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influences, measurements in air under 
ambient conditions are more relevant than 
those under ultrahigh vacuum (UHV). 
While imaging graphitic surfaces at the 
atomic scale has become a standard proce-
dure using atomic force microscopy (AFM) 
under UHV,[7] at low temperatures[8–11] or 
in a liquid environment[12] it remains a 
challenging task to obtain comparable high 
resolution in air under ambient conditions.

In 2014, Wastl et  al. were the first to 
demonstrate atomic resolution of HOPG 
in air under ambient conditions, using stiff 
quartz tuning-fork force sensors (qPlus 
sensors[13]) in the flexural-frequency modu-
lation mode.[14] A major advantage of using 
qPlus sensors is that they allow the canti-
lever to oscillate with ultrasmall amplitudes 
(<1  nm) because of their high stiffness. 
However, although the combination of in-
plane and out-of-plane oscillation modes is 
feasible, the implementation is not straight-

forward because qPlus sensors require some nonstandard AFM 
equipment.[15–17] Another option for achieving ultrasmall oscil-
lation amplitudes is to exploit higher flexural cantilever eigen-
modes because they are stiffer than the fundamental eigenmode. 
Atomic resolution has been shown successfully on different 
substrates in air when higher eigenmodes were used for the 
amplitude or frequency-shift feedback.[18–20] Multifrequency 
AFM has also been shown to be capable of atomic-resolution 
imaging using the first and second flexural eigenmodes.[7,21,22] 
Also, some research groups have achieved atomic resolution 
with flexural–torsional approaches, but not under ambient con-
ditions.[7,23] Most of the benchmark images in terms of high 
resolution were obtained with CO-functionalized tips,[24,25] but 
unfortunately they cannot be used in air under ambient condi-
tions, and they suffer from bending while imaging.[26] Although 
there are several approaches for imaging with atomic resolu-
tion, determining forces remains a challenging task if measure-
ments are performed in air under ambient conditions. In water 
under UHV and/or low temperatures, out-of-plane forces have 
been determined successfully with atomic resolution in spec-
troscopic experiments,[27–31] but unfortunately it is challenging 
to obtain atomic resolution in air under ambient conditions 
with spectroscopic mapping because of long image-acquisition 
times and the associated thermal drift that is substantial 
when imaging at the atomic scale. Recently, Seeholzer et  al.  
developed an approach to deconvoluting forces from lateral 
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1. Introduction

Highly oriented pyrolytic graphite (HOPG) is well known as 
atomically flat substrate for various experimental setups and 
advanced sensors.[1, 2] Graphene, the basal plane of HOPG, has 
been shown to be a promising material as membrane or for 
future applications, such as in electronics.[3] However, although 
there have been some studies of how defects affect the nano-
mechanical properties of graphene,[4–6] it remains challenging 
to analyze the local effect of different types of defects on the 
in-plane and out-of-plane elastic properties at the atomic level. 
Also, because graphene devices are exposed to environmental 
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frequency-shift images at the molecular level using the Fourier 
method.[32] The advantage of this method over others is that the 
force determination from a single image is much faster than 
that from a complete set of spectroscopic data. Because of the 
applicability to single images, the method is assumed to be par-
ticularly suitable for force deconvolution in air under ambient 
conditions. To date, the Fourier method has been used for only 
in-plane force determination.

In the present work, we extend the method to determine in-
plane and out-of-plane forces simultaneously from torsional and 
flexural frequency-shift data, respectively, to unravel the inter-
actions between single carbon atoms of HOPG in air under 
ambient conditions. For acquiring atomically resolved images, 
we have developed a trimodal approach[33,34] based on the 
AMFlex-FMTor method[35] demonstrated by Dietz. This mode 
uses photothermal excitation to drive the cantilever.[36,37] The 
blue excitation laser spot is placed at the fixed end of the can-
tilever but at a considerable distance from the length symmetry 
axis.[23] This enables the simultaneous excitation of flexural and 
torsional eigenmodes by modulating the power of the laser peri-
odically with frequencies matching the flexural and torsional 
resonance frequencies. The first flexural-eigenmode amplitude 
of the cantilever is used for topographical feedback (AMFlex). 
Hence, by adjusting the flexural-amplitude setpoint, the indenta-
tion into the sample can be controlled. From the resulting phase 
shift between oscillation and excitation, dissipative sample prop-
erties in the out-of-plane direction can be obtained. Additionally, 
a phase-locked loop (PLL) is used to frequency-modulate the tor-
sional oscillation of the cantilever (FMTor). Thus, the torsional 
phase shift is always kept at 90° to maintain the oscillation at res-
onance when the tip interacts with the surface. Additionally, the 
torsional oscillation amplitude is kept constant by adjusting the 
drive amplitude. From the drive amplitude, dissipative informa-
tion about the in-plane sample properties can be deduced. The 
frequency shift of the torsional oscillation provides information 

about the elasticity of the sample in its in-plane direction.[35] 
Applying the described method for stiff samples such as HOPG 
requires some modifications of the setup as shown in Figure 1. 
To achieve a 3D analysis of the interacting forces, the method 
was extended to a trimodal setup, where the second flexural 
eigenmode was used for the topographic feedback in ampli-
tude modulation (AMFlex2), the frequency-modulated torsional 
oscillation (FMTor1) provided access to the in-plane forces and 
the frequency-modulated third-eigenmode flexural oscillation 
(FMFlex3) gave access to the out-of-plane forces.

Inspired by Kawai et  al.[18] and Korolkov et  al.,[20] we use 
the amplitude of the second flexural eigenmode for the topo-
graphical feedback to take advantage of the fact that this par-
ticular eigenmode is stiffer than the fundamental eigenmode. 
In combination with the small amplitude small setpoint (SASS) 
method introduced by Santos et  al.,[38] we reach a sufficiently 
small tip–sample distance to routinely achieve atomic resolu-
tion on HOPG surfaces. To sense in-plane and out-of-plane 
forces simultaneously, we also excite the third flexural eigen-
mode oscillation. Similar to the torsional eigenmode, the 
third flexural eigenmode is driven as frequency-modulated in 
constant-amplitude mode to establish a second PLL circuit. 
Hereinafter, according to the excited modes and feedbacks, we 
designate the mode as the AMFlex2-FMTor1-FMFlex3 mode. 
The advantages of amplitude modulation for feedback control 
over other methods are straightforward implementation, stable 
operation, and fast response in air under ambient conditions.[39]

2. Results and Discussion

2.1. Trimodal Imaging in AMFlex2-FMTor1-FMFlex3 Mode

Figure 2 shows AFM images of HOPG taken simultaneously 
in the AMFlex2-FMTor1-FMFlex3 mode. Atomic contrast is 

Figure 1.  Schematic of AMFlex2-FMTor1-FMFlex3 mode for atomic-resolution imaging of HOPG. Out-of-plane forces can be determined from the third-
eigenmode flexural frequency shift, whereas in-plane forces can be calculated from the torsional-eigenmode frequency shift.
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observed in a) the topography image and b) the torsional and 
c) third-eigenmode flexural frequency-shift images, in which 
the atoms appear as dark spots and the hollow sides as bright 
protrusions. In the topography image (Figure 2a) and the tor-
sional frequency-shift image (Figure  2b) we did not observe  
the honeycomb structure of HOPG, whereas the third- 
eigenmode frequency-shift image (Figure  2c) resolves carbon 
hexagons, however, compared to the high quality images 
shown by Wastl et  al.[14] with inverted contrast (see Figure S1 
in the Supporting Information for an inverted image to com-
pare). This inverted contrast is well known for AFM imaging 
in frequency-modulation mode when operating the instru-
ment in the attractive regime.[7,10] Nevertheless, in our case 
the assignment of atomic sides requires some further explana-
tion because both the third-eigenmode frequency-shift image 
shown in Figure  2c and the phase of the second-eigenmode 
oscillation (not shown) suggest that imaging was performed in 
the repulsive regime. Also, we observed a small offset between 
the frequency-shift images and the topography image along 
the fast scan axis, as well as an unexpected high corrugation 
of up to 160  pm peak-to-peak. We found that these effects 
can be attributed to a significant mean deflection of the can-
tilever during imaging with topographic feedback on a higher 
eigenmode.[40,41] Details about the relationship between mean 
deflection and contrast formation are given in Figure S2 in the 
Supporting Information.

2.2. Dynamic Spectroscopy in AMFlex2-FMTor1-FMFlex3 Mode

To clarify further the contrast formation of the atomically 
resolved images in Figure  2, we performed dynamic spec-
troscopy experiments at the alleged carbon-atom location on 
HOPG using the AMFlex2-FMTor1-FMFlex3 mode. There-
fore, the amplitude feedback was turned off and the ampli-
tude of the second flexural eigenmode oscillation was free to 
change upon approach and retract while triggering at 10% of 
the free oscillation amplitude (determined at 200  nm above 
the surface). Besides the change in the second-eigenmode 
amplitude, we also recorded the changes in the second-
eigenmode phase, the mean deflection, the third-eigenmode 
frequency shift, and the torsional frequency shift as func-
tions of the tip–sample distance d. The results are shown in 
Figure  3a, and details about the calibration of the different 

Figure 2.  AFM images of HOPG taken in AMFlex2-FMTor1-FMFlex3 mode: a) topography image, and b) torsional and c) flexural frequency-shift images. 
Imaging parameters: A0(flex,2) = 770 pm, Aflex,2 = 100 pm, Ator = 80 pm, Aflex,3 = 220 pm.

Figure 3.  Dynamic spectroscopy at alleged carbon-atom location of 
HOPG in air under ambient conditions. a) Amplitude, phase, mean 
deflection, and flexural and torsional frequency shifts versus tip–sample 
distance d. The approach curves are shown in black/red (flexural/tor-
sional), the retract curves are shown in gray, and the solid lines represent 
the fitted frequency-shift data of the approach curves. b) Scheme of zigzag 
and armchair orientation of carbon hexagons. Here, the torsional oscil-
lation direction (red double-headed arrow) is along the zigzag direction 
of the hexagonal carbon structure. c) Long-range interaction Flr between 
tip and sample calculated from mean deflection and force deconvolution 
from fitted flexural and torsional frequency-shift data (solid lines in (a)) 
using the Sader method. The setpoint amplitude at which images were 
taken is marked by the black vertical lines. Some characteristic regions of 
the approach curves are colored gray, green, and orange and marked by 
double-headed arrows. The dashed vertical lines mark the starts of the 
characteristic areas.
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eigenmode amplitudes and the deflection are given in the 
Supporting Information.

Figure 3a shows hysteresis between the approach and retract 
curves, which we attribute on the one hand to the existence of 
water layers covering the surfaces at both sides, tip and sample. 
On the other hand, we assume that a significant portion of 
the hysteresis is caused by the local lift of the topmost carbon 
layers.[42] The assumption was corroborated by comparative 
spectroscopic measurements performed on HOPG and silicon 
as shown in Figure S3 in the Supporting Information. We have 
marked some characteristic regions of the approach curves 
as colored areas separated by dashed lines. Starting from the 
largest tip–sample distance (right side of the graph), the blue 
dashed line marks the onset of attractive forces at ≈2 nm from 
the surface, which results in a reduction of the second flex-
ural amplitude and the mean deflection and an increase in the 
second flexural phase. While the third-eigenmode frequency 
stays at initial resonance, a small increase in the torsional fre-
quency shift is noticeable from the fit of the original data (solid 
line), but with a high uncertainty as can be estimated from the 
scattered data points. Here, the torsional oscillation direction 
was along the zigzag orientation of the carbon hexagons, as 
shown schematically in Figure  3b. The orange dashed line at 
≈1.5 nm from the sample surface marks the maximum attrac-
tive force sensed by the tip, notable for the second-flexural-
eigenmode phase shift that results in a significant change of 
the gradient of the second-flexural-eigenmode amplitude. At 
that point, the mean–deflection changes in gradient, which 
can be interpreted as an increase in the average attractive 
force, whereas the third-eigenmode frequency shift starts to 
increase (stronger repulsion). The average torsional frequency 
shift starts to increase when the tip is moved closer than 
2  nm to the surface. The green line at a tip–sample distance 
of ≈1 nm marks where the approach curve coincides with the 
retract curve for the second-eigenmode amplitude and phase  
upon approach, although we noticed large hysteresis for the 
mean deflection and the third-eigenmode frequency shift. 
While the gradient of the decreasing mean deflection remains 
constant, that of the third flexural frequency shift again 
increases. The minimum mean cantilever deflection is reached 
at the second-eigenmode amplitude setpoint marked by the 
black dashed line. Consequently, for smaller tip–sample dis-
tances, the mean deflection and the third-eigenmode frequency 
shift both increase, but the mean deflection remains predomi-
nantly attractive.

From these observations, we conclude that using the 
AMFlex2-FMTor1-FMFlex3 setup provides three different 
overlapping contrast regimes, which are marked in gray 
(d < 0.5 nm), green (d ≈ 0–1 nm), and orange (d ≈ 0.5–1.5 nm) 
in Figure 3a. In the orange regime, the gradients of the mean 
deflection and third-flexural-eigenmode frequency shift show 
opposite trends, whereas at closer tip–sample distances (gray) 
the trends coincide. The green regime represents the area close 
to the minimum mean cantilever deflection, i.e., the sign of the 
gradient might differ between the atomic sites. We were able to 
show that a variation of the third-eigenmode oscillation ampli-
tude enables imaging in the three different described contrast-
formation regimes (see Figure S4 in the Supporting Informa-
tion for details). This implies that imaging in the gray (resp. 

orange) area results in equal (resp. inverted) contrasts of the 
mean–deflection and third-eigenmode frequency-shift images. 
For images taken in the green area, we expect differently pro-
nounced offsets between the maxima and minima of the mean 
deflection and the third-eigenmode frequency shift. At the same 
time, we observed that the mean–deflection images and the 
topography images show nearly the same patterns, however, 
with inverted contrast. Hence, the topography signal seems to 
be strongly influenced by the mean cantilever deflection during 
imaging, which might explain on the one hand the unexpected 
high corrugation of the atomic structure of HOPG in Figure 2a 
and on the other hand the small lateral offset between the 
topography image (Figure  2a) and the torsional and flexural 
frequency-shift images (Figure 2b,c). However, due to the fact 
that the spectroscopy and imaging measurements cannot be 
accomplished simultaneously, a direct proof of the hypothesis 
remains challenging. With the knowledge gained from the 
spectroscopic experiments, we conclude that for the images 
shown in Figure 2, the tip–sample distance was most likely in 
the range of 0–1  nm around the minimum mean deflection. 
This could have caused the small offset in the observed struc-
ture between the topography and frequency-shift images on 
the one hand and the appearance of hollow sides as maxima 
and the atoms as minima in the frequency-shift images on the 
other hand, although positive frequency shifts imply imaging 
in the repulsive regime. Additionally, we assume that imaging 
is influenced by a local lift of the topmost carbon layer, as sug-
gested by the retract curves.

2.3. Force Reconstruction Using Sader Method

Having clarified the contrast formation, we seek quantities that 
are physically more meaningful, such as the forces between the 
different carbon atoms. From the mean–deflection signal, we 
can simply approximate the average long-range attractive force 
Flr by multiplication with the static force constant. More mean-
ingful short-range forces can be determined from the frequency-
shift data. There are two standard approaches to quantifying 
forces from the frequency-shift data of FM-AFM measure-
ments: the Sader method[43] developed by Sader and Jarvis and 
the matrix method[44] developed by Giessibl. The Sader method 
is based on a Laplace transform and uses the large-amplitude 
approximation—which presumes that the oscillation amplitude 
is larger than the characteristic length scale of the interaction 
force—to reconstruct forces by inverting the frequency-shift 
data. The matrix method is based on a transformation matrix 
that converts the frequency-shift data into forces. Both methods 
rely on the frequency-modulation mode with constant oscilla-
tion amplitude. Because the amplitude of the second flexural 
eigenmode is smaller than that of the third eigenmode at tip–
sample distances that are relevant for imaging, we assume that 
the standard force-deconvolution methods are valid for the pre-
sent imaging conditions after modifying the equations slightly. 
This modification is based on the observation that the height 
signal is dominated by the mean cantilever deflection and so 
the corrected tip–sample distance can be approximated as a 
constant height, similar to the situation in frequency modu-
lation. Unlike frequency modulation, we must consider the 
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varying oscillation amplitude upon approach, whereupon the 
modified version of the formula derived by Sader and Jarvis[45] 
is given by

2flex,3 flex,3 flex,2 0 flex,3

3 1/2 flex,3

0 flex,3

F d k A d A D
f d

f
π ( )( ) ( ) ( )= +

∆
( )

( )
− 	 (1)

where kflex,3 is the stiffness of the third flexural eigenmode, 
Aflex,2 is the tip–sample-distance-dependent amplitude of the 
second flexural eigenmode, A0(flex,3) is the amplitude setpoint of 
the third flexural eigenmode, and Δfflex,3 and f0(flex,3) are the fre-
quency shift and resonance frequency, respectively, of the third 
flexural eigenmode. The force deconvolution uses the half-frac-
tional derivative D_

1/2 applied to the frequency-shift data.[46]

Several authors have shown that for bimodal AFM, the for-
mula for calculating forces from frequency-shift data differs 
for the first and second eigenmodes.[7,21,46–48] From considering 
the amplitude ratios, we assume that we can treat the system 
as a bimodal AFM setup with both flexural eigenmodes (plus 
torsional eigenmode) being frequency-modulated. The cor-
responding formula has been shown to be valid for both flex-
ural–flexural[21] and flexural–torsional[7] setups. The modified 
formula for determining the torsional force can be expressed as

2 2tor tor flex,2 0 flex,3
1/2 tor

0 tor
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where ktor is the torsional stiffness, and Δftor and f0(tor) are the 
frequency shift and resonance frequency, respectively, of the 
torsional eigenmode. Here, the force deconvolution relies on 
the half-fractional integral I_

1/2 of the torsional frequency-shift 
data. Details about determining the underlying formula can be 
found in refs. [43,45,46], and information about implementing 
the formula in a MATLAB code is given in the Supporting 
Information.

The bimodal approach presumes that the two eigenmodes 
under consideration can oscillate independently of each other 
and that one oscillation amplitude is much smaller than the 
other. From dynamic spectroscopy with different oscillation 
amplitudes, we found no considerable coupling between the 
modes; potential cross-talk will be analyzed in more detail by 
means of imaging data. Also, note that calibrating the inverse 
optical lever sensitivity (invOLS) for the torsional eigenmode 
and the third flexural eigenmode is not straightforward (see the 
Supporting Information for details of the calibration). Despite 
the fact that the condition A0(flex,3)>>A0(tor) might not be valid for 
every constellation of parameters, we assume that the bimodal 
approach can be used because of the spatial difference in oscil-
lation direction.

The resulting forces after deconvolution of the fitted fre-
quency-shift curves (solid lines in Figure  3a) are shown in 
Figure 3c. Additionally, the long-range forces determined from 
the mean–deflection curve in Figure  3a are plotted against 
the tip–sample distance. The strongest attractive force during 
approach is at a tip–sample distance of ≈500 pm and is 7.3 nN 
in absolute value. The strongest attractive force as deter-
mined from the retract curve is nearly twice as large (14  nN). 

Compared to the study by Chiesa and Lai,[49] who measured 
the attractive tip–sample forces under multiple aging condi-
tions of HOPG, in the range of 0.7–1.3  nN, we found values 
that are approximately ten times higher. Calo et al.[50] observed 
an increase in the attractive force with increasing tip radius, 
which is unlikely to be the reason in our case. We assume that 
using diamond-like carbon (DLC) tips instead of the mostly 
used silicon tips might cause the higher tip–sample attraction 
originating from a larger Hamaker constant of DLC compared 
to that of silicon oxide.[51] The short-range flexural force (Fflex,3) 
shows a similar trend to that of the third-eigenmode flexural 
frequency shift, although note a major difference in the region 
between the blue and orange dashed lines (tip–sample dis-
tance of 2–1.5 nm), where the short-range flexural force shows 
a small attractive region. During approach, starting from the 
orange dashed line, the repulsive force increases initially with 
a very small gradient. In the center between the orange and 
green dashed lines, note a jump to an overall repulsive force 
with a 250  pN increase in absolute value. Around the green 
dashed line, a small plateau of ≈500  pm width forms, where 
the repulsive force remains constant at 250 pN. Upon further 
approach, from d < 750 pm the force increases with increasing 
gradient. The maximum repulsive force reached is 2  nN, and 
the force at the setpoint amplitude is ≈480  pN. Interestingly, 
the in-plane force deduced from the torsional frequency shift 
increases constantly (tip–sample distance of 2–1  nm) up to a 
maximum repulsive value of ≈9  pN. The maximum torsional 
tip–sample force is reached at the position of the green dashed 
line, and further approach of the tip leads to a slightly decreased 
force plateau of 8  pN. Note the effects of this force behavior 
in the frequency-shift images: while the choice of the second-
flexural-eigenmode amplitude setpoint influenced the torsional 
frequency-shift image only slightly, it had a clear influence on 
the third-eigenmode frequency-shift image. Details are given in 
Figure S5 in the Supporting Information.

Consequently, quantifying forces from dynamic spectroscopy 
data in the AMFlex2-FMTor1-FMFlex3 mode is indispensable 
for understanding contrast formation in images. Neverthe-
less, we encountered a few obstacles when using this method 
of force deconvolution with atomic resolution in air under 
ambient conditions. First, the determination of forces depends 
strongly on the actual tip–sample distance, thereby involving 
the correction for the mean deflection of the cantilever. The 
mean–deflection signal measured by the induced photocurrent 
on the photodiode is always accompanied by oscillations and/or 
tilt during approach and retract. Hence, the associated calibra-
tion is not straightforward and therefore prone to errors. This 
in turn influences the determination of all forces deduced from 
spectroscopy data. Second, hysteresis between approach and 
retract curves involves further sources of errors for the quan-
tification. Third, the quantification of torsional forces is impre-
cise because of the high noise level of the frequency-shift data. 
Fourth, discriminating the atomic sides via dynamic spectros-
copy at room temperature in air is challenging, a major cause 
being the influence of thermal drift. To the best of our knowl-
edge, atomic-resolution dynamic spectroscopy in air under 
ambient conditions has not been demonstrated until now. For 
all these reasons, we decided to focus on a different approach 
suggested by Weymouth et  al.[52] and Seeholzer et  al.,[32] who 
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determined lateral tip–sample forces from dynamic lateral-force 
microscopy images using the Fourier method. This line-by-
line approach relies on the same physical background as that 
of the Sader and matrix methods for force deconvolution from 
frequency-shift data. Consequently, we assume that our approx-
imation of the setup as a trimodal one in frequency modulation 
is still reasonable. The Fourier method emerged because both 
standard methods can lead to errors in force deconvolution for 
certain force curves and amplitudes, in particular at the regions 
of local extrema.[53] Because of the substantial number of inflec-
tion points in our data, we decided to calculate forces based 
on the Fourier method with the images obtained on HOPG. It 
needs to be mentioned that the Fourier method is not appli-
cable for the analysis of individual spectroscopy curves such as 
shown in Figure 3. For the acquirement of periodic structures 
necessary for the Fourier method, complete spectroscopic maps 
are needed. However, this is challenging on the atomic scale in 
air under ambient conditions due to thermal drift issues. Con-
sequently, we cannot provide a direct comparison between the 
two reconstruction methods.

2.4. Force Reconstruction Using Fourier Method

The Fourier method bears the idea that a periodic function such 
as the lateral frequency shift can be decomposed into a Fourier 
series. It has been shown that the Fourier method reproduces 
forces with higher accuracy compared to the Sader and matrix 
methods, especially at the local extrema of force curves.[32] Until 
now, the Fourier method was used only for monomodal AFM 
operation and the lateral oscillation of the cantilever in combi-
nation with a qPlus sensor. We assume that the same approach 
can be adapted for the deconvolution of lateral forces involved 
in the torsional cantilever oscillation. Additionally, we extended 
the Fourier method for the bimodal operation by modifying the 
formulae according to the bimodal approximation.[7,  21,  46] In 
general, the tip–sample forces can be determined from 
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where J0 and J1 are the Bessel functions of the first kind (J) of 
zero and first order, respectively and i represents the eigen-
mode which was additionally used for bimodal imaging in  
frequency modulation. Details about determining an and bn in 
the bimodal case are provided in the Supporting Information. 
As in the work of Seeholzer et al.,[32] the factors αn and βn are 
determined from the scalar projection of the data on the relevant  
sine or cosine function divided by a normalization factor. To 
control the precision to which the Fourier method can repro-
duce the original frequency-shift data, it is helpful to calculate 
additional validation images of the frequency-shift data using 
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To implement the formulas numerically, the MATLAB code 
provided by Seeholzer et  al. was used and extended for the 
bimodal case. Unlike Seeholzer and co-workers who deter-
mined the lateral forces acting between tip and sample while 
moving over an adsorbate, we aimed to determine the forces 
that occur during scanning on an HOPG surface. There-
fore, it must be considered that the Fourier method is based 
on the assumption that the frequency-shift data start and end 
with 0 Hz. Because this is not necessarily the case for the fre-
quency-shift data measured while scanning an HOPG surface, 
applying the algorithm to the data shifts the average frequency-
shift data to 0  Hz, and therefore a relevant amount of force 
might be neglected. For now, we can correct for this discrep-
ancy by adding manually the offset force determined from the 
spectroscopic force–distance data. Also, note that i) the Fourier 
method is limited to the analysis of periodic structures that are 
larger than the torsional oscillation amplitude, ii) the number 
of pixels collected during imaging is essential for the success of 
the Fourier algorithm, and iii) due care must be taken in using 
the Fourier method for the bimodal approach because we know 
from the spectroscopic experiments that the flexural amplitude 
is larger compared to the torsional one. However, as stated in 
the section entitled “Force reconstruction using Sader method” 
we assume that the approach is valid because of the different 

Adv. Mater. Interfaces 2021, 8, 2101288



www.advancedsciencenews.com
www.advmatinterfaces.de

2101288  (7 of 12) © 2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

oscillation directions in space. To corroborate this assumption, 
we analyzed the frequency-shift histograms of several images 
(HOPG, 5  nm × 5  nm) taken with systematically changed 
amplitude values for the torsional eigenmode and the third flex-
ural eigenmode, and the results are shown in Figure 4.

2.5. Flexural and Torsional Eigenmode Analysis

In Figure  4a,b, we show histograms of the frequency-shift 
values from images taken at a constant second-eigenmode 
amplitude setpoint of 120  pm. The histograms in Figure  4a 
represent the distribution of the third-eigenmode flexural fre-
quency shift with increasing third-eigenmode flexural ampli-
tude (73–290 pm) at a constant torsional-eigenmode amplitude 
of approximately 110  pm. The histograms in Figure  4b rep-
resent the distribution of the torsional frequency shift with 
increasing torsional-eigenmode amplitude (79–314  pm) at a 
constant third-eigenmode flexural amplitude of 145  pm. In 
Figure  4c,d, the corresponding frequency shifts at the max-
imum positions of the histograms in Figure  4a,b are shown 
as open circles, and the frequency shifts at full width at half-
maximum (FWHM) are shown with dashed lines. Additionally, 
the cross-talk behavior between the torsional and third flexural 

frequency shifts and amplitudes was analyzed. Figure 4c shows 
that varying the third-flexural-eigenmode amplitude from 
73 to 290  pm has little influence on the torsional-frequency-
shift histogram, and Figure 4d shows that varying the torsional 
amplitude from 79 to 314 pm also has no significant influence 
on the third-eigenmode flexural frequency shift. However, we 
see that the frequency-shift values at maximum counts decrease 
with increasing amplitude, and the corresponding FWHM 
values decrease with increasing amplitude. Note the linear 
decrease for the third flexural frequency shift, whereas the tor-
sional frequency shift seems to reach a plateau for torsional 
amplitudes of 157–236  pm. This seems reasonable because in 
this range the tip moves across more than one carbon hexagon 
during one oscillation cycle. Surprisingly, it was still feasible 
to achieve atomic resolution in the torsional-frequency-shift 
channel if the direction of torsional oscillation was along the 
zigzag direction of the carbon hexagons. However, no honey-
comb structure was resolved for torsional amplitudes larger 
than the interatomic spacing of the carbon atoms in zigzag  
direction. We assume that this originates from the symmetry 
along this direction, which allows lattice resolution, although 
the torsional amplitude was larger compared to the interatomic 
spacings. This observation also helped us to determine the tor-
sional oscillation sensitivity, such as described in more detail in 
the Experimental Section and in the Supporting Information. 
Another interesting observation was the increasing asymmetry 
of the peaks in the histograms in Figure 4a,b when decreasing 
the amplitude of the third flexural eigenmode or the torsional 
eigenmode, respectively, although the same position was 
scanned. Surprisingly, the frequency shift at maximum counts 
was shifted to less-repulsive flexural frequency shifts such as 
shown in Figure  4a,c, whereas with decreasing amplitude it 
was shifted to more-repulsive torsional frequency shifts such as 
shown in Figure 4b,d. We interpret this as another indicator for 
the independence of the oscillations of the torsional and third 
flexural eigenmodes and therefore the validity of the bimodal 
approximation. It impressively demonstrates that for larger 
third-flexural-eigenmode amplitudes, attractive long-range 
van der Waals forces become increasingly dominant, which is 
not the case for sensing the in-plane interactions because of the 
(relatively) steady oscillation distance with respect to the HOPG 
surface. Consequently, the monomodal Fourier method[32] 
allows us to determine in-plane forces along the direction of 
the torsional oscillation based on the torsional-eigenmode fre-
quency-shift data. The modified bimodal Fourier method can 
be used to calculate forces that are directed out of plane from 
the third-eigenmode frequency-shift data along the direction of 
the torsional-eigenmode oscillation.

2.6. Application of Fourier Method to HOPG Frequency-Shift 
Images for In-Plane and Out-of-Plane Force Reconstruction

In Figure 5, we show images of the forces a,b,e,f) deconvoluted 
from frequency-shift images, as well as the validation images of 
the torsional c,d) and third flexural frequency shift g,h) on HOPG 
using the Fourier method. The red-framed images a–d) were cal-
culated from the frequency-shift images shown in Figure 2. Here, 
the deconvolution direction was from top to bottom because the 

Figure 4.  Influence of torsional and third-eigenmode flexural-oscillation 
amplitudes on observed frequency shifts at a second-flexural-eigenmode 
amplitude setpoint of 110 pm. a) Histograms of third-eigenmode flexural-
frequency-shift images for different third-eigenmode flexural amplitudes. 
b) Histograms of torsional-frequency-shift images for different torsional 
amplitudes. Third-eigenmode flexural and torsional frequency shifts 
at maximum counts (open circles) and at full width at half-maximum 
(FWHM) (dashed lines) as a function of c) third-flexural-eigenmode 
amplitude at constant torsional-eigenmode amplitude of 110  pm and 
d) torsional-eigenmode amplitude at constant third-flexural-eigenmode 
amplitude of 145 pm.
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image was taken with a scan angle of 0°. This resulted in a canti-
lever torsional-oscillation direction (indicated by the white arrows 
in Figure 5a,c) that was perpendicular to the fast scan axis. The 
blue-framed images e–h) were deconvoluted from left to right 
because the scan angle was 90°. This resulted in a cantilever 
torsional-oscillation direction (indicated by the white arrows in 
Figure 5e,g) that was parallel to the fast scan axis.

Figure  5 shows that the deconvolution of forces from 
frequency-shift images was successful. The frequency-shift 
validation images calculated from Equations (9) and (10) show 
a constant frequency-shift offset relative to the original fre-
quency-shift images, but the contrast is reproduced with satis-
fying accuracy (compare Figure 2b,c and Figure 5c,d). The com-
parison results in a torsional frequency-shift offset of 72  Hz 
and a flexural frequency-shift offset of 742  Hz. Very similar 
offset values (74 and 736 Hz, respectively) were determined for 
the blue-framed images, where the torsional oscillation direc-
tion was perpendicular to the fast scan axis. Consequently, an 
offset value of ≈8 pN must be added to the torsional forces and 
≈480 pN to the flexural forces.

Although the angle between the fast scan axis and the orienta-
tion of the carbon hexagons was very similar (≈10° deviation) for 
the red-framed images (Figure 5a–d) and the blue-framed ones 
(Figure 5e–h), we can observe clear differences in the contrast 
formation. This might be partially due to the slightly different 
imaging parameters, but we assume that most of the variations 
can be attributed to the difference in the torsional oscilla-
tion direction relative to the carbon hexagons. This assump-
tion was corroborated by the observation that the differences 
between the torsional frequency-shift images in Figure  5c,g 
are much more pronounced compared to those between the 
flexural frequency-shift images shown in Figure  5d,h. The 
most reasonable explanation for the striped appearance of the 
contrast in the torsional force and frequency-shift images in 
Figure 5e,g is the larger torsional amplitude (≈30%) compared 
to the amplitude set for the torsional images in Figure  5a,c.  
From this consideration, the striped appearance of the torsional 
frequency-shift images would originate from lateral averaging, 
although note that we never observed atomically resolved con-
trast when the torsional oscillation direction was oriented along 
the armchair direction of the carbon hexagons. Obviously, the 
frequency-shift images and the force images are displaced 
slightly along the direction of the torsional oscillation, and this 
is a direct consequence of the relationship between force and 
frequency shift such as introduced by Giessibl[54] and Sader 
and Jarvis.[43] Interestingly, we can observe an inversion of the 
contrast in the flexural-force image (Figure 5b) compared to the 
flexural-frequency-shift image (Figure 5d). This seems counter-
intuitive at first glance, but it is rational considering that the 
force is influenced predominantly by the gradient of the fre-
quency shift. To compare the force and frequency-shift data 
directly, we took cross sections along the green, pink, and blue 
lines marked in Figure 5, and the results are shown in Figure 6. 
The frequency-shift cross sections were determined from the 
original data. The frequency-shift validation data and the orig-
inal data are compared in Figures S6 and S7 in the Supporting 
Information.

First, we analyzed the cross-sectional profiles (solid gray) of 
the frequency shifts shown in Figure 6a,c,d,f, which correspond 
to the green and blue lines marked in Figure 5c,d,e,h. As dis-
cussed in the previous sections and confirmed by the cross sec-
tions, the flexural frequency-shift maxima and minima (marked 
by gray dashed vertical lines) appear at the hollow sides and 
at the carbon bonds, respectively. Interestingly, it was feasible 
to distinguish between the atomic sides (red and light-blue 
dashed vertical lines) from the blue cross section (Figure  6c) 

Figure 5.  a,b,e,f) Forces and c,d,g,h) frequency-shift validation data 
determined from frequency-shift images using the Fourier method 
without offset correction. a,c,e,g) Torsional data were calculated using 
the monomodal Fourier method, b,d,f,h) flexural data were calculated 
using the bimodal Fourier method. Red: scan angle = 0°, Ator = 80 pm,  
Aflex,2 = 100 pm, A0(flex,2) = 770 pm, Aflex,3 = 220 pm. Blue: scan angle = 90°,  
Ator = 110 pm, Aflex,2 = 90 pm, A0(flex,2) = 770 pm, and Aflex,3 = 150 pm.
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through the flexural frequency-shift image by the local maxima 
or minima, respectively, which are different in magnitude. In 
contrast, the atomic sides could not be discriminated in the cor-
responding flexural frequency-shift images of Figure  2c (orig-
inal) and Figure 5d (validation). The capability to discriminate 
between the atomic sides when imaging HOPG originates from 
the Bernal stacking of the carbon layers[9] (see schematic in 
Figure 1). This observation helps to explain the contrast inver-
sion of the flexural-force image in Figure  5b compared to the 
flexural frequency-shift image in Figure 5d, which can be attrib-
uted to the existence of additional maxima and minima. The 
torsional frequency-shift maxima appear at the hollow sides 
in Figure  6a,c, if the torsional oscillation direction was along 
the zigzag direction of the carbon hexagons. Interestingly, we 
observe negative torsional frequency-shift values at the loca-
tions of the carbon bonds. This is surprising if we consider that 
the flexural frequency shift appears exclusively repulsive. On 
the other hand, such a behavior of the lateral frequency shift 
was also observed by Weymouth et al.[55] on the carbon bonds 
of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). A 

completely different distribution was observed if the torsional 
oscillation direction was approximately along the armchair 
direction of the carbon bonds, such as visible in Figure  6d,f. 
The torsional frequency shift in Figure 6d is approximately con-
stant, whereas we observe an extra maximum at the position of 
the carbon bonds in Figure 6f, which corresponds to the posi-
tion of the minimum flexural frequency shift (see gray dashed 
vertical lines). As discussed in the section entitled “Applica-
tion of Fourier method to HOPG frequency-shift images for 
in-plane and out-of-plane force reconstruction” this might be 
a consequence of the torsional oscillation amplitude, which 
was 30 pm larger for the images and cross sections shown in 
the blue frames in Figures 5e–h and 6d,e (Ator = 110 pm) com-
pared to the images and cross sections shown in the red frames 
in Figures  5a–d and  6a–c (Ator  = 80  pm). We assume that the 
smaller the oscillation amplitude in the lateral direction, the 
more sensitive the tip becomes to local variations in the inter-
action potential. This argument is corroborated by the obser-
vation that the torsional frequency shift does not sense attrac-
tive interactions for the images shown in Figure  6d,f, which 

Figure 6.  Cross-sectional profiles through force and frequency-shift images of HOPG along the green, pink, and blue lines in Figure 5. Profiles and axis 
labels are shown in gray for the frequency shift, black for the flexural forces, and red for the torsional forces. The vertical dashed lines mark the posi-
tions of characteristic local extrema of the profiles, following the same color code. The torsional oscillation was aligned approximately along the zigzag 
(resp. armchair) direction of the carbon hexagons for the cross sections shown within the red frame a–c) (resp. blue frame d–f)). The cross sections 
in (a), (d), and (e) are in the zigzag direction of the carbon hexagons, and those in (b), (c), and (e) are in the armchair direction. The cross sections 
marked a,d) green and c,f) blue cut the center of the hollow side, whereas those marked b,e) pink are offset from the center of the hollow side by the 
particular torsional amplitude values to enable analysis of force extrema (black and red arrows).
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indicates that the tip interacts with more than one carbon hex-
agon during one oscillation cycle.

From Figure  6a,f, it can be deduced that the shift of the 
flexural-force maxima relative to the frequency-shift maxima 
along the torsional oscillation direction (marked by black arrows 
and dashed lines) is approximately as large as the particular tor-
sional amplitude (80 pm in Figure 6a and 110 pm in Figure 6f). 
This is also the case for the torsional-force profiles in Figure 6a, 
whereas the shift between torsional-force and frequency-shift 
profiles in Figure  6f is approximately half as large as the tor-
sional amplitude (marked by red arrows and dashed lines). As 
a consequence, if the cross sections are drawn perpendicular 
to the torsional oscillation direction and through the center of 
the hollow sides (extrema of the frequency shift) such as indi-
cated in Figure 6c,d (red/black dotted profiles), the curves do not 
include the force maxima and minima. Therefore, we show the 
frequency shifts as solid profiles and the forces as dotted profiles 
for the cross sections in Figure 6c (blue) and d (green). We addi-
tionally drew the cross sections marked in pink in Figure 6b,e, 
which are shifted from the center of the hollow side by the value 
of the particular torsional-oscillation amplitude. Thus, the pro-
files along the pink cross sections allow for the analysis of the 
force extrema (solid profiles) and do not include the extreme 
values of the frequency shifts (dotted profiles).

The maximum flexural forces in Figure 6b, originating from 
the carbon atoms, are distinguishable for the different atomic 
sides (red and blue vertical dashed lines). This appears nonin-
tuitive at first glance because previously we always found that 
the maximum frequency shifts take place at the hollow sides 
rather than at the position of the carbon atoms. The contrast 
inversion originates from the direction dependence of the 
algorithm behind the Fourier method. In other words, if the 
algorithm is applied from top to bottom of the image instead 
from bottom to top, the force image will appear inverted. For 
the quantitative interpretation of the force deconvoluted with 
the Fourier method, it has to be considered that forces do not 
reflect absolute values but relative differences between the 
atomic sides. To this end, the mean values and standard devi-
ations of the different local extrema of the forces were deter-
mined from the number of values that appear over a cross-sec-
tional length of 2 nm. Consequently, from the black solid pro-
file in Figure 6b we can determine the flexural-force difference 
between the red and blue marked atoms to be 24 ± 4 pN. The 
force difference between the blue marked atom and the hollow 
side is 81 ± 4 pN, and that between the red marked atom and 
the hollow side is 57 ± 4 pN. The force difference between the 
center of the carbon bond and the hollow side is 48 ± 5 pN  if 
determined from Figure 6b and 44 ± 10 pN if determined from 
Figure  6a, being a good match. Compared to similar studies 
from the literature on pentacene molecules,[26] the determined  
values are in good agreement but are slightly larger than the lit-
erature value (≈37 pN). For the torsional forces, we can measure 
a force difference of 10 ± 2  pN  between the carbon bonds 
(red dashed line) and the hollow sides for Figure  6a and of 
11 ± 2 pN for Figure 6b if the torsional oscillation direction was 
along the zigzag direction of the carbon bonds. From Figure 6e, 
we observe that the flexural-force difference between the carbon 
bonds and the hollow sides is 48 ± 9  pN,  and from Figure  6f 
the force difference was measured as 41 ± 10 pN. The torsional 

force difference between the hollow sides and the carbon bonds 
can be determined from Figure 6f as 5 ± 1 pN if the torsional 
oscillation direction was approximately along the armchair 
direction of the carbon bonds. From the cross sections shown 
in Figure 6e, it was not possible to determine reliable torsional 
force-difference values because of the striped pattern of the fre-
quency-shift distribution as discussed in the previous section. 
Consequently, the flexural-force differences between the carbon 
bonds and the hollow sides are in good agreement, regard-
less of the direction of the torsional oscillation. Interestingly, 
torsional forces between the different sides differ remarkably 
depending on the direction of the torsional oscillation relative 
to the orientation of the carbon hexagons (armchair or zigzag). 
To gain more understanding of the torsional frequency-shift 
and respective force images, it might help to consider sym-
metry reasons for the direction of the torsional oscillation with 
respect to the alignment of the carbon hexagons. Although the 
torsional oscillation amplitude is very small, the tip interacts 
with several atoms of the hexagonal lattice during one cycle. 
For the alignment of the carbon hexagons with respect to the 
tip oscillation as shown in the schemes of Figure 6a–c (zigzag 
orientation), we observe very high symmetry, i.e., along the 
drawn cross sections, the tip senses the same atom sides (red 
and blue) during both oscillation half cycles. If the torsional 
oscillation direction is oriented along the armchair direction of 
the carbon hexagons as shown in Figure 6d–f, this symmetry is 
broken. This explains the striped appearance of the frequency-
shift and force images. On the other hand, it is reasonable to 
believe and highly expected to sense differences in the local 
in-plane forces depending on the oscillation direction relative 
to the orientation of the carbon hexagons. Although the elastic 
constants of graphite do not imply an in-plane anisotropy,[56] in-
plane forces determined locally on the atomic scale can differ 
depending on the oscillation direction because of the different 
numbers of carbon bonds involved, as demonstrated in the pre-
sent study.

3. Conclusion

Force quantification by AFM is indispensable for understanding 
the mechanical characteristics of materials, in particular at the 
atomic scale and in air under ambient conditions. We presented 
a multifrequency methodology that simultaneously determines 
the in-plane and out-of-plane force differences within the top-
most graphene layer of HOPG with atomic resolution. By ana-
lyzing the mean deflection of the cantilever, we showed that this 
graphene layer is lifted locally from the bulk by the exerted tip 
forces that exceed the weak van der Waals interactions between 
the basal planes. This effect must be addressed when analyzing 
forces from dynamic force spectroscopy data. In addition, 
we detected a comparably large hysteretic behavior between 
approach and retract curves on HOPG in air under ambient 
conditions. This was partially assigned to the presence of water 
films on the surface, but we assume that hysteresis originates 
mainly from the local lift of the topmost carbon layers, which 
complicates interpretation of spectroscopic data. We showed that 
the in-plane force differences between carbon bonds or carbon 
atoms and the hollow sides exist depending on the alignment of 
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the shear direction relative to the alignment of the carbon bonds. 
In contrast, the force differences in the out-of-plane direction 
are independent of the shear direction. To quantify atom-atom 
interactions, we presumed validity of the bimodal approximation 
for lateral tip oscillations. As a key result, we determined the in-
plane force between carbon bonds and hollow sides to be 11 ± 2 or  
5 ± 1  pN  when shearing carbon hexagons along the zigzag or 
armchair direction, respectively. This shows the strong ani-
sotropic mechanical behavior of HOPG at the atomic level 
that must be considered when designing graphene-based 
nanomaterials.

4. Experimental Section
Sample: The HOPG sample (grade 2) was purchased from SPI 

Supplies (Structure Probe, Inc., West Chester, PA, USA) and had 
a mosaic spread angle of as little as 0.8 ± 0.2°.  Prior to the AFM 
experiments, it was cleaved with adhesive tape in air under ambient 
conditions to expose a fresh clean surface.

Cantilevers: Supersharp cantilevers of the type HiResC15/Cr-Au were 
purchased from Mikromasch (Innovative Solutions Bulgaria Ltd., Sofia, 
Bulgaria). The cantilevers used for the experiments shown in this study 
were chosen to exhibit very similar force constants and free vibration 
resonance frequencies (≤2% relative aberration). Representative 
values of the resonance frequencies were f0(flex,1)  = 266  kHz, f0(flex,2)  = 
1.67  MHz, f0(flex,3)  = 4.62  MHz, and f0(tor)  = 1.73  MHz. The respective 
force constants were determined as kflex,1 = 26 N m−1, kflex,2 = 644 N m−1,  
kflex,3  = 3489  N m−1, and ktor  = 472  N m−1 (details are given in the 
Supporting Information). The manufacturer assures a tip radius of 
<1 nm realized by an extra tip consisting of hydrophobic DLC.

Environmental Conditions: The temperature in the AFM chamber while 
imaging was 26–27  °C, and the relative humidity was 22–31% for the 
different experiments. Neither the temperature nor the relative humidity 
was actively controlled, but the imaging conditions remained stable 
during imaging.

Trimodal AFM Setup: Experiments were performed with a Cypher  S 
atomic force microscope (Asylum Research, Oxford Instruments, Santa 
Barbara, CA, USA) equipped with a blueDrive photothermal excitation 
of the cantilever. The torsional and third-eigenmode flexural frequency 
shifts were tracked with additional phase-locked loops (HF2PLL, Zurich 
Instruments, Zurich, Switzerland). The gains of the PLLs (P  = 45–46, 
I  = 32 000–49 000 for the cantilever used) were adjusted following 
numbers suggested by the “PLL Advisor” of the ziControl software 
(Zurich Instruments, Zurich, Switzerland), providing stable tracking of 
the torsional and the third flexural eigenmode resonance frequencies. 
Proper gains for the amplitude feedback (constant-amplitude frequency 
modulation, P = 1, I = 1000–4000) were sought by toggling the setpoint 
amplitude between two values (typically in the range of ±50% of the 
measurement setpoint amplitude) ensuring that the time signal resulted 
in a decent rectangular shape. Two PID controllers built into the same 
instrument were used to adjust the drive amplitudes to maintain 
constant torsional and third-eigenmode flexural amplitudes.

Calibration of Torsional Inverse Optical Lever Sensitivity: First, the 
torsional force constant of the cantilever was determined using the 
Sader method.[57,58] Subsequently, the calibration of the torsional 
resonance invOLS was accomplished by fitting the torsional resonance 
peak in the lateral thermal noise spectrum to the algorithm developed in 
refs. [59,60]. However, it needs to be mentioned that the determination 
of the torsional force constant using the Sader method is prone to errors 
due to the strong dependency of the obtained values on the dimensions 
of the cantilever. Hence, the torsional invOLS value was corrected based 
on the results of the histogram analysis in Figure  4b,d. It is assumed 
that an asymmetric peak distribution in the histogram is a strong 
indication of a sufficiently small torsional amplitude reflecting values 
smaller than the interatomic spacing of carbon atoms. Hence, the 

transition between the torsional amplitudes corresponding to symmetric 
and asymmetric histograms was taken as reference value where the 
oscillation matches the interatomic spacing of carbon atoms in zigzag 
direction. Further details on the calibration procedure are given in the 
Supporting Information.

Data Processing: The topography images shown were first-order 
flattened to remove any tilt from the images using the Igor Pro v6.36 
software (WaveMetrics Inc., Lake Oswego, OR, USA). All images resulting 
directly from AFM measurements were treated with a 3 × 2 Gauss  
filter to remove noise from the images. This step was additionally 
required to enable the successful application of the Fourier method. 
MATLAB R2018a (MathWorks Inc., Natick, MA, USA) was used for the 
implementation of the Fourier method into a program code based on 
the script provided by Seeholzer et al.[32] Subsequently, the calculated 
force images were smoothed with a Savitzky–Golay filter over nine 
points with a first-order polynomial. The same smoothing procedure 
was accomplished to reduce noise in the cross sections shown.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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