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Inverted AFM images of HOPG taken in AMFlex2-FMTor1-FMFlex3 mode 

 

Figure S1. Inverted AFM images of HOPG taken in AMFlex2-FMTor1-FMFlex3 mode: a) 

topography image, and b) torsional and c) flexural frequency-shift images. Imaging parameters: 

A0 (flex,2) = 770 pm, Aflex,2 = 100 pm, Ator = 80 pm, Aflex,3 = 220 pm. 

 

Calibration of inverse optical lever sensitivities and oscillation amplitudes 

The inverse optical lever sensitivity (InvOLS) was calibrated from the gradient of a curve of 

static deflection versus z-sensor position with a comparably low voltage setpoint to trigger, to 

protect the tip from wearing off. The calibration of the deflection has a major impact on the 

interpretation of the spectroscopy data because it is required for determining the actual tip–

sample distance d. Consequently, calibrating the dynamic sensitivity from curves of amplitude 

versus tip–sample distance also depends on the accuracy of the static-deflection calibration. 



 2 

That is why we determined the amplitude sensitivities from thermal-tune data based on the 

equipartition theorem.[1–3] Therefore, the flexural and lateral thermal noise spectra were 

collected and the observed power spectral densities (PSDs) were fitted by[4, 5] 

𝛾"#$% = '
2𝑘*𝑇

𝜋𝑘"#$%𝑓.,"#$%𝑃12𝑄"#$%
, (1) 

𝛾456 = '
2𝑘*𝑇

𝜋𝑘456𝑓.,456𝑃12𝑄456
, (2) 

where γ is the InvOLS, kB is the Boltzmann constant, T is the absolute temperature, f0 is the 

resonance frequency, PDC is the PSD of the oscillator at DC, and Q is the quality factor. The 

flexural-force constants kflex of the first two bending eigenmodes and the torsional torque 

constant kΦ were determined by using the Sader method:[6, 7]  

𝑘"#$% = 0.1906𝜌𝑏>𝐿𝑄"#$%𝑓.,"#$%> 𝛤A
"#$%B𝑓"#$%C, (3) 

𝑘D = 0.1592𝜌𝑏F𝐿𝑄456𝑓.,456> 𝛤A456(𝑓456), (4) 

where ρ is the density of air, b is the width and L is the length of the cantilever, and Γi is the 

imaginary part of the hydrodynamic function. In the limit of small torsion angle, the torsional 

force constant can be calculated from the torsional torque constant by[8] 

𝑘456 =
𝑘D𝐿

(𝐿 − Δ𝐿)ℎ>, (5) 

where L/(L−ΔL) accounts for the influence of the tip set-back ΔL, and h is the tip height. 

Note that γtor as determined from Equation (2) was around twice that estimated from imaging. 

It is well known that it is not straightforward to determine the torsional sensitivity, which is 

why we used the results of atomically resolved imaging for the calibration in the end. We 

observed that the torsional frequency shift at maximum counts of the image histograms 

decreased asymptotically with increasing torsional amplitude, and we assigned the beginning 

of the asymptotic value to amplitude values that were larger than half of the interatomic 

spacings. Consequently, the torsional sensitivity was estimated as being 11 nm/V. Currently to 

the best of our knowledge there is no method available that provides a higher accuracy for the 

calibration of the dynamic torsional invOLS. The improvement of the calibration methods for 

the dynamic torsional invOLS is of high importance for further research in this field. 
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Unfortunately, it was not possible to determine the third-flexural-eigenmode sensitivity and 

force constant from Equations (1) and (3) because of the small response of the resonance peak 

in the thermal spectrum. That is why we derived the values from the first- and second-

eigenmode values. The force constant was calculated using the equation introduced by Labuda 

et al.[3] for flexural eigenmodes: 

𝑘L = 𝑘M N
𝑓L
𝑓M
O
P

, (6) 

where the power-law exponent ξ can be determined from the known values for the second 

eigenmode as 1.76. The third-eigenmode sensitivity was estimated as being γflex,3 = 10 nm/V 

from the second-eigenmode sensitivity using the relations introduced by Garcia et al.[9] for 

rectangular cantilevers. 

 

Influence of cantilever mean deflection in AM-AFM using higher eigenmodes on atomic-

scale imaging of HOPG 

In general, it is not straightforward to assign the atomic positions from AFM images taken on 

HOPG. Several groups have shown that the appearance of the topographical contrast depends 

on whether imaging is accomplished in the attractive or repulsive regime, and the shown height 

image resembles a checkerboard pattern, which was also predicted and observed by other 

groups working in the field of AFM or scanning tunneling microscopy (STM).[10–12] In a 

theoretical study, Sasaki et al. showed that the contrast that can be observed on HOPG in the 

repulsive regime depends strongly on the configuration of the tip.[10] Besides the number and 

type of tip atoms involved in the imaging process, the tilt angle of the tip and the bond length 

and tip orientation relative to the surface were also predicted to influence the contrast of the 

height images. Another explanation for the appearance of the twofold symmetry was introduced 

by Wong et al. and Xu et al.[11–13] for STM images. They showed that the offset of the topmost 

carbon layer relative to the second one as well as the increased coupling between these layers 

can also result in a checkerboard pattern. Because of the observation that the topography images 

of HOPG showed a certain offset between trace and retrace, which depends on the scan velocity 

as well as the scan angle, in our setup we assume that the checkerboard pattern might originate 

from a tip-induced shift of the topmost carbon layer relative to the one beneath. Based on this 

assumption, it must be clarified how the first layer of carbon atoms can be lifted despite the fact 

that we observe exclusively repulsive phase and frequency-shift values in the second and third 

eigenmode channel, respectively. The solution to this puzzle was found by observing the mean 

deflection of the cantilever. In general, the cantilever deflection is assumed to play a minor role 
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in dynamic spectroscopy, which is especially the case for large amplitudes and stiff cantilevers. 

However, as shown by Kawai and coworkers[14] and recently in work by Yalcin et al.,[15] in 

particular at close tip–sample distances, the mean deflection of the cantilever cannot be 

neglected in dynamic spectroscopy. To understand better how the cantilever deflection 

influences the oscillation behavior, we obtained curves of mean deflection versus tip–sample 

distance including first-, second-, and third-eigenmode excitation, and simultaneously we 

recorded the deflection values while triggering at an amplitude value that was ~10% of the free 

second flexural amplitude. Additionally, we measured static deflection versus tip–sample 

distance (no dynamic drive) with the same cantilever. As shown in Figure S2a, the tip–sample 

distance d was calculated from the z-sensor position minus the tip height h plus the mean 

deflection as known from static spectroscopy, where the deflection is defined as negative for 

attractive and positive for repulsive long-range tip–sample interaction. The results of the curves 

of (mean) deflection versus tip–sample distance are shown in Figure S2b. 

 
Figure S2. Comparison of mean deflection for different eigenmode oscillations as well as the 

static case on HOPG upon approach. a) Scheme for determining tip–sample distance from z-

sensor position, tip height, and mean deflection (purple). b) Plot of mean deflection vs. tip–

sample distance for static case (black), first flexural eigenmode (red), second flexural 

eigenmode (green), and third flexural eigenmode (blue). 
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Interestingly, the curves of mean deflection versus tip–sample distance show the same overall 

trend for all three dynamic modes and strongly resemble the trend of the curve of static 

deflection versus distance (up to d = −1 nm). Furthermore, it becomes evident that with higher 

eigenmodes, significantly higher mean deflections can be reached at similar amplitude setpoint 

ratios, which is a consequence of the enhanced dynamic stiffness. The curve of mean deflection 

versus tip–sample distance for the first-eigenmode oscillation additionally explains why we 

could not show atomic resolution: the smallest tip–sample distance achievable was still ~8 nm. 

Consequently, this observation corroborates the general assumption that the mean cantilever 

deflection can be neglected for the standard tapping mode with the first-eigenmode oscillation. 

However, we strongly recommend analyzing the mean-deflection behavior when using higher-

eigenmode oscillations for feedback operation for a reliable interpretation of the obtained 

images. 

 

Hysteretic behavior in spectroscopic experiments 

Because we noticed an unexpectedly high hysteresis between the approach and retract curves 

of the (mean) deflection versus tip–sample distance, to clarify the origin of the hysteresis we 

made additional static-deflection measurements with the same tip on freshly cleaved HOPG 

and silicon stored under ambient conditions. The resulting plots as well as a schematic of the 

possible scenarios on the two different materials close to the surface are shown in Figure S3. 

 
Figure S3. Comparison of hysteretic behavior upon approach and retract for silicon and HOPG 

with a DLC AFM tip. a) Deflection vs. tip–sample distance on silicon (green) and HOPG 

(black). b) and c) Scheme of tip–sample interactions on silicon and HOPG, respectively. 
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Usually, hysteretic behavior is observed for viscous materials such as polymers and biological 

cells because of the indentation of the stiff cantilever into the softer material, which causes 

plastic deformation, dissipation within the material, and strong attractive forces between tip and 

sample. On stiff and hydrophobic substrates such as HOPG and silicon, we expect neither a 

strong indentation nor a strong attractive tip–sample interaction or dissipation in general. 

However, the very close proximity of the tip to the sample means that van der Waals attraction 

and capillary interaction of water layers, which are present at both tip and sample under ambient 

conditions, cannot be neglected and are most likely responsible for the hysteresis. However, the 

question arises as to where the difference between the retract curves taken on silicon and on 

HOPG comes from. Figure S3a shows that the approach behavior of the DLC-coated tip to the 

silicon and the HOPG surface is very similar, and this behavior can be explained by the similar 

water wettability of the substrates. Both freshly cleaved HOPG and silicon stored under ambient 

conditions were shown to have a water contact angle of ~60°.[16, 17] However, the Hamaker 

constant between silicon and carbon is approximately half of that for HOPG.[18] This 

information matches the observation of stronger hysteresis on HOPG. Figure S3b and c show 

schematically the different interaction scenarios on silicon and HOPG. During approach, we 

assume that capillary interaction forces dominate the deflection of the cantilever on both 

substrates, whereas we assume an additional effect of a strong van der Waals adhesion on 

HOPG. This can lead to a local lift of the topmost carbon layer during retraction of the 

cantilever.[19] Consequently, this effect is also very likely to occur during imaging, which might 

have caused the contrast inversion of the images shown in the main text. 

 

Comparison of topography, mean-deflection, and third-eigenmode frequency-shift 

images and cross sections for different third-flexural-eigenmode amplitudes 

Figure S4 shows the topography (left) and third-eigenmode frequency-shift images (right) 

taken with three different values of Aflex,3. Additionally, the cross sections along the pink line 

marked in all the images can be seen in the center, while also plotted are the cross sections 

through the mean-deflection images (not shown). By comparing the results, it becomes apparent 

that the mean deflection compensates for a large amount of the height signal, as mentioned in 

the main text. This explains why we see such a high corrugation amplitude in the topography 

images. Second, we see from Figure S4b, e, and h that the minimum in the frequency shift 

always appears at the bond and the maximum at the hollow side. This is also the case for the 

height signal in Figure S4h where Aflex,3 = 509 pm. In contrast, for Aflex,3 = 364 pm, the 

minimum in height appears at the hollow side and the maximum at the bonds, which means that 
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the contrast is inverted. For Aflex,3 = 436 pm, the height signal has its inflection points at the 

positions of the carbon bonds and the hollow sides, resulting in a shifted appearance of both 

images. We assume that the different contrast relations originate from the different distances 

relative to the surface while imaging, which result from the variation of the third-eigenmode 

amplitude. 

 

 
Figure S4. Comparison of topography, mean-deflection, and third-eigenmode frequency-shift 

images and cross sections for three different third-flexural-eigenmode amplitude setpoints. a), 

d), g) Topography images, b), e), h) cross sections drawn along the pink lines, and c), f), i) 

third-eigenmode frequency-shift images at Aflex,3 = 364 pm (a–c), Aflex,3 = 436 pm (d–f), and 

Aflex,3 = 509 pm (g–h). Further imaging parameters: Aflex,2 = 68 pm, Ator = 0 pm. 
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Calculation of forces from spectroscopic data 

The out-of-plane (Fflex,3) and in-plane (Ftor) forces were calculated from the frequency-shift data 

based on the approach of Sader and Jarvis.[20] The modified formulas for the multimodal 

approach used in this study, which can be implemented in a MATLAB code, are  

𝐹"#$%,R(𝑑) =
2𝑘"#$%,R
𝑓.	("#$%,R)

U V1+
X𝐴"#$%,> + 𝐴.	("#$%,R)

8X𝜋(𝑥 − 𝑑)
\

]

^
Δ𝑓"#$%,R(𝑥) −

_B𝐴"#$%,> + 𝐴.	("#$%,R)C
R

X2(𝑥 − 𝑑)
𝑑Δ𝑓"#$%,R(𝑥)

𝑑𝑥 𝑑𝑥, (7) 

𝐹456(𝑑) = −
2𝑘456
𝑓.	(456)

U V1− _2B𝐴"#$%,> + 𝐴.	("#$%,R)C\
]

^

Δ𝑓"#$%,R(𝑥)

X(𝑥 − 𝑑)
𝑑𝑥, (8) 

where kflex,3 (resp. ktor) is the third flexural (first torsional) eigenmode stiffness, Aflex,2 is the tip–

sample-distance-dependent amplitude of the second flexural eigenmode, A0 (flex,3) is the 

amplitude setpoint of the third flexural eigenmode, and Δfflex,3 (resp. Δftor) and f0 (flex,3) (resp. 

f0 (tor)) are the frequency shift and resonance frequency, respectively, of the third flexural (first 

torsional) eigenmode. 
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Influence of second-flexural-eigenmode amplitude-setpoint on torsional and third-

flexural frequency shifts. 

Figure S5 shows the histograms resulting from atomically resolved (a) third-eigenmode and (b) 

torsional frequency-shift images of HOPG for varying second-eigenmode amplitude setpoints. 

In Figure S5c, the frequency shifts at maximum counts are plotted as a function of the second-

flexural-eigenmode amplitude setpoint. Additionally, the frequency shifts at FWHM of the 

histograms in Figure S5a and b are shown with dotted lines. From Figure S5c, it becomes 

evident that the third-eigenmode frequency-shift images are much more influenced by the 

second-flexural-eigenmode amplitude setpoint compared to the torsional frequency-shift 

images. 

 
Figure S5. Influence of second-eigenmode flexural-oscillation amplitude setpoint on the 

observed frequency shifts. Histograms of a) third-eigenmode flexural and b) torsional 

frequency-shift images for different second-eigenmode flexural-amplitude setpoints. Third-

eigenmode flexural and torsional frequency shifts at maximum counts (open circles) and at 

FWHM (dotted lines) as a function of the second-flexural-eigenmode amplitude setpoint at a 

constant torsional-eigenmode amplitude of 110 pm and a constant flexural-eigenmode 

amplitude of 145 pm. 

 
  



 10 

Calculation of forces from frequency-shift images using Fourier method for higher 

eigenmodes 

We modified the Fourier method to reconstruct the forces in the z-direction from the flexural 

frequency shift of the higher eigenmodes. The formula for the frequency shift as a function of 

the force for the second eigenmode was introduced by Herruzo et al.[21] based on the work of 

Giessibl et al.[22]. Kawai and coworkers showed that the relation between frequency shift and 

forces is also valid for higher flexural as well as for torsional eigenmodes:[23] 

Δ𝑓A(𝑥) = −
𝑓A

2𝜋𝑘A
U 𝐹`4a(𝑥 + 𝑞)

1

_𝐴ac> − 𝑞>
𝑑𝑞

def

gdef
, (9) 

where Δfi is the frequency shift, fi is the resonance frequency, and ki is the force constant of the 

ith eigenmode. Asp is the setpoint amplitude of the oscillation used for the topographical 

feedback, and F′ts is the first derivative of the force.  

Introducing the variable 𝑞 = 𝐴accos	 k𝜔𝑡 −
n
>
o allows the convolution of the force gradient 

with the semicircle >def
p

n X𝐴ac> − 𝑞> [21, 22].  

Equivalently to Seeholzer et al., we used the exact formula for Δfi:[22, 24, 25] 

Δ𝑓A(𝑥) =
𝑓A
2𝑘A

〈𝑘4a〉(𝑥), (10) 

where <kts> is the weight force gradient. The first derivative of the tip–sample force, F′ts, can 

be expressed as  

𝐹`4a(𝑥 + 𝑞) = −𝑘4a(𝑥 + 𝑞). (11) 

From Equations (9–11), it follows that 

〈𝑘4a〉(𝑥) =
1
𝜋
U 𝑘4a(𝑥 + 𝑞)

1

_𝐴ac> − 𝑞>
𝑑𝑞

def

gdef
. (12) 

The tip–sample stiffness kts can be determined from the second derivative of the tip–sample 

energy Ets expressed by a Fourier series with the components an and bn:  

𝑘4a(𝑥) = s−𝑎L N
2𝜋𝑛
𝐿 O

>

sin N
2𝜋𝑛
𝐿 𝑥O

x

LyM

− 𝑏L N
2𝜋𝑛
𝐿 O

>

cos N
2𝜋𝑛
𝐿 𝑥O =

𝑑>𝐸4a(𝑥)
𝑑𝑥> , (13) 

where L is the line length and N is the Nyquist frequency, which is half of the sampling rate s:  
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𝑁 =
𝑠
2𝐿. (14) 

By substituting the formula for kts into that for <kts>, we obtain 

〈𝑘4a〉(𝑥) = s−𝑎L N
2𝜋𝑛
𝐿 O

>

sin N
2𝜋𝑛
𝐿 𝑥O	𝐽. N

2𝜋𝑛𝐴M
𝐿 O

x

LyM

− 𝑏L N
2𝜋𝑛
𝐿 O

>

cos N
2𝜋𝑛
𝐿 𝑥O	𝐽. N

2𝜋𝑛𝐴M
𝐿 O, (15) 

where J0 is the Bessel function of the first kind and zero order. Assuming that the frequency-

shift data of the line can be expressed as a Fourier series with the components αn and βn, i.e.,  

Δ𝑓A(𝑥) = s𝛼L sin N
2𝜋𝑛
𝐿 𝑥O

x

LyM

+ 𝛽L cos N
2𝜋𝑛
𝐿 𝑥O , (16) 

we can determine the expressions for an and bn via direct comparison of the formulas. As in the 

work of Seeholzer et al., the factors αn and βn were determined from the scalar projection of the 

data on the relevant sine or cosine function divided by a normalization factor:[25] 

𝛼L = U
2Δ𝑓A(𝑥)

𝐿 sin N
2𝜋𝑛
𝐿 𝑥O 𝑑𝑥, (17) 

𝛽L = U
2Δ𝑓A(𝑥)

𝐿 cos N
2𝜋𝑛
𝐿 𝑥O𝑑𝑥. (18) 

This allows the determination of forces from frequency-shift data of higher eigenmodes, such 

as shown in the main text. 

 

Comparison of original frequency-shift data with frequency-shift validation data along 

distinct cross sections 

Figure S6 shows that the frequency-shift validation images determined with the Fourier method 

match the contrast of the original images. The main difference between the original and 

validation images is the frequency-shift offset, which results from the assumptions behind the 

Fourier method, as discussed in the main text. Additionally, the validation images appear much 

smoother than the original images, which is a consequence of the Fourier algorithm. To directly 

compare some distinct lines, we show the cross sections marked in the original and validation 

images in Figure S7. The positions of the cross sections are the same as those in the main text. 
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Figure S6. Original frequency-shift images (a, b, e, f) and frequency-shift validation images (c, 

d, g, h) determined by using the Fourier method. The torsional validation data (a, c, e, g) were 

calculated using the monomodal Fourier method, and the flexural validation data (b, d, f, h) 

were calculated using the bimodal Fourier method. Red: scan angle = 0°, Ator = 80 pm, 

Aflex,2 = 100 pm, A0 (flex,2) = 770 pm, Aflex,3 = 220 pm. Blue: scan angle = 90°, Ator = 110 pm, 

Aflex,2 = 90 pm, A0 (flex,2) = 770 pm, Aflex,3 = 150 pm. 

 

Figure S7 shows that the frequency-shift validation images reproduce the original frequency-

shift data nicely at the positions of the hollow sides and the carbon bonds, as seen in a, c, d, and 

f. Nevertheless, in Figure S7c the flexural frequency shift is not reproduced perfectly at the 

distinguishable atomic sides. For the pink cross sections in Figure S7b and e, the discrepancies 

between the validation and original frequency-shift data are slightly larger. This must be 
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considered when interpreting the force images, but the overall reproduction of the frequency-

shift images is satisfying. 

 
Figure S7. Cross-sectional profiles drawn through the original and validation frequency-shift 

images of HOPG along the pink, blue, and green lines in Figure S6. Profiles and axis labels are 

shown in gray for the original frequency-shift data, black for the flexural validation frequency-

shift data, and red for the torsional validation frequency-shift data. The torsional oscillation was 

aligned approximately along the zigzag (resp. armchair) direction of the carbon hexagons for 

the cross sections shown in the red frame (a–c) (resp. blue frame (d–f)). The cross sections in 

a), d), and e) were drawn along the zigzag direction and in b), c), and e) along the armchair 

direction of the carbon hexagons. The a), d) green and c), f) blue marked cross sections cut the 

center of the hollow side, whereas the b), e) pink marked cross sections are offset from the 

center of the hollow side by the particular torsional amplitude values. 
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