
law, meaning there are a few reporters responsible for most reports,
while most reporters report only a few vulnerabilities. The number of
reports is correlated with the number of reporters over time, while first
time reporters account for a significant portion of the reports on a yearly
basis. Regarding the period of engagement, for Mozilla, top reporters
stay involved for a median of more than 8 years, significantly more com-
pared to the other 3 projects. Also, reporters are specialized w.r.t. the
type of a vulnerability. Regarding motivations, bug bounty programs
contribute significantly, yet bounty-related reports are a minority in all
projects. Furthermore, a minority of reporters are affiliated to the organi-
zation behind the projects, while 35% of reporters have also committed
to the project’s repository, and 39% of reporters created a non-CVE bug
in the project’s bug tracking platform.

5.6 implications and discussion

In this section, we discuss some implications of our results.

Observations as a benchmark and recommendations for new projects. We
saw that the FLOSS projects in our study depend both on a dedicated set of
“core” reporters with many reports, as well as on one-off contributions from a
large set of reporters (“many eyeballs”). Furthermore, FLOSS projects depend

126

5.6 implications and discussion

on attracting a steady influx of new reporters into their communities. There-
fore, projects should make sure that they continuously attract both types of
reporters, e.g. via having dedicated security resources and planning in addi-
tion to engaging with volunteer hackers. Depending on the type of the project,
the motivations of reporters may vary (as we observed for the projects in this
study), and as a result the best ways to attract them may also vary. If the project
is used as a core part of the operation of other organizations (e.g. the Linux ker-
nel), then these organizations may contribute to creating the dedicated “core”
of reporters. Otherwise, more investment of own resources or bug bounty pro-
grams will be needed (e.g. as in the case of Mozilla). Also, productive reporters
seem to be specialized w.r.t. the types of vulnerabilities they are looking for
(especially regarding memory-related issues and security issues).

*

Overall, our findings indicate that an effective strategy for FLOSS projects
is to continuously attract a diverse set of vulnerability reporters, both
dedicated researchers and opportunistic community members.

Community engagement metrics as indicators of quality. An ideal numeri-
cal “vulnerability-hunting effort” metric would provide the community with a
powerful tool in order to measure the security of software projects. The com-
plexities and per project peculiarities that we showcased in this chapter suggest
that a singular such metric may be unattainable (more details as to why follow
in later paragraphs). However, some of the metrics we investigated in this chap-
ter – in combination with qualitative characteristics discussed in the previous
paragraph – provide useful indications regarding the quality and intensity of
the vulnerability-hunting process for a project. Specifically, the (1− p)/p ratio
of the distribution of the number of reports per reporter (generalized Pareto
principle) can be used as a metric for the concentration of contributions in a
project. We saw that all projects in our investigation showed some imbalance
w.r.t how many reports are contributed by each reporter. There are many factors
(familiarity with a project, use of automated tools, discovery of vulnerability
patterns) that could support a preferential attachment mechanism that creates
a heavy-tailed distribution of reports per reporter. A very high concentration
of reports (e.g. 90/10) would indicate low participation of the “many eyeballs”
of a community to the vulnerability reporting process. This may or may not
be a bad sign for the health of the security ecosystem of a project, depending
on observations that can be made regarding the motivations of reporters. Such
observations can be made following an analysis like the one we introduced in
Section 5.5.4. A very low concentration (e.g. 50/50) would indicate a lack of
dedicated resource allocation (or lacking effectiveness of those resources).

Our results suggest that metrics such as the popularity of a project, or the
number of developers, do not directly relate to the number of vulnerability
reporters, since most reporters were not otherwise involved in those projects.
Anecdotal evidence, such as the Linux foundation’s executive director’s Jim
Zemlin commentary on the Heartbleed vulnerability of OpenSSL: “In these

127

an empirical study on vulnerability reporters

cases the eyeballs weren’t really looking,” seem to support this suggestion.
Merely being a popular project does not automatically translate to having an
active and adequate community of vulnerability reporters. This would also
mean that the use of the popularity of a project (e.g. install base) as a metric
for vulnerability-hunting effort (as in some effort-based vulnerability discovery
models) may lead to uninformative or even misleading results. A detailed anal-
ysis, as the one presented in this chapter requires human involvement for the
interpretation of its results29, yet we believe it provides more actionable and
valuable indications regarding the health of the vulnerability-hunting commu-
nity of a project. Thus, we believe that the methods presented in this chapter
can help construct a “general profile” of the health of a project’s vulnerability re-
porting ecosystem. Such a profile can be readily included to enhance the quality
of studies routinely published by security companies that try to assess the rel-
ative security of software products. Such “studies” usually miss the mark [54]
(up to now) and provide one-dimensional analyses, most commonly counting
the number of reported vulnerabilities.

*

Profiling the reporting ecosystem of a project, as introduced in this chap-
ter, can find immediate practical impact in providing indications regard-
ing the health of the security ecosystem of software projects. Specifically,
the (1−p)/p ratio can be used as a metric for the concentration of contri-
butions in a project, and as a consequence, act as an indicator of (security)
quality.

Building theories. One of the motivations behind this study was the hypoth-*
esis (supported by anecdotal evidence and prior results – see also Chapter 3)
that human effort expended in the vulnerability discovery process is the pri-
mary factor influencing the vulnerability discovery rate. An interpretation of
this hypothesis in simplistic terms (not considering differences in individual
skills, amount of time invested, available hardware, etc.) would be that given a
certain software project and a specified amount of time in the future, the num-
ber of vulnerabilities discovered will be proportional to the number of people
looking for them (or maybe better the number of “skill-normalized work hours”
invested). Generalizing this interpretation, consider the following example.

(A notion of quality.) Let us consider two different projects with the same num-*
ber of discovered vulnerabilities in a specific time period in the past. We could
try to compare these projects based on a notion of “quality of security” defined
as the average difficulty of finding a new vulnerability. Then we could state that
the average difficulty of finding a vulnerability in that time period – and as an
extension the “average quality” of the software during this time period – would
be proportional to the number of people looking for vulnerabilities for this soft-
ware during this time-period. Now, even when the number of vulnerabilities
discovered for each of the projects may differ, the same line of thought of pro-

29 A certain degree of automation may be achieved following, e.g. a rule-based approach, however
this is outside the scope of our work.

128

5.6 implications and discussion

portionality would allow us to state that the “quality” of each software project
would be proportional to the average ratio of people required to discover a
vulnerability. For example, assume project X had 100 vulnerabilities discovered
during the last year and another project Y had 50. Also, assume we know that
5 000 people searched full-time for vulnerabilities in project X during the last
year while 1 250 in project Y. Calculating, this would mean that on average 50

people would need to work full-time to find a vulnerability for project X in
comparison to 25 for project Y. Consequentially, we could state that project X is
(or at least was on average during the last year) “twice as secure” as project Y
based on an “average difficulty of discovery” notion of security.

Although simplistic, a metric based on the line of thought presented above*
would express a notion of quality. Of course, the main obstacle towards com-
puting such a metric is that – especially for FLOSS projects – we can hardly
have any idea about how many work-hours were invested overall in the vulner-
ability finding process during a specific time period. All the information that
is feasibly available (and can be collected as presented in this chapter) is how
many entities (people or sets of people) actually succeeded in discovering (and
reporting) vulnerabilities. The question is: can the readily available ratio of re-
ports per reporter (total number of reports divided by total number of reporters
in a specific amount of time, e.g. per year as shown in Figure 5.2) be used to
estimate the average “difficulty” of finding a vulnerability?

The short answer is not quite. The heavy-tailed characteristics of the distri-*
bution of reports per reporter (Section 5.5.1 – recall the (1 − p)/p ratio also
discussed above) indicate that there can be a large variance in the productivity
of reporting entities. One explanation based on our observations is that some
of the reporting entities are large teams of people (e.g. Google, Mozilla) while
others are individuals. Consider the following comparison of the Linux and
Mozilla security ecosystems to better understand the issues that arise.

(Linux vs. Mozilla.) Let us try to compare Linux and Mozilla in such a manner.*
In Figure 5.2, we see that the two projects have a similar number of reported
CVEs during the last years, while Mozilla has a higher number of reporting en-
tities for each year (and consequently a higher number of reporting entities per
CVE). Does this evidence suffice for us to conclude that it was more difficult
to discover a vulnerability in Mozilla compared to Linux based on this metric
– and therefore Mozilla is in a way more secure? Not quite. As we saw in Sec-
tion 5.5.4, a significant number of Linux reporters were big organizations (or
individuals affiliated to big organizations). Also, a significantly higher number
of Mozilla vulnerabilities were discovered “in house” (33% compared to <10%).
Overall, these observations suggest that the effort expended in finding vulnera-
bilities for Linux is comparatively higher per reporting entity than for Mozilla.
Overall, we can say that neither of the two projects is strictly more secure, or
alternatively, the two projects are in the same class when it comes to security
(again defined as per the line of thought above).

*

129

an empirical study on vulnerability reporters

Uni-dimensional metrics of effort fail to capture the complexity of real-
world security. However, in this chapter we showed that a combined
assessment of several parameters (mainly but not limited to: the (1−p)/p

ratio, # of CVEs normalized per reporter, reporter affiliations, ratio of
internal/external reporters)—in particular in a comparative assessment
between different projects—can provide valuable indicators regarding
the health of a project’s security ecosystem (w.r.t. vulnerability finding).

Additional comments on the Linux kernel. At the end, we want to return to*
the peculiarities of the Linux project. We reported in Section 5.5.4 that Linux is
the only project in our study with a negligible amount of reports associated to
bug bounties. However, some Linux kernel vulnerabilities may fall within the
bounds of Google’s Android Security Rewards Program30, which was launched
in 2015 to reward reported vulnerabilities affecting Android devices. To the
best of our knowledge, no publicly available information exists regarding the
specific CVEs, reporters, and bounty amounts rewarded. We can consider, as
an upper bound for the number of Linux kernel CVEs that may have been
awarded a bounty through this program, the number of CVEs with reporters
who were acknowledged in Android Security Bulletins (we already referred to
this source in Section 5.4). Such an acknowledgement exists for 201 out of a
total of 1 962 Linux CVEs (~10%) in our dataset.

Given the paramount importance of Linux as the underlying operating sys-*
tem (kernel) of many digital infrastructures, one may wonder whether the exis-
tence of a dedicated bug bounty program would help improve security. Indeed,
Google announced in mid-2020 that they expanded their rewards program to
cover open source dependencies of their products (incl. Linux)31, also providing
an update in late-2021 announcing new bounties for the Linux kernel specifi-
cally (of up to 50 000 USD)32. It would be interesting to observe how these
recent developments will affect vulnerability reporting for the Linux kernel in
the following years. A dedicated study on the impact of such initiatives, as well
as new tools, on the security of the Linux kernel, would be interesting future
work.

5.7 threats to validity

Below we systematically document possible threats for the validity of our re-
sults.

30 https://bughunters.google.com/about/rules/6171833274204160

31 https://security.googleblog.com/2020/05/expanding-our-work-with-open-source.html

32 https://security.googleblog.com/2021/11/trick-treat-paying-leets-and-sweets-for.

html

130

https://bughunters.google.com/about/rules/6171833274204160
https://security.googleblog.com/2020/05/expanding-our-work-with-open-source.html
https://security.googleblog.com/2021/11/trick-treat-paying-leets-and-sweets-for.html
https://security.googleblog.com/2021/11/trick-treat-paying-leets-and-sweets-for.html

5.7 threats to validity

5.7.1 Threats to construct validity

Reporters vs. discoverers: For the discussion of the implication of our results,
we assumed that the people/organizations who get credited with reporting
a vulnerability are the ones that discovered it. We believe this to be a valid
assumption macroscopically, although we note that it may not be universally
true.

5.7.2 Threats to internal validity

Best-effort: We collected our data from multiple sources and underwent a rig-
orous cleaning process. Understandably, this process was best-effort and we
welcome corrections (and additions) by the community on our publicly avail-
able dataset.

Inherent noise and incomplete data: Our information sources (NVD, secu-
rity advisories, bug reports, etc.) are manually curated and therefore subject to
errors and omissions. Furthermore, we focused our investigation on vulnerabil-
ities that received a CVE identifier. Although the CVE database is supposed to
“fully cover” the projects in our study, it is known that a significant amount of
vulnerabilities do not get a CVE. Although we do not expect these vulnerabil-
ities to differ significantly (w.r.t. the characteristics we studied) to the ones in
our study, future efforts can be driven towards expanding our dataset to include
more vulnerabilities. Furthermore, other sources for information on security re-
porters, bug bounties, or affiliations may exist that we did not consider in our
study. A platform to systematically gather and continuously update such infor-
mation would be a worthwhile goal for the community (e.g. as an extension of
the NVD).

5.7.3 Threats to external validity – Generalization

We investigated four popular FLOSS projects. In particular, these are among
the largest FLOSS projects with longevity, so these results may not apply to
smaller, newer FLOSS projects. We saw various differences in the reporter char-
acteristics for each project, and therefore additional studies are required to
have a more general understanding of the FLOSS security ecosystem. How-
ever, our methodology is largely automated and should be applicable to any
other FLOSS projects that keep accurate records of their vulnerability reporters,
which can significantly reduce the overhead of future studies.

5.7.4 Threats to reliability

The manual assignment of human/organization/team labels (step ix. in Sec-*
tion 5.4.3.2) and the manual verification of LinkedIn profiles for the 48 profiles
returned by the search (step x. of Section 5.4.3.2) were performed by a single
person. However, we consider the impact of divergence in those aspects to be

131

an empirical study on vulnerability reporters

small and to have no effect on the reliability of the results presented in this chap-
ter. We make our code and dataset publicly available to enable reproducibility
of our results.

5.8 conclusion

In this chapter, we performed the first (to the best of our knowledge) large-
scale study on FLOSS vulnerability reporters, going beyond the closed com-
munities of bug-bounty programs. We investigated several aspects regarding
the trends, backgrounds, motivations, and behaviors of vulnerability reporters.
We identified qualitative characteristics that can act as benchmarks for healthy
vulnerability-finding ecosystems. We also identified a quantitative metric that
can provide indications regarding the health of the vulnerability-hunting ecosys-
tem of a project, although further studies with even bigger datasets are required.
As an independent contribution, we demonstrated that characteristics of vul-
nerability reporters can be studied through information mined from several
publicly available online sources. Our approach is mostly automated and our
data and scripts are open to the public, so future researchers or FLOSS project
coordinators can further build upon this study.

In conclusion, our results suggest that individual metrics for vulnerability-
hunting effort without context will fail to capture the unique characteristics of
the process. On the other hand, comprehensive case studies, shedding light on
multiple potentially co-dependent aspects of the process, can provide useful in-
sights. The methodology we presented in this chapter provides a blueprint for
such approaches. In the following table (Table 5.7) we summarize the key quan-*
tities identified during the empirical study presented in this chapter, along with
comments on the information they convey in relation to the health of a project’s
vulnerability finding ecosystem. More research is required to better understand
the relation of these quantities with each other and how they can systematically
be used to assess and help improve the security of FLOSS ecosystems.

Parameter Comments

1. (1− p)/p ratio (5.5.1)
• Provides a measure for the concentration of reports

among reporters for a given project.

2. Correlation over time #
CVEs ~# reporters (5.5.2)

• Can be used as an indication that an increase in the
number of reports is (at least partly) attributed to an
increase in the expended effort.

132

5.8 conclusion

3. # CVEs
reporters per year

(5.5.2)

• Can be used as an indication (together with supple-
mentary information regarding, e.g. the affiliations of
reporters – as discussed in Section 5.6) regarding the
difficulty of finding vulnerabilities in a given project.

4. # first-time reporters
reporters per

year (5.5.2)
• Provides a measure for the magnitude of the effect of

new reporters coming into the ecosystem.

5. Duration of engage-
ment for top reporters
(5.5.2)

• Can indicate whether the relationship of reporters to
the project is long-term or comes in bursts.

6. # specialized reporters
reporters

(5.5.3)
• Can provide indications regarding areas where more

specialized personnel is needed

7. # CVEs w/ bounty
CVEs (5.5.4)

• Provides a measure of the impact and effectiveness of
employed bug bounty programs

8. # CVEs w/ internal reporter
CVEs with external reporter

(5.5.4)

• Provides a measure for the quantity and effectiveness
of the resources dedicated by the vendor in compari-
son to resources attracted via other means.

Table 5.7: Summary of notable parameters identified in this chapter. The section where*
the relevant results are presented is given in brackets.

*

Key takeaways

In this chapter, we showed how to analyze the vulnerability reporting
ecosystem of FLOSS projects using publicly available data. Such analysis
can provide indications regarding the health of a project’s vulnerability
finding ecosystem. In particular, in this chapter we showed that the distri-
bution of reports among reporters ((1− p)/p ratio) directly provides in-
formation regarding the concentration of contributors, which when con-
sidered in combination with other factors (reporter affiliations, ratio of

133

an empirical study on vulnerability reporters

internal/external reports, reports associated with bug bounties – see also
discussion in Section 5.6) can provide indications regarding a project’s
quality of security.

134

6
C O N C L U S I O N

Having means to objectively measure the security quality of software would help
improve software security in many ways. Specifically, being able to compare se-
curity properties of software programs would not only enable users to make
more informed decisions according to their needs, but—most fundamentally—
would also enable vendors to “charge” for security, generating incentives for
better security and leading to significantly increased efforts. Furthermore, bet-
ter ways to measure software security, including its development over time,
would enable us to assess the effectiveness and impact of employed tools and
practices. For example, our results regarding the non-depletion of vulnerabili-
ties during the lifetimes of stable releases (the Tip of the Iceberg effect observed
in Chapter 3) suggest that more attention into ‘security by design’ efforts is
needed (e.g. memory-safe programming languages). Such efforts would avert
the introduction of vulnerabilities in the code and make them rarer. Then, the
impact of ever-improving automated testing tools would reach its full poten-
tial, as more time and resources would be available to properly examine and
address the outputs of such tools.

In this dissertation we presented new approaches towards extracting infor-
mative metrics regarding the security quality of software. Although measur-
ing security is very hard (security being complex and multidimensional) our
approaches mark a small—but significant—step forward towards achieving
progress. Overall, there is still a lot to be done in the area. Real-world security of
deployed systems does not only depend on the difficulty of finding new vulner-
abilities in the software they use. Rather, it involves numerous considerations,
e.g. regarding the usability of the software, the speed and quality of the patch
development and deployment processes, the training and competence of the
users and administrators, etc. Therefore, further progress towards better secu-
rity metrics and measurement methods requires not only the improvement and
further development of the approaches introduced in this dissertation (from
a ‘vulnerability-finding’ perspective), but also the development of approaches
that capture other considerations (some of which we mentioned above).

6.1 summary of contributions

In this dissertation we provided three new approaches to measure relevant
aspects of software security:

• In Chapter 3 we provided a method for creating a dataset of vulnerabilities
affecting stable releases of the Debian GNU/Linux distribution of software.
We used this dataset to perform a large-scale empirical study on vulnerability
discovery rates over time, trying to answer fundamental questions regarding
the longitudinal development of security in popular FLOSS projects. Specifi-

135

conclusion

cally, the research question we tried to answer in this chapter was: Are stable
releases maturing over time? We observed no definitive decreasing trend in the
vulnerability rate of selected packages (php5 and openjdk-7) and a distribu-
tion as a whole (Debian 7 ‘Wheezy’) during the duration of a stable release
– on the contrary, for most of the cases we identified an increasing trend.
We also did not observe an increasing trend in the bug bounties offered for
FLOSS projects in a popular bug bounty platform.

Our results suggest that software is not maturing fast enough for it to be
observable during a given release (~3-5 years) yet. We termed this effect of
a seemingly infinite amount of vulnerabilities during a practical time-frame
after the release of a software, the ‘Tip of the Iceberg’ effect. Further work is
needed to investigate whether the effect can be observed for other software
packages or whole distributions and what conditions may indicate its exis-
tence. Our findings indicate that metrics and models based on the rate of
vulnerability discoveries are more likely to be influenced by external factors
(e.g. vulnerability finding effort) than be good indicators of quality. Overall,
our results suggest that the vulnerability finding-and-patching treadmill is
not scalable. More effort should be invested in avoiding the introduction of
vulnerabilities in the code in the first place, i.e. more ‘security by design’
efforts are needed (as already stated in the previous section and further ana-
lyzed in Section 3.7).

• In Chapter 4 we introduced a way to measure vulnerability lifetimes. This
is the first measurement approach that allows us to estimate lifetimes au-
tomatically and accurately. Using this approach we performed a large-scale
empirical study on characteristics of vulnerability lifetimes focusing on dif-
ferences between projects and time-dependent effects. The research question
we tried to answer in this chapter was: How long do vulnerabilities live in the
code? We measured that vulnerabilities remain in the code for long period of
time, varying significantly between projects (e.g. ~2 years for Chromium vs.
~7 years for OpenSSL). Vulnerability lifetimes are also increasing over time
as the age of the codebase increases.

We identified metrics that can provide indications regarding software secu-
rity quality, most notably (a) the spread between the average lifetime of vul-
nerabilities and the age of the code when the vulnerabilities are discovered,
(b) the rate of increase/decrease of this spread. We interpreted our observa-
tion that for Chromium this spread increases as an indication of maturity
and increasing quality. We also observed that the introduction of fuzzing
had no noticeable impact on the lifetimes of memory vulnerabilities for the
Linux kernel. More efforts are needed towards measuring the impact of auto-
mated approaches such as fuzzing on the security of codebases. Vulnerability
lifetimes, as a metric along with our measurement method, can be used to
explore such questions and possibly many others.

• In Chapter 5 we introduced the first methodology to create a large dataset
of vulnerability reporters for FLOSS from publicly available sources. Via a
large-scale process of scraping, combining and cleaning data from a variety

136

6.2 further discussion

of sources we were able to collect information on the people or organizations
credited with reporting vulnerabilities in popular FLOSS projects. With this
dataset we performed an empirical study on characteristics of vulnerability
reporters focusing on differences between projects, developments over time
and motivations of reporters. The main research question we tried to answer
in this chapter was: How can we measure human effort in the vulnerability discov-
ery process? This question aims to capture aspects of vulnerability reporters,
their characteristics (affiliations, duration of engagement, etc.) that can be
used to assess the health of a project’s vulnerability-finding ecosystem.

We found that the number of reporters, as well as the number of new re-
porters per year were closely correlated with the number of vulnerability
discoveries. Although there is correlation between the number of reports per
reporter (the lower the better) and the collective effort invested in the vulner-
ability discovery process, we should not rush into using this metric to com-
pare software. As we showed, for some cases as the Linux kernel, reporters
often are big companies and organizations that might contribute hundreds
of individuals as well as heavy machinery in the discovery effort. A complete
overview of the reporting ecosystem of projects, following the methodology
presented in this chapter and taking into account the parameters of Table 5.7,
could be used to qualitatively compare the health of different projects. In
light of new bug bounty programs targeting FLOSS, further research on the
motivations of reporters and their development over time would provide
interesting insights.

6.2 further discussion

Is software improving? – Is vulnerability hunting socially beneficial? In Chap-
ter 3 we observed that there is no observable decreasing trend in the vulnerabil-
ity discovery rate during Debian stable releases, while in Chapter 4 we observed
that vulnerability lifetimes are increasing. These observations point to practical
non-depletion of vulnerabilities, i.e. vulnerabilities are seemingly infinite, and
thus finding and fixing them may not reduce the available attack surface for ad-
versaries. However, in Chapter 4 we also observed that for some projects there
are signs of maturity in the sense that the lifetime of vulnerabilities grows
slower that the increase of the average age of the codebase, meaning that vul-
nerabilities are getting rarer in some old parts of the code. In the same chapter
we also observed that vulnerability lifetimes are distributed exponentially, al-
beit with high half-lives. As we explain in Section 4.8 this would translate in
an expected exponential decrease in the vulnerability discovery rate affecting
a stable release assuming that the vulnerability discovery rate for a project is
constant. The non-decreasing trend observed in Debian stable releases can be
explained by an increasing trend in the discovery rate overall (affecting the
newest version). The cause of this increase seems to be an increase in the effort
expended in the vulnerability finding (and patching) processes. In Chapter 5

we indeed observed that the number of reporters per year – which can act as a
proxy for the number of people searching for vulnerabilities – is correlated with

137

conclusion

the number of vulnerability reports. Overall, we can say that although vulner-
abilities may not seem to be depleted at the moment, and therefore the social
utility of vulnerability finding may still be contested (echoing the concerns of
Rescorla [93]), the observation that vulnerability lifetimes seem to grow slower
than the age of the code suggests that at least for some parts of the code vul-
nerabilities are getting more difficult to find and therefore finding and fixing
them is useful. We therefore believe that we will observe more definitive signs
of depletion in the near future.

Practical impact of the contributions Although our contributions are largely
fundamental, improving our understanding of security and introducing new
avenues to measure important aspects affecting software quality, they can also
find immediate practical impact. For example, vulnerability lifetimes (intro-
duced in Chapter 4) can be used in case studies to measure and compare the
effectiveness of different code review approaches as well as the impact of auto-
mated tools. Furthermore, such measurements can be used to support decision-
making regarding the duration of long term support, as discussed in Section 4.8.
Our main claims regarding seeming non-depletion of vulnerabilities support
the need for more investment in “security by design” solutions.

6.3 future work

The core contributions of this dissertation are methods to measure quantities
that can help us assess the security of software. These methods are of general
applicability, and therefore can be utilized to investigate additional research
questions. Here we provide an overview of possible avenues for future work.

More detailed per project analysis. In all three empirical studies presented in
this dissertation we focused on a selection of popular FLOSS projects with a
significant number of reported security vulnerabilities. However, small projects
with few reported vulnerabilities also contribute to the overall security land-
scape and since statistical measures are difficult to apply in such cases (due to
the low number of reports), other approaches are necessary (e.g. based on code
analysis).

Further studies on the impact of automated tools. In Section 4.7 we included a
small-scale case study showing how vulnerability lifetimes can be used to better
understand and quantify the impact of automated vulnerability discovery tools
(e.g. fuzzing) on the overall security of codebases. Further studies on the matter
using vulnerability lifetimes or other metrics could lead to very interesting
results. It is still an open question whether we can achieve better security by
getting better in finding vulnerabilities or whether more fundamental changes
in the software development process (e.g. using memory-safe programming
languages) are necessary. Our findings (esp. the “Tip of the iceberg” observation
of Chapter 3) support the second claim.

Further steps towards quantifying vulnerability discovery effort. In Chapter 5

we introduced an approach to perform large-scale studies on vulnerability re-
porters that enabled us to draw some interesting conclusions. However, we are

138

6.3 future work

still some way off from assessing the effort (in terms of time, talent, equipment,
money) that led to the discovery of a vulnerability. One way to achieve progress
in this front would be for vulnerability reporters to include additional informa-
tion in their reports that would help us make an automatic assessment of the
effort invested.

Further studies on bug bounty programs for FLOSS. In light of new programs
recently launched targeting FLOSS (e.g. by Google1) that offer more competitive
bug bounties (compared to proprietary software), it would be interesting to
revisit the bounty-related questions discussed in Chapters 3 and 5 in the near
future.

Formalization efforts. As we improve our understanding of the vulnerability
finding process and identify indicators that help us assess the quality of se-
curity of projects, a more formal expression of the models that underlie the
process would be highly beneficial and interesting avenue for future work on
the fundamental aspects of the problem.

Improvements in vulnerability tracing. Our dataset, method and observations
regarding the estimation of the introduction date of a vulnerability (Chapter 4)
could be used to create better tools for vulnerability tracing (tracing the com-
mits that introduced a vulnerability). Further work could include the use of
machine learning algorithms and advanced code representations (e.g. Code
Property Graphs [116]).

1 https://security.googleblog.com/2020/05/expanding-our-work-with-open-source.html

139

https://security.googleblog.com/2020/05/expanding-our-work-with-open-source.html

140

A
C O M P L E T E L I S T O F O W N P U B L I C AT I O N S

1. Alexopoulos, N. On enhancing trust in cryptographic solutions: student re-
search abstract in Proceedings of the Symposium on Applied Computing, SAC
2017, Marrakech, Morocco, April 3-7, 2017 (eds Seffah, A., Penzenstadler, B.,
Alves, C. & Peng, X.) (ACM, 2017), 1848–1849.

2. Alexopoulos, N., Brack, M., Wagner, J. P., Grube, T. & Mühlhäuser, M.
How long do vulnerabilities live in the code? A large-scale empirical measure-
ment study on FOSS vulnerability lifetimes in 31st USENIX Security Sympo-
sium, USENIX Security 2022 (to appear) (USENIX Association, 2022).

3. Alexopoulos, N., Daubert, J., Mühlhäuser, M. & Habib, S. M. Beyond the
Hype: On Using Blockchains in Trust Management for Authentication in 2017
IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia, August 1-4, 2017 (IEEE
Computer Society, 2017), 546–553.

4. Alexopoulos, N., Egert, R., Grube, T. & Mühlhäuser, M. Poster: Towards
Automated Quantitative Analysis and Forecasting of Vulnerability Discoveries
in Debian GNU/Linux in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK, November
11-15, 2019 (eds Cavallaro, L., Kinder, J., Wang, X. & Katz, J.) (ACM, 2019),
2677–2679.

5. Alexopoulos, N., Habib, S. M. & Mühlhäuser, M. Towards Secure Distrib-
uted Trust Management on a Global Scale: An analytical approach for applying
Distributed Ledgers for authorization in the IoT in Proceedings of the 2018
Workshop on IoT Security and Privacy, IoT S&P@SIGCOMM 2018, Budapest,
Hungary, August 20, 2018 (ACM, 2018), 49–54.

6. Alexopoulos, N., Habib, S. M., Schulz, S. & Mühlhäuser, M. The Tip of
the Iceberg: On the Merits of Finding Security Bugs. ACM Trans. Priv.
Secur. 24 (2020).

7. Alexopoulos, N., Kiayias, A., Talviste, R. & Zacharias, T. MCMix: Anony-
mous Messaging via Secure Multiparty Computation in 26th USENIX Security
Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017 (eds Kirda, E. & Ristenpart, T.) (USENIX Association, 2017), 1217–
1234.

8. Alexopoulos, N., Meneely, A., Arnouts, D. & Mühlhäuser, M. Who are Vul-
nerability Reporters?: A Large-scale Empirical Study on FLOSS in ESEM ’21:
ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement, Bari, Italy, October 11-15, 2021 (eds Lanubile, F., Kalinowski,
M. & Baldassarre, M. T.) (ACM, 2021), 25:1–25:12.

141

complete list of own publications

9. Alexopoulos, N., Vasilomanolakis, E., Ivánkó, N. R. & Mühlhäuser, M. To-
wards Blockchain-Based Collaborative Intrusion Detection Systems in Critical
Information Infrastructures Security - 12th International Conference, CRITIS
2017, Lucca, Italy, October 8-13, 2017, Revised Selected Papers (eds D’Agostino,
G. & Scala, A.) 10707 (Springer, 2017), 107–118.

10. Alexopoulos, N., Vasilomanolakis, E., Roux, S. L., Rowe, S. & Mühlhäu-
ser, M. TRIDEnT: towards a decentralized threat indicator marketplace in SAC
’20: The 35th ACM/SIGAPP Symposium on Applied Computing, online event,
[Brno, Czech Republic], March 30 - April 3, 2020 (eds Hung, C., Cerný, T.,
Shin, D. & Bechini, A.) (ACM, 2020), 332–341.

11. Böck, L., Alexopoulos, N., Saracoglu, E., Mühlhäuser, M. & Vasiloma-
nolakis, E. Assessing the Threat of Blockchain-based Botnets in 2019 APWG
Symposium on Electronic Crime Research, eCrime 2019, Pittsburgh, PA, USA,
November 13-15, 2019 (IEEE, 2019), 1–11.

12. Habib, S. M., Alexopoulos, N., Islam, M. M., Heider, J., Marsh, S. & Mühl-
häuser, M. Trust4App: Automating Trustworthiness Assessment of Mobile Ap-
plications in 17th IEEE International Conference On Trust, Security And Pri-
vacy In Computing And Communications / 12th IEEE International Conference
On Big Data Science And Engineering, TrustCom/BigDataSE 2018, New York,
NY, USA, August 1-3, 2018 (IEEE, 2018), 124–135.

142

Appendices

143

B
A P P E N D I X O F C H A P T E R 3

b.1 additional figures

’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17

0

5

p
h
p
5

’13 ’14 ’15 ’16 ’17

0

5

op
en
jd
k-
7

’13 ’14 ’15 ’16 ’17

0

10

w
h
ee
zy

’13 ’14 ’15 ’16 ’17
−5

0

5

w
h
ee
zy
-h
ig
h

Figure B.1: Laplace trend tests with 95% significance thresholds (dashed lines).

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

50

100

B
o
u

n
ty

a
m

o
u

n
t

(k
)

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

25

50

75

R
ep

o
rt

n
u

m
b

er rest

in IBB

Figure B.2: Bounty amounts in thousands of USD (left) and number of reports (right)
of IBB reporters (at least 1 IBB report at some point in time) comparing reports in the
IBB program against reports for other programs in HackerOne over time.

145

appendix of chapter 3

linux
iceape
samba

typo3-src
python-django

xpdf
quagga

graphite2
wpa
sudo

sendmail
symfony

movabletype-opensource
openvpn

pdfkit
gaim

dnsmasq
kdebase

wget
mercurial

t1lib
jruby

libwmf
libgcrypt20

traceroute-nanog
pound
acpid

libspring-java
tnef
epic

cscope
libphp-adodb

websvn
xen-qemu-dm-4.0

xerces-c
discount
w3m-ssl

masqmail
kdelibs-crypto

lsh-utils
lurker

libnet-dns-perl
libdbd-pg-perl
shibboleth-sp2

libsoup2.4
xdg-utils

rtmpdump
man2html

interchange
w3mmee

noweb
lftp

gatos
bmv

kismet
mydns

hostapd
xmms
xwine

netatalk
ircd-hybrid/ircd-ratbox

fex
libotr

libxcursor
libstruts1.2-java

requests
activemq

gst-plugins-ugly1.0
golang-1.11

1
0
−

1

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

Vulnerabilities

S
ize

in
K

S
L

o
C

Figure B.3: The distribution of vulnerabilities in the Debian ecosystem (years 2001-
2017), along with the size of the corresponding packages. The scale of axis x is logarith-
mic. All packages are taken into account. Every tenth package name appears on the y
axis for space reasons.

b.2 statistical test results

Detailed statistical test results referring to the plots of the chapter’s main body
are included in this section.

Table B.1: OLS for reliability trends

146

B.2 statistical test results

Trend of the total number of vulnerabilities in Debian (Fig. 3.5a).

Dep. Variable: total R-squared: 0.796

Model: OLS Adj. R-squared: 0.783

Method: Least Squares F-statistic: 62.36

No. Observations: 18 AIC: 234.7

Df Residuals: 16 BIC: 236.5

Df Model: 1

coef std err t P>|t| [0.025 0.975]

const 120.0175 70.519 1.702 0.108 -29.476 269.511

x1 55.9195 7.081 7.897 0.000 40.907 70.932

Omnibus: 6.195 Durbin-Watson: 1.284

Prob(Omnibus): 0.045 Jarque-Bera (JB): 3.587

Skew: 0.994 Prob(JB): 0.166

Kurtosis: 3.910 Cond. No. 19.3

Trend of the average number of vulnerabilities in Debian (Fig. 3.5b).

Dep. Variable: av. per package R-squared: 0.919

Model: OLS Adj. R-squared: 0.914

Method: Least Squares F-statistic: 180.7

No. Observations: 18 AIC: 28.43

Df Residuals: 16 BIC: 30.21

Df Model: 1

coef std err t P>|t| [0.025 0.975]

const 1.1114 0.229 4.856 0.000 0.626 1.597

x1 0.3089 0.023 13.442 0.000 0.260 0.358

Omnibus: 3.018 Durbin-Watson: 1.680

Prob(Omnibus): 0.221 Jarque-Bera (JB): 1.300

Skew: 0.594 Prob(JB): 0.522

Kurtosis: 3.566 Cond. No. 19.3

Trend of the number of vulnerabilities in Debian Wheezy (Fig. 3.8).

Dep. Variable: Wheezy total R-squared: 0.564

Model: OLS Adj. R-squared: 0.540

Method: Least Squares F-statistic: 23.29

No. Observations: 20 AIC: 223.7

Df Residuals: 18 BIC: 225.7

Df Model: 1

147

appendix of chapter 3

coef std err t P>|t| [0.025 0.975]

const 153.1143 26.723 5.730 0.000 96.972 209.256

x1 11.6038 2.405 4.826 0.000 6.552 16.656

Omnibus: 1.893 Durbin-Watson: 1.736

Prob(Omnibus): 0.388 Jarque-Bera (JB): 0.748

Skew: 0.445 Prob(JB): 0.688

Kurtosis: 3.324 Cond. No. 21.5

Trend of the number of high-severity vulnerabilities in Debian Wheezy (Fig. 3.12).

Dep. Variable: Wheezy high R-squared: 0.318

Model: OLS Adj. R-squared: 0.280

Method: Least Squares F-statistic: 8.402

No. Observations: 20 AIC: 192.1

Df Residuals: 18 BIC: 194.1

Df Model: 1

coef std err t P>|t| [0.025 0.975]

const 46.8571 12.104 3.871 0.001 21.427 72.287

x1 3.1571 1.089 2.899 0.010 0.869 5.445

Omnibus: 20.152 Durbin-Watson: 1.990

Prob(Omnibus): 0.000 Jarque-Bera (JB): 26.851

Skew: 1.753 Prob(JB): 1.48e-06

Kurtosis: 7.464 Cond. No. 21.5

Table B.2: OLS for bug bounty trends (Fig. 3.17)

Trend of average price in the IBB program.

Dep. Variable: IBB-all-av R-squared: 0.245

Model: OLS Adj. R-squared: 0.200

Method: Least Squares F-statistic: 5.513

No. Observations: 19 AIC: 343.1

Df Residuals: 17 BIC: 345.0

Df Model: 1

coef std err t P>|t| [0.025 0.975]

const 3918.9048 845.666 4.634 0.000 2134.706 5703.104

x1 -175.8950 74.917 -2.348 0.031 -333.955 -17.835

Omnibus: 26.771 Durbin-Watson: 1.939

Prob(Omnibus): 0.000 Jarque-Bera (JB): 42.644

Skew: 2.326 Prob(JB): 5.50e-10

Kurtosis: 8.677 Cond. No. 21.8

148

B.2 statistical test results

Trend of median price in the IBB program.

Dep. Variable: IBB-all-med R-squared: 0.426

Model: OLS Adj. R-squared: 0.392

Method: Least Squares F-statistic: 12.60

No. Observations: 19 AIC: 309.7

Df Residuals: 17 BIC: 311.6

Df Model: 1

coef std err t P>|t| [0.025 0.975]

const 2365.1079 350.802 6.742 0.000 1624.980 3105.236

x1 -110.3118 31.077 -3.550 0.002 -175.879 -44.745

Omnibus: 6.741 Durbin-Watson: 1.636

Prob(Omnibus): 0.034 Jarque-Bera (JB): 4.340

Skew: 1.116 Prob(JB): 0.114

Kurtosis: 3.705 Cond. No. 21.8

Trend of average price in the IBB program - only high and critical severity bugs.

Dep. Variable: IBB-high-av R-squared: 0.023

Model: OLS Adj. R-squared: -0.303

Method: Least Squares F-statistic: 0.06945

No. Observations: 5 AIC: 86.40

Df Residuals: 3 BIC: 85.62

Df Model: 1

coef std err t P>|t| [0.025 0.975]

const 2851.3514 4400.740 0.648 0.563 -1.12e+04 1.69e+04

x1 -81.0811 307.661 -0.264 0.809 -1060.197 898.034

Omnibus: nan Durbin-Watson: 3.543

Prob(Omnibus): nan Jarque-Bera (JB): 0.406

Skew: 0.242 Prob(JB): 0.816

Kurtosis: 1.691 Cond. No. 119.

Trend of median price in the IBB program - only high and critical severity bugs.

Dep. Variable: IBB-high-med R-squared: 0.023

Model: OLS Adj. R-squared: -0.303

Method: Least Squares F-statistic: 0.06945

No. Observations: 5 AIC: 86.40

Df Residuals: 3 BIC: 85.62

Df Model: 1

149

appendix of chapter 3

coef std err t P>|t| [0.025 0.975]

const 2851.3514 4400.740 0.648 0.563 -1.12e+04 1.69e+04

x1 -81.0811 307.661 -0.264 0.809 -1060.197 898.034

Omnibus: nan Durbin-Watson: 3.543

Prob(Omnibus): nan Jarque-Bera (JB): 0.406

Skew: 0.242 Prob(JB): 0.816

Kurtosis: 1.691 Cond. No. 119.

Trend of average price in HackerOne.

Dep. Variable: all-all-av R-squared: 0.185

Model: OLS Adj. R-squared: 0.140

Method: Least Squares F-statistic: 4.094

No. Observations: 20 AIC: 278.6

Df Residuals: 18 BIC: 280.6

Df Model: 1

coef std err t P>|t| [0.025 0.975]

const 614.9606 105.436 5.833 0.000 393.448 836.473

x1 19.1973 9.488 2.023 0.058 -0.735 39.130

Omnibus: 15.357 Durbin-Watson: 1.291

Prob(Omnibus): 0.000 Jarque-Bera (JB): 14.439

Skew: 1.621 Prob(JB): 0.000732

Kurtosis: 5.611 Cond. No. 21.5

Trend of median price in HackerOne.

Dep. Variable: all-all-med R-squared: 0.222

Model: OLS Adj. R-squared: 0.179

Method: Least Squares F-statistic: 5.141

No. Observations: 20 AIC: 243.8

Df Residuals: 18 BIC: 245.8

Df Model: 1

coef std err t P>|t| [0.025 0.975]

const 241.2714 44.100 5.471 0.000 148.622 333.921

x1 8.9977 3.968 2.267 0.036 0.661 17.335

Omnibus: 7.109 Durbin-Watson: 1.723

Prob(Omnibus): 0.029 Jarque-Bera (JB): 4.967

Skew: 1.189 Prob(JB): 0.0834

Kurtosis: 3.550 Cond. No. 21.5

150

B.2 statistical test results

Trend of average price in HackerOne – only high and critical severity bugs.

Dep. Variable: all-high-av R-squared: 0.213

Model: OLS Adj. R-squared: 0.134

Method: Least Squares F-statistic: 2.707

No. Observations: 12 AIC: 217.0

Df Residuals: 10 BIC: 218.0

Df Model: 1

coef std err t P>|t| [0.025 0.975]

const 5446.5080 1574.979 3.458 0.006 1937.236 8955.780

x1 -191.7995 116.585 -1.645 0.131 -451.567 67.969

Omnibus: 1.989 Durbin-Watson: 2.116

Prob(Omnibus): 0.370 Jarque-Bera (JB): 0.237

Skew: -0.093 Prob(JB): 0.888

Kurtosis: 3.663 Cond. No. 39.0

Trend of median price in HackerOne – only high and critical severity bugs.

Dep. Variable: all-high-med R-squared: 0.282

Model: OLS Adj. R-squared: 0.210

Method: Least Squares F-statistic: 3.922

No. Observations: 12 AIC: 222.2

Df Residuals: 10 BIC: 223.2

Df Model: 1

coef std err t P>|t| [0.025 0.975]

const 6053.7931 1957.525 3.093 0.011 1692.157 1.04e+04

x1 -286.9574 144.902 -1.980 0.076 -609.820 35.905

Omnibus: 6.127 Durbin-Watson: 2.031

Prob(Omnibus): 0.047 Jarque-Bera (JB): 2.495

Skew: 0.937 Prob(JB): 0.287

Kurtosis: 4.216 Cond. No. 39.0

151

152

C
A P P E N D I X O F C H A P T E R 4

c.1 vulnerability categories

Mappings to top-level categories
Below are the mappings from CWEs to our own top level categories:

1. Memory and Resource Management
2. Input Validation and Sanitization
3. Code Development Quality
4. Security Measures
5. Others
6. Concurrency

This is by no means a complete mapping, but covers all CWEs represented
in our dataset. Please note that CWE-NVD-noinfo is not assigned a category.

mappings = {CWE-20: 2, CWE-189: 4, CWE-119: 1, CWE-125: 1, CWE-399: 1, CWE-
NVD-Other: 5, CWE-200: 4, CWE-476: 1, CWE-264: 4, CWE-416: 1, CWE-835: 3, CWE-
NVD-noinfo: np.NaN, CWE-362: 6, CWE-400: 1, CWE-787: 1, CWE-772: 1, CWE-310: 4,
CWE-190: 1, CWE-74: 2, CWE-17: 3, CWE-284: 4, CWE-415: 1, CWE-369: 3, CWE-19: 5,
CWE-834: 3, CWE-79: 4, CWE-754: 5, CWE-674: 3, CWE-120: 1, CWE-94: 2, CWE-388: 5,
CWE-269: 4, CWE-254: 4, CWE-129: 2, CWE-287: 4, CWE-617: 3, CWE-276: 4, CWE-404:
1, CWE-134: 5, CWE-862: 4, CWE-320: 4, CWE-89: 2, CWE-347: 4, CWE-682: 3, CWE-16:
5, CWE-665: 5, CWE-755: 5, CWE-732: 4, CWE-311: 4, CWE-770: 1, CWE-252: 5, CWE-
534: 5, CWE-704: 5, CWE-22: 2, CWE-532: 5, CWE-193: 3, CWE-843: 5, CWE-391: 5,
CWE-191: 1, CWE-59: 2, CWE-763: 1, CWE-358: 4, CWE-285: 4, CWE-863: 4, CWE-77: 2,
CWE-327: 4, CWE-330: 5, CWE-295: 5, CWE-352: 5, CWE-92: 4, CWE-664: 1, CWE-93: 2,
CWE-275: 4, CWE-434: 5, CWE-707: 2, CWE-668: 4, CWE-361: 6, CWE-319: 4, CWE-255:
4, CWE-824: 1, CWE-1187: 1, CWE-426: 4, CWE-417: 5, CWE-427: 5, CWE-610: 5, CWE-
522: 4, CWE-345: 5, CWE-354: 5, CWE-91: 2, CWE-918: 5, CWE-922: 4, CWE-706: 5,
CWE-538: 4, CWE-290: 4, CWE-601: 4, CWE-346: 5, CWE-502: 2, CWE-1021: 5, CWE-78:
2, CWE-199: 5, CWE-829: 5, CWE-281: 4, CWE-203: 4, CWE-401: 1, CWE-908: 1, CWE-
667: 1, CWE-209: 4, CWE-88: 2, CWE-459: 1, CWE-326: 4, CWE-270: 4, CWE-331: 5,
CWE-122: 1, CWE-367: 6, CWE-909: 1, CWE-552: 4, CWE-436: 5, CWE-131: 1, CWE-672:
1, CWE-271: 4, CWE-681: 3, CWE-212: 4}

c.2 trends

Statistical summary for vulnerability lifetime trends for all projects with more
than two datapoints are listed in tables C.1 - C.7.

153

appendix of chapter 4

coef std err t P> |t| [0.025 0.975]

const 923.75 90.62 10.19 0.062 -227.74 2075.24

x1 45.05 20.61 2.18 0.27 -216.83 306.93

Table C.1: OLS Regression Results: FFmpeg

coef std err t P> |t| [0.025 0.975]

const -3e+05 5e+04 -5.62 0.005 -4.64e+05 -1.57e+05

x1 155.61 27.51 5.65 0.005 79.22 232.00

Table C.2: OLS Regression Results: Httpd

coef std err t P> |t| [0.025 0.975]

const -8e+04 2.5e+04 -3.28 0.01 -1.4e+05 -2.6e+04

x1 42.23 12.77 3.30 0.009 13.34 71.13

Table C.3: OLS Regression Results: Chromium

coef std err t P> |t| [0.025 0.975]

const 2.2e+04 2.6e+04 0.82 0.43 -3.7e+04 8.1e+04

x1 -10.27 13.35 -0.76 0.45 -39.66 19.11

Table C.4: OLS Regression Results: Firefox

coef std err t P> |t| [0.025 0.975]

const -3.0e+05 3.4e+04 -8.93 0.00 -3e+05 -2e+05

x1 153.20 16.94 9.04 0.00 114.12 192.27

Table C.5: OLS Regression Results: Linux

coef std err t P> |t| [0.025 0.975]

const -5.4e+05 2.4e+05 -2.23 0.15 -1.6e+06 5.e+05

x1 273.41 121.91 2.24 0.15 -251.15 797.98

Table C.6: OLS Regression Results: Wireshark

coef std err t P> |t| [0.025 0.975]

const -2.2e+05 1.4e+05 -1.62 0.20 -6.7e+05 2.1e+05

x1 114.08 69.54 1.64 0.19 -107.24 335.42

Table C.7: OLS Regression Results: Qemu

c.3 lifetime distribution

Evaluation of exponential fit. Prior seminal work on fitting theoretical distri-
butions to noisy empirical data in computer science (e.g. Stutzbach and Re-

154

C.3 lifetime distribution

jaie [105]) used suitable plots (CCDF in logarithmic and linear axes) to assess
the goodness of fit of a given type of distribution. They only used statistical
goodness of fit tests, like the Anderson-Darling statistic, in cases where only a
few hundred data points were available.

As Johnson and Wichern state in their seminal statistical analysis textbook [47]:
“all measures of goodness of fit suffer the same serious drawback[.] When the
sample size is small, only the most aberrant behavior will be identified as lack
of fit. On the other hand, very large samples invariably produce statistically
significant lack of fit. Yet the departure from the specified distribution may be
very small and technically unimportant to the inferential conclusions”. For ex-
ample, Wicklin showed1 that even rounding to the nearest 0.1 unit can cause a
normality test to fail with 5 000 data points.

For our case, expecting the empirical data of more than 5 000 vulnerabil-
ity lifetimes to plausibly be produced (as in statistical goodness-of-fit tests) by
random sampling of a simple theoretical distribution (such as an exponential)
would be unreasonable. Indeed, all such tests showed that the probability that
the empirical data come from an exponential distribution is negligible. We at-
tribute this to the large number of data points, inherent noise in the data, and
the differing behavior at the tail (as discussed below).

This does not mean that the exponential distribution cannot be an excellent
fit to the data for all purposes of reasoning about or making calculations on vul-
nerability lifetimes. We continue to provide evidence of a good fit by (a) a Q-Q
plot, (b) Kolmogorov-Smirnov statistical tests comparing the fit to other candi-
date distributions, (c) example numerical calculations showcasing the utility of
the fitted distribution.
Kolmogorov-Smirnov tests. We list the results of the comparison using the
seminal methodology of Clauset et al. [24] in Table C.8. The exponential distri-
bution is a significantly better fit than other candidate distributions.

Distribution R

powerlaw 9203.49

lognormal 506.33

truncated power law 5505.75

lognormal positive 506.33

Table C.8: Comparison of distribution fits with exponential. Positive R-values mean
that the exponential is a better fit. All comparisons are at a significance level of at least
99% (p 6 0.01).

Comparative probability table Table C.9 is a comparative probability table to
numerically convey the goodness-of-fit of the exponential distribution and its
usefulness in calculations.

1 https://blogs.sas.com/content/iml/2016/11/28/goodness-of-fit-large-small-samples.

html

155

https://blogs.sas.com/content/iml/2016/11/28/goodness-of-fit-large-small-samples.html
https://blogs.sas.com/content/iml/2016/11/28/goodness-of-fit-large-small-samples.html

appendix of chapter 4

Lifetime Theoretical CDF Empirical CDF

188 0.1171 0.1

376 0.2210 0.2

562 0.3117 0.3

791 0.4090 0.4

1 081 0.5128 0.5

1 436 0.6154 0.6

1 927 0.7226 0.7

2 574 0.8197 0.8

3 520 0.9040 0.9

Table C.9: Numerical comparison of empirical and theoretical CDF. Values are chosen
as the quantiles of the empirical data. The empirical distribution does not deviate more
than 2.5 percentage points from the theoretical one.

c.4 project-specific details on mapping cves to their fixing com-
mits

Here we document the resulting number of obtained mappings between CVEs
and fixing commits per matching approach. Please note that each mapping
is only counted once and numbers correspond to the mapped fixing commits
(right column of Table 4.2). Mappings appearing in multiple of the sources are
counted towards the first one listed. For more details on the specific regular
expressions for each project please refer to the source code2.

• Chromium:

Common Bug ID 2506

Vulnerability History Project 331

• FFmpeg:

Commit Sha in CVE 208

Debian Security Tracker 98

CVE in Fixing commmit 68

Manual inspection 1

• Firefox:

Common Bug ID 3751

• Httpd:

Piantadosi Apache 378

Vulnerability History Project 98

2 https://github.com/nikalexo/VulnerabilityLifetimes

156

https://github.com/nikalexo/VulnerabilityLifetimes

C.5 additional figures

• kernel:

Linux Kernel CVES 1341

Ubuntu CVE Tracker 190

• OpenSSL:

CVE in Fixing commmit 145

Commit Sha in CVE 80

Debian Security Tracker 35

Manual inspection 1

• php:

Common Bug ID 901

Commit Sha in CVE 31

• postgres:

CVE in Fixing commmit 133

Debian Security Tracker 9

Manual inspection 1

• qemu:

Debian Security Tracker 161

Commit Sha in CVE 131

• tcpdump:

Commit Sha in CVE 123

Debian Security Tracker 5

• wireshark:

Commit Sha in CVE 113

Common Bug ID 1

c.5 additional figures

Figures C.1 - C.6 depict the vulnerability lifetime and regular code age for the
projects not presented in the main body of the document. We did not have
enough data points to conduct this analysis for TCPDump, which is therefore
omitted.

157

appendix of chapter 4

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

2000

4000

lif
et

im
e

in
 d

ay
s Vul lifetime

Regular code age

Figure C.1: Regular code and vulnerability age for PHP. Vulnerable code seems to be
older than regular code for this project.

2014 2015 2016 2017 2018 2019 2020
year of fixing commit

0

2000

4000

lif
et

im
e

in
 d

ay
s Vul lifetime

Regular code age

Figure C.2: Regular code and vulnerability age for qemu

2010 2012 2014 2016 2018 2020
year of fixing commit

0

2000

4000

lif
et

im
e

in
 d

ay
s Vul lifetime

Regular code age

Figure C.3: Regular code and vulnerability age for ffmpeg

158

C.5 additional figures

2014 2015 2016 2017 2018 2019
year of fixing commit

0

2000

4000
lif

et
im

e
in

 d
ay

s Lifetime
Regular code age

Figure C.4: Regular code and vulnerability age for wireshark

2006 2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

2000

4000

lif
et

im
e

in
 d

ay
s

Vul lifetime
Regular code age
Regular code age

Figure C.5: Regular code and vulnerability age for openssl. The refactoring process
that took place after the Heartbleed bug is evident. A shortage of data points does not
allow us to investigate its effect in detail.

2006 2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

2000

4000

lif
et

im
e

in
 d

ay
s Vul lifetime

Regular code age

Figure C.6: Regular code and vulnerability age for postgres

159

appendix of chapter 4

c.6 manual analysis of vulnerability-contributing commits

c.6.1 Introduction

During our research with Jan Wagner and Manuel Brack, we noticed some
discrepancies between Vulnerability-Contributing-Commits (VCCs) as reported
by the VCCFinder heuristic and the Ubuntu Kernel Security Team3. Ten of those
disputed CVEs were randomly picked for further manual analysis. The picked
CVEs, along with their fixing and reported VCCs, are listed in the following
table.

CVE
Fix

Ubuntu Security Team

VCCFinder

CVE-2014-5206

a6138db815df5ee542d848318e5dae681590fccd

0c55cfc4166d9a0f38de779bd4d75a90afbe7734

495d6c9c6595ec7b37910dfd42634839431d21fd

CVE-2013-4127

dd7633ecd553a5e304d349aa6f8eb8a0417098c5

1280c27f8e29acf4af2da914e80ec27c3dbd5c01

2839400f8fe28ce216eeeba3fb97bdf90977f7ad

CVE-2013-1819

eb178619f930fa2ba2348de332a1ff1c66a31424

74f75a0cb7033918eb0fa4a50df25091ac75c16e

3e85c868a697805a3d4c7800a6bacdfc81d15cdf

CVE-2013-7348

d558023207e008a4476a3b7bb8706b2a2bf5d84f

e34ecee2ae791df674dfb466ce40692ca6218e43

e23754f880f10124f0a2848f9d17e361a295378e

CVE-2014-5045

295dc39d941dc2ae53d5c170365af4c9d5c16212

8033426e6bdb2690d302872ac1e1fadaec1a5581

35759521eedf60ce7d3127c5d33953cd2d1bd35f

CVE-2012-1097

c8e252586f8d5de906385d8cf6385fee289a825e

bdf88217b70dbb18c4ee27a6c497286e040a6705

5bde4d181793be84351bc21c256d8c71cfcd313a

CVE-2014-0196

4291086b1f081b869c6d79e5b7441633dc3ace00

d945cb9cce20ac7143c2de8d88b187f62db99bdc

d6afe27bfff30fbec2cca6ad5626c22f4094d770

CVE-2013-1979

83f1b4ba917db5dc5a061a44b3403ddb6e783494

257b5358b32f17e0603b6ff57b13610b0e02348f

dbe9a4173ea53b72b2c35d19f676a85b69f1c9fe

CVE-2011-1479

d0de4dc584ec6aa3b26fffea320a8457827768fc

a2ae4cc9a16e211c8a128ba10d22a85431f093ab

2d9048e201bfb67ba21f05e647b1286b8a4a5667

CVE-2013-4470

c547dbf55d5f8cf615ccc0e7265e98db27d3fb8b

e89e9cf539a28df7d0eb1d0a545368e9920b34ac

c31d5326902cebffcd83b1aede67a0e0ac923090

3 The content of this section was first published in the Appendix of Jan Wagner’s Bachelor’s thesis
(https://fileserver.tk.informatik.tu-darmstadt.de/NA/Thesis_JW.pdf).

160

https://fileserver.tk.informatik.tu-darmstadt.de/NA/Thesis_JW.pdf

C.6 manual analysis of vulnerability-contributing commits

c.6.2 Analysis

Results of the manual analysis follow.

c.6.2.1 CVE-2014-5206

Date: 08/18/2014

Type: CWE-264 – Permissions, Privileges, and Access Controls
Description: The do_remount function in fs/namespace.c in the Linux kernel
through 3.16.1 does not maintain the MNT_LOCK_READONLY bit across a
remount of a bind mount, which allows local users to bypass an intended
read-only restriction and defeat certain sandbox protection mechanisms via a
“mount -o remount” command within a user namespace.
Notes: VCCFinder blames a commit that cleans up code. It changes the ex-
pression for the mount flag from a literal constant to a bitwise operation on
constants defined in the header file. No functionality difference should exist.

Reason for discrepancy: This is an interesting one. It seems that the vulnerabil-
ity is introduced in the commit blamed by the Ubuntu security team that allows
non-root users to perform operations on namespaces. Before then, there was no
reason to protect the flags. Specifically in the SYSCALL definition of umount.

Verdict: The commit blamed by the Ubuntu teams seems to be the VCC. It
seems very difficult for a blame-based heuristic to pinpoint this commit. The
VCC pinpointed by VCCFinder is definitely wrong though, as it is just refactor-
ing. Namespaces are a very high-risk location for those kind of vulnerabilities.
This VCC is also responsible for the related CVE-2014-5207. Interestingly, these
vulnerabilities did not affect the Debian stable distribution, where by default
user namespaces are disabled. Commits that change a lot of if statements that
affect system calls should be considered high-risk, especially when they ad-
vertise introducing intrinsically high-risk functionalities. Maybe a good recom-
mendation would be, when dealing with access control bugs to look more into
changes to if statements. Another recommendation would be to cosider such
files (i.e. files that regulate access) as high-risk. Another observation is that such
kinds of semantic flaws can only be automatically found when metadata, such
as the commit messages are available.

c.6.2.2 CVE-2013-4127

Date: 07/29/2013

Type: CWE-399 – Resource Management Errors

Description: Use-after-free vulnerability in the vhost_net_set_backend function
in drivers/vhost/net.c in the Linux kernel through 3.10.3 allows local users to
cause a denial of service (OOPS and system crash) via vectors involving pow-
ering on a virtual machine.

Notes: This is a use-after-free vulnerability and thus should be able to be de-
tected automatically pretty easily. The VCC proposed by VCCFinder is not cor-
rect. It seems to only be copying code from one file to another. The commit

161

appendix of chapter 4

proposed by the Ubuntu security team seems to be the correct VCCs. This is
also noted in the commit message of the fix.
Reason for discrepancy: It is impossible to trace code back to its original file
after it has been copied to another file. That being said, in this specific case, the
vulnerability was introduced in the file that the code was copied to.
Verdict: The VCC of the Ubuntu Security Team is correct. If a heuristic finds
code copying, then maybe it would make sense to look into previous commits
of the source file. Naturally, for a use-after-free vulnerability, we can expect the
VCC to free memory.

c.6.2.3 CVE-2013-1819

Date: 03/06/2013

Type:CWE-20 – Improper Input Validation
Description: The _xfs_buf_find function in fs/xfs/xfs_buf.c in the Linux ker-
nel before 3.7.6 does not validate block numbers, which allows local users to
cause a denial of service (NULL pointer dereference and system crash) or pos-
sibly have unspecified other impact by leveraging the ability to mount an XFS
filesystem containing a metadata inode with an invalid extent map.
Notes: The correct commit is also blamed by the VCCFinder heuristic but is not
the most dominant.
Reason for discrepancy: Empty line contributes to the mistake. Also, blaming
where the declaration of variables takes place could generally be bad practice.
Verdict: The Ubuntu Security Team seems to have the correct commit. VC-
CFinder produces a wrong commit, however we can learn from this mistake.

c.6.2.4 CVE-2013-7348

Date: 04/01/2014

Type: CWE-399 – Resource Management Errors
Description: Double free vulnerability in the ioctx_alloc function in fs/aio.c in
the Linux kernel before 3.12.4 allows local users to cause a denial of service
(system crash) or possibly have unspecified other impact via vectors involving
an error condition in the aio_setup_ring function.
Notes: A double-free vulnerability can be easily detected by automated tools.
We expect to blame the commit that introduces the 2nd free. In this case, it
is more complicated than that. The vulnerability is introduced by the Ubuntu
commit. This commit does not add a new free command. It changes the point
where the error handling code “goes-to”.
Reason for discrepancy: The fix was to remove one of the free instructions.
The more general free instruction was removed, however the vulnerability was
introduced in the more specific function. The phrase in the commit message:
“clean up ioctx_alloc()’s error path” is what points to the problem.
Verdict: The Ubuntu commit is correct, however it was not trivial at all to see.
Go-to in error handling seems to be dangerous. It is difficult to see how a
blame-based heuristic would find the right commit.

162

C.6 manual analysis of vulnerability-contributing commits

c.6.2.5 CVE-2014-5045

Date: 08/01/2014

Type: CWE-59 – Improper Link Resolution Before File Access (‘Link Following’)

Description: The mountpoint_last function in fs/namei.c in the Linux kernel
before 3.15.8 does not properly maintain a certain reference count during at-
tempts to use the umount system call in conjunction with a symlink, which
allows local users to cause a denial of service (memory consumption or use-
after-free) or possibly have unspecified other impact via the umount program.

Notes: This is simple. The Ubuntu-blamed commit created the file and intro-
duced the vulnerability.

Reason for discrepancy: The VCCFinder commit, as its message says, is mas-
saging the code.

Verdict: The Ubuntu commit is the correct one. The VCCFinder commit just
refactored the code in the area. Maybe going 2 steps back in time would have
been beneficial. It does not seem very difficult to find this VCC automatically.
The patterns existed before.

c.6.2.6 CVE-2012-1097

Date: 05/17/2012

Type: NVD-CWE-Other

Description: The regset (aka register set) feature in the Linux kernel before
3.2.10 does not properly handle the absence of .get and .set methods, which
allows local users to cause a denial of service (NULL pointer dereference) or
possibly have unspecified other impact via a (1) PTRACE_GETREGSET or (2)
PTRACE_SETREGSET ptrace call.

Notes: This is a strange one. The two commits blamed by the Ubuntu team
and VCCFinder were made the same day by the same person. The VCCFinder
commit just adds some code to the first commit. This vulnerability in general
has to do with error-checking. The reason behind it is that some developers
did not follow what the expected behaviour of the functions were based on
their header-file definitions. It is tough to blame a specific commit for such a
vulnerability.

Reason for discrepancy: The VCCFinder commit adds some code to the earlier
Ubuntu commit. Another possible commit to blame is:
4206d3aa1978e44f58bfa4e1c9d8d35cbf19c187.

Verdict: This vulnerability appeared when function implementations started
diverging from the definitions in the header files. All 3 possible blame-able
commits could be valid.

c.6.2.7 CVE-2014-0196

Date: 05/07/2014

Type: CWE-362 – Concurrent Execution using Shared Resource with Improper

163

appendix of chapter 4

Synchronization (’Race Condition’)

Description: The n_tty_write function in drivers/tty/n_tty.c in the Linux ker-
nel through 3.14.3 does not properly manage tty driver access in the "LECHO
& !OPOST" case, which allows local users to cause a denial of service (memory
corruption and system crash) or gain privileges by triggering a race condition
involving read and write operations with long strings.

Notes: This is an interesting case. There was a lot of discussion in the Red Hat
issue tracking system about this vulnerability4. Such kinds of concurrency bugs
can be difficult to analyze. This bug seems to be caused by an update to the pty
driver file, while the fix was introduced in the tty base driver file.

Reason for discrepancy: Concurrency bugs are sometimes difficult to handle.
In this case it would have been better to blame the line in the middle of the
added locks.

Verdict: The Ubuntu commit seems to be the correct one. There has been a lot
of discussion about this bug.

c.6.2.8 CVE-2013-1979

Date: 05/03/2013

Type: CWE-264 – Permissions, Privileges, and Access Controls

Description: The scm_set_cred function in include/net/scm.h in the Linux ker-
nel before 3.8.11 uses incorrect uid and gid values during credentials passing,
which allows local users to gain privileges via a crafted application.

Notes: This is again a semantic bug. There is a clear mention in the fixing com-
mit that the introducing commit is the Ubuntu one.

Reason for discrepancy: VCCFinder blames a commit that changed the code
but not its functionality. The vulnerable code was in the called function body.
The vulnerability was introduced 2 years before.

Verdict: The Ubuntu commit is the correct one. It seems very difficult to spot
this VCC with blame heuristics. VCCFinder does a good job of blaming the
specific lines, however the funtionality of the blamed lines existed in a function
call from earlier. It remains to be seen if it is worth it to look for such behav-
ior (i.e. look if one of the blamed lines is a function call and then look if the
blamed code was part of the function body...). In general, the approach where
after pinpointing a VCC some checks are carried out to see if we should go
even further back in time (maybe with git dissect?) could be beneficial. This is
a very difficult case for blame-based VCCs.

c.6.2.9 CVE-2011-1479

Date: 06/21/2012

Type: CWE-399 – Resource Management Errors

Description: Double free vulnerability in the inotify subsystem in the Linux ker-
nel before 2.6.39 allows local users to cause a denial of service (system crash)

4 https://bugzilla.redhat.com/show_bug.cgi?id=1094232

164

 https://bugzilla.redhat.com/show_bug.cgi?id=1094232

C.6 manual analysis of vulnerability-contributing commits

via vectors involving failed attempts to create files. NOTE: this vulnerability
exists because of an incorrect fix for CVE-2010-4250.

Notes: As noted in the description, this is a regression bug. VCCFinder blames
a lot of older commits, since the changes in the fix affect a lot of lines. The most
blamed commit is much older (4 years older than the real VCC).

Reason for discrepancy: The double-free is not direct. It happens via a function.

Verdict: The Ubuntu commit is the correct one. It seems very difficult for heuris-
tics to find this regression bug, since the fix changes a lot of things.

c.6.2.10 CVE-2013-4470

Date: 11/04/2013

Type: CWE-264 – Permissions, Privileges, and Access Controls

Description: The Linux kernel before 3.12, when UDP Fragmentation Offload
(UFO) is enabled, does not properly initialize certain data structures, which
allows local users to cause a denial of service (memory corruption and sys-
tem crash) or possibly gain privileges via a crafted application that uses the
UDP_CORK option in a setsockopt system call and sends both short and long
packets, related to the ip_ufo_append_data function in net/ipv4/ip_output.c
and the ip6_ufo_append_data function in net/ipv6/ip6_output.c.

Notes: Another semantic bug (access control). There are 2 very similar fixing
commits, one each for IPv4 and IPv6.

Reason for discrepancy: There is no discrepancy according to the latest results.
Maybe some change to the heuristic improved performance.

Verdict: No discrepancy. The improvement seems to come from not taking into
account the comments.

c.6.3 Discussion

• The Ubuntu commits are as close to a ground truth dataset as we can get

• Manual analysis is difficult and it seems previous research fell in the trap of
wanting to confirm what the heuristic produced.

• Variable declarations may not need to be considered (as well as empty lines)

• After having a candidate VCC, checking if you should blame one of its an-
cestors may be beneficial.

• Semantic bugs (e.g. access control) seem to be a bit more difficult to trace.

• Concurrency bugs seem difficult to trace.

• Disregarding copied or refactored code may improve performance.

• If a function was replaced, it may be beneficial to look inside the function
and see if the functionality changed.

165

appendix of chapter 4

• Not taking into account the comments may be beneficial.

• For the use-case of commit-based static analysis, noise in the training data
may even improve performance. Noise in the evaluation data is not accept-
able. Hence, the suggestion would be to use the Ubuntu ground truth as the
testing dataset and improve the heuristic based on the recommendations in
this section.

• Some vulnerability types (semantic, concurrency) are inherently more diffi-
cult to trace.

c.6.4 Conclusion

The VCCs from the Ubuntu Security Team seem to be as close to a ground
truth as possible. They agree with the detailed manual analysis of the above-
mentioned 10 bugs. There is no reason to believe that manual analysis by us
would lead to better results than what is achieved by the Ubuntu Security Team
(who takes in to account commit messages and RHL reports). Some vulnerabil-
ities are inherently difficult to trace with automated heuristics. However, exist-
ing heuristics can be improved. Tracing the VCC manually seems much harder
than implied in most previous work (maybe due to confirmation bias).

166

D
A P P E N D I X O F C H A P T E R 5

d.1 summary of data sources

Bug Reports
– bug number
(K)
– alias
– summary
– reporters
– comments

NVD
– CVE id (K)
– description
– references

Code repos
– commit hash
(K)
– commit msg
– author
– committer

3rd party sources
– CVE id (K)
– reporters
– details

alias, comments

ref.

comments

CVE id, references

commit msg

ref.

Figure D.1: Summary of collected data points and their connections. K stands for the
primary (unique) key of the collection.

167

appendix of chapter 5

d.2 additional figures

100 101 102

Vulnerabilities - All

10 3

10 2

10 1

100

cc
df data - All

power-law fit
truncated power-law fit
lognormal fit

100 101 102

Vulnerabilities - mozilla

10 3

10 2

10 1

100

cc
df data - mozilla

power-law fit
truncated power-law fit
lognormal fit

100 101 102

Vulnerabilities - linux

10 3

10 2

10 1

100

cc
df data - linux

power-law fit
truncated power-law fit
lognormal fit

100 101

Vulnerabilities - php

10 2

10 1

100

cc
df

data - php
power-law fit
truncated power-law fit
lognormal fit

Figure D.2: Heavy-tailed distribution fits (complementary cumulative distribution
function).

168

D.2 additional figures

M L A P

2.5

5.0

7.5

10.0

12.5

15.0

Ye
ar

s

Last-first

M L A P
0

2

4

6

8

10
Peak-first

M L A P
0

2

4

6

8

10

12

14
Last-peak

Figure D.3: For the top 20 (human) reporters for each project: time in years between (a)
their first and more recent report until now (last), increased by one to measure period
of engagement, (b) their first report and their first peak year, and (c) their first peak
year and their last report until now ([5,95] whiskers). Letters in the x axis are the initials
of the corresponding projects (Mozilla, Linux, Apache, PHP). 95% confidence intervals
for the median, calculated via bootstrapping (10 000 times), are shown as notches.

169

170

B I B L I O G R A P H Y

1. Ablon, L. & Bogart, A. Zero Days, Thousands of Nights: The Life and Times
of Zero-Day Vulnerabilities and Their Exploits (RAND Corporation, Santa
Monica, CA, 2017).

2. Alexopoulos, N., Brack, M., Wagner, J. P., Grube, T. & Mühlhäuser, M.
How long do vulnerabilities live in the code? A large-scale empirical measure-
ment study on FOSS vulnerability lifetimes in 31st USENIX Security Sympo-
sium, USENIX Security 2022 (to appear) (USENIX Association, 2022).

3. Alexopoulos, N., Habib, S. M., Schulz, S. & Mühlhäuser, M. The Tip of
the Iceberg: On the Merits of Finding Security Bugs. ACM Trans. Priv.
Secur. 24 (2020).

4. Alexopoulos, N., Meneely, A., Arnouts, D. & Mühlhäuser, M. Who are Vul-
nerability Reporters?: A Large-scale Empirical Study on FLOSS in ESEM ’21:
ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement, Bari, Italy, October 11-15, 2021 (eds Lanubile, F., Kalinowski,
M. & Baldassarre, M. T.) (ACM, 2021), 25:1–25:12.

5. Alhazmi, O. H. & Malaiya, Y. K. Modeling the Vulnerability Discovery Pro-
cess in 16th International Symposium on Software Reliability Engineering (IS-
SRE 2005), 8-11 November 2005, Chicago, IL, USA (IEEE Computer Society,
2005), 129–138.

6. Alhazmi, O. H. & Malaiya, Y. K. Measuring and Enhancing Prediction Ca-
pabilities of Vulnerability Discovery Models for Apache and IIS HTTP Servers
in 17th International Symposium on Software Reliability Engineering (ISSRE
2006), 7-10 November 2006, Raleigh, North Carolina, USA (IEEE Computer
Society, 2006), 343–352.

7. Alhazmi, O. H. & Malaiya, Y. K. Quantitative vulnerability assessment of
systems software in Annual Reliability and Maintainability Symposium, 2005.
Proceedings. (2005), 615–620.

8. Allodi, L. Economic Factors of Vulnerability Trade and Exploitation in Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017 (eds
Thuraisingham, B. M., Evans, D., Malkin, T. & Xu, D.) (ACM, 2017), 1483–
1499.

9. Allodi, L., Massacci, F. & Williams, J. The Work-Averse Cyberattacker
Model: Theory and Evidence from Two Million Attack Signatures. Risk
Analysis (2021).

10. Alstott, J., Bullmore, E. & Plenz, D. powerlaw: a Python package for anal-
ysis of heavy-tailed distributions. PloS one 9, e85777 (2014).

171

bibliography

11. Amor, J. J., Robles, G., González-Barahona, J. M. & Rivas, F. Measuring
Lenny: the size of Debian 5.0 (2009).

12. Anderson, R. Security in open versus closed systems-The dance of Boltzmann,
Coase and Moore in Conference on the Economics, Law and Policy of Open
Source Software, Toulouse, France, 2002 (2002).

13. Arbaugh, W. A., Fithen, W. L. & McHugh, J. Windows of Vulnerability: A
Case Study Analysis. Computer 33, 52–59 (2000).

14. Bau, J., Bursztein, E., Gupta, D. & Mitchell, J. C. State of the Art: Automated
Black-Box Web Application Vulnerability Testing in 31st IEEE Symposium on
Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California,
USA (IEEE Computer Society, 2010), 332–345.

15. Bilge, L. & Dumitras, T. Before we knew it: an empirical study of zero-day
attacks in the real world in the ACM Conference on Computer and Communi-
cations Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012 (eds Yu, T.,
Danezis, G. & Gligor, V. D.) (ACM, 2012), 833–844.

16. Bird, C., Gourley, A., Devanbu, P. T., Gertz, M. & Swaminathan, A. Mining
email social networks in Proceedings of the 2006 International Workshop on
Mining Software Repositories, MSR 2006, Shanghai, China, May 22-23, 2006
(eds Diehl, S., Gall, H. C. & Hassan, A. E.) (ACM, 2006), 137–143.

17. Blyth, C. R. On Simpson’s paradox and the sure-thing principle. Journal
of the American Statistical Association 67, 364–366 (1972).

18. Brack, M. A Large-scale Statistical Analysis of Vulnerability Lifetimes in Open-
Source Software. Bachelor thesis. Technical University of Darmstadt 2020.

19. Brady, R. M., Anderson, R. J. & Ball, R. C. Murphy’s law, the fitness of
evolving species, and the limits of software reliability tech. rep. (University of
Cambridge, Computer Laboratory, 1999).

20. Bugiel, S., Davi, L. V. & Schulz, S. Scalable trust establishment with software
reputation in Proceedings of the sixth ACM workshop on Scalable trusted com-
puting, STC@CCS 2011, Chicago, Illinois, USA, October 17, 2011 (eds Chen,
Y., Xu, S., Sadeghi, A. & Zhang, X.) (ACM, 2011), 15–24.

21. Canonical. Ubuntu CVE Tracker https://git.launchpad.net/ubuntu-

cve-tracker. Accessed: 2020-03-18.

22. Christey, S. & Martin, B. Buying into the bias: Why vulnerability statistics
suck Presentation at BlackHat, Las Vegas, USA, slides available at https:
//media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-

Why-\Vulnerability-Statistics-Suck-Slides.pdf. 2013.

23. Clark, S., Frei, S., Blaze, M. & Smith, J. M. Familiarity breeds contempt:
the honeymoon effect and the role of legacy code in zero-day vulnerabilities
in Twenty-Sixth Annual Computer Security Applications Conference, ACSAC
2010, Austin, Texas, USA, 6-10 December 2010 (eds Gates, C., Franz, M. &
McDermott, J. P.) (ACM, 2010), 251–260.

172

https://git.launchpad.net/ubuntu-cve-tracker
https://git.launchpad.net/ubuntu-cve-tracker
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-\Vulnerability-Statistics-Suck-Slides.pdf
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-\Vulnerability-Statistics-Suck-Slides.pdf
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-\Vulnerability-Statistics-Suck-Slides.pdf

bibliography

24. Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-Law Distributions
in Empirical Data. SIAM Review 51, 661–703 (2009).

25. Cook, K. Security bug lifetime https://outflux.net/blog/archives/

2016/10/18/security-bug-lifetime/. 2016.

26. Corbet, J. Kernel vulnerabilities: old or new? https://lwn.net/Articles/

410606/. 2010.

27. Debian. Debian Security Tracker https://salsa.debian.org/security-

tracker-team/security-tracker/-/tree/master/data/CVE.

28. Debian security FAQ , last accessed on 2017/05/08. 2016. https://www.
debian.org/security/faq (2017).

29. Details, C. Browse vulnerabilities by Date https://www.cvedetails.com/

browse-by-date.php. 2020.

30. Dulaunoy, A. CVE-search https://github.com/cve-search/cve-search.
2020.

31. Edwards, N. & Chen, L. An historical examination of open source releases
and their vulnerabilities in the ACM Conference on Computer and Communi-
cations Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012 (eds Yu, T.,
Danezis, G. & Gligor, V. D.) (ACM, 2012), 183–194.

32. Eusgeld, I., Freiling, F. & Reussner, R. Dependability metrics. Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany (2008).

33. Fang, M. & Hafiz, M. Discovering buffer overflow vulnerabilities in the wild:
an empirical study in 2014 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’14, Torino, Italy, September
18-19, 2014 (eds Morisio, M., Dybå, T. & Torchiano, M.) (ACM, 2014),
23:1–23:10.

34. Favato, D., Ishitani, D., Oliveira, J. & Figueiredo, E. Linus’s Law: More Eyes
Fewer Flaws in Open Source Projects in Proceedings of the XVIII Brazilian
Symposium on Software Quality, SBQS 2019, Fortaleza, Brazil, October 28 -
November 1, 2019 (eds Albuquerque, A. B. & de Paula Barros, A. L. B.)
(ACM, 2019), 69–78.

35. Fenton, N. & Bieman, J. Software metrics: a rigorous and practical approach
(CRC press, 2014).

36. Finifter, M., Akhawe, D. & Wagner, D. A. An Empirical Study of Vulnerabil-
ity Rewards Programs in Proceedings of the 22th USENIX Security Symposium,
Washington, DC, USA, August 14-16, 2013 (2013), 273–288.

37. Frei, S. Security econometrics: The dynamics of (in) security Doctoral disser-
tation (ETH Zurich, 2009).

38. Frei, S., Schatzmann, D., Plattner, B. & Trammell, B. Modelling the Security
Ecosystem- The Dynamics of (In)Security in 8th Annual Workshop on the Eco-

173

https://outflux.net/blog/archives/2016/10/18/security-bug-lifetime/
https://outflux.net/blog/archives/2016/10/18/security-bug-lifetime/
https://lwn.net/Articles/410606/
https://lwn.net/Articles/410606/
https://salsa.debian.org/security-tracker-team/security-tracker/-/tree/master/data/CVE
https://salsa.debian.org/security-tracker-team/security-tracker/-/tree/master/data/CVE
https://www.debian.org/security/faq
https://www.debian.org/security/faq
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php
https://github.com/cve-search/cve-search

bibliography

nomics of Information Security, WEIS 2009, University College London, Eng-
land, UK, June 24-25, 2009 (2009).

39. Goel, A. L. & Okumoto, K. Time-dependent error-detection rate model
for software reliability and other performance measures. IEEE transac-
tions on Reliability 28, 206–211 (1979).

40. Hafiz, M. & Fang, M. Game of detections: how are security vulnerabili-
ties discovered in the wild? Empirical Software Engineering 21, 1920–1959

(2016).

41. Hardy, M. Pareto’s law. The Mathematical Intelligencer 32, 38–43 (2010).

42. Hata, H., Guo, M. & Babar, M. A. Understanding the Heterogeneity of Con-
tributors in Bug Bounty Programs in 2017 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, ESEM 2017,
Toronto, ON, Canada, November 9-10, 2017 (2017), 223–228.

43. Herley, C. & van Oorschot, P. C. SoK: Science, Security and the Elusive Goal
of Security as a Scientific Pursuit in 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017 (IEEE Computer
Society, 2017), 99–120.

44. Is Software More Vulnerable Today? enisa Cyber security info notes https:

//www.enisa.europa.eu/publications/info-notes/is-software-more-

vulnerable-today. 2018.

45. Joh, H., Kim, J. & Malaiya, Y. K. Vulnerability Discovery Modeling Using
Weibull Distribution in 19th International Symposium on Software Reliability
Engineering (ISSRE 2008), 11-14 November 2008, Seattle/Redmond, WA, USA
(IEEE Computer Society, 2008), 299–300.

46. Joh, H. & Malaiya, Y. K. Periodicity in software vulnerability discovery,
patching and exploitation. Int. J. Inf. Sec. 16, 673–690 (2017).

47. Johnson, R. A., Wichern, D. W., et al. Applied multivariate statistical analysis
(Sixth Edition) (Prentice hall Upper Saddle River, NJ, 2007).

48. Kellogg, M., Dort, V., Millstein, S. & Ernst, M. D. Lightweight verification of
array indexing in Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2018, Amsterdam, The Nether-
lands, July 16-21, 2018 (eds Tip, F. & Bodden, E.) (ACM, 2018), 3–14.

49. Kim, J., Malaiya, Y. K. & Ray, I. Vulnerability Discovery in Multi-Version
Software Systems in Tenth IEEE International Symposium on High Assurance
Systems Engineering (HASE 2007), November 14-16, 2007, Dallas, Texas, USA
(IEEE Computer Society, 2007), 141–148.

50. Klein, G. et al. seL4: formal verification of an OS kernel in Proceedings of the
22nd ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009 (eds Matthews, J. N. & Anderson,
T. E.) (ACM, 2009), 207–220.

174

https://www.enisa.europa.eu/publications/info-notes/is-software-more-vulnerable-today
https://www.enisa.europa.eu/publications/info-notes/is-software-more-vulnerable-today
https://www.enisa.europa.eu/publications/info-notes/is-software-more-vulnerable-today

bibliography

51. Kotzias, P., Bilge, L., Vervier, P. & Caballero, J. Mind Your Own Business: A
Longitudinal Study of Threats and Vulnerabilities in Enterprises in 26th Annual
Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019 (The Internet Society, 2019).

52. Krebs, B. A Time to Patch http://voices.washingtonpost.com/security

fix/2006/01/a_time_to_patch.html. 2006.

53. Krebs, B. Internet Explorer Unsafe for 284 Days in 2006 http://voices.wa

shingtonpost.com/securityfix/2007/01/internet_explorer_unsafe_

for_2.html. 2007.

54. Krebs, B. Why Counting Flaws is Flawed https://krebsonsecurity.com/

2010/11/why-counting-flaws-is-flawed/. 2010.

55. Kunz, W. & Rittel, H. W. Issues as elements of information systems (Work-
ing Paper 131). Center for Planning and Development Research, Berkeley, USA
(1970).

56. Lehman, M. M. Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE 68, 1060–1076 (1980).

57. Lehman, M. M., Ramil, J. F., Wernick, P., Perry, D. E. & Turski, W. M.
Metrics and Laws of Software Evolution - The Nineties View in 4th IEEE Inter-
national Software Metrics Symposium (METRICS 1997), November 5-7, 1997,
Albuquerque, NM, USA (IEEE Computer Society, 1997), 20.

58. Li, F. & Paxson, V. A Large-Scale Empirical Study of Security Patches in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017
(eds Thuraisingham, B. M., Evans, D., Malkin, T. & Xu, D.) (ACM, 2017),
2201–2215.

59. Lotka, A. J. The frequency distribution of scientific productivity. Journal
of the Washington academy of sciences 16, 317–323 (1926).

60. Louridas, P., Spinellis, D. & Vlachos, V. Power laws in software. ACM
Trans. Softw. Eng. Methodol. 18, 2:1–2:26 (2008).

61. Luedtke, N. linux kernel cves https://github.com/nluedtke/linux_

kernel_cves.

62. Maillart, T., Zhao, M., Grossklags, J. & Chuang, J. Given enough eye-
balls, all bugs are shallow? Revisiting Eric Raymond with bug bounty
programs. J. Cybersecur. 3, 81–90 (2017).

63. Manadhata, P. K. & Wing, J. M. in Moving Target Defense - Creating Asym-
metric Uncertainty for Cyber Threats (eds Jajodia, S., Ghosh, A. K., Swarup,
V., Wang, C. & Wang, X. S.) 1–28 (Springer, 2011).

64. Manadhata, P. K. & Wing, J. M. An Attack Surface Metric. IEEE Trans.
Software Eng. 37, 371–386 (2011).

175

http://voices.washingtonpost.com/securityfix/2006/01/a_time_to_patch.html
http://voices.washingtonpost.com/securityfix/2006/01/a_time_to_patch.html
http://voices.washingtonpost.com/securityfix/2007/01/internet_explorer_unsafe_for_2.html
http://voices.washingtonpost.com/securityfix/2007/01/internet_explorer_unsafe_for_2.html
http://voices.washingtonpost.com/securityfix/2007/01/internet_explorer_unsafe_for_2.html
https://krebsonsecurity.com/2010/11/why-counting-flaws-is-flawed/
https://krebsonsecurity.com/2010/11/why-counting-flaws-is-flawed/
https://github.com/nluedtke/linux_kernel_cves
https://github.com/nluedtke/linux_kernel_cves

bibliography

65. Massacci, F. & Nguyen, V. H. An Empirical Methodology to Evaluate
Vulnerability Discovery Models. IEEE Trans. Software Eng. 40, 1147–1162

(2014).

66. Mell, P., Scarfone, K. & Romanosky, S. A complete guide to the common vul-
nerability scoring system version 2.0 in Published by FIRST-forum of incident
response and security teams 1 (2007), 23.

67. Meneely, A., Srinivasan, H., Musa, A., Tejeda, A. R., Mokary, M. &
Spates, B. When a Patch Goes Bad: Exploring the Properties of Vulnerability-
Contributing Commits in 2013 ACM / IEEE International Symposium on Em-
pirical Software Engineering and Measurement, Baltimore, Maryland, USA, Oc-
tober 10-11, 2013 (2013), 65–74.

68. Meneely, A. & Williams, L. A. Secure open source collaboration: an empirical
study of linus’ law in Proceedings of the 2009 ACM Conference on Computer
and Communications Security, CCS 2009, Chicago, Illinois, USA, November 9-
13, 2009 (eds Al-Shaer, E., Jha, S. & Keromytis, A. D.) (ACM, 2009), 453–
462.

69. Meneely, A. & Williams, L. A. Strengthening the empirical analysis of the
relationship between Linus’ Law and software security in Proceedings of the
International Symposium on Empirical Software Engineering and Measurement,
ESEM 2010, 16-17 September 2010, Bolzano/Bozen, Italy (2010).

70. Meneely, A. Vulnerability History Project https://github.com/Vulnerabi
lityHistoryProject. Accessed: 2020-03-18.

71. MITRE. Common Weakness Enumeration https://cwe.mitre.org/data/

definitions/699.html. 2020.

72. Morgner, P., Mai, C., Koschate-Fischer, N., Freiling, F. C. & Benenson, Z.
Security Update Labels: Establishing Economic Incentives for Security Patching
of IoT Consumer Products in 2020 IEEE Symposium on Security and Privacy,
SP 2020, San Francisco, CA, USA, May 18-21, 2020 (IEEE, 2020), 429–446.

73. Munaiah, N. & Meneely, A. Vulnerability Severity Scoring and Bounties:
Why the Disconnect? in Proceedings of the 2nd International Workshop on Soft-
ware Analytics (Association for Computing Machinery, Seattle, WA, USA,
2016), 8–14.

74. Nappa, A., Johnson, R., Bilge, L., Caballero, J. & Dumitras, T. The Attack of
the Clones: A Study of the Impact of Shared Code on Vulnerability Patching in
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015 (2015), 692–708.

75. Nayak, K., Marino, D., Efstathopoulos, P. & Dumitras, T. Some Vulnerabil-
ities Are Different Than Others - Studying Vulnerabilities and Attack Surfaces
in the Wild in Research in Attacks, Intrusions and Defenses - 17th Interna-
tional Symposium, RAID 2014, Gothenburg, Sweden, September 17-19, 2014.
Proceedings (eds Stavrou, A., Bos, H. & Portokalidis, G.) 8688 (Springer,
2014), 426–446.

176

https://github.com/VulnerabilityHistoryProject
https://github.com/VulnerabilityHistoryProject
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

bibliography

76. Nemec, M., Klinec, D., Svenda, P., Sekan, P. & Matyas, V. Measuring Pop-
ularity of Cryptographic Libraries in Internet-Wide Scans in Proceedings of the
33rd Annual Computer Security Applications Conference, Orlando, FL, USA,
December 4-8, 2017 (ACM, 2017), 162–175.

77. Nguyen, V. H., Dashevskyi, S. & Massacci, F. An automatic method for
assessing the versions affected by a vulnerability. Empir. Softw. Eng. 21,
2268–2297 (2016).

78. Nguyen, V. H. & Massacci, F. An independent validation of vulnerability dis-
covery models in 7th ACM Symposium on Information, Compuer and Commu-
nications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012 (eds Youm,
H. Y. & Won, Y.) (ACM, 2012), 6–7.

79. Nguyen, V. H. & Massacci, F. The (un)reliability of NVD vulnerable versions
data: an empirical experiment on Google Chrome vulnerabilities in 8th ACM
Symposium on Information, Computer and Communications Security, ASIA
CCS ’13, Hangzhou, China - May 08 - 10, 2013 (eds Chen, K., Xie, Q., Qiu,
W., Li, N. & Tzeng, W.) (ACM, 2013), 493–498.

80. Of Standards, U. N. I. & Technology. National Vulnerability Database https:
//nvd.nist.gov/home.

81. Ozment, A. The Likelihood of Vulnerability Rediscovery and the Social Utility
of Vulnerability Hunting in 4th Annual Workshop on the Economics of Infor-
mation Security, WEIS 2005, Harvard University, Cambridge, MA, USA, June
1-3, 2005 (2005).

82. Ozment, A. in Quality of Protection - Security Measurements and Metrics (eds
Gollmann, D., Massacci, F. & Yautsiukhin, A.) 25–36 (Springer, 2006).

83. Ozment, A. Improving vulnerability discovery models in Proceedings of the
3th ACM Workshop on Quality of Protection, QoP 2007, Alexandria, VA, USA,
October 29, 2007 (eds Karjoth, G. & Stølen, K.) (ACM, 2007), 6–11.

84. Ozment, A. & Schechter, S. E. Milk or Wine: Does Software Security Improve
with Age? in Proceedings of the 15th USENIX Security Symposium, Vancou-
ver, BC, Canada, July 31 - August 4, 2006 (ed Keromytis, A. D.) (USENIX
Association, 2006).

85. Ozment, J. A. Vulnerability discovery & software security Doctoral disserta-
tion (University of Cambridge, UK, 2007).

86. Pendleton, M., Garcia-Lebron, R., Cho, J. & Xu, S. A Survey on Systems
Security Metrics. ACM Comput. Surv. 49, 62:1–62:35 (2017).

87. Peng, H. & Payer, M. USBFuzz: A Framework for Fuzzing USB Drivers by De-
vice Emulation in 29th USENIX Security Symposium, USENIX Security 2020,
August 12-14, 2020 (eds Capkun, S. & Roesner, F.) (USENIX Association,
2020), 2559–2575.

88. Perl, H., Dechand, S., Smith, M., Arp, D., Yamaguchi, F., Rieck, K., Fahl,
S. & Acar, Y. VCCFinder: Finding Potential Vulnerabilities in Open-Source

177

https://nvd.nist.gov/home
https://nvd.nist.gov/home

bibliography

Projects to Assist Code Audits in Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, Denver, CO, USA, October
12-16, 2015 (eds Ray, I., Li, N. & Kruegel, C.) (ACM, 2015), 426–437.

89. Pfleeger, C. P. The fundamentals of information security. IEEE Software
14, 15–16 (1997).

90. Pfleeger, S. L. & Cunningham, R. K. Why Measuring Security Is Hard.
IEEE Secur. Priv. 8, 46–54 (2010).

91. Piantadosi, V., Scalabrino, S. & Oliveto, R. Fixing of Security Vulnerabilities
in Open Source Projects: A Case Study of Apache HTTP Server and Apache
Tomcat in 12th IEEE Conference on Software Testing, Validation and Verifica-
tion, ICST 2019, Xi’an, China, April 22-27, 2019 (IEEE, 2019), 68–78.

92. Raymond, E. The cathedral and the bazaar. Knowledge, Technology & Policy
12, 23–49 (1999).

93. Rescorla, E. Security Holes . . . Who Cares? in Proceedings of the 12th USENIX
Security Symposium, Washington, D.C., USA, August 4-8, 2003 (USENIX
Association, 2003).

94. Rescorla, E. Is Finding Security Holes a Good Idea? IEEE Secur. Priv. 3.
(First presented at WEIS 2004), 14–19 (2005).

95. Roumani, Y., Nwankpa, J. K. & Roumani, Y. F. Time series modeling of
vulnerabilities. Comput. Secur. 51, 32–40 (2015).

96. Runeson, P. & Höst, M. Guidelines for conducting and reporting case
study research in software engineering. Empir. Softw. Eng. 14, 131–164

(2009).

97. Sabottke, C., Suciu, O. & Dumitras, T. Vulnerability Disclosure in the Age
of Social Media: Exploiting Twitter for Predicting Real-World Exploits in 24th
USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015 (eds Jung, J. & Holz, T.) (USENIX Association, 2015),
1041–1056.

98. Sarabi, A., Zhu, Z., Xiao, C., Liu, M. & Dumitras, T. Patch Me If You Can: A
Study on the Effects of Individual User Behavior on the End-Host Vulnerability
State in Passive and Active Measurement - 18th International Conference, PAM
2017, Sydney, NSW, Australia, March 30-31, 2017, Proceedings (eds Kâafar,
M. A., Uhlig, S. & Amann, J.) 10176 (Springer, 2017), 113–125.

99. Schechter, S. E. Computer security strength and risk: a quantitative approach
Doctoral dissertation (Harvard University, 2004).

100. Schneier, B. Cryptogram september 2000-full disclosure and the window of ex-
posure https://www.schneier.com/crypto-gram/archives/2000/0915.

html. 2000.

101. Serebryany, K., Bruening, D., Potapenko, A. & Vyukov, D. AddressSani-
tizer: A Fast Address Sanity Checker in 2012 USENIX Annual Technical Con-

178

https://www.schneier.com/crypto-gram/archives/2000/0915.html
https://www.schneier.com/crypto-gram/archives/2000/0915.html

bibliography

ference, Boston, MA, USA, June 13-15, 2012 (eds Heiser, G. & Hsieh, W. C.)
(USENIX Association, 2012), 309–318.

102. Serebryany, K., Bruening, D., Potapenko, A. & Vyukov, D. AddressSani-
tizer: A Fast Address Sanity Checker in 2012 USENIX Annual Technical Con-
ference, Boston, MA, USA, June 13-15, 2012 (eds Heiser, G. & Hsieh, W. C.)
(USENIX Association, 2012), 309–318.

103. Shahzad, M., Shafiq, M. Z. & Liu, A. X. A large scale exploratory analysis of
software vulnerability life cycles in 34th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland (eds Glinz, M.,
Murphy, G. C. & Pezzè, M.) (IEEE Computer Society, 2012), 771–781.

104. Stallman, R. et al. Gnu general public license. Free Software Foundation,
Inc., Tech. Rep (1991).

105. Stutzbach, D. & Rejaie, R. Understanding churn in peer-to-peer networks in
Proceedings of the 6th ACM SIGCOMM Internet Measurement Conference,
IMC 2006, Rio de Janeriro, Brazil, October 25-27, 2006 (eds Almeida, J. M.,
Almeida, V. A. F. & Barford, P.) (ACM, 2006), 189–202.

106. Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y. & Zhai, C. Bug characteristics in
open source software. Empirical Software Engineering 19, 1665–1705 (2014).

107. Vahldiek-Oberwagner, A., Elnikety, E., Duarte, N. O., Sammler, M., Dr-
uschel, P. & Garg, D. ERIM: Secure, Efficient In-process Isolation with Pro-
tection Keys (MPK) in 28th USENIX Security Symposium, USENIX Secu-
rity 2019, Santa Clara, CA, USA, August 14-16, 2019 (eds Heninger, N. &
Traynor, P.) (USENIX Association, 2019), 1221–1238.

108. Verendel, V. Quantified security is a weak hypothesis: a critical survey of re-
sults and assumptions in Proceedings of the 2009 Workshop on New Security
Paradigms, Oxford, United Kingdom, September 8-11, 2009 (eds Somayaji, A.
& Ford, R.) (ACM, 2009), 37–50.

109. Voas, J., Ghosh, A., McGraw, G., Charron, F. & Miller, K. Defining an
adaptive software security metric from a dynamic software failure tolerance mea-
sure in Proceedings of 11th Annual Conference on Computer Assurance. COM-
PASS’96 (1996), 250–263.

110. Votipka, D., Stevens, R., Redmiles, E. M., Hu, J. & Mazurek, M. L. Hackers
vs. Testers: A Comparison of Software Vulnerability Discovery Processes in 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA (IEEE Computer Society, 2018), 374–
391.

111. Wagner, C., Dulaunoy, A., Wagener, G. & Iklody, A. MISP: The Design
and Implementation of a Collaborative Threat Intelligence Sharing Platform in
Proceedings of the 2016 ACM on Workshop on Information Sharing and Col-
laborative Security, WISCS 2016, Vienna, Austria, October 24 - 28, 2016 (eds
Katzenbeisser, S., Weippl, E. R., Blass, E. & Kerschbaum, F.) (ACM, 2016),
49–56.

179

bibliography

112. Wilk, M. B. & Gnanadesikan, R. Probability plotting methods for the anal-
ysis of data. Biometrika 55, 1–17 (1968).

113. Willinger, W., Paxson, V. & Taqqu, M. S. Self-similarity and heavy tails:
Structural modeling of network traffic. A practical guide to heavy tails: sta-
tistical techniques and applications 23, 27–53 (1998).

114. Woo, S., Alhazmi, O. H. & Malaiya, Y. K. Assessing Vulnerabilities in Apache
and IIS HTTP Servers in Second International Symposium on Dependable Au-
tonomic and Secure Computing (DASC 2006), 29 September - 1 October 2006,
Indianapolis, Indiana, USA (IEEE Computer Society, 2006), 103–110.

115. Xiao, C., Sarabi, A., Liu, Y., Li, B., Liu, M. & Dumitras, T. From Patching
Delays to Infection Symptoms: Using Risk Profiles for an Early Discovery of
Vulnerabilities Exploited in the Wild in 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. (2018),
903–918.

116. Yamaguchi, F., Golde, N., Arp, D. & Rieck, K. Modeling and Discovering
Vulnerabilities with Code Property Graphs in 2014 IEEE Symposium on Secu-
rity and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014 (IEEE Com-
puter Society, 2014), 590–604.

117. Yang, L., Li, X. & Yu, Y. VulDigger: A Just-in-Time and Cost-Aware Tool for
Digging Vulnerability-Contributing Changes in GLOBECOM 2017-2017 IEEE
Global Communications Conference (2017), 1–7.

118. Younis, A., Joh, H. & Malaiya, Y. Modeling learningless vulnerability discov-
ery using a folded distribution in Proc. of SAM 11 (2011), 617–623.

119. Zhao, M., Grossklags, J. & Liu, P. An Empirical Study of Web Vulnerability
Discovery Ecosystems in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA, October 12-16,
2015 (eds Ray, I., Li, N. & Kruegel, C.) (ACM, 2015), 1105–1117.

120. Zhu, X. & Böhme, M. Regression Greybox Fuzzing in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, CCS
2021 (to appear) (2021).

180

D E C L A R AT I O N

I hereby confirm that the submitted thesis with the title “New Approaches to
Software Security Metrics and Measurements” has been done independently
and without use of others than the indicated aids. I assure that I have not
previously or concurrently applied for the opening of a promotion procedure
with the doctoral thesis submitted here.

Darmstadt, 08.02.2022

Nikolaos Alexopoulos,
08.02.2022

	Synopsis
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Software security, measurement, and the science of security
	1.1.1 Motivation (Why to measure security?)
	1.1.2 Why measuring the security of software is hard

	1.2 State of the Art
	1.2.1 Common Criteria
	1.2.2 Vulnerability discovery models and the question of depletion
	1.2.3 Measuring other attributes
	1.2.4 Summary

	1.3 Research Goals
	1.4 Summary of approaches and contributions
	1.4.1 General methodology
	1.4.2 Maturity
	1.4.3 Lifetimes
	1.4.4 Effort

	1.5 Applicability of the developed methods
	1.6 Outline
	1.7 Peer-reviewed papers, collaborations and statement over own contributions
	1.8 Notes on style

	2 Terminology and background
	2.1 Terminology
	2.1.1 Terminology on software metrics
	2.1.2 Terminology on software vulnerabilities

	2.2 The vulnerability lifecycle
	2.3 Data sources
	2.4 Challenges with vulnerability statistics
	2.5 Threats to validity in empirical software engineering

	3 An empirical study on the maturity of stable releases
	3.1 Introduction
	3.2 Motivation and research questions
	3.3 Specialized Background & terminology
	3.4 Related Work
	3.5 Dataset creation methodology
	3.6 Results
	3.6.1 Data overview and distribution
	3.6.2 Vulnerability trends in Debian (H1)
	3.6.3 Vulnerability Severity and Types (H2)
	3.6.4 Bug bounty programs (H3)
	3.6.5 Summary of main findings

	3.7 Implications and discussion
	3.8 Threats to validity
	3.8.1 Threats to construct validity
	3.8.2 Threats to internal validity
	3.8.3 Threats to external validity – Generalization
	3.8.4 Threats to reliability

	3.9 Conclusion

	4 An empirical study on vulnerability lifetimes
	4.1 Introduction
	4.2 Motivation and research questions
	4.3 Related work
	4.4 Vulnerability lifetime in version control systems
	4.4.1 Defining a vulnerability's lifetime

	4.5 Dataset creation methodology
	4.5.1 Mapping CVEs to their VCCs (ground truth)
	4.5.2 Included projects
	4.5.3 Linking CVEs to their fixing commits

	4.6 Lifetime estimation
	4.6.1 Lifetime estimation in previous work
	4.6.2 Our approach

	4.7 Results
	4.7.1 General
	4.7.2 Distribution
	4.7.3 Trends over time
	4.7.4 Code age
	4.7.5 Types
	4.7.6 Case study on impact of fuzzing
	4.7.7 Summary of main findings

	4.8 Implications and discussion
	4.9 Threats to validity
	4.9.1 Threats to construct validity
	4.9.2 Threats to internal validity
	4.9.3 Threats to external validity – Generalization
	4.9.4 Threats to reliability

	4.10 Conclusion

	5 An empirical study on vulnerability reporters
	5.1 Introduction
	5.2 Motivation and research questions
	5.3 Related Work
	5.4 Dataset creation methodology
	5.4.1 Information on included projects
	5.4.2 Data sources
	5.4.3 Data cleaning and pre-processing

	5.5 Results
	5.5.1 Distribution
	5.5.2 Temporal characteristics
	5.5.3 Specialization
	5.5.4 Motivations
	5.5.5 Summary of main findings

	5.6 Implications and discussion
	5.7 Threats to validity
	5.7.1 Threats to construct validity
	5.7.2 Threats to internal validity
	5.7.3 Threats to external validity – Generalization
	5.7.4 Threats to reliability

	5.8 Conclusion

	6 Conclusion
	6.1 Summary of contributions
	6.2 Further discussion
	6.3 Future work
	Publications

	A Complete list of own publications
	B Appendix of Chapter 3
	B.1 Additional Figures
	B.2 Statistical test results

	C Appendix of Chapter 4
	C.1 Vulnerability categories
	C.2 Trends
	C.3 Lifetime Distribution
	C.4 Project-specific details on mapping CVEs to their fixing commits
	C.5 Additional figures
	C.6 Manual Analysis of Vulnerability-Contributing Commits
	C.6.1 Introduction
	C.6.2 Analysis
	C.6.3 Discussion
	C.6.4 Conclusion

	D Appendix of Chapter 5
	D.1 Summary of data sources
	D.2 Additional figures

	 Bibliography
	Declaration

