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Abstract. The article describes possible experiments with explosively driven non-ideal plasma
at the proton microscope at the Facility for Antiprotons and Ion Research. It is proposed
to employ linear explosive tubes for plasma generation and to measure an areal density in
shock-compressed plasma of argon and xenon. The proposed experiments will provide valuable
information on influence of strong interparticle interactions on thermodynamic properties of
strongly coupled plasma. The density measurement will help the researchers to understand the
nature of wall and wire precursors arising in the shock tubes.

1. Introduction

Methods and techniques of non-destructive testing and non-invasive analysis have been developed
for a long time. Continuous interest in them is determined by numerous medical, technical
and scientific applications. The first proton radiographs of dense objects [1, 2] showed high
contrast images in comparison with conventional x-ray images. It was also specified that multiple
Coulomb scattering of protons in the studied object seriously blurs the radiographic image and
limits the image resolution. This issue was partially fixed by special magnetic lens system [3]
developed for focusing the low-angle scattered protons exiting each point of the object onto a
distant image plane. The modern radiography systems with magnetic optics provide high spatial
resolution at the level of 17–180 µm depending on the thickness of the studied object [4, 5].
Typical time resolution of proton radiography is several tens of nanoseconds and it is defined by
the parameters of image registration system, the intensity and temporal structure of the proton
beam. Such high parameters became available after an electronic multi-frame camera system
with intensification and electro-optic shutter was designed for investigation of fast dynamical
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processes. It was tested in experiments with high explosives at the Los Alamos Neutron Science
Center (LANSCE) using 800 MeV protons [6]. This approach was reproduced at other facilities
later. A non-uniform spatial distribution of protons, a variability of beam from pulse to pulse
and pattern noise from the charge-coupled device cameras are other serious issues related to
density reconstruction from proton radiographs. The possible solutions were presented in [7].
One of alternative methods includes correction of both the object and the beam images and
normalization (i.e., division) radiographs using images of the raw beam. A review of proton
radiography systems constructed for investigation of fast dynamic processes before 2013 can be
found in [8].

A high energy proton microscope for the Facility for Anti-proton and Ion Research (PRIOR)
was put into operation at the GSI in Germany [9] later. It is expected that the areal density
in dynamical experiments could be measured at the PRIOR with sub-percent accuracy. It
could strongly improve the accuracy of density determination in many challenging physical
tasks conducted at the GSI and related to high dynamic pressures. At present only two
proton radiography facilities LANSCE in the USA [10] and at the Institute for High Energy
Physics in Russia [11] are equipped with special steel chambers, where high explosives are used
for generation of states of matter at high pressures, temperatures and energy densities. The
explosive chamber for charges with mass up to 200 g of high explosive has already been used for
investigations of stopping power of ions in explosively driven non-ideal plasmas [12] at the GSI.
The technical details on matching the same explosive chamber and the linear proton accelerator
at the Institute for Theoretical and Experimental Physics (ITEP) is published in [13]. This
chamber could be employed with proton microscope and then the PRIOR will be the third proton
radiography system in the world suitable for investigation of explosively driven phenomena. The
application of explosive generators of high pressures at the PRIOR will give wide opportunities
to conduct research in the following branches: non-ideal plasmas, warm dense matter, phase
transitions in condensed matter, chemical physics, shock wave synthesis of high pressure phases,
extreme states of matter, physics of detonation and others.

The purpose of this article is a justification of application of the proton microscope PRIOR
at the Facility for Anti-proton and Ion Research (FAIR) for investigation of equation of state
of shock-compressed non-ideal plasma and related phenomena like wall and probe precursors
arising in shock tubes. In this article, we propose two different types of proton radiography
experiments for precise measurements of density of shock-compressed plasma which cannot be
done by other experimental techniques. The aim of the first type of experiments is the density
measurements of shock-compressed plasma of heavy inert gases. Such approach has not been
earlier applied for systematic investigations of equation of state of strongly coupled plasma. It
has large potential as it allows simultaneous measurements of density and kinematic parameters
of a gas-dynamic flow. Details of the proposed experiments and a possible design of explosive
generator of non-ideal plasma suitable for beam experiments are described in section 2.

The second type of proposed experiments will focus on measurements of distribution of density
of wall and wire precursors arising in shock tubes. The goal of this type of experiments is
determination of the nature of wire and wall precursors in shock tubes. In section 3 we present
the experimental streak images of light emitted from the front of shock-compressed plasma
produced in the developed linear generator. Gas-dynamic flows with or without a wall precursor
were obtained by varying the gas type, the initial gas pressure, the shock wave front velocity.

2. Density of shock-compressed non-ideal plasma of inert gases

The goal of this type of experiments will be the density measurement of a non-ideal plasma
(Γ = EINT/EKIN > 1 is a parameter of Coulomb non-ideality, EINT is the energy of Coulomb
inerparticle interaction, EKIN is the thermal energy of particles). A non-ideal plasma is still a
complex object for strict theoretical approaches due to the difficulties of correct accounting of
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strong interparticle interactions [14]. The direct experimental information on the density is very
important for understanding the influence of Coulomb interaction on thermodynamic properties
of strongly coupled plasma. The proposed experiment provides important data for development
of equation of state of non-ideal plasma also. Shock wave is an excellent experimental technique
of compression and irreversible heating of matter, which takes place behind the front of a
shock wave. Shock waves in gases are often driven by energy of high explosives in shock
tubes [15]. Thermodynamic, transport and optic properties of strongly coupled plasma [16]
are investigated in explosive generators. They allow generation of plasma slugs with typical size
of several centimeters. The density of shock-compressed non-ideal gaseous plasma was earlier
defined by x-ray pulse radiography [17] or derived from the conservation laws by the measured
kinematic parameters of the gas-dynamic flow [18]. The conservation law of mass on a shock
wave discontinuity in initially motionless medium and strong shock wave may be represented in
the form as

ρ

ρ0
=

D

D − U
, (1)

where D is the velocity of the shock wave front, U is the velocity of shock-compressed plasma,
ρ0 is the density of uncompressed gas, ρ/ρ0 is the ratio of gas compression. Velocities D and
U have close values in inert gases in case of intense shock waves, which leads to a big error of
the denominator. The typical accuracy of density determination by the measured D, U and
ρ0 was about 10%. The estimates of experimental errors are presented in [19]. It is expected
that the accuracy of areal density measurements in a dynamic experiment at the PRIOR will
be better. It could be improved for low density objects by applying an inverse collimator, which
was developed for proton radiography of thin objects. The corresponding results on the density
measurements of weakly non-ideal xenon plasma are presented in [20].

Non-ideal plasma could be obtained behind explosively driven shock waves in heavy inert
gases. Optimum parameters of an explosive experiment with xenon and argon gases are specified
in the work [21]. Xenon is more preferable since allows to obtain greater values of parameter
of non-ideality. The value of velocity of a shock wave front in xenon should be about 5 km/s
to generate non-ideal plasma in the gas at initial pressure more than 1 bar. The thickness of
singly compressed plasma slug is roughly proportional to the distance passed by a shock wave in
uncompressed gas. The increase of the thickness ∆h is proportional to a difference of the front
speed D(t) and the velocity U(t) of shock-compressed plasma:

∆h = (D(t)− U(t))∆t. (2)

A variation of plasma parameters is reached by the change of speed of the shock wave front
and the change of initial pressure of gas. The pressure P and the specific internal energy E
of a shock compressed plasma could be derived from the conservation laws of momentum and
energy:

P = P0 + ρ0DU, (3)

E − E0 =
1

2
(P + P0)

(

1

ρ0
−

1

ρ

)

, (4)

where P0 and E0 are the values of pressure and specific internal energy of uncompressed gas.
The plasma temperature could be estimated only using the particular equation of state.

A compact linear explosive generator of shock-compressed plasma of xenon or argon [22] was
developed for experiments at the proton radiographic system with magnetic optics (PUMA)
at the ITEP [23, 24] earlier. Single shock-compressed plasma of xenon or argon with pressures
of several kbars, temperatures of 2–3 eV and Coulomb parameter of non-ideality up to 2 was
investigated at the PUMA, the typical proton radiographs were published in [25]. The results
of simulation of proton radiography experiments with static model of shock-compressed xenon
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Figure 1. A cross view of a linear explosive generator of non-ideal plasma: 1—charge with
hollow for a detonator; 2—active charge; 3—inert gas; 4—top flange; 5—flange for charges
mounting; 6—channel; 7—copper foil; 8—gas inlet.

are presented in [26]. The current design of the PRIOR microscope provides a magnification of
about four with a 15 mm field of view. Both parameters will be increased by a factor of 2–3 at
the FAIR. The external diameter of the generator of 25 mm is less than the future field of view
of the PRIOR microscope of 40 mm. It contains an explosive charge of 20 g and could be easily
adapted to experimental conditions at the FAIR. A cross-view of this generator with gas inlet
on the surface of the channel is shown in figure 1.

This design has slight differences from the classic design. A thin copper foil at the top of
the active charge is used as a contrast marker to determine the velocity of detonation products
equal to the velocity of shock-compressed plasma. The channel effect [27] was organized in a
gas gap between the active charge and the generator wall to flatten the detonation front. An
explosive lens also could be applied for this purpose. The generator channel is manufactured of
polyvinylchloride or organic glass tube with thickness of 1–2 mm, which depends on the initial
gas pressure in the channel. The generator with flanges glued to the generator channel keeps
air-tightness up to the pressure of 2–3 bar. The generator design with flanges pressed in ring
grooves made on the inner surface of the channel was applied at the pressures up to 12 bar.

Some experimental results on thermodynamic properties of non-ideal xenon plasma obtained
in this generator are published in [28]. Plasma states with the pressure of 5–12 kbar, the density
of 0.24–0.3 g/cm3 were investigated by a high-speed photography at the initial pressure of xenon
of 7 bar. Figure 2 shows difference between the Hugoniot curves of xenon at the initial pressure
of 7 bar calculated from different modifications of chemical model [29] of plasma. The calculation
was carried out according to the procedure described in [30].

Coulomb interactions are considered in frames of the Debye approximation in a grand
canonical ensemble [31] or as gas of non-interacting particles. Only ground states were taken
into account when calculating partition functions. The compression ratios for these basic models
differ about 10% and this difference of density is highly desirable to be resolved at the PRIOR.
The resulting areal density of walls of the generator with shock-compressed xenon at initial
pressure 7 bar is about of 0.8 g/cm2 in the widest section. The jump of the areal density in
xenon to be measured at the PRIOR is about of 0.5–0.6 g/cm2 in this experiment. A high
speed filming of processes in the generator can be realized, if the top flange or the channel is
manufactured of transparent materials.
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Figure 2. Calculated Hugoniot curves of xenon at initial pressure of 7 bar and initial density
of 3.95 × 10−2 g/cm3: 1—Debye approximation in a grand canonical ensemble; 2—ideal gas
approximation.

Figure 3. Streak photography of a flow with the wall precursor in argon at normal initial
conditions: 1—channel effect; 2—exit of a detonation wave on free surface of a charge; 3—shock
wave precursor; 4—beginning of reflection of shock wave from top flange.

3. Wall and wire precursors in shock tubes

Instability of a flat front sometimes arises, when a strong shock wave propagates along a channel
filled by some heavy inert gas like argon or xenon. It was first time noted in [32] that high-speed
boundary disturbance propagates along the walls of an explosive shock tube in advance of the
plane shock. The wall precursor can slow down over time and then the front of the shock wave
restores the flat form, then it can arise again. Physics of these processes is understudied yet.
There are several possible explanations like heating of the wall by light emitted by a shock wave,
friction about a wall, reflection of an oblique shock wave. Density measurements are needed to
understand the nature of the wall precursor.

Various modifications of the described shock tube can be used to generate shock waves to
study this physical effect. Relevant streak images of light emitted from the top transparent
flange are shown in figures 3 and 4. Time increases in the horizontal direction from left to right,
space along the tube section is shown in the vertical azimuth. The shock wave precursor in
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Figure 4. Streak photography of a flow without the wall precursor in xenon at initial pressure
9.2 bar: 1—channel effect; 2—exit of a detonation wave on free surface of a charge; 3—beginning
of reflection of shock wave from top flange.

argon at normal initial conditions is presented in figure 3. The streak image of a gas-dynamic
flow in xenon at initial pressure 9.2 bar without the wall precursor is shown in figure 4. The
camera slit had a slightly V-shaped form to increase the dynamic range of the image; therefore
the upper part of figure 4 is brighter than the lower one.

The shock precursor can be formed on a wire, which is placed perpendicular to the shock wave
front [32, 33]. Pairs of wires are used in probe techniques of determination of static electrical
conductivity [34] and electronic concentration [35] of shock-compressed gas plasma. The presence
of wire or wall precursors could disturb the plasma homogenity resulting in distortions of probe
measurements of galvanomagnetic properties of plasma. For this reason proton radiographic
investigations of plasma density around a wire precursor or interacting two wire precursors are
of great interest to plasma probe diagnostics.

4. Conclusions

Two experimental proposals for explosively driven shock-compressed plasma research using the
proton microscope PRIOR at the FAIR are justified. The plasma will be generated in explosive
shock tubes optimized for proton radiography. An influence of strong interparticle interactions on
thermodynamic properties of strongly coupled plasma and its equation of state will be explored
in the first type of the suggested experiments. Other interesting unsolved problems of shock
wave physics are mechanisms of generation of wall and wire precursors in shock tubes filled by
heavy inert gases, which will be investigated in the second type of experiments at the PRIOR
microscope.
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