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Zusammenfassung

In dieser Forschungsarbeit wird die mathematische Modellierung genutzt, um den Messprozess für das
magneto-statische Feld innerhalb eines Beschleunigermagneten zu beschreiben, und Verfahren zur Erschlie-
ßung von Modellvariablen, basierend auf Messdaten werden präsentiert. Die physikalischen Grundglei-
chungen des magnetischen Feldes sind impliziert, durch die Felddarstellung als Lösung einer partiellen
Differentialgleichung. Durch die Formulierung als Randwertproblem reicht es aus, Feldmessungen am Rand
des Problemgebietes durchzuführen. Somit kann der Aufwand für die vollständige Kartografierung des
Feldes in drei Dimensionen von O(1/h3) auf O(1/h2) reduziert werden, wobei h die Messauflösung dar-
stellt.

Eine iso-geometrische Randelementmethode höherer Ordnung wird für die Felddarstellung verwendet, was
Vorteile für die Berechnung von Teilchenbahnen mit sich bringt, da hinreichend glatte Feldableitungen
beliebiger Ordnung zugänglich sind. Zudemwird eine indirekte Formulierung der Integralgleichung präsentiert,
welche einen linearen Zusammenhang zwischen Feld und Randdaten bereitstellt, ohne die Notwendigkeit der
Lösung eines Gleichungssystems, um zwischen Dirichlet und Neumann Daten zu transformieren. Dies ist für
die Erschließung von Randdaten, basierend auf Messdaten vorteilhaft.

Die Magnetfeldmessung liefert Spannungen, oder deren Integrale über kurze Zeitfenster, welche oftmals nicht
direkt proportional zu den Feld-, beziehungsweise Modellvariablen sind. Das Bayes’sche Paradigma bietet
einen Rahmen zur Erschließung von Modellvariablen aus abhängigen Beobachtungen, die unter dem Einfluss
von Messfehlern stehen. Auf diese Weise können Unsicherheiten effektiv quantifiziert werden, da lediglich
eine einzige Realisierung des Messvorgangs erforderlich ist, ohne dass Wiederholungen durchgeführt werden
müssen. Zudem wird ein aktiver Lernalgorithmus entwickelt, welcher genutzt wird, um das Problemgebiet in
Orten mit großer Unsicherheit zu erkunden.

Im Rahmen dieser Doktorarbeit wurde ein neues Messsystem bestückt, in Betrieb genommen und mess-
technisch charakterisiert. Es handelt sich um ein Messsystem zur Kartografierung des Magnetfeldes mit
Hilfe eines drei-Achsen Hall-Sensors und einer Positionierplatform. Aus diesem Grund liegt der Fokus für
die Anwendung der theoretischen Aspekte, in der Kartografierung von dreidimensionalen Feldverteilungen
basierend auf Messungen mit Hall-Sensoren. Dies umfasst die Kalibrierung von Hall-Effekten in drei Di-
mensionen, der Lösung des absoluten Positions- und Orientierungsproblems, sowie der Herleitung eines
magnetomechanischen Modells, für die Quantifizierung vom Messunsicherheiten auf Grund von Vibrationen
und Positionierfehlern.

Für die modellbasierte Messdatenauswertung unter der Verwendung der Bayes’schen Schlussfolgerung, wird
ein generelles Konzept ausgearbeitet, welches auf drei verschiedene Problemstellungen im Zusammenhang
mit der Magnetfeldmessung angewendet wird.
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Abstract

In this research, mathematical modeling is used to express the measurement process for the magneto-static
field in an accelerator magnet and approaches to infer model variables from on magnetic measurements are
presented. The physical relations are implied by solving a partial differential equation, for the field evaluation.
With the formulation by means of a boundary value problem, measurements can be restricted to the domain
boundary, reducing the effort to provide field maps in three dimensions from O(1/h3) to O(1/h2), where h is
the measurement resolution.

A higher order, iso-geometric boundary element method is used for the field model, which comes with benefits
for the extraction of Taylor maps used for particle tracking applications, because sufficiently smooth derivatives
of arbitrary order can be determined. Moreover, an indirect boundary element formulation is presented,
establishing a linear relation between field and boundary data, without the need to map between Dirichlet and
Neumann data, or the solution of a similar linear equation system for field evaluation. This is of advantage for
the inference of boundary data from measurements.

Magnetic measurements are providing voltages, or their integrals over small time windows, which are often
not directly proportional to the field, or model variables. The Bayesian paradigm provides a framework to
infer model variables from dependent observations, under the influence of measurement errors. In this way,
uncertainty quantification is achieved effectively, as only a single realization of the measurement process is
needed, without the need to execute repetitions. Moreover, an active learning algorithm is developed, used to
explore the physical domain in regions with large uncertainty.

In the scope of this doctoral thesis, a new three-axes Hall-probe mapper system has been commissioned and
metrologically characterized. For this reason, the focus is on the application of Hall probe field mapping,
for the practical realization of the above mentioned theoretical aspects. This includes the calibration of Hall
effects in three dimensions, the solution of the absolute sensor position and orientation problem, as well as
the derivation of a magneto-mechanical model for the quantification of measurement uncertainties due to
mechanical vibrations and positioning errors.

The model-based post processing using Bayesian inference is put into a general framework, which is applied to
three different problems, appearing in the context of magnetic measurements.
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1 Introduction

Magnetic fields generated by electromagnets are widely used in physical experiments to guide and focus
particle trajectories. This enables the control, the storage and hence the experiments with ions, isotopes and
subatomic particles. The interaction between the particle motion and the electromagnetic field is governed by
the Lorentz force

F = q (E + v ×B) , (1.1)

where q is the particle’s charge, and v its velocity vector. The Lorentz force is the sum of an accelerating force,
proportional to the electric field E and a deflecting force, the velocity v and the magnetic flux density B. As
B generates a force perpendicular to the particle velocity v, no net energy is gained for a passage through the
magnetic field. This is why acceleration in particle physics is realized by strong electric fields, generated in
radio-frequency (RF) cavities [1]. The interaction by means of the magnetic flux density B is used to steer
the particle motion in a desired direction. For this purpose, electromagnets (normal or superconducting),
permanent magnets or combinations of these technologies are used for bending and focusing the beam, and
for the correction of abberations in beam related quantities, which are important for the beam quality and
stability.

1.1 The mandate of the testing and magnetic measurement section

This thesis summarizes the work carried out during a doctoral student placement at the European Organization
for Nuclear Research (CERN), in the section for testing and measurement of normal and superconducting
magnets (TE-MSC-TM). The mandate of the test and measurement section is closely linked to the life cycle of
an accelerator magnet as summarized in the flow-chart in Fig. 1.1.

It all begins with the specification of a list of field requirements for the physical experiment. This may include
the magnet’s bending strength, field gradient, field homogeneity, and the specification of budgets for field and
alignment errors when the magnet is installed in the accelerator complex. The magnet design must consider
the requirements stated before, as well as additional constraints that affect the choice of magnet technology,
materials, and the available budget. At this stage, the magnet prototype relies on numerical tools in order to
solve the multi-physics problem and to predict the behavior of the physical object that will later be installed in
the accelerator.

Especially for superconducting accelerator magnets, the routine for the optimization of magnet X-sections,
inverse field calculation and coil end design, short ROXIE, has been developed [2]. In ROXIE, a finite el-
ement solver for the computation of iron magnetization is coupled with boundary element formulations
for the computation of coil fields and the evaluation of field distributions in the air gap. In this way, the
domain discretization in the vicinity of the particle beam can be avoided and the evaluation of the in-
tegral equation for field evaluation enjoys a smoothing property of the approximation errors in the iron
domain.
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Figure 1.1: Tests andmeasurements are required at different stages of the life cycle of an accelerator magnet.

The required tolerance for errors in the prediction of field integrals in accelerator magnets is often in the
range of 1 unit in 10 000. Predictions of modern-day numerical field simulation, such as the ones provided by
ROXIE, are capable to provide the required accuracy in the case of linear, isotropic and homogeneous material
properties. This is the case for the evaluation of Biot-Savart integrals, establishing the relation between field
and current. However, most of the material laws rely on macroscopic models, which are often empirically
determined and based on measurements rather than first-principle physical relations. This is the case for all
material laws involved in iron saturation and hysteresis modeling, as well as for hysteresis effects occurring in
superconducting cables.

Elaborate measurement campaigns (cf. Fig. 1.1 (1)) have therefore been performed over the years in order
to validate the predictions of numerical field computation. In some cases, such validated numerical codes
achieve the required accuracy. This is the case for the computation of field transients in superconducting
magnets affected by superconductor magnetization, or transient effects due to eddy currents in coil dominated
magnets. However, the interdependence of iron saturation, hysteresis, eddy currents, and temperature effects,
involving empirical material properties, is still too complex to expect the same performance in case of iron
dominated magnets.

With a prototype fully validated, the production of the series magnets can be launched. In the this phase, elec-
tric, geometric and magnetic measurements are performed at different stages to follow up the manufacturing
process and to intercept production errors (cf. Fig. 1.1 (2)). To give some examples: cables and coils, are tested
at room or cryogenic temperatures, samples of the iron yoke are characterized by permeability measurements,
and collars supporting the assembly are tested to resist physical stress.

To emphasize the difference to the numerical prototype, the real magnet, which is the result of the manufac-
turing process, is marked in green. Even with the most careful production follow-up, one cannot exclude all
possible errors affecting the magnet performance. Mechanical tolerances and uncertainties in the production
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process may sum up and lead to field errors exceeding the specifications. But even without such manufacturing
errors, the presence of modeling errors and uncertainties in the design phase might have a non-negligible
impact on the magnetic field quality. As a result, a third measurement campaign is necessary in order to
characterize the magnet, as built, in almost all cases (cf. Fig. 1.1 (3)). Depending on the application, the
magnet’s transient behavious, current versus field transfer function, field quality, or fringe fields might be of
interest.

Even though the magnets true physical state, after an arbitrary excitation history, might not be predictable to
the required accuracy, it is reproducible after a well defined current cycles. For this reason the static magnetic
field is characterized on plateaus of the excitation current, after well defined demagnetization and precylcing.
Measurements of this kind have a long history as they have been adopted to assess the field quality in normal
conducting magnets for more than half of a century [3]. Most established approaches make use of rotating
induction coils and express the integrated field quality in a cylindrical magnet bore by means of multipolar
fields, also known as field harmonics.

Another mandate of the TE-MSC-TM section, are real-time magnetic field measurements (cf. Fig. 1.1 (4)).
Such measurements are required to give direct feedback during the operation of the accelerator complex.
Here, the measurement equipment is installed inside the magnet, either at a position not occupied by the
particle beam or inside a separate reference magnet powered in the same circuit as the magnets in the
accelerator. Monitoring the magnetic field during the magnet cycling is required for all iron dominated
magnets in particle accelerators, as iron hysteresis and saturation effects in the magnet end-plates are difficult
to predictable.

1.2 The field model

Field harmonics may be regarded as a mathematical model for the integrated field in an accelerator magnet.
Characterizing the field in this way has several benefits:

1. Link to beam dynamics: The effects of multi-polar fields on beam related quantities are well understood
and thus can be seen as a direct link between magnet production and particle physics. As an example,
the measured multipole errors of the LHC bending dipole magnets have been used for particle tracking
simulations, in order to find optimal magnet arrangements with respect to beam quality and stability.
Moreover, corrector magnets have been designed particularly to counteract the impacts of measured
multipole errors in the main dipole and qaudrupole magnets.

2. Scaling laws: Knowing the field at a given radius inside the magnet bore, allows one to scale the results
to different radii, by means of scaling laws derived from multipole theory. In this way, the field can be
fully characterized by the measured quantities at a reference radius.

3. Exact magneto-static solution: Field harmonics are solutions to Maxwell’s equations. Extracting field
harmonics from the measurement data filters out non-physical solutions, which might stem from random
or systematic measurement errors.

Field harmonics are most convenient for integrated fields in cylindrical magnets. As an extension to arbitrarily
shaped, two dimensional domains, formulations by means of boundary element methods have been adopted
in [4] and [5], and the stretched wire technique was used to measure the magnetic flux through the boundary
of the domain of interest. This technique is capable to provide field-quality maps considerably faster than
sampling on a two-dimensional grid. Moreover, measurement errors are restricted to the domain boundary
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and evaluating the integral equation yields an exact magneto-static solution. In this way a smoothing property
for random and systematic measurement errors is accomplished.

Field integrals alone may not provide all the required insight for particle tracking, as the magnetic field strays
non-linearly in the magnet extremities. This is true for spectrometer magnets [6], strongly curved bending
magnets [7] and focusing lenses exhibiting large diameters [8]. The benefit of relying on field models, such
as multipoles or boundary element methods, rather than direct measurements, increases drastically when
three dimensional field distributions are required. The number of measurementsM needed to sample the
field in a three dimensional grid of resolution h scales like M ∝ O(1/h3), whereas sampling the domain
boundary only requiresM ∝ O(1/h2) measurements. This might reduce the overall measurement duration
from several days to a few hours. The idea of using measured boundary data to characterize the three
dimensional field distribution in an arbitrarily shaped domain may be seen as the trigger of this research
[5].

Particle tracking codes require a good interpolation method that interpolates both the field values and the deriva-
tives accurately ([9] p. 254). Special finite-element and boundary-element approaches have been developed
in order to express the magnetic field in the vicinity of the reference orbit and to use these formulations for
particle tracking [10] [11]. This thesis ties in with the approaches presented in [5], [7] and [12], as a field
model derived from boundary-integral equations will be presented.

1.3 The generic inverse problem

Although the physical background and a more detailed mathematical description will be the subject of
chapter 3, a generic problem statement is now formulated.

Consider a domain Ω in the air gap of a particle accelerator magnet. The field is expressed by means of a
scalar function, i,e., the magnetic scalar potential φm : Ω→ R. The physical relations of the magneto-static
field in Ω are implied if a partial differential equation holds for φm; the Laplace equation ∆φm = 0. The
function φm, and therefore the physical state of the magneto-static field, is uniquely determined if a boundary
condition is given for φm. This means explicitly that φm, or its outward directed normal derivative1 ∂nφm is
given by means of a function ν on the boundary ∂Ω. A domain Ω, its boundary ∂Ω and the potential φm, are
shown in Fig. 1.2 in two dimensions. The challenge lies in the determination of the boundary data ν, from
magnetic measurements.

A measurement provides a vector of M measurement data y = ydet + ϵ ∈ RM . Here, it is beneficial to
differ between the deterministic part ydet and the error term ϵ. The latter accounts for microscopic and
macroscopic effects such as the electronic noise of a sensor and errors due to perturbations of the measurement
position.

From the physical properties of the magneto-static field, as well as the sensor, a mathematical model for
the measurement process can be derived. This yields a comparable quantity to the deterministic part ydet,
which will be denoted as predicted measurement ỹ. The result of the mathematical modeling is an observation
operator H : (ν,θ) ↦→ ỹ which maps the boundary data to ỹ.

As it will be useful in later discussions, the observation operator is formulated in terms of sensor parameters θ,
which can express the sensor orientation and positioning perturbations.
1It will be discussed in chapter 3, how to restrict the function space for a unique formulation in case of the latter boundary condition.
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Figure 1.2: Problem domain Ω (gray), in the air gap of an electromagnet. Its boundary is denoted by ∂Ω. The
magnetic scalar potential φm, and therefore the field, is uniquely determined by means of the
boundary data ν on ∂Ω.

Due to the error term ϵ, an exact solution of the inverse problem usually does not exist, nor is it desired, as
it would fit to the error term ϵ, an effect known as over-fitting. The number of measurements M is finite,
whereas the boundary data ν are generally in an infinite dimensional function space. To obtain a unique
solution of the inverse problem, ν must be approximated in finite dimensions. Therefore the predicted
measurements ỹ might differ from the deterministic part ydet due to the approximation of ν. In the end,
the equivalence between y and ỹ must be established by minimizing the error expressed in some error
metric ∥ · ∥∗, such as the sum of the squared differences between y and ỹ scaled with the measurement
accuracy.

Combining all these aspects yields a generic inverse problem:

Definition 1 (The generic inverse problem)
For a given y ∈ RM ,

find: the boundary data ν,
such that: ∥y − (H(θ)ν)∥∗

!
= min,

subject to: ∆φm(r) = 0, r ∈ Ω,
where: ν is a boundary condition for φm(r′), r′ ∈ ∂Ω.

The first applications of using measurements to determine ν, were based in direct measurements along the
domain boundary [4] [5]. In this case the observation function can give a direct relation to ν, without the need
to solve∆φm = 0. It was found early in this research, that direct boundary measurements are difficult to realize.
The boundary of the domain of interest usually matches with the magnet poles or the vacuum chamber, while
particle beams might occupy all the available space. Bringing the sensor close to this boundary is a non-trivial
task, and particular measurement equipment needs to be designed [13].
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Fig. 1.3 shows images of standard measurement equipment, developed in the TE-MSC-TM section at CERN.
Some aspects of these systems concerning the direct measurement of boundary data are:

• Rotating-coil measurement system use arrays of induction coils, mounted on different radii, in order to
improve their sensitivity for certain multipole components [14].

• Translating induction coils need to be supported by rails on a sledge, limiting the minimal distance
between the coils and yoke to some centimeters [15].

• Hall-probe measurements use bulky sensor heads, covering the Hall sensors for thermal stabilization.
Cross sensitivity errors due to probe misalignment affect the sampling of the three components of the
magnetic flux density. Moreover, the offsets between the Hall elements in three-axes measurements are
often not negligible.

In this thesis, the assumption for boundarymeasurements is relaxed, which enables the use of standardizedmea-
surement equipment. All that is needed is a more comprehensive mathematical model for the observation oper-
atorH , including the influence of three dimensional magneto-static fields.

The alternative approach to definition 1, which is usually followed when field maps in accelerator magnets are
required, is to distribute measurements on a grid in Ω and interpolate between the measurement positions. Re-
constructing the field bymeans of definition 1, has the following advantages:

1. A magnetic potential is obtained from measured voltages.

2. The magneto-static solution is implied in the field reconstruction.

3. Only the domain boundary needs to be sampled with measurements.

1.4 The blueprint

Throughout this work, field models and sensor systems will be considered for different kinds of application.
This will yield different versions of the generic inverse problem. The solution, however, will follow the same
pattern. This pattern is denoted as the blueprint, shown in Fig. 1.4. It may also be considered as a guide
through the chapters of this thesis.

In the center of all considerations are the quantities of interest, which comprise the magnetic flux density B,
as well as the magnetic scalar and the magnetic vector vector potentials, φm andA. Whereas all quantities are
equally well suited for the reconstruction of the magnetic field, the magnetic vector potential A is often the
basis for particle tracking algorithms. Chapter 2 therefore starts by introducing the requirements for particle
beam dynamics.

The numerical field model has the capability to predict the quantities of interest within the magnet bore from
given boundary data ν. To this end, physical relations are exploited to derive prediction operations, similar
to the scaling laws used for multipole fields. The mathematical modeling used to derive the field model is
described in chapter 3.

Sensors used for magnetic measurements do not provide direct observations of the magnetic field. For instance,
induction coils provide a voltage proportional to the rate of change of flux linked with the coil area. Hall sensors
are generating voltages with a non-linear dependency on the components of the flux density. The magnetic flux
density B can therefore never be measured directly, and needs to be inferred, based on a mathematical model.
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Figure 1.3: Various sensor systems used for magnetic measurements. Top left: Rotating radial coil array.
Top right: Translating induction coil system using a sledge to move induction coils through the
magnetic field. Bottom: Three-axes, Hall cube embedded in a sensor head for thermal stabilization.
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Figure 1.4: Blueprint for the treatment of inverse problems in the context of magnetic measurements. The
aim is to reconstruct the magnetic field inside an accelerator magnet from measurement data y,
affected by measurement errors. The magnetic field may be expressed by means of the magnetic
flux densityB, the magnetic scalar potential φm, or the magnetic vector potentialA. These are
the quantities of interest. The physical relations of the magnetic field are implied when deriving
the quantities of interest by the solution of a partial differential equation; ∆φm = 0. Moreover,
expressing the field as the solution of a boundary value problem, only the boundary data ν is
needed to uniquely determine the field. In order to derive a quantity comparable to y, a numerical
model for the sensor system is derived. This model may comprise sensor parameters θ, and
provides a sensitivity function s : (B,θ) ↦→ U ∈ R. Linking the field model with the sensor
model yields the observation operatorH which maps ν and θ to the comparable quantity ỹ. The
challenge lies in the inference of ν from measurements y. The Bayesian framework provides the
means to blend data with physical relations and prior knowledge in the inference process. This not
only allows to quantify uncertainties in ν , but also establishes the framework for active learning
algorithms, which are exploring the physical space based on uncertainties in the quantities of
interest.
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This model must comprise the field and the sensor in order to derive a quantity that is comparable with the
measurement data. Deriving a numerical model for the sensor system requires the investigation of all physical
effects on the measurement data; a metrological characterization. To this end, chapter 4 describes all the steps
necessary at the example of a new three-axes Hall-probe mapper, which has been fully commissioned and
characterized within the scope of this doctoral thesis. The result is a sensitivity function s : (B,θ) ↦→ U ∈ R,
mapping the magnetic flux densityB and sensor parameters θ to the voltage U ∈ R. The observation operator
can be derived by linking the sensor and field models.

There is a fundamental difference between the sensor parameters θ and the boundary data ν, as only ν is
needed for the prediction of the quantities of interest. Explicitly, θ will comprise perturbations in sensor
positioning and orientation, but it might also include other physical quantities affecting the measurement
outcome, such as the temperature and Hall current.

All downstream arrows in the blueprint relate to forward calculations, which are the basis for sensitivity
analyses in the design phase of a measurement system. The observation operatorH is designed in a way that
the predicted measurement ỹ is uniquely determined by the boundary data ν, given the sensor parameters θ.
This, however, is not true for the inverse problem inferring from y to ν.

This leads to one of the core ideas of this work, namely to the use of statistical inference, not only to combine
measurement data with physical modeling, but also to include prior knowledge. The concepts followed in this
thesis are closely related to data assimilation, which has recently reached the rank of a discipline per se [16]. It
developed from numerical weather forecasting, but its application is becoming widespread in many other areas
of climate, atmosphere, ocean and environment modeling [16]. A good overview on data assimilation in the
geosciences is found in [16].

In data assimilation, the state of a dynamical system is considered as an often discrete stochastic-dynamical
system. In this way, model errors are represented as stochastic perturbations of the system dynamics. Ob-
servations of the real process are available from measurement data. Because of measurement errors and
noise, these observations are naturally affected by randomness. Therefore also the observations are con-
sidered as a stochastic process. The two models are then fused by using the Bayes rule of probability,
which yields update rules for the physical state whenever new data becomes available (see [17, Section
1.2]).

The assumption of Gaussian distributions for the dynamical and the observation model leads to the Kálmán
filter [18], which is widely used in real time tracking applications, such as the guidance, navigation, and
control of aircrafts [19]. In the framework of Gaussian distributions, the stochastic physical state of the system
can be described by its first two statistical moments, namely the mean and the covariance matrix. In Kálmán
filtering, the mean and the covariance matrix are propagated in time by means of prediction and update rules,
involving only the solution of a set of linear equation systems.

Particularly in the context of the geosciences, the propagation of the full covariance matrix becomes infeasible,
due to the high dimension of the state space. For this reason, the ensemble Kálmán filter has been developed
[20], which approximates the full covariancematrix bymeans of a smaller-dimensional ensemble of state vectors.
The ensemble Kálmán filter may therefore be regarded as a special type of particle filter, where a set of samples,
called “particles”, is representing the statistics of the state variables [21].

In addition to the reduced computational complexity, the ensemble Kálmán filter allows for an observation-
matrix free implementation (see [22, Section 3]). This is of advantage, because the observation operator might
require the solution of a linear equation system in order to imply ∆φm = 0, or might not be available in matrix
format because of the high memory requirements. In [23], for instance, it is shown how to efficiently use
conjugate gradient iterations for data assimilation problems involving the solution of sparse linear equation
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systems. In [24] a Kálmán filter powered by hierarchical (H2) matrices is presented and applied to the
tracking of fluid movement based on measurement data. Hierarchical matrices enjoy great popularity also in
computational electromagnetics, as they allow to drastically reduce the complexity of matrix multiplications
and memory requirements [25].

The ensemble Kálmán filter has also been successfully applied to nonlinear, and non-Gaussian data-assimilation
applications [26]. Even though the optimality of the state estimation requires a linear observation operator
and Gaussian stochastic models, the ensemble may be computed from a nonlinear observation operator
[20]. Although this is affected by errors, as the statistics are approximated by Gaussian distributions, in
complex high-dimensional systems the ensemble Kálmán filter is essentially the only way to do approximate
inference, while alternative exact inference techniques can only be applied to highly simplified versions of the
problem [26].

At CERN, data assimilation and Kálmán filtering is applied for the reconstruction of charged particle trajectories
and particle-beam related quantities, based on detector plane or beam profile measurements. Recent advances
are reported in [27] [28] and [29].

The idea of using Bayesian inference for the blueprint problem in the context of magnetic measurement
data was first formulated in [11] and applied to the analysis of rotating coil measurements in [10]. These
approaches are conceptually related to data-assimilation, whereas in the magneto-static scenario, the dynamic
state propagation is an identity transformation.

One of the key results of this thesis is the development of an active learning algorithm, which uses an ensemble
Kálmán filter to update field estimates by taking new measurements at locations with large uncertainty [30].
In this way, the physical space is explored dependent on the uncertainties in the quantities of interest. This
principle is illustrated in Fig. 1.5 and it will be described in chapter 5.

Theory is put into practice in chapter 6, where three inference problems will be presented. All three problems
will require different sensor and field modelling. Even if the boundary data ν, sensor parameters θ and
measurements y might change widely in their physical nature, the post-processing will always follow the
blueprint, which is why the same notation for ν, θ and y will be adopted. Remarks about the physical nature of
all variables will be given at the beginning of each subsection of chapter 6.
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Figure 1.5: Active learning applied to three dimensional field mapping. The principle is illustrated for mea-
surements in a curved dipole magnet (1). The measurement system provides measurements in
the left fringe field (2). In block (3), a Kálmán update is performed. This update combines the
measurement data with prior knowledge for the mean and the covariance of the boundary data.
The mean and variance are illustrated for prior and posterior. The update improves the variance
in the left side of the domain. In block (4), the uncertainties are propagated to the quantity of
interest. Here the uncertainty in the field along a reference trajectory is shown. Based on the local
uncertainties, new measurement positions are identified and transferred to the system (5). The
updated mean and covariance are considered as prior knowledge for the next Kálmán update (6).
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2 Particle Beam Dynamics

The motion of a charged particle through the electromagnetic field can be expressed as the solution of a first
order differential equations system

d
dt
z = f(t, z), (2.1)

subject to initial conditions for t = 0. The particles state vector z(t) may comprise positions, momenta,
velocities, or any other beam related quantity, such as a particle spin, mass or charge [31]. The fact that the
system in Eq. (2.1) is of first order is not a restriction, since higher order systems can be reduced by introducing
new variables of type x = dnz/dtn [31]. The computation of the state vector z for a passage through an
electromagnetic field, is frequently referred to as particle tracking.

In principle, one could derive the right-hand-side f fromNewton’s second law [32]

dpmech

dt
= F , (2.2)

where pmech is the particle momentum vector and F is the Lorenz force according to Eq. (1.1). However, this
is not the approach generally taken in accelerator beam dynamics. The main reason is that solving Newton’s
second law involves integrating the equation of motion with respect to time, whereas in an accelerator beam line
the electric and magnetic fields are usually specified as functions of position [32].
The path that is more often taken is to start with the Hamiltonian equations of motion, providing a way to re-
parameterize and obtain a more elegant formulation using the path length as independent variable rather than
time. Moreover the Hamiltonian formalism provides a powerful tool to analyze the beam stability for repetitive
systems, especially due to the conservation of certain invariants of motion.

The following subsections give a result-orientated overview of Hamiltonian mechanics and the Hamiltonian
formulation used for particle tracking. The main objective of this thesis is to derive of a field model from
measured data, which is capable of providing the required input data for particle tracking applications. The
approach presented in chapter 3 is powerful as it is not tailored to one specific implementation and allows to
compute field components, potentials, and their derivatives, as well as local field expansions in the vicinity of
the particle trajectory.

2.1 Hamiltonian motion

The statement of Hamilton’s principle is that the trajectory of a mechanical system is found in the minimum
of a functional, frequently denoted as action S [33]. Considering the coordinate vector q = (x, y, z)T , which
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describes the particle trajectory in three dimensions, the action between the two instants t0 and t1 is denoted
by S : q(t)→ R and defined by

S(t0, t1, q(t0), q(t1)) =

∫︂ t1

t0

L(t, q(t), q̇(t))dt. (2.3)

L(t, q, q̇) is the Lagrange function, a smooth, real-valued function that is equal to the difference of kinetic and
potential energies in a mechanical system. In the above equation and in what follows the dot denotes the time
derivative d/dt. In a conservative system, where no energy is gained or lost, the Lagrangian L is an invariant
of motion

dL
dt

= 0. (2.4)

In particle accelerators the motion is invariant in the case of static magnetic fields, when neglecting the effects of
synchrotron radiation. This is known as the principle of least action [34]; the observed trajectory q(t)minimizes
the action S and is computed by solving the Euler-Lagrange equations

d
dt
∂L

∂ẋ
=
∂L

∂x
,

d
dt
∂L

∂ẏ
=
∂L

∂y
,

d
dt
∂L

∂ż
=
∂L

∂z
, (2.5)

which one may summarize in the vector notation

d
dt
∂L

∂q̇
:=

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂L

∂ẋ
∂L

∂ẏ

∂L

∂ż

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂L

∂x
∂L

∂y

∂L

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=:

∂L

∂q
. (2.6)

The same notation is adopted in the following for partial derivatives with respect to vectors in R3: ∂f/∂x =
(∂f/∂x1, ∂f/∂x2, ∂f/∂x3)

T .

Hamiltonian mechanics is a results of the Legendre transformation, defined as the map (q, q̇) ↦→ (p, q) [35].
p is the canonical momentum

p =
∂L

∂q̇
, (2.7)

which is not the momentum variable pmech = mq̇, used in classical mechanics. The variables p and q describe
the particle motion in an abstract phase space and are therefore denoted as phase-space coordinates. Taking
the derivative of L with respect to time

dL
dt

=
∂L

∂q
· q̇ + ∂L

∂q̇
· q̈, (2.8)

and using equations Eq. (2.6) and (2.7), it yields [33]

d
dt

(p · q̇ − L)⏞ ⏟⏟ ⏞
:=H

=
d
dt
H = 0, (2.9)

if the motion is conservative. Here the Hamiltonian H is defined as the transformed invariant of motion

H(p, q) = p · q̇ − L(q, q̇). (2.10)
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The Hamiltonian has the physical meaning of the sum of kinetic and potential energy. From the Euler-Lagrange
equations in phase space coordinates it yields Hamilton’s equations

dq
dt

=
∂H

∂p
,

dp
dt

=
∂H

∂q
. (2.11)

Defining z := (x, px, y, py, z, pz)
T , one can derive a system of differential equations of type Eq. 2.1 describing

the particle trajectory in phase space.

The explicit formulation ofH is often derived from energy considerations [33]. The motion of a relativistic par-
ticle in a static electromagnetic field is governed by the Hamiltonian [32]

H = c
√︁
(p− qA)2 +m2c2 + qφ. (2.12)

A is the magnetic vector potential φ is the electric scalar potential, q and m are the particle charge and mass,
and c is the speed of light.

2.2 Accelerator Hamiltonian

A formulation based on the Hamiltonian given in Eq. (2.12) is inelegant, as it is formulated in terms of t as its
independent variable. Moreover, it is beneficial to work with scaled variables and approximate power-series
expressions. Therefore, transformations of variables are necessary. The new variables should also evolve
according to Hamilton’s equations. Such variables are known as canonical variables and a transformation
between such is known as a canonical transformation. Details about deriving canonical transformations and
how to transform Hamiltonians can be found in [32].

Of special interest in particle beam dynamics is the Hamiltonian in a curved coordinate system following the
the design orbit of the beam. This Hamiltonian is frequently denoted as the accelerator Hamiltonian. The
underlying coordinate system is shown in Fig. 2.1. Denoting a cartesian frame by capital letters (X,Y, Z) the
curved coordinates x, y, s are defined as

X =(x+ ρ) cos
(︃
s

ρ

)︃
− ρ

Y = y (2.13)

Z =(x+ ρ) sin
(︃
s

ρ

)︃
and the reference curvature is given by h = 1/ρ. The components of the magnetic vector potential in the
curved co-ordinates are given by

Ax =AX cos
(︃
s

ρ

)︃
−AZ sin

(︃
s

ρ

)︃
Ay =AY (2.14)

As =AZ cos
(︃
s

ρ

)︃
+AX sin

(︃
s

ρ

)︃
,

where A = (AX , AY , AZ) is the magnetic vector potential in the cartesian frame.
As the following result is well known in the community of particle beam dynamics, a derivation is omit-
ted and the resulting Hamiltonian as well as the corresponding variables of motion are summarized in
definition 2.
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Figure 2.1: Curved coordinate system based on a circular reference trajectory (dashed). The x, y, s-
coordinates are shifted by ρ such that they are matching theX,Y, Z frame for s = 0.

Quantity Meaning Equation
c speed of light
s path length
P0 reference momentum, often chosen as the longitudinal mo-

mentum of an ideal particle
E total particle energy E = γmc2 + qφ
β0 velocity of the reference particle, scaled by the speed of light β0 = v0/c

γ0 Lorentz factor of the reference particle γ0 =
1√︁

1− β20
ax scaled horizontal magnetic vector potential ax = qAx/P0

ay scaled vertical magnetic vector potential ay = qAy/P0

as scaled longitudinal magnetic vector potential as = qAs/P0

φ electric scalar potential

Table 2.1: Quantities related to the relativistic Hamiltonian in scaled coordinates to compute the evolution of
the variables of motion. The ideal particle travels with the designed longitudinal momentum.

Definition 2 The accelerator Hamiltonian for the motion of a relativistic particle traveling in a curved
reference system of curvature h is given by [32]

H =
δ

β0
− (1 + hx)

√︄(︃
δ +

1

β0
− qφ

cP0

)︃2

− (px − ax)2 − (py − ay)2 −
1

β20γ
2
0

− (1 + hx)as. (2.15)

The variables of motion are z = (x, px, y, py, z, δ)
T . Their meanings and definitions are found in table 2.2.

Definitions of other Hamiltonian related quantities are found in table 2.1.
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Variable Meaning Equation
x horizontal co-ordinate (Fig. 2.1)
y vertical co-ordinate (Fig. 2.1)
z longitudinal co-ordinate z =

s

β0
− ct

px scaled horizontal momentum
βxγmc+ qAx

P0

py scaled vertical momentum
βyγmc+ qAy

P0

δ energy deviation
E

cP0
− 1

β0

Table 2.2: Summary of the variables of particle motion. These quantities are commonly used to describe the
physical state of a particle and are related to a reference particle, traveling with velocity cβ0 and
momentum P0. See table 2.1, for other motion related quantities.

2.3 Equations of motion

Equations of motion according to Eq. (2.1) can be derived from Hamiltons equations in the transformed
variables

dx

ds
=
∂H

∂px
,

dpx
ds

= −∂H
∂x

, (2.16)

dy

ds
=
∂H

∂py
,

dpy
ds

= −∂H
∂y

, (2.17)

dz

ds
=
∂H

∂δ
,

dpz
ds

= −∂H
∂z

, (2.18)

imposing that [36]

dz

ds
=

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

∂/∂x
∂/∂px
∂/∂y
∂/∂py
∂/∂z
∂/∂δ

⎞⎟⎟⎟⎟⎟⎟⎠H = f(s, z). (2.19)

To derive explicit formulas, a suitable field representation by means of a magnetic vector potential A is
substituted in the Hamiltonian and the partial derivatives are built. Computing the state of a particle at a
position z1, with an initial condition at z0, involves the integration of the resulting expressions in s. There are
two sources of approximation errors that need to be distinguished in this procedure: First, the approximation
errors related to the expression for the magnetic vector potential A and second, errors accompanied with the
numerical integration in s. Approaches to express A in the vicinity of the particle beam will be discussed in
chapter 3.
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2.4 Field-model requirements

To close this chapter it should be summarized that several approaches for the treatment of three dimensional
fields in tracking codes have been developed, all tailored to slightly different applications [7] [37] [38] [39]
[40] [41]. The goal of this thesis is to provide a general framework for the metrological determination of a
field model, providing the data for any of the above implementations. This will prevail itself as a standard post-
processing tool in the portfolio of the testing and magnetic measurement section at CERN. Five requirements
for the field model can be formulated:

1. Potential formulation: The field shall be described by means of a magnetic scalar or vector potential,
in a way that the three components of the magnetic flux density are accessible.

2. Magneto-static solution: Evaluating the field description shall always provide an exact local magneto-
static solution, obeying Maxwell’s equations.

3. Smooth solution: Field derivatives [38] and local multipole expansions [7] of arbitrary order have to
be accessible.

4. Convergence: Errors accompanied with numerical approximations should converge when increasing
the complexity of the field solution.

5. Uncertainty quantification: Measurement uncertainties should be propagated to the potentials, field,
and derivatives.

Field models meeting these requirements will be presented in chapter 3.
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3 Magnetic Fields in Accelerator Magnets

Consider a simply connected, open domain Ω, free of currents and magnetic material, with sufficiently
smooth boundaries. In the magneto-static case, the magnetic flux density B is governed by the equations:

r ∈ Ω

{︄
divB(r) = 0,

curlH(r) = 0.
(3.1)

H is the magnetic field strength that relates to B via H = 1/µ0B in Ω. µ0 is the vacuum permeability
µ0 = 4π10−7 V sA−1 m−1.
Physical relations can be simplified using potential formulations. Since curl grad f = 0, curlH(r) = 0 holds
in Ω for gradient fields:

B = −µ0gradφm. (3.2)

Thus the magnetic field is equally well described by means of the magnetic scalar potential φm. Similarly, one
can imply divB(r) = 0 by

B = curlA, (3.3)

where A is referred to as magnetic vector potential. The requirements for the existence of φm, and A are
discussed in [42, Chapter 3.14]. Throughout this work, trivial domains Ω are considered for which all
requirements are met.
The definitions for φm and A by means of the differential operators grad and curl are not unique. Obvi-
ously, any magnetic scalar potential φ∗m = φm + c, with c ̸= f(r) yields the same B. The same applies for
A∗ = A+ grad f . The gauge functions c and f can be exploited to simplify the solutions of partial differential
equations, or to save on computational demands in particle tracking [40].
Working with potential formulations allows to derive compact notations for the electromagnetism inΩ by means
of partial differential equations. Substituting Eq. (3.2) in divB(r) = 0 yields

−divµ0 gradφm = 0. (3.4)

Since µ0 is constant,
div gradφm = ∆φm = 0, (3.5)

with the Laplace operator ∆f := div grad f .
A similar equation for A is derived from Eq. (3.3) and curlH(r) = 0

curl
1

µ0
curlA = 0, (3.6)

which is known as the curl-curl equation.
In principle, both φm and A are equally suitable to express the magnetic field in the bore of an accelerator
magnet. However, A is a vector field, whereas φm is a scalar field, associated with reduced computational
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complexity. For this reason it is beneficial to first derive a closed solution for φm and then identify the
components of A via the equivalence

B = curlA = −µ0gradφm. (3.7)

Of particular importance for the field reconstruction from measurement data are cases where the potential
φm or its normal derivative ∂nφm are known at the boundary ∂Ω. A partial differential equation, endowed
with such a boundary condition is known as boundary value problem.
The Dirichlet problem reads:

Find φm ∈ V,
such that ∆φm(r) = 0, r ∈ Ω, (3.8)
subject to φm(r) = u(r), r ∈ ∂Ω,

with u ∈ Vu.

The Neumann problem reads:

Find φm ∈ V,
such that ∆φm(r) = 0, r ∈ Ω, (3.9)
subject to ∂nφm(r) = g(r), r ∈ ∂Ω

with g ∈ V∗g ,

and
∫︂
∂Ω
φm(r

′)dr′ = 0

The gauge condition
∫︁
∂Ω φm(r

′)dr′ = 0, is needed for a unique formulation of the Neumann problem1.
The space of all functions φm ∈ V with

∫︁
∂Ω φm(r

′)dr′ = 0 will be denoted as V∗ ⊂ V. The functions
g with

∫︁
∂Ω g(r

′)dr′ ̸= 0 must be excluded in case of the Neumann problem, otherwise the source free
condition for the magnetic field according to Eq. (3.1) would be violated. One therefore defines V∗g such that
∀g ∈ V∗g :

∫︁
∂Ω g dr

′ = 0.

In the above boundary-value problems, the function spaces V, Vu and Vg have been introduced for φm, u and
g, without elaborating further on their properties. Details about the structure and mathematical properties
of V, Vu and Vg are found in [43, Chapter 4]. It will be seen in the following sections, that the approaches
to solve boundary-value problems differ by means of the function spaces in which the solutions are sought
for.

3.1 The problem statement

Representing the field by means of a Dirichlet or Neumann boundary condition, u or g and using Eq. (3.8) or
(3.9) for the reconstruction of the field within Ω implies the physical relations for the magneto-static field.
This is one of the core ideas followed in this thesis. The generic inverse problem (see definition 1) is now
rewritten for the Dirichlet and Neumann problems:

1The gauge function is implied with the boundary condition in case of the Dirichlet problem.
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Definition 3 (The inverse problems for the magnetic scalar potential)
Dirichlet problem Neumann problem

For a given y ∈ RM ,
find u ∈ Vu g ∈ V∗g

such that ∥y − (H(θ)u)∥∗
!
= min ∥y − (H(θ)g)∥∗

!
= min

subject to ∆φm(r) = 0, r ∈ Ω

with φm ∈ V φm ∈ V∗

and φm(r) = u(r), ∂nφm(r) = g(r), r ∈ ∂Ω.

In accordance with the discussion in section 1.3, the measurement data are assumed to be distributed in
Ω, and not on the boundary ∂Ω. As it is central to the definition 1, some approaches to solve ∆φm(r) = 0
in Ω are presented in the following sections. Depending on the approach, the problem statement may be
reformulated.

3.2 The separation of variables method

Interpreting the left and right-hand side of the boundary-value problems, Eq. (3.8) and Eq. (3.9), as continuous
functions, the minimum requirement for φm is its twice continuous differentiability, φm ∈ C2. Such a solution
is called strong solution to the underlying problem. The separation of variables method leads to such a
solution by choosing the formulation φm = A(ζ)B(ξ)C(χ). Here ζ, ξ and χ denote the coordinates of an
orthogonal system. One then tries to separate the partial differential equation into a set of ordinary differential
equations in A(ζ), B(ξ) and C(χ). From the eigensolutions of these ordinary differential equations, one can
construct homogeneous solutions for the Laplace equation by linear combination. The coefficients of this
linear combination are identified to match a given boundary condition.

In three dimensions, there are eleven orthogonal coordinate systems based on surfaces of first and second
degree [44]. It is shown in [45], that all of these coordinate systems allow for the separation of the Laplace
equation. Some popular examples are cartesian, cylindrical, and spherical coordinates. To express the
boundary conditions in a simple way, one must have iso-surfaces that fit the physical boundaries of the
problem [46]. This limits the applicability of the approach to basic geometries such as the ones listed in
[44].

Of particular interest for the field representation in accelerator magnets is the case of repetitive cylindrical
systems, for instance in multipole magnets. For this reason, one may express φm in cylindrical coordinates with
a periodic boundary condition along z; see [32, Section 1.3.2] for the field representation in such geometries.
On the other hand, spherical geometries will also be important throughout this thesis. Table 3.1 gives the
homogeneous solution of the Laplace equation in spherical coordinates, a figure of the iso-surfaces, and the
relevant boundary conditions. The definitions of the associated Legendre polynomials Pm

l are found in [47]
and [48].

The benefit from expanding the field into eigenfunctions is that ∆φm = 0 is intrinsically implied by the ansatz.
Let us denote by ν = {νl,n} the state vector of the magnetic field, containing the coefficients of a truncated
harmonic expansion, for instance, according to table 3.1, and by ψn

l (r) the corresponding eigenfunctions. The
inverse problem can be approximated in span(ψn

l ) for the index sets {l}, {n} ⊂ Z. The resulting problem is
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The Solid Harmonic Expansion
coordinates: spherical

boundary conditions: φm(r = 0) <∞

x

y

z

ϕ = const

θ = const

r = const

φm(r, θ, ϕ) =

∞∑︂
l=0

l∑︂
n=−l

νl,nr
lY n

l (θ, ϕ)

Y n
l (θ, ϕ) =

√︄
(2l + 1)

4π

(l − n)!
(l + n)!

Pn
l (cos(θ)) exp (jnϕ) (3.10)

Pn
l : Associated Legendre Polynomials [48, Eq. 14.7.11]

Table 3.1: Series expansion of the homogeneous solution of the Laplace equation in spherical coordinates.
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given in definition 4. In this case, the observation operator can be formulated in terms of the state vector ν
and the sensor parameters θ.

Definition 4 (The inverse problem using separation of variables)
For a given y ∈ RM ,

find ν = {νl,n} ∈ CK

such that ∥y −H(θ,ν)∥∗
!
= min

with K = card({l} × {n})

The total number of expansion coefficients K depends on truncating the l and n sums, which introduces
approximation errors. Nevertheless, since eigenfunctions are used, ∆ψn

l (r) = 0, and the truncation is still a
”Maxwellian” solution of the magneto-static problem.

3.3 Boundary element methods

The separation of variables method is limited to simple geometries in which the boundaries of the computational
domain match the iso-surfaces of an underlying orthogonal coordinate system. In boundary element methods
(BEM), this assumption is relaxed and the partial differential equation in Ω is transformed into an integral
equation at the boundary ∂Ω that can describe more complex geometries. To cope with the dimensionality
of the problem, only the boundary data is approximated on a boundary mesh, using locally supported basis
functions. This has the following benefits over finite element methods (FEM), where the entire volume in Ω is
discretized and approximated with local basis functions:

1. Boundary element methods possess a smoothing property to approximation errors in the solution
domain.

2. Only the domain boundary needs to be discretized. This yields a reduced complexity with respect to
finite element approximations.

3. High convergence rates for the evaluation inside the domain are achieved, not only for the potentials,
but also for the spatial derivatives of arbitrary order.

3.3.1 The representation formula

The boundary integral equation can be derived fromGauss’ integral theorem:

Theorem 3.3.1 (Gauss’ integral theorem) Let Ω ⊂ Rd be a compact (closed and bounded) domain with a
piecewise smooth boundary ∂Ω, and F be a continuously differentiable vector field Rd ↦→ Rd, then∫︂

Ω
divF (r′)dr′ =

∫︂
∂Ω
n(r′) · F (r′)dr′,

where n is an outward directed normal field at ∂Ω.
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Substituting F (r′) = v(r′)gradφm(r′) − φm(r′)grad v(r′) in Gauss’ integral theorem yields Green’s second
identity ∫︂

Ω
v(r′)∆φm(r

′)− φm(r′)∆v(r′)dr′ (3.11)

=

∫︂
∂Ω
v(r′) ∂nφm(r

′)dr′ −
∫︂
∂Ω
φm(r

′) ∂nv(r
′)dr′,

with the normal derivative ∂nf(r) = n(r) · grad f(r). One then chooses v(r′) = u∗(r, r′) with u∗(r, r′)
satisfying the sampling property

−
∫︂
Ω
φm(r

′)∆r′u∗(r, r′)dr′ = φm(r), (3.12)

such that ∆r′u∗(r, r′) can be identified with the Dirac delta distribution

∆r′u∗(r, r′) = δ(r − r′). (3.13)

Functions satisfying Eq. (3.13) in the distributional sense are called fundamental solutions. The fundamental
solutions of the Laplace equation in two and three dimensions are given by

u∗(r, r′) =

⎧⎪⎨⎪⎩
− 1

2π
log
|r − r′|
R

, r ∈ R2

1

4π

1

|r − r′|
, r ∈ R3

. (3.14)

Scaling the argument in log | · | with R ∈ R, for the two dimensional case, has the advantage that the ellipticity
of a certain integral operator may be achieved by choosing R > diam(Ω) (see [43], Theorem 6.23). In the
three dimensional case, this scaling is not necessary.

With v(r′) = u∗(r, r′) and ∆φm(r) = 0 one then finds the representation formula for the Laplace equa-
tion

φm(r) =

∫︂
∂Ω
u∗(r, r′) ∂nφm(r

′)dr′ −
∫︂
∂Ω
φm(r

′) ∂nu
∗(r, r′)dr′

= (˜︁V ∂nφm)(r)⏞ ⏟⏟ ⏞
single layer potential

− (Wφm)(r),⏞ ⏟⏟ ⏞
double layer potential

r ∈ Ω, (3.15)

in terms of the single layer- and double layer potentials ˜︁V andW .

The appearance of single- and double-layer potentials can be understood as placing fictitious magnetic
monopoles and dipoles at ∂Ω in order to represent the field in the interior domain. Evaluating the right-hand-
side in the exterior domain Ωc := R \ Ω, yields zero,

0 = (˜︁V ∂nφm)(r)− (Wφm)(r), r ∈ Ωc, (3.16)

which is known as null property.
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3.3.2 Indirect formulations

The null property can be exploited to reduce one of the integrals in the representation formula. The fact that
the exterior domain is masked out by the combination of single and double layer potentials, motivates the
definition of an artificial exterior problem:

∆φextm (r) = 0, r ∈ Ωc, (3.17)

subject to either a Dirichlet- or Neumann-type boundary condition. For Eq. (3.17) holds the representation
formula

0

φextm (r)

}︄
= −(˜︁V ∂nφextm )(r) + (Wφextm )(r)

{︄
r ∈ Ω

r ∈ Ωc .
(3.18)

Taking the sum of Eq. (3.15) and Eq. (3.18) yields

φm(r)

φextm (r)

}︄
= (˜︁V [[∂nφm]])(r)− (W [[φm]])(r)

{︄
r ∈ Ω

r ∈ Ωc ,
(3.19)

where
[[φm]] = φm − φextm , [[∂nφm]] = ∂nφm − ∂nφextm , (3.20)

are the jump discontinuitites in the Dirichlet and Neumann data, from the interior to the exterior domain.
One can enforce the single or double layer potential to vanish, by imposing a Dirichlet or Neumann condition
to the exterior problem (see definition 5).

Definition 5 (Indirect Formulations) For the Dirichlet condition [[φm]] = 0, the representation by means
of the single layer potential is

φm(r) = (˜︁V [[∂nφm]])(r) r ∈ Ω. (3.21)

For the Neumann condition [[∂nφm]] = 0, the representation by means of the double layer potential yields

φm(r) = −(W [[φm]])(r) r ∈ Ω. (3.22)

3.3.3 The stream function

The densities [[∂nφm]] and [[φm]] do not coincide with the original Dirichlet and Neumann data φm and ∂nφm.
The jump density [[∂nφm]] can be interpreted as an artificial single layer of magnetic charges, while [[φm]] has the
meaning of a stream function generating surface currents on the boundary. This can be seen by reformulating
the evaluation of the double layer potential.

Consider a stream function ν and the double layer potential formulation

φm(r) = −(Wν)(r) = −
∫︂
∂Ω

(n(r′) · gradr′ u∗(r, r′))ν(r′)dr′. (3.23)

Here and in the following the subscripts in grad(·) and curl(·) denote the variables to which the operation is
applied. Computing the magnetic field B = −µ0gradφm yields

B(r) = µ0 gradr
∫︂
∂Ω

(n(r′) · gradr′ u∗(r, r′))ν(r′)dr′. (3.24)
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At this stage one canmake use of the equivalence of a double layer and an eddy ring [49]:

gradr
∫︂
∂Ω

(n(r′) · gradr′ u∗(r, r′))ν(r′)dr′

= −curlr
∫︂
∂Ω

(n(r′)× gradr′ u∗(r, r′))ν(r′)dr′ (3.25)

= −curlr
∫︂
∂Ω
u∗(r, r′)(n(r′)× gradr′ ν(r′))dr′,

where in the last operation, an integration by parts was used. As a result,

B = −µ0curlr
∫︂
∂Ω
u∗(r, r′)(n(r′)× gradr′ ν(r′))dr′, (3.26)

which is equal to
B(r) = curlrA(r), (3.27)

with the magnetic vector potential

A(r) = −µ0
∫︂
∂Ω
u∗(r, r′)(n(r′)× gradr′ ν(r′))dr′. (3.28)

As the integral ([50], 5.28)
A(r) = µ0

∫︂
∂Ω
u∗(r, r′)s(r′)dr′ (3.29)

has the physical meaning of a vector potential, generated by the surface current density s on ∂Ω, one can
define the vectorial surface curl

curl∂Ω ν(r′) := −n× gradr′ ν(r′), (3.30)

and interpret ν(r′) as a stream function, generating the surface current density2 s = curl∂Ω ν. A stream
function and its resulting surface current density are illustrated in Fig. 3.1.

Eq. (3.23) and Eq. (3.28) provide the magnetic scalar and vector potentials φm andA bymeans of integral equa-
tions based on the boundary data ν. These results are summarized in definition 6.

Definition 6 (Dual boundary integral formulation for the magneto-static field) The magnetic scalar
potential φm and the magnetic vector potentialA can be traced back to the same density function ν. Whereas
φm is defined by applying the double layer operator

φm(r) = −(Wν)(r), (3.31)

A results from applying a single layer operator on the surface current density curl∂Ω ν

A(r) = (Ṽ curl∂Ω ν(r′)). (3.32)

Here curl∂Ω is the vectorial surface curl:

curl∂Ω ν(r′) = −n× gradr′ ν(r′). (3.33)

As the stream function ν describes the jump discontinuity in the Dirichlet data, it lies in the same function
space as the Dirichlet data u, ν ∈ Vu.

2To be precise, ν needs to be interpreted as a smooth extension in the neighborhood of the domain boundary [51].
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Figure 3.1: A stream function ν as contour plot generating a surface current density s. The stream function ν
is constructed by tensor product cubic basis splines on a regular grid (black).

Remark 1 The forces which are acting on charges in the magneto-static field relate to the gradient of
the magnetic scalar potential. Constant potentials do not affect the particle motion, nor can they be
observed by measurements. As a consequence, the measurement operatorH has a non-trivial kernel, which
means that (H(θ)c) = 0 for all constants c ∈ R. In order to obtain a unique formulation for the inverse
problem, the function space V∗u ⊂ Vu is used for the boundary data ν, containing all functions ν ∈ Vu with∫︁
∂Ω ν(r

′)dr′ = 0.

The problem statement can now be formulated in terms of the stream function ν.

Definition 7 (The inverse problem using the indirect double layer formulation)
For a given: y ∈ RM ,

find ν ∈ V∗u
such that: ∥y − (H(θ)ν)∥∗

!
= min

with: φm(r) = −(Wν)(r) r ∈ Ω

3.3.4 Discretization

The space V∗u is infinite dimensional. For the numerical solution of boundary integral equations one needs to
describe the boundary condition ν by functions that depend on a finite number of parameters [52]. One therefore
proceeds in the same way as for the finite-element methods, and approximates ν by locally supported basis
functions on a boundary mesh.

The boundarymesh is defined via the boundary elements τl, forming the decomposition

∂Ω =
N⋃︂
l=0

τl. (3.34)
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Figure 3.2: Higher order surface parameterization based on the unit square.

Throughout this thesis the boundary elements are defined via the surface parameterizations, based on the
unit square

γl : □ := [0, 1]2 ↦→ τl ⊂ ∂Ω. (3.35)

Such a parameterization is illustrated in Fig. 3.2.

The stream function ν is approximated in the finite dimensional approximation space Su. If Su ⊂ Vu, the
approximation space is said to be conforming, which is a requirement for uniqueness and convergence of the
approximated boundary value problem (see [43] theorem 8.1 (Cea’s Lemma)). The function space Su may be
constructed by globally continuous basis functions ϕD

k . The approximation of ν in Su is denoted by νh and is con-
structed by using the locally supported basis functions ϕD

k , according to

ν(r) ≈ νh(r) =
K∑︂
k=1

νkϕ
D
k (r), ∈ Su r ∈ ∂Ω (3.36)

3.3.5 The discrete observation operator

Following the discretization scheme presented in section 3.3.4, one can derive a discrete version of the
observation operator H : (ν,θ) ↦→ ỹ. This operator will be written as a function of the vectors ν and θ,
according to ỹ =H(ν,θ).

This section focuses on the indirect double-layer formulation according to definition 6. The derivations for the
approximations of other representation formulas follow the same principle.

The density function ν is approximated with

ν(r′) ≈ νh(r′) =
K∑︂
k=1

νkϕ
D
k (r

′) ∈ Su r′ ∈ ∂Ω, (3.37)

where the state vector of themagnetic field (short state vector) is ν = (ν1, ..., νK)T .

Central to the construction of the discrete observation operatorH(ν,θ) is the evaluation operation f(rm) :
Su ∋ ν ↦→ B(rm) ∈ R3, where rm ∈ Ω is a measurement position. f(rm) may be derived from Eq. (3.26) and
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the approximated surface current density sh = curl∂Ω νh(r)

B(rm) =− µ0
∫︂
∂Ω

curlr
(︁
u∗(rm, r

′)sh(r
′)
)︁
dr′

=− µ0
∫︂
∂Ω

gradr u
∗(rm, r

′)× sh(r′)dr′ (3.38)

=− µ0
K∑︂
k=1

νk
∑︂

τl∈supp(ϕD
k)

∫︂
τl

gradr u
∗(r, r′)

⃓⃓
r=rm

× curl∂Ω ϕD
k (r

′)dr′.

In the first step, the product rule for the curl was used, along with the fact that sh does not depend on r.
supp(ϕD

k ) denotes the support of the basis function ϕD
k on ∂Ω.

It is advantageous to evaluate the integrals over the reference element □ rather than τl ∈ R3. To this end, the
local basis function ϕ̂D

k,l on □ is defined by

ϕ̂D
k,l := ϕD

k

⃓⃓
τl
◦ γl : □→ R. (3.39)

For t = (t1, t2) ∈ □, it holds that (see [53] chapter 4.1.8)

κl(t)curl∂Ω ϕD
k

⃓⃓
τl
(r) ◦ γl(t) = Jl(t) (∂v,−∂u)T ϕ̂D

k,l(t), (3.40)

where κl(t) is the surface measure

κl(t) := ∥∂uγl(t)× ∂vγl(t)∥2, (3.41)

and Jl(t) the Jacobian

Jl(t) := (∂uγl(t), ∂vγl(t)) =

⎛⎝ ∂uγl,x(t) ∂vγl,x(t)
∂uγl,y(t) ∂vγl,y(t)
∂uγl,z(t) ∂vγl,z(t)

⎞⎠ . (3.42)

In this way, the integral in Eq. (3.38) can be re-parameterized:

B(rm) = −µ0
K∑︂
k=1

νk
∑︂

τl∈supp(ϕD
k)

∫︂
□

gradr u
∗(r,γl(t))|r=rm

× Jl(t) (∂v,−∂u)T ϕ̂D
k,l(t)dt, (3.43)

where the integrals are formulated on the reference elements.

To give an example for the explicit formulation of an observation operator, a linear combination ofB according
to ym = nx ·B(rm) atM positions rm ∈ Ω for m = 1, ...,M is now considered as the measurement operation.
In the following, the vector nx ∈ R3 is a constant sensor orientation vector, but it could also depend on the
sensor parameters θ. The predicted measurements at the positions rm can be assembled into the vector ỹ =
(y1, ..., yM )T , which is related to the state vector ν via the equation system

ỹ =Hν. (3.44)

In this case, sensor parameters have been neglected and the observation operatorH : ν ↦→ ỹ establishes a
linear relationship between boundary data and the predicted measurements. The elements of the matrixH
are given by

[H]m,k = −µ0
∑︂

τl∈supp(ϕD
k)

nx ·
∫︂
□

gradr u
∗(r,γl(t))|r=rm

× Jl(t) (∂v,−∂u)T ϕ̂D
k,l(t)dt. (3.45)
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3.3.6 Iso-geometric analysis in boundary element methods

So far no explicit definitions for the basis functions ϕD
k and surface parameterizations γl have been given. The

algorithms presented in this thesis have been developed in C++, using the Boundary Element Method Based
Engineering Library (BEMBEL) [54]. In BEMBEL, higher-order basis splines, short B-splines, are used to span
the approximation spaces. B-splines enjoy great popularity for interpolation problems in general, as they
enable arbitrarily-smooth interpolations, while using locally supported basis functions. Univariate B-splines
may be computed according to definition 8 and are illustrated in Fig. 3.3 for different spline degrees. Two
dimensional B-splines for ϕD

k are constructed from the tensor product of univariate splines on a regular grid
(see Fig. 3.4).

Moreover, BEMBEL makes use of non-uniform rational basis spline (NURBS) mappings for the surface
parameterization. NURBS mappings are commonly used in computer aided design (CAD) as they can represent
arbitrary geometries without approximation and enable flexible modification. Using NURBS mappings in
electromagnetic computations, one can bypass the intermediate step of meshing and directly perform the
computations on the CAD geometry representation. This avoids an additional level of approximation and is in
the spirit of iso-gemometric analysis (IGA) [55]. Details about NURBS mappings and B-splines in the context
of BEM are found in [56], [57] and [58].

Using higher-order surface parameterizations such as NURBS mappings, complex geometries can be modelled
exactly. This has been proven useful for the computation of resonance frequencies in radio frequency
cavities [59]. In this work, the exact geometry of a, possibly curved, vacuum chamber may be used as
boundary for the computational domain. However the use of basis splines in combination with higher-
order surface parameterizations has some peculiarities, because the surface evaluations are computationally
costly.

Definition 8 B-splines [60]
Let 0 ≤ p ≤ k and consider the p-open knot vector

Ξ = (ξ0 = ... = ξp⏞ ⏟⏟ ⏞
=0

≤ ... ≤ ξk = ... = ξk+p⏞ ⏟⏟ ⏞
=1

) ∈ [0, 1]k+p+1. (3.46)

The lowest degree (p = 0) B-spline basis functions b0j are given by

b0j (x) =

{︄
1, if ξj ≤ x ≤ ξj+1

0, else
. (3.47)

Higher degree (p > 0) B-spline basis functions are constructed according to

bpj (x) =
x− ξj
ξj+p − ξj

bp−1
j (x) +

ξj+p+1 − x
ξj+p+1 − ξj+1

bp−1
j+1(x). (3.48)

In Fig. 3.3 B-splines of different degrees are shown. Such B-splines are locally supported on finite intervals
and a spline of degree p is Cp−1 continuous. A basis spline can be expressed as a superposition of Bernstein
polynomials, which are element-wise defined on the underlying grid [61].

Fig. 3.4 shows a two dimensional, cubic B-spline, on a grid over the xy-plane. The grid is generated by
separating the x and y axes into four intervals, yielding 16 grid elements. This spline is C2-continuous,
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Figure 3.3: Univariate B-splines of degrees zero to three. Each interval is occupied by p+ 1 B-splines. When
all knots are distinct, a spline of degree p is Cp−1-continuous.

and on each element the spline can be expressed by means of a superposition of locally defined Bernstein
polynomials.

Global approximation spaces for ϕD
k and ϕN

k are built on a set of two-dimensional B-splines, overlapping on
multiple elements of the computational grid, in a way that the values of the B-splines sum up to 1 at each posi-
tion. They are therefore said to form a partition of unity. Evaluating the boundary integral equation, involves
integrating over these basis functions. One might be temped iterating over the basis functions and evaluating
the integrals basis function by basis function. As basis functions are overlapping, this would require “visiting”
each element of the grid multiple times and evaluating the surface for spatial integration. However, evaluating
the higher-order surface parameterizations is computationally costly.

The efficiency can be improved by exploiting the Bernstein basis. To this end, one iterates over the grid elements
and integrates over the Bernstein polynomials. When integrating over all Bernstein polynomials at once, the ap-
proach is most efficient, as the surface is evaluated only once for all polynomials. This is the standard approach
of matrix assembly when using IGA in boundary-element methods.

As an example, the construction of the matrix H according to (3.45) based on the approximated stream
function νh ∈ Su is now considered. Denoting by ψn the n-th of all locally defined two-dimensional Bernstein
polynomials, according to Fig. 3.4, the function spaceWdisc := span(ψ1, ..., ψN ) spanned by ψn can be defined.
Wdisc is said to be discontinuous, to emphasize its difference to Su in continuity. The dimension of the
discontinuous spaceWdisc is higher than the dimension of Su, i.e., dim(Wdisc) > dim(Su). A vector ν ∈ Su
may be expressed as a linear combination of a vector ψ ∈ Wdisc by means of the sparse projection matrix
P ∈ RN×K

ν = ψP . (3.49)
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x

y

Figure 3.4: A cubic basis spline is expressed as a composition of Bernstein polynomials.

It is possible to assemble the integral operatorH inWdisc, and then transfer it to the continuous space Su, by
using the projection operator

H =HdiscP . (3.50)

Hdisc is constructed by integrating over the two-dimensional Bernstein polynomials ψn in (3.45). A drawback
of this approach is the large memory consumption accompanied with storing the matrix in the high-dimensional,
discontinuous space Wdisc. It is thus advantageous to directly project into the low dimensional matrix H
when assembling the equation system. This can be accomplished by temporally storing the matrix elements
into sparse matrices. The principle is illustrated in Fig. 3.5. Considering limited computational resources,
this approach is indispensable to attain high dimensions for Su when using higher order basis splines and
dense matrices. As an example, take the result presented in Fig. 6.11. 13 402 degrees of freedom using cubic
basis splines require a discontinuous space of dim(Wdisc) = 137 216. Moreover,M = 110 076 measurements
are considered. This requires anHdisc matrix of 120 GB, which would be impossible to handle on a desktop
computer.
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on Bernstein basis on B-spline basis
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M
→

Figure 3.5: Using sparse matrices for the memory efficient matrix assembly in boundary element methods
using IGA. The evaluation operatorH is considered. A small block of the matrixHdisc has been
assembled inWdisc. This block has been stored in ˜︂Hdisc in a sparse matrix format. TheH matrix
can be incremented by applying the projector P to ˜︂Hdisc on the fly.

3.3.7 Incorporating a gauge condition

For a unique formulation of the inverse problem, the space V∗u was restricted to stream functions with vanishing
mean (see remark 1), ∫︂

∂Ω
ν(r′)dr′ = 0. (3.51)

This condition can be incorporated into the equation system bymatrixmanipulation.

Consider the state vector ν = (ν1, ..., νK)T ∈ RK and the gauge condition a · ν = 0, which has been derived
from (3.51). The coefficients ak of the vector a ∈ RK are given by

ak =

∫︂
∂Ω
ϕD
k (r

′)dr′. (3.52)

Since

ν1 = −
1

a1

K∑︂
k=2

νkak, (3.53)

it holds

ỹ =Hν =

⎛⎜⎝
∑︁K

n=1H1,kνk
...∑︁K

n=1HM,kνk

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
∑︁K

n=2

(︃
H1,k −

H1,1ak
a1

)︃
νk

...∑︁K
n=2

(︃
HM,k −

HM,1ak
a1

)︃
νk

⎞⎟⎟⎟⎟⎟⎠ , (3.54)

for the product of ν with the matrixH that contains the elements [H]m,k = Hm,k. One may therefore define
the reduced matrixHr ∈ RM×K−1 and the gauge matrix G according to

Hr =

⎛⎜⎝ H1,2 . . . H1,K
... . . . ...

HM,2 . . . HM,K

⎞⎟⎠ , G = − 1

a1

⎛⎜⎝ H1,1
...

HM,1

⎞⎟⎠⊗ (a2, ..., aK) , (3.55)
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where C = A ⊗ B denotes the Kronecker product of the matrices A ∈ RK×L and BM×N according to
[C]km,ln = [A]k,l[B]m,n with C ∈ RKM×LN .

In this way the product Hν can be computed on the reduced state vector νr = (ν2, ..., νK) ∈ RK−1

ỹ = (Hr +G)νr. (3.56)

3.3.8 The Aubin-Nitsche formalism and the design of the measurement procedure

The Aubin-Nitsche formalism allows to derive point-wise error estimates for the evaluation of the approximated
boundary integral equations (see [43, Theorem 12.8], [53, Example 4.2.15]). For the solution of the Neumann
problem, using the indirect double layer potential and, assuming a sufficiently smooth boundary, this yields
the estimate [62, Theorem 7.1]

|(Wν)(r)− (Wνh)(r)| ≲ c(r)h2p+1, r ∈ Ω. (3.57)

νh is the approximated stream function using B-splines of polynomial degree p, and h is a mesh parameter,
which is often identifiedwith themaximum edge length of all boundary elements.

In Fig. 3.6, the convergence for the implementation in BEMBEL is shown and compared to the theoretical
limits. Two domains are considered: (left) the ball Ω = {x, y, z :

√︁
x2 + y2 + z2 < 1}, and (right) the cube

Ω = [−1/2, 1/2]3. In both cases, the Neumann problem based on the indirect double layer potential, given the
manufactured solution

φm(r) = 4x2 − 3y2 − z2, (3.58)

is solved.

The matrices involved in the solution of the indirect Neumann problem are found in appendix 8.3. The error
is evaluated in the l∞-norm, computing the maximum value of the absolute difference between φm and (Wνh)
on a grid inscribed into the domains. In both figures, the errors are normalized with respect to the maximum
potential value in the evaluation grid.

Whereas the boundary of the ball is continuously differentiable, the cube contains corners and is therefore only
Lipschitz continuous. However, similar convergence rates are reported also for the cube. Moreover, in this spe-
cific case, the B-splines of degree p = 2 are performing better than expected.

The term c in (3.57) depends on the evaluation position r ∈ Ω. Even when considering an exact numerical inte-
gration, this term tends to infinity for r approaching the domain boundary.

A numerical experiment is designed to investigate the impact. The stream function ν is approximated on the
surface of the cube, by solving the Neumann problem based the indirect double-layer potential [62], given
the manufactured solution (3.58). The flux density is then evaluated on the lines defined by the vectors
p1 = (1/2, 0, 0)T and p2 = (1/2, 1/2, 1/2)T , starting from the origin. The cube, as well as the vectors p1 and
p2 are illustrated in Fig. 3.7. For the following analysis, the cube is refined four times, yielding boundary
elements with edge length h = 1/16.

The approximation errors are investigated in the flux densityB, bymeans of the relative error

relative error =
∥B(r)−Bh(r)∥2

max∥B(r)∥2
, (3.59)
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Figure 3.6: Convergence of the BEM approximation in case of the indirect Neumann problem. In both cases,
the manufactured solution according to (3.58), provides a Neumann condition for the magnetic
scalar potential. The problem is solved in the ball (left) and cube (right). The errors are measured
in the l∞-norm in the interior of the domain and normalized with respect to themaximumpotential.
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Figure 3.7: Numerical experiment for the investigation of approximation errors for field evaluations close to
the domain boundary.
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Figure 3.8: Performance of the indirect formulation for field evaluation close to the domain boundary. Left:
Evaluations approaching the smooth part of the boundary along p1. Right: Evaluations approach-
ing the corner of the cube along p2. The boundary mesh and the lines p1 and p2 are illustrated in
Fig. 3.7.

where B(r) is the flux density computed from the manufactured solution according to (3.58), and Bh is the
approximation by the BEM.

In Fig. 3.8 the relative errors are shown for the evaluations along p1 and p2 for different polynomial degrees
p. On the left, the evaluation along p1 is shown. For p > 1, the relative errors are below 10−4, with a distance
larger than h. As found in Fig. 3.6 (right) already, the B-splines with polynomial degrees p = 2 and 3 are
performing equally well.

Larger relative errors in the range of 10−3 and 10−2 are found for the evaluation approaching the corner (see
Fig. 3.8 right). This is a known drawback of indirect boundary element methods, in the cases where the
domain boundary contains sharp corners (see [63] remark 3). The reason for this behavior is that indirect
methods make use of the jumping boundary data between interior and exterior domain. Approximating the
trace operators by boundary elements is harder at places where the boundary admits sharp, re-entrant corners,
and the corners of the cube are re-entrant for the exterior domain. This problem can be accommodated either
by smoothing out edges in the definition of ∂Ω, or by extending the domain boundary to shift the corners
outside of the domain of interest.

Fig. 3.8 illustrates how the approximation errors at the boundary are smoothed out for the evaluation in Ω.
Concerning the solution of the inverse problem according to definition 7, this smoothing property is both a
blessing and a curse. With an approximation νh at hand, the smoothing effect is exploited to obtain a field
reconstruction of high precision. However, for the inverse computations the smoothing effect is a curse, as it
inevitably leads to ill-conditioned problems.

This aspect must be investigated for the design of the measurement process. Due to the trade-off between
smoothing and approximation error, the measurements should be placed within a distance of h to the boundary.
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This gives an inscribed boundary surface, which can be covered with measurements. The mesh parameter
h is usually given in accordance with the size of the domain and the desired approximation accuracy. The
remaining question is how many measurements are needed to identify the approximated stream function
νh?

To this end, the conditioning of the inverse problem formulated in definition 7 needs to be investigated.
Measuring the error by means of the sum of squared residuals

∥ydet + ϵ− (H(θ)νh)∥22, (3.60)

and assuming a linear observation operatorH independent of θ, the minimizer νLS is found by solving the
linear equation system

HTHνLS =HT (ydet + ϵ) . (3.61)

The quality of the least-squares solution depends on the mesh parameter h, the error term ϵ, and the
measurement resolution hM , assuming that the measurements are placed equidistantly. Numerical experiments,
such as the one presented in Fig. 3.9, have been performed to study the accuracy of the least squares solution.
Considering that the three components of the magnetic flux density B are measured, and that the elements of
the error term have a standard deviation of σ(ϵ) = 10−3max |ydet|, an accuracy of 10−4 for the field evaluation
is obtained for a measurement resolution of hM < h/3. However, the domain of validity for this statement,
based on the parameters h, σ(ϵ), and hM has not been found yet, and should be investigated more deeply in
future research.

3.3.9 The benefits of the indirect formulation

This subsection summarizes the advantages of the indirect double layer potential formulation for the field
reconstruction form measurement data.

In the representation formula according to (3.15), two integrals are to evaluate. These integrals are involving
the Dirichlet and Neumann data u and g. As it is discussed in appendix 8.1, the Dirichlet and Neumann data
are dependent by a linear operator. The inverse problem therefore needs to be formulated in terms of u or g,
and the missing boundary data needs to be computed by means of the solution of a linear equation system.
These equation systems are derived in appendix 8.2 and 8.3.

To give an example, the discrete observation operatorHdirect BEM formulated in terms of the approximated
Dirichlet data u, based on (3.15) takes on the form

ỹ = Ṽ g −Wu =
(︂
Ṽ V −1K −W

)︂
⏞ ⏟⏟ ⏞

:=Hdirect BEM

u. (3.62)

Ṽ andW are the discretized single layer and double layer potentials according to (3.15). The matrices V and
K are found in appendix 8.2. In this case, the inverse of the matrix V is needed to constructHdirect BEM. This in-
verse matrix can only be computed explicitly in low dimensional problems.

As an alternative to BEM, a field representation by finite element methods (FEM) would be plausible. In FEM,
the whole domain Ω, is discretized and equipped with local basis functions. Usually a magnetic potential
is expressed by means of a linear combination of the local basis functions, in order to represent the field.
Denoting by x the coefficients of this linear combination, the finite element method for the Dirichlet problem
results in an equation system of the kind

Ax = Fu, (3.63)
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Figure 3.9: Design of themeasurement resolution. The cubewith h = 1/16, illustrated in Fig. 3.7 is considered.
The polynomial degree is p = 2. The measurements are placed equidistantly on the surface of an
inscribed cubeΩeval, with a distance of onemesh parameter h to the boundary. The solution of the
Neumann problem νh is used to generate flux density evaluations on Ωeval, with a measurement
resolution of hM . The three flux density components on each evaluation position are filling the
vector ydet. An error term with σ(ϵ) = 10−3max |ydet| is added to perturb the right hand side
of (3.61). The least-squares solution is then computed to obtain νLS. In both, the blue and the
orange lines, the least-squares solution νLS is compared to the approximation νh, and not to the
manufactured solution. In this way, approximation errors do not contribute to the differences. The
L2-norm of the difference νLS − νh is given in blue, normalized with respect to

(︁∫︁
∂Ω ν

2
h(r

′)dr′
)︁1/2.

Moreover, the errors in the potential evaluation are measured in the l∞-norm and are given in
orange, normalized with respect to the maximum value of φm. The potentials are computed on a
3D grid in [−1/3, 1/3]3. All errors are averaged over 50 trials. For comparison, the mesh parameter
h is marked in red.
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where A is the so-called Galerkin matrix and F is a projector operator for the Dirichlet data u [64]. As the
observation operator acts on the field inside the domain, it needs to be constructed on x. This means that in
the case of finite element methods

ỹ = SA−1F⏞ ⏟⏟ ⏞
:=HFEM

u, (3.64)

where S is a matrix which is mapping the coefficients x to the predicted measurements ỹ [65]. Also here the
construction of the observation operator requires a matrix inverse.

Whenever the right hand sides in (3.62) and (3.64) are changed and the field is to be evaluated, a linear
equation system needs to be solved. This linear equation system is of the same dimension as the BEM or FEM
approximation spaces, even if the field is to be evaluated at a single measurement position only. In contrast,
the discrete observation operator when using the indirect formulation according to section 3.3.5, takes on the
form

ỹ =Hν, (3.65)

where a direct relationship between ỹ and ν is established, without the need for the solution of an equation
system. This is particularly beneficial for data assimilation, as a small amount of measurements can be treated
efficiently.

The benefits of the indirect formulation bymeans of the double layer potential are now summarized.

1. The discrete observation operator does not require a matrix inverse.

2. A magnetic vector potential is accessible by means of an integral evaluation according to definition 6.

3. High convergence rates are obtained for the evaluation ofB,A and φm, and also their spatial derivatives.

3.3.10 The multilevel fast-multipole method

Matrices arising in boundary element methods are fully populated, as the Green’s kernel is globally supported.
Therefore the algorithms presented so far scale badly with increasing number of measurements and basis
functions. To make boundary element methods scalable, an efficient compression technique for matrix-vector
products is indispensable. To this end, a multilevel fast multipole method (MLFMM), according to [66] can
be applied to the evaluation operators in an iso-geometric framework.

Fundamental to the approach is the harmonic expansion of the Green’s kernel and the hierarchical clustering of
observations and sources. First, the inverse distance ∥r − r′∥ with r = (r, θ, ϕ) and r′ = (ρ, α, β) in spherical
coordinates is expanded according to

1

∥r − r′∥
=

∞∑︂
n=0

n∑︂
m=−n

ρnỸ
−m
n (α, β)

Ỹ
m
n (θ, ϕ)

rn+1
. (3.66)

The definition of the spherical harmonics in (3.66) is slighly different, to the one presented in 3.10.

Ỹ
m
n (θ, ϕ) =

√︄
(n− |m|)!
(n+ |m|)!

P |m|
n (cos(θ)) exp(jmϕ). (3.67)

This is done to express the transformations between multipoles, which are central to the MLFMM, in a more
elegant way.
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Figure 3.10: Bisecting the computational domain into cells. Blue: Lowest level, covering all sources and
observations. Level 1 (orange) and level 2 (green) are obtained by bisecting the cells of the
parent cells into eight. Not all cells need to be occupied with entities. Plane computational
domains can be treated in the same way.

Secondly, the computational domain is divided into boxes according to the refinement scheme presented in
Fig. 3.10. Starting with an outer cell at level 0, enclosing all sources and observations, one bisects each cell in
each level by eight to obtain an a hierarchical decomposition into parent and child cells in an octree structure.
Cells that are not enclosing any sources or measurements and cells that are hosting at most a certain minimal
amount of entities are not refined.

TheMLFMM relies on local multipole expansions of type (3.66) within the cells and on transformations between
them. These transformations are found in [66], Theorem 5.1 to 5.3.

Fig. 3.11 is inspired by [67]. The green dots on the left side are representing the sources, i.e., fictitious
magnetic monopoles, double layers or surface currents. The blue dots in the red cell on the right side represent
the measurement data, such as Hall voltages or magnetic fluxes.

Given a distribution of sources (green), one computes the values for the measurements in the target cell (red).
Instead of computing all interactions between sources and measurements, the domain is split into near and
far field cells and only the near field interactions are computed directly by evaluating the underlying integral
equation.

For the far field cells the sources within each cell on the lowest level are expanded into multipoles. One then
translates these multipoles to the higher tree levels by means of multipole-to-multipole (M2M) transformations.
Each cell on each level then carries a local multipole expansion, representing the far field due to the enclosed
sources.

The measurements within the target cell are expressed as a superposition of near field and far field interactions.
The far field interactions are computed by passing through the tree from top to bottom.

On the highest level, the multipole expansions of cells, which are sufficiently far away are transferred to the cell
enclosing the target cell by means of moment-to-local transformations (M2L). Sufficiently far away means that
there is at least one cell between source and target cell on the corresponding level.

The cell A on level l is called the father of a cell B on level l + 1, if it contains cell B. Conversely, B is the
son of cell A. On the lower tree levels, the local expansions of the father cells are transferred to their sons by
means of local-to-local transformations (L2L). The collection of cells between the near and far fields is called
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Figure 3.11: The multilevel fast multipole method in two dimensions. In each step, information is transferred
from green to blue dots. The target cell is highlighted in red.

interaction region. On each level, all multipole moments from the interaction region are considered by means
of M2L transformations. This is illustrated in Fig. 3.11 (middle right), where multipoles in the interaction
region are transferred directly to the target cell.

On the lowest level, the direct field evaluation of the near field cells is superimposed with the evaluation
of the local multipole expansion, which accounts for all cells in the interaction region as well as the far
field.

The performance of the implementation is reported in Fig. 3.12. N = 6938 (blue) and N = 26 138 (orange)
cubic polynomials are used to approximate a stream function ν on the boundary of a unit cube. This
boundary data is then used to compute the magnetic scalar potential at M measurement positions inside
the domain. The measurements are placed on an inscribed cube, which is one mesh parameter separated
from the domain boundary. p = 20 multipoles are used and the tree refinement is stopped after 5 levels. The
result of the dense matrix-vector product φm,dense is computed and compared to the result of the MLFMM
φm,mlfmm. The relative error is computed as max |φm,mlfmm − φm,dense|/max |φm,dense|. It is at about 10−6 in all
cases.

The advantage of the MLFMM is most pronounced in terms of assembly time and memory allocation, where
one order of magnitude is gained. The solution time is dominated by the assembly time, which is usually the
case for higher order methods. However, in most cases the matrix assembly is required only once and matrices
can be stored in memory. They are then employed for matrix-vector products whenever needed. This is why
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Figure 3.12: Performance of the MLFMM. In all figures: dashed: dense operation, solid: MLFMM, blue:
N = 6938, orange: N = 26 138. As the number of basis functions N is fixed, the dense
operations as well as the storage requirements scale linearly when increasing the number of
measurementsM . The incline is smaller for the MLFMM in all cases. The computations were
distributed on 16 CPUs of type Intel(R) Core(TM) Processor (Broadwell, IBRS) @ 2.194 GHz.

the memory requirements and computation times for matrix-vector products are more critical criteria than
assembly times.

Computing the matrix-vector product faster than a linear algebra package like Eigen is challenging, as routines
are optimized for high performance in terms of memory assignment and parallelization. The implementation
of the MLFMM was parallelized using OpenMPI [68]. At this point there is room for improvement, as the
distribution of the computations is based on splitting the moment-to-local transformations, level by level. The
total load is not necessarily split equally within the tasks, which is why the curves for the computation times
for the matrix-vector product show discontinuities.

However, also the MLFMM implementation of the matrix-vector product is faster than the dense operation for
very large problems. It should also be emphasized, that the requirements for the relative maximum errors
reported in Fig. 3.12 are stronger than what is usually necessary in computational electromagnetics. This is be-
cause the implementation shall later be used for inverse calculation and uncertainty quantification, and sensor
systems for magnetic measurements are reaching precisions in the 10−4 range. If the requirements are lower,
the advantage of the MLFMM would emphasize even more drastically.
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Figure 3.13: Performance of the interpolation based FMM [62] for the indirect Neumann problem using the
double layer potential. The time to solution includes the assembly of the equation system, as
well as its solution. The solution was computed by the GMRES method, with a restart after 2000
iterations. The relative maximum error was computed with respect to a manufactured solution.
Here p is the degree of the B-splines (p-refinement). Each dot represents a mesh refinement
level (h-refinement). These computations were performed on a Intel(R) Core(TM) i7-8550U CPU
@ 1.80GHz, on 8 CPUs.

In principle, the same procedure can be applied to obtain a compression of the dense matrices arising from
the mappings between Dirichlet and Neumann data (see appendix 8.2 and 8.3). The measurements, which
were to be evaluated previously, would be replaced by the integrals over the boundary values. It is possible to
compress the operations even further by exploiting the tree structure also in the construction of the mesh and
basis functions.

For the Neumann problem using the double layer potential, the interpolation-based, fast-multiple method
presented in [62] has therefore been implemented. This compression technique reaches even a linear
complexity for the computation of matrix-vector products. Results are presented in Fig. 3.13. The performance
reported in [62, Fig. 17], is recovered. However, as it is shown in Fig. 3.13 right, the memory requirements
are large, as the hierarchical matrix requires four times the resources as a similar compression of the single
layer operator V (see [62] for details).
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4 Magnetic Measurement Techniques

The most common magnetic measurement techniques exploit Faraday’s law of induction to generate a measur-
able voltage Uind proportional to the rate of change of the magnetic flux ΦA linked with the sensor surface A,

Uind = −dΦA
dt

. (4.1)

In the case of induction coils, conducting wires are wound around a coil former to span the sensor surface A. A
voltage signal is generated by ramping the magnetic field or moving (rotating or translating) the coil through
a static magnetic field. In the latter case, expressing the velocity vector by v, one may exploit the convective
derivative [69, (4.100)] to obtain an expression for the induced voltage,

Uind =

∫︂
∂A

(v ×B) · dr. (4.2)

Equation (4.2) is exploited extensively in static magnetic field measurements. Rotating coil systems employ
induction coils mounted on shafts that are rotated in the static magnetic field. Stretched-wire systems can be
regarded as coils with a single turn. The stretched part of the wire covers the whole spatial extension of the
magnetic field. The flux linked with a surface traced out by the wire is proportional to the integrated voltage
induced during the displacement of the wire. More recent developments use translating coils, which are
mounted on sleds moved longitudinally through the magnetic field [15].

The fact that the induced voltage is proportional to the rate of change in ΦA makes it necessary to move the
sensor in the case of static magnetic field measurements, and therefore leads to multi-physics problems. In
fact, most of the measurement uncertainty in modern day rotating and translating coil systems is traced back
to mechanical vibrations and positioning errors [70].

A second class of measurement systems exploits the so-called Hall effect to generate a voltage, which is
proportional to a component the magnetic field B. The physical principle of the Hall effect is best understood
considering the configuration illustrated in Fig. 4.1. The semiconductor (gray) is located in the xy-plane. A
current density J is impressed across the semiconductor along x. Under the influence of an external magnetic
field B, the Lorenz force acts on the charge carriers, which gives rise to a force proportional to J ×B, and
hence perpendicular to J . The equilibrium of forces within the material is maintained by the appearance of a
measurable electric field E across the y-axis.

The Hall voltage is proportional to J ×B and hence dependent on the Hall current IH used to provide the
current density J in the semiconductor. The sensitivity function s : (B, IH) ↦→ R of a Hall sensor can be
expressed in terms of the sensor parameter IH and at first approximation given by the linear, axial model

s(B, IH) = sHIHnH ·B + U0(IH), (4.3)

where nH is the unit vector of the probe orientation, sH is the probe’s linear sensitivity given in VA−1 T−1,
and U0(IH) is a zero field offset voltage.
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Figure 4.1: An illustration of the Hall effect in a semiconductor. The Lorentz force generated by the product
v ×B gives rise to a field E, in a way that the equilibrium of forces is maintained.

Modern Hall-effect devices are reaching typical sensitivities between 50 and 500VA−1 T−1, [71] by using
semiconductors such as gallium arsenide or layers of graphene as active elements [72]. Although this technology
enables nearly point-wise sampling of themagnetic field, with active areas below 1mm2, as well as the capability
to measure static magnetic fields, Hall sensors are usually not the first choice for magnetic measurements in
particle accelerator magnets. This is due to the following reasons:

1. Point-wise sampling for the components of the magnetic field is often not required, as small induction
coils are providing adequate spatial resolutions.

2. In order to perform spatial sampling, the sensors need to be moved through the magnetic field, yielding
the same susceptibility towards mechanical vibrations and positioning errors.

3. The Hall effect has a non-negligible temperature dependency, yielding tough requirements for tempera-
ture control and calibration.

4. The sensor transfer function suffers from nonlinearities and the influence of planar field components,
which require a careful calibration procedure.

5. In contrast to the induced voltage in an induction coil, the Hall voltage depends on the excitation current,
which is provided by an external power supply. The signal quality is highly dependent on the stability of
the Hall current.

The most accurate measurement technology for homogeneous fields above mT is nuclear magnetic resonance
(NMR), generating an electromagnetic signal with a frequency proportional to the magnitude of the magnetic
field |B| [73]. Such NMR measurements are reaching relative accuracies in the 10−6 range and are therefore
used extensively for the calibration of magnets, induction coils, and Hall probes. Moreover they find great
popularity as field markers in case of online field monitoring, this means type (4) measurements according to
Fig. 1.1.

The following section focuses on Hall probe measurements and the metrological characterization of a new
three-axes Hall-probe mapper. Its commissioning, characterization, as well as the design and implementation
of measurement routines has been the practical part of this thesis. The next section starts with a summary
of all all relevant components related to the three-axes Hall probe mapper. Then the most dominant error
sources are investigated.
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4.1 The three-axes Hall probe mapper

Field mapping relies on local field measurements by means of Hall probes. Fig. 4.2 shows a picture of the
three-axes Hall probe mapper (short 3D mapper). A three-axes Hall probe (A) is mounted on the tip of the
mapper arm (B). The arm is segmented and consists of an aluminum as well as a carbon-fiber-reinforced
plastic part, in a way that its length can be adjusted from 1 to 2m.

(A) three-axes Hall sensor

(C) coordinate
measuring
machine

(B) mapper arm

(D) linear encoder

z

x
y

Figure 4.2: The three-axes Hall probe mapper.
Figure 4.3: The Leica absolute laser

tracker AT960.

The mapper arm is mounted to the stages of a coordinate measuring machine (CMM) (C). The CMM is
equipped with three linear encoders, with a sensor precision of 5 µm (D). The x and y axes of the CMM use
air bearings for contact-free linear motion. The overall measurable volume of the system using x, y and z axes
is 1m× 1m× 3m.

The CMM is specified for a dynamic positioning accuracy of 0.1mm and a nominal velocity of vN = 20mms−1.
This means that the maximum positioning errors, for moves inside the 1m × 1m × 3m domain with vN
fall below this threshold. The specifications have been validated by optical measurements on several occa-
sions.

The linear encoders can be set up to generate trigger pulses when the stage passes a certain distance. In this
way a read out of the Hall voltages can be launched on the fly, i.e., during the movement of the stages. This
is a critical aspect, as it considerably reduces the measurement duration with respect to measurements in
start-stop mode.
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For the acquisition of the Hall voltages, three 8.5 digit, digital multimeters of type 3458A from Keysight
technologies are used. The integration period of the multimeters can be set up between 100ns and 1 s, and is
adjusted with respect to the trigger frequency for optimal signal-to-noise ratios. The trigger generation and
on-the-fly acquisition of three multimeters has been tested for trigger frequencies of up to 100Hz. Higher
frequencies are not required.

A critical aspect for the signal-to-noise ratio is the proper shielding of the signal cables of the Hall probe. The
signal cables of 18m length for the Hall voltages need to be routed closely to the power cables of the linear
stages. In the commissioning phase of the machine, large electromagnetic compatibility issues were found.
The shielding of the signal cables, all the way from the multimeters to the Hall sensor, and the removal of
ground loops could fix these issues.

The position measurements of the linear encoders do not per se relate to a useful coordinate system. Field maps
need to be referred to the magnet geometry. Therefore, a relation between the encoder position and the magnet
coordinates needs to be found. This procedure is called fiducialization.

Optical measurements are indispensable for the fiducialization. The absolute Laser tracker AT960 from Leica
is used for this purpose. A picture of the device is shown in Fig. 4.3. The laser tracker provides absolute
position measurements of reflector targets, in three dimensional space, with an accuracy in the range of 20 µm.
Usually, some targets are mounted on fixed reference positions on the magnet geometry. From these reference
positions a magnet coordinate system is constructed.

The position measurements of the linear encoders must be linked to the magnet coordinate system. This
can be achieved by moving the Hall sensor to a known position in magnet coordinates. For this reason, a
cone quadrupole magnet was built in permanent magnet technology, providing a distinct zero field in the
magnet center. The magnet is shown in Fig. 4.4 (right). The tolerances in magnet production were kept tight
in order to guarantee a certain relation between zero field and three reflector target holders on the top of the
magnet. The Hall sensor is moved into the center of the magnet, by searching the zero-field position in the
Hall voltages. Having measured the reflector targets of the cone quadrupole, this position can then be related
to the magnet coordinates.

In section 4.2 the laser tracker will be used extensively to characterize the mechanical system. These
optical measurements are only used in the phase of metrological characterization and not during the field
mapping. The optical measurements are merely used to derive noise models for the arm vibration. None of
the approaches presented in chapter 6 uses other position measurements than the ones provided by the linear
encoders.
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Figure 4.4: Cone dipole and quadrupole magnets. As it will be useful in the following discussion, a spherical
coordinate system is inscribed in the center of the cone quadrupole. The r and ϕ coordinates are
illustrated. The gap height of the cone quadrupole is denoted byH .

4.1.1 Sensor noise

In electronics, noise is an unwanted disturbance in an electrical signal [74]. In the following it is shown how
the noise of a sensor can be characterized based on experimental measurements. The noise characteriza-
tion is fundamental for the derivation of realistic noise models used in the quantification of measurement
uncertainties.

It is beneficial to characterize the sensor noise in the frequency domain, because different physical effects
may affect different frequency regimes. For instance, thermal noise and other white noise sources, usually
govern the noise characteristics for high frequencies, whereas 50Hz noise is often related to the power-line
frequency.

Fundamental to the following discussion is the power spectral density of a signal. Denoting by y : R→ R a
signal in time and by wT (t) a windowing function

wT (t) =

{︄
1, |t| < T,

0, else,

the power spectral density of y(t) is defined as

Syy(f) := lim
T→∞

1

T
|YT (f)|2, (4.4)

where YT (f) is the Fourier transform of the windowed signal yT (t) = y(t)wT (t). It describes how the power
of the signal y is distributed over the frequencies f .
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Figure 4.5: Amplitude power spectral density of a graphene Hall sensor compared to 1/f noise.

Noise of 1/fα-type is characterized by a power spectral density of type Syy(f) ∝ 1/fα, and it domi-
nates the low-frequency regime in almost all electronic devices. Dependent on the parameter α, differ-
ent noise colors may be classified, such as white noise α = 0, pink noise α = 1 and Brownian noise
α = 2.

As an example, measurement data taken with a graphene Hall sensor is considered [72]. The sensor is
placed into a “zero Gauss” chamber, isolating it from external electromagnetic fields. A National Instruments
PXI-6289 acquisition card [75] is used to sample the Hall voltage with a frequency of f = 625 kHz. From
the discrete time series y = (y(t = 0), ..., y(t = (M − 1)∆t))T , whereM = 100000 and ∆t = 1/f , the power
spectral density according to (4.4), is estimated by [76]

Syy(f) ≈
∆t

M

⃓⃓⃓⃓
⃓
M−1∑︂
m=0

y(m∆t) exp (−j2πfm∆t)

⃓⃓⃓⃓
⃓
2

. (4.5)

It is common practice to average Syy(f) over several trials. In this case 1000 trials are taken. For the noise charac-
terization, themean value of y is usually subtracted from the signal before computing Syy(f).

As a figure of merit, the amplitude power spectral density, rather than the power spectral density, is commonly
used to quantify electronic noise. This is because variations in the amplitude power-spectral density relate
more directly to signal variations in cases of flat noise spectra. The amplitude power-spectral density is simply
the square root of the power spectral density and is illustrated in Fig. 4.5.

The observed amplitude power-spectral density is typical for semiconductor devices such as Hall probes. A
regime of 1/f noise, is followed by a plateau of generation recombination (GR) noise (see [71] Fig. 2.15), at
about 1 kHz. As the signal was amplified with an analogue amplifier, hosting a 10 kHz low-pass filter [77], a
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second cut off is visible around this frequency. The peaks between 1 kHz and 10 kHz could origin from noise
in the power supply, which is providing the Hall current.

Given the power-spectral density, it is possible to derive a Gaussian model for the sensor noise. To this end
it is assumed that the statistical properties of the process do not change over time, which is a reasonable
assumption as long as the operation conditions are constant. For instance, characterizing the sensor noise
in some controlled environment, the statistical properties are expected to be the same over longer time
spans.

The stochastic process is expected to be wide-sense stationary according to definition 9, that is, the signal mean
and auto-covariance depend only on the lag τ := t2−t1 between two instances.

Definition 9 Wide-sense stationary process
A stochastic process generating the signal y : R → R is said to be wide-sense stationary, if its mean and
auto-covariance functions are time invariant.

E [y(t)] =: µ = const., ∀t ∈ R, (4.6)

E
[︃(︂
y(t1)− µ

)︂(︂
y(t2)− µ

)︂]︃
=: Ryy(τ), ∀t1, t2 ∈ {x, y ∈ R | τ = y − x}. (4.7)

In case of a wide sense stationary process, the power spectral density is the inverse Fourier transformation of
the auto-correlation function ryy(τ)

Syy(f) =

∫︂ ∞

−∞
ryy(τ) exp (j2πfτ) dτ, (4.8)

which is known as theWiener-Khinchin theorem [78]. The auto-correlation function is defined as

ryy(τ) := E [y(t1)y(t2)] = Ryy(τ)− µ2, (4.9)

where Ryy(τ) is the auto-covariance according to definition 9. If the considered signal is mean free, µ = 0,
the auto-covariance is equal to the auto-correlation function.

Having characterized the sensor noise by means of the power spectral density, one can estimate a signal
covariance matrix by sampling with a given frequency. Considering that the measurement vector y =
(y(t = 0), ..., y(t = (M − 1)∆t))T is acquired by sampling the sensor voltage M times, with a frequency
of f = 1/∆t, the signal may be considered as a realization of the Gaussian process y ∼ N (E(y),Ry),
where E(y) is the mean vector and the elements of the sensor noise covariance matrix Ry are given by

[Ry]i,j = Ryy(τ), with: τ = (j − i)∆t. (4.10)

This means that an estimate for the measurement covariance can be computed by evaluating Ryy(τ) for the
lag τ between two instances.

For the measurement data given in Fig. 4.5, the auto-covariance Ryy(τ) is computed and evaluated for 1000
steps between τ = 0 and 40ms. In Fig. 4.6 left, the square root of the auto-covariance function is illustrated
units of µV. For comparison, the result of 1/f noise is shown. For lags above 10ms, the correlations between
measurements are below 1µV, which is equivalent to 5 µT for this sensor. Such small effects are negligible for
measurements in the 1T range.
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Figure 4.6: Estimation of a noise covariance matrix from the auto-covariance function. Left: Square root
of the measured auto-covariance function compared to 1/f noise. Right: Resulting covariance
matrix constructed from Ryy.

The matrix Ry is illustrated in Fig. 4.6 right, for lags below 1.4ms. In this case, the power spectral density is
flat enough, that for moderate sampling rates f > (10ms)−1, the measurement covariance can be expressed by
a diagonal matrix in good approximation. This, however, is not necessarily the case and has to be investigated
for each individual sensor system and sampling frequency. If signal filtering, such as integration in time, is
applied to the raw signal, an appropriate digital filter can be applied to the time series before computing the
power spectral density according to 4.5.

4.1.2 Temperature effects

The electrical characteristics of semiconductor devices are strongly dependent on the temperature range
of operation. For Hall sensors, this results in a temperature dependency of the sensitivity function s. The
temperature coefficient TCI is often defined as [71]

TCI =
1

sH

∂sH
∂T

, (4.11)

using the linear sensitivity sH according to (4.3) for a reference operation condition. In [71, section 5.1.4],
temperature coefficients are listed for different types of semiconductors. For gallium arsenid (GaAs), a typical
temperature coefficient of 0.3 × 10−3 K−1 is observed [79]. To avoid relative errors in the 10−4 range, it
is therefore necessary to either stabilize the temperature of the device within 1K, or to calibrate TCI and
monitor the Hall temperature within the same range. Fig. 4.7 illustrates a temperature versus Hall voltage
measurement, for one of the three axes used in the AS-3DC Hall probe from Projekt Elektronik [80]. A linear
fit to the data yields −4.11× 10−3mVK−1, which results in a temperature coefficient of −0.082× 10−3 K−1,
as the probe’s linear sensitivity for the given excitation current is 5 VT−1.
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Figure 4.7: Temperature calibration of the AS-3DC.

4.1.3 Hall effects in three dimensions

Another limitation of Hall probes for high accuracy magnetic field measurements, is their sensitivity towards
planar field components, yielding Hall effects in three-dimensions.

The so-called planar Hall effect origins from a spread in the charge carrier drift velocity, in a combination with
the thickness of the device [71][81]. An illustrative description of planar Hall effects is given in the caption of
Fig. 4.8. In this figure and in the following, a local coordinate system (u, v, w) is fixed to the Hall sensor, in a
way that w is oriented along the probe’s orientation vector.

A more general description of the electric field in a semiconductor, due to the current density J and incident
field B, is given by [71]

E = ρBJ −RH(J ×B) + PH(J ·B)B. (4.12)

The resistance ρB is dependent on B due to magnetoresistive effects. The second term in the above equation
corresponds to the classical Hall effect, which generates an electric field perpendicular to J and B. The third
term generates an electric field oriented along B and is the source for what is called the planar Hall voltage
UPHE.

The measurable Hall voltage is determined by integrating the electric field E across the device. For the
contribution of the planar Hall voltage this means

UPHE ∝ (J ·B)(e ·B),

where e is a vector indicating the direction alongwhich the Hall voltage is measured (see Fig. 4.9).

The planar Hall voltage is zero ifB is perpendicular toJ , but also forB perpendicular to e. It is thus expected to
have a double angular dependence in the uv-plane, which is often denoted as

UPHE = cPHE I|B|2 sin(θ) sin(2ϕ). (4.13)

Here cPHE is a constant that depends on the geometry and material properties of the device, and θ, ϕ are the po-
lar and azimuthal angles of the incident flux density, as shown in Fig. 4.9.
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Figure 4.8: An illustrative description of the planar Hall effect. Consider the active area of the device to be
located in the uv-plane and a planar magnetic flux density vector B||. A spread in the charge
carrier drift velocity δv will cause some charge carriers to drift with higher, or lower velocity
than average. These carriers will be deflected from the equilibrium, due to the magnetic force
generated by δv ×Bv , which is a force directed along w. As soon as the drift velocity contains
a vertical component, the carriers are affected by a force ∝ |Bu| along v. The new equilibrium
will result in a measurable voltage across the v axis, which is known as planar Hall voltage. The
overall effect vanishes for both, |Bu| = 0 or |Bv| = 0. [82]

e
B

Jθ

ϕ vu

w

Figure 4.9: The local coordinate system (u, v, w) and the Hall element. The vectorB in (u, v, w) coordinates
is described by |B|, the polar angle θ and the azimuth angle ϕ.
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Figure 4.10: Rotary stages for the three dimensional Hall probe calibration. The rotors are marked with
the labels (A), and (B). The (u, v, w)-coordinates are fixed to the rotary tares in a way that the
uv-plane is parallel to the rotor (B).

An approach for the three dimensional Hall probe calibration including the planar Hall effects was first
presented in [83]. The Hall voltage is expanded by means of the solid harmonics |B|lY m

l , where |B| takes on
the role of the radial coordinate

U(|B|, θ, ϕ) =
L∑︂
l=0

l∑︂
m=−l

cl,m|B|lY m
l (θ, ϕ). (4.14)

The term l = 0 is independent of |B| and corresponds to the sensor’s zero field offset voltage U0. By (4.14),
three dimensional phenomena can be characterized by means of the coefficients cl,m ∈ C, where m ̸= 0. As
an example, the planar Hall voltage corresponds to the coefficient c2,±2, assuming that the probe is oriented
according to Fig. 4.9.

The calibration of the coefficients cl,m requires the possibility to manipulate the incident angles θ and ϕ of the
excitation field B with a high accuracy. For this reason, calibration stages have been built using non-magnetic
piezo-electric rotary stages. The rotors are equipped with rotary encoders with a measurement accuracy of
25 µrad. The whole assembly was designed to fit into a reference dipole magnet of 80mm gap-height. It is
shown in Fig. 4.10.

The azimuthal and polar angles θ and ϕ according to Fig. 4.9 may be related to the piezo rotors according
to Fig. 4.10, assuming that the field is oriented along w for θ = ϕ = 0. If this is not the case, the resulting
harmonic expansion can be rotated in the post-processing. In this way, a possible stage misalignment with
respect to the field direction can be accommodated.

The following results were used to characterize the planar Hall effect for new Hall effect devices using graphene
technology [72]. As the planar Hall effect is related to the device thickness, it is expected that Hall probes based
onmono-layers of graphene show reduced sensitivity towards planar fields.
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Figure 4.11: Measurement positions for the three dimensional Hall probe calibration in the (u, v, w)-frame.

The rotary stages are equipped with the Hall probe and are mounted inside a calibration magnet, which
is powered with a current Ical in order to provide the desired absolute field |B|. The absolute field |B| is
measured with an NMR probe. As NMR probe and Hall sensor cannot be placed at the same point, either a
sufficient field homogeneity, or a prior magnet calibration is necessary.

The angular positions of the rotary stages are set in a way that the Hall probe’s orientation vector is performing
a full three dimensional rotation around the field vector. This means that the whole range (0 < θ < π , −π <
ϕ < π) for θ and ϕ according to Fig. 4.9 is covered with measurements. In total 382 measurement positions are
set. These positions are shown in Fig. 4.11 as points in the (u, v, w) frame.

In Fig. 4.12 (right) the Hall voltage is plotted as a response surface over the 382 measurement positions.
This response surface can be interpreted in the following way: The distance of the response surface to
the origin of the coordinates is proportional to the measured Hall voltage at this angular position. Also
the color of the response surface encodes the Hall voltage in order to obtain the information about its
sign.

The solid harmonics according to (4.14) are fitted to the signal by least squares. In total L = 15 harmonics
are needed, yielding (L+ 1)2 = 256 coefficients to obtain a residual of 3.8 · 10−8 V between measurements
and fit. In Fig. 4.12 (right), the sensor imperfection is shown as a response surface. This imperfection is
computed by suppressing all solid harmonic coefficients with l < 2.

In Fig. 4.13, the coefficients cl,m are scaled with |B|l and plotted as bars for l < 10. Even- and odd multipoles
are separated to limit the number of bars in each plot. The results are scaled with respect to the main
coefficient c1,0 and given in units of per mille. Coefficients withm = 0 correspond to the axial sensor response,
without dependency on ϕ. These coefficients encode the probe’s non-linear transfer function towards axial
fields and can be determined without rotations by axial calibration.

57



U in V

0-0.1-0.2 0.20.1
imperfection in per mille

20-2 64

Figure 4.12: Hall voltage response and sensor imperfection. Left: Hall probe voltage response for a full three
dimensional rotation in a reference magnet. Right: Sensor imperfection. This means: Voltage
response suppressing solid harmonic coefficients with l < 2. The imperfection is normalized
with respect to the l = 1 coefficient and given in parts per mille.

Planar effects relate to coefficients with m ̸= 0. For the device under test, planar effects are well below 10−4

with respect to the main sensitivity c1,0. This proves the expected benefits for using graphene technology for
Hall effect devices.

4.1.4 Orthogonality errors

Three-axes Hall probes are designed to measure the three components of the magnetic flux density in an
orthogonal coordinate system. In Fig. 4.14 two examples are shown. The picture on the left shows a Hall
cube of type HE444 from HE Hoeben electronics [84], integrated in an electronic circuit board for signal
conditioning. The three Hall elements are embedded into the Hall cube of 3.3mm width. In such small
dimensions it is particularly challenging to mount the three axes orthogonally. The orthogonality errors can
be assessed by mounting the sensor onto rotary stages and detecting the orientation of the sensor response
surfaces in three dimensions. To this end, one extracts the coefficients cl,m as it was explained in section 4.1.3.
From the coefficients with l = 1 one can compute the angular orientation by means of the spherical coordinates.

ϕmax = −arg(c1,1), (4.15)

θmax = arg
(︃
c1,0 + j

√
2
√︂

Re{c1,1}2 + Im{c1,1}2
)︃
, (4.16)

where arg(z) is the argument of z ∈ C. This follows from the definition of the spherical harmonics and
trigonometric relations (see appendix 8.4). Given the angles ϕmax and θmax, the probe orientation may be
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Figure 4.13: Expansion coefficients recovered from the measurements illustrated in Fig. 4.12. Only axial
effects with coefficientsm = 0 yield voltages above 10−4, with respect to the maximum voltage.
The measurement was performed at |B| = 0.9993T.

relative angle [deg.] orthogonality error [deg.]
x− y 89.7725 -0.2274
x− z 90.0493 0.04931
y − z 90.0755 0.07551

Table 4.1: Measured orthogonality errors for the HE444 Hall cube.

expressed by means of the orientation vector

nH(θmax, ϕmax) =

⎛⎝ sin(θmax) cos(ϕmax)
sin(θmax) sin(ϕmax)

cos(θmax)

⎞⎠ . (4.17)

Computing the orientation vectors of all the three Hall probes, the angles between the probes can be determined.
The orthogonality errors are then found in the differences to 90degree. For the HE444 Hall cube, errors smaller
than 0.5 degree are obtained. This is an impressing result considering the small dimensions, but still yields
cross sensitivity errors above 10−4 and therefore requires calibration.

Integrated three-dimensional Hall cubes are expensive. Moreover, as angular orientation errors are unavoidable
and need to be calibrated, custom-made solutions such as the assembly shown in Fig. 4.14 (right) are becoming
attractive. Here three axial Hall probes of type HE244 from HE Hoeben electronics [85] are glued onto a
ceramic cube. Including the cube, the price of the assembly is roughly a tenth of the integrated Hall cube.
However, sensor packaging forbids placing the sensors closer than 1.2mm to one another which makes it
necessary to calibrate the relative sensor positions as well.
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Figure 4.14: Examples for three-axes Hall probes. Left: HE444 embedded in an electronic circuit board for
signal conditioning. Right: Three HE244 Hall probes glued on a ceramic cube. Details about the
sensors can be found in [85].
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Figure 4.15: Hall voltages for a full rotation of the HE444 as response surfaces in three dimensions.
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4.1.5 Absolute position and sensor orientation

Mounting the sensor onto the tip of the mapper arm, it is not guaranteed that the probe orientation vectors
are aligned with the stage coordinates. Moreover, the position of the Hall cube, relative to the stage and
magnet coordinates, is only roughly estimated from the arm length and the sensor position within the
measuring head. A fiducialisation is needed in order to relate the sensor position and orientation to the
magnet coordinates.

Cone dipole and quadrupole magnets have been built especially for this purpose. These magnets are shown in
Fig. 4.4 and are using permanent magnets to generate the magnetic fields. The assemblies are symmetric
around the vertical axis1. Poles of electrical steel are employed to shape dipole and quadrupole type fields
around the magnets’ geometric centers. The dipole magnet provides a vertical B-field, which can be used to
align one of the sensor axes. The quadrupole magnet is used to identify the sensor position in three dimensional
space, as its field exhibits a distinct zero in the geometric magnet center.

The support structure of the mapper arm is equipped with precision alignment screws, allowing to rotate and
tilt the arm in order to align one of the senors to the field. This procedure was found to be difficult, however,
as the arm deformation due to sag yields large tilt angles that need to be corrected. Moreover, the alignment
needs to be based on detecting a signal maximum within a small range of variation. This is a challenging
task, as the maximum of a signal ∝ cos(δ) needs to be found in an interval of δ in the range of only a few
degrees.

The measured and simulated cone quadrupole fields in the xz and xy-planes are illustrated in Figures 4.16 and
4.17. Due to the orthogonality errors, the Hall voltages are zero along three non-orthogonal planes and themag-
netic center may be found in the intersection of the planes in which ni ·B = 0 holds ∀i ∈ {x, y, z}. The vectors
ni, for i ∈ {x, y, z} are denoting the orientations of the three Hall probes.

First approaches to implement root finding algorithms were based on the detection of zero crossings in the
Hall voltages and on gradient based iterations, minimizing the absolute value of |B| until convergence. In both
cases, poor reproduction of results was experienced, as one relies on the stage positioning accuracy within a
small volume around the magnet center and on the sensor accuracy for measuring small field amplitudes.
Moreover, while the algorithms detect the |B| = 0 position, they cannot locate the positions of the individual
Hall elements within the three zero planes. The position errors in a setup like Fig. 4.14 (right) might be in
the range of millimeters.

For these reasons, a macroscopic approach is adopted, distributing measurements within a sphere around
the magnet center. Sampling the field inside a larger volume is superior to local measurements around the
magnet center, because the sensors are driven in their desired range of operation. As the approach is using
the theory of chapter 5, details and results will be given in chapter 6.

4.2 A magneto-mechanical model for the three-axes Hall probe mapper

The use case of the three-axes Hall probemapper is themeasurement of local effects in inhomogeneousmagnetic
fields. With the elaborate probe calibration presented in the previous sections, most of the remaining measure-
ment uncertainty is attributed to positioning errors of the stages and arm vibrations.
1Except for the return yoke of the cone dipole.
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Figure 4.16: Measured and simulated field of the cone quadrupole. The field simulation was performed in
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“zero planes”, where nH ·B = 0. The normal vectors of these planes give evidence for the probe
orientations with respect to the xyz-frame. In this plot, the dashed lines have been drawn with
contour function of matplotlib [87].
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Figure 4.18: Example for a three-axes Hall probe measurement suffering from mapper arm vibrations. Even
in the homogeneous region of the magnet, the Uz voltage is affected, as the vibration deforms
the arm in the yz-plane.

The arm of the 3D mapper can be considered as a cantilever beam, supported by the stages of the CMM on
one side, carrying the Hall probe on the other. Due to leverage effects, small positioning perturbations of the
stage motion introduce arm vibrations with amplitudes orders of magnitudes larger at the sensor position.
In this way, arm vibrations influence the measurement result not only in the fringe fields, but also in the
homogeneous region, where a changing field incident angle influences the measured voltages. This effect is
seen in the signals plotted in Figure 4.18, where Hall probe measurements in a dipole field are given. To
emphasize the effects, this measurement was performed with a velocity of 50mms−1, larger than the nominal
speed.

In the following sections, a mathematical model for the arm deformation is derived. This model will lay the foun-
dation for the uncertainty quantification employed in chapters 5 and 6.

The mapper arm as a cantilever beam

Themapper arm under consideration is shown in Fig. 4.19 (left). It is a composition of an aluminum and carbon-
fiber-reinforced plastic (CFRP) tube, connected by means of a Polyoxymethylene (POM) joint. The measuring
head hosting the sensor is mounted at the tip of the mapper arm. Without loss of generality, it is assumed that
the arm’s axis is aligned to the z-axis, as shown in Fig 4.19 (right).

In structural mechanics, deformations are commonly expressed by means of a deformation field w : r′ →
r ∈ R3, mapping a coordinate r′ in some reference configuration to a position r inside the deformed body.
Considering that deformations are small and the arm cross section is axisymmetric, it is assumed that vertical
and horizontal movements are decoupled and no axial effects are present. The arm’s shape may be described
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Figure 4.19: The mapper arm and the numerical model. Left: Composite mapper arm consisting of tubes of
aluminum and carbon-fiber-reinforced plastic. Right: Numerical model by means of a cantilever
beam in xz and yz-planes. Axial rotations are neglected.
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by means of the deformation field

w(x, y, z, t) =

⎛⎝ wx(z, t)
wy(z, t)

−xϕx(z)− yϕy(z)

⎞⎠ , (4.18)

with the displacementswx,wy and the rotationsϕx andϕy, which are drawn in Fig. 4.19 (right).

Because the mapper arm is long compared to its cross section, the derivatives ∂wx/∂z and ∂wy/∂z are
approximately

∂wx

∂z
≈ ϕx,

∂wy

∂z
≈ ϕy. (4.19)

This approximation distinguishes the so-called Euler-Bernoulli beam theory, from more sophisticated theories
of linear elasticity.

Dropping the subscripts for wx and wy and considering either the xz or yz plane, the Euler-Bernoulli beam is
governed by the partial differential equation [88]

(Lw)(z, t) + (C
d
dt
w)(z, t) +M(z)

d2

dt2
w(z, t) = p(z), (4.20)

where L is the linear self-adjoint differential operator

L :=
∂2

∂z2

(︃
EI

∂2

∂z2

)︃
, (4.21)

specifying the beam’s stiffness, by means of the elastic modulus E and the second moment of area I, which is
given by

I =

∫︂∫︂
A
y2 dxdy, (4.22)

for a beam with cross section A in the xy-plane, deformed in the yz-plane. A similar equation for I holds for
the deformation in the xz-plane. M is the beam’s mass per unit length and C is a model for the beams internal
structural damping. C is parameterized by the constant parameters µ and λ, according to the Rayleigh model

C = 2µM + λL. (4.23)

Finally, p(z) is the distributed load. Since all beam parameters E, I, C andM are dependent on z, and the
support condition at the clamped side is not trivial, solutions to Eq. (4.20) are computed by means of a finite ele-
mentmethod (FEM). Details about the implementation are given in Appendix 8.5.

Using an approximation by finite elements, the displacement field w is expressed by means of the vector ŵ,
encoding the values of w(z) and ∂w(z)/∂z at the nodes z1, ..., zK

ŵ :=

(︄
w(z1),

∂w

∂z

⃓⃓⃓⃓
z=z1

, ..., w(zK),
∂w

∂z

⃓⃓⃓⃓
z=zK

)︄T

. (4.24)

With ŵ, (4.20), yields the linear ordinary differential equation system

M
d2

dt2
ŵ(t) +C

d
dt
ŵ(t) +Kŵ(t) = f(t), (4.25)

whereM ,K andC are the mass, stiffness and damping matrices, respectively. The right hand side f accounts
for support conditions and applied loads.
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Figure 4.20: Mapper arm and support, mounted onto the stages of the CMM.

Support motion

Fig. 4.20 shows the support structure of the mapper arm, which consists of an aluminum holder with
brass clamps. This support is modeled by means of a combination of spring-mass dampers at the bearing
points, see Fig. 4.21. Imperfections of the stage motion are causing the mapper arm to vibrate. These
imperfections can be expressed by means of the support condition a(t) according to Fig. 4.21. Account-
ing for both stiffness and damping in the support model, the right hand side f may be decomposed into

f = p+ k a(t) + d ȧ(t), (4.26)

where p is a time independent load vector. See Appendix 8.5 for the definitions of k and d.

a(t)a(t)

r1

k1 d1 k2 d2

Figure 4.21: Support condition of the mapper arm in one dimension. This model is an approximation of the
real support shown in Fig. 4.20. The support condition a(t) is allowed to vary in time, introducing
vibrations to the structure.
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The mapper arm transfer function

Considering an harmonic excitation by means of the spectral coefficients an ∈ C, at frequencies ωn ∈ R, where
an = a∗−n, and n = −N, ..., N according to

a(t) =

N∑︂
n=−N

an exp (jωnt) , (4.27)

it is beneficial to decompose also the arm deformation in the frequency domain:

ŵ(t) =
N∑︂

n=−N

wn exp (jωnt) , (4.28)

withwn ∈ C andwn = w∗
−n. Exploiting orthogonality yields for the n-th excitation frequency(︁

−ω2
nM + jωnC +K

)︁⏞ ⏟⏟ ⏞
:=T (ωn)

wn = an(k + jωnd). (4.29)

Solving this equation system in the frequency range of interest allows one to derive an arm transfer function,
mapping any harmonic support motion an to the tip displacement wn(zs) and rotation ϕn(zs) at the sensor
position zs. To this end, the matrices: F : ŵ ↦→ w(zs) and ∂F : ŵ ↦→ ϕ(zs) are defined, in order to evaluate
the displacement and rotation at the sensor position zs, based on the FEM vector ŵ. The transfer functions
are given by

anTw(zs, ωn) := anF (zs)T (ωn)
−1(k + jωnd) = wn(zs, an),

anTϕ(zs, ωn) := an∂F (zs)T (ωn)
−1(k + jωnd) = ϕn(zs, an). (4.30)

Fig. 4.22 shows the transfer functions Tw(zs, ω) and Tϕ(zs, ω) resulting from the FEM analysis in the vertical
plane.

Measuring the tip deformation

Without knowledge about the spectrum of a(t), little is gained by the transfer functions shown in Fig. 4.22.
To quantify the impact of arm deformations on the measured voltages, one desires to measure the support
motion a(t) and apply the transfer function to recover amplitudes and frequencies of the tip deformation.
Measuring a(t) directly, however, requires the measurement of displacement errors in the µm range, which is
a non-trivial task, as particular instrumentation is required and environmental noise needs to be insulated
carefully. It is beneficial to estimate the tip deformation from displacement measurements close to the sensor
position where displacements in the 100µm range can be observed. In the following, it is explained how the
tip deformation can be estimated from optical measurements and the transfer functions derived from the FEM
model.

Fig. 4.23 shows the signal path and an illustration of the mapper arm equipped with a retro reflector target,
mounted at position zt. The position of this target in three dimensional space is measured with a Leica
laser tracker. Sampling with a frequency of 1 000Hz, this gives the signal wy(zt, t) by means of a time
series.
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Figure 4.22: Transfer functions Tw(zs, ω = 2πf) and Tϕ(zs, ω = 2πf) for the arm shown in Fig. 4.19, left.
These functions can be computed from the FEMmodel and will be used to propagate the support
motion to the tip displacement.

wy(zt, t) is Fourier transformed to obtain the spectrum of wy(ωn). Then, the transfer functions
Tw,y(zs, ωn)/Tw,y(zt, ωn) and Tϕ,y(zs, ωn)/Tw,y(zt, ωn) are applied to transfer the vertical displacement at zt
to the displacement wy(zs, ωn) and rotation ϕy(zs, ωn) at the sensor position zs. In the last step, the inverse
Fourier transformation provides the signals wy(zs, t) and ϕz(zs, t) as time series. The same approach is applied
to the xz-plane.

4.2.1 The covariance matrix of mechanical perturbations

It will be beneficial for some of the approaches presented in chapter 6 to derive a statistical model for the
arm deformation at the sensor position. The mechanical state vector d is introduced, in order to describe the
mechanical vibrations and positioning errors at the sensor position. The result of this section is a statistical
model for d given by means of a Gaussian distribution p(d) ∼ N (0,D), with the covariance matrix of mechanical
perturbationsD. Chapter 5 contains an explanation of probability density functions, Gaussian distributions,
and covariance matrices.

Considering a series of magnetic measurements taken at times tm for m = 1, ...,M , one can assemble the five
state vectors dw,i with i ∈ {x, y, z} and dϕ,i for i ∈ {x, y} according to the scheme

dw,i = (wi(zs, t1), ..., wi(zs, tM ))T , dϕ,i = (ϕi(zs, t1), ..., ϕi(zs, tM ))T . (4.31)

The mechanical state vector is then assembled according to

d = (dTw,x,d
T
w,y,d

T
w,z,d

T
ϕ,x,d

T
ϕ,y)

T . (4.32)

It is considered as zero mean, colored Gaussian noise d ∼ N (0,D) (see section 4.1.1). The estimation of the
covariance matrixD is the objective of this section.
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Figure 4.23: Signal path for the measurement of displacement and rotation at the sensor position. The arm
transfer function is applied to the measured signal in the Fourier domain. The deformation at
the sensor position in the time domain is then recovered from the inverse transformation.

It is assumed that the motion is decoupled between the axes such that

cov(dw,i,dw,j) = 0, cov(dϕ,i,dϕ,j) = 0, for i ̸= j. (4.33)

All other matrix blocks, cov(dw,i,dw,i), cov(dw,i,dϕ,j) and cov(dϕ,j ,dϕ,j) for i ∈ {x, y, z} and j ∈ {x, y}, will
be estimated from optical measurements according to section 4.2.

Remark 2 Also the positioning along the mapper arm axis is imperfect. Without loss of generality this axis
is denoted by z. Although these positioning errors do not contribute to arm vibrations, they are still taken
into account in the following analysis. The transfer function for wz is therefore set to identity and the dw,z

vector is filled with the differences between the measurements obtained from the encoder and the laser
tracker. To this end, the laser tracker has been synchronized with the distance trigger of the positioning
stages of the CMM.

With the assumption that the stochastic process for d is wide-sense stationary according to definition 9,
the statistical properties between two observations are dependent only on the time difference between two
measurements. The covariance can then be expressed by the auto-covariance, meaning that it can be estimated
from a single time series, comparing the signal with shifted versions of itself. To this end, a total amount of 2K
measurements are taken. Denoting by d(k)w,x the sampled time series of dw,x shifted by k samples and assuming
that E [dw,x] = 0, the covariance matrix cov(dw,x,dw,x) is computed by

cov(dw,x,dw,x) =
1

K − 1

(︂
d(1)w,x, ...,d

(K)
w,x

)︂
·
(︂
d(1)w,x, ...,d

(K)
w,x

)︂T
, (4.34)

here K is half of the number of samples available, in order to be able to shift the signals accordingly. Similar
equations are used for all other matrix blocks.

This approach overestimates the positioning precision for very low frequencies, because the displacement
measurements are based on the best fit of a line to the measured positions and computing the position errors
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Figure 4.24: Blocks of the covariance matrix D, corresponding to horizontal and vertical displacements
dw,x and dw,y. The covariance is estimated for 1 000 measurements with ∆t = 10ms. Different
frequencies are excited for dw,x and dw,y.

with respect to this line. The resulting displacements are indeed zero mean. However, the machine coordinates
are imperfect; the position of the best fit line may be displaced with respect to the desired position. To get a
more realistic estimator for low frequencies, the positioning precision for moves in the full volume of 3m3 was
observed. The maximum positioning error is 0.1mm. This value is therefore set as three standard deviations
and added to the matrix blocks cov(dw,i,dw,i) for i ∈ {x, y, z}.

The resulting covariance structures only depend on the time difference between two observations, and there-
fore naturally lead to Toeplitz matrices. This has two significant advantages: 1) Only a single row of the matrix
needs to be stored. 2) If the Toeplitz matrix is diagonally dominant, |[D]1,1| >

∑︁
k ̸=1 |[D]1,k| and [D]1,1 > 0,

the matrix will be positive semi-definite and therefore a proper covariance matrix. Fig. 4.24 illustrates the co-
variancematrix blocks for the vertical perturbation recovered from a horizontal move.

4.2.2 The perturbed observation operator

Arm deformation and positioning errors are perturbing the measurement positions and therefore the measured
voltages. Some of the applications presented in chapter 6 aim for the precise quantification of measure-
ment uncertainties due to mechanical perturbations. Therefore, a perturbed observation operator is now
derived.

Consider the 3D mapper equipped with a three-axis Hall sensor. The measurements of the three probes are as-
sembled into the vector ỹ according to the scheme ỹ = (ỹTx , ỹ

T
y , ỹ

T
z )

T . Therefore, in case of the 3D mapper, the
vector ỹ is of size R3M , whereM is the number of measurement positions.

Assuming, without loss of generality, that the mapper arm is oriented along z and the probe is centered
transversely within the arm, it holds that x = y = 0 in (4.18). The position of the probe is then given by

r(t) = rs(t) +w(zs, t) = rs(t) +

⎛⎝ wx(zs, t)
wy(zs, t)
wz(zs, t)

⎞⎠ . (4.35)
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rs(t) is the position of the Hall probe, assuming infinite stiffness of the mapper arm2, and w(zs, t) is the arm
deformation evaluated at the sensor position zs. Comparing (4.18) to (4.35), the z coefficient wz(zs, t) is
introduced. In this way, a possible axial displacement can be described. The axial transfer function for wz(zs, t)
may be set to identity, to account for longitudinal positioning errors of the stages, which do not contribute to
the arm deformation (see remark 2).

In addition to deformations, the rotations ϕx and ϕy at the sensor position must be taken into account. As
only transverse motions are of concern, axial rotations (see Fig. 4.19) can be neglected. As is was discussed in
section 4.2.1, wx, wy, wz as well as ϕx and ϕy are the elements of the mechanical states vectors d. The same
sorting scheme for d, which was used in (4.32) is now adopted.

Denoting by ν the state vector of the magnetic field, for instance the degrees of freedom of the BEM approx-
imation space, the discrete observation operator H can be formulated in terms of both the magnetic and
mechanical state vectors,

H : (ν,d)→ RM , (4.36)

where the mechanical state vector d is treated as a sensor parameter. In almost all cases, the dependency of
H on d is complicated. Since the displacements are small perturbations around rs, the observation operator
may be linearized according to

H(ν,d) ≈ ˜︂H(ν,d) =H(ν,0) + ∂xH(ν,d)|d=0 dw,x

+ ∂yH(ν,d)|d=0 dw,y

+ ∂zH(ν,d)|d=0 dw,z (4.37)
+ ∂ϕxH(ν,d)|d=0 dϕ,x

+ ∂ϕyH(ν,d)
⃓⃓
d=0

dϕ,y.

The terms ∂jH(ν,d)|d=0 are matrices in R3M×M , as three Hall voltages are measured at M positions.
The matrices have the meanings of the derivatives of the discrete observation operator with respect to
j ∈ {x, y, z, ϕx, ϕy}, evaluated for d = 0 and some particular ν.

To understand the structure of the matrices ∂jH(ν,d)|d=0, the rows of the discrete observation operator
H(ν,d) are denoted according to

H(ν,d) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hx,1(ν,d)
...

Hx,M (ν,d)
Hy,1(ν,d)

...
Hy,M (ν,d)
Hz,1(ν,d)

...
Hz,M (ν,d)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.38)

which is in-line with the sorting scheme ỹ = (ỹTx , ỹ
T
y , ỹ

T
z )

T for the predicted measurements. The element
Hj,m denotes the observation operator for the j-th sensor at the m-th measurement position. Adopting this

2rs(t) will be identified with the position measurements of the linear encoders.
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notation, the matrices ∂jH(ν,d)|d=0 are given explicitly by

∂jH(ν,d)|d=0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂jHx,1(ν,d)|d=0 0 . . . 0
0 ∂jHx,2(ν,d)|d=0 . . . 0
... . . .

. . . ...
0 0 . . . ∂jHx,M (ν,d)|d=0

∂jHy,1(ν,d)|d=0 0 . . . 0
0 ∂jHy,2(ν,d)|d=0 . . . 0
... . . .

. . . ...
0 0 . . . ∂jHy,M (ν,d)|d=0

∂jHz,1(ν,d)|d=0 0 . . . 0
0 ∂jHz,2(ν,d)|d=0 . . . 0
... . . .

. . . ...
0 0 . . . ∂jHz,M (ν,d)|d=0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.39)

One may introduce the short-handed notation

∂jH(ν,d)|d=0 =

⎛⎝ diag (∂j Hx(ν,d)|d=0)
diag

(︁
∂j Hy(ν,d)|d=0

)︁
diag (∂j Hz(ν,d)|d=0)

⎞⎠ , (4.40)

whereHi is the observation operator of probe i for i = x, y, z, and diag(x) is a diagonal matrix with diagonal
elements x.

In (4.37), a linear relationship between the predicted measurements ỹ and the mechanical state vector d is
established. The operator ˜︂H will be denoted as the perturbed observation operator. One may combine the
∂jH matrices and write ˜︂H(ν,d) =H(ν,0) + ∂H(ν)d, (4.41)

where

∂H(ν) :=
(︁
∂xH(ν,d)|d=0 , ∂yH(ν,d)|d=0 , ∂zH(ν,d)|d=0 , ∂ϕxH(ν,d)|d=0 , ∂ϕyH(ν,d)

⃓⃓
d=0

)︁
. (4.42)

The matrix ∂H(ν) ∈ R3M×5M gives the linearized relationship between the measurements and the me-
chanical state vector d, it is therefore denoted as mechanical perturbation matrix. In case of a BEM field
representation, the spatial derivatives in ∂H(ν) can be computed by deriving the Green’s function analytically.
The angular derivatives are obtained by expressing the Hall voltage as a function of the probe’s orientation
vector n(ϕx, ϕy), and differentiating the resulting expression with respect to ϕx and ϕy. It is beneficial to
perform the integration for all ∂jH matrices at once, to avoid multiple evaluations of the surface elements on
the domain boundary.
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5 Statistical inference

Statistical inference is the process of using data analysis to infer properties of an underlying distribution of
probability [89]. Assessing estimators and credible intervals for the boundary data ν and sensor parameters θ
based on erroneous measurement data, is a classical example for statistical inference. This chapter gives an
introduction into the concept of Bayesian inference, which will be of particular importance for the applications
presented in chapter 6. The focus lies on the derivation of algorithms for the solution of inference problems
for linear and nonlinear problems, as they will be applied to several applications in chapter 6. This shall
provide the link between the physical modeling presented in the previous chapters and the application part in
chapter 6.

Referring to the blueprint, this chapter shall provide the framework to blend measurement data with the
physical model and prior knowledge. The blueprint notation for the state vector ν, sensor parameters θ and
measurements y is adopted. In cases where a distinction between ν and θ is irrelevant, both variables will be
joint in the vector x = {ν,θ} ∈ RN and denoted as state variables, defined over the sampling space RN . The
observation operator will then be denotedH : x ∈ RN → RM . In the following,H might be linear or nonlinear
inx, and it relates to the measurement data y via the additive noise model

y =H(x) + ϵ. (5.1)

In light of the discussion in chapter 1, the deterministic part ydet is identified with H(x) in (5.1). ϵ is
the error term, able to encode microscopic or macroscopic physical effects which can be expressed by
means of a noise model. In this work, this means a probability density function. A typical example is the
colored Gaussian noise model, which has been derived in section 4.1.1 for the electronic noise in Hall-probe
measurements. Expressing ϵ as a random variable following a certain probability density function, the
measurement vector y may be interpreted as a realization of a stochastic process with probability density
function p(y). For the aspects covered in this thesis, the rather informal discussion about probability density
functions over continuous random variables given in definition 10 is sufficient. This definition is inspired by
[17, p. 1.2.1].

In statistical inference, variables which are not directly observed, but inferred by means of a mathematical
model, are called latent variables. As in magnetic measurements all measurement data is provided by voltages
and their integrals over small time windows, the state variables are never observed directly and always need
to be inferred through a mathematical model (for the sensor and the field). Therefore x, ν and θ are latent
variables. It is common practice to denote variables which are influencing the measurement process, but not
the process of drawing predictions from the numerical model, as nuisance parameters. As θ is related to the
sensor model and not the field model, θ is also a nuisance parameter.

The definitions of some important statistical properties are found in table 5.1. The two most important proba-
bility density functions for this thesis are found in definition 11 and 12.
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parameter notation definition estimator

mean E (x)
∫︁
RN x p(x)dx

1

K

∑︁
k xk

covariance cov(x,y) E ((x− E (y) (y − E (x)))
1

K − 1

∑︁
k(xk − E[x])(yk − E (y)T

variance var(x) E
(︂
x− E (x)2

)︂ 1

K − 1

∑︁
k ((xk − E (x))2

Table 5.1: Definition of some important statistical properties. p(x) is the probability density function for x
defined over RN . It is defined in definition 10

Definition 10 (Probability density functions over continuous random variables) The probability den-
sity function p(x) is defined as a function x ∈ RN → R, such that the probability for x falling in an
infinitesimal volume δx, containing the point x is given by p(x)δx. This probability density function must
satisfy [17, Section 1.2.1]

p(x) ≥ 0, ∀x ∈ RN (5.2)

∫︂
RN

p(x)dx = 1. (5.3)

Definition 11 (Gaussian distributions) The multivariate Gaussian distribution (short Gaussian distribu-
tion), is defined over x ∈ RN and given by the probability density function

p(x) =
1

√
2π

Ndet(Σ)
exp

(︃
−1

2
(x−m)T Σ−1 (x−m)

)︃
. (5.4)

Herein,m is the mean value and Σ is the covariance matrix according to the definitions in table 5.1. One
writes

p(x) ∼ N (m,Σ). (5.5)

Definition 12 (Gamma distributions) The gamma distribution is defined over x ∈ R and given by the
probability density function

p(x) =

⎧⎨⎩
bp

Γ(p)
xp−1 exp(−bx), x > 0

0, x ≤ 0.
(5.6)

It is parameterized by the scale and rate parameters b and p ∈ R. Mean and variance are related to b and p
by:

E(x) =
p

b
, var(x) =

p

b2
. (5.7)

One writes
p(x) ∼ Γ(p, b). (5.8)
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5.1 Bayesian inference

In Bayesian inference, the uncertainty in the state variables x is expressed in terms of a probability den-
sity function p(x). The aim is to infer the probability density function p(x), based on a collection of
observed, dependent variables y. In the context of magnetic measurements y has the meaning of mea-
surement data, and the relation between x and y is given by the observation operator H according to
Eq. (5.1).

The explicit form of the observation operatorH is derived by linking the sensor sensitivity function s(θ,B)
with the numerical model for the field B dependent on ν

H(x) = s(θ,B) ◦B(ν).

Due to the random character of the error term, it is natural to ask how likely a measurement y is, given a
vector of parameters x. The probability of a measurement y may be described by means of the conditional
probability density function p(y|x), expressing the probability density function for y given a value for x.
The resulting function, when considering p(y|x) for a fixed measurement outcome y over the parameters
x, is called the likelihood function. Identifying p(y|x) is a question of metrological characterization of the
measurement system, as discussed in chapter 4.

As an example, consider the Gaussian noise model with mean value E(y) and covariance matrix R; p(y) ∼
N (E(y),R). The measurement outcome y depends on the magnetic field at the measurement position,
and therefore on the state variables x. The conditional probability density function p(y|x) is obtained by
substituting the observation operator for E(y) in p(y), yielding the distribution p(y|x) ∼ N (H(x),R). The
likelihood function is then determined by fixing the y variable in N (H(x),R) and considering the result as a
function over x.

Fundamental to Bayesian inference is Bayes’ rule of probability. In this thesis, the focus lies on probability
density functions over continuous random variables, according to definition 10. Considering x and y as
dependent realizations of random variables, the Bayes rule is a direct consequence of the definition of the
conditional probability density function

p(y|x) = p(x,y)

p(x)
. (5.9)

p(y|x) is the conditional probability density function for y given a value for x, p(x,y) is the joint probability
density function over x and y, and p(x) is the marginal probability density function for variable x. Exchanging
the order of x and y in (5.9) the Bayes rule of probability yields

p(x|y) = p(y|x)p(x)
p(y)

. (5.10)

The role of the denominator p(y) in the Bayes rule is for normalization and can therefore be omitted from
now on. Then follows the proportionality relation

p(x|y)⏞ ⏟⏟ ⏞
Posterior

∝ p(y|x)⏞ ⏟⏟ ⏞
Likelihood

p(x)⏞⏟⏟⏞
Prior

. (5.11)

The posterior p(x|y) is the probability density function for the state variables, which describes their “belief”
based on the observations y. p(y|x) is the likelihood function discussed before and the prior p(x) encodes
knowledge about the state variables x.
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The Bayesian paradigm differs from the so-called frequentist paradigms. As stated in [17]: In both the Bayesian
and frequentist paradigms, the likelihood function p(y|x) plays a central role. However, the manner in which it
is used is fundamentally different in the two approaches. In a frequentist setting, x is considered to be a fixed
parameter, whose value is determined by some form of ‘estimator’, and errors bars on this estimate are obtained
by considering the distribution of possible data sets y. By contrast, from the Bayesian viewpoint there is only a
single data set y (namely the one that is actually observed), and the uncertainty in the parameters is expressed
through a probability distribution over x.

In view of the Bayesian and frequentist paradigms, the approaches presented in this thesis differ from classical
uncertainty quantification used in the post-processing of magnetic measurement data. Error bars are usually
derived by investigating the spread of the measurement result after repeated observations. In rotating coil
measurements, for instance, multipole errors are computed for several turns of the rotating coil and mean
and standard deviations are estimated from the sampled statistical moments of the resulting population. Data
acquisition for the whole population takes only seconds and the post-processing is computed on the fly. In
some cases however, repeating a measurement several times may be a time consuming process. A full three
dimensional field map, taken with the Hall-probe mapper, may easily require a full day of measurements.
Following the Bayesian paradigm allows one to derive error bars from the posterior distribution based on a
single data set only.

There is a great flexibility in choosing the prior p(x). Although strictly speaking, uniform distributions
over the whole sampling space in RN do not exist (as it would contradict the requirements formulated in
definition 10), it is always possible to assume a sufficiently flat prior that is approximately constant over the
relevant sampling space p(x) ≈ const. This yields proportionality relations between posterior and likelihood
relying on measurements only. Throughout this thesis, these priors will be denoted as flat priors, and they
will be used to initialize the active learning algorithm.

It is also plausible to use results from numerical field simulations as prior knowledge in order to regularize
ill-posed inverse problems. In these cases however, it is often difficult to assign reasonable values to the prior
covariance matrix.

In the following sections, some explicit algorithms for the computation of p(x|y) based on Bayes rule of
probability are presented, as they will be applied extensively in chapter 6.

5.2 Maximum likelihood solutions

In the following, a linear observation operator is investigated, such that ỹ =Hx. Considering a Gaussian
noise model for ϵ ∼ N (0,R), with covariance matrix R in (5.1), the likelihood function is given by p(y|x) ∼
N (H(x),R). Choosing a sufficiently flat prior p(x), such that p(x) ≈ const over the relevant sampling space,
the posterior probability density function is given by

p(x|y) ∝ exp
(︃
−1

2
(y −Hx)T R−1 (y −Hx)

)︃
. (5.12)

It can be shown that this is a Gaussian distribution over x. To see this, one may perform the multiplications in
the exponent to obtain

p(x|y) ∝ exp
(︃
−1

2

(︁
yTR−1y − 2xTHTR−1y + xTHTR−1Hx

)︁)︃
. (5.13)
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The same can be done for a standard Gaussian distribution p(x) ∼ N (m,Σ)

p(x) ∝ exp
(︃
−1

2

(︁
mTΣ−1m− 2xTΣ−1m+ xTΣ−1x

)︁)︃
. (5.14)

One then finds the meanm and covariance matrix Σ of the posterior by comparing the coefficients in the
exponents,

Σ =
(︁
HTR−1H

)︁−1
, (5.15)

Σ−1m =HTR−1y. (5.16)

This procedure to identify the mean and covariance matrix in the posterior is known as completing the squares
and the solutionm = ΣHTR−1y is known as maximum likelihood solution. The posterior probability density
function is defined by the meanm and covariance matrix Σ.

It is possible to generate samples xk from the posterior p(x|y) by solving the randomized linear equations
system

(HTR−1H)xk =HTR−1y +HTR−1/2ϵk, ϵk ∼ N (0, IM ). (5.17)

IM is an identity matrix of dimension M ×M and R1/2 denotes the square root matrix of R such that
R = R1/2R1/2. A square root of a symmetric, positive definite matrix can be computed by the Cholesky
factorization. This functionality is available in the Cholesky module of the Eigen C++ library [90]. Al-
though the covariance matrix might be of a large dimension R ∈ RM×M , it is sparse in all the consider-
ations to follow. In cases of measurements with the 3D mapper, typically only 1% of the matrix is popu-
lated.

To prove that xk follows the desired posterior distribution, consider a multivariate Gaussian random variable
x ∼ N (m,Σ) and the affine transformation w = c +Bx. From the linearity of Gaussian distributions it
follows that w ∼ N (c +Bm,BΣBT ) (see [91, chapter 1.2]). Substituting the right-hand-side of (5.17)
according to

m ↦→ 0,

Σ ↦→ IM ,

c ↦→HTR−1y,

B ↦→HTR−1/2,

one finds that
w ∼ N

(︁
HTR−1y,HTR−1H

)︁
. (5.18)

Now consider another linear transformation

x =
(︁
HTR−1H

)︁−1
w. (5.19)

Following the same arguments as before,

x ∼ N
(︂(︁
HTR−1H

)︁−1 (︁
HTR−1y

)︁
,
(︁
HTR−1H

)︁−1
)︂
, (5.20)

which has the desired mean and covariance given in (5.16) and (5.15).
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Generating samples according to (5.17) is of advantage in the high-dimensional case, because (HTR−1H)
does not need to be inverted to assess the statistical properties of the posterior. Instead, themean and covariance
matrix can be estimated from the samples xk according to table 5.1.

The observation operatorH may be available in compressed form by means of a multilevel fast multipole
matrix. In such cases, samples are drawn matrix-free by using conjugate gradient solvers (CG), only requiring
the execution of matrix-vector and matrix-transpose-vector products. The Eigen C++ library provides
templates for CG solvers, enabling matrix free iterations in a straight-forward fashion (see [92]). It is shown
in appendix 8.7 how to enforce a common gauge condition to all samples generated when using compressed
matrices.

5.3 The Kálmán filter

The Kálmán filter equations are derived from the Bayes rule, assuming a linear observation operator H
and Gaussian distribution for the likelihood function, as well as the prior. Denoting the prior distribu-
tion by p(x) ∼ N (x0, δ

−1Q), with prior mean x0 and covariance matrix δ−1Q, the posterior is given
by

p(x|y) ∝ exp
(︃
−1

2

(︂
(y −Hx)T R−1 (y −Hx) + (x− x0)

T δQ−1 (x− x0)
)︂)︃

. (5.21)

Here a regularization parameter δ ∈ R is introduced, which can be used to tune the impact of the prior.

Completing the squares, as it was done in section 5.2 yields

p(x|y) ∼ N (m,Σ) (5.22)

where
Σ =

(︁
HTR−1H + δQ−1

)︁−1
, (5.23)

and
Σ−1m =HTR−1y + δQ−1x0. (5.24)

This is the update step of a linear Kálmán filter [18]. A well established alternative representation for the
equations (5.23) and (5.24) is given by

Σ = δ−1 (IN −KH)Q, (5.25)

and
m = x0 +K (y −Hx0) , (5.26)

whereK is the Kálmán gain
K = δ−1QHT

(︁
δ−1HQHT +R

)︁−1
. (5.27)

The equivalence of the above equations can be shown by using the Sherman-Morrison-Woodbury formula [93]
[94] (see appendix 8.6).

The posterior probability density function p(x|y) ∼ N (m,Σ) is defined by the updated mean m and
covariance matrix Σ.
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In order to compute the posterior covariance matrix, the inversion of a matrix is required. This computational
effort to perform this matrix inversion scales badly with respect to the number of degrees of freedom of the
state variables N . In the high dimensional case it is more efficient to estimate the statistical properties from
an ensemble of K random vectorsX = {x1, ...,xK}, where xk ∼ p(x|y). It is often sufficient to use K < N ,
which yields a large benefit in computational complexity [26]. Formulas to estimate mean and covariance
from the ensembles are found in the right column of table 5.1. A sample xk can be computed by solving the
randomized linear equation system

(HTR−1H + δQ−1)xk =HTR−1y + δQ−1x0 +
(︂
HTR−1/2, δ1/2Q−1/2

)︂
ϵk, (5.28)

ϵk ∼ N (0, IM+N ).

IM+N is an identity matrix of dimension (M +N)× (M +N). The prove that xk follows the desired posterior
distribution is completely analogous to section 5.2 and is therefore not performed explicitly at this stage. In the
above relations,Q1/2 denotes the square rootmatrix ofQ such thatQ = Q1/2Q1/2.

The sampling approach is of advantage in the high-dimensional case and whenH is not available in closed
form. Problematic, however, is the appearance of the inverse of the prior covariance matrix Q in all the
equations. This limits the applicability of (5.28) to simple prior covariance structures or low dimensional
problems. If the prior is available by means of an ensemble x, which could have been obtained from (5.17),
Q must be approximated, which may be inaccurate in cases with K < N . An approach to perform the Kálmán
update directly on the prior ensemble is desired. The ensemble Kálmán filter has been developed especially for
this purpose [20].

5.4 The ensemble Kálmán filter

The ensemble Kálmán filter solves the issues related the prior covariance matrixQ. A good introduction into the
concept of ensemble Kálmán filtering and its efficient implementation is found in [22].

It is now considered that a prior ensemble of K state variables {xk} is available, which is providing prior
information for distribution of the parameters x. This prior ensemble might have been computed by solving
the randomized linear equation system according to (5.17) or (5.28).

The notation xprior
k and xpost

k is now used to distinguish between the prior and posterior state vectors. The
prior ensemble matrixXprior ∈ RN×K is defined as

Xprior :=
(︂
x
prior
1 , ...,x

prior
K

)︂
. (5.29)

Themean and the covariancematrix of the prior ensemble can be computed by

E
(︂
Xprior

)︂
=

1

K

K∑︂
k=1

x
prior
k , Qprior =

UUT

K − 1
, (5.30)

with
U =Xprior − E

(︂
Xprior

)︂
I1×K , (5.31)

where I1×K is a row vector (1, ..., 1) ∈ R1×K .
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The measurement data is randomized as it was done in equations (5.17) and (5.28), according to the
measurement covariance matrix R for the measurement vector y. To this end, the data matrix Y ∈ RM×K is
defined as

Y := (y1, ...,yK) , with: yi = y + ϵi, ϵi ∼ N (0,R). (5.32)

The Kálmán update yields the posterior ensemble

Xpost =Xprior +
1

K − 1
U (HU)T P−1

(︂
Y −HXprior

)︂
, (5.33)

whereH ∈ RM×N is thematrix related to the linear observation operator and

P =
1

K − 1
HU (HU)T +R ∈ RM×M . (5.34)

Equation (5.33) follows directly from (5.26) by substituting the sampled covariance matrix Qprior according
to (5.30) for δ−1Q in the definition of the Kálmán gain in (5.27). The variables used in (5.33) and (5.34) are
summarized in table 5.2

In the case of a non-linear observation operatorH , or when the observation operator is available in compressed
form only, an observation matrix-free implementation is possible. One therefore defines the matricesHXprior

andHU according to
HXprior := (H(x1), ...,H(xK)) , (5.35)

HU := (H(x1)− E (H(x)) , ...,H(xK)− E (H(x))) , (5.36)

where

E (H(x)) :=
1

N

K∑︂
k=1

H(xk), (5.37)

and substitutes the resultingmatrices forHU andHXprior in (5.33) and (5.34).

By working with a nonlinear observation operator in ensemble Kálmán filtering one suffers from approximation
errors, as the true nonlinear update is fitted with a Gaussian model. In complex high dimensional systems
the ensemble Kálmán filter still enjoys great popularity, as it is often the only way to do approximate
inference. Alternative techniques can only be applied to highly simplified versions of the original problem
[26].

In this work the ensemble Kálmán filter will be used to update the prior ensemble Xprior in regions of
the magnet where the remaining measurement uncertainty is large. Comparing to the initialization, less
measurements will be used for such local updates. The P matrix will therefore be of a reasonable sizeM ≪ N .
For high dimensional updatesM ≫ N , it is shown in [22] how to reformulate P to obtain linear complexity
inM .

5.5 Nonlinear observation operators

In case of a nonlinear observation operatorH, the posterior is not a Gaussian distribution and the statistical
moments of the posterior cannot be identified by completing the squares in the exponent as it was done
before. If nonlinearities are small, it is common practice to linearize H in order to recover a Gaussian
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variable meaning definition
N dimension of the parameter vector x
M dimension of the measurement vector y
K size of the ensemble
y measurement vector RM

Xprior prior ensemble RN×K

Xpost posterior ensemble RN×K

Y data matrix RM×K

U centered prior ensemble RN×K

Qprior prior ensemble covariance matrix RN×N

H linear observation operator RM×N

Table 5.2: Summary of all variables used in the ensemble Kálmán filter.

posterior. This is the basic principle of extended Kálmán filtering. Linearizations will be used in some
applications in chapter 6, and the details about these approaches will depend strongly on the specific use
case.

The focus of this section lies in the estimation of statistical moments for nonlinear problems without lin-
earization. A good overview about the different approaches can be found in [95]. The basic principle of
Markov-Chain-Monte-Carlo (MCMC) methods is similar to using 5.28, where random numbers are generated
from the posterior and statistical moments are estimated by means of the sampled statistical moments. This
allows to derive matrix-free algorithms, which are efficient for high dimensional problems. All implementa-
tions and derivations given below are based on [91, Chapter 6]. In the following, the concept of maximum
a-posteriori solutions for nonlinear problems is discussed, before a result-oriented summary on MCMCmethods
is given.

In the spirit of section 5.3, the algorithms are based on a Gaussian prior p(x) ∼ N (x0,Q), which is avail-
able from the mean vector x0 and the prior covariance matrix Q, rather than an ensemble of state vari-
ables.

5.5.1 Maximum a-posteriori solutions

For normal-distributions of noise and prior, the posterior probability density function takes on the least-squares
form

p(x|y) ∝ exp
(︃
−1

2
∥A(x)− b∥22

)︃
(5.38)

where
A(x) :=

(︃
R−1/2H(x)

δ1/2Q−1/2x

)︃
, and b :=

(︃
R−1/2y

δ1/2Q−1/2x0

)︃
. (5.39)

Themaximum a-posteriori solutionxMAP is maximizing the posterior p(x|y) that is equivalent to

xMAP = argmin
x

(︃
1

2
∥A(x)− b∥2

)︃
. (5.40)
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x0 x1 x2

K(x1|x0) K(x2|x1)

Figure 5.1: Random walk in Markov-Chain-Monte-Carlo methods. The probability for drawing a new sample
does only depend on the current state and not on the whole history of the chain.

It is important to mention that xMAP is not the expected value of x for nonlinear inference problems. Moreover,
a maximum a-posteriori solution alone does not give information about the statistical properties of the posterior,
which are needed to quantify uncertainties.

5.5.2 Metropolis Hastings in Markov-Chain-Monte-Carlo methods

In MCMC methods, the successive computation of random vectors xk describes a random walk through the
probability space. This random walk is designed to draw samples from the desired posterior distribution. The
random walk in MCMC methods is a Markov-Chain, where the probability for drawing a new sample depends
only on the current state, and not the whole history of the sequence. The probability for drawing a sample
xk+1 given the current state xk is expressed by means of a transition kernel K(xk+1|xk). This principle is
illustrated in Fig. 5.1.

Different version of MCMC methods exist, all varying in the choice of the transition kernel K(xk+1|xk). In
Metropolis Hastings (MH), the goal is to construct K(xk+1|xk) such that

p(xk+1) =

∫︂
K(xk+1|xk)p(xk)dxk. (5.41)

p(xk) is said to be an invariant density for the transition kernel K(xk+1|xk). In this way it is guaranteed that
the Markov chain converges in distribution to p(x) [91].

Choosing
p(xk)K(xk+1|xk) = p(xk+1)K(xk|xk+1) (5.42)

it is shown in [96] that p is an invariant density for K(xk+1|xk). Eq. (5.42) is practical to derive transition
kernels in MH. To this end one may choose a proposal q according to

K(xk+1|xk) = α(xk+1,xk)q(xk+1|xk), (5.43)

andmodifyα such that Eq. (5.42) is satisfied. Explicitly, this yields forα [91]

α(xk+1,xk) = min
(︃
1 ,

p(xk+1)q(xk|xk+1)

p(xk)q(xk+1|xk)

)︃
. (5.44)

The advantage of MH is that samples can be generated using a known proposal density, allowing for efficient
evaluation. The function α is then used as to derive acceptance or rejection rules for the proposed samples,
as it is known from rejection sampling. Without explicitly specifying the proposal q and function α, the MH
algorithm to sample from a given posterior probability density function p(x|y) can now be summarized in
algorithm 1.
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Algorithm 1 Sampling from the posterior p(x|y)
Initialize x0

for k = 1, ..., number of samples K do
Generate a proposal x̃ ∼ q(xk|xk−1)
Compute α = α(x̃,xk−1)
Draw sample from a uniform distribution u ∼ U(0, 1)
if u < α then

accept proposal xk = x̃
else

reject proposal xk = xk−1

end if
end for

The function α follows from the definition of the proposal q and the probability density function p(x|y) and is
computed by (5.44). An example for how to choose the proposal q is given in the next subsection.

5.5.3 The randomize-then-optimize proposal for Metropolis Hastings

So far, the proposal used in MH has not been given explicitly. The choice of the proposal is critical for the
efficiency of the sampling algorithm. In the optimal case, the proposal is tailored tightly to the posterior
distribution, such that most of the proposed samples are accepted. This however might be impossible when
using simple proposal distributions, such as uniform or Gaussian distributions. In this thesis, all nonlinear
MCMC implementations make use of the so called randomize-then-optimize (RTO) proposal in Metropolis
Hastings, as it fits tightly to nonlinear problems with Gaussian priors and noise models. In these cases, the
posterior probability density function can be formulated in the least-squares form according to 5.38. Details
about the RTO proposal are found in [91]. The key ideas and equations needed for implementation are given
in the following.

The randomize-then-optimize proposal is chosen as

qRTO(x|y) = |QT
qr J(x)|⏞ ⏟⏟ ⏞

:= c(x)

exp
(︃
−1

2
∥QT

qr (A(x)− b) ∥
)︃

⏞ ⏟⏟ ⏞
:= q(x|y)

(5.45)

where Qqr is the matrix Q1 of the thin QR-factorization of the Jacobian J(xMAP) of A(x), according to
definition 13, evaluated for the maximum a-posteriori solution xMAP.

The proofs for the following statements are found in [91, 6.3.1 and 6.3.2]. The advantage of the RTO proposal
is that it appears to fit tightly to the posterior given in (5.38) and it allows to compute samples efficiently by
solving the nonlinear stochastic optimization problem

x̃ = argmin
x
∥QT

qrA(x)− (b+ ϵ)∥2, ϵ ∼ N (0, IM+N ). (5.46)

IM+N is an identity matrix of dimensions (M +N)× (M +N). The algorithm to draw a sample from the
RTO proposal can now be summarized in algorithm 2. This algorithm can be used to generate the proposal x̃
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Algorithm 2 Sampling from the RTO proposal for MH
Compute xMAP from (5.40)
Compute Qqr from QR-factorization of J(xMAP)
Compute x̃ from (5.46)

in algorithm 1, whereas the maximum a-posteriori solution and the QR factorization can be performed once
before iterating over k.

It remains to derive the acceptance rule based on the function α in algorithm 1. To this end, one substitutes
q(x̃|y) and q(xk−1|y), defined in (5.45), in the definition of α according to (5.44) to obtain [91, p. 6.3.3]

α(x̃,xk−1) = min
(︃
1,
c(xk−1)

c(x̃)

)︃
. (5.47)

Definition 13 (The QR-factorization) The QR-factorization of a matrix A ∈ RM×N with M ≥ N is
defined as

A = (Q1,Q2)

(︃
R1

0

)︃
= Q1R1, (5.48)

where R ∈ RN×N is an upper triangular matrix and Q1 ∈ RM×N and Q2 ∈ RM×(M−N) have orthogonal
columns. A = Q1R1 is called the thin QR-factorization.
The algorithmic implementation of the QR-factorization is available in the “qr” function of the linear algebra
package of scipy [97]. The thin QR-factorization is available by using the mode parameter “economic”.

5.6 Regularization parameter selection

The regularization parameter δ in the posteriors according to (5.21) and (5.38), has the same role as the
regularization parameters known from the Tikhonov regularization methods [91, Chapter 2.2]. In said
approaches, δ is considered as a known value, and is estimated prior to the computation of x. In this thesis, the
approach presented in [91, Chapter 5.2] is chosen. The regularization parameter is treated as an additional
random variable, a so-called hyper parameter.

Following [91], a prior in form of a gamma distribution Γ(p, b), according to definition 12 is used for the
regularization parameter δ. This is a standard choice in the Gaussian framework, as the full posterior p(x, δ|y),
for x and δ is of the form

p(x, δ|y) ∝ δN/2+p−1 exp
(︁
−∥A(x, δ)− b(δ)∥2 − bδ

)︁
. (5.49)

Considering eitherx or δ as given, the conditionals p(x|δ,y) and p(δ|x,y) are given by

p(x|δ,y) ∝ exp
(︁
−∥A(x, δ)− b(δ)∥2

)︁
, (5.50)

and
p(δ|x,y) ∝ δN/2+p−1 exp

(︃(︃
−1

2
(x− x0)

TQ(x− x0)− b
)︃
δ

)︃
. (5.51)
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The conditional p(x|δ,y) is of a least squares form (Gaussian, ifH is linear), whereas the conditional p(δ|x,y)
is gamma distributed with new scale and rate parameters

p(δ|x,y) ∼ Γ(N/2 + p,−1

2
(x− x0)

TQ(x− x0)− b). (5.52)

Therefore the same forms of the prior distributions are recovered in the conditionals of the posterior. This rela-
tionship between prior distributions and posteriors is known as conjugacy, and it allows to derive sampling algo-
rithms based on known probability density functions in standard forms. In the above, the dependency ofA and
b on δ was denoted explicitly, to highlight that A and b are functions of δ.

5.7 The two stage Gibbs sampling

Gibbs sampling can be seen as a special case of Metropolis Hastings, in which the proposals q are iden-
tified from conditional posterior density functions. Even though more general multi-stage Gibbs sam-
plers are plausible, this work focuses on two stage Gibbs sampling, as it is introduced in [98, Chapter
9].

Considering two random variables a and b with joint probability density function p(a, b) the two stage Gibbs
sampler generates a Markov chain by sampling from the conditionals p(a|b), p(b|a) according to algorithm 3
[98]. The samples ak, bk of the Markov chain converge in distribution to the joint distribution p(a, b) under

Algorithm 3 The two stage Gibbs sampler
Initialize a0
for k = 1, ..., number of samples K do

Compute bk ∼ p(b|ak)
Compute ak ∼ p(a|bk)

end for

mild conditions (see [98], Theorem 9.6).

Returning to the posterior in section 5.6, samples from the posterior p(x, δ|y) may be computed by using
algorithm 4.

Algorithm 4 Sampling from the posterior p(x, δ|y)
Initialize x0, δ0
for k = 1, ..., number of samples K do

Compute δk ∼ p(δ|xk−1,y)
Compute xk ∼ p(x|δk,y)

end for

The initial stage of any MCMC chain is called burn-in, when the elements of the chain move from their starting
values to the region of relatively high probability of the target density [91]. The burn-in samples are usually
omitted, in order to avoid a possible bias in the sampled statistics. After the burn-in, a MCMC chain is said to
be in equilibrium, and it can be assumed that the samples are collected from the target distribution [91]. The
so called Geweke test [99] will be applied to the samples δk generated from algorithm 4, in order to assess
the equilibrium of the Markov-Chain. The Geweke test is based on hypothesis testing, and the central limit
theorem, details and derivations are found in [99] and [91, page 85].
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variable meaning
K10 largest integer less than (K −Kbi)/10
K50 largest integer less than (K −Kbi)/2

δ10 mean value of the first 10 percent of all samples δk with
k > Kbi

δ50 mean value of the last 50 percent of all samples δk with
k > Kbi

Ŝ10(0) variance estimated from the 0 coefficient of the spectral den-
sity of the first 10 percent of all samples δk with k > Kbi

Ŝ50(0) variance estimated from the 0 coefficient of the spectral den-
sity of the last 50 percent of all samples δk with k > Kbi

Table 5.3: Variables needed for the computation of RGeweke.

For the Geweke test, all samples δk with k > Kbi are considered, where Kbi is the number of burn in samples.
If the Geweke test fails forKbi, one usually increasesKbi and tests the new chain for equilibrium. The Geweke
test is based on the statistic RGeweke defined as

RGeweke =
δ10 − δ50√︂

Ŝ10(0)/K10 + Ŝ50(0)/K50

. (5.53)

The variables needed for the computation of RGeweke in (5.53) are given in table 5.3. From RGeweke, the
Geweke p-value is computed as the probability that |z| > |RGeweke| for z ∼ N (0, 1), meaning that N (0, 1) is
integrated for |z| > |RGeweke| to obtain p. This value can be interpreted as the probability of observing a value
at least as extreme as RGeweke, given that chain is in equilibrium. p-values larger than 0.95 provide strong
evidence, that the chain is in equilibrium.
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6 Applications

In this chapter, four inference problems related to the post-processing of magnetic measurement data are
presented. The physical meanings of the latent variables ν and θ will change depending on the application.
The tools for the statistical inference and numerical modeling, which have been discussed in the previous
chapters, will now be applied to real measurement data.

Section 4.1.5. The first problem deals with the three-axes, Hall probe mapper. The main objective is the
identification of sensor parameters θ by statistical inference. More precisely, it aims to infer sensor positions
and orientations based on a field map in a cone-quadrupole field. This application is challenging, because the
cone-quadrupole field is provided by permanent magnets, which are affected by manufacturing tolerances and
temperature dependence. The temperature effects are characterized by long time constants. The field can
therefore be considered stable within the measurement campaign of less than one hour, not, however, within
hours and days. Under these conditions, the inference can not be performed with respect to a fixed reference
field, which is why a model for the magnetic field by means of ν is necessary. The resulting algorithm has
developed into a powerful fiducialization tool. This tool admits the localization of the sensor positions in three
dimensional space, with respect to magnet coordinates. This fiducialization procedure is now well established
in the setup phase of the 3D mapper.

Section 6.2. The second application uses the sensor parameters identified previously as fixed variables, to
reconstruct the three-dimensional magnetic field based on boundary measurements in an accelerator magnet,
by means of a mathematical model based on the boundary-element method. The state variables for the
magnetic field ν correspond to equivalent surface currents at the domain boundary and are to be identified
from dependent measurements y for given sensor parameters θ.

The challenge in this application lies in the construction of the approximation space and the large dimensionality
of the problem. A residual-based mesh refinement is presented, which uses a stopping criterion derived from
the expected residual due to mechanical vibration and positioning uncertainties, which are estimated from the
experiments explained in chapter 4 and a least squares solution for ν.

The least squares solution does not provide the feedback necessary for uncertainty quantification, as it neglects
the measurement covariance matrix, which is mostly affected by mechanical vibrations and positioning errors.
As the impact of these error sources depends on the magnetic field, the covariance matrix is dependent on
ν, yielding a complicated likelihood function. In the over-sampled case, according to the discussions in
section 3.3.8, the least squares solution provides a good estimate for the parameters ν and is therefore used
to estimate the measurement covariance matrix. This covariance structure is then used for the inference of ν
by drawing samples from the posterior probability density function.

It will be shown, how positioning uncertainties propagate to field evaluations in the fringe field region and how
local update measurements can be incorporated to improve the estimates by ensemble Kálmán filtering. An algo-
rithm is presented, which is exploring the physical space dependent on the uncertainty.
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Finally, the advantages of the BEM based post processing are showcased by comparing to the “naive” approach
of mapping the field directly on a 3D grid.

Section 6.3. In the third example, the dependency on a least squares solution for the estimation of the
error covariance matrix is relaxed. The perturbation of the sensor position and orientation is considered by
means of the nuisance parameters θ and is estimated together with ν by means of Gibbs sampling. As this
approach requires the successive computation of field gradients and measurement derivatives, it requires large
computational resources to store all derivative evaluations in the format of dense matrices. The fast multipole
method, presented in chapter 3 would provide a tool to solve this issue, however, the derivative operations for
the fast multipole method have so far not been implemented in the code. Therefore, a small scaled field map
in the fringe field of a magnet is taken as a proof of principle. Results are verified by recovering the sensor
displacement from θ and comparing it to an optical position measurement.
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6.1 The absolute position and orientation problem

This section ties in with the discussion in section 4.1.5. Based on a field map around the center of the cone
quadrupole magnet, the primary goal is to infer the absolute positions oi and orientation vectors ni for the
three axes of a Hall cube, i ∈ {x, y, z}. The mapper is equipped with a 3D Hall probe of type AS-3DC [80]
from Projekt Elektronik including an electronic board for signal conditioning, which provides linearized output
voltages for the three axes. In case of the AS-3DC, planar Hall effects are neglectable and the Hall voltages
can be described by the linear axial model

Ui(r + oi) = sini ·B(r + oi) + Ui,0, (6.1)

for the three axes of the Hall sensor i ∈ {x, y, z}, the sensitivities si and offset voltages Ui,0 have been
determined in a prior probe calibration.

In the linear axial model, there are 15 degrees of freedom, three for each oi, and two for each ni. In some
cases, one might have calibrated the relative orientation between the three axes of the Hall cube already, for
instance, by using rotations in a calibration dipole (see section 4.1.5). This information could then be used to
reduce three degrees of freedom, as the angular orientation problem reduces to the determination of three
rigid body rotations1. Alternatively, this information can be encoded by means of a prior, allowing to correct
for miscalibration.

The 15 degrees of freedom related to the Hall cube are filling the vector θ and are shown in Fig. 6.1. For the
definition of the sensor orientations, two angles are used for each orientation vector. The naming convention
and the axes of rotation for each angle are found in table 6.1. As the following analysis extensively uses
spherical harmonics and coordinates, it is beneficial to denote by z the vertical axis, i.e., the cone-quadrupole’s
symmetry axis. The three orientation vectors are given explicitly in (6.2).

nx =

⎛⎝ cos(γx) cos(βx)
sin(γx) cos(βx)
− sin(βx)

⎞⎠ , ny =

⎛⎝ − sin(γy) cos(αy)
cos(γy) cos(αy)

sin(αy)

⎞⎠ , nz =

⎛⎝ sin(βz) cos(αz)
− sin(αz)

cos(βz) cos(αz)

⎞⎠ . (6.2)

sensor name rotation axis
x βx y
x γx z

y αy x
y γy z

z αz x
z βz y

Table 6.1: Naming convention for the six angular degrees of freedom.

The only knowledge about the magnetic field in the cone quadrupole is coming from a numerical field
simulation (see Fig. 4.16). Tolerances in permanent magnet magnetization as well as temperature effects
with long time constants influence the magnetic field. For this reason, one cannot fiducialize versus a known
field gradient. The field is therefore considered as unknown and parameterized by means of the state vector
1This would also be the approach followed if planar Hall effects were not negligible.
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Figure 6.1: Three-axes Hall sensor and sensor parameters.

ν. To this end, a spherical coordinate system r = (r, θ, ϕ)T , is placed in the center of the cone quadrupole.
The field inside a sphere of radius r < R, where R = H/2, and H is the gap height (see Fig. 4.4 (right)), can
be expressed by means of the solid harmonic expansion

φm(r, θ, ϕ) =
L∑︂
l=2

νl,0r
lY 0

l (θ, ϕ). (6.3)

By setting νl,n = 0, for n ̸= 0 the axisymmetry of the cone quadruple is implied in this ansatz. Moreover,
constant potentials and dipole fields have been excluded by l > 1. In the following, the series expansion is
truncated by setting L = 8. These assumptions are found valid as long as the magnet is aligned well with
respect to gravity and the evaluation radius does not exceed H/2.

The problem of determining the latent variables θ and ν from dependent measurements y is a classical
inference problem, according to the blueprint presented in chapter 1. Following the naming convention of
table 6.2, the observation operator can be expressed by

H(ν,θ) +U0 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sxnx(βx, γx) ·B(r1 + ox,ν)
...

sxnx(βx, γx) ·B(rM + ox,ν)
sy ny(αy, γy) ·B(r1 + oy,ν)

...
sy ny(αy, γy) ·B(rM + oy,ν)
sz nz(αz, βz) ·B(r1 + oz,ν)

...
sz nz(αz, βz) ·B(rM + oz,ν)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ux,0
...

Ux,0

Uy,0
...

Uy,0

Uz,0
...

Uz,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.4)

Here si for i ∈ {x, y, z} are the Hall probe’s sensitivity functions and the orientation vectors ni for i ∈ {x, y, z}
are dependent on the field incident angles and therefore on the angular degrees of freedom. The sensor
offsets oi for i ∈ {x, y, z} are changing the evaluation position of the B-vectors at the measurement positions.
The field evaluations are therefore dependent on oi. The vector U0 accounts for the probe’s zero-field offset
voltages.
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variable meaning
ν vector of solid harmonic coefficients

ν = (ν02 , ..., ν
0
L) ∈ RL−1

θx x sensor parameters
θx = (oTx , βx, γx) ∈ R5

θy y sensor parameters
θy = (oTy , αy, γy) ∈ R5

θz z sensor parameters
θz = (oTz , αz, βz) ∈ R5

θ all sensor parameters
θ = (θTx ,θ

T
y ,θ

T
z )

T ∈ R15

yx voltages of sensor x
yx ∈ RM

yy voltages of sensor y
yy ∈ RM

yz voltages of sensor z
yz ∈ RM

y voltages of sensors x, y, z
y = (yTx ,y

T
y ,y

T
z )

T ∈ R3M

R measurement covariance matrix ∈ R3M×3M

rm position of the m-th measurement ∈ R3

Table 6.2: Naming convention for all variables related to the absolute position and orientation problem.
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Figure 6.2: Measurement data, initial guess and maximum likelihood solution of the absolute orientation
problem. The initial guess uses the numerical field simulation as well as the design values for
the sensor parameters. The measurement vector contains the voltages of the three Hall probes.
The moves where performed along lines, which are filling a spherical domain in the center of the
cone quadrupole.

Assuming a Gaussian noise model according to section 4.1.1, the posterior probability density function takes
the form

p(x|y) ∝ exp
(︃
−1

2
(y −U0 −H(x))T R−1 (y −U0 −H(x))

)︃
, (6.5)

with the state vector x = (νT ,θT )T . In the above, a sufficiently flat prior was used, but also Gaussian priors
could be considered without reservation. Due to the non-linearity ofH, this is not a Gaussian distribution in
x.

One can estimate the model parameters x by computing a maximum likelihood solution xML, which is defined
as the state vector x, maximizing the probability density function (6.5). This is equivalent to the minimization
problem

xML = argmin
x

(︂
(y −U0 −H(x))T R−1 (y −U0 −H(x))

)︂
. (6.6)

A maximum likelihood solution can be computed with iterative solvers, such as the Levenberg-Marquardt
algorithm, which is available in the linear algebra package of scipy [97].

Fig. 6.2 illustrates the measurement data y, the initial guessH(x0), as well as the result obtained from the
maximum likelihood solutionH(xML). Here x0 is computed from the design values and the field simulation.
In the bottom, the residuals between y,H(x0) andH(xML) are drawn. The RMS error is 0.103mV, which is
equivalent to ∼ 20µT as the sensitivity of the sensors is ∼ 5VT−1.
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The maximum likelihood solution does not provide any information about the uncertainties in the parameters
x. In principle, one could apply algorithm 1 to generate samples from the posterior distribution and estimate
the statistical moments from samples. However, as the probe nonlinearity is small and the sensor parameters
are small deviations from the design values, the linearization

H(x) ≈H(xML) +
(︁
∂x H|xML

)︁
(x− xML), (6.7)

is justified for the computation of the posterior covariance matrix. Here xML is the maximum likelihood
solution, and ∂x H|xML

is the Jacobian ofH evaluated for x = xML. This matrix encodes the derivatives of the
observation function, evaluated at the maximum likelihood solution xML. The derivatives with respect to ν,
as well as the angular derivatives are comprising the first and second order derivatives of the solid harmonics,
and have been implemented based on analytic formulas, whereas the partial derivatives with respect to oi are
computed by numerical approximation.

The linearized posterior is a Gaussian distributionwith the covariancematrix

Σlin =
(︂
∂xH|TxML

R−1 ∂xH|xML

)︂−1
. (6.8)

The advantage of using a linearization for the uncertainty quantification, is a considerable gain in computational
complexity, compared to the sampling from the nonlinear posterior.

To prove that the linearized estimate is expressing the correct uncertainty, 1 000 samples from the nonlinear
posterior are drawn by algorithm 1. In Figs. 6.3 to 6.5 the samples are drawn in histograms. The three standard
deviations, estimated from the MCMC samples are indicated in the ticks of the horizontal axes. A Gaussian
is fitted to all histo-plots (orange) and compared to the linear estimator (dashed-green). The differences
between both estimators might be related to the approximation from 1 000 samples, or the linearization, but
they are tolerable for this application. The resulting field solution has been plotted in Fig. 4.16 and differs from
the field simulation most certainly due to the tolerances in permanent magnet magnetization and temperature
effects.

For a better comparison of the numerical values, the mean values, design values, and the standard deviations
are summarized in table 6.3.
The position estimate is cross validated, by moving the y sensor into the zero plane manually and monitoring
the vertical position of the linear encoder. The estimated position is recorded in table 6.4 and compared to the
encoder position measurement. The difference is 6 µm, which is in the range of the positioning accuracy of
the linear stages.
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Figure 6.3: Histo-plots for the field solution. Blue: samples from the posterior generated by MCMC-RTO.

Solid-orange: Fitted Gaussian distribution. Dashed-green: Gaussian distribution after linearizing
the posterior. As all distributions sum up to one, or 1 000 samples, the frequencies on the y axis
have been omitted in all cases. The coefficients are scaled to a reference radius rref = 5mm, and
divided by µ0 to give a value in T.
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Figure 6.4: Histo-plots for the probe orientations. Blue: samples from the posterior generated by MCMC-RTO.

Solid-orange: Fitted Gaussian distribution. Dashed-green: Gaussian distribution after linearizing
the posterior.
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variable mean design σ difference unit
c02rref/µ0 95.9 96.49 0.041 -0.59 mT
c03r

2
ref/µ0 0.13 0 0.058 0.13 mT

c04r
3
ref/µ0 4.6 12.50 0.055 -7.9 mT

c05r
4
ref/µ0 0.05 0 0.049 0.05 mT

c06r
5
ref/µ0 0.16 0 0.042 0.16 mT

c07r
6
ref/µ0 0.02 0 0.037 0.02 mT

c08r
7
ref/µ0 0.02 0 0.024 0.02 mT
αy 87.20 90 0.032 -2.80 deg
αz -92.25 -90 0.025 -2.25 deg
βx 0.79 0 0.017 0.79 deg
βz 75.44 0 0.456 75.44 deg
γx 178.70 180 0.030 -1.3 deg
γy -3.17 0 1.015 -3.17 deg
oxx 2.08 2 0.002 0.08 mm
oyx 0.05 0 0.050 -0.05 mm
ozx 0.01 0 0.020 -0.01 mm
oxy 0.05 0 0.019 -0.05 mm
oyy 0.04 0 0.017 -0.04 mm
ozy -2.09 -2 0.001 -0.09 mm
oxz 0.29 0 0.050 -0.29 mm
oyz 0.28 0.2 0.003 0.08 mm
ozz -0.25 0 0.023 -0.25 mm

Table 6.3: Results of the fiducialisation. The coefficients of the solid harmonic expansion are scaled to a
reference radius of 5mm and divided by µ0 to give a value in T. The angle βz rotates the z-sensor
around the y axis of the magnet coordinates. As the z-sensor’s orientation vector is nearly parallel
to the magnets y-axis (see Fig. 6.1), a large deviation with respect to the design value is expected
for this rotation. The angle γy rotates around the symmetry axis of the magnet. This explains the
large standard deviations for these two parameters.

[P y
0 ]y estimated [P y

0 ]y measured difference [ µm]
228.345 228.351 6

Table 6.4: Validation of the position fiducialisation. Moving the stages to the coordinates P y
0 , places the

y-sensor in the center of the cone quadrupole. For validation, the vertical coordinate [P y
0 ]y is

measured by moving the sensor into the zero plane and reading out the encoder position manually.
This position is compared to the estimated vertical position based on the numerical model. The
difference between measurement and estimate is at 6µm, which is in the range of the precision
of the linear encoder.

98



oxx oyx ozx

oxy oyy ozy

oxz oyz ozz

2.076 2.0822.071 0.047 0.196-0.1 0.124 0.1810.068

-2.092 -2.09-2.095-0.0124 0.047 0.106 0.036 0.084-0.013 mmmmmm

mm mm mm

mm mm mm-0.185-0.254-0.3230.290.2830.2750.180.29-0.12
Figure 6.5: Histo-plots for the probe offsets. Blue: samples from the posterior generated by MCMC-RTO.

Solid-orange: Fitted Gaussian distribution. Dashed-green: Gaussian distribution after linearizing
the posterior.



6.2 Field mapping in three dimensions

This section deals with the main objective of this research: the extraction of boundary data from distributed
Hall probe measurements in accelerator magnets. Field maps are commonly demanded for spectrometers,
detector magnets and also for strongly curved magnets, as integrated field measurements alone do not provide
the feedback necessary for particle beam dynamics and magnet design. Mapping only the boundary and using
a numerical model to predict the field in the enclosed domain comes with tremendous savings in terms of
measurement duration.

In the following, the curved, C-shaped dipole magnet shown in Fig. 6.6 (left) is considered. The magnet is a
bending dipole for the extra low energy antiproton ring (ELENA) [100]. Numerical field simulations have
been used to compute the three dimensional field distribution, which was considered for particle tracking
applications in [7]. It will be shown how a field representation by boundary data, derived only from magnetic
measurements, is capable to provide the same information and can therefore be considered as an alternative
to the magnet simulation. This is of importance when beam tracking has to be performed with the magnetic
field distribution of the magnet as built. In order to provide a fully independent result from the numerical
simulations, no prior knowledge from the simulations will be used.

The goal of this section is not only to derive a three dimensional field representation by boundary data, but
also the implementation of an active learning algorithm, which explores the physical space dependence on
uncertainties. The mathematical tools, such as the boundary element method, as well as the ensemble Kálmán
filter have been discussed in chapters 3 and 5, respectively. An outline of the active learning algorithm has
been shown in Fig. 1.5.

The following procedure is best separated into two steps:

1. Initialization: A field map is taken along a boundary, enclosing the domain of interest. The domain is
over-sampled in a way that no prior for regularization is needed, and the inverse problem is solvable,
relying only on measurement data. The result of the initialization step is an ensemble for the state
vector for the magnetic field ν, obtained by sampling from the posterior (which in this case, equals
the likelihood), according to section 5.2. This ensemble represents the statistical properties of the
parameters, given the initialization measurements.

2. Active learning: The uncertainties are propagated to the B-field along a reference trajectory. New
measurements are identified, dependent on the local uncertainty in |B|. The ensemble Kálmán filter is
used to update the prior ensemble move-by-move. The algorithm is stopped when the uncertainty in the
quantity of interest falls below a certain threshold.

The quantity on interest in this case, is the field integral

IBy :=

∫︂
s
By ds, (6.9)

where s is the path length along the reference trajectory.

As a stopping criterion, the relative 3σ standard deviation defined by

3σrel(IBy) := 3
σ(IBy)

E(IBy)
= 3

√︁
var(IBy)

E(IBy)
, (6.10)
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for the Extra Low Energy Antiproton ring (ELENA). Right: Mapper moves to sample the curved
domain of interest. The black arrows indicate the move direction. For better visibility, the moves
are separated by 25mm, whereas the field map was taken with a higher resolution of 4mm.
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Figure 6.7: The steps of the post processing procedure for the ELENA field mapping.
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with the mean and variance operations defined in table 5.1 is used. The algorithm shall provide a result for
IBy with 3σrel(IBy) < 2× 10−4.

As part of the machine setup, the analysis presented in section 6.1 was performed in order to determine the
probe positions and orientation vectors in a coordinate system related to the magnet geometry. The results
have already been reported in table 6.3. Therefore, the 15 degrees of freedom of the Hall cube are considered
as fixed parameters.

In the next subsection the initialization step will be discussed.

6.2.1 Initialization

The initialization step is illustrated in Fig. 6.7. It makes sense to separate the following discussion into
four parts: 1) measurements, 2) construction of the ansatz space, 3) Bayesian inference, and 4) predic-
tion.

1) Measurements

First, the domain boundary is sampled along a curved spiral, using horizontal and vertical moves according
to the scheme in Fig. 6.6 (right). For better visibility, the moves in this visualization are separated by
25mm, whereas for the measurements shown in Fig. 6.7 a step size of 4mm is selected. One acquisition
for the three Hall voltages is triggered by the encoder whenever a distance of 3mm has been travelled. The
three multimeters are set up for an integration time of 10ms. With a nominal velocity of 20mms−1, this
corresponds to an integration length of 0.2mm. In total, the three Hall voltages are sampled at 36 692 positions
yielding 110 076 measurements. The overall measurement duration needed to fully cover the domain is four
hours.

2) Construction of the ansatz space

A boundary mesh needs to be generated. This is a critical step, as the quality of the approximation depends on
the ansatz space and therefore, on the mesh generation. A trade-off is to be found between the accuracy for
the reconstruction of fine details on one side, and the smoothing of local measurement uncertainties on the
other. A BEM ansatz space is constructed for different mesh refinement stages and B-spline degrees. For each
ansatz space, a least squares solution (LS) is computed and the approximation error is observed in the residual.
In this way, the complexity of the approximation space is increased until the global root-mean-squared (RMS)
residual

resRMS =

√︃
1

3M
(y −H(νLS))T (y −H(νLS)), (6.11)

falls below a threshold, which will be derived in the following. In the above νLS is the least squares solution

νLS := argmin
ν
∥y −Hν∥22, (6.12)

and M is the number of measurement positions. As there are three Hall probes, y ∈ R3M . Since in all
refinement stages, the boundary data is over-sampled, according the discussion in section 3.3.8, over-fitting is
not a matter of concern. Otherwise, the following procedure could be applied to a separated validation set,
taken with a higher spatial resolution.

102



x

y
z

h = 1

h = 2

h = 3
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Figure 6.9: Residual with respect to a least square solution for each of the mesh refinement stages shown in
Fig. 6.8. Here, p = 3.

To assess parts of the mesh in the fringe fields, which require local mesh refinement, also the observation of the
local residuals is necessary. Fig. 6.8 shows the boundary mesh for three h-refinement stages. The corresponding
residual error is shown in Fig. 6.9 for cubic B-splines (p = 3). The remaining residual for h = 3 is located mainly
in the fringe field region. This is expected, as positioning errors and vibrations, resulting in measurement
errors proportional to the field gradient, are largest in these regions.

A reasonable threshold for the global RMS residual resRMS needs to be estimated. To this end, an ensemble
of K = 100 samples for the arm deformation is drawn from the mechanical model of the mapper arm;
dk ∼ N (0,D) (see section 4.2.1) and added to the measurement positions. The expected measurement errors
due to dk are estimated by

ϵk = ∂H(νLS)dk (6.13)

using the mechanical perturbation matrix according to (4.41).

The expected measurement errors ϵk are computed for each stage of the adaptive mesh refinement. The
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h p ϵRMS [mT] residual RMS [mT]
1 1 0.457 34.848
1 2 0.301 12.966
1 3 0.193 6.823
1 4 0.139 3.861
2 1 0.167 5.866
2 2 0.092 1.674
2 3 0.083 0.629
2 4 0.080 0.233
3 1 0.080 0.285
3 2 0.079 0.072
3 3 0.079 0.049

Table 6.5: RMS residuals of the least squares solutions used for adaptive mesh refinement. ϵRMS is the
expected RMS error due to positioning errors. As the residual falls below ϵRMS for p = h = 3, it is
assumed that the remaining residual origins from positioning errors and vibrations.

estimated global RMS error is denoted by ϵRMS and is defined by

ϵRMS :=
1

K

K∑︂
k=1

√︄
ϵTk ϵk
3M

.

It is given in table 6.5 and compared to the residuals of the least squares solutions. For convenience, both residu-
als are transferred to units of mT, by dividingwith the probes sensitivity of 5 VT−1.

As it is seen from table 6.5, the estimated residual ϵRMS saturates at 0.079mT for h = 3, p = 2. This
is reasonable, as with increasing complexity, the field model will properly describe the field distribution
in the fringe fields, but miss the flexibility to fit to the mechanical vibrations. The residual of the least
squares fit falls below ϵRMS for h = 3, p = 2. This justifies the assumption that the remaining residual is
traced back to positioning errors and not to under-fitting. In the following the approximation space with
h = p = 3 is selected. This choice is debatable, as the residual falls below the expected threshold for p = 2
already.

The least squares solution used for the construction of the ansatz space does not provide feedback about
uncertainties. Moreover, in the least squared sense residuals are equally weighted, without incorporating the
measurement uncertainties properly.

The initialization ensemble shall be drawn based on realistic assumptions on the measurement uncertainties.
Therefore a sensor noise covariance matrix needs to be estimated, which properly accounts for sensor
noise and positioning uncertainties. The derivation of this covariance matrix is the subject of the next
subsection.

A decorrelated noise model by linearization

The mechanical perturbation matrix ∂H(ν), depends on the state vector for the magnetic field. The way how
arm vibrations and positioning errors are influencing the measured voltages can therefore not be estimated
a-priori. The mechanical noise is correlated with the field, which yields a complicated noise structure.
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However, as it was indicated by the investigations in section 3.3.8, the least squares solution νLS provides
a good estimate for the expected value of ν in the over-sampled case where dim(ν) ≪ dim(y). In this
case, it is possible to use the least squares solution to estimate the impact of the mechanical perturbations,
a-priori. To this end, one substitutes νLS for ν in the mechanical perturbation matrix ∂H(ν) and writes

H(ν,θ) ≈ ∂H(ν,θ = 0) +H(νLS)θ, (6.14)

to drop the dependency of ∂H on ν. In this way, the mechanical noise is decorrelated from H(ν,θ = 0),
which gives rise to the decorrelated Gaussian noise model

p(y|x) ∼ N (H(ν,θ = 0) , ∂H(νLS)D ∂H(νLS)
T⏞ ⏟⏟ ⏞

:=Rd

+Ry), (6.15)

Ry is the sensor noise covariance matrix, which takes the form

Ry =

⎛⎝ RUx 0 0
0 RUy 0
0 0 RUz

⎞⎠ , (6.16)

assuming that the measurement vector is ordered according to the scheme

y = (Ux(r1), ..., Ux(rM ), Uy(r1), ..., Uy(rM ), Uz(r1), ..., Uz(rM ))T . (6.17)

The blocks of Ry in (6.16), are identified by experiments according to (4.10) in section 4.1.1, for each of the
three Hall probes (see (4.10)).

D is the covariance matrix of mechanical perturbations, d ∼ N (0,D) (see section 4.2.1). The term
Rd = ∂H(νLS)D∂H(νLS)

T is the mechanical noise covariance matrix, and it accounts properly for the
measurement errors due to mapper arm vibration and positioning errors, assuming that E (ν) = νLS. Since
individual moves can be considered as uncorrelated, it is a block-wise sparse matrix and can be constructed
“move-by-move”. Fig. 6.2.1 gives an example for Rd which has been constructed from nine mapper moves.

3) Bayesian inference

Denoting by R the total measurement covariance R := Rd +Ry, the posterior probability density function
is

p(ν|y) ∝ exp
(︃
−1

2
(y −Hν)T R−1 (y −Hν)

)︃
, (6.18)

where a sufficiently flat prior has been selected. To avoid the inversion of a large matrix, 10 000 samples from
the posterior are drawn by solving the linear equation system according to (5.17). The matrix R is sparse
and positive definite by construction, as correlations between moves are neglected. In this application, only
1% of the matrix elements are populated. A square root matrix of R is computed using the sparse Cholesky
factorization as it is implemented in Eigen’s SimplicialLLT function [90]. To avoid direct matrix inversions,
the sample νk is computed in four steps:

1. solve RC =H for C

2. solve Ru = y for u
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Figure 6.10: Example for the covariance structure using the decorrelated noise model. Here the covariance
of nine moves is shown. 362 measurements are taken, therefore the matrix is of dimension
1 086 × 1 086. The entries of the covariance matrix are given in V2, and correspond to the
covariances between the measurements, due to mechanical perturbations.

3. solve R1/2lk = ϵk for lk

4. solveHTCνk =HT (u+ lk) for νk

where steps 1 and 2, as well as the computation ofHTQ can be performed once and be reused for all samples.
The matrixHTQ can be factorized once before the sampling. In this way, step 4 requires solely a backward
substitution to draw a new sample.

From the collection of νk, the mean and covariance can be estimated. In the bottom plot of Fig 6.11,
the boundary is colored according to the mean E (ν), whereas the logarithm of |var(ν)| is given in the
top plot. Due to the positioning errors and vibrations the variances are largest in the fringe field re-
gion.

4) Prediction

More important than the statistics in ν is the uncertainty for field evaluations inside the domain. Denoting by
Fν the linear prediction operator for the evaluation of B, the covariance cov [B] is a linear transformation
of cov(ν), according to cov(B) = F cov(ν)F T . The covariance cov(ν) is approximated from the sampled
covariance matrix of the ensemble νk, according to table 5.1.

In Fig. 6.12, the field is evaluated along a reference trajectory inside the domain. The uncertainty in ν
is propagated towards the three components of B. The dashed lines illustrate the 3σ error bars for each
component. The uncertainty is largest for By and Bz in the fringe-field, where the 3σ bars are reaching 7mT
for By.

The value of 3σrel(IBy) after the initialization is given by

3σrel(IBy) = 22.29× 10−4. (6.19)
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Figure 6.11: Mean and variance computed from 10000 samples at the boundary of the domain. Here 13402
cubic basis splines are approximating the boundary data.

6.2.2 Active learning

With the prior ensemble computed before, the active learning algorithm can start. Whereas the uncertain-
ties in the magnet’s homogeneity region are below 10−4 T (see Fig. 6.12), the remaining uncertainty in
the fringe field yields an uncertainty in the field integral, which is exceeding the desired value. For this
reason, update measurements are taken in the fringe field region where the uncertainty is largest (see
Fig. 6.12).

The resulting positions are shown in Fig. 6.13. The moves are denoted by j = 1, ..., J . In total, J = 400 moves
in the left and right fringe field are taken, and the spatial resolution is increased to 2mm. This gives 25 000
new measurement positions. The positions are illustrated in Fig. 6.13. The overall measurement duration for
the update measurements is 2 hours.

In the following, the update steps presented in section 5.4 are applied to the J update moves. The superscripts
prior and post are replaced with the superscripts j − 1 and j, respectively. In this way the updates can be
expressed by means of a loop over j.

For the first move j = 1, the samples generated from section 6.2.1 are treated as prior ensemble, filling the
columns of the matrixX0 :=

(︁
ν01 , ...,ν

0
K

)︁
∈ RN×K .

The ensemble Kálmán filter, presented in section 5.4, provides the way to update the prior ensemble based on
the new set of observations. The measurement vector of move j is denoted by yj and the covariance matrix is
denoted by Rj . The latter is computed in the same way as it was done in section 6.2.1, replacing the least
squares solution νLS with the mean of the prior ensemble

E
(︁
Xj−1

)︁
=

1

K

K∑︂
k=1

νj−1
k . (6.20)
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The ensemble is now updated move-by-move, following the steps presented in section 5.4. In this case, the num-
ber of measurements in every update is not greater thanM = 303, since the domain width is 202mm, and the
measurements for the three Hall voltages are triggered in steps of 2mm.

Iterating over the moves j, the update from the ensembleXj−1 toXj is computed according to the following
six steps:

1. compute Y j :=
(︁
yj + ϵ1, ...,y

j + ϵK
)︁
, with: ϵk ∼ N (0,Rj)

2. compute U j−1 =Xj−1 − E
(︁
Xj−1

)︁
I1×K

3. computeHjU j−1 andHjXj−1

4. compute P j =
1

K − 1
HjU

j−1
(︁
HjU j−1

)︁T
+Rj

5. solve P jZj = Y j −HjXj−1 for Zj

6. updateXj =Xj−1 +
1

K − 1
U j−1

(︁
HjU j−1

)︁T
Zj .

Including the assembly of theHj matrix, each update takes about 30 s on a desktop computer.

In Fig. 6.14 the 3σ standard deviation for the evaluation of the absolute field along the reference trajectory
is shown. It has been evaluated for the prior X0, the posterior ensemble after updating with the first 200
measurementsX200 as well as the posterior ensemble after updating using the remaining 200 measurements
X400. Using the local updates, the 3σ standard deviation in |B| could be reduced by a factor of ten, from
values of about 7mT to 0.7mT.

The value of 3σrel(IBy) after all 400 updates are taken is

3σrel(IBy) = 1.78× 10−4, (6.21)

which falls below the desired threshold.

In Fig. 6.15, the measurement uncertainty is propagated to By in the xy-plane, in the center of the domain,
this means s = 0 comparing to Fig. 6.12.

6.2.3 Discussion

In this section, the advantages of the field representation by boundary data are summarized.

Expressing the field by means of boundary integral equations, one benefits from a smoothing property towards
random measurement errors. To show this effect, measurements in the xy-plane, central to the magnet (see
Fig. 6.15) are taken and the flux density B at the measurement position is computed via the point-wise (pw)
axial sensor model

diag (sx, sy, sz) · (nx,ny,nz)
T Bpw(rm) = U(rm)−U0, (6.22)

with the sensor orientations according to (6.2) resulting from the analysis of section 4.1.5. The definitions of
all variables in this equations are found in table 6.6.
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variable meaning
sx sensitivity of x-sensor
sy sensitivity of y-sensor
sz sensitivity of z-sensor
nx orientation vector of x-sensor
ny orientation vector of y-sensor
nz orientation vector of z-sensor
U0 zero field offset voltage of x, y and z sensor
U measurement vector
rm measurement position

Table 6.6: Variables in the point-wise axial sensor model.

In the top plot of Fig. 6.16 the vertical field component By(x, y) is reconstructed by BEM and given as a field
map. The value of By(0, 0) = 0.42819T in the center of the domain is taken as a reference and the field
quality Q is defined as

Q = log10

⃓⃓⃓⃓
By(x, y)−By(0, 0)

By(0, 0)

⃓⃓⃓⃓
. (6.23)

Q is plotted in the central plot of Fig. 6.16, whereas the boundary-element method is used to compute By(x, y).
In the bottom plot, By is computed from Eq. (6.22), based on direct measurements inside the domain. In both
cases, Q was referred to the same reference field of By(0, 0) = 0.42819T, which validates the capability of the
field model to predict the correct field distribution. Of course, a smoothing filter applied to the direct measure-
ments would provide similar results. The advantage is, that no measurements inside the domain were needed
to predict the field, saving enormously in terms of measurement duration.

The predictions are validated also by comparing the results to an alternative measurement device, namely a
nuclear magnetic resonance (NMR) sensor. The results are given in Fig. 6.17. There is a systematic difference
of 0.1mT, between the field reconstruction and the NMR measurement. Such difference is not unusual for
Hall probe measurements, as temperature effects, offset drifts and the calibration of the acquisition card might
influence the signal in this range. It is common practice for field maps taken by Hall probes to correct the
remaining difference by means of an NMR reference measurement.

So far, the advantages of the BEM field model have been pointed out. To finish this chapter, the benefits of
the mathematical sensor model shall be investigated. To this end, the flux density B is recovered from the
point-wise axial sensor model, according to (6.22), and compared to the prediction of BEM. Every fifth sample
of the boundary measurements shown in Fig. 6.9 is considered in the following analysis. In Fig. 6.18, the error
measured in the euclidean norm ∥BBEM −Bpw∥2, between the predicted flux density BBEM and the direct
measurements, using a point-wise approximation Bpw is shown. The BEM reconstruction not only smooths
out the random measurement errors, it also avoids systematic errors, as the sensor model correctly accounts
for the three sensor positions. The errors related to a point wise-approximation would reach values of up to
27mT in the fringe-field region.
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6.3 A two stage Gibbs sampler for positioning uncertainty quantification

The uncertainty quantification presented in the previous section made use of a least-squares solution to
estimate the measurement derivatives, which were needed to estimate the influence of the mechanical
noise. The field and mechanical models with parameters ν and θ were decoupled, and the influence of
mechanical perturbations was considered as a colored Gaussian noise contribution, estimated with the help of
the least-squares solution. From an engineering perspective, this approach seems plausible in cases where the
mechanical noise is filtered out in the least-squares solution. However a domain of validity for this statement,
has not been determined yet and should be investigated more deeply in the future research. Especially, since it
is expected that the filtering property of the BEM approximation performs worse for low-frequency vibrations,
and because the frequencies of vibration decrease with the length of the mapper arm, the decorrelation by
means of a least-squares solution is questionable in such circumstances.

For this reason, an alternative approach for uncertainty quantification is now presented, which avoids the use
of a least squares solution. To this end, the mechanical state vector d is now considered as unknown nuisance
parameter, and the two stage Gibbs sampler presented in section 5.7 is applied to the joint posterior density
function p(ν,d|y).

For y, the Gaussian noise model
y ∼ N (E (y) ,Ry) (6.24)

is now assumed, where Ry is the same block matrix as it was used in Eq. (6.16), given that the y vector
is sorted accordingly. It was discussed in section 4.1.1, that this noise model excludes the mechanical
noise.

Referring to sections 4.2.1 and 4.2.2, d describes the 5M degrees of freedom of freedom correspond to a rigid
body motion of the sensor, five for each measurement position. These mechanical degrees of freedom are
can be considered as a nuisance parameter, as they are affecting the predicted measurements, but not the
quantities of interest.

The two-stage Gibbs sampler introduced in section 5.7 is applied to draw samples for stage vector of the
magnetic field ν ∈ RN and the mechanical state vector d ∈ R5M . Substituting the observation operator
H(ν,d) for the mean E (y) in Eq. 6.24 yields the likelihood

p(y|ν,θ) ∼ exp
(︃
−1

2
(y −H(ν,d))T R−1

y (y −H(ν,d))

)︃
, (6.25)

and applying Bayes rule gives the posterior

p(ν,θ|y) ∝ exp
(︃
−1

2
(y −H(ν,d))T R−1

y (y −H(ν,d))

)︃
exp

(︃
−1

2
(ν − ν0)T Q−1 (ν − ν0)

)︃
exp

(︃
−1

2
dTD−1d

)︃
. (6.26)

In this case Gaussian priors have been implied for ν and d, using the prior covariance matrices Q andD. The
zero mean prior for d is used to tie the distribution for d around 0 and the covariance matrix of mechanical
perturbations D is used to enforce the physical correlations between the degrees of freedom based on the
mechanical model (see section 4.2.1).
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The Gibbs sampler is based on the conditionals p(ν|d,y) and p(d|ν,y). According to (5.9) these func-
tions can be computed by dividing the joint probability density function p(ν,d|y) by either p(d) or p(ν),
and then, interpreting the results as functions of d or ν, with the remaining parameter as a given vari-
able.

In this case, the resulting conditionals are

p(ν|d,y) ∝ exp
(︃
−1

2

(︂
y − ˜︂H(ν,d)

)︂T
R−1

(︂
y − ˜︂H(ν,d)

)︂)︃
exp

(︃
−1

2
(ν − ν0)T Q−1 (ν − ν0)

)︃
, (6.27)

p(d|ν,y) ∝ exp
(︃
−1

2

(︂
y − ˜︂H(ν,d)

)︂T
R−1

(︂
y − ˜︂H(ν,d)

)︂)︃
exp

(︃
−1

2
dTD−1d

)︃
. (6.28)

Following the discussion in section 4.2.2, and noticing that the arm displacements are small, the above
conditionals are formulated in terms of the perturbed observation operator ˜︂H, according to (4.41). If ˜︂H is
linear in ν, both of the above conditionals are Gaussian distributions.

With algorithm 3 and the conditionals, the two-stage Gibbs sampler for the posterior in (6.26) is summarized
in algorithm 5.

Algorithm 5 Sampling from the posterior p(ν,d|y)
d0 = 0 ▷ initialize mechanical state vector
for k = 1, ..., number of samples K do
νk ∼ p(ν|dk−1,y) ▷ sample state vector for the magnetic field
for j = 1, ..., number of moves J do
θk,j ∼ p(dj |νk−1,yj) ▷ sample mechanical state vector for move j

end for
dk = (dTk,1, ...,d

T
1,J)

T ▷ collect mechanical state vectors
end for

As it is usually the case, the measurement data is taken move-by-move and the inference is applied to the
collection of all measurements, see for instance Fig. 6.6 (right). In algorithm 5, J denotes the total number
of mapper moves and the mechanical state vector is considered to be deccorrelated between them. In this
way, the sampling for the high-dimensional mechanical state vector d ∈ R5M is split into J parts of smaller
dimension.

At this point, the equations are getting intuitive. Having sampled a state vector for the magnetic field ν one
computes the derivatives ∂H(ν), which are then used to determine a sample for the mechanical state vector
d. This d is then used to compute a new sample for ν. Measurements in regions where the derivative ∂H(ν)
is small do not yield any information about the positioning error, but the zero mean prior ties the distribution
for d to zero. This has the effect of a regularization.

A major drawback of algorithm 5 when using BEM as a field model, is that the derivative of the observation
operator ∂H(ν), is required in every step. This increases the memory requirements of the algorithm by a factor
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Figure 6.19: Field map taken with the Hall probe mapper in a cylindrical domain.

of six. At this point, the MLFMM presented in section 3.3.10 becomes indispensable for high-dimensional
problems.

As a proof of concept, the measurements and boundary mesh illustrated in Fig. 6.19 is now considered. The
measurements have been taken in the fringe field region of a magnet, in a way that evidence for the sensor
position is available by means of a field gradient and the overall problem size is manageable for a desktop
computer with 16 GB RAM. For validation, a move through the center of the domain of interest is taken, and
the sensor position of this move is measured by means of a Leica laser tracker. The validation move is taken
through the center of the domain, as the magnet geometry did not allow for mounting a reflector target for
the boundary moves.

Fig. 6.20 shows the residual betweenmeasurements y and the prediction˜︂H(ν1,d = 0),

res := y − ˜︂H(ν1,d = 0), (6.29)

based on the initializing field solution ν1 in blue. For comparison, the expected residual, based on the measured
sensor displacements is computed by

resexp := ∂Hdmeas, (6.30)

where dmeas is the measured mechanical state vector. This vector needs to be determined according to
section 4.2, using the FEM model of the mapper arm, in order to transfer the measured displacements to
the arm deformation and rotation at the sensor position. It is plotted in orange. It becomes clear, that the
residual provides evidence for the mechanical state vector d, as frequencies and amplitudes of the residual are
matching with the expectations.

1 000 samples from the posterior are now drawn from algorithm 5. The sampled mean, as well as the maximum
and minimum values for the vertical arm displacement wy are shown in Fig. 6.21, and compared to the optical
measurements. The differences are within the range of the measurement accuracy of laser tracker of ∼ 20µm.
Fig. 6.22 shows the resulting mean value of the boundary data, as well as the variance, estimated from
the diagonal of the sampled posterior covariance matrix. The values for the displacements wy are directly
accessible in the dk-vectors, according to (4.32).

116



0.75

-0.75

U
x
→

mV

0.75

-0.75

U
y
→

mV

-0.4 0.40.0 0.1 0.2 0.3-0.1-0.2-0.3

-0.06 -0.02

m
z →

resexp

res

Figure 6.20: Residual in the measurement operation after the initialization step (blue) and the
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Figure 6.22: Resulting boundary data and standard deviation in logarithmic scale, estimated from 1 000
samples of the Gibbs sampler.

The advantage of algorithm 5 is that the sensor-noise model is simplified with respect to the one used in
(6.15), since the effect of mechanical noise is encoded by the nuisance parameter d and not by means of a
prior field solution. With a suitable compression technique for the dense mathematical operations involving
the observation operatorsH and ∂H, the approach may also be considered for large dimensional problems.
This has been the main motivation for the implementation of the MLFMM. Moreover, also iso-geometric
finite element methods might be considered for future research, as their advantage for the memory efficient
evaluation of field derivatives is undeniable and state-of-the-art approaches are reaching high accuracy
[101].
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7 Conclusion and Outlook

The main objective of this thesis, was to apply boundary element methods for the field reconstruction in
accelerator magnets, mainly with the ambition to make three-dimensional field mapping more efficient.
Although it was a long way to obtain coherent results using the combination of boundary-element methods
and Hall probe measurements, this goal can be considered as achieved.

In the scope of this doctoral thesis, a new three-axes Hall probe mapper was commissioned and metrologically
characterized. It uses the stages of a coordinate measurement machine and provides spatial sampling of
the three flux density components of the magnetic field. Moreover, acquisition software and measurement
procedures were developed and implemented, and new calibration routines for the three-dimensional probe cal-
ibration have been designed. On several occasions, the mapper system has been proven a useful contribution to
the portfolio of measurement systems of the TE-MSC-TM section at CERN.

The first coherency problems were mainly due to the cross sensitivity between the axes of the Hall probe, and
their spatial offsets. Wrong assumptions about these parameters yield large errors in the field reconstruction
in the fringe fields (see Fig. 6.18). The development of the cone quadrupole calibration approach can be
considered as a break-through, as it provides the required evidence for the sensor positions and orientations
in three-dimensions.

It quickly became clear that the remaining bottleneck for the Hall-probe mapper system is the positioning
accuracy. Positioning errors in the 0.1mm range yield field errors of 1mT in gradient fields with 10Tm−1.
Gradients in this range are quite common in the extremities of accelerator magnets. For this reason, the
mechanical system was investigated deeply, resulting in a magneto-mechanical model for the precise quantifica-
tion of positioning perturbations. This model lays the foundation for the discrimination between approximation
and positioning errors and is employed for the systematic construction of the BEM approximation spaces, as it
is shown in Fig. 6.9.

A complete boundary measurement, covering a volume of Ω = (0.1×0.05×2)m3, including the fiducialization
procedure and update measurements in the fringe fields (see chapter 6) requires roughly half of a working day
of measurement time. To put this into perspective, mapping the field in the volume Ω as mentioned before,
with a spatial resolution of 5mm requires 4 000 moves when mapping along the x-axis. The boundary map,
however, would require only 860 moves. With the nominal speed of 20mms−1, this reduces the measurement
duration from 11 to roughly 2.5 hours. Moreover, because of the model-based approach, there is no limit in
spatial resolution for the field map generation from boundary data and the maps are exact magneto-static
solutions.

The accuracy of the system strongly depends on the capability to stabilize the temperature within the Hall
probe. Even in the controlled environment of CERN’s measurement laboratories, relative sensitivity drifts in
the range of 3× 10−4 have been observed, which are in accordance with the temperature calibration and the
measured ambient temperature fluctuations. As the temperature drifts are long-term effects, field maps can
be corrected by NMR measurements, however, the monitoring and control of the Hall probes temperature
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would provide the feedback necessary to mitigate the accuracy issues. To this end, the developments on a
new Hall probe measuring head and a temperature calibration setup have already been started during this
PhD thesis.

The Bayesian framework been has proven useful for the quantification of measurement uncertainties and the
development of active learning schemes to update field maps with new data in locations where uncertainties
remain large. In this way, field maps are obtained even more efficiently by exploring the physical space
dependent on uncertainties. All error sources affecting the measurement outcome need to be understood for a
useful uncertainty quantification, which is the basis for the active learning scheme. The magneto-mechanical
model of the mapper system provides the tool which is necessary to estimate the impact of positioning errors.
Not only the efficiency on the data acquisition side was improved by using the Bayesian framework. It allows
also to separate large inverse problems into small Bayesian updates. Each of these updates is usually faster
than the measurement acquisition itself, and can be performed on-the-fly during the acquisition, at the test
bench.

The potential of Bayesian inference in the context of magnetic measurements is far from exhausted. In the view
of the author, future research related to the field should focus on the following aspects:

• The domains of validity for the identifiability of the boundary data requires a deeper investigation. This
analysis could follow the ideas presented in [102].

• Future research should investigate information theoretical aspects, to measure the information gain by
means of the relative entropy (see [103]). In this way, sufficiency criteria can be derived, which can be
used to decide when to stop exploring, based on the information the measurement system is capable to
provide.

• This research has just started by bringing sensor parameters into the game. Systematic error sources
are not only treated as uncertainty, but leveraged in order to draw better conclusions, based on the data
and the correlations to the magnetic field. This has proven beneficial to the solution of the absolute
position and orientation problem in the cone quadrupole calibration and also for the quantification of
positioning perturbations during the field mapping. Future research could make used of a variety of
different sensor systems, such as temperature probes or strain gauges, and fuse the measurement data
in a way to explore a more extensive multiphysical model comprising the magnetic field, the sensor and
also the mechanical system. The concept of sensor fusion is well established in robotics [104] [105].

• The iso-geometric analysis (IGA) based, finite element approaches presented in [11] should be inves-
tigated for future research as an alternative to BEM. The mathematical operations for the efficient
computation of measurement derivatives in the context of fast multipole methods and BEM are quickly
getting exhaustive. The advantages of the local support of the IGA ansatz spaces and the sparsity of the
mathematical operations are not to deny. Moreover, as these methods discretize the domain already,
they have the potential to establish a more direct link to particle tracking, bypassing the need for local
expansions from boundary integral equations.
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8 Appendix

8.1 The Calderón projector

The fact that both, the potential φm and that normal derivative ∂nφm appear on the right hand side of (3.15)
does not mean that one can inscribe both quantities independently. This is because the scalar potential
is uniquely defined by means of a Dirichlet boundary condition already. Dirichlet and Neumann data are
dependent by a linear operator. One can express this dependency by means of a boundary integral equation,
taking the limit of the representation formula for r → ∂Ω. To this end, one searches for the correct trace
operators for electromagnetic fields. A trace operator is a linear mapping that extracts suitable boundary values
from a field [106]. The interior Dirichlet trace γ0 may be introduced by

(γ0φm)(r) = lim
r→r′

φm(r), for r′ ∈ ∂Ω, r ∈ Ω. (8.1)

Moreover, for smooth parts of the boundary and continuously differentiable functions, one can define the the
interior Neumann trace, γ1 as:

(γ1φm)(r) = lim
r→r′

n(r′) · gradφm(r), for r′ ∈ ∂Ω, r ∈ Ω. (8.2)

Care must be taken when carrying out the limit r → ∂Ω due to the singularity of the fundamental solution for
r = r′. For a the derivation of the following equations see [107, Chapter 1].

Without elaborating further on their properties, the function spaces Vu and V∗g , according to (3.8) and (3.9),
are used for the Dirichlet and Neumann traces

(γ0φm)(r) ∈ Vu, (γ1φm)(r) ∈ V∗g . (8.3)

For details, the reader is referred to [53, Chapter 3].

In the following, it is assumed that the boundary ∂Ω is sufficiently smooth, such that the Dirichlet and
Neumann traces may be identified by the restrictions (γ0φm)(r) = φm|∂Ω = u and (γ1φm)(r) = ∂nφm|∂Ω = g,
where the same notation used in section 3.1, is adopted for Dirichlet and Neumann data, u and g. The
definitions for the smooth case can be extended to the general case [108].

Taking the Dirichlet trace of the representation formula yields the boundary integral equation

u(r) = (V g)(r) + σ(r)u(r)− (Ku)(r), for r ∈ ∂Ω, (8.4)

with the single layer operator
V := γ0 ◦ ˜︁V (8.5)
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and the double layer operator

(Ku)(r) = lim
ϵ→0

∫︂
r′∈∂Ω:|r−r′|≥ϵ

n(r′) · gradr′ u∗(r, r′)u(r′)dr′. (8.6)

σ(r) results from the limit of the double layer potential and is related to the interior angle of Ω in r ∈ ∂Ω.
On smooth parts of the boundary, σ(r) = 1/2. A similar boundary integral equation is derived by taking the
Neumann trace of the representation formula

g(r) = σ(r)g(r) + (K ′g)(r) + (Du)(r), for r ∈ ∂Ω, (8.7)

with the hypersingular operator
D := −γ1 ◦W (8.8)

and the adjoint double layer operator

(K ′g)(r) := lim
ϵ→0

∫︂
r′∈∂Ω:|r−r′|≥ϵ

n(r) · gradr u∗(r, r′)g(r′)dr′. (8.9)

Equations (8.4) and (8.7) provide linear maps between Dirichlet and Neumann data. It is common to
summarize both equations in a linear equation system1.

V g = ((1/2)I +K)u, (8.10)

Du = ((1/2)I −K ′)g, (8.11)

where I denotes the identity operator. The single layer2 V as well as the hypersingular operator D are
bounded, elliptic and semi-elliptic respectively [107]. These properties are the basis for uniqueness and
convergence proofs for the discrete linear equation systems when following the Galerkin discretization scheme
according to section 3.3.4 (assuming a suitable regularization for D is applied, see [107, Chapter 2.3]).
Moreover it yields symmetric positive definite matrices suited for the iterative solution via conjugate gradient
solvers. For these reasons, it is common practice working with 8.10 as a basis for Dirichlet-to-Neumann maps,
whereas 8.11 is used to derive Neumann-to-Dirichlet maps. The latter is of particular importance for the post
processing of measurement data, because measured voltages are proportional to fluxes or flux densities, and
therefore relate to the Neumann data.

8.2 The discrete Dirichlet-to-Neumann map

One can understand the Galerkin scheme, as substituting the approximations for u(r) and g(r) in 8.4,
multiplying by ϕN

l (r), for l = 1, ..., L and integrating over the domain boundary. In this way one obtains the
Galerkin equations ⟨︃

V gh, ϕl

⟩︃
∂Ω

=

⟨︃(︃
1

2
I +K

)︃
uh, ϕl

⟩︃
∂Ω

, for l = 1, ..., L. (8.12)

1A smooth boundary is assumed; σ = 1/2.
2At this point the condition R > diam(Ω), must hold for the single layer operator V to be elliptic in two dimensions.
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Here and in the following ⟨︁
u, v
⟩︁
∂Ω

:=

∫︂
∂Ω
u(r′) v(r′)dr′. (8.13)

This gives rise to the matrix V ∈ RL×L with

[V ]i,j :=

⟨︃
V ϕN

i (r), ϕ
N
j (r)

⟩︃
∂Ω

, (8.14)

and the matrixK ∈ RL×K with

[K]i,j :=

⟨︃(︃
1

2
I +K

)︃
ϕD
i (r), ϕ

N
j (r)

⟩︃
∂Ω

, (8.15)

such that the discrete Dirichlet-to-Neumann map is given by

V g =Ku. (8.16)

where g = (g1, ..., gL)
T ∈ RL and u = (u1, ..., uK)T ∈ RK .

8.3 The discrete Neumann-to-Dirichlet map

There are two reasons for which the hypersingular operator D requires special treatment. 1) The integral
operator does not exhibit an explicit representation as a Cauchy singular value [107], as the required limit does
not exist. 2) The operator has a non-trivial kernel.

The cure to 1) is to apply integration by parts in order to bring the linear form ⟨Du, v⟩∂Ω into the form

⟨Du, v⟩∂Ω =
1

4π

∫︂∫︂
∂Ω

curl∂Ωu(r) · curl∂Ωv(r)
∥r − r′∥2

dr dr′. (8.17)

Here curl∂Ωu(r) is the vectorial surface curl

curl∂Ωu(r) = −n(r)× gradr ˜︁u(r), for r ∈ ∂Ω, (8.18)

and ˜︁u is the local extension of u.

A commonly applied cure to 2) is to gauge out the averaged Dirichlet data∫︂
∂Ω
u(r′)dr′ = 0. (8.19)

This can be accommodated by considering the extended variational problem [107]

⟨Du, v⟩∂Ω + ⟨u, 1⟩∂Ω⟨v, 1⟩∂Ω =

⟨︃(︃
1

2
I −K ′

)︃
g, v

⟩︃
∂Ω

. (8.20)

Applying a Galerkin scheme one sets u → uh, g → gh and v → ϕD
k for k = 1, ...,K to obtain the equation

system (︂ ˜︁D + aaT
)︂

⏞ ⏟⏟ ⏞
:= ˜︁Da

u =K ′g. (8.21)

The matrices ˜︁D andK ′ follow from approximating (8.17) and the right hand side of (8.20). Details are found
in [107] chapter 2.3.2. a is the stabilization vector

[a]i =

∫︂
∂Ω
ϕD
i (r

′)dr′. (8.22)
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Figure 8.1: Finite beam element and nodal forces.

8.4 Computing the sensor orientation from solid harmonics

Considering only the coefficients with l = 1, the Hall voltage is given explicitly by

U(|B|, θ, ϕ) = |B|
√︃

3

4π

(︃
1√
2

(︂
c1,−1 exp(−jϕ)− c1,1 exp(jϕ)

)︂
sin(θ) + c1,0 cos(θ)

)︃
. (8.23)

The Hall voltage is a real signal, this means that the coefficientsmust satisfy

Re{c1,1} = −Re{c1,−1}, Im{c1,1} = Im{c1,−1}. (8.24)

In the xy-plane, it holds θ =
π

2
and therefore

U(|B|, 0, ϕ) ∝ |B|
(︂
− Re{c1,1} cos(ϕ) + Im{c1,1} sin(ϕ)

)︂
. (8.25)

The maximum of this signal is found from trigonometric relations

ϕmax = −arg (c1,1) . (8.26)

The angle θmax is found in the ϕ = ϕmax plane. Here

U(|B|, θ, ϕmax) ∝ |B|
(︃
c1,0 cos(θ) +

√
2
√︂

Im{c1,1}2 + Re{c1,1}2 sin(θ)
)︃
. (8.27)

This follows from (8.23), with (8.24), after substituting ϕ = ϕmax. The maximum angle θmax is found from
trigonometric relations

ϕmax = arg
(︃
c1,0 + j

√
2
√︂

Im{c1,1}2 + Re{c1,1}2
)︃
. (8.28)

8.5 Finite element approximation of the Euler-Bernoulli beam

The beam is divided into subsections according to Fig. 8.1. Each interval of length hi is parameterized by a
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0.0 0.2 0.4 0.6 0.8 1.0

1.0
N

i(
ẑ
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Figure 8.2: Hermite basis function on the unit interval.

linear transformation γi : [0, hi]→ [zi, zi+1]. The displacement w(z, t) on z ∈ [zi, zi+1] is then approximated
by:

w(z) ≈

⎛⎜⎜⎝
N1(γ

−1
i (z))

N2(γ
−1
i (z))

N3(γ
−1
i (z))

N4(γ
−1
i (z))

⎞⎟⎟⎠
T

·

⎛⎜⎜⎝
ws(zi)
θs(zi)
ws(zi+1)
θs(zi+1)

⎞⎟⎟⎠ =NT
i (z) ·wi, z ∈ [zi, zi+1] (8.29)

with the Hermite basis functions on ẑ ∈ [0, hi] according to:

N1(ẑ) =
1

h3i

(︁
2ẑ3 − 3hiẑ

2 + h3i
)︁

N2(ẑ) =
1

h3i

(︁
hiẑ

3 − 2h2i ẑ
2 + h3i ẑ

)︁
(8.30)

N3(ẑ) =
1

h3i

(︁
−2ẑ3 + 3hiẑ

2
)︁

N4(ẑ) =
1

h3i

(︁
hiẑ

3 − h2i ẑ2
)︁
.

N1 to N4 are illustrated in Fig. 8.2. Approximating w(z, t) in (4.20) and testing with the functions Nj(z), in a
Galerkin scheme yields on element i:

[M ]i ẅi(t) + [C]i ẇi(t) + [K]iwi(t) = fi + pi. (8.31)

Here, (·)̇ and (·)̈ denote the first and second temporal derivatives. K is the stiffness matrix

[K]i =

∫︂ hi

0
EI − ∂2

∂z2
NT

i

∂2

∂z2
Ni dẑ =

EiIi
h3i

⎛⎜⎜⎝
12 6hi −12 6hi
6hi 4h2i −6hi 2h2i
−12 −6hi 12 −6hi
6hi 2h2i −6hi 4h2i

⎞⎟⎟⎠ , (8.32)
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[p]i the load vector

[p]i =

∫︂ hi

0
pNi dẑ (8.33)

= hipi

⎛⎜⎜⎝
1/2
hi/12
1/2
−hi/12

⎞⎟⎟⎠ , (8.34)

and fi the force vector
fi = (fi,mi, fi+1,mi+1)

T , (8.35)

with the nodal forces and moments depicted in Fig. 8.1.
The matricesK,M and the load vector p given above are valid whenever E, I, p ̸= f(z) for z ∈ [zi, zi+1], and
therefore in case of a uniform cross section within the finite element. fi contains forces and moments acting
on the nodes of the finite elements (see Fig. 8.1). If no additional forces are applied to the structure, this
vector is in balance with neighboring elements and vanishes.
Global systemmatrices are assembled by iterating over the finite elements and adding up the local contributions
of [M ]i, [K]i and [p]i. Degrees of freedom can interact with multiple segments, which allows to model
segmented beams, made out of different materials, such as the one illustrated in Fig. 8.3. Moreover, realistic
support boundary conditions can be modeled by introducing force terms acting at the global degrees of
freedom of the FEM approximation.

Support Model

The beam is attached to the stages by the means of an aluminum holder with brass clamps, as it is illustrated in
Fig. 4.20. To account for the structure’s elasticity and structural damping, the support is modeled by two elastic
dampers as illustrated in Fig. 4.21. This support model is applied in both, the xz and yz plane, with different
damping and stiffness parameters. Whereas the support’s stiffness is estimated by attaching known weights to
different positions along the beam, the damping coefficients can be chosen to match a measured frequency
response after exciting the structure with an impulse hammer. Considering that the support is attached at
position zi, and that zi is a FEM node such that the displacement w(zi) is given by the global degree of freedom
[w]n = w(zi), the deformation is accompanied by a repelling force:

F (zi) = −k(w(zi, t)− a(t)), (8.36)

where k is the supports elasticity, and a(t) is the support motion. Similarly, an elastic bending moment is
modeled, by means of the support condition

m(zi) = −rθ(zi, t). (8.37)

A support damping is introduced by means of the force term

F (zi) = −d(ẇ(zi, t)− ȧ(t)). (8.38)

The support forces and moments are assembled into the vector f . The global equation system is then given by

Mẅ(t) +Cẇ(t) +Kw(t) = p+ f . (8.39)
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Figure 8.3: Numerical model of mapper armwith three parts. (i) Aluminium tube, (ii) Polyoxymethylene (POM)
joint (iii) carbon fiber tube. At the tip, an additional fixation (POM) for the Hall probe measuring
head is mounted.
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The right hand side can be rewritten according to

f = −Ksw(t)−Csẇ(t) + k(t) + ċ(t). (8.40)

The matricesKs and Cs and the vectors k and c encode the elasticity and damping of the support according
to (8.36) to (8.38).

[Ks]n,n =

⎧⎪⎨⎪⎩
kn if n is support displacement,
rn if n is support rotation,
0 else,

.

[Cs]n,n =

{︄
dn if n is support displacement,
0 else,

.

The vectors k(t) and ċ(t) are given by:

[k(t)]n = kna(t) if n is support displacement, 0 else,
[ċ(t)]n = dnȧ(t) if n is support displacement, 0 else.

(8.41)

Finally the governing system of equations is found to be

Mẅ(t) + (C +Cs)ẇ(t) + (K +Ks)w(t) = q + k(t) + ċ(t). (8.42)

8.6 The Kálmán gain

The Sherman-Morrison-Woodbury formula reads [93] [94]

(UCV +A)−1 = A−1 −A−1U
(︁
C−1 + V A−1U

)︁−1
V A, (8.43)

for the matrices A ∈ RN×N , U ∈ RN×M , C ∈ RM×M and V ∈ RM×N .

Applying this formula to the posterior covariance matrix in 5.23 gives(︁
HTR−1H +Q−1

)︁−1
= Q−QHT

(︁
R+HQHT

)︁−1
HQ. (8.44)

= (IM −KH)Q,

where it was set δ = 1 to simplify the notations. The Kálmán gainK is defined as

K := QHT
(︁
R+HQHT

)︁−1
. (8.45)

The posterior mean is therefore given by

m =
(︂
Q−QHT

(︁
R+HQHT

)︁−1
HQ

)︂ (︁
HTR−1y +Q−1x0

)︁
= x0 +QHR

−1y −K
(︁
HQHTR−1y −Hx0

)︁
, (8.46)

= x0 +QH
(︁
R+HQHT

)︁−1 (︁
R+HQHT

)︁
R−1y −K

(︁
HQHTR−1y −Hx0

)︁
,

= x0 +K
(︁
R+HQHT

)︁
R−1y −K

(︁
HQHTR−1y −Hx0

)︁
,

= x0 +K (y −Hx0) .
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8.7 Enforcing gauged formulations using matrix-free CG iterations

It is well known that conjugate gradient solvers converge to a solution even ifHTR−1H is positive semi-definite,
provided that the right-hand-side is strictly contained in the range of the matrix. This is intrinsically the case
when working with potential sources, as any function x+ cIN×1, for c ∈ R and IN×1 ∈ RN×1, yields the same
observation. However, it is possible to enforce a gauge condition for all samples xk arithmetically, manipulating
the productsHx andHTy. This procedure is described in the following.

As it was shown in section 3.3.7, it is possible to compute the matrix vector productHν on the reduced vector
xr = (x2, ..., xN ) ∈ RN−1 according to

y = (Hr +G)xr, (8.47)

with the reducedH matrix as well as the gauge matrix G according to (3.55). The transposed matrix vector
product u = (Hr +G)Ty is given by

u = (HT
r +GT )y =

⎛⎜⎝ H1,2 . . . HM,2
... . . . ...

H1,N . . . HM,N

⎞⎟⎠y − 1

a1

⎛⎜⎝ H1,1a2 . . . HM,1a2
... . . . ...

H1,1aN . . . HM,1aN

⎞⎟⎠y. (8.48)

For the second product it holds

− 1

a1

⎛⎜⎝ H1,1a2 . . . HM,1a2
... . . . ...

H1,1aN . . . HM,1aN

⎞⎟⎠y = − 1

a1

⎛⎜⎝ a2 (H1,1, ..., H1,M )T y
...

aN (H1,1, ..., H1,M )T y

⎞⎟⎠ = −
[H]T:,1y

a1

⎛⎜⎝ a2
...
aN

⎞⎟⎠ , (8.49)

where [H]:,1 = (H1,1, ..., H1,M )T denotes the first column ofH.

Computing the same product using the fullH matrix one finds

u∗ =

⎛⎜⎝ u∗1
...
u∗N

⎞⎟⎠ =HTy =

⎛⎜⎝ H1,1 . . . HM,1
... . . . ...

H1,N . . . HM,N

⎞⎟⎠y. (8.50)

Comparing the columns n = 2 toN of this result tou in (8.48), one obtains

u =

⎛⎜⎝ u∗2
...
u∗N

⎞⎟⎠− [H]T:,1y

a1

⎛⎜⎝ a2
...
aN

⎞⎟⎠ . (8.51)

This equation is of advantage, in cases whereH is available in compressed form only, for instance when using
the MLFMM. Here, it is not possible to impose a gauge condition by manipulating the matrix. Instead, the
vector u∗ is computed using the fullH matrix. The result is then corrected according to (8.51), using only
the first column [H]:,1, as well as the vectors y and a. In this way, it can be guaranteed that the same gauge
condition is enforced for all samples xk. The column [H]:,1 needs to be computed once and can be stored in
memory together with the compressed matrix.
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List of acronyms

3D three dimensional
BEM boundary element method
BEMBEL boundary element method based engineering library
BFF Bessel-Fourier-Fourier
CAD computer aided design
CCT canted cosine theta
CMM coordinate measuring machine
ELENA extra low energy antiproton ring
FCC-ee future circular electron collider
FEM finite element method
FEMM finite element method magnetics
NURBS non-uniform rational basis spline
GaAs gallium arsenide
GR generation recombination
IGA iso-gemometric analysis
L2L local to local
LS least squares
M2L moment to local
M2M moment to moment
MAP maximum a-posteriori
MCMC Markov chain Monte-Carlo
MLFMM multilevel fast multipole method
NbTi niobium titanium
NMR nuclear magnetic resonance
PCB printed circuit board
PHE planar Hall effect
RMS root mean square
RTO randomize then optimize
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List of symbols

Particle beam dynamics

Symbol Unit Description

z mixed particle state vector
F N force vector
q m coordinate vector
pmech kgm s−1 momentum vector
p kgm s−1 canonical momentum vector
L J Lagrangian
H J Hamiltonian

Linear theory of elasticity

Symbol Unit Description

w m deformation field
D m, rad covariance matrix of mechanical perturbations
ϕx, ϕy, ϕz rad beam rotations around x,y and z axes
E Nm−2 elastic modulus
M kgm−1 distributed mass
I m4 second moment of area
p Nm−1 distributed load
µ mass proportional Rayleigh damping coefficient
λ stiffness proportional Rayleigh damping coefficient
a m support condition
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Maxwell’s equations

Symbol Unit1 Description

B T magnetic flux density
H Am−1 magnetic field strength
E Vm−1 electric field strength
J Am−2 current density
A V sm−1 magnetic vector potential
n outward directed unit vector
s Am−1 surface current density
sh Am−1 approximated surface current density
ν p.d. state vector of the magnetic field
ν p.d. boundary data, mostly by means of a stream function
νh A approximated stream function
u A Dirichlet data
g Am−1 Neumann data
φm A magnetic scalar potential
U V voltage
Uind V induced voltage
UPHE V planar Hall voltage
Ṽ A single layer potential
W̃ A double layer potential
µ0 V sA−1 m−1 vacuum permeability

1The abbreviation p.d. is used for units which are problem dependent.

Probability theory

Symbol Unit1 Description

Q p.d. prior covariance matrix
R V, V s measurement covariance matrix
Y V data matrix
Y V data matrix
Xprior p.d. prior ensemble
Xpost p.d. posterior ensemble
U p.d. centered prior ensemble
Qprior p.d. prior ensemble covariance matrix
xk p.d. sampled state vector from the posterior
δ regularization parameter
K number of samples i.e. ensemble size

1The abbreviation p.d. is used for units which are problem dependent.
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Magnetic measurements

Symbol Unit Description

y V, V s measurement data
ydet V, V s deterministic part of y
ỹ V, V s predicted measurement
H V, V s observation operator˜︂H V, V s perturbed observation operator
∂H V, V s mechanical perturbation matrix
d m, rad mechanical state vector
rs m position of the 3D mapper measured by the linear encoders
nx,ny, nz, nH sensor orientation vectors
Ry V2 sensor noise covariance matrix
Rd V2 mechanical noise covariance matrix
θ m, rad sensor parameters
U0 V vector of offset voltages
v ms−1 velocity vector
M number of measurements
s V sensitivity function
sH VA−1 T−1 linear sensitivity
IH A Hall current
U0 V offset voltage
hM m−1 measurement resolution
vN ms−1 nominal velocity
y V measurement signal
µ V signal mean
wT windowing function
yT V windowed signal
YT V s Fourier transformation of a windowed signal
Syy V2 Hz−1 power spectral density
Ryy V2 auto-covariance function
ryy V2 auto-correlation function
cl,m VT−l coefficient for the 3D Hall probe calibration
Ical A calibration magnet current
IBy Tm field integral along a reference trajectory
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Mathematical functions

Symbol Description

Pn
l associated Legendre polynomials of degree l and order n
Y n
l spherical harmonic function of degree l and order n
Ỹ

m
l definition of the spherical harmonic function of degree l and order m, according to [66]

ϕD
k basis function ∈ Su

Mathematical notations

Symbol Description

j imaginary unit
Z set of all integers
R set of real numbers
Rn n-dimensional real space
C set of complex numbers
□ unit square
Cn n-dimensional complex space
Ck set of k-times continuously differential functions
Re{x} real part of a complex number x
Im{x} imaginary part of a complex number x
Ω compact (closed and bounded) domain of interest ⊂ R2 or ⊂ R3

∂Ω boundary of Ω
∆ Laplace operator
V function space for the potential function
Vu function space for the Dirichlet data
Vg function space for the Neumann data
Su Vu conforming approximation space
grad gradient of a vector field
div divergence of a vector field
curl curl of a vector field
curl∂Ω vectorial surface curl
γl surface parameterization
h mesh parameter
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List of publications and scientific presentations

Publications in scientific journals

Journal Title Year Reference

International Journal of Modern
Physics A

Challenges in extracting pseudo-multipoles from
magnetic measurements

2019 [109]

IEEE Transactions on Magnetics Boundary-Element Methods for Field Reconstruc-
tion in Accelerator Magnets

2020 [5]

Nuclear Instruments and Methods in
Physics Research Section A

Local field reconstruction from rotating coil mea-
surements in particle accelerator magnets

2021 [10]

Conference proceedings reports and poster sessions

Conference Title Year Reference

22nd International Conference on
the Computation of Electromagnetic
Fields (COMPUMAG 2019)

Boundary-Element Methods for Field Reconstruc-
tion in Accelerator Magnets

2019 [110]

12th International Particle Accelera-
tor Conference (IPAC2021)

Magnetic Measurements at Warm of the First FCC-
ee Final Focus Quadrupole Prototype

2021 [111]
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Scientific presentations

Event Title Year Reference

Workshop on Advances in Electro-
magnetic Research (KWT 2018)

Boundary Element Methods for Post-Processing
of Magnetic Measurement Data

2018 [112]

Workshop on Advances in Electro-
magnetic Research (KWT 2019)

Solving the Inverse Problem to Extract Boundary
Data from Translating Coil Measurements

2019 [113]

24th IMEKO TC4 International Sym-
posium

Distance Calibration of Large PCB Induction-Coil
Arrays in Active Mode

2020 [114]

The 13th International Conference
on Scientific Computing in Electrical
Engineering (SCEE)

Boundary-Element Methods for Field Reconstruc-
tion in Accelerator Magnets

2020 [115]

TE-MSC Seminar Computation of Electromagnetic Boundary Data
fromMagnetic Measurements in Accelerator Mag-
nets

2020 [116]

Workshop on Advances in Electro-
magnetic Research (KWT 2020)

Efficient 3D mapping in accelerator magnets 2020 [117]

Workshop on Advances in Electro-
magnetic Research (KWT 2021)

Three dimensional field reconstruction in strongly
curved magnets from magnetic measurement
data

2021 [118]
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Code availability

Some of the codes which have been implemented in the scope of this research are available in three github
repositories under the link https://github.com/MelvinLie. In the following the repositories are listed
and short descriptions about the implementations are given.

Absolute position and orientation problem

This repository contains python tools for the solution of the absolute position and orientation problem using a
linearization and MCMC-RTO. It includes all the functionality to compute the discrete observation operator,
as well as its derivatives, based on the solid harmonic expansion.

Scripts Description

run_fiducialization.py Implementation of the MCMC-RTO sampler and comparison to the lin-
earization used in section 6.1.

Euler-Bernoulli beam

This repository contains python tools for the finite element approximation of the Euler-Bernoulli beam. It was
used to compute the transfer functions of the mapper arm in section 4.2.

Scripts Description

example_transfer_function.py Computation of a transfer function as it was used in section 4.2.
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BEMM

This repository contains a modification of the BEMBEL C++ library for the post-processing of magnetic
measurement data.

Scripts Description

example_MLFMM.cpp Implementation of the multilevel fast multipole method used
in section 3.3.10.

example_initialization.cpp Implementation of the initialization step used in section 6.2.1.

example_ensemble_Kalman_filter.cpp Implementation of the ensemble Kálmán filter used in sec-
tion 6.2.2.

example_gibbs_sampling.cpp Implementation of the Gibbs sampler used in section 6.3.
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