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Zusammenfassung

Diese Dissertation behandelt verschiedene Methoden zur Surrogat-Modellierung und Unsicherheitsquanti-
fizierung (UQ) für parametrisierte/stochastische Formulierungen der Maxwell-Gleichungen. Die Surrogat-
Modellierung wird in diesem Zusammenhang verwendet, um den Berechnungsaufwand für die wiederholte
Auswertung von numerischen Modellen mit unterschiedlichen Parameterkonfigurationen zu reduzieren.
Zunächst wird eine rationale kernbasierte Interpolationsmethode zur effizienten Approximation von Frequenz-
antworten vorgestellt. Anschließend wird der Einfluss von unsicheren Geometrie- oder Materialparametern
betrachtet, die beispielsweise Fertigungstoleranzen oder Messabweichungen unterliegen. Dazu werden ver-
schiedene Techniken zur Konvergenzbeschleunigung von etablierten spektralen UQ-Verfahren, wie generali-
siertem polynomialen Chaos oder stochastischer Kollokation, präsentiert. Insbesondere werden mithilfe von
konformen Abbildungen transformierte Basisfunktionen konstruiert, welche die Holomorphie-Eigenschaften
der zugrundeliegenden Funktionen besser ausnutzen. Um ein effizientes dimensionsadaptives Verfahren
zu erhalten, wird eine adjungierte Darstellung des stochastischen Fehlers hergeleitet, welche ebenfalls zur
Fehlerkorrektur verwendet wird.
Zusätzlich werden weitere Problemstellungen im Kontext von UQ für hochfrequente und optische Anwendun-
gen behandelt. Es wird eine Prozedur zur effizienten und zuverlässigen Schätzung von Ausfallwahrscheinlich-
keiten entwickelt, welche die Auswertungen von einem Surrogat-Modell sowie von Finite-Elemente-Modellen
unterschiedlicher Genauigkeit mithilfe von adjungierter Fehlerschätzung kombiniert. Um die Anwendung
von spektralen UQ-Techniken für Maxwells Eigenwertproblem zu ermöglichen, wird ein Homotopie-basiertes
Eigenwert-Tracking-Verfahren vorgeschlagen, welches eine konsistente Zuordnung der Eigenmoden erreicht.
Für quasi-periodische optische Strukturen mit einer endlichen Anzahl von Einheitszellen, die unabhängigen
Unsicherheiten unterliegen, wird eine Methode zur entkoppelten Unsicherheitspropagation für individuelle
Einheitszellen präsentiert.
Die Methoden werden für verschiedene Beispielprobleme, die sowohl akademische als auch realistische
Modelle umfassen, numerisch untersucht und deren Effizienz dargelegt. Abschließend werden umfangreiche
UQ- und Sensitivitätsstudien für die supraleitenden 9-Zell TESLA Kavitäten sowie verschiedene nanooptische
Strukturen durchgeführt.
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Abstract

This thesis addresses surrogate modeling and forward uncertainty propagation for parametric/stochastic
versions of Maxwell’s source and eigenproblem. Surrogate modeling is employed to reduce the computational
complexity of sampling an underlying numerical solver. First, a rational kernel-based interpolation method
is developed for the efficient approximation of frequency response functions. Next, the impact of uncertain
shape and material parameters is considered, which originate, for instance, in manufacturing tolerances or
measurement errors. To this end, several techniques for convergence acceleration of established spectral
surrogate modeling techniques, as generalized polynomial chaos or stochastic collocation, are presented. In
particular, transformed basis functions are constructed based on conformal maps that suitably transform the
region of holomorphy. In addition, an adjoint representation of the stochastic error is employed for an efficient
dimension-adaptive scheme as well as error correction.
Several challenges arising in uncertainty quantification for radio frequency and optical components are ad-
dressed. A multifidelity scheme for an efficient and reliable yield estimation is presented which comprises sam-
pling of a surrogate model as well as finite element models of different fidelity based on adjoint error estimation.
To enable the application of spectral surrogate modeling techniques for Maxwell’s eigenproblem with uncertain
input data, a homotopy-based eigenvalue tracking method is proposed to ensure a consistent matching of
eigenmodes. Quasi-periodic structures of finite size, subject to independent shape uncertainties, are tackled
using a decoupled uncertainty propagation procedure on the unit cell level.
The methods are numerically investigated using a number of benchmark problems that encompass academic
and real-world models, and their efficiency is demonstrated. Finally, comprehensive uncertainty quantifi-
cation and sensitivity studies are presented for the 9-cell TESLA cavities as well as different nano-optical
structures.
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1 Introduction

The chapter starts with the motivation for the research. Then, after giving a short overview of related
work from the literature, we discuss the contributions of the thesis. An outline is given at the end of the
chapter.

1.1 Motivation

The design process of many electromagnetic devices relies on numerical simulations solving an underlying
mathematical model. These models describe a physical phenomenon of interest in order to predict the
performance of certain designs. Thereby, the input data of the numerical model, such as the geometry of the
components and the material properties, are usually assumed to be known exactly. However, in practice, the
fabrication process leads to (possibly small) shape variations due to manufacturing tolerances. Furthermore,
often also the material data are not known exactly because of measurements errors or limited and indirect
observations. Neglecting these uncertainties in the input data might lead to discrepancies between the real
phenomenon and the model prediction, which can eventually even cause the fabricated devices to fail the
design specifications. In addition, neglecting uncertainties might lead to the selection of disproportionate safety
factors, which is, for example, particularly problematic in nanotechnology due to the continuous demand for
decreasing structure sizes. Hence, to achieve robust designs and ensure that the manufactured devices fulfill
their specifications, this uncertainty should be taken into account in the simulation-based design workflow
using uncertainty quantification (UQ) techniques. In Fig. 1.1, the idea of forward uncertainty propagation is
illustrated, which aims to endow predictions with confidence intervals, reflecting the uncertainty. To this end,
the input data of the numerical model as well as the output data are both described as random variables (RVs).
The associated probability density functions (PDFs) of the inputs, describing the uncertainty of the shape or
material parameters, are then propagated through the numerical model to the outputs, i.e. the quantities
of interest (QoIs). Finally, statistics about the QoI are evaluated, e.g. expected value, standard deviation,
or confidence intervals. Alternatively or complementary, the impact of uncertainty may also be quantified
in terms of the yield, i.e. the proportion of realizations in a manufacturing process that fulfill predefined
performance feature specifications [97].
Such forward UQ studies can be conducted using the well-known Monte Carlo (MC) method [103]. However,
considering large-scale numerical models, the associated cost might become prohibitive, as often many
(possibly millions of) model evaluations might be required to achieve a suitable accuracy. Spectral surrogate
modeling techniques for UQ [93, 211] provide an efficient alternative to the MC method, which reduce the
computational complexity of sampling the underlying numerical solver in many cases. However, the so-called
curse-of-dimensionality [18] poses a major challenge, i.e. the computational effort grows rapidly with respect
to the number of uncertain parameters. Hence, sophisticated methods are required to address computationally
expensive simulation models with many uncertain parameters.
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Uncertain inputs ξ:
• Shape parameters
• Material parameters

Numerical model
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Uncertain output Q:
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Figure 1.1: Illustration of forward uncertainty propagation: the uncertainty regarding the shape or material
data of the component is propagated through the numerical model to obtain statistical informa-
tion about the respective output distribution.

Surrogate modeling can also be employed in another related context to reduce the computational effort
for sampling the underlying numerical solver. In particular, we also address the efficient approximation of
frequency response functions (FRFs) based on a few training points, as the repeated evaluation of the FRF for
different frequencies can be computationally demanding as well.

In this thesis, we focus on parametric/stochastic problems for radio frequency (RF) and optical applications.
In particular, we consider particle accelerator cavities [60, 88] as an RF application example. Superconducting
cavities can be used to accelerate particles and are installed in many accelerator facilities, e.g. the European
X-ray Free Electron Laser (EXFEL) facility [4]. Due to their demanding performance requirements, e.g.
specifications with a relative error margin below 10−4, a dedicated treatment of the shape uncertainties arising
in the manufacturing process is necessary [8, 60]. In addition, we consider optical gratings or metasurfaces
[89, 167, 181] as application examples. Due to the progress in nanotechnological manufacturing, optical
structures have tremendous future potential, such that the 21st century has already been called the "century of
the photon" [42]. Nowadays photonic components can be designed by arranging tiny features which are even
significantly smaller than the optical wavelength. These nano-scale optical devices are a promising technology,
which allow to control light in an almost arbitrary manner, even by creating artificial components with a
negative index of refraction, see e.g. [42, Chapter 5.4]. Today, nano-optic components have a wide range of
applications [48, 51, 139]. UQ for such optical structures is highly relevant, as the nano-scale manufacturing
process leads to relatively large manufacturing imperfections, see e.g. [42, 167]. In this regard, further
challenges may arise as certain optical components have a very large electrical size, i.e. the physical dimensions
relative to the wavelength, which can lead to large-scale simulation models. In addition, quasi-periodic optical
structures can be subject to a very high number of uncertain parameters, which makes the application of
standard surrogate modeling techniques for UQ as generalized polynomial chaos (GPC) [213] challenging
due to the aforementioned curse-of-dimensionality.
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1.2 Literature review

Simulation-based UQ is a rapidly evolving research topic in recent years, also in computational electromagnetics,
see e.g. [55]. UQ comprises numerous methods for uncertainty propagation, Bayesian inverse problems,
and optimal experimental design, among others, see [93, 126, 211] for a detailed background. Note that,
although in this work we address forward uncertainty propagation, the surrogate modeling methods could
be employed in an inverse problem setting as well. Different surrogate modeling techniques for UQ have
already been developed and analyzed, in particular GPC and stochastic collocation (SC), i.e. higher-order
spectral polynomial methods [11, 93, 140, 155, 210, 211]. They have been successfully applied in many
different application areas and we refer to [1, 9, 50, 83, 204] regarding electromagnetic applications. In
order to address complex models with a large number of uncertain parameters, which still represent a
computational challenge, dimension-adaptive extensions [23, 53, 149] of the polynomials methods have
been proposed to delay the curse-of-dimensionality. Alternative approaches, which are not in the scope
of the present thesis, employ for instance model order reduction (MOR) [20, 77, 207], active subspaces
[57] or low-rank tensor expansions [100, 136]. If only small uncertainties are considered, perturbation
methods [69, 96, 185] can also provide a very efficient alternative. However, as perturbation methods only
employ local measures and might not yield reliable results if the QoIs depend strongly on the uncertain
parameters, they are not considered here. Finally, we note that the spectral UQ methods crucially depend on
the smoothness of the underlying model, in particular on a smooth map from input to output parameters.
For a number of different problem classes holomorphy results were shown in [52, 178]. If this assumption
is not fulfilled, MC methods are still the preferred approach, in particular their multilevel and multifidelity
extensions [94, 165].

1.3 Contribution

In this thesis, we propose different methods for parametric/stochastic problems in RF and optical applications.
A major part is concerned with efficient surrogate modeling for parametric problems, in order to reduce the
computational complexity of sampling a corresponding numerical solver. In this respect, we distinguish between
the approximation of FRFs and spectral approximations w.r.t. the uncertain shape and material parameters. In
the first case, we propose a rational kernel-based interpolation (RKI) method [86] for complex-valued FRFs as
the frequency variable usually features a large parameter range and eventually limited smoothness. In the
second case, we investigate techniques for convergence acceleration of spectral UQ methods, such as SC and
GPC. In particular, to address high parametric sensitivities, we propose different schemes [89, 90] based on
transformed basis functions, which are derived using conformal maps in order to suitably transform the region
of holomorphy. To consider a large number of parameters, we suggest an adaptive collocation method [89]
based on mapped Leja interpolation points [148] where the dimension-adaptivity is efficiently steered based
on an adjoint representation of the stochastic error [43, 111]. Moreover, the adjoint-based error indicator is
employed for error correction, in order to further enhance the convergence.

Next, we investigate an efficient and reliable yield estimation based on the adjoint-based surrogate approxi-
mation. Estimating probabilities based on sampling the surrogate model solely can lead to arbitrarily large
errors, see [131] for details. Hence, we suggest a yield estimation scheme [81] in the spirit of multifidelity
methods which takes all relevant error sources into account.
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We also address a number of further challenges arising in UQ for RF and periodic optical applications:
In general, global UQ techniques cannot be straightforwardly applied using standard eigenvalue solvers
for Maxwell’s eigenproblem with uncertain input data, e.g. to evaluate the uncertainty of eigenmodes in
accelerator cavities subject to shape variabilities. In particular, eigenvalues crossing with respect to shape
parameter changes can occur and, hence, a proper matching procedure of the respective eigenmodes for
different deformed geometries is required. Note that a classification of eigenmodes in post-processing based
on the field solution is cumbersome, see e.g. [34]. Hence, in this thesis, we suggest an eigenvalue tracking
method [88] that can be employed for UQ based on homotopies between collocation points in the parameter
space. Furthermore, we investigate UQ for different periodic optical structures where one has to distinguish
between global and local uncertainties, i.e. either preserving or violating the periodicity of unit cells. In
particular, for the case of a finite size quasi-periodic structure subject to independent deformations, we suggest
a decoupled uncertainty propagation procedure [87]. It is based on a surrogate approximation on the unit
cell level and a scattering matrix approach (SMA) [13, 95], which is embedded into a multifidelity Monte
Carlo (MFMC) framework.
Numerical investigations for both academic examples and real-world models are carried out to verify the
improved convergence or computational efficiency gains of the different methods. Finally, the methods are
applied to conduct comprehensive UQ studies. This involves, in particular, a stochastic modeling of different
uncertainty sources in the TeV-Energy Superconducting Linear Accelerator (TESLA) cavity manufacturing
process as well as a proper treatment of the eventually present correlations of the uncertain shape parameters
[60, 88]. Furthermore, we quantify the impact of material and fabrication uncertainties on different optical
gratings [89, 181]. These investigations provide important insights on sensitivities and on the overall expected
average performances for a large number of devices.

1.4 Structure of this treatise

This work is structured as follows: Chapter 2 introduces parametric versions of Maxwell’s source and eigen-
problem, i.e. the partial differential equations (PDEs) describing the physical phenomena considered in this
thesis. Furthermore, we discuss their finite element (FE) approximation and define some key notions for
UQ. In Chapter 3 we first recall some standard methods for the approximation of FRFs before presenting the
suggested RKI method. In Chapter 4 the forward uncertainty propagation problem is addressed. In particular,
we first review several existing UQ methods before suggesting the aforementioned improved techniques. In
Chapter 5 the proposed surrogate modeling and UQ techniques are applied and investigated for a number of
benchmark problems. Furthermore, comprehensive UQ studies for TESLA cavities as well as different periodic
nano-optical structures are presented. Finally, in Chapter 6 the thesis is concluded and possible extensions are
suggested for further research.

4



2 Fundamentals

The chapter starts with recalling Maxwell’s eigenproblem as well as the corresponding source problems where
periodic unit cell models and rectangular waveguides are addressed in particular. Suitable boundary conditions
as well as their FE approximation will be discussed. Then parametric versions of the different models are
considered and the basic setting for UQ is introduced. The content and structure of this chapter are based on
our works [60, 81, 88, 89].

2.1 Maxwell’s equations in frequency domain

We are interested in high-frequency electromagnetic wave phenomena, e.g. in the context of microwave
or optical waveguides, resonant cavities, or scattering problems. All such macroscopic electromagnetic
phenomena are described by Maxwell’s equations [110, 141], which can, in the time-harmonic case, be
expressed as

∇×E = −iωµH in D, (2.1a)
∇×H = Js + iωεE in D, (2.1b)
∇ · (εE) = ϱ in D, (2.1c)
∇ · (µH) = 0 in D, (2.1d)

where E,H,Js : D → C3 denote the phasors for the electric field, the magnetic field and the source current,
respectively. Furthermore ω ∈ Ω ⊂ R+ refers to the angular frequency, ϱ to the charge density phasor, ε to
the complex-valued permittivity and µ to the magnetic permeability. Note that the complex vector functions
E,H,Js depend on a spatial coordinate r = [x, y, z]⊤ ∈ D ⊂ R3 and are related to the respective time-domain
quantities as

Etime(r, t) = ℜ[E(r)eiωt], Htime(r, t) = ℜ[H(r)eiωt], Jtime
s (r, t) = ℜ[Js(r)e

iωt], (2.2)

see, e.g. [144, Section 1.2]. It can be seen that the time-harmonic form of Maxwell’s equation (2.1) assumes
all field quantities to oscillate with a single frequency ω. Hence, they can be employed to describe the steady
state of a sinusoidally excited system but are also often employed for a Fourier analysis of electromagnetic
phenomena in a certain frequency range Ω.
In this thesis, we assume the (computational) domain D to be bounded, simply connected and to have a
Lipschitz continuous boundary ∂D. Furthermore, assuming absence of charges and source currents, i.e. ϱ = 0
and Js = 0, one can derive the so-called curl-curl equation by eliminatingH in (2.1)

∇×
(︁
µ−1
r ∇×E

)︁
− ω2εµ0E = 0 in D, (2.3)
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Figure 2.1: Electric field lines of the accelerating eigenmode in the 9-cell TESLA cavity [8], taken from [88,
Figure 2a].

where µr and µ0 represent the relative and vacuum permeability, respectively, s.t. µ = µrµ0. We further
assume a dispersive linear material behavior for ε and µ, i.e. the material parameters do not depend on the
field solution E but may depend on the angular frequency ω.

The corresponding boundary conditions then distinguish the different types of boundary value problems (BVPs)
which are mainly considered in this thesis and discussed in the following. In particular, Maxwell’s eigenproblem
in a cavity is recalled before the source problems for waveguide models as well as unit cells of periodic structures
are addressed. To this end, for brevity of notation, the operators

πt [u] := ez × u, (2.4a)
πT [u] := (ez × u)× ez, (2.4b)

along with the traces

ut := n∂D × u|∂D, (2.5a)
uT := (n∂D × u|∂D)× n∂D, (2.5b)

are introduced, where ez refers to the unit vector in z-direction, ∂D to the boundary of D and n∂D to its outer
unit normal.

2.1.1 Maxwell’s eigenproblem: strong formulation

In this subsection, we address RF resonators in which at certain eigenfrequencies the electromagnetic field
oscillates with a higher magnitude. Such devices are, for instance, employed to construct dedicated filter
components or to amplify the magnitude of an excitation. In particular, in this thesis, we mainly focus on
accelerator cavities which are specifically designed resonators for the acceleration of charged particles. One
example is given by the 9-cell TESLA cavity [8] which is illustrated in Fig. 2.1 and will be described in more
detail in Section 5.2. In this case, D in (2.3) refers to the inner domain of the cavity. Applying so-called
perfect electric conducting (PEC) boundary conditions, one then obtains the eigenvalue formulation: find
ω ∈ R+ and E ̸= 0 such that

∇×
(︁
µ−1
r ∇×E

)︁
= ω2µ0εE in D, (2.6a)

Et = 0 on ∂D. (2.6b)
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The PEC boundary conditions can be justified by the superconducting walls, however, different (more ad-
vanced) boundary conditions are also possible, e.g. a surface impedance boundary condition [144, Chapter
1]. Note that there is an infinite set of eigenmodes En, n = 0, 1, . . . with corresponding eigenfrequen-
cies s.t. 0 ≤ ω0 = 2πf0 ≤ ω1 = 2πf1 ≤ . . . < ∞ which are the solutions of (2.6), cf. [144, Theo-
rem 4.18].
In a TESLA cavity the particle beam is usually accelerated in longitudinal direction by a fundamental transverse
magnetic (TM) eigenmode, i.e. one particular solution of (2.6) which is illustrated in Fig. 2.1. In a 9-cell TESLA
cavity there are 9 eigenmodes of this type with eigenfrequencies f0 < f1 < . . . < f8 with different phase-shift in
the electromagnetic fields between neighboring cells which vary from 0 to π radians. The accelerating mode is
the so-called π-mode with frequency f8 such that, given the chosen length of the cells [159], the field direction
reverses as the particles traverse a cell and, hence, the particles are consistently accelerated in the same
direction. For details on linear particle accelerators, we refer to [201].
Finally, we introduce two relevant figures of merit for the 9-cell TESLA cavity design which are based on the
eigensolution of (2.6). The so-called cell-to-cell coupling coefficient

kcc := 2
f8 − f0
f8 + f0

, (2.7)

quantifies the spread of the fundamental modes [19]. Note that a sufficiently large cell-to-cell coupling
coefficient is desirable since there is a risk of exciting other modes than f8 with the RF generator if their
eigenfrequencies are too close. Another relevant quantity is the field flatness which is here defined as

FF :=
mini=1,...,9E

(i)
ax,max

maxi=1,...,9E
(i)
ax,max

, (2.8)

where E(i)
ax,max denotes the maximum magnitude of the longitudinal electric field component along the

longitudinal axis in the i-th cell. A high field flatness, corresponding to a uniform field distribution, is of
practical interest as it increases the accelerating voltage [160, p.129] and reduces the peak surface fields and,
thus, the risk of field emissions.

2.1.2 Unit cell problem: strong formulation

Next, we address the scattering and transmission behavior of electromagnetic waves on periodic structures.
This setting is here motivated by the optical gratings, which will be discussed in Chapter 5 where tiny
sub-wavelength features are arranged in a periodic manner using modern nano-scale fabrication techniques
in order to design innovative optical components [167, 181]. To this end, in this subsection, an infinitely
periodic structure and a periodic excitation is assumed, such that Floquet’s Theorem [115, Chapter 13] can be
applied. It allows to confine the computational domain D to a single unit cell of the periodic structure. In
particular, we assume periodicity in the x and y directions, whereas ∂Dz+ and ∂Dz− denote the boundaries
in the non-periodic direction. The corresponding unit cell is depicted in Fig. 2.2. Vacuum material properties
ε0, µ0 are assumed for z ≥ zmax and the structure is excited from the top, i.e. at ∂Dz+ , by an incident plane
wave

Einc = E0e
−ikinc·r, kinc =

⎡⎣kincx

kincy

kincz

⎤⎦ = −k0

⎡⎣sin θinc cosφincsin θinc sinφinc

cos θinc

⎤⎦ , (2.9)
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Figure 2.2: The computational domainD is represented by a rectangular unit cell. The incident wave vector
is depicted by an blue arrow. The orange boundaries truncate the structure in the non-periodic
directions. The illustration is based on [89, Fig. 8] and [90, Fig. 1b].

where θinc, φinc are the angles of incidence, k0 = ω
√
µ0ε0 is the vacuumwave number andE0 ∈ C3. Depending

on the values of θinc, φinc, the excitation may have a different periodicity than the geometrical periodicity
of the structure. Hence, periodic phase-shift boundary conditions need to be enforced on ∂Dx+ ∪ ∂Dx− and
on ∂Dy+ ∪ ∂Dy− , i.e.

E|∂Dx+
= E|∂Dx−

e−ikincx dx , (2.10a)
E|∂Dy+

= E|∂Dy−
e−ikincy dy , (2.10b)

where dx, dy denote the dimensions of the unit cell.

2.1.2.1 Floquet absorbing boundary condition

Next, the truncation of the structure at ∂Dz+ is discussed. To this end, a Floquet absorbing boundary condition
is derived by splitting the electric field in the unbounded region z ≥ z+ into the known incident field Einc and
the unknown scattered field Esc

E = Einc +Esc. (2.11)
The scattered field Esc can be decomposed into an infinite series of Floquet modes [22, Chapter 3],[216,
Chapter 12.2.1],

Esc =
∑︂

m,n∈Z
α∈{TE,TM}

cα,mnE
α,mne−iκmn(z−z+), (2.12)

where

ETE,mn :=
e−i(kxmx+kyny) (kynex − kxmey)√︁

dxdy
√︂
k2xm + k2yn

, (2.13a)

ETM,mn :=
e−i(kxmx+kyny)

(︁
kxmex + kyney −

k2xm+k2yn
κmn

ez
)︁

√︁
dxdy

√︂
k2xm + k2yn

, (2.13b)
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with

kxm := kincx +
2πm

dx
, kyn := kincy +

2πn

dy
, κmn :=

√︂
k20 − k2xm − k2yn. (2.14)

Note that the transverse electric (TE) modes ETE,mn and the TM modes ETM,mn fulfil E ⊥ ez and H ⊥ ez,
respectively. It can be seen that the finite number of propagating modes with κmn ∈ R, depends only on
a few parameters, i.e. the wavenumber k0, the unit cell dimensions dx, dy and the angles of incidence
θinc, φinc.
We then introduce the modal admittances

Yα,mn :=

{︄
κmn
ωµ for α = TE,
ωε
κmn

for α = TM,
(2.15)

such that

πt
[︂
Hα,mne−iκmn(z−z+)

]︂
= πt

[︃
i

ωµ
∇×

(︂
Eα,mne−iκmn(z−z+)

)︂]︃
= −Yα,mnπT

[︂
Eα,mne−iκmn(z−z+)

]︂
. (2.16)

The incident plane wave Einc, see (2.9), corresponds to the lowest order Floquet modes Eα,00 with modal
admittance Y inc

πt
[︁
Hinc

]︁
= Y incπT

[︁
Einc

]︁
, Y inc :=

⎧⎨⎩
√
ε cos(θinc)√

µ for α = TE,
√
ε√

µ cos(θinc)
for α = TM.

(2.17)

The magnetic field for z ≥ zmax is then obtained by applying the operator πt[ i
ωµ∇× (·)] to (2.11) which leads

to

πt [H] +
∑︂

m,n∈Z
α∈{TE,TM}

cα,mnYα,mnπT[Eα,mne−iκmn(z−z+)] = Y incπT
[︁
Einc

]︁
. (2.18)

Introducing the inner product notation

(u,v)∂Dz+
:=

∫︂
∂Dz+

u · v dx, (2.19)

where v denotes the complex conjugate of v, and employing the orthogonality of themodal basis,(︂
ETE,mn

T ,ETE,ij
T

)︂
∂Dz+

= δmiδnj ,
(︂
ETM,mn

T ,ETM,ij
T

)︂
∂Dz+

= δmiδnj ,
(︂
ETE,mn

T ,ETM,ij
T

)︂
∂Dz+

= 0, (2.20)

where δ denotes the Kronecker delta, the unknown coefficients cα,mn ∈ C are obtained as

cα,mn =
(︁
Esc

T ,E
α,mn
T

)︁
∂Dz+

=
(︁
ET,E

α,mn
T

)︁
∂Dz+

−
(︁
Einc

T ,Eα,mn
T

)︁
∂Dz+

. (2.21)

Inserting (2.21) in (2.18) then yields the boundary condition on ∂Dz+

Ht +
∑︂

m,n∈Z
α∈{TE,TM}

(︁
ET,E

α,mn
T

)︁
∂Dz+

Yα,mnE
α,mn
T = 2Y incEinc

T . (2.22)
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For practical computations the infinite sum is usually truncated to −mmax ≤ m ≤ mmax, −nmax ≤ n ≤ nmax.
The boundary condition can be further simplified if dx, dy are small enough, such that only the funda-
mental modes Eα,00 propagate. In that case, one can place the boundary ∂Dz+ sufficiently far away from
the structure, ensuring that all evanescent higher order modes (HOMs) have a negligible magnitude at
∂Dz+ and can hence be omitted. In this case, the first-order absorbing boundary condition [115, Chapter
13.4.1]

Ht −
kinc
t

ωµ0kincz

(︁
kinc
t ·ET

)︁
− kincz

ωµ0
ET = 2Y incEinc

T on ∂Dz+ , (2.23)

can be employed which will be mainly considered in this work.

2.1.2.2 Boundary value problem

Finally, there are various choices for the boundary condition at ∂Dz− , for instance, again a Floquet absorbing
boundary condition or perfectly matched layer (PML) [115]. Here, a PEC boundary condition is applied, for
simplicity. In summary, the BVP for the optical grating coupler, which will be introduced in Section 5.3.1 reads

∇×
(︁
µ−1
r ∇×E

)︁
− ω2εµ0E = 0 in D, (2.24a)

E|∂Dx+
eik

inc
x dx = E|∂Dx−

on ∂Dx+ ∪ ∂Dx− , (2.24b)
E|∂Dy+

eik
inc
y dy = E|∂Dy−

on ∂Dy+ ∪ ∂Dy− , (2.24c)
Et = 0 on ∂Dz− , (2.24d)

Ht −
kinc
t

ωµ0kincz

(︁
kinc
t ·ET

)︁
− kincz

ωµ0
ET = 2Y incEinc

T on ∂Dz+ . (2.24e)

In addition to the electric field E, one is, in practice, often also interested in scattering parameters (S-
parameters), i.e. reflection and transmission coefficients. These scattering parameters at ∂Dz+ can here be
defined as (affine-) linear functionals of E, as

Sα,mn :=
(︁
ET −Einc

T ,Eα,mn
T

)︁
∂Dz+

∈ C, where α ∈ {TE,TM},m ∈ Z, n ∈ Z, (2.25)

which project the scattered electric field on the FloquetmodesEα,mn defined in (2.13).

2.1.3 Waveguide problem: strong formulation

In this subsection, we consider again a rectangular domain which now describes the model of an electric
waveguide, as illustrated in Fig. 2.3. The boundary consists of three parts ∂D = ∂DPEC ∪∂DP1 ∪∂DP2 where
∂DP1, ∂DP2 refer to the two ports and PEC boundary conditions are employed at the waveguide walls ∂DPEC.
We assume that the waveguide is excited at ∂DP1 by an incident TE10 wave

Einc,wg = E0E
TE
10e

−ikz10z with ETE
10 := sin

(︂πx
a

)︂
ey, (2.26)

where E0 denotes the wave amplitude, kz10 =
√︂
ω2µε0 − π

a2
the propagation constant and a the width of the

waveguide. Note that the mode indices are now added as a subscript in order to distinguish waveguide and
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Figure 2.3: The computational domain D is represented by a rectangular waveguide. The incident wave
vector is depicted by a blue arrow. The waveguide ports are shown in red while the waveguide
walls are depicted in grey.

Floquet modes. Additionally, we assume vacuummaterial properties ε0, µ0 at the waveguide ports ∂DP1∪∂DP2

as well as suitable waveguide dimensions such that all modes, except for the TE10 mode, are evanescent.
Then, further assuming that the ports are placed with sufficient distance from any possible obstacles inside
the waveguide that could excite higher-order modes, lowest order waveguide boundary conditions can be
derived. The derivation follows a similar procedure as for the Floquet boundary conditions derived in the last
subsection and is hence omitted, see [115, Chapter 8.5] for details. In summary, we are concerned with the
BVP

∇×
(︁
µ−1
r ∇×E

)︁
− ω2εµ0E = 0 in D, (2.27a)

(∇×E)t − ikz10ET = −2ikz10Einc,wg on ∂DP1, (2.27b)
(∇×E)t − ikz10ET = 0 on ∂DP2, (2.27c)

Et = 0 on ∂DPEC. (2.27d)

Scattering parameters can then be computed in post-processing, for instance, the fundamental scattering
parameter of the TE10-mode on ∂DP1 is given as

STE
10 :=

2

E0ab

(︁
E−Einc,wg,ETE

10
)︁
∂DP1

, (2.28)

if one assumes (without loss of generality) that ∂DP1 is located at z = 0.

2.2 Weak formulations and discretization

In practice, Maxwell’s equations are usually solved with a suitable numerical method. To this end, different
methods from computational electromagnetics are available. For example, we mention the finite element
method (FEM) [115, 144] in the frequency domain as well as the boundary element method (BEM) [37, 177].
Furthermore, particularly for the respective time-domain problems, discontinuous Galerkin methods [115,
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182] as well as the finite difference method [124, 195] or the finite integration technique (FIT) [202] are
well established. In this work, we mainly rely on the FEM, as it can easily handle inhomogeneous material
distributions and complex geometries.
In order to solve the different BVPs (2.6), (2.24), (2.27) with the FEM, the corresponding weak formulations
are derived in the following. To this end, we first recall some standard function spaces. Let (︁L2 (D)

)︁3 denote
the complex vector function space of square integrable functions onD, i.e.(︁

L2 (D)
)︁3

:= {u : (u,u)D <∞} , (2.29)

where
(u,v)D =

∫︂
D
u · v dr, (2.30)

denotes the inner product. Furthermore, for a proper treatment of Maxwell’s equations, we introduce the
space

H (curl;D) :=
{︂
u ∈

(︁
L2 (D)

)︁3
: (∇× u,∇× u)D <∞

}︂
, (2.31)

which defines the space of finite-energy solutions for the electric field, see [144] for details. Finally, we define
H0 (curl;D) as the subspace of H (curl;D) with vanishing tangential components on the boundary ∂D, i.e.

H0 (curl;D) := {u ∈ H (curl;D) : ut = 0 on ∂D} . (2.32)
For further details on the function spaces related to Maxwell’s equations as well as their discrete counterparts,
which can be obtained using discrete differential forms and an analysis of their properties, we refer to [6, 32,
105].
We then build the inner products of (2.3) with test functionE′ ∈ V and integrate by parts using [144, Theorem
3.31], which yields(︁

µ−1
r ∇×E,∇×E′)︁

D
− ω2µ0

(︁
εE,E′)︁

D
+ <

(︁
µ−1
r ∇×E

)︁
t ,E

′
T >∂D= 0, (2.33)

where < ·, · > denotes the duality brackets and V is a subspace of H (curl;D) such that the boundary term
in (2.33) is well-defined. Next, the boundary term can be simplified, depending on the particular boundary
conditions of the model problem.

2.2.1 Maxwell’s eigenproblem

For Maxwell’s eigenproblem, in view of the PEC boundary conditions (2.6b), we employ H0 (curl;D) for test
and ansatz functions which immediately yields the standard variational formulation of (2.6): find ω ∈ R+

with E ∈ H0 (curl;D) such that(︁
µ−1
r ∇×E,∇× v

)︁
= ω2µ0 (εE,v) , ∀v ∈ H0 (curl;D) . (2.34)

Note that the boundary integral in (2.33) vanishes due to the PEC boundary conditions which are enforced for
the test functions v as well. Next, we devise the discrete counterpart of (2.34) by following a Galerkin proce-
dure. To this end, we employ a sequence of finite-dimensional spaces Vh ⊂ H0 (curl;D) and correspondingly
restrict (2.34): find ωh ∈ R with Eh ∈ Vh such that(︁

µ−1
r ∇×Eh,∇× v

)︁
= ω2

hµ0 (εEh,v) ∀v ∈ Vh. (2.35)
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Note that there are different choices for the space Vh which yield a proper discretization of H (curl;D),
see, e.g. [24, 144, 150] for Nédélec edge elements or [38] for an isogeometric approach, however, in
any case Eh can then be represented in terms of basis functions (wj)

Nh
j=1 ⊂ Vh, where wj : D → R3, as

Eh(r) =

Nh∑︂
j=1

ejwj(r). (2.36)

The discrete solution e ∈ CNh can then be computed by solving the generalized eigenvalue problem

Ke = ω2
hMe, (2.37)

where the stiffnessmatrixK and themassmatrixM for vacuum are given by

Kij =
(︁
µ−1
r ∇×wj ,∇×wi

)︁
D
, Mij = µ0 (εwj ,wi)D . (2.38)

2.2.2 Unit cell problem

For the unit cell model (2.24), we can simplify the boundary term in (2.33) because the contributions on
∂Dx+ , ∂Dy+ cancel the contributions on ∂Dx− , ∂Dy− , respectively, due to the periodic phase-shift boundary
conditions (2.24b), (2.24c) which are imposed for trial and test functions. Additionally, the part of the
integral on ∂Dz− can be eliminated by demanding that the PEC boundary condition (2.24d) is fulfilled
by the test functions E′ as well. The appropriate function space V uc, where uc is short for unit cell, then
reads

V uc := {u ∈ H (curl;D) : uT|∂Dz−
= 0 ∧ uT|∂Dx+

eik
inc
x dx = −uT|∂Dx−

∧ uT|∂Dy+
eik

inc
y dy = −uT|∂Dy−

∧ uT|∂Dz+
∈
(︁
L2(∂Dz+)

)︁3}, (2.39)

where the condition uT|∂Dz+
∈
(︁
L2(∂Dz+)

)︁3 ensures a well-defined boundary integral in (2.33). Insert-
ing the Floquet absorbing boundary condition (2.24e) then leads to the weak formulation: find E ∈ V uc

s.t.
(︁
µ−1
r ∇×E,∇×E′)︁

D
− ω2µ0

(︁
εE,E′)︁

D
− i

kincz

(︁
kinc
t ·ET,kinc

t ·E′
T
)︁
∂Dz+

− ikincz

(︁
ET,E′

T
)︁
∂Dz+

= 2iωµ0Y
inc
(︁
Einc

T ,E′
T
)︁
∂Dz+

∀E′ ∈ V uc.
(2.40)

Eq. (2.40) is then discretized, following a similar procedure as outlined in the last subsection, i.e. using a
finite-dimensional subspace of V uc and approximating the electric field in the form of (2.36). In this case the
curl-conforming basis functions wj are chosen based on first kind, second order Nédélec basis functions [144,
150] defined on a tetrahedral mesh of D with a periodic surface mesh on ∂Dx+ and ∂Dx− as well as on ∂Dy+

and ∂Dy− . The phase-shift boundary conditions are then incorporated as explained in [115, Chapter 13], [89,
Appendix B], which finally leads to a discrete system in the form of(︁

K− ω2M+ iDuc
)︁⏞ ⏟⏟ ⏞

Auc

e = fuc, (2.41)
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where Auc ∈ CNh×Nh denotes the system matrix and fuc ∈ CNh the right-hand side (RHS). Note that K and
M are defined in (2.38) and

Duc
ij = − 1

kincz

(︁
kinc
t · (wj)T,kinc

t · (wi)T
)︁
∂Dz+

− kincz ((wj)T, (wi)T)∂Dz+
, (2.42)

fuci = 2iωµ0Y
inc
(︁
Einc

T , (wi)T
)︁
∂Dz+

. (2.43)

The discrete counterpart of (2.25) is given as

Sα,mn
h = jα,mn · (e− einc,uc) ∈ C, where α ∈ {TE,TM},m ∈ Z, n ∈ Z, (2.44)

and einc,uc ∈ CNh denotes the vector of coefficients obtained after projecting the incident wave (2.9) on the
basis (2.36) and the vector qα,mn is given as

qα,mn
i =

(︁
(wi)T,E

α,mn
T

)︁
∂Dz+

∈ CNh . (2.45)

2.2.3 Waveguide problem

For the waveguide problem (2.27), we start again from (2.33), eliminate the portion of the boundary inte-
gral on ∂DPEC, due to the PEC boundary conditions (2.27d) and insert the waveguide boundary conditions
(2.27b),(2.27c), which yields the variational formulation: findE ∈ V wg s.t.(︁

µr
−1∇×E,∇×E′)︁

D
− ω2µ0

(︁
εE,E′)︁

D
+ ikz10 (ET,ET)∂DP1∪∂DP2

= 2ikz10
(︁
Einc,wg,E′

T
)︁
∂DP2

∀E′ ∈ V wg,
(2.46)

where

V wg :=
{︂
u ∈ H (curl;D) : uT

⃓⃓
∂DP1

∈
(︁
L2(∂DP1)

)︁3 ∧ uT
⃓⃓
∂DP2

∈
(︁
L2(∂DP2)

)︁3 ∧ uT
⃓⃓
∂DPEC

= 0
}︂
. (2.47)

After discretization using, again, Nédélec basis functions on a tetrahedral mesh, one can then compute the
discrete solution e by solving the linear system(︁

K− ω2M+ iDwg
)︁⏞ ⏟⏟ ⏞

Awg(ω)

e = fwg, (2.48)

where K and M are defined in (2.38) and

Dwg
ij = kz10 ((wj)T, (wi)T)∂DP1∪∂DP2

, fwg
i = 2ikz10

(︁
Einc,wg, (wi)T

)︁
∂DP1

. (2.49)

The discrete counterpart of (2.28) is given as

STE
10,h = jTE

10 · (e− einc,wg) ∈ C, (2.50)

where einc,wg is obtained by projecting (2.26) on the basis (2.36) and

(jTE
10 )i =

2

E0ab

(︁
wi,E

TE
10
)︁
∂DP1

. (2.51)
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2.3 Parametric problems

The previous sections of this chapter discussed the numerical solution of the different problem types for
particular choices of the computational domain D and the material distributions. Note that the source
problems lead to parametric systems (2.41) and (2.48) with respect to the angular frequency ω. These
will be discussed in Chapter 3 in more detail. However, in Chapter 4 we will then address another type of
parametric problem. In particular, we will consider parametric variations which change the shape or material
parameters of the considered model. These parameters can then be used to model uncertainties, e.g. due to
manufacturing tolerances or measurement uncertainty. Note that many RF components are sensitive to their
shape parameters, e.g. the final accelerator cavity shape determines, to a large extent, their performance.
It has also been reported in the context of nano-optical structures that significant variations with respect to
certain shape parameters can be observed, see for instance [167] where the considered grating coupler is
particularly sensitive to the grating depth. In addition, material uncertainties can have a significant impact, for
example it has been pointed out in [114] that the measurement errors in the available data sets, for the optical
properties of silver, significantly affect the accuracy of simulation predictions. We note that uncertainties
may also arise in the boundary conditions or in the excitation of the source problems, however, these are not
considered in this thesis. In the following, we will introduce the respective parameterized versions of the
different problems.

2.3.1 Parameterized eigenvalue problem

For the eigenproblem (2.6), we will consider a parametric domain D(ξ) with a parametric boundary ∂D(ξ),
s.t. the computational domain D depends smoothly on a parameter vector ξ ∈ Γ ⊂ RNξ which can be
used to model deformations in the cavity geometry, for instance. Note that we do not introduce parametric
variations for the material parameter ε, µ, as in this work vacuum material properties will be assumed for all
cavity models. Following the discretization steps described in the previous sections, taking into account the
parameterized domain and employing parameterized basis functions

{wj(r; ξ)}Nh
j=1 ⊂ H (curl;D(ξ)), where wj(r; ξ) : D(ξ)× Γ→ R3, (2.52)

whichwill be discussed later, one then obtains the parameterized generalized eigenvalue problem

K(ξ)e(ξ) = ω2
h(ξ)M(ξ)e(ξ) ∀ξ ∈ Γ. (2.53)

2.3.2 Parameterized source problems

For the considered source problems, i.e. the unit cell problem and waveguide problem, a fixed computa-
tional domain D but parametric material properties are considered. In particular, it is assumed that the
domain D can be decomposed in Nsub non-overlapping subdomains Di such that D =

⋃︁Nsub
i=1 Di and that

ε(r, ω, ξ) =

Nsub∑︂
i=1

εi(ω, ξ)1i(r, ξ), µ(r, ω, ξ) =

Nsub∑︂
i=1

µi(ω, ξ)1i(r, ξ), (2.54)

where
1i(r, ξ) =

{︄
1 , r ∈ Di(ξ),

0 , r /∈ Di(ξ),
(2.55)
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i.e. that the permittivity ε and the permeability µ are spatially piecewise constant on each subdomain Di

and depend on the parameter vector ξ ∈ Γ ⊂ RNξ . It is further assumed that the parametric dependencies
ξ ↦→ ε(·, ·, ξ), ξ ↦→ µ(·, ·, ξ) are smooth. We emphasize that the parameter vector ξ can be used to change
the material parameter coefficients εi(ω, ξ), µi(ω, ξ), modeling different permittivities or permeabilities, but
also allows to represent geometric variations of the material interfaces inside the unit cell, as the subdomains
Di depend on ξ as well. Inserting (2.54) in (2.40) and (2.46), respectively, one then obtains parameterized
weak formulations in the form: find E(ξ) ∈ V s.t.

aξ(E(ξ),E′) = l(E′), ∀E′ ∈ V. (2.56)

In particular, in case of the unit cell problem (2.24), the function space V is given as V uc and the sesquilinear
form aξ(·, ·) and the antilinear form l(·) read

aucξ (E(ξ),E′) :=
(︁
µ−1
r (ξ)∇×E(ξ),∇×E′)︁

D
− ω2µ0

(︁
ε(ξ)E(ξ),E′)︁

D

− i

kincz

(︁
kinc
t ·ET(ξ),kinc

t ·E′
T
)︁
∂Dz+

− ikincz

(︁
ET(ξ),E′

T
)︁
∂Dz+

,
(2.57)

luc(E′) :=2iωµ0Y
inc
(︁
Einc

T ,E′
T
)︁
∂Dz+

. (2.58)

In case of the waveguide problem (2.27), the function space V is given as V wg and

awg
ξ (E(ξ),E′) :=

(︁
µ−1
r (ξ)∇×E(ξ),∇×E′)︁

D
− ω2µ0

(︁
ε(ξ)E(ξ),E′)︁

D
+ ikz10 (ET(ξ),ET)∂DP1∪∂DP2

,

(2.59)
lwg(E′) :=2ikz10

(︁
Einc,wg, (wi)T

)︁
∂DP1

. (2.60)

Finally, the parameterized scattering parameters of the unit cell problem and the waveguide problem
read

Sα,mn(ξ) =
(︁
ET(ξ)−Einc

T ,Eα,mn
T

)︁
∂Dz+

, where α ∈ {TE, TM},m ∈ Z, n ∈ Z, (2.61)

STE
10 (ξ) =

2

E0ab

(︁
E(ξ)−Einc,wg,ETE

10
)︁
∂DP1

, (2.62)

respectively. After discretization, one obtains in both cases linear systems in the form

A(ξ) e(ξ) = f , (2.63a)
Sh(ξ) = j ·

(︁
e(ξ)− einc

)︁
. (2.63b)

2.3.3 Uncertainty propagation and quantification

In the context of this thesis, we are not only interested in the electric field solution e(ξ) but particularly
interested in specific scalar QoIs Q(ξ) ∈ C which might refer to eigenvalues of Maxwell’s eigenproblem
or a bounded functional of the electric field Q(ξ) = J

(︁
e(ξ)

)︁, as the scattering parameters of the unit cell
or waveguide problem, for instance. We emphasize that the considered models, i.e. the respective maps
ξ ↦→ Q(ξ), are deterministic which means that the same input parameter values ξ will always lead to the exact
same output Q(ξ). However, these QoIs become stochastic, if we now assume that the input parameters of the
parameterized models discussed in previous subsection are given as real RVs Ξn, n = 1, 2, . . . , Nξ in order to
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model uncertainties due to manufacturing imperfections. Note that the type of uncertainties that originate
in the fabrication process, e.g. regarding the final shape of the device, and are assumed to be irreducible or
inherently random, is usually referred to as aleatory uncertainty. In contrast, uncertainty about the proper
modeling of a physical system due to a lack of knowledge is called epistemic, which could eventually be
reduced, e.g. by measurements. However, the distinction between aleatory and epistemic uncertainties is
sometimes difficult in practice [172]. In the context of this work, we address both types of uncertainties with
a probabilistic description which is referred to as Bayesian probabilistic approach for epistemic uncertainties
in [161]. Note that we, however, do not employ the two-level approach suggested in [161] and refer to
[162, 172] for further procedures to address epistemic uncertainties. The corresponding random vector
Ξ = [Ξ1, . . . ,ΞNξ

]⊤ is defined on a probability space (Θ,Σ, P ) where Θ refers to the sample space, i.e. the set
of elementary outcomes, Σ denotes the sigma-algebra of events and P : Σ→ [0, 1] the probability measure
which maps from events to probabilities. The random vector Ξ is a measurable function Ξ : Θ→ Γ, where
Γ ⊂ RNξ denotes the image space, with joint PDF ρ(ξ) : Γ→ R+

0 . The parameter vector ξ then represents a
realization of Ξ, i.e. ξ = Ξ(θ) ∈ Γ, θ ∈ Θ.
We further introduce the notation Γi ⊂ R, i = 1, . . . , Nξ for the image space of the single RV Ξi with
univariate PDF ρi(ξi) : Γi → R+

0 . In the subsequent chapters, we will then sometimes make the assumptions
that the RVs Ξi, i = 1, . . . , Nξ are mutually independent, i.e. ρ(ξ) =

∏︁Nξ

i=1 ρi(ξi) and Γ = Γ1 × . . . × ΓNξ
.

Note that independent RVs could also be obtained by a suitable transformation of dependent inputs, for
example, Rosenblatt or Nataf transformations [112, 127]. In particular, the Rosenblatt transformation
which maps Ξ to a uniformly distribution random vector on [0, 1]Nξ with independent elements is given
as

T : RNξ → RNξ , ξ ↦→

⎛⎜⎜⎜⎜⎜⎝
FΞ;1(ξ1)

FΞ;2|1(ξ2|Ξ1 = ξ1)

...
FΞ;Nξ|1,...,Nξ−1(ξNξ

|Ξ1 = ξ1, . . . ,ΞNξ−1 = ξNξ−1)

⎞⎟⎟⎟⎟⎟⎠ , (2.64)

where FΞ;k|1,...,k−1, k ∈ {1, . . . , Nξ} refers to the cumulative distribution function (CDF) of the conditional
RV Ξk|Ξ1 . . .Ξk−1, see [127]. Furthermore, for correlated input parameters the Karhunen-Loève expansion
is a powerful tool [62, 184, 211] which will be explained and applied in the numerical examples, see
Section 5.2.2.
The random inputsΞ lead to a random outputQ(Ξ). Hence, it can be seen that the uncertainty from the inputs
propagates to the outputs, as illustrated in Fig. 1.1. The goal of forward uncertainty propagation, which is the
main topic of Chapter 4, then is to quantify the uncertainty in the QoI given a numerical model ξ ↦→ Q(ξ) with
uncertain inputs ξ. It shall be mentioned that inverse UQ refers to the opposite, i.e. using information about the
model outputQ, e.g. measurement data, to compute the distribution of the inputs, see [191] and the references
therein for details. However, in this thesis we focus on forward UQ.

2.4 Summary

In this chapter, we have derived parametric/stochastic problems from Maxwell’s equations as well as their
FE discretization. These models comprise, for instance, particle accelerator cavities, nano-optical struc-
tures, or electrical waveguides. Afterward, the setting for forward uncertainty propagation was intro-
duced.
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Note that Maxwell’s source problems (2.41) and (2.48) are parametric systems with respect to the angular fre-
quency ω. This type of parametric problem is addressed in the following chapter, where suitable surrogate mod-
eling techniques for FRFs are discussed. In Chapter 4 we will then address UQ for the parametric problems with
uncertain shape or material parameters introduced in Section 2.3.1-2.3.2.
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3 Approximation of frequency response functions

The content and structure of this chapter are based on our work [86]. As derived in the previous chapter, the
discretization of deterministic Maxwell’s source problems in the frequency domain leads to linear systems in
the form (︁

K− ω2M+ iD
)︁
e = f , (3.1)

see (2.41) and (2.48). We note that also problems from different engineering fields, e.g. structural mechanics
or acoustics, can be brought in the same form. In general, they are usually derived by applying the Fourier
transform to a time-dependent linear second-order PDE which is then discretized using a suitable numerical
method, e.g. FEM. For simplicity, we focus here on scalar frequency-dependent functionals of the solution e,
which are commonly employed to assess engineering designs, e.g. scattering parameters. Such a quantity of
interest can be written as

Q : C→ C, iω ↦→ J(e(iω)). (3.2)

Note that the repeated evaluation of the FRF ω ↦→ Q(iω) for different frequencies can be computationally
demanding as each evaluation requires solving the linear system (3.1). Hence, in this chapter we address the
construction of a surrogate model QNω ≈ Q based on a small training set

{ωi, Q(iωi)}Nω
i=1, where wi ∈ Ω, Q(iωi) ∈ C, i = 1, . . . , Nω, (3.3)

and where we assume the ωi, i = 1, . . . , Nω to be distinct. This task has already been considered in the
literature using interpolation as well as regression techniques, see for example [99, 125, 147] and the
references therein. In particular, we mention the well-established rational approximation techniques vector
fitting (VF) [99] and the adaptive Antoulas–Anderson (AAA) algorithm [147]. As both methods will be used
as a benchmark, we will recall the key ideas of AAA and VF in the following section. Alternative data-driven
techniques related to MOR and rational approximations are the Loewner framework [5] and approaches
employing the Heaviside representation [153].

In Section 3.2, we then suggest a kernel-based interpolation approach for FRFs. This topic has so far only
received limited attention in the literature, which is eventually caused by the slow convergence of the well-
established Matérn kernels [168] or radial basis functions (RBFs) [39] for many dynamical responses. Hence,
we suggest a method that is specifically tailored to complex-valued FRFs. We show that this dedicated
kernel method, avoiding the individual interpolation of real- and imaginary part, uses the training data more
efficiently. It is combined with a low-order rational basis and a tailored model selection scheme, in order to
improve the efficiency for FRFs with a few dominant poles. In Section 5.1, we will then compare our RKI
method against both AAA and VF and observe an improved or at least comparable performance for a variety
of test cases.
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3.1 Review of existing methods

For convenience of the reader, we recall the main ideas of AAA and VF in the following but refer to the
literature for specific details.

3.1.1 Adaptive Antoulas–Anderson algorithm (AAA)

The AAA method for rational approximation has been proposed in [147]. It employs the barycentric represen-
tation QAAA

NJ
(ω) such that

Q(iω) ≈ QAAA
NJ

(ω) =
n(ω)

d(ω)
=

∑︁
j∈J

wjQ(iωj)
ω−ωj∑︁

j∈J
wj

ω−ωj

, (3.4)

where J ⊆ {1, . . . , Nω} with cardinalityNJ = #J and wj ∈ C are the weights. The barycentric representation
of the rational function QAAA

NJ
(ω) is well-conditioned, see [147] for details. By multiplying the numeratur

n(ω) and the denominator d(ω) both by ∏︁j∈J(ω − ωj), one can see that QAAA
NJ

(ω) is a rational function of
order (NJ − 1, NJ − 1). Furthermore, it fulfills the interpolating property QAAA

NJ
(ωj) = Q(iωj) for all j ∈ J ,

see [147, Theorem 2.1]. To avoid instabilities, the support points ωj are adaptively selected using a greedy
scheme:

1. Starting from an ordered subset of given interpolation nodes ωj , j ∈ J = (j1, . . . , jNJ
) ⊂ (1, . . . , Nω),

the corresponding weights wj , j ∈ J are computed by solving the least-square problem

minimize
∑︂

i∈(1,...,Nω)\J

|Q(iωi)d(ωi)− n(ωi)|2, such that
1

NJ

∑︂
j∈J
|wj |2 = 1. (3.5)

2. Then, the next nodal index jNJ+1 is selected, which corresponds to the remaining training point, where
the nonlinear residual has the largest magnitude, i.e.

jNJ+1 = argmax
i∈(1,...,Nω)\J

⃓⃓⃓
Q
(︁
iωi

)︁
− n(ωi)

d(ωi)

⃓⃓⃓
. (3.6)

For further details on the AAA algorithm, we refer to [147].

3.1.2 Vector Fitting

VF is another method for rational approximation which is specifically tailored to functions in the frequency
domain. The name of VF refers to the fact that the method can also be applied to vector-valued QoIs. It
was proposed in [99] and is already well established in different engineering fields. VF constructs a rational
approximation which is represented in terms of partial fractions as

Q(iω) ≈ QVF
Nω

(iω) =

NVF
pol∑︂

n=1

rn
iω − pn

+ a+ iωb, (3.7)

with a, b ∈ R. The implementation ensures that all poles pn and residuals rn are either real or come in
complex-conjugate pairs.
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The VF algorithm consists of two stages. First, a set of initial poles {qn} is iteratively relocated in order to
identify the poles of Q. To this end, the linear problem⎛⎜⎝NVF

pol∑︂
n=1

r̃n
iω − qn

+ 1

⎞⎟⎠
⏞ ⏟⏟ ⏞

σ(iω)

Q(iω) =

NVF
pol∑︂

n=1

r̂n
iω − qn

+ â+ iωb̂, (3.8)

with fixed poles qn, is solved in least-squares sense to obtain r̂n, r̃n, â, b̂. Then, the zeros of σ(iω) are calculated
by solving an eigenproblem and employed as new estimates of the poles replacing the initial guesses {qn}, see
[99] for details. Usually several iterations of this pole relocation procedure are applied. Once the final poles
{pn} are obtained, the corresponding values of rn, a, b are then computed by solving the linear least-squares
problem associated to (3.7).
Finally, we give a few concluding remarks. The employed implementation of VF enforces stable poles, i.e.
R[pn] < 0, by eventually flipping them to left half-plane. In [98], a modified version of (3.8) using a
relaxed non-triviality constrained was proposed, which is also employed in this work. In [99, Section 3.2]
recommendations are given for the choice of suitable starting poles {qn} which might be crucial for the
convergence, accuracy or numerical stability of the method. In this work, as suggested, we employ starting
poles that are linearly distributed over the frequency range with a small magnitude of the real part. For further
details on VF, we refer to [98, 99, 104].

3.2 Rational kernel-based interpolation

In this section, we address FRFs Q, which are elements of the Hardy space

H2(Υα) := {f ∈ H(Υα) : ∥f∥H2(Υα) := sup
x>−α

(︃∫︂ ∞

−∞
|f(x+ iy)|2

)︃ 1
2

<∞}, (3.9)

where H(Υα) refers to the space of holomorphic functions on Υα, which, in turn, denotes the half-plane
domain

Υα := {s ∈ C |R[s] > −α}. (3.10)
Some details on the space H2(Υα) will be given below; however, for a comprehensive background on Hardy
spaces, we refer to [121]. We note that any FRF Q(iω), which can be represented as the Laplace trans-
form of a time-signal f(t) ∈ L2(R+) (supported on the positive axis), has to be an element of H2(Υ0)
which can be concluded from the Paley-Wiener theorem [206, Theorem 5]. However, in the context
of this work, we make a stronger assumption by assuming a sufficient damping component such that
α > 0.
The assumption, in particular, excludes poles on the frequency axis. This is the case, for example, if the
functional J in (3.2) can be represented as a linear functional J(e(iω)) = j · e(iω) with j ∈ RNh and one
of the following two conditions hold. In particular, if the matrices in (3.1) are symmetric positive definite
matrices K,D,M ∈ RNh×Nh , then all poles of Q = j · e ∈ H2(Υα) have a negative real part, see [198, Section
3]. Also, if the homogeneous version of the time-domain counterpart of (3.1) is stable, i.e. all solutions decay
exponentially for t → ∞, this holds again [198]. The holomorphy of FRFs has also been analyzed in the
context of PDEs. In [27], for instance, an acoustic scattering problem is investigated where a suitable damping
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component leads to a locally holomorphic frequency response map and it was shown that all eigenvalues have
a negative real part1.

3.2.1 Complex RKHS interpolation

We are interested in kernel-based interpolation of FRFs Q ∈ H2(Υα). As H2(Υα) is a complex reproducing
kernel Hilbert space (RKHS), we recall a few basic facts on RKHSs in the following. Note that we will focus on
the key ideas and refer to [163] for a general introduction in RKHSs and to our contribution [86, Section 2]
for details on the specific functional analysis background summarized in the following subsections as well as
proofs of the statements.
A complex RKHS over a set X ̸= ∅ is a complex Hilbert space H of functions f : X→ C, such that for all x ∈ X
the evaluation functional δx : H → C, f ↦→ f(x), ∀f ∈ H is continuous. The reproducing kernel of H is a
unique function k : X × X → C such that k(·, x) ∈ H, ∀x ∈ X and which fulfills the reproducing property

f(x) = δx(f) =
(︁
f, k(·, x)

)︁
H
, ∀f ∈ H,x ∈ X, (3.11)

where (·, ·)H refers to the Hermitian inner product of H.
The kernel associated with the considered space H2(Υα) is a variant of the Szegö kernel. In particular, in [28,
Theorem 2.12] the Szegö kernel is derived for the Hardy space H2 on the upper half-plane instead of Υα. By
then employing the mapping s ↦→ i(s+ α) for translation and rotation of the half-plane domain, we obtain
the respective Szegö kernel

kS(sk, sl;α) =
1

2α+ sk − sl
, sk, sl ∈ Υα, (3.12)

for H2(Υα). As we are interested in approximations on the frequency axis, (3.12) can be simplified by
evaluating it only on the imaginary axis s = iω which leads to

kS(iωk, iωl;α) =
1

2α+ i(ωk − ωl)
, ωk, ωl ∈ Ω. (3.13)

Employing this kernel and the training data (3.3), we can define a kernel interpolation of an FRF in H2(Υα)
as

QH2,Nω
(iω) =

Nω∑︂
i=1

γikS(iω, iωi;α), (3.14)

where the coefficients γi ∈ C can be obtained by solving⎡⎢⎣ kS(iω1, iω1;α) . . . kS(iω1, iωNω ;α)... . . . ...
kS(iωNω , iω1;α) . . . kS(iωNω , iωNω ;α)

⎤⎥⎦
⎡⎢⎣ γ1

...
γNω

⎤⎥⎦ =

⎡⎢⎣ Q(iω1)
...

Q(iωNω)

⎤⎥⎦ . (3.15)

It can then be shown that (3.14) is the unique function of minimal norm in H2(Υα) which interpolates the
training data (3.3), i.e.

QH2,Nω
= argmin

Q̃∈H2(Υα)

∥Q̃∥H2(Υα), such that Q̃(iωi) = Q(iωi), i = 1, . . . , Nω, (3.16)

see e.g. [163, Theorem 3.4].
1In fact, due to another convention, [27, Proposition 5.3] shows that the eigenvalues have a negative imaginay part.
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3.2.2 Complex/real RKHS interpolation

The FRF Q can be represented as the Laplace transform of a real-valued time-signal, hence it fulfills the
property

Q(s) = Q(s). (3.17)
Accordingly, we focus in the following on an approximation in the subspace of functions in

H2
sym(Υα) :=

{︁
f ∈ H2(Υα) : ∀s ∈ Υα, f(s) = f(s)

}︁
⊂ H2(Υα). (3.18)

Although H2
sym(Υα) contains complex-valued functions, it cannot be endowed with the structure of a com-

plex RKHS. This can be easily shown by considering any f ∈ H2
sym(Υα) and s ∈ Υα such that f(s) ̸= 0,

for which we would then obtain the contradiction between (if)(s) = −if(s) = −if(s) and (if)(s) =
(if)(s).
As H2(Υα) is a real vector space consisting of complex-valued functions, we define in our work [86] a new
type of function space which is called a complex/real RKHS. In particular, a complex/real RKHS refers to
a real Hilbert space Ĥ of complex-valued functions on a set X ̸= ∅ if the evaluation maps δx are contin-
uous, i.e. for all x ∈ X, the function δx : Ĥ → C, f ↦→ f(x), is continuous. Although the complex/real
RKHS contains complex-valued functions over X, we can employ the mapping A : CX → RX×{0,1} given by

(Af)(x, a) =

{︄
ℜ[f(x)] a = 0,

ℑ[f(x)] a = 1,
(3.19)

to represent these functions as real-valued functions over X × {0, 1}. In particular, the complex/real
RKHS H is isometrically isomorphic to the real RKHS AĤ ⊂ RX×{0,1} endowed with the inner product
(f, g)AĤ = (A−1f,A−1g)Ĥ , see [86, Section 2]. This observation will be employed on the one side to
discuss some properties of complex/real RKHS in the following and on the other side for implementation
purposes. In particular, in Section 3.2.3 we will explain how the mapping A can be employed to implement
complex/real RKHS interpolation for complex functions employing existing software for the real-valued
case.
In the following, we denote as kA : (X×{0, 1})×(X×{0, 1})→ R the symmetric positive definite kernel of the
real RKHS AĤ corresponding to the complex/real RKHS Ĥ. Then, we can define the complex, hermitian, pos-
itive definite kernel k̂ and the complex, symmetric pseudo-kernel of Ĥ as

k̂(x, x′) = (kRR + kII) + i(kIR − kRI), (3.20)
ĉ(x, x′) = (kRR − kII) + i(kIR + kRI), (3.21)

where

kRR(x, x
′) = kA

(︁
(x, 0), (x′, 0)

)︁
, kRI(x, x

′) = kA
(︁
(x, 0), (x′, 1)

)︁
, (3.22)

kIR(x, x
′) = kA

(︁
(x, 1), (x′, 0)

)︁
, kII(x, x

′) = kA
(︁
(x, 1), (x′, 1)

)︁
, (3.23)

[86, Section 2].
It is conjectured [86, Section 2] that the considered function space H2

sym(Υα) defined in (3.18) is a com-
plex/real RKHS on Υα with complex kernel kS as defined in (3.12) and corresponding pseudo-kernel cS which
is given as

cS(s, s
′;α) = kS

(︁
s, s′;α

)︁
∀s, s′ ∈ Υα. (3.24)
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In particular, the corresponding pseudo-kernel associated to the Szegö kernel (3.13) then reads

cS(iωk,−iωl;α) =
1

2α+ i(ωk + ωl)
, (3.25)

i.e., a non-stationary function, with decreasing magnitude w.r.t. ω. Furthermore, we can define the com-
plex/real kernel interpolation of an FRF inH2

sym(Υα) employing the training data (3.3) as

QH2
sym,Nω

(iω) =

Nω∑︂
i=1

γikS(iω, iωi) + γicS(iω, iωi), (3.26)

where the coefficients are a solution of[︃
ℜ [KS +CS] ℑ [−KS +CS]
ℑ [KS +CS] ℜ [KS −CS]

]︃ [︃
ℜ [γ]
ℑ [γ]

]︃
=

[︃
ℜ [Q]
ℑ [Q]

]︃
, (3.27)

with γ = [γ1, . . . , γNω ]
⊤, Q = [Q(iω1), . . . , Q(iωNω)]

⊤ and

KS =

⎡⎢⎣ kS(iω1, iω1;α) . . . kS(iω1, iωNω ;α)... . . . ...
kS(iωNω , iω1;α) . . . kS(iωNω , iωNω ;α)

⎤⎥⎦ ,CS =

⎡⎢⎣ cS(iω1, iω1;α) . . . cS(iω1, iωNω ;α)... . . . ...
cS(iωNω , iω1;α) . . . cS(iωNω , iωNω ;α)

⎤⎥⎦ .
(3.28)

It shall be noted that the span of basis functions in the form of (3.26) corresponds to the so-calledWidely Linear
RKHS, which has been defined in [26]. It can be shown that this space is a dense subspace of the complex/real
RKHS [86, Section 2]. Furthermore, it can be conjectured that (3.26) is the unique function of minimal norm
in H2

sym(Υα) which interpolates the training data (3.3), i.e.

QH2
sym,Nω

= argmin
Q̃∈H2

sym(Υα)

∥Q̃∥H2
sym(Υα), such that Q̃(iωi) = Q(iωi) i = 1, . . . , Nω, (3.29)

see [86, Section 2].

3.2.3 Relation to complex Gaussian process regression and hyperparameter tuning

RKHS interpolation is closely related to Gaussian process (GP) interpolation, see e.g. [119] for a comprehensive
discussion on their connection in the real-valued case. Furthermore, we refer to [168] for a general introduction
to GP regression and interpolation. A complex GP is a collection of complex RVs such that any finite subset is
jointly Gaussian distributed. In particular, a mean-free complex GP g(ω) over Ω is completely determined by
its covariance function

K(ω, ω′) = E[g(ω)g(ω′)] ∈ C, ∀ω, ω′ ∈ Ω (3.30)
and its pseudo-covariance function

C(ω, ω′) = E[g(ω)g(ω′)] ∈ C, ∀ω, ω′ ∈ Ω. (3.31)

The GP g(ω) is here employed to model the FRF ω ↦→ Q(iω), where it shall be noted that we focus on
real-valued inputs for simplicity. To this end, we then employ the Szegö kernel (3.13) as covariance function,
i.e.

K(ω, ω′; [α, σ]) = σ2ks(iω, iω
′;α), (3.32)
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where σ > 0 denotes a scaling parameter. Due to the symmetry property (3.17) of the FRF, we obtain the
respective pseudo-covariance function

C(ω, ω′; [α, σ]) = E[g(ω)g(ω′)] = E[g(ω)g(−ω′)] = K(ω,−ω′; [α, σ]) = σ2cs(iω, iω
′;α), (3.33)

which corresponds to (3.25), see also [125, Section 5]. Employing the complex GP g(ω) as prior and
conditioning on the training data (3.3), one can obtain the corresponding posterior distribution, see [25] for
details. It can then be conjectured that the respective posterior mean is equivalent to the complex/real RKHS
interpolation (3.26) evaluated on the imaginary axis, see [86, Section 2].

However, performing GP regression or interpolation in the complex case requires dedicated routines, as
explained in [25, 125]. Hence, we discuss in the following how the mapping A defined in (3.19) can
be employed to realize an implementation based on any available software toolbox for the real-valued
case, which allows specifying custom kernel functions. The main idea is to construct a mean-free real
GP gA([ω, a]) on an augmented input space [ω, a] ∈ Ω × {0, 1} with covariance function KA, such that

gA([ω, 0]) = ℜ[g(ω)], gA([ω, 1]) = ℑ[g(ω)]. (3.34)

The required augmented training data {ωA,i, QA,i}NA
i=1 ⊂

(︂(︁
Ω× {0, 1}

)︁
× R

)︂NA is obtained through the map

{︂(︁
ωi, Q(iωi)

)︁}︂
↦→

⎧⎨⎩
{︂(︁

[ωi, 0],ℜ[Q(iωi)]
)︁
,
(︁
[ωi, 1],ℑ[Q(iωi)]

)︁}︂
, ωi ̸= 0,{︂(︁

[ωi, 0],ℜ[Q(iωi)]
)︁}︂
, ωi = 0,

(3.35)

which is applied for each element of the training set (3.3). Note that any FRF in H2
sym(Υα) assumes a real

value at w = 0 and, hence, the special treatment in (3.35) is required to avoid a singular covariance matrix,
see [125] for an extensive discussion on this issue. The covariance function KA is derived by enforcing (3.34)
which leads to

KA([ω, a], [ω
′, a′]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E
[︁
ℜ[g(ω)]ℜ[g(ω′)]

]︁
= 1

2ℜ[K(ω, ω′) + C(ω, ω′)], a = a′ = 0,

E
[︁
ℑ[g(ω)]ℑ[g(ω′)]

]︁
= 1

2ℜ[K(ω, ω′)− C(ω, ω′)], a = a′ = 1,

E
[︁
ℜ[g(ω)]ℑ[g(ω′)]

]︁
= 1

2ℑ[−K(ω, ω′) + C(ω, ω′)], a = 0, a′ = 1,

E
[︁
ℑ[g(ω)]ℜ[g(ω′)]

]︁
= 1

2ℑ[K(ω, ω′) + C(ω, ω′)], a = 1, a′ = 0.

(3.36)

Finally, the posterior distribution of the complex GP g(ω) can be obtained from the posterior distribution of
gA([w, a]) since

g(ω) = gA([ω, 0]) + igA([ω, 1]). (3.37)
Note that in the context of this work, we then only employ the posterior mean which corresponds to the
complex/real RKHS interpolant (3.26).

Next, we discuss the selection of the hyperparameters α, σ which are present in the covariance function
(3.32) and pseudo-covariance function (3.33). As the size of the domain Υα of the Hardy space H2(Υα) is, in
practice, usually not known a priori, the hyperparameters are estimated based on the likelihood function.
Let ωA = [ω⊤

A,1, . . . ,ω
⊤
A,NA

]⊤ and QA = [QA,1, . . . , QA,NA ]
⊤ collect the augmented input and output training

data, respectively. Then, the log marginal likelihood function reads

log p(QA|ωA) = −
1

2
Q⊤

A(KA)
−1QA −

1

2
log |KA| −

NA
2

log(2π), (3.38)
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Figure 3.1: Log-normal prior on hyperparameter α for |Ω| = 1.

where |KA| denotes the determinant of KA and

KA =

⎡⎢⎣ KA(ωA,1,ωA,1) . . . KA(ωA,1,ωA,NA)... . . . ...
KA(ωA,NA ,ωA,1) . . . KA(ωA,NA ,ωA,NA)

⎤⎥⎦ , (3.39)

see e.g. [168, Section 2.2]. To ensure a positive value of the hyperparameter α, we add a vague lognormal prior
on α ∼ Lognormal(µα, σ

2
α). In the context of this work, we chose σα = 3 and the modeMo = ωmax−ωmin as de-

fault values which implies µα = σ2α+log(Mo) = 9.6931, leading to the PDF

ρprior(α) =
1

ασα
√
2π

exp
(︁−(log(α)− µα)2

2σ2α

)︁
, (3.40)

illustrated in Fig. 3.1. It can be seen that the chosen parameters allow for the choice of α within a range of
several orders of magnitude. The particular values of the hyperparameters α, σ are then chosen by maximizing
the corresponding posterior distribution, i.e. argmaxα,σ (log p(QA|ωA, α, σ) + log ρprior(α)) . To this end, we
employ gradient-based optimization with a multistart procedure. More details on the optimization will be
given at the beginning of Section 5.1.
Finally, we briefly discuss the alternative approach of applying kernel interpolation with a standard kernel
to real and imaginary part, separately. This approach corresponds to choosing the covariance function

Ksep
A ([ω, a], [ω′, a′]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E
[︁
ℜ[g(ω)]ℜ[g(ω′)]

]︁
= Kreal

(︁
ω, ω′;θr

)︁
, a = a′ = 0,

E
[︁
ℑ[g(ω)]ℑ[g(ω′)]

]︁
= Kreal

(︁
ω, ω′;θi

)︁
, a = a′ = 1,

E
[︁
ℜ[g(ω)]ℑ[g(ω′)]

]︁
= 0, a = 0, a′ = 1,

E
[︁
ℑ[g(ω)]ℜ[g(ω′)]

]︁
= 0, a = 1, a′ = 0.

(3.41)

whereKreal denotes a real-valued covariance kernel and θr,θi the corresponding hyperparameters for real and
imaginary part, respectively. It can be seen that in this case no correlation between real and imaginary parts
is assumed. In this work, we use this approach with a Gaussian kernel

KGauss
real

(︁
ω, ω′; [σ, l]

)︁
= σ2 exp

(︂
−(ω − ω′)2

l2

)︂
, (3.42)

which is also referred to as squared exponential kernel, as a reference.
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Figure 3.2: Numerical example showing the improved convergence of complex/real kernel interpolation
with a suitable pseudo-kernel for a test function with real-valued inverse Laplace transform. Ad-
ditional dashed lines show the inferior convergence of a kernel interpolation with a Gaussian
kernel for real and imaginary part separately, as well as polynomial interpolation on Chebyshev
nodes.

3.2.4 Numerical example

For illustration, we consider the third-order rational function

Qrat(iω) =
1

iω − (−0.1)
+

0.5

iω − (−0.1− 0.5i)
+

0.5

iω − (−0.1 + 0.5i)
, (3.43)

where ω ∈ Ω = [ωmin, ωmax] = [0, 1]. This function is the Laplace transform of the real-valued function

f(t) = e−0.1t
(︁
1 + cos(0.5t)

)︁
, (3.44)

and, hence, belongs to the space Qrat ∈ H2
sym(Υ0.1) ⊂ H2(Υ0.1). We then conduct a convergence study using

training data with equidistant frequency sample points

ωi = ωmin + (i− 1)
ωmax − ωmin

Nω − 1
, i = 1, . . . , Nω, (3.45)

for different approximations Q̃Nω
(iω) of Qrat(iω). The accuracy of the approximations Q̃Nω

(iω) is quantified
in terms of the root-mean-square error (RMSE)

Ecv
ω =

⌜⃓⃓⎷ 1

Ncv

Ncv∑︂
j=1

|Q̃Nω
(iωj)−Qrat(iωj)|2, (3.46)

where
ωj = ωmin + (j − 1)

ωmax − ωmin

Ncv − 1
, j = 1, . . . , Ncv, (3.47)

is a fine grid and we choose Ncv = 201. As explained in the previous section, the hyperparameters are, in all
cases, chosen by tuning based on the likelihood function. Further details on the implementation will be given
in Section 5.1.
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In Fig. 3.2 we demonstrate that employing a suitable pseudo-kernel might significantly impact the convergence
properties of kernel interpolation. In particular, for the test function (3.43), the complex/real kernel interpo-
lation (3.26) converges significantly faster than the kernel interpolation (3.14). Note that the test-function is
a low order rational function that is here only used to illustrate the impact of the pseudo-kernel. Accordingly,
rational interpolation techniques as AAA or VF reach machine accuracy already with ≈ 8 training points and
are hence excluded in the convergence plot for clarity. However, it can already be observed that complex/real
RKHS interpolation with the Szegö kernel outperforms the alternative approach of separate interpolations for
real and imaginary parts with a real Gaussian kernel, as well as polynomial interpolation on Chebyshev nodes.
Note that Chebyshev nodes are well-established non-equidistant nodes for polynomial interpolation while we
used equidistant nodes for the kernel-based approaches.

3.2.5 Rational basis functions

The convergence of the complex/real RKHS interpolation can be significantly worse compared to rational
approximations techniques as AAA or VF, when the FRF has a few dominant poles pi, i.e. with small attenuation
R[pi], which strongly limits the domain of the Hardy space H2

sym(Υα). Hence, in this section, we discuss how
the complex/real RKHS interpolation can be combined with a low number of rational basis functions in a
suitable manner for the approximation of FRFs. To this end, as in VF, we employ rational basis functions
with a real-valued inverse Laplace transform. In particular, we employ the additional rational function

h(iω;p) =

Np∑︂
i=1

1

iω − pi
ri +

1

iω − pi
ri, where R[pi] < 0, I[pi] > 0, i = 1, . . . , Np, (3.48)

with (stable) complex conjugate poles pi, pi and residues ri, ri. Note that h(iω;p) is, by construction, element
of H2

sym(Γα) with α = mini:1≤i≤Np |R[pi]| > 0. For simplicity, we only consider complex poles in (3.48);
however, the basis could be extended to additionally include a number of real poles, as in the VF basis
(3.7). We emphasize that we do not employ a constant basis function, s.t. the resulting approximation

Q
(Np)
Nω

(iω;α,p) = QH2
sym,Nω

(iω;α) + h(iω;p), (3.49)
has the desired properties at infinity, in particular,

lim
ω→∞

Q(iω) = lim
ω→∞

Q
(Np)
Nω

(iω) = 0. (3.50)

In the context of the present work, we only consider a small number of pole pairs Np; in particular, we
employ Nmax

p = 5. The selection of this discrete parameter will be discussed below. However, we first
give a few general remarks on the RKI approximation (3.49). The implementation of the complex/real
RKHS interpolation based on the mapping A, which was discussed in Section 3.2.3, can be straightforwardly
extended to additionally incorporate the rational function h. In this case, the poles p are treated as additional
hyperparameters and h can then be represented as a linear model with respect to the real and imaginary part
of the coefficients ri, respectively. We refer to [168, Section 2.7] for details on incorporating explicit basis
functions.
Next, considering a fixed number of pole pairs Np, we address the tuning of the continuous hyperparameters
α, σ and p which is, again, based on the likelihood function. In particular, we now choose the hyperparameters
such that

(α, σ,p) = argmax
(α,σ,p)

(︄
sup
r∈CK

log p (QA|ωA, α, σ,p, r) + log ρprior(α)

)︄
= argmax

(α,σ,p)
C(α, σ,p;QA,ωA), (3.51)
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where the dependence on the nuisance parameters {ri}Np

i=1 has been eliminated in the criterion C by employing
the profile log-likelihood function, see [145] for details on profiling out nuisance parameters in likelihood
functions. Note that choosing a suitable number of pole pairs Np is more involved and addressed with another
model selection technique below.
We consider complex/real RKHS interpolation in the form of (3.49) with a Szegö kernel as well as up to Nmax

p

rational basis functions. For the approximation accuracy, providing suitable initial values for the poles, as
well as selecting an appropriate number of poles, is crucial. We tackle these tasks with a two-step procedure.
First, we build Nmax

p + 1 approximations Q(Np)
Nω

, , Np = 0, . . . , Nmax
p , where the superscript Np indicates the

number of pole pairs. A suitable procedure will be discussed in the following. In a next step, we then perform
model selection, which will be discussed in the subsequent section.
In the first iteration, we start with the maximum number of poles Nmax

p and an equidistant pole distribution
along the frequency axis (with a small magnitude of the real part)

pi = −10−3|Ω|+ i
(︂
ωmin + (j + 0.5)

ωmax − ωmin

Nmax
p

)︂
, j = 0, . . . , Nmax

p − 1. (3.52)

We recall that the basis functions (3.48) include the complex conjugate poles as well. This choice of starting
poles is closely related to the standard recommendation for the starting poles of VF for very similar reasons,
see e.g. [99]. In particular, the equidistant distribution along the frequency axis shall reduce the probability
that the optimal poles are far from the initial poles, while the weak attenuation improves the numerical
condition. Alternatively, selecting starting poles by running a few VF iterations beforehand could be another
possible option to provide initial values.
In the following iterations, we then reuse the Np optimized pole pairs from the previous iterations as starting
points. In particular, we remove one pole based on the corresponding change in the profile likelihood-based
criterion C, i.e. the least relevant pole, and then restart the tuning with Np − 1 pole pairs. This procedure is
described in detail in Algorithm 1 and yields a set of optimized RKI models {Q(Np)

Nω
}N

max
p

Np=0, where Np indicates
the number of pole pairs in the rational function h.

3.2.6 Model selection

Model selection is then based on leave-one-out (LOO) cross-validation, i.e. on the error indicators

ENp

loo =
1

Nω

Nω∑︂
i=1

⃓⃓⃓
Q(iωi)− Q̂

(Np)
Nω−1,i(iωi)

⃓⃓⃓2
, Np = 0, 1, . . . , Nmax

p , (3.53)

for themodelQ(Np)
Nω

, where Q̂(Np)
Nω−1,i(iωi) denotes amodel interpolating the reduced training data

{ωj , Q(iωj)}j∈{1,...,Nω}\{i}, (3.54)

evaluated at the removed frequency point ωi. It is common practice to keep the hyperparameters fixed, which
significantly improves the efficiency. However, we numerically observed that this approach, i.e. using the same
value of α and the same poles p as in Q(Np)

Nω
for each Q̂(Np)

Nω−1,i, i = 1, . . . , Nω, does not always give satisfactory
results for the considered, strongly nonlinear, basis. In particular, it generally tends to favor the models with a
larger number of poles. Hence, we instead employ the LOO criterion with re-tuning of the hyperparameters
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Data: Training data {ωi, Q(iωi)}Nω
i=1; frequency range Ω; maximum number of pole pairs Nmax

p

Result: Set of optimized models {Q(Np)
Nω
}N

max
p

Np=0, where Np indicates the number of pole pairs in the
rational function h

Initialize vector of poles pinit ∈ CNmax
p as in (3.52)

Initialize Szegö kernel hyperparameter αinit by tuning a model with fixed poles pinit in h(iω;pinit)
Initialize Np = Nmax

p

while number of poles Np ≥ 0 do
Tune model Q(Np)

Nω
with Szegö kernel kS(s, s′;α(Np)) and pseudo-kernel cS(s, s′;α(Np)) in terms of the

hyperparameter α(Np) and the poles p(Np) ∈ CNp , where αinit and pinit are used as initial values
Store model Q(Np)

Nω
(iω;α(Np),p(Np))

Set αinit ← α(Np)

/* Choose initial poles for next iteration by removing one pole pair (s.t.
the change in the likelihood is minimal): */

for i← 1 to Np do
Set p(Np,∼i) ←

(︁
p
(Np)
k

)︁
k∈{1,...,Np}\{i} ∈ CNp−1

Evaluate profile likelihood-based criterion CNp,i of a RKI model with hyperparameter α(Np) and
fixed poles p(Np,∼i) ∈ CNp−1 in h

end
Set pinit ← p(Np,∼i), where i = arg maxi CNp,i

Set Np ← Np − 1

end
Algorithm 1: Heuristic algorithm that employs suitable initial values to optimize RKI models (3.49) with
different numbers of poles in the rational function h. In particular, it starts with the maximum number
of poles and then subsequently reuses the tuned values of the hyperparameters as starting values after
selecting one pole to be removed based on the profile log likelihood function.
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(a) Dashed lines show the function to approximate. Black dots indicate the training data. Solid lines represent a bad
approximation model, which, however, is selected by the LOO-criterion. Zoomed plot (gray background) highlights
the influence of a wrongly identified pole.
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(b) LOO predictions, which show strong local variations between 4500 s−1 and 4520 s−1. However, these variations do
not significantly affect the values at the respective training points.

Figure 3.3: Illustration of model selection issue with the standard LOO criterion as motivating example for
the proposed instability penalty.

31



α,p, i.e. we tune the model Q̂(Np)
Nω−1,i(iω;α,p) using the reduced training data (3.54) with gradient-based op-

timization, where we employ the hyperparameters α(Np) and poles p(Np) of the model Q(Np)
Nω

(iω;α(Np),p(Np))
as starting point (without any multistart procedure).

However, we additionally introduce an additional penalty term, which also takes global model variations
into account. This approach can be motivated by one particular example, illustrated in Fig. 3.3 (top). The
corresponding vibro-acoustic benchmark model will be described in Section 5.1.2; however, here we simply
consider the approximation of the dashed function, based on interpolation of the training points (black dots),
as a general example. At the top, it can be observed that the LOO-criterion (3.53) leads to the selection of a
model (solid lines) Q(5)

Nω
which wrongly identifies a pole at ≈ 4520 s−1. However, this effect is rather local,

it mainly takes place between two training points (illustrated by black dots). At the bottom, we show the
models Q̂(Np)

Nω−1,i, i = 1, . . . , Nω, which show strong local variations close to ≈ 4510 s−1 but rather small errors
at the training points ωi. To take this into account, we introduce an additional instability penalty term, which
leads to the criterion

ENp

loo,stab = ENp

loo + λ
1

Nω

1

Nfine
ω

Nω∑︂
i=1

Nfine
ω∑︂

j=1

⃓⃓⃓
Q

(Np)
Nω

(iω̂j)− Q̂
(Np)
Nω−1,i(iω̂j)

⃓⃓⃓2
, (3.55)

where {ω̂j}N
fine
ω

j=1 denotes a fine grid of sample points. In this work, we employ an equidistant grid on Ω with
Nfine

ω = 10Nω + 1 sample points. The weighting factor λ is chosen as

λ = 0.2
E0loo

1
Nω

1
Nfine

ω

∑︁Nω
i=1

∑︁Nfine
ω

j=1

⃓⃓⃓
Q

(0)
Nω

(iω̂j)− Q̂
(0)
Nω−1,i(iω̂j)

⃓⃓⃓2 , (3.56)

i.e., 0.2 after normalizing both terms with respect to the respective values of the kernel interpolation model. To
our knowledge, this approach for model selection proposed in our contribution [86] has not been considered
before, although it is related to the continuously-defined LOO error [80, 116, 120]. The latter LOO error
has been employed for sequential sampling, while we propose to use the (numerical) integral of the squared
quantity as instability penalty for model selection. Stability selection [134, 142, 176] is another loosely
related approach, which is also based on data resampling, but is usually employed for variable selection. In
particular, stability selection chooses the variables that are included sufficiently many times when a particular
variable selection technique, e.g. the Akaike information criterion (AIC) or the Bayesian information criterion
(BIC) [41], is employed repeatedly for different replicas of the training data. Note that AIC and BIC are
different and well-established model selection criteria that are not considered here since preliminary numerical
tests indicated an inferior performance (usually leading to over-fitting phenomena) compared to LOO for the
considered strongly nonlinear function h.

Employing the stabilized criterion (3.55) for model selection gives satisfactory results for the benchmark
examples considered in this work. For illustration, we consider the convergence studies for two models,
which will be described in Section 5.1.2. Fig. 3.4 shows the RMSEs Ecv

ω of the available models with gray
dots and the accuracy of the selected models by the different criteria. It can be observed that the stabilized
criterion (3.55) gives the best results, while the LOO residual with retuning is superior to the approach without
retuning.
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(a) Spiral Antenna Model.
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(b) Vibro-Acoustics Model.

Figure 3.4: Comparison of different model selection criteria for two benchmark problems which are de-
scribed in Section 5.1.2. The gray dots illustrate the RMSEs of all available models, which are
obtained using Algorithm 1. Eloo,1 and Eloo,2 denote the LOO residual without and with retuning of
hyperparameters, respectively. The stabilized criterion Eloo,stab (with retuning) defined in (3.55)
gives the best results.

3.3 Summary

In this chapter, we have addressed the approximation of FRFs with a dedicated RKI method. To this end,
complex/real kernel interpolation using a suitable pseudo-kernel has been introduced. For an academic
example, this method has shown superior convergence with respect to the alternative approach of using
separate Gauss kernel interpolation for real and imaginary parts. It has also outperformed polynomial
interpolation which could be expected as the kernel method employed the Szegö kernel and is, hence,
specifically tailored to the Hardy function space of the considered FRFs. However, in the next chapter, we will
address different parameters, i.e. uncertain shape or material parameters. In this case, the associated map
from the parameters to the QoI usually has significantly different properties. In particular, in Section 4.2 we
will address the case where the domain of holomorphy is given by an ϵ-neighborhood instead of a half-plane.
In addition, special emphasis will be put on the multivariate case considering a moderately large number
of parameters where sparse approximations are crucial, which is a well-established concept for polynomial
interpolation. Hence, in the next chapter, we will then mainly focus on polynomial-based surrogate modeling
techniques.
In the last part of this chapter, the kernel interpolation method has been combined with a few rational basis
functions, as well as a dedicated hyper-parameter tuning and model selection scheme. The application of
this algorithm, which also addresses FRFs with a few dominant poles, will then be presented in Section 5.1.
In particular, we will numerically investigate its convergence for various benchmark problems from differ-
ent fields and compare its performance with the established rational approximation techniques AAA and
VF.

33





4 Uncertainty quantification

In this chapter, we address the problem of forward uncertainty propagation which was introduced in Sec-
tion 2.3.3. In particular, we address a deterministic computational model ξ ↦→ Q(ξ) which maps from known
uncertain inputs ξ to an uncertain output Q(ξ). To this end, in the first section we review a number of
existing UQ methods, namely (multifidelity) MC, GPC, SC and global sensitivity analysis. We then suggest
improved methods in the subsequent sections. First, we propose transformed basis functions using conformal
maps for both GPC and SC, in order to accelerate the convergence by suitably transforming the region of
holomorphy. The main ideas as well as the enhanced convergence rates are illustrated numerically by means
of an academic model problem, i.e. a stochastic RLC circuit. We then address moderately high-dimensional
approximations with a dimension-adaptive scheme based on mapped Leja nodes. To further accelerate
the convergence, an adjoint-error indicator is incorporated to steer the dimension-adaptivity and for error
correction. In this context, we also derive the adjoint formulations for Maxwell’s source problems introduced
in Chapter 2. Next, efficient yield estimation using the adjoint-based mapped SC approximation is discussed.
To obtain reliable results efficiently, we suggest a hybrid decision process for the classification of sample points
which utilizes not only the SC approximation but also FE models of different fidelity as well as adjoint-error
estimation. Finally, we address UQ for Maxwell’s eigenproblem where standard spectral UQ methods cannot be
straightforwardly applied using standard eigenvalue solvers due to possible eigenvalue crossings with respect
to parameter changes. Hence, we suggest an eigenvalue tracking method based on homotopies between
collocation points.
We note that our contributions are motivated by the high frequency electromagnetic field problems, introduced
in Chapter 2, however, the majority can be applied in a more general setting also. The content and structure
of this chapter follows our works [60, 81, 88–90].

4.1 Review of existing methods

4.1.1 Monte Carlo

In the context of UQ, MC simulation [47, 103, 130] employs a random sample {Ξi,Q(Ξi)}NMC
i=1 , where Ξi

are independently drawn according to the underlying PDF ρ, to estimate statistical measures of the QoI, for
example the mean value, variance, confidence intervals or failure probabilities. The MC estimate of the mean
is given as

E [Q(Ξ)] =

∫︂
Γ
Q(ξ)ρ(ξ) dξ ≈ ENMC

[Q(Ξ)] :=
1

NMC

NMC∑︂
i=1

Q(Ξi), (4.1)

with RMSE (︁
E
[︁
|E [Q(Ξ)]− ENMC

[Q(Ξ)] |2
]︁)︁ 1

2 =
Std [Q(Ξ)]√

NMC
, (4.2)
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Model ξ 7→ Q(ξ)

Output sample
{Q(Ξi)}NMC

i=1

MC estimator
ENMC [Q(Ξ)]

Figure 4.1: Illustration of MC method: the computational model can be treated as a black-box, hence, the
method is considered as non-intrusive.

where Std [Q(Ξ)] =
√︁
V [Q(Ξ)]. Note that theMC estimate is unbiased, i.e.

E [ENMC
[Q(Ξ)]] = E [Q(Ξ)] , ∀NMC ≥ 1. (4.3)

Eq. (4.2) shows that the accuracy of the MC estimator only mildly depends on the number of RVs Nξ, as the
output variance might in turn depend onNξ. This is a main advantage of the MC estimate as the computational
cost of other methods can be very strongly affected by Nξ which will be discussed later. Furthermore, the MC
estimator is very robust and easily applicable, as it can be applied for all square-integrable RVs, without any
smoothness requirements, and only requires an output sample which can be often obtained by treating the
computational model as a parameterized blackbox, see Fig. 4.1 for an illustration. The main drawback of the
MC method is the rather slow convergence, i.e. the RMSE only converges as O( 1√

NMC
) which can lead to high

computational cost for certain accuracy requirements.
We also introduce the unbiased MC estimate for the variance

V [Q(Ξ)] ≈ VNMC
[Q(Ξ)] :=

1

NMC − 1

NMC∑︂
i=1

(Q(Ξi)− ENMC
[Q(Ξ)])2 . (4.4)

We note that the MC sample {Q(Ξi)}NMC
i=1 can further be employed to infer the PDF of Q(Ξ), for instance

using kernel density estimation (KDE) [72]. KDE is a non-parametric method to estimate a continuous PDF
as

ρQ(q) ≈ ρQ,NMC
(q) :=

1

hNMC

NMC∑︂
i=1

K

(︃
q −Q(Ξi)

h

)︃
, (4.5)

with a non-negative kernel function K and bandwidth parameter h > 0. In this work we employ the
Epanechnikov kernel [72]

K(q) :=

{︄
3
4

(︁
1− q2

)︁
, q ∈ [−1, 1],

0, else.
(4.6)

Finally, we define a performance feature specification [97] as

Q(ξ) ≤ c, (4.7)

i.e. the QoI is required to be below a constant c, which is considered, without loss of generality, as an upper
bound. The indicator function

IΓs(ξ) =

{︄
1 ξ ∈ Γs,
0 else, (4.8)

then indicates whether a parameter vector belongs to the safe domain

Γs := {ξ : Q(ξ) ≤ c}, (4.9)
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s.t. the yield Y can be expressed as

Y := E [IΓs(Ξ)] =

∫︂
Γ
IΓs(ξ)ρ(ξ) dξ. (4.10)

The yield Y corresponds to the percentage of realizations in a manufacturing process which fulfill the pre-
defined performance feature specification (4.7), see [97]. Note that the yield Y is related to the failure
probability F := P (Q(Ξ) > c) as Y = 1 − F . Using the MC method, the yield (4.10) can be estimated as

Y ≈ YNMC := ENMC
[IΓs(Ξ)] =

1

NMC

NMC∑︂
i=1

IΓs(Ξi). (4.11)

Following [94],[81, Section 3.1] and exploiting that all observations are independent, the variance of YNMC

is obtained as

V
[︁
YNMC

]︁
=

1

N2
MC

V

[︄
NMC∑︂
i=1

IΓs(Ξi)

]︄
=

1

N2
MC

NMC∑︂
i=1

V [IΓs(Ξi)] =
1

N2
MC

NMCY(1− Y) =
Y(1− Y)
NMC

. (4.12)

Accordingly, as theMC estimateYNMC is unbiased, the RMSE ofYNMC is obtained as

(︁
E
[︁
|Y − YNMC |2

]︁)︁ 1
2 =

√︄
Y(1− Y)
NMC

≤ 0.5√
NMC

, (4.13)

and depends on the value of the yield 0 ≤ Y ≤ 1, attaining its maximum for a yield of 0.5. Again it
can be observed that the MC approach converges rather slowly with O( 1√

NMC
) which can lead to high

computational cost if the model evaluations are expensive and require the solution of a PDE, for instance.

4.1.2 Multifidelity Monte Carlo

There exist a number of approaches that aim for improved convergence of the MC method under certain
assumptions. One approach is quasi-MC [47, 130] where the random sample {Ξi}NMC

i=1 is replaced by a
low-discrepancy sequence. Another approach is the multilevel MC method [94] where a hierarchy of different
computational models with increasing cost and increasing accuracy is combined into a single estimator. In
particular, this model hierarchy might correspond to a set of FE models as introduced in Chapter 2 with
different grid resolutions h. The multilevel MC approach then generates predictions with the cheap coarse
grid models which are corrected using a few evaluations of the reference model on the finest grid. Note that
multilevel MC was recently used for a high-frequency application [133]. However, multilevel MC relies on a
number of assumptions, e.g. certain convergence rates, see, e.g. [94, Theorem 1]. Hence, we focus in the
following on the MFMC method [164, 165] which generalizes the multilevel approach. In particular, MFMC
allows combining low-fidelity models of different kinds, without any quantification of the model errors, into
an efficient sampling-based estimator, which is illustrated in Fig. 4.2. We recall the key aspects of the method
in the following and refer to [164, 165] for details. Note that [151] recently proposed a related method,
referred to as Bayesian MFMC, which employs a Bayesian approach to estimate the output PDF ρQ of the
high-fidelity model Q.
MFMC relies on a set of models {Q(i)}Nmod

i=1 , where Q(1) := Q is the high-fidelity model while Q(i), i =
2, . . . , Nmod denote the low-fidelity models. The low-fidelity models might refer not only to coarse-grid FE
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models but also different simplified models, for example 2D instead of 3D models or equivalent network/circuit
models. One particular way to obtain a low-fidelity model which is very well suited for MFMC for periodic
optical structures will be presented in Section 5.3.3. The MFMC estimate for the expectation is then obtained
as

E [Q(Ξ)] ≈ ENMC
[Q(Ξ)] := E

N
(1)
MC

[︂
Q(1)(Ξ)

]︂
+

Nmod∑︂
i=2

αi

(︂
E

N
(i)
MC

[︂
Q(i)(Ξ)

]︂
− E

N
(i−1)
MC

[︂
Q(i)(Ξ)

]︂)︂
, (4.14)

whereE
N

(i)
MC

[︁
Q(i)

]︁ denotes the standardMC estimator based on the sample {Ξj ,Q(i)(Ξj)}
N

(i)
MC

j=1 and

0 < N
(1)
MC ≤ N

(2)
MC ≤ . . . ≤ N

(Nmod)
MC . (4.15)

Note that Eq. (4.14) is an unbiased estimator of E [︁Q(1)
]︁, as the high-fidelity model Q(1) is sampled at

least one time. The coefficients αi and the sample sizes N (i)
MC, i = 1, . . . , Nmod are chosen by an optimal

model management strategy which minimizes the variance, and, hence, the RMSE, of the estimator for
a fixed computational budget B. The model management is based on the Pearson correlation coefficients

ρ1,i =
Cov

[︁
Q(1)(Ξ),Q(i)(Ξ)

]︁
Std

[︁
Q(1)(Ξ)

]︁
Std

[︁
Q(i)(Ξ)

]︁ , i = 2, . . . , Nmod, (4.16)

and the computational cost C(i), i = 1, . . . , Nmod per model evaluation. In particular, low-fidelity models
are usually sampled extensively if they have a high correlation ρ1,i and low computational cost C(i). If one
chooses the optimal values of αi, N

(i)
MC which can be computed analytically, see [165], the MFMC estimator

(4.14) achieves a RMSE of

E
[︁
|ENMC

[Q(Ξ)]− E [Q(Ξ)] |2
]︁ 1
2 =

(︄
σ21

N
(1)
MC

+

Nmod∑︂
i=2

(︂ 1

N
(i−1)
MC

− 1

N
(i)
MC

)︂
(α2

i σ
2
i − 2αiρ1,iσ1σi)

)︄ 1
2

, (4.17)

where σi = Std
[︁
Q(i)(Ξ)

]︁. Finally, it shall be noted that, if the values of ρ1,i, C(i), i = 1, . . . , Nmod are
not known a priori, they can in practice be estimated based on a pilot run with a small sample, see [164,
165].

4.1.3 Spectral polynomial methods

If the map ξ ↦→ Q(ξ) is smooth, the use of spectral UQ methods [126, 211] is appealing. In particular, we
denote as QM the surrogate approximation

Q (ξ) ≈ QM (ξ) :=
M∑︂

m=0

smΨm (ξ) , (4.18)

where Ψm : Γ → R are global polynomials and sm ∈ C the corresponding coefficients. Depending on
the regularity of the map ξ ↦→ Q(ξ), fast convergence can be expected, e.g. assuming that the map
ξ ↦→ Q(ξ) is analytic, one can even expect exponential convergence, as will be discussed in the follow-
ing. Once an accurate approximation QM (ξ) is available, statistical measures about the QoI can then be
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Figure 4.2: Illustration of MFMC method: the approach relies on a family of models with different computa-
tional costs C(i). Each model is evaluated separately with a portion of the input sample and the
corresponding output samples are then combined for the multifidelity estimator.

computed in post-processing. In particular, stochastic moments or sensitivity indices can be derived directly
from the coefficients, while other quantities may also be computed by sampling the inexpensive surrogate
model.
In the following, we assume that the RVs Ξi, i = 1, . . . , Nξ are mutually independent, as explained in
Section 2.3.3. In this thesis, we will address polynomial approximations (4.18) based either on GPC [23,
66, 143, 213] or on sparse grid interpolation [10, 14, 40, 53, 149, 155, 179, 212], as explained in the
following.

4.1.3.1 Generalized polynomial chaos

We start by recalling the standard polynomial chaos, which goes back to Wiener [205]. If one considers Ξ
as Gaussian RVs, any Q(Ξ), where V [Q(Ξ)] < ∞, can be accurately represented in the form of (4.18) for
M →∞ by using Hermite polynomials as basis functions Ψm, see [49]. GPC expansions are then obtained
using the Askey-Scheme [213], which yields for different PDFs ρ(ξ), suitable basis functions Ψm : Γ→ R. In
particular, these GPC basis function are orthogonal w.r.t. ρ(ξ), i.e.

E [Ψi(Ξ)Ψj(Ξ)] :=

∫︂
Γ
Ψi(ξ)Ψj(ξ)ρ(ξ) dξ = E

[︁
Ψ2

i

]︁
δij . (4.19)

In the following, we further assume that the GPC basis function are normalized, i.e.

E
[︂(︁
Ψm(Ξ)

)︁2]︂
= 1, m = 0, . . . ,M. (4.20)

Note that GPC expansions can also be computed for arbitrary densities ρ(ξ), see [190]. It was shown, that
GPC converges for any square-integrable function in the norm

||Q(Ξ)−QM (Ξ)||2L2
ρ
:= E

[︂(︁
Q(Ξ)−QM (Ξ)

)︁2]︂
=

∫︂
Γ
(Q(ξ)−QM (ξ)2ρ(ξ) dξ, (4.21)

if any of the conditions specified in [74, Theorem 3.4] is fulfilled. In particular, the GPC basis is dense in L2
ρ, for

instance if normal RVs are considered or if the density ρ(ξ) has compact support.
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For practical computations, the sum in (4.18) is truncated to M < ∞ and limited polynomial degrees are
considered. To this end, we introduce the multi-index m = [m1, . . . ,mNξ

] ∈ NNξ

0 which holds the polynomial
degree per parameter and rewrite the GPC basis functions as

Ψm(ξ) =

Nξ∏︂
n=1

ψmn(ξn), (4.22)

where ψmn(ξn) denote univariate GPC basis functions w.r.t. ρn(ξn). Note that, although not explicitly specified,
there is a one-to-one map between the scalar indicesm and the multi-indices m. Typically, a total-degree poly-
nomial basis is used, consisting of all polynomialsΨm : m ∈ ΛTD

mmax
, where

ΛTD
mmax

:= {m : |m| = m1 + . . .+mNξ
≤ mmax}. (4.23)

In this case, the number of terms in (4.18) is M + 1 =
(︁
Nξ+mmax

)︁
!

Nξ!mmax!
+ 1 and the GPC approximation can be

represented as
Q (ξ) ≈ QM (ξ) :=

∑︂
m∈ΛTD

mmax

smΨm (ξ) . (4.24)

The coefficients sm can be determined non-intrusively, e.g. by regression, collocation or projection, see [211] for
details. In this work, we rely on projection to compute the GPC coefficients sm, i.e.

sm = E [Q(Ξ)Ψm(Ξ)] =

∫︂
Γ
Q(ξ)Ψm(ξ)ρ(ξ) dξ. (4.25)

In particular, we employ pseudo-spectral projection, i.e. we approximate the integral (4.25), which is usually
not readily computable, by numerical quadrature.
Stochastic moments can then be directly calculated from the coefficients sm, due to the orthogonality of the
basis. For the expectation, one obtains

E [QM (Ξ)] =

∫︂
Γ

∑︂
m∈ΛTD

mmax

smΨm(ξ)ρ(ξ) dξ =
∑︂

m∈ΛTD
mmax

sm

∫︂
Γ
Ψm(ξ)Ψ0(ξ)⏞ ⏟⏟ ⏞

1

ρ(ξ) dξ = s0, (4.26)

by exploiting that Ψ0(ξ) = 1, due to (4.20), and the orthogonality condition (4.19). Accordingly, the variance
is obtained as

V [QM (Ξ)] = E
[︁
Q2

M (Ξ)
]︁
− E [QM (Ξ)]2 =

∑︂
m∈ΛTD

mmax\{0}

s2m. (4.27)

4.1.3.2 Sparse-Grid Stochastic Collocation

Next, we address approximations based on sparse grid interpolation which are often called sparse grid SC
methods [10, 155, 212]. Sparse grid SC is based on combinations of sets of ml2n(ℓn) univariate interpolation
nodes

Zℓn =
{︂
ξ(in)n

}︂ml2n(ℓn)−1

in=0
⊂ Γn, n = 1, . . . , Nξ, (4.28)

where ℓn ∈ N0 denotes the interpolation level and ml2n : N0 → N denotes a monotonically increasing "level-
to-nodes" function. Introducing the tensor grid ZTP

ℓ = Zℓ1 × · · · × ZℓN of multivariate interpolation nodes
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ξ(i) =

(︃
ξ
(i1)
1 , · · · , ξ

(iNξ
)

Nξ

)︃
∈ Zℓ, which can be uniquely identified by the multi-index i = (︁i1, i2, . . . , iNξ

)︁
∈ NNξ

0 ,
the corresponding tensor-product multivariate approximation reads

Q (ξ) ≈ QZTP
ℓ

(ξ) :=
∑︂

i:ξ(i)∈ZTP
ℓ

Q(ξ(i))Lℓ,i (ξ) , (4.29)

where Lℓ,i : Γ→ R are multivariate Lagrange polynomials

Lℓ,i (ξ) =

Nξ∏︂
n=1

lℓn,in (ξn) , where lℓn,in(yn) :=

⎧⎨⎩
∏︁ml2n(ℓn)−1

k=0,k ̸=in
ξn−ξ

(k)
n

ξ
(in)
n −ξ

(k)
n

, ℓn ̸= 0,

1, ℓn = 0.
(4.30)

Note that (4.30) is used for readability, while the barycentric representation should be used in the actual
implementation [21]. The computational model has to be evaluated for all #ZTP

ℓ =
∏︁Nξ

i=1ml2n(ℓi) nodes
ξ(i) ∈ ZTP

ℓ , resulting in a computational complexity of O
(︂
m

Nξ
max

)︂
, where mmax = max1≤n≤Nξ

ml2n(ℓn).

Hence, the tensor-product approach is often intractable, even if the number of parameters Nξ is relatively
small. This is sometimes referred to as curse-of-dimensionality [18].

Smolyak sparse grids offer the possibility to reduce the complexity to O
(︂
mmax (logmmax)

Nξ−1
)︂
while only

mildly harming the accuracy of the approximation under certain regularity assumptions [40, 188]. The
Smolyak sparse grid ZSmolyak

l of multivariate interpolation nodes w.r.t. the approximation level l ∈ N0, can be
constructed as a combination of (anisotropic) tensor grids ZTP

ℓ

ZSmolyak
l =

⋃︂
l−Nξ+1≤|ℓ|≤l

ZTP
ℓ . (4.31)

Accordingly, the corresponding Smolyak approximation formula can be viewed as a linear combination of
different tensor grid interpolation formulas (4.29), see [40] for details. Note that the Smolyak grid (4.31)
is isotropic, however, the approach can be generalized to construct anisotropic sparse grids, see e.g. [152].
Furthermore, Smolyak grids are particularly efficient and become interpolatory [14] if they are based on nested
sequences of univariate interpolation nodes, i.e. Zℓn−1 ⊂ Zℓn . Hence, a common choice are Clenshaw Curtis
nodes [56, 157] with the (rather rapidly growing) "level-to-node" function

mCC
l2n (i) = 2i + 1, (4.32)

for instance. An alternative choice, weighted Leja nodes, was proposed in [149] where the (monotonic) level-
to-node functionml2n can be arbitrarily chosen and which can be tailored to any given PDF ρn(ξn). In particular,
following [149], the univariate nodes ξ(k)n ∈ Γn, k = 0, 1, 2, . . . are constructed as

ξ(K)
n = argmin

ξn∈Γn

√︁
ρn (ξn)

K−1∏︂
k=0

⃓⃓⃓
ξn − ξ(k)n

⃓⃓⃓
, (4.33)

with arbitrary starting node ξ(0)n ∈ Γn. Note that the nodes (4.33) are fully nested by construction. Finally,
we outline that the anisotropic sparse-grids can also be constructed adaptively in order to detect sensitive
parameters ξn automatically, see e.g. [52, 53, 91, 148, 179]. More details about the dimension-adaptive
scheme will be given in the subsequent sections, where we propose generalizations/extensions of the algo-
rithm.
Finally, we note that, although the stochastic moments of a polynomial SC approximation can usually not be
obtained directly from the coefficients as in the GPC case, they can still be calculated exactly, for instance by a
Gaussian quadrature rule of suitable order.
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4.1.4 Sensitivity analysis

Sensitivity analysis studies how the individual uncertain input parameters Ξi, i = 1, . . . , Nξ affect the uncertain
output quantity Q(Ξ) which gives important insights into the model behavior [31]. Note that sensitivities are
often estimated by computing the gradient of the QoI at the nominal parameter values. However, this approach
can lead to high errors, particularly for strongly non-linear models, as it only provides local information.
Therefore, we rely in this work on methods for global sensitivity analysis [174] which consider the whole
input space Γ. Sobol indices [175] are global sensitivity indices that are well established and based on the
assumption of independent inputs Ξ. Borgonovo indices [30] provide an alternative without this requirement,
however, they have received less attention in engineering so far. In the following, we recall the key ideas of
both approaches.
Sobol indices are based on an analysis of variances (ANOVA) [189], i.e. on the idea of decomposing the
variance V [Q(Ξ)]. Here, the ANOVA decomposition can be obtained from the GPC approximation (4.24).
The Sobol indices of the GPC approximation can be directly obtained without further approximations. In
particular, we will first address the so-called main-effect (first-order) indices which indicate the individual
contribution of each input parameter Ξi to the total variance. To this end, we introduce the multi-index sets

Λmain
i := {m ∈ ΛTD

mmax
: mi ̸= 0 ∧ mj = 0, j ̸= i}, i = 1, . . . , Nξ, (4.34)

and the corresponding partial variances

Vmain
i [QM (Ξ)] :=

∑︂
m∈Λmain

i

s2m, i = 1, . . . , Nξ. (4.35)

The main-effect Sobol indices are then given as

Smain
i [QM (Ξ)] :=

Vmain
i [QM (Ξ)]

V [QM (Ξ)]
, i = 1, . . . , Nξ. (4.36)

In addition, one can define the total-effect (total-order) Sobol indices [106] which take additional higher
order effects, i.e. interactions with other parameters, into account. The corresponding multi-index sets read

Λtotal
i := {m ∈ ΛTD

mmax
: mi ̸= 0}, i = 1, . . . , Nξ, (4.37)

such that the total-effect indices are then given as

Stotal
i [QM (Ξ)] :=

Vtotal
i [QM (Ξ)]

V [QM (Ξ)]
, where Vtotal

i [QM (Ξ)] :=
∑︂

m∈Λtotal
i

s2m, i = 1, . . . , Nξ. (4.38)

We note that, by construction, the Sobol indices fulfill the relation 0 ≤
∑︁Nξ

i=1 S
main
i ≤ 1 ≤

∑︁Nξ

i=1 S
total
i . We

further note that, although computationally efficient, the GPC approximation is by no means necessary to
compute Sobol indices. In particular, Saltelli’s algorithm provides an MC based sampling approach as an
alternative, see [174] for details.
Sobol indices, as any variance based method, are based on the implicit assumption that considering only the
variance, i.e. one particular stochastic moment, adequately captures the output uncertainty [173]. This issue
was addressed by Borgonovo [30] who introduced a moment-independent importance measure for the input
parameters based on the individual effects on the output PDF. Furthermore, these Borgonovo indices do not
require that the inputs Ξ are statistically independent.
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Figure 4.3: Illustration of Bernstein ellipse Er where the subscript r indicates the size r = rM + rm, based
on [89, Figure 1].

Let the unconditional PDF of the output distribution, i.e. all inputs are considered as RVs, be denoted as ρQ.
We then introduce the conditional PDFs ρQ|Ξi

, i = 1, . . . , Nξ which are obtained by removing the uncertainty
in Ξi and setting the input to a certain fixed value. The difference between the PDFs of the output distribution
is quantified by the shift functions

si(Ξi) =

∫︂
ΓQ

|ρQ(q)− ρQ|Ξi
(q)|dq, i = 1, . . . , Nξ, (4.39)

where ΓQ denotes the image set of the uncertain QoI Q(Ξ). Borgonovo sensitivity indices are then obtained
as the normalized expected shift which is caused by Ξi as

δi =
1

2
EΞi [si(Ξi)] =

1

2

∫︂
Γi

ρi(ξi)

[︃ ∫︂
ΓQ

|ρQ(q)− ρQ|Ξi=ξi(q)| dq
]︃
dξi, i = 1, . . . , Nξ. (4.40)

Among others, the following properties are proven in [30]: The Borgonovo indices δi fulfill 0 ≤ δi ≤ 1.
Furthermore, a Borgonovo index assumes zero, δi = 0, if the QoI is independent of Ξi. For further details on
dependence-measure based sensitivity indices, we refer to [31, 63].

4.2 Conformal mappings

The spectral methods introduced in Section 4.1.3 are already well established for surrogate modeling and UQ
in many application fields, as the associated computational effort is often reduced in comparison to Monte
Carlo techniques, for instance. However, further convergence acceleration might be required to address
problems with large parameter uncertainties and high parametric sensitivities. Hence, in order to enhance the
convergence order, we propose to construct transformed basis functions for the spectral UQ methods based on
conformal maps. This section is structured as follows: We first recall some basic facts about the convergence of
polynomial approximations for analytic functions before presenting the basic idea of using conformal maps to
improve polynomial-based methods, which was first introduced in [102] in the context of quadrature methods.
We then propose transformed basis functions for GPC [90] and SC [89] which preserve the advantages of the
respective methods and discuss the implementation of the corresponding mapped spectral UQ approaches.
Finally, the methods are applied to an academic model problem, i.e. an RLC circuit, with available closed-form
solution s.t. the main ideas can be illustrated in detail. The content and structure of this section are based on
our works [89, 90].
In this section, we assume mutually independent inputs Ξ and that the image set Γ is given as the hypercube
[−1, 1]Nξ , for simplicity. Note that this assumption would be immediately fulfilled if one employs, for instance,
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the Rosenblatt transformation
ξ ↦→ −[1, 1, . . . , 1]⊤ + 2T(ξ), (4.41)

where T is defined in (2.64). We first address the univariate case, i.e. Nξ = 1, in some detail before discussing
the generalizations to the multivariate case Nξ > 1. In particular, we make in the following the assumption
that the univariate function Q1D : Γ1D := [−1, 1]→ C has an analytic continuation onto an open Bernstein
ellipse Er ⊂ C with foci at ±1. The Bernstein ellipse Er is illustrated in Fig. 4.3, where the subscript r refers
to the size of the ellipse. The size r is defined as r = rm + rM where rm, rM denote the length of semi-minor
and semi-major axis, respectively. Then, the polynomial best approximation Q∗

M of degree M converges
exponentially, as

∥Q1D −Q∗
M∥∞ ≤

CBe
− log(r)M

r − 1
, (4.42)

where ∥ · ∥∞ refers to the supremum norm

∥u∥∞ = sup
ξ∈Γ1D

|u(ξ)|, (4.43)

and the constant CB depends on the uniform bound of the analytic extension of Q1D onto Er , see, e.g. [199,
Theorem 8.2]. We emphasize that (4.42) also guarantees convergence in the || · ||L2

ρ
norm for any bounded

PDF ρ1D, as

||Q1D(Ξ)−Q∗
M (Ξ)||L2

ρ
=

(︄∫︂
[−1,1]

(︁
Q1D(ξ)−Q∗

M (ξ)
)︁2
ρ1D(ξ) dξ

)︄ 1
2

≤ ∥√ρ1D∥∞ ∥Q1D −Q∗
M∥∞

(︄∫︂
[−1,1]

1 dξ

)︄ 1
2

=
√
2 ∥√ρ1D∥∞ ∥Q1D −Q∗

M∥∞.

(4.44)

The convergence estimate (4.42) is derived for the polynomial best approximation Q∗
M , however, it is closely

related to the convergence of the spectral UQ methods introduced in Section 4.1.3. In particular, regarding
the GPC approximation, it is stated for instance in [213, Chapter 3.6] that the additional aliasing error
caused by the pseudo-spectral projection is not harming the convergence order for well-resolved smooth
functions. Regarding the SC method, we consider a polynomial interpolant QZ1D

of order M = #Z1D − 1
in the form of (4.29) where Z1D = {ξ(i)}Mi=0 is a set of #Z1D univariate distinct interpolation nodes. Then,
there holds

∥Q1D −QZ1D
∥∞ ≤ (1 + ∆M )∥Q1D −Q∗

M∥∞ ≤ (1 + ∆M )
CBe

− log(r)M

r − 1
, (4.45)

where
∆M := max

ξ∈[−1,1]

M∑︂
i=0

|lM,i(ξ)|, (4.46)

denotes the Lebesgue constant. In the above expression lM,i(ξ) refers to the univariate Lagrange poly-
nomial defined in (4.30) with ml2n : n ↦→ n. If the Lebesgue constant ∆M grows sub-exponentially, it
can be seen that the polynomial interpolant QZ1D

converges uniformly if r > 1, i.e. for analytic func-
tions.
In summary, (4.42) shows that the asymptotic rate of geometric convergence [33, Definition 6] for the
polynomial best approximation is given as log r and hence, the convergence of spectral UQ methods as GPC
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Figure 4.4: Illustration of ϵ-neighborhood and largest Bernstein ellipse which is fully contained, based on
[89, Figure 3].

and SC depends on the region of analyticity of the function Q1D. In particular, it depends on the size rmax of
the largest Bernstein ellipse which does not contain any poles of the extension of Q1D. However, established
procedures [10] which infer the regularity based on derivatives of the parametric problem prove analyticity in
an ϵ-neighborhood of Γ1D instead of elliptical regions. Such an ϵ−neighborhood is depicted in Fig. 4.4 as well
as the largest Bernstein ellipse which it fully contains. To address this mismatch and enlarge the region of
analyticity, one can employ a conformal mapping g to map Bernstein ellipses Er to straighter domains g(Er),
as shown in Fig. 4.5. This approach was originally introduced in [102] to derive new quadrature formulas.
The acceleration of quadrature methods using conformal maps was further studied in [101, 113, 199]. In
this work, we show how it can also be employed to improve spectral surrogate modeling and UQ methods, in
particular GPC [90] and (adaptive) SC [89]. As in [102], we only consider conformal mappings which fulfill

g(Γ1D) = Γ1D, (4.47a)
g(±1) = ±1. (4.47b)

The condition (4.47a) guarantees that the resulting methods will only require model evaluations for input
values which are elements of the image set Γ1D. This property is highly relevant, as, for instance, evaluating
the analytic continuation is often not possible in practice. There are various mappings that have been
proposed and fulfill the intended properties, see [101, 102] for instance. In this thesis, we mainly rely on
the so-called sausage mapping which was proposed in [102]. It is derived by normalization of the Taylor
expansion of the inverse sine function such that (4.47b) is fulfilled. The d-th order sausage mapping then
reads

gS(ξ; d) =

⎛⎝⌊(d−1)/2⌋∑︂
i=0

(2i)!

4i(2i+ 1)(i!)2

⎞⎠−1 ⌊(d−1)/2⌋∑︂
i=0

(2i)!

4i(2i+ 1)(i!)2
ξ2i+1. (4.48)

An alternative choice is given by the mapping

gKTE(ξ;α) =
arcsin(αξ)

arcsinα
, α ∈ (0, 1) (4.49)

from Kosloff and Tal-Ezer [122]. In the following, we first discuss how the conformal maps g can be combined
with GPC before addressing the mapped SC approach.

4.2.1 Conformally mapped generalized polynomial chaos

In this subsection, we propose a transformed basis by combining GPC and conformal maps which still features
the orthogonality property (4.19) such that the advantages of GPC are preserved. For instance, it still
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Figure 4.5: A conformal map is applied to a Bernstein ellipse Er which is mapped to a straighter region
g(Er). The illustration is based on [89, Figure 4].

facilitates the straightforward computation of stochastic moments and Sobol indices. Furthermore, we employ
pseudo-spectral projection based on mapped quadrature rules to compute the respective surrogate models
with an improved cost accuracy ratio. Note that alternative approaches which also rely on mapped GPC,
i.e. GPC expansions with basis rotation, were recently studied, see [161, 200]. However, these works only
consider affine-linear transformations and address high-dimensional approximations instead of convergence
acceleration.
As introduced in the last subsection, starting from the assumption of analyticity of Q1D in an ϵ-neighborhood
of Γ1D , we then assume that the composition

h := Q1D ◦ g : Γ1D → C, (4.50)

has an enlarged Bernstein ellipse of size r̂ > r which is advantageous for polynomial approximations, see
(4.42). Hence, we suggest the basis functions

Ψ̂m := Ψ̃m ◦ g−1, m = 0, . . . ,M, (4.51)

where Ψ̃m denote normalized GPC basis functions w.r.t. the transformed density

ρ̃1D(s) := g′(s)ρ1D(g(s)). (4.52)

Note that the suggested basis {Ψ̂m}Mm=0 is then orthonormal w.r.t. the original input PDF ρ1D which can be
shown using a change of variables ξ = g(s), as

E
[︂
Ψ̂i(Ξ)Ψ̂j(Ξ)

]︂
=

∫︂
Γ1D

(Ψ̃i ◦ g−1)(ξ)(Ψ̃j ◦ g−1)(ξ)ρ1D(ξ) dξ, (4.53)

=

∫︂
Γ1D

Ψ̃i(s)Ψ̃j(s) ρ1D(g(s))g
′(s)⏞ ⏟⏟ ⏞

ρ̃1D(s)

ds = δij , (4.54)

where the last line is fulfilled by construction of the GPC basis {Ψ̃m}Mm=0. Exploiting the orthogonality, the
coefficients ŝm of the conformally mapped GPC approximation

Q̂M (ξ) =

M∑︂
m=0

ŝmΨ̂m(ξ), (4.55)

can be computed by projection as

ŝm = E
[︂
Ψ̂m(Ξ)Q1D(Ξ)

]︂
=

∫︂
Γ1D

Ψ̂m(ξ)Q1D(ξ)ρ1D(ξ) dξ. (4.56)
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Introducing the symbol Q̂∗
M for the best approximation in terms of the mapped polynomials {Ψ̂m}Mm=0, its

error can then be estimated as

∥Q1D − Q̂
∗
M∥∞ = ∥Q1D ◦ g − Q̂

∗
M ◦ g∥∞ = ∥h− h∗M∥∞ ≤

ĈBe
− log(r̂)M

r̂ − 1
, (4.57)

where h∗M refers to the polynomial best approximation of the function h, defined in (4.50), which admits an
analytic continuation to a Bernstein ellipse Er̂ where it is uniformly bounded. It can be seen that the mapped
approximation has an asymptotic rate of geometric convergence of log r̂ where r̂ refers to the size of the largest
Bernstein ellipseEr̂max such that g(Er̂max) is still fully contained in the region of analyticity ofQ1D(ξ). Hence, if
the analyticity region is known, the convergence improvement, which can be attributed to the use of conformal
maps, can be estimated a priori which is illustrated in Fig. 4.6a. In particular, we denote the largest Bernstein
ellipse in the interior by Ermax . Then, the convergence of the polynomial best approximation is given by
O
(︁
exp (− log(rmax)M)

)︁, see (4.42), while (4.57) shows that the best approximation usingmapped polynomials
converges as O(︁exp (− log(r̂max)M)

)︁. Accordingly, we can define

G =
log r̂max

log rmax
− 1, (4.58)

as the relative improvement in the asymptotic rate of geometric convergence [33, Definition 6] due to the
use of conformal maps. To study the effect of different mappings g, we compute the gain G by considering
different ϵ-neighborhoods as analyticity regions, where we numerically compute r̂max for the sausage mapping
gS(·, d) of different orders d and the KTE mapping which are defined in (4.48) and (4.49), respectively. The
results are shown in Fig. 4.6b. Note that even higher improvements could be expected if one would employ
mappings which are specifically constructed based on the exact locations of the poles of Q1D in the complex
plane, see [101]. However, as, in practice, the poles are usually not known a priori, this approach is not
considered in this thesis. In the following, we only employ the 9-th order sausage mapping gS(ξ; 9) which leads
to a substantial convergence improvement for a significant range of ϵ-neighborhoods, as shown in Fig. 4.6b. In
particular, it can be seen that r̂max > rmax for any positive ϵ < 0.75. Furthermore, it was already established
in [101, 102] and does not introduce any artificial singularities, in contrast to the KTE map (4.49). Since the
inverse mapping gS(ξ; 9)−1 which is required for the mapped basis functions (4.51) is not known analytically,
it is approximated numerically up to machine precision using a Chebyshev approximation of degree 100.
However, it should be noted that the chosen mapping gS(ξ; 9) does not necessarily guarantee an improved
convergence. In particular, one could also imagine a function where the poles in the complex plane are located
such that a Bernstein ellipse better fits the region of analyticity than a strip/sausage-like shape. However, we
also note that for the numerical examples investigated in this thesis an improved convergence rate was indeed
observed.

We now proceed with the numerical computation of the mapped GPC approximation (4.56). To this end,
mapped quadrature rules are derived, cf. [101, 102]. Note that standard Gaussian quadrature is constructed
based on polynomial approximations and, hence, its convergence properties also depend on the regularity of
the integrand. For instance, in [102, Theorem 1] it is shown that the geometric convergence order of Gaussian
quadrature for analytic functions also depends on the size of the Bernstein ellipse associated to the integrand.
Hence, we apply a change of variables ξ = g(s) in (4.56)

ŝm = E
[︂
Ψ̂m(Ξ)Q1D(Ξ)

]︂
=

∫︂
Γ1D

Ψ̂m(ξ)Q1D(ξ)ρ1D(ξ) dξ =

∫︂
Γ1D

Ψ̂m(g(s))Q1D(g(s)) ρ1D(g(s))g
′(s)⏞ ⏟⏟ ⏞

ρ̃1D

ds,

(4.59)
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as we assume again that h = Q1D ◦ g has a larger Bernstein ellipse than Q1D. Let {︁ξ̃(i)q

}︁Nquad

i=1
denote

the quadrature nodes and {︁w̃(i)
q

}︁Nquad

i=1
the correspondings weights of Gaussian quadrature w.r.t. the trans-

formed density ρ̃1D. Then, application of Gaussian quadrature to the transformed integrand in (4.59) yields

ŝm ≈
Nquad∑︂
i=1

Ψ̂m

(︂
g
(︁
ξ̃
(i)
q

)︁)︂
Q1D

(︂
g
(︁
ξ̃
(i)
q

)︁)︂
w̃(i)

q =

Nquad∑︂
i=1

Ψ̂m

(︂
ξ̂
(i)

q

)︂
Q1D

(︂
ξ̂
(i)

q

)︂
ŵ(i)

q , (4.60)

where ξ̂(i)q := g
(︁
ξ̃
(i)
q

)︁ are the mapped quadrature nodes corresponding to the mapped weights ŵ(i)
q := w̃

(i)
q .

We then expect an improved convergence of the mapped quadrature scheme, as we, again, assume that the
transformed integrand in (4.59) is associated to a larger Bernstein ellipse, see [102] for details on mapped
quadrature methods. However, it should be mentioned that [102] only addresses unweighted Gaussian
quadrature and, thereby, considers g′(s) as part of the integrand instead of the weight while we employ
Gaussian quadrature w.r.t. the transformed density ρ̃1D.
In the following, we address the generalization to the multivariate case Nξ > 1 based on a multivariate
mapping g(s) = [g1(s1), . . . , gN (sN )] which is conformal in each parameter si. For simplicity, in this thesis we
usually employ the same mapping for all coordinates, that is g1 = . . . = gN = gS(·, 9), however, this is not
required. We also note that standard GPC would be recovered if one employs the identity map gid : s ↦→ s.
Defining the univariate transformed PDFs

ρ̃i(ξi) := ρi(gi(ξi))g
′
i(ξi), i = 1, . . . , Nξ, (4.61)

the associated transformed joint PDF reads

ρ̃(ξ) =

Nξ∏︂
i=1

ρ̃i(ξi). (4.62)

Then, we consider a (normalized) multivariate GPC basis {Ψ̃m}m w.r.t. ρ̃, where we use the same multi-index
notation as in Section 4.1.3, that is, Ψ̃m is a tensor-product polynomial of ordermj in dimension j = 1, . . . , Nξ.
The corresponding mapped polynomials are then given by

Ψ̂m(ξ) := (Ψ̃m ◦ g−1)(ξ), (4.63)
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and the multivariate mapped approximation reads

Q̂M (ξ) :=
∑︂

m∈ΛTD
mmax

ŝmΨ̂m(ξ). (4.64)

The coefficients ŝm can again be computed by projection

ŝm = E
[︂
Ψ̂m(Ξ)Q(Ξ)

]︂
=

∫︂
Ξ
Ψ̂m(ξ)Q(ξ)ρ(ξ) dξ. (4.65)

The multi-dimensional integral in (4.65) is numerically evaluated using a mapped Gaussian quadrature
scheme with mapped nodes {ξ̂(i)q }

Nquad

i=1 := {g(ξ̃(i)q )}Nquad

i=1 and associated weights {ŵ(i)
q }

Nquad

i=1 := {w̃(i)
q }

Nquad

i=1 ,
where, in turn, ξ̃(i)q denotes the nodes and w̃(i)

q denotes the weights of a standard Gaussian quadrature w.r.t.
the transformed PDF ρ̃.
Note that the mapped GPC approximation (4.64) uses an orthogonal basis, and, hence, stochastic moments
and Sobol indices can still be directly computed from the coefficients ŝm. In particular, the mean value and
variance are obtained as

E
[︂
Q̂M (Ξ)

]︂
= ŝ0, V

[︂
Q̂M (Ξ)

]︂
=

∑︂
m∈ΛTD

mmax
\{0}

ŝ2m, (4.66)

where we also employed that Ψ̂0(ξ) = 1. Then, the main-effect and total-effect Sobol indices, introduced in
Section 4.1.4, can be computed as

Smain
i [Q̂M (Ξ)] :=

Vmain
i [Q̂M (Ξ)]

V
[︂
Q̂M (Ξ)

]︂ , where Vmain
i [Q̂M (Ξ)] :=

∑︂
m∈Λmain

i

ŝ2m, i = 1, . . . , Nξ, (4.67)

and

Stotal
i [Q̂M (Ξ)] :=

Vtotal
i [Q̂M (Ξ)]

V
[︂
Q̂M (Ξ)

]︂ , where Vtotal
i [Q̂M (Ξ)] :=

∑︂
m∈Λtotal

i

ŝ2m, i = 1, . . . , Nξ, (4.68)

respectively.

4.2.2 Conformally mapped stochastic collocation

Next, we discuss how the conformal map g can be employed in the context of SC methods. Once again, we first
consider the univariate caseNξ = 1, where we now address the polynomial interpolant

QZ1D
(ξ) :=

M∑︂
i=0

Q1D

(︁
ξ(i)
)︁
lM,i(ξ), (4.69)

of Q1D : Γ1D → C on a set Z1D = {ξ(i)}Mi=0 ⊂ Γ1D of univariate interpolation nodes, represented with
univariate Lagrange polynomials lM,i(ξ). Note that QZ1D

converges as estimated in (4.45). To accelerate the
convergence, we compute the mapped interpolation nodes

Ẑ1D = {ξ̂(i)}Mi=0 = {g
(︁
ξ(i)
)︁}︁M

i=0
⊂ Γ1D, (4.70)
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Figure 4.7: Comparison of M + 1 = 30 standard Leja and mapped Leja interpolation nodes, based on [89,
Figure 5].
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Figure 4.8: Comparison of standard and mapped Lagrange polynomials (degree M = 6), based on [89,
Figure 6a].

which are more evenly distributed, see Fig. 4.7 for an illustration of (mapped) Leja nodes defined in (4.33). The
mapped nodes {ξ̂(i)}Mi=0 are then interpolated usingmapped Lagrange polynomials

l̂M,i = lM,i ◦ g−1, (4.71)

which are illustrated in Fig. 4.8. Note that themapped Lagrange polynomials l̂M,i also fulfill

l̂M,j(ξ̂
(i)
) = lM,j ◦ g−1(ξ̂

(i)
) = lM,j(ξ

(i)) = δij , (4.72)

and, hence, the mapped interpolant can be represented as

Q̂Ẑ1D
(ξ) :=

M∑︂
i=0

Q1D

(︁
ξ̂
(i))︁

l̂M,i(ξ). (4.73)

In order to derive an error estimate for the mapped approximation Q̂Ẑ1D
, we introduce the notation hZ1D

for
theM -th order polynomial interpolant of the function h defined in (4.50) on the nodes Z1D. Note that Q̂Ẑ1D

equals hM ◦ g−1 as

Q̂Ẑ1D
=

M∑︂
i=0

Q1D

(︂
g
(︁
ξ(i)
)︁)︂
lM,i ◦ g−1 =

(︄
M∑︂
i=0

h
(︁
ξ(i)
)︁
lM,i

)︄
◦ g−1 = hZ1D

◦ g−1. (4.74)
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We then obtain
||Q1D − Q̂Ẑ1D

||∞ = ||
(︁
Q1D − Q̂Ẑ1D

)︁
◦ g ◦ g−1||∞ (4.75a)

= ||(h− hZ1D
) ◦ g−1||∞ (4.75b)

= ||h− hZ1D
||∞ (4.75c)

≤ (1 + ∆M )||h− h∗M ||∞ (4.75d)

≤ (1 + ∆M )
ĈBe− log(r̂)M

r̂ − 1
. (4.75e)

In summary, standard polynomial interpolation converges as O(︁(1 + ∆M ) exp (− log(rmax)M)
)︁, see (4.45),

while the convergence of the mapped interpolation is O(︁(1 + ∆M ) exp (− log(r̂max)M)
)︁. Hence, assum-

ing that the Lebesgue constant ∆M grows sufficiently slow, the quantity G defined in (4.58) also repre-
sents the relative improvement in the asymptotic rate of geometric convergence for mapped interpola-
tion.
Next, we address the multivariate case Nξ > 1. To this end, we first replace (4.28) with its mapped counter
part, i.e.

Ẑℓn :=
{︁
gn
(︁
ξ(in)n

)︁
: ξ(in)n ∈ Zℓn

}︁
⊂ Γn, n = 1, . . . , Nξ. (4.76)

Then, the we introduce the tensor-grid of mapped interpolation nodes

Ẑ
TP
ℓ := {g(ξ(i)) : ξ(i) ∈ ZTP

ℓ } = Ẑℓ1 × . . .× ẐℓNξ
, (4.77)

such that the respective tensor-productmultivariatemapped approximation reads

Q̂
Ẑ

TP
ℓ

(ξ) :=
∑︂

i:ξ̂
(i)∈ẐTP

ℓ

Q
(︂
ξ̂
(i)
)︂
L̂ℓ,i (ξ) , (4.78)

where L̂ℓ,i := Lℓ,i◦g−1 : Γ→ R are mapped multivariate Lagrange polynomials. Note that for the identity map-
ping g : s ↦→ s the polynomial approximation (4.29) would be recovered.
However, as already discussed in Section 4.1.3, the computational complexity of tensor-product approaches
does not scale well with the number of random parameters Nξ. Hence, in the following, we discuss the
adaptive construction of an anisotropic sparse grid of mapped interpolation nodes. To this end we employ
weighted Leja nodes (4.33) with the level-to-nodes functionml2n : ℓn ↦→ ℓn +1,N0 → N such that single extra
node of an interpolation level ℓn is denoted as ξ(ℓn)n = Zℓn \Zℓn−1. The corresponding mapped univariate Leja
node is denoted by ξ̂(ℓn)n = gn(ξ

(ℓn)
n ) = Ẑℓn \ Ẑℓn−1. As outlined in Section 4.1.3 nested grids are particularly

appealing for the construction of sparse grids, resulting in polynomial approximations of increasing accuracy
[53]. In the multivariate case they can be obtained by enforcing monotone multi-index sets [53, 91]. To this
end, we consider a multi-index set Λ and define

Λ+ := {ℓ+ en,∀ℓ ∈ Λ,∀n = 1, . . . , Nξ}, (4.79a)
Λ− := {ℓ− en,∀ℓ ∈ Λ,∀n = 1, . . . , Nξ : ℓn > 0}, (4.79b)

as its forward and backward neighbor multi-index sets, respectively, where en denotes the n-th unit vector.
Then, the multi-index set Λ is monotone if and only if Λ− ⊂ Λ.
Amulti-index ℓ /∈ Λ such thatΛ∪ℓ is monotone, corresponds to the single extra node

ξ̂
(ℓ)

= ẐΛ∪ℓ \ ẐΛ, where ẐΛ =
⋃︂

m∈Λ
{ξ̂(m)}. (4.80)
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Then, (4.78) can be replaced by the mapped hierarchical interpolation

Q̂ẐΛ∪ℓ
(ξ) = Q̂ẐΛ

(ξ) + sℓ Ĥℓ (ξ) , (4.81)

where Ĥℓ are multivariate mapped hierarchical Lagrange polynomials

Ĥℓ (ξ) =
N∏︂

n=1

ĥℓn (ξn) , where ĥℓn (ξn) :=

⎧⎨⎩
∏︁ℓn−1

k=0
g−1
n (ξn)−ξ

(k)
n

ξ
(ℓn)
n −ξ

(k)
n

, ℓn ̸= 0,

1, ℓn = 0,
(4.82)

and sℓ ∈ C denotes the corresponding coefficients, referred to as hierarchical surpluses, and given by

sℓ = Q
(︂
ξ̂
(ℓ)
)︂
− Q̂ẐΛ

(︂
ξ̂
(ℓ)
)︂
. (4.83)

Note that the mapped hierarchical polynomials do not change when additional nodes are added. Furthermore,
the corresponding coefficients sℓ ∈ C can be employed as a posteriori error indicators, which quantify
the individual contribution of an additional node ξ̂

(ℓ) to the current approximation Q̂ẐΛ
(ξ). Hence, we

now discuss the dimension-adaptive construction of the mapped sparse grid interpolation. Note that, by
choosing g as the identity map, the presented approach becomes similar to the polynomial-based schemes
considered in [53, 91, 148, 179], however, minor changes are required to address the complex-valued
QoI.

For a given monotone multi-index set Λ, corresponding to the mapped grid ẐΛ and the mapped interpolation
Q̂ẐΛ

, we define the set of admissible multi-indices

Λadm
+ := {ℓ ∈ Λ+ : ℓ /∈ Λ and {ℓ}− ⊂ Λ}. (4.84)

for refinement which ensures that we obtain a sequence of nested monotone sets [53]. We then employ
the modulus of the complex hierarchical surpluses |sℓ| for each multi-index ℓ ∈ Λadm

+ as error indicator and
expand Λ with the multi-index with the largest error indicator, i.e. argmaxℓ∈Λadm

+
|sℓ|. Note that, depending

on the application, alternative choices for the error indicator are equally valid, e.g. max (|ℜ{sℓ}|, |ℑ{sℓ}|).
After updating the grid ẐΛ and the approximation Q̂ẐΛ

, accordingly, the procedure is then repeated until
a computational budget which specifies the maximum number of model evaluation B is reached, i.e. the
algorithm is terminated if

#ẐΛ∪Λadm
+
≥ B. (4.85)

Then, the final approximation is given as Q̂Ẑ
Λ∪Λadm

+

, i.e. the readily available model evaluations for the ad-
missible neighbor setΛadm

+ are employed as well. We note that the algorithm is usually initialized with the multi-
index setΛ = {(0, . . . , 0)}. The presented scheme is summarized in Algorithm 2.

Finally, we discuss the minor modifications which are required in order to generalize the method to mul-
tiple QoIs, i.e. Q : Γ → CNQ . To this end, we replace the scalar hierarchical surplus (4.83) by its
vector-valued counterpart sℓ ∈ CNQ . The adaptivity is then steered by expanding with the multi-index

ℓ = argmax
ℓ̃∈Λadm

+

(︂
max

{︂ ⃓⃓⃓
w1sℓ̃,1

⃓⃓⃓
,
⃓⃓⃓
w2sℓ̃,2

⃓⃓⃓
, . . . ,

⃓⃓⃓
wNQsℓ̃,NQ

⃓⃓⃓
,
}︂)︂

, (4.86)

where w = [w1, w2, . . . , wNQ ] ∈ RNQ denotes a vector of weights.
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Data: QoI Q (ξ), coordinate-wise conformal map g, multi-index set Λ, computational budget B
Result: sparse grid ẐΛ∪Λadm

+
of mapped interpolation nodes, mapped approximation Q̂Ẑ

Λ∪Λadm
+

repeat
Compute the admissible set Λadm

+ , as in (4.84).
Compute the hierarchical surpluses sℓ, ∀ℓ ∈ Λadm

+ , as in (4.83).
Select the multi-index ℓ ∈ Λadm

+ associated to the maximum error indicator |sℓ|.
Compute the refined approximation Q̂ẐΛ∪ℓ

, as in (4.81).
Enlarge the multi-index set Λ = Λ ∪ ℓ.

until simulation budget B is reached, as in (4.85);
Algorithm 2: Dimension-adaptive conformally mapped SC method, based on [89, Algorithm 1].

ue(ω)

R L(ξ)
C

i(ω; ξ)

(a) Diagram of considered RLC circuit.
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(b) Amplitude of electric current w.r.t. input parameter ξ.

Figure 4.9: An RLC circuit with uncertain inductance L and variable resistance R is considered as bench-
mark problem. The illustration is based on [90, Figure 3].

4.2.3 Numerical example: RLC circuit

We now consider an academic model problem, i.e. an RLC circuit, with an available closed-form solution, in or-
der to illustrate the main ideas of the presented methods. The application to a real-world example as well as nu-
merical tests with a larger number of parameters can then be found in Section 5.3.1.
The considered RLC circuit is shown in Fig. 4.9a where we consider the current amplitude as QoI, i.e. Q := |i|.
In turn, the electric current is obtained as(︂

−Lω2 + jωR+
1

C

)︂
i = iωue, (4.87)
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R = 1Ω
R = 500mΩ

R = 250mΩ

Figure 4.10: Associated Bernstein ellipses of ξ ↦→ Q(ξ) for different values of R. The respective poles are
illustrated by crosses. The illustration is based on [90, Fig. 4a].
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Figure 4.11: Convergence study using spectral polynomialmethods for stochastic RLCcircuitswith different
values of R and, hence, different locations of the poles in the complex plane. The plots are
based on [89, Figure 4].

where we assumed a harmonic time-dependency. The respective circuit parameters are chosen as follows: We
assume an angular frequency of ω = 104 s−1, a capacitance C = 10 µF, an exciting voltage ue = 1V and we
will consider different (rather small) values for the resistance, i.e. R ∈ {2Ω, 1Ω, 0.5Ω, 0.25Ω}. Furthermore,
the model becomes a stochastic model, as we assume a variable inductance such that L(ξ) = 1mH+0.25mH·ξ,
where, in turn, the parameter ξ is then modeled as a realization of a uniformly distributed RV Ξ ∼ U(−1, 1)
with PDF ρ1D = 0.5. The parametric mapping ξ ↦→ Q(ξ) = |i(ξ)| is depicted in Fig. 4.9b for different values of
R. Note that this mapping is analytic for ξ ∈ Γ1D = [−1, 1], however, its extension to complex inputs has poles
at

ξ = ±i R

ω · 0.25mH
. (4.88)

In Fig. 4.10 the associated Bernstein ellipses of ξ ↦→ Q(ξ) are shown for different values ofR. It can be observed
how the size of the Bernstein ellipses is restricted by the complex conjugate pole pair (4.88).
In each case, we then apply the spectral methods introduced in Section 4.1.3 and assess the accuracy of
the respective surrogate models in terms of the RMSE, i.e. the square root of the error in the empirical
L2
ρ1D

norm. In particular, we draw Ncv = 1000 random realizations {ξ(i)cv }Ncv
i=1 of Ξ and evaluate the error

Ecv =

⌜⃓⃓⎷ 1

Ncv

Ncv∑︂
i=1

⃓⃓⃓
Q̃
(︁
ξ
(i)
cv

)︁
−Q

(︁
ξ
(i)
cv

)︁⃓⃓⃓2
, (4.89)

where Q̃ refers to the surrogate model, e.g. computed by GPC or SC. In particular, on the one hand we employ
the Chaospy toolbox [78] to construct GPC approximations of (increasing) degreeM where we use Gaussian
quadrature of order M + 1 to compute the GPC coefficients by pseudo-spectral projection. On the other
hand, we employ SC on (weighted) Leja nodes. For both methods, we then conduct convergence studies w.r.t.
an increasing polynomial degreeM and evaluate the error (4.89). The results are shown in Fig. 4.11a for
GPC and in Fig. 4.11b for SC. It can be seen that (4.42) is confirmed numerically, as, for both methods, an
increasing convergence order can indeed be observed for increasing values of R which are associated to an
increased size of the respective Bernstein ellipses. It is worth noting that a similar behavior is to be expected
for decreasing amplitudes of the input variation, according to (4.88). Next, we also evaluate the error in the
mean value of the GPC approximation, which is, according to (4.26), given by the GPC coefficient s0. To this
end, we compute the reference solution for E [Q(Ξ)] with Gaussian quadrature of degree 200 up to machine
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(a) Uniform input distribution ρ1D and respective
transformed density ρ̃1D, as in (4.52).
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(b) Illustration of some exemplary GPC basis functions Ψm and
the respective mapped GPC basis functions Ψ̂m.

Figure 4.12: Illustration of (mapped) GPC basis for a uniformly distributed input RV, based on [89, Figure 5].

accuracy. The resulting convergence study is presented in Fig. 4.11c and shows that a comparable convergence
behavior can be observed for the stochastic moments.

In the following, we employ the conformally mapped approaches proposed in the previous subsections
which are, again, implemented in Python based on Chaospy [78]. The PDF ρ1D along with the respective
transformed density ρ1D, defined in (4.52), are shown in Fig. 4.12a. The respective basis functions for GPC
and conformally mapped GPC are illustrated in Fig. 4.12b. It is worth noting that the particular GPC basis is
given by Legendre polynomials while the mapped basis functions are no polynomials, see (4.51). We recall
that the (mapped) basis functions for (mapped) SC have already been presented in Fig. 4.8. We then conduct
a convergence study with mapped GPC and mapped SC in terms of the RMSE (4.89), where we employ in
the former case mapped Gaussian quadrature of orderM + 1 to compute the mapped coefficients ŝm for a
mapped GPC expansion of degreeM . The results are presented in Fig. 4.13a and Fig. 4.13b and clearly show
the improved convergence rate of the mapped methods. Finally, it is demonstrated in Fig. 4.13c and Fig. 4.13d
that the mapped GPC approach also leads to an improved convergence of the stochastic moments, i.e. the
computed mean value and the computed standard deviation.

In summary, it was observed that the suggested mapped spectral methods show an improved convergence rate
for the considered benchmark problem of a stochastic RLC circuit, leading to significant improvements in either
computational cost or accuracy. They are non-intrusive methods and, hence, do not require any modifications
of an existing computer code of a parameterized model. Conformally mapped GPC features an orthogonal
basis and, hence, the straightforward computation of stochastic moments and Sobol indices while the proposed
dimension-adaptive mapped SC scheme based on mapped Leja nodes addresses moderately high-dimensional
problems. As will also be explained in the following, themapped spectral methods can be combined with further
techniques for convergence acceleration, e.g. adjoint-error correction.

4.3 Adjoint-based adaptive mapped stochastic collocation

In the following, we discuss how an adjoint error indicator can be employed to improve the dimension-adaptive
conformally mapped SC Algorithm 2 proposed in the last section. Note that duality-based a posteriori error
estimation is already well established for the FEM, see for instance [16]. More recently, it was also addressed
in a parametric setting [43, 44, 171]. In particular, in [111, 179] adaptive SC methods based on Clenshaw
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Figure 4.13: Convergence study using (mapped) spectral methods for stochastic RLC circuit with R = 1Ω.
The plots are based on [90, Figure 5].
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Curtis nodes were proposed where adjoint techniques lead to significant improvements in computational
efficiency which can be partially attributed to the exponentially growing level-to-node function (4.32). In this
thesis, it is shown that adjoint-based adaptivity and error correction are also beneficial for the proposed SC
method based on the more granular Leja nodes and mapped polynomials. The content and structure of this
section are based on our work [89].

In this section, we add the additional assumption that the deterministic computational model ξ ↦→ Q(ξ) is
represented by a parametric model in the form of (2.56) which is repeated here, for convenience of the reader:
find u(ξ) ∈ V s.t.

aξ(u(ξ),v) = l(ξ) ∀v ∈ V, (4.90)
where the QoI is a bounded linear functional Q(ξ) = J(u(ξ)). Note that in this section (4.90) could refer
to the models (2.57)-(2.60) but also other parametric PDEs where aξ(·, ·) denotes a continuous sesquilin-
earform, l(·) a continuous antilinear form and V a suitable Hilbert space. In any case, it is assumed that
u : Γ → V is well-defined and smooth. Note that this assumption is often fulfilled for parameterized
PDEs, see for instance [10] where elliptic PDEs are considered and [52] for different types of problems. We
further note that the presented method could be generalized to non-linear functionals, see [196, Chapter
3.2].

Introducing the primal operator Aξ : V → V ∗, where V ∗ denotes the dual space to V , the primal problem
(4.90) can be stated as an operator equation, i.e. ∀ξ ∈ Γ, find u(ξ) ∈ V s.t.

⟨Aξu(ξ),v⟩ = aξ(u(ξ),v) = l(v) ∀v ∈ V. (4.91)

The adjoint problem then reads: ∀ξ ∈ Γ, find z(ξ) ∈ V , s.t.

⟨w, A∗
ξz(ξ)⟩ = aξ(w, z(ξ)) = J(w) ∀w ∈ V, (4.92)

where the adjoint operator A∗
ξ : V → V ∗ is defined s.t.

⟨Aξu,v⟩ = ⟨u, A∗
ξv⟩ ∀u,v ∈ V, ∀ξ ∈ Γ. (4.93)

Note that these definitions directly imply the so-called primal-dual equivalence

J(u(ξ)) = ⟨u(ξ), A∗
ξz(ξ)⟩ = ⟨Aξu(ξ), z(ξ)⟩ = l(z(ξ)). (4.94)

We are now interested in the parametric error in the QoI

ESC(ξ) = J
(︁
u(ξ)− uZ(ξ)

)︁
= aξ

(︁
u(ξ)− uZ(ξ), z(ξ)

)︁
= l
(︁
z(ξ)

)︁
− aξ

(︁
uZ(ξ), z(ξ)

)︁
, (4.95)

for a given (mapped) SC approximation uZ of the mapping u : Γ → V on a grid Z. Note that none of the
expressions in (4.95) can be computed efficiently, as they require either the solution of the primal problem
(4.91) or the dual problem (4.92), for all ξ ∈ Γ. Hence, following [43, 44], we instead employ the error
indicator

ẼSC(ξ) = l
(︁
zZ(ξ)

)︁
− aξ

(︁
uZ(ξ), zZ(ξ)

)︁
, (4.96)

where zZ denotes a (mapped) SC approximation of themapping z : Γ→ V on the gridZ.
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Data: coordinate-wise conformal map g, multi-index set Λ, budget B and aξ, l, Q as defined in (4.90)
Result: sparse grid ẐΛ∪Λadm

+
of mapped interpolation nodes, mapped approximation Q̂Ẑ

Λ∪Λadm
+

repeat
Compute the admissible set Λadm

+ , as in (4.84).
Compute the adjoint-based error indicators |s̃ℓ|, where s̃ℓ = Ẽ

SC
(︂
ξ(ℓ)
)︂
, ∀ℓ ∈ Λadm

+ .
Select the multi-index ℓ ∈ Λadm

+ associated to the maximum error indicator |s̃ℓ|.
Compute the hierarchical surpluses sℓ, uℓ, zℓ as in (4.83), by solving (4.91) and (4.92).
Compute the refined approximation Q̂ẐΛ∪ℓ

, as in (4.81), and the corresponding approximations of
primal and dual solution.
Enlarge the multi-index set Λ = Λ ∪ ℓ.

until simulation budget B is reached;
Algorithm 3: Adjoint error-based, dimension-adaptive mapped SC method, based on [89, Algorithm 2].

Note that, due to continuity of the sesquilinearform aξ(·, ·), we obtain

|ESC(ξ)− ẼSC(ξ)| = |aξ
(︁
u(ξ)− uZ(ξ), z(ξ)

)︁
− aξ

(︁
u(ξ)− uZ(ξ), zZ(ξ)

)︁
| (4.97a)

= |aξ
(︁
u(ξ)− uZ(ξ), z(ξ)− zZ(ξ)

)︁
| (4.97b)

≤ C∥u(ξ)− uZ(ξ)∥V ∥z(ξ)− zZ(ξ)∥V , (4.97c)

i.e. the error indicator ẼSC shows faster convergence than the (mapped) SC approximations uZ , zZ . In
particular, if one assumes the same convergence order for both, primal and dual solution, the error indicator
(4.96) exhibits a doubled convergence rate.

Next, we address the adaptions which are required to incorporate the error indicator ẼSC(ξ) into the dimension-
adaptive (mapped) SC Algorithm 2. In particular, one needs to construct the additional (mapped) SC
approximations uZ , zZ which are here computed using the same multi-index set Λ, corresponding grid Z
and respective mapped hierarchical polynomials Ĥℓ(ξ) as for the scalar QoI Q. The approximations are then
given in the form of (4.81) where the hierarchical surpluses sℓ ∈ C are replaced by vector-valued coefficients
uℓ, zℓ ∈ CNh . Next, following [111], one can employ the adjoint error indicator (4.96) to replace the error
indicators |sℓ|, ∀ℓ ∈ Λadm

+ which are employed in Algorithm 2 and require the solution of (4.91) for all
ξ̂
(ℓ) ∈ ẐΛadm

+
. In particular, we employ the adjoint error indicators |s̃ℓ|, where s̃ℓ := ẼSC

(︁
ξ̂
(ℓ))︁ to steer the

adaptivity, i.e. we then select the multi-index with the largest error indicator argmaxℓ∈Λadm
+
|s̃ℓ| and solve

the corresponding primal and dual problem in order to update the mapped SC approximations QZ ,uZ , zZ .
Furthermore, after the termination of the algorithm, the adjoint-error indicator is also employed for error
correction. To this end, one can employ the multi-index set Λ ∪ Λadm

+ to construct the final approximation,
such that all readily available evaluations of (4.96) are used as coefficients sℓ by setting sℓ = s̃ℓ,∀ℓ ∈ Λadm

+ .
This procedure is outlined in Algorithm 3. However, we also note that based on (4.97c) we expect an even
higher accuracy of the adjoint-error corrected approximation

Q̃ẐΛ
(ξ) = QẐΛ

(ξ) + ẼSC(ξ). (4.98)

The computational cost of evaluating (4.98), which requires the evaluation of a residual of the primal problem,
see (4.96), is usually significantly lower than the cost for solving the primal problem (4.91) to evaluate the
QoI but higher than the cost for evaluating the (mapped) SC approximation QẐΛ

(ξ). Hence, to obtain a
(mapped) SC approximation with higher accuracy, one can continue with further refinements of QẐΛ

(ξ) by
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then employing Algorithm 2 on the adjoint-error corrected approximation (4.98). The application of the
proposed method is investigated in detail in Section 5.3.1.

4.3.1 Adjoint formulation for Maxwell’s source problems

In the following, we relate the methodology from the previous subsection to the model problems introduced
in Chapter 2. In particular, the strong formulation of the dual problem (4.92) is derived for the case of the
unit cell problem (2.24) and the waveguide model (2.27) by following the procedure outlined in [75]. To this
end, we define the differential operator L by rewriting (2.3) as

LE := ∇×
(︁
µ−1
r ∇×E

)︁
− ω2εµ0E = 0 in D. (4.99)

Then, the formal adjoint L∗ refers to the differential operator which fulfills

(LE,E′)D = (E, L∗E′)D, (4.100)

for all compactly supported and sufficiently smooth functions E,E′ on D. Hence, the formal adjoint L∗ can be
obtained by applying integration by parts to (2.33) and neglecting boundary terms(︂

E,∇×
(︂
µ−1
r ∇×E′

)︂)︂
D
− ω2µ0

(︁
E, εE′)︁

D
= 0, (4.101)

which then yields

L∗E′ := ∇×
(︂
µ−1
r ∇×E′

)︂
− ω2εµ0E

′ = 0 in D. (4.102)

To derive the adjoint boundary conditions, we then drop the assumptions that E and E′ are compactly
supported on D and require that

(LE,E′)D − (E, L∗E′)D =
(︁
(µ−1

r ∇×E)t,E′
T
)︁
∂D
− (ET, (µ−1

r ∇×E′)t)∂D = 0, (4.103)

holds for general smooth functions E,E′. In the following, we first address the adjoint boundary conditions of
the unit cell problem (2.24) and afterward the waveguide model (2.27) is considered. We note that in both
cases, the QoI is given by affine-linear functionals, i.e. (2.25) and (2.28), while we consider linear functionals
in this section, however, the extension to address the constant offset is straightforward and, hence, is omitted
here.

4.3.1.1 Unit cell problem

For the unit cell model we consider the linear functional

Jα,mn(E) :=
(︁
ET,E

α,mn
T

)︁
∂Dz+

, V uc → C, where α ∈ {TE,TM},m ∈ Z, n ∈ Z, (4.104)

see (2.25). We now discuss the adjoint boundary conditions which are implied by (4.103) for the different
parts of the boundary ∂D of the unit cell separately. On ∂Dz− , the second integral vanishes due to the PEC
boundary condition (2.24d) and, hence, we also need to enforce E′

T = 0 on ∂Dz− . Due to the quasi-periodic
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boundary conditions (2.24b)-(2.24c), we obtain the following conditions for the DirichletE′
T and the Neumann

trace (︁µ−1
r ∇×E′)︁

t

E′
T|∂Dx+

eik
inc
x dx = E′

T|∂Dx−
, (µ−1

r ∇×E′)t|∂Dx+
eik

inc
x dy = (µ−1

r ∇×E′)t|∂Dx−
on ∂Dx+ ∪ ∂Dx− ,

(4.105a)
E′

T|∂Dy+
eik

inc
y dy = E′

T|∂Dy−
, (µ−1

r ∇×E′)t|∂Dy+
eik

inc
y dy = (µ−1

r ∇×E′)t|∂Dy−
on ∂Dy+ ∪ ∂Dy− ,

(4.105b)
such that the respective parts of the integrals on ∂Dx− , ∂Dy− and ∂Dx+ , ∂Dy+ cancel each other, respectively.
Next, we address ∂Dz+ where we employ the Floquet boundary condition (2.24e) in (4.103) considering a
homogeneous system, i.e. Einc

T = 0, which yields

−
(︁
ET,

(︁
∇×E′)︁

t
)︁
∂Dz+

− i

kincz

(︁
kinc
t ·ET,kinc

t ·E′
T
)︁
∂Dz+

− ikincz

(︁
ET,E′

T
)︁
∂Dz+

= 0, (4.106)

−
(︂
ET,

(︁
∇×E′)︁

t −
ikinc

t

kincz

kinc
t ·E′

T − ikincz E′
T
)︂
∂Dz+

= 0. (4.107)

Following the procedure outlined in [75], the adjoint boundary condition on ∂Dz+ is then obtained by
substituting E′ with the dual solution z, E with a general test function w and the RHS with the linear
functional Jα,mn(·) which then yields(︂ i

ωµ0
∇× z

)︂
t
+

kinc
t

ωµ0kincz

(︁
kinc
t · zT

)︁
+
kincz

ωµ0
zT = − i

ωµ0
Eα,mn

T on ∂Dz+ . (4.108)

In summary, the strong formulation of the adjoint problem associated to (2.24) reads

∇×
(︂
µ−1
r ∇× z

)︂
− ω2εµ0z = 0 in D, (4.109a)

zT|∂Dx+
eik

inc
x dx = zT|∂Dx−

on ∂Dx+ ∪ ∂Dx− , (4.109b)
zT|∂Dy+

eik
inc
y dy = zT|∂Dy−

on ∂Dy+ ∪ ∂Dy− , (4.109c)
zt = 0 on ∂Dz− , (4.109d)(︂ i

ωµ0
∇× z

)︂
t
+

kinc
t

ωµ0kincz

(︁
kinc
t · zT

)︁
+
kincz

ωµ0
zT = − i

ωµ0
Eα,mn

T on ∂Dz+ , (4.109e)

where α ∈ {TE,TM},m ∈ Z, n ∈ Z, as in (4.104).

4.3.1.2 Waveguide problem

For the waveguide model (2.27) we consider the linear functional

Jwg(E) :=
2

E0ab

(︁
E,ETE

10
)︁
∂DP1

, (4.110)

see (2.28). Again, the PEC boundary conditions (2.27d), imply the respective adjoint boundary conditions
zt = 0 on ∂DPEC. Next, we employ the port boundary conditions (2.27b)-(2.27c) in (4.103), where we
consider again a homogeneous system with Einc = 0 which yields(︁

ikz10ET,E′
T
)︁
∂DP1∪∂DP2

−
(︁
ET,

(︁
∇×E′)︁

t
)︁
∂DP1∪∂DP2

= 0, (4.111)
−
(︁
ET, ikz10E′

T
)︁
∂DP1∪∂DP2

−
(︁
ET,

(︁
∇×E′)︁

t
)︁
∂DP1∪∂DP2

= 0. (4.112)
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As before, we replace E′ by the adjoint solution z, E with a general test function and the RHS with the
linear functional Jwg(·) leading to the adjoint boundary conditions (4.113b)+(4.113c) of the adjoint BVP

∇×
(︂
µ−1
r ∇× z

)︂
− ω2εµ0z = 0 in D, (4.113a)(︁

∇× z′
)︁
t + ikz10zT = − 2

abE0
ETE

10 on ∂DP1, (4.113b)(︁
∇× z′

)︁
t + ikz10zT = 0 on ∂DP2, (4.113c)

zt = 0 on ∂DPEC, (4.113d)

which is associated to (2.27).

4.3.1.3 Discretization

Note that the discretization ofMaxwell’s source problemwith the FEM yields a linear system

Ae = f , (4.114)

where A = Auc, f = fuc in case of the unit cell problem, see (2.41), and A = Awg, f = fwg in case of the
waveguide problem, see (2.48). Discretization of the respective adjoint problems (4.109) and (4.113) then
yields linear systems in the form of

AHzh = j, (4.115)
where zh, j ∈ CNh . Hence, the adjoint solution zh can often be computed with negligible computational
cost, for instance if one solves the primal problem (4.114) with a sparse LU decomposition A = LU. In
this case, L ∈ CNh×Nh and U ∈ CNh×Nh are a lower triangular and an upper triangular matrix, respectively,
which immediately also yield the required LU decomposition for the dual problem (4.115) as AH = (LU)H =
UHLH. Note that one can then employ forward and backward substitution to solve the linear systems

Lbprimal = f , UHbdual = j, (4.116a)
Ue = bprimal, LHzh = bdual, (4.116b)

in order to obtain the primal solution e and the dual solution zh.

4.4 Adjoint-based yield estimation

In this section, we address the estimation of the yield (4.10) and suggest an adjoint-based hybrid method
that comprises accuracy and computational efficiency. We note that many algorithms for yield estimation
have been proposed where the MC method (4.11) might be the most established one [103]. However, it often
requires many evaluations of the QoI [94] which can become computationally prohibitive if the underlying
model is given by a highly resolved FE discretization of a PDE, as introduced in Chapter 2 for instance. Hence,
the proposed hybrid method evaluates the majority of an MC sample with an adjoint-based SC surrogate
model, as introduced in the previous subsection, and only employs the high fidelity model for certain critical
sample points where the surrogate accuracy is insufficient to ensure a correct classification. The content and
structure of this section are based on our work [81].

61



Before we describe the proposed scheme in detail, we recall a few alternative approaches for yield estimation
suggested in the literature which also aim for a reduced number of high fidelity evaluations. The first-order
reliability method (FORM) or second-order reliability method (SORM) are sampling-free methods which search
for the most probable point of failure and then construct an approximation of the limit state function at this
point [36, 54]. Importance sampling [85] and subset simulation [7, 17] are sampling-based methods which
lead to a reduction in sample size compared to standard MC. Further approaches rely on first constructing a
response surface or surrogate model and then conducting a MC analysis on the approximation, see e.g. [131]
and the references therein. However, [131, Example 3.1] shows that even arbitrary small approximation errors
can lead to completely wrong estimates of the yield (or the failure probability). Hence, a hybrid approach is
suggested which evaluates the high fidelity model instead of the surrogate whenever a point is close to the
limit state [131]. A related method that employs pointwise adjoint-based error estimates instead of a fixed
interval size to classify the critical sample points was proposed in [45].
In this work, we present a hybrid approach for efficient yield estimation based on the adaptive adjoint-based
SC Algorithm 3. We note that in contrast to [131], we identify the critical sample points based on adjoint error
indicators as (4.96). Contrary to [45], we employ SC and incorporate an additional adjoint-based estimate
of the FE error in the hybrid decision criterion. Furthermore, if required, we then iteratively refine the FE
model for certain sample points which is in the spirit of the multilevel and multifidelity methods discussed in
Section 4.1.2. Note that we neglected the FE error in the previous subsections as it can usually be controlled
using established techniques, see, e.g. [2], to be sufficiently small. However, as we now address the estimation
of (failure) probabilities instead of moments, any error source has to be incorporated as it could lead to
erroneous results, see the aforementioned example [131, Example 3.1].

To estimate the parametric error of the SC approximation, we can employ ẼSC introduced in (4.96). To addition-
ally estimate the FE error, we also rely on adjoint techniques, following [16, 73]:

EFE,h = J(u− uh) =
(︁
u− uh, A

∗
ξz
)︁
D
= (Aξ(u− uh), z)D = l(z)− aξ(uh, z). (4.117)

This expression only becomes computable if one employs a FE approximation of z. However, if one would
simply choose zh ∈ Vh the respective error estimate is zero as zh has to be orthogonal to the residual, see
(4.90). Hence, we need an adjoint solution of higher accuracy to estimate EFE,h, contrary to ESC, see [43].
In this work, we compute the adjoint on a refined FE mesh, however, there are equally valid alternatives,
e.g. employing higher order basis functions or recovery techniques [218]. This leads to the error indicator

ẼFE,h = l(zh/2)− aξ(uh, zh/2), (4.118)
where zh/2 ∈ Vh/2. Eq. (4.118) represents a computable expression, however, it requires the computation of
zh/2 for all ξ ∈ Γ. Hence, we construct the corresponding SC approximation ẼFE,hZ . Finally, the total error
can be decomposed into the SC and the FE contribution as

E := |Q − Qh,Z |≤
⃓⃓⃓
Q−Qh

⃓⃓⃓
+ |Qh −Qh,Z | ≈

⃓⃓⃓
ẼFE,hZ

⃓⃓⃓
+
⃓⃓⃓
ẼSCh

⃓⃓⃓
=: Ẽ , (4.119)

where ẼSCh is obtained by replacing uZ , zZ in (4.96) with uh,Z , zh,Z , respectively. Note that the adjoint-based
estimation of the combined error resulting from the spatial and the parametric discretization has also been
considered in different applications, for instance in [44], where the stochastic Galerkin method is employed
for time-dependent forward and inverse problems.
Next, we discuss how (4.119) can be employed in a hybrid approach for yield estimation. The goal is to
reach the same accuracy as MC on the high-fidelity model while reducing the computational cost by instead
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c

Qh,Z(ξ)

Accepted sample point
Critical sample point
Not accepted sample point

Figure 4.14: Illustration of the error estimate based classification of sample points as accepted, critical or
not accepted, according to the performance feature specification (4.7).

Inputs:
FE models Qh for different mesh sizes h

sample point ξ(i), safety factor s
SC approximation Qh,Z for initial mesh size h := hinit

Error indicators Ẽ , ẼFE,h

Evaluate Surrogate and Error Indicator
Q := Qh,Z(ξ

(i)), err := Ẽ(ξ(i))

If (Q− s · err) > c

If (Q+ s · err) ≤ c

If h = hinit
(first loop)

Refine FE model
h := h

2

Evaluate FE model and error indicator
Q := Qh(ξ

(i)), err := ẼFE,h(ξ(i))

Output:
classify ξ(i) as not accepted,

i.e. ξ(i) /∈ Γs

Output:
classify ξ(i) as accepted,

i.e. ξ(i) ∈ Γs

yes

yes

no

no

no

yes

Figure 4.15: Flowchart describing the hybrid decision process. The content is based on [81, Algorithm 1].
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evaluating only the available surrogate models whenever possible. To this end, we employ the MC estimator
(4.11) but replace the indicator function (4.8) with a hybrid decision process. In particular, we introduce the
interval

I1E(ξ(i)) =
[︂
Qh,Z(ξ

(i))− sẼ(ξ(i)),Qh,Z(ξ
(i)) + sẼ(ξ(i))

]︂
, (4.120)

for each sample point ξ(i), i = 1, . . . , NMC, where s ≥ 1 denotes a safety factor which will be discussed
later. If each element of the interval I1E(ξ(i)) fulfills the performance feature specifications (4.7), that is
Qj ≤ c ∀Qj ∈ I1E(ξ

(i)) the sample point can be reliably classified as accepted. Similarly, ifQj > c ∀Qj ∈ I1E(ξ
(i))

the sample point can be reliably classified as not accepted. Finally, if only a subset of the interval fulfills the
performance feature specifications, the sample point is classified as critical and further treatment is necessary.
Fig. 4.14 illustrates this distinction of sample points. Note that, except for the critical sample points, the
classification can be done purely based on the (cheap) surrogate models. Next, the FE model Qh is evaluated
for all critical sample points which then leads to a new interval

I2E(ξ(i)) =
[︂
Qh(ξ

(i))− s
⃓⃓⃓
ẼFE,h(ξ(i))

⃓⃓⃓
,Qh(ξ

(i)) + s
⃓⃓⃓
ẼFE,h(ξ(i))

⃓⃓⃓]︂
. (4.121)

Following the same procedure as before, the sample points are, in turn, classified as accepted, not accepted,
or critical. For the remaining critical sample points, we then iteratively refine the mesh until the respective
sample points can be reliably classified. The full decision procedure is presented in Fig. 4.15. Note that, in
practice, one might restrict the maximum number of refinement steps. However, the presented approach
should lead to the same accuracy as MC on the most-refined FE model unless errors at certain sample points
would be greatly underestimated and, hence, the respective sample points wrongly classified. To this end,
the safety factor s ≥ 1 is chosen rather conservatively, as the adjoint error indicators are not strict upper
bounds. In particular, the safety factor might be determined by evaluating the error of Qh,Z w.r.t. the FE
model with the most refined mesh on a small random sample. These errors could then be compared to the
respective values of the error indicator Ẽ , e.g. by considering the maximum ratio. In this work, we then set
the safety factor to s = 2 for the considered numerical example. Note that a conservative choice of the safety
factor increases the computational effort but may lead to a higher accuracy as it avoids the misclassification of
sample points. We further note that the method could possibly be extended by exploiting the (expensive) FE
model evaluations to train an additional model discrepancy term of the surrogate model, see [45, 82], which
is excluded here, for simplicity.
Finally, we emphasize that the presented approach for yield estimation allows to take all relevant error sources
into account. The hybrid decision process, outlined in Fig. 4.15, considers the FE error and the SC error of the
surrogatemodel. Additionally, theMC error, associated to the finite size of the random sample, can be controlled
based on (4.13). In particular, in this work we specify a maximum standard deviation σY := Std [Y] to derive
the corresponding sample size NMC using (4.13). In Section 5.3.4, the proposed yield estimation procedure is
then applied to the benchmark problem of an electric waveguide.

4.5 Eigenvalue tracking

In this section, we address UQ for generalized eigenvalue problems in the form of (2.53), where we now
consider the eigenfrequency of a specific eigenmode as QoI Q. The content and structure of this section
are based on our work [88]. To quantify the uncertainty, we are interested in employing an SC method as
described in the previous sections. To this end, we make the assumption that the matrices K(ξ) and M(ξ)
as well as the corresponding eigenpairs (︁ωh,n(ξ), en(ξ)

)︁ depend smoothly on the parameters ξ. Note that

64



t = 0

ξ(0)
t = 1

ξ(k)

ξ1
ξ 2

Figure 4.16: Illustration of physical homotopy for two points of a Smolyak sparse grid, based on
[88, Figure 4c].

this condition might not be fulfilled if a new FE mesh is constructed for each ξ ∈ Γ and, hence, a mesh
transformation is required. In this work, we either rely on a design element approach [35] for the FE mesh, as
explained in Section 5.3.1, or realize the deformation by moving control points of an isogeometric analysis
(IGA) discretization [38], see Section 5.2 or [88]. However, applying SC still requires a dedicated procedure to
correctly match the respective eigenfrequency at each collocation point ξ(k), as the natural ordering based on
the eigenvalue is in general not sufficient to guarantee consistency. In particular, even small shape variations,
for instance, can lead to eigenvalue crossings or eigenmode separation/degeneration, see Section 5.2.1 for an
illustrative example. Hence, we employ a tracking procedure that is adapted from [138]. In particular, we
start from one collocation point ξ(0), e.g. a parameter configuration which describes a nominal geometry and
then track the respective eigenpair corresponding to the QoI to the different collocation points ξ(k), k ≥ 1. To
this end, we introduce the algebraic homotopy between the respective stiffness and mass matrices defined in
(2.38) as

Kk,t := (1− t)K
(︁
ξ(0)
)︁
+ tK

(︁
ξ(k)

)︁
, (4.122a)

Mk,t := (1− t)M
(︁
ξ(0)
)︁
+ tM

(︁
ξ(k)

)︁
, (4.122b)

where t ∈ [0, 1]. In this section, we assume for simplicity that there are no eigenvalue bifurcations for t ∈ [0, 1]
and that the eigenmodes are not degenerated at t = 0. It shall be noted that other homotopies would be
equally possible, for instance

Kk,t := K
(︁
(1− t)ξ0 + tξ(k)

)︁
, (4.123a)

Mk,t := M
(︁
(1− t)ξ0 + tξ(k)

)︁
, (4.123b)

where the eigenvalue problems for t ∈ (0, 1) would refer to actual shapes. The physical homotopy (4.123)
is illustrated in Fig. 4.16 for two points in a Smolyak sparse grid. However, (4.122) allows obtaining the
derivatives w.r.t. t as

K′
k,t :=

∂

∂t
Kk,t = K

(︁
ξ(k)

)︁
−K

(︁
ξ(0)
)︁
, (4.124a)

M′
k,t :=

∂

∂t
Mk,t = M

(︁
ξ(k)

)︁
−M

(︁
ξ(0)
)︁
. (4.124b)

The homotopy enables a one-dimensional analysis for each collocation point ξ(k) ∈ Γ ⊂ RNξ by rewriting the
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Figure 4.17: Illustration of one step of tracking procedure with stepsize ht = 0.5 starting at t∗ = 0.

eigenvalue problem (2.53) depending on the scalar parameter t[︃
Ktet − λtMtet

c⊤et − 1

]︃
=

[︃
0
0

]︃
, (4.125)

where λt = ω2
h,t and the last line represents a normalization constraint based on a suitable vector c ∈ CNh .

Note that the quantities in (4.125) depend on the collocation point but we suppress the index k for brevity of
notation. In particular, we only address the case of one eigenpair (et, λt) for one single collocation point ξ(k)
in the following.
One step of the proposed tracking procedure is illustrated in Fig. 4.17 and described in the following. We
start with a first-order Taylor expansion at t∗ ∈ [0, 1] w.r.t. t[︃

ẽt
λ̃t

]︃
=

[︃
et∗

λt∗

]︃
+ (t− t∗)

[︃
e′t∗
λ′t∗

]︃
, (4.126)

to obtain an approximation of the eigenpair for t ̸= t∗, i.e. [ẽ⊤t , λ̃t]⊤ ≈ [e⊤t , λt]
⊤. Note that the derivatives

[e′t∗
⊤, λ′t∗ ]

⊤ can be obtained by solving the linear system[︃
Kt∗ − λt∗Mt∗ −Mt∗et∗

c⊤ 0

]︃ [︃
e′t∗
λ′t∗

]︃
=

[︃
−K′

t∗et∗ + λt∗M
′
t∗et∗

0

]︃
, (4.127)

which is, in turn, obtained by differentiating (4.125) w.r.t. the parameter t. Then, the Newton-Raphson
method can be employed to compute the exact eigenpair [e⊤t , λt]⊤ by employing the predicted eigenpair
[ẽ⊤t , λt̃]

⊤ as an initial guess [︄
e
(0)
t

λ
(0)
t

]︄
:=

[︃
ẽt
λt̃

]︃
, (4.128)

for the first iteration. In particular, the i−th iteration of the Newton Raphson method requires to solve the
linear system [︄

Kt − λ(i−1)
t Mt −Mte

(i−1)
t

c⊤ 0

]︄[︄
∆e

(i)
t

∆λ
(i)
t

]︄
= −

[︄
Kte

(i−1)
t − λ(i−1)

t Mte
(i−1)
t

c⊤e
(i−1)
t − 1

]︄
, (4.129)
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and to then improve the prediction as [︄
e
(i)
t

λ
(i)
t

]︄
:=

[︄
e
(i−1)
t

λ
(i−1)
t

]︄
+

[︄
∆e

(i)
t

∆λ
(i)
t

]︄
. (4.130)

This procedure is repeated until the step |∆λ(i)t | and the norm of the residual of (4.125) are both sufficiently
small. In particular, we terminate the Newton-Raphson method if

max

{︃
|∆λ(i)t |,

⃦⃦⃦⃦[︃
Ktet − λtMtet

c⊤et − 1

]︃⃦⃦⃦⃦}︃
< tol, (4.131)

where tol denotes a prescribed tolerance. Then, the required number of iterations until (4.131) is fulfilled, is
further used for a stepsize control which shall improve the robustness and efficiency of the procedure. The
complete tracking algorithm is presented in a flowchart in Fig. 4.18.
Finally, we give a few concluding remarks. The case of degenerate eigenmodes at t = 0, i.e. an intersection of
eigenvalues which was excluded for simplicity only, could be taken into account by employing Ojalvo’s method
[64, 158] to compute the derivatives instead of (4.127). However, simply choosing a starting configuration
ξ(0) which is far from the nominal configuration and, hence, corresponds to a geometry with fewer symmetries,
is also often sufficient to meet the assumption. We further emphasize that the proposed procedure for UQ
only requires to solve one eigenvalue problem for the initial configuration ξ(0) and, hence, on the one hand,
avoids the computational cost of solving eigenvalue problems at the other collocation points. On the other
hand, several linear systems have to be solved during the tracking. It shall be noted that the computational
efficiency of the suggested tracking algorithm could also be further improved, for instance, by a higher order
Taylor approximation in (4.126), by replacing (4.129) with a simplified Newton method [68], or by tracking
a subspace of eigenpairs where the eigenpairs could then be matched using a correlation coefficient [118,
214].

4.6 Summary

In this chapter, we have suggested various improved UQ methods. First, conformally mapped GPC and
conformally mapped SC have been developed. Their enhanced convergence rate was then shown for the
academic model problem of a stochastic RLC circuit with one uncertain parameter. Afterward, extensions
based on an adjoint-error indicator have been suggested. In particular, it can be employed for steering the
adaptivity in an efficient dimension-adaptive SC scheme and for error correction. Then, a multifidelity yield
estimation procedure has been proposed based on the mapped SC approximation and adjoint-error estimation.
Finally, a homotopy-based eigenvalue tracking method has been suggested to enable the application of the
SC methods for Maxwell’s eigenproblem with uncertain input data and ensure a correct classification of
eigenmodes.
The application of these methods is investigated numerically in the following chapter. In particular, the
different (adjoint-based) conformally mapped spectral UQ methods are studied in detail in Section 5.3.1,
where an optical grating coupler is employed as a benchmark model. The adjoint-based yield estimation
procedure is employed in Section 5.3.4, where the benchmark problem of an electromagnetic waveguide is
considered. The application of the proposed tracking method for UQ for superconducting cavities is presented
in Section 5.2.
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Inputs:
Initial eigenpair [et∗ , λt∗ ]

⊤ at t∗ := 0,
initial stepsize ht,

maximum stepsize hmax

Tolerance tol

Assemble system matri-
ces (4.122), (4.124) at t∗

If t∗ ≥ 1

Calculate derivatives (4.127)

Predict eigenpair (4.126) at t∗ + ht

Assemble system matrices
(4.122), (4.124) at t∗ + ht

Initialize counter (Newton):
i := 0

Set i := i + 1

Solve LES (Newton) (4.129)

Newton step (4.130)

If (4.131) fulfilled

Set t∗ := t∗ + ht

If i ≥ 3

Increase step size:
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Reduce step size:
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2
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Figure 4.18: Flowchart describing the proposed eigenmode tracking procedure, based on [88, Fig. 5].
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5 Applications

In this chapter, the application of the proposed surrogate modeling and UQ techniques is discussed. First,
the approximation of FRFs employing the RKI scheme proposed in Chapter 3 is investigated for a number
of benchmark problems from different fields. Then, the UQ methods suggested in Chapter 4 are applied to
the parameterized Maxwell’s eigen- and source problems introduced in Chapter 2. For a proper modeling
and treatment of the involved uncertainties, dedicated UQ workflows are set up for the different applications.
In particular, in Section 5.2 comprehensive UQ studies for particle accelerator cavities are presented where
we mainly focus on the 9-cell TESLA cavities of the EXFEL at Deutsches Elektronen-Synchrotron (DESY). To
this end, SC based on the suggested eigenvalue tracking technique is applied and investigated numerically.
In Section 5.3 we then address two different optical gratings that can be modeled as infinitely periodic
structures as well as a split ring resonator (SRR) array of finite periodicity with Ncells = 7 elements. This
section starts with a detailed investigation and comparison of different surrogate modeling techniques for
UQ, specifically considering the suggested approaches based on conformal maps and adjoint error indicators.
Next, different studies regarding UQ for (quasi-)periodic structures are presented. In particular, a decoupled
uncertainty propagation based on unit cell surrogates is proposed for the SRR array. Finally, the efficiency
of the adjoint-based yield estimation procedure is demonstrated for the academic benchmark problem of an
electric waveguide.

5.1 Approximation of frequency response functions

The content and structure of this section follow our work [86]. In the following, we apply the approximation
techniques presented in Chapter 3 to a number of benchmark FRFs from different fields. In particular, we
employ Nω training points (3.3), where we use the equidistant frequency sample points (3.45), for simplicity.
The accuracy of different approximations of the FRF is then quantified in terms of the RMSEEcv

ω , which is in this
section computed as in (3.46) with Ncv = 201 for all numerical examples.
In the following, we give a few details on the implementation. For AAA [147], we rely on the implementation
of the chebfun toolbox [70]. For VF, we employ the VectFit3 toolbox [67, 98, 99], where we use complex
equidistant starting poles, distributed according to the general recommendation and always run 30 iterations.
We apply the relaxed non-triviality constraint, include the constant but not the linear term, and enforce stable
poles. The number of complex starting pole pairs is set to the maximum number of 2⌊Nω−1

2 ⌋, which generally
seems to lead to the best results for the very smooth test functions considered. The implementation of the
(complex/real) RKHS interpolation is done in Matlab as well, based on STK1 (Small Matlab/Octave Toolbox
for Kriging) using the non-intrusive approach presented in Section 3.2.3. The tuning of the hyper-parameters
and poles based on the profile likelihood function is carried out using fmincon in Matlab, i.e. gradient-based
optimization, which we combine with a multistart procedure using Nms ≈ 20 starting points for α0, which are

1https://github.com/stk-kriging/stk
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Figure 5.1: a) Parallel connection of (underdamped) series RLC circuits. b) Black crosses indicate the distri-
bution of 2N{1}

RLC = 2000 poles of the circuit admittance Y {1} in the complex plane. Red crosses
indicate the two additional poles considered for the circuit admittance Y {2} with 2N

{2}
RLC = 2004

poles. Blue line indicates the considered frequency range.

chosen within the optimization bounds given as 10−6|Ω| ≤ α ≤ |Ω|. The corresponding scaling parameter is
simultaneously optimized, where we use the optimal value, obtained by a generalized least squares (GLS)
estimate, corresponding to α0 as initial value σ0. By investigating the shape of the likelihood function for
a number of benchmark problems, we conclude that the logarithmic reparameterization, discussed in [15]
for instance, is only beneficial for the scaling parameter σ but disadvantageous for the parameter α; hence,
it is only applied for the scaling parameter. For the poles, which are simultaneously tuned with the kernel
hyper-parameters, we employ the optimization bounds

−|Ω| ≤ R[pi] ≤ −10−6|Ω|, (5.1)

max

{︃
10−6|Ω|, ωmin −

|Ω|
3

}︃
≤ ℑ[pi] ≤ ωmax +

|Ω|
3
, (5.2)

where we set themaximumnumber of poles pairs toNmax
p = min{5, ⌊Nω

4 ⌋}.

5.1.1 Electric circuit

We consider in the following a parallel connection of NRLC underdamped series RLC circuits, as illustrated in
Fig. 5.1a. The admittance of this electric circuit is given as

Y (iω) =

NRLC∑︂
i=1

iω

(iω)2Li + iωRi + C−1
i

=

NRLC∑︂
i=1

ci
iω − ai

+
c∗i

iω − a∗i
. (5.3)

The corresponding residues ci, c∗i and poles ai, a∗i of the partial fraction representation in (5.3) are here
obtained as

ci =

√︃
1

LiCi
−
(︂

Ri
2Li

)︂2
+ Ri

2Li
i

2Li

√︃
1

LiCi
−
(︂

Ri
2Li

)︂2 , ai =
−Ri

2Li
+ i

√︃
1

LiCi
−
(︂ Ri

2Li

)︂2
, (5.4)
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Figure 5.2: Complex admittances Y {1} and Y {2} of the electric circuits w.r.t. frequency for a particular ran-
dom parameter realization and N{1}

RLC = 1000 and N{2}
RLC = 1002, respectively.

since we assume underdamped RLC elements, i.e.

Ri

2

√︃
Ci

Li
< 1, i = 1, . . . , NRLC, (5.5)

which implies that the argument of the square roots is positive. Note that we consider the frequency range
Ω = [10 kHz, 25 kHz]. From (5.3) and (5.4) it can be concluded that Y belongs to the Hardy space H2(Υα)
defined in (3.9) where α = min1≤i≤NRLC

Ri
2Li

.

First, we assume N{1}
RLC = 1000 random series RLC elements, where

Ci ∼ U(1, 20) µF, Li ∼ U(0.1, 2)mH, (5.6)

and we assume the resistance Ri to be roughly proportional to the inductance except for random variations of
±20%, i.e.

Ri = Li(1 + ∆)
Ω

mH
, where ∆ ∼ U(−0.2, 0.2). (5.7)

Note that for any combination of those parameters, the corresponding series RLC circuits are underdamped.
For one particular realization, the distribution of the 2N

{1}
RLC = 2000 poles is illustrated in Fig. 5.1. The

corresponding admittance Y {1} is shown in Fig. 5.2 in black color. We then conduct a convergence study for
the particular realization of the electric circuit, which is shown in Fig. 5.3a. To obtain a smoother convergence
behavior, we additionally repeat the convergence study for 100 random realizations and show the median
RMSE at each point, see Fig. 5.3b. It can be observed that for the considered range of the number of training
points, where Nω ≪ NRLC, the complex/real Szegö kernel interpolation outperforms AAA and VF. Employing
the adaptive RKI algorithm does not yield an improvement but leads to similar good results. Note that
employing real Gauss kernel interpolation for real and imaginary part, separately, leads to the worst results
out of the considered approaches, as shown by the dotted line in Fig. 5.3b.
In a next step, we add two additional circuit elements with a very small damping, i.e. we now consider
N

{2}
RLC = 1002 and

C1001 = 5pF, L1001 = 1mH, R1001 = 0.1Ω, (5.8)
C1002 = 2pF, L1002 = 1mH, R1002 = 0.1Ω. (5.9)
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(b) Admittance Y {1} (100 random realization).
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(c) Admittance Y {2} (one particular realization).
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(d) Admittance Y {2} (100 random realizations).

Figure 5.3: Convergence studies for admittances Y {1} (top) and Y {2} (bottom). Left: RMSE Ecv
ω for one

particular circuit realization. Right: Median RMSE Ecv
ω for 100 random realizations.
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Figure 5.4: a) We consider a surface vibration of the PAC-MAN model and evaluate the radiated acoustic
field p(ri) at a point (black dot) in 2m distance to the center. b) Complex FRF. c) Convergence
study w.r.t. the number of training points.

This leads to two additional poles which are closer to the input domain, as illustrated by the red crosses
in Fig. 5.1b. The corresponding admittance Y {2}(iω) only minor differs from Y {1}(iω), except for two
sharp peaks, as can be seen in Fig. 5.2. However, as Y {2} ∈ H2

sym(Υ50) belongs to a larger Hardy space
than Y {1} ∈ H2

sym(Υ400), the accuracy of the respective RKHS interpolation is significantly affected. In
particular, Figs. 5.3c-5.3d show that the convergence order of Szegö kernel interpolation is significantly
reduced. However, the adaptive RKI algorithm is able to cancel the impact of the dominant poles limiting the
region of analyticity. Accordingly, it exhibits fast convergence and an improvement w.r.t. AAA and VF can
again be observed.

5.1.2 Wave propagation models

In the following, we investigate a number of PDE-based examples. As these models are primarily employed
as benchmarks here, we mainly focus on the numerical results in this section and refer to the literature for
specific details about the considered models. We start with the acoustic Helmholtz equation, particularly the
PAC-MAN benchmark example, introduced in [217] which is also included in the platform for benchmark
cases in computational acoustics from the European acoustics associations [107]. The model, shown in
Fig. 5.4a, has the PAC-MAN shape with an opening angle of 30◦ and a radius of 1m. As in [217, Section
6.1], we consider as excitation a vibration of the surface of the PAC-MAN with cylindrical modes and observe
the radiated field p at a point ri in 2m distance at an angle of 10◦. As in [107], the computation was done
based on the implementation of the analytical solution provided in [217] by replacing the python module
scipy with mpmath for the computation of higher order Bessel functions. In particular, we set the truncation
order to 300. The complex acoustic pressure field phasor p of the total sound-field w.r.t. the frequency
f ∈ [2000Hz, 4000Hz] is shown in Fig. 5.4b. We then conduct a convergence study w.r.t. the number of
training points, which is depicted in Fig. 5.4c. It can be observed that the Szegö kernel-based interpolation
approaches outperform the alternative approaches in the range up to about 40 training points. However,
adding the rational basis functions does not further improve the accuracy but does not significantly harm the
accuracy either.
Next, we consider two electromagnetic models problems which are demo examples of CST Microwave Studio
[65], solving the full Maxwell’s equations in frequency domain. The first model is a spiral antenna, depicted in
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Figure 5.5: a) Spiral antenna model, taken from CSTMicrowave Studio [65]. b) Complex FRF S11. c) Conver-
gence study w.r.t. the number of training points.

(a) Waveguide junction model.
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Figure 5.6: a) Waveguide junction model, taken from CST Microwave Studio [65]. b) Complex FRF S21. c)
Convergence studies w.r.t. the number of training points.
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Figure 5.7: a) Vibro-acoustic benchmark problem, based on [170]. b) Complex FRF. c) Convergence study
w.r.t. the number of training points.

Fig. 5.5a, where we consider the reflection coefficient S11 on a frequency range of [4GHz, 6GHz] as QoI, which
is shown in Fig. 5.5b. The data sets are obtained using the BEM in CST Microwave Studio [65]. The results
are qualitatively the same as for the PAC-MAN model, see Fig. 5.5c. The second electromagnetic problem is a
waveguide junction model with 4 ports, which contains a small metallic disk and is connected to an external
cavity resonator, see Fig. 5.6a. The structure is excited at the first port and simulated using the FEM in the
frequency domain. In particular, we set the solver accuracy of the 3rd order solver to 10−6 and use a curved
mesh with standard settings. We employ an initial adaptive mesh refinement at 9GHz, where we set the S-
parameter criterion threshold with 2 subsequent checks to 10−4. As QoI we consider the scattering parameters
on a frequency range of [7GHz, 9GHz] using equidistant sample points, where we restrict ourselves to S21 for
brevity; however, the results are qualitatively similar for all 4 scattering parameters. It can be seen in Fig. 5.6b
that the QoIs are simpler than in the previous examples but have a dominant pole at around 8GHz. This
causes the purely kernel-based interpolations to be inferior compared to the rational approximations. However,
the proposed combination of kernel-based interpolation and rational approximations leads to satisfactory
results with comparable accuracy as AAA and VF, see Fig. 5.6c.

The final test case is a vibroacoustic FE model, taken from [170] and depicted in Fig. 5.7a. A 2D Mindlin
plate (vibrating structure Ds) is excited by a point force and strongly coupled to a 3D acoustic domain (air
cavity Df). Then, the response p at a point ri in the fluid is evaluated. For details on the model, we refer
to [170]. We consider the frequency response on a frequency interval ω ∈ [4500 s−1, 5000 s−1], shown in
Fig. 5.7b. The convergence study, given in Fig. 5.7c, indicates that the proposed RKI approach usually achieves
at least a comparable accuracy as AAA and VF while at certain points an improvement by about an order of
magnitude can be observed. It can also be seen that the additional rational basis functions in the suggested
RKI algorithm improve the approximation accuracy at the majority of points compared to the pure Szegö
kernel-based interpolation.

In summary, it was observed that the suggested RKI algorithm yields satisfactory results for all considered
benchmark models, leading to, at least, a comparable accuracy as the alternative approaches. In all cases,
the naive approach of employing real Gauss-kernel interpolation for real and imaginary part separately, was
outperformed by the rational approximation techniques as well as the complex/real Szegö kernel interpolation.
Hence, it can be concluded that the data is used more efficiently if the individual interpolation of real and
imaginary part is avoided. It could also be observed that adding a few rational basis functions for the RKI
method yields strong improvements with respect to the complex/real Szegö kernel interpolation for the
subset of benchmark functions with a few dominant poles. We emphasize that the resulting RKI method
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(a) Electric field lines. (b) Magnetic field lines.

Figure 5.8: Electromagnetic field of the TM010 mode in a pillbox cavity, taken from [88, Figure 6].

even shows significant accuracy improvements for the majority of benchmark models with respect to the
established state-of-the-art techniques AAA and VF. Furthermore, the suggested method should allow for
a straightforward incorporation of adaptive sequential sampling strategies, which is still subject to further
research. In addition, further work could also address the efficient inclusion of derivative information,
which can often be obtained with reduced computational cost, e.g. using adjoint techniques as discussed in
Chapter 4.

5.2 Uncertainty quantification for Maxwell’s eigenproblem

In this section, we apply the presented UQ methods from Chapter 4 to accelerator cavities with uncertain
shapes. First, we consider the academic example of a cylindrical (pillbox) cavity with an uncertain radius to
investigate the tracking method discussed in Section 4.5 and show that its application is clearly necessary in
certain cases. Afterward, we address UQ for a 9-cell TESLA type cavity [8]. We will first study the impact of
eccentric deformations [88] before we address variations of the iris and equatorial radii [89] in the subsequent
section. In all cases, the model problem is a parameterized eigenvalue problem in the form of (2.53) where
we treat the eigenfrequencies as QoIs and then employ SC for UQ as described in Chapter 4. The content and
structure of this section are based on our works [60, 88]. Note that UQ for accelerator cavities has also been
addressed in other references, see [1, 58, 180, 209]. However, in this section, we demonstrate the need for
eigenvalue tracking techniques and employ a more sophisticated SC method in order to take a large number
of uncertain parameters into account, i.e. up to 19 parameters. Furthermore, we address correlated input
data and the numerical studies are substantiated by the available measurement data for the EXFEL cavities
[208].

5.2.1 Pillbox cavity

A pillbox cavity, i.e. a cavity with a cylindrical shape, is considered as a numerical benchmark problem with an
available closed-form reference solution [110, Chapter 8.7]. The electromagnetic field of the fundamental TM
mode in a pillbox cavity is illustrated in Fig. 5.8. The cylindrical shape is assumed to have a length l = 10 cm
and an uncertain radius modeled as a uniformly distributed RV r ∼ U(4 cm, 6 cm). The discrete parameterized
eigenvalue problem (2.53) is, in this case, obtained by employing a curl-conforming IGA discretization [38].
IGA [108] aims for an exact representation of the shapes defined by a computer-aided design (CAD) software
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Figure 5.9: Illustration of the 10 lowest eigenfrequencies (including degeneratemodes) of a pillbox cavity for
different values of the radius r. Note that the tracking procedure only follows the 10 eigenmodes
with the smallest eigenvalue at r = 6 cm, which do not necessarily coincide with the first 10
eigenmodes for other radii. Hence, the difference between (a) and (b) regarding the computed
eigenfrequencies fi, for instance at r = 4 cm, is expected. The illustrations are based on [88,
Figure 7].

by employing B-splines or non-uniform rational B-splines (NURBS) [29, 166] as basis functions (2.52). It
was shown in [58, 59] that using IGA for cavity simulations can lead to an improved accuracy or reduced
computational cost. In addition, the isogeometric basis functions often allow for a straightforward and
smooth domain deformation, i.e. by moving control points, see [88] for details. Furthermore, the accurate
representation of the simulation domain is also particularly appealing in the context of shape UQ. Hence, we
employ the GeoPDEs and NURBS Octave packages [76] for an IGA discretization with second order basis
functions, leading to Nh = 21692 degrees of freedom (DoFs).

To show the relevance of mode tracking, we illustrate the eigenfrequencies of (2.53) at discrete points
{ri}10i=0 ⊂ [4 cm, 6 cm] in Fig. 5.9a. The eigenvalue problems are solved using the command eigs in Matlab
R2017a, i.e. based on Arnoldi’s method [129]. It can be seen that a tracking method is required in order
to assign the eigenvalues to specific modes without relying on cumbersome post-processing heuristics [34].
Next, we then employ the tracking procedure introduced in Section 4.5 where we use, for this first example,
the physical homotopy (4.123) instead of the algebraic homotopy (4.122). This ensures that all computed
eigenvalues are associated to physical problems and enables us to compare with the available reference
solution [110] for all intermediate points during the tracking. However, as we thus cannot employ (4.124),
the derivatives K′(r),M′(r) are here approximated with finite differences. The result of the tracking for
the 10 lowest eigenfrequencies at r = 6 cm is shown in Fig. 5.9b. It can be observed that the transition at
r ≈ 4.92 cm of the fundamental mode from TM to TE which is predicted by theory, is correctly captured
by the tracking method. It should be mentioned that in Section 4.5 we made for simplicity the assumption
of non-degenerate eigenmodes at t = 0, which corresponds to r = 6 cm in this test case. Although this
assumption is violated here, the tracking algorithm proposed in Fig. 4.18 can nevertheless be employed, as
the symmetry of the geometry which causes the degeneracy is preserved for all values of r, or equivalently
t.
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Figure 5.10: Mean value and 3σ-interval for the eigenfrequencies of the pillbox cavity with uncertain radius,
based on [88, Figure 8].

Next, we address UQ for the 6 different eigenmodes with the lowest eigenfrequencies at r = 5 cm. In particular,
we employ SC based on 5 univariate Clenshaw Curtis collocation nodes. Only the initial eigenvalue problem
for the first collocation point at r = 5 cm is solved with eigs, for the remaining collocation points the tracking
method is applied. We note that we always select a fitting initial stepsize such that the respective collocation
point is reached within one step. We further note that the stepsize is never reduced as the Newton iteration
(4.129) converges in all cases using less than 5 iterations. In particular, the Newton scheme takes on average
only 2.2 iterations to converge. Finally, we compute the mean and the standard deviation of the respective
eigenfrequencies, which are depicted in Fig. 5.10. For all modes, the relative errors in the numerical estimates
of both, expectation and standard deviation, are below 3.5 · 10−4 (with respect to the closed-form reference
solution).

We recall that Fig. 5.9b clearly shows that the tracking procedure is indeed necessary to obtain the correct UQ
results. However, as will be demonstrated in the following, it is also computationally more efficient than the
alternative approach of solving the eigenvalue problems at each collocation point independently. We note
that all respective computations are executed on a workstation with an Intel(R) Xeon(R) CPU E5-2687W
3.1GHz processor and 256 GB RAM. To allow for a fair comparison, we employ the Matlab backslash operator,
i.e. sparse Gaussian elimination, to solve the occurring linear equation systems in all eigenvalue solvers
which are considered. All computations are then repeated 10 times and the respective time measurements
averaged.

To evaluate the computational cost of the alternative approach of solving independent eigenproblems at each
collocation point, we employ on the one hand the Matlab command eigs which, in turn, internally relies on
the Arpack library [128] and on the other hand a Matlab implementation of the Jacobi-Davidson algorithm
[79, 187]. In both cases, we calculate 20 eigenvalues at each collocation point, as we are interested in UQ
for 10 eigenmodes and want to ensure that the respective eigenvalues are always included. This leads to
an averaged computation time of 192.6 s for solving 80.6 linear systems in the case of eigs and 931.4 s for,
on average, 42.0 iterations of the Jacobi-Davidson algorithm. Next, we discuss the computational cost of
the eigenvalue tracking method, which consists of the time to compute the derivatives by solving (4.127)
and the cost associated to the Newton iterations (4.129). Note that we exclude the cost for assembling the
system matrices because for UQ one could employ the algebraic homotopy (4.122) where no additional matrix
assemblies are needed. This leads to a computation time of 16.0 s for solving 3.2 linear equations systems per
collocation point and eigenpair.

Finally, we further validate the tracking method by considering a more sophisticated shape deformation. To
this end, we deform a 1-cell TESLA cavity shape [8] to a cylindrical pillbox cavity with length l = 11.54 cm
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(a) t = 0.0 (b) t = 0.5 (c) t = 0.75 (d) t = 1

Figure 5.11: Deformation of a 1-cell TESLA cavity (t = 0) to a pillbox cavity (t = 1), taken from [88, Figure 6].
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Figure 5.12: Application of the eigenvalue tracking method during the shape deformation of a 1-cell TESLA
cavity (t = 0) to a pillbox cavity (t = 1), based on [88, Figure 10].

and radius r = 3.5 cm, as depicted in Fig. 5.11. For the discretization we use Nh = 20 712 DoFs which
are, again, associated to second order basis functions. We then employ both homotopies, i.e. the alge-
braic homotopy (4.122) and the physical homotopy (4.122) which is associated to the illustrated shapes.
Fig. 5.12 shows the result of the tracking algorithm applied for both homotopies and for the lowest eigen-
frequencies of the TESLA cavity. We emphasize that both approaches, as expected, lead to the same pillbox
eigenmodes.

5.2.2 TESLA cavity with eccentric uncertainty

Next, we consider a real-world example, i.e. the TESLA cavity, illustrated in Fig. 2.1. A large number of
these superconducting RF cavities are, for instance, installed at DESY in Hamburg. Each cavity is a 9-cell
structure with a length of about 1m. A detailed description of the production process will be given in the
subsequent section; here we only note that single half-cells are produced by deep drawing of niobium sheets
which are then welded together using electron-beam welding (EBM) [71]. In this section, we study the impact
of possible misalignment of the cavity shape w.r.t. to the ideal axis due to manufacturing imperfections. To
this end, we collect measurement data of the individual cell center coordinates for approximately Nmeas ≈ 700
cavities from the DESY database [84, 208], as illustrated for one particular cavity in Fig. 5.13. In particular,
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Figure 5.13: Measurements of the cell center coordinates for a particular TESLA cavity, based on
[88, Figure 5.7].

this data is then arranged in a matrix

T =

⎡⎢⎢⎢⎢⎣
x
(1)
cell,1 y

(1)
cell,1 x

(1)
cell,2 y

(1)
cell,2 . . . x

(1)
cell,9 y

(1)
cell,9

x
(2)
cell,1 y

(2)
cell,1 x

(2)
cell,2 y

(2)
cell,2 . . . x

(2)
cell,9 y

(2)
cell,9... ... ... ... . . . ... ...

x
(Nmeas)
cell,1 y

(Nmeas)
cell,1 x

(Nmeas)
cell,2 y

(Nmeas)
cell,2 . . . x

(Nmeas)
cell,9 y

(Nmeas)
cell,9

⎤⎥⎥⎥⎥⎦ ∈ RNmeas×18, (5.10)

where (x
(j)
cell,i, y

(j)
cell,i) denote the center coordinates of the i-th cell of the j-th cavity w.r.t. the ideal cavity axis.

We note that each of the 18 columns approximately corresponds to realizations of a normally distributed RV,
however, there is a significant correlation between the coordinates of neighboring cells which can already
be seen in Fig. 5.13. Furthermore, considering 18 RVs with a spectral UQ method is challenging due to the
curse-of-dimensionality as discussed in Section 4.1.3. Hence, we apply a (truncated) discrete Karhunen–Loève
expansion (or equivalently principal component analysis [211]) in order to obtain (a reduced number of)
uncorrelated variables, in the following.
To this end, we introduce the symmetric and positive semi-definite covariance matrix C ∈ R18×18 associated
to (5.10) where

Cij :=
1

Nmeas − 1

Nmeas∑︂
m=1

(Tmi − µi)(Tmj − µj), (5.11)

and µ ∈ R18 denotes the sample mean

µi =
1

Nmeas

Nmeas∑︂
m=1

Tmi. (5.12)

We then compute an eigendecomposition of C as
C = VΣV⊤, (5.13)

whereΣ = diag(σ1, . . . , σ18) denotes a diagonal matrix containing the eigenvalues {σi}18i=1 ofC andV ∈ R18×18

contains the corresponding orthonormal eigenvectors. In the following, we assume without loss of gener-
ality that Σ,V are ordered s.t. σ1 ≥ . . . ≥ σ18. Then, the least relevant contributions can be neglected by
approximating the covariance matrix as

C ≈ Ct := VtΣtV⊤
t , (5.14)

80



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1

z [m]

y
[m

]

Figure 5.14: Illustration of a 9-cell TESLA cavity with eccentric deformation where the cell centers are illus-
trated by black dots. For visualization purposes the deformation is scaled by a factor of 500.
The illustration is based on [88, Figure 13].

Refinement level Nh fTM010 [GHz] ∆ [kHz]
1 7772 1.313 948 189 -
2 24 960 1.301 478 100 12 470.089
4 111 140 1.299 939 735 1538.365
6 299 992 1.299 971 920 32.185
8 631 836 1.299 969 453 2.467

Table 5.1: The eigenfrequency fTM010 of the accelerating mode in the 9-cell TESLA cavity is numerically
evaluated for different levels of mesh refinement. In the last column, the difference w.r.t. the
eigenfrequency of the previous refinement level is shown. The table is taken from [88, Table 1].

whereΣt = diag(σ1, . . . , σNt)withNt < 18 andVt ∈ R18×Nt contains the respective eigenvectors. Accordingly,
the 18 RVs associated to the cell center coordinates can be approximately represented as⎡⎢⎢⎢⎢⎢⎣

xcell,1
ycell,1
...

xcell,9
ycell,9

⎤⎥⎥⎥⎥⎥⎦ ≈
⎡⎢⎢⎢⎢⎢⎣
µ1
µ2
...
µ17
µ18

⎤⎥⎥⎥⎥⎥⎦+VtΣ
1/2
t

⎡⎢⎣ Ξ1
...

ΞNt

⎤⎥⎦ , (5.15)

where Ξ is then given as standard normally distributed random vector with Nt mutually independent elements
[62]. In particular, in this case we choose Nt = 7 as it fulfills the following condition for the explained
variance ∑︁Nt=7

i=1 σi∑︁N=18
i=1 σi

≥ 0.95. (5.16)

We note that Ξ may not have a clear physical meaning in contrast to the cell center coordinates, however,
the reduced number of RVs, i.e. 7 instead of 18, strongly improves the computational efficiency of an SC
method.
We then employ SC on a Smolyak sparse grid as introduced in Section 4.1.3 of level 2 based on Gaussian points,
which has in total 127 collocation points [10, 155]. For each collocation point, we can construct the respective
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Figure 5.15: Standard deviations of the eigenfrequencies in the first passband for a TESLA cavitywith eccen-
tric deformations which are 50 times bigger than the measured ones, based on [88, Figure 12].
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Figure 5.16: Shape parameters L,Rir, Req of a TESLA cavity cell.

deformed geometry based on the corresponding cell center coordinates as illustrated in Fig. 5.14, see [88]
for details. Then, the eigenvalue tracking algorithm can be applied for each collocation point based on the
algebraic homotopy (4.122). However, the measured eccentric deformations, which are for instance shown in
Fig. 5.13, only mildly affect the eigenfrequencies of the first monopole passband, i.e. the magnitude of the
variation is below 1 kHz and can be compensated by the initial compulsory tuning procedure [123]. Hence, for
the numerical study, we artificially scale the deformations by 50 to show that the proposed UQ workflow can
be employed for arbitrary variations in the geometry where for instance linearization approaches might fail.
The frequency shifts for the fundamental modes caused by these increased deformations have a magnitude of
about ∼ 10 kHz and, hence, an IGA discretization with second order basis functions andNh ≈ 600000 provides
a suitable accuracy, see Table 5.1. Finally, the calculated standard deviations of the eigenfrequencies of the
fundamental monopole modes are shown in Fig. 5.15. It can be observed that the first 7 modes are significantly
less sensitive than the last two modes. However, in practice, before installation of the cavity, the eigenfrequency
and field flatness of the accelerating mode is tuned by further mechanical deformations with an automatic
cavity tuning machine which was not yet considered in this study. It can be expected that this procedure
then reduces the uncertainty in the last modes, as will be shown in the next section, where we address a UQ
analysis that takes the full cavity production chain into account.

5.2.3 TESLA cavity with uncertain radii

We now report on a comprehensive UQ study for the EXFEL cavities taking another source of uncertainty
into account. In particular, Fig. 5.16 depicts the shape of a TESLA cavity cell where we will consider random
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Figure 5.17: Illustration of the welding of 8 dumb-bells (DB) and end-groups (EGS, EGL) to one EXFEL cavity,
taken from [60, Figure 2].
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Figure 5.18: Flowchart describing the TESLA cavity manufacturing chain, based on [60, Figure 3c].

perturbations of the equatorial radii and iris radii of each cavity cell. For this study, we will discuss all steps of
the manufacturing chain and propose to mimic most of them in a simulation workflow. Surrogate modeling
based on dimension-adaptive SC as introduced in Section 4.2.2 is employed to keep the computational
workload manageable and allows to quantify uncertainties and compute sensitivity indices, in particular Sobol
indices and Borgonovo indices which were introduced in Section 4.1.4.
We address, again, the parametrized eigenvalue problem (2.53), where the domain D corresponds to the
shape of a TESLA cavity with Nc = 9 cells. We now assume that the shape is parameterized in terms of
the equatorial radii R(i)

eq , i = 1, . . . , Nc and the iris radii R(i)
ir , i = 1, . . . , Nc + 1 of the different cells. The

perturbations of these values with respect to their nominal values are then denoted by ∆R
(i)
eq and ∆R

(i)
ir which

are considered as parameters in the following, i.e.

ξ = [∆R
(1)
eq , . . . ,∆R

(9)
eq ,∆R

(1)
ir , . . . , R

(10)
ir ]. (5.17)

The parameterized simulation model is, in this case, set up based on Matlab and the Superlans code [146],
i.e. a 2D-axisymmetric FEM model, which can now be employed as the parameters (5.17) do not lead to
eccentricity and, hence, preserve the azimuthal symmetry of the cavity.
The EXFEL [4] accelerates electrons to a particle velocity close to the speed of light with an energy of up to
17.5GeV by employing 808 TESLA cavities. Each of the Ncav > 808 produced cavities consists of 8 dumb-bells
and 2 end-groups, which are welded together, as illustrated in Fig. 5.17. To compensate for manufacturing
imperfections and obtain acceptable tolerances, e.g. to ensure a field flatness FF > 90% and a deviation of
the π-mode frequency from its nominal value |f8 − 1.3GHz| < 100 kHz, dedicated procedures are employed.
These different procedures are summarized in Fig. 5.18. In the following, we discuss the different steps and
how they can be represented in the simulation workflow.

1. Step: Production
In this step, the main subcomponents of Ncav cavities, as shown in Fig. 5.17, are produced. To mimic
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Figure 5.19: Comparison of different PDFs. The beta distribution and the uniform distribution have bounded
support in [−0.3mm, 0.3mm] while the normal distribution has unbounded support. The illus-
tration is based on [60, Figure 7].

the imperfect manufacturing process on the simulation side, we create Ñ cav = 106 random ("virtual")
cavities. To this end, we generate for each virtual cavity seven independent random mid cells and two
end cells by drawing random realizations of the random vector Ξprod associated to the parameters given
in (5.17). We assume that the elements of Ξprod are mutually independent which is often justified for
mass-production processes where the individual parts are produced independently of each other. We
further assume that each RV Ξprod,i is beta-distributed with PDF

ρ(ξ) =
140

(u− l)7

{︄
(ξ − l)3(u− ξ)3, l < ξ < u,

0, else, (5.18)

where l = −0.3mm is the lower bound and u = 0.3mm the upper bound. As can be seen in Fig. 5.19,
the particular beta distribution (5.18) represents an approximation of a normal distribution with a
2σ interval of ±0.2mm. However, contrary to the respective normal distribution, (5.18) has bounded
support [211, Appendix B] which avoids non-physical parameter values in numerical studies.

2. Step: Trimming
The dumb-bells and end groups are trimmed in order to compensate for shape deviations and achieve a
suitable cavity length. However, as we generate the virtual cavities based on elementary cells instead of
dumb-bells, an explicit modeling of the trimming is not possible but it will be indirectly considered due
to the length constraint introduced in the following step.

3. Step: Selection and sorting
Two end-groups and 8 dumb-bells are selected and the dumb-bells then sorted such that the impact of
the manufacturing imperfections on the desired field distribution of the HOMs is minimized. To this
end, a dumb-bell with average frequency is placed at position 8 (last position) while the remaining
dumb-bells are sorted w.r.t. a decreasing fundamental eigenfrequency. The corresponding virtual 9-cell
cavity is constructed from the random virtual components of the first step by applying a respective
sorting procedure: For all middle cells the fundamental eigenfrequency is computed by solving a one-cell-
eigenvalue problem. Then, the cell with the eigenfrequency which is the closest to the average frequency
is placed at position 8 while the remaining cells are ordered according to a decreasing frequency on
positions 2 to 7. Furthermore, a constraint on the total cavity length

9∑︂
i=1

∆L(i) < 3mm, (5.19)
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Figure 5.20: Estimated PDFs of the 19 correlated input RVs, based on [60, Figure 8].

will be imposed. If (5.19) is not fulfilled after the tuning in the 6-th step, we disregard the respective
virtual cavity. We note that this constraint is in real manufacturing already taken into account by
trimming and compensation effects.

4. Step: Welding
All components are welded to each other, see [192] for details. In the simulation workflow, given that we
simulate cells instead of dumb-bells, we model this step by averaging the respective iris radii of adjacent
cells. In the previous section, the effect of an eccentric miss-alignment of cells during the welding was
investigated. As its impact on the fundamental eigenfrequencies was negligible, we neglect it here. We
note that the procedures for selection, sorting and welding affect the PDFs of the uncertain radii. The
corresponding random vector is denoted by Ξsort, which now contains stochastic dependencies between
its elements. The virtual cavities at this stage (which also comply with the length constraint) represent
a sample {Ξ(m)

sort}
Ñ sel
m=1 of size Ñ sel = 809641. This sample is then employed to infer the univariate PDFs

of Ξsort with KDE as explained in Section 4.1.1. The resulting PDFs are shown in Fig. 5.20.
5. Step: Chemical treatment

The chemical treatment of the cavities reduces spikes and impurities, see [186, 194] for details. However,
it cannot be modeled appropriately in the present setting as a complex parameterization and multi-scale
analyses or at least very fine resolutions would be necessary.

6. Step: Tuning
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for ∆L(1) obtained by the virtual tuning procedure. It can be seen that the tuning values lie on
the 1.3GHz contour line shown in green. The figure is based on [60, Figure 9].

In this step, the cavity is mechanically compressed or stretched by an automatic tuning machine [123]
such that the π-mode frequency and the field flatness are improved. We apply a virtual tuning scheme
which tunes each individual cell to 1.3GHz by adapting its length L(i). To this end, a non-linear
root-finding problem

f
(i)
0

(︁
L(i)

)︁
− 1.3GHz = 0, (5.20)

is solved where f (i)0 refers to the fundamental eigenfrequency of a one-cell eigenvalue problem in the
i-th cell. In this case, we employ the Matlab function fzero to solve (5.20); however, other methods, as
bisection or Newton’s method, would be equally possible. Fig. 5.21 shows the π-mode frequency of the
9-cell cavity with respect to the equator radius and the length of the first cell. It can be seen that the
tuning procedure, as expected, chooses suitable cell lengths such that the nominal value of 1.3GHz is
achieved. Furthermore, in 500 test cases, which we considered, all resulting cavities had an acceptable
field flatness of FF > 96%.

7. Step: Final preparation (for operation)
The final preparation procedures include, for instance, a final buffered chemical polishing etching and
the cooldown to 2K. They are described in detail in [186, Figure 2] and differ depending on the
manufacturer. This step cannot be considered in the present simulation setting because of involved
numerical modeling and insufficient data.

8. Step: Cavity
At this step, the fundamental mode frequencies of the Ncav cavities are measured under operation
temperature. Accordingly, the eigenproblem (2.53) is solved for each virtual cavity in order to compute
statistics based on the first nine eigenfrequencies. We note that eigenvalue tracking as described in
Section 4.5 should be generally used in this step; however, we observed that for the considered particular
parameter variations no crossings of the fundamental eigenfrequencies occur, see Fig. 5.22.

Next, we discuss an efficient implementation of the described simulation and UQ workflow. The tremendous
computational effort of solving Maxwell’s eigenproblem in steps 3 and 8 for a large number of virtual cavities
can be avoided by constructing surrogate models. In particular, we employ the dimension-adaptive SC
Algorithm (2) based on unweighted Leja nodes in order to reach a high uniform accuracy. For step 3, we
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Figure 5.22: Expected eigenfrequencies of the fundamental modes in a 9-cell TESLA with uncertain radii.
The bars show the 5σ intervals. The figure is based on [60, Figure 11].

Table 5.2: Expected eigenfrequencies of the fundamental modes and their standard deviations, taken from
[60, Table 2].

Mode Mean [MHz] Std. dev. [MHz]
0 1,276.45 0.15

1 1,278.50 0.13

2 1,281.64 0.11

3 1,285.60 0.08

4 1,289.85 0.06

5 1,293.84 0.04

6 1,297.11 0.02

7 1,299.25 0.00

8 1,300.00 0.00

construct 4-variate SC approximations with a computational budget B such that 50 one-cell eigenproblems
are solved. For the 19-variate surrogate model required for step 8, the budget B is chosen such that 500 9-cell
eigenproblems are solved. Cross-validation at random sample points indicates for all polynomial surrogates
models an error in the fundamental eigenfrequencies below 10 kHz and, hence, also below the expected
deviations.
Next, all statistical measures can be computed based on the sample of eigenfrequencies evaluated in step
8. In particular, we use the MC estimates (4.1) and (4.4) to calculate the mean and the standard deviation
of the eigenfrequencies, which are shown in Fig. 5.22 and Table 5.2. Note that the results agree well with
the measurement data reported in [60, Figure 5 and Table 1] where an increasing standard deviation w.r.t.
a decreasing mode number can be observed as well. The mean and standard deviation of the cell-to-cell
coefficient kcc defined in (2.7) are then computed in the same way

E[kcc] ≈ 1.82802, Std[kcc] ≈ 0.01897. (5.21)

In the following, we conduct a sensitivity analysis as introduced in Section 4.1.4 for the cell-to-cell coupling
coefficient kcc. First, we estimate Sobol indices, although they are based on the assumption of independent
parameters, using the OpenTurns implementation of Saltelli’s algorithm based on the kernel density estimates
illustrated in Fig. 5.20. The results are computed by evaluating the surrogate model 4 · 107 times and shown
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Figure 5.23: Estimated sensitivity indices for the coupling coefficient kcc, taken from [60, Figure 12].

in Fig. 5.23a. It can be seen that the variations of the cells in the center have a stronger influence on kcc. Next,
we estimate Borgonovo indices, which are suited for the correlated input data, using an approach based on
KDE [63]. The results are shown in Fig. 5.23b. As explained in Section 4.1.4, Borgonovo indices are based on
another sensitivity measure than Sobol indices, and, hence, different magnitudes are expected. However, we
note that the results are still similar as they identify, again, a larger influence of the center cell variations.
Contrary to the Sobol indices results, the Borgonovo index of∆R(8)

eq is surprisingly large, which, in our opinion,
can be attributed to the special treatment of the respective cell in step 3 during the sorting procedure. In
particular, a large magnitude of ∆R(8)

eq can implicitly also imply larger deviations of the other middle cells, as
we place the cell which has the closest eigenfrequency to the average eigenfrequency of the cavity cells on
this position. We note that we also repeated the whole study where we omitted the special treatment of cell 8
in the sorting procedure, in which case the Borgonovo index of ∆R(8)

eq is then strongly reduced, confirming
our interpretation.

To conduct a preliminary inverse analysis, we proceed, as in [193], for the remainder of this section with the
simplifying assumption that all iris radii deviations ∆R(i)

ir , i = 1, . . . , Nc + 1 of a cavity are equal and, thus,
also drop the index i. This allows to estimate geometric deviations based on measurements of the cell-to-cell
coupling coefficient kcc. To this end, we start by rerunning the full UQ workflow where the overall iris radii
deviation ∆Rir is now modeled as a single beta distributed RV. The resulting sensitivity indices are presented
in Fig. 5.24. It can be seen that the coupling coefficient kcc is strongly impacted by ∆Rir while the other
parameters only have a minor influence. Note that both Sobol indices attribute more than 95% of the output
variance to∆Rir. Hence, we neglect the deformations in the equatorial radii in the following, since considering
all input parameters in an inverse problem would require significantly more sophisticated numerical methods,
see e.g. [191]. Here, we then focus on estimating the parameter ∆Rir based on the available measurement
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Figure 5.24: Sensitivity indices for the coupling coefficient kcc when the same iris radius deviation ∆Rir is
considered for all cells, taken from [60, Figure 13].
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Figure 5.25: Cell-to-cell coupling kcc w.r.t. variations of the iris radius, taken from [60, Figure 14].

data of the coupling coefficient kcc for the EXFEL cavities. The map ∆Rir ↦→ kcc is illustrated in Fig. 5.25. It
can be seen that, in the considered range, the function is monotonic and even almost linear. Next, we collect
the measured fundamental eigenfrequencies from the DESY Database [208] for Ncav = 826 TESLA cavities.
Then, by numerically inverting

∆Rir,i ↦→ kcc,i, i = 1, . . . , Ncav, (5.22)
one can estimate the parameter ∆Rir,i for the i-th cavity. Note that the subscript i, 1 ≤ i ≤ Ncav denotes the
cavity number while previously the superscript i denoted the location of an individual iris radius deviation. In
this case, ∆Rir,i is computed using the scipy implementation of the L-BFGS-B algorithm [46, 215], i.e. a quasi-
Newton method. However, again, other methods, as bisection or Newton’s method, could be employed as well.
Finally, statistical measures of the estimated iris radius variations are given in Table 5.3. Note that according
to the EXFEL specification, the iris radii before welding should be within ±0.2mm around their nominal value.
This distribution of iris radii is expected to vary during certain steps of the manufacturing chain, for instance
the chemical treatment can have a significant impact. This shift is estimated by the presented method as
E[∆Rir,i] = 0.243mm, which is shown in Table 5.3 (last row). The corresponding standard deviation Std[Rir,i],
where the cavities from both vendors are considered together after the full manufacturing chain, is still within
the specification limit as 0.17mm < 0.2mm. When the manufacturers are considered separately, it can be
observed that both achieve approximately a 3σ level as the respective standard deviations are only 0.057mm
and 0.073mm.
In summary, in this section UQ for superconducting cavities was addressed. It was demonstrated that, in general,
eigenvalue tracking techniques, as proposed in Section 4.5, are necessary to ensure a consistent matching of
eigenmodes and allow for an efficient SC approximation. First, the impact of eccentric deformations was studied
based on existing measurement data for the EXFEL TESLA cavities where the Karhunen-Loève decomposition
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Table 5.3: Sample mean and standard deviation of kcc for in total Ncav = 826 cavities as well as statistics
about the respective estimated iris deformations, taken from [60, Table 3].

Manufacturer E [kcc,i] Std [kcc,i] E [∆Rir,i] Std [∆Rir,i]

Research Instruments GmbH (RI) 1.854 0.016 0.087mm 0.057mm

Ettore Zanon S.p.A. (ZA) 1.941 0.021 0.400mm 0.073mm

RI+ZA 1.897 0.047 0.243mm 0.170mm

could be applied to address correlations in the input data and reduce the dimension of the parametric space.
The eccentric deformations were found to have a small impact on the fundamental mode spectra. Next, the
uncertainties in the highly relevant shape parameters for the equatorial and iris radii were considered. For a
proper consideration, the production chain of the EXFEL cavities was modeled by a comprehensive simulation
procedure. To keep the computational effort manageable, the dimension-adaptive scheme suggested in
Section 4.2.2 was employed at various steps. The estimated sensitivity indices give valuable insights, e.g. the
expert knowledge that the cell-to-cell coupling coefficient is highly sensitive to the iris radius is confirmed
systematically. Finally, the SC approximation was employed to estimate statistics about the actual iris radius
variations based on measurements of the fundamental mode spectra at cryogenic temperatures. The estimated
standard deviations are for both vendors within the specification.

5.3 Uncertainty quantification for Maxwell’s source problem

In this section, we apply the proposed UQ methods to Maxwell’s source problems with uncertain input
data, as introduced in Chapter 2. In particular, we first numerically investigate the suggested conformally
mapped (adjoint-based) spectral methods where we consider an optical grating coupler [167] as a benchmark
application. Next, we present another UQ study for a periodic optical structure, i.e. a gradient index meta
surface [181], where we study and compare the impact of periodic and non-periodic shape deformations,
respectively. Then, an SRR array is addressed as a benchmark problem for periodic optical structures of finite
size subject to shape uncertainty. For this type of models, we propose a dedicated UQ workflow based on a
decoupled uncertainty propagation. In particular, we combine SC on the unit cell level with an SMA as well as
the MFMC method introduced in Section 4.1.2. Finally, we demonstrate the effectiveness of the suggested
adjoint-based yield estimation method from Section 4.4, considering an established academic benchmark
problem of an electric waveguide.

5.3.1 Optical grating coupler

In this subsection, we investigate the spectral UQ methods proposed in Section 4.2.1, 4.2.2, and 4.3, in detail.
To this end, an optical grating coupler [61, 167] is employed as a non-trivial benchmark model in the form of
the parametrized unit cell problem (2.57)-(2.58) introduced in Section 2.3.2. We first describe the numerical
model as well as the considered uncertainties in material and geometry. Then, conformally mapped GPC and
mapped SC as well as the extension in terms of adjoint error estimates are applied in subsequent order. The
content and structure of this section are based on our works [88, 90]. Note that the considered model is a
periodic structure where one can distinguish between two different classes of uncertainties referred to as
global and local in the following. In this section, we only address global uncertainties, that model a systematic
offset in the fabrication, e.g. variations of the material properties for the full structure or global variations of

90



MIM plasmon mode
135nmR

=
60
nm

T = 20 nm

x

z θ

Au

Au

Air

Al2O3
Ag

t1 = 12 nm
t2 = 14 nm
t3 = 5 nm

incident wave

Figure 5.26: Three unit cells of an optical grating coupler [167] which is periodically extended in x-direction:
an incident plane wave in free space directly excites a MIM plasmon mode which then propa-
gates in horizontal direction. The coloring indicates the magnitude of the electric field (for a
specific, arbitrary chosen, point in time). The geometry parameters representing the radius R
and depth T of the grating as well as t1, t2, t3 denoting the width of the three upper layers are
illustrated and their nominal values are given. The illustration is based on [89, Figure 9].

geometry parameters, and affect all unit cells in the same way. However, in the next section, we then present
another study where also local uncertainties are taken into account, which break the periodicity of the unit
cells.

5.3.1.1 Numerical model

We consider an optical grating [61, 167] which is illustrated in Fig. 5.26 and couples power from a plane wave
in free-space at optical frequency directly into a metal-insulator-metal (MIM) plasmon mode, propagating
along the metallic surfaces. In [167], it was shown that the MIM resonance strongly depends on the depth of
the grating, and, hence, evaluating the impact of the nano-scale manufacturing tolerances is highly relevant.
The grating coupler can be represented by the model introduced in Section 2.1.2, as we assume that the
structure is periodic in x-direction with dx = 135 nm and infinitely extended in y-direction such that an
arbitrary unit cell width dy can be chosen. It is excited from the top (at ∂Dz+) by a TM plane wave, such
that

πT
[︁
Einc

]︁
= πT

[︁
ETM,00

]︁ at ∂Dz+ , (5.23)

with oblique propagation direction θinc = 53◦, φinc = 0◦ and angular frequency ω = 2π (414THz). As QoIs we
consider the reflection coefficients (2.25) as they indicate the coupling efficiency of the coupler. In particular,
here we only address the fundamental scattering parameter s.t. Q := STM,00 due to the negligible magnitude
of all other scattering parameters for this particular model.
The dispersive material properties of the noble metals are modeled based on the measurement data of the
reflectivity studies from Johnson and Christy [117]. These are shown in Fig. 5.27 along with their given error
estimates. Note that from the refractive indices n and the extinction coefficients κ, the complex permittivity is
obtained as

ε =
(︁
n2 − κ2 − i(2nκ)

)︁
ε0, (5.24)
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Figure 5.27: Dispersive material properties of gold and silver [117]. The bars indicate the respective error
estimates and the dashed line the considered frequency in the numerical model.

see e.g. [139, Chapter 1.1]. However, the data is only provided for discrete frequency sample points. Therefore,
we need to interpolate between those sample points in order to obtain the material properties at the considered
frequency of f = 414THz. To this end, we employ the three available frequency sample points which are the
closest to f = 414THz, i.e. [f0, f1, f2] = [396.55, 425.57, 454.58]THz where we denote the respective material
parameters as

βαi , where α ∈ {Au,Ag}, β ∈ {n, κ}, i ∈ 0, 1, 2. (5.25)
These data values are then interpolated using 2nd order Lagrange polynomials as

βα(f) =

2∑︂
i=0

βαi li(f), li(f) =

2∏︂
j=0,j ̸=i

f − fj
fi − fj

, (5.26)

to obtain the desired material parameter values at f = 414THz.
Next, we discuss the implementation of the deterministic numerical model and its parameterization in terms
of the geometry parameters depicted in Fig. 5.26. The strong formulation is given by (2.24) where the first
order Floquet Boundary condition (2.24e) is indeed a suitable choice as the fundamental Floquet modes
are the only propagating modes for the considered unit cell dimensions. Gmsh [92] is used to create the
required periodic mesh for the nominal design. The discrete system (2.41) is obtained based on the FE
library FEniCS [3]. We note that, as FEniCS 2017.2.0 does not work with complex numbers, the real
and imaginary parts of Auc, fuc,qTM,00 are assembled separately, employing 2nd order Nédélec elements of
the 1st kind. Then, using scipy and numpy, the quasi-periodic boundary conditions (2.10a), (2.10b) are
imposed and a sparse LU decomposition is employed to solve the linear system (2.41) with Nh = 56200 DoFs.
Note that, according to (4.116), the dual solution zh can then be obtained with negligible computational
cost.
The numerical model is parameterized in terms of the geometry parameters, using a design element approach
[35] which avoids the need to re-mesh for different parameter configurations. To this end, the unit cell domain
is split into 5 design elements Dm, m = 1, . . . , 5 as illustrated in Fig. 5.28a. The upper and lower boundary of
each design element are described using NURBS [166] curves

Ci(ζ; ξ) =
n∑︂

j=0

Rj(ζ)Pj,i(ξ), ζ ∈ [0, 1], i = 1, . . . , 6, (5.27)
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Figure 5.28: Illustration ofmesh deformation approach employing design elements, based on [89, Figure 11].
a) The unit cell domainD is decomposed in 5 design elementsD1, . . . , D5. b) A mapping from
the unit square is defined for each design element, see (5.28). c) Initial mesh for the nominal
design parameter ynom. The mesh is chosen inadequately coarse for illustration purposes. d)
By evaluating the mapping (5.28) for each mesh node of the original mesh, the respective
deformed mesh for the geometry parameters R = 50nm, T = 25nm, t1 = 18nm, t2 =
10nm, t3 = 10nm is obtained.

where Rj : [0, 1]→ R denote the rational basis functions and Pj,i(ξ) ∈ R3 the control points, see [166] for
details. Next, one can define mappings from the unit square [0, 1]× [0, 1] to each design element Di(ξ) such
that

Tm(ζ, η; ξ) = ηCm,u(ζ; ξ) + (1− η)Cm,l(ζ; ξ), ζ, η ∈ [0, 1], m = 1, . . . , 5, (5.28)

where Cm,l and Cm,u denote the lower and upper interface curve of the design element Dm, as illustrated
in Fig. 5.28b. Then, given the initial mesh for the nominal design parameters ξnom, for each mesh node
with coordinates xj ∈ Dm, the corresponding coordinates ζj , ηj on the unit square are found by solving the
non-linear root-finding problem: find ζj , ηj ∈ [0, 1], s.t.

Tm(ζj , ηj ; ξ
nom)− xj = 0, xj ∈ Dm(ξnom). (5.29)

Problem (5.29) can be reformulated as an optimization problem and is solved here using sequential quadratic
programming (SQP) [156, Chapter 18]. Note that choosing adequate starting values for SQP might be
required to achieve convergence. Although they depend on the particular parameterization of the NURBS
curves Cm,l,Cm,u, it is usually straightforward to choose suitable starting values. Finally, one can obtain for
different geometry parameters ξ the respective deformed meshes by evaluating (5.28), which yields the new
coordinates for each mesh node. This is illustrated in Fig. 5.28c and Fig. 5.28d for one particular parameter
configuration.

In the following, we investigate the mapped spectral UQ methods proposed in Chapter 4. To this end, we
first only consider Nξ = 3 sensitive geometry parameters for the conformally mapped GPC approximation
and postpone the high-dimensional UQ study to the subsequent subsection, which is then addressed with the
dimension-adaptive mapped SC method.
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Figure 5.29: Conformally mapped GPC for an optical grating coupler with Nξ = 3 beta distributed input
parameters.

5.3.1.2 Conformally mapped GPC approximation

In this subsection, three uncertain parameters ξ ∈ [−1, 1]3 are considered. They are used to model variations
around the nominal geometry parameters illustrated in Fig. 5.26 as follows: The thicknesses of the two
upper layers are represented as t1 = 12nm +∆ξ1, t2 = 14nm +∆ξ2, respectively, and the grating depth as
T = 20nm + ∆ξ3, where ∆ = 2nm. These parameters ξi, i = 1, . . . , 3 are then considered as realizations
of independent beta distributed RVs Ξi, i = 1, . . . , 3 with PDF ρi in the form of (5.18) where l = −1 and
u = 1. The corresponding transformed density (4.52) is illustrated in Fig. 5.29a. Furthermore, Fig. 5.29b
presents a few GPC basis functions, i.e. Jacobi polynomials in this case, and the corresponding mapped basis
functions.
In a first step, we investigate the decay of the GPC coefficients in order to study the smoothness of the map
ξ ↦→ Q, illustrated in Fig. 5.30, numerically. If this mapping is analytic, the Fourier coefficients sm of the GPC
approximation (4.24) are expected to decay exponentially s.t.

|sm|2 ≤ Ce−
∑︁Nξ

n=1 cnmn , (5.30)

where C, c1, c2 . . . , cNξ
are positive constants, see, e.g. [154] where Legendre polynomials are addressed.

Considering the maximum of the magnitude of the GPC coefficients sm with the same maximum degree w,
we obtain

max
||m||∞=w

|sm|2 ≤ max
||m||∞=w

Ce−
∑︁N

n=1 cnmn = Ce−min||m||∞=w

∑︁N
n=1 cnmn ≤ Ce−(minn cn)w, (5.31)

i.e. an exponential convergence w.r.t. the maximum-degree w is expected.
We then compute a GPC approximation in the form of (4.24), however, in this subsection we replace the
total-degree basis by a tensor-product construction of maximum degree p, i.e. the multi-index set ΛTD

mmax
is

replaced by
ΛTP
mmax

:=
{︂
m : 0 ≤ ∥m∥∞ =

(︂
max

1≤n≤Nξ

mn

)︂
≤ mmax

}︂
, (5.32)

in all definitions of the sections 4.1.3.1-4.2.1. The tensor-product construction is here employed in order
to study the convergence of the coefficients in the form of (5.31) and it is also beneficial for the particular
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Figure 5.32: Convergence study employing the (mapped) GPC approximations for the optical grating cou-
pler withNξ = 3 uncertain parameters, based on [90, Figure 9]. a) Convergence of the empirical
RMSE (4.89). b) Convergence of the mean value. c) Convergence of the standard deviation.

numerical model due to the strong interaction effects of the parameters, which will be discussed later. We
employ a tensor-product basis of degree mmax = 15 and use a Gauss quadrature of order 17 for the pseudo-
spectral projection. All GPC coefficients are then depicted in Fig. 5.31 which indeed show the exponential
decay (5.31). This is considered as a numerical indication that the approximated mapping from the inputs
to the complex-valued scattering parameter ξ ↦→ Q is smooth and justifies the use of (mapped) spectral
polynomial methods. In addition, we compute a mapped GPC approximation (4.64) of the same degree where
the respective mapped coefficients ŝm are shown in Fig. 5.31 as well. A faster convergence of the mapped
coefficients can be seen and, hence, the mapped GPC approach is expected to lead to an enhanced convergence
which is confirmed in the following.

We construct (mapped) tensor-product GPC expansions of the magnitude of the S-parameter |Q(ξ)| with
increasing degree mmax. The corresponding (mapped) coefficients are computed using pseudo-spectral
projection of degree mmax + 1. To access the accuracy of the respective approximations, we employ the
empirical RMSE (4.89) with Ncv = 1000. The resulting convergence plots are presented in Fig. 5.32a where
the mapped approach exhibits an approximately 30% faster convergence than standard GPC. We emphasize
that the corresponding speed-up factor (for a fixed accuracy) scales exponentially w.r.t. Nξ and, hence,
in this case the computational cost, i.e. the number of model evaluations, can be reduced by a factor of
approximately 2. Fig. 5.32b and Fig. 5.32c show very similar results for the computed mean values and
standard deviations where the respective reference solutions are here computed using Gaussian quadrature
of degree 30. Finally, the mapped GPC approximation of degree 14, i.e. the most accurate of the readily
available surrogate models, is then employed to estimate the Sobol sensitivity indices, which show a significant
discrepancy between the first-order and total-order Sobol indices, see Fig. 5.33. We note that the main-effect
indices only add up to ≈ 34% while the other ≈ 66% correspond to the strong interaction effects of the
inputs.

5.3.1.3 Conformally mapped adaptive SC approximation

Next, we apply the (mapped) dimension-adaptive SC Algorithm 2 and its adjoint-based counterpart Algorithm
3. First, for comparison we address the three-dimensional setting studied in the previous section before
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Note that these models require a residual evaluation at each cross-validation point.

proceeding with a moderately high-dimensional UQ study. The resulting convergence plot is presented in
Fig. 5.34, where the abscissa now represents the number of model evaluations. It can be seen that, although
the number of parameters Nξ = 3 is rather small, the dimension-adaptive sparse SC algorithms are already
beneficial compared to the isotropic (mapped) GPC approach. We emphasize that the improved (doubled)
convergence order of the adjoint error indicator (4.97c) is confirmed numerically. Furthermore, it shall be
noted that the conformal 9-th order sausage map (4.48) leads to a significant convergence improvement for
all spectral UQ methods considered in the present setting.

In the following, we address a moderately high dimensional setting with Nξ = 17 random inputs Ξ, i.e. the
12 material parameters (5.25) and the 5 geometrical parameters R, T, t1, t2, t3 introduced in Fig. 5.26. Note
that all uncertain parameters are taken into account by the uncertain complex permittivity in the form of
(2.54). The RVs Ξi, i = 1, . . . , 17 are assumed to be independent and beta-distributed in the form of (5.18).
The range parameters l and u of the beta distribution associated to the geometrical parameters are now
given by the respective nominal values ±1.5 nm, i.e. modeling a small 2σ interval of ±1 nm. For the material
parameters (2.54) the ranges are chosen according to the error estimate provided by Johnson and Christy for
the instrumental accuracy of the reflection and transmission measurements [117]. In particular, it is assumed
that the given error estimate refers to a 2σ interval as no further information on the measurement uncertainties
are specified.
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Table 5.4: Computational cost and accuracy of different spectral approximations of the optical grating cou-
pler with 17 uncertain input parameters, based on [89, Table 3]. The column Solves specifies
the computational cost in terms of the number of assemblies and sparse LU decompositions of
different system matrices. The column Residuals specifies the number of residual evaluations
where the associated computational cost can almost be neglected to the solver cost.

Method Solves Residuals Max. Error (5.33)
Total-degree GPC 613 0 7.61× 10−1

Smolyak sparse-grid (level 2) 613 0 1.73× 10−1

Adaptive Leja SC 613 0 8.56× 10−2

Adaptive mapped Leja SC (Iso-Map) 613 0 3.59× 10−2

Adaptive mapped Leja SC (Aniso-Map) 613 0 3.85× 10−2

Adaptive adjoint-based Leja SC 558 613 8.46× 10−2

Adaptive adjoint-based mapped Leja SC (Iso-Map) 563 613 3.57× 10−2

Adaptive adjoint-based mapped Leja SC (Aniso-Map) 563 613 3.82× 10−2

Adaptive adjoint-based mapped Leja (Aniso-Map)
with adjoint-error correction 3000 30000 1.25× 10−3

Next, we consider different spectral approximations. The proposed (mapped) dimension-adaptive schemes
Algorithm 2 and Algorithm 3 are compared with two sparse non-adaptive approximations, i.e. total-degree GPC
and isotropic Smolyak sparse-grid SC based on Clenshaw Curtis nodes. As before, we use Chaospy [78] for GPC,
the sparse-grid-matlab-kit [12] for the Smolyak sparse-grid SC and an in-house code for the (adjoint-based)
mapped adaptive Leja approximations based on DALI2 [135, 137]. The different approximation techniques are
then compared in terms of computational cost and accuracy. For GPC, the Smolyak sparse-grid and the adaptive
Algorithm 2, the computational costs can be straightforwardly quantified by the number of model evaluations
that are required to construct the surrogate. However, for the adjoint-based Algorithm 3 the estimation of
costs is more involved. First, as already mentioned in Section 4.3, the additional computational costs for the
computation of the adjoint solution zh(ξ) can here be neglected as the respective primal solutions are computed
with a sparse LU decomposition. Second, for the evaluation of the adjoint-based error indicator ẼSC(ξ), it is
only required to evaluate a residual of (2.56) for which the associated computational cost is almost negligible
compared to the cost of the assembly and sparse LU decomposition of the system matrix Auc(ξ). Hence, we
distinguish between solver calls and residual evaluations in the following.
In addition to the empirical RMSE Ecv defined in (4.89), we also evaluate the maximum error over all Ncv

sample points {ξ(i)}Ncv
i=1

Emax := max
i=1,...,Ncv

⃓⃓⃓
Q
(︁
ξ(i)
)︁
− Q̃

(︁
ξ(i)
)︁⃓⃓⃓
. (5.33)

The respective maximum error of different spectral approximations is presented in Table 5.4, along with the
associated computational cost. The respective 2nd order total-degree GPC approximation based on 171 Jacobi
polynomials is computed with a sparse 2nd order Gauss quadrature formula consisting of 613 quadrature
nodes, and, hence, model evaluations. The considered Smolyak sparse-grid SC approximation is also based on
613 model evaluations. Hence, we employ the same budget B = 613 for the adaptive Algorithm 2. Thereby

2https://github.com/dlouk/DALI3
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Figure 5.35: Convergence study employing different spectral approximations of the optical grating coupler
with Nξ = 17 uncertain input parameters, based on [89, Figure 13]. All dimension-adaptive
approaches clearly outperform the isotropic methods. For the adjoint-based methods, the er-
rors of the respective adjoint-error corrected surrogatemodels (4.98) are shown by the dashed
lines. Note that these models require a residual evaluation at each cross-validation point.

we compare three different mappings. First, we employ the identity mapping g = gid : s ↦→ s which recovers
a standard Leja algorithm. Second, we refer with Iso-Map to the multivariate mapping where the conformal
9-th order sausage map is applied to all coordinates, i.e. g1 = . . . = gNξ

= gS(·, 9). Third, Aniso-Map refers to
a multivariate mapping where the 9-th order sausage map gS(·, 9) is only applied to the sensitive parameters
t1, t2, T , i.e. the parameters where we numerically observed the slowest univariate convergence rates, while
the identity map is employed for the other parameters. It can be observed that all adaptive approximations
are significantly more accurate than the non-adaptive approaches. Furthermore, it can be observed that both,
the Iso-Map and the Aniso-Map approach, lead to a similar improvement in terms of the maximum error w.r.t.
the standard adaptive Leja SC. It shall be noted that both approaches do not require any (relevant) extra
computational cost. Next, the Algorithm 3, which employs the adjoint error indicator to steer the adaptivity,
is employed. We compute, again, approximations with 613 (mapped) polynomials which leads to very similar
errors as in the case of Algorithm 2. However, the number of required LU decompositions is reduced by
approximately 50 and, hence, the computational cost. We note that even larger relative improvements, e.g.
> 50%, are obtained in different settings, see [89] for details.
The convergence of the different approximation techniques is further illustrated in Fig. 5.35. In particular, the
empirical RMSE (4.89) is plotted w.r.t. the number of sparse LU decompositions. Note that the error decay of
the isotropic GPC approximation is still pre-asymptotic for the considered degrees (only up to degree 3), see [89,
Appendix C] for details. However, it can be seen that both isotropic reference approaches only reach a very poor
accuracy within the considered computational budget and are greatly outperformed by the dimension-adaptive
approaches. Again, an improvement due to the use of conformal maps can be observed where the difference
between the Iso-Map and the Aniso-Map approach is rather negligible. The respective adjoint-error corrected
surrogate models (4.98), illustrated by dashed lines, show a doubled convergence order. However, it shall be
emphasized that they do not correspond to the mapped (polynomial) surrogate models shown in Table 5.4
but require a residual evaluation at each cross-validation point {ξ(i)}Ncv

i=1 .
Finally, we construct a very accurate surrogate following the procedure outlined at the end of Section 4.3.
To this end, we first employ the adjoint-based mapped SC Algorithm 3 with a larger computational budget
of B = 3000 sparse LU decomposition. Then, the resulting mapped polynomial approximation is further
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Figure 5.36: Sobol sensitivity indices for scattering parameter magnitude |Q| of the optical grating coupler
with Nξ = 17 uncertain parameters, based on [89, Figure 14b]. The input parameters are or-
dered w.r.t. their respective total-effect indices.

refined by employing Algorithm 2 on the adjoint-error corrected approximation (4.98) until 30000 mapped
polynomials are employed, which further reduces the associated error by more than an order of magnitude and
leads to an RMSE Ecv of 1.2 · 10−4. We emphasize that in this way, the adjoint approach leads to tremendous
computational saving with respect to the classical Leja Algorithm 2, as 27000 sparse LU decomposition are
avoided in the considered setting. The accuracy of the resulting mapped polynomial approximation is shown
in the last row in Table 5.4. We note that the SC error has a similar magnitude as the FE discretization error
and, hence, the mapped SC approximation is in the following employed in post-processing for UQ of the
magnitude of the scattering parameter |Q|.

In particular, as the mapped polynomial SC approximation QẐΛ
(ξ) can be evaluated efficiently, we employ

the sampling based approaches introduced in Section 4.1 with a large number of surrogate model evaluations
to estimate statistical moments and sensitivity indices. Using NMC = 107 surrogate model evaluations in
(4.1) and (4.4), we obtain for the mean and standard deviation of the scattering parameter magnitude

E [|Q|] ≈ ENMC

[︂
|QẐΛ

(ξ)|
]︂
≈ 0.7607, Std [|Q|] ≈

√︃
VNMC

[︂
|QẐΛ

(ξ)|
]︂
≈ 0.0660, (5.34)

respectively. Next, we employ Saltelli’s algorithm using 3.6× 106 evaluations of the surrogate model, in order
to estimate the Sobol indices of |Q|. The results are presented in Fig. 5.36 where it can be observed that the
alumina layer thickness t2 is the most sensitive parameter. We emphasize that the Sobol indices show that the
particular model is very sensitive to the small variations of the geometry. In particular, we only considered
variations within a range of ±1.5 nm and yet their influence is significantly stronger than the partial variances
which can be attributed to the uncertainty in the material data modeled based on the specified measurement
error in [117]. Furthermore, as in the previous subsection, we observe again strong interaction effects of the
inputs, as the sum of all main-effect indices is only 33%.

In summary, in this subsection we studied the application of the proposed enhanced surrogate modeling
techniques to the challenging benchmark problem of an optical grating coupler. In particular, the proposed
combinations of conformal maps, adjoint-based adaptivity and error correction with spectral UQ methods
was confirmed to delay the curse-of-dimensionality, allowing us to consider up to Nξ = 17 uncertain (and
sensitive) parameters. Significant gains in terms of either accuracy or computational costs could be observed
due to the improved convergence rates.
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Figure 5.37: Illustration of gradient index metasurface, based on [181, Figure 1, 6, 10]. a) Discrete diffracted
Floquet modes of different orders m for a periodic microscopic structure with periodicity
W = 1322 nm > λ. The particular structure is optimized such that the transmission efficiency
for an incident TM polarized plane wave with λ = 600 nm in the Floquet mode ETM,−1 0 with
propagation angle θd = 27◦ is maximized. b) The particular metasurface consists of 5 GaN
nanoridges with different locations and widths to achieve the desired transmission behavior.
The periodic boundaries are illustrated by black lines. The parameters X1, . . . , X10 are consid-
ered as uncertain. c) Electron micrograph of a fabricated structure with a zoom at one unit cell
highlighted in yellow.

5.3.2 Gradient index metasurface

Next, we address UQ for a gradient index metasurface, that is, again, a periodic microscopic structure. The
particular metasurface [181] is shown in Fig. 5.37 and consists of Gallium Nitride (GaN) nanoridges of
subwavelength dimensions. It is designed to deflect an incident TM polarized plane wave with wavelength
λ = 600 nm and normal propagation direction θinc = 0◦, φinc = 0◦ into a particular Floquet mode with a
desired angle θd. In particular, the widths and relative positions of these nanoridges are optimized such that
the transmission efficiency η in the first diffraction order with m = −1, i.e. the Floquet mode ETM,−1 0 is
maximized. The content and structure of this section are based on our work [181], where an ensemble of similar
structures with different blaze angles θd, different feature sizes, and different numbers of nanoridges per unit
cell was designed and studied. Here, for brevity, we only address the particular grating, illustrated in Fig. 5.37
which employs 5 GaN nanoridges of height 1µm per unit cell and is designed for a deflection angle of θd = 27◦

which implies a grating period of dx = 1322 nm. For further details on diffraction gratings, metasurfaces and
the particular structure, we refer to [181] and the references therein.

Shape variabilities in the manufacturing process are taken into account by considering variations in the
x-coordinates of the bounds of the ridges X1, . . . , X10, which are illustrated in Fig. 5.37 by black dots. In
particular, the random x-coordinates are obtained asXi = Xnom

i +Yi, i = 1, . . . , 10,whereXnom
i , i = 1, . . . , 10,

refer to the nominal geometry parameters and Ξ to the corresponding RVs modeling the uncertainty. In
the following, we assume that RVs Ξ are independent and identically uniformly distributed in the range of
[−5 nm, 5 nm]. In [181], the nominal design of the considered grating as well as UQ studies with different
distributions are reported. As QoI Q we then consider the transmission efficiency η ∈ [0, 1] in the first Floquet
mode ETM,−1 0. The transmission efficiency is here numerically evaluated by employing the rigorous coupled
wave analysis (RCWA) implementation reticolo, which allows very efficient monochromatic simulations of
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Figure 5.38: UQ results for the gradient index metasurface and periodic deformations.
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Figure 5.39: Sketches of different numerical models where an increasing number of uncertain grating el-
ements is considered as a unit cell, based on [181, Figure 10]. The solid black lines indicate
the quasi-periodic boundary conditions and the black dots illustrate the (increasing number of)
uncertain parameters. Left: unit cell consisting of n = 1 grating period subject to periodic de-
formations. Right: The impact of the periodic boundary conditions is systematically minimized
by considering n = 2 (top) and n = 4 (bottom) grating periods per unit cell.

the considered grating, see [109, 181] for details.

Preliminary numerical tests indicate that the spectral UQ methods discussed in Chapter 4 are not readily
applicable for the particular structure since the map ξ ↦→ Q is not sufficiently smooth. Hence, the MC method
is employed here, which is appealing as a single model evaluation using the RCWA solver takes less than
1 s of computation time. Furthermore, as the MC method is embarrassingly parallelizable, even millions of
model evaluations are feasible. In particular, we employ the MC estimates (4.1) and (4.4) with NMC = 106

random realizations to estimate the mean and standard deviation of the random deflection efficiency Q(Ξ)
with a negligible sampling error (4.2). Furthermore, we evaluate the maximum and minimum values of Q
within the MC output sample {Q(ξ(i))}NMC

i=1 and employ KDE to estimate the output PDF. These results are
presented in Fig. 5.38. In addition, the measured deflection efficiency of a fabricated structure, shown in
Fig. 5.37c, is given in the last row of Table 5.38b, which deviates less than one standard deviation of the
estimated mean deflection efficiency. Note that for this UQ study, the computational unit cell domain D was
confined to a single grating as illustrated in Fig. 5.37b with quasi-periodic boundary conditions that imply
periodic geometry variations as well.

For comparison, we proceed with another study, where we minimize the impact of the quasi-periodic boundary
conditions systematically. To this end, we consider an increasing number of uncertain grating periods n per unit
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Data:
function handle get_sample(n) for unit cell with n grating periods,
tolerance tol,
minimum number of MC samples Nmin

MC

Result:
Expectation En and standard deviation σn w.r.t. number of gratings n

Initialize grating period number n = 1
repeat

Initialize number of samples NMC = 0
repeat

NMC = NMC + 1
Draw MC sample η(NMC) = get_sample(n)
Estimate expectation En as in (4.1)
Estimate variance σ2n as in (4.4)
Estimate error ϵRMS as in (4.2)

until NMC > Nmin
MC and ϵRMS < 1

6tol;
Increase number of gratings n = 2n

until n > 4 and |En/2 − En/4| < tol and |En/4 − En/8| < tol;
Algorithm 4: MC-based UQ method for optical gratings with independent non-periodic geometry uncer-
tainties, based on [181, Figure 12].
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Figure 5.40: Mean and standard deviation of the deflection efficiency η w.r.t. the number of uncertain grat-
ing periods n within a periodic unit cell of width dx = nW , based on [181, Figure 11].
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Table 5.5: Mean En and standard deviation σn w.r.t. the number of uncertain grating periods n within a
periodic unit cell, based on [181, Table 5]. NMC refers to the required number of MC samples for
the chosen tolerance tol.

n Nξ NMC Mean En Std. dev. σn
1 10 103,339 0.831 0.032

2 20 63,123 0.823 0.025

4 40 35,579 0.818 0.019

8 80 17,923 0.816 0.013

16 160 9,594 0.815 0.010

32 320 4,746 0.815 0.007

64 640 2,457 0.814 0.005

cell, as illustrated in Fig. 5.39, where the respective grating elements are assumed to be subject to independent
geometric uncertainties. The number of grating periods n and hence the number of uncertain parameters, is
then increased until changes in the estimated mean become negligible. The procedure is described in detail in
Algorithm 4. We employ Algorithm 4 withMmin = 100 and ϵ = 6 · 10−4 and present the results in Fig. 4. It
can be seen that the mean deflection efficiency decreases slightly before saturating after n ≈ 16. In contrast,
the standard deviation is continuously decreasing with a slope of −0.5 which, as shown in Table 5.5, also
leads to a decreasing number of required MC samples with respect to n. This is computationally beneficial
as it partially mitigates the increased computational cost associated to the larger unit cell domains. The
decreasing standard deviation shows that in absence of systematic, i.e. stochastic dependent, manufacturing
variabilities, the considered grating becomes a more deterministic behavior with an increased number of
grating periods. This can be physically explained by averaging interference effects between the neighboring
structures with different uncertain grating elements. In particular, the overall efficiency η is composed of
the individual contributions from the different grating periods and, hence, in accordance with the central
limit theorem, it is approximately normally distributed with a standard deviation ∝ 1/

√
n, as can be seen in

Fig. 5.40.
In summary, the considered grating is found to be rather robust with respect to small geometry deformations
and, hence, has a reproducible performance. Systematic fabrication errors, i.e. periodic deformations of each
grating period, lead to an acceptable mean deflection efficiency which is in agreement with the measurement
result for a fabricated structure. It is found that for independent non-periodic variations of the different
grating periods, the mean deflection efficiency is reduced by a few percent but the averaging interference
effects of neighboring components stabilize the performance, which is of significant practical importance
[181].

5.3.3 Split ring resonator array

In this subsection, we now address shape uncertainties of periodic optical structures of finite size where we
consider the benchmark problem of an SRR array [42, 87, 132]. Considering many elements of a periodic
structure with independent shape deformations can lead to a large number of uncertain parameters, which
was already seen in the previous section. Due to the curse-of-dimensionality, this is a major drawback for the
application of spectral UQ methods, as discussed in Section 4.1.3. Hence, we propose a remedy by decoupling
the uncertainty propagation for the individual unit cells by using an SMA [13, 95] such that a local SC
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Figure 5.41: Illustration of SMA for an array of Ncells = 3 SRRs where the red boundaries indicate the ports:
the structure is decomposed in individual cells which are coupled together using S-matrices.

approximation for a single unit cell can be employed. The so-obtained surrogate is then embedded as a
low-fidelity model in a MFMC framework, as introduced in Section 4.1.2, to correct possible biasing errors.
This procedure is found to be highly efficient for UQ, in particular speed-ups by several orders of magnitude
w.r.t. the standard MC estimator (4.1) can be observed. The content and structure of this section follow our
work [87].

Our benchmark application is illustrated in Fig. 5.41a. It represents an array of Ncells coupled SRRs where
each SRR is a nanoscale metallic structure corresponding to a resonance circuit. In particular, the ring and the
small gap of each SRR element can be interpreted as an inductance and a capacitance, respectively. We note
that this type of periodic structures has been investigated during the early research on optical metamaterials
[42, 132]. The significant impact of manufacturing imperfections on the shape of such nanoscale SRRs is, for
instance, illustrated in [42, Figure 54 and Figure 57] where it can be observed that the periodicity will not be
perfect. To take these variations into account, we define parameters ξcell,j ∈ Γcell ⊂ RNcell

ξ , j = 1, . . . , Ncells

describing the shape or material variations in the j-th unit cell of the structure. The model then depends on
the corresponding full input parameter vector which is obtained as

ξ =
[︁
ξ⊤cell,1, . . . , ξ

⊤
cell,Ncells

]︁⊤ ∈ Γ ⊂ RNξ , where Nξ = Ncells ·N cell
ξ . (5.35)

For brevity, we only give a few details on the numerical model and refer to [87] for details. The considered
model is assumed to be loss-free and to be transversally terminated by perfect magnetic conducting (PMC)
and PEC boundary conditions in x- and y-direction, respectively. The FIT time-domain method, see [124, 195,
203], is employed for the discretization of the wave equation which relies on a Cartesian mesh and computes
broadband results based on a transient simulation by discrete Fourier transform (DFT) of the time-signals.
In particular, we consider a plane wave excitation and evaluate the scattering parameters of the two-port
structure, i.e. transmission and reflection coefficients. These coefficients are collected in the scattering matrix
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(a) One unit cell (out of seven) of size
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(b) Specification of the geometry of the SRR elements
with a thickness of 20 nm. The longitudinal length L
is considered as an uncertain parameter.

Figure 5.42: Illustration of the numerical model of the considered SRR array, based on [87, Figure 1].

S(iω) ∈ C2Nmodes×2Nmodes such that

[. . . bi(iω) . . .]
⊤ = S(iω) [. . . ai(iω) . . .]

⊤, (5.36)

where ai ∈ C2Nmodes and bi ∈ C2Nmodes denote the amplitudes of suitably normalized incoming and out-
going waves, see [183] for details. Note that the reflection coefficient of the fundamental mode at the
input port is here given by S11(iω). In the following we suppress the frequency dependency for better
readability.

An approach to enhance the computational efficiency in the simulation of finite-size periodic structures consists
in decomposing the structure into single unit cells, as illustrated in Fig. 5.41b. One can then compute separate
scattering matrix S(i) for each cell as depicted in Fig. 5.41d and couple these single cell results together, see
[13, 95] for details. In this work, we refer to this approach as SMA. Note that this procedure might introduce a
systematic error, as the coupling between the cells is not necessarily fully captured by a low number of Nmodes

waveguide modes. As the a-priori selection of a suitable number of port modes as well as the computational
cost to compute large scattering matrices can be challenging in practice, we consider the SMA approximation
as low-fidelity data within the MFMC framework.

As explained in Section 4.1.2, MFMC is based on repeated model evaluations for different input parameter
values. Since, even with SMA, the associated computational effort of employing the FIT for a large number of
different parameter configurations can become prohibitive, we then further employ SC, see Section 4.1.3,
to obtain a unit cell surrogate model. In particular, we construct a polynomial approximation of the map
ξcell,j ↦→ S(j) for the j-th unit cell of the periodic structure. Note that the same surrogate model can be
used for all cells j = 1, . . . , Ncells. Employing the unit cell surrogate models for the SMA, we then obtain
an approximation of the full structure. It shall be highlighted that the computational effort to evaluate the
so-obtained approximation is negligible, as the scattering matrices have small dimensions compared to the
FIT matrices, i.e. Nh ≫ 2Nmodes. Furthermore, it shall be emphasized that the proposed construction of a
surrogate based on SMA and SC on the unit cell level is tremendously more efficient than the direct application
of spectral UQ methods for the full structure. First, the computational cost of a FIT time-domain simulation for
a single unit cell is significantly reduced compared to an evaluation of the full structure. Second, the number of
parameters for a single unit cell is reduced by a factor ofNcells w.r.t. the full structure, which has a huge impact
on the efficiency of an SC method due to the curse-of-dimensionality.
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Figure 5.43: Reflection coefficient for different realizations of SRR array, based on [87, Figure 2]. The respec-
tive limit frequencies of the considered bandgaps are depicted by the dashed vertical lines. The
dotted line indicates −3 dB.

Table 5.6: Considered multifidelity models of SRR array, based on [87, Table 1]. The columns specify the
computational cost C(i) per model evaluation of Q(i) and the respective estimated correlation
coefficients ρ1,i with the high-fidelity model Q(i) for both bandgap center frequencies fc,1, fc,2.

Symbol Model Cost C(i) ρ1,i for fc,1 ρ1,i for fc,2
Q(1) Full model (FIT, 2 · 105 time-steps) 197.50 s 1.000000 1.000000
Q(2) Full model (FIT, 2 · 104 time-steps) 11.25 s 0.999236 0.998035
Q(3) SMA (FIT, 1 port-mode) 9.64 s 0.999943 0.968376
Q(4) SMA (FIT, 2 port-modes) 115.47 s 0.999998 0.999998
Q(5) SMA + unit cell SC (1 port-mode) 0.006 s 0.999943 0.967540
Q(6) SMA + unit cell SC (2 port-modes) 0.026 s 0.999998 0.999886

Next, we investigate this UQmethodology numerically for an SRR array withNcells = 7 cells which is considered
as a benchmark problem. The Cartesian mesh and the SRR shape parameters, based on [132], are depicted
in Fig. 5.42. Note that for simplicity, we only consider uncertainties in the longitudinal lengths L(j), j =
1, . . . , Ncells of the SRR elements in cell j such thatL(j) = 320 nm+ξj , where

Ξj ∼ U(−15 nm, 15 nm), j = 1, . . . , Nξ, with Nξ = Ncells, (5.37)

are independent and identically distributed RVs.

The broadband behavior of the fundamental reflection coefficient is shown in Fig. 5.43 for different real-
izations of the structure. As expected, two bandgaps can be observed, that is frequency ranges where no
transmission is possible, which both depend on the parameter variations. We define the corresponding limit
frequencies of the bandgaps as the frequencies where the S11 parameter drops below −3 dB, which are
depicted by dashed lines in Fig. 5.43 and can be computed in post-processing. As QoIs we then consider the
respective center frequencies fc,i, i ∈ {1, 2} of the bandgaps, where the index i indicates the first or second
bandgap, respectively. We note that for a few parameter configurations some additional resonances within
the range of the second bandgap occur, which can be attributed to the slightly detuned resonances in the
array of SRRs. However, we only consider the outer limit frequencies of this bandgap in the following MFMC
study.
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Figure 5.44: Convergence study of the estimated RMSEs for MC and MFMC based on the different models
shown in Table 5.6. The illustration is based on [87, Figure 3].

We employ Nmod = 6 numerical models Q(j), j = 1, . . . , Nmod of different fidelity which are listed in Table 5.6
along with the associated cost per model evaluation C(i) measured in computation time on a standard
workstation where an in-house Matlab implementation is employed for all models. As high-fidelity model Q(1)

we consider a FIT model of the full structure with a maximum number of 2 ·105 time-steps. However, for all FIT
models the time-stepping is immediately terminated if the energy drops below −120 dB. For the low-fidelity
modelQ(2), which is again a FIT model of the full structure, the maximum number of time-steps is restricted to
2 · 104. Next, the SMA approach is employed, which yields the low-fidelity models Q(3) and Q(4) with different
numbers of port modes Nmodes. In particular, Q(3) only employs the fundamental propagating transverse
electric and magnetic (TEM) mode, while Q(4) additionally considers the evanescent first TM mode. Finally,
we construct the corresponding low-fidelity models Q(5),Q(6) by employing unit cell SC approximations which
are here for simplicity obtained using univariate polynomial interpolation on #Z = 7 Chebyshev nodes. We
note that the computational cost for the surrogate modeling only needs to be invested once. Furthermore, in
this case, even a single evaluation of the high-fidelity model Q(1) requires a larger computation time than
constructing the unit cell surrogate models. Hence, in the following we neglect this cost, for simplicity. It can
also be observed that the cost C(i) scales roughly linear w.r.t. the number of cells Ncells of the simulation model
while the offline-cost for the SC approximation of a single unit cell is obviously independent of Ncells. Hence,
qualitatively similar results as shown in the following can also be expected for structures with Ncells ̸= 7,
which we confirmed numerically for Ncells = 14.

We investigate the performance of MFMC based on the so-obtained multifidelity models. To this end, we
use a MFMC Matlab implementation based on 3, see [164]. First, we employ a random input sample
{Ξi}ÑMC

i=1 with ÑMC = 500 and compute the respective output samples {Q(j)(Ξi)}ÑMC
i=1 , for each model

Q(j), j = 1, . . . , Nmod. These samples are used to estimate the respective correlation coefficients ρ1,j , j =
1, . . . , Nmod with the high-fidelity model which are given in Table 5.6. We note that all models have a strong
correlation.

3github.com/pehersto/mfmc

108

github.com/pehersto/mfmc


In a next step, we compare the convergence of the estimated RMSEs for MC and MFMC w.r.t. the computational
budget B which is presented in Fig. 5.44. These estimates for RMSEs are obtained based on the readily
available output samples {Q(j)(Ξi)}ÑMC

i=1 . In particular, for standard MC with the model Q(j), we can employ
(4.2) with NMC = B/C(j) where the standard deviation of the model is replaced by its MC estimate. In a
similar way, the RMSE of MFMC is accurately estimated using (4.17). It can be observed in Fig. 5.44 that the
proposed MFMC approach reduces the computational cost to reach a fixed accuracy by orders of magnitude
w.r.t. MC on the high-fidelity model. The MFMC approach excludes some low-fidelity models, since, for
instance Q(2) and Q(3) have higher costs C(2), C(3) than the unit cell surrogate-based model Q(6) but also
a lower correlation with the high-fidelity model Q(1). We note that the selection and ordering of suitable
models can be done using a model selection strategy employing a small sample obtained in a pilot run, see
also [164, 165]. To investigate the impact of the different low-fidelity models, we additionally present the
convergence of MFMC when only Q(1) and one low-fidelity model Q(j), j ∈ {2, . . . , 6} is included with dashed
lines in Fig. 5.44. It can be observed that, as expected, this approach yields for all low-fidelity models better
results than MC, but performs worse than the selection of models employed by the MFMC algorithm. We
further note that, for both bandgaps, mainly the low-fidelity models based on the proposed unit cell SC
approximations yield the huge improvements in computational efficiency. Comparing the results for the
different bandgaps, it can be seen that considering Nmodes = 2 port-modes for the SMA is clearly necessary
for the second bandgap while for the first bandgap also Nmodes = 1 port mode would already yield very good
results. This is expected from a physical point of view, as the second bandgap is mainly caused by the mutual
coupling between the cells while the first bandgap mainly depends on the fundamental resonance of the
single SRR element.
Finally, we emphasize that the limited recurrences to the high-fidelity model of the MFMC method are indeed
necessary to remove the biasing error of the low-fidelity models. In particular, the associated RMSE of standard
MC based only on the unit cell SC-based model Q(6) is depicted by the dotted red line in Fig. 5.44, where
the sampling error and the biasing error are both estimated based on the MC sample. It can be seen that
the sampling error already has a negligible magnitude in the considered range of computational budgets B;
however, due to the biasing error, no convergence can be observed.
In summary, the proposed UQ methodology combining SC on the unit cell level, SMA and MFMC, is found
to be highly efficient for quasi-periodic optical structures with shape uncertainties. Compared to the direct
application of spectral UQ methods, only a single unit cell SC approximation is required, which significantly
reduces the number of uncertain parameters as well as the simulation effort in the offline-phase. The MFMC
method then provides unbiased estimates where speed-ups by several orders of magnitude were observed for
the considered benchmark problem.

5.3.4 Electric waveguide

In this subsection, we investigate the adjoint-based yield estimation procedure proposed in Section 4.4.
To this end, we consider the model of a rectangular electric waveguide with a dielectric inset which is
illustrated in Fig. 5.45. The particular model is chosen, as it was already established as a benchmark prob-
lem in [135, 137] and because it has a smooth input-to-output behavior as well as an available closed-
form reference solution [135]. The content and structure of this section are based on our work [81].

The corresponding numerical model (2.27) is, as in Section 5.3.1, again implemented using the FE library
FEniCS [3]. As explained in Section 4.3.1.3, the corresponding adjoint problem (4.113) can be solved with
negligible cost since we employ a sparse LU decomposition for the primal problem. The model has two
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Figure 5.45: Numerical model of a rectangular electric waveguide with a dielectric inset D1 of length y1,
based on [81, Figure 2]. As excitation an incident TE10 wave at the port ∂DP1 is considered.

geometrical parameters ξ1 and ξ2, which refer to the length of the dielectric inset D1 and the vacuum offsets
D2 measured in millimeters, respectively. The material of the subdomain D2 is assumed to have vacuum per-
meability and permittivity ε0, µ0, while different material properties are assumed for the insetD1. In particular,
we will study two cases with different material models and, hence, different numbers of parameters. In the first
case, the permittivity and permeability of the dielectric inset are given as

ε{1}r |D1(ξ) = 1 + ξ3 + (1− ξ3) (1 + iω4τ)−1 , (5.38)

µ{1}r |D1(ξ) = 1 + ξ4 + (2− ξ4)
(︃
1 + iω

10

11
τ

)︃−1

, (5.39)

where τ =
(︁
2π(20GHz)

)︁−1 and ξ ∈ R4. In the second case, we consider

ε{2}r |D1(ξ) = ξ5 + (ξ3 − ξ5) (1 + iωξ6τ)
−1 + (ξ4 − ξ5) (1 + iωξ7τ)

−1 , (5.40)
µ{2}r |D1(ξ) = ξ10 + (ξ8 − ξ10) (1 + iωξ11τ)

−1 + (ξ9 − ξ10) (1 + iωξ12τ)
−1 , (5.41)

where ξ ∈ R12. In both cases, the parameters ξ are modeled as realizations of mutually independent RVs Ξ
where the respective mean values are given as

E
[︂
Ξ{1}

]︂
= [10.36, 4.76, 0.58, 0.64]⊤, (5.42)

E
[︂
Ξ{2}

]︂
= [8.6, 3.8, 2, 0.5, 0.7, 0.6, 1.4, 2.8, 1.7, 0.8, 0.3, 1.4]⊤. (5.43)

To avoid unphysical parameter values, we employ truncated normal distributions for each RV. The respective
standard deviations and truncation offset are given as 0.7mm and ±3mm, respectively, for the geometrical
parameters Ξ1 and Ξ2. For each of the material parameters Ξ3, . . . ,ΞNξ

the standard deviation is given as
0.3mm and the truncation offset as ±0.3mm. As QoI Q we consider the fundamental reflection coefficient
(2.28). The respective performance feature specification is here given as

|Q(ξ, ω)|
!
≤ −24dB ∀ω ∈ Ω = [2π6.5, 2π7.5] GHz. (5.44)

Note that following [97], in contrast to (4.7), an additional range parameter in terms of the angular frequency
ω is considered. This requires minor and straightforward generalizations of the yield estimation procedure
described in Section 4.4, cf. [81]. In particular, the surrogate modeling and the hybrid decision process is
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applied for each ωi ∈ TΩ ⊂ Ω, where TΩ denotes a set of 11 equidistant frequency points in Ω. A MC sample
point ξ(i) is then only classified as an element of the safe domain Γs if

⃓⃓⃓
Q(ξ(i), ωi)

⃓⃓⃓
≤− 24dB is fulfilled for all

frequency points ωi ∈ TΩ. If the requirements are not fulfilled for a single arbitrary frequency value ωi ∈ TΩ,
i.e.

⃓⃓⃓
Q(ξ(i), ωi)

⃓⃓⃓
> −24dB, the MC sample point ξ(i) can be immediately identified to be no element of the

safe domain Γs and, hence, further computational effort for investigating the remaining frequency points can
be avoided.
Next, we compare the adjoint-based hybrid yield estimation procedure with alternative approaches. To this
end, we first calculate reference solutions for the yield by employing standard MC (4.11) on the closed-form
reference solution of the electric waveguide. The MC sample size is chosen as NMC = 2500, i.e. the smallest
number such that the RMSE error (4.13) is below 0.01 for all values of the yield. The reference solutions are
then given as

Y{1}
Ref = 95.44%, and Y{2}

Ref = 74.60%, (5.45)
for the case of Nξ = 4 and Nξ = 12 uncertain parameters, respectively. In Table 5.7 we compare different
approaches for yield estimation in terms of computational effort and accuracy, in the case ofNξ = 4 parameters.
Note that we employ for all methods the same MC sample which was already used for the reference solution.
The accuracy of a yield estimate Ỹ is quantified by the relative error with respect to the reference solution
(5.45), i.e.

Erel =
⃓⃓
YRef − Ỹ

⃓⃓
YRef

. (5.46)

The computational costs are evaluated based on the number of evaluations of the different models, that is the
respective number of sparse LU decompositions. As we consider FE models Qh,Qh/2,Qh/4 with different mesh
sizes for the hybrid approach, the respective computational cost of each model varies. In this work, we consider
three different refinement levels with mesh sizes h, h/2, h/4 where the respective number of evaluations are
denoted by NFE

h , NFE
h/2 , N

FE
h/4 , respectively. Here, we assume an optimal solver such that the computational

effort scales linearly w.r.t. Nh, i.e. the number of DoFs. This implies an increase by a factor of 4 for 2D
problems and a factor of 8 for 3D problems. For the considered numerical model, the y-component of the
electric field is constant and, hence, a refinement in x- and z- direction is sufficient. Accordingly, we measure
the effective computational cost as

Ceff = NFE
h + 4NFE

h/2 + 16NFE
h/4, (5.47)

i.e. as equivalent cost in terms of multiples of the cost for a single evaluation of the FE model Qh. Note that
the computational costs for evaluating the surrogate model Qh,Z or the adjoint-error indicator are neglected
here, for simplicity.
The first line of Table 5.7 refers to a standard MC approach (4.11) on the most refined FE model Qh/4, where
the same accuracy as with the proposed hybrid approach can be expected. Note that this approach leads to
the exact same result as Y{1}

Ref which was obtained with the closed-form solution of the rectangular waveguide.
However, it can be seen that the computational cost is quite high. In contrast, in a next step we employ yield
estimation based on MC on a surrogate model solely. To this end, the adjoint-based adaptive Leja algorithm 3
is employed with a computational budget of B = 30 for each of the 11 frequency points. For simplicity we
here employ the trivial conformal map g : s ↦→ s and unweighted Leja nodes obtained by using a uniform
weight function on Γ in (4.33) in order to reach a high uniform accuracy. In this case, the computational cost
is reduced drastically, but some sample points are wrongly classified, leading to a deviation of the estimated
yield w.r.t. the reference value. This error can be avoided by employing the proposed adjoint-based hybrid
scheme. In particular, we first examine the hybrid approach without surrogate modeling, that is we only
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Table 5.7: Comparison of different approaches for yield estimation in the case of Nξ = 4 uncertain
parameters, based on [81, Table 2]. The columns specify the number of model evaluations
NFE

h , NFE
h/2 , N

FE
h/4 of the different refined FE models, the effective computational cost Ceff as well

as the relative error Erel with respect to the reference solution Y{1}
Ref .

Method NFE
h for SC NFE

h for MC NFE
h/2 for MC NFE

h/4 for MC Ceff Erel (%)

MC on Qh/4 0 0 0 26 300 421 760 0.00

MC on Qh,Z 330 0 0 0 330 0.13

Hybrid without SC 0 26 360 5 1 26 396 0.00

Hybrid with SC 330 165 5 1 531 0.00

Table 5.8: Comparison of different approaches for yield estimation in the case of Nξ = 12 uncertain
parameters, based on [81, Table 1]. The columns specify the number of model evaluations
NFE

h , NFE
h/2 , N

FE
h/4 of the different refined FE models, the effective computational cost Ceff as well

as the relative error Erel with respect to the reference solution Y{2}
Ref .

Method NFE
h for SC NFE

h for MC NFE
h/2 for MC NFE

h/4 for MC Ceff Erel (%)

MC on Qh/4 0 0 0 22 705 363 280 0.00

MC on Qh,Z 990 0 0 0 990 6.22

Hybrid without SC 0 22 705 25 6 22 901 0.00

Hybrid with SC 990 4812 25 6 5998 0.00

employ the adjoint-based mesh refinement strategy. In this case, all samples are correctly classified while
the computational cost is reduced by more than one order of magnitude w.r.t. the MC approach on the FE
model Qh/4. The efficiency is then further improved by incorporating the SC approximation. In this case, the
hybrid approach still ensures a correct classification of all sample points while the computational cost is now
reduced to only 0.13% w.r.t. the cost of the MC approach on the FE model Qh/4. We emphasize that the hybrid
approach evaluates mostly the cheapest models while only a few evaluations of the highly-resolved FE models
are required.

Next, we repeat the same study in the Nξ = 12 dimensional setting with reference solution Y{2}
Ref where we

now employ a computational budget of B = 90 model evaluations for the surrogate construction at each
frequency point. The results are presented in Table 5.8. Reaching a high accuracy with an SC approximation
becomes more challenging for a larger number of uncertain parameters due to the curse-of-dimensionality.
Accordingly, the associated error of employing MC on the surrogate models significantly increases w.r.t. the
previous study to Erel = 6.22%. Furthermore, it can also be seen that the speed-up in computation time,
which can be attributed to the use of SC in the hybrid approach, slightly decreases. However, we emphasize
that the computational cost is still reduced to only 1.7% compared to the MC approach on the FE model Qh/4

while maintaining the exact same accuracy.
It can be concluded that the proposed adjoint-based hybrid yield estimation is highly efficient while ensuring
a correct classification of the sample points, as it combines the efficiency of SC with the reliability of a high-
fidelity MC analysis. Finally, it shall be mentioned that it can be efficiently incorporated in a yield optimization
workflow, see [81] for details, which was excluded here for brevity.
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5.4 Summary

In this chapter, we have investigated the application of the different methods suggested in this thesis to a
number of benchmark problems that comprise both academic and real-world applications. In most cases,
the proposed surrogate modeling techniques have been a key tool to reduce the computational effort sig-
nificantly. In particular, they have enabled efficient approximations with up to approximately 20 sensitive
parameters while we still relied on MC-based approaches for the studies with up to 640 independent uncertain
parameters. In addition, several further challenges arising in UQ for RF and optical applications have been
successfully addressed, e.g. the homotopy-based eigenvalue tracking method has been shown to enable
spectral UQ for Maxwell’s eigenproblem with uncertain input data. Furthermore, important UQ results have
been obtained for the considered optical gratings as well as the TESLA cavities manufacturing process, where
especially the estimated sensitivities have given valuable insights. In particular, it has been found that the
considered optical grating coupler is highly sensitive to its shape parameters, as even small variations within
±1.5 nm have a significantly larger impact than the considered measurement uncertainty in the material
data.
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6 Conclusion and prospects for future research

In this thesis, parametric problems derived fromMaxwell’s equations in frequency domain have been addressed
where we have focused on radio frequency and optical applications. In particular, we have distinguished
two types of parametric problems where we have suggested different surrogate modeling techniques for the
frequency variable on the one side and the uncertain material and shape parameters on the other side. This
distinction was not only motivated by the different problem settings but based on the usually significantly
enlarged parameter range for the frequency variable compared to typical uncertain parameters. Furthermore,
the uncertain shape and material parameters often feature more smoothness but pose another challenge due
to the increased number of parameters and the curse-of-dimensionality.
For the first case, we have considered in Chapter 3 the approximation of stable frequency response func-
tions and suggested a rational kernel-based interpolation method. It has been confirmed that, although
all considered FRFs are holomorphic on the frequency axis, it is beneficial to treat the frequency variable
differently than the uncertain parameters for which polynomial-based methods are employed. The suggested
method combines Szegö kernel interpolation with a suitable pseudo-kernel and a few rational basis functions
inspired from vector fitting as well as a dedicated tuning and model selection procedure. It has shown
impressive results for a number of benchmark problems from different fields. In particular, the method has
reached at least a comparable accuracy as the established state-of-the-art methods adaptive Antoulas–Anderson
and vector fitting for the considered benchmarks while in some cases significant improvements could be
observed.
For the second case, we have addressed in Chapter 4 the forward uncertainty propagation problem. A major
part has been dedicated to the conformally mapped spectral uncertainty quantification methods. They have
been shown to feature an enhanced convergence order with respect to standard generalized polynomial chaos
or stochastic collocation methods, for functions which are analytic in an ϵ-neighborhood of the approximation
interval. It has been shown that the conformally mapped generalized polynomial chaos method allows the
direct computation of stochastic moments and variance-based sensitivity indices based on the expansion
coefficients. This is not the case for the conformally mapped stochastic collocation method where further post-
processing of the approximation would be required. However, it has been demonstrated that the collocation
approach allows to realize very efficient dimension-adaptive schemes based on granular mapped Leja nodes.
We emphasize that both proposed conformally mapped spectral methods can be realized non-intrusively,
i.e. they only require access to the map from input to output parameters. Hence, they should be generally
applied for models with high parametric sensitivities, where the underlying function is holomorphic in a small
ϵ-neighborhood. Then, different extensions employing adjoint-based error indicators have been proposed.
They are based on a number of (mild) assumptions, specified at the beginning of Section 4.3, e.g. regarding
the general form of the parametric model, and require some access to the underlying numerical model, for
instance in order to evaluate residuals. These error indicators have been employed to steer the adaptivity
in the dimension-adaptive sparse stochastic collocation scheme based on mapped Leja nodes as well as for
adjoint error correction such that a further improved convergence can be observed. It has been found that
these enhanced surrogate modeling techniques combining dimension-adaptivity, adjoint error estimation,
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and conformal maps allow to successfully address moderately high dimensional problems and delay the
curse-of-dimensionality. In particular, the grating coupler model with 17 uncertain parameters could not be
addressed with standard sparse approximation techniques. For example, total-degree generalized polynomial
chaos based on sparse quadrature has not even reached a root-mean-square error below 10−1, employing more
than 7000 model evaluations. On the contrary, the enhanced surrogate modeling techniques have achieved a
suitable error magnitude of 10−4 with smaller computational cost, enabling an efficient spectral uncertainty
quantification. Next, a reliable yield, or equivalently failure probability, estimation has been addressed. To this
end, a multifidelity scheme has been proposed, which is, again, based on stochastic collocation and adjoint
error estimation, and takes all relevant error sources into account. In particular, it combines the sampling
of the stochastic collocation approximation with evaluations of finite element models of different fidelity
whenever required. This has lead to tremendous computational savings without sacrificing any accuracy with
respect to a standard Monte Carlo method on the high-fidelity model for the considered benchmark problem
of an electric waveguide. Finally, addressing uncertainty quantification for Maxwell’s eigenproblem where
eigenvalue crossings with respect to parameter variations can occur, an eigenvalue tracking method has been
introduced. Numerical investigations have indicated that the method not only ensures a correct matching of
eigenmodes but can also improve the computational efficiency.
Thorough uncertainty quantification studies have been presented for the 9-cell TeV-Energy Superconducting
Linear Accelerator cavities employed in the European X-ray Free Electron Laser at Deutsches Elektronen-
Synchrotron, which have been substantiated by the available measurement data. It has been found that
the eccentric deformations only have a small impact on the fundamental mode spectra, while it could be
confirmed that certain equatorial and iris radius parameters are highly relevant where the estimated sensitivity
indices have given valuable insights. Furthermore, manufacturing imperfections for two different optical
gratings [167, 181] have been addressed and various uncertainty quantification results have been presented.
In this context, it has been found that for the considered optical grating coupler [89], shape uncertainties
outweigh the impact of the measurement uncertainty in the material data of the noble metals. It has also
been shown that the averaging interference effects of neighboring components in the considered gradient
index metasurface stabilize the performance, which is of significant practical importance [181]. Finally, we
have addressed a split ring resonator array, i.e. a periodic structure with an uncertain shape of finite size. For
this type of problem, we have proposed a decoupled uncertainty propagation methodology, by combining
stochastic collocation on the unit cell level, a scattering matrix approach and multifidelity Monte Carlo. This
approach has been found to be highly efficient for the considered benchmark application. In summary, for the
majority of the UQ studies, the suggested enhanced surrogate modeling techniques have been a key tool for
keeping the computational effort manageable and enabling moderately high-dimensional approximations. For
instance, in the considered applications up to about 20 sensitive uncertain parameters could be efficiently
treated with the described methods.
To further investigate, employ or improve the proposed methods for surrogate modeling and uncertainty quan-
tification, we suggest to address the following topics in further researchworks:

• There are several ideas how the rational kernel-based interpolation method for frequency response
functions could be possibly extended to further improve the efficiency. For instance, adaptive sequential
sampling strategies could be investigated. Further research could also address the efficient incorporation
of derivative data which can in many cases be obtained with reduced computational effort, for instance by
employing adjoint techniques. Additionally, alternative kernels tailored to frequency response functions
could be investigated and compared to the here employed Szegö kernel. In particular, a detailed
comparison and analysis of the kernels proposed in [125, Section 5] is still subject to further research.

• In order to address surrogate modeling for even larger numbers of uncertain parameters, it should
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be investigated if the efficiency of the proposed adjoint-based mapped spectral stochastic collocation
method could be even further enhanced. To this end, the sequential scheme could be extended to more
efficiently utilize high-performance computing resources. In particular, for this method we assumed
that all computing power is already exploited within the numerical model. However, if additional
parallelization resources are available, the dimension-adaptive method should be adapted such that it
simultaneously evaluates the model at different collocation points. Alternatively or complementary, a
combination with the multilevel or multifidelity stochastic collocation approaches [148, 197] seems
promising.

• As explained at the beginning of this section, we have separated the surrogate modeling task for the
frequency dependence and the uncertain shape andmaterial parameters. In particular, the rational kernel-
based interpolation method yields good results for the approximation of frequency response functions,
while themapped spectral approximations have been shown to performwell for uncertainty quantification
problems in fixed frequency settings as well as for eigenvalues. However, there are also various uncertainty
quantification tasks where broadband quantities are of interest. Two particular examples have been
presented in Section 5.3.3 and Section 5.3.4, where it has been possible to construct unit cell surrogate
models at each frequency point separately. Future work should investigate if the different proposed
surrogate modeling techniques can be combined efficiently to address surrogate modeling with respect
to the frequency variable and the uncertain parameters simultaneously. Alternatively, a generalization of
the rational kernel-based interpolation method to the multivariate case could be investigated, which
could eventually be based on the recently suggested multivariate adaptive Antoulas–Anderson algorithm
[169]. These methods should then be compared against the parameterized model order reduction
schemes [20, 153, 170] which were also recently proposed for broadband uncertainty quantification in
the frequency domain.

• Note that in this thesis, we have focused on the forward uncertainty propagation problem. However, the
suggested surrogate modeling techniques could also be employed in an inverse uncertainty quantification
context. In this regard, the estimation of all shape parameters for the operational TeV-Energy Supercon-
ducting Linear Accelerator cavities at cryogenic temperatures based on the available measurement data
of the eigenmode spectra would be of high practical relevance. This topic has so far only been briefly
addressed in Section 5.2.3 for the iris radius by applying significant simplifications. However, a more
sophisticated study would require dedicated numerical tools [191] and eventually also higher order
mode measurements, to avoid ill-conditioning.

• In this work, we have suggested several methods for the quantification of uncertainties. These methods
could be further embedded in robust optimization routines in order to obtain more reliable designs.
In this context, it shall be noted that the adjoint-based yield estimation method has already been
successfully combined with an adaptive and efficient yield optimization procedure, see our work [81].

• The presented eigenmode tracking technique could eventually also be employed for automatic mode
recognition [34] of higher order modes in cavity simulation. In particular, it is currently under investiga-
tion if tracking the eigenmodes during the shape morphing of a TeV-Energy Superconducting Linear
Accelerator cavity to a cylindrical pillbox cavity, where the eigenmodes are known analytically, allows
for a reliable classification.
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List of acronyms

AAA adaptive Antoulas–Anderson
AIC Akaike information criterion
ANOVA analysis of variances

BEM boundary element method
BIC Bayesian information criterion
BVP boundary value problem

CAD computer-aided design
CDF cumulative distribution function

DESY Deutsches Elektronen-Synchrotron
DFG German Research Foundation
DFT discrete Fourier transform
DoF degree of freedom

EBM electron-beam welding
EXFEL European X-ray Free Electron Laser

FE finite element
FEM finite element method
FIT finite integration technique
FORM first-order reliability method
FRF frequency response function

GaN Gallium Nitride
GLS generalized least squares
GP Gaussian process
GPC generalized polynomial chaos

HOM higher order mode

IGA isogeometric analysis

KDE kernel density estimation

LOO leave-one-out
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MC Monte Carlo
MFMC multifidelity Monte Carlo
MIM metal-insulator-metal
MOR model order reduction

NURBS non-uniform rational B-splines

PDE partial differential equation
PDF probability density function
PEC perfect electric conducting
PMC perfect magnetic conducting
PML perfectly matched layer

QoI quantity of interest

RBF radial basis function
RCWA rigorous coupled wave analysis
RF radio frequency
RHS right-hand side
RKHS reproducing kernel Hilbert space
RKI rational kernel-based interpolation
RMSE root-mean-square error
RV random variable

SC stochastic collocation
SMA scattering matrix approach
SORM second-order reliability method
SQP sequential quadratic programming
SRR split ring resonator

TE transverse electric
TEM transverse electric and magnetic
TESLA TeV-Energy Superconducting Linear Accelerator
TM transverse magnetic

UQ uncertainty quantification

VF vector fitting
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