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Abstract. Proton radiography is a common diagnostic technique in laser-driven magnetic field 

generation studies. It is based on measuring proton beam deflection in electromagnetic fields 

induced around the target with the help of radiochromic film stacks. Unraveling information 

recorded in experimental radiographs and extracting the field profiles is not always a 

straightforward task. In this paper, some aspects of data analysis by reproducing experimental 

radiographs in numerical simulations are described. The approach allows determining the field 

strength and structure in the target area for various target geometries. 

1. Introduction 

Strong magnetic field generators potentially have a number of applications in different areas of science 

and technology. One of them is controlling high-energy charged particles transport, e.g. collimation of 

divergent fast electron beams in fast ignition approach to inertial confinement fusion. Another possible 

application concerns the area of laboratory astrophysics where strong magnetic fields can be used to 

create magnetized plasma and model various astrophysical phenomena. A prospective way of 

magnetic field generation is laser-driven magnetic field generation [1]. This method is compact, does 

not require capacitor banks and allows producing magnetic fields well in excess of 100 T, which is 

beyond the limit for conventional methods relying on non-destructive resistive and superconductive 

electromagnets. 

Laser-driven magnetic field generation implies irradiating targets with intense short laser pulses. 

Focusing of such pulses into a small spot on the target surface leads to the creation of hot electrons, 

which leave the target surface and generate strong discharge currents. For certain target geometries 

this return flow can have a dedicated direction and thus produce high magnetic fields in the interaction 

region. Depending on the duration of the pulse, the field may be more or less stationary, however it is 

also limited by target impedance, including all kinds of losses. To come closely to the stationary 

regime, the laser pulse duration should be longer than the time necessary to connect the current circuit 

in the target. In nanosecond regime this means the circuit perimeter should be less than hundreds of 

mm, while in picosecond regime the target size should be three orders less, about few hundreds of 

microns.  

2. Proton radiography setup 

In order to study generated magnetic fields qualitatively and quantitatively various techniques can be 

employed – B-dot probes, optical diagnostics, spectrometry and proton radiography [2]. The latter 

allows measuring magnetic and electric fields in the target region and tracking their evolution on a 
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picosecond time scale [3]. Principal scheme of the setup for proton radiography with two laser beams 

is shown in Figure 1. 

 

Figure 1. Principal scheme of proton radiography. 

Proton beam is created via TNSA mechanism [4] under irradiation of a thin metallic foil by an 

auxiliary intense laser pulse. The proton beam is directed to come through the region of interest, where 

the main laser pulse interacts with the studied target. In this region, protons under the action of the 

Lorentz force deflect from their initial trajectories and form some structure on radio-chromic films 

(RCF). The active layer of RCF contains a marker dye changing its color when exposed to ionizing 

radiation, thus allowing RCF to be used for measuring the spatial distribution of proton density in the 

probe beam. As the target itself also serves as a proton source, a metallic mesh may be placed in the 

way of the TNSA proton beam. It forms a periodic structure in the probe beam, which can be used to 

distinguish diagnostic protons from the target protons in the radiograph. Since stopping range of ions 

in matter varies with their energy, different layers of RCF stack register protons of different energies 

passing the interaction region at different moments of time, which enables performing time-resolved 

measurements [5].  

The main parameters of TNSA probe beam are its divergence, proton energy distribution and 

proton density. For TNSA mechanism, the divergence of the probe beam is of the order of several 

degrees. Low energy part of the signal (< 1 MeV) containing the contribution from heavy ions present 

in the TNSA beam may be cut by placing a thin (~ 10 𝜇𝑚) metallic foil before the very first layer of 

the stack to avoid saturation. Therefore, energies of detected protons lie in the range from 1 MeV to 

the maximum proton energies, depending on the properties of the used laser beam. It allows tracking 

the time evolution of electromagnetic fields on the scale of several hundred picoseconds with the 

resolution of less than 10 𝑝𝑠. Proton densities in the beam can be estimated by first calculating the 

layer exposure to dose of ionizing radiation using the “RGB channel gray value – dose in gray” 

calibration data for a particular type of radio-chromic film. Then this dose can be used to determine 

the total energy depleted in the active layer and with it calculate the number of protons in the beam 

and their density. It allows estimation of different effects in the probe proton beam, as e.g. collective 

charge-separation or diamagnetic effects [6]. 

For time-resolved measurements one needs to know the distribution of protons of different energies 

between different RCF layers. This information can be acquired using computer programs for 

calculation of transport of ions in matter such as SRIM/TRIM [7]. An illustration depicting where 

which protons are absorbed for a typical RCF-stack setup consisting of 12 𝜇𝑚 aluminium foil filter, 5 

HD-V2 films and 4 more sensitive EBT-3 films placed further in the stack is given in Figure 2. 
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Figure 2. An illustration of 

proton energy distribution in 

RCF-stack layers for a stack 

consisting of 12 𝜇𝑚 aluminium 

foil filter (marked with black), 

5 HD-V2 films and 4 EBT-3 

films (the active layers marked 

with blue). 

As one can see, the energy of protons absorbed in the active layer of the first film is about 

1..3 MeV, in the active layer of the second film – about 3..4 MeV, the third film – 4..5 MeV and so on. 

The time of flight difference and therefore time resolution for a distance of 3 𝑚𝑚 between the TNSA 

foil and the studied target is 20 𝑝𝑠 for the 2
nd

 and 3
rd

 layer pair and less for the subsequent pairs. The 

overall range of time resolved measurements is about 160 𝑝𝑠, providing all the layers are activated. 

3. Numerical simulations of radiographic images 

A standard way to extract information about the fields from the experimental radiographs is 

performing numerical simulations of the proton flight through the target region. Roughly, comparing 

the simulated radiograph with the real one enables one to scale the fields that were used in the 

simulation and iteratively correct their structure to minimize the difference between the radiographs. 

When this difference becomes small enough, it is assumed that the fields in the interaction region are 

reconstructed with admissible error. Time-dependence of the fields are not considered for individual 

proton path, which is reasonable for a stationary regime of the magnetic field generation. For the faster 

processes, the error increases also because of the intrinsic time averaging. More universal modelling 

with e.g. Particle-In-Cell codes is possible, but it requires much more CPU time. Here only quasi-

stationary situations are considered. 

The simulation algorithm presented in this work can be divided into several steps. First, magnetic 

and electric fields formed near the target are determined assuming a unitary current and charge value. 

For calculation of the former a current contour is selected. Then it is divided into 𝑁 small linear 

segments and Bio-Savart law is applied to find the total magnetic field 𝑩(𝒓) from all segments at 

position 𝒓:  

𝑩(𝒓) =
𝜇0

4𝜋
∑

𝐼𝑖𝑑𝒍𝒊 × 𝒓𝒊
′

|𝒓𝒊
′|

3

𝑁

𝑖=1
                                                            (1) 

where 𝑖 is the number of a segment, 𝐼𝑖 is the current in each segment, 𝑑𝒍𝒊 is a vector with direction 

matching that of the current and magnitude matching the length of the segment, 𝒓𝒊
′ is the displacement 

vector from the segment to the point at which the field is calculated. Electric field 𝑬(𝒓) can be 

calculated assuming the target is charged to a certain potential. When the electromagnetic fields are 

defined, ballistic simulations are performed. For this purpose, differential equations describing the 

motion of a charged particle in the presence of the Lorentz force are solved for each proton in the 

beam separately: 
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𝑚𝑝

𝑑2𝒓𝒊

𝑑𝑡2
= 𝑞𝑝 (𝑬(𝒓𝒊) +

𝑑𝒓𝒊

𝑑𝑡
× 𝑩(𝒓)),                                                      (2) 

where 𝑖 is the number of a proton in the beam, 𝒓𝒊 is its current position, 𝑚𝑝 and 𝑞𝑝 are the mass and 

charge of proton respectively. For the considered energies, nonrelativistic equation is used. Points in 

the RCF film plane with coordinates matching those of some probe proton are marked with ‘1’, 

otherwise – with ‘0’. The resulted 2D array is saved as an image.  

4. Characteristic features of the radiographs 

The characteristic structures of radiographs can be demonstrated in simulations for a solenoidal-like 

current, i.e. assuming the target is a ring with uniform current circulating along its surface. It is shown 

in Figure 3 for different probing geometries. For all the simulations presented in this paper a shadow 

of the mesh, placed in the way of probe protons, was accounted for. 

 

 

Figure 3. Proton radiographs on the example of the ring current circuit. a), c) – illustration of two 

probing geometries – perpendicular to the target axis and almost parallel to it respectively; b), d) – 

corresponding simulated radiographs; e) illustration of deflection for protons passing through the 

target centre; f) simulated radiograph for quasi-parallel probing geometry.  

The structure (Figure 3b and Figure 3d) can be described as a “blob” with a reflection symmetry, 

inside which no proton signal is observed. The boundary of this “blob” is a thin and bright line where 

proton concentration is the highest. On one side of the image the boundary line intersects itself 

forming a distinct “caustic like” feature. The position of this feature depends on the relative orientation 

of the probe beam and the target magnetic field, thus allowing it to be used to determine the direction 

of the latter in experiment. For probing geometry a), i.e. in the plane perpendicular to the direction of 

the magnetic field, the caustics are either down or up depending on the direction of the return current 

flow. For probing geometry c), i.e. in the plane parallel to the magnetic field at a small angle to the 

target axis, the caustics are situated either on the left or on right side of the radiograph. A group of 

protons deflected to the left from the “blob” centre can also be seen on the radiograph corresponding 

to the almost parallel probing geometry. This group is formed by the protons that pass through the 

centre of the target, which is illustrated in Figure 3e. If the probing is done strictly parallel to the 



LaPlas 2020
Journal of Physics: Conference Series 1686 (2020) 012004

IOP Publishing
doi:10.1088/1742-6596/1686/1/012004

5

direction of the formed magnetic field, the radiograph (Figure 3f) is symmetric, has no “caustic like” 

features and no deflection is observed for the protons passing the centre of the target.  

Such bright line and “caustic like” features are commonly observed in the experimental 

radiographs. According to the theory of their formation given in [8] they appear due to the nonlinear 

nature of proton imaging when a finite area surface element in the object plane is mapped to a zero 

area element in the image plane. In theory it should lead to an infinite increase of proton intensity for 

this particular surface element in the image plane, but due to finite resolution of radio-chromic films 

the observed increase is several times the background proton intensity. As stated in [8], the condition 

for the appearance of nonlinear features is 
𝑙𝛼

𝑎
≳ 1, where 𝑙 is the distance from the quasi-point proton 

source to the target, 𝑎 is the characteristic scale of the electromagnetic perturbation and 𝛼 is the 

deflection angle. So both magnetic and electric fields can be responsible for the caustics formation if 

they are high enough to cause significant deflection (𝛼 ≳
𝑎

𝑙
), yet the structure they form is different. 

Direct comparison of the magnetic field and electric field imprint for ring current circuit probed 

perpendicular to the ring axis is given in Figure 4. 

 

Figure 4. Comparison of the magnetic field and electric field imprint for ring current circuit probed 

perpendicularly to the ring axis. 

5. Analyzing the radiographs 

Different ways of analyzing experimental radiographs via numerical simulations are possible. In a 

relatively simple situation, as described above, they may rely on measuring the geometric parameters 

of the “blob” structure – namely its width 𝑤 and height ℎ. Their values change with the magnitude of 

the magnetic and electric field allowing the latter two to be estimated by matching the geometrical 

parameters of the simulated radiograph with those of the experimental one. Maps showing dependence 

of the width and height of the simulated “blob” on the magnetic field at the centre of the target and the 

electric potential of the target for the ring probed in a) geometry are shown in Figure 5. 
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Figure 5. Maps showing dependence of geometric parameters of the simulated radiograph image 

structure (left – width of the “blob”, right – height of the “blob”) on the magnetic field at the target 

centre and on the electric potential of the target. 

Measuring the values of 𝑤 and ℎ of the structure in the experimental radiograph allows one to draw  

𝑤 = 𝑤𝑒𝑥𝑝 and ℎ = ℎ𝑒𝑥𝑝 planes intersecting 𝑤(𝑈, 𝐵) and ℎ(𝑈, 𝐵) surfaces. The intersection of each 

plane with the corresponding surface is a 2D curve which can be interpreted as a set of all possible 𝑈 

and 𝐵 pairs for which the width or height of the simulated “blob” matches those values of the 

experimental “blob”. The point where two resultant curves cross one another is the point where values 

of 𝑈 and 𝐵 are most likely the closest to the experimental ones. Since 𝑤(𝑈, 𝐵) and ℎ(𝑈, 𝐵) functions 

have similar behavior it may be impossible to find the intersection of the fit to experimental values 2D 

curves with admissible error due to the small crossing angle between them. In order to avoid it other 

geometrical parameters of the radiograph structure may be introduced. If their dependence on the 

values of 𝑈 and 𝐵 is different from that of 𝑤 and ℎ, the crossing angle for this geometrical parameter 

will be higher and thus it will be possible to find the optimal values of 𝑈 and 𝐵 with less error.  

Other possible ways of analyzing radiographs are correlation analysis and machine learning. By 

comparing the real radiograph with results of the simulation for a set of 𝑈 and 𝐵 parameters the former 

allows one to find the pair for which the structural similarity of the simulated and experimental image 

will be the highest. The latter, originally suggested for proton radiography data analysis in [9], relies 

on using a neural network trained on the simulation results in order to extract parameters of the fields 

in the interaction region.  

6. Results for model targets 

In this section proton radiography is discussed in application to several model targets. Their 

geometrical parameters are chosen in compliance with possible real targets which can be made by 

means of laser processing of metallic foils, etching, 3D printing and other methods. 

One of possible geometries is hollow targets with curved internal surface – “snail-type” targets, 

which have already demonstrated their potential for strong quasi-stationary magnetic field 

generation [10,11]. The laser beam is sent into such target at a grazing incidence, which leads to the 

formation of a quasi-circular current circuit along the inner surface. Proton radiographs for two snail-

type targets with different current directions probed perpendicularly to their axis are given in Figure 6.    
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Figure 6. Proton radiographs for snail-type targets with different current flow directions probed 

perpendicularly to their axis; B and U are the magnetic field (at the geometric centre of the target) and 

the electric potential used in calculations. 

Due to the fact that the shape of the current circuit for this target is close to a ring, the radiographs 

look similar to the one in Figure 3b, but with the clearly visible shadow of the target mounting post. 

The “caustics” part of the structure is reversed for two opposite current flow directions. Geometric 

parameters of this type of radiographs allow estimating electromagnetic fields using methods 

described in Section 5. 

It is also possible to create discharge currents in snail targets in simpler irradiation geometry – by 

focusing a laser pulse on the inner tip of the snail. The generated currents in this case run along the 

target perimeter and partially along the target mounting post, creating strong magnetic field parallel to 

the target axis. Probing this target at an angle of 30° to its axis leads to a radiograph shown in 

Figure 7, left. The upper part of the radiograph resembles the structure on Figure 3d due to similarities 

in the shapes of current circuits of this target and a current ring target. In the left part of the region 

inside the “blob” one can observe a spot created by protons passing the central region of the snail and 

deflected by a vertical magnetic field component to the left. If magnetic fields in the central region of 

the snail reach the order of 1 kT, they may start to focus the proton beam coming at a small angle to 

the target axis, producing bright distorted spots inside the “blob” observed on the radiograph. This 

effect is demonstrated on the radiograph for axial probing geometry in Figure 7, right.  
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Figure 7. Proton radiographs for a snail-type magnetic field generator based on creating discharge 

currents by focusing a laser pulse on the inner tip of the snail. Left: proton probing is done at an angle 

of 30° to the target axis; right: probing is done parallel to the target axis.  

Another interesting target geometry corresponds to chiral targets, originally suggested in [12]. The 

laser beam is directed into the central area of such a target where it undergoes multiple reflections 

from the tips of the “claws” of such a target and causes strong currents along the surface of these 

“claws”. Simulated radiographs for chiral target probed at 0° and 15° to its axis are given in Figure 8. 

 

Figure 8. Proton radiographs for the chiral target probed along its axis (left) and at an angle of 15° to 

its axis (right); B and U are the magnetic field (at the geometric centre of the target) and the electric 

potential used in the calculations. 

In the parallel probing geometry the radiograph can be describes as a “bloated” shadow of the 

target “claws” with some proton focusing observed in the centre of the image. The degree of focusing 

or collimation for protons travelling through the central region increases with the value of the 
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magnetic field which is showcased in Figure 9. For a non-parallel target probing geometry (15° to the 

target axis) the structure also resembles the “claws” shadow, but it is strongly distorted due to the 

magnetic field component deflecting protons sideways – in this case to the right and slightly up. 

 

Figure 9. Illustration of proton beam collimation by magnetic fields of different strength generated at 

the centre of the chiral target; the dashed line represents the central area of the chiral target – from its 

geometric centre to the tips of the “claws”. Note: the y-axis is not to scale with the x and z axes.  

7. Conclusion 
Despite its simplicity and possibility to perform data analysis for different target geometries, the 

approach described in this work has certain weak points. It relies on good understanding of the 

discharge current distribution in the target and surrounding plasma in order to calculate magnetic field 

for simulations and does not take into account fields created by expanding plasmas. This limitation 

may be overcome by using Particle-In-Cell simulations to characterize the current distribution in the 

interaction region and therefore the field structure. Another possible solution of this problem requires 

finding a general form of describing the magnetic field in the studied region. Using a neural network 

trained on a vast number of simulated radiographs for different values of parameters of this form may 

enable finding an optimal set of parameters for which maximum similarity with the experimental 

radiograph can be achieved. 
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