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Abstract

In this thesis, inviscid instability and acoustics of compressible exponential boundary layer
flows are investigated. Based on the linearised Euler equations (LEEs) and the normal-mode
approach, the acoustic wave equation of parallel shear flows, the generalised Pridmore-Brown
equation (PBE), is derived. For a boundary layer flow mimicked by an exponential velocity
profile, an exact solution to the corresponding PBE is given in terms of the confluent Heun
function (CHF). In the stability analyses, the eigenvalue equation for the stability problem
based on the exact solution to the PBE is derived, and temporal stability and spatial stability
are investigated respectively. For this, asymptotic analyses of the eigenvalue equation are
first performed, and analytical solutions for limiting cases are obtained. Then, solutions to
the eigenvalue equation are computed, which allow a comprehensive picture of the stability
behaviour of the exponential boundary layer. In particular, the first three acoustic modes are
computed as a function of the Mach number, the streamwise wavenumber, and the frequency.
Unstable modes are found, where the first acoustic mode is always the most unstable one of
all acoustic modes. Besides, an acoustic boundary layer thickness (ABLT) is defined, which
essentially quantifies how far eigenfunctions reach into the area afar from the boundary layer.
Meanwhile, wave angles, which describe the direction of the phase velocity, and eigenfunctions
of acoustic modes are displayed. In the end, links between eigenvalues in the temporal stability
and spatial stability problems are established. In the study of acoustics of boundary layer flows,
the exact solution to the PBE is again employed to derive the reflection coefficient as a function
of the Mach number, the streamwise wavenumber, and the incident angle of acoustic waves, and
it is computed in wide parameter ranges. It is shown that the over-reflection of acoustic waves
arises in boundary layer flows, i.e. the reflected amplitude of acoustic waves is greater than
that of incident waves. The phenomenon is validated to be closely related to the critical layer,
at which there is an optimal energy exchange from the base flow through the critical layer into
the acoustic wave. Meanwhile, a special acoustic phenomenon, the resonant over-reflection, is
observed and proved to be caused by the resonant frequency of unstable modes in the temporal
stability problem. In addition, the resonant over-reflection also appears at resonant frequencies
caused by higher unstable modes, but their over-reflection coefficients are always smaller than
that caused by the first unstable mode. In the last part of the present work, the over-reflection
of acoustic waves in a supersonic inviscid compressible boundary layer flow is validated by
direct numerical simulations (DNS). A wave packet containing plane waves with constant
wavelengths and amplitudes is superimposed with the free stream, and the incidence and
reflection processes of the wave packet are simulated. In the simulations, the dispersion of
the wave packet is observed due to strong shear effects near the wall. Amplification of the
amplitude of the reflected waves is determined when the reflected wave eventually returns
to the free stream. In particular, there is an exceptionally large over-reflection coefficient
when the frequency of the incident wave is close to the resonant frequency, which indicates an
occurrence of the resonant over-reflection.
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Zusammenfassung

In dieser Dissertation werden die reibungsfreie Instabilität und Akustik von kompressiblen
exponentiellen Grenzschichtströmungen untersucht. Auf Grundlage der linearisierten Euler-
Gleichungen (LEEs) und des Normal-Mode Ansatzes wird die akustische Wellengleichung für
parallele Scherströmungen, die verallgemeinerte Pridmore-Brown-Gleichung (PBE), herge-
leitet. Für eine Grenzschichtströmung, die durch ein exponentielles Geschwindigkeitsprofil
modelliert wird, wird die exakte Lösung der entsprechenden PBE in Form der konfluenten
Heun-Funktion (CHF) hergeleitet. Mittels einer Stabilitätsanalyse wird die Eigenwertgleichung
für das Stabilitätsproblem auf Grundlage der exakten Lösung der PBE hergeleitet und die
zeitliche und räumliche Stabilität untersucht. Zunächst werden asymptotische Analysen der
Eigenwertgleichung durchgeführt und analytische Lösungen für die betrachteten Grenzfälle
erhalten. Anschließend werden Lösungen der Eigenwertgleichung berechnet, die ein umfassen-
des Bild des Stabilitätsverhaltens der exponentiellen Grenzschicht ermöglichen. Insbesondere
werden die ersten drei akustischen Moden als Funktion der Machzahl, der Wellenzahl und
der Frequenz berechnet. Es werden instabile Moden gefunden, wobei die erste akustische
Mode immer die instabilste aller akustischen Moden ist. Außerdem wird eine akustische Grenz-
schichtdicke (ABLT) definiert, die im Wesentlichen quantifiziert, wie weit Eigenfunktionen
in den Bereich fern der Grenzschicht reichen. Weiterhin werden ein Wellenwinkel, der die
Richtung der Phasengeschwindigkeit beschreibt, sowie die Eigenfunktionen der akustischen
Moden dargestellt. Schließlich werden Zusammenhänge zwischen den Eigenwerten der zeit-
lichen und der räumlichen Stabilitätsanalyse hergestellt. Zur Untersuchung der Akustik von
Grenzschichtströmungen wird erneut die exakte Lösung des PBE genutzt, um den Reflexi-
onskoeffizienten als Funktion von der Machzahl, der Wellenzahl und dem Einfallswinkel der
akustischenWellen abzuleiten und in weiten Parameterbereichen zu berechnen. Es wird gezeigt,
dass eine Überreflexion akustischer Wellen in Grenzschichtströmungen auftreten kann, d. h. die
Amplitude der reflektierten akustischen Wellen größer ist als die der einfallenden Wellen. Es
wird nachgewiesen, dass dieses Phänomen eng mit der kritischen Schicht zusammenhängt, bei
der ein optimaler Energieaustausch von der Grundströmung in die akustische Welle stattfindet.
Gleichzeitig wird ein spezielles akustisches Phänomen, die resonante Überreflexion, beobachtet
und nachgewiesen, dass dieses durch die Resonanzfrequenz zeitlicher instabiler Moden ver-
ursacht wird. Darüber hinaus tritt die resonante Überreflexion auch bei Resonanzfrequenzen
höherer instabiler Moden auf, deren Überreflexionskoeffizienten jedoch immer kleiner sind als
die durch die erste instabile Mode verursachten Überreflexionskoeffizienten. Im letzten Teil
dieser Arbeit wird die Überreflexion akustischer Wellen in einer reibungsfreien, kompressiblen
Überschall-Grenzschichtströmung durch direkte numerische Simulationen (DNS) verifiziert.
Ein Wellenpaket, das ebene Wellen mit konstanten Wellenlängen und Amplituden enthält, wird
mit der freien Strömung überlagert, und die Einfalls- und Reflexionsprozesse des Wellenpakets
werden simuliert. In den Simulationen ist in Wandnähe die Dispersion des Wellenpakets auf-
grund starker Scherungseffekte deutlich zu beobachten. Wenn die reflektierte Welle schließlich
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in die freie Strömung zurückkehrt, wird eine Verstärkung der Amplitude der reflektierten
Wellen festgestellt. Ein außergewöhnlicher Überreflextionskoeffizient tritt insbesondere dann
auf, wenn die Frequenz der einfallenden Welle in der Nähe der Resonanzfrequenz liegt, was auf
das Auftreten der resonanten Überreflexion hinweist und die Ergebnisse aus der theoretischen
Analyse bestätigt.
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1 Introduction

The present thesis summarises my work over the past four years at the Chair of Fluid Dynamics
(FDY) at the Technical University of Darmstadt. It is noted that it contains contents of the
following papers in slightly modified forms. All these papers result from my work as a research
assistant:

Zhang, Y. & Oberlack, M., 2021 Inviscid instability of compressible exponential boundary
layer flows. AIP Advances, 11(10), 105308.

Zhang, Y., Görtz, S. & Oberlack, M., 2022 Over-reflection of acoustic waves by supersonic
exponential boundary layer flows. Journal of Fluid Mechanics, 945.

Baumgärtener, J-B., Zhang, Y. & Oberlack, M., 2022 Spatial acoustic instabilities in
boundary layer flows. Considering for the publication of Physics of Fluids.

Unsteady flows of compressible fluids, e.g. turbulence, or vortex separations, are a major cause
of noise generation in numerous technical applications. Therefore, the understanding and
prediction of flow-induced noises are of great technical relevance and, at the same time, imply
an interesting and complex problem of compressible fluid dynamics. Of particular importance
is the acoustics of shear flows such as jets, wakes, and boundary layer flows, which play central
roles in the noise emission of air traffic. Especially in high-speed shear flows, flow-induced
noise exceeds the other noise levels and dominates. For example, jets exhaust by air engines of
civil airliners on take-off constitute the most dominant noise source, whose noise level exceeds
those of other sources like fans, combustion, and airframe noise (Brun et al., 2008). However,
to date, both the problems of sound generation and propagation in modelled engineered shear
flows are not fully understood. Although in recent years, the theory of compressible linear
shear flows has been gradually improved, there is still a considerable lack of theories for other
more complex types of shear flows, e.g. boundary layer flows. This situation motivated us to
investigate the stability problem and acoustics in compressible boundary layer flows, which
shed some light on understanding laminar-turbulent transition, and sound generation and
propagation in such compressible shear flow.

The problems in flow acoustics were classified by Möhring et al. (1983) into three categories:
(i) generation of sound with essential participation of the flow; (ii) propagation of sound
through flow fields; (iii) generation of flow by sound. In the present work, we only focus on
the first two issues.
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1.1 Acoustics

Before we begin with flow acoustics, let us revisit some of the knowledge about acoustics. The
essence of sound is mechanical deformation fluctuations that propagate in the form of acoustic
waves through an elastic transmission medium such as a gas, liquid, and solid. When we talk
about acoustic waves, this points to a broader concept. They can be waves that are perceptible
to the human ear (sound waves), or they can be waves that are outside the threshold of the
human ear (infrasonic or ultrasonic waves). When we refer to the terms sound and noise,
they both stand for sounds that can be perceived by the human ear. The former is generally a
neutral term, while the latter is associated with a negative attitude, indicating a sound that is
subjectively unwanted and considered disturbing.

1.1.1 Generation and propagation of acoustic waves

Since acoustic waves are mechanical waves, we first give some elementary properties of
mechanical waves before talking about acoustic waves more specifically. Mechanical waves
can be classified into transverse and longitudinal waves. A transverse wave is a wave whose
direction of vibration is perpendicular to the direction of wave propagation, while a longitudinal
wave is a wave whose direction of vibration coincides with the direction of wave propagation.
A pulse on a rope is a typical example of transverse waves. The rope moves up and down
as the wave pulse travels from the start to the end of the rope, but the rope itself does not
experience any net motion. A mechanical vibration caused by the compression and elongation
of the spring creates typical longitudinal waves. The propagation of mechanical waves must
require a medium because the essence of mechanical wave propagation is a propagation of
the vibrating state of the medium, i.e. propagation of the disturbance rather than individual
particles in the medium.

The propagation of sound is in the form of acoustic waves. Like other mechanical waves, the
propagation of acoustic waves presupposes a transmission medium with moving particles. It
is pointless to talk about sound in the absence of a medium because a sole source, such as a
vibrating structure, does not produce sound. This fact enables the study of acoustic waves to
be divided based on different media in which acoustic waves propagate. Therefore, depending
on the transmission medium, a classification is made between structure-borne sound and
fluid-borne sound (De Broeck, 2021).

Structure-borne sound is the most common sound source and the way of sound propagation.
The dynamic interaction of solid bodies leads to structure-borne sound. The cause of the
acoustic oscillations and their propagation in solid bodies are the coupling forces between
the particles of the solid. When a particle is displaced relative to neighbouring molecules,
such as an impact-induced displacement, they act as restoring forces, resulting in oscillatory
motion of the particle. Due to coupling effects, the oscillation is transferred to the neighbouring
molecules, leading to a spatial propagation of the deformation in the form of acoustic waves.
As a result, structure-borne sound can occur as a variety of wave types, e.g. as longitudinal,
transverse, or Rayleigh waves (Kuttruff, 2007).

Fluid-borne sound is the counterpart of structure-borne sound. Compared to solids, the coupling
forces between the particles of liquids and gases are negligible. Therefore, the particles can
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move freely between each other. For this reason, the oscillatory motion of fluid particles and the
transmission of such oscillations to neighbouring molecules are caused exclusively by collisions
between the fluid particles (De Broeck, 2021). Hence, fluid-borne sound propagates only in
the form of longitudinal waves since fluids are not able to sustain tensile forces. Therefore, as
acoustic waves travel in fluids, the medium expands and contracts in the propagation direction.

As carriers of sound, acoustic waves are an expression of energy transfer. Therefore, in addition
to the classification in terms of the type of transmission media, the generation of acoustic
waves can be classified according to the sources of energy, including mechanical source,
electromagnetic source, chemical source, and heat source (Müller & Möser, 2012).

1.1.2 Phase velocity, group velocity and signal velocity

An important concept involved in sound propagation is the velocity at which acoustic waves
travel. In real physics, wave propagation involves a wave packet containing a finite number
of wave cycles. The information in a wave can only be delivered by starting, stopping, or
modulating the amplitude of the wave train, which equivalents a formation of a wave packet.
The propagation of a wave packet can occur at up to three velocities, which are the phase
velocity, the group velocity, and the signal velocity. The phase velocity is the velocity of each
wavelet. The group velocity is the velocity of the instantaneous points on the shape of the
envelope, i.e. the velocity of the shape of the envelope. Since the shape of the wave packet may
change with time, leading to a change in the energy distribution, the third velocity appears.
The signal velocity, also known as the energy velocity, is generally regarded as the actual
velocity of the wave packet. More precisely, the signal velocity is defined as the velocity of the
leading edge of the energy distribution of the wave packet and the corresponding information
content (Cline, 2017).

In a system where the shape of the wave packet is time-independent, the group velocity
and the signal velocity are equal. It is therefore always assumed in some literature that the
group velocity is the true velocity at which the energy propagates, which is true for most linear
systems. However, this assumption is not valid if the shape of the wave packet is time-dependent
because the group velocity and the signal velocity can differ. It is worth noting that even if
the phase velocity of the waves within the wave packet is faster than the group velocity of the
shape or faster than the signal velocity of the energy content of the wave packet envelope, the
information contained in the wave packet only manifests itself when the wave packet envelope
completely reaches the detector. The energy and information can only propagate at a signal
velocity (Cline, 2017).

In a dispersive system, the group velocity and signal velocity can differ. A dispersive system is
defined as a system where the phase velocity as the velocity of each wavelet is related to the
wave frequency or wavelength, which is the counterpart to the non-dispersive system. Thus,
the wavelets contained within a wave packet will have different phase velocities due to their
different frequencies or wavelengths. Based on this fact, some of them propagate faster and
some slower, thus creating dispersion in the wave packet, i.e. the packet becomes flattened with
increasing time during the propagation. The group velocity at this point is the instantaneous
velocity of the points on the wave packet envelope, i.e. the velocity at a particular relative
position defined by the shape of the wave packet envelope, and therefore is not the signal
velocity of the wave packet.
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For an acoustic wave packet propagating in an idealised stationary medium, the group velocity
and signal velocity are the same. Acoustic waves generated by different frequencies propagate
at different wavelengths but with the same velocity, i.e. the speed of sound, and therefore have
no dispersion. In a moving medium, due to the velocity of the medium, acoustic waves could
propagate at different velocities. In particular, a shear flow with a velocity gradient can be
regarded as a dispersive medium.

In the present work, acoustic waves in three different scenarios are considered, namely radiative
dispersive waves in stability problems, propagating waves in acoustics problems, and the
propagation of wave packets in numerical simulations. In all scenarios, acoustic waves with
different phase velocities are observed. This is due to the superposition of the speed of sound
and the base flow velocity of the shear layer flow. In the stability problem, we obtain the phase
velocity of the perturbation of acoustic modes, which can be subsonic and supersonic. Due
to the decay of the amplitude of the perturbation in the positive y-direction, we know that
the energy is transmitted, which indicates that the direction of energy propagation should be
concerned. We therefore consider the group velocity in the free stream, which is derived from
the dispersion relation. The direction of the group velocity is regarded as the real propagation
direction of acoustic waves. We refer to such waves with decaying amplitudes in the y-direction
in the stability problems as dispersive waves. Note that in the system of the stability problems,
there is no signal velocity because the modes and eigenfunctions are not specific to a wave
packet. Therefore, it is reasonable to consider the group velocity as the velocity of energy
propagation. In contrast to the stability problem, in the acoustic problem, the waveform does
not vary with time in the free stream. We do not consider the energy transfer, i.e. the group
velocity. The phase velocity is therefore regarded as the velocity of the wave propagation.
In numerical simulations, we consider the effects of the dispersion of a wave packet. This is
evident when the speed gradient is large. In addition to this, dispersion exists even in the free
stream. This is due to the presence of wavelets with different wavelengths in the wave packet,
which leads to the dispersion of the wave packet according to the dispersion relation in the
free stream. Consequently, the signal velocity is inconsistent with the group velocity in the
numerical simulation of the wave packet.

1.2 Aeroacoustic noise

If you live in Frankfurt am Main, you may have noticed the loud noise of aeroplanes flying
overhead. Frankfurt has the busiest airport in Germany, which is located just twelve kilometres
from the city centre. At this airport, aeroplanes take off and land every minute. No matter
where you live in Frankfurt, you cannot avoid the air traffic noise because the flight routes may
be temporarily rescheduled due to weather, air traffic jams, etc. With the growing volume of
air traffic, increasingly stricter regulations on noise emissions have been enforced, with the aim
of limiting the total noise emission. This has become the main restriction on airport operations.

According to the report Frankfurt Airport Air Traffic Statistics 2019, the number of aircraft
take-offs and landings has increased from 439, 093 to 513, 912 in the 20 years from 1999 to
2019. Meanwhile, the number of passengers has increased from 45 million to 70 million. Air
traffic in Frankfurt was growing steadily at a rate of around 2 % per year from 1999 to 2019.
At the same time, data obtained from Deutsche Fluglärmdienst e.V. (DFLD) indicate that
noise near the airport is increasing every year. This has led the authorities to adopt stricter
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restrictions to reduce aircraft noise. However, the restrictive measures are limited to curfews,
reduced entry speeds, reduced cruising speeds, and other sacrifices to efficiency, which may
not only affect the economy and travel times but also increase fuel consumption and pollutant
emissions. Therefore, the development of quieter aircraft is an important objective for the
next generation of civil aeroplanes in the following two decades (Airbus, 2020). This requires
significant progress in noise reduction by the aircraft themselves since flight noise causes
damage not only to the ground but also to pilots and passengers.

One of the main sources of civil aircraft noise is from jet engines of aeroplanes. Noise from
jet engines is mainly caused by three aspects (Filippone, 2014): (i) jet engine ducts including
inlets and nozzles (Tack & Lambert 1965 Mariano 1971; Ishii & Kakutani 1987; Pagneux &
Froelich 2001; Khamis & Brambley 2016); (ii) jet exhaust and jet mixing (Balsa 1976; Gutmark
et al. 1995; Tam 1995b; Tam et al. 2008; Karabasov 2010); (iii) the boundary layer (Goldstein
1982; Myers & Chuang 1984; Almgren 1986; Nash et al. 1999; Liu 2008; Brambley 2011a).
All these three aspects include flows that invariably point to one type of flow model, shear
flows. To understand the mechanism of noise generation by these three aspects, we need
first to go back to over 70 years ago. Since the 1950s, the mechanism of jet engine noise
generation and consequent noise reduction has been rapidly developed. This was thanks to
a young interdisciplinary discipline, aeroacoustics1, which mainly involves the fields of fluid
dynamics and acoustics. Aeroacoustics focuses on the sound generated by the unsteady motion
of fluids, such as propeller noise or jet engine noise. The main difference between aeroacoustics
and classic acoustics mentioned in §1.1 is that the fluid medium in motion has a non-negligible
influence on both the generation and propagation of sound, which is the most important topic
in aeroacoustics.

Howe (1978) classified theoretical approaches to aeroacoustics into three categories: (i) acous-
tic analogy methods; (ii) methods based on linearised wave equations; (iii) empirical/semi-
empirical methods. In this context, it is inevitably to first mention the milestone work by
Lighthill and his famous acoustic analogies, which made a significant contribution to the
mechanism of aerodynamic noise generation.

1.2.1 Acoustic analogies

Based on the background of high-speed development of jet aircraft engineering, Lighthill first
came up with the idea of an acoustic analogy (AA) in his pioneering papers (Lighthill, 1952,
1954), regarded as the foundation for aeroacoustics. Since then, a new discipline has been
opened. The basic framework of acoustic analogies is essentially about the re-arrangement of
the Navier-Stokes equations for a compressible flow to an equation for an acoustic variable of
interest, e.g. density. The subtlety of Lighthill’s equation is that it is exact, and it characterises
as a wave equation with source terms. Lighthill’s equation reads

∂2ρ′

∂t2
− c2

∂2ρ′

∂xi∂xi
=

∂2Tij
∂xi∂xj

, (1.1)

1 The term aero-acoustics appeared around the 1970s and thereafter was simplified to aeroacoustics and included
in the Oxford English Dictionary. If underwater applications are considered, the more general terminology
would be flow-induced noise.
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where Tij = ρuiuj +
(︁
p′ − c2ρ

)︁
δij − τij is the Lighthill stress tensor, including Reynolds’ stress

tensor, pressure forcing, and viscous stress tensor in sequence. In this way, the left-hand
side (LHS) of the equation resolves into the form of a d’Alembert operator similar to that of
classical acoustics, i.e. an acoustic wave equation, while the right-hand side (RHS) is all sound
sources. Hence, the essence of this equation is the separation of the aerodynamic sound source
term from the acoustic field. These sources can be decomposed into monopole, dipole, and
quadrupole. It should be noted that the RHS of this equation still contain the correlation term
on the LHS so that it is much more complicated than a classical wave equation and hence
difficult to solve. However, Lighthill still provided solutions to the equations through models,
which are similar to the various turbulence models that solve the Navier-Stokes equations.

The key of Lighthill’s AA is to assume that the sound source generated by the fluid is known
and then to use experimental or numerical methods to obtain the solution of the flow field
and the sound field. Such an approach brings great convenience for practical applications and
explains the most prominent features of aeroacoustic sound generation while inevitably leading
to some new issues. The original AA concerned only sound generated by turbulent flow in
a region of unbounded medium, which is not realistic. In addition, by artificially separating
the flow field from the sound field, it is not possible to investigate how acoustic waves are
generated and propagate in fluids. For these reasons, to improve Lighthill’s AA theory, many
subsequent studies on flow-induced noise were inspired: (i) effects of solid boundaries at rest
(Curle 1955); (ii) theory of vortex sound (Powell 1964; Howe 1975); (iii) the effects of moving
objects on the sound field (Ffowcs Williams & Hawkings, 1969); (iv) the duality of jet noise
(Michalke & Fuchs, 1975; Michalke, 1977); (v) flow-acoustic interactions (Phillips 1960; Doak
1972; Lilley 1974; Mani 1976).

Based on these extensions of Lighthill’s AA theory, Goldstein (1984) further developed Lilley’s
equation into the generalised AA. He started from the Navier-Stokes equations, divided the
flow variable into its mean and fluctuating components, and then subtracted the mean flow
components from the equation. Next, he collected all linear terms in the governing equation
on one side of the equation as the part that describes sound propagation while placing all
non-linear terms as known sources on the other side of the equation. Since then, the idea
of linearisation has gradually developed, combining classical acoustics with aeroacoustics.
Goldstein’s generalised AA allows a detailed investigation of the acoustic sources associated
with flows and therefore is considered to be particularly suitable for predicting sound generated
by perturbations in parallel shear flows. However, Goldstein’s equation can only be solved
by numerical methods or expensive volume integration. In addition, it completely ignores
sound generated by linear sources, which is a serious drawback. In fact, no AA theory has so
far succeeded in completely isolating the source terms from the linear term in the acoustic
perturbation for a shear flow (Colonius et al., 1997). Nevertheless, linear mechanisms are
validated to play a key role in sound generation related to shear flow dynamics (Michalke &
Fuchs 1975; Chagelishvili et al. 1997b; Goldstein 2003; Goldstein 2005).

The AA method gives aeroacoustic sources, such as pressure fluctuations on wall surfaces,
which create dipole sources. However, it does not answer how pressure fluctuations generate
sound (Zhong & Huang, 2018). For example, do the pressure fluctuations compress the wall
surface like a drum membrane? Or does the turbulent structure in the boundary layer near
the wall stretch, twist and finally break to generate sound? To answer questions like these, it
is necessary to consider the approach based on the linearised wave equation summarised by
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Howe (1978). More importantly, such methods reveal the linear mechanism of aeroacoustic
noise generation.

1.2.2 Linear acoustics

To begin with, it is necessary to understand why the linearisation approach is applicable to
acoustic studies. The fundamental of linear acoustics is based on the linearised Euler equations
(LEEs). The LEEs are the classical equations for the study of acoustics for long, and the wave
equation derived from the LEEs well describes the propagation of sound (Bergmann, 1946).
The plausibility of the LEEs as the governing equations for acoustic waves arises from two
aspects: (i) neglectability of viscous effects, reducing the Navier-Stokes equations to the Euler
equations, and (ii) small perturbations, allowing linearisation in terms of small perturbations.

The fact that viscous effects can be neglected in acoustics can be pointed out with the help of
the so-called acoustic Knudsen number. For a general gas, there is the relation ν0 ∼ cl0, where
ν0 is the kinematic viscosity, c stands for the speed of sound, and l0 represents the mean free
path of the molecules (Rienstra & Hirschberg, 2020). According to this relationship, the ratio
of the wavelength of an acoustic wave (λ = c/f) to the mean free path of molecules l0 reads

λ

l0
=
λc

ν0
=
λ2f

ν0
, (1.2)

known as the acoustic Knudsen number, where
√︁
ν0/f is the diffusion scale and is successfully

linked to the wavelength λ. For example, for air with ν0 = 1.5 × 10−5 m2/s and a wave
with f = 1 kHz, there is λ2f/ν0 ∼ 107. This result means that the viscous effect will only
become apparent after the acoustic wave has travelled a distance of approximately 107 times
the wavelength, i.e. 3 · 106 m. Kinematic viscosity is therefore a rather unimportant effect, and
it is reasonable to be neglected.

To explain why the assumption of small perturbations and thus linearisation is appropriate,
the sound level can be used. Sound levels are measured in decibels. A common indicator is
the sound pressure level, which is defined as

Lp = 20lg
(︃

p̃

pref

)︃
, (1.3)

where pref = 2 × 10−5 Pa is the standardised reference pressure and p̃ =

√︂
(p′)2 is the root

mean square value of the sound pressure. For example, for a weed whacker operating at full
capacity, its maximum sound pressure level is approximately 88 dB, which corresponds to 0.5
Pa. This is also roughly equivalent to the noise level of a Boeing 787-8 taking off and landing
(Heathrow-Airport, 2014). Even a very loud noise of 120 dB corresponds to 20 Pa, which is
to be compared with the standard atmosphere, 105 Pa. By comparing 20 Pa with the 105 Pa
one can see that threshold of acoustic perturbations can be considered small compared to the
mean values of the flow variables.

Therefore, with the two reasons above, the governing equation for acoustic waves can be
derived by the linearisation of the inviscid Euler equations, i.e. LEEs. However, the validity
of the two assumptions made is limited to the level of daily sound. Normally, above 120 dB
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sound waves appear non-linear while below that waves can be considered as basically linear in
propagation.

The shortcomings of AA are essentially related to the oversimplified flow-acoustic interactions
(Sinayoko et al., 2011), which are highly coupled and not easily decoupled (Goldstein, 2005).
Faced with this scenario, some researchers in the aeroacoustic community returned to classical
linear acoustics based on the LEEs.

Modal analysis is a classical approach to studying linear acoustics. It originates from the
study of the dynamic properties of systems. In modal analysis, the crucial step is to determine
the resonant frequencies as well as the modes. These results describe the basic dynamical
behaviour of a system and indicate how the system will react to the loading of the dynamics.
Resonant frequencies (also called eigenfrequencies) are the frequencies that a system naturally
tends to have when it is disturbed. For example, each string on a piano is tuned to vibrate
at a specific frequency and integer multiples of its frequency. The function describing the
oscillation at each resonant frequency is called the eigenfunction. The resonant frequency
and the eigenfunction are functions of the properties and boundary conditions of a system. In
addition, the terminology, mode, is used to describe a state of dynamic systems to the excitation.
Instability is an important terminology to describe the state of the system after disturbances,
meaning that an infinitesimal perturbation is amplified and grows to a finite or infinite size.
The growth of the perturbation can be exponential or algebraic. Based on these basic concepts,
an unstable mode is a mode that leads to the occurrence of instability.

The most common modes in the modal analysis are normal modes that are orthogonal to each
other. The method of employing normal modes is also called the normal-mode approach. The
underlying idea of the normal-mode approach is that instead of solving a specific physical
initial-boundary-value problem (IBVP), we consider normal modes of a system and expect that
a solution for the IBVP of the partial differential equations (PDEs) can be represented as a sum
of the normal modes. If there is an unstable mode, it is expected that this mode will be present
in the solution of a specific physical problem (realised experimentally or solved numerically)
and that this unstable mode can be dominant after sufficient amplification in space and/or
time (Fedorov & Tumin, 2011).

In hydrodynamic stability analysis and linear acoustics, based on the normal-mode approach,
linear mechanisms of sound generation, i.e. sound generated by unstable perturbations origi-
nally present in flows, were investigated and well explained in Marcus & Press (1977), Tam
& Morris (1980), Criminale & Drazin (1990), and Goldstein (2005). Such a linear sound
generation mechanism by a normal-mode dominant growth can be readily identified since
the most unstable waves have a nominally supersonic phase velocity and are able to radiate
sound efficiently. These linear mechanisms are particularly effective in flows with relatively
high Mach numbers. Furthermore, both the analysis and experimental results show that linear
terms can be an effective source of sound if the flow is sheared at high rates. Several studies
employing the normal-mode approach for different shear flow models can be found in Crighton
& Gaster (1976), Tam & Burton (1984a, 1984b), and Wu (2005) for supersonic jets, and in
Avital et al. (1998a, 1998b) for mixing layers. In their studies, the linear mechanism of sound
generation is proved to be highly related to shear effects of the flows. In addition to the study
of the linear sound generation mechanism in shear flows, the phenomenon of radiation of
sound by shear flows, known as spontaneous radiation of sound, has been well predicted by
the normal-mode approach. This phenomenon was demonstrated by means of DNS. It was first
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discussed in detail in Landau & Lifshitz (1987) and was observed by numerical simulations in
supersonic boundary layer flows (Wagnild, 2012), in highly cooled hypersonic boundary layer
flows (Chuvakhov & Fedorov, 2016), and in hypersonic blunt cone boundary layers (Knisely &
Zhong, 2019a, 2019b).

Another approach to studying linear acoustics is the so-called non-normal mode approach,
which originated from the hydrodynamic stability community. This approach was established
in the 1990s when the non-normal nature of shear flow systems was considered (Reddy &
Henningson, 1993; Schmid, 2007) and soon applied to the realm of acoustics to study linear
mechanisms of sound generation. In Chagelishvili et al. (1997a), an abrupt emergence of
acoustic waves from vortices to spontaneous imbalance was found. Farrell & Ioannou (2000)
extended the analysis to viscous high Mach number flows. Bakas (2009) showed that the
spontaneous generation could be analysed as an instance of a Stokes phenomenon in which
the wave solution is switched on by the vortex perturbation when time crosses a Stokes line.
A wealth of research based on the non-normal approach explicitly indicates a mechanism of
transient growth in sound generation.

In Nold & Oberlack (2013), they noticed a correlation between normal and non-normal modes
through symmetry analysis and explained the correlation well using symmetry theory. Based
on this, special base flows, such as a parabolic Poiseuille type flow or a linear shear flow, were
found to have an extended set of symmetries, which have been used to derive more generalised
stability modes. It was further shown in Hau et al. (2017) that the normal mode, as well as
the non-normal (Kelvin) mode are subsumed under a common umbrella by a third new mode,
which represents the most general approach. Based on this, they investigated the transient
growth of perturbations in linear shear flows and further refined the theory of sound generation
in linear compressible shear flows.

1.3 Numerical aeroacoustics

Over the last 60 years, the capabilities of Computational Fluid Dynamics (CFD) have constantly
increased, and impressive progress has been made (Tam, 1995a; Wang et al., 2006). Utilising
these capabilities of CFD is a major factor in ensuring the possibilities of the numerical study of
aeroacoustic phenomena nowadays. Computational methods such direct numerical simulation
(DNS) or large eddy simulations (LES) are particularly suitable tools for calculations of sound
fields (Colonius & Lele, 2004; Wang et al., 2006). These tools facilitate the investigations being
able to obtain all the flow quantities in space and time. The obtained high-fidelity numerical
simulation results allow a post-process from different perspectives.

In spite of this, the major challenges of Computational Aeroacoustics (CAA) still remain and are
summarised in (Tam, 2004) involving the following issues: (i) sufficient numerical resolution
of short wavelengths with a minimal amount of grid points; (ii) low numerical noise to ensure
that the sound waves, usually having amplitudes five to six orders smaller than the base flow
field, are computed accurately; (iii) suitable boundary conditions, as sound waves are able
to travel over long distances, contrary to ordinary flow disturbances, which might lead to
spurious reflections at the outflow boundary conditions and hence contaminate the solution
inside the computation domain; (iv) the existence of multiple scales varying over a wide range,
demanding the code to be able to resolve a wide band of wavenumbers; (v) requirement
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for highly accurate algorithms to be able to simulate the nature of low dissipation and low
dispersion of acoustic waves (Delorme et al., 2005).

In the past decades, facing these difficulties, higher-order discontinuous Galerkin (DG) methods
(Cockburn et al., 2000) have achieved fruitful developments in the fluid dynamics community.
Their advantages are (i) cell-locality, (ii) applicability to arbitrary geometries on unstructured
grids, (iii) efficient parallelisation, (iv) suitable for a high order of degrees. These make
them attractive to High-Performance Computing (HPC) applications (Altmann et al., 2013).
Using DG methods, acoustic wave propagation can be simulated over long distances with
low numerical dissipation and low numerical dispersion. Moreover, unstructured meshes are
smoothly employed, which makes automatic mesh makers or mesh refinement techniques
possible.

1.4 Objective and outline of this thesis

The objective of this work is to investigate the stability problems and acoustics of boundary
layer flows. To achieve this, a velocity profile in exponential form is applied to mimic the
boundary layer, and the governing equation, also known as the Pridmore-Brown equation
(PBE), is derived. Of particular importance is that a new solution to the PBE in terms of the
confluent Heun function (CHF) is found. A feature of the PBE is that it not only describes the
stability of shear flow but is also an acoustic equation. The newly discovered solution motivates
us to explore both of these aspects in detail.

In the aspect of the stability problem, the new exact solution allows a search for all eigenvalues
in the complex domain, leading to precise physical results. These results correspond to unstable
acoustic modes present in supersonic compressible shear flows. They could become dominant
for laminar-turbulent transition in supersonic as well as hypersonic flows. In addition to
instability, the unstable mode also exhibits outward radiation of acoustic waves. Therefore, it
has important implications both for stability and noise generation. Especially in the context of
the current rapid development of supersonic as well as hypersonic vehicles. The research in
this thesis contributes to a deeper understanding of the stability of boundary layer flows.

In the aspect of acoustics, a particular wave reflection phenomenon, over-reflection of waves
by shear flows, has attracted our attention. This phenomenon has been extensively studied in
other fields. But there is still a gap in the field of acoustics, especially in boundary layer flows.
The study of over-reflections often requires a deep understanding of stability problems because
the mechanisms that trigger over-reflections of waves have been shown to be associated with
instability, which in turn can affect the stability of the waves. Based on the facilities we obtain
in the study of the stability problems, the over-reflection of acoustic waves in a boundary layer
flow can be explored in depth.

The approaches to achieve these objectives include an asymptotic analysis of the solutions to
the eigenvalue equation and theoretical analysis of the critical layer. The numerical approaches
include the numerical evaluation of the CHF, the solution of the eigenvalue equation, and
direct numerical simulations.

The outline of this thesis is as follows:
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In chapter 2, based on the LEEs and the normal-mode approach, the generalised PBE for
acoustics and the stability of parallel shear flows is derived. Different forms of the generalised
PBE containing (i) a velocity profile, a density profile, and a speed of sound profile, (ii) a
velocity profile and a temperature profile are summarised. Next, the key equation of this thesis,
the PBE with an exponential velocity profile mimicking a boundary layer flow, is derived under
the homentropic assumption. Its new exact solution is derived in terms of the confluent Heun
function (CHF).

Chapter 3 is dedicated to the in-depth study of boundary layer instability and unstable acoustic
modes. Applying the boundary conditions of vanishing disturbances at infinity and zero
wall-normal velocity, the boundary value problem is converted to an algebraic eigenvalue
problem. Solutions to the eigenvalue problem allow a comprehensive picture of both the
temporal and spatial stability behaviours of compressible boundary layers. Therefore, the
complex eigenvalues ω are calculated as a function of the streamwise wavenumber α and the
Mach numberM for the temporal stability problem, while for the spatial stability problem, the
complex eigenvalues α are determined depending on the frequency ω and the Mach number
M . A series of derived quantities and eigenfunctions are presented with high precision. Among
them, the spatial decay rate in positive y-direction is determined by defining an acoustic
boundary layer thickness (ABLT) δa, which indicates how far outside modes are still audible.
Lastly, the results for temporal and spatial stability are compared. The association between
eigenvalues in both problems is established as a strong argument for temporal-spatial instability.

In chapter 4, acoustics of boundary layer flows is studied based on the exact solution to the
PBE with an exponential velocity profile in terms of the CHF. The reflection and over-reflection
of acoustic waves are investigated based on this exact solution. For this purpose, the reflection
coefficient R, which is the ratio of the amplitude of the reflected to the incoming acoustic wave,
is determined as a function of the streamwise wavenumber α, the Mach numberM and the
incident angle of the acoustic waves φ. Over-reflection refers to R > 1, i.e. the reflected wave
has a larger amplitude than the incident wave. We prove that in the supersonic context, energy
is always transferred from the base flow to the reflected wave, meaning that the case R < 1
does not occur. This fact is intimately linked to the critical layer. We show that the presence
of the critical layer leads to an optimal energy exchange from the base flow into the acoustic
wave, i.e. the critical layer ensures R > 1. A special phenomenon, the resonant over-reflection,
is observed and proven to be closely related to resonant frequencies ωr of temporally unstable
modes of the boundary layer flow.

By means of DNS the over-reflection of acoustic waves in supersonic inviscid boundary layer
flows is investigated in chapter 5. We construct a wave packet consisting of plane waves and
superimpose it outside the boundary layer. The whole processes of incidence and reflection
of the wave packet in the exponential boundary layer flows are simulated. From the results
of the DNS, strong dispersion of the wave packets can be observed due to shear effects near
the walls, and in the free stream the dispersion could persist. Despite the effects of dispersion,
amplification of the amplitude of the reflected wave can be seen when the reflected wave
eventually returns to the free stream. In addition, simulations have been carried out for the
acoustic wave with a resonant frequency. The results of the simulations show an over-reflection
coefficient that is abnormally higher than the normal over-reflection. In the final part, we
further state the limitations of the wave packet model and the reasons for errors in comparison
with the theory.
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Lastly, a conclusion of this thesis and potential further developments are provided in chapter
6.
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2 The Pridmore-Brown equation

2.1 State of the art

The study of acoustic waves in unidirectional shear flows first appeared in the 1930s (Haur-
witz, 1931; Küchemann, 1938) after the boundary layer theory was established by Prandtl.
Thereafter, Pridmore-Brown (1958) employed the normal-mode ansatz to derive an ordinary
differential equation (ODE) for acoustic waves in plane parallel shear flows based on the lin-
earised Euler equations (LEEs), known as the Pridmore-Brown equation (PBE). This equation
can also be derived by extending the classic Rayleigh equation (Rayleigh, 1887), which predicts
the stability of inviscid incompressible shear flows, to compressible flows, known as the com-
pressible Rayleigh equation (CRE). The CRE was initially used by Lees & Lin (1946) to study
inviscid instability and therefore, is subsequently more common in stability theory. In fact,
the PBE can be applied both to study the stability problem of shear flows and to describe the
propagation of acoustic waves. The essential difference is that for acoustic waves the frequency
and wavenumber are considered to be real, whereas for unstable waves they are complex.
Normally, for most of the base flows the PBE has no exact solution unless specific assumptions
and specific profiles of shear flows are considered. A specific shear flow profile implemented
into the PBE still gives rise to the mathematical complexity of the PBE such that analytical
solutions are scarce. Due to this, Pridmore-Brown (1958) only gave asymptotic solutions to
the PBE for the simplest case, a linear velocity profile, in the limit of small velocity gradients.

It was not until more than a decade later that the PBE with a linear velocity profile was
solved for the first time by Goldstein & Rice (1973), who wrote the exact solution in terms
of combinations of parabolic cylinder functions. They used this closed-form solution for the
understanding of the so-called effective acoustic wall impedance, which includes both wall
impedance and boundary layer effects. Applying the effective acoustic impedance, the study
of sound propagation could be carried out under a much simpler scenario by superposing a
uniform flow with an effective acoustic impedance. However, due to the fact that the solution
was written in terms of a complex combination of cylinder functions of different orders, it has
not been widely applied analytically to draw further physical conclusions. Numerically, the
evaluation by using this analytical solution also appears problematic due to the subtraction
of exponentially large terms of the constituting parts. An alternative more practical form of
the solution to the PBE for a linear shear flow is based on Whittaker’s functions and was given
by Jones (1977) to investigate a shear layer matching two uniform streams. Based on this
PBE solution, he gave solutions for reflected and transmitted waves and studied how they
behave across the linear shear layer by setting an acoustic line source and varying its distance
to the shear layer. By examining limiting cases of the layer thickness, i.e. thin and thick shear
layers, he concluded that the solution of a thin shear layer approximates that of the vortex
sheet. Further, for a thick layer, he gave transmission and reflection coefficients to describe the
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scattering of sound through the shear layer. The third form of the solution to the PBE with linear
shear flow is given by confluent hypergeometric functions (Scott 1979; Koutsoyannis et al.
1979; Koutsoyannis 1980). It is worth mentioning that Koutsoyannis (1980) investigated not
only the propagation of acoustic waves but also the stability problem under large wavelength
conditions and obtained a critical threshold for instability of M = 2

√
2. In a more recent

study of the PBE, Campos (1999) suggested the fourth form, a Fuchs-Frobenius series, for the
solution to the PBE with a linear velocity profile, which is derived by the Frobenius method.
The original intention of his research was to gain an understanding of the effects of the critical
layer in a boundary layer profile composed of a linear and a constant part. In this velocity
profile, the critical layer, where the phase velocity of the perturbation equals the local base flow
velocity, is the only regular singularity of the PBE except for the point at infinity. Therefore,
in the vicinity of the critical layer the series expansion has an infinite convergence radius,
and Campos used this facility to study sound propagation near the critical layer. From his
observation that the amplitude of the oscillation of acoustic waves decreases near the critical
layer, he reasoned that this layer is able to attenuate the sound in its vicinity. In addition,
Campos et al. (2014) studied the case of a linear velocity profile superimposed a uniform cross
flow. In this case, a third order ODE was obtain rather than the (second order) PBE, which,
however, has the advantage that the singularity of the PBE at the critical layer is removed by
the cross flow. The exact solution was written as a linear combination of three independent
MacLaurin power series.

For a linear velocity profile, it is always necessary to encounter a finite free-stream velocity
to ensure that the velocity does not increase indefinitely, enabling to model a boundary layer
flow or a mixed layer flow. However, such a velocity profile inevitably introduces an artificial
kink between the linear and constant parts of the velocity profile, which in turn leads to
non-physical reflections or refractions. To avoid this, researchers shifted their attention to more
physical non-linear velocity profiles. In Campos & Serrão (1998), an exponential function
was considered to mimic a boundary layer flow, while in Campos & Kobayashi (2000), a
hyperbolic tangent function was employed for a free shear layer, and in Campos & Oliveira
(2011), a parabolic function was utilised to model a duct flow. For these profiles, likewise the
Fuchs-Frobenius series solutions to the PBE could be derived and acoustic effects as well as the
influences of the critical layer on the sound propagation were studied. Similar behaviours of
sound near the critical layer were testified for these non-linear velocity profiles. However, for
more complex velocity profiles, due to the appearance of more than one regular singularity and
even irregular singularities in the PBE, the convergence radius of the Fuchs-Frobenius series
solution is restricted to the domain between two singularities having a finite distance. Hence,
the whole complex domain can not always be overlapped by a single series solution, thus
leading to complicated connections between different series solutions. Due to these restrictions
of the Fuchs-Frobenius series solution of such complex flows, Campos & Serrão (1998) and
Campos & Kobayashi (2000) only studied acoustics of the flows, but not stability, i.e only the
non-resonant acoustic spectrums (real-valued frequencies and wavenumbers) were considered
by them. Note that all their solutions to the PBE are restricted to homentropic unidirectional
shear flows.

In addition to the studies of the PBE based on the above-mentioned exact solutions, the PBE
was also investigated in detail by means of analytical and numerical methods, which do not
involve the prior determination of an exact solution in the form of standard functions. A
well-known analytical method to study the PBE is the WKB method giving dispersion relations
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for limiting cases. The obtained analytical solutions were used to compare with numerical
results. Another analytical method is the asymptotic analysis. We recommend the book of
Bender & Orszag (1999) for a detailed introduction to these two analytical methods. Typical
numerical methods to obtain the eigenvalues of the PBE are the shooting method (Brown et al.,
1954) and the spectral method (Gallagher & Mercer, 1965). The former is intensively employed
by Mack (1965, 1969, 1984, 1990). The latter was improved by Gottlieb & Orszag (1977)
using Chebyshev polynomials and further developed by Fabre & Jacquin (2004) and Macaraeg
et al. (1988) to compressible flows. However, both of these numerical methods generate
spurious modes (Gottlieb & Orszag, 1977), which can always not be easily distinguished from
the physical modes. This problem does not arise in the present work since the derived analytic
solution only delivers the physical results inherently casted into the PBE. In a recent study for
a non-isothermal flow, which allows non-uniform speed of sound, WKB approximations were
given for high frequencies and asymptotic methods were applied for low frequencies (Rienstra,
2020). These analytical solutions were compared with numerical solutions for acoustic modes
in two-dimensional (2-D) and three-dimensional (3-D) lined ducts constructed by the Galerkin
projection-based spectral method.

This chapter is structured as follows. In §2.2, the generalised PBE is derived under the
assumption of an isentropic but non-homentropic flow, which allows for the presence of
transverse temperature gradients associated with the non-uniform speed of sound. Two
different forms of the generalised PBE are shown, one of which is given by a non-dimensional
form. In §2.3, by further assuming that the flow is homentropic and considering an exponential
velocity profile, we derive the key equation of this thesis, i.e. the PBE for exponential boundary
layer flows. In addition, two interchangeable non-dimensional forms of this PBE are compared,
which are non-dimensionalised by two different common approaches in stability theory and
acoustics. Lastly, in §2.4, we give the exact solution to the derived PBE with the exponential
velocity profile. The exact solution is given in terms of the confluent Heun function (CHF).

2.2 Governing equations

We consider an inviscid compressible flow without heat conduction, modelled by the Euler
equations (Landau & Lifshitz, 2013)

Dρ

Dt
= −ρ∇ · v, (2.1a)

ρ
Dv

Dt
= −∇p, (2.1b)

Ds

Dt
= 0, (2.1c)

where ρ is the density, v is the velocity vector, p is the pressure, s is the entropy, and

D

Dt
=

∂

∂t
+ v · ∇ (2.2)

is the total derivative. Equation (2.1c) is derived from the isentropic assumption of the flow
and from that we know the entropy of fluid particles remaining constant as they move in the
space, i.e. an adiabatic motion happens. The system of equations (2.1) ignores viscous- and
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heat-conductive effects. This is reasonable in the framework of the study of acoustic waves and
the corresponding effects since the variation of acoustic waves is much faster than these two
effects (Rienstra & Hirschberg, 2020).

To obtain a closed system of equations, the equation of state (EOS) is considered, which reads

p = p(ρ, s). (2.3)

This equation implies
Dp

Dt
=

(︃
∂p

∂ρ

)︃
s

Dρ

Dt
+

(︃
∂p

∂s

)︃
ρ

Ds

Dt
, (2.4)

where the subscripts denote the derivation in the case where s or ρ is regarded as constant.
Taking the isentropic condition (2.1c) in (2.4), the EOS is simplified as

Dp

Dt
= c2

Dρ

Dt
, (2.5)

where

c =

√︄(︃
∂p

∂ρ

)︃
s

(2.6)

is the (adiabatic) speed of sound. Since (2.1c) is incorporated and results in (2.5), it is allowed
to use (2.5) to replace (2.1c) and thereby obtain a closed system of equations for variables ρ,
v and p.

For linear acoustics, we suppose the variables ρ, v and p to be composed of the steady base
flow quantities ρ0, v0, p0 and small unsteady perturbations ρ′, v′ and p′

(ρ,v, p) = (ρ0 + ρ′,v0 + v′, p0 + p′), (2.7)

where the perturbations are functions of temporal and spatial independent variables in a
Cartesian coordinate , i.e. t, x, y, and z. Substituting (2.7) into the equations (2.1a), (2.1b)
and (2.5) and neglecting non-linear terms of the small perturbations yields the linearised Euler
equations (LEEs) system

∂ρ′

∂t
+ v0 · ∇ρ′ + ρ0∇ · v′ + v′ · ∇ρ0 + ρ′∇ · v0 = 0, (2.8a)

ρ0

(︃
∂v′

∂t
+ v0 · ∇v′

)︃
+∇p′ + ρ0v

′ · ∇v0 + ρ′v0 · ∇v0 = 0, (2.8b)

∂p′

∂t
+ v0 · ∇p′ + v′ · ∇p0 = c2

(︃
∂ρ′

∂t
+ v0 · ∇ρ′ + v′ · ∇ρ0

)︃
. (2.8c)

For a proposed unidirectional 2-D parallel shear flow, the base flow velocity is assumed to be
in the x-direction and to vary in the y-direction. Hence, the base flow vector reads

v0 = (u0(y), 0) . (2.9)

This condition indicates two facts. First, p0 = const, as can be verified by taking (2.9) into
(2.1b). Second, by substituting (2.9) into (2.1a) and (2.5) and considering (2.6), it is noticed
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that ρ0(y) and c(y) are allowed to vary in the y-direction. The latter means that the entropy is
not a constant, which may vary from one streamline to another in the y-direction.

According to the above implications, the LEE system (2.8) can be simplified as

∂ρ′

∂t
+ u0(y)

∂ρ′

∂x
+ ρ0(y)

(︃
∂u′

∂x
+
∂v′

∂y

)︃
+ v′

∂ρ0(y)

∂y
= 0, (2.10a)

ρ0(y)

(︃
∂u′

∂t
+ u0(y)

∂u′

∂x

)︃
+ ρ0(y)v

′∂u0(y)

∂y
+
∂p′

∂x
= 0, (2.10b)

ρ0(y)

(︃
∂v′

∂t
+ u0(y)

∂v′

∂x

)︃
+
∂p′

∂y
= 0, (2.10c)

∂p′

∂t
+ u0(y)

∂p′

∂x
= c(y)2

(︃
∂ρ′

∂t
+ u0(y)

∂ρ′

∂x
+ v′

∂ρ0(y)

∂y

)︃
, (2.10d)

where (2.10b) and (2.10c) are the first two components of themomentum equation. Alternative,
combining (2.10a) and (2.10d) will give

∂p′

∂t
+ u0(y)

∂p′

∂x
+ ρ0(y)c(y)

2

(︃
∂u′

∂x
+
∂v′

∂y

)︃
= 0, (2.10e)

as the linearised adiabatic equation of continuity.

Considering 2-D perturbations, a normal-mode approach for velocity, density, and pressure
perturbations is applied. Similar to the classical stability theory, which involves Fourier decom-
position in x and t, we introduce a normal-mode ansatz

q′(x, y, t) = q̂(y)ei(αx−ωt), (2.11)

with q′ ∈ (u′, v′, ρ′, p′), where the quantities û(y), v̂(y), ρ̂(y) and p̂(y) represent the amplitudes
of the perturbations, α denotes the streamwise wavenumber, and ω stands for the frequency.
Substituting the normal-mode ansatz (2.11) into the system of partial differential equations
(PDEs) (2.10a)-(2.10c) and(2.10e) results in a system of ODEs

ρ0(y)
dv̂

dy
+ i [αρ0(y)û− (ω − αu0(y)) ρ̂] + v̂

dρ0(y)

dy
= 0, (2.12a)

ρ0(y)v̂
du0(y)

dy
+ i [αp̂− (ω − αu0(y)) û] = 0, (2.12b)

dp̂

dy
− i (ω − αu0(y)) ρ0(y)v̂ = 0, (2.12c)

ρ0(y)c(y)
2 dv̂

dy
+ i
[︁
αρ0(y)c(y)

2û− (ω − αu0(y)) p̂
]︁
= 0. (2.12d)

We rewrite (2.12) into an equivalent second order differential equation with a single dependent
variable p̂. For this, we first express v̂ by dp̂/dy through (2.12c), then substitute the result for v̂
in (2.12b) and thereafter express û in terms of p̂ and dp̂/dy. Finally we substitute these results
for û and v̂ into (2.12d) to get a second order ODE for p̂, which reads

d2p̂

dy2
+

(︃
2α

ω − αu0(y)

du0(y)

dy
− 1

ρ0(y)

dρ0(y)

dy

)︃
dp̂

dy
+

[︄
(ω − αu0(y))

2

c(y)2
− α2

]︄
p̂ = 0. (2.13)
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We refer to (2.13) in the present thesis as the generalised PBE because it differs from the
classical PBE by having other profiles, i.e. density and speed of sound profiles or temperature
profile, in addition to the velocity profile. To the author’s knowledge, there is no exact solution
to (2.13), unless the profiles for the base flow velocity u0(y), density ρ0(y), and the speed of
sound c(y) are specified. If a solution p̂ is obtained, û, v̂ and ρ̂ can be expressed by p̂

û = − 1

ρ0(y) (ω − αu0(y))
2

du0
dy

dp̂

dy
+

α

ρ0(y) (ω − αu0(y))
p̂, (2.14)

v̂ = − i

ρ0(y) (ω − αu0(y))

dp̂

dy
, (2.15)

ρ̂ = − 1

(ω − αu0(y))
2

d2p̂

dy2
− 2α

(ω − αu0(y))
3

du0(y)

dy

dp̂

dy
+

α2

(ω − αu0(y))
2 p̂. (2.16)

Another form of the generalised PBE, using a base temperature profile T0(y) instead of ρ0(y)
and c0(y), is more common in studies of stability problems. For this, we consider an ideal gas
with the ideal gas law

p = ρRT , (2.17)

where R is the specific gas constant and T ∈ R+ is the temperature. An isentropic process
for an ideal gas is an idealized thermodynamic process that is both adiabatic and reversible.
Mathematically, it can be represented by the polytropic process equation, which reads

pV γ = p

(︃
1

ρ

)︃γ

= const., (2.18)

where V stands for volume of the gas, and γ is the heat capacity ratio. Taking the logarithm of
(2.18) we get

ln (p)− γln (ρ) = ln (const.) . (2.19)

Differentiating (2.19) on ρ
∂p

∂ρ
= γ

p

ρ
, (2.20)

and considering the definition of the (adiabatic) speed of sound (2.6), we end up with an
alternative expression for the speed of sound (Spurk & Aksel, 2007), which is given by

c =

√︃
γ
p

ρ
. (2.21)

Taking (2.17) into (2.21) yields
c =

√︁
γRT . (2.22)

Considering (2.17) and (2.22), and substituting the temperature profile T0(y) into (2.13), an
alternative form of the generalised PBE reads

d2p̂

dy2
+

(︃
2α

ω − αu0(y)

du0(y)

dy
+

1

T0(y)

dT0(y)

dy

)︃
dp̂

dy
+

[︄
(ω − αu0(y))

2

γRT0(y)
− α2

]︄
p̂ = 0. (2.23)

In order to transfer results between different scales, it is common to derive the non-dimensional
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form of an equation. To non-dimensionalise the generalised PBE (2.23), we first introduce
the reference values, i.e. characteristic length l∞, base flow density ρ∞ and temperature T∞
that implies the implicit reference, i.e. the speed of sound c∞ =

√
γRT∞. Accordingly, the

non-dimensional variables read

p∗ =
p̂

ρ∞c∞2
, T ∗ =

T0
T∞

, y∗ =
y

l∞
, M0 =

u0
c∞

, ω∗ =
ωl∞
c∞

, α∗ = αl∞. (2.24)

The non-dimensional form of the generalised PBE reads (star omitted)

d2p̂

dy2
+

(︃
2α

ω − αM0(y)

dM0(y)

dy
+

1

T0(y)

dT0(y)

dy

)︃
dp̂

dy
+

[︄
(ω − αM0(y))

2

T0(y)
− α2

]︄
p̂ = 0. (2.25)

As the generalised PBE can be used to study both the stability of shear flows and acoustic
modes as well as the propagation of acoustic waves, it was often given different names in
separate fields. The generalised PBE (2.25) was studied in Lees & Lin (1946), Lees & Reshotko
(1962), Mack (1969), and Bitter & Shepherd (2015) for boundary layer instability in Cartesian
coordinates and named as the CRE. In Nayfeh (1973) and Oppeneer et al. (2011), it was
derived in a cylindrical coordinate system and studied for acoustic modes in ducts, named
the PBE. In Campos (2007) and Campos & Kobayashi (2009), the same equation was derived
and studied for the propagation of acoustic waves and therefore named the acoustic wave
equation. To avoid ambiguity, we refer to (2.13), (2.23) and (2.25) as the generalised PBE in
the following work.

Although the generalised PBE (2.25) is only a second order ODE, very few analytical solutions
are known. Even for the simplest case, a linear velocity profile and a linear temperature profile,
there is no exact solution. But this situation is being improved with the development of the
Heun class equations.

2.3 Exponential boundary layer flows

In the following, we focus on the main topic of the present work, an exponential boundary layer
flow of an ideal gas. We first simplify the generalised PBE by the homentropic-flow assumption,
which means that the entropy is a constant, i.e. s0 = const. Considering (2.9) and the fact
p0 = const derived thereafter, and combining the the EOS ρ(p0, s0), it is concluded that the
density is a constant, i.e. ρ0 = const. A Taylor series expansion of the pressure about the
reference thermodynamic state denoted by the subscript 0 (neglecting higher-order derivatives)
gives

p = p0 + p′ = p(ρ0 + ρ′, s0) ≈ p(ρ0, s0) +

[︃
∂p

∂ρ
(ρ, s0)

]︃
s

ρ′ = p0 + c0
2ρ′, (2.26)

where c0 =
√︁
(∂p/∂ρ)s is a constant speed of sound. For an ideal gas, the mean flow is

isothermal and thus T0 = const. Equation (2.26) indicates an important condition, namely

p′ = c0
2ρ′. (2.27)
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Figure 2.1: Sketch of an exponential boundary layer flow.

In this way, we could omit (2.10d) or (2.10e) and apply the linearised relation for the speed
of sound (2.27) to close the LEE system (2.10).

We further specify the velocity profile to an exponential velocity profile, which is employed to
mimic a boundary layer flow. The velcotiy velocitiy components u0(y) and v0(y) read

u0(y) = U∞

(︂
1− e−

y
δ

)︂
, (2.28a)

v0(y) = 0, (2.28b)

where U∞ is the free-stream velocity and δ is the shear layer thickness, which is a multiplier of
the hydrodynamic boundary layer thickness, e.g. 99% boundary layer thickness, displacement
thickness and momentum thickness. A sketch of the exponential boundary layer flow is shown
in figure 2.1. Inserting (2.28) into (2.10a)-(2.10c) and eliminating p′ through (2.27), we get
a PDE system, which, non-dimensionalised by U∞, δ and ρ0, reads

∂ρ′

∂t
+
(︁
1− e−y

)︁ ∂ρ′
∂x

+

(︃
∂u′

∂x
+
∂v′

∂y

)︃
= 0, (2.29a)

∂u′

∂t
+
(︁
1− e−y

)︁ ∂u′
∂x

+ e−y v′ +
1

M2

∂ρ′

∂x
= 0, (2.29b)

∂v′

∂t
+
(︁
1− e−y

)︁ ∂v′
∂x

+
1

M2

∂ρ′

∂y
= 0, (2.29c)

whereM = U∞/c is the global or free-stream Mach number.

It is worth noting that we adopte a different non-dimensional approach here than the approach
in (2.24) that is typical in the field of acoustics, i.e. instead of the speed of sound c0, we use
the free-stream velocity U∞ to non-dimensionalise, as it is common in the study of boundary
layer stability problems. Later, for acoustic problems, we keep the same descaling approach
to facilitate establishing links between the stability theory and acoustics. Apparently, the
parameters and results obtained by different non-dimensional approaches are interchangeable.
For details see the last part of this section.
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Substituting the normal-mode ansatz (2.11) into the system of PDEs (2.29) results

dv̂

dy
+ i
[︁
−
(︁
ω − α+ αe−y

)︁
ρ̂+ αû

]︁
= 0, (2.30a)

e−yv̂ + i
[︂ α

M2
ρ̂−

(︁
ω − α+ αe−y

)︁
û
]︂
= 0, (2.30b)

1

M2

dρ̂

dy
− i
(︁
ω − α+ αe−y

)︁
v̂ = 0. (2.30c)

We further rewrite (2.30) into an equivalent second order differential equation with the single
dependent variable ρ̂. For this, we express v̂ by dρ̂/dy through (2.30c), substitute the result
for v̂ in (2.30b) and thereafter express û in terms of ρ̂ and dρ̂/dy. Finally we substitute these
results for û and v̂ in (2.30a) to get the second order ODE for ρ̂

d2ρ̂

dy2
+

2αe−y

ω − α+ αe−y

dρ̂

dy
+
[︂
M2

(︁
ω − α+ αe−y

)︁2 − α2
]︂
ρ̂ = 0, (2.31)

known as the PBE (Pridmore-Brown, 1958). If a solution ρ̂ to (2.31) is obtained, û and v̂ can
be expressed in terms of ρ̂

û = − e−y

M2 (ω − α+ αe−y)2
dρ̂

dy
+

α

M2 (ω − α+ αe−y)
ρ̂, (2.32)

v̂ =
1

iM2 (ω − α+ αe−y)

dρ̂

dy
. (2.33)

The PBE (2.31) not only allows an eigenvalue equation to be derived for the stability investiga-
tion but also describes the propagation of acoustic waves in the boundary layer flow. On the
basis of the stability eigenvalue problem, a resonant spectrum for modes is determined, while
a non-resonant spectrum is mainly considered within the framework of the acoustic problem.

In the literature, an alternative form of the non-dimensional PBE with non-dimensional ap-
proach by the speed of sound c0 reads

d2ρ̂

dy2
+

2ᾱMe−y

ω̄ − ᾱM + ᾱMe−y

dρ̂

dy
+
[︂(︁
ω̄ − ᾱM + ᾱMe−y

)︁2 − ᾱ2
]︂
ρ̂ = 0, (2.34)

where the non-dimensional frequency ω̄ is scaling on c0, i.e. ω̄ = ω̃δ/c0. This alternative form
can be obtained by substituting ω = ω̄/M and α = ᾱ into (2.31) or by simplification of (2.25)
with M0(y) = M(1 − e−y) and T0(y) = 1. Note that the dependent variables are p̂ and ρ̂ in
(2.25) and (2.31), respectively. But due to the fact p′ = c0

2ρ′, ρ̂ in (2.31) can be replaced by p̂
with no changes of the ODE’s form.

2.4 Solution to the Pridmore-Brown equation with an exponential
velocity profile

We notice that (2.31) is closely linked to the confluent Heun equation (CHE) introduced by
Heun (1888) as a generalisation of the hypergeometric equation. Its solution is given by the
confluent Heun function (CHF) denoted with Hc (p∗, α∗, γ∗, δ∗, σ∗; z), where p∗, α∗, γ∗, δ∗, σ∗
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stand for five parameters and z is the independent variable (Ronveaux & Arscott, 1995). The
PBE (2.31) can be solved in terms of the CHF (for a detailed derivation and notation see
Appendix A.1) and thus, the exact solution is given by

ρ̂(y) = C1e
iMαe−y+

√
θyHc

(︃
p∗, α∗, γ∗, δ∗, σ∗;

αe−y

α− ω

)︃
+ C2e

iMαe−y−
√
θyHc

(︃
p̃∗, α̃∗, γ̃∗, δ̃∗, σ̃∗;

αe−y

α− ω

)︃
,

(2.35)

where
θ = −M2(α− ω)2 + α2, (2.36)

and the parameters are defined as follows

p∗ =
iM(α− ω)

2
, α∗ = iM(α− ω)− 1

2
−
√
θ, γ∗ = 1− 2

√
θ, δ∗ = −2,

σ∗ = iM(α− ω)− 2M2(α− ω)2 − 2
√
θ [iM(α− ω) + 1] ,

(2.37)

p̃∗ =
iM(α− ω)

2
, α̃∗ = iM(α− ω)− 1

2
+
√
θ, γ̃∗ = 1 + 2

√
θ, δ̃∗ = −2,

σ̃∗ = iM(α− ω)− 2M2(α− ω)2 + 2
√
θ [iM(α− ω) + 1] .

(2.38)

In the following, for the sake of brevity, we omit the parameters of the Hc function and express
the Hc function simply as Hc(; z) and ˜︂Hc(; z) with their respective parameters according to
(2.37) and (2.38), and with z = αe−y/(α− ω).

In the present work, we investigate both the stability problems and boundary layer acoustics.
For the temporal stability problem, there is ω ∈ C and α ∈ R, while for the spatial stability
problem, there is α ∈ C and ω ∈ R. The case α ∈ C and ω ∈ C described in §3.5 is referred
to as temporal-spatial instability. For the acoustic problem, only α ∈ R and ω ∈ R will be
considered.

22



3 Boundary layer instability

3.1 State of the art

Studies of boundary layer stability originated from the exploration of laminar-turbulent transi-
tion mechanisms. An initial idea using small perturbations was limited to incompressible flows
in hydrodynamics (Tietjens, 1925). Superposing small perturbations onto the undisturbed
base flow to figure out whether the perturbations grow or decay is actually the key idea of
the linear stability theory. The most well-known exploration of boundary layer stability was
led by Tollmien (1930) and Schlichting (1933), who established a stability theory of viscous
incompressible boundary layer flows, thereby explaining the mechanism of instability due to
viscosity through energy methods. The related unstable waves were later named after their
explorers as T-S waves. Their results were first experimentally verified by Dryden (1947) and
Schubauer & Skramstad (1947).

Küchemann (1938) was the first to extend the boundary layer stability theory to a compressible
regime but without considering the viscosity, temperature gradient and curvature of the
velocity profile. Lees & Lin (1946) further developed the stability theory based on infinitesimal
disturbances to a compressible inviscid boundary layer. They found an inviscid mechanism of
compressible boundary layer instability, which originates from the extension of the Rayleigh
inflection criterion for a density or temperature gradient and is completely different to the
viscous instability mechanism for T-S waves. Another milestone work was done by Mack
(1965), who first numerically found additional multiple linear unstable modes in a supersonic
compressible adiabatic boundary layer flow and explained their occurrence by an inviscid
instability. These unstable higher modes are associated with wave radiation and have a
mechanism different from both mechanisms mentioned above. Among all unstable modes,
the mode with the lowest frequency was considered to be an extension of the T-S waves to
compressible flows for low Mach numbers (Dunn, 1955; Lees & Reshotko, 1962). However,
when the Mach number exceeds three, the viscous mechanism vanishes, but this mode persists.
Therefore, it is not appropriate to further call it T-S mode. For this reason, this mode is named
the first mode2. Higher unstable modes are named in order of the frequencies, the second
mode3, third mode and etc. These higher unstable modes were first verified experimentally
by Demetriades (1974). Mack (1990) introduced the terminology ”acoustic mode”, referring
to the second and all other higher modes, while he named the first mode ”vorticity mode”4.
He further expanded this concept to unstable modes, which are usually only observed for
supersonic flows. These unstable acoustic modes were also found numerically, respectively, in
a confined supersonic mixing layer (Tam & Hu, 1989a), a two-dimensional jet flow (Mack,
2 In the literature, this mode is always referred to as the first Mack mode.
3 The second mode is always referred to as the second Mack mode.
4 In some literature, it is termed hydrodynamic mode.
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1990), a supersonic round jet flow (Lindzen & Barker, 1985; Luo & Sandham, 1997; Parras &
Le Dizès, 2010), and, more recently, a hypersonic blunt cone boundary layer (Knisely & Zhong,
2019a, 2019b).

The study of boundary layer stability has important implications for the understanding of the
occurrence of laminar-turbulent transition. As a semi-free shear layer, the boundary layer
stability is largely influenced by the free stream and the wall surface. When a disturbance, such
as an acoustic wave or vorticity, enters the boundary layer from the free stream, the growth
of the disturbance is triggered by a linear eigenmode which leads to a non-linear breakdown
to turbulence. This process of converting external disturbances entering the boundary layer
into waves within the boundary layer and providing initial amplitude, frequency, and phase
is defined as receptivity by Morkovin (1969). The eigenmodes that determine the linear
growth are obtained by solving the eigenvalue problem of the homogeneous linearised stability
equation. As for the final step, the breakdown to turbulence is mainly caused by non-linear
secondary instabilities when the amplitude of the perturbation reaches a certain level. This
three-step process is the most classical path of transition with weak disturbances. Besides, if
the amplitude of the disturbances is not small, transient growth as the second path of transition,
which is based on the non-orthogonal nature of eigenfunctions, becomes important (Schmid
& Henningson, 2001). If the disturbances are large enough to completely bypass their linear
growth, a direct breakdown to turbulence occurs, which is the mechanism of the third path of
transition (Morkovin, 1985). A graphical summary of the transition paths leading to turbulence
can be found in Morkovin et al. (1994), which includes another two paths in addition to
the three main paths, laying between transient growth and eigenmode growth and between
transient growth and the bypass mechanisms.

With the development of computer science and numerical computing, the study of the stability
of compressible boundary layers has become increasingly complex and has been extended
to the hypersonic regime (Zhong & Wang, 2012). More factors are considered, including
temperature gradient, roughness, temperature of flat plate, etc. But the analytical solution
to these problems is scarce. In the present work, we make full use of the analytical solution
(2.35) to the Pridmore-Brown equation (PBE) (2.31) to focus on the temporal and spatial
stability problems. The goal of the present study in this chapter is to find unstable modes using
analytical solutions and characterise different modes to study their behaviours. It is worth
mentioning that the same exponential boundary layer model was suggested by Oberlack (2001)
for a turbulent boundary layer (TBL) flow using symmetry methods. Using TBL data at a very
high Reynolds number from the experiments of Saddoughi & Veeravalli (1994), he concluded
that the largest part of a TBL, i.e. the deficit region, is covered by an exponential profile. The
conclusion was later validated by the experiments by Lindgren et al. (2004). Different to
the analysis of the exponential boundary layer in Campos & Serrão (1998), we study the
entire spectrum, including both the real and imaginary part of the eigenvalues, where the
imaginary part refers to stability problems. All results in this chapter are founded on our new
solution to the PBE with an exponential profile (2.31) in terms of the confluent Heun function
(CHF), from which we derive the corresponding eigenvalue problem and completely solve for
the eigenvalues using a numerical root-finding algorithm. Based on these eigenvalues, we
comprehensively analyse the stability of both sub- and supersonic flows and induced acoustic
phenomena based on the eigenvalues and eigenfunctions.

This chapter is structured as follows. In §3.2, with the appropriate boundary conditions for the
stability problem, the boundary value problem is converted to an algebraic eigenvalue problem.
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Asymptotic solutions of the eigenvalue problem for both temporal and spatial stability are
derived in the limiting parameter cases as functions of the Mach numberM and the streamwise
wavenumber α for the former, and the Mach number M and the frequency ω for the latter.
In §3.3 and §3.4, numerical results are provided separately for the temporal and the spatial
stability problem to validate the analytical results and to compare them with previous theories.
In addition, features of the acoustic modes are thoroughly discussed. In §3.5, we summarise
the similarities between the results for temporal and spatial stability, analyse their differences
and, most importantly, further establish the links between them. In the last part, §3.6, we state
the main conclusions of this chapter and discuss some valuable potential subjects. Parts of the
analysis and numerics in the present paper were aided by Maple 2020 (Maplesoft, 2020)
and MATLAB 2020b (Mathworks, 2020).

In this chapter, the parts of general analysis and temporal stability (§3.2 and §3.3) are based
on the peer-reviewed publication Zhang & Oberlack (2021). Essential parts of spatial stability
(§3.4), and the association between temporal and spatial stability (§3.5) are completed
according to the work in Baumgärtener, Zhang and Oberlack (2022), which is going to be
submitted.

3.2 Eigenvalue problem

3.2.1 Eigenvalue equation

In this section, with the exact solution (2.35) to the PBE (2.31) and appropriate boundary
conditions, we derive the eigenvalue problem for the boundary layer stability. We first assume
that the energy is bounded. This means that the amplitude of the density perturbation vanishes
at y → ∞, which induces the first boundary condition

lim
y→∞

ρ̂(y) = 0. (3.1)

We should note that presently we explicitly exclude neutrally stable supersonic modes, i.e. we
do not consider a finite ρ̂ because we are mainly interested in unstable modes (see e.g. Blumen
et al., 1975).

The spectrum of eigenvalues obtained by employing (3.1) is not continuous but discrete. The
difference between the discrete and continuous spectrum is closely linked to the eigenfunctions
in the asymptotic limit y → ∞. The discrete spectrum is linked to a vanishing ρ̂ as y → ∞,
while the continuous spectrum corresponds to a bounded value of ρ̂ (Fedorov & Tumin, 2011).

The second boundary condition is obtained through the impermeability condition at the wall.
We adopt here the simplest case, i.e. an inelastic rigid wall. Thus, the normal component of
the velocity perturbation at the wall vanishes, i.e.

v̂(0) = 0. (3.2)

Employing equation (3.2) into (2.30c), we obtain for y = 0 that

dρ̂

dy
(0) = 0, (3.3)
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which is the second boundary condition for ρ̂.

Inserting the solution (2.35) into the first boundary condition (3.1), yields

lim
y→∞

ρ̂(y) = lim
y→∞

(︂
C1e

√
θy + C2e

−
√
θy
)︂
= 0, (3.4)

where Hc(; 0) = 1 (Olver et al., 2010) has been employed.

As in general ω or α is complex, according to (2.36) this renders θ also to be complex. Hence,
we decompose θ as follows

θ = θr + iθi. (3.5)

Temporal stability We first consider the temporal stability problem, i.e. α ∈ R and ω ∈ C,
which gives

ω = ωr + iωi, (3.6)

where ωr = ℜ(ω) is the frequency and ωi = ℑ(ω) is a growth rate in time. If we consider the
normal-mode ansatz (2.11), it shows

ρ′(x, y, t) = ρ̂(y)ei(αx−ωrt)eωit, (3.7)

which indicates a rate of decay for ωi < 0 and a rate of growth for ωi > 0. In this case, θr and
θi are given by

θrt = α2 −M2
[︁
(α− ωr)

2 − ωi
2
]︁
, (3.8a)

θit = 2M2(α− ωr)ωi. (3.8b)

Spatial stability Next, for the spatial stability problem with ω ∈ R and α ∈ C we have

α = αr + iαi, (3.9)

where αr = ℜ(α) is the wavenumber and αi = ℑ(α) is a growth rate in space. Taking (3.9)
into the normal-mode ansatz (2.11) results in

ρ′(x, y, t) = ρ̂(y)ei(αrx−ωt)e−αix, (3.10)

which means a rate of growth for αi < 0 and a rate of decay for αi > 0. In this case, θr and θi
read

θrs = αr
2 − αi

2 −M2
[︂
(αr − ω)2 − αi

2
]︂
, (3.11a)

θis = 2αrαi − 2M2(αr − ω)αi. (3.11b)

With (3.5), the square root of θ reads (Mostowski & Stark, 2014)

√︁
θr + iθi =

√
2

2

[︃√︂√︁
θr2 + θi2 + θr + sign(θi)i

(︃√︂√︁
θr2 + θi2 − θr

)︃]︃
, (3.12)
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where the principal value is taken, and the branch cut is along the negative real axis. Other
choices of the square root are equally possible and independent of physics.

Employing (3.12) into (3.1) indicates that the boundary condition can only be satisfied when
C1 = 0. Therefore, the solution (2.35) reduces to

ρ̂(y) = C2e
iMαe−y−

√
θy˜︂Hc

(︃
;
αe−y

α− ω

)︃
, (3.13)

where the omitted set of parameters is to be taken from (2.38).

Inserting the second boundary condition (3.3) into the solution (3.13) yields(︂
−iMα−

√
θ
)︂ ˜︂Hc

(︃
;

α

α− ω

)︃
− α

α− ω
˜︂Hc

′
(︃
;

α

α− ω

)︃
= 0. (3.14)

where ˜︂Hc
′
denotes the derivative of the ˜︂Hc function with respect to the independent variable,

which is the final argument of ˜︂Hc. As a result, the boundary value problem (2.35), (3.1)
and (3.3) is converted to the algebraic eigenvalue problem (3.14), whereM and α are free
parameters and ω is the sought eigenvalue in the complex domain for the temporal stability
problem, and M and ω are free parameters and α is the sought eigenvalue in the complex
domain for the spatial stability problem.

Equation (3.14) is the basic equation for the key results presented in the following sections
in §3.3 and §3.4, and describes both acoustic phenomena and stability aspects. The central
distinction between these two processes is made by non-resonant (ωi = 0 and αi = 0) and
resonant (ωi ̸= 0 or αi ̸= 0) spectra, in which the former describes mainly the propagation of
the acoustic waves, while the latter quantifies stability.

In the rest sections of this thesis, when we refer to the temporal stability problem, we mean
that α ∈ R is the parameter, and ω ∈ C is the sought eigenvalue. When we refer to the spatial
stability problem, we mean that ω ∈ R is the parameter, and α ∈ C is the sought eigenvalue. If
we only mention the stability problems, we are referring to both. A special case occurs in §3.5,
where ω ∈ C and α ∈ C happen simultaneously, and we call it temporal-spatial stability.

It is to note that the PBE (2.31) admits the following discrete symmetry in parameter space,
i.e.

α→ −α, ω → −ω. (3.15)

For the temporal stability problem we employ α ∈ R and ω ∈ C, the symmetry (3.15) maps
neutrally stable modes to neutrally stable modes (ωi = 0), while unstable modes (ωi > 0)
generate stable modes (ωi < 0). As we are presently interested in neutrally stable and unstable
modes, we subsequently limit ourselves to α ∈ R+ for the temporal stability problem. Similarly,
for the same reason of symmetry between stable and unstable modes, we restrict the parameter
ω ∈ R+ for the spatial stability problem.

3.2.2 Asymptotic analysis for the eigenvalue equation

Due to the transcendental behaviour of the CHF, an exact analysis of the eigenvalue equation
(3.14) turned out to be impossible, and an explicit solution for eigenvalues is not accessible. Still,
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also a numerical solution turned out to be difficult (see §3.3 and §3.4). In fact, compared to
other hypergeometric equations and functions little is known about the family of Heun equations
and Heun functions. Against this background, an asymptotic analysis of the eigenvalues for
the small and large parameters will be performed in a preliminary step, which will then also
serve to validate the computational results. For details of the expansion of the Hc function and
the eigenvalue equation (3.14) see Appendix A.2.

3.2.2.1 Temporal stability for small and large α

We first consider the asymptotic solution of the eigenvalue problem for the small wavenumber,
i.e. α → 0. From theoretical considerations and results to be shown in §3.3, a power-series
expansion of ω as a function of α is suggested, i.e.

ω = k1α+ k2α
2 + k3α

3 +O(α4). (3.16)

Substituting the above relation into (3.14), expanding the Hc function by power series (Ron-
veaux & Arscott, 1995) and collecting the coefficients of the powers of α, the eigenvalue
equation (3.14) can be rewritten as

a1(k1;M)α+ a2(k1, k2;M)α2 + a3(k1, k2, k3;M)α3 +O(α4) = 0, (3.17)

where each of the coefficient functions a1, a2 and a3 have to be zero separately. Its solution
provides the values of k1, k2 and k3 in (3.16) (see Appendix A.2), which in turn give the leading
order terms of ω for α→ 0

ω(M,α) =
M + 1

M
α−

M
(︁
2M2 + 15M + 12

)︁2
72(M + 1)4

α3 +O(α4). (3.18)

Equation (3.18) implies that there are only real ω eigenvalues for small α, and the eigenvalue
is unique. This asymptotic solution of the eigenvalues is validated by solutions of (3.14) in
§3.3.1.

Next, we consider the asymptotic behaviour of (3.14) for the large wavenumber, i.e. α→ ∞. A
Laurant series in α beginning with a linear dependence proved to be successful, where the
leading terms read

ω = l1α+ l2 + l3α
−1 +O(α−2). (3.19)

Employing the above relation to (3.14), expanding the Hc function and its derivative in the
limit α→ ∞ and collecting the leading order terms, we obtain

b1(l1;M)α2 + b2(l1, l2;M)α1 + b3(l1, l2, l3;M)α0 +O(α−1) = 0, (3.20)

where each coefficient function b1, b2 and b3 has to vanish separately, which in turn determines
l1-l3 (see Appendix A.2). Together with (3.19) we obtain

ω(M,α) =
M +

√
M2 + 4

2M
α+ l2(M) + l3(M)α−1 +O(α−2), (3.21)
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Figure 3.1: A tree diagram to illustrate (3.21)/(3.22) and (3.28)/(3.29).

where l1 =
(︂
M −

√
M2 + 4

)︂
/2M has been excluded (see Appendix A.2) and

l2(M) = ± M3 −M2
√
M2 + 4 +M +

√
M2 + 4(︂

M3 −M2
√
M2 + 4 + 4M − 2

√
M2 + 4

)︂√︁
−2M2 + 2M

√
M2 + 4

, (3.22)

i.e. we obtain two real values of l2, while the values of l3 have been omitted due to the limitation
of space. Without giving details we observe that for l3 we get four values corresponding to
one value of l2, i.e. we have eight values of l3 in total. An illustration of multiple values of li
is shown in figure 3.1. We observe that this branching process continues for higher li, and
further for each value α, i.e. multiple numbers are obtained, which leads to an infinite multi-
and real-valued behaviour of ω as α→ ∞.

It should be emphasised that the above analytical solutions (3.18) and (3.21) are only valid for
M ≤ 1 andM ≤

√
2/2, respectively, due to the limitation of the radius of convergence of the

series expansion of the Hc function. Since forM > 1 (for small α) andM >
√
2/2 (for large

α), the argument α/(ω − α) of the Hc function is located outside the radius of convergence of
its series expansion, which equals one, the power-series expansion employed in (A.13) fails.
This can be checked by substituting the leading order term from (3.18) and (3.21) into the
argument of the Hc function. However, it is still possible to obtain the value of the Hc function
by numerical methods. The numerical method to extend the evaluation of the Hc function
outside the circle of convergence of the series is the analytic continuation (Motygin, 2018).

3.2.2.2 Spatial stability for small and large ω

The asymptotic analysis of the eigenvalue equation (3.14) for spatial stability starts with a
power series to expand α as a function of ω, which reads

α (M,ω) = m1ω +m2ω
2 +m3ω

3. (3.23)
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Similar to the asymptotic analysis for temporal stability, taking (3.23) into (3.14), expanding
the Hc function by power series (Ronveaux & Arscott, 1995) and collecting the coefficients to
the powers of ω, the eigenvalue equation (3.14) can be expressed as

c1(m1;M)ω + c2(m1,m2;M)ω2 + c3(m1,m2,m3;M)ω3 +O(ω4) = 0, (3.24)

where each coefficient function c1, c2 and c3 has to be zero separately. From this, the leading
order term of α for ω → 0 reads (for details to functions c1, c2 and c3 see Appendix A.3)

α (M,ω) =
M

M + 1
ω, (3.25)

where from functions c2 and c3 the coefficients m2 = 0 and m3 = 0 are determined. The
asymptotic solution (3.25) indicates an unique real eigenvalue α for ω → 0. This result can be
clearly observed in §3.4.1.

To consider the asymptotic behaviour of (3.14) for the large frequency, i.e. ω → ∞, a Laurent
series in α is employed

α (M,ω) = n1ω + n2 + n3ω
−1. (3.26)

Substituting the above relation into (3.14), expanding the Hc function and its derivative in the
limit ω → ∞ and collecting the leading order terms, we obtain

d1(n1;M)ω2 + d2(n1, n2;M)ω + d3(n1, n2, n3;M)ω0 +O(ω−1) = 0, (3.27)

where each coefficient function d1, d2 and d3 has to vanish separately, which in turn determines
n1-n3 (see Appendix A.3).

The asymptotic solution for ω → ∞ reads

α(M,ω) =
2M

M +
√
M2 + 4

ω + n2(M) + n3(M)ω−1 +O(ω−2), (3.28)

where n1 = 2M/
(︂
M −

√
M2 + 4

)︂
has been excluded (see Appendix A.3) and

n2(M) =±
M

√
2
[︂
M8 + 6M6 + 8M4 − 2M2 − 2−M

(︁
M6 + 4M4 + 2M2 − 2

)︁√︁
M2 + 4

]︂
√︂
(M − 1)

(︁
M2 +M + 1

)︁√︁
M2 + 4−M2

(︁
M2 + 3

)︁ ×

× 1

2
(︁
M2 + 4

)︁ (︁
M4 + 3M2 + 1

)︁
− 2M

(︁
M4 + 5M2 + 5

)︁√︁
M2 + 4

.

(3.29)

At this point, we obtain two real values of n2, while the values of n3 have been omitted due
to the limitation of space. By saving details we observe four values for n3 corresponding to
one value of n2, i.e. we have eight values of n3 in total. A similar principle of multiple values
for the large ω is thereby confirmed and shown in figure 3.1. We testify that this branching
process continues for higher ni, i.e. multiple values are obtained, which leads to an infinite
multi- and real-valued behaviour of α as ω → ∞.

It should be emphasised again that the above analytical solutions (3.25) and (3.28) are only
valid forM ≤ 1 andM ≤

√
2/2, respectively, due to the limitation of the radius of convergence

of the series expansion of the Hc function.
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The results of asymptotic analysis for spatial stability are very similar to that of temporal
stability. By only taking the first leading order term in (3.18) and (3.25), or (3.21) and (3.28),
we find that ω and α are inverse functions of each other, i.e. the coefficients of the first leading
order terms of ω(α,M) and α(ω,M) are reciprocal of each other.

3.2.3 α-ω-plane analysis and physical bounds

To understand the intrinsic character of the eigenvalue spectrum ω = ω(α,M) for temporal
stability and α = α(ω,M) for spatial stability, we will first derive physical bounds in the
α-ω-plane.

We start from the temporal stability problem and consider the dimensional value of ω̃ = ω̃r+iω̃i,
where ω̃r stands for the frequency and ω̃i is the temporal damping/amplification. From (2.11)
we observe that the dimensional value of ω̃r/α̃ represents the phase velocity of the acoustic
wave in the x-direction. In the present work, under the homentropic assumption, only acoustic
modes are expected to appear. This means that the phase velocity should be greater than or
equal to the speed of sound c, which leads to a lower bound to the acoustic eigenvalues.

Normally, for subsonic flows and considering for a moment a continuous spectrum, there are
two branches (Tumin 2011; Chuvakhov & Fedorov 2016). One of the branches is the upper
bound U∞ + c, which stands for an acoustic wave to propagate downstream, and the other is
the lower bound U∞ − c, which represents an acoustic wave to propagate upstream. However,
the latter does not appear in the present study because we only focus on the discrete spectrum.
Further, through asymptotic analysis, we exclude the possibility of discrete modes arising from
the branch U∞ − c, which in the non-dimensional case is equivalent to ω/α = 1− 1/M of

√
θ.

A detailed explanation of this can be found in Appendix A.2.

From our results observed in both sub-and supersonic cases in §3.3.1, the phase velocity of the
perturbation is always greater than the speed of sound. The upper bound for the frequency ω̃r

emerges from the fact that the phase velocity of the perturbation cannot exceed the sum of
the speed of sound c and free-stream velocity U∞. Thus, for the acoustic modes, the phase
velocity of the perturbation in this paper satisfies the following condition

c ≤ ω̃r

α̃
≤ c+ U∞, (3.30)

where the dimensional values are given by ω̃ = U∞ω/δ and α̃ = α/δ. It yields further its
non-dimensional form

1

M
≤ ωr

α
≤ 1 +

1

M
, (3.31)

which can be observed in all the following results in §3.3.1.

For supersonic flows and M > 2, special modes appear in 1/M ≤ ωr/α ≤ 1 − 1/M . This
occurs only when the Mach number is greater than two. Otherwise, the lower bound of the
acoustic mode 1/M will constrain the eigenvalues. Those modes are the supersonic modes.
The category of sub- and supersonic modes was first discussed by Lees & Lin (1946). In the
present thesis, it is defined from the perspective of temporal stability as follows.

i) Subsonic modes, ωr/α ∈ [1− 1/M, 1 + 1/M ]: They correspond to non-radiating acoustic
waves. The perturbation of subsonic modes is normally confined to the boundary layer. The
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Figure 3.2: Scheme of temporal modes in terms of different intervals of Mach numbers: (a)M ≤ 1, (b)
1 < M ≤ 2, and (c)M > 2, where different line types with slope equal to 1− 1/M ,
1/M , 1 and 1 + 1/M correspond to the phase velocity ωr/α.

eigenfunctions correspond either to spatial exponential decay (ωi = 0) or spatial exponential
decay superposed by weak oscillations (ωi ̸= 0), in y-direction.

ii) Supersonic modes, ωr/α ∈ [1/M, 1− 1/M ]: They correspond to radiating acoustic waves
and exist forM > 2 only. The eigenfunctions of supersonic modes mainly spatially oscillate to
the far-field y → ∞ but with weak damping for ωi ̸= 0.

Figure 3.2 intuitively summarises the schematic of the different modes, which can be observed
in the results in §3.3 below. For a subsonic flow as displayed in figure 3.2(a), the acoustic
and hydrodynamic modes are distinguished by the phase velocity of the perturbation. The
hydrodynamic mode has an obviously small phase velocity, which is rather different from the
speed of sound c (Mancinelli et al., 2018). For a supersonic flow, two cases are distinguished,
i.e. 1 < M ≤ 2 and M > 2. In figure 3.2(b) for 1 < M ≤ 2, unstable acoustic modes appear.
The regions of neutral and unstable modes are separated by a transonic line ωr = α, at which
the phase velocity of the perturbation is equal to the free-stream velocity and marked by a
dash-dotted line. In figure 3.2(c) for M > 2, supersonic modes appear, which are always
unstable.
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Figure 3.3: Scheme of spatial modes in terms of different intervals of Mach numbers: (a) M ≤ 1,
(b) 1 < M ≤ 2, and (c)M > 2, where different line types with slope equal toM/(M − 1)

,M , 1 andM/(M +1) correspond to the reciprocal of the phase
velocity αr/ω.

In the case of the spatial stability problem, physical bounds remain, i.e.

c ≤ ω̃

α̃r
≤ c+ U∞. (3.32)

Thus, the classification of subsonic and supersonic modes is as the same as that of temporal
stability. For the spatial stability problem where the eigenvalue spectrum α = αr + iαi is
sought, It yields further its non-dimensional form

M

M + 1
≤ αr

ω
≤M, (3.33)

The classification of subsonic and supersonic modes also follows the classification under physical
bounds (3.30).

i) Subsonic modes, αr/ω ∈ [M/(M + 1),M/(M − 1)].

ii) Supersonic modes, αr/ω ∈ [M/(M − 1),M ].

Figure 3.3 shows the scheme of spatial stability modes for different Mach numbers.
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Note that here we classify the modes by the phase velocity in the x-direction. This should
not be confused with the velocity of the base flow. When we refer to subsonic, transonic, and
supersonic flow (case), we are referring to the Mach number of the free stream,M < 1,M = 1,
andM > 1 respectively.

3.2.4 The neutral-unstable mode border

It was already noted above that the line of neutral stability is separated by the transonic line,
at which phase velocity and free-stream velocity are equal. In the present notation, this means
ω = α (same applies for α = ω), which, being employed in the PBE (2.31), simplifies the latter
to

d2ρ̂

dy2
+ 2

dρ̂

dy
+
(︁
α2M2e−2y − α2

)︁
ρ̂ = 0. (3.34)

The exact solution of (3.34) can be expressed in terms of Bessel functions, i.e.

ρ̂(y) = C ′
1e

−yJν(αMe−y) + C ′
2e

−yYν(αMe−y), (3.35)

where ν =
√
α2 + 1, and Jν(z) and Yν(z) are Bessel functions of the first and second kind

(Olver et al., 2010).

These Bessel functions admit the following asymptotic expansion when ν is fixed and for z → 0,
i.e. Jν(z) ∼ (z/2)ν /Γ(ν + 1) for ν ̸= −1,−2, ... and Yν(z) ∼ −Γ(ν) (z/2)−ν /π for ℜ(ν) > 0.
Substituting this into (3.35) and using the first boundary condition (2.33), we directly obtain

C ′
2 = 0. (3.36)

Employing the second boundary condition (3.3) into (3.35), we obtain the eigenvalue problem

αMJν+1(αM)− (ν + 1) Jν(αM) = 0, (3.37)

whereM is the free parameter and α is the sought eigenvalue.

For a givenM , (3.37) defines the α+ which denote the crossings (labelled with red crosses)
of the ω = α line with the modal lines as shown in figure 3.5(a) and figure 3.6(a). A modal
line is the black solid line referring to the real parts of the eigenvalues at varying parameters.
Or for spatial stability, (3.37) defines the ω+ which stands for the crossings (labeled with red
crosses) of the α = ω line with the modal lines as shown in figure 3.14(a) and figure 3.15(a).
Further, they mark the starting points of temporally unstable modes with ωi ̸= 0 (at crosses
ωi = 0) in the ωi-α diagram as may be taken from figure 3.6(b), and the starting points of
spatially unstable modes with αi ̸= 0 (at crosses αi = 0) in the αi-ω diagram as may be taken
from figure 3.15(b).

In the limit of large M , (3.37) may be solved explicitly. For this we use the asymptotic
expansion of the Bessel function of the first kind when ν is fixed and for z → ∞, which reads
Jν(z) =

√︁
2/ (πz) cos (z − νπ/2− π/4) (Olver et al., 2010). Using this for the limitM → ∞

and implementing it into (3.37), the first term, i.e. αMJν+1 (αM) in (3.37), becomes the
leading order term. For the cosine function to become zero, the argument of the trigonometric
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function in the asymptotic expansion has to satisfy

αM = nπ +
νπ

2
+
π

4
, (3.38)

which gives a dispersion relation and indicates that n ∈ N has to be large in the limit of large
M , i.e. nπ is dominant on the right-hand side of (3.38). Thus, an explicit expression of infinite
eigenvalues reads

α =
nπ

M
, (3.39)

for largeM and large n ∈ N.

All the above analytical results are validated by the computations shown in §3.3 and §3.4.
The number of the intersections is increasing with growing Mach numbers, as may be taken
from figures 3.5(a), 3.6(a), 3.14(a) and 3.15(a). Intersections can be computed numerically
through (3.37), which gives the critical wavenumber for each mode for fixed Mach number
or the critical Mach number for each mode for fixed wavenumber. The neutral stability line
(ωi = 0) in figure 3.8 and the neutral stability line (αi = 0) in figure 3.17 are also determined
through (3.37).

3.3 Results for temporal stability

In this section, we present detailed results in the case of the eigenvalue problem (3.14) for
temporal stability. For this, the key difficulty is the precise numerical evaluation of the CHF,
i.e. the Hc function and its derivative. For this purpose, we employed both Maple 2020
and Matlab code for which we used the external CHF package by Motygin (2018). The
latter package was used to validate the results obtained by Maple 2020. The Hc function in
Maple 2020 circumvents the complex connection problem between different series expansions
and instead applies an analytic continuation method that provides high precision numerical
evaluations in the whole complex domain. From a computational point of view, this is a major
advantage compared to the solutions obtained by the Frobenius method in Campos & Serrão
(1998).

The root-finding algorithm for determining ω from (3.14) is based on Müller’s method (Lang
& Frenzel, 1994), which is an extension of the secant method using quadratic interpolation
for faster convergence. An introduction to this numerical algorithm can be found in Zhang
(2018). Meanwhile, a detailed description of the numerical method to obtain initial guesses
for using Mueller’s method is given by Baumgärtner (2020). For large values ofM and α, the
convergence when evaluating (3.14) became increasingly difficult. This made it necessary to
increase the number of digits up to 150 for both Maple 2020 and Matlab and to drastically
reduce the termination error down to O(10−20).

Note that because α and M are real-valued, the imaginary parts of the eigenvalues, i.e. ωi,
are symmetric about the real axis (Schmid & Henningson, 2012). In the following, only the
positive values of ωi are shown. Here we recall the symmetry (3.15) or, in other words, the
eigenvalue ω is complex conjugate, i.e. the stable behaviour due to −ω and produced by −α is
not considered presently.
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3.3.1 Numerical eigenvalues

Figures 3.4-3.6 display results for the frequency ωr versus the wavenumber α and the temporal
growth rate ωi versus the wavenumber α for six fixed Mach numbers, M = 0.2, M = 0.5,
M = 0.8,M = 1,M = 1.5 andM = 3. Each solid line stands for one mode. We call these lines
the modal line. The first mode, i.e. the lowermost continuous line in each case, corresponds to
the smallest ωr for a given α and the second and higher modes refer to increasing ωr.

Figure 3.4: The frequency ωr at the Mach numbers (a) M = 0.2, (b) M = 0.5, (c) M = 0.8 and (d)
M = 1. Line types of bounds are defined in figure 3.2.

It should be emphasised, as mentioned in §3.1, that the lowermost line here indicates the first
acoustic mode corresponding to the second (Mack) mode. Particularly, the so-called first (Mack)
mode of a compressible boundary layer (or entropy/vorticity/hydrodynamic/Kelvin-Helmholtz
mode in some literature) is not expected to presently appear due to the isothermal assumption
associated with a constant speed of sound (Mack 1969; Candelier et al. 2012). This type of
mode will be induced by introducing a temperature gradient in the equation of state or due to
energy changes, such as an energy equation is supplemented to the PDE system. This does not
lead to the PBE but the generalised PBE. The black dashed and red dashed lines, respectively
corresponding to the slopes ωr/α = 1 + 1/M and ωr/α = 1/M represent the upper and lower
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bounds of the phase velocity for the acoustic modes. On the upper bound, the black dashed
line, the starting point for each higher mode is designated by a red bullet. Note that values
exactly on the black dashed line, subsequently named mode starting points, only produce
trivial solutions because they make θ = 0 in (2.35). To determine the mode starting points, we
substitute the relation ω = (1 + 1/M)α into the eigenvalue equation (3.14) and then apply the
root-finding algorithm to obtain the eigenvalues. The red solid line corresponds to the transonic
line, ωr = α, where the phase velocity of the perturbations equals the free-stream velocity.
This line designates the border below which the imaginary part of the eigenvalue becomes
non-zero and thus is named the neutral-unstable mode border, which was detailed discussed
in subsection §3.2.4. The blue dashed line corresponding to ωr/α = 1− 1/M stands for the
lower bound of subsonic modes, i.e. those modes with eigenvalues below it are supersonic
modes. It is only shown for supersonic cases, see figure 3.5 and figure 3.6.

In figure 3.4, only the real parts of the eigenvalue for the casesM = 0.2,M = 0.5,M = 0.8 and
M = 1 are plotted because the imaginary part of ω is zero. This result validates the previous
conclusion by Mack (1990) that there is no acoustic instability for the subsonic and transonic
cases. In figure 3.4, we can clearly observe that for the subsonic cases, all the eigenvalues are
above the neutral-unstable mode border, i.e. ωr/α = 1. The phase velocity of the perturbation
is always greater than the free-stream velocity. This acoustic characteristic does not lead to
acoustic instability. The critical case appears for the transonic case, where the lower bound
ωr/α = 1/M overlaps with the red solid line with ωr/α = 1. Furthermore, the subsonic results
validate the asymptotic analysis in §3.2.2 that for small α, only unique and real eigenvalue
exists, while multiple eigenvalues appear for large wavenumbers.

Figures 3.5 and 3.6 show the frequency ωr in subfigure (a) and the growth rate ωi in subfigure
(b) for two supersonic casesM = 1.5 andM = 3. It is obvious that for the supersonic cases there
are denser starting points leading to more acoustic modes. Due to the supersonic character
of the free stream, the phase velocity of the perturbation can be smaller than the free-stream
velocity, reflected in intersections of the different modes with the red solid line ωr/α = 1,
marked by red “+”. Each intersection gives rise to a set of unstable modes. In figure 3.5 for
M = 1.5, we have α+1 = 3.62 and α+2 = 14.37, which was computed from (3.37). To the
right of the intersections, i.e. below the red solid line in figure 3.5(a) and 3.6(a), the phase
velocity of the perturbation is smaller than the free-stream velocity, hence unstable acoustic
modes, i.e. eigenvalues with imaginary parts, arise. In figure 3.5(b) forM = 1.5, the unstable
modes appear as soon as the phase velocity of the perturbation is smaller than the free-stream
velocity. With increasing α, the growth rate ωi reaches the maximum marked with a red square
in figure 3.5(b), whose real part is also marked in figure 3.5(a). The maximum ωi has an
order of magnitude of 10−11, which might not be detected or cause any acoustic instability
experimentally. However, this small value is verified not to be a numerical error and exists
theoretically. It is important to mention that a second intersection exists in figure 3.5(a), which
refers to a second unstable mode appearing from α+2 on. However, their values are even much
smaller than the order of magnitude of 10−11 and will not be shown presently. Such higher
unstable modes are more clearly visible for larger Mach numbers. In figure 3.6 for M = 3,
the locations of the maxima of the imaginary part of the first three modes are respectively
indicated, by a red circle, a red rhombus and a red triangle and are shown in figure 3.6. In
comparison with the first mode, the maximum growth rates of the higher modes fall off rapidly
with an exponential decay rate.

Figures 3.4, 3.5 and 3.6 show that in subsonic and transonic boundary layer flows no unstable
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Figure 3.5: The frequency ωr (a) and the growth rate ωi of the first mode (b) at the Mach number
M = 1.5. : Maximum in ωi. Definition of lines is according to figure 3.2.

Figure 3.6: The frequency ωr (a) and the growth rate ωi of the first three modes (b) at the Mach number
M = 3. , , : Maximum in ωi of the first, second and third mode. Definition of lines is
according to figure 3.2.

acoustic modes exist, which confirms the results of the asymptotic analysis in §3.2.3. The
unstable acoustic modes exist for the supersonic exponential boundary layer, depending on
whether the phase velocity of the perturbation is smaller than the free-stream velocity. The
number of eigenvalues grows with the increase of both wavenumbers and Mach numbers. The
higher acoustic modes have weaker unstable behaviour.

By varying the Mach numbers, figure 3.7 demonstrates the transition of the most unstable
acoustic mode, i.e. the first acoustic mode, from subsonic to supersonic. ForM = 3, the most
unstable mode marked by a red triangle is a subsonic mode, i.e. lies above the 1− 1/M line
for M = 3. However, with increasing Mach numbers, here M = 4 and M = 5, the location
of the maximum of ωi shifts towards smaller α to below the corresponding sub-supersonic
mode border ωr/α = 1− 1/M , i.e. the most unstable mode becomes a supersonic mode, which
means ωr/α < 1− 1/M . This phenomenon is also known for other types of supersonic flows
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Figure 3.7: The transition of the maximum growth rate from the subsonic mode to the supersonic
mode. (a) The frequency ωr and (b) the growth rate ωi of the first mode for Mach numbers
M = 3,M = 4 andM = 5. Definition of blue dashed lines is according to figure 3.2.

and was also reported in a supersonic round jet flow in Parras & Le Dizès (2010) and Samanta
(2016), in a supersonic cavity flow in Zhang et al. (2016), in a hypersonic boundary layer flow
in Knisely (2018) and in a supersonic jet in Chen et al. (2018). Parras & Le Dizès (2010) gave
precise numerical value to this type of the transition and concluded in their study for round
jet flows that a supersonic mode becomes the most unstable mode when the Mach number is
greater thanM ≈ 5. For the present case of an exponential boundary layer flow, this value is
aroundM ≈ 4, as observed in figure 3.7.

A more comprehensive overview of the stability behaviour for the present flow is obtained by
means of a 3-D plot in figure 3.8, where we plot the growth rate ωi of the first three acoustic
modes as a function of M and α. Therein we give contour lines, where the thick solid line
corresponds to the border between ωi = 0 and ωi > 0. This line was computed from equation
(3.37), which approximatesM = 1 for large α, and α = 0 for largeM . This is consistent with
the previous conclusion that acoustic instabilities appear only for supersonic flows. In figure
3.8, the dashed line represents the maximum of ωi for a fixed α orM .

In figures 3.8(a)-(c), we again observe that the first acoustic mode is always the most unstable
one and further that the value of ωi decreases exponentially with increasing mode number. A
similar conclusion for acoustic modes was also reported by Mack (1965) for two-dimensional
adiabatic flat-plate boundary layer flows and jet flows by Tam & Burton (1984b).

Mack’s conclusion for boundary layer flows was that the first acoustic mode instability occurs
for M ≥ 2.2. The present critical Mach number is very close to this value, which can be
observed in figure 3.8(a). Theoretically, the critical Mach number is related to the value of
α and decreases with increasing wavenumbers, till M = 1 for α → ∞. Nevertheless, if we
choose an effective growth rate, e.g. ωi = 0.001 to indicate the smallest detectable instability,
the critical Mach number isMc ≈ 2.7 at α ≈ 2.2, as shown in figure 3.8(a) by the contour line
for ωi = 0.001. In addition to the fact that with increasing modes the growth rates fall off
exponentially, the entire contour seems to shift towards large α for higher modes.

Furthermore, through the maximum ωi marked by a black dashed line, it is interesting to notice
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Figure 3.8: The growth rate ωi as a function ofM and α for (a) first mode, (b) second mode and (c)
third mode. defines the neutral-unstable mode border according to (3.37).
defines the line of maximum growth for a givenM or α and defines the same line
but projected onto the α-M plane.

that for every fixed Mach number there exists a maximum growth rate. The corresponding
wavenumber decreases with the Mach number, and the maximum growth rate increases with
the Mach number. This fact means that high Mach numbers and small wavenumbers are the
most unstable cases.

3.3.2 Acoustic boundary layer

For the development of the present theory, we employed the boundary condition of a vanishing
disturbance for y → ∞ in (3.1). With this, however, the decay rate is not specified. From a
physical and also a technical point of view, it is essential to know, which of the eigenfunctions
decay very slowly, and hence, are audible far away from the boundary layer. For this, we
analyse the decay rate of the eigenfunctions in the limit y → ∞. For complex-valued ω, θ
emerging in the density amplitude in (3.13), this can be rewritten in the form of (3.5) and√
θ in the form of (3.12). Based on this, the density perturbation for the far-field, i.e. y → ∞,
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Figure 3.9: An illustration of the acoustic boundary layer δa and the wave angle Θ of the exponential
boundary layer flows. k is the wave vector.

simplifies to

ρ(x, y → ∞, t) ∼ e−
√
θyei(αx−ωt) = e−βryei(αx+βiy−ωt), (3.40)

where we have made use of the fact that e−y in the exponent is negligible compared to y and
Hc(; 0) = 1. Further,
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(3.41)

represents the wall-normal exponential spatial decay and

βi = − sign (θit)
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(3.42)

is the wavenumber in y-direction, where we have used (3.5).

The exponential decay with the wall distance is also true for any other fluctuating flow variable
in (2.8c), (2.32) and (2.33). In order to quantify how far out an acoustic signal may be
detected, an acoustic boundary layer thickness (ABLT) is defined by

δa =
1

βr
, (3.43)

i.e. all perturbations decay as q ∼ e−y/δa .

According to (2.28a) and the non-dimensionalisation of the entire system, the ABLT is a
multiplier of the hydrodynamic boundary layer thickness δ. This value of δa quantifies the
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Figure 3.10: Acoustic boundary layer thickness defined by (3.43), where only the first acoustic mode is
shown. (a) ABLT δa as a function of α andM . defines the neutral-unstable mode
border according to (3.37). refers to the line of maximum δa for a given α. (b) and
(c) δa for different Mach numbersM = 0.5, 1, 1.5, 3, 4, 5.

range of how far out the perturbation reaches, compared to the boundary layer thickness δ.
Across this thickness, an acoustic signal decays to a factor 1/e of its original amplitude at the
wall. A small βr, or similarly a large δa corresponds to acoustic signals that have a far-reaching
impact away from the wall. An intuitive visualisation can be found in figure 3.9.

Figure 3.10 displays the results of the ABLT defined by (3.43) for the first mode plotted on a
double logarithmic scale. Figure 3.10(a) is a 3-D plot of the ABLT as a function ofM and α.
Its projections on the α-δa-plane for different fixed Mach numbers are shown in figures 3.10(b)
and 3.10(c).

The 3-D plot exhibits a comprehensive picture of the ABLT. For small Mach numbers up to about
1 and small α, the ABLT behaves like an inverse power-law, i.e. δa ∼ α−n with n ≈ 2. Their
large values of δa correspond to small or zero values of ωi in figure 3.8. Hence the perception
of noise in this parameter range does almost not exist. For large Mach numbers, the decay
for small wavenumbers is similar, but with increasing α a minimum is obtained and followed
by a strong increase. More detailed interpretations can be obtained from figures 3.10(b) and
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3.10(c). In these two figures, we select a few representative Mach numbers to represent the
three sets of cases forM ≤ 1, 1 < M ≤ 2, andM > 2.

For the subsonic and transonic cases,M = 0.5 andM = 1 in figure 3.10(b), the ABLT outlines a
smooth monotone power-law decay with increasing wavenumbers. However, for the supersonic
cases, the behaviour becomes more complex.

For 1 < M ≤ 2,M = 1.5 in figure 3.10(b), the ABLT has a tendency of decay but with a slightly
slower decay rate when α exceeds a value marked by a triangle indicating the appearance
of ωi ̸= 0. In summary, for 0 < M ≤ 2 the ABLT decays as a power-law with increasing
wavenumbers. With increasing Mach numbers the ABLT generally decreases, but with the
exception of the supersonic case for which the ABLT for large wavenumbers becomes greater
than that in the subsonic case, see the inset in figure 3.10(b).

For M > 2 in figure 3.10(c), the pattern is largely different. The ABLT does not decay
monotonically. Noting (3.5), (3.8) and (3.41), we observe that for ωi = 0 and ωr/α = 1±1/M ,
there is βr = 0, which corresponds to two singularities of the ABLT. One of the singularities,
ωr/α = 1 + 1/M , appears for small wavenumbers, i.e. the ABLT tends to infinity. However,
the other singularity of the ABLT, i.e. ωr/α = 1− 1/M , doesn’t exist due to the appearance of
a non-zero ωi. For this reason we again note (3.5), (3.8) and (3.41) in the interval, ωr/α ∈
[1 − 1/M, 1/M ], where θrt becomes negative. This leads to a vertical rise of the ABLT in a
small interval as observed in figure 3.10(c). After a drastic growth with increasing α, the
contribution of ωi to the absolute value of θrt in (3.41) tends to zero. At the same time, with a
disappearing ωi for large α, the ABLT increases exponentially (see the inset in figure 3.10(c)
with a semi-logarithmic rescaling).

The contribution of the absolute value of ωi forM > 2 is essential as it affects the location of
the minimum δa. With increasingM , the absolute value of ωi increases. This is the reason why
the minimum does not occur exactly at the second location, where we have θrt = 0, but shifts
towards slightly smaller values of α. From the preceding analysis, it is apparent that there is a
certain α−domain, where we have both ωi ̸= 0 and large δa, such that boundary layer noise is
audible from afar.

3.3.3 Wave angle

A geometrical quantity closely related to δa is the wave angle Θ, see figure 3.9. It is an angle
between the phase velocity of the perturbation in the free stream and the streamwise direction,
which reflects the pattern of the acoustic wave in the free stream. From (3.40) the wave angle
Θ in the far-field may readily be define as

Θ = arctan
(︃
βi
α

)︃
, (3.44)

while according to (3.5), (3.12) and (3.42), βi and hence Θ is apparently only non-zero for a
non-zero ωi. In other words, neutrally stable modes will always propagate along the x-axis
in the free stream. Especially for subsonic boundary layer flows, the perturbation propagates
along the streamwise direction parallel to the wall, regarded as evanescent waves in Campos &
Serrão (1998), as can be taken from figure 3.11(a) whereΘ = 0 forM ≤ 1 and all α. Note that

43



Figure 3.11: Wave angles Θ for large y defined by (3.44), where only the first acoustic mode is shown.
The minus sign implies, that we only consider unstable modes. (a) Θ as a function ofM
and α, (b) Θ as a function of α for different Mach numbersM = 1.5,M = 3,M = 4 and
M = 5. defines the neutral-unstable mode border according to (3.37).

for a given set of α andM , there may exist multiple eigenvalues, which may lead to multiple
wave angles.

Figure 3.11(a) is a 3-D plot of the wave angle for the first mode as a function of M and α.
Its projection on the α-Θ-plane for different Mach numbers is displayed in figure 3.11(b). A
non-zero wave angle apparently only appears for the supersonic cases, i.e. M > 1, while a
significant deviation from zero is only visible for M > 2. As noted above, for subsonic and
transonic cases, acoustic waves propagate essentially parallel to the streamwise direction, i.e. no
acoustic waves form in the free stream. For the supersonic cases, acoustic waves apparently
propagate transversely, i.e. Θ ̸= 0. The rapid amplification of the wave angle observed in figure
3.11 has the same reason as explained for the ABLT in §3.3.2.

To comprehend the direction of the phase velocity of the wave for M > 2, note the sign of
βi in (3.44), which depends on θit in (3.5). From figure 3.5 and 3.6, we observe that for
unstable modes, i.e. ωi > 0, α− ωr is positive. Further, it was noted above that we have the
complex-conjugate eigenvalue ω, which, in turn, results in a positive θit for negative ωi and
a negative θit for positive ωi. In concrete terms, this leads to temporally stable waves with
positive Θ and unstable waves with negative Θ, respectively. Because of this sign property, we
put a minus sign in front of Θ in figure 3.11, since we only want to consider wave angles for
unstable modes.

We note that the described wave phenomenon is not to be confused with plane incident acoustic
waves that impact a wall. By definition, these waves do not have any spatial amplitude variation
in the undisturbed free stream, i.e. they are non-dispersive waves. This is different here as we
note in (3.40) that the eigenfunctions decrease exponentially towards the free stream, i.e. these
waves are dispersive waves. Thus, the described wave angle Θ is not to be confused with the
propagation angle ψ, where the latter describes the direction in which energy travels. The
propagation angle of the acoustic wave is determined by its group velocity, which is defined as

vg =
∂ω

∂k
, (3.45)
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where ω is the angular frequency and k is the angular wavenumber. The direction of the group
velocity can be derived from the dispersion relation in the free stream given by

θ = β2 = −M2 (α− ω)2 + α2, (3.46)

where β = βr+iβi is the complex wavenumber in y-direction. Taking the implicit differentiation
of (3.46), the propagation angle ψ determined by the group velocity reads

ψ = arctan
(︃
∂ω/∂β

∂ω/∂α

)︃
≈ arctan

(︃
βi

α−M2 (α− ωr)

)︃
, (3.47)

where ωi, due to its relatively small value in comparison with ωr, i.e. ωi ≪ ωr, is neglected.
Under consideration of ωi, a detailed derivation of ψ is given in Appendix A.4. From (3.42)
and (3.47), it follows that a supersonic unstable mode produces acoustic waves in the free
stream with a positive direction of the group velocity, i.e. radiative waves. The instability
mechanism thus generates dispersive waves that spatially decrease in amplitude towards the
free stream. This radiative phenomenon generated by unstable modes has been confirmed in
recent numerical simulations (Li et al. 2010; Knisely & Zhong 2019a, 2019b) and experiments
(Maslov et al. 2009; Zhang et al. 2013; Zhu et al. 2020).

3.3.4 Eigenfunction

To observe the wave feature of the acoustic modes, the eigenfunctions of different modes for
the parameters α = 2 and M = 4 are illustrated in figure 3.12. Therein the eigenfunction
of the first unstable mode for a fixed time in the x-y-plane is shown in figure 3.12(a). From
figure 3.7, we know that for this parameter set the unstable mode is supersonic (compare also
figure 3.2(c)). In figure 3.12(a), transversal waves can be identified in the free stream, whose
amplitude grows exponentially with decreasing y towards the wall. Near the wall, we observe
strong variations and at the wall itself, though not clearly visible, a zero gradient of the density
amplitude ρ̂ is present because the density fluctuations are displayed. This observation may
be characterised as an accumulation of energy, which saturates near the wall, and leads to
temporal instability. In contrast, in figure 3.12(b) and 3.12(c) and also for the parameter set
α = 2,M = 4 we have displayed the second mode, which is weakly unstable and subsonic, and
the third mode, which is a neutrally stable subsonic mode. Both the first two modes exhibit a
wave-type spatial variation for large y, though only visible in figure 3.12(a), while this is not
the case for figure 3.12(c). Note that there is an extremely weak inviscid instability so that the
waves in the far-field in figure 3.12(b) are hardly visible.

3.4 Results for spatial stability

This section focuses on the results of the eigenvalue problem for spatial stability defined by
the eigenvalue equation (3.14). We adopt the same approach of precise numerical evaluation
when dealing with the temporal stability problem. The relevant description is given at the
beginning of §3.3. In spatial stability, as parameters, M and ω are real-valued. Under this
circumstance, the imaginary parts of the eigenvalues, i.e. αi, are always symmetric about the
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Figure 3.12: Eigenfunction plot at α = 2 and M = 4. (a) Unstable supersonic mode (ω ≈ 1.353 +
i7.198 × 10−3) with a wave-type behaviour in the far-field with the angle Θ ≈ −39.35◦.
The arrow indicates the direction of unstable waves. A weak spatial exponential decay
for large y is present though on the given domain hardly visible. (b) Unstable subsonic
mode (ω ≈ 1.906 + i2.014× 10−5) with extremely weak unstable oscillatory behaviour in
the far-field; and a wave-type behaviour almost parallel to the wall (Θ ≈ −4.42◦ × 10−4).
(c) Neurally stable subsonic mode (ω ≈ 2.403) with no unstable wave behaviour in the
far-field (Θ = 0◦).

real axis (Schmid & Henningson, 2012). To be concise, only the eigenvalues with negative αi

corresponding to unstable modes are displayed in this section.

3.4.1 Numerical eigenvalues

Figures 3.13-3.15 display results for the wavenumber αr versus the frequency ω, as well as the
spatial growth rate −αi versus the frequency ω for four representative fixed Mach numbers
M = 0.5,M = 1,M = 1.5 andM = 3. We follow the study applied in §3.3.1 and refer to the
definitions of different lines in figure 3.3. Each solid line represents one mode and is named
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Figure 3.13: The wavenumber αr at Mach numbers (a)M = 0.5 and (b)M = 1. Line types of bounds
are defined in figure 3.3.

as the modal line. In order to be consistent with the analysis of temporal stability, the solid
line consisting of the mode with the lowest frequency is still taken as the first mode. In other
words, the mode that appears for the largest αr, i.e. the uppermost continuous line in each
figure, represents the first acoustic mode, i.e. the second (Mack) mode. The first (Mack) mode
is still not detected due to the assumption of homentropic flows. The inverse of the phase
velocity αr/ω =M/(M + 1) and αr/ω =M form the lower and upper bounds of the acoustic
modes and are illustrated herein by black dashed and red dashed lines. Each starting point
is determined on the lower bound and marked by a red bullet. In fact, the positions of these
points in both temporal and spatial stability problems are identical and fixed in the αr-ωr-plane.
The transonic line where the phase velocity of the perturbation equals the free-stream velocity,
i.e. αr = ω, is represented by a red solid line. This line is also the neutral-unstable mode
border for the spatial stability problem because the modes beyond this line become unstable,
i.e. the imaginary part of the eigenvalue αi becomes non-zero. This case happens only for Mach
numbers beyond one in figure 3.14(a) and figure 3.15(a). The blue dashed line corresponding
to αr/ω =M/(M − 1) separates the subsonic mode from the supersonic mode.

Figure 3.13(a) and figure 3.13(b) are results of the eigenvalues atM = 0.5 andM = 1. Only
the real part of the eigenvalues αr is shown since the imaginary part of the eigenvalues αi is
always zero, i.e. no unstable mode exist for the subsonic flow. It can be seen that the relation
αr/ω is close to linear. In particular, when ω is close to zero, the linear relation is consistent
with the asymptotic solution (3.25). With increasing Mach numbers, higher neutrally stable
modes are found. In the investigated ω-domain there is no overlap between the modes and
the first mode seems to have the largest gradient. For all subsonic cases, the transonic line,
i.e. αr/ω = 1, is not crossed and the phase velocity of the perturbation is always greater than
the free-stream velocity.

Figures 3.14 and 3.15 show the wavenumber αr and the corresponding spatial growth rate −αi

for the supersonic casesM = 1.5 andM = 3. For a given ω interval, the number of modes raises
with increasing Mach number, i.e. more acoustic modes are detected and the starting points
become denser. The phase velocity of the perturbation falls below the free-stream velocity
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Figure 3.14: The wavenumber αr (a) and the growth rate αi of the first mode (b) at the Mach number
M = 1.5. : Maximum in αi. Definition of lines is according to figure 3.3.

Figure 3.15: The wavenumber αr (a) and the growth rate αi of the first three modes (b) at the Mach
numberM = 3. , , : Maximum in ωi of the first, second and third mode. Definition of
lines is according to figure 3.3.

and the transonic line αr/ω = 1 is crossed by the modes, where the intersections are marked
by red “+”. ForM = 1.5 in figure 3.14(a), we have the same location of the intersections as
shown in figure 3.5(a), i.e. ω+1 = 3.62 and ω+2 = 14.37. Above these intersections, i.e. above
the red solid line in figures 3.14 and 3.15, the velocity of the perturbation is smaller than
the free-stream velocity and unstable acoustic modes are identified. The amplification rate
−αi in figure 3.14(b) for M = 1.5 instantly rises after the modes surpass the red solid line.
With increasing ω, the amplification rate −αi reaches its maximum, marked by a red square,
which is in the order of magnitude of 10−11. This extremely small value has only a theoretical
meaning. The second mode in figure 3.14 also has a part that is above the transonic line and
therefore represents a set of unstable modes. However, the maximum value of −αi is even
much smaller than the order of magnitude to 10−11 and therefore it is not displayed here.
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Figure 3.16: The transition of the maximum growth rate from the subsonic mode to the supersonic
mode. (a) The frequency ωr and (b) the growth rate ωi of the first mode for Mach numbers
M = 3,M = 4 andM = 5. Definition of blue dashed lines is according to figure 3.3.

Figure 3.15 shows the results of the eigenvalue forM = 3. In figure 3.15(b), the growth rates
−αi of the first three modes are shown. Their maxima are respectively marked by a circle, a
triangle and a rhombus in red colour. It is noticeable that the maximum value of the higher
modes’ growth rate decays exponentially in comparison to that of the first unstable mode.

From figures 3.13-3.15, we conclude that no unstable acoustic modes but only neutrally stable
acoustic modes exist in subsonic and transonic boundary layer flows.

Unstable modes only arise in supersonic exponential boundary layers when the phase velocity
of the perturbation is smaller than the free-stream velocity. Among the unstable modes, the
first mode is the most unstable mode. Higher modes exist for growing M and ω but have
significantly smaller maximum growth rates −αi compared to the first mode.

With increasing Mach numbers, a transition of the most unstable acoustic mode, i.e. the first
acoustic mode, from subsonic to supersonic is again observed in figure 3.16 for the spatial case.
For M = 3, the most unstable mode marked by a triangle is a subsonic mode, i.e lies below
the M/(M − 1) line for M = 3. However, with increasing Mach numbers, here M = 4 and
M = 5, the location of the maximum of αi shifts towards smaller ω to above the corresponding
sub-supersonic mode border αr/ω =M/(M − 1) marked by blue dashed lines, i.e. the most
unstable mode becomes a supersonic mode. This phenomenon is very similar to the result
observed in figure 3.7 for the temporal stability problem. But for the present spatial case,
the critical Mach number for the transition of the most unstable mode from a subsonic to a
supersonic mode is aroundM ≈ 3.5. This value is smaller than that in the temporal case where
it is approximatelyM ≈ 4.

In figure 3.17, the spatial growth rate −αi of the first three acoustic modes is displayed as a
function ofM and ω by 3-D plots, together with contour lines for −αi. The thick contour line
marks αi = 0, i.e. beyond which imaginary eigenvalues become non-zero, the black dashed
line corresponds to the maximum −αi values for a fixed ω orM .

Once again, it is observed that the first acoustic mode is the most unstable one and the maximum
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Figure 3.17: The growth rate αi as a function of M and ω. (a) first mode, (b) second mode and (c)
third mode. defines the neutral-unstable mode border according to (3.37).
defines the line of maximum growth for a givenM or ω and defines the same line
but projected onto the ω-M plane.

values for −αi decrease exponentially with increasing mode numbers. In comparison with
the Mack-discovered critical Mach numberMc ≈ 2.2 andMc ≈ 2.7 for temporal instability as
described in §3.3.1, the critical Mach number, where exponential instability growth appears, is
found to beMc ≈ 2.5 at ω ≈ 2 for spatial instability. The reference value of the growth rate
is selected to 0.001 corresponding to a detectable spatial instability. This is visualized by the
contour line −αi = 0.001 as shown in figure 3.17(a). Since instability only occurs at larger
values of ω for higher-order modes, the entire contour moves towards higher frequencies ω in
figure 3.17(b) and 3.17(c) compared to figure 3.17(a). By observing the dashed line for the
maximum growth rate, it is clear that the most unstable case occurs under high Mach numbers
and small frequencies.
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Figure 3.18: Acoustic boundary layer thickness defined by (3.43), where only the first acoustic mode is
shown. (a) ABLT δa as a function of ω andM . defines the neutral-unstable mode
border according to (3.37). refers to the line of maximum δa for a given ω. (b) and
(c) δa for different Mach numbersM = 0.5, 1, 1.5, 3, 4, 5.

3.4.2 Acoustic boundary layer and wave angle

In order to investigate how far from the boundary layer an acoustic signal is still audible and
to consider the propagation properties of the acoustic wave for spatial instability, we show
the results of the ABLT and the wave angle in this section. We recall (3.13), from which the
density amplitude can be rewritten for y → ∞ as

ρ(x, y → ∞, t) ∼ e−
√
θyei(αx−ωt) = e−βryei(αx+βiy−ωt), (3.48)

where again ˜︂Hc(; 0) = 1 according to the definition of the CHF has been used (Ronveaux &
Arscott, 1995). For the spatial stability problem, the real part of the complex wavenumber β is
given by

βr =

√
2

2

√︂√︁
θrs

2 + θis
2 + θrs , (3.49)
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Figure 3.19: Wave angles Θ for large y defined by (3.44), where only the first acoustic mode is shown.
The minus sign implies, that we only consider unstable modes. (a) Θ as a function ofM
and α, (b) Θ as a function of ω for different Mach numbersM = 1.5,M = 3,M = 4 and
M = 5. defines the neutral-unstable mode border according to (3.37).

which characterises the exponential spatial decay of the disturbance in the wall-normal y-
direction. The imaginary part of β reads

βi = −sign (θis)
√
2

2

√︂√︁
θrs

2 + θis
2 − θrs , (3.50)

which is the wavenumber in y-direction. The expressions of θrs and θis are taken from (3.11).

The ABLT δa defined in (3.43) is further applied in this section to quantify how far out an
acoustic signal can be perceived. The previously calculated sets of eigenvalues forM , α, and
ω are used to compute βr and thereafter δa according to (3.43). Its result, i.e. the ABLT as a
function ofM and ω, is displayed as a 3-D plot in figure 3.18(a) for the first mode plotted on
a double logarithmic scale. Some representative fixed Mach numbers are picked from figure
3.18(a) and their projections on the ω-δa-plane are shown in figures 3.18(b) and 3.18(c).

From figure 3.18(b), in the range M ≤ 2, a divergence for δa is observed in the limit ω → 0
and it follows as in inverse power-law according to δa ∼ ω−n with n ≈ 2. In the same Mach
range, ω → ∞ also yields an inverse power-law, but with an exponent of n ≈ 1 in δa ∼ ω−n.
Such results mean that acoustic signals are barely detectable away from the boundary layer.
In 3.18(c) for the Mach range M > 2 nothing changes in the limiting case ω → 0, but for
ω → ∞ an exponential behaviour according to δa ∼ enω becomes visible with a scaling factor
of n ≈ 0.5. The transonic line is marked by the thick solid line in figure 3.18(a). The dashed
line marks the maximum values for δa at fixed frequencies ω.

In figure 3.19(a), a 3-D plot of the wave angle Θ defined by (3.44) as a function of M and
ω is given, therein only eigenvalues of the first modes are considered. Its projection on the
α-Θ-plane for four representative Mach numbers is presented in figure 3.19(b). In the subsonic
and transonic cases, waves propagate primarily in the streamwise direction and significant
wave angles only occur for M ≥ 2. In supersonic cases, transversely propagating acoustic
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waves with Θ ̸= 0 are observed. ForM ≥ 2, the values for −Θ increase rapidly with increasing
ω as shown in figure 3.19(b). The angle −Θ increases for larger Mach numbers up to 75◦.

To figure out the direction of the phase velocity of the wave forM > 2, it is necessary to go
back directly to (3.11b). The sign of θis decides the sign of βi due to the negative sign-function
given in (3.50) and is therefore decisive for the direction of the wave propagation. For unstable
modes, i.e. for αi < 0, there is always Θ < 0. Neutrally stable modes, i.e. αi = 0, lead to Θ = 0.
In a brief summary, a spatial unstable wave has a negative Θ and a spatial stable wave holds a
positive Θ.

As the direction of the group velocity, i.e. the direction of energy propagation, the propagation
angle ψ defined in (3.47) still holds and gives a positive direction of the group velocity for
unstable supersonic spatial modes, i.e. radiative waves that radiate energy to the free stream.
In other words, the spatial instability generates dispersive waves that spatially decrease in
amplitude towards the free stream and meanwhile exhibits a spatial growth along the positive
x-direction.

3.5 Comparison and association between temporal and spatial
stability

In this section, we first compare the results for temporal and spatial stability problems, where
similarities and differences are clearly pointed out. Then, a close connection between them is
established through the real parts of the eigenvalues in their respective problems and thereby
a linear relation between the growth rates, i.e. ωi and αi, is computed for the temporal-spatial
stability problem, in which both the frequency and wavenumber are complex-valued.

We begin with the comparison of the results in §3.3 and §3.4. From figure 3.4 and figure 3.13,
it can be concluded that the imaginary part of the frequency, i.e. ωi, in the temporal stability
problem and the imaginary part of the wavenumber, i.e. αi, in the spatial stability problem
are always zero for free-stream velocities in a subsonic range, i.e. M ≤ 1. Physically, this
means that neither temporal nor spatial instabilities appear for subsonic boundary layer flows.
Meanwhile, for the subsonic case, neutrally stable higher-order modes are always existent.

As the Mach number exceeds one, i.e. for supersonic flows, unstable modes emerge for both
temporal and spatial stability problems. Moreover, the growth rates, i.e. ωi and αi, become
larger as the Mach number increases. Higher modes are found but the growth rate decreases
exponentially with mode orders. These similarities of patterns can be obtained by comparing
figure 3.6 and figure 3.15. To determine at which flow velocity instability plays a non-negligible
role, a criterion of the growth rate for the existence of a noticeable instability is set by 0.001.
Noticeable instabilities exist around the critical Mach numberMc ≈ 2.7 in the temporal stability
problem. This critical value is byMc ≈ 2.5 in the spatial stability problem.

With figure 3.8 and figure 3.17, we can overview very similar patterns of the growth rate of
the first three modes in the temporal and the spatial stability problems. The first mode is
confirmed to be dominant and there is always maximum growth rates that are marked by
dashed lines for fixed Mach numbers.
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Figure 3.20: The temporal growth rate ωi and the spatial growth rate −αi as a function of resonant
frequency ωr and resonant wavenumber αr forM = 3. (a) First mode, (b) second mode
and (c) third mode. Definition of lines in the ωr-αr-plane is according to figure 3.2 and
figure 3.3. , , : Maximum in ωi and αi of the first, second and third mode.

Due to the similarity of the pattern of growth rates, the resulting quantities, the ABLT δa and
wave angle Θ, provide overall very similar results in the temporal and spatial stability problems.
A remarkable difference is noticed by comparing figure 3.10 and figure 3.18. The maximum
of the ABLT in the considered spectrum for M = 5 is determined as δa = 109. This value
exceeds far greater than the ABLT in the temporal case, where δa = 105. This means that
the ABLT of spatially unstable modes is much larger than that of the temporal case and thus
acoustic signals can be detected further away from the wall. Comparisons of the wave angle by
figure 3.11 and figure 3.19 show that there are no significant differences, but only some tiny
differences in values, which do not matter physically. These differences are due to the fact that
the spatial growth rate αi is in general slightly larger than the temporal growth rate ωi. In a
brief summary, for the wave angle Θ, not much physical effect is caused by the tiny difference
of the growth rates. In contrast, it causes large consequences for the ABLT δa.

In fact, by observing figures 3.4 and 3.13 in the subsonic cases, we notice that on the ω-α-
plane, the modal lines are exactly identical for the temporal and spatial stability problems.
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Figure 3.21: The temporal growth rate ωi and the spatial growth rate −αi as a function of resonant
frequency ωr and resonant wavenumber αr for the first mode. (a)M = 4, (b)M = 4.5
and (c)M = 5. Definition of lines in the ωr-αr-plane is according to figure 3.2 and figure
3.3. , , : Maximum in ωi and αi.

In other words, ω and α that lay on the modal lines are the roots of the eigenvalue equation
(3.14). A similar result can be drawn to the unstable modes in supersonic cases. If we observe
figure 3.5(a) and figure 3.14(a), or figure 3.6(a) and figure 3.15(a), we will find that for both
temporal and spatial stability problems, not only the modal lines of neutrally stable modes but
also the modal lines of the unstable modes coincide exactly on the ωr-αr-plane. To better verify
this result, we display figure 3.20, from which the temporal growth rate ωi and spatial growth
rate −αi for the first three modes corresponding to the ωr-αr-plane for the Mach number
M = 3 are shown. In fact, the subfigure (a)-(c) correspond to the three results in figure 3.6(b)
and 3.15(b) including the inset, respectively.

The real parts of eigenvalues on the modal lines are very special because they may trigger
instabilities. We subsequently refer to the frequencies corresponding to these modal lines as
resonant frequencies and the corresponding wavenumbers as resonant wavenumbers. For
the temporal stability problem, the resonant frequencies as eigenvalues with ωi ̸= 0 trigger
instability in time. For spatial stability problems, the resonant wavenumbers as eigenvalues
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Figure 3.22: The spacial growth rate −αi as a function of the spatial growth rate ωi and the resonant
phase velocity cr forM = 3. (a) First mode, (b) second mode and (c) third mode. , ,
: Maximum in ωi and αi. The thick solid lines depict the result of purely temporal
or purely spatial stability.

with their imaginary parts αi ̸= 0 trigger instability in space. For a more intuitive understanding
in this section, we refer to these modal lines on the ωr-αr-plane as the resonance line.

Through figure 3.20 we can clearly see the exact coincidence of the projection of the growth
rates in time and space on the ωr-αr-plane. By comparing the absolute values of ωi and αi

we note that the absolute value of the spatial growth rate is always greater than the absolute
value of the temporal growth rate, with the former being approximately twice as large as the
latter. By observing the position of the maximum values on ωr-αr-plane we conclude that the
maximum values of temporal stability and spatial stability do not coincide exactly on the modal
line and that there is a small displacement.

Figure 3.21 shows the results of the growth rates of the first mode as a function of ωr and αr for
different Mach numbersM = 4,M = 4.5 andM = 5. Again, we observe a complete overlap
of the modal lines of the temporal growth rate and the spatial growth rate in the ωr-αr-plane,
i.e. the resonance lines. In these results, there is a significant increase in the growth rate with
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Figure 3.23: The spacial growth rate −αi as a function of the spatial growth rate ωi and the resonant
phase velocity cr for the first mode. (a) M = 4, (b) M = 4.5 and (c) M = 5. , , :
Maximum in ωi and αi. The thick solid lines depict the result of purely temporal or
purely spatial stability.

Mach numbers. In addition, there is a more pronounced displacement of the position of the
maximum of the growth rate on the ωr-αr-plane. The original datasets of two of the results for
M = 4 andM = 5, i.e. figure 3.21(a) and (c), can be found in figure 3.7 and figure 3.16.

The above results show a close connection between temporal and spatial stability. They are
linked in the real part of the eigenvalues by resonant lines. In the following step, we further
investigate the relation between the temporal and spatial growth rates, i.e. ωi and αi, on the
resonance lines.

We first consider the case of the first three modes with a fixed Mach numberM = 3. Since the
resonance lines are defined by specific ωr to αr, we newly define their ratio, i.e. cr = ωr/αr,
as a parameter in a physical sense of phase velocity, which we call it here the resonant phase
velocity. Figure 3.22 shows the connection between the imaginary parts of the eigenvalues in
the spatial and temporal stability eigenvalue problems through resonant phase velocities.

57



To obtain the results in figure 3.22, we formulate a new eigenvalue problem but using the
same eigenvalue equation (3.14) as used in the temporal and spatial stability problem. This
time, we consider both ω ∈ C and α ∈ C. Therefore, taking ω = ωr + iωi and α = αr + iαi

into (3.14), we obtain(︂
Mαi − iMαr −

√
θ
)︂ ˜︂Hc

(︃
;

αr + iαi

αr − ωr + i (αi − ωi)

)︃
− αr + iαi

αr − ωr + i (αi − ωi)
×

× ˜︂Hc
′
(︃
;

αr + iαi

αr − ωr + i (αi − ωi)

)︃
= 0.

(3.51)

Note that θ and the parameters of the ˜︂Hc function also contain the complex-valued frequency
and wavenumber, which are not shown explicitly here. In this newly formulated eigenvalue
equation, we regard the resonant frequency ωr, the resonant wavenumber αr, the temporal
growth rate ωi, and the Mach numberM as parameters and the spatial growth rate αi as the
sought eigenvalue. In the concrete process, we set the value of ωi from the temporal stability
problem as the starting point and gradually reduce it to perform the root-finding algorithm.

By computation of the eigenvalue equation (3.51) we find that decreasing the temporal growth
rate ωi on the resonance lines, i.e. at the resonant phase velocities cr, gives a non-zero αi as
the new eigenvalue. When ωi is reduced to zero in the final, a value of αi obtained in a purely
spatial stability problem is found. To present the results in 3-D form, we take cr = ωr/αr as
one parameter and ωi as the other, as shown in figure 3.22. In figure 3.22, it is noticed that the
relation between αi and ωi is linear for a fixed cr e.g. by observing the straight line between
the maximum values marked by red triangles, rhombuses and circles. The same linear relation
can be obtained through computation by regarding ωi as the sought eigenvalue, and gradually
reducing αi to zero. In fact, the thick solid line in the cr-ωi plane actually corresponds to the
ωi-curve in figure 3.20. And the thick solid line in the cr-αi plane is actually the αi-curve in
figure 3.20. The surface in the middle part of the two thick solid lines represents the linear
relation between ωi and αi.

Figure 3.23 shows the results for the first mode at three different Mach numbers, M = 4,
M = 4.5 andM = 5. Basically, we get similar results of the ωi-αi linear relation at resonant
phase velocities. In addition, from figure 3.22 and figure 3.23 we can observe that both ωi in
the temporal stability problem and αi in the spatial stability problem become non-zero from
the point where cr = 1. Eventually, it gives the concrete quantities that tend to zero with cr
approaching 1/M , which is the lower bound of acoustic modes.

The present results provide a strong basis for a kind of coupled instability in which temporal
and spatial stability cooccur. We refer to this instability as temporal-spatial instability. From
the physical point of view, the appearance of instability must be a smooth process. That is,
when the frequency or wavenumber of the perturbation in the boundary layer reaches resonant
values, there should be a growth rate starting from zero instead of a sudden appearance.
This causes the occurrence of spatial-temporal instability. From a mathematical point of view,
through the eigenvalue equation, we can understand that a linear relation between ωi and
αi on the resonance lines enables the LHS of the eigenvalue equation (3.14) to be adjusted
somewhat so as to keep it zero.
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3.6 Conclusion and discussion

In this section, we summarise the main conclusions of this chapter and then give a discussion
about potential directions of the future study.

3.6.1 Conclusion

In this chapter, we study the stability problem of an exponential boundary layer flow based
on the exact solution to the PBE. With the exact solution and the boundary conditions, the
eigenvalue problem is formulated. Based on this, both the temporal stability problem and the
spatial stability problem are considered and thoroughly investigated. The eigenvalue equation
is first solved analytically for limiting cases, i.e. for small and large wavenumbers in temporal
stability, and for small and large frequencies in spatial stability, both at small Mach numbers,
and then numerically for arbitrary values and Mach numbers.

The acoustic unstable modes are thoroughly discussed. For subsonic and transonic cases,
only neutral modes are present. The unstable acoustic modes are proven to exist only in a
supersonic exponential boundary layer flow, where the most unstable mode is always the first
acoustic mode. In our study, we have observed that the most unstable mode transitions from a
subsonic mode to a supersonic mode with increasing Mach numbers. Comprehensive diagrams
of the unstable modes are obtained in terms of the wavenumber and the Mach number for the
temporal stability problem. For the spatial stability problem, similar results are shown in terms
of the frequency and the Mach number.

Based on these unstable modes, various acoustic characteristics are analysed. The study of
the ABLT δa gave us a comprehensive insight into the extension of the region where sound is
audible. Of particular interest are the cases whenM > 2. For small α or ω, δa has an algebraic
singularity, reaches a minimum with increasing wavenumbers or frequencies, and then starts
to exponentially grow where in this exponential-growth region the instability reaches its
maximum too. For even larger wavenumbers or frequencies, the instability is accompanied
by a decrease of ωi or αi. This gives a hint to avoid the noise caused by acoustic instability
by avoiding maximum values of ωi or αi. In other words, it is always worthy to avoid the
appearance of the drastic growth region in figure 3.10(c) and figure 3.18(c) to surpress the
noise perceptibility afar from the wall. One effective way to control the sound radiation is
to determine the minimum of the ABLT in figure 3.10(c) and figure 3.18(c) as well as the
corresponding wavenumber as a threshold for each Mach numbers. To surpress the instability,
one should control the wavenumber or the frequency of the perturbation smaller than a certain
threshold. This could be achieved by a wave filter, which changes the wavelength or the
frequency. A device which exactly induces this effect has been applied in the inlet and outlet of
the air jet engine (Henderson, 2010).

The eigenfunctions show that when M > 1, the amplitude of the unstable acoustic wave
reaches its maximum value near the wall. Even forM ≤ 1, there is the propagation of neutrally
stable waves in the streamwise direction. Thus, another feasible way to alter the near-wall
effects is to change the wall condition, i.e. the acoustic wall impedance. This initiative provides
an idea for further research. Applying the acoustic impedance to the wall boundary condition
will result in different eigenvalue equations. In this way, the eigenvalues can be calculated by
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varying the acoustic impedance to find the optimal acoustic impedance to suppress instabilities
or even hinder propagation. This approach has already been applied to civil aviation. In
Oppeneer (2014), porous materials are applied to the liner wall of the Auxiliary Power Unit
(APU) of an aircraft, which changes the eigenvalues and hence attenuates the noise.

By comparing the results of the temporal and spatial stability problems, we define resonance
lines in the ωr-αr-plane. The values on these lines are actually the real parts of the eigenvalues
in the stability problems. They are identical in both temporal and spatial stability problems.
For temporally and spatially unstable modes they give rise to their own but different valued
imaginary parts of the eigenvalues, which trigger instability. Overall, the imaginary part of a
spatially unstable mode’s wavenumber is twice as large as the imaginary part of a temporally
unstable mode’s frequency. At the same time, we formulate a new stability problem where both
the wavenumber and the frequency are complex numbers and thereby explore the relation
between the temporal and spatial growth rates based on resonance lines. The results show an
inverse proportional linear relation at a fixed resonant phase velocity cr. It means that for the
eigenvalue equation, there are maximum absolute values of ωi and −αi at the resonant phase
velocity, corresponding to pure temporal instability and pure spatial instability, respectively. A
decrease in one of ωi and −αi will cause an increase in the other. In between, there exists a
coupled temporal-spatial instability, i.e. ωi and αi are simultaneously non-zero. Such a result
provides a strong argument for the temporal-spatial stability problem.

The unstable mode is characterised as an energy accumulation and saturation near the wall
and produces radiative waves towards the free stream. This instability mechanism indicates
that inviscid perturbations can extract energy from shear flows. In geophysical fluid dynamics,
a similar mechanism is related to the over-reflection of waves (Lindzen, 1988). This kind
of instability is explained as waves that are trapped within a region determined by the rigid
wall and the turning level, and in turn, grow by the process of multiple reflections. This was
first presented in Lindzen & Rosenthal (1976) for internal gravity waves and in Takehiro &
Hayashi (1992) for shallow water waves. From the instability mechanism that we observed,
we further infer that over-reflection of acoustic waves in boundary layer flows exists and will
be influenced by the unstable modes. To some extend this inference seems to be confirmed in
Campos & Kobayashi (2013), in which a hyperbolic-tangent is used to mimic the flow in the
semi-infinite domain of a boundary layer flow and where not only an over-reflection of acoustic
waves is observed, but the coefficient of over-reflection has an unusual high peak at a certain
resonant frequency (see the caseM = 4.5 in figure 6(a) in Campos & Kobayashi (2013)). For
this, no further explanation was given, but the values lie close to the eigenvalues we obtained
for instability. These ambiguous results motivate us, and therefore, over-reflection of acoustic
waves and its close link with unstable modes in boundary layer flows is the topic of the next
chapter.

3.6.2 Discussion

In this section, we extend the discussion of possible approaches based on the engineering needs
for compressible boundary layer instability and noise control. One method is to control the
wall temperature, which requires the introduction of a temperature gradient into the governing
equation, i.e. to study the generalised PBE (2.25). This potential study may be realised from
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analytical solutions based on contributions from the Heun class functions. Another method is
to apply the acoustic impedance.

3.6.2.1 Non-isothermal exponential boundary layer flows

We begin with the active control of compressible boundary layer instability through wall
temperature.

Typically, the instability of a supersonic boundary layer is dominated by the first (Mack) mode
up to a Mach number aboutM = 4 and by the second (Mack) mode thereafter (Smith, 1989).
Recent reviews about influences and contributions of the first (Mack) and second (Mack) modes
to laminar-turbulent transition can be found in Reed et al. (1996), Saric et al. (2003), Fedorov
(2011) and Zhong & Wang (2012). The shift of the most unstable mode between the first and
second (Mack) modes is largely influenced by many factors, such as chemical reactions, thermal
non-equilibrium, transverse curvature, porous walls, and gas injection, detailed reviewed by
Bitter & Shepherd (2015). Among them, the linear stability of compressible boundary layers is
greatly influenced by the wall temperature. Lees & Lin (1946) first found that wall cooling
leads to a stabilisation of the inviscid instability, i.e. first (Mack) mode instability. Subsequently,
Lees (1947) showed that the supersonic flows can be completely stabilised if the wall cooling
is sufficient enough. This conclusion was improved by Van Driest (1952), who concluded that
the first (Mack) mode can be stabilised for all Reynolds numbers when 1 < M < 9. The same
conclusion was extended to the three-dimensional first (Mack) mode instability by Masad et al.
(1992). The wall cooling strategies to control the compressible boundary layer stability are
thoroughly discussed in Mack (1975, 1993), Malik (1990), and Masad et al. (1992). Although
the first (Mack) mode instability can be completely depressed by sufficient wall cooling, in the
meantime second (Mack) and higher modes always persist and are even destabilised by wall
cooling. These effects were validated in Lysenko & Maslov (1984), Stetson et al. (1989), and
Stetson & Kimmel (1992) experimentally and in Knisely & Zhong (2019a, 2019b) by the Direct
numerical simulation (DNS). In the other direction, the wall heating effect on the stability was
studied by Tunney et al. (2015), which is relevant for re-entry of vehicles.

All the above studies of compressible boundary layers are based on the CRE, i.e. the generalised
PBE (2.25). However, no analytical solution to (2.25) was found, even for the simplest linearly
distributed velocity and temperature profiles. All stability analyses have utilised numerical
methods, or given approximate solutions for asymptotically small or large wavenumber condi-
tions. Therefore, there is an urgent need to find the analytical solution of generalised PBE. The
motivation is manifold. At first, it would help to find the first (Mack) mode directly and exactly,
which has a significant contribution to the laminar-turbulent transition. Secondly, effects of
the temperature profile will be observed intuitively, thereby developing the theory of active
control by adjusting wall temperatures, both cooling and heating wall. In view of this, we
could consider the generalised PBE (2.25) with a coupled form of velocity and temperature
profiles in order to obtain the general solution. For this, we introduce a temperature profile
that is a quadratic function of the exponential velocity profile. The theoretical basis for this is
the Crocco-Busemann relation (Busemann, 1931; Crocco, 1932) given by

T (y) = Tw + (Taw − Tw)u0(y) + (T∞ − Taw)u0(y)
2, (3.52)
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where Tw is the wall temperature, T∞ stands for the free-stream temperature, and Taw denotes
the adiabatic wall temperature. The generalised PBE (2.25) with an exponential velocity profile
and a temperature profile in the form of

T (y) = (ϵ1 − ϵ2u0(y))
2 , (3.53)

where ϵ1 and ϵ2 are simple functions of Tw, T∞ and Taw, and u0(y) = 1− e−y, allows an exact
solution in terms of the general Heun function (GHF) (Ronveaux & Arscott, 1995).

Based on the exact solution, once the algebraic eigenvalue problem is successfully established
and all the eigenvalues are numerically obtained, it is possible to conduct a detailed comparison
of the growth rates of the first (Mack) and second (Mack) modes. From this, it is possible
to particularly learn which mode is dominant in a Mach number range, and the influence
of the temperature gradient on the acoustic modes. Further, the parameters of temperature
profile give chances to study both wall cooling and heating effects, which may directly serve as
controls of boundary layer stability.

Nonetheless, this new approach as a way to find modes using the exact solution to the CRE
equation with exponential profiles contains still a variety of challenges: (i) The analysis of the
GHF is difficult because of the lack of knowledge of the general Heun equation that contains
four singularities. (ii) The complicated form of the solution to the CRE increases challenges,
which will lead to difficulties in analysing the GHF and establishing the eigenvalue equation.
(iii) Numerical computations could require an extremely high degree of precision to obtain
convergent results. According to experience gathered in analysing the CHF, we determine that
up to 150 digits are necessary for convergence.

It is worth mentioning that the PBE for free shear flows mimicked by a hyperbolic-tangent
velocity profile is found to have the same form as the general Heun equation (GHE), whose
exact solution is given by the GHF (Ronveaux & Arscott, 1995). A detailed related study can
be found in Görtz (2020).

3.6.2.2 Acoustic impedance

In acoustic theory, it is common to model sound absorption of a surface by defining the acoustic
impedance, which could be understood as a transfer function between an external load to
the surface and its resulting dynamic behavior (Rienstra & Hirschberg, 2020). Typically the
passive surface property is specified in the frequency domain as (frequency dependent) wall
impedance. For this, we introduce the elastic acoustic wall impedance Z defined by

Z(x;ω) =
p̂(x;ω)

v̂(x;ω) · n
, (3.54)

where n is the normal vector into the surface and x denotes points on the boundary. The
acoustic impedance Z can be employed as a modified boundary conditions at the wall. Equation
(3.54) mimics the effect of how much the motion of a fluid particle (or a surface) is impeded
when a pressure wave impinges on it. The most common type is a rigid wall that indicates
Z = ∞. By setting different wall types, such as an elastic wall, porous wall or flexible wall,
the characters of the acoustic waves can be changed, which could help release or even dismiss
waves.
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Based on (3.54), different wall types in terms of their acoustic response may be defined, and
the properties of these different wall types are formulated mathematically by the acoustic
impedance. With different wall types, i.e. given values of Z, the resulting eigenvalue equation
for unstable acoustic modes can be reformulated, which reads[︂(︂

−iMα−
√
θ
)︂
Z + iω

]︂
Hc
(︃
;

α

α− ω

)︃
− αZ

α− ω
Hc′

(︃
;

α

α− ω

)︃
= 0. (3.55)

In comparison between the new eigenvalue equation (3.55) and (3.14), Z ∈ C is an additional
parameter. It is critical to understand how ωi or αi behaves as a function of Z. The key aim
is to find optimised acoustic impedance Z, which minimises the growth rate. The numerical
root-finding algorithm based on Müller’s method that is used in the present work can still be
applied for (3.55).

The change of Z is expected to have various effects on stability: (i) Acoustic instability
depending on modes might be suppressed or amplified. (ii) The occurrence of instability,
usually at M ∼ 2.2, can be delayed or advanced. (iii) The maximum of the growth rate ωi

or αi shifts. Finally, the acoustic impedance will be optimised in order to suppress instability.
The results will eventually reveal the effect of wall types on the suppression of an exponential
boundary layer stability, thus providing new insights for engineering applications, e.g. acoustic
liner in jet engines.

A preliminary investigation of (3.55) and acoustic impedance can be found in De Broeck
(2021).
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4 Boundary layer acoustics

4.1 State of the art

The propagation, reflection and refraction of acoustic waves in shear flows have been of great
interest in engineering fields. Initially, investigations were triggered by an urgent need to
understand and reduce noise that is induced by flows and machinery. To examine the properties
of acoustics in free shear flows, a simple model is that of a plane vortex sheet (Jones & Morgan
1972; Crighton & Leppington 1974). It facilitates the solution of the governing equations but
is largely simplified and neglects the effect of the shear layer thickness, the critical level (layer),
and turning levels on acoustic wave propagation. Another model for mimicking free shear flows
is by a linear velocity profile. As early as 1958 Pridmore-Brown (1958) derived an acoustic
wave equation in plane parallel shear flows based on the LEE, known as the Pridmore-Brown
equation (PBE). This wave equation was intensively employed to investigate the propagation
of acoustic waves by Goldstein & Rice (1973), Jones (1977), Scott (1979), Koutsoyannis et al.
(1979), Koutsoyannis (1980), Campos (1999), Hau et al. (2015) and Chagelishvili et al. (2016).
Meanwhile, a more realistic non-linear velocity profile for mimicking a free shear-layer, the
hyperbolic-tangent velocity profile, was investigated by Michalke (1965), Blumen et al. (1975),
Tam (1978), Drazin & Reid (1979), and Michalke (1984), with the main aim to investigate
the stability of this profile. The Fuchs-Frobenius series solution to the PBE for this profile was
given by Campos & Kobayashi (2000), who studied the scattering effect of the free shear flow
on acoustic waves. Both the linear and hyperbolic-tangent profiles have been very successful
in modelling the shear layers formed in different jet regions behind modern aircraft engines.
For example, in a coaxial jet exhaust of a typical turbofan (Royce-Rolls, 2015), the core region
is approximated by a linear profile (Hau, 2017), and the mixing region is mimicked by a
hyperbolic-tangent profile (Perrault-Joncas & Maslowe 2008; Gloor et al. 2013).

In addition to free shear flows, the propagation of acoustic waves in boundary layer flows is of
increasing interest. Initially, a boundary layer was modelled by a simple linear profile extended
by a constant velocity to meet a finite value in the free stream. This approximation is frequently
used in the case where the thickness of the boundary layer is very small (Rienstra & Darau 2011;
Brambley 2013). Its advantage is the presence of an analytical solution. However, an artificial
kink inevitably caused by this model between the linear and constant parts of the velocity
profile has a significant impact on the propagation of acoustic waves, resulting in them being
reflected or refracted at the kink. Therefore, for boundary layer flows a non-linear smooth
profile is physically more sound compared to linear ones. For this, an exponential velocity
profile was introduced by Campos & Serrão (1998), as it allows for a smooth transition between
the boundary layer and the free-stream flow, which is much closer to the physical reality. They
gave a Fuchs-Frobenius series solution to the PBE for an exponential velocity profile and studied
the propagation of acoustic waves within boundary layer flows. Of particular concern is the
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series solution near the critical layer, which contains a logarithmic term. Nonetheless, in the
analysis of leading orders of the series solution, they proved that the amplitude of the pressure
perturbation near the critical layer tends to be constant rather than an infinite value. By
studying the amplitude of acoustic waves, they noticed an attenuation of the wave amplitude
adjacent to the critical layer. More recent, Zhang & Oberlack (2021) gave an exact solution
to the PBE for an exponential velocity profile in terms of the confluent Heun function (CHF).
Based on this, they investigated the temporal stability of an exponential boundary layer flow
and succeeded in giving unstable acoustic modes.

Links concerning shear layer instabilities and acoustic waves were first proposed in Gill (1965).
In his study of shear layers separated by a vortex sheet, he argued that incident waves at certain
resonant frequencies enhance instabilities. Based on this, Cohn (1983), Payne & Cohn (1985),
Zaninetti (1986), and Zaninetti (1987) gave detailed investigations of ’reflection modes’ and
temporal instability. Subsequently, Tam & Hu (1989b, 1989c) extended their studies to spatial
instability in finite-thickness shear layers as well as mixing layers inside a rectangular channel,
in which supersonic unstable waves generated by continuous reflections were obtained. The
links between instabilities and acoustic waves in previous work provided guidance for this
chapter.

A unique phenomenon that arises in the acoustics of shear flows, and we will presently focus on
this, is the over-reflection5 of waves, i.e. reflected amplitudes are greater than the amplitudes
of incoming waves. This phenomenon is validated to exist in many different shear systems (see
e.g. Lindzen, 1988).

The phenomenon of over-reflection was first discovered simultaneously and independently by
Ribner (1957) and Miles (1957) in the study of plane acoustic waves, which impinge onto a
moving medium, and in the study of plane acoustic waves, which propagate in two moving
media separated by a vortex sheet, respectively. After this, studies on over-reflection were
mainly focused on geophysical fluid dynamics (GFD), i.e. typically gravity waves and Rossby
waves. The over-reflection of internal gravity waves in stratified shear flows was discovered
by Jones (1968), who extended the research of Booker & Bretherton (1967) to Richardson
numbers smaller than 1/4, thereby proposing that these waves were able to extract energy and
momentum from the base flow and in turn, lead to over-reflections. Following this, Breeding
(1971) explored numerically non-linear effects of the critical layer to internal gravity waves
that produce over-reflections predicted from the linear theory. Analytical work also on internal
gravity waves was done by Eltayeb & McKenzie (1975), in which they proved Jones’ inference
that the over-reflection can arise because incident waves indeed extract energy from shear
flows. Analogous to the over-reflection mechanisms of gravity waves, the over-reflection of
Rossby waves exists when they propagate across a jet flow. In Lindzen & Tung (1978) and
Yamada & Okamura (1984) the necessary and sufficient conditions for the over-reflection of
Rossby waves were derived.

The link between the over-reflection and instabilities of shear flows has been extensively
explored by Lindzen and his coworkers, though focusing on the over-reflection of internal
gravity waves and shear instabilities of stratified flows (Rosenthal & Lindzen 1983a, 1983b;
Lindzen & Barker 1985), over-reflection of Rossby waves and barotropic instabilities (Lindzen
& Tung, 1978), over-reflection of Rossby waves and baroclinic instabilities (Lindzen et al.,
5 This terminology is written in the literature as over-reflection, overreflection, over reflection, and over-reflexion.
We adopt the one that is more common in recent years.
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1980), and over-reflection of Rossby waves and instabilities of viscous Poiseuille flows (Lindzen
& Rambaldi, 1986). In Lindzen (1988), the growth rate of unstable modes is estimated by the
over-reflection coefficient, thereby successfully linking the over-reflection and unstable modes.
Furthermore, he inferred a mechanism of instability triggered by over-reflections and concluded
that the instability of shear flows is caused by a combined process of the over-reflection and the
’Orr mechanism’ (Boyd, 1983), which describes a transient growth process inducing instability.
In Lindzen’s theory, the over-reflection of waves acts like a source term, which provides a
constant impetus for the ’Orr mechanism’ and thereby the transfer and transformation of energy
from the base flow to the perturbation. An exhaustive description of this mechanism can be
found in Harnik & Heifetz (2007) from the Rossby wave perspective.

Lindzen’s theory is confirmed in many areas. However, there are researchers who do not
support his finding and have been opposed to the conclusions. Among them, Takehiro &
Hayashi (1992) suggested that the ’Orr mechanism’ does not apply to the instability and
over-reflection of shallow-water waves. They proposed an alternative theory that is based on
momentum conservation of reflected and transmitted waves to reveal the mechanism by which
over-reflection phenomena produce instabilities. This theory well explains the instability in
linear shallow-water shear flows investigated by Satomura (1981a, 1981b). A theoretical study
was followed by Knessl & Keller (1995) and therein their results were well matched to the
numerical results in Takehiro & Hayashi (1992). In Balmforth (1999), he extended further
the study in shallow-water flows to viscous and non-linear regimes. It should be emphasised
that the shallow-water wave equation is found to be the same form as the PBE employed in
the present work. However, the analogous phenomenon of acoustic waves in an exponential
boundary layer flow has not been investigated.

This gap triggered our interest. Applying the exact solution (2.35) to the PBE (2.31) for
an exponential velocity profile, it is straightforward to obtain an explicit expression for the
reflection coefficient of acoustic waves. Note that the approach to establishing a link between
the over-reflection and instability in the present study differs from most previous work in
GFD. Their focus was on how the over-reflection, an acoustic behaviour, triggers instability.
In contrast, from an acoustic perspective, we are concerned about how over-reflections are
influenced by unstable modes and how they behave.

Another very special over-reflection phenomenon is the so-called hyper-reflection, which is
however less well studied. This phenomenon describes an over-reflection that is infinitely
strong. Physically, this means that the reflected waves can exist without the triggering incident
waves, i.e. they are spontaneously emitted by a homogeneous flow. In some publications,
a resonant over-reflection is also known as hyper-reflection. The earliest description of this
special over-reflection originated in the study of Helmholtz instabilities of acoustic-gravity
waves at a plane vortex sheet led by McKenzie (1972). In the study of Helmholtz instabilities of
vertical stratified flows, Lindzen (1974) observed this phenomenon for internal gravity waves.
In addition, resonant over-reflection was also found in two classical models of GFD. Resonantly
over-reflected Rossby waves were found to exist in jets on the β-plane model (Maslowe, 1991).
More recently, Benilov & Lapin (2012) found that the resonant over-reflection also occurs in
internal gravity waves within rotating shallow water on the f -plane model.

A similar phenomenon has also been observed in the present work of the study of the acoustic
over-reflection in boundary layer flows. When the frequency of an incident acoustic wave
is close to the resonant frequency, which is defined in §3 as the real part of the eigenvalues
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ωr of unstable modes, it is shown that there is an unusual but finite enhancement of the
over-reflection. This phenomenon is defined by us as the resonant over-reflection. Note that, to
the author’s knowledge, both the terminologies ’resonant over-reflection’ and ’hyper-reflection’
are not well defined as well as distinguished in GFD and the acoustics communities. In view of
this situation, we give them clear definitions in the context of our study, for details see §4.2.3.

This chapter is structured as follows. In §4.2, a number of concepts in boundary layer acoustics
are established. To describe an incident acoustic wave, the concept of incident angle φ is intro-
duced, and a relationship between the incident angle and frequency is established. According
to the form of the propagation of acoustic waves in the free stream, two types of waves are
distinguished. In addition, a critical angle of incidence for the existence of the critical layer
is given. The above introduced physical quantities specify the computational domain for the
over-reflection. Based on the exact solution to the PBE (2.31), the reflection coefficient R is
derived and explicitly expressed by the CHF. In the last part of §4.2, a proof that in the case of
the existence of a critical layer |R| > 1 always hold is given. A link between the over-reflection
and a jump of a key quantity at the critical layer is further established, and it is shown how this
jump causes over-reflection. In §4.3, the reflection coefficient as a function of the wavenumber
α, the Mach numberM , and the incident angle φ is displayed. Over-reflection of acoustic waves
has been validated to exist in boundary layer flows and is closely related to the critical layer.
The phenomenon of resonant over-reflection is observed and its close relation with unstable
modes is interpreted. Eigenfunctions of acoustic waves are then displayed and thereby three
patterns of the propagation of acoustic waves in boundary layer flows are identified. In §4.4,
we state main conclusions of this chapter. Parts of the analysis and numerics in this chapter
are aided by Maple (Maplesoft, 2020) and MATLAB 2020a (Mathworks, 2020).

Essential parts of this chapter (§4.2, §4.3 and §4.4) are based on the peer-reviewed publication
Zhang et al. (2022).

4.2 Basic concepts

4.2.1 Zone of silence

Assume that the incoming acoustic wave has a unity amplitude and propagates at a constant
speed of sound c0, which is characterised by the dimensional quantities of the frequency ω̃ and
the horizontal wavenumber α̃. The incident angle φ being a ’secondary’ parameter is defined
as the angle between the wavenumber vector k̃ of the incident wave and the x-direction shown
in figure 4.1. Here we intend to first establish a relationship between the incident angle φ and
the frequency ω̃ in order to facilitate φ as the main parameter to visually describe the incident
acoustic wave. Using φ instead of ω̃ reduces one parameter in analysing the critical cases that
are shown in figure 4.2.

The horizontal wavenumber of an acoustic wave in a medium at rest is given by

α̃ = |k̃| cos(φ) = ω̃

c0
cos(φ). (4.1)
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Figure 4.1: Illustration of an exponential boundary layer flow. An incident acoustic wave from the
free stream gives rise to a reflected wave with angle Θ, characterised by the reflection
coefficient R. The critical layer yc is marked by a dashed line. Further, a geometric relation
of an acoustic wave with frequency ω̃ in a medium at rest, between wavenumber vector k̃
and streamwise wavenumber α̃ is given by their angle φ (incident angle).

Considering the reference values, i.e. the free-stream velocity U∞ and the shear layer thickness
δ, in non-dimensional form it gives

ω =
α

M cos(φ)
, (4.2)

where a non-dimensional wavenumber α = α̃δ has been used or alternatively the wavelength
λ̃ may be employed α̃ = 2π/λ̃ so that we have

α =
2πδ

λ̃
, (4.3)

which implies a ratio between the shear layer thickness and the wavelength of the perturbation.
This ratio indicates the range of α taken in §4.3 from 0.1 to 10 implying that the thickness of
the boundary layer varies from small to large relative to the wavelength scale.

Note that the incident angle φ in (4.2), which is an angle between the wave number vector k
and the streamwise direction, is strictly speaking for a medium at rest, i.e. U∞ = 0. Hence φ is
only an ’auxiliary’ parameter used as a replacement to implicitly express the frequency, and
we restrict φ ∈ [0◦, 90◦]. It is not the true propagation angle of the acoustic wave in the free
stream. The ’true’ angle of the incident wave propagating towards the boundary layer in the
free stream, due to the velocity of the free stream U∞, is determined by the wavenumber of
the acoustic wave in the y-direction. This wavenumber is given by the solution to the PBE in
the free stream.

In the free stream (y → ∞), where any shear is absent, the PBE (2.31) simplifies to

d2ρ̂

dy2
+
[︂
M2 (ω − α)2 − α2

]︂
ρ̂ = 0, (4.4)
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Figure 4.2: Borders of the zone of silence φs0 ( ), φs1 ( ), φs2 ( ) in (4.9) and the critical
value for the presence of the critical layer φc ( ) in (4.11) as functions of the Mach
numberM . The grey region indicates the zone of silence. The vertical-stripe region is the
propagation zone, and the horizontal-stripe region represents the presence of the critical
layer.

which has oscillatory (waveform) solutions when the term in square bracket of (4.4) is greater
than zero, i.e. θ = −M2(α − ω)2 + α2 < 0. The same result can also be derived directly by
setting y → ∞ in the exact solution (2.35), where Hc(; 0) = 1 and ˜︂Hc(; 0) = 1, and the solution
reads

ρ̂(y) = C1e
√
θy + C2e

−
√
θy, (4.5)

where the principal value of
√
θ is taken and the branch cut is along the negative real axis.

For θ < 0, the wavenumber in the y-direction in the free stream reads

β =
√
−θ, (4.6)

where the principal value of the square root is taken. It follows that the two solutions in (4.5)
stand for an outgoing wave (C1e

iβy) and an incoming wave (C2e
−iβy), respectively, for θ < 0

and θ ∈ R. This can be intuitively observed by the shifts of peaks and troughs of the waves in
time by adding the time dependence in the normal mode (2.11). For θ > 0, there would be a
non-wave/exponential behaviour of the solution in (4.5).

The angle of propagation with respect to the x-axis of an acoustic wave in the free stream is
therefore defined as

Θ = arctan
(︃
β

α

)︃
, (4.7)

as shown in figure 4.1.

Next, two types of acoustic waves in boundary layer flows are distinguished as propagating
waves and evanescent waves, for waves that can propagate in a vertical direction and waves
that cannot. These two cases correspond to (2.36) θ < 0 and θ > 0, respectively. Considering
the relation (4.2) gives the critical case, i.e.

−θ = α2

[︄(︃
1

cos(φ)
−M

)︃2

− 1

]︄
= 0, (4.8)
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which gives two solutions φs indicating to ’zones of silence’ given by

φs ∈

⎧⎪⎪⎨⎪⎪⎩
[︂
0, arccos

(︂
1

M+1

)︂]︂
, M ≤ 2,

[︂
arccos

(︂
1

M−1

)︂
, arccos

(︂
1

M+1

)︂]︂
, M > 2.

(4.9)

In (4.9), the lower border forM ≤ 2 is denoted as φs0 , the upper border for both cases as φs1
and the lower border forM > 2 as φs2 . An intuitive illustration is shown in figure 4.2, where
the zone of silence is marked in grey. No propagating waves exist for the areas defined in (4.9),
i.e. the grey area in figure 4.2.

The introduction of φ instead of ω gives the critical case (4.9), which has only one independent
variableM . It is possible to avoid the introduction of φ, which, however, would imply that the
critical case for ω involves two variables instead of one, i.e. α andM .

Equation (4.9) indicates that acoustic perturbations with φs being as the incident angle do
not propagate in a waveform in the free stream because their amplitudes decay exponentially
and tend to zero. Therefore, they are called evanescent waves. Whereas outside the φs region,
acoustic perturbations in the free stream exist as oscillatory waves, i.e. they can propagate in
the y-direction and therefore denote propagating waves. We define the region out of φs as
the ’propagation zone’, which is represented by vertical stripes in figure 4.2. The introduction
of the concept of the incident angle instead of the frequency physically defines the range of
parameter φ for the existence of incident and outgoing waves at different Mach numbers.

4.2.2 Critical layer

Per definition, the critical layer is a wall-parallel plane, where the phase velocity of the acoustic
wave ω/α is equal to the local base flow velocity u0(y), i.e. ω/α = 1 − e−y. Considering an
incident acoustic wave in (4.2), the location of the critical layer is given by

yc = −ln
(︃
1− 1

M cos(φ)

)︃
, (4.10)

shown in figure 4.1. It follows from (4.10) that in order to ensure the existence of a critical
layer, the argument of the logarithm has to be greater than zero and smaller than one, and
with this, the incident angle has to be less than a critical value given by

φc = arccos
(︃

1

M

)︃
, (4.11)

displayed in figure 4.2. When the incident angle is greater than φc, i.e. φ > φc, there is no
critical layer in the shear flow. For the limiting case φ = φc, the critical layer is located at
infinity.

Figure 4.2 shows limiting curves of the zone of silence φs as well as the corresponding critical
incident angle of the critical layer φc as a function of the Mach numberM . The thick red and
black solid lines in the figure represent the borders φs1 and φs2 of the zone of silence according
to (4.9). The grey region between them is the zone of silence. The critical incident angle for
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the presence of the critical layer is represented by the dashed line. These critical angles, φs1 ,
φs2 and φc, provide a reference for the computation domain in §4.3.

In §4.3, we focus mainly on the propagation zone (θ < 0) where the critical layer is present
(φ < φc) because these conditions ensure the presence of incident and reflected (propagating)
waves in the free stream and the occurrence of over-reflection. A detailed study of the critical
layer leading to over-reflection is given in §4.2.4. To satisfy these two conditions simultaneously,
the checkered region, shown in figure 4.2, is concerned. Considering the transformation of φ
corresponding to the checkered region to ω, it is equivalent to ω/α ∈ [1/M, 1− 1/M ]. This
phase velocity range is corresponding to the supersonic mode range in the temporal stability
problem, which is corresponding to the area between the red and blue dashed lines shown in
figure 3.2(c).

4.2.3 Reflection coefficient

In this section, we derive the reflection coefficient R, which is the amplitude ratio of the
reflected to the incident wave. This will be based on the exact solution (2.35) to the PBE
(2.31), and the boundary conditions. We consider first the boundary condition at the wall,
i.e. y = 0. There, the condition is obtained through the impermeability condition, wherein in
the present work, we adopt the simplest case, i.e. a rigid (inelastic) wall. Thus, the normal
component of the velocity perturbation at the wall vanishes, i.e.

v̂(0) = 0. (4.12)

Using the boundary condition (4.12) together with (2.33) and (2.35), where the derivative of
the density perturbation reads

dρ̂

dy
=C1

[︃(︂
−iMαe−y +

√
θ
)︂
Hc
(︃
;
αe−y

α− ω

)︃
− αe−y

α− ω
Hc′

(︃
;
αe−y

α− ω

)︃]︃
eiMαe−y+

√
θy

+C2

[︃(︂
−iMαe−y −

√
θ
)︂ ˜︂Hc

(︃
;
αe−y

α− ω

)︃
− αe−y

α− ω
˜︂Hc

′
(︃
;
αe−y

α− ω

)︃]︃
eiMαe−y−

√
θy,

(4.13)

we obtain

v̂(0) =
−ieiMα

M2ω

{︄
C1

[︃(︂
−iMα+

√
θ
)︂
Hc
(︃
;

α

α− ω

)︃
− α

α− ω
Hc′

(︃
;

α

α− ω

)︃]︃

+C2

[︃(︂
−iMα−

√
θ
)︂ ˜︂Hc

(︃
;

α

α− ω

)︃
− α

α− ω
˜︂Hc

′
(︃
;

α

α− ω

)︃]︃}︄
= 0.

(4.14)

From (4.14), a relation between C1 and C2 is induced and reads

C1 = −C2

(︂
−iMα−

√
θ
)︂ ˜︂Hc

(︂
; α
α−ω

)︂
− α

α−ω
˜︂Hc

′ (︂
; α
α−ω

)︂
(︂
−iMα+

√
θ
)︂
Hc
(︂
; α
α−ω

)︂
− α

α−ωHc′
(︂
; α
α−ω

)︂ . (4.15)

We assume that the amplitude of the incoming wave at y → ∞, which is the second term of
equation (2.35), is unity and thus, combining (2.35) with (4.15) the amplitude of the density
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perturbation reads

ρ̂(y) = ReiMαe−y+
√
θyHc

(︃
;
αe−y

α− ω

)︃
+ eiMαe−y−

√
θy˜︂Hc

(︃
;
αe−y

α− ω

)︃
, (4.16)

where R is the reflection coefficient defined by

R = −

(︂
−iMα−

√
θ
)︂ ˜︂Hc

(︂
; α
α−ω

)︂
− α

α−ω
˜︂Hc

′ (︂
; α
α−ω

)︂
(︂
−iMα+

√
θ
)︂
Hc
(︂
; α
α−ω

)︂
− α

α−ωHc′
(︂
; α
α−ω

)︂ . (4.17)

In (4.17), there are three parameters, i.e. the wavenumber α, the Mach numberM and the
frequency ω, where ω can be replaced by the incident angle φ according to (4.2).

In Campos & Kobayashi (2013), a similar reflection coefficient is obtained for the PBE with
a hyperbolic tangent profile, which is used to mimic a boundary layer flow. Not only an
over-reflection of acoustic waves is observed but the reflection coefficient has an unusual high
peak at a certain frequency (see the caseM = 4.5 in Figure 6A in Campos & Kobayashi (2013)
and note that there is a mistake in the figure, i.e. Figure 6A should be for |R| but not for
|T |). For this, no further explanation was given, but the values lie close to the eigenvalues we
obtained for instability.

In the remaining part of this chapter, we will analyse the reflection coefficient R, and we will
observe various effects such as over-reflection or resonant over-reflection. In §4.2.4 we give
a detailed analysis that for boundary layer flows the presence of a critical layer is intimately
linked to the occurrence of over-reflection. In §4.3, the analysis is validated by computations
and furthermore a special enhancement of over-reflections are found.

We recall that the stability problems in §3. The eigenvalue equation derived therein was
obtained from the exact solution (2.35), in combination with boundary conditions of vanishing
disturbances at infinity and zero wall-normal velocity. The former condition leads to C1 = 0 in
(2.35), and the latter condition gives dρ̂/dy(0) = 0 in (4.13). The eigenvalue equation (3.14)
is therefore obtained. It is interesting to notice that the eigenvalue equation (3.14) coincides
with the current acoustic case, in which the numerator of (4.17) is equal to zero. Acoustically,
this indicates that no reflected waves are allowed to exist. But for unstable modes ωi > 0
in the temporal stability problem or αi < 0 in the spatial stability problem, setting C1 = 0
implies the opposite scenario, i.e. that there are no incoming waves but only outgoing waves
because the ’outgoing wave’ must be redefined. Since the unstable modes show dispersive
waves with decreasing amplitude to zero as y tends to infinity, the group velocity (direction) is
considered to be the true propagation velocity (direction) of the waves. In Appendix A.4, it is
demonstrated that the unstable wave with decreasing amplitude as y → ∞ has a positive group
velocity with a negative phase velocity. This leads to C1-term in the current context having an
opposite physical meaning to that in the stability problem. This might give a physical insight:
perturbations that acquire energy from the shear flow are not allowed to emit in the form of
over-reflections, thereby manifesting themselves as an onset of a temporal or spatial instability,
i.e. in a certain parameter range we obtain unstable eigenvalues ω ∈ C for temporal instability
or α ∈ C for spatial instability, or even a mixed temporal-spatial instability.

To distinguish resonant over-reflection and hyper-reflection very clearly within the present
work let’s consider the following setting. From an acoustic point of view, in the free stream,
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the first term of (4.16) represents the outgoing wave, while the second term represents the
incoming wave. Taking the principle value of

√
θ, setting C2 = 0 means that a phenomenon

occurs in which the incident wave is zero at an infinite distance to the wall while the reflected
wave persists with a constant amplitude for y → ∞. Considering the boundary condition at
the wall, an eigenvalue problem is formulated, in which the eigenvalue equation is equivalent
to setting the denominator in (4.17) to zero. Thus, in this case, the sought eigenvalues lead to
an infinite R. To distinguish this case from the over-reflection induced by resonant frequencies
in the present work, we define the above phenomenon of the reflection coefficient R tending
to infinity as the hyper-reflection.

The focus of the present chapter is to investigate the over-reflection, and the special over-
reflection induced by the resonant frequencies in an instability context that we presently call
resonant over-reflection. Infinitely strong over-reflection, i.e. hyper-reflection as defined above,
is not considered.

4.2.4 Analysis of the critical layer

In this section, we show how the critical layer is intimately linked to the over-reflection. We
further present an analytical relation between the amplitude of the density perturbation at the
critical layer and the reflection coefficient R of the boundary layer flow.

For this, a transformation of the independent variable y is introduced in order to eliminate
the first order derivative in the PBE (2.31) and bring it to its normal form by introducing (see
Olver et al., 2010)

ỹ =

∫︂
e
−

∫︁ 2α
du0(y)

dy
ω−αu0(y)

dy
dy. (4.18)

With (4.18), the transformed PBE (2.31) takes the form

d2ρ̂

dỹ2
+

[︁
M2(ω − αu0)

2 − α2
]︁

(ω − αu0)4
ρ̂ = 0. (4.19)

In concrete terms and using u0(y) given by its non-dimensional form u0(y) = 1 − e−y, i.e.
(2.28a), ỹ is given by

ỹ = 2α(α− ω)e−y − α2

2
e−2y + y(α− ω)2. (4.20)

Next, (4.19) is multiplied by the conjugate solution ρ̂∗ and integrated between the boundaries
defined by ỹ1 and ỹ2. We limit to the imaginary part, to which we refer by ℑ. This is motivated
by a certain invariant of the transformed PBE, which will be explained in more detail below at
equation (4.27). With the above we obtain

ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ2

ỹ1

=

∫︂ ỹ2

ỹ1

ℑ
(︃

α2

(ω − αu0)4
− M2

(ω − αu0)2

)︃
|ρ̂|2dỹ. (4.21)

The following analysis revolves around the equation (4.21). We will discuss both sides of (4.21)
thoroughly in three parts: (i) The left-hand side (LHS) of (4.21) is analysed with respect to its
relation with the reflection coefficient R. (ii) The LHS of (4.21) is proven to be associated with
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a jump in the value of the so-called quasi-invariant at the critical layer. In the presence of a
critical layer, the value of the quasi-invariant jumps directly at the critical layer, i.e. is constant
above and below the critical layer. The step-like variation of this quasi-invariant is further
related to the logarithmic singularity at the critical layer. These two facts will indicate that the
reflection coefficient is always larger than one in the presence of a critical layer. (iii) We will
discuss the right-hand side (RHS) of (4.21) and evaluate the integrals in order to obtain an
analytical relation between the reflection coefficient and the perturbed quantities at the critical
layer. In addition, appendices A.5, A.6, and A.7 provide supplements for the above-mentioned
three parts. Appendix A.5 derives the Fuchs-Frobenius solution, establishing the jump due
to the critical layer. The jump is proved to be positive in the present context by fixing the
branched cut selected based on the causality in Appendix A.6. These two appendices support
part (ii). A detailed derivation of the extended unitarity condition mentioned in part (iii) is
given in Appendix A.7.

To begin with part (i), the evaluation of the LHS of (4.21), it reveals a close link to the reflection
coefficient R. For this, we recall the principle asymptotics of the acoustic solution in the limit
y → ∞, which is taken from (4.5). An incident wave with unity amplitude and a reflected
wave with complex amplitude R at y → ∞ are assumed, which refers to ỹ2. At ỹ1, a location
corresponding to the wall, i.e. y = 0, the rigid-wall boundary condition (4.12) leads with
(2.33) to a vanishing y-derivative of the density. To sum up, the boundary conditions read

ρ̂(y → ∞) ∼ Reiβy + e−iβy, (4.22a)

dρ̂

dỹ

⃓⃓⃓⃓
ỹ1

=
dy

dỹ

dρ̂

dy

⃓⃓⃓⃓
y=0

= 0. (4.22b)

Inserting (4.22a) and (4.22b) into the LHS of (4.21), it can be reshaped to

ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ2

ỹ1

= ℑ
(︃
dρ̂

dy

dy

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ2

ỹ1

=
β

(α− ω)2
(︁
|R|2 − 1

)︁
. (4.23)

Up to this point, we make a connection between the LHS of the equation and the reflection
coefficient R through the boundary conditions.

Moving on to part (ii), we try to establish a connection between the LHS of (4.21) and a positive
jump, thereby proving that the over-reflection coefficient is always greater than one. For this,
we further rewrite the LHS of (4.23) below to obtain a relationship between the reflection
coefficient, namely the RHS of (4.23), and the physical properties at the critical layer.

Considering the y-derivative of the LHS of (4.23), we show that it vanishes outside the critical
layer, i.e.

d

dy

(︃
ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃)︃

= ℑ

(︄
d2ρ̂

dỹ2
ρ̂∗ +

⃓⃓⃓⃓
dρ̂

dỹ

⃓⃓⃓⃓2)︄
= ℑ

(︃
d2ρ̂

dỹ2
ρ̂∗
)︃
, (4.24)

which is, using (4.19), rewritten as

d

dy

(︃
ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃)︃

= ℑ
(︃
−M

2(ω − αu0)
2 − α2

(ω − αu0)4
|ρ̂|2
)︃

= 0
⃓⃓
y ̸=yc

(4.25)
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The above derivation only holds outside the critical layer since at the critical layer the coefficient
function in (4.19) is singular. From this, we follow that

I = ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃
, (4.26)

is a constant which undergoes a jump at the critical layer. Therefore, we call I a quasi-invariant,
since it is invariant only in limited domains. Thus, the boundaries between which the LHS of
(4.23) is evaluated can also be chosen just above and below the critical layer ỹc, which yields

I|ỹ2ỹ1 = ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ2

ỹ1

= ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ+c

ỹ−c

=
β

(α− ω)2
(︁
|R|2 − 1

)︁
. (4.27)

Subsequently, Appendix A.5 will be used to evaluate the jump of the quasi-invariant at the
critical layer. Transforming the LHS of (4.27) to the coordinate ξ = ω/α− u0(y), which was
used to derive the Frobenius solution (A.34) at the critical layer in Appendix A.5, yields

I|ỹ2ỹ1 = ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ+c

ỹ−c

= ℑ
(︃
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dỹ
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dy

dρ̂

dξ
ρ̂∗
)︃⃓⃓⃓⃓0−

0+
= −u0′(yc) ℑ

(︃
1

ξ2
dρ̂

dξ
ρ̂∗
)︃⃓⃓⃓⃓0−

0+
. (4.28)

Taking the Fuchs-Frobenius solution (A.34) into (4.28) leads to

I|ỹ2ỹ1 = ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ+c

ỹ−c

= −3c∗u0
′(yc)|B|2ℑ (ln(ξ)) |0−0+

= −3c∗ u0
′(yc)|B|2ln

(︁
0−
)︁
= −3πc∗ u0

′(yc)|B|2,
(4.29)

where B is a constant in the Fuchs-Frobenius series and c∗ is a rational function in α and ω as
defined in (A.35). The causal choice of the logarithmic branch cut as explained in Appendix
A.6 is important since it leads to ℑ (ln (0−)) = π. Note that an non-causal choice of the branch
cut, i.e. a choice that does not follow the branch cut defined in Appendix A.6, would lead to
the opposite sign.

Taking into account that c∗ is always negative in the presence of a critical layer as shown in
Appendix A.5 by analysing (A.36), we find that the RHS of equation (4.29) is always positive.
Thus it can be concluded that the jump of I = ρ̂∗ dρ̂/dỹ over the critical layer is also always
positive and thus, in considering equation (4.27), the reflection coefficient in the presence of a
critical layer is always greater than one, i.e. R > 1, since we obtain

β

(α− ω)2
(︁
|R|2 − 1

)︁
= −3πc∗ u0

′(yc)|B|2. (4.30)

In absence of a critical layer, the RHS of equation (4.21) vanishes since the coefficients are
real and the integral contains no singularity that would lead to an imaginary part, following
the theory of generalised functions and distributions given in Galapon (2016). Likewise,
considering equation (4.23) with the knowledge that I = ρ̂∗ dρ̂/dỹ is invariant over the entire
physical domain in absence of a critical layer, we conclude that R = 1 must hold without a
critical layer. This means that without a critical layer there is no mechanism of damping or
amplification of the reflected wave.
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Thus, in an exponential boundary layer flow with a rigid wall energy can only be transferred
from the base flow to the acoustic wave, and the acoustic wave cannot be damped, since R = 1
in the absence of a critical layer and R > 1 in the presence of a critical layer.

With parts (i) and (ii), we have obtained some information through the RHS of equation (4.21),
i.e. a positive jump caused by the critical layer makes the over-reflection coefficient always
greater than 1. However, we do not know how much the value of this jump is. To answer this
question, we proceed to part (iii), i.e. we focus on the evaluation of the RHS of (4.21). For this,
we evaluate both parts of (4.21) separately using the theory of distributions, which leads to∫︂ ỹ2

ỹ1

ℑ
(︃

α2

(ω − αu0)4
− M2

(ω − αu0)2

)︃
|ρ̂|2dỹ = π

(︄(︃
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α

d

dξ
− α

6

d3

dξ3

)︃
|ρ̂|2
du0
dỹ

)︄⃓⃓⃓⃓
⃓
ξ=0

, (4.31)

where we have further introduced a coordinate based on the location of the critical layer, i.e.

ξ = ω − αu0(y), (4.32)

and therefore ξ = 0 is the location of the critical layer. A detailed derivation of (4.31) is given
in Appendix A.7.

In a final step, we use (4.21), where the LHS was replaced by (4.23) and the RHS by (4.31).
Transforming this back to the initial variable y leads to a relation between the amplitude of
the reflected wave and the amplitude of density perturbation and its derivations at the critical
layer, which reads

β

(α− ω)2
(︁
|R|2 − 1

)︁
= πα2(α− ω)5

(︄
d

dy

(︄
|ρ̂|2
du0
dy

)︄
− 2

|ρ̂|2
du0
dy

)︄⃓⃓⃓⃓
⃓
y=yc

. (4.33)

There is only information on the amount of the reflection coefficient here, the phase shift of the
reflected wave compared to the incident one does not result from (4.33). Since R is complex,
the phase shift of the reflected wave is included in the argument of R.

Equation (4.33) is similar to the ’unitarity condition’, introduced by Lapin (2011) in the context
of waves interacting with a jet, thus we call it ’extended unitarity condition’ in terms of the
current context of acoustics.

With the key results (4.30) and (4.33), we show that the over-reflection is directly caused by
the critical layer. The critical layer causes a jump of the quasi-invariant I, which leads to the
amplitude of the reflected wave being larger than that of the incident wave. An analytical
relation between the reflection coefficient and the amplitude of density perturbation is given
by the extended unitarity condition.

4.3 Over-reflection analysis depending on α, M and φ

In this section, we present detailed results of the reflection coefficient R given by (4.17), which
depends on three non-dimensional parameters, i.e. wavenumber α, Mach number M , and
frequency ω. Subsequently, the frequency ω is always rewritten as a function of the incident
angle φ according to (4.2). Here we are only concerned with the reflection coefficients within
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the range of parameters in which propagating waves and the critical layer exist simultaneously,
i.e. the checkered region in figure 4.2. In this parameter range, incident acoustic waves are
always over-reflected, i.e. R > 1, due to the jump of the quasi-invariant demonstrated in §4.2.4.
Therefore, in the following, we refer to the reflection coefficient directly as the over-reflection
coefficient.

The key results of the over-reflection coefficient R are presented in five groups. Mach numbers
are all within the range [2, 5]. Firstly, results of the over-reflection coefficient are shown as
a function of the Mach number M and incident angle φ for a small representative set of
wavenumbers below one, i.e. α ≤ 1. In this α range, the over-reflection coefficient is not
influenced by resonant frequencies, which are the unstable eigenvalues ω emerging due to
acoustic instabilities of the exponential boundary layer profile. This can be concluded by figure
3.7 in §3. In figure 3.7, for α ≤ 1 the eigenvalues are all above the blue dashed line, which
indicates that the modes are subsonic modes but not supersonic modes. In other words, for
α ≤ 1 andM ≤ 5, there are no unstable supersonic modes and their corresponding resonant
frequencies that affect over-reflection. We refer to those over-reflections that are not affected by
the resonant frequencies as non-resonant over-reflections. Secondly, we display the reflection
coefficient in the wavenumber range 1 < α < 2, in which the resonant frequencies begin to
appear in the propagation region and trigger the resonant over-reflection. In the third group,
in order to disclose the connection between the resonant over-reflection and unstable modes,
the results of the reflection coefficient are displayed as a function of the wavenumber α and
the incident angle φ, for different fixed Mach numbers. The close connection is revealed by the
resonance lines, and the synchronisation of peaks of the over-reflection coefficient and growth
rate of unstable modes in the α-φ plane. Resonance lines are those in §3.5 defined modal lines
consisting of real parts of eigenvalues in the ωr-αr-plane. In the fourth group, a set of larger
wavenumbers is chosen up to α = 10 to show the results of the over-reflection coefficient as a
function of the Mach numberM and the incident angle φ, while revealing a result that higher
unstable modes in addition to the first unstable mode can also lead to resonant over-reflections.
In the last group, we exhibit a series of eigenfunctions and identify three patterns of acoustic
waves propagating in an exponential boundary layer flow.

All numerical evaluations of the CHF were computed with Maple (Maplesoft, 2020) and
verified by the open-source code by Motygin (2018) based on MATLAB (Mathworks, 2020).

4.3.1 Non-resonant over-reflection

Figure 4.3 displays the numerical results for the over-reflection coefficient as a function of the
Mach numberM and the incident angle φ, where the wavenumber α is chosen in the range
between 0.1 and 1. Therein we have included also contour lines, where the thick solid line
corresponds to the border φs2 between the propagation zone and the zone of silence, which is
shown in figure 4.2. The reflection coefficient in the latter region is either equal to one or has
no real physical significance due to exponential non-oscillatory decay of the amplitude into the
free stream.

Observing figures 4.3(a)-4.3(f), we note first that the over-reflection coefficient decreases
with increasing wavenumbers. For small wavenumbers, as in figures 4.3(a)-4.3(c), there are
rather large values of the over-reflection coefficient. Particular for α = 0.1, the maximum value
even reaches approximately R = 3. While the values of the over-reflection coefficient shown
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Figure 4.3: Over-reflection coefficient R defined by (4.17) as a function ofM and φ. (a)-(f) for α in a
range from 0.1 to 1. defines the over-reflection border φs2 according to figure 4.2.

in figures 4.3(d)-4.3(f) are relatively small. This result means that for small wavenumbers,
relatively strong over-reflections occur.

In addition, the large values of the over-reflection coefficient gather around the line of silence
φs2 and go along with large gradients nearby. Particularly visible is that at α = 0.1, a large
gradient of variation in the over-reflection coefficient near the over-reflection border φs2 can be
detected by observing the contours fromR = 1.9 toR = 2.7 that become progressively narrower.
And as the wavenumber α increases, in figure 4.3(b) and figure 4.3(c), the peak gradually
moves away from the line of silence φs2 . Meanwhile, the contours become sparse, which
indicates that the drastic variation becomes flatter as α increases as in figures 4.3(d)-4.3(f).
This result suggests that over-reflections generated by small wavenumbers are more sensitive
to variations in the Mach number than over-reflections generated by moderate wavenumbers.

4.3.2 Coincidence of resonantly over-reflected waves and unstable acoustic modes

In this section, we focus on the resonant over-reflection and its connection to unstable acoustic
modes. We first depict a phenomenon in which an unusual peak of the over-reflection coefficient
appears with increasing wavenumbers in figure 4.4. Subsequently, through figure 4.5 and
figure 4.6, we establish links between the resonant frequencies and the peaks, i.e. links between
unstable modes and resonant over-reflection. In figure 4.7, the synchronisation of the growth
rate of unstable modes and the over-reflection coefficient on the resonance line is shown.
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Figure 4.4: Over-reflection coefficient R defined by (4.17) as a function ofM and φ. (a)-(f) for α in a
range from 1.1 to 1.9. defines the over-reflection border φs2 according to figure (4.2).

defines the local/global maximum R. defines R at resonant frequencies.

Figure 4.4 depicts the variation of the over-reflection coefficient in a range of wavenumbers
between α = 1.1 and α = 1.9, where the range of Mach numbers is still chosen to be between
M = 2 and M = 5. Note that in figure 4.4 we have now swapped the coordinates M and
φ to better observe the key effect in this subsection, i.e. that at a wavenumber α = 1.1, an
unusual local peak appears near the incident angle φ ≈ 75 and Mach numberM ≈ 4.5. This
local peak grows as the wavenumber increases and becomes a global peak finally at α ≈ 1.3.
Thereafter, the peak continues to increase with wavenumber until α ≈ 2 in figure 4.8(a) and
then starts decreasing again. These peaks occur within a very small range of the parameter
φ. The variation of the over-reflection coefficient in the remaining part is not affected by the
peak and remains largely smooth. As the wavenumber increases, the remaining part slowly
decreases.
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Figure 4.5: Over-reflection coefficient R as a function of α and φ for different Mach numbers. In this
parameter domain, only the first unstable mode induced resonant over-reflections and their
peaks are shown and marked by thick solid lines.

Figure 4.6: Coincidence of unstablemodes and resonant over-reflection. (a)The first unstable acoustic
mode of temporal instability for different Mach numbers, where the eigenvalue ω ∈ C as a
function of α, ωr is the resonant frequency and ωi is the growth rate. (b) The α-ωr-plane in
(a) is converted to α-φ-plane according to (4.2). (c) Local maximum value of the resonant
over-reflection in figure 4.5 and their projections on α-φ-plane. The dashed lines in (b) and
(c) represent the projection of the solid lines on the α-φ-plane.

In the following, the goal is to unravel a connection between resonant over-reflections and
unstable modes. To achieve this, in the figure 4.5(a), 4.5(b) and 4.5(c) we show the results
of the over-reflection coefficient as a function of the wavenumber α and the incident angle
φ, where the wavenumber ranges from 1 to 10 and the Mach numbers are fixed to M = 4,
M = 4.5 andM = 5. From figure 4.5, we note that the resonant over-reflection peaks appear
as the wavenumber increases. To explain the peaks, we next establish the relationship between
the resonant frequencies and the resonant over-reflections.

In §3, we deduce the eigenvalue problem for stability of the exponential boundary layer
profile and this is essentially based on the exact solution (2.35). The imaginary part of the
eigenvalue derived there off, i.e. the growth rate ωi, is a function of the Mach number M
and the wavenumber α is of key importance here. Since we have shown in §3.5 that both
temporal instability and spatial instability occur on resonance lines in the αr-ωr-plane, we
show in figure 4.6 only one of the temporal growth rates of unstable modes, i.e. the temporal
growth rate. The case of resonant wavenumbers on the resonance line is discussed additionally
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Figure 4.7: Temporal growth rate ωi, spatial growth rate αi and over-reflection coefficient R on reso-
nance lines. (a)M = 4, (b)M = 4.5 and (c)M = 5, where maximum values of each curve
are marked by , and , respectively. The black thick lines are resonance lines in the
αr-ωr-plane, which are given in figure 3.21.

in figure 4.7. With figure 4.6, we will first show that unusual peaks arise on the resonance line
in the αr-ωr-plane. In other words, resonant over-reflection occurs when the frequency and
wavenumber of the acoustic wave are both values on the resonance line.

In figure 4.6(a), we apply this result and show the curves of the growth rate ωi and the resonant
frequency ωr, i.e. the imaginary and real part of the eigenvalue of temporal unstable modes, of
the first temporal unstable modes as functions of the wavenumber α for fixed Mach numbers
M = 4, M = 4.5 and M = 5. In fact, these results can be found in figure 3.21 in §3.5. But
it is to be noted that figure 3.21 contains the parameter range for the silent zone as shown
in figure 4.2. Figure 4.6(a) does not show that part. In order to relate the unstable modes,
i.e. the resonant frequencies ωr and the growth rate ωi, to the corresponding over-reflection
coefficient, we convert ωr to the incident angle φ according to (4.2) in figure 4.6(b). At the
same time, we extract the projection to the α-φ plane of the maximum curve of the resonant
peak, the black thick line, from figure 4.5 and place it in figure 4.6(c). Also, the dashed lines in
figure 4.6(b) are projections of the main curves onto the α-φ plane. By comparing figure 4.6(b)
with figure 4.6(c), we find that the corresponding dashed lines highly coincide and the trend
of the peaks are largely synchronised. This means that resonant lines can not only trigger
temporal and spatial instability in the stability problems, but it can also cause a rapid increase
in over-reflections in acoustic problems, i.e. resonant over-reflections. We therefore conclude
that the resonant frequency (resonant wavenumber) of unstable modes triggers the peak of the
over-reflection coefficient. This suggests that an unusual over-reflection enhancement occurs
when the frequency (wavenumber) of the incident wave is close to the resonant frequency
(wavenumber).

Next, we try to find the correlation between the variation of the over-reflection coefficient on
the resonance line and the variation of the growth rate of the unstable modes. With figure 4.7,
we observe a synchronisation of the growth rate in the stability problem with the over-reflection
coefficient more clearly. We can first observe that those marked maximum values are clustered
together, although the position of the maximum values on the resonance line does not coincide
exactly with each other. In §3.5 we mentioned that the positions on the resonance line where
the maxima of ωi and αi are located do not coincide either. Secondly, from figure 4.7 we can
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Figure 4.8: Over-reflection coefficient R defined by (4.17) as a function ofM and φ. (a)-(e) for α in a
range from 2 to 10. defines the over-reflection border φs2 according to figure 4.2.

defines the resonant over-reflection induced by unstable modes.

identify that the rise and fall of these curves are roughly synchronised. From α ≈ 1 to α ≈ 2,
they all have a relatively rapid rise, then a slow fall.

The above conclusion is first verified by the results in figure 4.4 and explains well the appear-
ance of the local and global peaks. If converted to the frequency, then the incident angles
corresponding to peaks are approximately equal to the real part of the resonant frequencies
in the first unstable modes. Here we have to further indicate that the local/global maximum
value of the over-reflection coefficient, i.e. the red solid line, and the over-reflection coefficient
corresponding to the resonant frequency, i.e. the red dashed line, do not exactly coincide,
however, they differ by at most two decimal digits of accuracy. This minor difference reaches
its maximum around α ≈ 1.7 and then continuously decreases with increasing α. As α ≥ 2, the
difference becomes almost unrecognizable and therefore is not shown in figure 4.8. This small
difference is likely to be caused by the growth rate of the unstable modes, i.e. the imaginary
part of the eigenvalue. If we observe figure 3.20(a) and figure 3.21, αr always has the largest
growth rate in α ≈ 1.7 to α ≈ 2. In figure 4.4, the deviation between the red dashed line and
red solid line also happens to reach a maximum value in α ≈ 1.7 to α ≈ 2. In other words,
the maximum value of the resonant over-reflection does not occur exactly at the resonant
frequencies (on the resonance line). The deviation from the resonant frequencies is affected
by the imaginary part of the eigenvalue, i.e. the larger the imaginary part of unstable modes,
the more the corresponding frequency of the local/global maximum values deviates from the
resonant frequencies (the resonance lines).

Next, we apply our conclusion to higher unstable modes. In the stability analysis as presented
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in §3, the higher modes gradually appear as the wavenumber increases. However, the first
mode always remains the most unstable mode, i.e. the largest ωi. This feature is also observed
in resonant over-reflections induced by unstable modes. Figure 4.8 illustrates the variation
of the over-reflection coefficient for wavenumbers in a range from α = 2 to α = 10 and Mach
number fromM = 2 toM = 5. We find that at α = 3, the second mode appears and induces
a new local peak. At α = 7, the third mode appears. Although the third unstable mode is
rather weak, it still induces a local peak. At the same time, the first mode always maintains its
maximum peak.

With increasing wavenumber α, i.e. figure 4.8(d) and 4.8(e), the effect of resonant frequencies
on over-reflections causes a steep increase of (R−1) of tens of times compared to the surround-
ing (R− 1) of non-resonant over-reflections. In regions where non-resonant over-reflections
occur, the over-reflection coefficient is very close to one. Once the resonance frequency inter-
venes, extremely steep peaks appear. Another character that can be obtained by observing
figure 4.8 is that the maximum value of the non-resonant over-reflection continues to move
away from the φs2 line relative to the over-reflection of small and moderate wavenumbers. In
figures 4.8(b)-4.8(e), the over-reflection coefficient even forms a monotonic rise with Mach
numbers. Meanwhile, R in non-resonant over-reflection regions is very insensitive to variations
in Mach numbers.

More specific data about resonant frequencies of higher unstable modes are given in Appendix
A.8.

4.3.3 Eigenfunction

In this section, we will present and discuss the eigenfunction (4.16), which is intuitively
separated into the first and the second term. The first term represents the eigenfunction for
reflected waves and the second term stands for the eigenfunction for unitary incident waves
from the free stream.

Figure 4.9 illustrates three representative patterns. Of these, the first group of figures
4.9(a)-4.9(c) corresponds to the case where there is no critical layer and hence, no over-
reflection occurs (R = 1). It can be observed that the amplitudes of the incident wave in
figure 4.9(a) and the reflected wave in figure 4.9(b) are equal. Meanwhile, we observe from
this group of figures the effect of shear layers on the direction of acoustic wave propagation.
This effect is caused by the significant velocity gradient close to the wall. In addition, a slight
increase in the amplitude of the acoustic wave near the wall is detected.

The second group of figures 4.9(d)-4.9(f) and the third group of figures 4.9(g)-4.9(i) corre-
spond to the case of over-reflections. The third group of figures coincides with the occurrence
of the resonant over-reflection, but the over-reflection coefficient only produces local peaks
in R. Thus, the over-reflection coefficient for the third group of figures 4.9(g)-4.9(i) is less
than the non-resonant over-reflection coefficient for the second group of figures 4.9(d)-4.9(f).
Observing the second and third groups, different patterns of over-reflection are detected. In
the second group, particularly visible in figure 4.9(f), the amplitude of the acoustic wave near
the wall is less than the amplitude of the acoustic wave in the free stream. In contrast, in the
third group, i.e. figures 4.9(g)-4.9(i), the amplitude of the acoustic wave near the wall is much
greater than the amplitude of the acoustic wave in the free stream.
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Figure 4.9: Eigenfunctions of incident (the left column), reflected acoustic waves (the middle column)
and (4.16) (the right column) for Mach numberM = 4 and wavenumebr α = 2. (a), (b)
and (c) for the frequency ω = 2.88 (φ ≈ 80◦) and R = 1. (d), (e) and (f) for the frequency
ω = 0.58 (φ ≈ 30◦) and R = 1.08. (g), (h) and (i) for the frequency ω = 1.35 (φ ≈ 68◦) and
R = 1.04. The dashed line stands for the location of the critical layer yc. The angle
of of propagation in the free stream Θ according to (4.7) is shown for incident waves.

In addition, from figure 4.9(f) and figure 4.9(i), we find that the amplitude of acoustic waves
is relatively small near the critical layer. This suggests that the critical layer has an attenuating
effect on acoustic waves, in agreement with the conclusion proposed in Campos & Serrão
(1998). It is important to point out that the transformation between the second and third
patterns occurs continuously and smoothly with variations of ω, i.e. their difference is not due
to the resonant over-reflection. In the vicinity of ω = 1.35, i.e. the region where non-resonant
over-reflections occur, e.g. ω = 1.32, the pattern of the eigenfunction remains similar to the
third group. Conversely, the pattern of the eigenfunction of the resonant over-reflection always
keeps the third one, i.e. the amplitude near the wall is much greater than that in the free
stream. This suggests, from another point of view, that resonant over-reflection (instability) is
a special case of over-reflections.

In the third group of figures 4.9(g)-4.9(i), we note a pattern of the eigenfunction similar to that
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Figure 4.10: Eigenfunctions of incident (the left column), reflected acoustic waves (the middle column)
and (4.16) (the right column) for Mach numberM = 5. (a), (b) and (c) for the wavenumebr
α = 2.33, the frequency ω = 1.34 (φ ≈ 70◦) and R = 1.46 corresponding to the global
maximum value in figure 4.5(c). (d), (e) and (f) for the wavenumebrα = 0.1, the frequency
ω = 0.078 (φ ≈ 75◦) and R = 2.42. The dashed line stands for the location of the
critical layer yc. The angle of of propagation in the free stream Θ according to (4.7) is
shown for incident waves.

of the unstable modes in §3.12. Through figures 4.9(g)-4.9(i) we clearly observe the acoustic
waves trapped between the first relative sonic line and the wall (For a detailed definition of
the relative sonic line see e.g. Knisely 2018. Here it means that the relative Mach number
equals minus one), similar to the surface wave (mode) (see e.g. Rienstra & Hirschberg, 2020).
This indicates that complex reflections and refractions occur near the wall. In contrast to the
non-resonant over-reflection in figures 4.9(d)-4.9(f), on the one hand, the distance between
the first sonic line and the wall is not sufficient to generate strong complex reflections and
refractions, and on the other hand, the attenuating effect of the critical layer covers this distance.
Thus, as read from the pattern in the second group of figure 4.9, no related instability may exist.
As the critical layer moves away from the wall, the surface wave (mode) becomes apparent,
where complex reflections and refractions occur near the wall, which is an infallible sign for a
related unstable mode at a particular frequency.

The above inference is confirmed by figure 4.10. Similar to the setting in figure 4.9, figure
4.10 shows the eigenfunction of acoustic waves but at the Mach numberM = 5, where figure
4.10(a)-(c) for α = 2.2 is corresponding to the maximum value of the peak in figure 4.5(c). The
enhancement of the reflected waves can be clearly observed by the colour gradient. Meanwhile,
the amplitudes near the wall are much greater than in the remaining domain, where complex
reflection and refraction occurs. This region is necessary to induce instability as was shown
in figure 4.9. From 4.10(d)-(f) for α = 0.1, we observe similar acoustic wave propagation to
the second pattern in figure 4.9. Small wavenumbers α do not allow for complex reflections
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and refractions that increase the amplitude near the wall. Therefore, despite the large over-
reflection coefficient R = 2.42, no resonant over-reflections could occur with the near-wall
pattern in figure 4.10(d)- 4.10(f), i.e. no unstable modes exist related to these parameters.

4.4 Conclusion

In this chapter, we investigate the over-reflection of acoustic waves in boundary layer flows
based on the exact solution to the PBE for an exponential velocity profile. The over-reflection
coefficient is shown in detail as a function of problem parameters Mach numberM , wavenumber
α and incident angle φ. Over-reflection exhibits very different patterns depending on small,
moderate and large wavenumbers α. In comparison with small α, moderate α lead to smaller
over-reflection coefficients, while at the same time a reduced sensitivity to the Mach number is
observed. However, an increase in α, leads to the occurrence of resonant over-reflections. The
resonant over-reflection coefficient initially induces a local peak, which increases with α and
becomes a global maximum value around α = 1.3. Thereafter, the peak continues to increase,
reaches a maximum value around α = 2 before it gradually decreases. Although the resonant
over-reflection attenuates as α > 2, the resonant over-reflection is more noticeable relative
to the non-resonant over-reflection. In other words, for large α, over-reflection is hard to be
detected. At specific resonant frequencies, however, resonant over-reflections may be observed.

Both over-reflection and instability reflect the extraction of energy of acoustic waves/modes
from shear flows. The phenomenon of over-reflection is obtained from a purely acoustic point
of view. The inviscid instability, in contrast, is obtained from a stability point of view. For
acoustic waves disturbances that gain energy from shear flows, this will manifest itself in the
form of an over-reflection. Stability analysis, from the point of view of boundary conditions, is
based on two strict boundary conditions, resulting in an eigenvalue problem. For acoustics, in
contrast, only a rigid wall boundary condition is inferred and the relatively weak boundary
condition of the presence of acoustic waves at infinity is brought in. Thus, instability can also
be seen as a special form of over-reflection. This is evident from the fact that the eigenvalue
equation of the temporal and spatial stability problem coincides with the special case in (4.17).

In this chapter, the investigation is carried out mainly from an acoustic point of view. From the
results, we confirm that the resonant frequencies generated by unstable modes are not just
the first unstable mode but also higher unstable modes lead to an enhancement of the over-
reflection, i.e. the resonant over-reflection. This is demonstrated by comparing the eigenvalues
of the unstable modes with the unusually high over-reflection coefficients. The eigenvalues
obtained in the stability analysis represent the resonant frequencies, which are properties
of the boundary layer flow. Around these frequencies, acoustic waves or disturbances can
absorb more energy from the base flow. By comparing the eigenfunctions of acoustic waves,
we identify the mechanism by which resonant over-reflection occurs. The acoustic waves gain
energy from the base flow at the critical layer, accumulate energy in the area close to the
wall and form an area with complex reflections and refractions, and subsequently induce the
resonant over-reflection. The relevant mechanism is also concluded in the study on stability in
§3.3.4.

In the present analysis, we show that the critical layer plays an important role in the energy
exchange between waves and shear flows. The critical layer is the most effective location for
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energy exchange to occur, this is due to the phase velocity of the disturbance or wave being
equal to the velocity of the base flow there. Thus the critical layer is the most likely location
to have interaction. We further proof that in supersonic boundary layer flows with a critical
layer over a rigid wall, the jump of the quasi-invariant at the critical layer always causes an
amplification of the reflected waves, i.e. reflected waves extract energy from the base flow.
The presence or absence of a critical layer therefore determines whether an over-reflection or
instability occurs, which is validated by our results.

We further establish an extended unitarity condition between the over-reflection coefficient
and the jump of the quasi-invariant at the critical layer. This condition shows that the over
reflection coefficient is closely linked to the acoustic perturbation at the critical layer.

The three patterns in figure 4.9 give insight into practical noise control. Avoiding noise from
boundary layer flows requires countermeasures that are based on the physical properties
pointed out above. Specifically, measures of the noise reduction are based on the actual location
where the noise reduction is required, e.g. civil aviation cabin noise reduction or emission
noise reduction. Considering the emission noise reduction, i.e. to the free stream out of the
boundary layer, then over-reflection should be avoided. If only the near-wall noise reduction is
considered, e.g. noise into the cabin, the second pattern in figure 4.9 has advantages due to a
weakened amplitude (loudness) of acoustic waves near the wall. In some specific parametric
intervals, however, the third pattern in figure 4.9 would occur. This pattern should be avoided
in noise control, as the amplitude (loudness) of acoustic waves is amplified both near the wall
and in the free stream, and may induce instability.

To achieve this, one possible way is to control the wavenumber in terms of the results in §4.3.1
and §4.3.2 and keep the frequency smaller than certain thresholds according to (4.2) and
figure 4.2. This could be achieved by a wave filter, which changes the wavelength and the
frequency. A device that exactly achieves these effects has been applied in the inlet and outlet
of the jet engine (Henderson, 2010).

Another feasible way to control the noise is to change the wall condition, i.e. the acoustic
wall impedance. The investigation of the propagation of acoustic waves in boundary layer
flows with acoustic impedance conditions is a popular topic in recent years, which stems from
an interest in noise regulation by using acoustic liners in aircraft engines. Representative
work includes Brambley (2011b) and Rienstra & Darau (2011), who proposed modified Myers
conditions with a finite boundary layer thickness, thus avoiding the ill-posed problem in the
time domain. Based on these, Gabard (2013) gave the reflection coefficient of acoustic waves in
half-space flows in terms of the Myers (1980) condition and the modified Myers conditions and
investigates the effect of acoustic impedance and boundary layer thickness on it. In addition, he
gave a comparison of the effect of sound absorption between results using the Myers condition
and other impedance conditions, one of which is derived based on the exact solution to the PBE
for a special case, i.e. a linear velocity profile. In our context, applying the acoustic impedance
to replace the current rigid-wall boundary condition will result in a different equation of
the reflection coefficient. In this way, the reflection coefficient can be regulated by varying
the acoustic impedance to find the optimal acoustic impedance to suppress or even hinder
over-reflection. A related work in a preliminary stage was done by Albert (2022).

In the next chapter, we will verify the phenomena of over-reflection and the resonant over-
reflection of acoustic waves in exponential boundary layer flows by means of direct numerical
simulations (DNS). One of the conceivable difficulties lies in the construction of acoustic waves
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close to the real situation. At the same time, the resonant over-reflections that we find only
occur in a very narrow parameter interval, i.e. near the resonance lines, and therefore this
requires a high accuracy on the wavelength and frequency of the acoustic waves as well as the
simulations.
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5 Numerical simulation of acoustic wave
propagation in a boundary layer flow

5.1 State of the art

Shear flows are a widespread type of flow model. A velocity gradient causes this type of
flow to be different from a normal uniform flow. Therefore, it is well imaginable that wave
propagation in a shear flow would be very different. A better-known example is the effect of
the Kelvin-Helmholtz instability present in shear flows on internal gravity waves in a linear
(Lindzen & Rosenthal, 1976) and a non-linear way (Fritts, 1979). We recommend the book by
Bühler (2014) for a deeper insight into the propagation of (acoustic) waves in shear flows.

Acoustics in shear flows is an essential topic in engineering applications, e.g. the propagation
of sound in inlets or outlets of jet engines, in which shear flows lead to fundamentally new
phenomena (Rienstra & Hirschberg, 2020). In shear flows, the propagation of acoustic waves
dramatically differs from those in uniform flows due to interactions between acoustic waves
and shear layers (Delfs, 2016). In addition to this, the instability present in shear flows has a
non-negligible effect on acoustic waves (Fedorov & Tumin, 2003).

A remarkable phenomenon that could arise in shear flows is over-reflection, which means that
the reflected wave is stronger than the incident wave. Ribner (1957) and Miles (1957) were
simultaneously the first to investigate the amplification effect of acoustic waves in flows. In
their studies of plane acoustic waves, which impinge onto a moving medium separated by a
vortex sheet, over-reflection was possible if the moving medium was at high enough speeds.
Blumen et al. (1975) explained the amplification of acoustic waves during their reflection as a
resonant effect. In their study, they increased the vortex sheet smoothly to some finite width,
in which a thin critical layer appears inside the vortex sheet, and thereby speculated that the
energy of the acoustic wave increases from this layer.

Much of the research on the reflection of acoustic waves in the subsonic regime focused on a
particular model of shear flows, the boundary layer flow. The study of the boundary layer flow
is caused by an urgent need to control noise through the acoustic wall impedance. In Brand
& Nagel (1982), the reflection coefficient of a boundary layer flow constructed by a uniform
flow together with a linear velocity profile was studied in limiting parameter cases. In Gabard
(2013) and Saverna et al. (2019) they derived the reflection coefficient for subsonic boundary
layer flows using the modified Myers condition (Rienstra & Darau 2011; Brambley 2011b;
Brambley et al. 2012) and compared them with results derived by using the exact solution of
the linear velocity profile. It was verified in these studies that no over-reflection appears. This is
mainly because acoustic waves always travel faster than the flow velocity within subsonic flows,
making it difficult for them to extract energy from the flow. In addition to this, there are no
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over-reflections that are triggered or amplified by unstable modes. This is due to the fact that
in a subsonic boundary layer flow, the T-S mode (see e.g. §3.1) dominates the instability, which
cannot be correlated with acoustic waves in the same way as acoustic modes. In Wu (2014),
he gave a further explanation that the characteristic wavelength of the T-S mode is normally
much smaller than that of acoustic waves, which means that the matching of the wavenumbers
is not satisfied unless a scale-conversion mechanism, e.g. surface roughness, is present. For the
supersonic case, the picture becomes quite different. Similar over-reflection phenomena were
found in Campos & Kobayashi (2013) in studying a hyperbolic-tangent boundary layer flow,
in Zhang et al. (2022) in studying an exponential boundary layer flow, and in Hernández &
Wu (2019) and Liu et al. (2020) in studying the receptivity of a flat-plate boundary layer to
impinging acoustic waves.

Another important topic in boundary layer flows that largely influences the behaviour of acoustic
waves is instability. Mack (1965) was the pioneer of the stability problem for compressible
boundary layers. He discovered the higher-order modes that can dominate instability in
the supersonic condition. In recent studies, Chuvakhov & Fedorov (2016) carried out direct
numerical simulations (DNS) to study the radiation effects arising from the instability of
supersonic boundary layer flows at the Mach number M = 6. Outwardly radiative acoustic
waves were observed through actuator-generated wave trains and wave packets propagating
over a flat plate. In addition, the radiative acoustic waves caused the elongation and modulation
of the wave packet. Knisely & Zhong (2019a, 2019b) verified the similar phenomenon of sound
radiation by the instability of hypersonic blunt cone boundary layers through DNS. These
acoustic wave structures of radiation caused by unstable acoustic modes were also observed in
experiments on a hypersonic boundary layer of a flared cone (Zhang et al., 2013; Zhu et al.,
2020).

In recent work in Zhang et al. (2022), the authors focused on the propagation of acoustic waves
in two-dimensional (2-D) compressible boundary layer flows and the resulting over-reflection
phenomena. At the theoretical level, their study was developed based on how acoustic waves
extract their energy from the base flow. According to linear theory, there is a critical layer in
boundary layer flows where the phase velocity of the acoustic wave is equal to the base flow
velocity, and the acoustic wave indeed acquires energy from the shear layers and is thereby
over-reflected. In addition to this, a stronger over-reflection occurs when the acoustic wave
frequency approaches the resonant frequency of the unstable modes, called resonant over-
reflection. The interval of resonant frequencies in which the resonant over-reflection occurs
was a very narrow parameter range and was therefore difficult to detect. A related work about
unstable modes and instability of exponential boundary layer flows can be found in Zhang &
Oberlack (2021). Based on these studies from linear theory, we conduct DNS using the in-house
BoSSS code (Kummer et al., 2009) to validate further the over-reflection of acoustic waves in
an exponential boundary layer flow in a supersonic regime. For this, we give incident acoustic
waves in the form of a wave packet in the free stream that is more closely matching the reality.
These waves propagate into an inviscid compressible exponential boundary layer flow and are
eventually reflected by the wall. Through DNS, we record the amplitude of reflected waves and
compare it with that of the incident wave. Finally, it is verified that over-reflection occurs, and
there is a highly narrow frequency interval that allows the over-reflection to become strong,
i.e. corresponding to a resonant over-reflection.

This chapter is structured as follows. In §5.2, we introduce the BoSSS framework based on
the DG method. In §5.3, we give the numerical setup, including the computation domain,

92



initial condition, and boundary conditions. A model of the superimposed wave packet is
constructed for the present study. In §5.4, we show the simulation results for the Mach number
M = 5, the wavenumber α = 4, and different frequencies. These results show good agreement
with theoretical results in §4. The ver-reflection of acoustic waves exists, and the resonant
over-reflection is observed when the frequency is close to the resonant frequency. In §5.5, we
state the main conclusions of this chapter and discuss some limitations.

5.2 The generic discontinuous Galerkin software framework BoSSS

As the present work depends highly on the accurate numerical simulation of acoustic phenom-
ena, the need for a valid code is obvious. In particular, ensuring low numerical dissipation and
small dispersion errors is the key to such high-accuracy simulations. As we mentioned in §1.2.2,
even small orders of disturbances can significantly influence acoustic waves. For this reason,
higher-order methods, such as DG methods, are often favoured in the acoustic community.
Compared with traditional numerical methods, such as the Finite Difference Method (FDM),
the Finite Volume Method (FVM), and the Finite Element Method (FEM), the advantages of
the high-order DG method in acoustics are manifold. It avoids problems associated with the
FDM, e.g. spurious waves appearing in the numerical solutions, which might contaminate the
physical results in spite of being numerical in nature (Trefethen 1982; Colonius & Lele 2004;
Tam 2004). Compared to the FVM, which can accomplish a higher-order discretisation only
by increasing the stencil, the DG method achieves an arbitrarily high-order discretisation by
representing the solution in cell-local polynomials (De Grazia et al., 2014). In addition, it
allows for hanging nodes. However, FVM is sensitive to the meshes produced in this way. The
advantage of the DG method concerning the Finite Element Method (FEM) is that it is not
limited to a global continuous basis function but is locally conservative, i.e. numerical errors
do not violate conservation laws. Both high accuracy and low costs associated with the DG
method are advantageous in the field of aeroacoustics (Tam, 2004).

Within the past few years, the BoSSS (Bounded Support Spectral Solver) code has been
developed and refined by the group at the Chair of Fluid Dynamics (FDY), TU Darmstadt. It is
based on the DG method with arbitrarily small and pre-definable discretisation error. In fact,
the BoSSS code is a library designed in a couple of layers rather than a monolithic CFD code.
This library was coded in C# and is thus based on the .NET/Mono framework (Kummer et al.,
2020). To date, BoSSS is developed to be able to solve arbitrary PDE systems, including elliptic,
parabolic, hyperbolic and mixed type problems. At this point, solvers for several related issues
have been implemented in BoSSS. For the unsteady incompressible Navier-Stokes equations,
two variants of the so-called projection method was implemented (Kummer 2011; Emamy
et al. 2017). Furthermore, the well-known SIMPLE algorithm was adapted to DG for the case
of steady and unsteady, incompressible flows (Klein et al., 2013; Klein et al., 2015).

In the compressible flow regime, a solver for both inviscid and viscid compressible flows based
on the HLLC Riemann solver (Toro, 2013) was implemented and tested by Müller (2011).
Based on BoSSS, the scheme relies on the HLLC Riemann solver, which was improved to provide
excellent approximations of the exact solution to the Riemann problem with reasonable effort.
In addition, it is designed to support generic time-stepping schemes, e.g. explicit Runge-Kutta
(RK) methods up to fourth order, and generic boundary conditions, which is particularly
useful for the implementation of the required non-reflecting boundary conditions (NRBCs)
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Figure 5.1: (a) Sketch of a two-dimensional (2-D) exponential boundary layer flow and the compu-
tational domain, where Lx and Ly are the size of the computational box in the x- and
y-direction. Dashed lines divide the field into three sub-regions, i.e. strongly sheared, weakly
sheared and unsheared regions. An incident acoustic wave from the free stream gives rise
to a reflected wave, characterised by the reflection coefficient R. (b) Wave packet super-
imposed in the free stream. The colour scale varies from blue to red with an increasing
value of p′. The wave packet is constructed by the exact solution (4.16) and the described
model in §5.3.3. The centre of the wave packet contains a part of the plane acoustic waves
with constant wavelength and amplitude, which has a wavenumber α = 4 and a frequency
ω = 1.85. In the part of the wave packet where the amplitude decreases, the acoustic wave
described by the exact solution is distorted.

(Müller et al., 2017). To date, BoSSS contains a compressible Navier-Stokes (CNS) solver,
which has a robust and efficient high-order numerical scheme for the simulation based on a
discontinuous Galerkin immersed boundary method (DG IBM) (Krämer-Eis, 2017) and an
extended discontinuous Galerkin (XDG) method (Geisenhofer, 2021). Based on this, we apply
the CNS solver to compute the compressible Euler Equations in the present work, i.e. the
inviscid case.

5.3 Numerical setup

In this section, we describe the setup of the numerical simulation. Firstly, the computational
domain, including a flow configuration, is illustrated. Secondly, the boundary conditions, as
well as the initial conditions, are introduced. Meanwhile, the model of wave packets that
mimics plane waves in linear theory is constructed. Finally, the numerical discretisation is
presented.

5.3.1 Computation domain

In figure 5.1(a), we present a sketch of the simulated two-dimensional (2-D) boundary layer
flow (left) and the computational domain (right). The base flow is defined by (p, u, v, ρ)T =
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(p0, u0, 0, ρ0)
T , where the base pressure p0 and density ρ0 are constant. The exponential

boundary layer flow is mimicked by

u0(y) = U∞

(︂
1− e−

y
δ

)︂
, (5.1)

an exponential function, i.e. (2.28a).

To re-produce the over-reflection of acoustic waves in inviscid compressible boundary layer
flows, we perform the DNS using the full non-linear Euler equations for an ideal gas (γ = 1.4),
which are more accurate than the linearised Euler equations (LEEs). The reference quantities
used for the non-dimensional Euler equations are p0, U∞, ρ0, and δ. For simplicity, we choose
p0 = 1 and ρ0 = 1, which according to (2.21) leads to the constant speed of sound c0 =

√
γ.

The Mach number is thereby defined as

M =
U∞
c0
, (5.2)

which indicates the velocity of the flow in the free stream U∞ =Mc0.

The complete base flow is contained in a 2-D computational box, whose size is denoted
by Lx and Ly in horizontal (x-) and vertical (y-) directions. The coordinate axes are non-
dimensionalised with the shear layer thickness by setting δ = 1 for simplicity. The length of
Lx for the computational box is chosen based on the size of the inserted wave packet in the
x-direction, i.e. chosen large enough to accommodate at least one complete wave packet. In the
vertical direction, Ly of the computational box is divided into three regions, where the region
closest to the wall contains the strongly sheared flows, i.e. the large velocity gradient. The
weakly sheared region is in the middle, and the top region is regarded as the free stream without
shear. The distinction between regions with and without shear is to exclude the influence of
shear effects on acoustic waves. The difference between strongly and weakly sheared regions is
made for a computational purpose to apply a more refined grid in the strongly sheared region
near the wall, where the large velocity gradient may cause significant numerical errors and
even divergence. In the numerical simulations, we insert the complete incident wave packet in
the unsheared region to avoid the shear effects on the propagation of the acoustic waves.

In the present work, we define the strongly sheared region as y ∈ [0, 2) and apply a finer grid
there. In the region y ≥ 10, we consider that the effect of shear is already minimal and can be
approximated as an unsheared region, i.e. free stream. In the region y ∈ [2, 10), the grid is
medium-sized.

5.3.2 Boundary conditions

Periodic boundary conditions are applied in the x-direction. We choose Lx = nλ, n ∈ Z and
n ≥ 4, rather than only one wavelength such that the horizontal extent is large enough to
minimise aliasing phenomena due to periodicity. The use of periodic conditions along the base
flow direction offers an advantage in computational costs. Further, this avoids the uncertainty
associated with the inflow and outflow boundary conditions. In particular, within the boundary
layer, as the velocity decreases close to the wall, there always exists a location where the
velocity of the flow is exactly equal to the speed of sound, thus dividing the computational
domain into two sub-regions i.e. subsonic and supersonic regions. The use of periodic boundary
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conditions avoids the necessity to set separate supersonic and subsonic boundary conditions
for the two sub-regions. Note that in the present work, we are modelling a boundary layer
flow where the exponential profile remains unchanged, rather than a flat-plate type boundary
layer that develops gradually with distance. A periodic boundary condition is therefore feasible.
The bottom of the computational domain is set as an adiabatic slip wall, which enforces a zero
normal velocity and non-zero horizontal velocity in the current context of the Euler equations.
The top of the computational domain is a supersonic outlet, where no considerable reflections
from the outlet are observed because, in current work, the flow is always supersonic. These
two boundary conditions have already been inserted in BoSSS and can be selected to use. For
details see e.g. Krämer-Eis (2017) and Geisenhofer (2021).

5.3.3 Initial condition and wave packet

At t = 0, we superimpose a wave packet in the form of small perturbations in the unsheared
region of figure 5.1(a), similar to the superposition in (2.7). We construct such incident waves
through the exact solution (4.16) to the PBE (2.31) in linear theory and the normal-mode
ansatz (2.11). The eigenfunction of the density perturbation reads

ρ′(x, y, t) = eiMαe−y−
√
θy˜︂Hc

(︃
;
αe−y

α− ω

)︃
ei(αx−ωt), (5.3)

where the paremeters of the Hc function is given in (2.38). Considering (2.32) and (2.33),
the small perturbation of velocities reads

u′(x, y, t) = eiMαe−y−
√
θy

[︄˜︂Hc
(︃
;
αe−y

α− ω

)︃
α (ω − α+ αe−y) + iMαe−2y +

√
θe−y

M2 (ω − α+ αe−y)2

+˜︂Hc
′
(︃
;
αe−y

α− ω

)︃
αe−2y

(α− ω)M2 (ω − α+ αe−y)2

]︃
ei(αx−ωt),

(5.4)

v′(x, y, t) = eiMαe−y−
√
θy

[︃˜︂Hc
(︃
;
αe−y

α− ω

)︃(︂
−iMαe−2y −

√
θe−y

)︂
− ˜︂Hc

′
(︃
;
αe−y

α− ω

)︃
αe−y

α− ω

]︃
×

× ei(αx−ωt)

iM2 (ω − α+ αe−y)
.

(5.5)

Applying the constant speed of sound c0 and the relation between the density and pressure
perturbation (2.27), the pressure perturbation reads

p′(x, y, t) = γρ′. (5.6)

It is notable that (5.3)-(5.6) are non-dimensional forms, in which the time t is non-dimensionlised
by U∞ and δ. Since the free flow velocity is newly defined by U∞ =Mc0, in order to keep the
parameter settings in the simulation consistent with the results in §4, we need to rescale t with
multiplying a factorMc0 in the simulation.

To keep the perturbation small enough, we further introduce a factor ϵ and multiply (5.3) with
this factor. As a result, the incident acoustic wave has an amplitude of the order of ϵ in the
far-field. The factor ϵ = 10−4 is chosen in the current work to avoid non-linear effects. Smaller
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Figure 5.2: Wave packet models (a) with distorted wavelengths (b) with implemented segment includ-
ing plane waves with constant wavelength and amplitude.

ϵ is validated by test computations that it does not produce significantly better results but
requires much higher costs and hence is not used. Note that the superimposed wave packet
propagates simultaneously in both positive and negative y-axis directions in the simulation.
Here we only consider the wave packet propagating in the negative y-direction as incident
waves. The upward (positive y-direction) and downward (negative y-direction) propagating
waves cause a separation of the wave packet so that the maximum amplitude of the incident
wave is not equal to the initial value set by ϵ. This requires a record of the amplitude of the
incident wave amplitude, which is described later through figure 5.6 and related descriptions.

For the incident wave to be inserted smoothly into the initial condition, we apply a trigonometric
cos-function multiplied by the wave function (5.3) and choose a length of nλ, n ∈ Z with
n ≥ 2 as the length of the wave packet. In this way, a wave packet can be created in the free
stream, containing several wavelets, as shown in figure 5.2(a) as an example for 1-D waves.
This wave packet model is close to the reality of acoustic wave propagation but gives rise to new
problems. Firstly, the trigonometric function that describes the envelope of the wave packet
distorts the exact solution (5.3), e.g. the wavelength in the x- and y-direction in the exact
solution is changed due to the multiplied trigonometric function of the wave packet as shown
in 5.2(a). Since the reflection coefficient is very sensitive to the wavenumber α (Zhang et al.,
2022), a slight variation in the wavelength in the x-direction leads to unpredictable changes in
the reflection coefficient. Secondly, due to the geometric dispersion relation of the acoustic
waves, a wave packet generated in this way will disperse in the free stream. The dispersion
relation of an acoustic wave in the free stream can be found in (4.6), which describes the
effect of changes in the wavenumber in the x-direction on the wavenumber in the y-direction.
In other words, inconsistencies in wavelengths on the wave packet shown in 5.2(a) can lead
to a dispersion of the wave packet6. To avoid and minimise the model problems described
above, we apply the present work’s wave packet model depicted in figure 5.2(b). Based on
the superimposed wave packet in figure 5.2(a), we further apply a segmentation function to
insert a straight line of factor one into a wave packet described by the trigonometric function.
This is to ensure that the centre part of the wave packet is close to plane acoustic waves with
constant wavelength and amplitude. In this way, the eigenfunction of the incident wave (5.3)
6 Dispersion of a wave packet is a phenomenon where the shape of the wave packet becomes flattened due to the
different phase velocities of the individual wavelets in the wave packet.
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obtained in linear theory is implanted into the wave packet model without distortion, thereby
avoiding errors induced by inaccurate wavelength on both sides of the wave packet. Figure
5.2(b) illustrates such a wave packet with a part consisting of plane waves with a constant
amplitude. In comparison to the wave packet model in figure 5.2(a), where a deviation of the
wavelength in the wave packet is always present, the centre part of the wave packet in figure
5.2(b) contains waves with a constant wavelength and amplitude. In this way, it minimises the
influence caused by dispersion because a plane wave with constant wavelength does not give
rise to the dispersion.

Figure 5.1(b) shows an example of an inserted wave packet in the free stream. The colour
scale changes from blue to red to indicate a change in pressure perturbation from low to high.
The amplitude at the centre of the wave packet is the area where the maximum amplitude
of the acoustic wave is tracked and recorded. We regard the acoustic wave as a plane wave
with constant wavelength and amplitude in the centre region. It should be emphasised that
the length of the central section is chosen to be at least half a wavelength, i.e. to ensure that
the maximum and minimum amplitudes described by the exact solution are included. The rest
of the green domain is free of any perturbations.

5.3.4 Numerical discretisation

Numerical simulations of the proposed acoustic wave propagation are challenging because
the amplitude of the acoustic wave perturbation is extremely small, and the acoustic wave
propagation requires to be simulated for a long enough time to obtain the complete reflected
waves in the free stream. For this, we need to adopt a numerical discretisation scheme that
guarantees small dissipation and dispersion errors and ensures that the simulation results are
not affected by the numerical discretisation. We, therefore, solve the full (non-linear) Euler
equations in a conservative form using a higher-order Runge-Kutta DG discretisation within
the BoSSS framework.

To avoid numerical errors when cells are skewed (Schäfer, 2013), our numerical discretisation
only uses equidistant quadratic cells, and 6-th order polynomials are applied. In the region far
away from the wall, i.e. the unsheared region, we apply a simple equidistant quadratic cells
grid. As the shear effect increases approaching the wall, the accuracy of the grid is increased
by adding more equidistant quadratic cells. In the region close to the wall, i.e. the strongly
sheared region, where the grid needs to be resolved more accurately, we, therefore, use a finer
grid. Transitions between different regions of the grid are made with hanging nodes. The
length of the cell in the strongly sheared region is chosen to be ∆x = ∆y = 1.5× 10−2, and
therefore, the number of grids can be calculated with Nx × Ny = Lx/∆x × Ly/∆y. The cell
lengths for the weakly shear region and the unsheared region are ∆x = ∆y = 3× 10−2 and
∆x = ∆y = 6× 10−2, respectively.

In time, we choose a standard third-order Runge-Kutta scheme. To fulfil the Courant-Friedrichs-
Lewy (CFL) stability criterion of the fully discrete Runge-Kutta DG discretisation, a time step
size of ∆t = 2 × 10−5 is required, and the CFL number is set to 0.5. It is verified that the
numerical solution does not change when further decreasing the time step size.
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Figure 5.3: DNS results of the acoustic waves for the Mach numberM = 5, the wavenumber α = 4,
and the frequency ω = 0.8. At non-dimensional time (a) t = 0, (b) t = 5.63, (c) t = 9.22,
(d) t = 12.29, (e) t = 15.88, (f) t = 23.05. The color scale varies from blue to red with
increasing p′ referring to figure 5.1(b).

5.4 Simulation results

This section shows DNS results of the propagation of wave packets containing plane waves with
constant wavelength and amplitude in exponential boundary layer flows. These results consist
of seven different sets of frequencies ω for the fixed Mach numberM = 5 and the wavenumber
α = 4. The results for the reflection coefficients corresponding to the selected parameters are
representative, including the over-reflection and the resonant over-reflection.

Figure 5.3 shows the simulation results of the acoustic waves for the Mach numberM = 5, the
wavenumber α = 4, and the frequency ω = 0.8. Figures 5.3(a)-5.3(c) present the incidence of
the acoustic waves into the boundary layer. Figures 5.3(d)-5.3(f) depict the process of acoustic
waves leaving the boundary layer. It can be observed that as the acoustic wave approaches
the wall, the wave packet undergoes a deformation, which is mainly caused by the continuous
variation of the boundary layer flow velocity in the y-direction. This deformation is essentially
symmetrical for the case depicted in figure 5.3, i.e. the wave packet regains its original shape
after leaving the boundary layer. The reflection coefficient of the simulation is calculated to
be R ≈ 1.031, which indicates that the acoustic wave extracts little energy from the shear
flow. Figure 5.4 shows the temporal evolution of the acoustic waves at the resonant frequency
ω = 1.85. A comparison of figure 5.4(a) with figure 5.4(f) reveals that the shape of the
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Figure 5.4: DNS results of the acoustic waves for the Mach numberM = 5, the wavenumber α = 4
and the frequency ω = 1.85. At non-dimensional time (a) t = 0, (b) t = 4.60, (c) t = 10.75,
(d) t = 13.30, (e) t = 14.84, (f) t = 22.51. The color scale varies from blue to red with
increasing p′ referring to figure 5.1(b).

wave packet is changed. The wave packet contracts towards the central part, which suggests
more increases in the amplitude. The reflection coefficient finally obtained by calculation is
R ≈ 1.145, which indicates that the acoustic waves draw more energy from the boundary layer
flow.

It is difficult to distinguish the increase in reflected wave amplitude by the change in colour in
figure 5.3 and figure 5.4. Therefore, an accurate record of the maximum value of the wave
packet amplitude in the computational domain is required to provide the results of the over-
reflection. Figure 5.5 shows the results of the maximum value of the wave amplitude |p′|max

as a function of non-dimensional time for different frequencies, 5.5(a) for ω = 0.8, 1.0, 1.5
and 5.5(b) for ω = 1.82, 1.85, 2.0. Using the wave packet model described in §5.3.3, we keep
that the maximum amplitude occurs at the centre of the wave packet. The centre part always
contains a complete acoustic wave with constant wavelength and amplitude.

We set up the simulation to record the maximum amplitude value for the domain y ≤ 10. Thus,
as the wave packet gradually moves from a position where y > 10 to y ≤ 10, the maximum
value of the amplitude gradually rises and remains constant as the central part enters. As
the shear effect increases, the wave packet begins to scatter and deform, creating a peak at
the wall due to the overlap of the incident and reflected waves. Eventually, as the acoustic
wave travels away from the wall, it returns to the level of the amplitude of the incident wave.

100



Figure 5.5: Simulation results for the maximum value |p′|max for different frequencies (a) ω =
0.8, 1.0, 1.5 and (b) ω = 1.82, 1.85, 2.0.

Figure 5.6: Simulation results for (a) locations of the maximum value |p′|max and (b) the maximum
value |p′|max for ω = 2.4. Square □ marks the start and end sampling points for the incident
wave amplitude. Circle ◦marks the start and end sampling points for the reflected wave
amplitude.

Of particular note is the significant increase in the amplitude of the reflected waves at the
resonant frequency ω = 1.85. In the stability theory, the temporal instability of the boundary
layer manifests itself as an acoustic wave radiating outwards. For the resonant over-reflection
shown in figure 5.4 and figure 5.5(b), a significant increase in the amplitude of the reflected
waves is associated with this instability mechanism.

Next, we take figure 5.6 as an example to illustrate how the reflection coefficient in the DNS
results is calculated. Figure 5.6(a) shows the y-location in the domain y ∈ [0, 10] of the
maximum amplitude for the Mach numberM = 5, the wavenumber α = 4, and the frequency
ω = 2.4 as a function of non-dimensional time t. Figure 5.6(b) is the corresponding maximum
amplitude in the same domain as a function of t. The maximum value starts to be recorded
when the acoustic wave enters the domain y ∈ [0, 10]. This value remains at y|p′|max

= 10
until the centre part of the acoustic wave passes through y = 10, after which y|p′|max

starts to
decrease. After being completely reflected, the maximum value of the amplitude |p′|max at
the centre of the wave packet moves in the positive y-direction and finally passes through the
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Figure 5.7: Comparison between theoretical reflection coefficients and simulated results for
Mach number M = 5 and wavenumber α = 4 and different frequencies ω =
0.8, 1.0, 1.5, 1.82, 1.85, 2.0, 2.4.

recording boundary at y = 10.

Since the maximum amplitude |p′|max of the acoustic wave in the numerical simulation fluctu-
ates within a range, we take the mean value of |p′|max for y falling into the interval y ∈ [9, 10]
as the amplitude of the incident and reflected waves, which increases the reliability of the
results. The box in figure 5.6 marks the range selected for the mean value of the incident
wave amplitudes, and the circle indicates the range chosen for the mean value of the reflected
wave amplitudes. The mean value of the maximum amplitude in these two ranges is used to
calculate the reflection coefficient.

It should be noted that a noticeable oscillation in figure 5.6 is observed. It is caused by the
artificial effect of the inserted wave packet edges. Artificial waves appear at the beginning
from the wave packet edges and are reflected by the wall, which slightly affect the records of
|p′|max, see e.g. small oscillations around t = 15 in figure 5.5. However, these artificial effects
only superimpose an interference effect and are either small or local, i.e. no influence on the
reflected wave amplitude in the free stream is found.

A comparison of the numerical simulations with the theoretical over-reflection coefficients is
given in figure 5.7. The reflection coefficients for the seven simulations are calculated by the
method described in figure 5.6 and are marked with an asterisk in figure 5.7. The solid line is
the theoretical result and computed by (4.17) in linear theory for the Mach numberM = 5,
the wavenumber α = 4, and different frequencies.

Overall, the results of the numerical simulations match the theoretical predictions well in
most cases. In particular, there is an exceptionally large value of the reflection coefficient
at the resonant frequency ω = 1.85, while at ω = 1.82 and ω = 2, the reflection coefficient
remains relatively small level. The exceptionally large over-reflection coefficient around the
resonant frequency points to an occurrence of the resonant over-reflection. Nevertheless,
it is also near the resonant frequency ω = 1.85 as shown in figure 5.7 that relatively large
discrepancies between the simulation and theoretical results arise. The reason is that the
reflection coefficients caused by the resonant frequencies increase promptly in a small frequency
interval. A slight deviation of the frequency can lead to a significant difference in the results.
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Therefore, the accuracy of the incident wave parameters inserted is critical. The accuracy of
the incident wave parameters is determined on the one hand by the accuracy of the grid. It
costs high to give such incident waves in the simulation accurately. On the other hand, the
shear flow influences the incident wave. Although the shear effect is extremely weak in the
defined ’free stream’, it may still cause the parameters of the inserted incident wave to deviate
from the set value.

5.5 Conclusion and discussion

5.5.1 Conclusion

By means of DNS, we simulate the entire process of acoustic waves incident from a free stream
to an exponential boundary flow. For this purpose, we first build a wave packet model. In
the wave packet model, plane waves with constant wavelength and amplitude are inserted
into the packet so that the simulated acoustic waves have the same parameters corresponding
to that in linear theory, i.e. the wavelength and the frequency. Through the initial condition,
the wave packet model is superimposed with the base flow in the form of small perturbations,
thereby creating acoustic waves that are incident from the free stream into the boundary layer.
As the acoustic waves enter the sheared region, dispersive effects of the wave packets are
observed. This is mainly due to the velocity changes of the base flow in the y-direction. The
elongation of the wave packet reaches its maximum as it approaches the wall. Eventually, the
acoustic waves are reflected at the wall and return to the free stream. In the process, the
elongated wave packet is largely restored to its original form as the y-direction distances and
the base flow velocity increase. The ratio of the maximum amplitude of the reflected wave in
the free stream to the maximum amplitude of the incident wave is recorded as the reflection
coefficient in the simulations. Seven sets of simulations for different frequencies for the Mach
number M = 5 and the wavenumber α = 2 are conducted, and the simulated results were
obtained. The reflection coefficient in simulations were compared with that obtained from
linear theory, which are in good agreement. In particular, there is an unusual peak in the
simulated over-reflection coefficient with a frequency ω = 1.85. This is consistent with the
resonant over-reflection phenomenon in the theoretical results.

5.5.2 Discussion

It should be noted that the wave packet model still has some limitations in the present numerical
simulations. These limitations are reflected in the following two aspects.

The first limitation is the insertion of plane waves with constant wavelength and amplitude into
the wave packet. This model does not exist under real conditions and is only an approximation.
Since the over-reflection phenomenon and the over-reflection coefficient obtained in linear
theory are based on the plane wave with constant wavelength and amplitude, a realistic wave
packet, e.g. the model in figure 5.2(a), cannot reproduce the corresponding over-reflection
well due to imprecise parameters of the incident waves. Therefore, we regard the employed
model more as an idealised one.
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The second limitation is the dispersion effect of a wave packet on the amplitude of reflected
waves. Even using the model in figure 5.6(b), there is still a slight dispersion in the wave
packet where the wavelength and amplitude change, i.e. the parts in 5.6(b) other than the
constant central part. The reason is due to the dispersion relationship of the wave packet in the
shear flow. Going back to figure 5.2(a), we can determine that the wave packet is composed of
wavelets with different wavelengths, i.e. they have different wavenumbers. These components
of wavelets with different wavelengths are still present in the wave packet model in figure
5.2(b) and thus will affect the plane waves with constant wavelength and amplitude in the
central part. By the dispersion relation (4.6) we know that this causes the wavelets on the wave
packet to have different phase velocities and thus dispersion. By numerical simulations, we find
that the wave packet of the incident wave does not have significant dispersion in the region
of y ≥ 10. This means that the dispersion effect of the wave packet due to the free-stream
dispersion relation is relatively small and thus can be neglected. However, the reflected wave
packet could be affected by the dispersion effect in the region of y ≥ 10. Especially for acoustic
waves with a resonant frequency, the reflected acoustic waves absorb more energy from shear
flows, which may lead to an unpredictable change in the shape of the wave packet, thereby
leading to a more obvious dispersion effect of the reflected wave packet in the free stream.

The dispersion effect is very pronounced for the wave packet model in figure 5.2(a) and may
even cause the effect of over-reflection to be completely suppressed. Therefore, a study of the
dispersion effects on a wave packet could provide a more realistic picture of the over-reflection
effects of acoustic waves.
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6 Conclusion and outlook

This chapter consists of two parts. In §6.1, we give a summary of key results in this thesis
and focus on novel contributions of the present work to the stability and acoustic research
community. In §6.2, we state valuable topics and potential further work that are based on new
findings of the present work.

6.1 Summary and contributions

In the present work, we focus on a detailed investigation of the stability problems and the
over-reflection of acoustic waves of a compressible inviscid boundary layer flow. These studies
are based on the PBE with constant temperature and an exponential base flow velocity profile
and its new exact solution.

The PBE is common in both stability and acoustic problems but appears to be mixed in the
literature due to different fields of study, various names, distinct non-dimensional approaches,
etc. We give derivations of several forms of the PBE, including the most common form, the
generalised PBE with a velocity and a temperature profile. In the process of the derivation of the
equations, we identify their applications in different fields of research. By a further homentropic
assumption, we then derive the key equation in this thesis, the PBE with an exponential velocity
profile. We show the different non-dimensional approaches for this equation and the ways how
they can be transformed into each other. The PBE with an exponential velocity profile is found
to have a similar form as the confluent Heun equation (CHE) in the Heun class equations,
thereby leading to the derivation of an exact solution to the PBE in terms of the confluent Heun
function (CHF). This exact solution is both a cornerstone of the present work and a significant
contribution that can be extended for use in other studies, see §6.2.

In the present study of the stability problem, we investigate temporal and spatial stability
separately. For this, we first convert the boundary value problem into an eigenvalue problem
by proposing appropriate boundary conditions, which lead to the eigenvalue equation. To
find eigenvalues, we first solve the eigenvalue equation analytically in limiting cases by the
method of asymptotic analysis. In the temporal stability problem, we get analytical solutions
for the small and large wavenumbers at small Mach numbers. In the spatial stability problem,
we obtain analytical solutions for small and large frequencies at small Mach numbers. These
solutions point out that the eigenvalue for small wavenumbers or frequencies is unique as well
as real-valued. For large wavenumbers or frequencies in the context of small Mach numbers,
the eigenvalues are still real but multiple-valued. Despite the restriction that the CHF lacks a
general series expansion, which causes the analytical solutions to be restricted to small Mach
numbers, the resulting analytical solutions still provide a valuable theoretical basis and guide
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for subsequent numerical calculations. In particular, they make essential contributions to the
setting of initial guesses in the numerical root-finding algorithm for solving the eigenvalue
equation. They further provide an explanation for the existence of multiple eigenvalues.
As the next step, we solve the eigenvalue equation by numerical calculation for arbitrary
wavenumbers (frequencies) and Mach numbers. For this, we apply a root-finding algorithm to
the eigenvalue equation. It is worth mentioning that we employ the CHF-based exact solution to
find eigenvalues. The advantages of using this exact solution compared to traditional numerical
methods are clear. Compared with purely numerical methods, e.g. spectral method or shooting
method, the method employed in the present work avoids the appearance of spurious modes,
which do not have any physical meaning and are difficult to be screened out numerically. In
addition, due to the singularities present in the PBE, uniform convergence is not guaranteed for
these high-precision numerical methods. Last but not least, even the most accurate methods,
such as the collocation method, have a decisive disadvantage that only the first modes can be
calculated to high precision. The present method does not have this disadvantage. Modes of
a desired high order can be calculated with arbitrarily required accuracy without especially
additional effort.

Next, having calculated the eigenvalues, we analyse the modes quantitatively and qualitatively.
A series of work and novel results are summarised as follows: (i) We qualitatively summarise
the classification of the discrete acoustic modes for an exponential boundary layer flow, and
these modes are acoustic modes corresponding to the second (Mack) and higher modes. (ii) We
conclude that with growing wavenumbers or frequencies, the number of eigenvalues increases
discretely. (iii) Only forM > 1 unstable modes exist. (iv) We define the boundary between
neutrally stable and unstable modes by the transonic line ω = α, where the onset of the
unstable modes is determined from the degenerated eigenvalue equation. (v) We display that
at the Mach number M ≈ 4 and M ≈ 3.5, the supersonic modes become the most unstable
mode regarding temporal and spatial stability, respectively. (vi) We calculate the imaginary
part of the first three modes and mark their corresponding maximum values for different Mach
numbers and the neutral-unstable mode border. (vii) The acoustic boundary layer thickness
(ABLT) and the wave angle that reflect the acoustic properties of the perturbation are studied.
ForM > 1 and large wavenumbers α or frequencies ω, the ABLT δa grows exponentially, i.e. in
this parameter range, sound is perceptible even far from the boundary layer. A particularly
steep rise of δa is observed when M > 2, which means that there is a parameter range in
which the growth rate and δa are both large and thus generate a powerful noise impact.
(viii) Through the eigenfunctions, we illustrate the properties of perturbations in exponential
boundary layers. The eigenfunctions describe how the perturbations propagate in waveform
and how they change behaviour when the Mach number varies. (ivv) We explain the instability
mechanism and its acoustic properties. Instability is characterised as a resonance phenomenon
and associated with the radiation of acoustic waves. A strong increase in the amplitude of
acoustic waves can be identified in the vicinity of the wall, which indicates an accumulation and
saturation of energy, thereafter leading to instability and sound radiation in the free stream.

In the last part of the stability considerations, we compare temporal and spatial stability and
find similarities in growth rates and acoustic behaviour of the unstable modes. In addition, we
define the concept of resonance lines by the coincidence of the real parts of the eigenvalues of
both problems and thereby link temporal and spatial stability. Based on this, we calculate the
eigenvalues on the resonance line for frequencies and wavenumbers that are simultaneously
complex-valued by formulating a new eigenvalue problem. A linear relation between the
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temporal and spatial growth rates is eventually determined. On this basis, we propose temporal-
spatial instability of a boundary layer flow.

In the study of acoustic problems, we explore in detail the propagation and over-reflection of
acoustic waves in an exponential boundary layer flow. We first examine boundary layer acoustics
by classifying acoustic waves into propagating and attenuating waves, thereby providing a
summary of the parameter range for acoustic waves that can and can not propagate in the free
stream. We then make full use of the exact solution to the PBE again to give the reflection
coefficient in an explicit form containing the CHF. Based on this explicit form of the reflection
coefficient, the phenomenon of over-reflection of acoustic waves is investigated in depth. We
start with a theoretical analysis of the critical layer and find that a logarithmic term arises in
the Fuchs-Frobenius series solution at the critical layer. This logarithmic term leads to a jump
in the value of a quasi-invariant while passing the critical layer. We relate this jump to the
over-reflection coefficient through the boundary conditions, thereby showing that it is this jump
as an input that directly causes the over-reflection coefficient to be greater than one. This result
provides proof that acoustic waves extract energy from the base flow. In addition to this, a
specific mathematical expression to connect the over-reflection coefficient and the amplitude of
the density fluctuation at the critical layer is derived to evaluate the over-reflection coefficient
analytically.

Subsequently, by means of the explicit expression for the reflection coefficient, including the
CHF, we compute the over-reflection coefficient in a wide range of parameters and investigate
the over-reflections of acoustic waves. The following novel results are found: (i) We validate the
theoretical analysis showing that over-reflection occurs in boundary layer flows. (ii) For small
wavenumbers there are relatively large over-reflection coefficients, but they are unaffected
by the resonant frequency. (iii) Through computations of the over-reflection coefficient, we
discover a special over-reflection, the resonant over-reflection. At resonant frequencies of
the first temporally unstable mode, the over-reflection coefficient exhibits an unusual peak
in an extremely narrow frequency interval. (iv) The maximum values of the unusual peaks
are largely synchronised with the variation of the growth rate of the unstable modes. From
this, we associate the resonant over-reflections with the unstable modes. (iv) The resonant
over-reflection also appears at resonant frequencies of other higher unstable modes in the
stability problem, but the peaks of the over-reflection coefficient are always smaller than that
induced by the first unstable mode. (vi) By analysing the eigenfunctions of acoustic waves, an
effect of attenuating the amplitude of acoustic waves near the critical layer is observed. (vii)
Three patterns of acoustic wave propagation in boundary layer flows are identified, where one
of them exhibits a similar pattern to the supersonic unstable mode. (viii) By comparison with
the other two patterns, the mechanism by which the instability or resonant over-reflection
occurs is revealed. The acoustic perturbations first gain energy from the base flow at the critical
layer. Then, they accumulate energy in the area close to the wall and form complex reflections
and refractions, thereby inducing instability or resonant over-reflection.

The study of boundary layer stability and acoustic over-reflections reveals an important fact.
Small perturbations or acoustic waves present in an exponential boundary layer have resonant
behaviours for certain combinations of frequencies and wavenumbers. In the present work,
we find these frequencies and wavenumbers, which are named resonant frequencies and
resonant wavenumbers. They are the real part of the eigenvalues of the unstable modes in
the stability problems and are a function of the Mach number. The determination of these
resonant frequencies and resonant wavenumbers provides a theoretical value reference for
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applications in engineering, especially in order to avoid instability and noise amplification in
boundary layers.

To validate the phenomenon of the over-reflection of acoustic waves in boundary layer flows,
direct numerical simulations (DNS) are carried out by using the in-house BoSSS code. For this
purpose, the full non-linear Euler equations are computed. To achieve the incidence of acoustic
waves from outside the boundary layer, the wave packets containing the plane acoustic waves
with a constant wavelength and amplitude are predefined in the free stream through the initial
condition. Through numerical simulations, we simulate the entire process of acoustic waves
entering from the free stream into an exponential boundary layer flow. There, the waves are
reflected by the wall and eventually return to the free stream. The ratio of the amplitude of
the reflected wave in the free stream to the amplitude of the incident wave is recorded and
used to calculate the reflection coefficient. This reflection coefficient is compared with the
over-reflection coefficient obtained from linear theory. The results are in good agreement.
In particular, there is a significant enhancement of the over-reflection around the resonant
frequency, which indicates the occurrence of resonant over-reflection.

6.2 Outlook

Based on the work in this thesis, a few potential topics can be foreseen as directions for future
research. The first noteworthy aspect is the further study of boundary layer flows for walls
with acoustic impedances based on the exact solution in terms of the CHF. As can be seen from
the results of the present work, the exact solution in terms of the CHF is reliable in dealing
with the eigenvalue problem. Changes in wall conditions will give rise to many topics worthy
of further investigation, e.g. the influence of acoustic impedances on stability problems and on
over-reflections. The study in this thesis employs the simplest wall condition, a rigid wall, and
its corresponding results can be used as a reference to compare with other results obtained by
more realistic wall conditions. This will be of great interest for applications in engineering. An
example is the study of acoustic liners. In addition, the Myers condition can be improved by
the exact solution to the PBE for the exponential boundary layer flow. The Myers condition
integrates the boundary layer flow and the acoustic impedance as a single boundary condition.
In this way, a base flow, e.g. a duct flow, can be reduced to a Myers condition superimposed
with a uniform flow, thus greatly simplifying the model. The idea of improving the Myers
condition originates from the work of Rienstra & Darau (2011). They gave a modified Myers
condition by taking the linear velocity profile as a boundary layer and using the exact solution
to the PBE for the linear velocity profile. Thus, based on the exact solution to the PBE for a
more realistic exponential velocity profile, a more improved result is highly expected.

Through the present work, we are introduced to the Heun class equations. Although these
equations were given by Heun (1888) more than a hundred years ago, they have been not well
developed. However, in recent years the Heun class functions have been made possible to be
evaluated in numeric computing software represented by Maple. Since 2020, Mathematica
has offered packages for evaluations of the Heun class functions too. Therefore, for some
equations with the form of the Heun class equations, it is worthwhile to find their analytical
solutions based on the Heun class functions to enable further numerical calculations. For
example, for the generalised PBE with an additional temperature profile, it is expected that
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this equation will be solved analytically for the first time in terms of the general Heun function
(GHF), and a number of valuable studies will be extended.

In terms of DNS, the high-precision resonant frequencies obtained from linear theory provide
reference values for subsequent numerical simulation studies. Especially for acoustic waves in
the form of small perturbations that are sensitive to numerical errors, an accurate resonant
frequency as well as wavelength is crucial to simulations of both over-reflections and instabilities.
In linear theory, we artificially separate the stability problem from the acoustic problem. In real
situations, instability and acoustic over-reflections may occur simultaneously and interact with
each other. It is still not clear how this process looks like. In particular, the non-linear effects
of instability can further lead to laminar-turbulent transition. Regarding this, a preliminary
work of the investigation of non-linear effects of exponential boundary layer instability is
done by Putz (2021). These points are not observed in the simulations of the present work
due to the limitations of simulation time and computational domain. In geophysical fluid
dynamics (GFD), the over-reflection of internal gravity waves and Rossby waves is able to
induce instability of shear flows. Therefore, in future work, a direct numerical simulation
(DNS) study of interactions between unstable modes and over-reflections is valuable.
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A Appendix

A.1 Derivation of the solution to the PBE

In this appendix, we derive the general solution to the PBE (2.31) given in terms of the solution
to the CHE. The PBE reads

d2ρ̂

dy2
+

2αe−y

ω − α+ αe−y

dρ̂

dy
+
[︂
M2

(︁
ω − α+ αe−y

)︁2 − α2
]︂
ρ̂ = 0. (A.1)

We first transform (A.1) by changing the independent variable to

y = −ln(χ(α− ω)/α), (A.2)

and the dependent variable to

ρ̂(y) = w(χ)eiM(α−ω)χχ−
√
θ, (A.3)

where θ = −M2(α− ω)2 + α2, which gives

w′′(χ) +

[︄
2iM(α− ω) +

1− 2
√
θ

χ
− 2

χ− 1

]︄
w′(χ) +

⎧⎨⎩2iM(α− ω)
[︂
iM(α− ω)− 1

2 −
√
θ
]︂

(χ− 1)

− iM(α− ω)− 2M2(α− ω)2 − 2
√
θ [iM(α− ω) + 1]

χ(χ− 1)

⎫⎬⎭w(χ) = 0.

(A.4)

(A.4) is structurally identical to the non-symmetrical canonical form of the CHE (Ronveaux &
Arscott, 1995), which is defined by

w′′(z) +

(︃
4p∗ +

γ∗
z

+
δ∗

z − 1

)︃
w′(z) +

4α∗p∗z − σ∗
z(z − 1)

w(z) = 0, (A.5)

and has two regular singularities at z = 0 and z = 1, and an irregular singularity at infinity.
The CHE in (A.5) has local (Frobenius) solutions denoted by

Hc (p∗, α∗, γ∗, δ∗, σ∗; z) , (A.6)

with five arbitrary complex values of the parameters. Note that we use α∗ and γ∗ to distinguish
the parameters of the solution to the CHE and non-dimensional wavenumbers. Besides, we
denote p∗ to distinguish the parameter of the solution to the CHE and the pressure p, and
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we denote δ∗ to distinguish the parameter of the solution to the CHE and the boundary layer
thickness δ. A second linear independent solution to (A.5) reads (Ronveaux & Arscott, 1995)

z1−γ∗Hc (p∗, α∗ − γ∗ + 1, 2− γ∗, δ∗, σ∗ + (−4p∗ + δ∗)(γ∗ − 1); z) . (A.7)

The general solution to the CHE (A.5) can be expressed by

w(z) = C1∗Hc (p∗, α∗, γ∗, δ∗, σ∗; z)

+ C2∗z
1−γ∗Hc (p∗, α∗ − γ∗ + 1, 2− γ∗, δ∗, σ∗ + (−4p∗ + δ∗)(γ∗ − 1); z) ,

(A.8)

where the above two Hc functions are linearly independent solutions to the CHE when 1− γ∗
is not an integer. Due to the resembling form of (A.4) and (A.5), the parameters to the Hc
function of (A.4) immediate read

p∗ =
iM(α− ω)

2
, α∗ = iM(α− ω)− 1

2
−
√
θ,

γ∗ = 1− 2
√
θ, δ∗ = −2,

σ∗ = iM(α− ω)− 2M2(α− ω)2 − 2
√
θ [iM(α− ω) + 1] .

(A.9)

Employing the general solution to the CHE, and considering ρ̂(y) = w(χ)eiM(α−ω)χχ−
√
θ and

the inverse transformation χ = αe−y/(α−ω), we obtain the general solution to the PBE (2.31),
i.e.

ρ̂(y) = C1e
iMαe−y+

√
θyHc

(︃
p∗, α∗, γ∗, δ∗, σ∗;

αe−y

α− ω

)︃
+ C2e

iMαe−y−
√
θy×

× Hc
(︃
p∗, α∗ − γ∗ + 1, 2− γ∗, δ∗, σ∗ + (−4p∗ + δ∗)(γ∗ − 1);

αe−y

α− ω

)︃
.

(A.10)

This solution is validated in the Maple 2020 (Maplesoft, 2020) symbolic computing platform.
However, in Maple, there are different notations of the CHE. Details about the transformation
between notations can be found in Borissov & Fiziev (2010).

The nomenclature of the CHF is not well standardised. This is due to the fact that the theory
of the Heun class functions is so far not well developed compared to other special functions
(Hortaçsu, 2018). We recommend the book by (Ronveaux & Arscott, 1995) , which is by far the
most detailed and complete one in the study of Heun functions. This book contains different
forms of the CHE, which are classified in terms of the location of the regular singularities, and
the nomenclature. The non-symmetrical canonical form of the CHE we adopt is employed
in Maple, Mathematica, and many other papers in recent ten years. This form of the CHE
means that two regular singularities locate at 0 and 1, and one irregular singularity at +∞.
The nomenclatures in Maple and Mathematica have no difference in nature. Mathematica
and the open code in Motygin (2018) basically followed the notations in Ronveaux & Arscott
(1995) directly. It is worth noting that Maple uses a different form of the parameters because
in this way the form of the second independent solution of the confluent Heun equation can be
written in a concise form, so that its coefficients of the series expansion, which are obtained
from a three terms recurrence-relation, are easily obtained from the first independent solution.

The form and notations of the CHE in Olver et al. (2010), Motygin (2018) and Mathematica
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12.1 (2020) are the same and read

w′′(z) +

(︃
ϵ∗∗ +

γ∗∗
z

+
δ∗∗
z − 1

)︃
w′(z) +

α∗∗z − q∗∗
z(z − 1)

w(z) = 0, (A.11)

with the five independent parameters q∗∗, α∗∗, γ∗∗, δ∗∗ and ϵ∗∗. (A.11) is slightly different to
(A.5). The transformation between notations is give by

q∗∗ =σ∗, α∗∗ = 4p∗α∗, γ∗∗ = γ∗,

δ∗∗ = δ∗, ϵ∗∗ = 4p∗.
(A.12)

A.2 ω in the asymptotic limit for small and large α

In this appendix, we show the details of the asymptotic expansion of (3.18) and (3.21). The
Taylor-series expansion of the Hc function (see e.g. Ronveaux & Arscott (1995)) for |z| < 1 is
given by

Hc (p∗, α∗, γ∗, δ∗, σ∗; z) =
∞∑︂
k=0

ckz
k

= 1− σ∗
γ∗
z +

γ∗ (4p∗α∗ − σ∗) + σ∗ (4p∗ + σ∗ − δ∗)

2γ∗ (γ∗ + 1)
z2 +O(z3),

(A.13)

Substituting the first three terms of the expansion into (3.14) to replace the Hc function and
its derivative and then, according to (3.16), expanding ω into a Taylor-series about α = 0, we
obtain a1(k1;M)α + a2(k1, k2;M)α2 + a3(k1, k2, k3;M)α3 + O(α4) = 0. As each coefficient
has to vanish, we have

a1(k1;M) = −
k1

2
√︂

1−M2 (k1 − 1)2

(k1 − 1)2
= 0, (A.14)

which gives

k1 =
M + 1

M
α. (A.15)
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Next, the coefficient of α2, i.e. the second leading order term in (3.18), reads

a2(k1, k2;M) =
1

(k1 − 1)2

{︄(︁
ik1

2M − iM − 2k1k2
)︁√︂

1−M2 (k1 − 1)2

+
2k1

2k2

√︂
1−M2 (k1 − 1)2

k1 − 1
+

k1
2k2M

2 (k1 − 1)√︂
1−M2 (k1 − 1)2

− (k1 − 1)

[︃
M2(k1 − 1)

(︃
1

2
− 3k1

2

)︃
+ 3k1 + 1

]︃
+ 4k1

2
[︂
1−M2 (k1 − 1)2

]︂}︄
= 0,

(A.16)

where k1 from (A.15) implemented into (A.16) leads to zero in the denominator and thus a
regular singularity to (A.16) is obtained, which indicates that k2 should be zero. Employing
the value of k1 from (A.15) and k2 = 0 into the power-series expansion above we obtain

a3(k1, k2;M) = −
√︁
2k3M (M + 1)2 +

M3

3
+

5M2

2
+ 2M = 0, (A.17)

which gives the value of k3

k3 = −
M
(︁
2M2 + 15M + 12

)︁2
72(M + 1)4

. (A.18)

For the limit α → ∞, it turned out that ω may be expanded in terms of a Laurant series
according to (3.19). Further, using the expansion of Hc function and its derivativ in (A.13)
in (3.14) and collecting the leading order terms to obtain b1(l1;M)α2 + b2(l1, l2;M)α1 +
b3(l1, l2, l3;M)α0 +O(α−1) = 0. Each of the coefficients has to vanish separately, i.e.

b1(l1;M) =

[︂
(l1 − 1)M +

√︁
(l1 − 1)2M2 − 1

]︂ (︁
M2l1

2 −M2l1 − 1
)︁
M

(l1 − 1)2M2 − 1
= 0, (A.19)

and

b2(l1, l2;M) =
1

(l1 − 1) [1− (l1 − 1)2M2]2

⎧⎨⎩
[︄
iM + l2(l1 − 1)5M6 +

i

2
(l1 − 1)4M5

−2l1l2(l1 − 1)2M4 − 3i

2
(l1 − 1)2M3 + l2(l1 − 1)M2

]︄

+
√︁
1− (l1 − 1)2M2

[︄
i(l1 − 1)4l2M

5 −
(︃
l1

2 − 1

2
l1 +

1

2

)︃
(l1 − 1)3M4

−il1(l1 − 1)l2M
3 +

(︃
2l1

3 − 7

2
l1

2 +
7

2
l1 − 2

)︃
M2 − l1

]︄⎫⎬⎭ = 0,

(A.20)
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which gives the value of l1, l2 in (3.21) and (3.22). The multiple values of l2 comes from the
branch of square root in l1.

It should be noted that according to (A.14) two values of k1 were obtained, i.e. (M ± 1) /M .
They correspond to the classical branches of acoustic waves propagating upstream and down-
stream in a uniform flow. However, we only keep (A.15) and exclude the other one because of
its corresponding next higher-order term, which is always negative and real, similar to (A.18).
This would result in eigenvalues below the lower bound as defined in section 3.2.3 with a slope
of 1 − 1/M . Dating back to (2.35), as a result,

√
θ would become purely imaginary, i.e. an

oscillatory solution at infinity, and therefore cannot satisfy the boundary condition (3.1). This
case does not happen for (A.15). Implementing (A.15) into (3.16) we can determine that the
eigenvalues will be below the upper bound with a slope 1 + 1/M .

The same interpretation is valid for the asymptotic analysis in the limit α → ∞, where
l1 =

(︂
M −

√
M2 + 4

)︂
/2M as a solution of (A.19) has been excluded. The above analysis is

verified in our numerical results. In figure 3.4-3.6, for both small and large wavenumbers, no
eigenvalues are found around the lower bound, which is different e.g. from the results in duct
flows (Vilenski & Rienstra, 2007).

A.3 α in the asymptotic limit for small and large ω

In this appendix, we show the details of the asymptotic expansion of (3.25) and (3.28). Substi-
tuting the first three terms of the Taylor-series expansion of the Hc function (A.13) into (3.14)
to replace the Hc function and its derivative and then, according to (3.23), expanding α into a
Taylor-series about α = 0, we obtain c1(m1;M)ω+ c2(m1,m2;M)ω2 + c3(m1,m2,m3;M)ω3 +
O(ω4) = 0. As each coefficient has to vanish, we have

c1(m1;M) = −

√︂
m1

2 − (m1 − 1)2M2

(m1 − 1)2
= 0, (A.21)

which gives

m1 =
M

M + 1
ω. (A.22)

Next, without giving details, we find that implementing m1 (A.22) into c2(m1,m2;M) and
c3(m1,m2,m3;M) leads to zero in the denominator, i.e. singularities appear, which indicates
that both m2 and m3 should be zero. Therefore, taking the value of m1 from (A.22) and
m2 = m3 = 0 into the power-series expansion we obtain (3.25).

For the limit ω → ∞, it turned out that αmay be expanded in terms of a Laurant series according
to (3.26). Further, substituting the expansion of Hc function in (A.13) and its derivativ into
(3.14) and collecting the leading order terms to obtain d1(n1;M)ω2 + d2(n1, n2;M)ω1 +
d3(n1, n2, n3;M)ω0 +O(ω−1) = 0. Each of the coefficients has to vanish separately, i.e.

d1(l1;M) = −
(︁
M2n1 −M2 + n1

2
)︁√︂

n12 − (n1 − 1)2M2

= 0, (A.23)

129



and

d2(n1, n2;M) =
n1

2 (n1 − 1) [(M + 1)n1 −M ]2 [(M − 1)n1 −M ]2
×

×
{︃
2 (n1 − 1)

[︁(︁
M2 − 1

)︁
n1

2 − 3M2n1 +M2
]︁
n2

√︂
n12 − (n1 − 1)2M2

+
[︁(︁
M2 − 2

)︁
n1

2 − 2M2n1 +M2
]︁
[(M + 1)n1 −M ] [(M − 1)n1 −M ]

}︃
= 0,

(A.24)

which gives the value of n1, n2 in (3.28) and (3.29). The multiple values of n2 comes from the
branch of square root in n1.

Noted that according to (A.21) two values of m1 are obtained, i.e. M/ (M ± 1). For the
same argument discussed in §A.2 we only keep (A.22) and exclude the other one. The
same argument also holds true for the asymptotic analysis in the limit ω → ∞, where n1 =

2M/
(︂
M −

√
M2 + 4

)︂
as a solution of (A.23) has been excluded. The above analysis is verified

by the numerical results in figure 3.13-3.15.

A.4 Propagation direction of acoustic waves in the free stream

In this appendix, we derive the exact propagation angle ψ through the dispersion relation
(3.42). The propagation angle is defined by the group velocity of acoustic waves in the free
stream given by

ψ = arctan
(︃
∂ωr/∂βi
∂ωr/∂α

)︃
= arctan

(︃
− ∂α

∂βi

)︃
, (A.25)

where the minus sign comes from the implicit differentiation. Substituting (3.5) into (3.42)
and taking square value, we obtain a dispersion relation in α, βi and ω, which reads

βi
2 =

1

2

{︄√︃
4M2 (α− ωr)

2 ωi
2 +

[︂
α2 −M2 (α− ωr)

2 +M2ωi
2
]︂2

− α2 +M2 (α− ωr)
2 −M2ωi

2

}︄
.

(A.26)
Differentiating of (A.26) with respect to βi gives

2βi =
1

2

⎧⎪⎪⎨⎪⎪⎩
8M2 (α− ωr)ωi

2 +
[︂
2α2 − 2M2 (α− ωr)

2 + 2M2ωi
2
]︂ (︁

2α− 2M2α+ 2M2ωr

)︁
2

√︃
4M2 (α− ωr)

2 ωi
2 +

[︂
α2 −M2 (α− ωr)

2 +M2ωi
2
]︂2

−2α+ 2M2 (α− ωr)

⎫⎪⎪⎬⎪⎪⎭
∂α

∂βi
.

(A.27)
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Collecting ∂α/∂βi in (A.27) and taking it into (A.25), the propagation angle reads

ψ = arctan

⎛⎜⎜⎜⎜⎜⎝
−2βi

4M2(α−ωr)ωi
2+2

[︂
α2−M2(α−ωr)

2+M2ωi
2
]︂
(α−M2α+M2ωr)

2

√︃
4M2(α−ωr)

2ωi
2+

[︂
α2−M2(α−ωr)

2+M2ωi
2
]︂2 − α+M2 (α− ωr)

⎞⎟⎟⎟⎟⎟⎠ .

(A.28)

Considering the limiting case for ωi → 0, (A.28) is identified with (3.47).

A.5 Critical layer

As already shown, the PBE reaches a singularity if the phase velocity in the x-direction coincides
with the base flow velocity, which means ω = αu0(yc). This horizontal layer is called the
critical layer. We will first examine the behaviour of the solution at the critical layer by using
an asymptotic method, the Fuchs-Frobenius method. For this, we first employ a change of the
independent variable to ξ, defined by

ξ =
ω

α
− u0(y) =

ω

α
−
(︁
1− e−y

)︁
, (A.29)

such that yc refers to ξ = 0, which converts the the PBE (2.31) to

d2ρ̂

dξ2
− ((ξ + 2)α− 2ω)

ξ ((ξ + 1)α− ω)

dρ̂

dξ
+

(︁
M2ξ2 − 1

)︁
α4

((ξ + 1)α− ω)2
ρ̂ = 0. (A.30)

A solution of (A.30) in the vicinity of ξ = 0 can be derived as a power series using the
Fuchs-Frobenius method. Inserting the power series approach, given by

ρ̂(ξ) = ξr
∞∑︂
k=0

akξ
k, (A.31)

into the differential equation (A.30) and sorting by powers of ξ yields the indicial equation for
r. It has two roots, which read r1 = 3 and r2 = 0 and indicate that their difference r1 − r2 = 3
is a positive integer. Following Olver et al. (2010), a regular implementation of the method of
Frobenius in this case fails to yield two independent solutions. Hence, a second independent
solution contains a logarithmic term and can be constructed by

ρ̂2(ξ) = c ρ̂1(ξ)ln (ξ) + ξr2
∞∑︂
k=0

bkξ
k, (A.32)

where the constant c can be derived by re-inserting into (A.30), starting with b0 = a0 = 1. The
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first independent solution is given by

ρ̂1(ξ) = ξr1
∞∑︂
k=0

akξ
k. (A.33)

Near the critical layer, i.e. ξ → 0, the solution given by a linear combination of (A.32) and
(A.33) is considered to the leading order and we obtain

ρ̂(ξ) = A
(︁
ξ3 +O

(︁
ξ4
)︁)︁

+B
(︁
c∗
(︁
ξ3 +O

(︁
ξ4
)︁)︁

ln (ξ) + 1 +O
(︁
ξ1
)︁)︁
, (A.34)

where A and B are two constants. Re-inserting (A.34) into (A.30) yields, after some algebra:

c∗ = −
4α (α− ω) + 3α5

α−ω

3 (α− ω)2
, (A.35)

From (A.34) it can be concluded that the solution tends to be a constant near the critical layer.
Furthermore, c can be rewritten as

c∗ = −
4α2

(︁
1− ω

α

)︁
+ 3α4

1−ω
α

3(α− ω)2
. (A.36)

This shows that the constant c∗ is, in the presence of a critical layer, always negative, since
the necessary condition for the occurance of a critical layer is ω/α ∈ [0, 1] . We will use this
knowledge in section 4.2.4 to show that R > 1 in this case.

A.6 Causality and the choice of branch cuts

As recognized by Brambley et al. (2012), the choice of branch cuts is crucial for the investigation
of the critical layer. Thus, the question arises, which criterion allows us to choose the correct
branch cut. We assume a causal signal. Following Dethe et al. (2019), ”causality states that the
cause precedes the effects”. This means nothing else than that an effect can only be affected
by the temporally previous effects, but not by the future. The causality condition can be
formulated by regarding the response function in the Fourier space: As shown by Dethe et al.
(2019), a causal solution mapped by a Fourier transformation to ρ̂(ω) requires analyticity of
the Fourier response function in the upper complex ω half-plane. Since ξ = ω/α − u0, we
require analyticity of the solution in the upper complex ξ half-plane (For simplicity, we restrict
the consideration to positive values of α. For negative α, the consideration would be reversed,
but the outcome |R| > 1 stays the same since the RHS of (4.23) would then also change its
sign).

As shown in Appendix A.5, the solution ρ̂ contains a logarithmic term, thus we have to define
the branch cut of the complex logarithm in the complex ξ plane.

The logarithm of a complex number ξ is defined by ln(ξ) = |ln(ξ)| + i arg(ξ). Since arg(ξ)
is 2π-periodic, we have to introduce a branch cut that ensures that for every point ξ in the
complex plane there is only one solution for ln(ξ). The branch cut is chosen to be a straight
line starting from the branch point ξ = 0, which is a singularity of ln(ξ).
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If we choose the branch cut to be a straight line in the upper complex ξ half-plane, there would
be a discontinuity of ln(ξ), since arg(ξ) undergoes a jump at the branch cut. However, this
would contradict the causality condition, i.e. analyticity in the upper complex ω half-plane.
Therefore, the only possible choice for the branch cut of ln(ξ) is the red straight line in the
lower complex half-plane, as shown in figure A.1.

A.7 Derivation of the extended unitarity condition

In this section, an extended unitarity condition given by (4.33) is derived. It gives a relation
between the amplitude of density perturbation, its derivatives at the critical layer and the
reflection coefficient R. For this purpose, we first multiply (4.19) by ρ̂∗, the complex conjugate
of ρ̂, take the imaginary part of the equation (which allows us to identify the reflection
coefficient on the LHS), integrate it and split up the resulting integrals, which yields

ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ2

ỹ1

= −
∫︂ ỹ2

ỹ1

ℑ
(︃

M2

(ω − αu0)2

)︃
|ρ̂|2dỹ +

∫︂ ỹ2

ỹ1

ℑ
(︃

α2

(ω − αu0)4

)︃
|ρ̂|2dỹ. (A.37)

In order to deal with the occurring integrals in (A.37), which have a singularity at the critical
layer yc, the transformation of the independent variable to ξ, as given by (A.29), is used again
and yields

ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ2

ỹ1

= ℑ

(︄∫︂ ξ2

ξ1

1

ξ2
· α

2M2|ρ̂|2
du0
dỹ

dξ

)︄
−ℑ

(︄∫︂ ξ2

ξ1

1

ξ4
· α

6|ρ̂|2
du0
dỹ

dξ

)︄
. (A.38)

Both integrals in equation (A.38) have a singularity at ξ = 0, which corresponds to the
localization of the critical layer. Provided that the parameter set induces a critical layer, the
value of the imaginary part of these integrals is nonzero due to the singularity, even if the
integrals contain only real values. For the treatment of integrals containing singular functions,
we would like to refer to the theory of distributions in the context of generalized functions.
For further literature, please see Galapon (2016). The main outcome can be summarized
in the Sokhotskij-Plemelj-Fox theorem, given by formula (A.40). Since we have to treat the
singularity occurring in (A.38) in a distributional context, even an integral containing only
real quantities must be split up into real and imaginary parts due to the regularization process.
If there is no critical layer, then there is no singularity in the integrands, the integrals are
real and the imaginary parts of these integrals vanish. Further information can be found for
example in the book of Lighthill (1958).

In order to evaluate the singular integrals, i.e. regularize the singularity, a small imaginary
frequency iϵ is added to the singularity, i.e. ω → ω + iϵ . Thus, weak temporal growth of the
solution is allowed, consistent with the causality theory. The regularization and the chosen
branch cut for the logarithmic term in the solution is shown in Figure A.1. It can be easily
seen that a regularization of the path of integration (blue) by ω − iϵ would intersect with the
branch cut and would thus cause another discontinuity in the integral. Therefore, the given
choice ω + iϵ is the one that is consistent with the causality theory.
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ℑ(ξ)

ℜ(ξ)
ξ1ξ2

Figure A.1: Regularized path of integration and choice of the branch cut.

In the next step, the limit ϵ→ 0 is taken, which represents the purely acoustic case, i.e.

ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ2

ỹ1

= lim
ϵ→0

(︄
ℑ
∫︂ ξ2

ξ1

1

(ξ + iϵ)2
· α

2M2|ρ̂|2
du0
dỹ

dξ

−ℑ
∫︂ ξ2

ξ1

1

(ξ + iϵ)4
· α

6|ρ̂|2
du0
dỹ

dξ

)︄
.

(A.39)

In order to deal with the higher-order singular integrals, the Sokhotski-Plemelj-Fox Theorem
described in Galapon (2016) is applied, which includes the idea of separating the finite part
from the divergent integral. The theorem reads as follows

lim
ϵ→0

∫︂ b

a

f(x)

(x+ iϵ)n+1
dx = PV

∫︂ b

a

f(x)

xn+1
dx− iπ

f (n)(0)

n!
, (A.40)

if a < 0 < b holds. Therein, PV refers to Cauchy’s principal value. To fulfill this condition in
(A.39), the behaviour in ξ is investigated. The limits of integration, i.e. y = 0 and y → ∞,
change using (A.29) to ξ1 = ω and ξ2 = ω − α. Since the following derivation is intended to
consider specifically the case of a critical layer at position ξ = 0 lying within the physical area,
it has to be assumed in the following that ω < α, which is the condition for the existence of a
critical layer. To apply the Sokhotski-Plemelj-Fox theorem (A.40), the limits of integration in
(A.39) are swapped, which leads to

ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ2

ỹ1

= − lim
ϵ→0

(︄
ℑ
∫︂ ξ1

ξ2

1

(ξ + iϵ)2
· α

2M2|ρ̂|2
du0
dỹ

dξ

−ℑ
∫︂ ξ1

ξ2

1

(ξ + iϵ)4
· α

6|ρ̂|2
du0
dỹ

dξ

)︄
,

(A.41)

where ξ2 < 0 < ξ1.

Since the Cauchy principal value in (A.40) represents the finite part of the integral it is, if f(x)
is a real function, a real value. Since we limit to the imaginary parts of the integrals in (A.41),
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the principal value vanishes in the application of (A.40) on the RHS of (A.41) which yields

ℑ
(︃
dρ̂

dỹ
ρ̂∗
)︃⃓⃓⃓⃓ỹ2

ỹ1

= π

(︄(︃
M2α2 d

dξ
− α6

6

d3

dξ3

)︃
|ρ̂|2
du0
dỹ

)︄⃓⃓⃓⃓
⃓
ξ=0

. (A.42)

With this, the derivation of (4.31) is completed and it has been used in (4.23) to obtain (4.33).
Transforming (A.42) back to the initial independent variable y and simplifying yields (4.33).

A.8 Data for higher unstable modes

In this section, data on the resonant frequencies for higher unstable modes are shown in the
form of tables. Table A.1 and table A.2 show the data regarding the second and third unstable
modes. Specific wavenumbers and Mach numbers are selected in order to correspond to the
cases in figure 4.8. With these parameters, the resonant frequency ωr, the incident angle φ
and the over-reflection coefficient R are given.

ωr/φ/R α = 4 α = 7 α = 10

M = 4 - / - / - 4.35/66.3/1.00011 5.52/63.1/1.00005

M = 4.5 2.84/71.8/1.00116 4.07/67.5/1.00233 5.14/64.4/1.00084

M = 5 2.69/72.7/1.01477 3.83/68.6/1.01282 4.82/65.5/1.00491

Table A.1: Values of the resonant frequency ωr , incident angle φ and over-reflection coefficient R at
which second unstable modes occur for different α andM .

ωr/φ/R α = 7 α = 10

M = 4 5.21/70.4/1.00000000000283 6.60/67.8/1.00000006739935

M = 4.5 4.89/71.5/1.00001182456871 6.17/68.9/1.00002458761766

M = 5 4.62/72.4/1.00064208260075 5.81/69.9/1.00049307847717

Table A.2: Values of the resonant frequency ωr , incident angle φ and over-reflection coefficient R at
which third unstable modes occur for different α andM .
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