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SUPPLEMENTARY METHODS

We used an iterative procedure to train the Gaussian approximation potential (GAP)
based on density functional theory (DFT) calculated energies and forces, gradually improv-
ing the composition of the reference (‘training’) database and accordingly the performance
of the potential. In each iteration, the training database consisted of structural models
(‘structures’ in the following) describing various crystalline silica phases, dimer and small
cluster structures in supercells, as well as amorphous and liquid model systems. Although
the database contains a small number of crystalline structures for elemental silicon, we
would like to emphasise that the potential is created to describe only the stoichiometric
Si05 system accurately.

For structural models describing crystalline phases, strains were applied and the atomic
positions were randomly displaced using the rattle() functionality of the Atomic Sim-
ulation Environment (ASE).! These training structures were kept fixed in each iteration.
Amorphous and liquid structures were extracted from molecular dynamics (MD) simula-
tions and added during every iteration. After every iteration cycle, the latest version of the
GAP was used for MD simulations, such as melt—quenching runs to generate new training
structures.

In total (after the last iteration) the database contains 3074 structures, of which 2000 are
crystalline structures, 939 are amorphous or liquid structures, and 135 are dimer and cluster
structures. In the following, we describe the procedures and parameters used for preparing

individual training structures.

A. Density functional theory calculations and molecular-dynamics simulations

DFT calculations were performed using the GPAW?? and VASP*” codes employing the
projector augmented wave method.®® Supplementary Figure 1 shows the energy differences
between different silica polymorphs calculated using the LDA,'%12 PBE,'® PBEsol,!* and
SCAN?'® functionals. These energy differences are compared with differences in the exper-
imental enthalpies of formation at room temperature. Both, PBEsol and SCAN perform
considerably better than LDA and PBE; the latter two fail to describe silica accurately. As

already investigated earlier, PBE gives accurate energy barriers to high-pressure polymorphs



like stishovite and coesite, while it fails for low-pressure polymorphs like a-cristobalite and
tridymite.'® In contrast, LDA shows accurate behaviour for low-pressure polymorphs and
fails for high-pressure polymorphs. For example, it predicts stishovite to be more stable
than a-quartz. Only PBEsol and SCAN predict a-quartz to be the most stable phase at
0 K and zero pressure. However, PBEsol underestimates the energy difference to stishovite
significantly. Overall, SCAN shows very good agreement with the experimental energy dif-
ferences, or at least as for moganite slightly better agreement than the other functionals.
LDA, PBE, and PBEsol calculations were performed using GPAW using an energy cutoff of
700 eV and a k-spacing of 0.279 A=': SCAN calculations were performed using VASP with
an energy cutoff of 900 eV and a k-spacing of 0.23 A~!. We initially used PBEsol to compute
energies and forces for our database. To improve the accuracy of the GAP, we eventually
re-calculated the values in the database using the computationally more demanding SCAN

functional.

MD simulations were performed using LAMMPS,'” a Nosé-Hoover thermostat!®!® for
NVT and additionally a Parrinello-Rahman barostat?® for NPT simulations. We used a
time step of 1 fs, a temperature damping constant of 100 fs and a pressure damping constant

of 1000 fs.

B. Training structures
1. Dimers and clusters

We used data describing the energy and forces as a function of the bond length for
isolated Si-Si, O-O and Si-O dimers. In these, the bond lengths were varied from 5 A with
increments of 0.05 A to lower bond distances. All dimers with absolute force below 40 eV /A
were added to the database. Moreover, to avoid the formation of oxygen agglomerates in
amorphous models, small oxygen clusters consisting of up to 5 atoms were added to the
database. These clusters appeared in melt—quench simulations during early iterations and
were extracted from there. To avoid too large forces the structures were scaled with factors
of 1.5, 2.0, 2.5 and 3.0. As reference structures isolated silicon and oxygen atoms in cells

with lengths of 20 A in each direction were added to the database.



2. Crystalline phases

The following crystalline phases were part of the training structures: a-quartz, coesite,
stishovite, chabazite, moganite, a-cristobalite, low temperature tridymite, [-cristobalite,
[f-quartz, [-tridymite and tridymite in the C222; and the P2:2:2; modification. Refer-
ence structures for each phase were retrieved from the Inorganic Crystal Structure Database
(ICSD).2! For each reference structure, we then generated 30 isotropically deformed train-
ing structures with strains between +5% and 70 randomly strained structures with diag-
onal strains between +2.5% and angular strains between £5%. In each of these training
structures, additional random displacements were applied to the atomic positions using
the ase.rattle()! function with a standard deviation of 0.01 A. For the low-temperature
polymorphs we further generated 100 training structures by randomly straining (+2.5% for
diagonal and £5% for angular strains) structures taken from the hydrostatic energy—volume
curve. The same procedure was used for silicon structures in the diamond modification to

improve the description of the many-body Si—Si interaction.

3. Amorphous structures

Amorphous structures were prepared by melt—quench simulations using MD simulations.
The details of the individual procedure depend on the iteration step, see Table I. As starting
configuration we used either f-cristobalite or a random distribution of atoms with a mass
density between 2 and 3 g/cm? (experimental density ~ 2.2 g/cm?).?? S-cristobalite has the
advantage that its conventional unit cell is cubic, such that the construction of an initial
supercell is straightforward. We use either NVT simulations (to keep the density constant)
or NPT simulations. In each iteration, we performed 100 MD simulations in parallel with
varying pressures for NPT simulations and varying densities for NVT simulations. From
each simulation, we extracted three snapshots: one after equilibrating the liquid, one in the
middle of the quenching process, and one after the equilibration of the amorphous phase.

The simulations were performed as follows:

1. Random initialisation of atomic positions and randomization for 10 ps at 6000 K under

NVT conditions or starting from a [-cristobalite supercell
2. Equilibration of the liquid for 10 ps (NVT or NPT)
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3. Quenching to room temperature (NVT or NPT)

4. Equilibration for 10 ps at 300 K (NVT or NPT)

The temperature of the liquid phase was set depending on the density or applied pressure.
For pressures of 0 GPa and densities of 2 g/cm? the temperature was set to 3000 K; for
pressures of 10 GPa and densities of 3 g/cm? the temperature was set to 4000 K. Between
these regions, the temperature was scaled linearly. In the NPT simulations, the pressure was
logarithmically scaled between 1 GPa and 10 GPa. In the last iteration, we performed only
20 simulations in parallel. In addition, we removed the structures initially generated with
the Broughton potential from the database to make the potential more uniform. In order
to avoid overfitting due to large forces, only structures with maximum DFT forces below
40 eV/ A were added to the database. We would to emphasise that we also tested including
data from further iterations. However, we observed that adding more amorphous and liquid
data decreased the accuracy for crystalline phases, while it did not markedly improve the

description of the amorphous phases.

C. GAP model fitting

Supplementary Table II shows the key parameters used for the GAP fit. For a detailed
description of these parameters, we refer to ref. 23. In addition to these parameters, we
emphasise that the fitting approach uses regularisation. The regularisation is important to
ensure a stable fit, and helps to account for the fact that the DF'T energies and forces contain
an uncertainty. Regularisation allows for deviations from the target values by reducing the
penalisation when the deviations are in a certain range. This reduces the tendency to overfit
energies and forces of, in particular, less favourable structures. For amorphous and cluster
structures we use regularisation values (‘expected errors’; see ref. 24 for a discussion of
this point) of 0.01 eV /atom for the energies and 0.3 eV/A for the forces; for crystalline
structures, we use 0.005 eV /atom for the energy and 0.05 eV/A for the forces. As energy

reference, we use the isolated silicon and oxygen atoms.



D. Tests for crystalline phases

For studying the transition of stishovite to CaCly-type silica, we started from 8 x 8 x 10
supercell expansions of the (rutile-type) stishovite unit cell. Theses supercells were equili-
brated for 10 ps at 300 K and a given pressure between 50 GPa and 90 GPa. Subsequently

the lattice parameters were determined for another 10 ps.

E. Tests for liquid and amorphous phases

Diffusion coefficients were determined using mean square displacements and the Einstein
relation as done by Carré et al. (ref. 25). Asinput, we used liquid structures generated by the
GAP using the quenching procedure described above, however, with a target temperature
of 2373 K. This structure was annealed in 40 ps to different temperatures (3000 K, 3250 K,
3500 K, 3750 K or 4000 K) and equilibrated at this temperature for 10 ps. For the next 200 ps
the temperature was kept constant and the mean square displacements were determined.

The energy barriers were obtained by an Arrhenius fit to the self-diffusion constants.



coesite stishovite chabazite

0.150
0.10 A --=- Exp. --- Exp.
01254 __
S 0.08 1
o
3 0.100
> 0.06 -
] 0.075
£ 0.04
g 0.050
|
uf 0027 0.025 -
w
0.00 1 0.000
-0.02 . ; . . -0.1 . ; . : ; . . ;
LDA PBE PBEsol SCAN LDA PBE PBEsol SCAN LDA PBE PBEsol SCAN
a-cristobalite moganite low-tridymite
0.05 0.05 0.05
-=-- Exp. --- Exp.
0.04 - 0.04 1 0.04 4
= B |
O 0.03 A 0.03 4
@ 0.03 A
3 0021 0.02
o 0.02 A
S 0.01 T 0.01 -
o
I} 0.01 -
o 0.00 A 0.00 -
w i ] |
—0.01 A 0.00 1 —0.01 A
-0.02 -0.01 -0.02

LDA  PBE PBEsol SCAN LDA  PBE PBEsol SCAN LDA  PBE PBEsol SCAN

Supplementary Figure 1. Energetic hierarchy of various silica phases in eV /fu. (E — Ey, where E
is the total energy per formula unit and Ejy correspond to the energy of a-quartz). Experimental
values correspond to differences in standard enthalpies of formation at room temperature. Positive
(negative) values indicate that a phase is less stable (more stable) than a-quartz. Experimental
data are taken from Refs. 26-30 for coesite, Refs. 26, 28, and 30 for stishovite, Ref. 31 for
chabazite, Refs. 32 and 33 for a-cristobalite, Ref. 34 for moganite and Ref. 32 for low temperature

tridymite.



Supplementary Table 1. Details of the melt-quench simulations to prepare amorphous models.

Iteration Potential Start Randomization Ensemble Structures Quench rate (Ks™!)
1 Broughton = Random True NVT/NPT 300 10%0-1012
2 GAP  p-cristobalite False NVT 150 0%
3 GAP  [-cristobalite False NVT 129 101
4 GAP  [-cristobalite False NVT 300 101

Add oxygen clusters

5 GAP Random True NVT 300 101°

Remowe structures from first iteration

Recalculate database with SCAN

6 GAP Random True NVT 60 1013




Supplementary Table II. Parameters used for GAP fitting. For a detailed description of individual

parameters, see Ref. 23.

2body  SOAP

0O-0O Si-Si Si-O
0 (eV) 40 40 40 04
S 1.25 2.0 2.0
Teus (A) 50 50 50 5.0
ra (A) 1.0
ar (A) 0.5
Nmax 12
Imax 4
¢ 4
Sparsification Uniform CUR
Nsparse (amorphous) 1000
Niparse(mid-quench) 1000
Nyparse (liquid) 1000
Niparse (crystalline) 1000
Niparse (cluster) 60
Nparse (total) 15 15 15 4060




Supplementary Table III. Details of the calculations for the quality estimates in Fig. 7.

Property Calculation
FSDP if HES: < Hpgrontial < Hexpy — 1
height else — 1-(HPEX il — HES )/(Hg‘(%’; — H®in)
o1 1
As(q) 1 —MIN (fol,ggfl }SPotential(k) - SExpl (k)‘ dk, folzgfl }SPotential(k) - SExp2 (k)‘ dk) /Aref
17.74-1 17.74~1
Aret = (LA Sty 0+ 17T S, ()0 ) /10
2—1 Total def
Coordination o810 03a defects/%)
(amorphous)
AH(a<) 1— AFEpotential — 131 meV

2000 meV

Elastic constants

ELASTI
1 (MAPEpotestialc> NDesA—Polymorphs

300% NTot.—Polymorphs

Lattice parameters

LATTICE
1— MAPEPotential NDC&—Polymorphs
5% NTot.—Polymorphs

Phase diagram

COQSiteTransition+StiSh0ViteTransition

CoesiteTransition =

Stishoviterransition = 0.5 — MIN ((re (s00,000,1000) | PAET¥(T) — Pilishovite(T)]) /12,0.5)

Speed

3 — log;o(runtime/s)
5

10

05— MIN ((Zreo0,r00.500) PR (T) = PR (7)) /12,05)



Hmax Height of the first sharp diffraction peak of the experimental structure factor data3536 and the potential.
Hi“;“ Height of the minimum between first peak and second peak (average of experimental structure factor data).
S (k) Structure factor data from experiment or from amorphous structures generated by potentials.

Total defects Proportion of not perfectly coordinated atoms in amorphous structures.

AFEpotential GAP energy difference between relaxed amorphous structure and a-quartz in eV /SiO2.

MAPE%&QIS]E;IC Mean absolute percentage error of elastic constants predicted by a potential compared to experiment.3740

MAPE{;?@EJSF Mean absolute percentage error of lattice parameters predicted by a potential compared to experiment.41~47

Not.-Polymorphs Number of polymorphs for which experimental data is available.

NDes.-Polymorphs Number of polymorphs for which experimental data is available and which are described by the potential.

Ppeoesite (T) Transition pressure between a-quartz and coesite predicted by the potential or experiment*8 at temperature
T.

pstishovite () Transition pressure between coesite and stishovite predicted by the potential or experiment?® at temperature
T.

runtime Time for molecular dynamics simulation running on 1 core over 100 time steps with 64 formula units.

Supplementary Table IV. Values of the quality estimates in Fig. 7, calculated by the formulas in
Supp. Tab. III.

x10~1 GAP CHIK BKS Munetoh Vashishta Broughton
FSDP (height) 6.2 88 99 5.3 8.5 —
AS(q) 74 78 59 5.8 6.6 —
Coordination (amorphous) 9.4 7.0 6.3 3.2 6.1 —
AH(a—c) 90 9.1 838 4.7 8.8 —
Elastic constants 89 89 88 6.0 2.3 5.7
Lattice parameters 91 6.6 7.2 3.6 3.4 6.4
Phase diagram 85 0.9 0 6.4 0 3.2
Speed 1.7 75 6.7 9.2 7.3 8.5
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Supplementary Figure 2. Phonon dispersion curves for (a) a-cristobalite at 0 GPa, (b) stishovite
at 0 GPa, (c) stishovite at 80 GPa, (d) stishovite at 160 GPa. The red curves are calculated by
GAP using the quasi-harmnic approximation, while the black dots are experimental results from

Wehinger et al. for a-cristobalite and Bosak et al. for stishovite.*%:%0
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Supplementary Figure 3. Structure factors of liquid structures generated using (a) the GAP, (b)
the CHIK, (c) the Munetoh, (d) the Vashishta and (e) the BKS potential. The experimental values
are from Mei et al.?® The structures are generated in the same way as the amorphous structures,

despite, the final target temperature was set to 2100 °C.
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Supplementary Table V. Excess energies of large-scale models generated by combined CHIK and
GAP molecular dynamics simulations. A CHIK melt-quench simulation was followed by a GAP
equilibration using different number of time steps. Like in the simulation for the small-scale
structures, the structures were minimized after equilibration with the GAP and subsequently CHIK
single-point and CHIK re-relaxed energies were evaluated. Before the equilibration we evaluated

the GAP minimized energies.

AE (meV/SiO3)

single-point evaluation re-relaxed

before equilibration after equilibration

Quench rate (Ks™')  GAP  CHIK GAP  CHIK CHIK
1013 308 316 218 428 317
10'2 249 273 169 374 273
10! 226 254 147 352 254
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Supplementary Figure 4. Arrhenius plot for the self-diffusion constants of silicon and oxygen in
liquid silica calculated using the GAP and CHIK potentials, respectively. The diffusion coefficients
are determined using mean square displacements and the Einstein relation over a time scale of
200 ps. The used initial structure was the liquid structure (GAP) from Supplementary Figure 3,
which was annealed to the target temperature in 40 ps and equilibrated for 10 ps. We wish to
emphasise that the maximum mean square displacement for 3000 K and the GAP potential was
only 1.5 A2 for silicon and 2.6 A? for oxygen. Nevertheless, we determined a diffusion constants,

since we clearly observed a linear trend.
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