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Abstract 

Neutrino-driven winds following core collapse supernovae have been proposed as a suitable 

site where the so-called light heavy elements (between Sr to Ag) can be synthetized. For 

moderately neutron-����� ���	
�� ����� ��������
� ����� �� ��������� ����� ��� ���� ��ak r process, 

becoming the main mechanism to drive nuclear matter towards heavier elements. In this paper 

we summarize the sensitivity of network-calculated abundances to the astrophysical conditions, 

��	����������������
��������������������������
������
����������������������
�������	�������	����

dominate the uncertainty in the calculated elemental abundances. Measurements of these 

reactions will allow to identify the astrophysical conditions of the weak r process by comparing 

calculated/observed abundances in r-limited stars. 
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1. Introduction 

One of the most remarkable features of the r process is the nearly perfect match of the elemental abundance pattern 

(particularly in the rare-earth region) observed in r-process-rich stars (see, e.g. Fig 5 of [1]). These are halo, metal-poor [Fe/H] 

< -1 (old) stars, characterized by high levels of Eu enrichment (either [Eu/Fe] > +1, for r-II stars, or 0.3 ��[Eu/Fe] � +1, for r-I 

stars [2]) and low levels of s-process “contamination” ([Ba/Eu] < 0). Strikingly, the same pattern is found in the solar-system 

(SS) r-process residual elemental abundances (obtained by subtracting the s- and p-process contributions to the observed 

abundances). This regularity points to a robust r process, typically referred to as main r process, operating over (at least) the 

age of the Galaxy. 

A closer examination of these observed elemental abundances, however, reveals some interesting features in the region of 

lighter elements (38<Z<47). First, the abundances of these elements exhibit a notorious scatter between different r-process-rich 

stars, in contrast to the nearly perfect match observed for elements Z>56. Second, there seems to be a consistent depletion of 

light elements in these r-II stars (in particular Y, Mo, Rh, Pd, and Ag), compared with the Eu-scaled SS r-process residuals. 

Several authors investigated these anomalies by comparing the observed abundances of lighter heavy element with the Ba- 



Nuclear Physics in Astrophysics IX (NPA-IX)

Journal of Physics: Conference Series 1668 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1668/1/012033

2

  
 

and/or Eu-enrichments for different metal-poor stars (see e.g. [3-6]). As an example, Fig. 1 shows the abundances of a typical 

light heavy element (e.g. Sr), normalized to Eu, as a function of Eu/Fe (i.e., r-process enrichment) for a sample of Eu-rich 

metal-poor stars. There are two clearly distinct regions in this figure: First, stars with low levels of Eu-enrichment exhibit a 

linear anti-correlation between [Sr/Eu] and [Eu/Fe], indicating that the Sr and Eu “contaminations” in these stars were produced 

by different processes. Second, there is a clear correlation of the Sr and Eu abundances in highly Eu-rich stars, as seen from the 

flat trend of [Sr/Eu] vs. [Eu/Fe]. Note that this is the same correlation observed when analyzing the abundances of rare-earth 

elements normalized to Eu, as shown in Fig. 2 for [La/Eu].  

 

 

 
Figure 1: [Sr/Eu] as a function of [Eu/Fe] for different samples of metal-poor halo stars (data taken from JINAbase [7]).  

 

 

 
Figure 2: [La/Eu] as a function of [Eu/Fe] for different samples of metal-poor halo stars (data taken from JINAbase [7]). 

The picture emerging from these results is that there seems to be (at least) a secondary process, besides the main r process, 

co-producing lighter heavy elements (38<Z<47), with no significant productions of heavier elements (Z>56). Thus, the SS r-

process residuals might result from a combination of the main r process and this secondary process. In that sense, the element 

abundances of the so-called r-limited stars (i.e. [Eu/Fe] < 0.3; [Sr/Ba] > 0.5; [Sr/Eu] > 0 [2]) might be offering the observational 

signature of this secondary process. This is illustrated in Fig. 3, where the element abundance pattern of one of these r-limited 

stars (HD122563) is compared with the Eu-scaled pattern of a typical r-II star (CS22892-052).  
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Figure 3: Eu-normalized elemental abundances of HD122563 and CS22892-052 stars (data taken from JINAbase [7]).

In this paper, we discuss the nucleosynthesis process occurring in slightly neutron-rich neutrino-driven winds produced in 

core-collapse supernovae (CCSNe). A brief description of this process is given in Section 2. Section 3 concerns the sensitivity 

of this process to the astrophysical conditions found in CCSNe neutrino-drive winds. The role of nuclear-physics uncertainties 

in the network-calculated abundances is discussed in Section 4. Summary and conclusions are included in Section 5. 

 

2. Nucleosynthesis in Core-Collapse Supernova Neutrino-driven Winds: The role of (��,n) reactions 

Neutrino-driven winds following CCSNe were originally considered as an attractive site for the nucleosynthesis of the r process. 

However, after years of intense effort, the current status is that hydrodynamic simulations do not reach the extreme conditions 

(in terms of entropy S, expansion times texp, and electron fractions Ye) necessary for a robust nucleosynthesis process capable 

of reproducing the main r-process pattern (see section 3.1.1 of [8] for an interesting historical overview). Nevertheless, the 

moderate neutron-rich (in some cases even proton-rich) wind conditions obtained from these simulations offer an optimum 

environment for the synthesis of the lighter heavy nuclei [9]. In particular, in fast-expanding ejecta, the environment remains 

slightly neutron-rich (Ye 0.5) and it is possible to have a weak r process that “fails” to produce nuclei beyond A~110 (see, e.g. 

[10]).  

 

As discussed in [11,12], near the proto-neutron star, the hot ejected matter is dominated by neutrons and protons that form 

alpha particles in nuclear statistical equilibrium (NSE). As this matter expands and its temperature and density drop, alpha 

particles recombine into heavier nuclei via the slow 3� reaction, combined with  �(�,n)9Be(�,n)12C, and other reactions, 

including (n,�)–(�,n), in NSE. During this NSE phase, a series of “seed” nuclei are created, which can reach elements in the 

region around Zn. If the expansion is very fast (texp~10 ms), the abrupt drop in temperature leads to an alpha-rich NSE freeze-

out at T~5 GK. In these conditions, (�,n) reactions are the fastest, out-of-equilibrium, reactions pushing matter towards heavier 

elements, with minor contributions from (p,n), (�,�) and (p,�) reactions. Meanwhile, for each new Z, the equilibrated (n,�)–
(�,n) reaction sequences determine the isotopic matter distribution. Note that at these moderate neutron-rich conditions, the 

freshly synthesized matter follows a path close to stability, in the neutron-rich side. This charged-particle reaction phase (CPR), 

also referred to as alpha process, lasts until matter cools down below T~2 GK. Below this temperature, there is a charged-

particle freeze-out, followed by a sequence of (n,�)–(�,n) and beta decays until neutrons are exhausted and all matter decays to 

the valley of stability, leading to the final observable abundance distribution. 

As discussed in our previous papers [12-14], reaction-network calculated abundances produced in this weak r-process are 

affected by two sources of uncertainty: First, the astrophysical conditions of the environment (Ye, entropy, and expansion time) 

depend on uncertainties in neutrino interactions, hydrodynamics, explosion energies, etc. Second, of all the (�,n) reactions 

involved in the process, none of them are experimentally known in the relevant range of temperatures (T~2-5 GK). In the 

following sections, we discuss the sensitivity of this weak r process to the astrophysical environment and to the (�,n) rate 

uncertainties. 

 

3. Sensitivity of the Lighter Heavy-element production to Astrophysical Conditions 

The sensitivity of the weak r-process nucleosynthesis to the astrophysical conditions of the neutrino winds were extensively 

investigated in one of our recent article [14]. This study followed a two-step method. In the first step, the neutrino-wind 
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properties were determined using the steady-state model of Otsuki et al. [15], which relies on the fact that in the first seconds 

following the core collapse, the proto-neutron star mass and radius, and the neutrino properties (luminosity and energy) vary 

slowly in time. Steady-state wind equations can then be used to calculate the pressure, temperature, velocity, and density as 

functions of the radius r (defined as the distance to the center of the proto-neutron star), for a given mass MNS, radius RNS, and 

(anti)neutrino luminosities (L) and energies (�). As explained in [14], the range of input MNS and RNS considered in our study 

(0.8-2 M  and 9-30 km) were chosen based on observational and theoretical constrains for neutron stars and neutron matter. 

Moreover, the (anti)neutrino properties were selected to cover a range of moderately neutron-rich winds (i.e. Ye=0.40-0.49). 

Thus, for each set of input parameters, we produced a “wind trajectory”, characterized by the electron fraction Ye and the 

evolution of the temperature T(t) and density �(t), after converting the velocity as a function of r into time. These trajectories 

are associated with a set of wind parameters given by S, Ye, and texp
1.  

In the second step of our method, each of the calculated wind trajectories were used in a reaction network to determine the 

production of nuclei associated with these astrophysical conditions. The (�,n) reaction rates included in this network were 

calculated with the TALYS code [16], using the default set of input parameters defined in [13], except for masses, which were 

taken from the 2003 mass compilation of Audi et al. [17] (we will refer to these TALYS rates as TALYS1). 

 Following this two-step method, we selected 2696 different sets of input wind parameters (MNS, RNS, Ye), and produced, 

for each of them, a different set of abundances. Remarkably, all of these nearly 3000 abundance sets can be grouped in just 

four clearly-different abundance patterns, labeled NSE1, NSE2, CPR1, and CPR2, as shown in Fig. 4. More importantly, the 

underlying astrophysical conditions of each of these four patterns can be reduced to two quantities, namely, the neutron-to-seed 

ratio (Yn/Yseed) and the alpha-to-seed ratio (Y�/Yseed) at temperatures T�3 GK (see Fig. 5).  

 

 

 
Figure 4: The four characteristic element abundance patterns obtained in [14] using different astrophysical conditions. 

 

 

                                                           
1 Note that  S ~ T3/� and texp=r/v at T=0.5 MeV 
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Figure 5: The four abundance pattern groups (NSE1, NSE2, CPR1, CPR2) of [14] in the Y�/Yseed vs. Yn/Yseed plane. The blue and red lines 
correspond to the most and least compact proto-neutron stars (see [14] for more details). 

As explained in [14], of the four identified abundance patterns shown in Fig 4, the group labeled CPR2, resulting from the 

most compact proto-neutron stars with the largest Yn/Yseed and Y�/Yseed values, is the only one with significant productions of 

elements between Sr and Ag. This is the result of two combined effects: First, because the neutron-to-seed ratio is large, the 

seed nuclei produced during NSE are localized in the neutron-rich side with maximum productions in the N=50 closed shell 

for elements between Se and Kr. Second, the high alpha-to-seed ratio values at the end of NSE guarantee that there are enough 

alpha particles that can be captured in (�,n) reactions pushing the seed nuclei towards heavier elements through the N=50 

closed shell. These (�,n) combined with (n,�)–(�,n) give rise to a successful CPR producing large amounts of neutron-rich 

isotopes, which will eventually beta-decay to stability, leading to the final abundance pattern. 

 

  

4. Sensitivity of the Lighter Heavy-element production to (��,n) reaction-rate uncertainties  

As discussed in the previous sections, (�,n) reactions are by far the most important mechanism transmuting the NSE seed nuclei 

into heavier elements, and are consequentially expected to have a strong impact in the final abundances. Interestingly, almost 

none of the approximately 900 different (�,n) reactions involved in our network calculations have been measured in the range 

of temperatures T�1-5 GK, relevant for the weak r process. (Note that, unlike the main r-process, other important nuclear-

physics inputs like masses or half lives are well known experimentally.). Thus, one relies on global reaction codes like e.g. 

TALYS to determine these reaction rates. As discussed in [12], comparisons of TALYS-calculated (�,n) reaction rates with 

values measured at temperature above 5 GK show discrepancies in the order of a factor 10. At lower temperatures, the 

uncertainty of the reaction codes must be theoretically evaluated. As discussed by Pereira et al [13] (see also [14]), the main 

source of uncertainty of the calculated (�,n) reaction rates is the alpha optical potential, which can lead to differences as high 

as two orders of magnitude, depending on the temperature considered. Moreover, the most important (�,×n) channel in the 

weak r process is (�,1n). 

Taking into account these uncertainties, we have recently investigated the impact of the (�,n) reaction rates on the calculated 

weak r-process abundances using a Monte-Carlo sampling method [19]. In order to take into account the uncertainties in the 

astrophysical conditions discussed in Section 3, we performed this sensitivity study for 35 different trajectories selected within 

the hundreds of different trajectories describing the CPR2 group (see Fig. 5). This method, discussed in detail in [19], followed 

several steps: First, we selected one of the 35 wind trajectories representing the CPR2 group. Then, each of the (�,n) reaction 

rates calculated with TALYS1 (see Section 3), were scaled by a unique randomly selected factor p, which was chosen following 

a log-normal distribution with a sigma value determined on the basis of the theoretical uncertainties discussed above (here p=1 

corresponds to the original rates obtained from TALYS1). The new “scaled” set of nearly 900 (�,n) reaction rates was then 

used in our reaction network to calculate the final abundances. This sequence was repeated 10,000 times for each of the 35 

astrophysical trajectories considered. Preliminary results from this study are shown in Fig. 6, where the lighter heavy-element 

element abundances were calculated under different assumptions: First, the elemental-abundance pattern obtained with 

TALYS1 (i.e., scaling factor p=1) is shown (black thick solid line) for one of the 35 selected astrophysical trajectories (labeled 
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MC6). Second, variations of these elemental abundances due to variations of the (�,n) rates (i.e. p scaling factor randomly 

distributed) are shown by the dark-magenta region. As can be seen, uncertainties in the (�,n) rates can lead to uncertainties in 

the calculated abundances as high as two orders of magnitude. Finally, the light-orange lines obtained with TALYS1 (p=1) for 

each of the different CPR2 trajectories illustrate the variation in the calculated abundances entirely due to uncertainties in the 

astrophysical conditions.  

The Zr-scaled elemental abundances of the so-called Honda Star HD122563 are included in Fig. 6. As can be seen, our 

calculations reproduce these abundances, within the (�,n)-uncertainties, for the selected astrophysical trajectory MC6 (black 

line). From this result, one might be tempted to conclude that the astrophysical conditions of the selected trajectory MC6 are 

the right ones for a successful weak r process (i.e. a process capable of reproducing the abundances of Sr-Ag element observed 

in HD122563). 

 
Figure 6: Elemental abundances obtained in the weak r process. Solid black line corresponds to abundances obtained using the TALYS1 
code and one of the 35 CPR2 astrophysical trajectories (MC6). Dark-magenta region corresponds to variations of these elemental 
abundances due to variations of the (�,n) rates. Light-orange region corresponds to variations of the calculated abundances due to 
astrophysical uncertainties. Blue squares show the Eu-scaled abundances of the r-limited HD122563 star. 

However, this is not the only “successful” astrophysical condition. For instance, Fig. 7 shows how a different trajectory 

(labeled MC30) can also reproduce the abundances of HD122563, within the (�,n)-uncertainties.  

 

 
Figure 7: Same as Fig. 6, using the trajectory MC30 instead of MC6. 

 

As shown in Figs. 6 and 7, in order to identify the actual astrophysical conditions of a successful weak r process, it is critical 

to reduce the theoretical uncertainty of the (�,n) reaction rates by measuring the corresponding reaction cross sections at the 

relevant energies (temperatures). Since this is a cumbersome task, given the fact that there are more than 900 reactions affecting 

the abundances of elements in the region Z=36–47. An alternative approach is to identify which are the most important (�,n) 

reactions that need to be measured.  In order to answer this question, we analyzed the correlations between each of this (�,n) 

reactions and the abundance of each of the elements produced in our network calculations. An example of this study is shown 

in Fig 8, which shows the abundance of Ag as a function of the scaling factor p applied to the reaction 94Sr(�,n)97Zr.  
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Figure 8: Calculated Ag abundance as a function of the scaling factor p applied to the reaction 94Sr(�,n)97Zr. 

As described in detail in [19], these correlation plots were used to identify the most important (�,n) reactions that need to 

be measured. From this study, we obtained a total of 45 reactions, organized in four priority groups. The priority rank depends 

on how many elements are affected by the reaction, and for how many CPR2 astrophysical trajectories the reaction is important. 

Some examples of the reactions identified for each of these priority groups are:  

 

� Priority I (reaction affecting many elements, under many different astrophysical conditions): 86-90Kr(�,n)89-93Sr 

� Priority II (reaction affecting few elements, under many different astrophysical conditions): 85,87Br(�,n)88,90Rb 

� Priority III (reaction affecting many elements, under few different astrophysical conditions):72,76,78-80Zn(�,n)75,79-83Ge  

� Priority IV (reaction affecting few elements, under few different astrophysical conditions): 67,77Cu(�,n)70,80Ga 

The complete list of reactions, including the elements affected by them and the relevant astrophysical conditions will be 

presented in a forthcoming publication [19]. 

 

5. Conclusions  

Several anomalies in the elemental abundances observed in metal-poor stars suggest the need of a secondary process, besides 

the so-called main r process, to explain the abundance pattern of light heavy elements (between Sr and Ag). This secondary 

pattern might be responsible for the abnormal overproduction of elements like Sr, compared to Eu, in the so-called r-limited 

stars. 

Neutrino-driven winds, following core collapse supernovae, offer an interesting site where the nucleosynthesis of these 

elements might occur. For slightly neutron-rich winds, the so-called weak r process produces nuclei below the so-called second 

r-process peak, which includes elements like Sr, Y, and Zr. 

A series of papers published in the last years by our collaboration, explored the role of (�,n) reactions in this weak r process. 

A steady-state model was used to determine the wind trajectories [Ye, T(t), �(t)] from a large sample of proto-neutron star 

masses and radii, and (anti)neutrino properties. These trajectories were then coupled to a network calculation to determine the 

resulting abundances. The most noticeable aspects of that work are: (1): for moderate neutron-rich winds (Ye=0.40–0.49), four 

clearly distinguishable abundance patterns were obtained; they were labeled as NPE1, NPE2, CPR1, and CPR2; (2) each of 

these patterns is correlated with the alpha-to-seed Y�/Yseed and neutron-to-seed Yn/Yseed  ratios ��������������
�������!"���) 

the pattern CPR2, corresponding to the most compact proto-neutron stars (leading to relatively high values of  Y�/Yseed and 

Yn/Yseed) favor the synthesis of elements around Sr to Ag; (4) under these conditions, (�,n) reactions play a crucial role to 

synthesize heavier nuclei; (5) none of these (�,n) reactions are experimentally known; (6) differences in alpha optical potential 

models can lead to variation in the calculated (�,n) reaction rates up to two orders of magnitude.  
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 Following these results, multiple reaction-network calculations of elemental abundances were performed assuming different 

astrophysical conditions within the CPR2 group. For each calculation, a randomly-selected scaling factor, reflecting the (�,n) 

rate uncertainty, was independently applied to each of the almost 900 different (�,n) reactions involved. The calculated light 

heavy-element abundances were found to vary by up to two orders of magnitude due to uncertainties in the (�,n) reaction rates. 

In order to identify the most important (�,n) reaction, the calculated abundance of each element, between Kr and Ag, were 

plotted as a function of the scaling factor applied to each. By analyzing the correlations between the abundance of each element 

and the scaling factor applied to each reaction, we identified a list of the most important (�,n) reactions. Measurements of these 

reactions will substantially reduce the uncertainty of the calculated abundances. This, in turn, will allow to identify the 

astrophysical conditions necessary for the weak r process by comparing our calculated abundances with observations in r-

limited stars. 
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