Supplementary Information

Long-term monitoring of SARS-CoV-2 RNA in wastewater of the Frankfurt metropolitan area in Southern Germany

Shelesh Agrawal^{1,*}, Laura Orschler¹, Susanne Lackner¹

<u>Methods</u>

qPCR analysis

We performed qPCR analysis using the TaqPath COVID-19 RT-PCR Kit (Thermo Fisher Scientific)¹ which includes: (1) TaqPath COVID-19 Assay Multiplex, which contains three primer/probe sets specific to different SARS-CoV-2 genomic regions (i.e. N gene, S gene and Orf1ab gene) and primers/probes for bacteriophage MS2. (2) MS2 Phage Control – RNA control, having a concentration of 10⁶ copies per µl, to verify the efficacy of the RNA extraction and the absence of inhibitors in the PCR reaction. (3) TaqPath COVID-19 Control – Positive SARS-CoV-2 RNA control that contains targets specific to the SARS-CoV-2 genomic regions targeted by the assays. The manufacturer (Thermo Fisher Scientific) has not publicly released the primers/probe sets sequences, therefore, we do not have access to the information related the primers/probe sets sequences and the length of the PCR products.

¹ Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Engineering, Franziska-Braun-Straße 7,64287 Darmstadt, Germany

^{*} E-mail: s.agrawal@iwar.tu-darmstadt.de, Phone: +49 615 116 20309, Fax: +49 615 116 20305.

Table 1:Information about dyes corresponding to each target gene.

Gene	Dye	Quencher
ORF1ab	FAM	QSY
N Protein	VIC	QSY
S Protein	ABY	QSY
MS2 (Internal Control)	JUN	QSY

In case of the positive control, we included triplicates of the four different concentration (i.e. 1x10¹, 2x10¹, 2x10², 2x10³ copies per reaction) of the TaqPath COVID-19 positive control for each qPCR run. For MS2 phage internal control triplicates of the three different concentration (i.e. 2x10², 2x10³, 2x10⁴ copies per reaction) were also included in each qPCR run. For the SARS-CoV-2 positive control and MS2 phage internal control, each reaction contained 12.5 µL TaqPath 1-Step Multiplex Master Mix (4X), 2.5 µL COVID-19 Real Time PCR Assay Multiplex, 33 µL nuclease free water, and 2 µL of positive or internal control. Triplicates of negative controls were also included in each run, each reaction contained 12.5 µL TaqPath 1-Step Multiplex Master Mix (4X), 2.5 µL COVID-19 Real Time PCR Assay Multiplex, and 35 µL nuclease free water. Ct values of positive control dilutions were plotted against known concentrations of the SARS-CoV-2 positive control and MS2 phage internal control, to generate standard curves. The start baseline value was set at 5 and threshold cycle (Ct) values were determined manually while adjusting the threshold to be above any background signal and within the exponential phase of the fluorescence curves. Primer efficiencies were $95.32 \pm 9.09\%$ for N, $91.09 \pm 13.84\%$ for S, $86.75 \pm 1.8\%$ for Orf1ab, and $95.92 \pm 1.8\%$ 17.16% for MS2 phage (n = 8 runs, mean \pm sd). The slopes of the standard curves for the quantification were -3.43 ± 0.26 for N, -3.55 ± 0.46 for S, -3.68 ± 0.28 for Orf1ab, and -3.42 ± 0.25 for MS2 phage. Respective Y-intercept values were 38.17 \pm 0.83, 37.04 ± 0.39 , 38.55 ± 0.86 , and 37.89 ± 0.77 . The SARS-CoV-2 loads detected in the samples are presented without correcting for recovery efficiencies.

Table 2: PCR protocol

Step		Temperature	Duration
Hold-Stage		25 °C	2 min
Hold-Stage		53 °C	10 min
		95 °C	2 min
PCR-Stage	45 cycles	95 °C	15 s
		60 °C	1 min

Results

Recovery efficiency of the MS2 phages results

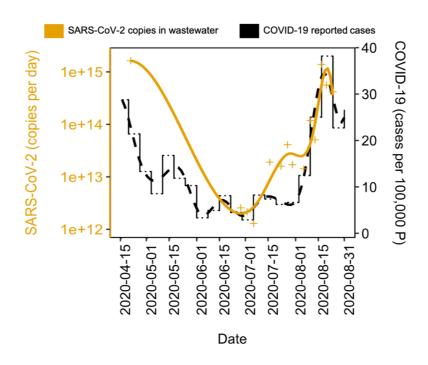
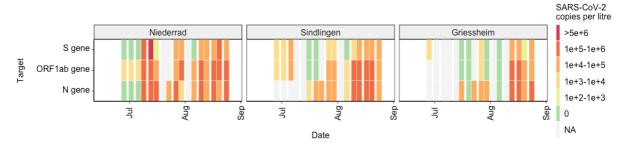

The recovery efficiency of the concentration and extraction procedure performed in triplicates, was determined by using the non-enveloped *Enterobacteria* MS2 phage. It showed an average recovery in the range of 11.53 - 89.11 %, with a median value of 42.40%.

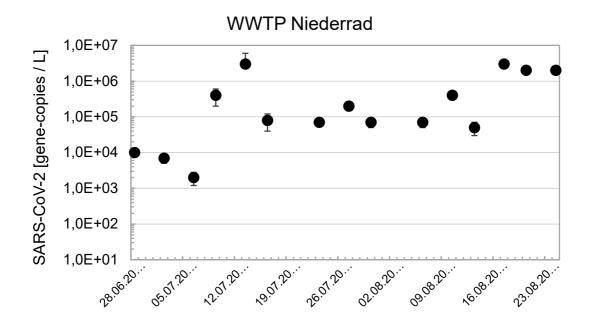
Table 3: Recovery efficiency of the MS2 phages for each sample for each sampling point.

Sampling point	Samples	Recovery Efficiency
Influent of the WWTP Niederrad	Sample 1	27.66 %
	Sample 2	38.57 %
	Sample 3	11.53 %
	Sample 4	42.40 %
	Sample 5	50.32 %
	Sample 6	34.65 %
	Sample 7	32.40 %
	Sample 8	51.91 %
	Sample 9	67.02 %
	Sample 10	89.11 %
	Sample 11	42.40 %
	Sample 12	41.20 %
	Sample 13	48.39 %
	Sample 14	13.64 %
	Sample 15	19.04 %
	Sample 16	14.75 %

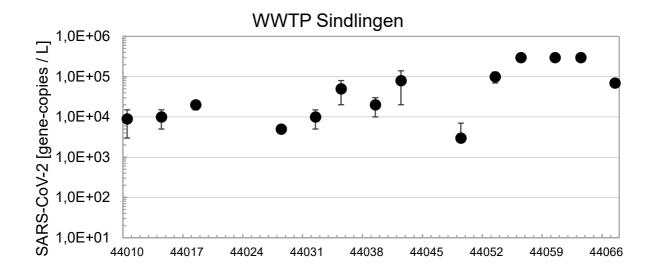
	T	1
	Sample 17	42.01 %
Influent of the WWTP Sindlingen	Sample 1	15.32 %
	Sample 2	54.33 %
	Sample 3	33.73 %
	Sample 4	63.04 %
	Sample 5	61.98 %
	Sample 6	42.03 %
	Sample 7	37.19 %
	Sample 8	65.04 %
	Sample 9	43.07 %
	Sample 10	43.81 %
	Sample 11	21.91 %
	Sample 12	71.54 %
	Sample 13	31.96 %
	Sample 14	43.14 %
	Sample 1	19.90 %
	Sample 2	64.03 %
	Sample 3	21.01 %
	Sample 4	43.54 %
	Sample 5	42.77 %
	Sample 6	24.13 %
Sewage sample for Griesheim	Sample 7	11.98 %
	Sample 8	54.92 %
	Sample 9	44.53 %
	Sample 10	53.73 %
	Sample 11	63.64 %
	Sample 12	25.98 %
	Sample 13	44.72 %


Overall SARS-CoV-2 RNA load in the influent wastewater and positive tested COVID-19 cases in the city of Frankfurt am Main

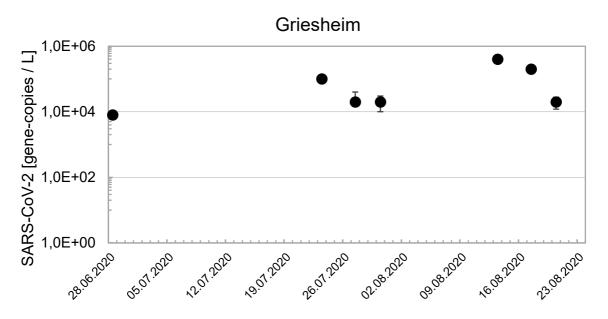
S.figure 1: SARS-CoV-2 load as sum of the two WWTP influents as analyzed with RT-qPCR in comparison to the positive tested COVID-19 cases in the city of Frankfurt am Main.


Impact of chosen target genes

S.figure 2 shows that different target genes performed differently, especially until the middle of July, when less COVID-19 positive cases were reported. Moreover, variation in the performance of target genes differed with different samples. For example, in initial Niederrad samples, we detected SARS-CoV-2 ORF1ab gene copies only. Whereas, for Sindlingen samples ORF1ab and S gene copies were detected. Based on the results, we recommend targeting multiple genes for SARS-CoV-2 monitoring in wastewater.



S.figure 2: Heatmap showing the SARS-CoV-2 concentration measured for each sample from each sampling point based on three different target genes (S gene, ORF1ab gene, and N gene).NA: Not detected.


Concentrations of SARS-CoV-2 RNA in the untreated wastewaters

S.figure 3: Concentrations of SARS-CoV-2 RNA in the influent of the WWTP Niederrad as determined by real-time qPCR

S.figure 4: Concentration of SARS-CoV-2 RNA in influent of the WWTP Sindlingen as determined by real-time qPCR

S.figure 5: Concentration of SARS-CoV-2 RNA in the wastewater at sampling point Griesheim as determined by real-time qPCR

References

(1) TaqPath COVID-19 CE-IVD RT-PCR Kit Instruction for Use; MAN0019215; Thermofisher Scientific.

This supplement is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.