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“It is the pervading law of all things organic and inorganic, of all
things physical and metaphysical, [...] of all true manifestations of the

head, of the heart, of the soul, that the life is recognizable in its
expression, that form ever follows function.”

— Sullivan, 1896 in The Tall Office Building Artistically Considered

Mé milující ženě
(To my loving wife)





A B S T R A C T

Ever since, the workload and hardware conditions for Database Man-
agement Systems (DBMSs) are expanding through new use cases and
hardware. Starting from the first transactional DBMSs supporting the
moon landing, today’s DBMSs process billions of sales transactions for
online commerce on a single day and process many further workloads
like reporting or fraud detection. Similarly, for the early DBMSs only
few hardware platforms were available, while today’s DBMSs face a
host of diverse hardware platforms. Indeed, today a single DBMS is ex-
posed to changing and load-fluctuating workloads, e.g., depending on
the popularity of sales items, and is operated on changing hardware.

However, serving changing workloads and supporting diverse hard-
ware platforms is non-trivial, as for the best performance DBMS de-
signs must be specialized. For flexibly specializing DBMS components
to changing workload or hardware conditions, adaptation approaches
have been proposed, e.g., adaptive query execution. Whereas the
DBMS architecture that deploys the components is manually special-
ized and statically implemented at design-time. While in essence all
DBMS architectures determine which components are executed to-
gether on what resource partitions, today there exist only few static
architectures that largely predetermine this at design-time for spe-
cific conditions, e.g., for multi-processor hardware the NUMA-aware
architecture dictates a resource partitioning per processor for all com-
ponents. Besides high re-implementation effort for adjusting these
static architectures, this approach also inadequately simplifies architec-
tures with coarse-grained specialization for many components at once,
neglecting the distinct workload and hardware effects on individual
DBMS components and their contained functions. Hence, these static
DBMS architectures severely degrade DBMS performance, when unfit.

This dissertation pursues the adaptation of DBMS architectures. For
high and robust performance under changing workload and hardware,
the static specialization at design-time is progressed to the flexible and
precise adaptation of the architecture when deploying the DBMS or
even at runtime. The approach is an initial evaluation of DBMSs with
static architectures. Then, general concepts for the adaptation of DBMS
architectures are proposed, based on which adaptive architectures for
the classes of single-server and multi-server DBMSs are realized.

The overall idea for the adaptation of DBMS architectures is to flex-
ibly compose fine-grained building blocks of the DBMS to a best-fit
architecture, i.e., adapting at the granularity of distinct functions of
DBMS components without requiring any re-implementation. Besides
the effortless adjustment of the architecture, this dissertation proposes
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concepts with an emphasis on fine-granular and separate adaptation
for distinct DBMS functions, such that optimizers can derive archi-
tectures best-fit for the specific conditions and functions at hand. By
constructing a navigable optimization space for architectures of single-
and multi-server DBMSs, the proposed concepts not only enable the
flexible mimicking of any existing architecture, but importantly enable
the creation of entirely new architectures.

The key findings are that both the realized adaptive single-server
and the adaptive multi-server architecture prove effective and efficient,
for adapting to the conditions considered in this dissertation. Under
changing transactional and mixed workloads, the proposed adaptive
architectures generally perform at least on par with the individually
best state-of-the-art architecture. Indeed, when adopting novel better-
fit architectures, all existing architectures are outperformed, e.g., with
resource assigned at a granularity unlike any of today’s single-server
architectures or when separately specializing for distinct queries of
mixed workloads rather than compromising as today’s multi-server
architectures. That is, the proposed flexible and precise adaptation
demonstrates higher and more robust performance.

While our findings exhibit novel better-fit architectures only for a
subset of possible workload and hardware conditions, this dissertation
overall indicates high potential for adapting architectures with the
proposed concepts. As the proposed concepts make a vast optimization
space generally navigable, optimizers will be able to adapt DBMS
architectures flexibly and more precisely to many workloads and
hardware. Instead of fragile static architectures, the proposed adaptive
architectures thus provide the necessary foundation for DBMSs to
achieve high and robust performance under changing workload and
hardware.
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Z U S A M M E N FA S S U N G

Seit jeher entwickeln sich die Arbeitslasten und die Hardware für Da-
tenbankmanagementsysteme (DBMS) durch neue Anwendungsfälle
und Hardware. Ausgehend von den ersten transaktionalen DBMS,
die die Mondlandung ermöglichten, verarbeiten die heutigen DBMS
Milliarden von Verkaufstransaktionen für den Online-Handel an ei-
nem einzigen Tag und verarbeiten viele weitere Arbeitslasten wie
Berichterstattung oder Betrugserkennung. In ähnlicher Weise waren
für die frühen DBMS nur wenige Hardware-Plattformen verfügbar,
während die heutigen DBMS mit einer Vielzahl unterschiedlicher
Hardwareplattformen konfrontiert sind. In der Tat ist ein einzelnes
DBMS heute wechselnden und lastschwankenden Arbeitslasten ausge-
setzt, z.B. abhängig von der Beliebtheit der Verkaufsartikel, und wird
auf wechselnder Hardware betrieben.

Die Bewältigung dieser wechselnder Arbeitslasten und die Unter-
stützung der verschiedener Hardware-Plattformen ist jedoch nicht tri-
vial, denn um die beste Leistung zu erzielen, müssen DBMS-Designs
spezialisiert werden. Für die flexible Spezialisierung von DBMS-Kom-
ponenten auf sich ändernde Arbeitslast- oder Hardware-Bedingungen
wurden Anpassungsansätze vorgeschlagen, z.B. die adaptive Abfra-
geausführung. Im Gegensatz dazu wird die DBMS-Architektur, in
der die Komponenten eingesetzt werden, zur Entwurfszeit manuell
spezialisiert und statisch implementiert. Während im Wesentlichen
alle DBMS-Architekturen festlegen, welche Komponenten zusammen
auf welchen Ressourcenpartitionen ausgeführt werden, gibt es heute
nur einige wenige statische Architekturen, die dies zur Entwurfs-
zeit für bestimmte Bedingungen weitgehend vordefinieren, z.B., bei
Multiprozessor-Hardware diktiert die NUMA-aware Architektur ei-
ne Ressourcenpartitionierung pro Prozessor für alle Komponenten.
Neben dem hohen Re-Implementierungsaufwand für die Anpassung
dieser statischen Architekturen vereinfacht dieser Ansatz auch Archi-
tekturen inadäquat mit grobkörniger Spezialisierung für viele Kom-
ponenten auf einmal, und vernachlässigt somit die unterschiedlichen
Auswirkungen von Arbeitslast und Hardware auf einzelne DBMS-
Komponenten und die darin enthaltenen Funktionen. Diese statischen
DBMS-Architekturen verschlechtern daher die DBMS-Leistung erheb-
lich, wenn sie ungeeignet sind.

Diese Dissertation verfolgt die Adaption von DBMS-Architekturen.
Um eine hohe und robuste Leistung bei wechselnder Arbeitslast und
Hardware zu erreichen, wird die statische Spezialisierung zur Ent-
wurfszeit zu der flexiblen und präzisen Adaption der Architektur
weiterentwickelt. Der Ansatz ist eine erst Evaluation von DBMS mit
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statischen Architekturen. Anschließend werden allgemeine Konzepte
für die Adaptation von DBMS-Architekturen entworfen, auf deren
Basis adaptive Architekturen für die Klassen der Einzel- und Multi-
Server-DBMS realisiert werden.

Die generelle Idee für die Adaption von DBMS-Architekturen be-
steht darin, feinkörnige DBMS-Bausteine flexibel zu einer bestge-
eigneten Architektur zusammensetzen, d.h. die Anpassung auf der
Granularität einzelner Funktionen von DBMS-Komponenten, ohne
eine Neuimplementierung zu erfordern. Neben der leichten Anpas-
sung der Architektur werden in dieser Dissertation Konzepte mit
dem Schwerpunkt auf feingranularer und separater Anpassung für
verschiedene DBMS-Funktionen vorgeschlagen, sodass Optimierer
Architekturen ableiten können, die für die jeweiligen Bedingungen
und Funktionen am besten geeignet sind. Durch die Schaffung ei-
nes navigierbaren Optimierungsraums für Architekturen von Single-
und Multi-Server-DBMS, ermöglichen die vorgeschlagenen Konzepte
nicht nur die flexible Nachahmung jedweder bestehender Architek-
tur, sondern ermöglichen vor allem auch die Bildung völlig neuer
Architekturen.

Die wichtigsten Ergebnisse sind, dass sowohl die realisierte adaptive
Einzel-Server- als auch die adaptive Multi-Server-Architektur sich als
effektiv und effizient erweisen, für die Anpassung an die in dieser
Dissertation betrachteten Bedingungen. Bei variierenden transaktio-
nalen (OLTP) und gemischten (HTAP) Arbeitslasten schneiden die
vorgestellten adaptiven Architekturen im Allgemeinen mindestens
genauso gut ab wie die jeweils beste State-of-the-Art-Architektur. In
der Tat werden alle bestehenden Architekturen übertroffen, wenn
neue, besser geeignete Architekturen angewandt werden, z.B. durch
die Ressourcenzuweisung mit einer Granularität, die mit den heuti-
gen Einzel-Server-Architekturen nicht vergleichbar ist, oder bei der
separaten Spezialisierung auf verschiedene Abfragen gemischter Ar-
beitslasten, anstelle von Kompromissen wie in den heutigen Multi-
Server-Architekturen. Das heißt, die vorgestellte flexible und präzise
Adaption zeigt eine höhere und robustere Leistung.

Obwohl unsere Ergebnisse neuartige, besser geeignete Architek-
turen nur für eine Teilmenge möglicher Arbeitslast- und Hardware-
Bedingungen zeigen, weist diese Dissertation insgesamt auf ein hohes
Potenzial für die Anpassung von Architekturen mit den vorgeschlage-
nen Konzepten hin. Da die vorgeschlagenen Konzepte einen großen
Optimierungsraum allgemein navigierbar machen, werden Optimie-
rer in der Lage sein, DBMS-Architekturen flexible und präziser an
viele Arbeitslasten und Hardware anzupassen. Anstelle von fragilen
statischen Architekturen, bieten die vorgeschlagenen adaptiven Archi-
tekturen somit die notwendige Grundlage für eine hohe und robuste
Leistung von DBMS bei variierender Arbeitslast und Hardware.
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Part I

S Y N O P S I S





1
I N T R O D U C T I O N

Today, database management systems (DBMSs) represent a great suc-
cess story. This success story started in the 1960s with the first commer-
cial DBMS, Information Control System and Data Language/Interface
(ICS/DL/I). It was developed to transactionally manage large bills of
materials for the Apollo project, providing essential data management
to make the moon landing possible [108]. From there on DBMSs have
significantly evolved, providing broader features and ever-higher per-
formance. Hence, today DBMSs have found wide adoption by many
businesses relying on their features and their performance, e.g., online
commerce conducting billions of sales transactions on Singles’ Day
or Black Friday [62, 89, 176]. Accordingly, the use cases for DBMSs
have been expanding ever since and there is a lasting demand for
ever-higher performance, which significantly shaped and increasingly
challenged DBMS designs.

1.1 the evolution of dbms designs

From the early days of DBMSs in the 1960s until today, DBMS designs
have been driven by the support for new use cases and the continuous
demand for ever-higher performance. Therefore, the design space of
DBMSs has significantly expanded to ever more workloads to support
and hardware to operate on. As illustrated in Figure 1.1, for the
early DBMSs the design space was very narrow, but DBMSs steadily
supported more workloads and operated on more hardware, requiring
DBMS designs to cover an ever-larger design space.

The early DBMSs until the 1970s were designed for very specific
workload and hardware. For example, ICS/DL/I was specifically de-
signed for the management of bills of materials, i.e., for ensuring
transactional consistency of hierarchically structured data, and was
specifically designed to operate on NASA’s mainframe [108]. Fol-
lowing ICS/DL/I, the first relational DBMSs, e.g., System R [14],
Ingres [173] or Oracle [51], were designed to support broader work-
loads, i.e., enabling efficient querying of managed data independent
of the physical storage format, using the relational model and related
abstractions [44, 45, 133]. Still, although few hardware platforms were
available, the early DBMSs only operated on specific ones, e.g., System
R on IBM System/360 [14], Ingres on Programmed Data Processor-11
(PDP-11) [173], and Oracle V2 on Virtual Address eXtension (VAX)
systems [51]. The hardware of that time required distinct program-
ming, such that the early DBMSs had specialized implementations to
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Figure 1.1: Illustration of the expanding design space of workload and hard-
ware in which DBMSs have been designed over the years.

both operate on a specific hardware at all and to take advantage of its
distinct features.

As DBMSs found wider adoption, they had to support more di-
verse workloads, e.g., analytical workloads with complex queries for
decision support, transactional workloads with high performance
demands for online commerce or graph workloads with complex
structured data for fraud detection. Hence, already early DBMSs
started specializing in specific workloads, e.g., Teradata’s DBC/1012
in analytical processing [167] and Berkeley DB in key-value work-
loads [134]. Still, in the “one-size-fits-all” design era until the 1990s,
major relational DBMSs like DB2 [69], Ingres [173], Oracle [51], and
Postgres [171] also attempted to support the entire range of workloads
from transactional to graph analytics [170]. Especially, Postgres’ exten-
sible data model with abstract data types is a canonical example for
the very generic designs of that era. However, it was found that these
generic DBMS designs hindered high performance for the individual
workloads and also hardware had evolved significantly.

In the following “one-size-does-not-fit-all” design era, many distinct
DBMS designs superseded the traditional generic designs to improve
DBMS performance for individual use cases, especially for specific
workloads and hardware [174]. Most notable, the hardware evolution
made large quantities of main memory affordable but also changed
hardware to diverse multi-core processors and multi-processor plat-
forms. This hardware evolution thereby offered opportunities for
DBMSs to improve performance but also demanded the support of di-
verse hardware, founding today’s many main memory DBMSs. Today
there is an abundance of DBMSs specialized for specific workloads
or hardware, e.g., relational main memory DBMSs (e.g., HyPer [104],
IBM solidDB [121], MonetDB [29, 92], SAP HANA [65]) specialized
for hardware with large main memory and diverse transactional and
analytical workloads, graph DBMSs (e.g., Neo4J [113]), and a range of
simplified key-value DBMSs specialized for main memory and SSDs
(e.g., Memcached [68, 130], Redis [124], RocksDB [156]). Consequently,
the diversity of workloads and hardware has expanded the design
space for DBMSs to a vast scale.
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Figure 1.2: Illustration of volatile conditions challenging DBMS design.
Changing workloads and hardware platforms influence funda-
mental characteristics that comprise the volatile conditions.

Besides the vast scale of the design space, DBMS consumption
has significantly changed as well, exposing DBMSs to increasingly
volatile workload. Today, businesses emphasize agility of their IT in-
frastructure, flexibly consuming DBMSs as a service and likely in the
cloud [129]. Further, many businesses operate online, such that even
for the same use case like online commerce the specific workload fluc-
tuates, e.g., due to varying popularity of offered items [177]. Therefore,
use cases evolve and demand fluctuates today, exposing DBMSs to
changing workload conditions.

Similarly, ever-more hardware is readily available to operate DBMSs,
especially in the cloud. The challenge used to lie in distinct DBMS
implementations in order to support diverse hardware at all, e.g., DB2
employing four different code bases [32, 38, 77, 99, 174]. Instead, to-
day’s DBMSs generally support a range of instruction set architectures
(ISAs) and hence the many hardware platforms with processors that
implement these ISAs [158], e.g., PowerISA-based [98], x86-based [1,
95] and ARM ISA-based platforms [12]. Today the challenge for DBMSs
rather is to utilize the diverse hardware well, despite their diverse
characteristics. As we show in our evaluation in Chapter 3, for exam-
ple, already the varying interconnect bandwidth and latency between
processors can impose severe performance degradation on unfit DBMS
designs. Overall, there are many distinct characteristics of today’s pro-
cessors (e.g., design of hardware parallelism) and hardware platforms
that demand specialization of the DBMS designs. Moreover, the cur-
rent hardware evolution is seeking new ways to further progress, thus
steadily increasing the diversity of hardware characteristics, e.g., as
could be observed with the advent of ARM platforms in the cloud [6,
13, 43]. Therefore, today’s hardware diversity challenges DBMS de-
sign with continuous hardware-specific specialization and DBMSs
repeatedly struggle when operating on (new) hardware they are not
specialized for.
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Consequently, the design space of DBMSs is expanding to vast
workload and hardware diversity, and in this space DBMSs must ex-
ecute changing workloads on changing hardware. As illustrated in
Figure 1.2 and will be discussed throughout this dissertation, this ex-
poses DBMS designs to many workload and hardware characteristics
that vary over time, making for volatile conditions challenging DBMS
design. As follows, despite these volatile conditions, DBMS designs
are specialized to maximize performance.

1.2 specialization of dbms designs

Over the years, a general structure for the DBMS design has been
established within which DBMSs evolved [78, 149]. That is, full-fledged
DBMSs generally follow the design structure shown in Figure 1.3,
organizing the DBMS functionality into the depicted components and
organizing the deployment of these components with an underlying
architecture. Even as DBMS designs were specialized, full-fledged
DBMSs continued to follow this general structure, e.g., regardless
whether for relational or graph workloads [155]. However, within this
general structure, new designs of components and of the architecture
were devised for full-fledged DBMSs to better support the growing
diversity of workloads and better utilize new hardware. In fact, a
breadth of alternative designs specialized to distinct workloads and
hardware have emerged, as described below for relational DBMSs.

Transaction
Manager

Recovery
Manager

Files and Access Methods

Lock
Manager

Buffer Manager

Disk Space Manager

Plan Executor Parser

Operator Evaluator Optimizer

Query Evaluation Engine

Index Files

System Catalog

Data Files

Database

Database Management System (DBMS)

DBMS 
Architecture

Server

Processor

Disk

Log

Storage Engine

Figure 1.3: General structure of a DBMS design showing the common com-
ponents and their interaction as well as the underlying DBMS
architecture [78, 149].

sophisticated specialization of dbms components For
all of the DBMS components shown in Figure 1.3 many designs have
emerged in relational DBMSs, advancing and indeed specializing
the individual components. Prime examples are the components of
the query evaluation engine and the storage engine, whose designs
significantly evolved in response to the diversity of workloads and
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hardware. For example, the query evaluation engine has reached a
broad number of alternative relational operator designs specialized
for efficient query execution under specific workloads or hardware,
like branch-less or branching selection specialized for filtering under
specific selectivities of the workload and for the branching perfor-
mance of the underlying hardware [87]. Similarly, the storage engine
today comprises many specializations of the physical storage design
for specific workloads and hardware, e.g., the row-wise record layout
for transactional workloads and the column-wise layout for analytical
workloads or partitioning of tables regarding the underlying NUMA
hardware or multi-server infrastructure [119]. Accordingly, DBMS
components have a breadth of alternative designs today, which are
geared towards specific conditions.

In the breadth of DBMS component designs, today’s DBMSs indeed
advanced to automatic specialization with optimizers. Today, opti-
mizers flexibly navigate between alternative specializations of DBMS
components, rather than relying on a single fixed implementation
of a specific specialization for specific hardware and workload. For
example, the query evaluation engine uses an optimizer to automat-
ically specialize the execution of queries for a given workload and
hardware, generating an execution plan out of operators considered
best-fit [119] and adaptively re-optimizing during the execution to
correct unfit execution plans [16, 203]. Similarly, there is a host of
advisors that propose specialized designs for DBMS components, e.g.,
for index selection [114, 193], partitioning [86, 152], and optimizing
buffer management [30]. To achieve the best possible performance
for the specific conditions at hand, automatic optimization methods
choose from alternative designs and comprehensively specialize dis-
tinct components. Indeed, optimizers not only specialize components
to improve processing speed (e.g., transaction throughput) but even
allow specialization for alternative performance metrics like monetary
cost per request. Consequently, for many DBMS components sophisti-
cated automatic adaptation approaches have been established which
flexibly specialize these components, effectively navigating alternative
designs and even supporting alternative optimization objectives.

static specialization of dbms architectures Besides evolv-
ing designs of the different DBMS components, also a choice of DBMS
architectures emerged with the expanding design space. Figure 1.4
displays the architectures commonly implemented in today’s rela-
tional single-server scale-up DBMSs and multi-server scale-out DBMSs.
These architectures determine how DBMS components are instantiated
and resources are assigned for executing the DBMS, as follows.

(1) The shared-everything architecture for single-server scale-up
DBMSs instantiates a single system partition with all available re-
sources, e.g., implemented in Hekaton [52], MySQL [161] or Post-
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Figure 1.4: Common DBMS architectures for single-server scale-up DBMSs
and multi-server scale-out DBMSs.

gres [183]. Instead, (2) the NUMA-aware architecture instantiates a
system partition containing all DBMS components on each processor,
e.g., implemented in SAP HANA [65] or Oracle TimesTen [112]. (3) The
shared-nothing architecture for scale-up DBMSs instantiates the entire
stack of DBMS components on every core on each processor in the
hardware platform [172], today found in Teradata Database [182] as
well as the main memory DBMSs VoltDB [103, 175]. Among scale-out
DBMSs, (4) the shared-nothing architecture similarly individually in-
stantiates the entire stack of DBMS components on every single server
of the distributed DBMS, e.g., implemented in Postgres or Amazon
Redshift [75] While (5) the shared-disk architecture also instantiates
system partitions on distinct servers, it devises common storage of the
entire database, e.g., implemented in Oracle RAC [37] or DB2 Data
Sharing [102]. Lately, the shared-disk architecture has been advanced
to (6) the disaggregated architecture separating storage related DBMS
components into distinct system partitions, e.g., implemented in the
cloud-native DBMSs Amazon Aurora [194], Azure SQL Database Hy-
perscale [8, 131], and Alibaba PolarDB [35].

In detail, the above DBMS architectures are all used for a specific pur-
pose. Modern DBMSs implement these architectures, i.e., their distinct
instantiation of components and assignment of resources, to specialize
for distinct workloads and hardware. While these DBMS architectures
broadly target either single-server hardware or multi-server hardware,
these are further specialized for distinct workload and hardware char-
acteristics like non-uniformity or large main memory capacity. For
example, the modern main memory DBMS engine Hekaton specif-
ically employs the shared-everything architecture for high resource



1.3 static architectures despite expanding design space 9

utilization under non-uniform workloads [52]. Instead, the shared-
nothing architecture is employed for partitionable workloads, e.g., for
partitionable analytical workloads in Teradata Database [182], but also
for partitionable transaction workloads in traditional DBMSs like Post-
gres [183, 184] or modern main memory DBMSs like Oracle TimesTen
and VoltDB [103, 112, 175]. However, these DBMSs only perform well
for either workload according to their implemented architecture, but
severely degrade for other workloads [141]. Similarly, the NUMA-
aware architecture today has significantly improved the performance
of scale-up DBMSs like Oracle or SAP HANA, specializing them for
non-uniform hardware with many processors [42, 66, 154]. Yet, this
is a specific specialization to utilize hardware parallelism of many
processors, but today the massive parallelism within a single processor
raises similar issues, again degrading performance due to unfit special-
ization for hardware parallelism [206]. Finally, also the disaggregated
architecture specializing cloud-native DBMSs like Amazon Aurora [4,
194] or Azure SQL Database Hyperscale [8, 131] for elastic cloud
infrastructure comes at a cost, e.g., benefiting compute-intensive work-
loads like analytics but inhibiting performance of latency-sensitive
transactional workloads [118].

Consequently, today’s relational DBMSs only achieve high perfor-
mance for a specific predetermined purpose, i.e., for the specific work-
load and hardware characteristics as well as the objective their imple-
mented architecture specializes in. For other purposes, however, their
architectures are unfit, severely degrading DBMS performance and
hence generally restricting today’s DBMSs to a specific predetermined
purpose. As explained in the following, these statically implemented
architectures have such strong impact on the DBMS design, that the
sophisticated specialization of DBMS components has limited effect
beyond this predetermined purpose.

1.3 static architectures despite expanding design space

The specialization of DBMS architectures described above reveals that
today’s DBMSs implement a specific architecture for a predetermined
purpose, with severe consequences when hardware or workload devi-
ate. Precisely, their specialized architectures aim for the best deploy-
ment of the DBMS components to operate specific workload on specific
hardware, assigning resources to DBMS components in expectation
of specific conditions of workload and hardware characteristics. For
example, the previously described architectures commonly consider
the workload and hardware characteristics depicted in Figure 1.2, e.g.,
partitionability, access pattern, read/write ratio or the interconnect
latency of hardware topology. But, these architectures distinctly spe-
cialize for specific conditions of these characteristics, e.g., either for
partitionable workloads or non-partitionable workloads. Importantly,
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regardless the diverse data models (e.g., hierarchical, relational or
graph), the diverse interaction modes (e.g., direct user interaction,
batch processing or stored procedures) or the diverse workload classes
(e.g., transactional or analytical), it is these common fundamental char-
acteristics impacting all the diverse DBMS designs that architectures
specialize for [52, 65, 103, 113, 141].

Hence, the underlying problem is the increasing diversity of condi-
tions that these fundamental workload and hardware characteristics
can assume in the expanding design space. Indeed, the previously ex-
plained agile DBMS consumption demands today’s DBMSs to operate
changing load-fluctuating workloads and causes their deployment to
varying hardware even at runtime, e.g., for elastic resource scaling,
such that these conditions are also increasingly volatile. These fun-
damental workload and hardware characteristics changing at deploy-
time or even at runtime are a significant challenge for today’s DBMS
architectures. While adaptive DBMS components allow flexible spe-
cialization to such volatile conditions even after implementing the
DBMS, today’s specialization approach for DBMS architectures takes
fundamental design decisions for specific conditions, dictating a static
specialization not easily revised.

The specialization of the DBMS architecture is manually decided
early in the design process and for a specific purpose, e.g., a specific
objective like high transaction throughput for specific conditions like
non-partitionable workload. Specifically, DBMS designers set out such
specialization purpose of the architecture at the start of the design
process and decide the architecture, then the DBMS is implemented
based on this architecture, and finally the resulting DBMS is deployed
for the initially targeted purpose. A simple example is Hekaton’s
target of non-partitionable transaction workload on main memory,
which resulted in the implementation of the shared-everything archi-
tecture enabling all resources to operate all components and access
all data. However, deploying Hekaton for a lot of main memory ca-
pacity on large non-uniform hardware, the performance significantly
degrades, as our experiments will show. Instead, Hekaton would need
to implement a NUMA-aware architecture. Moreover, while Amazon
Aurora and Azure SQL Database Hyperscale undertook significant
re-implementation of their ancestors (i.e., MySQL and Microsoft SQL
Server), they again implement specific static disaggregated architec-
tures [8, 194]. Notably, under distinct assumptions, for Amazon Au-
rora the disaggregation of compute and storage was decided, whereas
for Azure SQL Database Hyperscale it was decided to additionally
disaggregate the log component. Whichever choice turns out bet-
ter or whenever the conditions change, these modern cloud DBMSs
again need re-implementation for adjusting the disaggregation of
their components. Accordingly, the choice of the architecture, i.e., the
choice which components are operated together on what resources
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in a system partition, today means that these components are also
implemented together. Moreover, the architecture and especially the
intended resource assignment determine implementation details like
the process model in the DBMS or coordination and data sharing
between components and system partitions [80].

In addition, this manual specialization not only predetermines a
fixed purpose but also artificially simplifies DBMS architectures. That
is, all the previously described architectures only assign coarse-grained
and uniform stacks of components to coarse-grained resources, cf. Fig-
ure 1.4. For example, the NUMA-aware architecture assigns an entire
stack of components to a processor. Thereby, this NUMA-aware ar-
chitecture mitigates non-uniform hardware but indistinctly enforces
a system partition per processor, demanding according data parti-
tioning and costly cross-partition operation of the DBMS. However,
for read-dominated workloads the cross-partition operation indeed
is more expensive than direct operation across processors. Inversely,
for write-dominated workloads finer-grained partitioning with fewer
resources yields better performance, since coordination for direct oper-
ation is more expensive than cross-partition operation [141]. Moreover,
these workload effects and the load differ across components and
instances of components, e.g., between index instances storing popu-
lar and unpopular data items, as our experiments will show. That is,
the coarse-grained composition and resource assignment in today’s
architectures inhibits the sensitive balancing of the effects of the funda-
mental workload and hardware characteristics. Therefore, the artificial
simplification in current specialized architectures misses optimization
potential and indeed causes unfit specialization.

In conclusion, the current specialization approach manually decides
the DBMS architecture at design-time and implements the DBMS ac-
cordingly. At best, the resulting specialized architecture enables the
DBMS to perform well for the very specific predetermined purpose,
e.g., balancing the underlying effects of the distinct workload and
hardware conditions. In the expanding design space, however, work-
load and hardware characteristics are increasingly volatile, such that
there are increasing possibilities for static architectures to become
unfit, degrading DBMS performance. Even re-implementing a better-
fit architecture does not solve the issue, as any static specialization
is bound to become unfit under volatile conditions, whether chang-
ing workloads, evolving hardware or even alternative optimization
objectives like minimal cost. Indeed, the strong coupling of the ar-
chitecture and the DBMS implementation today limits the benefit of
DBMS components flexibly adapting to volatile conditions. Hence,
static specialization of DBMS architectures is a significant issue and
deciding the DBMS architecture early in the design process to be fixed
in the DBMS implementation is fundamentally in conflict with the
changing workload and hardware conditions.
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1.4 need for robust specialization of architectures

Statically specialized architectures make DBMSs susceptible to degra-
dation under change, thus causing poor DBMS performance under
the volatile conditions of the expanding design space. Instead, a new
approach is required to enable high performance across volatile condi-
tions, i.e., an approach for robust specialization of DBMS architectures.
As outlined in Figure 1.5, the decision for a DBMS architecture must
be deferred from the design-time to deploy-time or even the runtime.
Hence, the goal is a generic DBMS implementation whose architec-
ture can be adjusted as conditions change. By flexibly and effectively
shaping the DBMS architecture, the goal is to robustly specialize for
complex, volatile effects of changing workload and hardware condi-
tions that DBMSs are exposed to. Precisely, for the best performance
in specific conditions but overall robustness, this dissertation seeks
robust specialization of DBMS architectures by deriving best-fit archi-
tectures for any given conditions and establishing the flexibility to
change between these.

need for precise specialization of architectures The
first facet required for robust specialization is to derive best-fit archi-
tectures for any given conditions. Today the complex effects of volatile
workload and hardware conditions are not covered well, since the
few predetermined architectures only specialize for a specific purpose,
i.e., a specific objective as well as specific workload and hardware.
Instead, comprehensive specialization is required allowing to derive
any conceivable architecture. Rather than choosing from discrete pre-
determined architectures, the goal is to derive the best-fit architecture
by more contiguously navigating all aspects of the architecture. Specif-
ically, today’s manual specialization simplifies DBMS architectures
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by assigning only coarse-grained and uniform stacks of components
to coarse-grained resource partitions, but the architecture must be
precisely specialized for the distinct effects of the workload and hard-
ware conditions on each component to reach best-fit architectures. For
example, even the more sophisticated scale-up NUMA-aware or the
disaggregated scale-out architecture still assign a stack of most of the
components to an entire processor or an entire server, respectively.
However, distinct components like the transaction manager and the
query execution engine have distinct resource demands that depend
on their individual exposure to the workload or hardware, like the par-
titionability of the workload. Hence, for best-fit architectures precise
specialization for the distinct demands of individual components is
required, including fine-grained resource assignment and independent
partitioning of components. Additionally, to effectively find best-fit
architectures despite the increased complexity, a principled method
for specializing to any given and even unseen future conditions is
required. Ultimately, optimizers should be able to automatically derive
best-fit architectures.

need for flexible adjustment of architectures The sec-
ond facet for robust specialization is flexible and effective adjustment
of the architecture, allowing to maintain best-fit architectures when
conditions change. Today’s fixed implementation of DBMS architec-
tures hinders their adjustment as conditions change, thus resulting
in unfit architectures. Instead, a flexible specialization approach is
required to change the architecture of the DBMS without the need
of re-implementation. Specifically, it must be possible to generically
implement the DBMS but change all key aspects of the architecture
without re-implementing the DBMS or its components. For this generic
implementation, especially today’s dependencies of the DBMS compo-
nent implementations on the architecture must be resolved, allowing
to implement the DBMS components without knowing the architec-
ture. However, for effective adjustment of the architecture despite
this flexibility, the new specialization approach also must be efficient
in order to materialize the benefit. That is, the overhead must be
sufficiently small, such that the performance of the flexibly derived ar-
chitecture is on par when existing architectures are best-fit and indeed
facilitates performance benefits over unfit architectures. Consequently,
this dissertation strives for a generic DBMS implementation whose
architecture can be flexibly and comprehensively adjusted, thereby
achieving robust specialization throughout the volatile conditions of
the expanding design space.
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1.5 adaptive architectures for robust dbms

This dissertation proposes adaptive DBMS architectures to achieve the
robust specialization of architectures and in turn of the overall DBMS.
With adaptive architectures, concepts are proposed to depart from
brittle static specialization, but instead achieve best-fit architectures
regardless the conditions. For such robust specialization, we seek the
best-fit yet flexible specialization of DBMS architectures throughout
volatile conditions without the necessity of re-implementing the DBMS.
This dissertation strives for a general solution to specializing adaptive
architectures, enabling automatic optimizers to specialize DBMS archi-
tectures to any conditions, including unknown future workloads and
hardware or even changing optimization objectives.

concepts for robust specialization In detail, this disserta-
tion proposes three concepts for the precise and flexible adaptation of
DBMS architectures, as above identified necessary for robust special-
ization. The following concepts are proposed for the general robust
specialization of both scale-up and scale-out DBMS architectures.

The first concept is the fine-granular assignment of arbitrary re-
sources to arbitrary components. For example, as shown in Figure 1.6,
a storage engine partition could be assigned two processors on a
large scale-up hardware (rather than strictly one processor as in the
NUMA-aware architecture), but also a single index could be assigned
a few CPU cores. The purpose of this concept is to enable the precise
specialization not only for coarse DBMS components but indeed for
any piece of DBMS functionality that requires distinct specialization,
i.e., precise specialization of fine-grained building blocks of the DBMS.
That is, the concept proposes to assemble best-fit architectures based
on fine-grained building blocks representing parts of DBMS compo-
nents. To precisely specialize for their individual needs but also an
overall balanced architecture, these can be independently partitioned
across and composed into system partitions with individually suitable
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amounts of resources. Thereby, this fine-grained assignment enables
navigation to all conceivable architectures, allowing to derive the
best-fit architecture for any DBMS in any conditions.

Based on this fine-grained assignment, the second concept is to
separate components in the architecture as much as possible. With this
concept we aim to separate building blocks (e.g., components) whose
specialization competes, enabling competitive specialization of distinct
aspects of the architecture. For example, for a scale-out DBMS serving
compute-intensive read-only analytical queries and short-running
write-mostly transactions, the ideal architectures be a shared-disk and
a shared-nothing architecture, respectively. Here, our concept proposes
to instantiate a hybrid architecture mimicking both ideal architectures
providing the best performance for both kinds of requests rather than
sub-optimally deciding for either of the architectures. Thereby, this
separation strives to enable a best-fit architecture for all individual
components.

Finally, the third concept is a programming model to enable ef-
fective adaptation of the architecture. We propose an asynchronous
programming model to enable the generic implementation and ef-
ficient execution of any DBMS functionality as building blocks to
specialize the architecture with.

contributions towards adaptive architectures This dis-
sertation proposes the above concepts as general approach for adapt-
ing DBMS architectures. However, this dissertation distinctly realizes
these concepts for the single-server setting of scale-up DBMSs and the
distributed multi-server setting of scale-out DBMSs, contributing an
adaptive for each of these DBMS classes. Moreover, for a rigid study
despite the vast design space of DBMSs, this dissertation investigates
adaptive architectures for the widespread relational DBMSs, the preva-
lent CPU-based hardware, and mainly transactional workloads, as
will be explained in Chapter 2. Within this scope, this dissertation
employs extensive performance evaluation of the DBMS with static
architectures to guide the realization of adaptive architectures. Then
adaptive architectures for scale-up and scale-out DBMSs are realized.
The specific contributions of this dissertation are as follows:

1. The first contribution of this dissertation is a detailed evaluation
of transaction processing DBMSs on a range of hardware and
workloads, complementing prior evaluation works. This evalua-
tion exhibits the complex interaction of the system design, the
workload characteristics, and characteristics of the underlying
hardware, which together determine the DBMS performance. It
concludes the necessity of adaptive architectures and especially
the necessity to precisely adapt for distinct DBMS components
to successfully achieve robust specialization.
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2. The second contribution of this dissertation is the realization of
an adaptive architecture for single-server scale-up DBMSs. The
adaptive scale-up architecture is realized as a programming
model of asynchronous tasks, allowing a configuration of the
architecture to flexibly compose individual data structures in
heterogeneous system partitions. Based on this configurabil-
ity, the benefit of adaptive architectures is demonstrated with
an optimizer automatically specializing for robust transaction
throughput. Hence, the value of robust specialization by adap-
tive architectures is proven for changing conditions and complex
specialization objectives.

3. The third contribution of this dissertation is the realization of
an adaptive architecture for multi-server scale-out DBMSs. The
adaptive scale-out architecture is realized with a reactive pro-
gramming model, allowing the fine-grained adaptation of execu-
tion and data flow at runtime. Based on this fine-grained online
adaptation, aggressive optimizations are proposed to address
the challenges of scale-out and especially cloud DBMSs, i.e.,
distinct architectures per query for best performance in mixed
workloads. Thereby, adaptive architectures indicate significant
opportunities for coming cloud DBMSs.

With the above contributions, this dissertation demonstrates the
robust specialization of DBMS architectures within the specified scope.
However, the contributions overall suggest that the proposed concepts
and the realized adaptive architectures facilitate the robust specializa-
tion of DBMS architectures in general. As will be discussed throughout
Chapters 4–6, our programming models, on one hand, generally per-
mit the implementation of full-fledged DBMSs and all the DBMS
components necessary to support various workloads beyond transac-
tion processing. As will be explained by the accompanying integration
approaches, DBMSs can generically implement DBMS components
with various designs based on our programming models, which then
can be flexibly operated in our adaptive architectures. On the other
hand, already for the evaluated workload and hardware the distinct
DBMS components expose distinct adaptation demands, such that
our fine-grained resource assignment and the separate specialization
of these components yield novel hybrid architectures with superior
performance over the state-of-the-art architectures. Hence, our eval-
uation results demonstrate that the many architectures conceivable
based on these concepts bare significant potential for optimizers to
precisely specialize our adaptive architectures for various conditions.
In combination, we are confident that our proposed concepts allow
the flexible and precise specialization of our adaptive architectures
to diverse DBMS components, workloads, and hardware, facilitating
robust performance of full-fledged DBMSs in volatile conditions.
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outline As initially depicted in Figure 1.7, the synopsis of this
cumulative dissertation continues in Chapter 2, further detailing the
scope and approach leading to above outlined contributions. After-
wards, we summarize the distinct contributions of this dissertation,
backed by the peer-reviewed publications attached in Part II. Chapter 3
summarizes the evaluation of the robustness of current DBMSs; Chap-
ter 4 summarizes the contributions towards adaptive architectures for
scale-up DBMSs; and Chapter 5 summarizes the contributions towards
adaptive architectures for scale-out DBMSs. Finally, Chapter 6 closes
this synopsis with conclusions about adaptive architectures for robust
DBMSs and an outlook on future research directions towards adaptive
architectures for the cloud.
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Figure 1.7: Outline of this dissertation.





2
T O WA R D S A D A P T I V E A R C H I T E C T U R E S

The following chapter describes the approach of this dissertation
towards adaptive architectures. It pursues the goal of broadly and
flexibly specializing DBMS architectures to enable robust (and high)
DBMS performance despite volatile conditions. Overall, the approach
is structured according to three contributions previously outlined in
Section 1.5, i.e., the extensive performance analysis detailing the limita-
tions of current static architectures and the realizations of the adaptive
scale-up and scale-out architectures. The following sections outline
the design of the analysis and the distinct challenges and main ideas
for the adaptive architectures. Notably, given the vast conditions to
which DBMS architectures can be adapted, this dissertation focuses on
adaptive architectures for particular classes of workload and hardware.
Hence, the scope that makes the research on adaptive architectures
tangible in this dissertation is first specified, before describing the
specific approach.

scope of this dissertation Taking the first steps from static
specialization to adaptation of DBMS architectures, this dissertation
focuses on the adaptivity of DBMS architectures, common hardware,
and challenging workloads:

1. This dissertation focuses on making the architectures of scale-up
and scale-out DBMSs adaptive. The scope includes resolving the
undesirable re-implementation of scale-up and scale-out DBMSs
when specializing their architectures, i.e., their generic imple-
mentation and the independent flexible specialization of their
architectures. Departing from static scale-up and scale-out archi-
tectures, this dissertation approaches the adaptation of DBMS
architectures separately for these two classes of architectures.
Future work may integrate these orthogonal approaches for the
combined adaptation within and across diverse hardware.

2. As our adaptive architectures aim to facilitate manual and au-
tomatic specialization, the scope further includes guidelines for
deriving best-fit architectures and support for optimizers. To
demonstrate performance benefits of best-fit specialization of
our adaptive architectures to volatile conditions, we particularly
seek initial use cases for optimizers utilizing the adaptive archi-
tectures for automatic specialization. Yet, the development of
comprehensive optimizers on top of adaptive architectures is out
of scope and left for future work.

19
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3. The scope includes only the predominant general-purpose CPU-
based hardware. We focus on the hardware platforms that to-
day’s DBMSs generally support and whose broad hardware
characteristics currently challenge statically specialized architec-
tures [141, 158]. Out of scope is special-purpose hardware, e.g.,
GPUs or FPGAs. Indeed, once initial research on special-purpose
hardware gains adoption in DBMSs [3, 28], this hardware will
open an entire new realm of hardware to specialize the architec-
ture for. An extended implementation of adaptive architectures
may incorporate this kind of hardware in future [5, 182].

4. This dissertation studies mainly diverse transactional workloads.
These are an important workload class and already challenge
DBMS architectures [62, 89, 176], as for example transactional
workloads exhibit many short running transactions with varying
access patterns of both read and write operations. Addition-
ally, these workloads demand complex coordination across the
DBMS to ensure the consistency of individual operations and the
overall transaction. These workload characteristics make transac-
tional workloads volatile and sensitive to hardware effects and
adaptation overhead. We additionally consider long running
compute-intensive analytical queries for the adaptation of scale-
out DBMSs, as scale-out DBMSs are commonly used to flexibly
provide the extensive compute resources for these queries.

With the above scope, this dissertation pursues the provably effective
adaptation of DBMS architectures to a common but challenging subset
of the extensive volatile conditions. Towards adaptive architectures
within this scope, the following sections outline the specific approach
leading to the distinct contributions. Specifically, Section 2.1 starts
with the overall design of our initial performance analysis. Section 2.2
describes our high-level approach to adaptive architectures for scale-
up DBMSs and Section 2.3 for scale-out DBMSs. These are detailed
and their results are summarized in the subsequent chapters, i.e., in
Chapter 3, 4, and 5, respectively.

2.1 analyzing static dbms architectures

First, we analyze the limitations of the DBMSs with static architectures
with an extensive experimental evaluation. The goal is to identify the
extent and reasons of workload and hardware characteristics impact-
ing DBMS performance. While there exist numerous performance
evaluations for scale-up and scale-out OLTP DBMSs [10, 56, 79, 100,
141, 142, 164–166, 178, 179, 204, 206], these primarily analyze workload
effects and focus on specific hardware. However, OLTP DBMSs lack
analysis for the broad spectrum of today’s complex multi-processor
hardware. Hence, this dissertation contributes a detailed analysis of
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the effects of today’s predominant complex hardware on transaction
processing in current DBMSs. Thereby, this analysis complements
the existing performance analyses, together guiding the subsequent
realization of adaptive architectures.

We approach our experimental evaluation with scalability experi-
ments guided by concurrent transaction execution as the key determi-
nant of the performance of modern main memory OLTP DBMS. We
setup these scalability experiments based on a representative proto-
type DBMS [206], three common but distinct multi-processor hardware
platforms, and the standardized OLTP benchmark TPC-C [185]. Specif-
ically, this prototype DBMS represents OLTP DBMSs through the
transaction manager component essential for concurrent transaction
execution, including a broad range of alternative designs commonly
found in today’s OLTP DBMSs [65, 112, 161, 183]. Prior work originally
developed this prototype to analyze hardware effects of anticipated
many-core processors with up to 1000 cores [206]. Instead, we study
the effects of today’s predominant multi-processor hardware, which
challenges OLTP DBMSs not only with high hardware parallelism
but also with many further and diverse hardware characteristics [83,
112]. Specifically, we study the hardware effects of three common
x86- and PowerISA-based multi-processor platforms, whose distinct
processors especially differ in the designs for parallel execution (i.e.,
physical cores and Simultaneous Multithreading), and the topologies
notably differ in latency and bandwidth between the processors. In
conjunction with this hardware setup, we use the TPC-C benchmark
to study diverse workload characteristics. For the analysis of distinct
workload characteristics, we devise common types of OLTP workloads
but also manipulate distinct aspects of the benchmark. Especially, we
use the common parameter of “warehouses” to devise high and low
conflict workloads significantly influencing transaction execution by
the necessary coordination of concurrent conflicting transactions.

In our initial series of experiments, we first analyze how today’s
multi-processor hardware impacts transaction processing performance
compared to the anticipated many-core hardware of prior work [206].
After an initial overview of the performance for the canonical high
and low conflict workloads, we analyze the reasons of the strongest
discrepancies. Thereby, we detail the impact of the distinct characteris-
tics of the two hardware types but also verify the comparability of the
prototype with today’s DBMSs.

In a second series of experiments, we then analyze transaction
processing across today’s hardware spectrum. We first conduct exper-
iments to overview the performance across all our three hardware
platforms, again using the high and low conflict workloads. After-
wards, the subsequent experiments, on one hand, detail the effects of
the most impactful and distinct aspects of today’s hardware platforms,
i.e., distinct hardware parallelism within the processor and distinct
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characteristics of the topologies connecting processors. On the other
hand, the effects of further workload characteristics on these platforms
are detailed. Specifically, we extend from analyzing the impact of con-
flicts in the workload to further significant workload characteristics
like the type and number of operations of transactions.

The key finding is that transaction processing performance of to-
day’s OLTP DBMSs is subtly impacted by many hardware and work-
load characteristics. Our analysis exposes varying effects of today’s
broad hardware on the distinct transaction manager designs and
exposes further cross-effects with the workload. For example, we ob-
served nuanced effects of the distinct bandwidth and latency charac-
teristics of the hardware topologies in combination with the footprint
of the workload (i.e., number of records accessed by a transaction)
on the distinct transaction manager designs. Through numerous such
observations our analysis indicates a fragile balance of bottlenecks in
the DBMS determined by the complex interaction of the underlying
hardware, the specific workload, and indeed the design of DBMS com-
ponents. Hence, DBMS architectures (as well as the components) must
be adapted to stay balanced despite volatile conditions. Indeed, given
the complex interacting cross-effects, adaptive architectures must en-
able optimizers to specialize the DBMS flexibly and effectively (i.e.,
robustly) under volatile conditions. A summary of our analysis is
presented in Chapter 3 and the according publications in Chapters 7-8.

2.2 towards adaptive architectures for scale-up dbms

As a second contribution, this dissertation approaches an adaptive
architecture for scale-up DBMSs. In contrast to scale-out DBMSs, this
class of scale-up DBMSs operates on a single server. Constrained to a
single server, scale-up DBMSs hence must make best use of the limited
resources but can easily access all data in shared memory. Accordingly,
the distinct purpose of scale-up architectures is to organize the DBMS
components in a manner that best utilizes the limited resources pool,
especially with resource partitioning. In the following, we detail the
shortcomings of current static architectures and propose an adaptive
scale-up architecture addressing these.

Today’s scale-up architectures organize the DBMS by partitioning
the resource across system partitions, as previously depicted in Fig-
ure 1.4 (1)-(3). Among other factors, these architectures primarily
attempt a partitioning that balances partition-local coordination cost
and cross-partition coordination cost for their individually targeted
workload and hardware, i.e., for the predetermined purpose of these
statically specialized architectures. For example, the NUMA-aware ar-
chitecture attempts to balance these coordination costs by partitioning
per processor for partition-local coordination within a processor and
cross-partition coordination across processors.
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Figure 2.1: Approach of specializing static scale-up architectures (left) versus
proposed fine-grained adaptation (right). Left: Current architec-
tures statically specialize for all DBMS components together, e.g.,
the NUMA-aware architecture dictates the resources partitioning
by processor for its system partitions which each contain the com-
plete stack of components. Right: The proposed adaptive scale-up
architecture enables fine-grained arbitrary resource partitioning
for arbitrary compositions of DBMS components, facilitating flex-
ible architectures with arbitrary system partitions.

However, in the volatile conditions of the expanding design space
these architectures are not only unfit due to their static specialization
but indeed due to their coarse-grained specialization, as illustrated
on the left of Figure 2.1. Especially the coarse-grained resource parti-
tioning for the entire component stack as a whole does not adequately
account for the complex effects on core data structures. Workload and
hardware have complex effects on the coordination cost within con-
current data structures e.g., the read/write ratio impacts the amount
of coordination or the latency of the memory hierarchy impacts the
cost of coordination. Moreover, the coordination cost further differs
between types of data structures and indeed between instances of the
same data structures when workload is imbalanced [49].

Instead, we propose adaptive architectures organizing scale-up
DBMSs via fine-grained, arbitrary partitioning and additionally fine-
grained, arbitrary composition, as illustrated on the right of Figure 2.1.
Thereby, we aim to adapt scale-up architectures precisely and flexibly
to any workload and any hardware. The idea for the adaptive scale-up
architecture is to allow the partitioning of the limited resources into
system partitions that ideally suit the distinct demands of individual
data structure instances from across DBMS components, forming a
hybrid architecture best fit for the given data structures instances
under the given conditions. For example, for the index data structures
of the storage manager such a hybrid architecture could incorporate
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a shared-nothing-like architecture for heavily updated indexes and
at the same time a NUMA-aware-like architecture for read-mostly
indexes.

Accordingly, the key to robust specialization with the adaptive ar-
chitecture is to choose suitable abstractions for the generic implemen-
tation of the DBMS and for the independent, flexible specialization of
the architecture at runtime. Our approach is to decompose the DBMS
implementation into tiny building blocks centered around operations
on concurrent data structures and to enable optimizers to declara-
tively assemble these into arbitrary architectures at runtime. We hence
propose a programming model based on asynchronous data-aware
tasks providing the abstraction to implement arbitrary DBMS func-
tionality. These asynchronous data-aware tasks enable the adaptation
of this functionality without re-implementation and aid the efficient,
controlled execution. In addition, we propose a configuration policy as
the abstraction for an optimizer to declare architectures with arbitrary
fine-grained system partitions. As will be discussed in Chapter 4, we
support these two core concepts with a principled adaptation pro-
cedure implemented in an initial optimizer and an efficient runtime
executing the data-aware tasks for a given configuration policy.

As our key finding, the results of our adaptive architecture for
scale-up DBMSs prove a significant benefit. Across the spectrum of
workload and hardware in which we have evaluated our approach
against the state-of-the-art statically specialized architectures, our
adaptive architecture typically performs better and never worse. In-
deed, the superior performance stems from the optimizer declaring
superior hybrid architectures based on the introduced fine-grained
specialization. Hence, fine-grained and automatic adaptation indicate
high potential for robust specialization of scale-up DBMSs to volatile
conditions. More details are presented in the summary in Chapter 4
and the according publication in Chapter 9.

2.3 towards adaptive architectures for scale-out dbms

To complement the adaptation of scale-up architectures, this disser-
tation also strives for the adaptation of scale-out architectures for
the second class of multi-server scale-out DBMSs. Especially in the
cloud, scale-out DBMSs are used for their ability to operate across a
variable number of servers, allowing them to flexibly adjust compute
and storage resources to match the load fluctuation of cloud work-
loads. Accordingly, scale-out architectures have the primary purpose
of efficiently orchestrating the DBMS across scattered resources of a
runtime-variable (elastic), network-connected resource pool. In the
following, we describe why static architectures fail to orchestrate scale-
out DBMSs for diverse workloads. We then outline our approach to
ideally orchestrate scale-out DBMSs for highly diverse and even mixed
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Figure 2.2: Static scale-out architectures orchestrate DBMSs by statically com-
posing system partitions for their targeted workload and de-
ploying these on the scattered elastic resource pool. The static
shared-nothing architecture composes all DBMS components and
a data partition, e.g., benefiting OLTP queries with fast local data
access. The static disaggregated architecture composes distinct
compute and storage layers, e.g., benefiting OLAP queries with
vast compute resources.

cloud workloads with our novel adaptive scale-out architecture. In
contrast to the adaptive scale-up architecture, it is concerned with the
efficient distributed execution of the DBMS across network-connected
resources and exploits the resource elasticity.

Today’s scale-out architectures statically compose system partitions
with DBMS components to be operated together. They then attempt
deploying these static system partitions in a balanced manner. In par-
ticular, these static architectures compose the DBMS components in
the attempt to balance the load of the resources versus network com-
munication between those. For example, as shown in Figure 2.2, the
shared-nothing architecture co-locates DBMS components and data
in system partitions on each server, achieving even resource load and
minimal network communication for uniform partitionable workload.
But under today’s volatile workloads this architecture is prone to re-
source imbalance and to high data re-partitioning cost. In contrast, the
disaggregated architecture composes the DBMS into distinct compute
and storage layers, such that it better balances non-uniform work-
loads and does not demand data partitioning. Yet, it entails cost for
frequently transferring data between these layers across the network,
especially harming latency-sensitive transaction workloads. Moreover,
both these architectures disregard the distinct demands of distinct
DBMS components. For example, the query executor would benefit
from executing compute-intensive analytical (OLAP) queries with
many resources across many system partitions, while the transaction
manager is very sensitive to coordination of OLTP queries across
system partitions. Consequently, none of the statically specialized
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Figure 2.3: Architecture-less adaptation proposed for simultaneous specializa-
tion of scale-out DBMSs to distinct queries. The adaptive architec-
ture instruments the resources to act as DBMS components via
event and data streams, orchestrating distinct architectures for
the concurrent OLTP and OLAP queries. The purple streams or-
chestrate a disaggregated architecture for the OLAP query, while
the green streams simultaneously orchestrate a shared-nothing
architecture for the OLTP query.

scale-out architectures ideally suit today’s breadth of workloads nor
the distinct demands of the DBMS components.

Instead, scale-out architectures require fine-grained adaptation to
best specialize for the opposing demand of DBMS components. Similar
to our adaptive scale-up architecture, the adaptive scale-out architec-
ture must enable fine-grained arbitrary composition and partitioning
of DBMS components. However, facing cloud workloads which not
only vary over time but also comprise a variable mix of OLTP and
OLAP queries, indeed demands opposing specialization for concur-
rent queries in the DBMS, e.g., as for Hybrid Transactional/Analytical
Processing workload (HTAP) [11, 115, 126, 147].

For the adaptation of scale-out architectures, we hence propose a
radical new approach called architecture-less DBMSs. We propose to
derive individually specialized architectures as queries arrive at the
scale-out DBMS and to simultaneously orchestrate these architectures
within the same DBMS. The core idea of the architecture-less DBMS is
to swiftly enact architectures on elastic resources. Instead of the prede-
termined system partitions of the static architectures, we propose the
flexible instrumentation of elastic resources so that these temporarily
act as (part of) different DBMS components and contribute to many
individually specialized architectures for distinct queries. For exam-
ple, instrumenting shared and exclusive elastic resources as shown
in Figure 2.3 allows us to simultaneously orchestrate a disaggregated
architecture for an OLAP query and a shared-nothing-like architec-
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ture for an OLTP query. Including fine-grained arbitrary composition
and partitioning of the architecture, we thereby approach simulta-
neous adaptation to hybrid architectures better specializing for the
demands of distinct DBMS components under the specific workload
characteristics of individual queries.

At the core of the adaptive scale-out architecture, we propose an
asynchronous reactive model for the distributed execution of scale-out
DBMSs, enabling the flexible and efficient orchestration of multiple
architectures across elastic resources. This execution model employs
a single generic component on each resource (e.g., server) which re-
acts to an event and a data stream. Essentially, these event and data
streams instrument the generic components on elastic resources to
act as (a part of) a DBMS component for a moment and together
form an architecture. Specifically, this execution model decomposes
DBMS components into their distinct operations and delivers all their
required input state, e.g., for the query executor operations are query
operators consuming records and for the query optimizer operations
are SQL statements (queries) consuming catalog statistics. With the
event stream encoding these operations and the data stream deliver-
ing the input state, the generic components asynchronously react to
incoming events and data, allowing to execute any part of a DBMS
component anywhere on some elastic resource. Consequently, the key
aspect of this execution model is that architectures can be individually
specialized simply by dispatching events/data streams per query and
these architectures can be flexibly orchestrated across elastic resources
by routing these streams.

The key finding is that the proposed architecture-less concept is
promising to adapt scale-out DBMSs to volatile mixed workloads in
the cloud, simultaneously orchestrating hybrid architectures on elas-
tic resources. Having proposed a new radical approach to adaptive
scale-out architectures, we focused on exploring the opportunities for
the distinct demands of queries from different workload classes, e.g.,
distinct parallel execution per transaction. Indeed, broad degrees of
freedom in adapting the overall architecture and the execution strategy
at the micro-level appear beneficial for specializing architectures for
distinct queries. The additional simultaneous orchestration of such
specialized architectures overall indicates promising adaptation for
scale-out cloud DBMSs. More details on adaptive scale-out architec-
tures are provided in the summary in Chapter 5 and the according
publication in Chapter 10.
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A N A LY S I S O F S TAT I C A R C H I T E C T U R E S

In this chapter, we summarize the first step of this dissertation to-
wards adaptive architectures for robust DBMSs, a detailed perfor-
mance evaluation. As previously described in Section 2.1, the goal
of the following evaluation is to contribute to a sound foundation
for robust specialization of DBMSs overall and for realizing adap-
tive architectures in particular. This evaluation analyses transaction
processing performance of statically specialized OLTP DBMSs with
static architectures on a broad spectrum of complex multi-processor
hardware. Thereby, it complements existing evaluations [10, 56, 79,
100, 141, 142, 164–166, 178, 179, 204, 206] with detailed insight on the
effects of the characteristics of today’s predominant hardware and the
combined cross-effects with diverse workload characteristics.

In the following, in Section 3.1 we first reference the two publica-
tions constituting the evaluation and describe the contributions of the
author of this dissertation to these publications. Then, we summarize
the design of the evaluation as a whole in Section 3.2 and summarize
the resulting findings in Section 3.3. Finally, in Section 3.4 we discuss
implications for robust specialization of DBMSs, especially for adap-
tive architectures. For the full details of the evaluation, we refer to the
according publications attached in Chapters 7-8.

3.1 publications

publications This evaluation work is published in two peer-
reviewed publications. The initial evaluation is published as The Tale
of 1000 Cores: An Evaluation of Concurrency Control on Real(ly) Large
Multi-Socket Hardware in the proceedings of the International Workshop
on Data Management on New Hardware (DAMON’20) [17], cf. Chapter 7.

Following the invitation as one of the best papers of DAMON’20,
we have contributed a significantly extend evaluation in the work
The Full Story of 1000 Cores: An Examination of Concurrency Control on
Real(ly) Large Multi-Socket Hardware, that is published in the special
issue for Best Papers DaMoN 2020 in The International Journal on Very
Large Data Bases (The VLDB Journal) [21], cf. Chapter 8.

Additionally, the supplementary material of the evaluation is pub-
lished. The detailed data set [19] and the source code [20] are publicly
accessible for reproducibility and future research.

29
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contributions of authors The contributions to the two above
publications by Tiemo Bang, the author of this dissertation, are as
follows. For the initial evaluation work [17], Tiemo Bang is the leading
author. He is responsible for the design and execution of all the exper-
iments as well as the analysis of the experimental results constituting
this evaluation work. Tiemo Bang is also the main contributor of the
manuscript. The co-authors Norman May, Ilia Petrov, and Carsten
Binnig have contributed invaluable feedback. All authors agree with
the use of the publication for this dissertation.

Similarly, for the second extended evaluation work [21], Tiemo Bang
is the lead author, responsible for design, execution, and analysis of
the evaluation. He also is the main contributor of the manuscript.
Also for this publication, the co-authors have contributed invaluable
feedback and agree with the use of the publication for this dissertation.

3.2 design of the evaluation

In the following, we summarize the essential aspects of our evaluation
design and subsequently provide further details. We use prior evalu-
ation work as a starting point [206], which developed the prototype
DBMS DBx1000 representing modern main memory OLTP scale-up
DBMSs. Since the transaction manager significantly determines the
performance of OLTP DBMSs, this prototype in particular features
a range of designs of this DBMS component crucial for transaction
processing, i.e., a set of concurrency control schemes. Notably, these
concurrency control schemes diversely expose the transaction manager
to workload and hardware characteristics, hence well representing the
varying exposure of DBMS components to these characteristics which
we seek to address with adaptive architectures. While this prior work
evaluates hypothetical many-core hardware and other works focus on
workload effects, we extensively evaluate the effects of today’s diverse
multi-processor hardware on transaction processing workloads.

Based on this prototype, we conduct the evaluation in two parts.
In the first part, we analyze how today’s multi-processor hardware
influences the DBMS performance versus the simulation of the hy-
pothetical many-core hardware, revisiting that prior work with real
hardware [206]. Notably, as one result we identify shortcomings of
the prototype DBMS compared to today’s state of the art, such that
we apply optimizations common in today’s DBMSs before conducting
further analyses.

In the second part, we conduct detailed analyses on a wide spec-
trum of hardware configurations, i.e., different platform types and
especially different platform sizes (1 to over 1000 CPU cores). Accord-
ingly, the detailed analyses in this evaluation are mainly based on
scalability experiments for a range of platform sizes, in which we
control for distinct workload as well as hardware characteristics and
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apply performance analysis tools. This allows us to study the distinct
effects of these characteristics as well as their complex cross-effects on
the alternative transaction manager designs, as follows.

3.2.1 Setup of the Evaluation

system under test For the detailed analyses of workload and
hardware effects on today’s DBMSs, our version of the prototype
DBMS DBx1000 implements an extended set of designs of the trans-
action manager DBMS component [20]. Table 3.1 displays the concur-
rency control schemes of the evaluated transaction manager designs,
where SILO [192] and TICTOC [208] are the additional schemes.

DL DETECT 2PL with deadlock detection [24]

NO WAIT 2PL with non-waiting deadlock prevention [24]

WAIT DIE 2PL with wait-and-die deadlock prevention [24]

MVCC Multi-version T/O [25]

OCC Optimistic concurrency control [111]

HSTORE T/O with partition-level locking [103]

SILO Epoch-based T/O [192]

TICTOC Data-driven T/O [208]

Table 3.1: Two-phase locking (2PL) and timestamp ordering (T/O) concur-
rency control schemes of the evaluated transaction manager de-
signs implemented in our OLTP DBMS prototype DBx1000.

For our scalability experiments, an important implementation de-
tail of this prototype is that each transaction executor fully runs a
single transaction from start to end (i.e., begin to commit) and each
transaction executor is exclusively and permanently allocated to a
logical core (i.e., hardware thread) of the platform. This corresponds
to the inter-transaction parallel execution scheme commonly found
in today’s DBMSs [8, 65, 103, 106, 112, 183]. Also, it implies that the
number of concurrent transactions equals the platform size in our
experiments.

DBx1000 additionally implements detailed instrumentation mea-
suring where in the DBMS time is spent for executing transactions.
We use this instrumentation for time breakdowns, as an analysis tool
providing detailed insight in the behavior of the DBMS.

benchmark for transactional workloads For analyzing
transactional workloads, DBx1000 implements the standardized OLTP
benchmark TPC-C [185]. With this benchmark we analyze the effects
of distinct workload characteristics, using its standardized parameters
but also manipulating aspects outside its standard.
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Figure 3.1: System topologies of the HPE, Power9, and Power8 platforms [82,
84, 168, 195]. The lines show the interconnects of the hardware
platforms forming distinct topologies to connect all their proces-
sors. Each platform distinctly connects its processors within a
hardware chassis as shown in (a) and the blue interconnects in
(c) and (d). Also, the hardware chassis are distinctly connected as
shown in (b) and the black interconnects in (c) and (d).

Most importantly, we use the parameter of the number of ware-
houses to devise high and low conflict workloads. This warehouse
parameter determines the amount of data in the database, such that
few warehouses likely cause concurrent transactions to access the
same data and hence demand the coordination of these conflicting
transaction by the transaction manager. Especially when the number
of concurrent transactions exceeds the number of warehouses, this
conflict potential is high and thus the load on the transaction manager,
as in our high conflict workload with four warehouses. Inversely, our
low conflict workload uses at least as much warehouses as concurrent
transactions, such that the conflict potential is low and hence the load
is on other aspects of the DBMS like indexes.

To analyze the effect of further workload characteristics, we manipu-
late distinct aspects of the TPC-C benchmark. For example, throughout
our experiments we manipulate the amount of data in the tables, the
mix of transactions, and the operations or access pattern of trans-
actions. While these manipulations are outside the standard of this
benchmark, they allow us to broadly analyze effects of workload char-
acteristics and we document these manipulations in the setup of the
distinct experiments.

hardware platforms To analyze the effect of hardware char-
acteristics, we employ three multi-processor hardware platforms rep-
resenting the prevalent hardware platforms in production today [83,
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96, 97, 112]. Specifically, we employ a x86-based hardware platform
from HPE with 28 Intel processors [83, 132] and 2 PowerISA-based
hardware platforms from IBM with 8 Power8 and 16 Power9 proces-
sors [195, 196], all of which distinctly connect their processors and
main memory to a single system, as displayed in Figure 3.1. On one
hand, these processors represent distinct designs differing in crucial
processor characteristics, especially hardware parallelism via distinctly
designed physical cores and Simultaneous Multithreading (SMT). On
the other hand, these distinct platforms especially represent diverse
interconnect characteristics (i.e., bandwidth and latency) between the
processors, as found in today’s distinct platform types and platform
sizes.

3.2.2 Evaluation of Multi-Processor vs. Simulated Many-Core Hardware

In the first part of the evaluation, we revisit the prior simulation of
then anticipated large many-core hardware [206] with today’s real
hardware which indeed reaches the anticipated amount of compute
resources (i.e., “over 1000 cores”) but as multi-processor platform.
We hence analyze how today’s actual hardware conditions influence
transaction processing performance compared to the anticipated con-
ditions in the simulation [206]. Focusing on this comparison, we use
only the x86-based hardware platform in this first part. We separately
analyze transaction processing performance across today’s production
hardware in the second part.

Specifically, to gain an initial understanding how the real hardware
influences transaction processing compared to the simulated many-
core hardware, we observe performance of the transaction manager
designs for the two significant high and low conflict TPC-C workloads.
That is, we analyze how these designs generally perform by observing
their transaction throughput, while the according time breakdowns
give initial indications on the underlying reasons for this performance.

As second step, we detail the evaluation for the strongest discrepan-
cies between the two hardware platforms to detail which hardware
and workload characteristics cause diverging performance. For exam-
ple, the availability of a synchronized clock in the processor enables
the hardware-accelerated allocation of crucial timestamps, hence likely
changing the exposure of the transaction manager designs to these
characteristics. We distinctly analyze the effects of this aspect as well
as further discrepancies by again observing transaction throughput
and time breakdowns.

Indeed, we identify significant shortcomings of the original pro-
totype implementation. We hence finally investigate state-of-the-art
optimizations as last step in this first part of the evaluation. With our
optimized prototype, we detail the effects of the individual optimiza-
tions and repeat the comparison to the prior simulation. Importantly,
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this final step ensures a sound representation of today’s main memory
OLTP DBMSs and provides initial insights on complex workload and
hardware effects, both supporting our subsequent detailed analyses.

3.2.3 Detailed Evaluation of Hardware and Workload

In the second part, we evaluate the effects of hardware and workload
characteristics on today’s OLTP DBMSs in detail. Importantly, we
thus broaden the evaluation to all three described multi-processor
platforms commonly used in production today, i.e., the HPE platform
with Intel processors as well as the Power platforms with Power9 and
Power8 processors.

We first establish an overview of the transaction processing per-
formance across these three platforms, extending our initial insights
from the first part. We then use this extended overview to guide our
subsequent analysis of hardware and workload characteristics.

For the detailed analysis of hardware effects, we detail those hard-
ware aspects for which the above overview indicates significant impact
on transaction processing performance. Specifically, for main memory
OLTP DBMSs on multi-processor hardware platforms, these are the
aspects concerning the parallel execution of concurrent transactions
(1) within a processor and (2) across a topology of many processors.
For the first aspect of parallel execution within the processor, we detail
the effect of different hardware designs combining physical CPU cores
and different Simultaneous Multithreading (SMT) approaches. We
again use the high and low conflict TPC-C workloads, as these work-
loads previously proved to have distinct cross-effects with hardware
characteristics. For the second aspect, parallel execution across a topol-
ogy of processors, we instead analyze an extreme scenario before a
more realistic but also more complex scenario. That is, as the topology
connecting the processors is tiered, its performance characteristics
depend on which processors communicate with each other, i.e., the
Non-Uniform Memory Access (NUMA) effect. Hence, we first isolate
the basic effect of each tier (i.e., NUMA distance) before analyzing the
complex NUMA effect of cross-processor communication imposed by
the workload. Notably, for these detailed analyses we not only observe
the transaction throughput and time breakdowns but importantly also
measure distinct aspects of hardware performance (i.e., profile the
memory hierarchy), allowing us to identify complex cross-effects.

For the detailed analysis of workload effects, we extend from the ini-
tial insights on the impact of workload characteristics, now analyzing
how further workload characteristics affect transaction processing in
conjunction with the canonical conflict characteristic. Specifically, we
consider different transaction types with varying operation mixes (i.e.,
read, update, and insert operations) as well as access patterns. These
are important workload characteristics by themselves, i.e., requiring
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distinct coordination requirements or imposing distinct load on in-
dexes, and influence further workload characteristics like transaction
duration or the footprint of records accessed per transaction. With
these transaction types we further analyze workload effects, espe-
cially cross-effects between workload characteristics and additional
cross-effects with hardware characteristics using our three hardware
platforms.

3.3 key findings

While the detailed experimental results of our above outlined evalua-
tion are presented in Chapters 7 and 8, we provide our key findings
about the hardware and workload effects on OLTP DBMSs in the
following.
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Figure 3.2: Transaction throughput for TPC-C low conflict workload of the
transaction manager designs in (a) the original un-optimized
OLTP DBMS prototype DBx1000 in the prior simulation [206] and
(b) our optimized prototype on our real hardware Intel-based
platform from HPE. State-of-the-art optimizations significantly
improve performance and scalability, cf. Section 8.3.1 and 8.3.3.2.

multi-processor vs . simulated many-core hardware In
the first part, when revisiting OLTP on hardware with many cores,
we identify several discrepancies between the prior simulation of
anticipated many-core hardware and real multi-processor hardware.
Most notably, the state-of-the-art optimizations establish remarkable
transaction throughput close to 200 million transactions per second
with 1568 cores when using all 28 processors of the HPE hardware
platform, as shown in Figure 3.2. Importantly, these results contradict
the prior simulation and shine new light on transaction processing
on today’s large hardware platforms. Transaction processing (i.e.,
all concurrency control schemes) indeed scales well beyond 1000
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cores for low conflict workloads, when employing state-of-the-art
optimizations. Notably, we observe that combinations of optimizations
are necessary to improve performance, due to shifting bottlenecks. For
example, hardware-accelerated timestamp allocation only improves
performance with additional optimizations, as shifting contention then
overwhelms the synchronization primitives, i.e., causes latch thrashing.
Instead, under high conflict workload transaction processing still is
overwhelmed by conflicts, degrading even more drastically in our real
multi-processor hardware than in the simulation.

detailed hardware and workload effects The results of
the second part of our evaluation, in which we broadly analyze the
impact of workload and hardware characteristics, present a breadth of
detailed effects impacting the performance of OLTP DBMSs. Across
the broad range of analyzed hardware and workload characteristics,
we observe common outstanding effects and complex nuanced effects
on transaction processing performance.

First, under workloads with many conflicts between transactions
(i.e., high conflict workloads), we observe severe performance degra-
dation for all concurrency control schemes. Regardless the hardware
characteristics or other workload characteristics, the many conflicts
only allow for the high transaction processing performance for very
small platform sizes (number of cores) but prevent adequate utiliza-
tion of all our large hardware platforms. A major cause of the severe
performance degradation with increasing platform size is the simple
inter-transaction parallel execution scheme, indeed commonly found
in today’s DBMSs [8, 65, 103, 106, 112, 183]. This common but simple
scheme executes at least one transaction per processor core, such that
it can only utilize high hardware parallelism (i.e., large platforms)
with equally high transaction concurrency. Therefore, it necessarily
amplifies contention in the DBMS when using higher hardware paral-
lelism and thus increases transaction processing overhead to the extent
that the overhead quickly prevails and performance degrades. Hence,
conflicts in the workload have significant impact on the transaction
processing performance of DBMSs and this simple, rigid execution
scheme plays a significant role in that.

Second, we observe more nuanced effects from the interaction of
transaction manager designs, the hardware, and the workload. Dif-
ferent hardware characteristics prove significant depending on the
detailed design of the transaction manager, i.e., specific design details
of the concurrency control scheme. For example, temporary copies of
optimistic concurrency control schemes impact transaction processing
performance depending on the cache capacity in the processor and the
available interconnect bandwidth between processors, while locking
of pessimistic concurrency control schemes proves sensitive to latency
especially the increased latency of the interconnect between processors.
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Importantly, we observe a negative effect of some hardware character-
istics only when their capacity is exceeded, e.g., for cache capacity but
also for the transmission across the interconnects between processors
when reaching their bandwidth limit. That is, these capacity related
effects do not appear as long as sufficient resources were available.
Moreover, the workload further influences this interaction between
the transaction processing performance and hardware characteristics.
For example, the transaction footprint (accessed records) amplifies
the cache demand, further degrading the performance of optimistic
concurrency control when the cache is too small. However, at the same
time, this transaction footprint also alleviates contention of synchro-
nization primitives (i.e., latches), instead improving performance of
pessimistic concurrency control schemes. Consequently, hardware and
workload have complex effects on transaction processing and overall
on performance bottlenecks in the DBMS.

conclusion An agglomeration of performance bottlenecks in the
DBMS determines the cost of transaction processing and overall DBMS
performance. To reason about the performance of DBMSs, it thus is
important to understand how the cost of individual bottlenecks scales
(with workload and hardware characteristics) and how all the bot-
tlenecks in the system interact. In this regard, this evaluation shows
complex effects of workload and hardware as well as complex in-
teraction of bottlenecks adding up, amplifying each other, but also
dampening or hiding each other. Hence, to achieve best performance
of an OLTP DBMS all its bottlenecks must be well understood and
must be balanced for the specific hardware and workload at hand.
Consequently, adapting the DBMS design to maintain the ideal bal-
ance as workloads change and hardware evolves is the path towards
robust DBMS performance.

3.4 discussion

The above findings lead us to the following three major recommen-
dations to achieve robust DBMS performance, concerning concretely
robustness of transaction processing performance and more broadly
two general approaches towards robust specialization of DBMSs.

comprehensive contention management As discussed in
the above findings, we observe overall poor performance of OLTP
DBMSs across the scalability experiments. Especially, all the transac-
tion manager designs (i.e., concurrency control schemes) surrender to
concurrent transaction execution eventually. The transaction manager
designs degrade performance significantly under contention in concur-
rent transaction execution. Moreover, we find further significant per-
formance degradation due to further DBMS components and distinct
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implementation details of DBMS components, e.g., synchronization
of index accesses. Depending on the workload and hardware char-
acteristics, contention in concurrent transaction execution degrades
performance in many aspects of the DBMS design.

We therefore recommend comprehensive system-wide contention
management for robust transaction processing performance. First,
there is the need to involve all DBMS components in contention man-
agement, since many factors across the DBMS affect contention and
inversely contention affects many aspects across the DBMS design.
For example, we particularly observe the inter-transaction parallel
execution scheme to induce contention which the transaction manager
cannot resolve. Additionally, there is the need for overall balancing of
contention, since we also observe contention to shift between DBMS
components, e.g., from latches of the transaction manager to latches
of indexes in the storage manager. Lastly, there is the need to account
for the complex interaction between the DBMS design, the workload,
and the underlying hardware, as we discover complex cross-effects
between these. These three requirements lead to our recommenda-
tion of system-wide contention management which should manage
contention across the entire DBMS by leveraging the most effective
options available throughout all the DBMS components.

Further, we recommend using adaptive concurrency control for the
adaptation of the transaction manager and recommend integrating it
with the proposed system-wide contention management. That is, since
we recognize benefits of distinct concurrency control schemes, adaptive
concurrency control as proposed by CormCC [180] would improve
performance. However, we see the necessity to integrate it with the
proposed system-wide contention management, since contention is
a strong signal for choosing the concurrency control scheme, which
interacts with the surrounding DBMS components.

advanced performance models Observing the complex inter-
action of many factors impacting DBMS performance, we argue for
comprehensive (e.g., learned) performance models to support robust
specialization. That is, performance models are an essential building
block for automated specialization of DBMSs but will need compre-
hensive approaches beyond simple handcrafting to incorporate this
complex interaction. For example, query optimizers employ models
of query operators to decide the execution plan for a given query
and workload [119]. However, traditional query optimizers using
hand-crafted analytical models struggle to account for the complex
interaction of many factors. Hence, comprehensive learned models are
proposed as a better alternative to improve query optimization [85,
128, 211]. Indeed, such advanced models are proposed for many DBMS
components [58, 86, 125, 163] and drive novel approaches for unprece-
dented automated specialization of DBMSs, e.g., automatic synthesis
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of data structures and key-value DBMSs [39, 91]. These advances indi-
cate great opportunities of comprehensive learned models to model
overall DBMS performance under the observed complex interaction
between the DBMS design, workload characteristics, and hardware
characteristics. Such models would greatly assist in adapting DBMS
architectures to complex conditions and in the long term could lead
to robust specialization of DBMSs with performance guarantees.

adaptive architectures Our findings confirm the need for
adaptive DBMS architectures capable of re-balancing, i.e., the goal of
this dissertation, and overall adaptive DBMS designs. The optimal
DBMS performance requires the entire DBMS design to ideally balance
bottlenecks. However, this balance differs between distinct workloads
and hardware platforms. Moreover, this balances changes over time,
due to workload volatility but also progress of hardware development
and state-of-the-art DBMS design. Beyond the existing adaptation and
synthesis strategies [39, 91, 93, 140, 180], we hence argue for flexible
system-wide adaptation, which exceeds adaptation of individual com-
ponents and opposes rigid instance optimization. Towards effective
system-wide adaptation, performance prediction and adaptation over-
head are significant challenges. As recommended above, performance
predictions will benefit from advanced performance models, whereas
we consider flexible DBMS architectures and execution models to
drive efficiency. Specifically, we envision the decomposition of system
designs into fine-grained building blocks which can be efficiently com-
posed at runtime, e.g., through a generic programming model and an
optimizer for DBMS architectures. This will enable adaptive DBMS ar-
chitectures to broadly transform a DBMS, balancing bottlenecks across
all components. Thereby, we envision adaptive DBMS architectures
to successfully adjust to volatile workloads, evolving hardware, and
even variable optimization objectives, robustly specializing DBMSs for
any conditions.
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A D A P T I V E A R C H I T E C T U R E S F O R S C A L E - U P D B M S

In this chapter, we summarize the second step of this dissertation
towards adaptive DBMS architectures, the realization of the adaptive
architecture for scale-up DBMSs. While current static scale-up architec-
tures are coarsely specialized for entire stacks of DBMS components,
we argue for fine-grained adaptation of the scale-up architecture for in-
dividual DBMS components and indeed their distinct data structures.
We hence pursue precise and flexible adaptation, that allows to ideally
specialize the scale-up architecture to the distinct demands of distinct
data structure instances even under volatile conditions. The approach
is to realize fine-grained, arbitrary composition and partitioning for
the adaptive scale-up architecture to flexibly and precisely organize
the distinct data structure instances and resources of the scale-up
DBMS. While we propose a programming model for the generic imple-
mentation of the DBMS independent of the architecture, at the center
of our adaptive architecture is our re-configuration approach, which
allows to simply declare any architecture ideally specialized to the
conditions at hand.

In Section 4.1, we first describe the contributions of the author of this
dissertation to the backing peer-reviewed publication. In Section 4.2,
we detail the challenges for scale-up architectures to achieve robust
performance and explain how the configuration of our adaptive archi-
tecture addresses these. With the system overview in Section 4.3, we
then present the essential aspects to realize the adaptive architecture.
Finally, Section 4.4 concludes with the key findings. The full details
on the adaptive scale-up architecture are in the according publication
in Chapter 9.

4.1 publication

publication The work on the adaptive architecture for scale-up
DBMSs is published in the peer-reviewed publication Robust Perfor-
mance of Main Memory Data Structures by Configuration in the Proceedings
of the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD’20) [22], cf. Chapter 9.

contributions of authors The contributions to the above pub-
lication by Tiemo Bang, the author of this dissertation, are as follows.
Tiemo Bang is the leading author. He is responsible for the proposed
approach to the adaptive scale-up architecture, the experimental evalu-
ation, as well as the manuscript. The co-authors Ismail Oukid, Norman
May, Ilia Petrov, and Carsten Binnig contributed invaluable feedback.
All authors agree with the use of the publication in this dissertation.
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4.2 adaptive scale-up architectures by re-configuration

Today’s static scale-up architectures predetermine a fixed organization
of DBMS components and resources in scale-up DBMSs, specializ-
ing for specific workloads and hardware. However, our performance
analysis in the previous chapter showed that these static architec-
tures cause unstable performance of scale-up DBMSs, cf. Section 3.4.
While changing workloads and hardware clearly contradict the fixed
organization of these static architectures, our analysis also confirmed
that these architectures neglect the distinct effects of these volatile
conditions on the individual data structures from across DBMS com-
ponents. Crucially, the analysis unveiled complex effects of workload
and hardware characteristics within and across DBMS components,
e.g., performance bottlenecks differing between transaction manager
designs or shifting from the transaction manager to distinct indexes
of the storage manager.

We hence propose an adaptive scale-up architecture for the flexible
organization of the scale-up DBMS at the granularity of distinct data
structure instances, facilitating best-fit specialization of the architecture
to volatile conditions. As will be argued next, we utilize search data
structures as the core data structures of DBMSs for our explanation
and evaluation of the adaptive scale-up architecture.

data structures at the core of dbms performance The
distinct effects of the volatile conditions on individual data structure
instances causes imbalance in static architectures DBMS. Their static
and coarse-grained specialization to specific workloads and hardware
struggles to balance the volatile and diverse partition-local operation
cost of the individual data structure instances in DBMS components
versus the cross-partition coordination. The core data structures, that
especially exhibit the challenges of volatile conditions and underline
the demand for fine-grained flexible specialization of the architecture,
are the search data structures.

Search data structures like trees and hash maps are central to many
DBMS components and thus critical for the overall DBMS performance.
Across the DBMS, search data structures enable the buffer manager
to efficiently locate data pages loaded from storage into main mem-
ory, organize memory allocation in the memory manager, and even
constitute central aspects of operators for query execution like the
hash-based join operator. Besides, search data structures play a central
role for transaction processing, in particular in the transaction manager
and the indexes of the storage manager. The transaction manager em-
ploys these data structures for the crucial coordination of concurrent
transactions, e.g., to organize lock requests. And, the indexes of the
storage manager are exactly these tree and hash map data structures.
These indexes accelerate the access to distinct records, especially for
the primary key accesses central to transaction processing.
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Indeed, our performance analysis shows that the concurrent read
and write operations on these data structures of the transaction man-
ager and storage manager comprise a considerable fraction of the
transaction execution cost. The reason is that transactions typically
read, update, or insert only few records, but typically do not involve
many compute-intensive operators like joins. As these operations oc-
cur concurrently, they require synchronization (e.g., via latches) which
related work [10, 49, 106, 154] and our evaluation show to become
significant performance bottlenecks. Accordingly, maintaining indexes
or coordinating transactions with concurrent read or write operations
on search data structures are central to transaction execution and the
performance of OLTP DBMSs.

In the following, we hence focus on OLTP databases with workloads
mainly characterized by differed mixes of read and write operations
ranging from read-heavy to write-heavy mixes that are typically ex-
ecuted on these search data structures, especially on indexes such
as modern versions of B-trees or hash maps. On the case of these
B-tree and hash map search data structures, we discuss the many
different causes for degraded performance of core data structures in
main memory OLTP databases and why current static architectures
address these unreliably. Afterwards, we elaborate on the key aspects
of our approach enabling robust performance by (re-)configuration
of our adaptive architecture. Notably, a more comprehensive system
overview follows in the next section.

4.2.1 Pitfalls of Static Architectures

The sources of performance degradation of core data structures in
main memory OLTP DBMSs are manifold. Our experiments in Sec-
tion 9.7 as well as related work [106, 154] show that already these
crucial search data structures can significantly degrade transaction
processing performance in unfit static architectures, when exposed to
the volatile read/write mixes of OLTP workloads on multi-processor
hardware.

One primary source for performance degradation is the overly
high contention resulting from too many resources accessing a data
structure instance, e.g., executing too many concurrent read and write
operations on an index [49, 63, 74]. Other sources of performance
degradation include increased memory latency from cross-processor
memory accesses or from cache coherence overhead of concurrent
accesses to the same memory [106, 202]. Moreover, the impact of these
significantly varies, not only between distinct hardware platforms
(e.g., by distinct memory latencies) or workloads (e.g., by distinct
read/write ratios of transactions). Indeed, within the same DBMS
these sources of performance degradation distinctly appear in data
structures with different designs. For example, our experiments show
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that different index designs like a B-tree and a hash map distinctly
react to the same operation mix.

Despite these manifold and volatile sources of performance degra-
dation, today’s DBMS architectures follow relatively simple and static
strategies. A prevalent strategy is NUMA-aware partitioning for mit-
igating the impact of increased latencies caused by cross-processor
operation and cache coherence as proposed by the NUMA-aware
DBMS architecture [116, 139, 146]. However, this static and coarse-
grained architecture can still lead to degraded performance since its
partitioning at the granularity of a processor can cause too high con-
tention for some data structures and workloads, like heavily updated
indexes as shown in our experiments.

Instead, the static shared-nothing architecture partitions the re-
sources by individual hardware threads entirely avoiding contention
for the coordination on data structures, e.g., in H-Store [103]. However,
this strategy has several other drawbacks like the sensitivity to load
imbalance between system partitions under workload skew or the
fact that complex workloads cause an increased coordination across
partitions. For example, for mostly read indexes this fine-grained
partitioning causes excessive cross-partition coordination.

Indeed, the static shared-everything architecture as in Hekaton
entirely rejects partitioning to mitigate such negative effects of cross-
partition coordination [52]. While this benefits those mostly read
indexes for example, yet again other data structure instances like
heavily updated indexes can severely degrade. Consequently, the
manifold and volatile effects on individual data structure instances are
not appropriately addressed, hence eventually degrading performance
of all of today’s static coarse-grained DBMS architectures.

4.2.2 Robust Performance by Configuration

While the partitioning strategies of current static architectures may
have their sweet spots, they likely are unfit for individual data struc-
tures under volatile conditions. We thus propose a flexible and fine-
grained approach to DBMS architectures and suggest framing the
architecture as a flexible execution strategy allowing to declare the
architecture at runtime. Essentially, given a mix of data structures
and workload present in a concrete instance of a DBMS, the idea is
to adapt any partitioning strategy ranging from shared-nothing to
shared-everything for distinct data structures by simple configuration.
We aim for a configuration policy flexibly declaring an architecture for
a DBMS instance, using so-called virtual domains to partition resources
for distinct data structures in an optimal manner.

Specifically, we devise these virtual domains as flexible system par-
titions to be configured with an arbitrary subset of resources and
data structure instances. As shown in Figure 4.1, virtual domains
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Figure 4.1: Flexible partitioning via configuration of virtual domains for
scale-up architectures on a four-processor machine: (a) Thread-
sized partitioning with virtual domains per CPU core like the
shared-nothing architecture; (b) NUMA-sized partitioning with
virtual domains per processor like the NUMA-aware architecture;
(c) Individual-sized partitioning with two sizes of virtual domains
as one novel hybrid architecture; (d) Isolated with separate virtual
domains for hot data structures as another hybrid architecture.

thus provide many more configuration options, apart from flexibly
mimicking any of the existing partitioning strategies from static ar-
chitectures. First, when partitioning the resources of a machine into
virtual domains, not all virtual domains need to have identical sizes
in terms of processor or memory resources, but a configuration can
declare virtual domains of different sizes ideally supporting a mix of
different data structures and workload within a single architecture.
Second, another configuration option provided by virtual domains
is the isolation of hot data structures into separate virtual domains
providing dedicated resources for more stable performance. These
broad configuration options of virtual domains allow optimizers to
broadly adapt architectures. By simple configuration, optimizers can
declare novel scale-up architectures of many forms in a flexible and
fine-grained manner.

At the moment, our approach applies new configurations by offline
re-configuration, i.e., all active operations in the system must complete
before the reconfiguration and then the DBMS can restart with a new
configuration. This offline reconfiguration already enables significant
adaptation of the architecture. Besides more precise specialization to
the distinct demands of data structures for a given workload, the actual
hardware characteristics can be more precisely considered. Rather
than anticipating the hardware characteristics at design time, with our
configuration approach the architecture can be adapted to the specific
hardware when deploying the DBMS. For changing workloads, this
offline reconfiguration can be triggered when workload changes are
known a priori or by workload prediction for reoccurring workload
patterns, e.g., for Black Friday. These techniques are well-known from
automated table partitioning [30, 177]. Indeed, we plan to extend our
approach to further support online reconfiguration similar to the fine-
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grained and gradual techniques for table re-partitioning, and thus also
support cases where the workload changes are less predictable.

4.3 system overview
In the following, we provide an overview of the main building blocks
of our adaptive architecture for scale-up DBMSs. The two main build-
ing blocks that the DBMS needs to provide are asynchronous tasks
and a configuration. DBMSs are to generically implement their com-
ponents via asynchronous tasks, i.e., the access operations of DBMS
components on their data structures, and are to flexibly declare their
architecture via the configuration, assigning data structures to op-
timally sized system partitions (virtual domains). Additionally, the
runtime system is an important building block, for efficiently exe-
cuting the asynchronous tasks for a given configuration. Below, we
outline the essential aspects of these main building blocks and discuss
how to integrate our adaptive architecture into a full-fledged DBMS.

4.3.1 Asynchronous Tasks & Configurations
asynchronous tasks An asynchronous task is a container for ac-
cess operations of the DBMS components on their data structures, e.g.,
an insert or a lookup operation on a B-Tree of the storage manager. On
one hand, this task serves as the abstraction for the generic implemen-
tation of DBMS functionality. Tasks establish the API to implement
DBMS components as tiny building blocks, allowing the adaptive com-
position of the architecture without any re-implementation. On the
other hand, these tasks are execution units, serving as the abstraction
for the lightweight and effective execution of a configured architecture.
In contrast to operating system threads, tasks in our approach not
only are much more lightweight but also are data-aware, i.e., a task
is only executed inside the virtual domain where the data structure
resides. This notion of tasks allows our adaptive architecture to effec-
tively control contention and locality of operations on distinct data
structures by simple means of a configuration. Notably, the specific
API of our task abstraction is described in Section 9.4.
configurations In addition to tasks, the DBMS must specify
a configuration to control contention and locality within its DBMS
components, i.e., on the distinct data structures. The configuration of
our adaptive architecture comprises two parts: (1) The first part of a
configuration defines which virtual domains are being used to execute
the DBMS on a given hardware. Here the important aspect is the
definition of how many virtual domains are used and how resources
are allocated to each. This allows heterogeneous resource partitioning
with virtual domains having distinct amounts of resources in a granu-
larity independent of the hardware topology. That is, virtual domains
do not need to be defined uniformly or for example in processor-
granularity. (2) The second part of a configuration defines how data
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Figure 4.2: Overview of execution flow for delegating tasks under a con-
figured architecture: Client threads delegate asynchronous tasks
to workers in a virtual domain which reply using futures. With
this execution flow the runtime flexibly executes a DBMS for
configured architecture, first delegating the tasks to the virtual
domain to which the accessed data structure is mapped and then
executing this task with the resources assigned to that domain.

structure instances are mapped to virtual domains. Importantly, this
allows the configuration to flexibly compose data structures from
across DBMS components into virtual domains ideally suiting their
individual demands under the given conditions.

We discuss the procedure for configuring an optimized architecture
in Section 9.5 of the publication. There we describe our procedure that
guides the configuration of the adaptive architecture for the hardware,
workload, and set of data structures of a given DBMS instance. Also,
we describe our initial optimizer, implementing this procedure as
Integer Linear Program (ILP) to maximize overall system throughput
when given these conditions as input.

Notably, a DBMS may split a data structure into several instances to
achieve higher throughput. The necessary partitioning and replication
strategies are commonly implemented in DBMSs for index or table
data structures and can be simply applied on top of our adaptive
architecture [15, 136]. Besides, with our adaptive architecture DBMSs
in fact become less sensitive to the actual partitioning strategy being
used. That is, our experimental evaluation shows that our adaptive
architecture allows to better handle severe issues such as contention
or lacking locality.

4.3.2 Runtime System

The main objective of our runtime system is the efficient execution of
tasks given a configuration. For efficient task execution, the runtime
system provides a delegation mechanism based on highly optimized
in-memory message passing. Noticeably, the aim of the runtime system
is not to provide a full-fledged DBMS but to act as a thin virtualization
layer on top of the hardware providing the foundation for robust
performance of a DBMS built on top. Below, we discuss the execution
flow when delegating tasks for a give configuration.
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Figure 4.2 presents an overview of our runtime system. A client
thread of the DBMS submits an asynchronous task to be executed (step
1) and obtains an invocation handle, so-called future, on the submitted
task (step 2.3) to consume the result of the task execution. Internally,
the runtime system identifies the virtual domain responsible for the
referenced data structure upon the invocation of an asynchronous task
(step 2.1). It then places the task into the corresponding inbox (step
2.2) returning the future (step 2.3).

The counterpart to the DBMS’s client threads are worker threads
executed by the resources assigned to the virtual domain. These work-
ers continuously poll the inbox for new tasks. Once a worker detects a
new task (step 3.1), it executes this task (step 3.2) within the virtual
domain on behalf of a client thread. Upon its completion, the task
places its result in the earlier allocated future (step 4.1). The DBMS’s
client thread then eventually retrieves the result (step 4.2), potentially
using it as input for further tasks on other data structures.

This execution flow of asynchronous tasks between client threads
of the DBMS and worker threads within virtual domains enables
the flexible and efficient execution of any configured architecture.
For implementation details of our runtime system and especially the
message passing we refer to Section 9.6 of the publication.

4.3.3 Discussion of DBMS Integration

As mentioned before, the main contribution is not to provide a full-
fledged DBMS, but an adaptive architecture backed by a runtime
system on top of which DBMSs can be implemented. We believe that
our task-based adaptive architecture indeed can be used for imple-
menting a DBMS. In fact, we show in our experimental evaluation
that we are able to execute typical OLTP workloads by implementing
a lightweight OLTP engine. In the following, we hence discuss the
main design choices involved in building an OLTP engine utilizing
our adaptive scale-up architecture.

A first design choice when using our adaptive architecture for
OLTP is the mapping of transaction logic (i.e., the sequence of reads
and writes) to tasks that can be executed by our runtime. A naïve
way for this is to map every individual read/write operation of a
transaction to a separate task to be submitted to our runtime system
by the OLTP engine. Alternatively, our programming model also
allows more sophisticated implementations where transactions are
chopped into sub-transactions and then are mapped to tasks as a
whole, e.g., as proposed in [64, 162]. While studying the detailed
effects of chopping is an interesting research direction, the naïve
mapping already proves sufficient for efficient OLTP execution in our
experiments, see Section 9.7.3 of the publication.



4.3 system overview 49

A second design choice in addition to mapping transactions to tasks,
is how tables of a database (and their indexes) are distributed across
virtual domains. For this purpose, our configuration procedure takes
any set of data structures as input including any tables or indexes of a
database and compiles a configuration aiming to maximize the overall
throughput for a given workload and hardware. Before applying
this configuration procedure, the DBMS can still apply conventional
partitioning strategies on tables as mentioned before and input these
table partitions (as well as their partitioned indexes) as data structures
to our configuration procedure.

In addition to these two main design aspects (i.e., mapping trans-
actions to tasks as well as finding optimal configurations for a set of
tables), further DBMS components need to be implemented, such as
the transaction manager for concurrency control as well as recovery
mechanisms. The design of those components, however, is orthogonal
since many different schemes can be implemented in DBMSs on top
of our adaptive architecture. Indeed, DBMSs should opt for adaptive
designs of their components, e.g., adaptive concurrency control like
CormCC [180], whose integration is an interesting research direction
but beyond the scope of this dissertation.

For our evaluation, we hence omit these components for our light-
weight OLTP engine as well as for all baselines (for a fair comparison),
as further explained in Section 9.7 of the publication. In short, for
concurrency control we rely on latches to avoid data races but do not
prevent other anomalies like lost updates. While this allows no direct
comparison with full-fledged DBMSs incorporating those components,
it allows us to precisely analyze the effect of the distinct architectures.
We leave out the DBMS components to focus on the partitioning and
composition strategies of the static architectures versus our adaptive
architecture. Thereby, we can compare the benefits of our execution
scheme for OLTP workloads versus the classical OLTP engine designs.

Finally, an interesting future aspect when designing an OLTP engine
on top of our adaptive architecture is that the asynchronous execution
model opens up many new opportunities for optimizations. In a
classical design of a main memory OLTP engine, typically a transaction
executor sequentially executes the operations a transaction step by
step, which is parallelized via concurrent transactions across parallel
transaction executors. However, this inter-transaction parallelism has
drawbacks, e.g., amplifying conflicts between transactions, as our
previous evaluation work has shown, cf. Chapter 3. Instead, an OLTP
engine building on our programming model could explore the flexible
combination of inter- and intra-transaction parallel execution. For
example, to further maximize transaction throughput under volatile
workloads, an OLTP engine could execute the tasks of a transaction in
sequence (i.e., inter-transaction parallel) under low conflict workload
but execute these tasks increasingly intra-transaction parallel with
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increasing conflicts. However, analyzing such optimizations is beyond
our scope and needs a more thorough investigation in future work.

4.4 key findings

This dissertation proposes the above outlined re-configuration ap-
proach for adaptive scale-up architectures, pursuing robust perfor-
mance for scale-up DBMSs under volatile conditions. The publication
in Chapter 9 details the building blocks of this re-configuration ap-
proach. Importantly, it also presents an evaluation which exposes our
adaptive architecture and the state-of-the-art static architectures to
volatile conditions to judge their robustness. Specifically, the evalua-
tion represents the volatile workload and hardware conditions using
a range of workloads from standardized benchmarks (i.e., YCSB [47]
and TPC-C [185]) as well as small to large multi-processor hardware.
Also, for a fair comparison it uses a prototype scale-up DBMS which
implements both our adaptive architecture and the state-of-the-art
static architectures, i.e., shared-everything [52], NUMA-aware [66],
and shared-nothing [103] architectures. Notably, our optimizer re-
configures the adaptive architecture to the specific conditions at hand,
as in future DBMSs utilizing our adaptation approach. Whereas, the
static architectures remain unchanged, as in today’s DBMSs statically
implementing a state-of-the-art architecture. Based on this setup, we
judge the robustness of an architecture by considering how consis-
tently it achieves high performance across the diverse conditions in
comparison to the other architectures. In the following, we highlight
the key findings of this evaluation and finally draw a conclusion about
our proposed re-configuration approach.

adaptation at the data structure granularity Having
claimed best-fit architectures demand adaptation for individual data
structures at the core of DBMSs, we now highlight the results for
the according experiments. In these experiments, we embed the core
search data structures into the different architectures and execute
write-heavy to read-heavy YCSB workloads on these data structures.
The results, highlighted in Figure 4.3, prove that the static architec-
tures only perform well in distinct sweet spots, i.e., for distinct data
structures and workloads. In contrast, for all the data structures and
workloads, our adaptive architecture (Opt. Configured) performs on
par with the best static architecture or even better. For example, under
the read-update workload (WL 1), the shared-nothing architecture is
ideal for the hash map (H), whereas the BW-tree (BW) prefers the
NUMA-aware architecture. Moreover, for the FP-tree (FP) and the
B-tree (B) indeed none of the existing static architectures are ideal.
Our optimizer instead configures a novel architecture with resource
partitions the size of half a processor, which are in between the smaller
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Figure 4.3: Throughput of our adaptive architecture with optimally config-
ured resource partitioning (Opt. Configured) versus the partition-
ing strategies of current static architectures for a range of search
data structures and YCSB workloads [47]. While the static archi-
tectures impose a fixed and coarse-grained resource partitioning,
our optimizer configures our adaptive architecture with resource
partitioning specifically optimized for the distinct data structures
and workloads.

resource partitions of the shared-nothing architecture and the larger
resource partitions of the NUMA-aware architecture.

Consequently, these results show that no static architecture performs
well for all the search data structures commonly found at the core
of DBMSs. Our flexible re-configuration instead allows the efficient
adaptation of the architecture better fitting the distinct data structures
under the specific workload at hand. Besides the flexibility to adjust
to volatile conditions, indeed the fine-grained adaptation of our re-
configuration approach proves performance benefits, as our optimizer
more precisely specializes novel hybrid architectures.

adaptation for a comprehensive oltp dbms Besides the
highlighted results for distinct data structures, our further experiments
indicate that the observed benefits transfer to adapting the architecture
for a comprehensive OLTP DBMS. First, one of the experiments cor-
roborates our above observations for a large number of data structures.
That is, also large DBMSs are expected to benefit from the flexible
and precise adaptation of their architecture by our re-configuration
approach. Second, further experiments confirm these benefits of our
adaptive architecture beneficial for executing OLTP workloads in our
lightweight OLTP engine. Also for the data structures of this OLTP
engine and the OLTP workload, our optimizer configures a novel
hybrid architecture that provides higher performance than the typical
static NUMA-aware architecture of classical OLTP engine. An addi-
tional interesting insight is that compared to the high sensitivity of
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classical OLTP engines to cross-partition transaction execution our
adaptive architecture and runtime system also significantly reduce
this sensitivity for our OLTP engine, e.g., improving the performance
for non-partitionable workloads.

conclusion The above evaluation results demonstrate robust
performance of our adaptive scale-up architecture, due to the re-
configuration of the architecture for the distinct search data structures
and the specific workload and hardware conditions. We conclude that
our approach successfully realizes the flexible and precise adaptation
of scale-up architectures, for the following reasons. On one hand, these
results indicate that indeed fine-grained specialization of the architec-
ture is necessary to ideally accommodate the distinct data structures
at the core of DBMSs. On the other hand, we observe our abstractions
(i.e., tasks and configurations) to enable optimizers precisely and flexi-
bly configure high performing scale-up architectures for the distinct
data structures and changing conditions. Considering our discussed
integration approach, we believe our re-configuration approach to
allow the adaptation of the architecture for all the core data struc-
tures of the DBMS components of a full-fledged DBMS. Consequently,
we derive that full-fledged DBMSs employing our re-configuration
approach will be able to distinctly specialize their architecture for
all their core data structures and will be able to adjust such precise
architecture to changing workloads and hardware, thereby achieving
robust performance under volatile conditions



5
A D A P T I V E A R C H I T E C T U R E S F O R S C A L E - O U T
D B M S

In this chapter, we summarize the realization of the adaptive architec-
ture for scale-out DBMSs. As previously outline in Section 2.3, current
static scale-out architectures orchestrate the DBMS components of
scale-out DBMSs across an elastic network-connected resource pool,
struggling to achieve high performance throughout the volatile and
mixed cloud workloads. These static architectures not only strug-
gle due to their fixed and coarse-grained design. Indeed, concurrent
analytical and transactional queries of mixed HTAP workloads, for
example, require opposing specialization of the architecture [11, 115,
126, 147], such that today’s static architectures are sub-optimal for
at least one of these simultaneous queries. This dissertation hence
proposes a new radical approach, the architecture-less DBMS, striv-
ing for high and robust performance under mixed workloads with
the simultaneous adaptation to distinct concurrent queries. For this
purpose, our reactive execution model, explained in the following,
establishes fine-grained flexible instrumentation for elastic resources
to temporarily contribute to the specialized architecture of a specific
query.

In the following, we first describe the contributions of the author
of this dissertation to the backing peer-reviewed publication, in Sec-
tion 5.1. In Section 5.2, we then outline the reactive execution model at
the core of our architecture-less DBMS. Finally, we conclude with our
key findings about our architecture-less concept for the adaptation
of scale-out DBMSs, in Section 5.3. The full details on the adaptive
scale-out architecture are in the according publication in Chapter 10.

5.1 publication

publication The work on the adaptive architecture for scale-out
DBMSs is published in the peer-reviewed publication AnyDB: An
Architecture-less DBMS for Any Workload in the proceedings of the 11th

Annual Conference on Innovative Data Systems Research (CIDR ‘21) [18].

contributions of authors The contributions to the above pub-
lication by Tiemo Bang, the author of this dissertation, are as follows.
Tiemo Bang is the leading author. He is responsible for the proposed
approach to the adaptive scale-out architecture, the experimental eval-
uation, as well as the manuscript. The co-authors Norman May, Ilia
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Figure 5.1: Execution model of an architecture-less DBMS. Generic compo-
nents called AnyComponents (ACs) are instrumented by event
and data streams. Depending on the incoming events an AC can
act as a Query Optimizer (QO) or a Worker (W) executing a scan
or a join operator or any other component, e.g., log writer, etc.
An AC can also produce new event and data streams for other
ACs. For example, an AC that acts as a scan operator produces a
data stream with results of the scan operation.

Petrov, and Carsten Binnig contributed invaluable feedback. All au-
thors agree with the use of the publication in this dissertation.

5.2 adaptation of architecture-less scale-out dbms

At the core of the architecture-less DBMS, we propose a reactive ex-
ecution model to enable the simultaneous adaptation of specialized
architectures per query. In contrast to the previously explained adap-
tive scale-up architecture for a single server, this reactive execution
is tailored to the efficient adaptation of scale-out DBMSs, exploit-
ing abundant elastic resources but also accounting for the network
communication, as will be explained.

In the following, we provide an overview of this execution model.
We then highlight its underlying key principles. Subsequently, we
discuss the key challenges in realizing this execution model and full-
fledged DBMSs on top. As will be explained, our early prototype relies
on simplified implementations of some of the aspects of the following
proposal, allowing the early exploration of their opportunities.

5.2.1 Overview of Execution Model

Our reactive execution model realizes flexible instrumentation of spe-
cialized architectures, the main idea for the simultaneous adaptation
for distinct concurrent queries. As illustrated in Figure 5.1 (a), our
execution model defines generic components, so-called AnyCompo-
nents (ACs), which consume and produce event and data streams.
The event stream encodes the operations of DBMS components to be
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executed by an AC, while the data stream delivers the input state for
these operations. When these events and data are sent to an AC, it
simply reacts. Depending on the incoming events and data, the AC
then temporarily acts as a query optimizer in one moment and in the
next moment as a query executor or any other component. In turn,
an AC may produce events and data for instrumenting subsequent
operations on further ACs, e.g., the query optimizer produces events
for executing query operators. Consequently, simply routing these
event and data streams between ACs instruments these to temporarily
act together as the architecture for a query.

Figure 5.1 (b) illustrates how the adaptation of an architecture gener-
ally works based on this instrumentation with streams. A SQL query
(or a transaction) arriving at the architecture-less DBMS is the initial
event that gets routed to some AC. This AC acts as query optimizer
(QO) determining the architecture for this query. The query optimizer
AC then produces events for executing the query operators, e.g., scans
and joins. According to the determined architecture, these subsequent
events are routed through the DBMS from one AC to another, tem-
porarily instrumenting these as workers (i.e., query executors) to
execute the distinct operators. In parallel, the query optimizer initiates
the accompanying data streams to transfer the required input state,
e.g., catalog data for the query optimizer itself but also table data (i.e.,
records) for the operators. That is, by the routing decisions for the
query’s event and data the query optimizer flexibly instruments ACs
and defines the DBMS architecture perceived by a query.

This flexible temporary instrumentation of ACs allows the architecture-
less DBMS to adapt specialized architectures as queries arrive. For ex-
ample, the architecture-less DBMS can swiftly mimic a shared-nothing
or disaggregated architecture, as in Figure 5.2. That is, when a query
touches only one data partition and there is moderate load in the sys-
tem, then the query optimizer can route streams of a query such that
the architecture-less DBMS acts as a shared-nothing architecture. In
case the query load in the system increases, however, resources for ad-
ditional ACs can be added and the routing of streams can be adjusted
to execute queries like a disaggregated architecture. Consequently, sim-
ply the distinct routing of these streams allows to flexibly specialize
the architecture as queries arrive, shifting the architecture for queries
in the system as in this example or orchestrating distinct architectures.
Moreover, this example illustrates flexible resource isolation when the
streams of distinct queries are routed to distinct resources, allowing
further distinct specialization to individual queries.

5.2.2 Key Design Principles

For achieving both high flexibility and high efficiency, two key design
principles underlie our reactive execution model. For the instrumen-
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Figure 5.2: The architecture-less DBMS can mimic diverse architectures sim-
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query load. For simplicity, we only show the event and data
streams for (a). The gray-shaded boxes around the ACs, however,
indicate in (b) which ACs execute events of the same query.

tation of ACs across an elastic network-connected resource pool, the
first principle concerns state management across ACs and the second
principle concerns the execution within ACs. We explain these key
principles in the following and detail their according design challenges
in the next section. Further details are provided in Sections 10.3-10.4
of the publication.

fully stateless/active data ACs are designed to be fully
stateless meaning that events can be processed by any AC and all
input state required to execute an event is being delivered to the AC
via data streams, including table data but also catalog data, statistics,
and any other state. By designing ACs fully stateless, we gain a high
degree of freedom as any DBMS function can be executed anywhere.
Moreover, in architecture-less DBMSs data is active, meaning that data
is not pulled after an event is scheduled but it is actively pushed from
data sources to the ACs before it is actually needed. This allows ACs
to efficiently execute any DBMS function, facilitating the orchestration
of distinct architectures across distinct resources but also elasticity for
individual DBMS functions.

non-blocking/asynchronous execution The second key
principle is that ACs are executing events in a non-blocking manner.
This means an AC never waits for data of an event if data is not avail-
able yet. Instead, another event with available data is being processed.
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For example, a filter or a join operator is only processed once its input
data, a batch of records, is arriving via the data stream. To provide this
non-blocking execution, ACs use queues to buffer input events and
data items. In addition, these queues decouple the execution between
ACs as much as possible, i.e., ACs can process events asynchronously
from each other. This asynchronous execution model, which is only
implicitly synchronizing the execution across ACs through events and
data streams, opens up many new opportunities, as indicated in the
following and discussed in the publication (cf. Chapter 10).

5.2.3 Key Design Challenges

There are several key challenges in designing the architecture-less
DBMS for efficient query-based adaptation of architectures. One of
them is the optimal routing of events and data for the given workload
of queries in the system. Another one is to handle concurrency and
updates, e.g., for transaction execution. In the following, we briefly
discuss the main ideas how we aim to address these design challenges.
Some of these ideas are already built into our prototype AnyDB while
others represent future research directions.

event and data routing A key challenge of an architecture-
less DBMS is the decision how to handle a query, i.e., deciding how
to route its events as part of query optimization. Depending on the
requirements of an application (e.g., latency guarantees), load in the
system, and the workload, the query optimizer must define an op-
timal event routing. Considering the opportunities identified in our
exploration of the architecture-less DBMS (cf. Section 10.3) and the
results of our prior evaluation work (cf. Section 3.4), we believe that
this is an interesting avenue for learned query optimizers. In our cur-
rent prototype, however, we do not focus on this problem but use an
optimal decision to showcase the potential of our approach.

A second challenging aspect is the data streaming. As mentioned
before, this aspect is important for the efficient data access, e.g., hiding
latency across the network. We utilize the decoupling of data streams
from events in our execution model to solve this challenge. The main
observation is that in DBMS execution one often knows which data
is accessed way ahead of time before the data is actually being pro-
cessed. For example, complex OLAP queries need to be optimized
and compiled, while the tables contributing to the input of a query
are already known before query optimization. For efficient data access
in the architecture-less DBMS we make use of knowledge and initiate
data streams as early as possible. Once initiated a data stream actively
pushes data to the AC where, for example, a filter operator will be
executed once query optimization finished. We call this feature data
beaming as data is often available at an AC before the according event
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arrives, entirely hiding latencies of data transfers. We analyze the
opportunities of data beaming for OLAP in detail in the publication,
cf. Section 10.4.

Additionally, data streams of frequently accessed may be buffered,
e.g., aiding transaction processing on hot records. That is, ACs indeed
must be designed to solely consume input state from data streams,
such that the ACs can execute any DBMS function on any resource
when streaming the data there. However, for frequent streaming of
the same data, a local buffer will aid performance. Crucially, when
updating buffered data its consistency must be maintained across ACs
and the storage. Rather than using a traditional buffer manager which
would be challenged to coordinate the consistency across ACs, we
believe integration with the protocols for consistent transaction pro-
cessing (i.e., concurrency control) also provides benefits for buffered
data streaming in the architecture-less DBMS like the integrated buffer-
ing for traditional multi-server DBMSs proposed by [209].

concurrency and updates In general, updates are executed by
event streams directed towards the storage which ingests these events
and produces acknowledgment events when the updates have been
processed, as required for transaction coordination in OLTP. A major
challenge in handling updates thus is to hide latencies of updates as
much as possible. Since updates are represented as events, these are
asynchronously executed by ACs like all operations of a transaction.
Thereby, an update can be sent to the storage by one AC while other
(independent) operations of the transaction can progress, hiding la-
tencies of updates and decreasing the overall latency for executing a
transaction. Additionally, for consistency of updates within the same
transaction (i.e., read-your-own-writes) dependent operations can also
consume updates as stream. Crucially, only the commit operation
at the end of a transaction needs to know if the update successfully
persisted and thus needs to wait for the acknowledgment event com-
ing from the storage. As we show in Section 10.3 of the publication,
this asynchronous model provides many interesting opportunities for
OLTP and results in higher performance under various workloads.

Another challenge that is harder to solve is to execute concurrent
updates correctly and efficiently. A naïve way would be to implement a
lock manager by encoding lock operations as events and data streams
providing the state of the lock table [79]. A more clever way, however,
is to rethink concurrency protocols and route events and data streams
such that their processing order already captures the requirements of
a particular isolation level for concurrency control, as we discuss also
in Section 10.3.

fault-tolerance and recovery Fault-tolerance and recov-
ery are two major challenges any DBMS needs to address. For an
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architecture-less DBMS this is a challenge due to the asynchronous
(decoupled) execution of multiple ACs which may fail individually.

Again, a naïve approach would be to implement standard write-
ahead logging by sending log events from ACs to durable storage [194].
For recovery the DBMS could be stopped and the log could be used
to bring the DBMS into a correct state. Instead, for an architecture-less
DBMS we believe that we can learn from the streaming community.
For example, as the entire execution of a DBMS is represented as
streams, another direction is to make the streams reliable, such that
upon AC failure the streams (events and data) can be rerouted to
another AC [50]. Applying these ideas is again an interesting avenue
of future research.

5.3 key findings

Proposing the new radical architecture-less concept for adapting scale-
out architectures as outlined above, we explore its opportunities for the
mixed cloud workloads in the publication, in Chapter 10. Specifically,
we implement an early prototype of an architecture-less scale-out
DBMS, called AnyDB, to explore the opportunities over the static
shared-nothing or disaggregated scale-out architectures. Since the
architecture-less DBMS provides many degrees of freedom to adapt
the architecture, we focus this exploration on the core aspects for
processing either workload class appearing in mixed cloud workloads,
i.e., transaction processing and analytical processing. Below, we sum-
marize the key findings about our architecture-less concept for the
adaptation of scale-out DBMSs and indicate new research directions.

adaptation at the macro-level At the macro-level of scale-
out DBMSs, our exploration demonstrates high efficiency of the flexi-
ble disaggregation of the architecture-less DBMS for transaction pro-
cessing. As shown in Figure 5.3, AnyDB achieves on par with the
static shared-nothing architecture which is ideal for the partitionable
OLTP workload (WL 1). The reason is that our execution model, al-
though logically disaggregating the DBMS design into fine-grained
events of operations of the DBMS components, still allows to exe-
cute these events in a physically aggregated manner if desired. As
these result show, this duality of disaggregation facilitates the efficient
mimicking of even the fully aggregated shared-nothing architecture.
Consequently, we believe an architecture-less DBMS to efficiently enact
diverse architecture ranging from the fully aggregated shared-nothing
to fine-grained disaggregated architectures.

adaptation at the micro-level Representing transactions
as event streams in the architecture-less DBMS also provides oppor-
tunities at the micro-level of scale-out DBMSs. For example, for the
workload shift from the partitionable OLTP workload (WL 1) to the
skewed OLTP workload (WL 2), our execution model provides the
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Figure 5.3: Performance of AnyDB across a workload evolving from par-
titionable OLTP (phase 0-2), over a skewed OLTP (phase 3-5),
to skewed HTAP (phase 6-8), and then to partitionable HTAP
(phase 9-11). The y-axis only shows the throughput of the OLTP
transactions excluding the OLAP queries in the HTAP phases.

significant performance benefit due to (1) adaptation of the execution
strategy and (2) the integration of the transaction manager component.

First, the flexible physical aggregation and routing of events also
allows to adapt the parallel execution strategy for transactions. For
example, it allows to shift from inter-transaction parallel execution of
concurrent transaction to intra-transaction parallel execution of the
operations within a transaction, thereby contributing to the observed
performance benefit. While the intra-transaction parallel execution
allows to alleviate contention between concurrent transactions, only
a specialized intra-transaction parallel execution strategy provides
best throughput, when also balancing resource load and communi-
cation overhead. We hence envision that optimizers can utilize the
freedom on the micro-level of an architecture-less DBMS to derive ex-
ecution strategies ranging from pure inter-transaction to fine-grained
intra-transaction, ideally suiting the specific workload of individual
transactions (as well as the underlying hardware).

Second, we identify significant benefits from integrating DBMS
components into the architecture-less DBMS. That is, the performance
benefit for the skewed OLTP workload (WL 2) in Figure 5.3 also
stems from a novel transaction manager integrated into the routing
of transaction events, which utilizes our event-based execution to
avoid active synchronization. While we notice general support for
traditional protocols, we find that the integration into our architecture-
less concept opens new directions for the efficient elastic execution of
DBMS components, e.g., alleviating inefficiencies for synchronization
but also state management across elastic resources.

adaptation for analytical & mixed workloads Finally,
the high transaction processing performance for the mixed HTAP
workloads (WL 3 & 4) indicates the benefit of simultaneously orches-
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trating distinct architectures for OLAP and OLTP queries. While the
flexible disaggregation and parallel execution strategies also benefit
the OLAP queries, our detailed results show that the underlying data
streams and our data beaming concept provide efficient data transfer
between the storage and elastic resources executing our AnyCompo-
nents (ACs). Crucially, this efficient data transfer not only aids data-
intensive OLAP queries but also facilitates the operation of distinct
architectures on distinct elastic resources. Thereby, the architecture-less
DBMS realizes independent adaptation and execution of the OLAP
and OLTP queries, enabling observed high transaction throughput.

conclusion Our above findings indicate significant benefits of
fine-grained and flexible adaptation of our architecture-less DBMS
concept, thanks to our reactive stream-based execution model. On
one hand, our observations indicate that the broad freedom to adapt
at the macro- and micro-level (i.e., overall architecture and execu-
tion model) facilitate best-fit specialization of scale-out architectures
for distinct queries. On the other hand, the flexible routing and data
beaming show the efficient simultaneous orchestration of distinct archi-
tectures, facilitating opposing specialization for concurrent queries. We
hence conclude that our architecture-less concept will enable scale-out
DBMSs to achieve higher performance for distinct queries of volatile
mixed workloads, hence establishing overall more robust performance.
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C O N C L U S I O N & O U T L O O K

In the following, we conclude with the contributions of this disser-
tation for the specialization of DBMS architectures under volatile
conditions. We subsequently provide an outlook how the proposed
adaptive architectures will serve the robust specialization of DBMSs
and even of novel cloud applications.

6.1 adaptive architectures for robust dbms

This dissertation proposed adaptive DBMS architectures. It addressed
the problem that current DBMS architectures are statically imple-
mented for predetermined workload and hardware conditions. These
static architectures become unfit when conditions change and thus
severely degrade performance, e.g., due to workload fluctuation or
operation on diverse hardware. Instead, this dissertation approached
the fine-grained and flexible adaptation of DBMS architectures for
high and robust performance under changing conditions, as follows.

As a starting point, our evaluation of OLTP DBMSs with such static
architectures identified a breath of complex effects impeding their
performance. The results in Chapter 3 showed that the DBMS perfor-
mance is determined by an agglomeration of performance bottlenecks,
which interact with each other but also individually react differently
to workload and hardware conditions. Hence, these evaluation results
prove flexible and fine-grained adaptation of the DBMS architecture
mandatory for best-fit specialization to volatile conditions.

This dissertation thus proposed concepts for the adaptation of DBMS
architectures and realized these for the architectures of single-server
scale-up and multi-server scale-out OLTP DBMSs, as outlined in Chap-
ters 4–5. This dissertation realized a re-configuration approach to adapt
scale-up architectures, targeting the single-server setting that has con-
strained resources but shared memory. It devises data-aware tasks and
flexible resource partitions (virtual domains) for optimizers to declar-
atively configure architectures at the granularity of data structures.
For scale-out DBMSs, this dissertation proposed the architecture-less
concept to adapt their architecture in the multi-server setting flexibly
and efficiently. To efficiently utilize elastic resources across the net-
work of this multi-server setting, the architecture-less concept entails
a reactive stream-based execution model for the flexible instrumenta-
tion of generic AnyComponents (ACs) on these resources. Simply by
routing event and data streams the architecture-less scale-out DBMSs
can instrument these ACs to temporarily enact specialized scale-out
architectures for distinct concurrent queries.

63
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The key findings are that both these realized adaptive architectures
enable high and robust DBMS performance throughout volatile work-
loads and changing hardware. Where static architectures failed to
maintain high performance, these adaptive architectures provided
effective and efficient adaptation of the respective DBMS architectures,
under all the conditions considered in this dissertation. In our exper-
iments focusing on transaction processing (i.e., OLTP), the adapted
architectures performed on par or better than the individually best
static architectures, across diverse workloads and CPU-based hard-
ware. Indeed, we observed superior performance of novel hybrid
architectures which optimizers could derive through extensive and
fine-grained specialization based on our adaptation approaches. In
particular, the fine-grained re-configuration of scale-up architectures
proved to better suit the distinct data structures at the core of scale-
up DBMSs. Similarly, the fine-grained instrumentation of scale-out
architectures better accommodated individual concurrent queries with
distinctly specialized architectures, even for mixed transactional and
analytical (i.e., HTAP) workloads. That is, under changing OLTP and
HTAP workloads, our adaptation approaches provided higher and
more robust performance due to flexible adjustment and more precise
specialization of the scale-up and scale-out architectures.

Overall, we conclude that our proposed abstractions successfully
resolve the limitations of static architectures implemented in today’s
DBMSs. We are confident that the adaptive architectures generally
enable robust performance. While the above findings demonstrated
robust performance for specific conditions, our adaptation approaches
generally make a vast optimization space of architectures navigable,
regardless the workload and hardware a DBMS may be facing. The
proposed adaptation approaches hence generally enable optimizers
to precisely and flexibly derive novel superior architectures for many
workloads and hardware, besides mimicking established architectures.

Rather than necessitating the re-implementation of DBMSs, our
adaptation approaches can serve as foundation for DBMSs to main-
tain suitably specialized architectures. In the expanding design space
challenging today’s static DBMS architectures, DBMSs instead will
be able to adapt to changing workloads as well as new hardware,
both enabling a single generic DBMS implementation and preventing
performance degradation under changing, even future conditions. In
addition, better specialized architectures also will aid the demand for
ever-higher performance. We hence conclude our adaptive architec-
tures serve as general platform for DBMSs to achieve high and robust
DBMS performance within the expanding design space.
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6.2 towards adaptive architectures for the cloud

While our adaptation approaches prove beneficial for either scale-up or
scale-out architectures, today’s DBMSs indeed implement both kinds
of static architectures for scaling-up and -out [4, 35, 51, 65, 102, 183].
Moreover, heterogeneous hardware is becoming generally available
and bares significant potential for DBMS specialization [3, 28], e.g.,
FPGAs, GPUs, and programmable NICs. Hence, DBMSs soon must
not only decide the amount of resources (i.e., the scale) but also the
type of resources to assign to the DBMS components. Also, to achieve
high performance throughout volatile conditions, optimizers must
utilize our provided adaptivity to derive best-fit architectures.

As follows, we therefore see promising research in the directions
of (1) an adaptive multi-scale architecture to specialize for distinct
DBMS functions and queries in the combined optimization space,
and (2) sophisticated optimizers capable of quickly specializing the
architecture despite the high complexity. Additionally, we see broader
promising research ultimately leading to automatically and robustly
specialized cloud applications.

adaptive multi-scale architecture Observing the superior
novel scale-up and scale-out architectures, we expect a future adaptive
multi-scale architecture to provide even more potential for specializing
novel architectures, when jointly adapting within and across elastic
heterogeneous resources. Rather than coarse and competitive scaling-
up and -out of today’s DBMSs, the multi-scale architecture can enable
joint and flexible adaptation of novel hybrid architectures within a
common optimization space.

On one hand, the best amount and type of resources differ between
distinct DBMS functions, workloads, and objectives. For example,
scaling-up or scaling-out the transaction manager distinctly benefits
objectives like transaction throughput or monetary cost, where an
ideal amount of resources must balance the various workload and
hardware effects [142]. However, today’s DBMSs only coarsely scale-
up and scale-out many components at once. On the other hand, so
far DBMS components like the query optimizer or the storage engine
individually decide to use heterogeneous hardware, and are limited to
the available resources of the server the DBMS is deployed on [3, 28].
However, thereby the heterogeneous resources are predetermined at
deploy-time, and the distinct DBMS components take local decisions
to use these limited resources, failing to optimize the DBMS for the
overall objective under the workload at hand.

Instead, the integration of our variable resource partitions with
the flexible instrumentation of our reactive stream-based execution
model and the extension to heterogeneous resources will result in an
adaptive multi-scale architecture that allows to flexibly (dis-)aggregate
functions of any DBMS components and elastically scale-up or -out het-
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erogeneous resources, for distinct concurrent queries or transactions
and indeed various objectives. When extending our AnyComponents
(ACs), these ACs will be able to enact any DBMS component (or func-
tion) on any amount and type of resource, simply by consuming the
event stream that encodes the DBMS function(s) to execute and the
data stream that delivers the according input state, cf. Chapter 5. For
example, thereby the multi-scale architecture could instrument ACs
to scale-up the transaction manager on a single server for maximal
throughput of non-partitionable transactions, while simultaneously
instrumenting ACs on elastic heterogeneous resources to scale-out
the transaction manager for minimal monetary cost of partitionable
transactions. Importantly, the adaptive multi-scale architecture will
extend the navigable optimization space, enabling optimizers to define
many novel architectures for cloud DBMSs to best utilize the broad
elastic cloud infrastructure for distinct queries and transactions.

learned architecture optimizers For automatically exploit-
ing the large optimization space of adaptive (multi-scale) architectures,
sophisticated optimizers appear as second interesting research di-
rection. As starting point, we see the need for learned performance
models allowing to accurately reason about the complex hardware
and workload effects on the distinct DBMS components and functions,
as found in our evaluation (Section 3.4). Given that such learned mod-
els are today embedded into promising proposals for learned DBMS
components [58, 85, 86, 125, 163], we see great potential in learned
optimizers for DBMS architectures. On one hand, we expect high qual-
ity architectures as learned optimizers will better model the observed
complex effects and thus will better specialize the hardware deploy-
ment to the specific needs of distinct DBMS functions. On the other
hand, there is also potential for faster optimization when using infer-
ence rather than traditional methods, as today is promising for learned
query optimization compared to methods like dynamic programming
and indeed even for core data structures like learned indexes [7, 109,
127]. We hence envision learned optimizers to quickly specialize high
quality multi-scale architectures, especially enabling cloud DBMSs to
fully facilitate their potential as queries or transactions arrive.

adaptive architectures for cloud applications Beyond
these two research directions immediately enhancing our adaptive
architectures, we see promising research in extending the adaptation
to the entire DBMS design and indeed the application on top. This
dissertation shows that the performance of the DBMS is determined
by many performance bottlenecks, which must be balance together
for maximizing performance. However, adaptation of the architecture
cannot ideally address all of these and extensive information about
the workload and hardware effects are required for ideal adaption.
Hence, the combined flexible specialization of the entire DBMS design
and indeed the application using the DBMS appears promising.
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To achieve an overall balanced DBMS design, we envision a com-
mon DBMS design optimizer. Besides optimizing across the DBMS
architecture and components, it could utilize application knowledge
to better derive the specific workload on distinct DBMS functions.
In particular, such DBMS design optimizer could trace the specific
workload on a DBMS function across its preceding functions. On one
hand, this would detail the distinct workload effects on specific DBMS
functions, allowing to better optimize these. On the other hand, it
would also provide detailed information about the cross-effects be-
tween DBMS functions, for better balancing the overall design. For
example, such optimizer could maximize throughput of a cloud DBMS
when declaring an adaptive architecture to execute write-heavy but
coordination-free DBMS functionality close to the storage and read-
only DBMS functionality on elastic resources.

Indeed, we see broader opportunities for robust specialization based
on our adaptive architecture. Instead of adapting cloud DBMSs, we
believe that our approach can generally serve as adaptive architecture
for future cloud programming [40], which aims to compile applications
and data management functionality into new cloud applications. While
our programming model proves to serve the generic implementation
of DBMS functions, it can generally serve as abstraction to generically
implement arbitrary functions to be adapted, enabling the proposed
cloud compilers [40] to integrate with our adaptive architecture. We
hence expect the work of this dissertation and the outlined research to
allow the flexible specialization for distinct functions of future cloud
applications, e.g., enabling individual elastic scaling on heterogeneous
resources for maximal throughput or minimal cost. Consequently, we
see this research to lead to novel cloud applications automatically and
robustly specializing for volatile conditions and flexible objectives.
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abstract

In this paper, we set out the goal to revisit the results of “Starring
into the Abyss [...] of Concurrency Control with [1000] Cores” [206]
and analyse in-memory DBMSs on today’s large hardware. Despite
the original assumption of the authors, today we do not see single-
socket CPUs with 1000 cores. Instead multi-socket hardware made its
way into production data centres. Hence, we follow up on this prior
work with an evaluation of the characteristics of concurrency control
schemes on real production multi-socket hardware with 1568 cores.
To our surprise, we made several interesting findings which we report
on in this paper.
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Figure 7.1: System topology of the HPE SuperdomeFlex [82, 84].

7.1 introduction

We are now six years after “Starring into the Abyss [...] of Concurrency
Control with [1000] Cores” [206], which presented an evaluation of
concurrency schemes for in-memory databases on simulated hardware.
The speculation of the authors at that time was that today we would
see hardware providing single-chip CPUs with 1000 cores. However, so
far reality is different [83, 112]. Instead of single-chip CPUs with 1000s
of cores, multi-socket machines are prevalent and made their way into
production data centres, indeed offering 1000s of cores. Accordingly,
in-memory DBMS are facing not only challenges of massive thread-
level parallelism, such as coordination of hundreds of concurrent
transactions as predicted by [206], but large multi-socket systems also
expose in-memory DBMS to further challenges, such as deep NUMA
topologies connecting all CPUs and their memory as in Figure 7.1.

In this paper, we set out the goal to bring in-memory DBMS to a
1000 cores on today’s multi-socket hardware, revisiting the results
of the simulation of [206] based on the original code, which the au-
thors generously provide as open source. That is, we follow up on
[206] with an evaluation of the characteristics of concurrency control
schemes on real production multi-socket hardware with 1568 cores.
To our surprise, we made several interesting findings: (1) First, the
results of running the open-source prototype of [206] on today’s pro-
duction hardware revealed a completely different picture regarding
the analysed concurrency schemes compared to the original results
on simulated hardware. (2) Afterwards, in a second “deeper look” we
analysed the factors leading to the surprising behaviour of the concur-
rency control schemes observed in our initial analysis, where we then
find further surprises such as unexpected bottlenecks for workloads
with a low conflict rate. (3) Based on these findings, we finally revisited
the open-source prototype of [206] and reran the evaluation with our
optimised version of DBx1000, which we think helps to establish a
clear view on the characteristics of concurrency control schemes on
real large multi-socket hardware.

In the following, we first report the concrete setup used in this paper
(Section 7.2) and then discuss our findings (Section 7.3-7.5).
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DL_DETECT 2PL with deadlock detection [24]

NO_WAIT 2PL with non-waiting deadlock prevention [24]

WAIT_DIE 2PL with wait-and-die deadlock prevention [24]

MVCC Multi-version T/O [25]

OCC Optimistic concurrency control [111]

H-STORE T/O with partition-level locking [103]

TIMESTAMP Basic T/O algorithm [24]

SILO Epoch-based T/O [192]

TICTOC Data-driven T/O [208]

Table 7.1: Bouquet of concurrency control schemes.

7.2 setup for our experimental study

In the following, we provide a brief overview of the concurrency
control (CC) schemes, the hardware as well as the benchmarking
environment used in our evaluation.

bouquet of concurrency control : Table 7.1 summarises the
evaluated CC schemes. They range from lock-based CC, with diverse
mechanisms against deadlocks, to timestamp-ordering-based CC, in-
cluding multi-versioning, 2-versioning, coarse locking, and advanced
ordering. For details on these CC schemes, we to their original publica-
tions [24, 25, 103, 111, 192, 208] and to [206]. The first seven CC schemes
in Table 7.1 correspond to the prior evaluation in [206]. We further
include the more recent schemes SILO [192] and TICTOC [208], not
included in the original study. Unfortunately, TIMESTAMP from [206]
has a fatal bug in the latest version of the prototype, so we excluded
this scheme from our experiments.

real hardware with a 1000 cores : The prevalent hardware
in production today offering 1000 cores are large multi-socket ma-
chines [83, 112]. As shown in Figure 7.1, such hardware connects
many CPUs to a single system rather than hosting many cores on
a single CPU. Our HPE SuperdomeFlex system [83] contains 28 Intel
Xeon 8180 CPUs. It groups four CPUs into hardware partitions (chas-
sis), which are then joined together, forming a single cache coherent
system with a total of 1568 logical cores and 20 TB of DRAM. As
shown in Figure 7.1a, within the chassis each CPU connects to two
neighbouring CPUs and to a NUMALink controller via UPI links. Then
the NUMALink controllers couple all chassis in a fully connected topol-
ogy (Figure 7.1b), yielding four levels of NUMA with performance
properties summarised in Table 7.2.
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NUMA level Latency Bandwidth

local 102 ns 95.1 GB/s

1 hop UPI 150 ns 17.2 GB/s

2 hop UPI 208 ns 16.6 GB/s

NUMALink 380 ns 11.2 GB/s

Table 7.2: Memory access latency and bandwidth by NUMA level as mea-
sured via Intel MLC [198].

Comparing this hardware to potential many-core hardware as simu-
lated in [206] reveals that this multi-socket setup for 1000 cores differs
in many aspects. Importantly, one similarity of today’s hardware to
the simulated architecture of [206] is that both communicate and share
cache in a non-uniform manner via a 2D-mesh on the chip [67] (and
UPI beyond), such that the cores use the aggregated capacity to cache
data but need to coordinate for coherence. This non-uniform commu-
nication is an important hardware characteristic, as it can amplify the
impact of contention points in the CC schemes on any large hardware
(multi-socket and many-core). Otherwise, the simulation differs from
today’s hardware, since it assumed low-power and in-order processing
cores clocked at 1GHz, cache hierarchies with only two levels, and
cache capacities larger than today’s caches. Notably, it simulates the
DBMS in isolation without an OS, disregarding overheads and poten-
tial side effects of OS memory management, scheduling etc., omitting
essential aspects of real systems [59, 145] like ours.

benchmarking environment : As [206], we evaluate the CC
schemes mentioned before on our multi-socket hardware with the TPC-
C benchmark [185] as implemented in the latest version of DBx10001.
This version of DBx1000 includes the extended set of CC schemes
as mentioned before and bug fixes, beyond the version used in the
original paper [206]. For running the benchmarks, we use the given
default configuration of DBx1000. This configuration defines the TPC-
C workload as equal mix of New-Order and Payment transactions
covering 88% of TPC-C with standard remote warehouse probabilities
(1%2 and 15%). This configuration partitions the TPC-C database by
warehouse (WH) ID for all CC schemes. Based on this configuration,
we specify four warehouses for the high conflict TPC-C workload and
for the low conflict workload we specify 1024 or 1568 warehouses,
maintaining the ratio of at most one core per warehouse as [206].

An interesting first observation was, that the TPC-C implementation
of DBx1000 does not include insert operations, presumably due to the
mentioned limitations of the simulator, e.g., memory capacity and no

1 https://github.com/yxymit/DBx1000/tree/b40c09a27d9ab7a4c2222e0ed0736a0cb67b7040

2 Based on a typo, the original paper [206] states 10% instead of 1%

https://github.com/yxymit/DBx1000/tree/b40c09a27d9ab7a4c2222e0ed0736a0cb67b7040
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Figure 7.2: Throughput of TPC-C high conflict workload (4 WH) in original
simulation [206] and on real multi-socket hardware.

OS. In this paper, we first start with the very same setup, but later we
also enable insert operations in the evaluation after taking a first look
at the CC schemes. As minor extension, we added a locality-aware
thread placement strategy to DBx1000 for all experiments in this paper,
which exclusively pins DBMS threads to a specific core. For scaling
the DBMS threads in our experiments, we use the minimal number
of sockets to accommodate the desired resources, e.g., 2 sockets for
112 threads. Otherwise OS and NUMA effects would dominate the
overall results. Note that as consequence of this thread placement
strategy, cores and threads equally refer to a single execution stream
(i.e., a worker) of the DBMS. In our initial experiments (Sections
7.3-7.4), we use up to 1024 cores like the simulation in [206]. Only after
our optimisations, we leverage the full 1568 cores of our hardware,
showing the scalability of our optimised DBMS in Section 7.5.

7.3 a first look : simulation vs . reality

We now report the results of running the DBx1000 prototype directly
on the multi-socket hardware as opposed to a simulation.

7.3.1 The Plain Results

Figures 7.2 and 7.3 display the throughput of TPC-C transactions for 4
warehouses and 1024 warehouses, i.e., high and low conflict OLTP work-
loads. On the left of each figure are the original simulation results [206]
and on the right are our results on a real multi-socket hardware. We
first report the plain results. Then we break down where time is spent
in the DBMS to better understand our observations.

We first look at the results for 4 warehouses as shown in Figure 7.2.
Overall, it is obvious that the absolute throughput differs due to the
characteristics of the CPUs in the simulation and our hardware, e.g.,
low-power 1 GHz cores versus high-power 2.5 GHz cores, which can
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Figure 7.3: Throughput of TPC-C low conflict workload (1024 WH) in original
simulation [206] and on real multi-socket hardware.

be expected and therefore only the relative performance of the CC
schemes matters. In the following, we now discuss some similarities
but also significant differences.

First, comparing the simulation and the real hardware in Figure 7.2,
we see that the CC schemes HSTORE, MVCC, and NO WAIT show
similar trends. That is, these CC schemes have a similar thrashing point
in the simulation and the real hardware, i.e., HSTORE at 4 to 8 cores
and MVCC as well as NO WAIT at 56 to 64 cores. After the respective
thrashing point, these CC schemes degrade steeper on the multi-
socket hardware, which can be linked to the additional NUMA effect
of the multi-socket hardware appearing beyond 56 cores. For the other
CC schemes the results for the simulation and real hardware differ
more widely, especially the diverging behaviour of the pessimistic
CC schemes sticks out. Considering these pessimistic CC schemes,
DL DETECT behaves broadly different already degrading at 8 cores
rather than 64 cores and WAIT DIE performs surprisingly close to
NO WAIT. In the Section 7.3.2, we analyse the time breakdown of this
experiment to explain these results. It reveals characteristic behaviour
of the individual CC schemes, despite the diverging throughput in
the simulation and the multi-socket hardware.

Next, we look at the low contention TPC-C workload (1024 ware-
houses) in Figure 7.3. The results here present fewer similarities of the
many-core simulation and the multi-socket hardware, i.e., only the
slope of the MVCC scheme is similar. Additionally, DL DETECT and
NO WAIT stagnate at high core counts (>224) in the simulation and
on the multi-socket hardware. In contrast, HSTORE performs worse
on the multi-socket hardware than in the simulation. It is slower than
the pessimistic CC schemes and OCC from >112 cores. Also, OCC and
WAIT DIE achieve higher throughput on the multi-socket hardware,
now similar to DL DETECT and NO WAIT. Moreover, unexpectedly
in this low conflict workload, MVCC is significantly slower than OCC
and the pessimistic CC schemes, which is caused by high overheads
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of this scheme as we discuss next.

Insight: The initial comparison of concurrency control schemes on
1000 cores presents only minor similarities between the simulation
and our multi-socket hardware with surprising differences in the
behaviour of the CC schemes mandating further analysis.

Useful Time usefully executing application logic and
operations on tuples.

Abort Time rolling back and time of wasted useful
work due to abort.

Backoff Time waiting as backoff after abort (and re-
questing next transaction to execute).

Ts. Alloc. Time allocating timestamps.

Index Time operating on hash index of tables includ-
ing latching.

Wait Time waiting on locks for concurrency control.

Commit Time committing transaction and cleaning up.

CC Mgmt. Time managing concurrency control other than
prior categories, e.g., constructing read set.

Table 7.3: Time breakdown categories.

7.3.2 A First Time Breakdown

For deeper understanding of the observed behaviour of the CC schemes,
we now break down where time is spent in processing the TPC-C
transactions on the multi-socket hardware. For this purpose, we apply
the breakdown of [206] categorising time as outlined in Table 7.3.
For each CC scheme, Figures 7.4 and 7.5 break down the time spent
relative to the total execution time of the TPC-C benchmark with a bar
for each core count.

The time breakdown of 4 warehouses in Figure 7.4 neatly shows the
expected effect of conflicting transactions and aborts for increasing
core counts under high conflict workload. That is, most CC schemes
result in high proportions of wait, abort, and backoff as soon as the
number of cores exceeds the number of warehouses (>4 cores), yield-
ing nearly no useful work at higher core counts. Only the wait time of
HSTORE immediately grows at 4 cores concurrently executing trans-
actions, such that HSTORE appears more sensitive to conflicts for this
workload.

Remarkably, textbook behaviour of the specific schemes becomes
visible in the breakdown: Starting with DL DETECT, its wait time in-
creases with increasing number of concurrent transactions as expected,
following the increasing potential of conflicts between concurrent
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Figure 7.4: Breakdown of relative time spent for high conflict (4 WH) TPC-C
transactions on multi-socket hardware.

transactions. Different from DL DETECT, WAIT DIE spends more time
backing off and aborting due to its characteristic aborts after a short
wait time (small wait proportion). Instead NO WAIT solely backs off
without waiting, spending even more time on aborted transactions. The
optimistic MVCC waits on locks during validation, such that its break
down shows similar wait times like DL DETECT. Finally, for OCC we
can see that the high abort portion reflects its sensitivity to conflicts
while the high commit portion stems from high costs for cleaning up
temporary versions at commit time.

Having observed this “expected” behaviour of the CC schemes
under high conflict, we now analyse the unexpected behaviour under
low conflict (1024 warehouses) as shown in Figure 7.5. Against the
expectation, most CC schemes spend considerable amount of time to
manage concurrency (black and grey area) such as lock acquisition
(except HSTORE which we discuss later). For these schemes this
results in at most 50% of useful work (red area). Staggeringly, MVCC
which actually should perform well under low conflicting workloads,
spends almost no time with useful work despite the low conflict in
the workload, i.e., <10% useful work from 224 cores. In fact, the low
conflict is visible in the overall little time spent waiting or aborting.
Consequently, the slowdown compared to pessimistic CC schemes
does not stem from wasted work but from pure internal overhead in
execution of this CC scheme under high core counts.

In contrast, we observe for HSTORE an increasing impact of times-
tamp allocation and waiting time. While timestamp allocation is used by
the other schemes as well, the relative overhead for HSTORE is the
highest since lock acquisition in HSTORE is cheap. In fact, the au-
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Figure 7.5: Breakdown of relative time spent for low conflict (1024 WH) TPC-
C transactions on multi-socket hardware.

thors of [206] did analyse different timestamp allocation methods in
their paper but chose atomic increment as a sufficiently well perform-
ing method that is a generally applicable option when there is no
specialised hardware available. However, as we can see this choice
is not optimal for multi-socket hardware. Moreover, we attribute
the increasing waiting time of HSTORE to its coarse-grained partition
locking to sequentially execute transactions on each partition. This
partition-level locking causes a higher overhead if more cores are used
since this leads to more conflicts between transactions as shown in
prior work [106, 141].

Insight: The analysed CC schemes behave differently on the real
multi-socket hardware than in the simulation of [206]. For the high
conflict workload (4 warehouses), the behaviour on real hardware and
the simulation appears more similar, for which the time breakdown
confirms the expected characteristics for each CC scheme. However,
low conflict workload (1024 warehouses) causes an unexpectedly high
CC management overhead in most CC schemes and transactions
execute only a limited amount of useful work, except for HSTORE
where waiting and timestamp allocation dominate.

7.4 a second look : hidden secrets

In this section, we now take a “second look” on the factors leading to
the surprising behaviour of the CC schemes observed in our initial
analysis and discover equally surprising insights.
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Figure 7.6: Throughput of TPC-C with 1024 warehouses for timestamp allo-
cation with hardware clock.

7.4.1 Hardware Assistance: The Good?

In a first step, we analyse the benefit of hardware-assisted timestamp
allocation over using atomic counters for the real multi-socket hard-
ware. As explained earlier, the atomic increment is generally applicable
but may cause contention, which efficient and specialised hardware
may prevent if available. Fortunately, as already mentioned in [206],
timestamp allocation can also be implemented using a synchronised
hardware clock as supported by the Intel CPUs [95] in our hardware
(rdtsc instruction with invariant tsc CPU feature). Therefore, we can
replace the default timestamp allocation via atomic increment with
this hardware clock.

In the following experiment, we analyse the benefit of this hardware
assistance for timestamp allocation. Figure 7.6 shows the throughput
of the CC schemes for 1024 warehouses with timestamp allocation
based on the hardware clock.

On one hand, HSTORE greatly benefits from the hardware clock (as
expected) achieving peak throughput of ∼ 40 M txn/s with an overall
speedup over atomic increment of up to 3x. We now also include SILO
and TICTOC in our results which perform like HSTORE except for
high core counts as we discuss in the time breakdown analysis below.
On the other hand, the remaining CC schemes (DL DETECT, WAIT
DIE, NO WAIT, MVCC, and OCC) degrade drastically when using the
hardware clock instead of atomic counters. That is, the pessimistic CC
schemes DL DETECT, WAIT DIE, and NO WAIT perform ∼ 50% slower
within a socket (0.51 - 0.55x speedup for ⩽56 cores), after which they
degrade to 0.01x speedup at 1024 cores ( 0.37 - 0.39 M txn/s). Likewise,
MVCC is stable (∼1x speedup) up to 56 cores and its speedup drops
to 0.1x when exceeding the single socket. Finally, OCC does not benefit
from the hardware clock at all (0.44 - 0.01x speedup).

Overall, timestamp allocation based on the hardware clock drasti-
cally changes the perspective on the performance of the CC schemes.
Now HSTORE performs best, meeting the initial observations of [206]
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Figure 7.7: Breakdown of relative time spent processing TPC-C transactions
on small and full schema with 1024 warehouses using timestamp
allocation via hardware clock.



82 the tale of 1000 cores

(joined by SILO and TICTOC), whereas the pessimistic schemes, OCC,
and MVCC degrade severely.

For better understanding of these diverse effects of the hardware
clock, we again look at the time breakdown shown in Figure 7.7a
(top row). As expected, HSTORE now spends no significant time for
timestamp allocation anymore (like SILO and TICTOC). Its waiting
time still significantly increases as before. This explains the slowdown
for >448 cores and corroborates earlier descriptions of HSTORE’s
sensitivity to conflicts on the partition level as discussed in Section
7.3.2. An interesting observation is the significant change in the time
break down of the other CC schemes. For example, DL DETECT, WAIT
DIE, and NO WAIT show at least double the time spent for CC Mgmt.
and committing/cleaning up (black & grey, bottom two bars) with a
sudden increase after 56 cores. OCC’s increase of time spent in these
categories increases even more drastically with less than 20% of useful
work at any core count. Only MVCC does not show a significant change
in this breakdown, since its useful time spent was low already.

Profiling these CC schemes reveals contention, that previously was
on atomic counters, now results in higher thrashing of latches, de-
spite a latch per row and low conflicts in the workload with 1024
warehouses. Notably, our profiling further reveals more interesting
details of the individual CC schemes: The pthread_mutex employed in
DL DETECT, WAIT DIE, NO WAIT, and OCC sharply degrades due
to NUMA sensitivity of hardware transactional memory [31] used
for lock elision and its fallback to robust but costly queuing synchro-
nisation [70] as well as costly interaction with the scheduler of the
OS.3 In contrast, MVCC uses an embedded flag as spin latch which is
not as sensitive to NUMA but also not robust [49]. Hence, this type
of latch shows a slower but also continuous degrading of performance.

Insights: Hardware-assisted timestamp allocation via specialised
clocks alleviates contention and leads to better scalability for HSTORE
(as well as SILO and TICTOC). However, while introducing hardware-
assisted clocks also shifts the overhead in the other schemes, it does
not necessarily improve their overall performance as contention moves
and puts pressure on other components (e.g., latches), even leading to
further degradation of the overall performance.

7.4.2 Data Size: The Bad?

In the context of this surprisingly high overhead, our second look at
the paper [206] brings the following statement to our attention: “Due
to memory constraints [...], we reduced the size of [the] database” [206].
Consequently, we are wondering if the staggering overhead is poten-
tially caused by absence of useful work to execute rather than the

3 pthread_mutex is specific to libc and OS as well as configurable.
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Figure 7.8: Throughput of TPC-C with 1024 warehouses for small schema
size like in the simulation versus full schema size both executed
on multi-socket hardware.

abundance of overhead in the CC schemes, due to the reduced data
size imposed by limited memory capacity of the simulator in [206].
Therefore, we revert the benchmark to the full TPC-C database in the
following experiment and report on the surprising effect of the larger
data volume.

Figure 7.8 shows the throughput for the full schema with 1024
warehouses and speedup in comparison to the small schema based
on the previous experiment (cf. Figure 7.6). We measure quite diverse
throughput of the CC schemes. Yet, the speedup indicates that two
major effects of the increased data volume appear in the same clusters
as in the previous experiment but with inverse outcome. The first
cluster of HSTORE, SILO, and TICTOC is slower with the full schema,
i.e., 0.2-0.6x, 0.3-0.5x, and 0.2-0.5x, respectively. The second cluster,
consisting of the previously “slower” CC schemes, improves inversely
to the previously described thrashing points. That is, DL DETECT,
WAIT DIE, and NO WAIT have a speedup of 0.7x up to 56 cores, after
which they benefit from the full schema with speedups of 2.4-9.1x,
2.5-8.3x, and 2.0-9.3x, respectively. MVCC has a speedup of 0.5-0.6x
until 56 cores, breaks even (1x) at 112 cores, and then improves with a
speedup of 1.2-9.3x. OCC has a speedup of 0.8 at 1 core and broadly
improves with the full schema with 2.1-14.9x speedup.

The time breakdown in Figure 7.7b (lower row), presents insights
on the causes. As for the CC schemes in the first cluster, HSTORE
has increased useful work, whereas for SILO and TICTOC CC Mgmt.
increases, both indicate increased cost of data movement, as HSTORE
directly accesses tuples and the other two create local temporary
copies in the CC manager. The second cluster also has an increase
of useful work to some extent, presenting less staggering overhead of
CC management at low core counts. Importantly, the sudden increase
of commit for DL DETECT, WAIT DIE, and NO WAIT is delayed,
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Figure 7.9: Throughput of TPC-C including inserts with full schema size on
multi-socket hardware.

indicating that latches thrash only from 448 cores (while previously
already from 112 cores). For OCC the time spent on commit also
decreases with the larger data volume, but the increase of CC Mgmt.
due to larger temporary copies still diminishes useful work. Only for
MVCC the time break down does not change significantly.

We attribute these observations to two effects of the larger data
volume: The heavier data movement slows down data-centric opera-
tions (e.g., tuple accesses or temporary copies), but in turn alleviates
pressure on latches preventing thrashing.

Insight: The effect of larger data volumes in the full schema changes
the perspective on the CC schemes again, most notably on the differ-
ences between the individual CC schemes. Moreover, also the relation
of useful work and overhead within each scheme changes. Both are
caused by larger data volume reducing performance of data movement,
but also alleviating pressure on latches.

7.4.3 Inserts: Facing Reality!

Since the simulator of [206] had limited memory capacity and excluded
the simulation of important OS features such as memory management,
the TPC-C implementation of DBx1000 did not include insert opera-
tions and for comparability we initially excluded these as well. For
the last experiment in this section, we now complete the picture of
concurrency control on real hardware.

Accordingly, Figure 7.9 shows the throughput of TPC-C transactions
including inserts (as well as all before-mentioned changes) for 1024
warehouses. As we can see, the inserts drastically reduce throughput
of all CC schemes and introduce heavy degradation at the socket
boundary (56 cores). Even more interesting, all CC schemes perform
similarly with inserts included in the transactions. Indeed, profiling
indicates execution of insert operations are the hotspot of the TPC-C
transactions now, but the causes are orthogonal to concurrency control.
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The two major hotspots are (1) catalogue lookups to locate tuple fields
and (2) memory allocation for new tuples during insert operations.

Profiling details show that catalogue lookups cause frequent ac-
cesses to L1 and L3 caches. For tuple allocation, profiling details
indicate significant time spent in the memory allocator and for OS
memory management including page faults. These hotspots are am-
plified by NUMA in our multi-socket system, since the catalogue is
centrally allocated and memory management in Linux is contention-
and NUMA-sensitive as well [41]. Consequently, such impact on per-
formance only becomes visible in its full extent on large systems like
ours.

Insight: Inserts themselves do significantly affect the performance
of the CC schemes in this benchmark. Yet, in all schemes performance
is now greatly overshadowed by orthogonal hotspots most notably
cache misses of the catalogue and memory allocation during inserts.

7.5 a final look : clearing skies

Finally, we take a last step to provide a more optimal handling of
inserts in DBx1000 to get a clear view on the characteristics of the
CC schemes on large multi-socket hardware. To clear this view, we
remove previously identified obstacles and further optimise DBx1000
as well as the implementation of the TPC-C transaction based on
state-of-the-art in-memory DBMS for large multi-socket hardware [90,
105, 106].

Our optimisations address thrashing (cf. Section 7.4.1) with a queu-
ing latch and exponential backoff [90]. We optimise data movement
(cf. Section 7.4.2) with reordering and prefetching of tuple and index
accesses, a flat perfect hash index, and NUMA-aware replication of
the read-only relations [106]. Additionally, for the hotspots identified
in Section 7.4.3, we transform expensive query interpretation (espe-
cially catalogue lookups) into efficient query compilation as done by
state-of-the-art in-memory DBMS [105] and introduce a thread-local
memory allocator that pre-allocates memory, as done in commercial
in-memory databases today [83]. Memory alignment is also an inter-
esting trade-off for memory management. On one hand, alignment
to cache line boundaries prevents false sharing and may generally
be required by some CPUs. On the other hand, this alignment may
amplify memory consumption, as records are allocated as multiples of
cache lines, e.g., 64 bytes. DBx1000 aligns to 64 bytes and our allocator
does so as well now, because false sharing obliterates performance
without alignment. Additionally, we reduce CC overhead for read-
only relations and update the deadlock prevention mechanisms to
state-of-the-art as recommended by [90].
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(b) Low Conflict, 1024 Warehouses for Simulation and 1568 for Multi-Socket Hardware

Figure 7.10: Throughput of TPC-C in original many-core simulation [206]
without full schema & inserts and our optimised implementation
with full schema & inserts on multi-socket hardware.

7.5.1 The Final Results

With the above optimisations in place, we are finally able to take a
clear look at concurrency control for OLTP on large multi-socket hard-
ware. In the following experiment, we repeat our first assessment (cf.
Section 7.3) of the concurrency control schemes under OLTP workload
with high and low conflict. Though, this time we utilise our optimised
implementation and take the full TPC-C schema as well as inserts
in the transactions. Notably, we exercise the whole 1568 cores in this
experiment, for which we keep the one-to-one relation of cores to
warehouses for the low conflict workload (1568 warehouses), as the
TPC-C workload induces significant conflict when concurrent transac-
tions exceed the number of warehouses (cf. Section 7.3). Accordingly,
Figure 7.10 presents the final throughput for the high conflict and low
conflict TPC-C workload. In addition, Figure 7.11 again details the
performance of the CC schemes on the multi-socket hardware with
time breakdowns for both workloads.

Starting with throughput of the high conflict workload in Figure
7.10a (top row), we again observe similar results as reported in our first
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(b) Low Conflict, 1568 Warehouses

Figure 7.11: Breakdown of relative time spent processing TPC-C transactions
with optimised DBx1000 using full schema and inserts on multi-
socket hardware.
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assessment. The many-core simulation and the multi-socket hardware
results show different but reasonable behaviour due to the respective
hardware characteristics. The only difference is that now our opti-
misations further offset throughput on the multi-socket hardware.
Additionally, we now include the advanced CC schemes SILO and
TICTOC whose peak throughput remarkably outperform the originally
covered CC schemes with 4.6 and 5.3 M txn/s, respectively. Yet, those
two CC schemes similarly degrade at high core counts converging to
the performance of the other CC schemes from 56 cores (>1 socket).

For the other CC schemes, there are minor similarities of the indi-
vidual throughput curves of the CC schemes between the many-core
simulation and the multi-socket hardware. Focusing on the relative
performance of the CC schemes other than SILO and TICTOC, reveals
significant improvement of OCC and decrease of MVCC. Additionally,
the pessimistic schemes converge at high core counts only degrading
at different points and rates. Finally, H-Store still only performs well
for small core counts (⩽ 4) and remains slow beyond. Moreover, con-
sidering the time breakdown for the high conflict TPC-C workload in
Figure 7.11a, we again observe textbook behaviour as in the early time
breakdown in Section 7.3.2 with fractions of wait, backoff, and abort
characteristic for the individual CC schemes, though the amount of
useful generally improves and commit as well as CC Mgmt. decrease
through our optimisations.

Next, we analyse the low conflict workload using our optimised
implementation. Figure 7.10b reveals that under this workload all CC
schemes broadly provide scalable performance with fewer differences
as the schemes show in the many-core simulation. That is, up to two
sockets the throughput of all CC schemes steeply grows. Then the
throughput continues to grow linear up to 1344 cores at a lower growth
rate. At the full scale of 1568 cores, the behaviour of the CC schemes
differs. TICTOC, SILO, and MVCC make a steep jump reaching 197 M
txn/s, 159 M txn/s, and 75 M txn/s, respectively. Also, the growth rate
of the pessimistic locking schemes increases but not as much yielding
34 M txn/s for DL DETECT, 32 tnx/s for WAIT DIE, and 36 M txn/s
for NO WAIT. OCC stays linear achieving 39 M txn/s. In contrast,
HSTORE degrades from 59 M txn/s at 1344 cores to 35 M txn/s at
1568 cores.

Now with this clear view, we can make out different characteristics
of the CC schemes on the large multi-socket hardware, that are visible
in their throughput as well as in their time breakdown as shown in
Figure 7.11b. Under high conflict, the schemes SILO and TICTOC are
the clear winners, although they do also not scale to high core counts
(similar to the other schemes). Under low conflict, HSTORE performs
the best before the number of concurrent transactions (cores) equals
the number of partitions (warehouses). HSTORE degrades beyond this
point, due to its simple but coarse partition locking, which is identical
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to the behaviour in the simulation. In detail, HSTORE’s sensitivity to
conflicts becomes obvious in the steep increase of wait time in the time
breakdown.

Under low conflict, TICTOC follows as second fastest with SILO
close by. Both provide significantly lower throughput than HSTORE
until the tipping point at 1344 cores from which they outperform
HSTORE by a large margin due to efficient fine-grained coordination,
as indicated by their stable amount of Commit and CC Mgmt. For the
other CC schemes, the view is diverse as their relation changes with
the NUMA distance between the participating cores. After exceeding
8 sockets (448 cores/2 chassis) the pessimistic schemes fall behind the
advanced optimistic CC schemes (TICTOC & SILO) and eventually
also behind OCC and MVCC. This degrading is unrelated to con-
flicts (no wait time) but correlates with increasing NUMA distances.
Consequently, for the low conflict OLTP workload, it appears that
pessimistic locking is beneficial when access latencies (NUMA effects)
are low, whereas the temporary copies of optimistic CC can hide these
latencies, but these temporary copies come at the cost of additional
data movement, slowing down throughput at close NUMA distance.
To this end, HSTORE and TICTOC implement these two approaches as
well, but they are more efficient, e.g., as HSTORE locks less frequently.
Notably, there is no difference among the pessimistic CC schemes
with different mechanisms against deadlocks, as there is low conflict
in the workload, and thus few deadlocks.

Insight: After spending considerable engineering effort bringing
state-of-the-art in-memory design to DBx1000, we shed new light on
concurrency control on 1000 cores. First, we unveil remarkable peak
throughput of the newer CC schemes, TICTOC and SILO, on high
conflict workload, while also presenting textbook behaviour of all CC
schemes in the time breakdown. Second, we brighten the grim forecast
of concurrency control on 1000 cores for low conflict workload from
the simulation of [206]. In fact, under low conflict all CC schemes scale
nearly linearly to 1568 cores with a maximum of 200 million TPC-C
transactions per second.

7.6 discussion and conclusion

In this paper, we analysed in-memory DBMS on today’s large multi-
socket hardware with 1568 cores, revisiting the results of the sim-
ulation in [206], which led us to several surprising findings: (1) A
first attempt of running their prototype on today’s multi-socket hard-
ware presented broadly different behaviour of the CC schemes. To
our surprise, the low contention TPC-C workload with at most one
warehouse per thread revealed most concurrency schemes not only
stopped scaling after 200 cores but also were very inefficient spending
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not even half of their time on useful work. (2) Based on these results,
we decided to take a second deeper look into the underlying causes
and made several additional discoveries. First, DBx1000 uses atomic
increments to create timestamps in the default setting. This was a
major bottleneck on the multi-socket hardware. Second, the default
benchmark settings of DBx1000 used a TPC-C database which was
significantly reduced in size and did not implement any inserts in
the transactions. Changing these default setting shifted the picture of
our initial assessment completely: while replacing the atomic counter
with a hardware clock removed the timestamp creation bottleneck,
enabling the original database size and insert operations, however,
led to an even darker picture as in our first look. In this second look,
we saw that all CC schemes completely collapsed when scaling to
more than 200 cores, resulting in devastating 0.5 million txn/s when
all cores were used. (3) Finally, we took this challenge and spent sig-
nificant engineering efforts on the DBx1000 code base to optimise all
components from memory management over transaction scheduling
to locking. This cleared up the dark skies we faced before and allowed
most CC schemes to perfectly scale, providing up to 200 million txn/s
on 1568 cores. Even more surprisingly, now, the CC schemes behave
very similar with no clear winner.

We speculate that this is due to the fact that most schemes are now
memory-bound, emphasising the need to invest in latency hiding
techniques such as interleaving with coroutines [101, 144] as an in-
triguing direction for future work on scalable concurrency control.
Having cleared the view on concurrency with this re-evaluation on
large hardware, fundamental optimisations like hardware-awareness
of OLTP architecture [141] or even adaptive architectures [22] appear
exciting for further evaluation of DBMS on such hardware. Also, now
that hardware is available, evaluating not only broad concurrency but
also utilisation of the full memory capacities is an interesting avenue
towards hundred-thousands of TPC-C warehouses on in-memory
DBMS.

So, stay tuned for “Part 2 on The Tale of 1000 Cores” :).
We would like to express our great gratitude to the authors of [206]

for providing DBx1000 as open source making this work possible.
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abstract

In our initial DaMoN paper [17], we set out the goal to revisit the
results of “Starring into the Abyss [...] of Concurrency Control with
[1000] Cores” [206]. Against their assumption, today we do not see
single-socket CPUs with 1000 cores. Instead, multi-socket hardware is
prevalent today and in fact offers over 1000 cores. Hence, we evaluated
concurrency control (CC) schemes on a real (Intel-based) multi-socket
platform. To our surprise, we made interesting findings opposing
results of the original analysis that we discussed in our initial DaMoN
paper [17]. In this paper, we further broaden our analysis, detailing
the effect of hardware and workload characteristics via additional real
hardware platforms (IBM Power8 and 9) and the full TPC-C transac-
tion mix. Among others, we identified clear connections between the
performance of the CC schemes and hardware characteristics, espe-
cially concerning NUMA and CPU cache. Overall, we conclude that
no CC scheme can efficiently make use of large multi-socket hardware
in a robust manner and suggest several directions on how CC schemes
and overall OLTP DBMS should evolve in future.
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8.1 introduction

We are now 8 years after “Starring into the Abyss [...] of Concurrency
Control with [1000] Cores” [206], which presented an evaluation of
concurrency schemes for in-memory databases on simulated hardware.
The speculation of the authors at that time was that today we would
see single CPUs with 1000s of cores. However, so far reality is differ-
ent [83, 96, 97, 112]. Instead, multi-socket hardware indeed offering
1000s of cores made their way into production data centres. Accord-
ingly, in-memory DBMS are facing not only challenges of massive
thread-level parallelism, such as coordination of hundreds of concur-
rent transactions as predicted by [206], but multi-socket systems also
expose in-memory DBMS to further challenges, such as deep NUMA
topologies connecting all CPUs [82, 84, 96, 97].

In this paper, we thus set out the goal to bring in-memory DBMS to
1000 cores on today’s multi-socket hardware, revisiting the results of
the simulation of [206] based on the original code, which the authors
generously provide as open source. That is, we follow up on [206]
with an evaluation of the characteristics of concurrency control (CC)
schemes on real production hardware using their DBx1000 as a starting
point. As the main contribution, we provide an extensive analysis of
CC schemes on real large hardware, which beyond related evaluation
works [10, 79, 165, 179, 204, 206] provides a breadth of insights for
OLTP on modern multi-socket hardware platforms, as discussed below.
Moreover, as another contribution of this paper we have released all
artefacts [19, 20] (code and measurements) for further analysis by the
database community. While we already provide an extensive analysis
of our data, we believe that the data itself is an interesting source for
future findings simply by analysing the data even further.

Part One: This part is based on the results of our recent DaMoN
paper [17] where we analysed concurrency control schemes on an
Intel multi-socket hardware with 1568 cores. To our surprise, we made
several interesting findings: (1) Overall, running the DBx1000 open
source prototype of [206] on today’s production hardware revealed a
very different picture compared to prior observations on simulated
hardware with 1000 cores. While simulations indeed are valuable for
early path finding, today’s real hardware and progress of state-of-the-
art have changed the prospect for OLTP on 1000 cores. (2) In a “deeper
look”, we additionally revisited the limitations and assumptions of
the simulation for our real hardware. For example, we found that
hardware-assisted timestamp allocation indeed available today has
ambiguous benefits, as physical contention shifts rather than disap-
pears. Moreover, aspects of real systems (e.g., memory management)
have proven significant performance impact apart from concurrency
control. (3) Based on these findings, we revised the original prototype
for large multi-socket hardware and finally the experimental results
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gave a clear view on concurrency control with 1000 cores, i.e., good
scaling of all CC schemes under low conflict and textbook behaviour
under high conflict though with thrashing.

Part Two: This new part extends our DaMoN paper [17] significantly
and broadens the evaluation in two dimensions: hardware and work-
load. First, we additionally include two IBM Power-based platforms
(Power8 and Power9), which come with different hardware character-
istics on the macro-level (e.g., their overall topology) as well as the
micro-level (e.g., their simultaneous multithreading implementation).
The focus of this part is on singling out the effects of hardware char-
acteristics on the CC schemes (e.g., of different NUMA topologies,
cache capacities). Second, we also extended our evaluation in terms
of the workload. While in the first part, we only used the common
limited transactions mix of the TPC-C benchmark that was available in
DBx1000, in part two we also analyse how the full TPC-C transaction
mix effects concurrency control on our large multi-socket hardware.
The most compelling findings of our deep dive into hardware and
workload characteristics are: (1) We could identify clear connections
between the performance of the individual CC schemes and specific
hardware characteristics. For example, NUMA had an outstanding but
nuanced effect on the CC schemes. (2) The significance of hardware
characteristics like NUMA effects further depends on the workload.
For example, a larger footprint of the workload (accessed tuples) in-
creases the bandwidth demand of the optimistic concurrency control
(OCC) scheme and thus OCC scales as long as the underlying NUMA
architecture offers sufficient bandwidth. (3) Under high conflict no CC
scheme achieves high concurrency on any hardware platform. Our
analysis here surfaced inherent issues of today’s transaction execution,
i.e., increasing inter-transaction parallelism under high conflict will
not help without changing the CC schemes and execution schemes.

Overall, our evaluation exhibits the complex interaction of the sys-
tem design, the workload, and the underlying hardware that deter-
mines DBMS performance. Therefore, we recommend reflecting on
concurrency in OLTP DBMSs, to put available hardware resources
to effective use. Especially with hundreds to thousands of cores, we
need broader options for utilising those, apart from executing more
concurrent transactions and comprehensive contention management
is imperative. Finally, we advocate for performance models to aid ex-
ploration of system performance and adaptive DBMS designs towards
robust performance in any condition.

Outline: We first provide the background and present the different
hardware platforms used in this paper (Section 8.2). In Section 8.3
we then present the results of part one which is based on [17], as
mentioned before. Afterwards, in Section 8.4 we present the results
of part two which includes the findings of our broadened evaluation
with additional hardware platforms and the full TPC-C benchmark.
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Finally, we conclude with a summary and discussion of the overall
findings in Section 8.5.

8.2 background and setup

In the following, we provide a brief overview of the concurrency
control (CC) schemes, the hardware as well as the benchmarking
environment used in our evaluation.

8.2.1 Concurrency Control Schemes

Table 8.1 summarises the evaluated CC schemes. They range from lock-
based CC, with diverse mechanisms against deadlocks, to timestamp-
ordering-based CC, including multi-versioning, 2-versioning, coarse
locking, and advanced ordering. For details on these CC schemes,
we refer to their original publications [24, 25, 103, 111, 192, 208]
and to [206]. The first 7 CC schemes in Table 8.1 correspond to the
prior evaluation in [206]. We further include the more recent schemes
SILO [192] and TICTOC [208], originally not included. Unfortunately,
TIMESTAMP [24] from [206] has a fatal bug in the latest version of the
prototype, so we excluded it.

DL DETECT 2PL with deadlock detection [24]

NO WAIT 2PL with non-waiting deadlock prevention [24]

WAIT DIE 2PL with wait-and-die deadlock prevention [24]

MVCC Multi-version T/O [25]

OCC Optimistic concurrency control [111]

HSTORE T/O with partition-level locking [103]

SILO Epoch-based T/O [192]

TICTOC Data-driven T/O [208]

Table 8.1: Evaluated concurrency control schemes.

8.2.2 Today’s Real Hardware with 1000 Cores

The prevalent hardware in production today offering 1000 cores are
large multi-socket hardware platforms [83, 96, 97, 112]. Rather than
hosting many cores on a single CPU, these multi-socket platforms con-
nect many CPUs to a single system. In the following, we first introduce
the Intel-based HPE platform used in the comparison to the simulation
and the later comparison of different real multi-socket platforms. Then
we introduce two further IBM platforms. Notably, we choose these
three specific platforms for comparing large multi-socket hardware
with diverse characteristics, especially different NUMA topologies. In
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general, we expect systems with similar NUMA topologies to have
similar NUMA effects.

intel-based hpe platform Our HPE SuperdomeFlex system [83],
used for part one of our evaluation (Section 8.3), contains 28 Intel
Xeon 8180 CPUs each having 28 physical cores with SMT-2 [132]. This
makes a total of 1568 logical cores (hardware threads), as shown in
Table 8.2a. Figures 8.1a - b show how this system groups 4 CPUs into
hardware partitions (chassis) [82] and then joins these [84], forming a
single cache coherent system with the total of 1568 logical cores and
20 TB of DRAM. As shown in Figure 8.1a, within the chassis each CPU
connects to two neighbouring CPUs and to a NUMALink controller
via UPI links. In turn, the NUMALink controllers couple all chassis in
a fully connected topology (Figure 8.1b), yielding 4 levels of NUMA
with performance properties summarised in Table 8.2c1.

CPU

CPU CPU

NUMALink
ASIC 0

NUMALink
ASIC 1

CPU

NUMALink
ASIC 1

UPI

(a) Chassis topology HPE

 

(b) NUMALink topology HPE

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

(c) 16-socket IBM Power9

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPUCPU

CPU

CPU

CPU

(d) 8-socket IBM Power8

Figure 8.1: System topologies of the HPE, Power9, and Power8 platforms. [82,
84, 168, 195]

Comparing this hardware to potential many-core hardware as simu-
lated in [206] reveals that this multi-socket setup for 1000 cores differs
in many aspects. Importantly, one similarity of today’s hardware to
the simulated architecture of [206] is that both communicate and share
cache in a non-uniform manner via a 2D-mesh on the chip [67] (and
UPI beyond), such that the cores use the aggregated capacity to cache
data but need to coordinate for coherence. This non-uniform commu-
nication is an important hardware characteristic, as it can amplify the

1 NUMAPerf is a cross-platform tool in HCMT [159] that performs similar tests like
Intel MLC [198]. Different from MLC it provides comparable results across platforms.
While it clearly does not implement platform-specific optimisations and thus observed
performance can be lower, NUMAPerf allow us to compare the performance across
platforms.
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Platform CPUs ∗ Phy. Cores ∗ SMT = Logical Cores

HPE 28 ∗ 28 ∗ 2 = 1568

Power9 16 ∗ 12 ∗ 8 = 1536 (1504)

Power8 8 ∗ 12 ∗ 8 = 768 (752)

(a) Number of CPUs, physical cores, and logical cores. In parentheses is the number
of logical cores available to the application on Power8 and Power9.

Platform L1 Inst.,
Data

L2 L3 Agg.

HPE 32, 32 (16,
16)

1024
(512)

1408
(687.5)

2432
(1216)

Power9 64, 64 (4, 4) 512
(64)

10240
(1280)

10752
(1344)

Power8 32, 64 (2, 4) 512
(64)

8192
(1024)

8704
(1088)

(b) Cache capacity in KB per physical core and in parentheses per logical core.
Agg. denotes the aggregated cache capacity of the L2 and the non-inclusive L3
cache. [132, 168, 169]

Platform NUMA Distance Latency Bandwidth

HPE 0: Local 97 ns 101 GB/s

1: 1 Hop 226 ns 16 GB/s

2: 2 Hop 260 ns 16 GB/s

3: Remote 380 ns 12 GB/s

Power8 0: Local 117 ns 193 GB/s

1: 1 Hop 142 ns 28 GB/s

2: n/a

3: Remote 260 ns 43 GB/s

Power9 0: Local 118 ns 148 GB/s

1: 1 Hop 214 ns 39 GB/s

2: n/a

3: Remote 361 ns 90 GB/s

(c) Memory access latency and bandwidth by NUMA distance measured with
NUMAPerf1 [159]. HPE has a deeper topology than the Power platforms. Distance
0 (Local) refers to memory directly located the CPU, 1-2 (1 Hop, 2 Hop) refer to
memory of neighbouring CPUs within the same chassis, and 3 (Remote) refers to
accesses across chassis.

Table 8.2: Properties of evaluated hardware platforms.
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impact of contention points in the CC schemes on any large hardware
(multi-socket and many-core). Otherwise, the simulation differs from
today’s hardware, since it assumed low-power and in-order processing
cores clocked at 1GHz, cache hierarchies with only two levels, and
cache capacities larger than today’s caches. Notably, it simulates the
DBMS in isolation without an OS, disregarding overheads and poten-
tial side effects of OS memory management, scheduling etc., omitting
essential aspects of real systems [59, 145].

power-based ibm platforms In the second part of our evalua-
tion, we consider the IBM Power platforms as prominent hardware
platforms for scale-up systems, in addition to the Intel-based plat-
form. There are several distinctive features, making these IBM Power
platforms an interesting alternative for our analysis [96, 97, 168].

In particular, we use an IBM Power system E880 (Power8) [195]
configured with 8 Power8 CPUs and an IBM Power system E980
(Power9) [196] configured with 16 Power9 CPUs. As outlined in Table
8.2a, these platforms offer a total of 768 and 1536 logical cores (hard-
ware threads), of which 752 and 1504 are available to applications.
Both systems provide 16 TB of memory.

The IBM Power CPUs use a RISC-based instruction set architecture
(ISA) unlike Intel CPUs, though both types of CPUs share many
features such as vector instructions, support of hardware transactional
memory, and simultaneous multithreading (SMT). Notably, IBM Power
CPUs realise configurable levels for SMT exposing 1 to 8 logical cores
(hardware threads) per physical CPU core. In our experiments, we use
SMT-8 if not noted otherwise. Therefore, the 12 physical cores in either
Power processor provide up to 96 logical cores (hardware threads).
We remark that both IBM Power platforms reserve one physical core
on some CPUs (2 on our Power8 and 4 on our Power9) to manage
logical hardware partitions (LPARs), e.g., governing storage and other
periphery. All other cores and memory resources are available for our
evaluation without restrictions and any resource sharing.

In the memory hierarchy caches and the NUMA hierarchy differ in
important aspects between the two Power platforms as well as the Intel-
based platform. The cache capacities in Table 8.2b reveal the large L3
caches per physical core for Power9 and Power8. The Power9 processor
contains the largest L3 cache per physical core. Additionally, higher
overall cache performance is claimed on Power9 due to increased
associativity (20-way in Power9 vs. 8-way on Power8) [168]. Notably,
the IBM systems have a L4 cache on their custom DRAM DIMMs.
However, this is a memory buffer outside of the processor rather than
a CPU cache, thus unlike CPU caches this L4 cache does not hide
NUMA effects.

Like the Intel-based platform, the IBM Power systems follow a
NUMA architecture to scale to more than 1000 logical cores. In Ta-
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ble 8.2c, we summarise the respective latency and bandwidth of mem-
ory accesses alongside the Intel-based platform. As shown in Fig-
ure 8.1c, our 16-socket Power9 system features a NUMA topology
with one hop to sockets in the same chassis and two hops to sockets
in its other three chassis, whereas our smaller 8-socket Power8 system
can afford a fully connected NUMA topology directly connecting every
socket between its two chassis. Additionally, both systems have faster
interconnects within the chassis than between the chassis, therefore
still establishing three NUMA level on both Power systems.

Notably, a larger Power8 system with 16 sockets would have a
similar topology to our Power9 and inversely smaller versions of
the HPE and Power9 systems would similarly benefit from stronger
connections.

8.2.3 Benchmarking Environment

In this paper, we evaluate the CC schemes mentioned before on our
multi-socket hardware with the TPC-C benchmark [185] as imple-
mented in the latest version of DBx1000 [207]. This version of DBx1000
includes the extended set of CC schemes as mentioned before and bug
fixes, beyond the version used in the original paper [206]. Addition-
ally, we rely on the provided embedded instrumentation to measure
the time spent in the system.

For running the benchmarks, we use the given default configuration
of DBx1000. This configuration defines the TPC-C workload as equal
mix of New-Order and Payment transactions covering 88% of TPC-
C with standard remote warehouse probabilities (1% and 15%). This
configuration partitions the TPC-C database by warehouse (WH) ID for
all CC schemes. Based on this configuration, we specify 4 warehouses
for the high conflict TPC-C workload and 1024 or 1568 warehouses
for the low conflict workload, as in our initial DaMoN paper [17].
Similar to the original evaluation, each benchmark runs until the
first transaction executor has committed 100 K transactions, and we
measure the throughput as the number of transactions committed
by all transaction executors in that time. We observed this method
to provide reliable measurements despite NUMA effects in our large
system or other effects influencing the execution of the benchmark.

An interesting first observation was, that DBx1000’s TPC-C did
not implement insert statements, presumably due to the mentioned
limitations of the simulator, e.g., memory capacity and no OS. In part
one of the paper, we thus first start with the very same setup, but later
we enable insert statements in the evaluation after taking a first look
at the CC schemes. As minor extension, we added a locality-aware
thread placement strategy to DBx1000 for all experiments in this paper.
It exclusively pins DBMS threads to a specific core. For scaling the
DBMS threads in our experiments, we use the minimal number of
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Figure 8.2: Throughput of TPC-C high conflict workload (4 WH) in original
simulation [206] and on real multi-socket hardware (Intel, HPE).

sockets to accommodate the desired resources, e.g., 2 sockets for 112
threads, otherwise OS and NUMA effects would dominate the overall
results. Note that as consequence of this thread placement strategy,
cores and threads equally refer to a single execution stream (i.e., a
worker) of the DBMS.

For the broader evaluation in part two, we use a setup similar to the
optimised DBx1000 from part one as discussed before. Notably, we aim
to match the thread placement on the additional hardware platforms
with the placement we used on HPE. Moreover, throughout part two,
TPC-C is configured with the full TPC-C schema and transactions
always execute their insert statements. Finally, for the last experiments
in part two, we extend DBx1000 to support the remaining TPC-C
transactions for the full TPC-C benchmark. For all other experiments
in part two, we use the more narrow mix of New-Order and Payment
transactions only, as was the case for the original simulation.

8.3 part one : simulation vs . real hardware

8.3.1 A First Look: Simulation vs. Reality

We now report the results of running the DBx1000 prototype directly
on the multi-socket Intel-based hardware (HPE platform) as opposed
to a simulation.

8.3.1.1 The Plain Results

Figures 8.2 and 8.3 display the throughput of TPC-C transactions
for 4 warehouses and 1024 warehouses, i.e., high and low conflict
OLTP workloads. On the left of each figure are the original simulation
results [206] and on the right are our results on real multi-socket
hardware (Intel-based HPE). We first compare the overall throughput.
Then we break down where time is spent in the DBMS to better
understand our observations.
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Figure 8.3: Throughput of TPC-C low conflict workload (1024 WH) in original
simulation [206] and on real multi-socket hardware.

We first look at the results for 4 warehouses as shown in Figure 8.2.
Overall, it is obvious that the absolute throughput differs due to the
characteristics of the CPUs in the simulation and our hardware, e.g.,
low-power 1 GHz cores versus high-power 2.5 GHz cores. This is ex-
pected and therefore only the relative performance of the CC schemes
matters. In the following, we discuss similarities and significant differ-
ences.

First, comparing the simulation and the real hardware (Intel-based
HPE platform) in Figure 8.2, we see that the CC schemes HSTORE,
MVCC, and NO WAIT show similar trends. That is, these CC schemes
have a similar thrashing point in the simulation and the real hardware,
i.e., HSTORE at 4 to 8 cores and MVCC as well as NO WAIT at 56 to 64
cores. After the respective thrashing point, these CC schemes degrade
steeper on the multi-socket hardware, which can be linked to the addi-
tional NUMA effect of the multi-socket hardware appearing beyond 56
cores. For the other CC schemes the results for the simulation and real
hardware differ more widely, especially the diverging behaviour of the
pessimistic CC schemes sticks out. Considering these pessimistic CC
schemes, DL DETECT behaves broadly different already degrading at
8 cores rather than 64 cores and WAIT DIE performs surprisingly close
to NO WAIT. In Section 8.3.1.2, we analyse the time breakdown of this
experiment to explain these results. It reveals characteristic behaviour
of the individual CC schemes, despite the diverging throughput in
the simulation and the multi-socket hardware.

Next, we look at the low conflict TPC-C workload (1024 warehouses)
in Figure 8.3. The results here present fewer similarities of the many-
core simulation and the multi-socket hardware (Intel-based HPE), i.e.,
only the slope of MVCC is similar. Additionally, DL DETECT and NO
WAIT stagnate at high core counts (>224) in the simulation and on
the multi-socket hardware. In contrast, HSTORE performs worse on
the multi-socket hardware than in the simulation. It is slower than the
pessimistic CC schemes and OCC from >112 cores. Also, OCC and
WAIT DIE achieve higher throughput on the multi-socket hardware,
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Useful Time usefully executing application logic and
operations on tuples.

Abort Time rolling back and time of wasted useful
work due to abort.

Backoff Time waiting as backoff after abort (and re-
questing next transaction to execute).

Ts. Alloc. Time allocating timestamps.

Index Time operating on hash index of tables includ-
ing latching.

Wait Time waiting on locks for concurrency control.

Commit Time committing transaction and cleaning up.

CC Mgmt. Time managing concurrency control other than
prior categories, e.g., constructing read set.

Table 8.3: Time breakdown categories.

now similar to DL DETECT and NO WAIT. Moreover, MVCC is
significantly slower than OCC and the pessimistic CC schemes, due to
high overheads of this scheme as we discuss next.

Insight: The initial comparison of concurrency control schemes on
1000 cores presents only minor similarities between the simulation
and our multi-socket hardware with surprising differences in the
behaviour of the CC schemes mandating further analysis.

8.3.1.2 First Time Breakdown on Intel-Based Hardware

For deeper understanding of the observed behaviour of the CC schemes,
we now break down where time is spent in processing the TPC-C
transactions on the multi-socket hardware. Therefore, we apply the
breakdown of [206] categorising time as outlined in Table 8.3. For each
CC scheme, Figures 8.4 and 8.5 break down the time spent relative to
the total execution time of the TPC-C benchmark with a bar for each
core count.

The time breakdown of 4 warehouses in Figure 8.4 neatly shows the
expected effect of conflicting transactions and aborts for increasing
core counts under high conflict workload. That is, most CC schemes
result in high proportions of wait, abort, and backoff as soon as the
number of cores exceeds the number of warehouses (>4 cores), yield-
ing nearly no useful work at higher core counts. Only the wait time of
HSTORE grows at 4 cores concurrently executing transactions, such
that HSTORE appears more sensitive to conflicts.

Remarkably, textbook behaviour of the specific schemes becomes
visible in the breakdown: Starting with DL DETECT, its wait time
increases with the number of concurrent transactions as expected,
following the increasing potential of conflicts between concurrent
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Figure 8.4: Breakdown of relative time spent for high conflict (4 WH) TPC-C
transactions on multi-socket hardware (Intel, HPE).

transactions. Different from DL DETECT, WAIT DIE spends more time
backing off and aborting due to its characteristic aborts after a short
wait time (small wait proportion). Instead, NO WAIT solely backs off
without waiting, spending even more time on aborted transactions.
The optimistic MVCC waits on locks during validation, such that its
breakdown shows similar wait times like DL DETECT. Finally, for OCC
we can see that the high abort portion reflects its sensitivity to conflicts
while the high commit portion stems from high costs for cleaning up
temporary versions.

Having observed this “expected” behaviour of the CC schemes
under high conflict, we now analyse the unexpected behaviour under
low conflict as shown in Figure 8.5. Against the expectation, most CC
schemes spend considerable amount of time to manage concurrency
(black and grey area) such as lock acquisition (except HSTORE which
we discuss later). For these schemes this results in at most 50% of
useful work (red area). Staggeringly, MVCC which actually should
perform well under low conflicting workloads, spends almost no
time with useful work despite the low conflict in the workload, i.e.,
<10% useful work from 224 cores. In fact, the low conflict is visible
in the overall little time spent waiting or aborting. Consequently, the
slowdown compared to pessimistic CC schemes does not stem from
wasted work but from internal overhead in execution of this CC
scheme under high core counts.

In contrast, we observe for HSTORE an increasing impact of times-
tamp allocation and waiting time. While timestamp allocation is used by
the other schemes as well, the relative overhead for HSTORE is the
highest due to its cheaper lock acquisition. In fact, the authors of [206]
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Figure 8.5: Breakdown of relative time spent for low conflict (1024 WH) TPC-
C transactions on multi-socket hardware (Intel, HPE).

did analyse different timestamp allocation methods in their paper but
chose atomic increment as a sufficiently well performing method that
is a generally applicable option when there is no specialised hard-
ware available. However, as we can see this choice is not optimal for
multi-socket hardware. Moreover, we attribute the increasing waiting
time of HSTORE to its coarse-grained partition locking to sequentially
execute transactions on each partition. This partition-level locking
causes a higher overhead if more cores are used since this leads to
more conflicts between transactions as shown in prior work [106, 141].

Insight: The analysed CC schemes behave differently on the real
multi-socket hardware than in the simulation of [206]. For the high
conflict workload (4 warehouses), the behaviour on real hardware and
the simulation appears more similar, for which the time breakdown
confirms the expected characteristics for each CC scheme. However,
low conflict workload causes an unexpectedly high CC management
overhead in most CC schemes and transactions execute only a lim-
ited amount of useful work, except for HSTORE where waiting and
timestamp allocation dominate.

8.3.2 A Second Look: Hidden Secrets

In this section, we now take a “second look” at the factors leading to
the surprising behaviour of the CC schemes observed in our initial
analysis and discover equally surprising insights.
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Figure 8.6: Throughput of low conflict TPC-C for timestamp allocation with
hardware clock.

8.3.2.1 Hardware Assistance: The Good?

In a first step, we analyse the benefit of hardware-assisted timestamp
allocation over using atomic counters for the real multi-socket hard-
ware. As explained earlier, the atomic increment is generally applicable
but may cause contention, which efficient and specialised hardware
may prevent if available. Our hardware provides a synchronised
hardware clock indeed offering a new option for efficient timestamp
allocation, as projected by [206]. Specifically, our Intel processors
provide efficient access to a hardware clock on each core [95] (rdtsc
instruction), which ticks at the same rate on all cores in the entire
system (invariant tsc feature) and is synchronised across all cores and
hardware chassis by the platform firmware, verified by the OS [160,
189–191].

In the following experiment, we analyse the benefit of this hardware
assistance for timestamp allocation. Figure 8.6 shows the throughput
of the CC schemes for 1024 warehouses with timestamp allocation
based on the hardware clock.

On one hand, HSTORE greatly benefits from the hardware clock (as
expected) achieving peak throughput of ∼40 M txn/s with an overall
speedup over atomic increment of up to 3x. We now also include SILO
and TICTOC in our results which perform like HSTORE except for
high core counts as we discuss in the time breakdown analysis below.
On the other hand, the remaining CC schemes (DL DETECT, WAIT
DIE, NO WAIT, MVCC, and OCC) degrade drastically when using the
hardware clock instead of atomic counters. That is, the pessimistic CC
schemes DL DETECT, WAIT DIE, and NO WAIT perform ∼50% slower
within a socket (0.51 - 0.55x speedup for ⩽56 cores), after which they
degrade to 0.01x speedup at 1024 cores (0.37 - 0.39 M txn/s). Likewise,
MVCC is stable (∼1x speedup) up to 56 cores and its speedup drops to
0.1x when exceeding the single socket. Finally, OCC does not benefit
from the hardware clock at all (0.44 - 0.01x speedup).
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Figure 8.7: Breakdown of relative time spent processing TPC-C transactions
on small and full schema with 1024 warehouses using timestamp
allocation via hardware clock.
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Overall, timestamp allocation based on the hardware clock drasti-
cally changes the perspective on the performance of the CC schemes.
Now HSTORE performs best, meeting the initial observations of [206]
(joined by SILO and TICTOC), whereas the pessimistic schemes, OCC,
and MVCC degrade severely.

For better understanding of these diverse effects of the hardware
clock, we again look at the time breakdown shown in Figure 8.7a (top
row). As expected, HSTORE now spends little time for timestamp
allocation (like SILO and TICTOC). Otherwise HSTORE spends time
similarly as with atomic increment, especially with a similar increase
of the waiting time. Importantly, we do not observe any bias intro-
duced by the hardware clock, since HSTORE (as well as the other
CC schemes) spends no significant time aborting and our detailed
logs show no outliers for the number of aborted transactions per
transaction executor. Consequently, the hardware clock is reliable for
timestamp allocation.

An interesting observation is the significant change in the time
breakdown of the other CC schemes. For example, DL DETECT, WAIT
DIE, and NO WAIT show at least 2x the time spent for CC Mgmt.
and committing/cleaning up (black & grey) with a sudden increase after
56 cores. OCC’s increase of time spent in these categories is even
more drastic with less than 20% of useful work at any core count. Only
MVCC changes insignificantly, as useful time spent was low already.

Profiling these CC schemes reveals physical contention, that previ-
ously was on the atomic counter, now results in thrashing of latches.
Previously, the physical contention on the atomic counter has throt-
tled transaction execution including latching, e.g., for lock acquisition.
Now, that the hardware clock has removed the physical contention
from timestamp allocation, transactions access latches more frequently,
indeed reaching their thrashing point despite a latch per row and
low conflicts in the workload with 1024 warehouses. Notably, our
profiling reveals further details of the individual CC schemes: The
pthread_mutex employed in DL DETECT, WAIT DIE, NO WAIT, and
OCC sharply degrades due to NUMA sensitivity of hardware trans-
actional memory [31] used for lock elision and its fallback to robust
but costly queuing synchronisation [70] as well as costly interaction
with the scheduler of the OS.2 In contrast, MVCC uses an embedded
flag as spin latch which is not as sensitive to NUMA but also not ro-
bust [49]. Hence, this type of latch shows a slower but also continuous
degrading of performance.

Insight: Hardware-assisted timestamp allocation via specialised
clocks alleviates contention and leads to better scalability for HSTORE
(as well as SILO and TICTOC). However, while hardware-assisted
clocks also lift the overhead in the other schemes, it does not nec-
essarily improve their overall performance as contention moves and

2 pthread_mutex is specific to libc and the OS.
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Figure 8.8: Throughput of low conflict TPC-C for small schema size like in
the simulation versus full schema size both executed on multi-
socket hardware (Intel, HPE).

puts pressure on other components (e.g., latches), even leading to
performance degradation.

8.3.2.2 Data Size: The Bad?

In the context of this surprisingly high overhead, our second look at
the paper [206] brings the following statement to our attention: “Due
to memory constraints [...], we reduced the size of [the] database” [206].
Consequently, we are wondering if the staggering overhead is poten-
tially caused by the absence of useful work to execute rather than the
abundance of overhead in the CC schemes, due to the reduced data
size imposed by limited memory capacity of the simulator in [206].

We revert the benchmark to the full TPC-C database in the follow-
ing experiment and report on the surprising effect of the larger data
volume. In detail, to return to the officially specified database, we in-
crease (1) the cardinality of the item relation from 10 K to 100 K, (2) the
factor of customers per warehouse from 20 K to 30 K determining the
cardinalities of the customer, order, order-line, and history relations,
and (3) we include all attributes rather than only those accessed.

Figure 8.8 shows the throughput for the full schema with 1024
warehouses and speedup in comparison to the small schema based
on the previous experiment (cf. Figure 8.6). We measure quite diverse
throughput of the CC schemes. Yet, the speedup indicates that two
major effects of the increased data volume appear in the same clusters
as in the previous experiment but with inverse outcome. The first
cluster of HSTORE, SILO, and TICTOC is slower with the full schema,
i.e., 0.2-0.6x, 0.3-0.5x, and 0.2-0.5x, respectively. The second cluster,
consisting of the previously “slower” CC schemes, improves inversely
to the previously described thrashing points. That is, DL DETECT,
WAIT DIE, and NO WAIT have a speedup of 0.7x until 56 cores, after
which they benefit from the full schema with speedups of 2.4-9.1x,
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Figure 8.9: Throughput of TPC-C including inserts with full schema size on
multi-socket hardware (Intel, HPE).

2.5-8.3x, and 2.0-9.3x, respectively. MVCC has a speedup of 0.5-0.6x
until 56 cores, breaks even (1x) at 112 cores, and then improves with a
speedup of 1.2-9.3x. OCC has a speedup of 0.8 at 1 core and broadly
improves with the full schema with 2.1-14.9x speedup.

The time breakdown in Figure 8.7b (lower row), details the causes.
As for the CC schemes in the first cluster, HSTORE has increased useful
work, while for SILO and TICTOC CC Mgmt. increases. Both indicate
increased cost of data movement, as HSTORE directly accesses tuples
and the other two create temporary copies in the CC manager. The
second cluster shows an increase of useful work, presenting less stag-
gering overhead of CC management at low core counts. Importantly,
the sudden increase of commit for DL DETECT, WAIT DIE, and NO
WAIT is delayed, indicating that latches thrash only from 448 cores
(while previously already from 112 cores). For OCC the time spent on
commit also decreases with the larger data volume, but the increase of
CC Mgmt. due to larger temporary copies still diminishes useful work.
Only for MVCC the time breakdown does not change significantly.

Insight: The effect of larger data volumes in the full schema changes
the perspective on the CC schemes again. We attribute our observa-
tions to the effects, that heavier data movement slows down data-
centric operations (e.g., tuple accesses or copies), which in turn allevi-
ates pressure on latches preventing thrashing.

8.3.2.3 Inserts: Facing Reality!

Since the simulator of [206] had limited memory capacity and excluded
the simulation of important OS features such as memory management,
the TPC-C implementation of DBx1000 did not include insert state-
ments and for comparability we initially excluded these as well. For
the last experiment in this section, we now complete the picture of
concurrency control on real hardware (Intel).

Accordingly, Figure 8.9 shows the throughput of TPC-C transac-
tions including inserts (as well as all before-mentioned changes) for
1024 warehouses. The inserts drastically reduce throughput of all CC
schemes with heavy degradation at the socket boundary (56 cores).
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Even more interesting, all CC schemes perform similarly with inserts
in the transactions. Indeed, profiling indicates execution of insert state-
ments are the hotspot of the TPC-C transactions now, but the causes
are orthogonal to concurrency control. The two major hotspots are (1)
catalogue lookups to locate tuple fields and (2) memory allocation for
new tuples.

Profiling details show that catalogue lookups cause frequent ac-
cesses to L1 and L3 caches. For tuple allocation, profiling details
indicate significant time spent in the memory allocator and for OS
memory management including page faults. These hotspots are ampli-
fied by NUMA in our multi-socket system, since the catalogue is cen-
trally allocated and memory management in Linux is also contention-
and NUMA-sensitive [41]. Hence, such impact on performance only
becomes visible in its full extent on large systems like ours.

Insight: Inserts significantly affect the performance in this bench-
mark, though due to hotspots orthogonal to the CC schemes, most
notably cache misses of the catalogue and memory allocation.

8.3.3 Effect of State-of-the-Art-Optimisations

Finally, we take a last step to provide a clear view on the character-
istics of concurrency control on large multi-socket hardware. First,
we elaborate on our optimisations to reach this clear view and pro-
vide an overview of their individual speedups. Then, we repeat our
assessment of the CC schemes using all optimisations.

Notably, in the following experiments, we use the full TPC-C schema
as well as inserts in the transactions, and we exercise the whole
1568 cores for the low conflict workload. We maintain the one-to-
one relation of cores to warehouses for the low conflict workload,
as the TPC-C workload induces significant conflict when concurrent
transactions exceed the number of warehouses.

8.3.3.1 Overview of Optimisations

To clear the view, we remove previously identified obstacles and opti-
mise the overall system based on state-of-the-art in-memory DBMS
for large multi-socket hardware: (Opt. 1) We introduce a thread-local
memory allocator that pre-allocates memory, as in today’s commercial
in-memory databases [65]. Importantly, it aligns allocations to cache
line boundaries, otherwise false sharing obliterates performance. (Opt.
2) We add a flat perfect hash index [106], e.g., reducing pointer chasing
and cache misses. (Opt. 3) We address latch thrashing with a queuing
latch [49, 106, 181] and exponential backoff [90]. (Opt. 4) We replicate
read-only relations to each socket, utilising faster local memory in-
stead of slow remote memory [106]. (Opt. 5) We reorder and prefetch
tuple and index accesses to optimise data movement. (Opt. 6) We lift
expensive query interpretation (e.g., catalogue lookups) to efficient
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Figure 8.10: Summary of speedup of the CC schemes provided our optimi-
sations Opt. 1 - 8 described in Section 8.3.3.1 for (a) the high
and (b) the low conflict workloads (i.e., 4 and 1568 warehouses).
Optimisations are applied one after the other and speedup is
reported as the factor of throughput increase over the base im-
plementation.
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query compilation as in state-of-the-art in-memory DBMS [65, 105,
183, 187]. (Opt. 7) We update the deadlock prevention mechanisms to
state-of-the-art [90]. (Opt. 8) We eliminate CC overhead for read-only
relations.

In Figure 8.10 we report the speedup provided by each optimisa-
tion when consecutively adding the optimisations, as the factor of
throughput increase over the unoptimized base implementation. Note
that, we discuss the detailed throughput with all optimisations in
place in the next section and the detailed throughput of the individual
optimisations is available in [19].

For the high conflict workload, Figure 8.10a shows that the thread-
local memory allocator (Opt. 1) and the eliminated CC overhead for
read-only relations (Opt. 8) provide significant speedup for all CC
schemes with each up to 5.38x and 4.33x. Additionally, the optimised
latching (Opt. 3) indeed notably benefits the CC schemes involv-
ing heavy latching (pessimistic CC schemes and OCC) with further
speedup of up to 2.12x.

For the low conflict workload, Figure 8.10b shows an even greater
speedup for the thread-local memory allocator (Opt. 1), by up to
268x. Additionally, in this low conflict workload the NUMA-aware
replication (Opt. 4) proves beneficial with up to 227x speedup, as actual
work including record accesses dominates the low conflict workload
(rather than concurrency control). Further, there are notable speedups
of the other optimisations for distinct CC schemes, e.g., the optimised
index (Opt. 2) notably benefits HSTORE, SILO, and TICTOC with up
to 2.83x, whereas the optimised latching (Opt. 3) again benefits the
pessimistic CC schemes, OCC, and now also HSTORE (up to 2.49x).
Finally, the updated deadlock prevention (Opt. 7) significantly benefits
OCC with up to 1.71x. The other optimisations show less significant
speedups (<1.5x).

Notably, the speedup of the optimisations varies in detail, across the
CC schemes, workloads, and number of cores. There are many factors
influencing the specific speedup. Their detailed study is beyond the
scope of our evaluation of concurrency control.

8.3.3.2 Results after Optimisations

With the above optimisations in place, we now repeat the detailed
assessment of the CC schemes under high and low conflict OLTP work-
load (as initially in Section 8.3.1). Accordingly, Figure 8.11 presents the
throughput of the fully optimised DBx1000 for the high conflict and
low conflict TPC-C workloads. In addition, Figure 8.12 again details
the performance of the CC schemes on the multi-socket hardware
with time breakdowns.

Starting with throughput of the high conflict workload in Figure
8.11a (top row), we again observe similar results as reported in our first
assessment. The many-core simulation and the multi-socket hardware
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(b) Low Conflict, 1024 Warehouses for Simulation and 1568 for Multi-Socket Hardware

Figure 8.11: Throughput of TPC-C in original many-core simulation [206]
without full schema & inserts and our optimised implementation
with full schema & inserts on multi-socket hardware (Intel, HPE).

results show different but reasonable behaviour due to the respec-
tive hardware characteristics. The only difference is that now our
optimisations further offset throughput on the multi-socket hardware.
Additionally, we now include the advanced CC schemes SILO and TIC-
TOC whose peak throughput remarkably outperform the originally
covered CC schemes with 4.6 and 5.3M txn/s, respectively. Yet, those
two CC schemes similarly degrade at high core counts converging to
the performance of the other CC schemes from 56 cores (>1 socket).

For the other CC schemes, there are minor similarities of the indi-
vidual throughput curves of the CC schemes between the many-core
simulation and the multi-socket hardware. Focusing on the relative
performance of the CC schemes other than SILO and TICTOC, re-
veals significant improvement of OCC and decrease of MVCC. The
pessimistic schemes converge at high core counts, only degrading at
different points and rates. Finally, HSTORE still only performs well
for small core counts (⩽4) and remains slow beyond. Moreover, con-
sidering the time breakdown for the high conflict TPC-C workload in
Figure 8.12a, we again observe textbook behaviour as in the early time
breakdown in Section 8.3.1.2 with fractions of wait, backoff, and abort
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characteristic for the individual CC schemes, though the amount of
useful generally improves and commit as well as CC Mgmt. decrease
through our optimisations.

Next, we analyse the low conflict workload using our optimised
implementation. Figure 8.11b reveals that under this workload all
CC schemes broadly provide scalable performance with fewer dif-
ferences as the schemes show in the many-core simulation. That is,
up to two sockets the throughput of all CC schemes steeply grows.
Then the throughput continues to grow linearly up to 1344 cores at
a lower growth rate. At the full scale of 1568 cores, the behaviour
of the CC schemes differs. TICTOC, SILO, and MVCC make a steep
jump reaching 197 M txn/s, 159 M txn/s, and 75 M txn/s, respectively.
Also, the growth rate of the pessimistic locking schemes increases
but not as much, yielding 34 M txn/s for DL DETECT, 32 txn/s for
WAIT DIE, and 36 M txn/s for NO WAIT. OCC stays linear achieving
39 M txn/s. In contrast, HSTORE degrades from 59 M txn/s at 1344
cores to 35 M txn/s at 1568 cores.

Now with this clear view, we can make out different characteristics
of the CC schemes on the large multi-socket hardware, visible in their
throughput and time breakdown (Figure 8.12b). Under high conflict,
the schemes SILO and TICTOC clearly excel, although they neither
scale to high core counts (similar to the other schemes). Under low
conflict, HSTORE performs the best until the number of concurrent
transactions (cores) equals the number of partitions (warehouses).
Beyond this point it degrades, due to its coarse partition locking,
similarly observed in the simulation. HSTORE’s sensitivity to con-
flicts becomes obvious in the steep increase of wait time in the time
breakdown.

Under low conflict, TICTOC follows as second fastest with SILO
close by. Both provide significantly lower throughput than HSTORE
until the tipping point at 1344 cores from which they outperform
HSTORE by a large margin due to efficient fine-grained coordination,
as indicated by their stable amount of Commit and CC Mgmt. For the
other CC schemes, the view is diverse as their relation changes with
the NUMA distance between the participating cores. After exceeding
8 sockets (448 cores/2 chassis) the pessimistic schemes fall behind the
advanced optimistic CC schemes (TICTOC & SILO) and eventually
also behind OCC and MVCC. This degrading is unrelated to conflicts
(no wait time) but correlates with increasing NUMA distances. Conse-
quently, for the low conflict OLTP workload, it appears that pessimistic
locking is beneficial when access latencies (NUMA effects) are low. The
temporary copies of optimistic CC can hide these latencies, but at the
cost of additional data movement, slowing down throughput at close
NUMA distance. To this end, HSTORE and TICTOC implement these
two approaches as well, but they are more efficient, e.g., as HSTORE
locks less frequently. Notably, there is no difference among the pes-
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(b) Low Conflict, 1568 Warehouses

Figure 8.12: Breakdown of relative time spent processing TPC-C transactions
with optimised DBx1000 using full schema and inserts on multi-
socket hardware (Intel).



8.3 part one : simulation vs . real hardware 115

simistic CC schemes with different mechanisms against deadlocks, as
the low conflict has few deadlocks.

Insight: After spending considerable engineering effort bringing
state-of-the-art in-memory optimisations to DBx1000, we shed new
light on concurrency control on 1000 cores. First, we unveil remarkable
peak throughput of the newer CC schemes, TICTOC and SILO, on high
conflict workload, while also presenting textbook behaviour of all CC
schemes in the time breakdown. Second, we brighten the grim forecast
of concurrency control on 1000 cores for low conflict workload from
the simulation of [206]. In fact, under low conflict all CC schemes scale
nearly linearly to 1568 cores reaching 200 million TPC-C transactions
per second.

8.3.4 Summary of Part One

In this part, we analysed in-memory DBMS on an Intel-based plat-
form with 1568 cores, revisiting the results of the simulation in [206],
using their original prototype DBMS DBx1000. This led to surprising
findings:

(1) A first attempt of running their prototype on today’s multi-
socket hardware presented broadly different behaviour of the CC
schemes. To our surprise, the low conflict TPC-C workload with at
most one warehouse per core (and transaction executor) revealed most
concurrency control schemes not only stopped scaling beyond 200
cores but also were very inefficient spending not even half of their
time on useful work.

(2) Based on these results, we decided to take a second deeper look
into the underlying causes and made several discoveries. First, the
default timestamp allocation via atomic increment was a major bot-
tleneck on the multi-socket hardware. Second, the default benchmark
settings of DBx1000 used a TPC-C database significantly reduced in
size and disregarded inserts in the transactions. Changing these de-
fault setting shifted the picture of our initial assessment completely:
while replacing the atomic counter with a hardware clock removed the
timestamp creation bottleneck, enabling the original database size and
insert statements, however, led to an even darker picture than in our
first look. In this second look, we saw that all CC schemes completely
collapsed when scaling to more than 200 cores, despite absent conflicts
in the workload.

(3) Finally, we spent significant engineering efforts on our optimised
DBx1000 [20] across all components from memory management over
transaction scheduling to locking. This cleared the dark skies we faced
before and allowed most CC schemes to scale very well, providing
up to 200 million txn/s on 1568 cores. Even more surprisingly, now,
the CC schemes behave very similar with no clear winner. Having
cleared the view on concurrency control with this evaluation on real
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hardware, an interesting question is now how these findings generalise
across different scale-up hardware platforms and more demanding
workloads.

8.4 part two : broadening the evaluation

In this second part, we broaden the evaluation of in-memory OLTP
DBMS on large hardware. Previously, in the first part, we evaluated
how the insights of in-memory DBMS running on a simulated many-
core hardware transfer to today’s hardware. Indeed, we observed
significantly different behaviour of the in-memory DBMS DBx1000
on real hardware compared to the original simulation [206]. For the
second part, we now widen the evaluation in the two dimensions
hardware and workload, as discussed in Section 8.1. First, we study
the CC schemes on a broader set of hardware platforms, before we
then look at the full TPC-C transaction mix.

8.4.1 Intel-Based vs. IBM Power 8/9 Platforms

We begin with an overview how the different approaches to “1000
cores” of today’s hardware affect concurrency control. Initially, we
focus on identifying diverging behaviour of CC schemes on the dif-
ferent hardware platforms, performing scalability experiments. Later
sections cover detailed root cause analyses. The following scalability
experiments determine how the CC schemes respond to increasing
number of cores provided by the three different hardware platforms
(HPE, Power9, and Power8), when the CC schemes pressure different
aspects of the hardware depending on the scale (number of cores). For
example, compute resources, caches, and interconnects between the
processors are utilised differently depending on the hardware scale
(number of cores). As before, we separately evaluate high and low
conflict workload, due to their significant effect on the CC schemes.
For example, high conflict generally requires more coordination (e.g.,
latching), while low conflict allows for high concurrency, influencing
the behaviour of the CC schemes on the different platforms.

scaling on different real hardware — high conflict
Figure 8.13 presents the performance of the CC schemes for the
high conflict workload on HPE, Power9, and Power8. Overall, for
the throughput in Figure 8.13a, we observe vaguely similar scaling
behaviour on Power9 and Power8 as previously on HPE, i.e., the CC
schemes briefly scale well but eventually thrash. This thrashing is
caused by the high conflict in the workload. As indicated by according
abort rates in Figure 8.13b, the CC schemes respond to these conflicts
similarly on all three hardware platforms. Notably, not only the gen-
eral behaviour is similar on the three platforms, but also the actual
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(b) Abort Ratio

Figure 8.13: Performance for TPC-C under high conflict on HPE, Power9,
and Power8.

throughput of the CC schemes is of the same magnitude as opposed
to the simulation, allowing for comparison of absolute performance.

Figure 8.14 details the scaling behaviour of the individual CC
schemes on the three hardware platforms side by side (i.e., 1. HPE, 2.
Power9, and 3. Power8). As discussed next, their diverse behaviours
indicate no clear benefit of either hardware platform, but rather high-
light the benefit of individual hardware properties taking effect at
specific core counts.

Starting with the pessimistic locking scheme DL DETECT, we find
its peak performance on HPE and at only 16 cores (1.5 M txn/s, 5.3x).
On Power9, DL DETECT sharply degrades already at 16 cores, falling
behind the performance on HPE and Power8. Beyond 16 cores, DL DE-
TECT degrades on all three hardware platforms. Instead, the other two
pessimistic locking schemes WAIT DIE and NO WAIT achieve their
peak performance at 24 cores on Power9 (2.6/2.7 M txn/s, 9.5/9.8x).
Then, these CC schemes gradually degrade similarly on all three hard-
ware platforms until thrashing at 88 cores. Notably, this thrashing
occurs when using two sockets on HPE but only one socket on Power9
and Power8, i.e., across NUMA distance 1 on HPE but NUMA-local
on the Power platforms. This fact and similar abort ratios on all three
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Figure 8.14: Detailed throughput for TPC-C (Million txn/s) under high con-
flict on HPE, Power9, and Power8. The figure shows the speedup
of different CC schemes (on y-axis) when scaling the number
of cores (on x-axis). Per CC scheme, we have 3 rows — one for
each platform (1. HPE, 2. Power9, 3. Power8).
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platforms beyond the thrashing point indicate overwhelming conflicts
as cause for this thrashing of WAIT DIE and NO WAIT (rather than
NUMA or other hardware properties). At high core counts NUMA
additionally takes effect. Then, WAIT DIE and NO WAIT benefit from
lower NUMA latency on Power8, though only by less degrading.

Moving forward to the other schemes, we see further interesting
behaviours: (1) MVCC and OCC again scale differently than the pes-
simistic locking schemes on larger core counts, peaking at 24 cores
(on Power 9 with 1.6/2.6 M txn/s). Afterwards OCC degrades less on
HPE than on Power9 and Power8, resulting in significantly higher
throughput on HPE at high core counts despite the stronger NUMA
effect on this hardware platform, as we will see later. (2) HSTORE
also reaches peak performance on Power9 with 1.35 M txn/s at 4 cores.
Afterwards its performance converges between Power9 and Power8.
In contrast, HSTORE gradually falls behind on HPE between 4 and
56 cores (one full socket), then worse NUMA effects on HPE further
slow down HSTORE. (3) Finally, SILO and TICTOC initially perform
best on HPE, peaking at 56 cores with 4.6/5.3 M txn/s. Beyond this
peak, SILO and TICTOC degrade steeply on HPE. Instead, on Power9
and Power8 their throughput scales worse with a lower peak but also
less degrading than on HPE. Notably, the performance of both CC
schemes drops at 88 cores on Power8 within a socket. Since Power9
does not exhibit such performance drop within a single socket, fewer
hardware resources of the Power8 processor (especially L3 cache) and
subsequent resource contention within SILO and TICTOC seem to
cause the earlier performance drop.

Comparing the performance of the CC schemes for this high conflict
workload reveals an influence of the hardware properties, e.g., some
CC schemes react stronger to NUMA and cache contention than
others. Overall, the pessimistic CC schemes degrade strongest at
high core counts on all three hardware platforms. Notably, among
the pessimistic CC schemes NO WAIT stays ahead until utilising all
cores of a socket on the individual platforms, at which point WAIT
DIE overtakes. This indicates cache contention and NUMA as factors
strongly influencing the pessimistic CC schemes besides conflicts,
i.e., the simpler NO WAIT is not only sensitive to conflicts in the
workload but also to contention inside the hardware, whereas WAIT
DIE copes better with higher conflicts and contention at the cost of
overhead. A similar influence of hardware effects versus overhead
can be observed between MVCC, OCC, and HSTORE. On Power9
and Power8 at higher numbers of cores with high conflict, HSTORE
despite its coarse partition locking catches up with MVCC and OCC
circumventing NUMA and resource contention effects due to the
lower overhead, whereas the medium overhead OCC performs the
best on HPE. Finally, SILO and TICTOC perform the best on all three
platforms. Their peak performance is further ahead of the other CC
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schemes on HPE than on Power9 and Power8, but as NUMA takes
effect SILO and TICTOC degrade less on the Power platforms.

Further analysis of the detailed time breakdowns3 confirms that the
hardware characteristics effect how the individual CC schemes spent
time. The time breakdowns on Power8 reveal increased proportions
of time spent for index accesses and concurrency control compared
to HPE, on which more time is spent for actual work. Profiling con-
firms that latching within the CC schemes and index traversal are the
hotspots on Power8, both of which are sensitive to memory latency.
Notably, latching occurs to different extends in the CC schemes and
in different phases, i.e., during transaction execution categorised as
CC Mgmt. or when committing transactions categorised as Commit.
The observations for the individual CC schemes are accordingly. For
example, the pessimistic locking schemes spend more time acquiring
locks and committing, whereas MVCC and OCC spend more time
committing. On Power9, the time breakdowns exhibit similar increases
in time spent for index accesses and concurrency control, yet lower
than on Power8. That is, the time spent for index accesses and concur-
rency control is related to the cache sizes of the hardware platforms,
resulting in the least time spent on HPE with the largest L1 and L2
caches per logical core followed by Power9 with a larger L3 cache than
Power8 (cf. Table 8.2b). With increasing core counts and accordingly
more conflicts these differences vanish as time spent for waiting or
aborting dominates.

Insight: Under high conflict, regardless the hardware platform no
CC scheme utilises high core counts effectively, i.e., the CC schemes
only initially scale well with increasing core counts, but quickly thrash
under the overwhelming conflicts. Yet, their specific scaling behaviour
indeed depends on the hardware, especially on processor charac-
teristics (e.g., caches capacity) and NUMA, further analysed in the
following sections.

scaling on different real hardware — low conflict In
this second experiment, we determine how the different CC schemes
scale on the different hardware platforms providing a high number of
cores, when low conflict workload permits high concurrency. Accord-
ingly, Figure 8.15 shows the throughput of the CC schemes on HPE,
Power9, and Power8. Briefly summarised, all CC schemes present
positive scaling behaviour on all three hardware platforms, HSTORE
initially performs the best, but most CC schemes follow HSTORE in a
pack, and MVCC is behind at least for lower core counts.

However, a closer comparison between the three hardware platforms
indicates again two interesting trends for this low conflict workload.
First, the throughput of all CC schemes increases in distinctly different
slopes on the three platforms, i.e., the hardware platforms seem to

3 Figures omitted for brevity are available online [19].

https://github.com/DataManagementLab/VLDBJ_1000_cores_measurements/blob/main/section_4-1_intel-based_vs_power_high_conflict_4_warehouses/time_breakdown.md
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Figure 8.15: Throughput for TPC-C under low conflict on HPE, Power9, and
Power8.

have a distinct effect on the scaling behaviour. Second, as the num-
ber of cores increases, the relative performance of the CC schemes
distinctly differs between HPE and the two Power platforms. For de-
tailed analysis, Figure 8.16 shows comparisons, indicating for each
CC scheme the speedup of one platform over another (e.g., Power8 vs.
Power9) at the same number of cores.

The comparison of Power9 and HPE in Figure 8.16 (Power9 vs.
HPE) indicates that all CC schemes are faster on Power9. However,
the speedup on Power9 compared to HPE varies in distinct pattern,
corresponding to the increasing NUMA distance. For the pessimistic
locking schemes, the throughput difference between Power9 and HPE
shrinks until using 2 sockets (112 cores) on HPE, then throughput
on HPE falls behind and with more than 224 cores across 4 sockets
on HPE (across the farthest NUMA distance 3) throughput drops
even further. The other CC schemes react similarly to these on HPE,
except for HSTORE, which instead is affected by the closest boundary
beyond one socket and farthest boundary above 4 sockets (with NUMA
distances 1 and 3). Further, the closest boundary after 56 cores on HPE
has a diverse effect on the CC schemes. This NUMA boundary only
has a negative effect on the fastest two CC schemes (i.e., HSTORE
and TICTOC) as well as OCC. Instead, the other CC schemes scale
well past one socket (56 cores) on HPE and in fact close in onto the
throughput on Power9.

Comparing Power8 and HPE in Figure 8.16 (Power8 vs. HPE), indi-
cates the same effect as observed in comparison to Power9. Also on
Power8, the performance of all CC schemes initially is ahead, then
their performance on HPE catches up around 56 - 112 cores (across two
sockets with NUMA distance 1). In fact, HPE overtakes Power8, on
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Figure 8.16: Detailed throughput for TPC-C under low conflict on HPE,
Power9, and Power8 (1st row) and comparison between the
hardware platforms (2nd). The comparisons indicate by which
speedup ratio the throughput differs for a CC scheme (on y-axis)
at the same number of cores (x-axis) on one platform versus
another platform.
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which the CC schemes struggle due to resource contention (to be dis-
cussed in Section 8.4.2.1). Remarkably, the larger processor resources
on HPE compensate for its worse NUMA properties (lower band-
width and higher latency), when operating across 2 sockets. Across
more than 2 sockets (112 cores) the performance of most CC schemes
on HPE is even to Power8. Only HSTORE and MVCC straggle on
HPE, due to their higher load on the memory subsystem (i.e., sheer
performance of HSTORE and overhead of MVCC).

The comparison of Power9 and Power8 in Figure 8.16 (Power 9
vs. Power 8 or vice versa) indicates improved performance of the
Power9 processor over Power8, as throughput on one socket is 1.2 -
2x higher. Notably, beyond one socket the performance benefit of
Power9 stagnates or even decreases. Consequently, the strong NUMA
topologies of both Power platforms similarly boost concurrency control
at large scale. This confirms a general advantage of Power’s stronger
NUMA topology and importantly indicates the relevance of NUMA
properties for the performance of concurrency control.

Furthermore, the time breakdowns4 indicate diverging internal
behaviour of the CC schemes on the hardware platforms. Similar
to the high conflict workload, on Power8 the CC schemes spend
significant time for concurrency control and index accesses, while on
HPE for useful work (e.g., accessing records). Also Power9 shows
increased time spent for concurrency control and index accesses, but
again overall lower than on Power8 and biased towards index accesses
(less for concurrency control but more for index accesses). Profiling
on Power8 confirms this continued trend, again identifying latching
as bottleneck related to memory latency. Conversely, for HPE, these
observations hint at memory bandwidth as bottleneck for this low
conflict workload.

Regarding the second trend about the relative performance of the
CC schemes, on Power9 and Power8 the pessimistic locking schemes
perform better than on HPE. Notably, these perform better than SILO
and TICTOC for 96 - 1504 and 192 - 928 cores, respectively. Also, OCC
improves but only at larger core counts and not as much as the
pessimistic schemes. Consequently, on Power, OCC overtakes SILO,
but falls behind the pessimistic schemes. In contrast, MVCC provides
the worst throughout on Power with a growing gap to the other CC
schemes, whereas on HPE MVCC does overtake the other CC schemes
at large scale. These differences of the relative performance of the
CC schemes indicate two underlying causes for this second trend: (1)
Especially the latency sensitive pessimistic locking schemes benefit
from the lower latency in Power’s NUMA topology; (2) Resource
intense CC schemes (e.g., MVCC) benefit from the larger hardware
resources of the processors in HPE.

4 Figures omitted for brevity are available online [19].

https://github.com/DataManagementLab/VLDBJ_1000_cores_measurements/blob/main/section_4-1_intel-based_vs_power_low_conflict_1568_warehouses/time_breakdown.md
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Insight: Under low conflict the NUMA characteristics of the specific
hardware platforms clearly affect the performance of the CC schemes,
i.e., the scaling slopes of the CC schemes closely match the NUMA
topology. The CC schemes generally benefit from lower latency and
higher bandwidth in the NUMA topology. Yet the individual CC
schemes benefit differently from either better latency or bandwidth
and resource contention within the processor influences their scaling
behaviour.

8.4.2 Zooming into Hardware Aspects

Having identified diverging behaviour on the different hardware plat-
forms, we now zoom into those aspects that realise the large number
of cores: (1) Hardware parallelism within the processors and (2) the
topology connecting processors in a single system.

8.4.2.1 Simultaneous Multithreading

The superscalar processors of today’s hardware employ several tech-
niques to implement hardware parallelism. Besides a high number of
physical cores, the processors also employ (superscalar) instruction-
level parallelism (ILP) [81] and Simultaneous Multithreading (SMT) [36].
SMT establishes multiple parallel execution streams as logical cores
to better utilise the resources of their underlying superscalar physical
core, especially to facilitate thread-parallel software such as OLTP
DBMSs.

While many of today’s superscalar processors employ these general
techniques, the specific implementations differ [2, 95–97]. Especially
the Power processors utilise sophisticated SMT with a high degree of
parallel execution streams on a smaller number of physical cores, up to
8 such streams (i.e., SMT-8) [96, 97]. Notably, from Power8 to Power9
IBM’s hardware designers have enhanced the SMT implementation,
e.g., with advanced scheduling of the execution streams. In contrast,
Intel processors mainly drive hardware parallelism by the number
of physical cores and use simpler SMT with two parallel execution
streams (SMT-2) [95].

These elaborate techniques of hardware parallelism depend on
processor resources and the software as well as the workload running
on top. Therefore, our particular questions are how big this benefit
can be as OLTP workloads typically strain the memory subsystem
more than other processor resources and if the CC schemes allow
for sufficient concurrency to utilise the parallel hardware execution
streams of SMT.

In the following, we analyse the benefit of SMT for OLTP workloads,
focusing on the sophisticated and high-degree SMT (up to SMT-8) of
the Power processors. In the experiments, we use all physical cores
of a single processor and observe the throughput for increasing SMT
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(b) Speedup over SMT-1

Figure 8.17: Effect of broad SMT in Power9 and Power8 processors on
throughput for TPC-C under low conflict.

degree. We first analyse the best-case benefit using the low conflict
TPC-C workload, before also considering high conflict scenarios.

high smt degree for low conflict oltp Figure 8.17 shows
the throughput for the low conflict TPC-C workload of all CC schemes
under increasing SMT degree and the speedup relative to SMT-1.
On the Power9 processor, most CC schemes speedup equally with
increasing SMT degree, despite differing throughput; 1.7 - 1.8x for
SMT-2, 2.4 - 2.5x for SMT-4, and 3.3 - 3.4x for SMT-8. Only HSTORE
utilises SMT better with a speedup of 2.6x for SMT-4 and 3.9x for
SMT-8, relating to low overhead and exceptional performance for low
conflict workloads. Notably, despite a significant speedup of all CC
schemes, the speedup of SMT on the Power9 processor is sublinear
for this low conflict OLTP workload.

On the Power8 processor, in contrast, the CC schemes achieve overall
lower throughput and speedup than on Power9 (SMT-2: 1.4 - 1.5x, SMT-
4: 1.8 - 2.1x, SMT-8: 1.6 - 2.6x). That is, SMT of the Power8 processor
provides less benefit and the speedup of the CC schemes also diverges,
in three distinct groups. (1) HSTORE utilises SMT best with the highest
speedup, as on Power9. (2) TICTOC, OCC, and the pessimistic locking
schemes follow with still positive speedup for SMT-8, but progressively
less in according order. (3) The speedup of MVCC stagnates from SMT-
4 and for SILO even decreases from 1.8x for SMT-4 to 1.6x for SMT-8.

Notably, the three groups with distinct benefit of SMT comprise
CC schemes with similar memory footprints and the speedup of
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Figure 8.18: Throughput of broad SMT in Power9 & Power8 processors for
TPC-C under high conflict.

these groups correlates with these footprints, i.e., the group of CC
schemes with the smallest footprint gains most speedup from SMT
and inversely the group with the largest footprint gains least. This
correlation to the memory footprint and the increasing gap to Power9,
indeed indicates increasing resource contention for SMT on Power8.
Comparing their cache capacity highlights the larger L3 cache per
logical core on Power9 (cf. Table 8.2b) [96, 97]. Evidently, sufficient L3
cache capacity for all the execution streams is an important factor to
effectively utilise SMT.

On the Intel processor with only SMT-2, we make similar obser-
vations, omitted from Figure 8.17 due to the small SMT degree. For
example, SMT-2 of that Intel processor provides a speedup of 1.5x for
TICTOC from a throughput of 5.25 M txn/s with SMT-1 to 7.92 M txn/s
with SMT-2.

Insight: Overall, SMT indeed benefits our favourable (i.e., low con-
flict) OLTP workload, yet with sublinear speedup in relation to the
SMT degree. The sophisticated SMT of the Power9 processor provides
broad benefit for all CC schemes up to the highest SMT degree (SMT-
8). In contrast, resource contention limits the benefit of SMT on the
Power8 processor, indicating a dependency between the benefit of
SMT and the resource footprint of the CC schemes.

high smt degree for high conflict oltp For the second
workload with high conflict, throughput of the CC schemes under
increasing SMT degree and speedup relative to SMT-1 is shown in
Figure 8.18. Overall, the CC schemes barely benefit from SMT on
neither Power9 nor Power8. In detail, on Power9, SILO and TICTOC
utilise SMT best. These speed up by 1.4x with SMT-2 and maintain this
speedup for SMT-4 and SMT-8. In contrast, the remaining CC schemes
speed up with SMT-2 by a smaller factor — if at all. Latest with SMT-4
their speedup declines to a slowdown (<1x speedup). DL DETECT
and HSTORE immediately slow down with SMT-2 (0.59x and 0.93x,
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respectively). On Power8, the CC schemes benefit even less from SMT,
i.e., the speedup for SMT-2 is lower and for higher SMT degrees the
slowdown is stronger. Notably, MVCC has the same speedup on both
Power9 and Power8, throughput is higher on Power9 by stable 10%. In
conclusion, conflicts are the determining factor for the performance of
all CC schemes and prohibit general benefit of SMT. Yet, the improved
SMT of Power9 is still noticeable, albeit more limited than under low
conflict.

Insight: For high conflict OLTP workload, the performance of all
CC schemes is widely determined by the conflicts rather than SMT, yet
some benefit of SMT appears, especially from the Power9 processor.

8.4.2.2 Non-Uniform Memory Access

Today, thousands of cores are only available via multi-socket hard-
ware imposing the Non-Uniform Memory Access (NUMA) effect for
memory accesses. Such multi-socket hardware connects its processors
(and memory) in a tiered non-uniform topology, through which the
processors communicate and mutually access memory. As the topol-
ogy connecting the processors is tiered and non-uniform, so are the
performance characteristics for processors when communicating or
accessing memory, i.e., bandwidth and latency between processors in
the topology differ. These diverging performance characteristics of the
underlying hardware (the NUMA effect) impact the performance of a
DBMS depending on its communication and memory access pattern.

In the following, we analyse the NUMA effect of our three hardware
platforms on the CC schemes, which all employ different technologies
and topologies to connect their processors (see Section 8.2 for more
details). For this analysis, we start with an extreme scenario isolating
the NUMA characteristic of the three hardware platforms and their
effect on the CC schemes when all memory accesses have a predefined
NUMA distance. In a second experiment, we compare the NUMA
effect on the CC schemes using a more realistic and complex scenario
with NUMA effects imposed by the workload.

isolated numa effects (fixed distance) First, we analyse
the NUMA effect on the CC schemes in an extreme scenario, where
transactions strictly access memory at a fixed (specified) NUMA dis-
tance. This extreme scenario overall exposes the differing NUMA
characteristics of our hardware platforms and subsequently reveals
their influence on the CC schemes. For this scenario, we restrict the
TPC-C transactions to only access their home warehouse and allo-
cate this warehouse on memory with the specified NUMA distance.
Further, we use the low conflict workload and the maximum cores,
isolating the effect of operating across a specified NUMA distance
from other effects (e.g., conflicts).
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(b) Speedup over Local

Figure 8.19: Performance for TPC-C under low conflict with strict access
to home warehouse at specified NUMA distance (on x-axis)
on HPE, Power9, and Power8. Speedup is reported as ratio
of throughput at the specified NUMA distance over Local. For
Power, the distance 2 Hop is missing since this hardware has a
shallower topology than HPE (cf. Section 8.2.2).
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Figure 8.19 shows the throughput and speedup of the CC schemes
under increasing NUMA distance on HPE, Power9, and Power8. Since
the maximum number of cores (where the NUMA effect is strongest)
differs on the hardware platforms and thus the throughput, we rather
focus on the speedup of the NUMA distances 1 - 3 (1 Hop, 2 Hop, Re-
mote) over the local NUMA distance 0 (i.e., when all data is accessed on
the local NUMA region/processor), as shown in Figure 8.19b. Overall,
as expected the NUMA effect (deteriorating bandwidth and latency)
indeed degrades performance as the NUMA distance increases. Yet,
throughput and speedup of the CC schemes show several trends on
the different hardware platforms.

On HPE when accessing only local memory, the CC schemes HSTORE,
SILO, and TICTOC achieve remarkable throughput of 178 - 234 M txn/s.
However, when accessing farther memory, SILO and TICTOC immedi-
ately slow down sharply by 0.56x and 0.55x at NUMA distance 1, re-
spectively. Then, SILO and TICTOC slow down at a lower rate, to 0.21x
(38 M txn/s) and 0.18x (41 M txn/s) for NUMA distance 3 (Remote).
On Power9 and Power8, SILO and TICTOC slow down similarly for
the NUMA distance 1 (0.55 - 0.6x), but for the farthest NUMA distance
(Remote) their slowdown is more graceful (0.39 - 0.42x). In contrast,
HSTORE slows down much less on all three hardware platforms. For
NUMA distances 1 - 2, HSTORE slows down least on Power8 (0.97x),
followed by HPE and Power9 on par (0.86x). Afterwards, the farthest
NUMA distance affects HSTORE again the least on Power8 (0.84x),
followed by Power9 (0.74x), but HPE falls behind (0.47x).

The remaining CC schemes generally slow down more gracefully
under increasing NUMA distance. Notably, on HPE, the pessimistic
locking schemes (DL DETECT, WAIT DIE, and NO WAIT initially
slow down stronger for NUMA distance 1 (0.67 - 0.7x vs. 0.72 - 0.78x)
but then slow down at a lower rate, while MVCC and OCC slow down
stronger at the farthest NUMA distance 3 (Remote). On Power9, the
pessimistic locking schemes slow down similarly. On Power8, however,
these CC schemes slow down less, i.e., by 0.78 - 0.83x for distance 1

and 0.65 - 0.67x for distance 3. That is, the lower latency in the topology
of Power8 significantly benefits the pessimistic locking schemes.

In contrast, MVCC slows down most on HPE, with Power9 and
Power8 similarly ahead for NUMA distance 1 (HPE: 0.72x, Power9:
0.89x, Power8: 0.94x), but at the farthest NUMA distance Power9 falls
behind and Power8 leads again (HPE: 0.36x, Power9: 0.74x, Power8:
0.89). From the higher bandwidth of the Power platforms and in turn
higher bandwidth in Power8 than Power9, we conclude that MVCC
benefits from higher bandwidth in the topology (and lower latency).

Finally, OCC also presents diverse slowdown across the three hard-
ware platforms. Initially, at NUMA distance 1 OCC slows down least
on Power9, followed by HPE and Power8 on par (Power9: 0.89x, HPE:
0.78x, Power8: 0.79x), while at the farthest NUMA distance 3, Power9
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and Power8 are equally ahead of HPE (Power9: 0.65x, Power8: 0.62x,
HPE: 0.38x).

Insight: Overall, two notable trends appear relating to the NUMA
characteristics of the three hardware platforms. First, the latency sen-
sitive pessimistic locking schemes do best on Power8 providing the
lowest latency in its topology. On HPE and Power9 instead, which
have similarly higher latencies than Power8 for NUMA Remote ac-
cesses, these schemes perform similarly worse. Second, CC schemes
that require more bandwidth, either due to sheer performance as for
HSTORE or due to memory overhead as for MVCC, perform better
on Power9 and Power8, both of which provide higher-bandwidth
interconnects in their topologies. Both these trends confirm our early
observations of NUMA effects on the scaling behaviour of the CC
schemes on the three hardware platforms.

workload-imposed numa effect The previous experiment
highlights effects on the CC schemes relating to the NUMA character-
istics in an extreme scenario. However, realistic operating conditions
of OLTP DBMSs are more complex. On one hand, DBMSs commonly
attempt to mitigate extreme NUMA effects by strategies like NUMA-
aware database partitioning. On the other hand, realistic workload
dictates the access pattern, still imposing NUMA effects (and other
non-NUMA effects). We now analyse these more realistic workload-
imposed NUMA effects using TPC-C’s remote transactions. That is,
TPC-C is commonly partitioned by warehouses (also in our experi-
ments) mitigating NUMA effects. Yet, TPC-C specifies so-called remote
transactions that apart from their home warehouse span further ware-
houses (remote warehouses), thus these remote transactions are not
partitionable and cause workload-imposed NUMA effects.

In the following experiment, we use the combination of following
two setups to isolate the NUMA-related from the other non-NUMA
effects in this more complex scenario: (1) In the first setup, we analyse
the non-NUMA related effects of remote transactions. For this, we
vary the amount of remote transactions across warehouses but use
only local memory for all warehouses (i.e., no NUMA effects occur);
(2) In the second setup, we then distribute warehouses across NUMA
regions and thus observe the combined (NUMA and non-NUMA)
effects imposed by remote transactions. Consequently, we can thus
better isolate the NUMA-related from the non-NUMA-related effects
on the CC schemes by comparing their performance in these two
settings.

In detail, for setup (1) NUMA Local, we allocate the remote ware-
houses on local memory (alongside the home warehouse and transac-
tion executor). In contrast, for setup (2) NUMA Remote, we allocate the
remote warehouses the farthest away from the transaction executors,
i.e., remote warehouses are at remote NUMA distance 3 but the home
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warehouses remain at local NUMA distance 0. The remaining setup is
identical to the prior experiment (cf. Isolated NUMA Effects).

Figures 8.20a shows the performance in the two described settings
((1) Local and (2) Remote), when transactions increasingly access re-
mote warehouses (% remote transactions) either on (1) local memory
or (2) remote memory. In addition, Figure 8.20b compares the perfor-
mance in these two settings (Remote vs. Local) for the same ratio of
remote transactions. We first analyse how the different CC schemes
are affected by the aforementioned effects focusing first on the HPE
platform. In a second step, we then compare the effects across the
different hardware platforms to identify the effect of their NUMA
characteristics.

Starting with the CC schemes on HPE (top row of Figure 8.20):
while most CC schemes provide stable throughput for the Local setting
on HPE, they all degrade in the Remote setting due to the NUMA
effect (also on the Power platforms, though with further effects which
we discuss later). Notably, DL DETECT and HSTORE significantly
degrade already in the Local setting without the NUMA effects, i.e.,
non-NUMA effects impact these CC schemes as well.

Figure 8.20b shows the performance ratio when increasing the
NUMA distance for remote warehouses in setup (2) compared to the
(1) Local setup. This provides a more detailed insight into the effects
of remote transactions. Overall, the resulting effects on CC schemes
can be grouped into three categories:

1. DL DETECT drops to 0.83x at 1% remote transactions but then
degrades only to 0.72x, which indeed is the least effect across
all CC schemes. Consequently, conflicts (and other non-NUMA
effects) affect DL DETECT more than NUMA.

2. Conversely, the other pessimistic CC schemes (WAIT DIE and
NO WAIT) as well as OCC, SILO, and TICTOC suffer more from
the NUMA effects. These significantly slow down with NUMA
Remote compared to NUMA Local, while their throughput for
NUMA Local is mostly stable.

3. HSTORE and MVCC suffer from the combination of NUMA
effects and non-NUMA-related conflicts. While for HSTORE
a combined effect relates to its high sensitivity to conflicts (as
observed previously), for MVCC an additional effect of con-
flicts only appears by comparison to the prior experiment on
NUMA effects (cf. Figure 8.19). Previously MVCC suffered less
NUMA effects, when there were no conflicts in the workload.
Consequently, the conflicts indeed amplify the NUMA effect for
MVCC.

Comparing the hardware platforms (2nd and 3rd row of Figure
8.20), we see that the CC schemes on the Power platforms behave
similar to HPE. However, looking into the detailed behaviour, we see
that the workload-imposed NUMA effects depend on the individual
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(b) Speedup

Figure 8.20: Effect of workload-imposed NUMA by increasing ratio of remote
transactions (on x-axis) on TPC-C under low conflict in the two
different setups (Local and Remote as described in the setup of
this experiment) and the three platforms: HPE, Power9, and
Power8. Figure (a) shows the throughput for increasing ratio of
remote transactions. Figure (b) shows the ratio of throughput of
the Remote over the Local setup.
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NUMA characteristics of the hardware platforms. For example, in
our following analysis we confirm the advantage of the better NUMA
characteristics of the Power platforms compared to HPE, providing
more stable behaviour (as already observed in the previous experi-
ment). This can be seen by the fact that the CC schemes on the Power
platforms for the Remote setup in Figure 8.20 (right column) show a
shallower drop when compared to HPE. In the following, we now
discuss the details that lead to this behaviour.

In Figure 8.20a, the throughput of the CC schemes for NUMA
Remote degrades depending on three factors: the sensitivity of the
CC schemes to NUMA, the NUMA characteristics of the specific
hardware platform, and non-NUMA effects such as cache pollution.
These effects appear as follows on the three hardware platforms for the
CC schemes previously categorised as significantly affected by NUMA
(and insignificantly by non-NUMA effects): (1) On HPE, as already
determined, the NUMA effect strongly and continuously degrades the
CC schemes; (2) on Power9, the better NUMA characteristics degrade
the CC schemes less, but the smaller cache causes a small drop for 1%
remote transactions; (3) on Power8, the small cache causes a significant
non-NUMA-related drop for 1% remote transactions for both NUMA
Remote and NUMA Local, afterwards the CC schemes also degrade due
to the NUMA effect similar to Power9, as detailed in Figure 8.20b.

Finally, the CC schemes of the other categories (not mentioned
above) also diverge between the three platforms. We summarise the
most important findings for those schemes in the following. Figure
8.20b indicates that the cache pollution on Power8 exposes DL DE-
TECT to NUMA effects, as there is no NUMA effect on HPE or Power9.
Furthermore, observing the speedup of Remote vs. Local in Figure 8.20b
confirms for the CC schemes of the third category (e.g., HSTORE) that
the NUMA effects are amplified by non-NUMA effects. As the NUMA
characteristics improve from HPE to Power9, and further from Power9
to Power8, we observe that the speedup of Remote vs. Local converges
towards 1x, i.e., the performance of these CC schemes indeed becomes
independent of NUMA effects and depended on the other non-NUMA
effects.

Insight: In the more realistic scenario of workload-imposed NUMA
effects (by TPC-C remote transactions), the CC schemes not only
face NUMA effects but also other effects. To summarise, we have
seen that they are affected in three groups: (1) one group is mainly
affected by non-NUMA effects (e.g., conflicts), such as DL DETECT, (2)
another group is primarily affected by NUMA effects, e.g., WAIT DIE
or TICTOC, and (3) the last group is affected by the combination of
NUMA effects and conflicts, e.g., MVCC and HSTORE. These findings
apply to all three hardware platforms, in variations according to
the specific hardware characteristics as previously observed for the
isolated NUMA effect.
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8.4.3 The Full TPC-C Benchmark

In the previous experiments, we observed a significant impact of con-
flicts and data locality on the behaviour of the CC schemes. However,
besides conflicts and data locality, the type of workload and opera-
tions is a major aspect. Therefore, in this final evaluation step, we
analyse the effect of the workload on the CC schemes in more detail.
In particular, we evaluate the contrast between a more comprehensive
workload covering the full TPC-C transaction mix (all 5) versus the of-
ten used more narrow transaction mix comprising just the NewOrder
and Payment transactions, which was used in the simulation of prior
work [206]. Notably, the full transaction mix includes read-heavy and
additionally more expensive (i.e., longer-running) transactions, such
as StockLevel aggregating records from many districts. In addition,
the full mix requires additional indexes increasing the cost of the
NewOrder and Payment transactions (used in the more narrow mix)
as well.

In the following, we again start with an analysis of the high conflict
workload and then discuss the results for the low conflict workload.

8.4.3.1 Full TPC-C under High Conflict

In this experiment, we analyse how the behaviour of the CC schemes
differs between the full and the narrow transaction mixes for high
conflict workload. Most notable, the read-heavy transactions of the
full mix are expected to affect the CC schemes depending on their
ability to handle read-write conflicts. In a first step, we thus focus on
diverging behaviour of the CC schemes between these two transaction
mixes on the same hardware platform. Then, we assess whether their
behaviour further differs across the hardware platforms. As in our
previous experiments, we first evaluate the CC schemes on HPE and
then compare the Power platforms.

full vs . narrow mix on hpe Figure 8.21 displays the perfor-
mance of the individual CC schemes for the full TPC-C transaction
and a comparison to the narrow mix (only NewOrder and Payment
transactions), cf. Figure 8.15. The top row provides an overview over
the performance of the individual CC schemes. Overall, it shows that
the CC schemes scale well initially, but eventually all thrash due to
overwhelming conflicts — a similar behaviour as with the narrow
transaction mix.

However, the comparison to the throughput of the narrow mix
(Figure 8.21a, 2nd row) indicates broadly worse throughput with the
full mix until about 56 cores. At higher core counts, though, most
CC schemes indeed provide better throughput (e.g., NO WAIT at
224 cores 2.6x over the narrow mix). Remarkably, the CC schemes
better handle increasing conflicts and NUMA effects with the more
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(c) Abort Rate

Figure 8.21: Throughput, scalability, and abort ratio for full TPC-C transac-
tion mix under high conflict on HPE. In the 2nd row, throughput
and scalability, and abort rate are compared between the full
and the narrow TPC-C mix (only NewOrder & Payment). For
throughput (a, 2nd row), we compare the speedup of the full
over the narrow mix. Since scalability as such is reported as
speedup over 1 core (b, 1st row), we rather compare the scalabil-
ity as difference (b, 2nd row) between the speedup of the full mix
minus the narrow mix. Likewise, the abort ratio (c, 2nd row) is
compared by the difference, i.e., abort ratio of the full mix minus
the abort ratio of the narrow mix. In all plots, one data point
for OCC (at 224 cores) is missing, since here the OCC scheme
“froze” due to high conflicts.
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(read)-intense transactions in this full mix. Only HSTORE does not
quite close the performance gap between the full transaction mix and
the narrow mix (0.53 - 0.77x the performance of the narrow mix) and
OCC’s performance for the full mix remains low at 0.4x, not improving
at higher core counts.

The detailed scaling behaviour in Figure 8.21b, indeed indicates that
this positive effect of the heavier transactions in the full transaction mix
already starts at lower core counts. The comparison between the full
and the narrow mix (Figure 8.21b, 2nd row), shows, that already from 8
cores the CC schemes exhibit better scaling for the heavier transactions,
though beyond 56 cores (more than one socket) the lead decreases.
Notably, SILO and TICTOC benefit the most (peak improvement),
while MVCC benefits across the widest number of cores.

Having identified diverging impact of the full TPC-C transaction
mix on the CC schemes, we now analyse the causes in further details.
Specifically, we search for (1) reasons reducing the performance at
lower core counts as well as improving the performance at higher core
counts and (2) reasons for higher impact on some CC schemes than
others.

For the first case, as the full transaction mix introduces additional
read-write conflicts and longer transactions, there are two major differ-
ences between the full and the narrow transaction mix potentially caus-
ing the observed general divergence: Conflict handling and amount
of actual work. If conflict handling has a major influence on the ob-
served throughput and scaling behaviour, then the CC schemes should
exhibit similarly diverging abort rates. However, in Figure 8.21c the
abort rates for the full mix and the comparison to the narrow mix are
ambiguous without a clear effect of the heavier transactions. For ex-
ample, MVCC has similar abort rates for both transaction mixes while
throughput significantly differs. Similarly, the improved throughput
for the full mix of SILO and TICTOC does not relate to their abort rate.
Consequently, the abort rates of the CC schemes surprisingly do not
relate to their diverging throughput for the two transaction mixes.

As further step in analysing the impact of read-write conflicts and
longer transactions, we analyse the time breakdowns [19] detailing
how the CC schemes spend their time processing transactions of the
full and the narrow mix (e.g., useful work, aborting, etc., cf. Table 8.3
in Section 8.3). The time breakdowns reveal that lower throughput for
the full transactions mix relates to an increase of relative time spent
for concurrency control in all CC schemes (i.e., CC Mgmt. or Commit),
either in addition to increased waiting/aborting (for DL DETECT,
WAIT DIE, NO WAIT, and OCC) or exceeding a reduction of wait-
ing/aborting (for MVCC, SILO, and TICTOC). As the number of cores
increases and throughput improves for the full mix, the time spent for
concurrency control converges between the full and the narrow mixes.
Instead, the time breakdowns of the full mix indicate a slight reduction
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of time spent waiting or aborting in conjunction with a slight lead
in useful work. Consequently, the higher transaction throughput in
the full mix relates to lower conflict at higher core counts. These two
trends in the time breakdown imply that, first, the lower throughput
for the full mix is not only associated with conflicts, but also with the
higher load of the heavier transactions, making concurrency control
more costly for all CC schemes compared to the narrow transaction
mix. Second, at high core counts the heavier transactions dampen the
impact of conflicts, allowing higher throughput especially for those
CC schemes that can efficiently handle read-heavy transactions. This is
not the case for DL DETECT, OCC, and HSTORE, as explained below.

The time breakdowns also provide insight into why DL DETECT,
OCC, and HSTORE behave inconsistently with the other CC schemes,
i.e., with increasing core counts these do not benefit (as much) from
the heavier transactions. DL DETECT spends much more time wait-
ing with the full transaction mix compared to the narrow mix, since
waiting itself becomes more costly for DL DETECT due to traversing
larger wait-for-graphs. OCC is initially slower due to more costly
concurrency control like the other CC schemes, but at higher core
counts aborting in OCC appears as new bottleneck. Remarkably, the
time spent aborting increases for OCC despite lower abort rate for
the full mix, i.e., for OCC aborting the heavier transactions is more
costly and overshadows lower conflict. In contrast, HSTORE spends
its time very similar for both transaction mixes, i.e., waiting time even-
tually dominates as conflicts overwhelm HSTORE’s partition-based
locking regardless the type of work. Consequently, the performance of
HSTORE converges between the two transaction mixes due to similarly
dominating waiting time. In contrast to the prior three CC schemes,
MVCC performs exceptionally better with the full mix and indeed it
spends more time for actual work and less for aborting or waiting,
confirming its ability to prevent read-write conflicts (similar applies
to TICTOC and SILO).

Insight: Under high conflict the heavier transactions of the full
TPC-C transaction mix make concurrency control of all CC schemes
more costly. However, at large scale, these heavier transactions also
dampen the impact of conflicts, especially benefiting CC schemes that
efficiently handle read-write conflicts.

power vs . hpe Figure 8.22 displays the throughput of the CC
schemes for the full TPC-C transaction mix on Power9 and Power8.
Additionally, this figure provides a comparison to the narrow mix on
these hardware platforms and the difference to the comparison to the
narrow mix on HPE. The behaviour of the CC schemes for the full
transaction mix on Power8/9 broadly resembles their behaviour on
HPE. The most noticeable difference is that throughput is generally
lower, i.e., the heavier transactions reduce throughput on Power8/9
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more than on HPE. Accordingly, at low core counts the full mix lags
further behind the narrow mix and at high core counts it is less ahead
on the Power platforms.

The general cause for the slowdown for the full transaction mix on
Power is the same as on HPE, i.e., especially at low core counts the
heavier transactions make concurrency control more costly. Further-
more, the following three differences between the Power and the HPE
hardware platforms stand out:

1. As the number of cores increases on Power, especially the pes-
simistic locking schemes benefit far less from the full mix com-
pared to HPE. HSTORE even degrades on Power9 and Power8,
with increasing numbers of cores it increasingly falls behind its
throughput for the narrow mix. That is, these CC schemes as
well as SILO and TICTOC deviate further apart from their per-
formance for the narrow transaction mix as the number of cores
increases on Power. For the pessimistic locking schemes the time
breakdowns reveal more time spent aborting rather than waiting.
The time breakdowns of HSTORE, SILO, and TICTOC are very
similar on the three hardware platforms, i.e., their behaviour is
the same, but hardware performance makes the difference.

2. In contrast to the prior CC schemes, OCC copes better with the
full mix on Power than on HPE. On Power9, OCC speeds up by
2.5x over the narrow mix, while on HPE it slows down by 0.4x.
On Power8, OCC only reduces the performance gap, reaching
0.84x speedup at the maximum of cores.

3. Only MVCC does not diverge further, providing constantly less
speedup (-0.10x) on Power than on HPE. Indeed, the time break-
downs of MVCC are similar for all three hardware platforms,
i.e., its behaviour is the same, but hardware performance differs.

Insight: In conclusion, TICTOC and SILO handle high amount of
conflicts best, regardless the hardware or workload type (full and
narrow TPC-C mix), while MVCC proves its conflict handling advan-
tageous for (read-)heavy workload (full TPC-C). Moreover, the specific
performance of the CC schemes for heavier transactions as in the full
TPC-C mix depends on the underlying hardware and the number
of utilised cores, making for varying relative performance of the CC
schemes across the hardware platforms and workload types.

8.4.3.2 Full TPC-C under Low Conflict

The previous experiment with the full TPC-C transaction mix under
high conflict indicated that besides more conflicts also the higher
load on the hardware impacts performance. That is, even for the
high conflict workload that generally limits hardware utilisation, the
increased load of the heavy transactions influences the CC schemes.
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[ May 12, 2022 at 18:12 – v24 – Intro v6, Method v6, Eval v3, Scale-Up v3, Scale-Out v2, Conc v4 ]

Figure 8.22: Throughput for full TPC-C mix under high conflict on Power9/8
with comparison to narrow mix (NewOrder & Payment) and in
3rd row difference to comparison of full vs. narrow mix on HPE
(cf. Fig. 8.21a).
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Figure 8.23: Throughput of optimised DBx1000 for full TPC-C transaction
mix under low conflict on HPE, Power9, and Power8. The full
mix causes a performance bug on Power9, which is removed in
“Power9 (RI)” by replicating internal data structures.

Consequently, in the absence of conflicts (low conflict workload),
hardware utilisation is the main factor determining the performance
of the CC schemes.

First, we provide an overview of the performance of the CC schemes
for the full mix on all three hardware platforms (indicating significant
differences between those). In the next step, we then contrast the
behaviour of the CC schemes for the full mix with the narrow mix on
the same hardware platform (i.e., HPE) to identify divergences due
to workload characteristics. In the final step, we then compare these
divergences of the CC schemes for the full transactions mix across
the three hardware platforms to distinguish trends relating to either
workload or hardware characteristics.

comparison of cc schemes Figure 8.23 provides an overview
of the throughput of all CC schemes for the full TPC-C mix under low
conflict on all three hardware platforms. As expected, it shows that the
CC schemes have a generally positive scaling behaviour on HPE and
Power8, i.e., throughput increases with increasing number of cores.
However, in comparison to the narrow transaction mix, throughput
is overall lower (cf. Figure 8.15). We will compare the narrow mix in
detail below.

On Power9, though, the full mix causes anomalous behaviour for
all CC schemes, due to a combination of caching and NUMA effects
caused by the higher memory footprint. Specifically, pointers to access
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Figure 8.24: Detailed throughput for the full TPC-C transaction mix under
low conflict on HPE with comparison to the narrow mix. The
comparison indicates the speedup ratio by which the throughput
differs from the narrow transaction mix (cf. Figure 8.15) for a
CC scheme (on y-axis) at the same number of cores (on x-axis).

indexes drop out of the individual processor caches and have to be
fetched from potentially distant memory, causing significant slowdown
as number of cores increases and subsequently the NUMA distance
between them.

We thus further optimised DBx1000 for Power9 by copying these
crucial pointers into the local memory of each processor to reduce the
memory access cost but have the cores of each processor share these
pointers (at most one copy in each processor cache). The results of
this optimised variant of Power9 (called Power9 (RI)) indeed show a
similar behaviour to Power8 and HPE. Notably, this optimisation for
Power9 has only minimal effect for the narrow transaction mix, due to
the smaller footprint of the involved transactions.

full vs . narrow mix on hpe In the following, we compare
the full and the narrow mix on HPE. On HPE, the transactions of
the full TPC-C mix, indeed show the expected benefit of MVCC,
generally handling read-heavy transactions better. Also under low
conflict MVCC becomes third best for the full mix at high core counts,
which is different from the narrow mix. Conversely, SILO falls behind
for this full mix.

In more detail, Figure 8.24 shows the detailed throughput for the
full TPC-C mix on HPE and a comparison to the narrow mix. The
full mix reduces the throughput of all CC schemes, but distinctly for
the individual CC schemes. The best performing HSTORE and the
improved MVCC slow down least (HSTORE: 0.69 - 0.88x, MVCC: 0.71 -
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0.86x). At highest core count, HSTORE even speeds up by 2.4x and
does not thrash as in the narrow mix. TICTOC follows with a slightly
stronger slowdown, especially under NUMA effects at 56 cores and
the highest core count. Next, the group of pessimistic locking schemes
increasingly slows down until 1344 cores, even more so SILO with a
significant slowdown of 0.24x at 1568 cores. Lastly, OCC is significantly
affected by the full transaction mix (0.5x). A comparison of the time
breakdowns reveals higher coordination costs as the main reason for
the overall lower performance for the full transaction mix, i.e., even in
this low conflict workload, the heavy transactions increase the time
spent for coordination for all CC schemes.

Insight: As a major observation, the more involved (i.e., long-
running) transactions of the full TPC-C mix do not simply increase the
amount of actual work, but their increased footprint indeed impacts
concurrency control, for both the high conflict and the low conflict
workload. Besides a dampening effect on conflicts and the benefit of
MVCC, the individual CC schemes slowdown distinctly. Hence, we
conclude that the (read-)heavy transactions of the full TPC-C directly
amplify the cost of the individual CC schemes.

power vs . hpe Finally, the comparison of the results for the full
TPC-C under low conflict across the different hardware platforms
confirms the general slowdown on the Power platforms and similar
the slowdown trends of most CC schemes5.

Importantly, the comparison across the hardware platforms confirms
our observations on the relation of their hardware characteristics to the
behaviour of the CC schemes, albeit leading to different performance.
On one hand, the heavier transactions of the full mix cause stronger
resource contention on Power, such that on both Power platforms the
slowdown at low core counts is stronger than on HPE. On the other
hand, the CC schemes scale better on Power, due to their better NUMA
characteristics, finally reaching similar or less slowdown than on HPE
at highest core counts. Notably, on HPE we previously observed a
significant benefit of MVCC handling the read-heavy transactions of
the full mix. On Power the resource contention cancels out this benefit
of MVCC.

Insight: The full TPC-C transaction mix makes concurrency control
even more costly on Power regardless the amount of conflicts in the
workload, i.e., larger processor resources on HPE prove more beneficial
than the better NUMA characteristics on Power for the full mix in
contrast to the narrow mix. Overall, considering both transactions
mixes, the CC schemes compare for low conflict workload as follows:
(1) HSTORE provides the best performance (on any hardware) as long
as there are barely any conflicts, i.e., even few conflicts inhibit its
performance (e.g., even low conflict TPC-C at high core counts). (2)

5 Detailed figures omitted for brevity are available online [19]

https://github.com/DataManagementLab/VLDBJ_1000_cores_measurements/blob/main/section_4-3-1_full_TPC-C_low_conflict_1568_warehouses/comparison_full_TPC-C_vs_narrow_TPC-C_all_hardware/README.md
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TICTOC performs most reliably (even for both low and high conflict
workloads). The remaining CC schemes compare diversely. Their
performance depends on the characteristics of the individual hardware
platforms (NUMA and cache capacity) and the workload. For example,
due to the large memory footprint of the read-heavy transactions,
MVCC does not prove advantageous on all hardware (i.e, on Power),
despite targeting read-heavy transactions.

8.5 conclusion and future work

In this paper, we presented the results of our extensive analysis of
concurrency control on real(ly) large multi-socket hardware as major
component of OLTP DBMS. To conclude, we first summarise our major
findings. Based on these findings, we then discuss our recommenda-
tions as well as possible future directions towards high and robust
performing OLTP DBMSs.

8.5.1 Discussion of Findings

In the following, we summarise the main findings of the two evaluation
parts and conclude with final insights.

findings of part one In the first part of our evaluation, we
revisited the simulation of OLTP on then predicted large many-core
hardware [206] and compared it to an Intel-based hardware which
does provide “a 1000 cores” today but as multi-socket hardware. We
identified several discrepancies between the original simulation and
real hardware in our evaluation. Importantly, we showed that all CC
schemes indeed scale well beyond 1000 cores for low conflict work-
load, when using state-of-the-art optimisations. Notably, due to shift-
ing bottlenecks, combinations of optimisations were necessary, e.g.,
hardware-assisted timestamp allocation only improved performance
with additional optimisations, as shifting contention then caused latch
thrashing. Among the evaluated CC schemes, the now included TIC-
TOC outperformed all other schemes for both low conflict and high
conflict workloads. However, all of them including TICTOC still be-
come overwhelmed by conflicts under high contention, degrading
even more drastically on our real Intel-based hardware than in the
simulation.

findings of part two In the second part of our evaluation, we
then presented the results of our broadened evaluation, additionally
comprising two IBM Power-based hardware platforms and the full
transaction mix of TPC-C. With this broadened evaluation, we indeed
confirmed our initial observations and further connected the perfor-
mance of CC schemes with hardware and workload characteristics,
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e.g., NUMA effects, processor resources, conflicts, and transaction
footprint.

We observed common outstanding and complex nuanced effects of
hardware and workload characteristics. First, under high contention,
the previously observed thrashing caused by overwhelming conflicts
persisted regardless of hardware or other workload characteristics, im-
peding adequate utilisation of all our large hardware. A major cause of
this thrashing of all CC schemes is the simple inter-transaction parallel
execution scheme commonly used in today’s DBMS [65, 103, 106, 112,
183], as it can only utilise high hardware parallelism with high trans-
action concurrency, amplifying contention. Second, we observed more
nuanced effects from the interaction between CC schemes, hardware,
and workload. Different hardware characteristics proved significant
depending on the design of the CC schemes, e.g., temporary copies of
optimistic CC demand cache capacity and bandwidth, while locking
of pessimistic CC is latency sensitive. Notably, we observed negative
effects only when this demand exceeded the available cache capacity
or bandwidth. That is, these capacity related effects did not appear as
long as sufficient resources were available. Moreover, the workload
further influenced this interaction between the CC schemes and the
hardware. For example, the transaction footprint (accessed tuples)
amplified the cache demand, degrading performance of optimistic
CC when the cache was too small. However, at the same time, the
transaction footprint also alleviated contention off latches indeed im-
proving performance of pessimistic CC. Consequently, hardware and
workload have complex effects on CC schemes and overall bottlenecks
in the DBMS.

insights from findings The bottom line of our findings is, that
an agglomeration of bottlenecks in the system determines the cost
of transaction execution and overall system performance. To reason
about the scalability of DBMSs, it thus is important to understand how
the cost of individual bottlenecks scales and how these bottlenecks
interact. In this regard, our evaluation has shown complex effects of
workload and hardware as well as complex interaction of bottlenecks
adding up, amplifying each other but also dampening or hiding each
other. Then, to achieve high performance, these costs must be balanced
against the available hardware resources considering the workload
at hand. To conclude, we argue that maintaining the ideal balance
despite changing workloads and evolving hardware will enable robust
DBMS performance.
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8.5.2 Recommendations and Peek into the Future

Based on our findings, we now discuss our recommendations to
achieve robust DBMS performance and point out according research
avenues.

comprehensive contention management As discussed above,
all evaluated CC schemes scale poorly, surrendering to conflicts and
contention. Even advanced CC schemes with conflict mitigation mech-
anisms do not reliably withstand many conflicts, like TICTOC or
beyond the evaluated ones CICADA [90, 120, 148, 201, 208]. Moreover,
besides logical contention of transaction conflicts, also physical con-
tention (e.g., on latches) significantly impacts performance and system
components outside of the CC scheme strongly affect contention (logi-
cal & physical), especially the simple but common inter-transaction
parallel execution scheme.

As a consequence, we recommend broader system-wide contention
management far beyond the CC scheme, since system-wide many
factors affect contention and there are more options to efficiently man-
age contention. For example, system-wide contention management
(especially across concurrency control, execution scheme, and sched-
uler) could reduce logical contention with smarter parallel execution
rather than with conflict mitigation in CC schemes, thereby reducing
contention more efficiently. As such, we envision contention man-
agement throughout the entire system to better balance contention
shifting across system components, which is a big challenge in achiev-
ing robust performance. While there is work in this direction [53, 143,
188, 199, 200, 205, 210], we believe that extending these to our notion
of system-wide contention management and extending to stronger
awareness of the underlying hardware would greatly benefit DBMS
performance. In particular, interesting directions are broader forms
of parallel execution besides inter-transaction parallelism and a trans-
action scheduler, which is aware of system-wide contention and the
interaction with hardware like cache competition. A future route
along this line would be to choose the appropriate form of paral-
lel execution of transactions, e.g., inter-transaction parallel execution
for uncontended workloads or where contention is “beneficial” (i.e.,
due to resource sharing), intra-transaction parallel execution for con-
tending transactions, and even sequential execution under excessive
contention.

We further recommend adaptive concurrency control as part of
comprehensive contention management. Adaptive CC is recognised
for employing the most suitable CC scheme for a group of transactions
or partition of tuples, e.g., CormCC [180] is an outstanding candidate
with low overhead cooperation between a host of CC schemes. We
believe that adaptive CC should determine the CC schemes as part
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of our proposed system-wide contention management, as those CC
schemes are strongly affected by many factors of the overall system
but in turn strongly affect the system. For example, conflict frequency
on a tuple (logical contention) is an important feature to determine the
CC scheme, which again is strongly affected by transaction scheduling.

advanced performance models Other important aspects shown
in our evaluation are the complex dependencies of DBMS performance,
i.e., the system design, the workload and the underlying hardware in-
teracting and jointly affecting thrashing points. Due to these complex
dependencies, we argue for comprehensive (e.g., learned) performance
models that can better reflect these complex effects. Current work on
performance models facilitating synthesis of data structures [91] and
recent progress on learned components [58, 86, 125, 163] spark our
confidence in learned performance models [85] deriving complex
dependencies beyond the ability of purely analytical models. Such
models would then not only help to inform contention management as
discussed above but also would open new opportunities, e.g., finding
the optimal hardware for a given workload. In the long term, such
performance models would further enable quick exploration of system
performance without extensive benchmarking and could eventually
lead to performance guarantees of DBMSs.

adaptive system architectures Our findings point out, that
optimal system performance requires the system design to ideally
balance bottlenecks. However, this balance differs for workloads as
well as hardware and changes over time, due to workload fluctuation
but also progress of state-of-the-art (e.g., optimisations). Hence, we
advocate for adaptive systems and especially adaptive system architec-
tures capable of re-balancing the system design. Beyond the proposed
adaptation and synthesis strategies [91, 93, 140, 180], we argue for flex-
ible system-wide adaptation, which exceeds adaptation of individual
components and opposes rigid instance optimisation. Towards effec-
tive system-wide adaptation, performance prediction and adaptation
overhead are significant challenges. As recommended above, perfor-
mance predictions will benefit from advanced performance models,
whereas we consider flexible system architectures and execution mod-
els to drive efficiency. Specifically, we envision the decomposition of
system designs into fine-grained building blocks which can be effi-
ciently composed at runtime [18] (e.g., by new compilation techniques).
This will enable flexible system architectures to broadly transform a
system balancing bottlenecks across all system components. Thereby,
we envision adaptive system architectures to successfully adjust to
changing workloads and shifting hardware balances.

artefact availability Finally, another important route is that
data of extensive evaluations like this should be made available for the
community. We have released all artefacts [19, 20] of this evaluation,
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making these available to the database community for further research.
We believe that despite our extensive analysis in this paper the data
itself is a valuable source for future research. So, we hope that this
source helps researchers and system builders to further dig into details
they find interesting and come up with their own conclusions.
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abstract

In this paper, we present a new approach for achieving robust perfor-
mance of data structures making it easier to reuse the same design
for different hardware generations but also for different workloads.
To achieve robust performance, the main idea is to strictly separate
the data structure design from the actual strategies to execute access
operations and adjust the actual execution strategies by means of
so-called configurations instead of hard-wiring the execution strategy
into the data structure. In our evaluation we demonstrate the benefits
of this configuration approach for individual data structures as well
as complex OLTP workloads.
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9.1 introduction

motivation : Within the last decade, we have seen different hard-
ware trends that significantly affected the design of single-node database
systems: (1) Increases in main-memory capacities made it possible to
hold even larger data sets in RAM, thus eliminating the I/O bottleneck
of accessing secondary storage (e.g., hard drives). (2) Moore’s Law and
Dennard Scaling required processor designers to move from single-
socket and single-core designs to multi-socket and multi-core designs.
As a result of these trends, we have seen a rapid evolution of hard-
ware designs differing in essential characteristics not only memory
capacities but also the underlying topology of how cores and memory
are connected as well as cache sizes and coherence protocols.

A considerable body of existing work in DBMS research has thus
focused on optimising the design of core DBMS data structures such
as indexes for specific hardware configurations and workloads. For
example, there have been various design alternatives proposed for
classical B-trees to adapt them to modern memory hierarchies and
make them more cache-conscious for read-heavy workloads [150, 151]
or to optimise their behaviour for high-contention scenarios [117]
under write-heavy workloads. A significant issue with this manual
tailoring of core DBMS data structures is that not only their redesign
involves high effort and reintegration into the DBMS but also that
a design optimal for one hardware generation and one workload
might induce severe performance degradation on another hardware
generation when underlying assumptions change.

An alternative to this approach is designing data structures that
can provide robust performance [73]. At its core, robust performance
means the ability of a data structure to provide acceptable performance
for a wide variety of hardware configurations and environmental
conditions without adjusting the fundamental data structure design.
Achieving robust performance for a data structure, however, is a
non-trivial problem because there can be many superimposed causes
degrading its performance, not all of which are foreseeable given the
speed modern hardware platforms evolve.

contribution : In this paper, we thus present a new approach for
achieving robust performance. Instead of proposing a single design
that is robust against different workloads and hardware characteristics,
we suggest that data structures can be adapted to a workload and
hardware by simple means of a configuration. The main idea to achieve
this goal is to strictly separate the design of a data structure from the
actual access operations and use a configuration policy for defining
the strategy of how to execute access operations on a particular data
structure in a declarative manner. This strict separation provides us
then with the flexibility to control execution by simple means of a
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Figure 9.1: Robust throughput of the FP-Tree index on 8 sockets through
individually optimal configuration using virtual domains (Opt.
Configured) for Read-Update 50/50 (R-U), Read-Insert 95/5 (R-
I), and Read-Only (R-O) YCSB workloads. Baselines are rigid
partitioning strategies: Partition per NUMA region (SN-NUMA),
partition per thread SN-Thread), and a shared-everything strategy
(SE) without any partitioning.

configuration that determines how the access operations are actually
executed, making the best use of the underlying hardware.

Clearly, the configuration policy is at the centre of our approach.
Thus a key question is: How is it defined and what is its utility?
The intuition behind a configuration policy is that it partitions the
resources (CPU cores as well as memory) of a given multi-socket
machine into so-called Virtual Domains. This configuration policy is
then used by the runtime system to route tasks submitted by client
threads to the responsible virtual domains and send the results of a
task back to the client. One could now think that this sounds very
much like NUMA-aware processing strategies which modern DBMS
engines implement already today to split the resources of a machine
and partition the data structures accordingly.

However, NUMA-aware processing strategies solely split the re-
sources based on the hardware topology [103, 137, 141, 154] (i.e., by
sockets with their local memory or by single cores). But, they ignore
many important aspects of the software stack on top, such as the
characteristics of a given data structure and the workload which may
(heavily) degrade performance. For example, as we show in Figure 9.1,
when using write-heavy workloads for a modern tree-based index
structure design that leverages Hardware Transactional Memory (HTM)
of modern CPUs [135] we can see that, however, when more than half
of the cores of a socket concurrently access the index structure, the
performance degrades heavily due to aborting memory transactions.

In contrast to classical NUMA-aware processing strategies, our ap-
proach based on virtual domains allows to split the resources of a
given machine in arbitrary granularity (e.g., into virtual domains that
span only half a socket) in order to control contention for the data
structures in an optimal manner. As shown in Figure 9.1, our flexi-
ble configuration strategy can provide superior performance across
different workloads over the rigid partitioning strategies.
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outline : Section 9.2 discusses the basic intuition of how to provide
robust performance for a real system which hosts many different data
structures before we give an overview of our approach in Section 9.3.
Sections 9.4 to 9.6 then present the details of our main building blocks.
Afterwards, in Section 9.7, we present the evaluation showing the
efficiency of our approach for different data structures as well as for
executing a typical OLTP workload. To wrap up, Section 9.8 gives an
overview of related work, and Section 9.9 concludes the paper.

9.2 the art of robust performance

There exist many different causes for degraded performance of core
data structures in main-memory databases on multi-socket hardware.
In this paper, we focus on OLTP databases whose workloads are
mainly characterised by different mixes of read and write statements
ranging from read-heavy to write-heavy mixes where these operations
are typically executed over index structures such as modern versions of
B-trees or hash-tables. In the following, we first discuss the main causes
of performance degradation and how current approaches handle them
before we elaborate on our approach to robust performance by (re-
)configuration.

9.2.1 Pitfalls of Rigid Architectures

The sources of performance degradation can be manifold. One primary
reason that causes performance degradation of core data structures
such as B-trees or hash-tables in main-memory OLTP databases is the
overly high-contention that results from concurrent accesses (reads and
writes) to the same instance of an index structure [154]. Other reasons
for performance degradation include increased latencies as a result of
cross-socket memory accesses or high cache coherence traffic resulting
from concurrent reads and writes to the same memory [202]. In order
to mitigate these effects, different strategies have been devised.

A prevalent strategy to address the aforementioned issues is (as
discussed in the introduction already) to use a NUMA-partitioned
DBMS design to mitigate the negative side-effects of cache coherence
and increased latencies caused by cross-socket traffic [116, 139, 146].
However, this design can still lead to degraded performance since par-
titioning data structures at the granularity of a socket can also turn out
sub-optimal leading to a too high contention for some data structures
and workloads [49, 63], as we demonstrate in our experiments.

Hence, another direction that systems like H-Store [103] or Or-
thrus [154] suggest is to partition the database in an even finer-grained
manner per hardware thread. While this design avoids performance
degradation due to high contention, it has several other drawbacks
such as its sensitivity to skew or the fact that more complex workloads
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Figure 9.2: Flexible partitioning via configuration of virtual domains for a
4-socket machine: (a) Thread-sized with virtual domain per core.
(b) NUMA-sized with a virtual domain per socket. (c) Individual-
sized with two sizes of virtual domains. (d) Isolated with separate
virtual domains for hot data structures.

cause an increased coordination overhead between partitions. Conse-
quently, some systems such as Hekaton [52] even suggest avoiding
partitioning and use a shared-everything approach instead, to mitigate
the negative impacts of partitioning.

9.2.2 Robust Performance By Configuration

While all the afore-mentioned rigid partitioning strategies have their
sweet spot(s), they can also cause severe performance degradation
depending on the workload and data structures in use as we show
in our experiments. In this paper, we thus propose a different route
and suggest an approach enabling a flexible execution strategy that
can adapt all these strategies ranging from thread-sized partitions
to shared-everything by simple reconfiguration. The basic idea is
that based on the mix of data structures and workload present in a
concrete instance of a DBMS, we can provide a configuration using so-
called virtual domains partitioning hardware resources in an optimal
manner.

As shown in Figure 9.2 c) and d), virtual domains provide many
more configuration options beyond what the rigid strategies (shared-
everything or NUMA/thread-sized shared-nothing) can provide: First,
when splitting the resources of a machine into virtual domains, not
all virtual domains need to have identical sizes in terms of CPU
or memory, but we can define virtual domains with different sizes
to ideally support a mix of different data structures and workloads
within a single system. Second, another configuration option provided
by virtual domains is the isolation of hot data structures into separate
virtual domains using a dedicated set of resources to enable more
stable performance.

An important issue is that workloads in DBMS also might change
over time and thus require reconfiguration of a hardware platform
into larger or smaller virtual domains. At the moment, our approach
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handles this by offline reconfiguration, i.e., all active operations in
the system must complete before a reconfiguration can be applied
and the system can then restart with a new configuration. This offline
approach can be used for reconfiguration if changes in workloads are
known a priory or can be predicted based on reoccurring patterns
(e.g., for Black Friday). In the future, we plan to extend our approach
further to support online reconfiguration at runtime and thus also
support cases where the workload changes are less predictable.

9.3 system overview

In the following, we provide an overview of the main building blocks
of our approach before discussing how to integrate our approach into
a DBMS.

9.3.1 Asynchronous Tasks & Configurations

The two main building blocks an application needs to provide are
asynchronous tasks implementing the access operations on data struc-
tures and a configuration that assigns data structures to optimally
sized system partitions (virtual domains).

An asynchronous task is a container for an access method defined
by the application, e.g., an insert or a lookup operation on a B-Tree. In
contrast to operating system threads, tasks in our approach not only
are much more lightweight but also are data-aware; i.e., a task is only
executed inside the virtual domain where the data structure resides.
This notion of tasks allows us to fully control contention and locality
of access methods by simple means of a configuration.

In addition to tasks, the application can specify a configuration to
control contention and locality of access methods for a given set of data
structures. A configuration comprises two parts: (1) The first part of a
configuration defines which virtual domains are being used to execute
a given workload. Here the important aspect is the definition of how
many domains are used and how resources are allocated to each
virtual domain independent of the underlying hardware topology.
(2) The second part of a configuration defines how data structure
instances are mapped to virtual domains. Notably, an application
may split a data structure into several instances and assign them to
separate virtual domains to achieve higher throughput. In Section 9.5,
we discuss an ILP-based approach to find an optimal configuration
that maximises the overall system throughput given a workload and
a set of data structures. According partitioning strategies for data
structures are implemented by the application (i.e., the DBMS [15,
136]) on top of our runtime system. However, as we show in our
experimental evaluation in Section 9.7 with our approach, DBMSs
become less sensitive to the actual partitioning strategy being used
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Figure 9.3: System Overview and Execution Flow: Client threads delegate
asynchronous tasks to workers in a virtual domain which reply
using futures. A configuration maps clients to virtual domains
and workers.

since our approach seamlessly handles severe issues such as locality
and contention.

9.3.2 Runtime System

The main objective of our runtime system is the efficient execution of
tasks given a configuration. For efficient task execution, the runtime
system provides a simple delegation mechanism based on highly
optimised in-memory message passing. Noticeably, the aim of the
runtime system is not to provide a full-fledged DBMS but to act
as a thin virtualisation layer on top of the hardware providing the
foundation for robust performance of a DBMS built on top. Below,
we discuss the potential direction of how our runtime system can be
integrated into a full DBMS.

Figure 9.3 presents an overview of our runtime system. A client
thread submits an asynchronous task to be executed (step 1) and obtains
an invocation handle, so-called future, on the submitted task (step 2.3)
to consume the result of the task execution. Internally, the runtime
system identifies the virtual domain responsible for the referenced data
structure upon the invocation of an asynchronous task (step 2.1). It
then places the task into the corresponding inbox (step 2.2) returning
the future (step 2.3). For efficient message passing between virtual
domains their inbox uses a fixed number of slots; details follow in
Section 9.6.

The counterpart to the application’s client threads are worker threads
inside a virtual domain. These workers continuously poll the inbox for
new tasks. Once a worker detects a new task (step 3.1), it executes the
task (step 3.2) within the virtual domain on behalf of a client thread.
Upon its completion, the task places its result in the earlier allocated
future (step 4.1) from which the client retrieves the result (step 4.2).
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9.3.3 Discussion of DBMS Integration

As mentioned before, the main contribution of this paper is not to
provide a full-fledged DBMS. However, we believe that our delegation-
based runtime system can be used for implementing a DBMS. In fact,
we show in our experimental evaluation that we are able to execute
typical OLTP workloads by implementing a “light-weight” OLTP
engine on top of our runtime system. In the following, we discuss the
main design choices involved in building an OLTP engine utilising
our runtime system, though.

A first design choice for using our runtime system for OLTP is the
mapping of transaction logic (i.e., the sequence of reads and writes)
to tasks that can be executed by our runtime. A naïve way for this
is to map every individual read/write operation of a transaction
to a separate task to be submitted to our runtime system by the
OLTP engine. Moreover, our programming model also allows more
sophisticated implementations where transactions are chopped into
sub-transactions and then are mapped to tasks as a whole. Studying
the detailed effects of chopping is an interesting route for future work
though. As we show in our experiments in Section 9.7.3, the naïve
mapping already enables an efficient execution of OLTP.

A second design choice in addition to mapping transactions to
tasks, is how tables of a database (and their indexes) are distributed
across virtual domains. For this purpose, we introduce a configuration
procedure in Section 9.5 that takes a set of data structures as input (i.e.,
the tables and indexes of a database) and compiles a configuration
aiming to maximise the overall throughput for a given workload.
Before applying this configuration procedure, the DBMS can still
apply conventional partitioning strategies on tables as mentioned
above and input these table partitions (as well as their indexes) as data
structures to our configuration procedure.

In addition to these two main design aspects (i.e., mapping trans-
actions to tasks as well as finding optimal configurations for a set of
tables), further DBMS components need to be implemented, such as
concurrency control as well as recovery mechanisms. The design of
those components, however, is orthogonal to the contributions of this
paper since many different schemes can be implemented on top of our
runtime system. For instance, our runtime system allows DBMS to
implement any concurrency control schemes ranging from pessimistic
locking to various optimistic schemes. For our evaluation in Section
9.7.3, we hence omit these components for our “light-weight” OLTP
engine as well as for all baselines (for a fair comparison), i.e., for
concurrency control, we rely on latches to avoid data races but do
not prevent other anomalies (e.g., lost updates). While this allows no
direct comparison with other full-fledged DBMSs incorporating those
components, it still allows us to compare the benefits of our execution
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scheme for OLTP workloads compared to more classical OLTP engine
designs where data is partitioned by NUMA regions and transaction
managers directly execute operations without delegation.

Finally, an interesting future aspect when designing an OLTP en-
gine on top of our runtime system is that the asynchronous execution
model opens up many new opportunities for optimisations. For ex-
ample, in a classical design of an OLTP engine, transaction manager
threads execute only a single transaction at a time, whereas a design
building on our runtime system could rethink this model allowing
transaction manager threads to execute operations on behalf of mul-
tiple transactions at the same time. That is, when an operation of
one transaction is submitted to our runtime, the transaction manager
could submit operations on behalf of another transaction instead of
blocking until the results of the first transaction are available. However,
analysing these optimisations is beyond the scope of this paper and
needs a more thorough investigation in our future work.

9.4 programming model

In this paper, we propose a new approach for task-based programming.
While asynchronous task-based programming is not new and has also
direct support in different programming languages such as Erlang
and C# [23, 57, 153, 186, 197] as a lightweight alternative over threads,
we propose a novel abstraction called asynchronous data-aware tasks.

The essential aspect of a data-aware task is that it only allows
accessing a data structure within a single virtual domain using precisely
the configured resources of that domain. Therefore, a data-aware task
must be executed by a worker thread inside a virtual domain. This
concept allows us to control not only the degree of contention by
simply re-configuring a virtual domain (i.e., by changing the size
of the domain and thus the number of worker threads that have
concurrent access) but also other transient properties such as cache
state and cross NUMA-node traffic which are bound to the virtual
domain as well.

Listing 9.1: API of an Asynchronous Task.

1 class Task {

2 Task(void* dataStructure, Args... args)

3 void operator()(Result& res);

4 };

In order to implement a data-aware task, the outlined API of a task
(see Listing 9.1) only requires the first parameter of the constructor to
be the targeted data structure and to implement the function operator()
to return results of the task using the Result object. Additionally,
this abstraction must also encapsulate all input parameters for the
contained operations. In combination, this simple API enables the
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runtime system to route the task to the corresponding virtual domain
based on the referenced data structure.

Listing 9.2: A task to insert a record into a table.

1 class TaskInsertRecord {

2 Table* tab; // Pointer to table

3 Record* rec; // Pointer to buffer of record

4 TaskInsertRecord(Table* table, Record* record):

5 tab(table), rec(record){};

6 void operator()(Result &res){

7 // Read buffer and insert record

8 RowID rowID = tab->insert(*rec);

9 delete rec; // Delete buffer

10 res.set(rowID); // Return inserted row id

11 }

12 };

To show that this programming model can also be used to implement
typical operations of a transaction, the example in Listing 9.2 imple-
ments a task to insert a record into a (partition of a) table. While List-
ing 9.2 is a simple and illustrative example, the DBMS could also
use tasks to implement more complex operations involving several
data structures within the same virtual domain or fusion of several
operations.

9.5 robustness by configuration

The main aspect for configuration is the definition of virtual domains
partitioning the resources of a given hardware platform. In this section,
we define the configuration options of virtual domains before we
outline the process of how to find a configuration for a workload and
the set of data structures comprising the overlaying application.

9.5.1 Virtual Domains

A Virtual Domain is defined as a set of dedicated logical (SMT) cores, a
worker thread placement policy (i.e., if it allows thread migration or
requires strict pinning to cores), and a memory allocation policy (e.g.,
strictly local to individual workers or interleaved across all workers).
In this regard, we virtualise NUMA-regions which directly represent
the hardware topology into flexibly configurable regions. We establish
these virtualised hardware regions as domains to control worst-case
contention and data locality, thus the name virtual domains.

In particular, only worker threads of a virtual domain are allowed
to execute tasks on the data structure instances assigned to that virtual
domain, and thus, no side effects can cross its boundaries. Moreover,
since all operations on the data structure instance are executed as
tasks by dedicated workers of a virtual domain, cache state exclusively
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Figure 9.4: Configuration Process: 1. Calibration of domain sizes for the best
trade-off between contention and locality. 2. Optimal domain
sizes for different scenarios (OLTP1, OLTP2, HTAP) based on
calibration. 3. Composition of virtual domain as homogeneous
or heterogeneous configurations. 4. Resulting configurations for
exemplary scenarios.

resides in the respective CPUs (cache locality) and only these CPUs

synchronise for cache-coherence on that cache state [95].
Consequently, virtual domains limit the (1) worst-case contention of

tasks in a virtual domain to the number of worker threads and (2)
worst-case locality using the placement policies. Thus, virtual domains
provide configurable contention control and locality which can be
flexibly specialised for distinct data structure instances expose to
diverse conditions through co-existing virtual domains in a single
system.

9.5.2 Configuration Process

Having the means to control contention and locality of distinct data
structure instances through virtual domains, the configuration process
is about finding the individually optimal domain sizes and their
composition into a single configuration. The overall process of finding
a configuration that defines which virtual domains should be used
and how data structures are mapped into the domains is shown in
Figure 9.4.

The first step of the process (step 1, Fig. 9.4) is a calibration phase
that gathers performance metrics and quantifies the performance
behaviour of the different data structures involved in a workload. The
goal is to find the optimal domain size for each data structure instance
involved in that workload individually (step 2, Fig. 9.4). Subsequently,
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we start the composition process (step 3, Fig. 9.4) which, based on the
calibration information, divides the system resources and maps data
structure instances into virtual domains to produce a configuration
(step 4, Fig. 9.4).

Notably, the configuration does not partition the data structures
themselves. Instead, we expect the application to partition the data
structures utilising application-specific knowledge (e.g., partitioned
indexes in a DBMS) while the goal of the configuration process is to
find an optimal assignment of those partitions to virtual domains. For
finding an optimal configuration for these partitioned data structures,
the application can define constraints which data structure instances
should be mapped into the same virtual domain to realise co-location
of data structure partitions (e.g., an OLTP DBMS could co-locate data
of several tables in one virtual domain avoiding transactions across
virtual domains).

calibration of domain sizes : The calibration phase executes
a given workload under growing domain sizes (i.e., with an increas-
ing number of threads) for each data structure instance individually.
This calibration typically results in a common throughput pattern as
sketched in step 1 of Figure 9.4. The reason is that with increasing
domain size the contention increases and locality is getting worse if
domains span multiple NUMA nodes. As a result of the calibration,
we derive the domain size maximising the overall performance up
to the point after which the slope of the throughput becomes nega-
tive. As sketched in step 1 of Figure 9.4, the domain size providing
maximum performance is typically larger for read-heavy workloads
than for write-heavy workloads: that is 1

2 socket for a write-heavy
workload and 2 sockets for a read-only workload in our example.

Since the calibration phase determines the domain sizes for individ-
ual data structure instances, it ignores side-effects that might occur
when several data structure instances share a virtual domain. Since
sharing a virtual domain means sharing its worker threads, contention
on individual data structure instances may only decrease, hence does
not violate contention control. In contrast to contention, locality gets
worse when multiple data structures share the same domain since
CPU caches are also shared. Our composition process (discussed next)
thus aims to balance the load equally across all virtual domains such
that the negative effect of decreased locality is equally distributed
across domains.

composition of domains : We now discuss the second step of
the configuration process deciding the composition of virtual domains.
In this step, we partition the hardware resources and assign data
structure instances given from the application to individual virtual
domains. In the following, we use three typical workloads as examples
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to explain the composition approach: (1) OLTP 1 as a typical OLTP
scenario where indexes are accessed with a write-heavy workload; (2)
OLTP 2 as a mixed OLTP scenario where indexes are accessed with a
mix of write-heavy and read-update statements; (3) HTAP as an HTAP
scenario where indexes are accessed with write-heavy, read-update,
and read-only statements.

As shown in step 3 of Figure 9.4, we distinguish two high-level cases
for the composition: (1) homogeneous and (2) heterogeneous composition.

The homogeneous composition applies, when the calibration indicates
a single optimal domain size for all data structures instances (as for
OLTP1). Hence, a configuration may coincide with state of the art,
e.g., Shared Nothing partitioning schemes, but it may also yield better-
performing configurations, e.g., half a socket instead of a full socket
as shown with configuration 4.1 in Figure 9.4 for OLTP1.

The second case (heterogeneous composition) applies if the calibration
shows the data structure instances require different domain sizes for
a particular workload; e.g., in HTAP workloads some data structures
are used in a read-heavy manner and can use larger domains while
others are write-heavy and thus need smaller domains. In this case,
we differentiate the isolated and shared heterogeneous composition:
(1) Isolated is used for crucial data structure instances necessitating
predictable performance (e.g., a lock table where latency matters). The
idea behind isolation is that these data structure instances do not share
a virtual domain with other data structure instances. Configuration
4.2 in Figure 9.4 demonstrates isolation with thread-sized domains for
two crucial indexes (red) in the OLTP2 workload. (2) For all other data
structure instances, we apply the shared heterogeneous case composing
domains of different sizes which can be shared by multiple data
structure instances as shown in configuration 4.3 (Figure 9.4) for the
exemplary HTAP workload.

For the shared heterogeneous composition, we formulate the prob-
lem as a variation of a General Assignment Problem with Minimal
Quantities (GAP-MQ) [110] in form of an Integer Linear Program (ILP).
Intuitively, the ILP should fulfil the following goals: (1) Most impor-
tantly, data structure instances should reside in domains of at most the
calibrated optimal domain size. (2) The number of domains should be
minimised because a higher number of domains increases the sensi-
tivity to skew. (3) The load between all domains should be balanced.

For the input of our ILP, we introduce the data structure instances
of an application as n data structure instances i ∈ I = {1, ...,n} with
calibrated optimal domain sizes si ∈ S ⊆ N+. Further, we specify
the number of available worker threads in the system as w ∈ N+.
Then we define the multiset B as all possible domain sizes comprising
any potential configuration within the limits of the given workers w

where each domain size s ∈ S appears ⌊w/s⌋ times (multiplicity of
s). For example, assuming 192 workers as a system size (w = 192)
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for our OLTP2 scenario in Figure 9.4 and optimal domain sizes of
S = {24, 48} that we identified by calibration, the multiset is B =

{241, 242, ..., 248, 489, 4810, 4811, 4812}b. Based on B, the domains to
choose for a configuration are d ∈ D = {1, ..., |B|} with domain size
bd ∈ B, where binary variables yd indicate the choice of d. In our
OLTP2 scenario, this could be the choice y1,y2,y9,y10,y11 = 1, i.e., 2
domains of size 24 and 3 domains of size 48. Subsequently, the binary
variables xi,d denote the assignment of a data structure instance i to a
domain d in the resulting configuration.

For load balancing, we assign an abstract expected load of an in-
stance as li ∈ R+ as well as a minimum and maximum load of a
domain as qd and rd ∈ R+, where the minimum load avoids domains
without any load while the maximum load avoids overloading do-
mains. Finally, we incentivise choosing larger domains by assigning
the profit in proportion to the domain size as pd = Pbd with a large P,
s.t. p1 ≪ ... ≪ p|D|.

max
∑

d∈D pdyd (9.1)

s.t. nyd −
∑

i∈I xi,d ⩽ n− 1, ∀d ∈ D (9.2)∑
d∈D xi,d = 1, ∀i ∈ I (9.3)

bdxi,d ⩽ si, ∀i ∈ I,∀d ∈ D (9.4)∑
d∈D bdyd ⩽ w (9.5)

qdyd ⩽
∑

i∈I lixi,d ⩽ rd, ∀d ∈ D (9.6)

xi,d,yd ∈ {0, 1}, ∀i ∈ I,∀d ∈ D (9.7)

Equations 9.1-9.7 formulate the ILP for our configuration problem
based on the GAP-MQ problem. The objective function formalises an
optimal configuration as a choice yd of domains d maximising the
profit through large domain sizes and consequently a minimal number
of domains, where the constraint in Equation 9.2 connects that choice
of a domain to the assignment of data structures xi,d. The constraint
in Equation 9.3 requires the assignment of each instance to precisely
one domain. Equation 9.4 constrains the assignment of an instance
to domains of at most the calibrated optimal domain size to satisfy
the calibrated worst-case contention and locality while Equation 9.5
restricts the choice of domains to the available workers. Finally, in
Equation 9.6, we constrain the assignment of instances to domains,
such that the sum of the load of a domain is within the required
bounds if the domain is chosen. Solving this ILP determines yd and xi,d

establishing a configuration of domains with assigned instances for our
runtime system. Additionally, our ILP can simply reflect application-
specific requirements on the configuration by additional constraints.
For example, further constraints can incorporate co-location of specific
data structure instances to place secondary indexes into the same
domain.
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9.6 runtime system

Given a configuration, our runtime system realises efficient execution
of data-aware asynchronous tasks on generic data structures in freely
configurable virtual domains via delegation and futures.

efficient and flexible delegation : In order to achieve ro-
bust performance with an optimal configuration via delegation, the
communication between clients and workers must be as efficient as
possible, especially it should not cause contention which we seek to
reduce through optimal configuration.

Therefore, we implement the delegation as efficient in-memory mes-
sage passing based on fast, fly-weight delegation (FFWD) [157]. At the
core of FFWD is a message passing scheme minimising cache coher-
ence traffic for synchronous communication between multiple clients
and a single worker. It enables highly efficient communication out-
performing common concurrent data structures with shared memory
synchronisation primitives and latch-free designs, e.g., queues with
NUMA-aware MCS latches and latch-free queues. In detail, FFWD
allocates a contiguous message buffer for the worker in which each
client has a dedicated slot for a message at the position of the client
id. Then, FFWD minimises cache coherence traffic through efficient
detection of new messages via embedded toggle bits and batching of
responses for up to 15 clients. Furthermore, their design simply in-
cludes common optimisations, e.g., NUMA-aware memory allocation
as well as memory alignment to 128 bytes to prevent false sharing
of adjacent cache lines [95] and incorporates optimisations not gener-
ally possible for concurrent data structures, i.e., complete absence of
atomic instructions and memory ordering fences.
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Beyond the original FFWD, we extend the messaging scheme to
reach the necessary flexibility for our approach of optimal config-
uration. Specifically, we break the strong relation between a client
and a worker in FFWD while maintaining the same optimisations.
Figure 9.5 outlines how we establish an inbox for a virtual domain
from which clients obtain ownership of slots to delegate to and physi-
cally construct this inbox out of the message buffers of the configured
workers. Consequently, clients are only loosely coupled with (workers
in) virtual domains enabling any number of clients to be transparently
serviced by the independently configured number of workers within
a virtual domain (limited by the total number of slots of the inbox).
Additionally, we enable asynchronous delegation of several tasks to
virtual domains via futures by handling responses to delegated tasks
and returning ownership of a slot after returning the results.

As optimisation for virtual domains spanning multiple NUMA
nodes (e.g., two sockets), the runtime system assigns ownership of a
slot in the inbox, such that the backing worker has minimal NUMA
distance to the requesting client. For example in Figure 9.5, the purple
client on the left gets assigned ownership of the purple slots from
message buffers on the left from the inbox of a virtual domain span-
ning two sockets and vice versa for the orange client on the right.
Thereby both clients communicate locally with workers instead of
communicating through an interconnect.

Notably, the implementation of delegation across virtual domains
puts little requirements on the underlying hardware platform. For
example, delegation can be implemented in NUMA systems with
access to shared memory (which is our main focus in this paper) but
can also be used in distributed systems with RDMA or future systems
like Gen-Z [71]), which we aim to study in future work.

optimised delegation mode(s): On top of the efficient com-
munication scheme, we introduce enhanced delegation that allows
clients to asynchronously delegate numerous tasks and only eventu-
ally request their results which we utilise to optimise task delegation
for bursting behaviour.

We enable the client to announce bursting delegation for a specific
data structure instance to the runtime system. Then, the runtime sys-
tem pre-allocates futures and slots from the inbox of the according
virtual domain for a maximum number of outstanding tasks (burst
size) specified by the client, thereby we clear the critical path from
resource allocation and minimise the overhead for delegation in bursts.
Moreover, we provide a delegation mode to maximise throughput
based on these bursts. The runtime system can manage a burst for
the client in a way that the client can continuously delegate indepen-
dent tasks and only needs to process the result of the oldest tasks
when the burst is completely filled. This delegation mode maximises
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overlap of pending tasks in addition to minimising the overhead
and consequently maximises delegation throughput for the client to
the specified data structure instance. Additionally, further extended
delegation modes are possible to cover other application-specific del-
egation patterns. With bulk bursting, for example, multiple tasks are
delegated under a single synchronisation phase. This mode optimises
delegation for a fixed number (i.e., bulk) of parallel operations within
a transaction requiring a common synchronisation point.

9.7 experimental evaluation

In the following experiments, we evaluate the efficiency of our ap-
proach and illustrate its robust performance by re-configuration for a
range of data structures and workloads.

baselines and setup : As baselines, we consider a wide range of
fixed partitioning strategies from naïve shared everything to extreme
shared nothing: (1) SE and SE-NUMA represent shared everything
strategies, where all threads access all data structure instances. The
former is a naïve setting which solely relies on the OS for data place-
ment of its partitioned data structures into NUMA regions. Whereas
the latter (SE-NUMA) setting is NUMA-aware, but only for memory
allocations of the individual partitions. However, all threads are still
allowed to operate on all the partitions, i.e., execution is not NUMA-
aware. (2) SN-NUMA and SN-Thread correspond to state of the art
shared nothing strategies [141], which we apply to the configuration
of data structures in our framework. SN-NUMA represents NUMA-
aware system partitioning that explicitly dedicates data structures
to specific NUMA nodes. SN-Thread is an extreme shared nothing
strategy, with thread-granular partitioning, where a single thread is
exclusively accessing a partition of a data structure.

We compare all these baselines against our approach (Opt. Config-
ured), where we use an optimal partitioning strategy that results from
applying our configuration process in Section 9.5. In all our experi-
ments, we use the bursted execution mode with a burst size of 14 for
our approach. While the burst size is a configuration parameter, this
size has shown on average the best performance across all experiments
with only a minimal increase in latency. For both shared everything
strategies bursting cannot be applied since clients directly access data
structure instances.

hardware : We conduct our experiments on an HPE MC990 X
system with two hardware partitions each containing four Intel Xeon
E7-8890 v4 CPU (24 cores, 60MB L3), i.e., 192 physical cores and 384

logical (SMT) cores (with HyperThreading). A NUMAlink controller
combines these hardware partitions to a single, cache-coherent NUMA
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system [60]. The resulting system has four levels of NUMA, for which
we measure memory latencies of 114, 217, 265, and 487ns. In order to
assess the robustness for different hardware architectures, we use this
system to simulate different architectures by restricting the number of
sockets ranging from small-scale NUMA systems connected via one
hop to large-scale NUMA systems that need to cross the NUMAlink.

9.7.1 Exp. 1: Efficiency for Various Data Structures and Workloads

In the first experiment we show the ability of our approach to en-
able robust performance across a wide range of data structures and
workloads.

workloads and metrics : To assess the performance of different
data structures, we use YCSB [47]. We use workloads A (Read-Update
50/50), C (Read-Only), and D (Read-Insert 95/5) of YCSB. These
workloads allow us to investigate the performance of a data structure
with increasing contention due to the varying amount of modifications
(inserts or updates). We changed the distribution of workload D from
Latest to Zipfian to keep the distribution of records and operations
identical across all three workloads for direct comparison. Moreover,
we use records of 64-bit integer keys and values, which potentially
allow more caching but also may cause higher contention. This allows
us to evaluate complex effects of locality and contention in both
software and hardware.

We define the number of records as ten times the cumulative last
level cache size of all sockets in the hardware mentioned before result-
ing in 314 M records. We generate the complete workload (records
and operations) through the official Java implementation [27, 47, 94],
which we then simply replay using our C++ based prototypes. For each
experiment, we execute 2M key/value-operations per client thread.

Experimental measurements are presented as the median out of
seven executions. We assess the reliability of our measurements in
terms of Coefficient of Variation (CV) (ratio of standard deviation to
mean) and consider a CV ⩽ 5% as reliable. Since all our measurements
fit this reliability requirement, we do not present error bars in our
plots.

data structures : In all experiments, we use a set of data struc-
tures commonly used for indexing in main-memory DBMS with dif-
ferent synchronisation schemes, listed in Table 9.11.

1 During our experiments, we discovered skew in the hash of the Hash Map and
extended it with an additional XOR of the upper half of the key with the lower
half resulting in a more even occupation of hash buckets, e.g., standard deviation of
bucket size 1.2 instead of 4.7.
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Data structure Synchronisation scheme

STX B-Tree [26] none by default, modified: atomic

load/store + global lock for inserts

FP-Tree [135] HTM + global lock for fallback

Open BW-Tree [202] Copy-On-Write + atomic CAS

Hash Map [181] Fine-grained locking + spin lock

Table 9.1: Data structures employed in experiments with specifics about their
synchronisation scheme.

Workload Read-Only Read-Update Read-Insert

B-Tree 48 24 24

FP-Tree 48 24 24

BW-Tree 48 48 48

Hash Map 1 1 1

Table 9.2: Optimal size (no. of workers) of virtual domains for data structures
and workloads.

In the following, we evaluate the performance using an optimal
configuration for each of the before-mentioned data structures and
workload and compare it to rigid approaches ranging from Shared Ev-
erything to fine-granular Shared Nothing configurations. The overview
of data structures and workloads we used in this experiment is shown
Table 9.2.

9.7.1.1 Exp. 1a - Performance for Various Data Structures

We begin our evaluation by applying the optimal configuration as
described in Section 9.5 to the largest system size (i.e., a machine with
8 sockets) and investigate the throughput of the index data structures
under all workloads. Figure 9.6 shows, that Opt. Configured reaches
the best throughput for all data structures under various workloads
ranging from read- to write-heavy. Moreover, we see that there is no
single rigid approach that dominates all other rigid approaches under
all workloads and data structures, e.g., SN-Thread performs well with
Hash Map but significantly worse with FP-Tree and BW-Tree whereas
for SN-NUMA the opposite is the case.

Insight: Configuration of individually optimal domain sizes yields
robust (best or close to best) throughput for any of the evaluated index
data structures and workloads.
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Figure 9.6: Performance of our approach across a range of YCSB workloads
and data structures on largest system size (8 sockets) through in-
dividually optimal configuration. Baselines are rigid partitioning
schemes.

9.7.1.2 Exp. 1b - Robust Performance for Various System Sizes

In the following experiment, we examine the performance of our
approach on different system sizes; i.e., by varying the system size
from 1 up to 8 sockets of the machine outlined in the beginning of this
section. We illustrate the resulting number of virtual domains used
across different system sizes with alternating white and grey shadings
in the plots, e.g., the first shading represents the first virtual domain,
the second shading represents the second virtual domains.

read-update workloads : For this experiment, we first asses
the effect of configuration on different system sizes with an equal mix
of reads and updates. The updates are in-place modifications to index
records, which do not cause any maintenance, such as node splits in a
tree. Thus, these are of high locality, providing an opportunity for low
contented, efficient synchronisation. Still, the high update rate puts
pressure on synchronisation and causes physical contention.

Figure 9.7 depicts the throughput of the read-update workload for
the same 4 index data structures as in the previous experiment. Our
Opt. Configured provides robust scalability on the read-update work-
load for all the data structures, i.e., best or close to best throughput
at each scale. The Shared Everything settings scale only with the B-Tree
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Figure 9.7: Throughput of read-update workload for various system sizes
from 1 - 8 sockets (each 48 threads).

and BW-Tree, whereas Shared Nothing settings at most perform as good
as our Opt. Configured.

While providing robust performance across all data structures, with
FP-Tree Opt. Configured even improves performance by 560x over SE,
1.8x over SN-NUMA, and 1.4x over SN-Thread at 384 threads. Specif-
ically, both Shared Everything settings stagnate after 24 threads and
significantly drop in performance for larger system sizes, i.e., perfor-
mance collapses by over 90% between 1 and 2 sockets. Instead, our
Opt. Configured setting scales best because it retains the best scale-up
performance of 24 threads in virtual domains and efficiently scales
these to the largest system size. The other settings either insufficiently
limit contention for HTM to perform well or incur much overhead, as
detailed below.

For better understanding of the root causes for the performance
degradation and the lack of scalability, we analyse the abort rate of
HTM transactions and cache locality presented in Figure 9.8. The per-
formance of Shared Everything (SE) settings and SN-NUMA setting is
tied to the sensitivity of HTM to high conflict ratios (i.e., workload with
50% updates) and length of HTM transactions, amplified by longer
NUMA distances, as investigated in [31]. The consequence is high
abort ratios of HTM transactions inflicting the substantial performance
degradation for these three settings. In contrast, SN-Thread does not
cause any aborts, but increased L2 (and L3) cache misses instead, thus
indicating overhead of its extreme partitioning which inflates competi-
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Figure 9.8: Hardware metrics indicating contention and cache locality of FP-
Tree on read-upadte workload.

tion between the data structure and the delegation procedure for the
private L2 cache of the responsible CPU core. Finally, Opt. Configured
keeps the abort ratio and cache misses low, such that it performs well
for the contended read-update workload. This confirms the benefits
of our apt configuration with adequate contention management yet
minimal overhead.
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Figure 9.9: Communication volume on interconnects between sockets for
BW-Tree on read-update workload.

In the contrary to FP-Tree, BW-Tree manages to scale with the SE

settings due to its conflict resistant Copy-On-Write (COW) synchronisa-
tion scheme but the performance of Opt. Configured is superior at larger
scales, i.e., up to 1.9x. Figure 9.9 shows that the COW synchronisation
scheme induces high communication overhead on the interconnects
of up to 5 TB. Here, our the efficient in-memory messaging pays off
with about 5x lower communication volume for Opt. Configured and
SN-NUMA as well as 2.5x less for SN-Thread.
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The Hash Map exhibits a behaviour similar to the FP-Tree under SE.
For the smallest deployments up to a single socket, SE provides high
performance. However, for larger deployments the performance of
SE collapses similar to the FP-Tree. Our profiling analysis of the Hash
Map indicates that the bottleneck is highly contended synchronisation.
This high contention also explains the mediocre performance of SN-
NUMA, whose partitioning per NUMA region insufficiently controls
contention. Therefore, SN-Thread and the Opt. Configured provide
robust performance for the Hash Map when scaling to larger deploy-
ments. This highlights the benefit of our configurable approach, which
allows us to partition data structures into optimally sized domains: for
the Hash Map, our approach uses many small domains similar to SN-
Thread, while for the other data structures before (FP-Tree, BW-Tree)
we use a configuration that is closer to the SN-NUMA.

Finally, for B-Tree Opt. Configured performs as good as the NUMA-
partitioned strategy. However, we use synchronisation with just atomic
operations on the record level since the B-Tree itself does not include
any synchronisation. This synchronisation is unfair as it does not
protect modifications of the structure of the B-Tree. Hence, this mainly
serves as an upper bound for possible performance with the simplest
synchronisation that we could achieve with all strategies.

Insight: Optimal configuration establishes robust scalability for
indexes under high contention. In contrast, both Shared Everything
settings suffer steep performance cliffs beyond one socket already
and the Shared Nothing approaches scale well just for some indexes
at larger scale. Only our configurable approach (Opt. Configured) han-
dles contention effectively for all data structures providing locality at
different system scales.

read-only workloads : Next, we show the effect of configu-
ration on a read-only workload (YCSB C) for the same set of data
structures and system sizes. This workload is favourable for a Shared
Everything strategy, as there is little to no contention and maximum
opportunity for high cache utilisation. Therefore, we expect the bene-
fits of our approach over Shared Everything to be limited to the better
locality in case of memory accesses or remaining synchronisation, e.g.,
reader side of latches.

Figure 9.10 presents the experimental results. For FP-Tree the SE

as well as SN-Thread settings scale only up to 96 threads (2 sockets),
after which their throughput stagnates and SE-NUMA follows stag-
nating only after 4 socket. In contrast, Opt. Configured and SN-NUMA
manage to scale linearly up to 8 sockets with a maximal throughput
improvement of 3.2x over SE. Only our approach (and SN-NUMA) pro-
vides efficient execution of access methods even for large deployments.
Moreover, BW-Tree and B-Tree present similar behaviour to FP-Tree,
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Figure 9.10: Throughput of read-only workload for various system sizes from
1 - 8 sockets (each 48 threads).

only that BW-Tree is slightly slower and B-Tree is faster due to their
differing synchronisation.

The data structure Hash Map performs well only on a single socket
with SE, whereas Opt. Configured enables robust performance of Hash
Map reaching 2.3x higher throughput than SE at 8 sockets. This im-
provement results from a bottleneck in the general-purpose imple-
mentation of the Hash Map rooted in the reader coordination of the
reader-writer mutex for synchronisation on the hash buckets. The
locality within our virtual domains optimises the execution of the
atomic increment to register readers on the mutex.

Insight: For read-only workloads where contention is not as preva-
lent as for the read-update workload before, our approach (Opt. Con-
figured) shows competitive performance as well as low overhead
for all index structures. Most importantly, Opt. Configured again is
the only approach that can provide robust performance for all data
structures when scaling out: while Opt. Configured performs on par
with SN-NUMA offering the best performance for the 3 tree-based
data structures, Opt. Configured employs smaller domain sizes for
the Hash Map, and thus behaves more like SN-Thread, which is best
performing in this case.
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Figure 9.11: Agg. throughput for increasing no. of indexes (i.e., application
size) for read-update workload.

9.7.1.3 Exp. 1c - Robustness for Different Application Sizes

In the following experiment, we extend the perspective of robustness
by application size using an increasing number of index instances.
As the system is under full load even with a single index instance
already, there cannot be major improvement of throughput when
increasing the number of index instances. On the contrary, we expect
this experiment to expose bottlenecks, as it may amplify overheads
or impact important performance factors such as cache locality or
contention inherent in our framework.

We setup this experiment as previously but increase the number
of indexes by separating the prior indexes into smaller indexes (16 -
1024) with the identical total data volume. Moreover, we configure our
framework with the same number of optimally sized virtual domains,
i.e., 16 domains of size 24 threads, but additionally now instances
share domains, e.g., for a total of 1024 indexes 64 instances share one
domain.

Figure 9.11 presents stable throughput under increasing number of
indexes for most settings with both index types. Exceptions are on
FP-Tree a minor positive trend for both shared everything settings
( SE: 1.4x, SE-NUMA: 1.3x) and degrading of SN-Thread by up to
50% beyond 256 indexes. Importantly, the individual configuration
of indexes within our framework (Opt. Configured) is stable and
provides the best throughput for all numbers of indexes.

Insight: The benefits of configuration within our framework persists
for large numbers of indexes.

9.7.2 Exp. 2: Cost-Benefit Breakdown of Configurability

Having demonstrated the potential of configurability in Section 9.7.1,
we now detail its associated overhead. Indeed, our runtime system,
which delegates tasks to virtual domains, causes computational over-
head in addition to baselines which directly execute the access meth-
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Figure 9.12: Execution cost breakdown into active execution cycles vs. stall
cycles per operation for system sizes 2 vs. 8 sockets with read-
update workload.

ods. However, as we show in the following, this overhead is negligible
even for small system sizes and provides significant benefits for robust
performance, especially when scaling to larger deployments.

workload and baselines : In this experiment, we use the YCSB
Workload A (Read-Update) from the previous experiment to show the
overhead and benefits of workloads with a mix of operations that is
common for OLTP workloads. Moreover, we run this experiment on a
small system size (2 sockets) and the largest system size (8 sockets) to
show the cost breakdown for small versus larger systems as mentioned
before. For each system, we compare the same data structures and
baselines as in Section 9.7.1.

performance results : Figure 9.12 shows the average cost for
one operation (read/update) in CPU cycles per operation as stacked
bars for the different data structures and system sizes. The cost is
broken down into the main categories of the Top-down Microarchitecture
Analysis Method (TMAM) [95] commonly used to guide performance
optimisation [166] (e.g., by Intel VTune). Based on TMAM, we distin-
guish active execution cycles (solid part of bars) and wasted execution
time (striped parts of bars), i.e., stalls in the Back-End of the CPU
(mainly memory accesses), in the Front-End (e.g., instruction decod-
ing), and stalls due to bad speculation (e.g., branch misprediction).
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Notably, in this representation, lower cost means better throughput per
thread.

Again, in this experiment, we can observe robust performance (i.e.,
lowest cost or close to lowest cost) for our approach (Opt. Configured)
compared to the baselines. That is, as expected for the small system
size (2 sockets), our runtime system has comparable performance to
the shared-nothing and shared-everything baselines, while we achieve
significant benefits for larger system sizes, especially for the FP-tree.
Moreover, as observed before, Opt. Configured achieves its robustness
by configurability: it resembles the execution cost of SN-NUMA or SN-
Thread (which are the best performing) while its distinct configuration
of half a socket (i.e., in between the partition sizes of those other
approaches) even achieves better cost for FP-Tree.

Finally, when observing cost in detail, we can confirm our runtime
system adds negligible active execution overhead in comparison to
the SE-baselines, which can be mainly attributed to the additional
instructions for delegation on top of the bare data structure opera-
tions. However, comparing the amount of stall cycles, our runtime
efficiently executes these additional instructions (comparable Front-
End and Speculation Stalls) and effectively decreases overall memory
(Back-End) stalls below the stalls of the bare data structure operations
(i.e., improves locality and contention), which benefits overall cost per
operation.

Insight: Our cost-benefit analysis shows that our approach (Opt.
Configured) has highest active cycles stemming from the additional
overhead of our runtime system. However, importantly, this allows
our approach to reduce stalls efficiently. As a result, our approach
has the overall lowest execution cost (active cycles + stalls), thus can
provide the highest performance across different data structures and
system sizes.

9.7.3 Exp. 3: Efficiency for OLTP Workloads

In the last experiment we show that our approach also provides
performance benefits beyond single data structures and supports
the efficient execution of more complex OLTP workloads. For this
purpose, we implement a light-weight OLTP engine on top of our
runtime system and observe the performance of transactions of TPC-C
– a typical OLTP benchmark.

light-weight oltp engine and baseline : The light-weight
OLTP engine provides basic functionality for partitioning tables and
executing transactions as tasks: (1) For partitioning, our light-weight
OLTP engine supports a typical hash-partitioning scheme. In particu-
lar, it partitions tables including their primary and secondary indexes
that are then configured as composite data structure by our config-
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uration procedure from Section 9.5 to place tables and their indexes
jointly in the same virtual domains. As data structures for tables and
indexes, we have chosen the FP-Tree and the BW-Tree from the previous
experiments since both are specifically designed for supporting OLTP
workloads in main memory DBMS, notably they use very different
synchronisation mechanisms (cf. Table 9.1). (2) For executing transac-
tions as task, our OLTP engine uses a scheme where each individual
statement of a transaction is mapped to a task (i.e., we do not do
any chopping which could further improve the performance). Finally,
we omit higher order components for recovery and concurrency con-
trol. As already discussed in Section 9.3, all these components are
orthogonal and different schemes can be implemented on top of our
runtime system. Analysing the effects of these different schemes (e.g.,
for concurrency), however, is beyond the scope of this paper.

As baseline, we compare our light-weight OLTP engine that is
based on our runtime system with an OLTP engine based on the
design of [141] that uses a NUMA-aware shared-nothing design where
transactions are directly executed by transaction managers (i.e., not by
delegating tasks to our runtime system). To allow a fair comparison,
we also omit concurrency control and recovery in the baseline.

oltp workload : In order to compare our light-weight OLTP
engine with the shared-nothing baseline, we use the TPC-C benchmark.
For this experiment, we implemented the New-Order and Payment TPC-
C transactions as tasks, which represent 88% of the workload. As data,
we generate a TPC-C database with 8 warehouses (i.e., one for each
NUMA-region considered to be favourable for the shared-nothing
baseline used in this experiment). We partition the database across
different system sizes by warehouse IDs ranging from 1 to 8 NUMA
regions (i.e., system sizes from 48 to 384 threads). Moreover, we vary
the fraction of New-Order and Payment transactions that need to access
remote warehouses from 0% to 75% to simulate workloads that range
from perfect locality to almost no locality. Finally, we configure tables
into virtual domains with the procedure outlined in Section 9.5.

performance results : The results of this experiment are shown
in Figure 9.13. Observing the TPC-C throughput for increasing system
size on the left of Figure 9.13 reveals that using the FP-Tree results in
brittle performance in the NUMA-aware system, i.e., degrading from
the best throughput at the smallest system size (48 threads) to the
worst throughput for larger system sizes (⩾ 96 threads), which is in
line with our results in Section 9.7.1. Whereas, the BW-Tree is more ro-
bust across different system sizes in the NUMA-aware system design.
Nevertheless, the OLTP-engine based on our runtime system increases
the overall performance for both indexes (the FP- and BW-tree) due
to our effective contention management and efficient communication
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Figure 9.13: Throughput of TPC-C New-Order and Payment with 8 ware-
houses for increasing system size with 1% remote transactions
(left) and for increasing remote transactions at largest system
size (right).

as observed earlier. Even more interestingly, our approach in combi-
nation with the FP-Tree establishes robust performance scaling the
throughput of TPC-C transactions linearly with the system size.

Now, we present the TPC-C throughput at the largest system size
under an increasing proportion of remote transactions on the right
of Figure 9.13. The results indicate the sensitivity of the two different
OLTP engines w.r.t. partitionability and locality of OLTP workloads;
i.e., commonly OLTP workloads (especially TPC-C) are partitioned
into exclusive partitions to achieve high throughput on large system
sizes rendering them sensitive to remote transactions. The performance
of the NUMA-aware system with FP-Tree perfectly demonstrates this
sensitivity to remote transactions dropping from 1.5M txn/s at 0%
remote transactions to barely any throughput at 1%. In contrast, our
OLTP engine provides high throughput regardless the remote transac-
tions, i.e., 1.2 - 1.1M txn/s. Again, BW-Tree improves the robustness of
the NUMA-aware system. Still, in this case, our approach also enables
better throughput for BW-Tree compared to the NUMA-partitioned
baseline since our approach can further increase locality and reduce
contention.

Insight: As we have shown in this experiment, using our runtime
that relies on the configuration of virtual domains can also provide
significant benefits for executing OLTP workloads. An interesting
insight is that opposed to classical OLTP engines where optimal par-
titioning is crucial to maximise locality, partitioning does not play a
significant role anymore when using our runtime system since dele-
gation can provide high locality (and thus high throughput) even for
non-partitionable workloads.
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9.8 related work

In this paper, we make the case for configuration to achieve robust
performance for a wide range of workloads and a variety of hardware
platforms.

As hardware development advances, a huge body of research pro-
poses solutions for new challenges and reiterates optimisations on
all levels of system design ranging from synchronisation primitives
to data structure designs and all the way to entirely new DBMS ar-
chitectures. In response to increasing core counts and main memory
capacity, systems like H-Store [103] and DORA [137] propose to par-
tition the database in a fine-grained manner per hardware thread to
avoid contention on data structures, where the latter actually applies
delegation of transactions between worker threads.

Yu et al. [206] give a projection on the arising challenges when hard-
ware with more than 1000 cores becomes commonplace for DBMS.
They identify challenges of prior in-memory DBMS which they say
will only be amplified as the number of cores increases. Since then,
many proposals take different directions on how to adapt DBMS ar-
chitectures to hardware with so many cores spread over many sockets.
For example, ERIS [107] takes the DORA approach from multi-core
OLTP to multi-socket OLAP and adds load balancing between system
partitions to address skew in the workload. Instead, Hekaton [52] sug-
gests to reject partitioning and to use a shared-everything approach
to avoid the negative impacts of partitioning, e.g., skew. Porobic et
al. [141] analyse the effect of hardware topologies with different core
and socket counts on partitioning strategies and conclude that DBMS
must be aware of the underlying hardware.

We propose to decouple the implementation of data structures (and
larger components) from the system architecture, such that the config-
uration can adapt to new hardware and the existing implementations
are reused.

Our general approach to adapt to hardware development follows
other systems research. Node Replication [34] devises an automatic
approach to transform any sequential data structure into a concur-
rent data structure for large scale hardware through a combination of
shared memory and distributed computing approaches. They repli-
cate data structures in a distributed manner across NUMA nodes
and apply flat-combining delegation to share and synchronise a dis-
tinct data structure between workers on a NUMA node. [33] evaluate
approaches to combine message passing known from distributed sys-
tems and common shared memory programming for NUMA-aware
systems. They expect benefits from message passing in combination
with delegation when communication of data and cache coherence
between NUMA node becomes too expensive, which we show is al-
ready the case for index operations on the BW-Tree from two sockets
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and more (cf. Figure 9.9). But they point out that efficient message
passing is crucial for delegation. To this end, FFWD [157] devises a del-
egation scheme with minimal cache coherence transactions between
participating CPU cores, outperforming prior delegation schemes
including flat-combining [54, 123], shared memory synchronisation
primitives [48, 55], and latch-free algorithms. We extend FFWD with
broader flexibility to enable efficient configuration and robust perfor-
mance.

9.9 conclusion

In this paper, we proposed a new approach for achieving robust per-
formance of fundamental data structures. The main idea is to strictly
separate the data structure design from the actual strategies how ac-
cess operations are executed and to adjust the execution strategies by
means of a configuration. In our evaluation, we demonstrated that
reconfiguration establishes robust performance across diverse work-
loads and hardware sizes. While we believe that our abstractions (tasks
and configurations) allow an efficient adaption of existing DBMS to
make use of our approach, showing this would be beyond the scope
of this paper though and is an interesting avenue of future work.
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A N Y D B : A N A R C H I T E C T U R E - L E S S D B M S F O R A N Y
W O R K L O A D

abstract

In this paper, we propose a radical new approach for scale-out dis-
tributed DBMSs. Instead of hard-baking an architectural model, such
as a shared-nothing architecture, into the distributed DBMS design,
we aim for a new class of so-called architecture-less DBMSs. The
main idea is that an architecture-less DBMS can mimic any architec-
ture on a per-query basis on-the-fly without any additional overhead
for reconfiguration. Our initial results show that our architecture-
less DBMS AnyDB can provide significant speedup across varying
workloads compared to a traditional DBMS implementing a static
architecture.
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contributions of the author of this dissertation are summarized in Part
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10.1 introduction

motivation : Scale-out distributed architectures are used today
by many academic and commercial database systems such as SAP
HANA, Amazon Redshift / Aurora, and Snowflake [9, 66, 72, 75, 194]
to process large data volumes, since these allow scaling compute and
memory capacities by simply adding or removing processing nodes.
The two predominant architectural models used in academic and
commercial distributed databases are the shared-nothing (aggregated)
and the shared-disk (disaggregated) architecture [172].

While the shared-nothing (aggregated) architecture provides high
performance in case the data and workload are well partitionable, its
performance degrades significantly under skew, overloading some
resources while others are idle [22]. Moreover, dealing with require-
ments such as elasticity in the shared-nothing architecture is hard,
since this always requires repartitioning the data even if compute is
the bottleneck [61]. This renders the shared-nothing architecture less
suited for modern environments such as the cloud where elasticity is
a key requirement.

On the other hand, the shared-disk (disaggregated) architecture
tackles the drawbacks of the shared-nothing architecture by disaggre-
gating storage and compute [122, 194]. This disaggregation provides
many new potentials especially for better skew handling as well as
providing elasticity independently for compute and storage. Yet, the
shared-disk (disaggregated) architecture has other downsides. One
major downside is that data always needs to be pulled into the com-
pute layer, resulting in higher latencies. While this additional latency
often does not matter for OLAP workloads, it renders the shared-disk
(disaggregated) architecture less suitable for OLTP workloads, which
require low latency execution to reduce the potential of conflicts and
provide high throughput.

Another observation is that these architectural models (shared-
nothing or shared-disk) are statically baked into the system designs
of today’s databases [22], expecting certain workload characteristics.
However, modern workloads are versatile, e.g., HTAP containing a
mix of OLTP and OLAP queries [147]; even more, workloads are often
evolving over time or as in the cloud are not even foreseeable for cloud
providers. Consequently, databases following a static architectural
model are always kind-of-a compromise and cannot provide optimal
performance across a wide-spectrum of workloads.

contributions : In this paper, we propose a radical new approach
for scale-out distributed DBMSs. Instead of hard-baking an architec-
tural model statically into the DBMS design, we aim for a new class
of so-called architecture-less DBMSs.
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Figure 10.1: Performance of AnyDB across a workload evolving from par-
titionable OLTP (phase 0-2), over a skewed OLTP (phase 3-5),
to skewed HTAP (phase 6-8), and then to partitionable HTAP
(phase 9-11). The y-axis only shows the throughput of the OLTP
transactions excluding the OLAP queries in the HTAP phases.

The main idea of an architecture-less database system is that it
is composed of a single generic type of component where multiple
instances of this component “act together” in an optimal manner
on a per-query basis. To instrument these generic components at
runtime and coordinate the overall DBMS execution, each component
consumes two streams: an event and a data stream. While the event
stream encodes the operations to be executed, the data stream shuffles
the state required by these events to the executing component, such
that a component may act as a query optimizer at one moment for one
query but for the next as a worker executing a filter or join operator.
Essentially, this instrumentation of generic components by event and
data streams flexibly shapes the “architecture” of an architecture-less
DBMS.

A key aspect of this execution model is that by simply changing the
routing of event and data streams between generic components, an
architecture-less DBMS can mimic different distributed architectures
and form traditional architectures as well as completely new archi-
tectures. Another important aspect is, since we decide this routing
on a per-query basis, an architecture-less DBMS can simultaneously
act as a shared-nothing system for one query while also acting as a
shared-disk (disaggregated) DBMS for another query that runs con-
currently with the first one. This opens up interesting opportunities
for executing mixed workloads (e.g., HTAP) or adapting to evolving
workloads.

Also, an interesting aspect of this execution model is that it can-
not only mimic architectures on the macro-level (shared-nothing vs.
shared-disk) but also can adapt execution strategies on the micro-level.
For example, query execution in an architecture-less DBMS can mimic
various query processing models at runtime (tuple-wise pipelined
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vs. vectorized vs. materialized [105]) and degrees of parallelism by
simply instrumenting the generic components with different event
and data streams. The same holds also for other components such as
transaction execution and concurrency control.

The potential of the proposed architecture-less database system
is shown in Figure 10.1. Here, we compared the performance when
running an evolving workload in a static shared-nothing architecture
(blue line) based on an extended version of DBx1000 [206] with AnyDB
(orange line) our prototypical implementation of an architecture-less
database system. As we see, AnyDB is either able to match or outper-
form DBx1000 depending on whether DBx1000’s static architecture
happens to suit a workload or not.

outline : The remainder of this paper is structured as follows.
First, in Section 10.2 we give an overview of how we envision an
architecture-less database system. Second, in Sections 10.3 and 10.4
we then discuss the opportunities that an architecture-less database
provides for OLTP, OLAP as well as HTAP and present initial ex-
perimental results in each of these sections using our prototypical
architecture-less database system AnyDB. Finally, we conclude with a
discussion of future directions in Section 10.5.

10.2 an architecture-less dbms

In the following, we first give an overview of the general execution
model of an architecture-less DBMS. Then we present how typical
database workloads can be mapped to this execution model and
discuss the main challenges.

10.2.1 Overview of Execution Model

As shown in Figure 10.2, the main idea of an architecture-less database
system such as AnyDB is that the DBMS is composed only of generic
components, so-called AnyComponents (ACs). These generic ACs can
provide any database functionality, varying over time. That is, by
routing events and their required data to an AC, the AC can act as a
query optimizer in one moment and in the next moment as a query
executor or any other component (e.g., log writer, etc.). This gives an
architecture-less DBMS the flexibility to shift its architecture just in an
instant without any downtime for reconfiguration, as we discuss later.

To execute a complete SQL query (or a transaction composed of
several of database operations), multiple events and data streams are
routed through AnyDB from one AC to another. For example, as
outlined in Figure 10.2 (a), when executing a query in AnyDB calling
the query optimizer is one event that can trigger follow-up events for
executing the operators, e.g., scans and joins. The accompanying data
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Figure 10.2: AnyDB is an architecture-less DBMS of generic components
called AnyComponents (ACs), executing arbitrary logic. ACs
are instrumented by events and data streams. Depending on the
incoming events an AC can act as a Query Optimizer (QO) or
a Worker (W) executing a scan or a join operator or any other
component, e.g., log writer, etc. An AC can also produce new
data and event streams for other ACs. For example, an AC that
acts as a scan operator produces a data stream with results of
the scan operation.

streams are responsible to shuffle the required state of an event to the
executing AC. Next, we focus on two important key design principles
that underpin the architecture-less DBMS:

• Fully Stateless / Active Data: ACs are designed to be fully state-
less meaning that events can be processed in any AC and all state
required to execute an event is being delivered to the AC via
data streams, including table data but also catalog data, statistics,
and any other state. By designing ACs fully stateless, we gain a
high degree of freedom as any DBMS function can be executed
anywhere. This feature allows mimicking diverse architectures
but also to support elasticity for all database functions individ-
ually, i.e., additional ACs can execute any DBMS function at
any time. Moreover, in architecture-less DBMSs data is active,
meaning that data is not pulled after an event is scheduled but
it is pushed from data sources actively to the ACs before it is
actually needed (We further discuss active data in Section 10.2.3).

• Non-blocking / Asynchronous Execution: A second key aspect
is that ACs are executing events in a non-blocking manner. This
means that an AC never waits for data of an event if data is
not available yet. Instead, another event with available data is
being processed. For example, a filter or a join operator is only
processed once its input data, a batch of tuples, is arriving via
the data stream. To provide this non-blocking execution, ACs use
queues to buffer input events and data items. In addition, these
queues decouple the execution between ACs as much as possible;
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i.e., ACs can process events asynchronously from each other.
This asynchronous execution model, which is only implicitly
synchronizing the execution across ACs through events and data
streams, opens up many new opportunities, as we discuss later
in this paper.

At a first glimpse, the execution model of an architecture-less DBMS
seems to have similarities with existing approaches such as scalable
stream processing systems, function-as-a-service (FaaS) or serverless
DBMSs. However, there are crucial differences.

(1) First and foremost, while AnyDB also uses streams as a major
abstraction, AnyDB is different from stream processing engines, since
we target classical database workloads that process relations but em-
ploy streams as a vehicle to on-the-fly adapt the database architecture
on a per-query basis. Still, our approach benefits from techniques
of scalable stream processing such as efficient data routing or for
implementing fault-tolerance in AnyDB [50].

(2) Similar to function-as-a-service (FaaS), AnyDB relies on a fully
stateless execution model to provide elasticity. However, in architecture-
less DBMSs data (i.e., state) does not come as an afterthought. In FaaS
as offered today, a function is scheduled first and then data must be
pulled in from storage before the execution can actually start [138].
Instead, as mentioned before, in architecture-less DBMSs data is ac-
tive, meaning that data is actively pushed from data sources to the
ACs before the event is actually being processed. Moreover, while
architecture-less DBMSs logically disaggregate the DBMS execution
into small functions like function-as-a-service, we still allow executing
events in a physically aggregated manner and also allow shipping
events to the data to make use of locality.

(3) Finally, there also exist serverless DBMS offerings such as Ama-
zon Aurora Serverless [4, 194], Snowflake Serverless, Azure SQL
Database Hyperscale [8, 131]. These aim to provide elasticity (similar
to FaaS), though, they still rely on static architectures and are thus
restricted to very distinct workloads (e.g., OLAP only). This is very
different from our architecture-less approach that can optimally adapt
to a given workload and provide elasticity at the same time.

10.2.2 Supporting OLAP and OLTP

In the following, we give a brief overview of how the execution model
above can be used to execute OLAP and OLTP workloads. Later in Sec-
tions 10.3 and 10.4, we discuss the opportunities for these workloads
arising from our execution model.

supporting olap : The basic flow when executing an OLAP query
in an architecture-less DBMS is shown in Figure 10.3. The initial event
is typically a SQL query that is sent from a client to any AC of
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Figure 10.3: AnyDB can mimic diverse architectures simply by using different
routing schemes for events and data streams. In (a), two servers
act as a shared-nothing database while in (b) additional resources
(i.e., two servers with additional 4 ACs per server) are added
and AnyDB acts as a disaggregated architecture to deal with a
higher query load. For simplicity, we only show the events and
data streams for (a). The gray-shaded boxes around the ACs,
however, indicate in (b) which ACs execute events of the same
query.

the DBMS – never mind which one – which then acts as the Query
Optimizer (QO). The main task of the QO is to come up with an
efficient execution plan like a traditional query optimizer in a static
DBMS architecture.

In contrast to traditional optimizers, however, the QO in an architecture-
less DBMS produces an event stream and initiates the data streams
that instrument the ACs for query execution. Importantly, the QO
also determines the routing of a query’s events and data through the
architecture-less DBMS. Consequently, by these routing decisions the
QO defines the DBMS architecture perceived by individual queries.

For example, as shown in Figure 10.3 (a), if a query touches only
one partition and there is moderate load in the system, then the QO
can route events of a query such that the architecture-less DBMS acts
as a shared-nothing architecture. However, in case the query load
in the system increases, servers with additional ACs are added and
the architecture-less DBMS executes queries in a disaggregated mode
simply by routing events differently, as shown in Figure 10.3 (b).

supporting oltp : The basic flow of executing OLTP transactions
is similar to executing OLAP read-only queries. Transactions are also
decomposed into event and data streams where routing decisions
define the architecture. A key difference to read-only OLAP, however,
is that in OLTP (1) transactions need to update state and (2) concur-
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rently running transactions need to coordinate their operations to
guarantee correct isolation. Both these aspects are discussed below in
the following (cf. Concurrency and Updates).

10.2.3 Key Challenges

There are different key challenges to enable efficient execution in an
architecture-less DBMS. One of them is the optimal routing of events
and data for a given workload. Another one is to handle concurrency
and updates. In the following, we briefly discuss the main ideas how
we aim to address these challenges. Some of these ideas are already
built into our prototype AnyDB while others represent future routes
of research.

event and data routing : As mentioned before, a key challenge
of an architecture-less DBMS is to decide how to handle a query and
how to route its events, as part of query optimization. Depending
on requirements of an application (e.g., latency guarantees), load in
the system, and the workload, the query optimizer has to define an
optimal event routing. In our current prototype, we do not focus on
this problem but use an optimal decision to showcase the potential of
our approach. We believe however that this is an interesting avenue
for learned query optimizers.

A second challenging aspect is the efficient data routing. As men-
tioned before, this aspect is important for latency hiding. We utilize
the decoupling of data streams from events in our execution model to
solve this challenge. The main observation is that in DBMS execution
one often knows which data is accessed way ahead of time before
the data is actually being processed. For example, complex OLAP
queries need to be optimized and compiled, often taking up to 100ms
in commercial query optimizers in our experience, while we already
know which tables contribute to a query before query optimization.
In AnyDB we make use of this fact and initiate data streams as early
as possible. Once initiated a data stream actively pushes data to the
AC where, for example, a filter operator will be executed once query
optimization finished. We call this feature data beaming as data is often
available at an AC before the according event arrives, entirely hid-
ing latencies of data transfers. We analyze the opportunities of data
beaming for OLAP later in Section 10.4.

concurrency and updates : In general, updates are supported
in AnyDB by event streams directed towards the storage which ingests
these events and produces acknowledgment events when the updates
have been processed, as required for transaction coordination in OLTP.
A major challenge in handling updates thus is to hide latencies of
updates as much as possible. Again, to hide latencies of updates and
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decrease the overall latency of executing a transaction, operations of
one transaction are represented as events and executed asynchronously
by ACs. For example, an update can be sent to the storage by one AC
while other (independent) operations of the transaction can progress
on other ACs. Only the commit operation at the end of a transaction
needs to know if the write successfully persisted and thus needs to
wait for the acknowledgment event coming from the storage. As we
show later in Section 10.3, this asynchronous model for OLTP provides
many interesting opportunities and results in higher performance
under various workloads.

Another challenge that is harder to solve is to efficiently handle
concurrency. A naïve way would be to implement a lock manager
using events representing lock operations and data streams providing
the state of the lock table. A more clever way, however, is to rethink
concurrency protocols and route events and data streams such that
their processing order already captures the requirements of a par-
ticular isolation level for concurrency control, as we discuss later in
Section 10.3.

fault-tolerance and recovery : Fault-tolerance and recov-
ery are two major challenges any DBMS needs to address. For an
architecture-less DBMS this is a challenge due to the asynchronous
(decoupled) execution of multiple ACs where individual ACs might
fail.

Again, a naïve approach would be to implement standard write-
ahead logging by sending log events from ACs to durable storage.
For recovery the DBMS could be stopped and the log could be used
to bring the DBMS into a correct state. Again, in an architecture-less
DBMS we believe that we can do better and learn from the stream-
ing community. For example, as the entire execution of a DBMS is
represented as streams, another direction is to make the streams re-
liable, such that upon AC failure the streams (events and data) can
be rerouted to another AC [50]. Applying these ideas is again an
interesting avenue of future research.

10.3 opportunities for oltp

In the following, we discuss the various opportunities emerging from
an architecture-less DBMS when executing OLTP workloads and show
initial results when compared to existing execution models of static
architectures (shared-nothing and shared-disk). For all initial exper-
iments in this paper, we use the two dominant transactions of the
TPC-C benchmark (i.e., payment and new-order) [185].
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Figure 10.4: Duality of Disaggregation. (a) shows how a transaction is log-
ically disaggregated into individual events for each operation.
(b) shows physically aggregated execution of events by rout-
ing the stream to one AC. (c) shows event routing for fully
intra-transaction parallel execution. (d) shows balanced intra-
transaction parallel execution.

10.3.1 Opportunity 1: Duality of Disaggregation

As indicated earlier in Figure 10.1, for partitionable OLTP workloads
an architecture-less DBMS can achieve nearly the same throughput as
an (aggregated) shared-nothing architecture. Key to this is the duality
of disaggregation in the architecture-less DBMS. The architecture-less
DBMS distinguishes logical disaggregation of the DBMS design and
physical disaggregation of the DBMS execution. Logically, the DBMS
is entirely disaggregated into independent fine-grained functionality
interacting via events and data streams. However, while the logical
execution is disaggregated into many small events, physically the
events can still be executed in an aggregated manner if desired. This
opens up the opportunity to achieve high data locality if desired as
all events can be executed close to the data, e.g., a partition of the
database.

For example, an OLTP transaction may consist of an event stream
like in Figure 10.4 (a). Yet, this logical disaggregation does not mandate
disaggregated execution. In the contrary, any sub-sequence of these
events can be physically aggregated and executed by a single AC. As
shown in Figure 10.4 (b), the entire event stream of a transaction can
be executed by a single AC. In fact, this physical aggregation of events
establishes a shared-nothing architecture that performs on par with
the static shared-nothing architecture of DBx1000 as shown earlier in
Figure 10.1.
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the gist: Through the duality of logical vs. physical disaggregation,
we believe that an architecture-less DBMS can efficiently mimic diverse
architectures ranging from entirely aggregated shared-nothing to fine-
grained disaggregated as required, simply shifting between those by
adapting event and data routes.

10.3.2 Opportunity 2: Execution Strategies

Along with the freedom of achieving different architectures on the
macro-level, the execution model in an architecture-less DBMS also
provides broad freedom to layout parallel execution strategies in an
optimal manner on the micro-level.

Generally, as explained earlier, transactions are represented as event
streams flowing through the architecture-less DBMS. Importantly for
transaction execution, this event-based execution allows diverging
from typical execution models in OLTP that aim for inter-transaction
parallel execution and allows investigating also other forms of par-
allelism. For example, event-based execution naturally brings oppor-
tunities to ad hoc parallelize execution within a single transaction
to achieve intra-transaction parallelism, especially when contention
prohibits inter-transaction parallel execution.

The efficiency of this freedom to change the transaction execution
on the micro-level becomes also visible in Figure 10.5. When run-
ning a partitionable OLTP workload in the first phase (0-2), AnyDB
mimics not only a shared-nothing architecture but also uses classical
inter-transaction parallelism. Afterwards it uses intra-transaction par-
allelism in the second phase (3-5) for the highly skewed, contended
OLTP workload, where 100% of TPC-C payment transactions operate
on one warehouse only.

The baseline DBx1000 in this experiment uses a shared-nothing
model and is thus bound by the resources that are assigned to one
partition resulting in 0.7 M txn/s. In such a case, our architecture-less
DBMS allows to simply shift from inter- to intra-transaction paral-
lelism by routing events of a single transaction to several ACs, i.e.,
shifting from Figure 10.4 (b) to (c). Such intra-transaction parallel
execution may accelerate transactions in contended OLTP workload,
as already proven by architectures such as DORA [137].

However, just like any design decisions in a static architecture, also
static intra-transaction parallelization does not always prove beneficial
either. For example, Figure 10.5 shows that with naïve intra-transaction
parallelism, where every independent operation of a transaction is
farmed out to a different AC, AnyDB only achieves 0.8 M txn/s (or-
ange squares), barely exceeding the inter-transaction parallel execution
of the DBx1000 baselines (blue lines). The main reason is that the over-
head of parallelizing within a transaction dominates the execution.
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Figure 10.5: OLTP performance of AnyDB versus the shared-nothing
DBx1000 under partitionable and skewed OLTP. In phases 0-2
AnyDB acts as a shared-nothing DBMS using an inter-transaction
parallel execution model while in phases 3-5 AnyDB acts as a
shared-disk DBMS using an intra-transaction parallel execution
model. Note that for DBx1000, 4 transaction executors (TEs)
perform like a single TE due to high contention between trans-
actions.

The architecture-less DBMS addresses the challenging paralleliza-
tion of transactions in the following way: generally, the representation
of transactions as event streams allows the architecture-less DBMS
to route independent sub-sequences of events (i.e., sub-sequences of
operations) to multiple ACs for parallel execution. Thus, the challenge
in an architecture-less DBMS is to split a transaction into suitable
sub-sequences of events and route them to different ACs, balancing
the amount of work versus overhead. In our experiments, for example,
we partition the TPC-C payment transaction into one sub-sequence
with several brief update statements and a second sub-sequence with
a long range scan, as depicted in Figure 10.4 (d).

Finding an optimal splitting and routing of event sequences of trans-
actions depends on many factors. One important point is that the in-
dividual sub-sequences of operations have similar execution latencies,
such that the overall latency of the transaction is minimized. Finding
such an optimal routing of events is an opportunity for learning query
optimization and scheduling, as mentioned before. As shown in Fig-
ure 10.5, with this balanced intra-transaction parallelization AnyDB
achieves 1.2 M txn/s (orange triangle) with only 2 ACs, outperforming
the baseline (blue lines) and AnyDB’s naïve parallelization (orange
square) by 3.2x and 3x in throughput per thread, respectively.

the gist: Generally, we envision, that the freedom of the execution
models on the micro-level in an architecture-less DBMS can enable new
parallel transaction execution models spanning any design between
pure inter-transaction to aggressive (fine-grained) intra-transaction
parallelism on a per-transaction level.
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10.3.3 Opportunity 3: Concurrency Control

In OLTP workloads, especially under high contention, concurrency
control (CC) causes significant coordination effort and challenges
efficient parallelization [17]. In an architecture-less DBMS, the event-
based nature of transactions provides the opportunity to transform
CC to a streaming problem. Thereby, the architecture-less DBMS can
improve the efficiency of traditional CC schemes and opens many
opportunities for novel CC schemes, as discussed next.

transforming traditional concurrency control : Inter-
estingly, many traditional CC protocols are stream-like already and
thus benefit from a direct mapping to the asynchronous (non-blocking)
execution model of the architecture-less DBMS. For example, a pes-
simistic lock-based CC scheme [24] needs to match incoming lock
requests with its lock state. This can be mapped to a streaming join on
an event stream containing lock requests and a data stream containing
the lock state of the requested item. Similarly, verification in optimistic
CC protocols [111] joins the read/write set of a transaction which is
one data stream with the current state of the database which is another
data stream. Despite these benefits for traditional CC protocols, the
architecture-less DBMS offers opportunities for novel coordination-
free CC schemes vastly outperforming the traditional approaches, as
explained in the following.

novel streaming concurrency control : The key idea of re-
thinking CC schemes is that they can be enabled by efficiently ordering
events of (conflicting) transactions flowing through the architecture-
less DBMS, rather than actively synchronizing execution of concurrent
transaction using traditional CC schemes causing high coordination
overhead especially under high contention. Here, the streaming execu-
tion of transactions brings new opportunities despite high contention.

Concurrency control in AnyDB can be implicitly and coordination-
free encoded into event routes. That is, for consistency of concurrent
transactions it suffices to route their events in a consistent order
through ACs which execute the conflicting operations. For example,
considering two TPC-C payment transactions accessing the same ware-
house, AnyDB can guarantee consistency by simply routing their
events to all involved ACs in the same order. Thereby, AnyDB enables
intra-transaction parallelism, routing independent events through
different ACs and also provides CC without the need to actively
synchronize operations at the same time.

Note that event-ordering does not violate our non-blocking (asyn-
chronous) execution model of ACs. Operations (i.e., events) of conflict-
ing transactions simply remain in the ACs’ input queues for ordering
while other events can still be executed. In Figure 10.5, we see that this
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instantiation of AnyDB called streaming CC (orange pentagon), yields
1.7 M txn/s for TPC-C payment under high contention (phases 3-5).
This is much closer to the performance of the uniform (partitionable)
execution of TPC-C payment in phases 0-2.

the gist: Along the properties of event streams, we envision novel
CC protocols, that avoid active synchronization, as discussed. More-
over, the streaming CC enables new directions where events are grad-
ually rerouted depending on the load, e.g., at first all events for a
specific transaction are routed to a single AC until this AC becomes
overloaded. Then AnyDB may transparently repartition event streams
while still guaranteeing consistent event order.

10.4 opportunities for olap and htap

Previously, we have described that the execution model of an architecture-
less DBMS provides many opportunities for OLTP. In the following,
we discuss further opportunities for OLAP as well as mixed HTAP
workloads.

Especially for OLAP, operations encoded in the event streams are
data intensive (e.g., a join of two large tables). Therefore, data streams
must efficiently bring data to wherever events are executed as if data
access was local to facilitate the architecture-less DBMS. While this
aspiration of “omnipresent” data appears challenging, we observe
that in DBMSs one often knows data to be accessed way ahead of
time before actually processing it. For example, in OLAP data is only
accessed and processed after several milliseconds of query optimiza-
tion and compilation. Hence, we propose data beaming, a technique
initiating data streams early and pushing data to ACs where events
will be executed.

In the following experiment, we demonstrate the effect of data beam-
ing with a simple OLAP query. Based on CH-benCHmark Q3 [46], our
query reports all open orders for all customers from states beginning
with “A” since 2007 via 3 (filtered) scans and 2 joins. In Figure 10.6,
we display the effect of data beaming in several degrees for this query:
(1) In blue, the baseline does not utilize beaming, but instead passively
pulls in data when needed. (2) In orange, the build sides are beamed
during query compilation, then joins are executed. (3) In green, build
and probe sides are beamed.

To detail the efficiency of data beams, we implement two variants:
one where data beams only need to shuffle locally (not over the
network) and one where they shuffle data across the network. The
solid lines in Figure 10.6 demonstrate the runtime using local beaming
via shared-memory queues [88] (e.g., to hide NUMA latencies) and the
dashed lines show the beaming across the network for a disaggregated
architecture using DPI-flows [76]. On the x-axis as reference point for
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Figure 10.6: Data beaming can effectively shorten query execution for dis-
aggregated execution of OLAP workloads and in the best case
hide latencies of data shuffling completely.

query compile time, 30ms marks the time taken by a commercial
DBMS (DB-C) to compile this query.

Figure 10.6 (a) shows that the overall query execution time with
beaming is only slightly higher than query compile time (green line),
whereas without beaming (blue line) the query execution time has
additional latency of 20ms, since data transfer is not overlapped with
query compile time. In detail, Figures 10.6 (b) and (c) show the individ-
ual effects of data beaming on the build and probe side (without query
compilation overhead), respectively. We see that beaming can reduce
the runtime of the smaller build side almost to 0ms. For the larger
probe side, beaming also reduces the runtime from 30ms to less than
10ms. Notably, the disaggregated architecture (which needs to shuffle
data across the network) performs even better than the aggregated
architecture, as DPI offloads event and data transfers to the InfiniBand
NICs acting as a co-processor in AnyDB.

The previous experiment demonstrated the utility of data beaming
to hide data transfer latencies in OLAP workloads. Besides hiding
transfer latencies, data beaming can also be used to achieve other goals
such as resource isolation, e.g., for HTAP workloads. The idea is that
in HTAP workloads, we can use data beams to route data intensive
analytical queries to additional compute resources disaggregated from
storage while latency-sensitive transactions are executed close to the
data.

The HTAP workloads in Figure 10.1 (phase 6-11) outline such sce-
narios, where the OLAP query of the previous experiment is executed
in parallel to the OLTP workload. Here, AnyDB executes the OLAP
query independently of the OLTP workload, only sharing storage re-
sources, whereas the OLAP query in the static DBx1000 uses the same
transaction resources for OLAP queries as for the OLTP workload.
Thereby, AnyDB simultaneously provides higher OLTP and OLAP
performance than DBx1000.
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the gist: In general, we envision AnyDB to establish flexible ar-
chitectures through described data beaming as well as optimal per
query/transaction event routing, opening up new paths to hybrid
architectures and supporting various types of deployments.

10.5 conclusions and future directions

In this paper, we have proposed architecture-less DBMSs, a radical
new approach for scale-out distributed DBMSs. In addition to the
discussed opportunities, we see many further interesting research
directions arising from the architecture-less approach:

elasticity for free : Flexible event routing and data beaming
open up opportunities, apart from resource isolation, for transparent
elasticity without additional latencies. Considering events are self-
contained and state is always beamed, elasticity for execution of event
streams just means consistent routing of events and their state to an
elastic number of ACs. Even more, as mentioned before since all events
and data are both delivered as streams to ACs, these streams could be
repartitioned or rerouted to distribute load in the system adaptively.

transparent heterogeneity : The stateless execution model
in conjunction with the opportunity for elasticity further facilitates
transparent (ad hoc) integration of heterogeneous compute resources
per query, including but not limited to accelerators (e.g., FPGAs or
GPUs) and programmable data planes (e.g., programmable NICs or
switches). Moreover, since events fully describe what to do and data
streams deliver all required state, event execution (how to do it) can be
specialized for FPGAs, etc. without any impact nor dependencies on
the rest of the DBMS.

crossing clouds and more : Finally, data beaming is an inter-
esting concept generally hiding data transfer cost not only within but
also across data centers. This opens up opportunities for DBMS deploy-
ments across on-premise, cloud offerings, and the edge without paying
significant latencies for data transfer. For example, an architecture-less
DBMS for HTAP workload may run transactions for daily business
on-premise and may ad hoc beam data to cloud resources for sporadic
reporting, combining the benefits of both platforms efficiently.
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jan Kostić. “Make the Most out of Last Level Cache in Intel
Processors.” In: Proceedings of the Fourteenth EuroSys Conference
2019. ACM, 2019. doi: 10.1145/3302424.3303977.

http://www.adms-conf.org/2017/camera-ready/adms-gru.pdf
http://www.adms-conf.org/2017/camera-ready/adms-gru.pdf
https://doi.org/10.1145/2723372.2723726
https://doi.org/10.1145/2723372.2723726
https://www.comscore.com/Insights/Blog/Big-3-Holiday-Days-Exceed-22-Billion-in-Online-Spending
https://www.comscore.com/Insights/Blog/Big-3-Holiday-Days-Exceed-22-Billion-in-Online-Spending
https://www.comscore.com/Insights/Blog/Big-3-Holiday-Days-Exceed-22-Billion-in-Online-Spending
http://www.cidrdb.org/cidr2017/papers/p121-faleiro-cidr17.pdf
http://www.cidrdb.org/cidr2017/papers/p121-faleiro-cidr17.pdf
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
http://sites.computer.org/debull/A12mar/p28.pdf
http://sites.computer.org/debull/A12mar/p28.pdf
https://doi.org/10.1145/3302424.3303977


204 bibliography

[68] Brad Fitzpatrick. livejournal. 2003. url: https://changelog.
livejournal.com/637455.html.

[69] Elvis C. Foster and Shripad Godbole. “Overview of DB2.”
In: Database Systems: A Pragmatic Approach. Apress, 2016. isbn:
978-1-4842-1191-5. doi: 10.1007/978-1-4842-1191-5_23.

[70] Hubertus Franke, Rusty Russell, and Matthew Kirkwood. “Fuss,
Futexes and Furwocks: Fast Userlevel Locking in Linux.” In:
AUUG Conference Proceedings. Vol. 85. AUUG, Inc. Kensington,
NSW, Australia, 2002. url: https://www.kernel.org/doc/
mirror/ols2002.pdf%5C#page=479.

[71] Gen-Z Core Specification 1.1. Gen-Z Consortium. 2019.

[72] Anil K. Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis,
Scott MacLean, Franz Färber, Francis Gropengiesser, Chris-
tian Mathis, Thomas Bodner, and Wolfgang Lehner. “Towards
Scalable Real-Time Analytics: an Architecture for Scale-Out
of OLxP Workloads.” In: Proc. VLDB Endow. 8.12 (2015). issn:
2150-8097. doi: 10.14778/2824032.2824069.

[73] Goetz Graefe, Arnd Christian König, Harumi Anne Kuno,
Volker Markl, and Kai-Uwe Sattler, eds. Robust Query Processing,
19.09. - 24.09.2010. Vol. 10381. Dagstuhl Seminar Proceedings.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany,
2010. doi: 10.4230/DagRep.2.8.1.

[74] Vincent Gramoli. “More than You Ever Wanted to Know about
Synchronization: Synchrobench, Measuring the Impact of the
Synchronization on Concurrent Algorithms.” In: Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. PPoPP 2015. New York, NY, USA: ACM,
2015. isbn: 978-1-4503-3205-7. doi: 10.1145/2688500.2688501.

[75] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza,
Rahul Pathak, Stefano Stefani, and Vidhya Srinivasan. “Ama-
zon Redshift and the Case for Simpler Data Warehouses.” In:
Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (SIGMOD’15). ACM, 2015. isbn: 978-1-
4503-2758-9. doi: 10.1145/2723372.2742795.

[76] Alonso Gustavo, Carsten Binnig, Ippokratis Pandis, Kenneth
Salem, Jan Skrzypczak, Ryan Stutsman, Lasse Thostrup, Tianzheng
Wang, Zeke Wang, and Tobias Ziegler. “DPI: The Data Pro-
cessing Interface for Modern Networks.” In: CIDR 2019, 9th
Biennial Conference on Innovative Data Systems Research, Asilo-
mar, CA, USA, January 13-16, 2019, Online Proceedings. 2019.
url: http://www.cidrdb.org/cidr2019/papers/p11-alonso-
cidr19.pdf.

[77] James Hamilton. Four DB2 Code Bases? 2020. url: https://
perspectives.mvdirona.com/2017/12/1187/.

https://changelog.livejournal.com/637455.html
https://changelog.livejournal.com/637455.html
https://doi.org/10.1007/978-1-4842-1191-5_23
https://www.kernel.org/doc/mirror/ols2002.pdf%5C#page=479
https://www.kernel.org/doc/mirror/ols2002.pdf%5C#page=479
https://doi.org/10.14778/2824032.2824069
https://doi.org/10.4230/DagRep.2.8.1
https://doi.org/10.1145/2688500.2688501
https://doi.org/10.1145/2723372.2742795
http://www.cidrdb.org/cidr2019/papers/p11-alonso-cidr19.pdf
http://www.cidrdb.org/cidr2019/papers/p11-alonso-cidr19.pdf
https://perspectives.mvdirona.com/2017/12/1187/
https://perspectives.mvdirona.com/2017/12/1187/


bibliography 205

[78] Theo Härder and Erhard Rahm. Datenbanksysteme: Konzepte
und Techniken der Implementierung. Springer-Verlag, 1999. isbn:
3-540-65040-7.

[79] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael
Stonebraker. “An Evaluation of Distributed Concurrency Con-
trol.” In: Proc. VLDB Endow. 10.5 (2017). issn: 2150-8097. doi:
10.14778/3055540.3055548.

[80] Joseph M. Hellerstein, Michael Stonebraker, and James Hamil-
ton. “Architecture of a Database System.” In: Foundations and
Trends(R) in Databases 1.2 (2007). issn: 1931-7883, 1931-7891. doi:
10.1561/1900000002.

[81] John L. Hennessy. Computer Architecture: a Quantitative Approach.
5. Morgan Kaufmann Publ., 2012. isbn: 978-0-12-383872-8.

[82] Hewlett Packard Enterprise. The Unique Modular Architecture of
HPE Superdome Flex: How it Works and Why It Matters. 2018. url:
https://community.hpe.com/t5/Servers-The-Right-Compu

te/The-unique-modular-architecture-of-HPE-Superdome-

Flex-How-it/ba-p/7001330%5C#.XnsMbEBFyAg.

[83] Hewlett Packard Enterprise Development LP. HPE Superdome
Flex, Intel Processors Scale SAP HANA. 2018. url: https://www.
intel.com/content/www/us/en/big-data/hpe-superdome-

flex-sap-hana-wp.html.

[84] Hewlett Packard Enterprise Development LP. HPE Superdome
Flex Server Architecture and RAS. 2020. url: https://assets.
ext.hpe.com/is/content/hpedam/documents/a00036000-

6999/a00036491/a00036491enw.pdf.

[85] Benjamin Hilprecht and Carsten Binnig. “One Model to Rule
them All: Towards Zero-Shot Learning for Databases.” In: 11th
Annual Conference on Innovative Data Systems Research (CIDR ‘22).
2022. url: http://www.cidrdb.org/cidr2022/papers/p16-
hilprecht.pdf.

[86] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. “Learning
a Partitioning Advisor for Cloud Databases.” In: Proceedings of
the 2020 ACM SIGMOD International Conference on Management
of Data (SIGMOD’20). ACM, 2020. isbn: 978-1-4503-6735-6. url:
http://doi.org/10.1145/3318464.3389704.

[87] Benjamin Hilprecht et al. “DBMS Fitting: Why should we learn
what we already know?” In: 10th Annual Conference on Innova-
tive Data Systems Research (CIDR ‘20). 2020. url: http://www.
cidrdb.org/cidr2020/papers/p34-hilprecht-cidr20.pdf.

[88] Bo Hu and Jordan DeLong. Folly single-producer-single-consumer
queue. 2019. url: https://github.com/facebook/folly/blob/
d2c64d94c7e892925a02a080c886ab3df3f5c937/folly/Produc

erConsumerQueue.h.

https://doi.org/10.14778/3055540.3055548
https://doi.org/10.1561/1900000002
https://community.hpe.com/t5/Servers-The-Right-Compute/The-unique-modular-architecture-of-HPE-Superdome-Flex-How-it/ba-p/7001330%5C#.XnsMbEBFyAg
https://community.hpe.com/t5/Servers-The-Right-Compute/The-unique-modular-architecture-of-HPE-Superdome-Flex-How-it/ba-p/7001330%5C#.XnsMbEBFyAg
https://community.hpe.com/t5/Servers-The-Right-Compute/The-unique-modular-architecture-of-HPE-Superdome-Flex-How-it/ba-p/7001330%5C#.XnsMbEBFyAg
https://www.intel.com/content/www/us/en/big-data/hpe-superdome-flex-sap-hana-wp.html
https://www.intel.com/content/www/us/en/big-data/hpe-superdome-flex-sap-hana-wp.html
https://www.intel.com/content/www/us/en/big-data/hpe-superdome-flex-sap-hana-wp.html
https://assets.ext.hpe.com/is/content/hpedam/documents/a00036000-6999/a00036491/a00036491enw.pdf
https://assets.ext.hpe.com/is/content/hpedam/documents/a00036000-6999/a00036491/a00036491enw.pdf
https://assets.ext.hpe.com/is/content/hpedam/documents/a00036000-6999/a00036491/a00036491enw.pdf
http://www.cidrdb.org/cidr2022/papers/p16-hilprecht.pdf
http://www.cidrdb.org/cidr2022/papers/p16-hilprecht.pdf
http://doi.org/10.1145/3318464.3389704
http://www.cidrdb.org/cidr2020/papers/p34-hilprecht-cidr20.pdf
http://www.cidrdb.org/cidr2020/papers/p34-hilprecht-cidr20.pdf
https://github.com/facebook/folly/blob/d2c64d94c7e892925a02a080c886ab3df3f5c937/folly/ProducerConsumerQueue.h
https://github.com/facebook/folly/blob/d2c64d94c7e892925a02a080c886ab3df3f5c937/folly/ProducerConsumerQueue.h
https://github.com/facebook/folly/blob/d2c64d94c7e892925a02a080c886ab3df3f5c937/folly/ProducerConsumerQueue.h


206 bibliography

[89] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng
He, Tieying Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang
Li. “X-Engine: An Optimized Storage Engine for Large-Scale
E-Commerce Transaction Processing.” In: Proceedings of the
2019 ACM SIGMOD International Conference on Management of
Data (SIGMOD’19). ACM, 2019. isbn: 978-1-4503-5643-5. doi:
10.1145/3299869.3314041.

[90] Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and
Liuba Shrira. “Opportunities for Optimism in Contended Main-
Memory Multicore Transactions.” In: Proc. VLDB Endow. 13.5
(2020). issn: 2150-8097. doi: 10.14778/3377369.3377373.

[91] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie
Hilgard, Andrew Ross, James Lennon, Varun Jain, Harshita
Gupta, David Li, et al. “Design Continuums and the Path To-
ward Self-Designing Key-Value Stores that Know and Learn.”
In: 9th Annual Conference on Innovative Data Systems Research
(CIDR ‘19). 2019. url: http://www.cidrdb.org/cidr2019/
papers/p143-idreos-cidr19.pdf.

[92] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold,
K. Sjoerd Mullender, and Martin L. Kersten. “MonetDB: Two
Decades of Research in Column-oriented Database Architec-
tures.” In: IEEE Data Eng. Bull. 35.1 (2012). url: http://sites.
computer.org/debull/A12mar/monetdb.pdf.

[93] Stratos Idreos et al. “Learning Key-Value Store Design.” In:
CoRR abs/1907.05443 (2019). arXiv: 1907.05443. url: http:
//arxiv.org/abs/1907.05443.

[94] Index Microbench. 2017. url: https://github.com/speedskate
r/index-microbench.

[95] Intel Corporation. Intel® 64 and IA-32 Architectures Software
Developer’s Manual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A,
3B, 3C, 3D and 4 (Order Number: 325462-077US). 2022. url:
https://www.intel.com/content/www/us/en/developer/

articles/technical/intel-sdm.html.

[96] International Business Machines Corporation. POWER8 Proces-
sor User’s Manual for the Single-Chip Module (Version 1.3). 2016.
url: https://openpowerfoundation.org/?resource_lib=
power8-processor-users-manual.

[97] International Business Machines Corporation. POWER9 Proces-
sor User’s Manual (Version 2.1). 2019. url: https://openpowe
rfoundation.org/?resource_lib=power9-processor-users-

manual.

[98] International Business Machines Corporation. Power ISA™ Ver-
sion 3.1. 2020. url: https://ibm.ent.box.com/s/hhjfw0x0lrb
tyzmiaffnbxh2fuo0fog0.

https://doi.org/10.1145/3299869.3314041
https://doi.org/10.14778/3377369.3377373
http://www.cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf
http://www.cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf
http://sites.computer.org/debull/A12mar/monetdb.pdf
http://sites.computer.org/debull/A12mar/monetdb.pdf
https://arxiv.org/abs/1907.05443
http://arxiv.org/abs/1907.05443
http://arxiv.org/abs/1907.05443
https://github.com/speedskater/index-microbench
https://github.com/speedskater/index-microbench
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://openpowerfoundation.org/?resource_lib=power8-processor-users-manual
https://openpowerfoundation.org/?resource_lib=power8-processor-users-manual
https://openpowerfoundation.org/?resource_lib=power9-processor-users-manual
https://openpowerfoundation.org/?resource_lib=power9-processor-users-manual
https://openpowerfoundation.org/?resource_lib=power9-processor-users-manual
https://ibm.ent.box.com/s/hhjfw0x0lrbtyzmiaffnbxh2fuo0fog0
https://ibm.ent.box.com/s/hhjfw0x0lrbtyzmiaffnbxh2fuo0fog0


bibliography 207

[99] International Business Machines Corporation. DB2 for IBM i.
2021. url: https://www.ibm.com/support/IGNpages/db2-ibm-
i.

[100] Ryan Johnson, Ippokratis Pandis, and Anastasia Ailamaki.
“Eliminating Unscalable Communication in Transaction Pro-
cessing.” In: The VLDB Journal 23.1 (2014). issn: 1066-8888,
0949-877X. doi: 10.1007/s00778-013-0312-3.

[101] Christopher Jonathan, Umar Farooq Minhas, James Hunter,
Justin Levandoski, and Gor Nishanov. “Exploiting Coroutines
to Attack the "Killer Nanoseconds".” In: Proc. VLDB Endow.
11.11 (2018). issn: 2150-8097. doi: 10.14778/3236187.3236216.

[102] J. W. Josten, C. Mohan, I. Narang, and J. Z. Teng. “DB2’s use of
the coupling facility for data sharing.” In: IBM Systems Journal
36.2 (1997). doi: 10.1147/sj.362.0327.

[103] Robert Kallman et al. “H-Store: A High-Performance, Dis-
tributed Main Memory Transaction Processing System.” In:
Proc. VLDB Endow. 1.2 (2008). issn: 2150-8097. doi: 10.14778/
1454159.1454211.

[104] Alfons Kemper and Thomas Neumann. “HyPer: A Hybrid
OLTP&OLAP Main Memory Database System based on Virtual
Memory Snapshots.” In: 2011 IEEE 27th International Conference
on Data Engineering. 2011. doi: 10.1109/ICDE.2011.5767867.

[105] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann,
Andrew Pavlo, and Peter Boncz. “Everything You Always
Wanted to Know about Compiled and Vectorized Queries but
Were Afraid to Ask.” In: Proc. VLDB Endow. 11.13 (2018). issn:
2150-8097. doi: 10.14778/3275366.3284966.

[106] Hideaki Kimura. “FOEDUS: OLTP Engine for a Thousand
Cores and NVRAM.” In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (SIGMOD’15).
ACM, 2015. doi: 10.1145/2723372.2746480.

[107] Thomas Kissinger, Tim Kiefer, Benjamin Schlegel, Dirk Habich,
Daniel Molka, and Wolfgang Lehner. “ERIS: A Numa-Aware In-
Memory Storage Engine for Analytical Workloads.” In: Proceed-
ings of the VLDB Endowment 7.14 (2014). doi: 10.1.1.475.3378.

[108] Barbara Klein, Diane Goff, John Butterweck, Margaret Wil-
son, Moira McFadden Lanyi, Rick Long, Sandy Sherrill, Steve
Nathan, and Kenny Blackmann. An Introduction to IMS: Your
Complete Guide to IBM Information Management System. 2nd. ed.
IBM Press, 2012. isbn: 978-0-13-288687-1.

[109] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M.
Hellerstein, and Ion Stoica. “Learning to Optimize Join Queries
With Deep Reinforcement Learning.” In: CoRR abs/1808.03196
(2018). doi: 10.48550/arXiv.1808.03196.

https://www.ibm.com/support/IGNpages/db2-ibm-i
https://www.ibm.com/support/IGNpages/db2-ibm-i
https://doi.org/10.1007/s00778-013-0312-3
https://doi.org/10.14778/3236187.3236216
https://doi.org/10.1147/sj.362.0327
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.14778/3275366.3284966
https://doi.org/10.1145/2723372.2746480
https://doi.org/10.1.1.475.3378
https://doi.org/10.48550/arXiv.1808.03196


208 bibliography

[110] Sven O. Krumke and Clemens Thielen. “The Generalized As-
signment Problem with Minimum Quantities.” In: European
Journal of Operational Research 228.1 (2013). issn: 0377-2217. doi:
10.1016/j.ejor.2013.01.027.

[111] H. T. Kung and John T. Robinson. “On Optimistic Methods for
Concurrency Control.” In: ACM Trans. Database Syst. 6.2 (1981).
issn: 0362-5915.

[112] Tirthankar Lahiri and Markus Kissling. Oracle’s In-Memory
Database Strategy for OLTP and Analytics. 2015. url: https :

//www.doag.org/formes/pubfiles/7378967/2015- K- DB-

Tirthankar_Lahiri-Oracle_s_In-Memory_Database_Strateg

y_for_Analytics_and_OLTP-Manuskript.pdf.

[113] Mahesh Lal. Neo4j Graph Data Modeling. Packt Publishing Ltd,
2015. isbn: 978-1-78439-344-1.

[114] Hai Lan, Zhifeng Bao, and Yuwei Peng. “An Index Advisor
Using Deep Reinforcement Learning.” In: Proceedings of the
29th ACM International Conference on Information & Knowledge
Management. CIKM ’20. ACM, 2020. isbn: 978-1-4503-6859-9.
doi: 10.1145/3340531.3412106.

[115] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe
Kim, Sang Kyun Cha, and Wook-Shin Han. “Parallel Repli-
cation across Formats in SAP HANA for Scaling out Mixed
OLTP/OLAP Workloads.” In: Proc. VLDB Endow. 10.12 (2017).
issn: 2150-8097. doi: 10.14778/3137765.3137767.

[116] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neu-
mann. “Morsel-driven Parallelism: A NUMA-aware Query
Evaluation Framework for the Many-core Age.” In: Proceedings
of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’14). Snowbird, Utah, USA: ACM, 2014.
isbn: 978-1-4503-2376-5. doi: 10.1145/2588555.2610507.

[117] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta.
“The Bw-Tree: A B-tree for New Hardware Platforms.” In: 29th
IEEE International Conference on Data Engineering, ICDE 2013,
Brisbane, Australia, April 8-12, 2013. 2013. doi: 10.1109/ICDE.
2013.6544834.

[118] Feifei Li. “Cloud-native Database Systems at Alibaba: Opportu-
nities and Challenges.” In: Proceedings of the VLDB Endowment
12.12 (2019). doi: 10.14778/3352063.3352141.

[119] Sam S. Lightstone, Toby J. Teorey, and Tom Nadeau. Physical
Database Design: The Database Professional’s Guide to Exploiting
Indexes, Views, Storage, and More. Morgan Kaufmann, 2010. isbn:
0-08-055231-5.

https://doi.org/10.1016/j.ejor.2013.01.027
https://www.doag.org/formes/pubfiles/7378967/2015-K-DB-Tirthankar_Lahiri-Oracle_s_In-Memory_Database_Strategy_for_Analytics_and_OLTP-Manuskript.pdf
https://www.doag.org/formes/pubfiles/7378967/2015-K-DB-Tirthankar_Lahiri-Oracle_s_In-Memory_Database_Strategy_for_Analytics_and_OLTP-Manuskript.pdf
https://www.doag.org/formes/pubfiles/7378967/2015-K-DB-Tirthankar_Lahiri-Oracle_s_In-Memory_Database_Strategy_for_Analytics_and_OLTP-Manuskript.pdf
https://www.doag.org/formes/pubfiles/7378967/2015-K-DB-Tirthankar_Lahiri-Oracle_s_In-Memory_Database_Strategy_for_Analytics_and_OLTP-Manuskript.pdf
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.14778/3137765.3137767
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.14778/3352063.3352141


bibliography 209

[120] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen.
“Cicada: Dependably Fast Multi-Core In-Memory Transactions.”
In: Proceedings of the 2017 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD’17). ACM, 2017. isbn:
978-1-4503-4197-4. doi: 10.1145/3035918.3064015.

[121] Jan Lindström, Vilho Raatikka, Jarmo Ruuth, Petri Soini, and
Katriina Vakkila. “IBM solidDB: In-Memory Database Opti-
mized for Extreme Speed and Availability.” In: IEEE Data Eng.
Bull. 36.2 (2013). url: http://sites.computer.org/debull/
a13june/a13jun-cd.pdf%5C#page=16.

[122] Simon Loesing, Markus Pilman, Thomas Etter, and Donald
Kossmann. “On the Design and Scalability of Distributed
Shared-Data Databases.” In: Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data (SIGMOD’15).
Melbourne, Victoria, Australia: ACM, 2015. isbn: 9781450327589.
doi: 10.1145/2723372.2751519.

[123] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall,
and Gilles Muller. “Remote Core Locking: Migrating Critical-
Section Execution to Improve the Performance of Multithreaded
Applications.” In: Proceedings of the 2012 USENIX conference on
Annual Technical Conference. USENIX Association, 2012. url:
https://www.usenix.org/conference/atc12/technical-

sessions/presentation/lozi.

[124] Redis Ltd. Redis: REmote DIctionary Server. url: https://redis.
io/.

[125] Jiaheng Lu, Yuxing Chen, Herodotos Herodotou, and Shivnath
Babu. “Speedup Your Analytics: Automatic Parameter Tuning
for Databases and Big Data Systems.” In: Proc. VLDB Endow.
12.12 (2019). issn: 2150-8097. doi: 10.14778/3352063.3352112.

[126] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gus-
tavo Alonso. “BatchDB: Efficient Isolated Execution of Hybrid
OLTP+OLAP Workloads for Interactive Applications.” In: Pro-
ceedings of the 2017 ACM SIGMOD International Conference on
Management of Data (SIGMOD’17). SIGMOD ’17. New York,
NY, USA: ACM, 2017. isbn: 978-1-4503-4197-4. doi: 10.1145/
3035918.3035959.

[127] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail
Stoian, Sanchit Misra, Alfons Kemper, Thomas Neumann, and
Tim Kraska. “Benchmarking Learned Indexes.” In: Proc. VLDB
Endow. 14.1 (2020). issn: 2150-8097. doi: 10.14778/3421424.
3421425.

[128] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tat-
bul, Mohammad Alizadeh, and Tim Kraska. “Bao: Making
Learned Query Optimization Practical.” In: Proceedings of the

https://doi.org/10.1145/3035918.3064015
http://sites.computer.org/debull/a13june/a13jun-cd.pdf%5C#page=16
http://sites.computer.org/debull/a13june/a13jun-cd.pdf%5C#page=16
https://doi.org/10.1145/2723372.2751519
https://www.usenix.org/conference/atc12/technical-sessions/presentation/lozi
https://www.usenix.org/conference/atc12/technical-sessions/presentation/lozi
https://redis.io/
https://redis.io/
https://doi.org/10.14778/3352063.3352112
https://doi.org/10.1145/3035918.3035959
https://doi.org/10.1145/3035918.3035959
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.14778/3421424.3421425


210 bibliography

2021 ACM SIGMOD International Conference on Management of
Data (SIGMOD’21). New York, NY, USA: ACM, 2021. isbn:
9781450383431. doi: 10.1145/3448016.3452838.

[129] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang,
and Anand Ghalsasi. “Cloud computing - The Business Per-
spective.” In: Decision Support Systems 51.1 (2011). issn: 0167-
9236. doi: 10.1016/j.dss.2010.12.006.

[130] Memcached. url: https://memcached.org/.

[131] Microsoft. Hyperscale Service Tier. 2020. url: https://docs.
microsoft.com/en-us/azure/azure-sql/database/service-

tier-hyperscale.

[132] David L. Mulnix. Intel® Xeon® Processor Scalable Family Technical
Overview. 2017. url: https://www.intel.com/content/www/
us / en / developer / articles / technical / xeon - processor -

scalable-family-technical-overview.html.

[133] Felix Naumann. Genealogy of Relational Database Management
Systems. 2018. url: https://hpi.de/fileadmin/user_upload/
fachgebiete/naumann/projekte/RDBMSGenealogy/RDBMS_Gen

ealogy_V6.pdf.

[134] Michael A Olson, Keith Bostic, and Margo I Seltzer. “Berkeley
DB.” In: USENIX Annual Technical Conference, FREENIX Track.
1999. url: https://www.usenix.org/legacy/publications/
library/proceedings/usenix99/full_papers/olson/olson.

pdf.

[135] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Will-
halm, and Wolfgang Lehner. “FPTree: A Hybrid SCM-DRAM
Persistent and Concurrent B-Tree for Storage Class Memory.”
In: Proceedings of the 2016 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD’16). ACM, 2016. doi:
10.1145/2882903.2915251.

[136] Oguzhan Ozmen, Kenneth Salem, Jiri Schindler, and Steve
Daniel. “Workload-Aware Storage Layout for Database Sys-
tems.” In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (SIGMOD’10). ACM, 2010.
isbn: 9781450300322. doi: 10.1145/1807167.1807268.

[137] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anas-
tasia Ailamaki. “Data-Oriented Transaction Execution.” In: Pro-
ceedings of the VLDB Endowment 3.1-2 (2010). issn: 21508097.
doi: 10.14778/1920841.1920959.

[138] Matthew Perron, Raul Castro Fernandez, David DeWitt, and
Samuel Madden. “Starling: A Scalable Query Engine on Cloud
Functions.” In: Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’20). Portland,

https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1016/j.dss.2010.12.006
https://memcached.org/
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/RDBMSGenealogy/RDBMS_Genealogy_V6.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/RDBMSGenealogy/RDBMS_Genealogy_V6.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/RDBMSGenealogy/RDBMS_Genealogy_V6.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix99/full_papers/olson/olson.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix99/full_papers/olson/olson.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix99/full_papers/olson/olson.pdf
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/1807167.1807268
https://doi.org/10.14778/1920841.1920959


bibliography 211

OR, USA: ACM, 2020. isbn: 9781450367356. doi: 10.1145/
3318464.3380609.

[139] Orestis Polychroniou and Kenneth A. Ross. “A Comprehen-
sive Study of Main-Memory Partitioning and its Application
to Large-Scale Comparison- and Radix-Sort.” In: Proceedings
of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’14). ACM, 2014. doi: 10.1145/2588555.
2610522.

[140] Danica Porobic, Erietta Liarou, Pinar Tozun, and Anastasia
Ailamaki. “ATraPos: Adaptive Transaction Processing on Hard-
ware Islands.” In: 2014 IEEE 30th International Conference on
Data Engineering. 2014. doi: 10.1109/ICDE.2014.6816692.

[141] Danica Porobic, Ippokratis Pandis, Miguel Branco, Pinar Tözün,
and Anastasia Ailamaki. “Characterization of the Impact of
Hardware Islands on OLTP.” In: The VLDB Journal 25.5 (2016).
issn: 1066-8888. doi: 10.1007/s00778-015-0413-2.

[142] Danica Porobic, Pınar Tözün, Raja Appuswamy, and Anas-
tasia Ailamaki. “More than a network: distributed OLTP on
clusters of hardware islands.” In: Proceedings of the 12th In-
ternational Workshop on Data Management on New Hardware -
DaMoN ’16. ACM Press, 2016. isbn: 978-1-4503-4319-0. doi:
10.1145/2933349.2933355.

[143] Guna Prasaad, Alvin Cheung, and Dan Suciu. “Improving High
Contention OLTP Performance via Transaction Scheduling.”
In: arXiv:1810.01997 [cs] (2018). url: http://arxiv.org/abs/
1810.01997.

[144] Georgios Psaropoulos, Thomas Legler, Norman May, and Anas-
tasia Ailamaki. “Interleaving with Coroutines: A Systematic
and Practical Approach to Hide Memory Latency in Index
Joins.” In: The VLDB Journal 28.4 (2019). issn: 0949-877X. doi:
10.1007/s00778-018-0533-6.

[145] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelka-
der Sellami, and Anastasia Ailamaki. “Scaling Up Concurrent
Main-Memory Column-Store Scans: Towards Adaptive NUMA-
aware Data and Task Placement.” In: The Proceedings of the
VLDB Endowment 8.12 (2015). doi: 10.14778/2824032.2824043.

[146] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader
Sellami, and Anastasia Ailamaki. “Adaptive NUMA-aware
Data Placement and Task Scheduling for Analytical Workloads
in Main-Memory Column-Stores.” In: Proc. VLDB Endow. 10.2
(2016). issn: 2150-8097. doi: 10.14778/3015274.3015275.

https://doi.org/10.1145/3318464.3380609
https://doi.org/10.1145/3318464.3380609
https://doi.org/10.1145/2588555.2610522
https://doi.org/10.1145/2588555.2610522
https://doi.org/10.1109/ICDE.2014.6816692
https://doi.org/10.1007/s00778-015-0413-2
https://doi.org/10.1145/2933349.2933355
http://arxiv.org/abs/1810.01997
http://arxiv.org/abs/1810.01997
https://doi.org/10.1007/s00778-018-0533-6
https://doi.org/10.14778/2824032.2824043
https://doi.org/10.14778/3015274.3015275


212 bibliography

[147] Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neu-
mann, Alexander Böhm, Anastasia Ailamaki, and Kai-Uwe
Sattler. “Scaling up mixed workloads: a battle of data freshness,
flexibility, and scheduling.” In: Technology Conference on Perfor-
mance Evaluation and Benchmarking. Springer. 2014. isbn: 978-
3-319-15350-6. url: https://link.springer.com/chapter/10.
1007/978-3-319-15350-6_7.

[148] Thamir M. Qadah and Mohammad Sadoghi. “QueCC: A Queue-
oriented, Control-free Concurrency Architecture.” In: Proceed-
ings of the 19th International Middleware Conference. ACM, 2018.
isbn: 978-1-4503-5702-9. doi: 10.1145/3274808.3274810.

[149] Raghu Ramakrishnan and Johannes Gehrke. Database Manage-
ment Systems. 2nd. McGraw-Hill, Inc., 2000. isbn: 0-07-244042-2.

[150] Jun Rao and Kenneth A. Ross. “Cache Conscious Indexing for
Decision-Support in Main Memory.” In: VLDB’99, Proceedings of
25th International Conference on Very Large Data Bases, September
7-10, 1999, Edinburgh, Scotland, UK. 1999.

[151] Jun Rao and Kenneth A. Ross. “Making B+-Trees Cache Con-
scious in Main Memory.” In: Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD’00), May 16-18, 2000, Dallas, Texas, USA. 2000. doi: 10.
1145/342009.335449.

[152] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman.
“Automating Physical Database Design in a Parallel Database.”
In: Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data (SIGMOD’02). ACM, 2002. isbn: 1-58113-
497-5. doi: 10.1145/564691.564757.

[153] James Reinders. Intel Threading Building Blocks: Outfitting C++
for Multi-Core Processor Parallelism. O’Reilly Media, Inc., 2007.
isbn: 1449390862.

[154] Kun Ren, Jose M. Faleiro, and Daniel J. Abadi. “Design Prin-
ciples for Scaling Multi-core OLTP Under High Contention.”
In: Proceedings of the 2016 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD’16). ACM, 2016. isbn:
978-1-4503-3531-7. doi: 10.1145/2882903.2882958.

[155] Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases:
New Opportunities for Connected Data. Second Edition. O’Reilly
Media, Inc., 2015. isbn: 978-1-4919-3200-1.

[156] RocksDB: A Persistent Key-Value Store for Fast Storage Environ-
ments. url: http://rocksdb.org/.

[157] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. “Ffwd:
Delegation is (Much) Faster Than You Think.” In: Proceedings
of the 26th Symposium on Operating Systems Principles. SOSP ’17.
Shanghai, China: ACM, 2017. doi: 10.1145/3132747.3132771.

https://link.springer.com/chapter/10.1007/978-3-319-15350-6_7
https://link.springer.com/chapter/10.1007/978-3-319-15350-6_7
https://doi.org/10.1145/3274808.3274810
https://doi.org/10.1145/342009.335449
https://doi.org/10.1145/342009.335449
https://doi.org/10.1145/564691.564757
https://doi.org/10.1145/2882903.2882958
http://rocksdb.org/
https://doi.org/10.1145/3132747.3132771


bibliography 213

[158] SAP America, Inc. Certified and Supported SAP HANA® Hard-
ware. 2022. url: https : / / www . sap . com / dmc / exp / 2014 -

09- 02- hana- hardware/enEN/%5C#/solutions?filters=v:

deCertified%5C&id=s:87.

[159] SAP SE. SAP HANA Hardware and Cloud Measurement Tools
(HCMT). 2020. url: https://help.sap.com/viewer/02bb1e
64c2ae4de7a11369f4e70a6394/2.0/en-US.

[160] Private conversation with Derek Schumacher, Russ Anderson, and
Dimitri Sivanich of Hewlett Packard Enterprise (HPE). 2021-11-16.
Nov. 16, 2021.

[161] Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko. High
Performance MySQL: Optimization, Backups, and Replication. "
O’Reilly Media, Inc.", 2012.

[162] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Val-
duriez. “Transaction Chopping: Algorithms and Performance
Studies.” In: ACM Trans. Database Syst. 20.3 (1995). doi: 10.
1145/211414.211427.

[163] Yangjun Sheng, Anthony Tomasic, Tieying Zhang, and Andrew
Pavlo. “Scheduling OLTP Transactions via Learned Abort Pre-
diction.” In: Proceedings of the Second International Workshop on
Exploiting Artificial Intelligence Techniques for Data Management.
aiDM ’19. ACM, 2019. isbn: 978-1-4503-6802-5. doi: 10.1145/
3329859.3329871.

[164] Utku Sirin, Raja Appuswamy, and Anastasia Ailamaki. “OLTP
on a Server-grade ARM: Power, Throughput and Latency Com-
parison.” In: ACM Press, 2016. doi: 10.1145/2933349.2933359.

[165] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ail-
amaki. “Micro-architectural Analysis of In-memory OLTP.”
In: Proceedings of the 2016 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD’16). ACM, 2016. isbn:
978-1-4503-3531-7. doi: 10.1145/2882903.2882916.

[166] Utku Sirin, Ahmad Yasin, and Anastasia Ailamaki. “A Method-
ology for OLTP Micro-Architectural Analysis.” In: Proceedings
of the 13th International Workshop on Data Management on New
Hardware. DAMON ’17. New York, NY, USA: ACM, 2017. isbn:
9781450350259. doi: 10.1145/3076113.3076116.

[167] R.D. Sloan. “A Practical Implementation of the Data Base
Machine-Teradata DBC/1012.” In: Proceedings of the Twenty-
Fifth Hawaii International Conference on System Sciences. Vol. i.
1992. doi: 10.1109/HICSS.1992.183180.

[168] W. J. Starke, J. S. Dodson, J. Stuecheli, E. Retter, B. W. Michael,
S. J. Powell, and J. A. Marcella. “IBM POWER9 Memory Ar-
chitectures for Optimized Systems.” In: IBM J. Res. Dev. 62.4–5
(2018). issn: 0018-8646. doi: 10.1147/JRD.2018.2846159.

https://www.sap.com/dmc/exp/2014-09-02-hana-hardware/enEN/%5C#/solutions?filters=v:deCertified%5C&id=s:87
https://www.sap.com/dmc/exp/2014-09-02-hana-hardware/enEN/%5C#/solutions?filters=v:deCertified%5C&id=s:87
https://www.sap.com/dmc/exp/2014-09-02-hana-hardware/enEN/%5C#/solutions?filters=v:deCertified%5C&id=s:87
https://help.sap.com/viewer/02bb1e64c2ae4de7a11369f4e70a6394/2.0/en-US
https://help.sap.com/viewer/02bb1e64c2ae4de7a11369f4e70a6394/2.0/en-US
https://doi.org/10.1145/211414.211427
https://doi.org/10.1145/211414.211427
https://doi.org/10.1145/3329859.3329871
https://doi.org/10.1145/3329859.3329871
https://doi.org/10.1145/2933349.2933359
https://doi.org/10.1145/2882903.2882916
https://doi.org/10.1145/3076113.3076116
https://doi.org/10.1109/HICSS.1992.183180
https://doi.org/10.1147/JRD.2018.2846159


214 bibliography

[169] W. J. Starke, J. Stuecheli, D. M. Daly, J. S. Dodson, F. Auern-
hammer, P. M. Sagmeister, G. L. Guthrie, C. F. Marino, M.
Siegel, and B. Blaner. “The Cache and Memory Subsystems of
the IBM POWER8 Processor.” In: IBM Journal of Research and
Development 59.1 (2015). doi: 10.1147/JRD.2014.2376131.

[170] M. Stonebraker and U. Cetintemel. ““One size fits all”: An
Idea Whose Time Has Come and Gone.” In: 21st International
Conference on Data Engineering (ICDE’05). 2005. doi: 10.1109/
ICDE.2005.1.

[171] M. Stonebraker, L.A. Rowe, and M. Hirohama. “The Implemen-
tation of POSTGRES.” In: IEEE Transactions on Knowledge and
Data Engineering 2.1 (1990). doi: 10.1109/69.50912.

[172] Michael Stonebraker. “The Case for Shared Nothing.” In: IEEE
Database Eng. Bull. 9.1 (1986). url: http://sites.computer.
org/debull/86MAR-CD.pdf.

[173] Michael Stonebraker, Gerald Held, Eugene Wong, and Peter
Kreps. “The Design and Implementation of INGRES.” In: ACM
Trans. Database Syst. 1.3 (1976). issn: 0362-5915. doi: 10.1145/
320473.320476.

[174] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros
Harizopoulos, Nabil Hachem, and Pat Helland. “The End of an
Architectural Era: It’s Time for a Complete Rewrite.” In: Making
Databases Work: the Pragmatic Wisdom of Michael Stonebraker.
Ed. by Massachusetts Institute of Technology and Michael
L. Brodie. 1st ed. ACM, 2018. isbn: 978-1-947487-19-2. doi:
10.1145/3226595.3226637.

[175] Michael Stonebraker and Ariel Weisberg. “The VoltDB Main
Memory DBMS.” In: IEEE Database Eng. Bull. 36.2 (2013). url:
http://sites.computer.org/debull/a13june/voltdb1.pdf.

[176] Esther Swilley and Ronald E. Goldsmith. “Black Friday and
Cyber Monday: Understanding consumer intentions on two
major shopping days.” In: Journal of Retailing and Consumer
Services 20.1 (2013). issn: 0969-6989. doi: 10.1016/j.jretcons
er.2012.10.003.

[177] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Dug-
gan, Aaron J. Elmore, Ashraf Aboulnaga, Andrew Pavlo, and
Michael Stonebraker. “E-store: Fine-grained Elastic Partitioning
for Distributed Transaction Processing Systems.” In: Proceed-
ings of the VLDB Endowment 8.3 (2014). issn: 2150-8097. doi:
10.14778/2735508.2735514.

[178] Junjay Tan, Thanaa Ghanem, Matthew Perron, Xiangyao Yu,
Michael Stonebraker, David DeWitt, Marco Serafini, Ashraf
Aboulnaga, and Tim Kraska. “Choosing a Cloud DBMS: Ar-

https://doi.org/10.1147/JRD.2014.2376131
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1109/69.50912
http://sites.computer.org/debull/86MAR-CD.pdf
http://sites.computer.org/debull/86MAR-CD.pdf
https://doi.org/10.1145/320473.320476
https://doi.org/10.1145/320473.320476
https://doi.org/10.1145/3226595.3226637
http://sites.computer.org/debull/a13june/voltdb1.pdf
https://doi.org/10.1016/j.jretconser.2012.10.003
https://doi.org/10.1016/j.jretconser.2012.10.003
https://doi.org/10.14778/2735508.2735514


bibliography 215

chitectures and Tradeoffs.” In: Proc. VLDB Endow. 12.12 (2019).
issn: 2150-8097. doi: 10.14778/3352063.3352133.

[179] Takayuki Tanabe, Takashi Hoshino, Hideyuki Kawashima, and
Osamu Tatebe. “An Analysis of Concurrency Control Protocols
for In-memory Databases with CCBench.” In: Proceedings of the
VLDB Endowment 13.13 (2020). issn: 2150-8097. doi: 10.14778/
3424573.3424575.

[180] Dixin Tang and Aaron J. Elmore. “Toward Coordination-free
and Reconfigurable Mixed Concurrency Control.” In: 2018
USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, 2018. isbn: 978-1-939133-01-4. url: https://www.
usenix.org/conference/atc18/presentation/tang.

[181] Threading Building Blocks (TBB). url: https://www.threadingb
uildingblocks.org/.

[182] Teradata. Teradata Vantage™ - Database Introduction. 2021. url:
https://docs.teradata.com/r/Teradata-VantageTM-Databa

se-Introduction/July-2021.

[183] The PostgreSQL Global Development Group. PostgreSQL 14
Released! 2022. url: https://www.postgresql.org/about/
news/postgresql-14-released-2318/.

[184] The PostgreSQL Global Development Group. PostgreSQL: Doc-
umentation: 14: Chapter 27. High Availability, Load Balancing,
and Replication, 27.1. Comparison of Different Solutions. 2022.
url: https://www.postgresql.org/docs/14/different-

replication-solutions.html.

[185] The Transaction Processing Council. TPC-C Benchmark (Revision
5.11). 2021. url: http://tpc.org/tpc_documents_current_
versions/pdf/tpc-c_v5.11.0.pdf.

[186] Peter Thoman et al. “A Taxonomy of Task-Based Parallel Pro-
gramming Technologies for High-Performance Computing.”
In: The Journal of Supercomputing 74.4 (2018). issn: 1573-0484.
doi: 10.1007/s11227-018-2238-4.

[187] Michael Freitag Thomas Neumann. “Umbra: A Disk-Based Sys-
tem with In-Memory Performance.” In: 10th Annual Conference
on Innovative Data Systems Research (CIDR ‘20). 2020. url: http:
//cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf.

[188] Boyu Tian, Jiamin Huang, Barzan Mozafari, and Grant Schoenebeck.
“Contention-aware Lock Scheduling for Transactional Databases.”
In: Proceedings of the VLDB Endowment 11.5 (2018). issn: 21508097.
doi: 10.1145/3187009.3177740.

[189] Mike Travis. x86/platform/UV: Add check of TSC state set by UV
BIOS. 2017. url: https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=97d21003df3e

7504c899b1701546f18ff475966f.

https://doi.org/10.14778/3352063.3352133
https://doi.org/10.14778/3424573.3424575
https://doi.org/10.14778/3424573.3424575
https://www.usenix.org/conference/atc18/presentation/tang
https://www.usenix.org/conference/atc18/presentation/tang
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://docs.teradata.com/r/Teradata-VantageTM-Database-Introduction/July-2021
https://docs.teradata.com/r/Teradata-VantageTM-Database-Introduction/July-2021
https://www.postgresql.org/about/news/postgresql-14-released-2318/
https://www.postgresql.org/about/news/postgresql-14-released-2318/
https://www.postgresql.org/docs/14/different-replication-solutions.html
https://www.postgresql.org/docs/14/different-replication-solutions.html
http://tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://doi.org/10.1007/s11227-018-2238-4
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1145/3187009.3177740
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97d21003df3e7504c899b1701546f18ff475966f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97d21003df3e7504c899b1701546f18ff475966f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97d21003df3e7504c899b1701546f18ff475966f


216 bibliography

[190] Mike Travis. x86/tsc: Add option that TSC on Socket 0 being non-
zero is valid. 2017. url: https://git.kernel.org/pub/sc
m/linux/kernel/git/torvalds/linux.git/commit/?id=

341102c3ef29c33611586072363cf9982a8bdb77.

[191] Mike Travis. x86/tsc: Provide a means to disable TSC ART. 2017.
url: https://git.kernel.org/pub/scm/linux/kernel/git/t
orvalds/linux.git/commit/?id=6c66350d0a482892793b888b

07c1177fc6d4b344.

[192] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov,
and Samuel Madden. “Speedy Transactions in Multicore In-
Memory Databases.” In: ACM SIGOPS 24th Symposium on Oper-
ating Systems Principles, SOSP ’13, Farmington, PA, USA, Novem-
ber 3-6, 2013. ACM, 2013. doi: 10.1145/2517349.2522713.

[193] G. Valentin, M. Zuliani, D.C. Zilio, G. Lohman, and A. Skelley.
“DB2 Advisor: An Optimizer Smart Enough to Recommend Its
Own Indexes.” In: Proceedings of 16th International Conference on
Data Engineering (Cat. No.00CB37073). 2000. doi: 10.1109/ICDE.
2000.839397.

[194] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali
Brahmadesam, Kamal Gupta, Raman Mittal, Sailesh Krishna-
murthy, Sandor Maurice, Tengiz Kharatishvili, and Xiaofeng
Bao. “Amazon Aurora: Design Considerations for High Through-
put Cloud-Native Relational Databases.” In: Proceedings of the
2017 ACM SIGMOD International Conference on Management of
Data (SIGMOD’17). ACM, 2017. isbn: 978-1-4503-4197-4. doi:
10.1145/3035918.3056101.

[195] Scott Vetter, Alexandre Bicas Caldeira, YoungHoon Cho, James
Cruickshank, Bartłomiej Grabowski, Volker Haug, Andrew
Laidlaw, and Seulgi Yoppy Sung. IBM Power Systems E870 and
E880 Technical Overview and Introduction. IBM Redbooks, 2017.
isbn: 9780738454016. url: http://www.redbooks.ibm.com/
abstracts/redp5137.html?Open.

[196] Scott Vetter, James Cruickshank, Volker Haug, Yongsheng
Li (Victor), and Armin Röll. IBM Power Systems E980: Tech-
nical Overview and Introduction. IBM Redbooks, 2020. isbn:
9780738457123. url: http://www.redbooks.ibm.com/abstr
acts/redp5510.html?Open.

[197] Robert Virding, Claes Wikström, Mike Williams, and Joe Arm-
strong. Concurrent Programming in ERLANG (2nd Ed.) Prentice
Hall International (UK) Ltd., 1996. isbn: 013508301X.

[198] Vish Viswanathan, Karthik Kumar, Thomas Willhalm, Patrick
Lu, Blazej Filipiak, and Sri Sakthivelu. Intel Memory Latency
Checker v3.8. 2020. url: https://software.intel.com/en-
us/articles/intelr-memory-latency-checker.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=341102c3ef29c33611586072363cf9982a8bdb77
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=341102c3ef29c33611586072363cf9982a8bdb77
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=341102c3ef29c33611586072363cf9982a8bdb77
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6c66350d0a482892793b888b07c1177fc6d4b344
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6c66350d0a482892793b888b07c1177fc6d4b344
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6c66350d0a482892793b888b07c1177fc6d4b344
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.1145/3035918.3056101
http://www.redbooks.ibm.com/abstracts/redp5137.html?Open
http://www.redbooks.ibm.com/abstracts/redp5137.html?Open
http://www.redbooks.ibm.com/abstracts/redp5510.html?Open
http://www.redbooks.ibm.com/abstracts/redp5510.html?Open
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker


bibliography 217

[199] Donghui Wang, Peng Cai, Weining Qian, and Aoying Zhou.
“Discriminative Admission Control for Shared-everything Database
under Mixed OLTP Workloads.” In: 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 2021. isbn: 978-1-
72819-184-3. doi: 10.1109/ICDE51399.2021.00073.

[200] Jixin Wang, Jinwei Guo, Huan Zhou, Peng Cai, and Weining
Qian. “Adaptive Transaction Scheduling for Highly Contended
Workloads.” In: Database Systems for Advanced Applications. Ed.
by Guoliang Li, Jun Yang, Joao Gama, Juggapong Natwichai,
and Yongxin Tong. Springer International Publishing, 2019.
isbn: 978-3-030-18590-9. doi: 10.1007/978-3-030-18590-9_90.

[201] Tianzheng Wang and Hideaki Kimura. “Mostly-optimistic Con-
currency Control for Highly Contended Dynamic Workloads
on a Thousand Cores.” In: Proc. VLDB Endow. 10.2 (2016). issn:
2150-8097. doi: 10.14778/3015274.3015276.

[202] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen
Zhang, Michael Kaminsky, and David G. Andersen. “Building
a Bw-Tree Takes More Than Just Buzz Words.” In: Proceedings
of the 2018 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’18). ACM, 2018. doi: 10.1145/3183713.
3196895.

[203] Florian Wolf, Norman May, Paul R. Willems, and Kai-Uwe
Sattler. “On the Calculation of Optimality Ranges for Rela-
tional Query Execution Plans.” In: Proceedings of the 2018 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD’18). ACM, 2018. isbn: 978-1-4503-4703-7. doi: 10.1145/
3183713.3183742.

[204] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew
Pavlo. “An Empirical Evaluation of In-memory Multi-version
Concurrency Control.” In: Proceedings of the VLDB Endowment
10.7 (2017). issn: 2150-8097. doi: 10.14778/3067421.3067427.

[205] Zhengming Yi, Yiping Yao, and Kai Chen. “FTSD: A Fissionable
Lock for Multicores.” In: Proceedings of the 12th ACM SIGOPS
Asia-Pacific Workshop on Systems. ACM, 2021. isbn: 978-1-4503-
8698-2. doi: 10.1145/3476886.3477518.

[206] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas,
and Michael Stonebraker. “Staring into the Abyss: An Evalu-
ation of Concurrency Control with One Thousand Cores.” In:
Proc. VLDB Endow. 8.3 (2014). issn: 2150-8097. doi: 10.14778/
2735508.2735511.

[207] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas,
and Michael Stonebraker. DBx1000 Github (Commit: b40c09a).
2020. url: https://github.com/yxymit/DBx1000/tree/b40c
09a27d9ab7a4c2222e0ed0736a0cb67b7040.

https://doi.org/10.1109/ICDE51399.2021.00073
https://doi.org/10.1007/978-3-030-18590-9_90
https://doi.org/10.14778/3015274.3015276
https://doi.org/10.1145/3183713.3196895
https://doi.org/10.1145/3183713.3196895
https://doi.org/10.1145/3183713.3183742
https://doi.org/10.1145/3183713.3183742
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.1145/3476886.3477518
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/2735508.2735511
https://github.com/yxymit/DBx1000/tree/b40c09a27d9ab7a4c2222e0ed0736a0cb67b7040
https://github.com/yxymit/DBx1000/tree/b40c09a27d9ab7a4c2222e0ed0736a0cb67b7040


218 bibliography

[208] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas
Devadas. “TicToc: Time Traveling Optimistic Concurrency Con-
trol.” In: Proceedings of the 2016 ACM SIGMOD International
Conference on Management of Data (SIGMOD’16). New York, NY,
USA: ACM, 2016. doi: 10.1145/2882903.2882935.

[209] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez, Larry
Rudolph, and Srinivas Devadas. “Sundial: Harmonizing Con-
currency Control and Caching in a Distributed OLTP Database
Management System.” In: Proceedings of the VLDB Endowment
11.10 (2018). issn: 2150-8097. doi: 10.14778/3231751.3231763.

[210] Tieying Zhang, Anthony Tomasic, Yangjun Sheng, and Andrew
Pavlo. “Performance of OLTP via Intelligent Scheduling.” In:
34th IEEE International Conference on Data Engineering, ICDE
2018, Paris, France, April 16-19, 2018. IEEE Computer Society,
2018. doi: 10.1109/ICDE.2018.00132.

[211] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng.
“A Learned Query Rewrite System Using Monte Carlo Tree
Search.” In: Proc. VLDB Endow. 15.1 (2021). issn: 2150-8097. doi:
10.14778/3485450.3485456.

https://doi.org/10.1145/2882903.2882935
https://doi.org/10.14778/3231751.3231763
https://doi.org/10.1109/ICDE.2018.00132
https://doi.org/10.14778/3485450.3485456

	Erklärung laut Promotionsordnung
	Dedication
	Abstract
	Zusammenfassung

	Publications
	Acknowledgments
	Contents
	 Synopsis
	1 Introduction
	1.1 The Evolution of DBMS Designs
	1.2 Specialization of DBMS Designs
	1.3 Static Architectures Despite Expanding Design Space
	1.4 Need for Robust Specialization of Architectures
	1.5 Adaptive Architectures for Robust DBMS

	2 Towards Adaptive Architectures
	2.1 Analyzing Static DBMS Architectures
	2.2 Towards Adaptive Architectures for Scale-Up DBMS
	2.3 Towards Adaptive Architectures for Scale-Out DBMS

	3 Analysis of Static Architectures
	3.1 Publications
	3.2 Design of the Evaluation
	3.3 Key Findings
	3.4 Discussion

	4 Adaptive Architectures for Scale-Up DBMS
	4.1 Publication
	4.2 Adaptive Scale-Up Architectures by Re-Configuration
	4.3 System Overview
	4.4 Key Findings

	5 Adaptive Architectures for Scale-Out DBMS
	5.1 Publication
	5.2 Adaptation of Architecture-less Scale-Out DBMS
	5.3 Key Findings

	6 Conclusion & Outlook
	6.1 Adaptive Architectures for Robust DBMS
	6.2 Towards Adaptive Architectures for the Cloud


	 Peer-reviewed Publications
	7 The Tale of 1000 Cores
	7.1 Introduction
	7.2 Setup for our Experimental Study
	7.3 A First Look: Simulation vs. Reality
	7.4 A Second Look: Hidden Secrets
	7.5 A Final Look: Clearing Skies
	7.6 Discussion and Conclusion

	8 The Full Story of 1000 Cores
	8.1 Introduction
	8.2 Background and Setup
	8.3 Part One: Simulation vs. Real Hardware
	8.4 Part Two: Broadening the Evaluation
	8.5 Conclusion and Future Work

	9 Robust Performance by Configuration
	9.1 Introduction
	9.2 The Art of Robust Performance
	9.3 System Overview
	9.4 Programming Model
	9.5 Robustness by Configuration
	9.6 Runtime System
	9.7 Experimental Evaluation
	9.8 Related Work
	9.9 Conclusion

	10 An Architecture-less DBMS for Any Workload
	10.1 Introduction
	10.2 An Architecture-less DBMS
	10.3 Opportunities for OLTP
	10.4 Opportunities for OLAP and HTAP
	10.5 Conclusions and Future Directions


	 Bibliography

