© 2021 Wiley-VCH GmbH

ADVANCED MATERIALS

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.202102301

Phase–Property Diagrams for Multicomponent Oxide Systems toward Materials Libraries

Leonardo Velasco,* Juan S. Castillo, Mohana V. Kante, Jhon J. Olaya, Pascal Friederich, and Horst Hahn

Supplementary Information

Phase-property diagrams for multicomponent oxide systems towards material libraries

Leonardo Velasco^{*}, Juan S. Castillo, Mohana V. Kante, Jhon J. Olaya, Pascal Friederich, Horst Hahn

Dr. L. Velasco, J. S. Castillo, M. V. Kante, Prof. Dr. P. Friederich, Prof. Dr. H. Hahn Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany Corresponding author E-mail: leonardo.estrada@kit.edu, leoveles@gmail.com

J. S. Castillo, Dr. J.J. Olaya Facultad de Ingeniería Universidad Nacional de Colombia Av. Cra. 30 # 45-03, Ed. 407 Ciudad Universitaria Bogotá D.C. Colombia.

J. S. Castillo, M.V. Kante, Prof. Dr. H. Hahn Joint Research Laboratory Nanomaterials Technische Universität Darmstadt Otto-Berndt-Str. 3, 64206 Darmstadt Germany.

Prof. Dr. P. Friederich Institute of Theoretical Informatics Karlsruhe Institute of Technology Am Fasanengarten 5 76131 Karlsruhe Germany

Table of Content

1.	Table S1. chemical composition and structural data for all the samples3
2.	Chemical composition maps
3.	X-ray diffractograms for repeated samples without Ce and that displayed a single phase8
4.	Transmission electron microscopy study for the repeated sample 269
5.	Machine Learning
6.	Calculated oxygen vacancy concentration landscape12
7.	Polyamide tape XRD
8.	Table S2. Calculated band gap and comparison with samples reported in literature14
9.	References17
10.	Chemical composition, X-ray diffractograms, Raman spectroscopy, and UV-vis spectroscopy
	for all the samples

	Contractor	Ar	nount o	of Liquid	[μL] ± 1	%	Cher	nical co	ncentral	tion [at.	%] ±	Crystal structure	Lattice Parameter	Crystallite size
	Sample		aisp	ensing e	error			stand	ard dev	lation			[Å]	[nm]
		Y	Sm	La	Ce	Pr	Y	Sm	La	Ce	Pr			
	1	100	-	-	-	-	100	-	-	-	-	la-3(100%)	10.57291	139.8
ES	2	-	100	-	-	-	-	100	-	-	-	la-3(100%)	10.89494	159.2
GIKO 315	3	-	-	100	-	-	-	-	100	-	-	P63/m(100%)	a=6.49999, c=3.84036	151.4
SING	4	-	-	-	100	-	-	-	-	100	-	Fm-3m(100%)	5.38825	150.2
	5	-	-	-	-	100	-	-	-	-	100	Fm-3m(100%)	5.44705	180.4
	6	50	50	-	-	-	49±3	51±3	-	-	-	la-3(100%)	10.73466	124.7
	7	-	50	50	-	-	-	51±5	49±5	-	-	Fm-3m(38%), P-3m1(35.6%), P63/m(17.8%), P4/nmm(8.5%)	*5.75345	*104
	8	-	-	50	50	-	-	-	51±3	49±3	-	Fm-3m(95.1%), P321 (4.9%)	*5.51203	*67.5
ES	9	-	-	-	50	50	-	-	-	52±2	48±2	Fm-3m (100%)	5.39365	109.1
ARY OXID	10	-	-	50	-	50	-	-	53±2	-	47±2	Fm-3m (95.2%), Fm-3m (3.7%)-Y, Fm-3m (1.1%)-Ce	*5.53764	*102.9
BIN	11	50	-	50	-	-	53±3	-	47±3	-	-	Fm-3m (65.1%), P4/nmm(29%), P63/mmc(5.9%)	*10.90395	*125.3
	12	50	-	-	-	50	49±3	-	-	-	51±3	la-3(100%)	10.78689	100.6
	13	-	50	-	-	50	-	51±2	-	-	49±2	la-3(100%)	10.88347	169.1
	14	-	50	-	50	-	-	50±1	-	50±1	-	Fm-3m (100%)	5.44442	110.5
	15	50	-	-	50	-	53±3	-	-	47±3	-	Fm-3m (100%)	5.36719	101.5
	16	-	50	50	-	50	-	33±2	35±2	-	32±1	la-3(99%), P4/nmm(1%)	*11.01371	*88.4
	17	-	-	50	50	50	-	-	35±2	33±2	32±1	Fm-3m (100%)	5.46875	73.6
	18	50	-	-	50	50	37±2	-	-	32±1	31±1	Fm-3m (100%)	5.38385	88.1
	19	50	50	-	50	-	33±2	33±1	-	34±2	-	Fm-3m(100%)	5.4024	77.5
IDES	20	50	-	50	50	-	34±2	-	34±2	32±2	-	Fm-3m(100%)	5.48594	48.3
κλ ΟΧ	21	50	-	50	-	50	34±3	-	35±3	-	31±1	Fm-3m(100%)	5.51504	81.6
TERNAF	22	50	50	50	-	-	34±2	32±1	34±2	-	-	la-3(41%), P4/nmm(27.4%), P63/m(16.6%), P-3C1(15%)	*10.84606	*86.7
	23	-	50	50	50	-	-	34±2	33±2	33±1	-	Fm-3m (98.9%) <i>,</i> P4/nmm(1,1%)	*5.50664	*93.4
	24	-	50	-	50	50	-	35±2	-	34±1	31±1	la-3(100%)	10.95435	60.7
	25	50	50	-	-	50	35±2	33±1	-	-	32±2	la-3(100%)	10.80213	126.4
	26	50	50	50	-	50	25±5	23±3	26±3	-	26±5	la-3(100%)	10.90459	83.2
IDES	27	-	50	50	50	50	-	25±2	26±2	25±1	24±1	Fm-3m(100%)	5.49182	94
Y OXI	28	50	-	50	50	50	27±1	-	26±1	24±1	23±1	Fm-3m(100%)	5.47679	70.2
RNAR	29	50	50	-	50	50	27±1	25±1	-	24±1	24±1	Fm-3m(100%)	5.41069	93.9
QUATEF	30	50	50	50	50	-	25±2	24±1	27±2	24±1	-	Fm-3m(100%)	5.47701	53.4

1. Table S1. Chemical composition and crystal structure parameters for the 106 samples.

	24	50	50	50	40.5	50								
Doped with Ce	31	50	50	50	12.5	50	25±3	23±1	24±2	5±1	23±1	la-3(100%)	10.95868	82.5
	32	50	50	50	25	50	23±4	23±3	22±3	11±1	21±2	Fm-3m(100%)	5.49655	80.1
	33	50	50	50	37.5	50	20±2	21±2	23±2	15±1	21±1	Fm-3m(100%)	5.48187	71.8
p >	34	12.5	50	50	50	50	5±1	24±2	24±2	24±1	23±1	Fm-3m(100%)	5.49139	90.9
Jope vith	35	25	50	50	50	50	10±1	22±1	24±1	23±1	21±1	Fm-3m(100%)	5.48662	86.7
	36	37.5	50	50	50	50	15±2	21±1	23±1	21±1	20±1	Fm-3m(100%)	5.48508	81.9
ч л	37	50	12.5	50	50	50	25±3	6±1	25±2	23±1	21±1	Fm-3m(100%)	5.47359	73.7
opeo ith Si	38	50	25	50	50	50	23±3	10±1	24±3	22±1	21±1	Fm-3m(100%)	5.48112	75.5
⊔ ≯	39	50	37.5	50	50	50	22±2	15±1	22±2	21±1	20±1	Fm-3m(100%)	5.47173	77.9
-	40	50	50	12.5	50	50	26±2	23±1	6±1	23±1	22±1	Fm-3m(100%)	5.43235	89.7
opec ith Lá	41	50	50	25	50	50	25±2	21±1	11±1	22±1	21±1	Fm-3m(100%)	5.45701	87.5
	42	50	50	37.5	50	50	21±2	21±1	16±2	21±1	21±1	Fm-3m(100%)	5.45987	84.2
	43	50	50	50	50	12.5	25±3	23±1	24±3	23±1	5±1	Fm-3m(100%)	5.47296	57.5
oped ith Pr	44	50	50	50	50	25	24±2	22±1	23±1	21±1	10±1	Fm-3m(100%)	5.48452	62.1
ă N	45	50	50	50	50	37.5	22±2	21±1	22±2	21±1	14±1	Fm-3m(100%)	5.49842	70.6
	46	25	50	50	12.5	50	11±2	28±2	29±3	6±1	26±1	Fm-3m(100%)	5.48942	88.7
	47	37.5	50	50	12.5	50	17±2	26±2	26±2	6±1	25±1	Fm-3m(100%)	5.49175	82.1
with , Y	48	12.5	50	50	25	50	6±1	27±2	30±3	12±1	25±1	Fm-3m(100%)	5.50687	100
ped Ce 8	49	37.5	50	50	25	50	16±1	24±1	25±2	11±1	24±1	Fm-3m(100%)	5.49675	84.9
ă	50	12.5	50	50	37.5	50	5±1	25±1	28±2	17±1	25±1	Fm-3m(100%)	5.50623	94
	51	25	50	50	37.5	50	12±2	24±1	25±2	17±1	22±1	Fm-3m(100%)	5.48862	85.4
	52	12.5	25	50	50	50	6±1	13±1	29±2	28±1	24±1	Fm-3m(100%)	5.49107	81.2
	53	12.5	37.5	50	50	50	6±1	17±1	27±2	27±1	23±1	Fm-3m(100%)	5.49239	86.7
with ۲ ۲	54	25	12.5	50	50	50	13±1	6±1	30±2	27±1	24±1	Fm-3m(100%)	5.48344	73.9
sm 8	55	25	37.5	50	50	50	12±2	17±1	25±1	24±1	22±1	Fm-3m(100%)	5.48714	84.5
ă	56	37.5	12.5	50	50	50	17±2	6±1	29±3	25±1	23±1	Fm-3m(100%)	5.48289	73.2
	57	37.5	25	50	50	50	16±2	12±1	26±2	24±1	22±1	Fm-3m(100%)	5.48685	75.5
	58	50	12.5	25	50	50	30±4	6±1	13±1	27±2	24±2	Fm-3m(100%)	5.44105	80.7
	59	50	12.5	37.5	50	50	26±2	6±1	18±2	26±2	24±1	Fm-3m(100%)	5.46116	74.3
with t La	60	50	25	12.5	50	50	30±2	12±1	6±1	27±1	25±2	Fm-3m(100%)	5.42529	84.1
oped Sm &	61	50	25	37.5	50	50	25±2	12±1	18±2	23±1	22±1	Fm-3m(100%)	5.46363	81.8
ă	62	50	37.5	12.5	50	50	28±2	17±1	6±1	26±1	23±2	Fm-3m(100%)	5.42862	88.7
	63	50	37.5	25	50	50	23±3	17±1	13±1	24±1	23±1	Fm-3m(100%)	5.43636	76.8
	64	50	50	12.5	50	25	28±2	27±1	7±1	27±1	11±1	Fm-3m(100%)	5.42222	75.3
	65	50	50	12.5	50	37.5	26±2	25±1	7±1	26±1	16±1	Fm-3m(100%)	5.44468	80.2
with Pr	66	50	50	25	50	12.5	29±1	26±1	13±1	27±1	5±1	Fm-3m(100%)	5.44681	67.8
oped La &	67	50	50	25	50	37.5	24±1	23±1	13±1	24±1	16±1	Fm-3m(100%)	5.44879	74.4
ŏ	68	50	50	37.5	50	12.5	26±2	25±1	18±1	26±1	5±1	Fm-3m(100%)	5.46367	67.9
	69	50	50	37.5	50	25	23±2	24±1	18±1	24±1	11±1	Fm-3m(100%)	5.47372	68.9
	70	50	25	50	50	12.5	27±2	12±1	29±2	27±1	5±1	Fm-3m(100%)	5.4668	54.1
with m	71	50	37.5	50	50	12.5	27±2	17±1	26±1	25±1	5±1	Fm-3m(98.3%) - CeO₂, Fm-3m(1.7%) - Ce	*5.46585	*60.5
ped v r & S	72	50	12.5	50	50	25	27±3	6±1	30±3	26±1	11±1	Fm-3m(100%)	5.45911	57.5
Dol	73	50	37.5	50	50	25	26±3	17±1	25±3	22±1	10±1	Fm-3m(100%)	5.47901	60.1
	74	50	12.5	50	50	37.5	27±3	6±1	26±2	25±2	16±1	Fm-3m(100%)	5.47586	64.9

	75	50	25	50	50	37.5	25±2	11±1	25±2	24±1	15±1	Fm-3m(100%)	5.48406	68.6
	76	50	12.5	50	25	50	28±1	6±1	28±1	11±1	26±1	Fm-3m(100%)	5.49203	78.7
_	77	50	12.5	50	37.5	50	27±2	5±1	27±1	17±1	24±1	Fm-3m(100%)	5.47933	73.5
L with Ce	78	50	25	50	12.5	50	27±3	12±1	29±3	7±1	25±2	Fm-3m(100%)	5.48839	83.2
oped Sm 8	79	50	25	50	37.5	50	24±3	11±1	26±1	16±1	23±1	Fm-3m(100%)	5.49984	77.8
Ō	80	50	37.5	50	12.5	50	27±4	17±1	25±3	6±1	25±2	Fm-3m(100%)	5.499954	85.7
	81	50	37.5	50	25	50	26±1	17±1	24±1	10±1	23±1	Fm-3m(100%)	5.49531	83.2
	82	50	50	50	12.5	25	27±3	26±2	30±3	6±1	11±1	la-3(100%)	10.94121	67.3
-	83	50	50	50	12.5	37.5	27±1	26±2	25±2	6±1	16±1	Fm-3m(100%)	5.48981	76.5
l with c Pr	84	50	50	50	25	12.5	28±1	27±1	28±2	12±1	5±1	Fm-3m(100%)	5.46896	62.8
oped Ce 8	85	50	50	50	25	37.5	26±4	22±2	26±3	11±1	15±1	Fm-3m(100%)	5.47508	70.6
Δ	86	50	50	50	37.5	12.5	26±1	26±1	26±1	17±1	5±1	Fm-3m(100%)	5.48653	59.3
	87	50	50	50	37.5	25	24±2	23±2	27±2	16±2	10±1	Fm-3m(100%)	5.48005	66
	88	25	50	50	50	12.5	12±1	26±2	29±2	27±1	6±1	Fm-3m(98.5%), P4/nmm(1.5%)	*5.49497	*63.6
÷	89	37.5	50	50	50	12.5	16±2	25±1	28±2	26±1	5±1	la-3(100%)	10.95435	60.7
d wit & ≺	90	12.5	50	50	50	25	6±1	27±1	28±2	28±2	11±1	Fm-3m(100%)	5.49823	71.5
)ope Pr	91	37.5	50	50	50	25	15±2	23±2	26±3	25±1	11±1	Fm-3m(100%)	5.47675	70.5
	92	12.5	50	50	50	37.5	5±1	24±1	30±2	25±1	16±1	Fm-3m(100%)	5.4952	63.2
	93	25	50	50	50	37.5	11±1	23±1	26±1	24±1	16±1	Fm-3m(100%)	5.49486	77.1
	94	12.5	50	25	50	50	6±1	27±1	13±2	28±1	26±1	Fm-3m(100%)	5.46391	105.1
c	95	12.5	50	37.5	50	50	7±1	26±2	18±1	25±1	24±1	Fm-3m(100%)	5.46736	90.2
l with La	96	25	50	12.5	50	50	11±1	28±2	7±1	28±1	26±1	Fm-3m(100%)	5.44692	99.1
oped Y &	97	25	50	37.5	50	50	12±1	23±1	18±1	25±1	22±1	Fm-3m(100%)	5.47179	89.6
Ō	98	37.5	50	12.5	50	50	17±2	25±1	7±1	26±1	25±2	Fm-3m(100%)	5.43249	98.2
	99	37.5	50	25	50	50	17±1	24±1	13±1	24±1	22±1	Fm-3m(100%)	5.45781	83.7
	100	50	50	12.5	25	50	26±3	26±1	7±1	11±1	30±3	la-3(100%)	10.85715	101.5
-	101	50	50	12.5	37.5	50	26±3	25±2	6±1	18±2	25±2	Fm-3m(100%)	5.42465	93.4
with Ce	102	50	50	25	12.5	50	29±2	27±1	13±1	6±1	25±1	la-3(100%)	10.89865	98
oped La &	103	50	50	25	37.5	50	26±3	24±1	11±1	16±1	23±1	la-3(100%)	10.88859	92.5
ā	104	50	50	37.5	12.5	50	28±3	25±1	17±2	6±1	24±1	la-3(100%)	10.93557	87.9
	105	50	50	37.5	25	50	26±1	24±1	17±1	10±1	23±1	Fm-3m(100%)	5.46623	83.3
НЕО	106	50	50	50	50	50	19±3	19±1	22±2	21±2	19±1	Fm-3m(100%)	5.46832	76.2

*Crystallite sizes and lattice parameters are given for the major phase.

2. Chemical composition maps

Figure S1. Chemical composition map obtained from the scanning electron microscope coupled with energy dispersive X-ray spectroscopy (SEM-EDS) for samples 1-15. The distribution of the elements in the quartz plate shows no cross contamination or segregation in the samples. The SEM-EDS map was acquired over an area of 60x14 mm and consist of a total of 106 images. The Si map displays the shape of the wells in the quartz plate. For proof of principle sample 28 was fabricated in the same plate.

Figure S2. Chemical composition map obtained from the scanning electron microscope coupled with energy dispersive X-ray spectroscopy (SEM-EDS) for samples 16 - 106. The distribution of the elements in the quartz plate shows no cross contamination or segregation in the samples. The SEM-EDS map was acquired over an area of 60x70 mm and consist of a total of 568 images. The Si map displays the shape of the wells in the quartz plate. Sample 106 was repeated for proof of principle purposes.

3. X-ray diffractograms for repeated samples without Ce and that displayed a single phase

Figure S3. X-ray diffractograms for the repeated samples. **a**, sample 21-repeated $(Y_{0.33}La_{0.33}Pr_{0.33})O_{2-\delta}$ displays a Fm-3m crystal structure. **b**, sample 25-repeated $(Y_{0.33}Sm_{0.33}Pr_{0.33})O_{2-\delta}$ displays an Ia-3 crystal structure. **c**, sample 26-repeated $(Y_{0.25}Sm_{0.25}La_{0.25}Pr_{0.25})O_{2-\delta}$ displays a Fm-3m crystal structure. **d**, Sample 26-RCP, prepared by manual reverse coprecipitation following a procedure analogous to the one described by Sarkar et al.,^[1] displays an Ia-3 crystal structure.

Sample 26-RCP was prepared by mixing nitrate salts of the corresponding elements (as described in the methodology section of the manuscript for La, Pr, Sm, and Y) in water (50 ml) with a concentration of 0.1 M/L. The precursor solution was titrated into Ammonia solution (28-30% aqueous solution) and the resulting precipitates were separated out using a centrifuge. The precipitates were dried at 80 °C for 12 hours and calcined at 750 °C for 6 hours in an air flowing furnace (heating rate 5 °C/min), and let to cool down to room temperature. The chemical composition of Sample 26-RCP was obtained via SEM-EDS (following the procedure described in the methodology section of the manuscript) and was found to be 25 ± 1 at.% La, 23 ± 1 at.% Pr, 24 ± 1 at.% Sm, and 27 ± 1 at.% Y.

4. Transmission electron microscopy study for the repeated sample 26

Figure S4. Repeated Sample 26-r crystal structure and chemical composition characterization conducted by TEM. **a**, TEM micrograph showing the crystallinity of the sample. **b**, Selected area electron diffraction, the 211 diffraction plane indicates that the sample crystallized in an Ia-3 crystal structure. **c**, STEM-EDS chemical composition map demonstrating that the elements are homogeneously distributed. The fast Fourier transform (inset in **a**) confirms the Ia-3 crystal structure at nanometer scale.

5. Machine learning

Figure S5. Training and validation set accuracy as a function of the epochs during training of the convolutional neural network (CNN).

The CNN was applied to the experimental X-ray diffractograms which were analyzed manually to obtain reference labels for comparison and model evaluation. Even though the entire training set was generated in an artificial way, the performance on the experimental test set was 86 %, with 91 of 106 samples classified correctly. 15 of the pure XRD diffractograms were misclassified as mixed, while all of the mixed XRD diffractograms were detected correctly. Some examples of misclassified diffractograms are shown in the following plots, along with the three reference diffractograms of pure phases, and the SHAP analysis indicating why the neural network (mis)classified the samples as mixed.

Figure S6. Samples 24, 26, 85 and 92,

manually classified as pure samples, but misclassified by the neural network as a mixed phases. In all cases, the CNN model detects signals in a range of 10-20° and interprets them as signs of mixed phase samples. In samples 26, 85 and 92, the CNN model furthermore finds signals at $\sim 30^{\circ}$ and interprets them as traces of an additional phase.

6. Calculated oxygen vacancy concentration landscape

Figure S7. Landscape for the normalized empirically calculated oxygen vacancy concentration in the multicomponent phase diagram. The symbols are used to highlight if the specific sample has or not multiple phase. Note that in order to fit all the 91 samples in one multicomponent phase diagram the constituent element axes are repeated, and the amount of points in the figure increases by 20. The blank sections in the contour plot belong to samples that have an Ia-3 crystal structure or multiple phase systems.

Flourite structure is a CaF2 type structure. Each unit cell in a CaF2 structure has 4 cations and 8 anions with a ration of 1:2. Most of the oxides synthesized in this study have a fluorite structure. Therefore, 2 oxygen ions exist for each cation and the cation charge should be $^{+4}$. Oxygen vacancies arise as the charge of the cation deviates from $^{+4}$.

For a Fluorite structure with multiple cations and mix oxidation states (e.g., $^{+3,+4}$), the calculation of the oxygen vacancy concentration can be obtained based on $A_{1-x}^{+4}B_x^{+3}O_{2-\frac{x}{2}}^{-2}$, where

A is any cation with ⁺⁴ charge state and B is any cation with ⁺³ charge state (in the case of Pr we assumed mixed charge state to be 10% of ⁺³). The chemical composition in Table S1 was used for the value of x.

7. Polyamide tape X-ray diffractogram

Figure S8. X-Ray Diffractogram for polyamide tapes.

8. Table S2. Calculated band gap and comparison with samples reported in literature

		Chei	mical co	ncentra	tion [at.	%] ±	Band gap	Reported band gap	Reported oxides
	Sample		stand	ard dev	iation		[eV]	[eV]	in the literature
		Y	Sm	La	Ce	Pr			
	1	100	-	-	-	-	5.718±0.004	5.72 ^[2,3]	[4,5]
IDES	2	-	100	-	-	-	4.828±0.011	4.9 ^[3]	[5,6]
E OX	3	-	-	100	-	-	5.208±0.01	5.4 ^[3,7]	[5,8]
INGL	4	-	-	-	100	-	3.376±0.003	3.17 ^[3,7]	[9]
S	5	-	-	-	-	100	2.468±0.038	3.2 ^[3,10] -2.5-3.9 ^[11]	[12]
	6	49±3	51±3	-	-	-	4.977±0.001	5.97 ^[13]	[14]
	7	-	51±5	49±5	-	-	4.838±0.006		[5]
	8	-	-	51±3	49±3	-	3.234±0.005	3 ^[15]	[16,17]
ES	9	-	-	-	52±2	48±2	1.864±0.02	$2.65 - 2.97^{[18]}$	[19,20]
dixo	10	-	-	53±2	-	47±2	1.992±0.015		[21]
ARY	11	53±3	-	47±3	-	-	5.063±0.013	5.5 - 5.7 ^[22]	[23]
BIN	12	49±3	-	-	-	51±3	2.004±0.005		[24]
	13	-	51±2	-	-	49±2	2.013±0.022		
	14	-	50±1	-	50±1	-	3.3±0.011	3.58 ^[25]	[26]
	15	53±3	-	-	47±3	-	3.308±0.007	3.01 ^[27]	[28]
	16	-	33±2	35±2	-	32±1	2.015±0.012		
	17	-	-	35±2	33±2	32±1	1.843±0.022	1.95 ^[29]	[29,30]
	18	37±2	-	-	32±1	31±1	1.92±0.028	1.95 ^[27]	[31]
DES	19	33±2	33±1	-	34±2	-	3.29±0.019		
IIXO ,	20	34±2	-	34±2	32±2	-	3.299±0.01	3.22 ^[32]	[33,34]
NARY	21	34±3	-	35±3	-	31±1	2.04±0.044	2.02 ^[35]	
TER	22	34±2	32±1	34±2	-	-	5.01±0.018		[5]
	23	-	34±2	33±2	33±1	-	3.349±0.015		[26]
	24	-	35±2	-	34±1	31±1	2.059±0.025		
	25	35±2	33±1	-	-	32±2	1.98±0.013		
	26	25±5	23±3	26±3	-	26±5	2.031±0.027		
IDES	27	-	25±2	26±2	25±1	24±1	2.018±0.016	2.14 ^[29]	[29]
у ох	28	27±1	-	26±1	24±1	23±1	1.988±0.033	1.98 ^[29]	[29]
RNAR	29	27±1	25±1	-	24±1	24±1	2.052±0.03		
UATEF	20								
ð	30	25±2	24±1	27±2	24±1	-	2.251±0.006		
ь e	31	25±3	23±1	24±2	5±1	23±1	2.123±0.059		
opeo ith C	32	23±4	23±3	22±3	11±1	21±2	2.074±0.036		
≥	33	20±2	21±2	23±2	15±1	21±1	2.069±0.028		
	34	5±1	24±2	24±2	24±1	23±1	2.029±0.016		
Jopec vith Y	35	10±1	22±1	24±1	23±1	21±1	2.049±0.006		
□ >	36	15±2	21±1	23±1	21±1	20±1	2.042±0.013		

Table S2. Calculated band gap for the 106 samples.

- -	37	25±3	6±1	25±2	23±1	21±1	2.022±0.014
oped ch Sn	38	23±3	10±1	24±3	22±1	21±1	2.03±0.005
Wit Do	39	22±2	15±1	22±2	21±1	20±1	2.055±0.042
	40	26±2	23±1	6±1	23±1	22±1	2.032±0.042
oped th La	41	25±2	21±1	11±1	22±1	21±1	2.031±0.024
ě D	42	21±2	21±1	16±2	21±1	21±1	2.058±0.017
	43	25±3	23±1	24±3	23±1	5±1	2.222±0.022
oped th Pr	44	24±2	22±1	23±1	21±1	10±1	2.146±0.026
ě D	45	22±2	21±1	22±2	21±1	14±1	2.093±0.01
	46	11±2	28±2	29±3	6±1	26±1	2.019±0.044
_	47	17±2	26±2	26±2	6±1	25±1	1.977±0.016
with 2 Y	48	6±1	27±2	30±3	12±1	25±1	2.125±0.012
oped Ce &	49	16±1	24±1	25±2	11±1	24±1	2.069±0.025
Ō	50	5±1	25±1	28±2	17±1	25±1	2.042±0.006
	51	12±2	24±1	25±2	17±1	22±1	2.024±0.013
	52	6±1	13±1	29±2	28±1	24±1	1.923±0.021
ſ	53	6±1	17±1	27±2	27±1	23±1	1.987±0.026
l with & Y	54	13±1	6±1	30±2	27±1	24±1	2.012±0.023
opec	55	12±2	17±1	25±1	24±1	22±1	1.982±0.007
Δ	56	17±2	6±1	29±3	25±1	23±1	2.002±0.011
	57	16±2	12±1	26±2	24±1	22±1	2.024±0.018
	58	30±4	6±1	13±1	27±2	24±2	1.971±0.041
ſ	59	26±2	6±1	18±2	26±2	24±1	1.982±0.024
ł witł & La	60	30±2	12±1	6±1	27±1	25±2	1.982±0.02
opec Sm 8	61	25±2	12±1	18±2	23±1	22±1	2.002±0.007
	62	28±2	17±1	6±1	26±1	23±2	1.94±0.023
	63	23±3	17±1	13±1	24±1	23±1	2.016±0.013
	64	28±2	27±1	7±1	27±1	11±1	2.136±0.029
٩	65	26±2	25±1	7±1	26±1	16±1	2.1±0.036
d wit & Pr	66	29±1	26±1	13±1	27±1	5±1	2.223±0.004
Jope La {	67	24±1	23±1	13±1	24±1	16±1	2.067±0.019
	68	26±2	25±1	18±1	26±1	5±1	2.267±0.016
	69	23±2	24±1	18±1	24±1	11±1	2.136±0.006
	70	27±2	12±1	29±2	27±1	5±1	2.258±0.021
÷.	71	27±2	17±1	26±1	25±1	5±1	2.244±0.007
d wit & Sm	72	27±3	6±1	30±3	26±1	11±1	2.11±0.006
Jope Pr 8	73	26±3	17±1	25±3	22±1	10±1	2.164±0.028
_	74	27±3	6±1	26±2	25±2	16±1	2.029±0.013
	75	25±2	11±1	25±2	24±1	15±1	2.049±0.016
	76	28±1	6±1	28±1	11±1	26±1	2.01±0.015
th .	77	27±2	5±1	27±1	17±1	24±1	1.989±0.028
ed wi ⁻ & Ce	78	27±3	12±1	29±3	7±1	25±2	2.08±0.013
Dope Sm	79	24±3	11±1	26±1	16±1	23±1	2.042±0.011
_	80	27±4	17±1	25±3	6±1	25±2	2.106±0.03
	81	26±1	17±1	24±1	10±1	23±1	2.068±0.003

	82	27±3	26±2	30±3	6±1	11±1	2.165±0.036
_	83	27±1	26±2	25±2	6±1	16±1	2.149±0.043
with . Pr	84	28±1	27±1	28±2	12±1	5±1	2.206±0.031
oped Ce &	85	26±4	22±2	26±3	11±1	15±1	2.066±0.009
Ğ	86	26±1	26±1	26±1	17±1	5±1	2.245±0.005
	87	24±2	23±2	27±2	16±2	10±1	2.148±0.008
	88	12±1	26±2	29±2	27±1	6±1	2.243±0.014
_	89	16±2	25±1	28±2	26±1	5±1	2.259±0.014
with 2 Y	90	6±1	27±1	28±2	28±2	11±1	2.077±0.017
oped Pr 8	91	15±2	23±2	26±3	25±1	11±1	2.155±0.012
Ō	92	5±1	24±1	30±2	25±1	16±1	2.073±0.006
	93	11±1	23±1	26±1	24±1	16±1	2.08±0.01
	94	6±1	27±1	13±2	28±1	26±1	1.97±0.02
-	95	7±1	26±2	18±1	25±1	24±1	1.968±0.022
with La	96	11±1	28±2	7±1	28±1	26±1	1.94±0.038
oped Y &	97	12±1	23±1	18±1	25±1	22±1	1.942±0.016
Ō	98	17±2	25±1	7±1	26±1	25±2	1.995±0.011
	99	17±1	24±1	13±1	24±1	22±1	1.986±0.014
	100	26±3	26±1	7±1	11±1	30±3	1.974±0.013
-	101	26±3	25±2	6±1	18±2	25±2	2.055±0.041
l with Ce	102	29±2	27±1	13±1	6±1	25±1	2.079±0.024
oped La &	103	26±3	24±1	11±1	16±1	23±1	2.043±0.016
Ō	104	28±3	25±1	17±2	6±1	24±1	2.007±0.015
	105	26±1	24±1	17±1	10±1	23±1	2.06±0.017
НЕО	106	19±3	19±1	22±2	21±2	19±1	2.069±0.026 2.06 ^[29] ^[29]

9. References

- [1] A. Sarkar, R. Djenadic, N. J. Usharani, K. P. Sanghvi, V. S. K. Chakravadhanula, A. S. Gandhi, H. Hahn, S. S. Bhattacharya, *J. Eur. Ceram. Soc.* **2017**, *37*, 747.
- [2] M. Mishra, P. Kuppusami, T. N. Sairam, A. Singh, E. Mohandas, *Appl. Surf. Sci.* 2011, 257, 7665.
- [3] G. Y. Adachi, N. Imanaka, *Chem. Rev.* **1998**, *98*, 1479.
- [4] M. G. Paton, E. N. Maslen, Acta Crystallogr. 1965, 19, 307.
- [5] O. V. Chudinovych, S. F. Korichev, E. R. Andrievskaya, *Powder Metall. Met. Ceram.* **2020**, *58*, 599.
- [6] H. Kohlmann, Zeitschrift fur Naturforsch. Sect. B J. Chem. Sci. 2019, 74, 433.
- [7] A. V. Prokofiev, A. I. Shelykh, B. T. Melekh, J. Alloys Compd. 1996, 242, 41.
- [8] H. Müller-Buschbaum, H. G. V. Schnering, ZAAC J. Inorg. Gen. Chem. 1965, 340, 232.
- [9] M. Yashima, S. Kobayashi, Appl. Phys. Lett. 2004, 84, 526.
- [10] H. J. Osten, E. Bugiel, J. Dabrowski, A. Fissel, T. Guminskaya, J. P. Liu, H. J. Müssig, P. Zaumseil, in *Ext. Abstr. Int. Work. Gate Insul. IWGI 2001*, Institute Of Electrical And Electronics Engineers Inc., 2001, pp. 100–106.
- [11] H. J. Osten, J. P. Liu, H. J. Müssig, Appl. Phys. Lett. 2002, 80, 297.
- [12] S. Kern, C. K. Loong, J. Faber, G. H. Lander, *Solid State Commun.* **1984**, *49*, 295.
- [13] R. Srinivasan, R. Yogamalar, A. Vinu, K. Ariga, A. C. Bose, *J. Nanosci. Nanotechnol.* **2009**, *9*, 6747.
- [14] M. Mitric, J. Blanusa, T. Barudzija, Z. Jaglicic, V. Kusigerski, V. Spasojevic, J. Alloys Compd. 2009, 485, 473.
- [15] R. C. Deus, J. A. Cortés, M. A. Ramirez, M. A. Ponce, J. Andres, L. S. R. Rocha, E. Longo, A. Z. Simões, *Mater. Res. Bull.* 2015, 70, 416.
- [16] X. Cao, R. Vassen, W. Fischer, F. Tietz, W. Jungen, D. Stöver, Adv. Mater. 2003, 15, 1438.
- [17] V. Besikiotis, C. S. Knee, I. Ahmed, R. Haugsrud, T. Norby, Solid State Ionics 2012, 228, 1.
- [18] A. C. Cabral, L. S. Cavalcante, R. C. Deus, E. Longo, A. Z. Simões, F. Moura, *Ceram. Int.* **2014**, 40, 4445.
- [19] R. Chiba, H. Taguchi, T. Komatsu, H. Orui, K. Nozawa, H. Arai, Solid State Ionics 2011, 197, 42.
- [20] L. H. Reddy, G. K. Reddy, D. Devaiah, B. M. Reddy, *Appl. Catal. A Gen.* 2012, 445–446, 297.
- [21] V. Vibhu, A. Flura, A. Rougier, C. Nicollet, S. Fourcade, T. Hungria, J. C. Grenier, J. M. Bassat, J. Energy Chem. **2020**, 46, 62.
- [22] Y. Zhao, K. Kita, K. Kyuno, A. Toriumi, *Appl. Phys. Lett.* **2009**, *94*, 042901.
- [23] M. Bharathy, A. H. Fox, S. J. Mugavero, H. C. zur Loye, *Solid State Sci.* 2009, *11*, 651.
- [24] J. A. Lussier, K. M. Szkop, A. Z. Sharma, C. R. Wiebe, M. Bieringer, *Inorg. Chem.* 2016, 55, 2381.
- [25] M. S. Anwar, S. Kumar, N. Arshi, F. Ahmed, Y. J. Seo, C. G. Lee, B. H. Koo, J. Alloys Compd. 2011, 509, 4525.
- [26] H. Wu, X. Lei, J. Zhang, J. Yu, S. Zhang, *Mater. Res. Bull.* **2014**, *57*, 320.

- [27] V. Sarasamma Vishnu, M. Lakshmipathi Reddy, Sol. Energy Mater. Sol. Cells 2011, 95, 2685.
- [28] G. Brauer, H. Gradinger, ZAAC J. Inorg. Gen. Chem. **1954**, 276, 209.
- [29] A. Sarkar, C. Loho, L. Velasco, T. Thomas, S. S. Bhattacharya, H. Hahn, R. R. Djenadic, *Dalt. Trans.* **2017**, *46*, 12167.
- [30] A. I. Ivanov, I. I. Zver'kova, E. V. Tsipis, S. I. Bredikhin, V. V. Kharton, *Russ. J. Electrochem.* **2020**, *56*, 139.
- [31] M. Basavad, H. Shokrollahi, H. Ahmadvand, S. M. Arab, Ceram. Int. 2020, 46, 12015.
- [32] Q. H. Yang, H. X. Zhou, S. Z. Lu, *Chinese Phys. B* **2010**, *19*, 020701.
- [33] N. Poovarawan, K. Suriye, J. Panpranot, W. Limsangkass, A. Guntida, F. J. C. S. Aires, P. Praserthdam, *Catal. Today* **2018**, *309*, 43.
- [34] M. AKINC, D. SORDELET, Adv. Ceram. Mater. 1987, 2, 232.
- [35] B. Li, H. J. Zhang, Q. Yang, Z. Bian, J. Xu, in *Opt. InfoBase Conf. Pap.*, **2009**, p. TUP6_19.

10. Chemical Composition, X-ray diffractogram, Raman spectra, and UV-vis spectra for all the 106 samples.