
����������
�������

Citation: Bienefeld, C.; Kirchner, E.;

Vogt, A.; Kacmar, M. On the

Importance of Temporal Information

for Remaining Useful Life Prediction

of Rolling Bearings Using a Random

Forest Regressor. Lubricants 2022, 10,

67. https://doi.org/10.3390/

lubricants10040067

Received: 14 February 2022

Accepted: 7 March 2022

Published: 14 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

lubricants

Article

On the Importance of Temporal Information for Remaining
Useful Life Prediction of Rolling Bearings Using a Random
Forest Regressor
Christoph Bienefeld 1,2,* , Eckhard Kirchner 2 , Andreas Vogt 1 and Marian Kacmar 1

1 Corporate Research, Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272 Renningen, Germany;
andreas.vogt1@de.bosch.com (A.V.); marian.kacmar@de.bosch.com (M.K.)

2 Institute for Product Development and Machine Elements, Technical University of Darmstadt,
Otto-Berndt-Straße 2, 64287 Darmstadt, Germany; office@pmd.tu-darmstadt.de

* Correspondence: christoph.bienefeld@de.bosch.com

Abstract: Rolling bearings are frequently subjected to high stresses within modern machines. To
prevent bearing failures, the topics of condition monitoring and predictive maintenance have become
increasingly relevant. In order to efficiently and reliably maintain rolling bearings in a predictive
manner, an estimate of the remaining useful life (RUL) is of great interest. The RUL prediction quality
achieved when using machine learning depends not only on the selection of the sensor data used
for condition monitoring, but also on its preprocessing. In particular, the execution of so-called
feature engineering has a major impact on prediction quality. Therefore, in this paper, various
methods of feature engineering are presented based on rolling–bearing endurance tests and recorded
structure-borne sound signals. The performance of these methods is evaluated in the context of a
regression-based RUL model. Furthermore, the way in which the quality of RUL prediction can be
significantly improved is demonstrated, by adding further processed, time-considering features.

Keywords: rolling bearings; remaining useful life; machine learning; feature engineering; condition
monitoring; structure-borne sound; random forest; regression

1. Introduction

Modern machines with rotating components tend to use rolling bearings for their
bearing arrangements. For reasons of energy efficiency and limited design space, the
bearings are laid out as small as possible, which can lead to them being operated at the
limits of their durability. An unforeseen failure of a bearing can cause considerable damage
to the entire machine and its environment. Especially in the case of safety-relevant systems,
an unforeseen failure must be avoided in any case. In order to prevent such unforeseen
failures, condition monitoring and predictive maintenance are becoming increasingly
important [1]. Condition monitoring involves using suitable sensors to record measurement
data during operation, which is then processed to draw conclusions about the condition of
the component [2]. If the condition is judged to be critical in this process, corrective actions
such as maintenance can be planned. To be able to carry out such planning with as little
risk as possible, it is essential to estimate the remaining useful life (RUL) of components [3].

Rolling bearing damage can occur in various ways. The damage can be caused by lack
of lubrication, short-term overload or material fatigue due to long-term stress. Material
fatigue usually manifests itself in the form of propagating pitting within the raceway sur-
faces [4]. Recently, for bearing damage detection, traditional condition monitoring methods
have been increasingly combined with Artificial Intelligence (AI). Machine learning (ML),
as a subfield of AI, plays an essential role here. ML algorithms can be used to recognize
complex structures in data and to evaluate these structures [5]. This offers the possibility of
automated inference from the data. Applied to the challenge of RUL prediction, these are
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approaches to automatically draw conclusions about the RUL from the data measured at
the component. Among the machine learning algorithms used for RUL predictions there
are different variants of neural networks, such as convolutional neural networks (CNN) [6],
recurrent neural networks (RNN) [7], long short-term memory (LSTM) [8], and generative
adversarial networks (GAN) [9]. Furthermore, there are contributions to state detection
using random forest algorithms [10]. Machine learning is therefore becoming increasingly
relevant, not least in the field of tribology [11].

When using machine learning, the achievable prediction quality is highly dependent
on the type and quality of the data as well as the preprocessing used. Targeted data
preprocessing has a significant impact on both the achievable prediction accuracy and the
computational speed of the implemented algorithms [12,13]. In the context of rotating
machinery, the measurement of structure-borne sound has proven particularly useful for
drawing conclusions about the components’ condition [14–16]. Therefore, the present
article will also use structure-borne sound measurements to investigate the condition of
rolling bearings and to predict their RUL.

Recent approaches for predictive maintenance based on electrical impedance mea-
surements of rolling bearings can complement or even replace structure-borne sound
measurements with in situ information [17]. The quality of the underlying model is con-
tinuously increased by considering unloaded rolling elements and modeling the detailed
rolling contact geometry [18]. ML approaches are used to further enhance the predictive
capabilities [19].

In a previous paper presented by the present authors, the influence of feature engi-
neering on condition monitoring of rolling bearings was shown using a random forest
regressor [20]. A feature engineering approach is presented in the previous work, which,
compared to features from Lei et al. [21], achieves particularly good results in structure-
borne sound-based condition detection. Based on these results, the feature-engineering
approach is optimized and extended in this study regarding the prediction of remaining
useful life. The aim is to develop a methodology that leads to a RUL prediction model
with high accuracy and good traceability. Therefore, the investigations are focused on
feature engineering and the consideration of information from the temporal past. In order
to predict the RUL of rolling bearings, a methodology based on a random forest condition
regression is presented.

2. Materials and Methods

To evaluate the developed feature engineering methods in the context of RUL predictions,
a methodology in which all other model components and their parameters remain constant
as boundary conditions is used. The approach used for this purpose is illustrated in Figure 1.
The individual model parts are described in more detail within the subsequent sections.

Figure 1. Overview of the methodology used.
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2.1. Experiments

The investigations are based on structure-borne sound measurement data, which is
recorded on a rolling bearing test rig. The concept of the FE9 test rig used was originally
designed for testing rolling bearing greases. An electric motor drives the test head shaft via
a belt. On one side of the shaft, an ancillary bearing is mounted, which is provided with
circulating oil lubrication. The grease-lubricated test bearing, the wear of which is to be
examined, is located on the other side of the shaft. In order to accelerate grease aging and
thus, its wear, the test bearing is heated. An axial load is applied with the aid of a spring
preload. The test head of the FE9 test rig can be seen in Figure 2.

Figure 2. Test head of the FE9 test bench, adapted with permission from [22].

In the case of the tests evaluated in this work, the test bearings used are of type 6206-
C-C3 (Schaeffler AG, Herzogenaurach, Germany) and lubricated with a low-temperature
grease. The grease is used beyond the limits of its specification due to the applied thermal
load, which is why the operating life is greatly reduced. A constant speed of 6000 rpm is
present at the test head shaft. The axial load is 1500 N and the temperature of the heater on
the test bearing is set to 140 ◦C. The sensor used is a three-axis piezo accelerometer of type
PCB-356A15 (PCB Piezotronics, Depew, NY, USA). The sensor is mounted close to the test
bearing, as shown in Figure 3.

Figure 3. Placement of the accelerometer on the test bench, adapted with permission from ref. [20].
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For the investigations carried out here, only data from the sensor’s X-axis, which is
aligned radially to the bearing, is analyzed. The data is acquired at a sampling rate of
20 kHz. An imc CRONOSflex (imc Test & Measurement GmbH, Berlin, Germany) data
acquisition system is used in the measuring chain with an 8th order Cauer LP anti-aliasing
filter having a cut-off frequency of 8 kHz. The amplitude is resolved with 24 bits. The
measurement data is recorded at intervals of 1 s with intervening pauses of 59 s. A total
of nine endurance runs are investigated. A threshold value in the power consumption of
the driving electric motor is defined as a termination criterion for the experiments. This
leads to test run times ranging from 10 h to 20 h. At the end of the tests, the test bearings
show very similar damage patterns in the form of pitting. Figure 4 shows an example of
the inner ring of one bearing after endurance testing.

Figure 4. Pitting on a ball bearing inner ring after its test run, reprinted with permission from ref. [20].

2.2. Data and Labeling

The aim of the procedure used here is to directly infer the bearings remaining useful
life from the trained ML model. Therefore, a supervised learning approach in terms of a
regression is used. The label must represent the progressive bearing damage. As already
shown in [20], a label that linearly increases from 0 to 1 is used for this purpose. A similar
labeling approach has also been presented in [23]. Figure 5 shows the label based on the
structure-borne sound signals of a single test run. From a mathematical point of view, the
label can be described as the normalized test run duration. The value 0 represents the
original condition of the bearing, while 1 indicates the end of its useful life.

Figure 5. Measurement and assigned label for an exemplary test run.
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2.3. Feature Engineering

A wide variety of feature-engineering methods have already been described in the
literature [13,24]. The focus of the research conducted here is on the comparison of
different feature-engineering methods that consider the temporal past in the context
of feature generation. As a basis, the so-called averaged-frequency-band (afb) features
are used, which have already been shown in [20] to be particularly performant and
computationally efficient compared to the features proposed by Lei et al. [21]. The studies
in [20] were based on the same data set also used for the present work. Starting from the
afb features, additional features are now to be generated, which contain the information
of the temporal past. The influence of these processed features on the RUL prediction is
to be investigated.

2.3.1. Averaged-Frequency-Band Features

As base features, the so-called averaged-frequency-band features are used, the cal-
culation method of which is visualized in Figure 6. To calculate the afb features for each
1 s measurement interval, the data of the interval is first transformed into the frequency
domain by means of an FFT. The resulting amplitude spectrum is divided into frequency
bands of equal width. Finally, the average values of the amplitudes within the formed
frequency bands are used as features. Thus, an afb feature describes the average value of
the amplitudes within a frequency band.

Figure 6. Determination of the averaged-frequency-band features, adapted with permission from
ref. [20].

Based on preliminary investigations and in order to keep the total number of features
and thus the model complexity at a moderate level, the number of frequency bands in this
case is set to 8.

2.3.2. Rolling Mean Features

In order to utilize information from the temporal past, rolling means can be used. In
the case presented here, these rolling means were calculated from the afb features presented
previously. To be able to represent the short-term dynamics as well as the long-term
behavior, several averages are formed over different time spans. Progressively increasing
time spans seem to make sense for this use, which was confirmed in preliminary studies.
The progressive staggering of rolling means is shown in Figure 7 for three rolling mean
durations using the time course of afb1(8).
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Figure 7. Progression of an averaged-frequency-band and three associated rolling means.

2.3.3. Cumulative Features

Another way to account for temporal information is to use accumulated quantities.
Already in [25], the cumulative sum of values was proposed to generate features with
monotonic behavior. These accumulated features provide long-term trends, which helps
the ML algorithm in its decision making. In the case presented here, the afb features are
used for accumulation. Each afb feature is summed up cumulatively from the beginning of
the experiment.

2.4. Machine Learning

The goal of the machine learning is to approximate an unknown function, which maps
the input features to the label. Since the label is defined in the form of a continuous variable,
this is supervised learning in terms of a regression [26]. In the field of machine learning,
there is a wide variety of regression algorithms [5]. A comprehensive overview of the
available Deep Learning methods can be found in [27]. In [10], a random forest approach
has already been used to detect the state of journal bearings. The aim of the present work
is to show the influence of targeted feature engineering on RUL prediction performance.
Therefore, traceability shall be as good as possible. For this reason, deep learning algorithms
are not used here, instead, a random forest regressor is chosen. A random forest is an
ensemble method based on decision trees [28]. It is considered to be very robust and to
provide continuously good results compared to other regression algorithms.

In the workflow used here to investigate feature engineering, the machine learning
algorithm is considered as a constant boundary condition. Therefore, the parameters of
the random forest are kept fixed. Based on preliminary studies, the number of trees is
set to 500, and the maximum tree depth is limited to 20. The models used in this work
are implemented in Python using the numpy, pandas, scipy, and matplotlib libraries.
Additionally, the library Scikit-learn is used for the implementation of the random forest
and metrics for result evaluation.

To evaluate the models built with the different feature engineering methods, a 9-fold
cross-validation is used. Out of the total nine endurance test runs available, eight endurance
tests are used for training. The remaining test run is used for the test data set, which means
that the test data is always completely separated from the training data. This is repeated a
total of nine times so that the data from each test is used as independent test data once.

The quality of the prediction is evaluated using metrics. For this purpose, the MAE
and the R2 are chosen. The MAE (Mean Absolute Error) provides a directly interpretable
result of the regression quality in the context of the label used here. For example, an MAE
of 0.05 means that the prediction of the current bearing condition is on average 5 % from
the true value. Consequently, the MAE tends to 0 in case of a perfect model. In addition,
the R2, which is called the coefficient of determination, provides a general measure of the



Lubricants 2022, 10, 67 7 of 12

quality of a regression. It tends towards a maximum value of 1 for optimal predictions. The
smaller the value, the worse the prediction [29]. For the overall evaluation in the results
section below, the average value of the nine metrics calculated during cross-validation is
considered. This ensures an evaluation of the model quality based on the entire data set.

2.5. RUL Prediction

To infer the predicted remaining useful life RULpred based on the predictions of the
label within the regression, the following equation is used:

RULpred =
t

ypred
·
(

1 − ypred

)
(1)

Here, t is the current operating time and ypred is the label predicted at the correspond-
ing time. The described mathematical relationship results from the background of the
selected label, which corresponds to the normalized test-run time. At the beginning of
the measurement, where the predicted label ypred is close to zero, RUL prediction is not
practical due to large inaccuracies, which can be directly justified by Equation (1). Dividing
by small ypred then leads to very large fluctuations in the RUL prediction, caused by only
slight variations in the predicted label. For this reason, RUL prediction is evaluated exclu-
sively for the second half of the test runs. The result evaluation by means of the RUL-based
MAE is also performed exclusively on the second half of the test runs.

In order to compare the predicted with the true remaining useful life RULtrue, the
latter must also be calculated. This is performed using the total operating time until bearing
failure T and the true label at the respective time ytrue:

RULtrue = T·(1 − ytrue) (2)

3. Results

The previously presented feature engineering approaches are now compared to each
other. In detail, the three approaches listed in Table 1 are considered.

Table 1. Feature engineering approaches used.

Abbreviation Description No. of Features

afb(8) Averaged-frequency-band features
using 8 frequency bands 8

rollingmeans(10, 80, 600)
Time domain rolling means calculated
based on the afb(8) with window sizes

of 10, 80 and 600 min
24

cumsum Cumulative sum of the afb(8) 8

The first feature set is denoted as afb(8). No temporal past information is used with
this feature set. It therefore serves as a reference. For the second feature set, the afb(8)
approach is combined with the rollingmeans(10, 80, 600) approach. The third feature set is
a combination of the reference features afb(8) and the cumsum approach.

To compare the three feature sets mentioned above, the workflow shown in Figure 1
is used, keeping the boundary conditions constant. The resulting regression and RUL
predictions are shown in Figure 8 using a single test data set. While the plots on the left
show the regression results of the trained machine learning algorithm, the plots on the right
visualize the RUL prediction derived from it. The metrics MAE and R2 of the visualized
results are entered within Figure 8.
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Figure 8. Results of regression (a,c,e) and RUL prediction (b,d,f) visualized based on the cross-
validation run of test bearing No. 1 for the three different feature sets.
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The prediction scatters strongly when using only afb(8) features, see Figure 8a. Several
states can be identified in the predicted label, between which the prediction changes
quite abruptly. In the case of an ideal prediction, all prediction points (blue) would be
exactly on top of the reference line. Thus, the vertical deviation of the predictions from
the reference line visualizes how inaccurate the prediction is. The same applies to the
mapping of the RUL. Here, with optimal prediction, the test data points would align with
the orange line, representing the true RUL. The corresponding RUL prediction using the
afb(8) features is very inaccurate due to the large prediction spread of the regression results
and poorly represents the true RUL, as can be seen in Figure 8b. A significant improvement
in prediction quality is achieved by adding the rolling-means, as shown in Figure 8c,d.
On average, the forecast shows similar trends, but is much less scattered. This is evident
not only in the predicted label, but also within the resulting RUL prediction. Further
improvement of the results is achieved with the combination of the afb(8) and cumsum
features, which is visualized in Figure 8e,f. The steps visible with the other two feature sets
disappear almost completely here. These improvements of the results can be determined
not only visually, but also based on the metrics calculated. Smaller MAEs and larger R2s
represent the prediction improvements.

Since Figure 8 only illustrates one of the total of nine cross-validation runs, the overall
cross-validation results are summarized in Table 2. For this purpose, the average of
the regression MAE and the regression R2 calculated via cross-validation are entered.
Additionally, the averaged MAE of the RUL prediction as well as the relative deviation of
the MAE with respect to the test run times are evaluated in the last two rows.

Table 2. Results of cross-validated regression and RUL prediction.

Cross-Validated Metrics
of Regression afb(8) afb(8) + Rollingmeans

(10, 80, 600) afb(8) + Cumsum

∅ MAE of Regression 0.0892 0.0753 0.0506

∅ R2 of Regression 0.841 0.875 0.95

Test
Bearing No.

Experiment
Runtime
in min

MAE of RUL Prediction in min

afb(8) afb(8) + Rollingmeans
(10, 80, 600) afb(8) + Cumsum

1 927 100.7 62.4 52.1
2 1073 197.6 75.7 86.5
3 808 91.1 68.1 47.8
4 824 155.3 224.1 107.6
5 1011 123 94.9 48.2
6 882 73.5 70.9 48.7
7 1191 146.7 79 117.9
8 746 92.4 47.3 60
9 668 132.9 154.5 133.8

∅ 903.3 123.7 97.4 78.1

∅ relative error of RUL
prediction 13.8 % 11.4 % 8.9 %

Looking at the averaged metrics from cross-validation, the results already obtained in
Figure 8 are supported. Adding the rolling mean features to the afb(8) yields a significant
improvement, with the cumulative features performing even better compared to the rolling
mean features. In the MAE of the individual test bearings’ RUL, it is noticeable that this
sequence of model performance does not apply quantitatively in the same way for each
test bearing. Consequently, there is a non-negligible dispersion of the individual test data
sets. A possible explanation for this dispersion is the different physical wear behavior of
the various bearing endurance test runs used.



Lubricants 2022, 10, 67 10 of 12

4. Discussion

Based on the experimental data used, the results presented show that a clear improve-
ment in RUL prediction is possible with the help of temporal information, implemented
by means of time-considering features. By using a well-defined workflow where only
the feature sets are changed, the impact of the different features on the RUL prediction
performance is evaluated. For the RUL prediction, a random forest regression approach is
used. Comparing the two presented ways of incorporating temporal past information in the
form of extended feature sets, the approach of cumulatively generated features performs
particularly well. By using this extended feature set, the averaged MAE of RUL predictions
can be reduced by 37% in comparison to the use of base features only. Calculating rolling
means with progressively staggered window widths also adds value in terms of predictive
accuracy, although the results are slightly worse than those obtained with the cumulative
approach. In the case presented here, the base features are formed from the so-called
averaged-frequency-bands, which have already been shown to perform particularly well
on the data used in [20]. The authors assume that the methodology presented here will lead
to improved RUL predictions for other base features in an analogous manner. A validation
of this hypothesis is still pending at this point.

It should be noted that the evaluations carried out here are based on test data obtained
on a rolling bearing test rig under constant operating conditions. Limitations are to be
expected when implementing the methodology proposed here in a real application, with
varying boundary conditions such as speeds, loads or temperatures. In particular, the
formation of accumulated features could be error-prone, since each individual point in
time has an influence on the entirety of the following time span. Thus, continuous and
reliable measurement data acquisition is indispensable for the correct determination of
accumulatively formed features.

Future work can investigate further approaches of feature engineering and the possi-
bilities of considering temporal information. The implementation of further RUL prediction
methods and the possibilities of deep learning algorithms have been omitted here in or-
der to focus on the integration of temporal information via extended feature engineering
approaches. For comparison purposes, it seems reasonable to also consider deep learning
methods, such as CNNs, RNNs or LSTMs, which natively offer the possibility to take
temporal information into account. However, with these methods, the comprehensibility of
decision making is lost. Furthermore, with regard to hybrid models, it seems promising to
motivate the development of novel features by physical backgrounds. The investigations
should also be extended to additional data that are recorded at non-constant bearing operat-
ing conditions. In order to achieve satisfactory RUL prediction results even at non-constant
operating conditions, the methods may have to be extended.
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