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Abstract
In recent studies, the potential of hyperspectral sensors for the analysis of plant–
pathogen interactions was expanded to the ultraviolet range (UV; 200–380 nm) to 
monitor stress processes in plants. A hyperspectral imaging set-up was established 
to highlight the influence of early plant–pathogen interactions on secondary plant 
metabolites. In this study, the plant–pathogen interactions of three different barley 
lines inoculated with Blumeria graminis f. sp. hordei (Bgh, powdery mildew) were inves-
tigated. One susceptible genotype (cv. Ingrid, wild type) and two resistant genotypes 
(Pallas 01, Mla1- and Mla12-based resistance and Pallas 22, mlo5-based resistance) 
were used. During the first 5 days after inoculation (dai) the plant reflectance pat-
terns were recorded and plant metabolites relevant in host–pathogen interactions 
were studied in parallel. Hyperspectral measurements in the UV range revealed that a 
differentiation between barley genotypes inoculated with Bgh is possible, and distinct 
reflectance patterns were recorded for each genotype. The extracted and analysed 
pigments and flavonoids correlated with the spectral data recorded. A classification of 
noninoculated and inoculated samples with deep learning revealed that a high perfor-
mance can be achieved with self-attention networks. The subsequent feature impor-
tance identified wavelengths as the most important for the classification, and these 
were linked to pigments and flavonoids. Hyperspectral imaging in the UV range allows 
the characterization of different resistance reactions, can be linked to changes in sec-
ondary plant metabolites, and has the advantage of being a non-invasive method. It 
therefore enables a greater understanding of plant reactions to biotic stress, as well 
as resistance reactions.
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1  |  INTRODUC TION

In recent plant phenotyping studies, the ultraviolet range (UV; 200–
380 nm) has been used for the first time to record reflectance prop-
erties of plants by hyperspectral imaging (Brugger et al., 2019). An 
extension of spectral measurements to this range enables the con-
sideration of secondary plant substances such as flavonoids with an 
absorption maximum in the UV range (Table 1; Taniguchi & Lindsey, 
2018). These secondary plant substances are produced in response 
to abiotic or biotic stress. Therefore, hyperspectral measurements 
in the UV range can lead to more detailed knowledge about plant 
responses to stress factors.

The obligate biotrophic ascomycete Blumeria graminis f. sp. hordei 
(Bgh) causes powdery mildew on barley and influences the second-
ary plant metabolism. After infection with Bgh, barley leaves show 
typical white pustules which develop to form conidia which are dis-
persed by wind. The primary and secondary germ tubes develop 
within the first 4 h of infection, and the penetration peg is devel-
oped after 15 h. The first fungal colonies are visible to the naked eye 
3–5 days after infection (dai; Both et al., 2005). An infection with 
Bgh leads to changes in plant metabolism and secondary plant me-
tabolites such as flavonoids, which are polyphenolic secondary plant 
metabolites. Within the flavonoid group, anthocyanins and flavonols 
have various tasks such as visual signals, auxin transport, and resis-
tance against plant pathogens (Petrussa et al., 2013). High contents 
of flavonoids such as kaempferol and pelargonidin have been found 
in plants exposed to high levels of UV radiation (Monici et al., 1993). 
Anthocyanins protect chloroplasts from UV radiation but can also 
scavenge reactive oxygen species (Neill & Gould, 2003). High levels 
have been found in primary leaves of barley, where they are stored 
in the epidermis. Their high absorptive properties of UV light means 
that they can also be found in the mesophyll (Liu et al., 1995).

The flavone chrysin, present in different cereals (Liu et al., 
2010), is often used to quantify flavonoids with spectrophotomet-
ric detection because their absorption maxima are at 240–290 nm 
as well as 310–370  nm (Mierziak et al., 2014). Flavonoids can not 

only be synthesized by plants as a response to stress, but can also 
be produced before stress occurs and stored at important sites to 
play a direct role in defence mechanisms (Treutter, 2006). Studies 
have proposed that they are stored in epidermal cells and released 
into infected tissue, where they may be involved in hypersensitive 
responses (HR; Beckman, 2000). In addition, degradation of plant 
pigments such as carotenoids and chlorophyll a and b, with an ab-
sorption maximum at 400–500 nm (Taniguchi & Lindsey, 2018), can 
be linked to a changing photosynthetic activity due to compatible 
and incompatible interactions (Brugger et al., 2018). Other plant 
compounds are affected by infection of barley with Bgh as well as 
flavonoids; for example, genotypes susceptible to Bgh showed a re-
duced electron transport capacity due to a degraded photosystem 
II, which results in a loss of chlorophyll during infection development 
(Scholes et al., 1994).

Resistance breeding is a major protection strategy against Bgh 
infections in barley. The cultivar Ingrid (wild type, WT) is susceptible 
to infections, while cv. Pallas has two isogenic lines 01 and 22, which 
are resistant and show no typical symptoms of a powdery mildew 
infection. Pallas 01 has a race specific resistance and possesses the 
resistance genes mildew loci Mla1 and Mla12, which cause a HR after 
recognizing specific Bgh avirulence genes (Schulze-Lefert & Vogel, 
2000). The near-isogenic line Pallas 22 contains a dysfunction in 
the mlo5  gene and has a broad-spectrum papilla-based resistance 
against Bgh (Kølster et al., 1986). A papilla or cell wall apposition 
(CWA) is quickly developed below the penetration point of the 
pathogen and prevents further infection development. CWAs con-
tain phenols, belonging to the secondary plant metabolite group of 
flavonoids (Jørgensen, 1992).

The susceptible and resistant barley–Bgh interaction has previ-
ously been studied with hyperspectral imaging in the visible (400–
700  nm) and near infrared (700–100  nm) range, with emphasis on 
reflectance and transmission data (Kuska et al., 2015; Thomas et al., 
2016). Reflection measurements enabled an early detection of in-
fection two days before colonies became visible to the naked eye 
(Thomas et al., 2016). In addition, the genotypes were differentiated 

Secondary plant metabolite
Absorption source maxima 
(nm) Reference

Acridone 398 Reiser et al., (1972)

Anthocyanin 270–290 Woodall and Stewart 
(1998)

Carotenoids 400–500 Lichtenthaler and 
Buschmann (2001)

Chlorophyll a 428 Seely and Jensen (1965)

Chlorophyll b 453 Seely and Jensen (1965)

Coumarin 311 Abu-Eittah and El-Tawil 
(1985)

Flavonoids 240–290, 310–370 Mierziak et al., (2014)

Hydroquinone 295 Stalin et al., (2005)

Phenol 271 Stalin et al., (2005)

Quinoline 313 Snyder and Testa (1984)

TA B L E  1  List of important secondary 
metabolites with an absorption maximum 
in the UV-range
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according to their susceptibility to Bgh (Kuska et al., 2015) and this 
data was combined with microscopic observations (Kuska et al., 2017) 
and results from invertase analysis (Kuska et al., 2018). At present, 
there is no research available that links the secondary metabolism of 
the plant with spectral changes of wavelengths. The genotypes used 
in this study serve as a model to prove the usability of the UV range to 
describe phytopathogens and their effects on host plants.

Three hypotheses were investigated in this study: (a) an infection 
with Bgh affects the secondary plant metabolites, (b) the changes in 
secondary metabolism can be detected by noninvasive hyperspec-
tral imaging, and (c) the relevant wavelengths can be narrowed down 
by combining the recorded hyperspectral data with deep learning 
algorithms (Figure 1). The last point is particularly important to be 
able to limit future investigations to the relevant wavelengths of the 
UV range in a targeted and cost-saving manner.

2  |  MATERIAL S AND METHODS

2.1  |  Plant cultivation and pathogen inoculation

The barley lines cv. Ingrid wild type (WT), Pallas 01 (Mla12), and 
Pallas 22 (mlo5) were grown in a greenhouse environment in plastic 
pots (5 × 5 cm) on commercial substrate (Topfsubstrat 1.5, Balster 
Erdenwerk GmbH) and watered, as necessary. After 10 days when 

reaching growth stage 11 (Witzenberger et al., 1989) the primary 
leaves were cut at 10 cm and place on 10 g/L phyotagar (Duchefa 
Biochemie B.V.) containing 0.34  mM benzimidazole (Kuska et al., 
2015). For each genotype, 10 leaves were kept untreated as a con-
trol group, while eight technical replications with five leaves each 
were inoculated with fresh spores of Bgh isolate A6. The agar plates 
were sealed and incubated at 19℃ in a controlled environment with 
1,100 cd/m2 illuminance and a photoperiod of 16 h per day.

2.2  |  Extraction of secondary plant metabolites

For the extraction of secondary plant metabolites, samples of inocu-
lated and noninoculated barley leaves of all three genotypes were 
collected 1 to 5 dai and kept in the freezer at −80℃ until analysis. 
The extraction was carried out for six biological replications.

2.3  |  Chlorophyll and carotenoid extraction

Chlorophyll and carotenoid extraction was performed according to 
Scholes et al., (1994). Frozen leaf samples with 0.5 M HClO4 were 
ground in liquid nitrogen to a fine powder. Subsequently, 0.5 g per 
sample was transferred into a tube stored on ice and 1.5 ml of 80% 
acetone was added. The samples were kept for 3 hr on ice in the dark 
and mixed every 20 min. The samples were then centrifuged at 4℃ 
at 21,000 × g for 20 min and the absorption of the extract was meas-
ured at 470, 645, and 663 nm. The concentration of chlorophyll and 
carotenoid was calculated according to Hiscox and Israelstam (1979).

2.4  |  Total flavonoid extraction

Total flavonoid extraction was performed according to Mihai et al., 
(2010). Frozen leaf samples were ground in liquid nitrogen to a fine 
powder and extracted with 96% ethanol. For this, 1 g of each sam-
ple was mixed with 30 ml ethanol and kept overnight with constant 
stirring. Samples were then filtered on qualitative filter paper three 
times before the volume was made up to 100 ml for an initial extract 
concentration of 1%. Of this extract, 3 ml were mixed with 1 ml 2.5% 
ZrOCl2 and 21 ml methanol were added. After 30 min, the absorp-
tion was measured at 288 nm against a control solution consisting 
of methanol. A calibration curve was established using chrysin. For 
this, a stock solution with 0.1 mg/ml was prepared and aliquots of 
0.25, 0.5, 1, 1.5, and 2 ml were used. The measured absorbance was 
plotted against the concentration to establish the calibration curve.

2.5  |  Hyperspectral image acquisition and data 
preprocessing

Spectral reflectance was recorded with a hyperspectral imaging 
line scanner in the UV range according to Brugger et al., (2019), 

F I G U R E  1  Workflow to investigate whether spectral images 
in the UV range can be linked with changes in secondary plant 
metabolites
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with an exposure time of 800 ms, a frame rate of 0.4 frames/s, and 
a linear axis speed of 0.3  mm/s. The reflectance was measured 
daily from 1 to 5 dai. The relative reflectance was calculated using 
the software Hyperspec III (Headwall Photonics) and for this pur-
pose, a white reference image of 95% barium sulphate and a dark 
current image were recorded. Data were then analysed with the 
software ENVI 5.5 (Exelis Visual Information Solutions). A manu-
ally selected 7,500 pixel sample from each image was used to cal-
culate the average reflectance. The selected pixels covered the 
entire barley leaf. A Savitzky-Golay filter with a window size of 
7 and a 3rd degree polynomial was used to preprocess the data. 
The Savitzky-Golay filter and the corresponding parameters were 
selected to reduce the signal noise while preserving the proper-
ties of the signal distribution (Madden, 1978). Figures were gener-
ated with SigmaPlot 14 (Systat Software). RGB visualization was 
performed 1 to 5 dai.

2.6  |  Experimental setup of sample classification

The superpixels from the data were used as input for the (deep) 
learning algorithms to classify the measurements into noninoculated 
and inoculated samples. A superpixel is defined as the average of P × 
P neighbouring pixels. A spatial area with p = 7 was selected so that 
it was likely to contain symptoms. The computed areas were nono-
verlapping. The data were split into two different sets for training 
and testing. The test set contained 20% of the data and the results 
were cross-validated so that five different models were trained and 
evaluated for each classification task.

2.7  |  Determination of relevant features with self-
attention classification networks

To determine the meaning of the characteristics of the hyper-
spectral data, the neural network architecture self-attention 
networks (SAN; Skrlj et al., 2020) were used. SANs are moti-
vated by recent advances in natural language processing, for 
example, through the language model BERT (Devlin et al., 2018) 
with the transformer network architecture (Vaswani et al., 
2017). A key feature of these architectures is the so-called self-
attention mechanism. Skrlj et al. (2020) have shown that self-
attention can also be used to identify the relevant features per 
data point and that doing so can result in better classification 
accuracy than previous methods. The network architecture can 
be described as follows:

where K is the number of parallel self-attention blocks Ω, X is the input, 
and W and b are learnable parameters of the network. The functions 
a and σ are activation functions. In this case a is a SELU (Klambauer 
et al., 2017) and σ softmax function. The symbol ⊗corresponds to the 
Hadamard product while the symbol ⊕refers to the Hadamard sum 
formation over individual blocks. The first neural network layer is 
used especially for maintaining the connection with the input features 
F. The input vectors are first used as input for the softmax-activated 
layer, whose neurons match with the number of features F. The soft-
max function is defined as following:

The self-attention mechanism effectively creates a sparsely 
populated input area and only emphasizes relevant features for 
solving the task at hand (e.g., language comprehension). In this 
way, the self-attention mechanism is often used to, for example, 
more accurately learn the relationships between words (Skrlj et al., 
2020). In the present paper, SAN is used for the classification of 
individual signatures (pixels) or combined signatures (superpixels) 
of hyperspectral data in the UV range, classified between healthy 
and inoculated samples of different genotypes. The networks’ 
self-attention mechanism weights the input features and uses the 
weighted output for the neural classification network. Two self-
awareness heads and a neural classification network with 64 latent 
neurons were selected for the self-attention networks (SAN). The 
final feature importance is calculated by averaging the feature im-
portance of the two heads:

where X is the evaluated set of inputs and in this case k = 2. The train-
ing setup of Skrlj et al. (2020) was followed and the network was 
trained with the commonly used Adam optimization algorithm (Kingma 
& Ba, 2014). However, the described batch size seemed to be very low. 
To achieve a more stable training, it was increased to 128 samples. A 
learning rate of 0.001 was used and it was gradually reduced during 
training. In a preprocessing step, the first wavelengths were removed, 
because they were characterized by increased noise, resulting in an 
input wavelength range from 260.232 to 501.219 nm.

2.8  |  Gradient boosting as classification method

The framework XGBoost (Chen & Guestrin, 2016) was used to im-
plement the baseline gradient boosting (GB) classifier. The machine 
learning technique GB can be used for classification as well as re-
gression problems and generates a predictive model in the form of 
an ensemble of weak predictive models, usually decision trees. As in 
other boosting methods, the model is built up stage-wise. The hy-
perparameters to optimize the GB model were chosen empirically. 
The reported results were achieved using a maximum tree depth of 
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6 and a learning rate of 0.3. Further, a L2 regularization was used 
with the weight λ = 1.

3  |  RESULTS

3.1  |  Impact of compatible and incompatible 
barley Bgh interactions on pigment and flavonoid 
concentration

Chlorophyll, carotenoid, and total flavonoid content showed changes 
depending on the resistance of the host plant. The total chlorophyll 
content of all genotypes decreased between 1 and 5 dai. In WT 
leaves there was a strong decrease from 5.2 to 3.1 µg/gbetween 1 
and 5 dai, whereas in mlo5 leaves, there was only a slight decrease 
from 5.7 to 5.1 µg/g. (Figure 2). The carotenoid extraction revealed 
a similar pattern for WT leaves. The highest value was measured 1 
dai and decreased by 76% 5 dai. Mla1 leaves demonstrated a strong 
decrease from 2.2  µg/g 1 dai to 1.4  µg/g 3 dai, but exhibited no 
further decrease 5 dai. Inoculated mlo5  leaves were represented 
by a constant carotenoid concentration. The flavonoid content of 
WT leaves decreased from 49% 1 dai to 40% 5 dai. Mla1 leaves dis-
played a decrease of 12% from 1 to 3 dai but stayed constant 5 dai. 
mlo5 leaves demonstrated an increase from 47% 1 dai to 59% 3 dai, 
and remained constant 5 dai.

3.2  |  Phenotypic development of Bgh on 
barley leaves

The phenotypic development of noninoculated and Bgh-inoculated 
barley leaves of Ingrid and the near-isogenic lines Pallas 01 and 
Pallas 22 were visualized with RGB images (Figures 3 and 4). 
Noninoculated leaves of all three genotypes remained healthy and 

showed no visible disease symptoms (Figure 4). Inoculated leaves of 
the susceptible WT exhibited senescence starting 3 dai and typical 
white pustules 4 dai. These pustules were unevenly distributed on 
the leaves and covered approximately 60% of the leaf area 5 dai. 
Chlorotic tissue was seen in the area around powdery mildew pus-
tules. Resistant Mla1 and mlo5 leaves showed no typical symptoms 
of infection with Bgh. Starting 4 dai, Mla1 leaves displayed HR, vis-
ible under the microscope as necrotic brown spots heterogeneously 
distributed over the leaves.

3.3  |  Spectral signatures of 
inoculated and noninoculated barley lines

Spectral signatures enabled the differentiation between differ-
ent host–pathogen interactions. Distinct peaks between 250 and 
312  nm, for example, at 258  nm, 266  nm, or 271  nm, character-
ized the reflectance of each sample. Additional peaks were visible 
between 410 and 440  nm, for example, at 421, 423, or 439  nm 
(Figure 5). The highest reflectance of each measurement was re-
corded at 254 nm at a value of 0.4%. Noninoculated barley leaves 
demonstrated constant spectral signatures, with a decrease in re-
flectance from 0.4% at 255 nm to 0.15% at 450 nm. The reflectance 
remained constant during the entire time-series measurements from 
1 to 5 dai. Inoculated susceptible WT leaves presented a decreas-
ing reflectance at 254  nm from 0.42% at 1 dai to 0.38% at 3 dai, 
before reaching the highest value of 0.47% at 4 dai. This decrease 
in reflectance was continuous from 250 to 400 nm, whilst the re-
flectance of all measurements was similar between 418 and 430 nm, 
at 0.14%. The smallest reflectance at 500  nm was 0.12% at 1 dai 
and increased to 0.145% at 5 dai. The race-specific resistant geno-
type Mla1 exhibited the smallest reflectance at 254 nm 1 dai, which 
increased to its highest value of 0.48% 4 dai, and then decreased 
to 0.47% 5 dai. Similar to the susceptible WT, the reflectance of all 

F I G U R E  2  Pigment and flavonoid 
analysis of susceptible and resistant 
barley–Blumeria graminis f. sp. hordei (Bgh) 
interactions. Total chlorophyll, carotenoid 
and flavonoid extraction of noninoculated 
barley leaves and barley leaves inoculated 
with Bgh of Ingrid wild type (WT), Mla1, 
and mlo5. Analysis was performed 1, 
3, and 5 days after inoculation (dai) 
and standard deviation is indicated. 
Lower case letters stand for significant 
difference between dai per genotype for 
which data was tested with Kolmogorov–
Smirnov test for normal distribution with 
p ≤ 0.05 and a Tukey's range test was 
applied with α = 0.05
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measurements was homogeneous from 418 nm onward. The highest 
reflectance at 500 nm was measured at 5 dai at 0.145%. The broad-
spectrum resistant genotype mlo5 showed the highest reflectance 
of 0.44% at 254 nm 1 dai and decreased to 0.37% 5 dai. At 418 nm, 
all measurements displayed a similar reflectance except 5 dai, which 
was characterized by a smaller reflectance. From 460 nm onward, 
the reflectance of all measurements was similar and reached 0.1% 
at 500 nm.

All noninoculated leaves demonstrated constant spectral signa-
tures, while inoculated WT leaves presented an overall decrease in 
reflectance up to 3 dai, before increasing and reaching the highest 
values 4 dai. Resistant Mla1 leaves displayed an increase from 250 to 
418 nm, increasing daily until the highest values were reached 5 dai. 
Resistant mlo5 leaves decreased daily between 250 and 418 nm, and 
were represented by low values 5 dai.

3.4  |  Classification of noninoculated and inoculated 
samples with deep learning

A neural network architecture with attention mechanism, so-called 
self-attention network (SAN) (Skrlj et al., 2020) was chosen as the 
classification method. Attention-based neural networks are a novel 
deep learning architecture which have achieved recent advances in 
various fields. However, they have not been considered as feature 
importance extractors for biological or hyperspectral data. The at-
tention mechanism in the first layers of the network was used to 
classify particularly important elements of the feature space and 

filter them out of the rest. Then, the classification layer used the 
parts identified as important to classify the input. Table 2 shows the 
achieved accuracy (average and standard deviation) of the SAN com-
pared to the well-established gradient tree boosting (GB) method 
(Chen & Guestrin, 2016). SAN consistently achieved higher perfor-
mances, with both methods having the highest accuracy at 1 and 5 
dai. The WT genotype displayed values of 89% 5 dai, while Mla1 and 
mlo5 achieved 91% for the SAN method.

3.5  |  Feature importance identifies relevant 
wavelengths

The self-attention block of the trained network was used to deter-
mine the feature importance. For this, the softmax-activated output 
of the self-attention block was extracted. Figure 6 visualizes the av-
erage over the cross-validated models. Only features with weighting 
above 5% are shown. In all three genotypes, 262 or 264 nm were 
identified as important wavelengths. For WT leaves, 263, 280, and 
478 nm were also identified. For both resistant genotypes, 501 nm 
was additionally identified.

3.6  |  Changes of secondary plant metabolites 
linked to relevant wavelengths

The wavelengths identified by feature importance are in the range 
from 262 to 291 nm and 442 to 500 nm. In both ranges, WT and 

F I G U R E  3  Spectral signatures of 
noninoculated and inoculated barley 
leaves and RGB visualization. Spectral 
signatures of noninoculated barley leaves 
(a,c,e) and barley leaves inoculated with 
Blumeria graminis f. sp. hordei (Bgh) (b,d,f). 
Ingrid wild type (WT), Mla1, and mlo5 
were used and incubated on phytoagar. 
RGB images of inoculated leaves 1 to 
5 days after inoculation (dai) are displayed 
on the right [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Mla1 leaves were represented by an increase of reflectance from 1 
to 5 dai and showed a decrease in chlorophyll, carotenoid, and flavo-
noids. mlo5 leaves displayed a decrease of reflectance in the range 
from 262 to 291 nm and an increase of flavonoids, but similar values 
of reflectance were recorded in the range from 442 to 500 nm from 
1 to 5 dai, and extraction experiments showed a small decrease in 
chlorophyll and a constant value of carotenoid content.

4  |  DISCUSSION

In this study, hyperspectral imaging in the UV range was used to in-
vestigate changes in secondary plant metabolites and pigments in sus-
ceptible and resistant barley powdery mildew interactions. The use of 
hyperspectral imaging to provide non-invasive information on host–
pathogen interactions by assessing specific changes in plant reflec-
tance patterns, which can be associated with physiological processes, 
has been well described (Mahlein et al., 2018; Thomas et al., 2018). 
Near-isogenic barley lines with different susceptibility towards Bgh 
have been previously studied with hyperspectral imaging and revealed 
different dynamics over time (Kuska et al., 2015, 2017). The first such 
studies connected multispectral imaging in the visible and near infra-
red range with the activity of invertase isoenzymes, and analysed the 
activity of cell wall, cytosolic, and vacuole invertase. Although this 
shows that multispectral imaging and invertase analysis complement 
each other, the correlation between hyperspectral imaging data and 
plant metabolites has not been previously studied. Therefore, this 
study of resistant and susceptible plant–pathogen response demon-
strates the ability of UV hyperspectral imaging in combination with 
deep learning to identify changes in secondary plant metabolites.

The development of Bgh on WT leaves was as described (Both 
et al., 2005), and typical white pustules were visible 4 dai. Inoculated 
resistant leaves containing a mlo mutation showed no symptoms, 
as CWAs were formed at the penetration site, stopping further de-
velopment (Jørgensen & Wolfe, 1994). Inoculated plants containing 
the resistant Mla1 gene showed no symptoms, but from 4 dai brown 
necrotic spots were visible on the leaves. Once the penetration peg 
ruptures the cell wall and enters the epidermal cell, a race-specific 
resistance gene recognizes the Bgh avirulence factors and H2O2 is 
produced (Caldo et al., 2004). H2O2 triggers a HR and causes cell 
death of the penetrated epidermal cell, which is visible as brown, 
necrotic spots (Schulze-Lefert & Vogel, 2000).

The interaction of the sensor and illumination caused significant 
peaks from 250 to 321 nm and from 410 to 440 nm, which could 
not be removed by normalization. Therefore, a correlation of these 
wavelengths to specific secondary plant metabolites cannot be 

F I G U R E  4  RGB images of noninoculated barley leaves and 
barley leaves inoculated with Blumeria graminis f. sp. hordei 
(Bgh) Ingrid wild type (WT), Mla1, and mlo5 1 to 5 days after 
inoculation (dai). Noninoculated leaves of all genotypes were 
healthy throughout, while inoculated leaves showed a typical 
resistant or susceptible reaction [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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verified. Untreated barley leaves showed no changes in spectral sig-
natures and no senescence during the observation period, which cor-
responds to the phenotypic development of barley leaves (Figure 3). 
The increase in reflectance of inoculated WT leaves from 450 nm 
onward can be linked to a decrease in plant pigments such as chlo-
rophyll and carotenoids (Brugger et al., 2018; Scholes et al., 1994) 
and is also reflected in the pigment analysis. Previous studies showed 
that 1 dai, susceptible WT leaves already showed a reduced photo-
synthetic performance due to reduced pigment content in the leaves 
(Brugger et al., 2018). Like WT, Mla1  leaves showed an increase in 
reflectance from 450 to 500 nm 2 dai and a corresponding decrease 
in chlorophyll and carotenoid content. Mla resistance leads to a de-
terioration of photosynthesis and pigment metabolism, as HR causes 
necrosis (Matile et al., 1999). Previous studies with hyperspectral 
imaging showed that a reduction of plant pigments can already be 
detected 2 dai on Mla1  leaves (Kuska et al., 2017), confirming the 
results in the UV range. Infected mlo5 leaves showed no changes in 

reflectance at 450–500 nm and an almost constant pigment content. 
Due to the formation of CWA, mlo resistant leaves are known for 
only small decreases in photosynthetic activity (Scholes & Rolfe, 
2009) resulting in a high pigment content. Compared to mlo5, WT 
and Mla1 leaves exhibited a faster senescence, visible as an increase 
in reflectance, while mlo leaves are known to display a delay in se-
nescence and greening effect after inoculation (Kuska et al., 2015).

During the pathogenesis, reflectance increased in WT leaves from 
250 to 370 nm, which can be associated with a decrease in flavonoids, 
because their absorption maxima are in the range of 240–290  nm 
and 320–370 nm (Mierziak et al., 2014). The flavonoid content of WT 
leaves slightly decreased, presumably because flavonoids act as cat-
alysts in photosynthesis, which is downregulated in Bgh infections, 
resulting in a reduced need for flavonoids and subsequent downreg-
ulation of the flavonoid metabolism. In addition, flavonoids are cate-
gorized into preformed and induced compounds, whereby preformed 
flavonoids are produced during normal plant development and stored 
at important sites, for example, in epidermal cells. There they can play 
a direct role in the defence of pathogens or act as signalling com-
pounds (Treutter, 2005). For this reason, a decrease in flavonoids in 
susceptible barley leaves after Bgh infection is plausible and evident 
both in the recorded spectral reflectance and in the analysis. An influ-
ence of the UV radiation on the leaves can be excluded, as this would 
have led to higher levels of flavonoids due to their protective function 
against UV light (Monici et al., 1993). Mla1 leaves displayed a decrease 
in flavonoids from 1 to 3 dai before exhibiting constant values until 5 
dai. Phenolic compounds, to which the group of flavonoids belongs, 
are stored in epidermal cells and, particularly in the case of HR and 
associated cell death, are released rapidly in infested tissue (Beckman, 
2000). As this occurs in a Mla1-based resistance, the decrease in fla-
vonoids in inoculated Mla1 leaves can thus be explained. In addition, 
a previous study suggested that the release of flavonoids occurs par-
ticularly in early stages of infection (Beckman 2000), explaining the 
strong decrease of flavonoids from 1 to 3 dai in the present study. 
In contrast to inoculated WT and Mla1  leaves, mlo5  leaves featured 
a decrease of reflectance from 250–370 nm during time-series mea-
surements, corresponding to a strong increase of flavonoids 3 dai. 
Flavonoids are involved in auxin metabolism, which causes a tight-
ening of the plant structure (Mierziak et al., 2014). This leads to the 
formation of callose and cell wall phenolics (von Roepenack et al., 
1998), explaining the increase in flavonoids 3 dai. Additionally, stud-
ies with barley and Fusarium head blight revealed an accumulation 
of flavonoid glycosides as a resistance response against the fungi to 
strengthen cell walls and limit the infection (Karre et al., 2019). Similar 
patterns between WT and Mla1 leaves can be explained by the previ-
ously mentioned early senescence after inoculation, while mlo5 leaves 
displayed a characteristic delay in senescence. The analysis of flavo-
noids and pigments reflected the spectral signatures of each geno-
type, allowing a connection between the two to be established.

In this work, neural networks with self-attention mechanisms 
were used for the classification of healthy and diseased plants, iden-
tifying the most relevant parts of the input for this task. Due to the 
decreasing costs of cameras, hyperspectral imaging becomes more 

F I G U R E  5  Visualization of relevant peaks due to the interaction 
of the sensor and illumination which were not considered in this 
investigation. Peaks are identified between 250 and 312 nm (258, 
266, 271 nm) and between 410 and 440 nm (421, 423, 439 nm) 
[Colour figure can be viewed at wileyonlinelibrary.com]

TA B L E  2  Cross-validated classification results of all three 
Blumeria graminis f. sp. hordei genotypes

Genotype
Days after 
inoculation

Gradient tree 
boosting (%)

Self-attention 
networks (%)

Wild type 1 84.73 ± 1.71 99.35 ± 0.75

3 76.00 ± 1.39 79.69 ± 1.87

5 84.31 ± 1.94 89.28 ± 0.82

Mla1 1 85.56 ± 1.51 96.10 ± 1.77

3 75.99 ± 0.66 78.65 ± 1.54

5 81.70 ± 0.81 91.69 ± 1.63

mlo5 1 83.62 ± 1.15 99.19 ± 0.51

3 74.99 ± 2.28 82.12 ± 2.48

5 84.34 ± 2.22 91.09 ± 2.35

Note: Data are mean ±SD. The accuracy of self-attention networks is 
shown in comparison to the established gradient tree boosting method.

www.wileyonlinelibrary.com


1580  |    BRUGGER et al.

and more popular, and researchers and developers have better ac-
cess to this technology (Mahlein et al., 2019). Because hyperspectral 
imaging leads to large amounts of data, deep learning methods have 
been used to identify plant diseases, such as the use of deep convo-
lutional neural networks to identify charcoal rot disease in soybean 
stems (Nagasubramanian et al., 2019) and other applications (Polder 
et al., 2019; Schramowski et al. 2020; Tetila et al., 2019).

Data mining methods have also been used to localize HR from 
hyperspectral imaging data before they were visible on RGB images 
(Kuska et al., 2017). Singh et al., (2018) reviewed the trends and fu-
ture perspectives of using deep learning techniques for plant stress 
phenotyping, and stated the great promise for improving speed, ac-
curacy, reliability, and scalability of disease phenotyping. The classi-
fication of noninoculated and inoculated samples with deep learning 
revealed that SAN consistently achieved higher performance com-
pared to GB. This aligns with previous findings that applying SAN 
results in an improved performance on data sets with many features 
(Skrlj et al., 2020). The classification performance and feature impor-
tance identification were cross-validated using SANs and the results 
were verified by biological investigation. However, different feature 
importance estimation approaches for deep neutral networks, for 
instance attribution methods such as LIME (Riberio et al., 2016) and 
saliency maps (Karen et al., 2014), could result in slightly deviating 
importances. Further, the estimation also depends on the general 
performance of the underlying model. However, one of the advan-
tages of SAN is that the feature importance is computed during 
inference, and does not rely on an external linear approximate of 
the deep learning model, such as used in LIME (Riberio et al., 2016). 
Nevertheless, future work should address different kinds of deep 
feature importance extractors and analyse their differences.

It is striking that both SAN and GB have the highest accuracy at 
1 and 5 dai. The high accuracy at 1 dai can be explained by the inoc-
ulation methodology, because the samples were inoculated by using 
a brush to apply the Bgh spores on the leaves immediately before 
the first measurement. While noninoculated leaves were treated 
with a clean brush, fresh spores covered the surface of inoculated 
leaves and therefore changed the optical properties of the plant, 
which eased the classification. High classification accuracy 5 dai are 
linked to visible symptoms on WT and Mla1  leaves and noticeable 

higher reflectance of mlo5 leaves. The feature importance identified 
264 nm as the most important wavelength for the classification of 
all three genotypes, and because flavonoids feature an absorption 
maximum at 240–290  nm (Mierziak et al., 2014), this wavelength 
can be linked to flavonoids. Other wavelengths with lesser fea-
ture importance value were identified at 442 and 478  nm. These 
wavelengths were linked to a change in pigments including chloro-
phyll and carotenoids, which feature absorption maxima from 400–
500 nm (Lichtenthaler, 1987).

Secondary plant metabolites which can be linked by feature im-
portance to identified wavelengths showed changes in content in 
extraction experiments that were also consistent with the spectra 
recorded in the UV range. This information can be used to character-
ize different host–pathogen interactions, as they lead to differences 
in secondary plant metabolites, which are reflected in changes in re-
flectance. Thus, hyperspectral imaging in the UV range could lead to 
information about changes in secondary plant metabolites such as 
chlorophyll, carotenoid, and flavonoids, depending on susceptibility 
or resistance reactions.

This study showed that spectral information in the UV range 
of different host–pathogen interactions corresponds to changes in 
secondary plant metabolites. Specific resistance responses in in-
compatible barley–Bgh interactions can also be differentiated by 
spectral reflectance. In addition, deep learning revealed that these 
secondary plant metabolites can be linked to wavelengths which are 
of importance for the classification of healthy and diseased plants. 
Therefore, hyperspectral imaging in the UV range and deep learning 
can provide an understanding of susceptible and resistant responses 
of plants and can be used as a nondestructive tool to achieve a 
greater knowledge about plant–pathogen interactions.
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