© 2021 Wiley-VCH GmbH

Small Micro

Supporting Information

for Small, DOI: 10.1002/smll.202101066

Ultrasensitive and Selective Protein Recognition with Nanobody-Functionalized Synthetic Nanopores

Ivana Duznovic, Alexander Gräwe, Wadim Weber, Lena K. Müller, Mubarak Ali, Wolfgang Ensinger, Alesia Tietze, and Viktor Stein*

License: CC BY 4.0 International - Creative Commons, Attribution

Supporting Information

Ultrasensitive and Selective Protein Recognition with Nanobodies Functionalised Synthetic Nanopores

Ivana Duznovic^{1,‡}, Alexander Gräwe^{2,3,‡}, Wadim Weber^{2,3}, Lena K. Müller⁴, Mubarak Ali^{1,5} Wolfgang Ensinger¹, Alesia Tietze^{4,6} and Viktor Stein^{2,3,*}

Affiliations

¹Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften,

Fachgebiet Materialanalytik, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany

² Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany

³ Centre for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany

⁴ Technische Universität Darmstadt, Clemens-Schöpf Institute of Organic Chemistry and

Biochemistry, Alarich-Weiss Str. 4, 64287 Darmstadt, Germany

⁵ GSI Helmholtz-Center for Heavy Ion Research, Planckstr. 1, D-64291 Darmstadt, Germany.

⁶ University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96 Göteborg, Sweden

*Correspondence should be addressed to Viktor Stein, Tel. +49 6151 16 21947; Fax. +49

6151 +49 6151 16 22063; Email: <u>stein@bio.tu-darmstadt.de</u>

Experimental Procedures

Determination of Dimensions of Single Nanopores

The dimensions of single nanopores were calculated according to previously established protocols (Apel P *et al.* Nucl. Instrum. Methods Phys. Res. B, **2001**, 184, 337–346). Briefly, the base opening D was calculated according to **Equation S1** as a function of the etching time *t*.

Equation S1
$$D = 2.13 \frac{nm}{min} \cdot 2 \cdot t$$

To this end, membranes were fixed between two custom-made conductivitiy cells. The *cis* side was filled with etching solution (9 M NaOH) while the *trans* side was filled with a stopping solution (1 M KCl, 1 M formic acid). A gold electrode was then placed into each cell and a voltage of -1 V was applied. Initially, no current was measured across the membrane, but approximately after 2-3 h the etchant breaks through the membrane. Consequently, a substantial increase in the current is detected across the membrane which defines the breakthrough point and demonstrates the successful formation of a nanopore. The etching was generally stopped after the current reaches a value of a few nA. The progress of an exemplary etching procedure is shown in **Figure S1** while the experimentally determined etching times *t* and the calculated base opening *D* are summarised in **Table S2**.

The tip opening *d* was experimentally determined in separate *I-V* measurements. To this end, the etched nanopore was fixed between two custom-made conductivitiy cells that were filled with an electrolyte (1 M KCl, pH 3.0). A pair of Ag/AgCl-electrodes was then placed into each cell and connected to the picoammeter/voltage source (Keithley 6487, Keithley

instruments, Ohio). A voltage was subsequently ramped between -0.5 V and 0.5 V for 3 periods, and the resulting current was measured. The tip opening d was subsequently derived from the slope value of the experimentally determined *I-V* curve according to **Equation S2**.

Equation S2
$$I = \underbrace{\frac{D \pi \kappa}{4L} \cdot d}_{slope \ value} \cdot U$$

Here, *L* refers to the channel length corresponding to the foil thickness (12 μ m), *I* refers to the measured current, *U* refers to the applied voltage and κ refers the specific conductivity of the 1 M KCl solution (10.48 S/m at 25 °C, pH 3.0), which was experimentally measured using a pH/mV Meter (Mettler ToledoTM FiveEasyTM F20). An exemplary *I-V* measurement is shown (**Figure S2**) while the experimentally determined slope values and the calculated tip opening *d* are summarised in **Table S3**

Recombinant Protein Expression

mCherry, sfGFP, Nb^{GFP}-(GGS)₂-SpyCatcher002, Nb^{mCh}-(GGS)₂-SpyCatcher002 and Nb^{α Am}-(GGS)₂-SpyCatcher002 were produced in *E. coli* BL21(DE3) transformed with the corresponding plasmid pACYCT2-sfGFP-His₆, pFLinkC-XE-T7-mCherry-Strp-LPETGG, pFLinkC-XE-T7-Nb^{GFP}-(GGS)₂-SpyCatcher002-GASPAG-Strp, pFLinkC-XE-T7-NB^{mCherry}-(GGS)₂-SpyCatcher002-GASPAG-Strp and pFLinkC-XE-T7-NB^{α Am}-(GGS)₂-SpyCatcher002-GASPAG-Strp, respectively. In all cases, a preculture was used to inoculate 800 mL of LB medium (supplemented with 90 µg/mL ampicillin in all cases exept for pACYCT2-sfGFP-His₆ where 25 µg/mL chloramphenicol was used) in a 3 L shaking flask. Protein expression was induced with 0.5 µM IPTG when cells reached an OD₆₀₀ 0.6 and left to express for 4 h at 25 °C. Cultures were harvested by centrifugation at 8,000 x g for 20 min at 4 °C and washed once with Buffer W (150 mM NaCl, 100 mM Tris-HCl pH 8.0) before being stored at -20 °C until further use.

Purification of Strep-tagged Proteins

On the day of purification, cells expressing Strep-tagged proteins were resuspended and thawed in 40 mL Buffer W (150 mM NaCl, 100 mM Tris-HCl, pH 8.0) and crushed *via* four passes through an Emulsiflex C3 (Avestin). After centrifugation at 25,000 × g for 1 h at 4 °C, the sample was filtered through a 0.45 µm syringe filter. Strep-tagged proteins were purified by affinity chromatography on 1 mL StrepTrap HP colums using an automated ÄKTA Pure L protein purification system according to manufacturer's instructions (GE Healthcare). Proteins were generally eluted with Buffer E (150 mM NaCl, 100 mM Tris-HCl, 2.5 mM desthiobiotin pH 8.0) and the concentration estimated by UV absorption at 220 nm. Finally, proteins were transferred into storage buffer (100 mM KCl and 10 mM Tris-HCl, pH 8.0) by gravity flow size exclusion chromatography on PD10 columns before aliquots were flash frozen in liquid nitrogen and stored at -80 °C until further use.

Purification of sfGFP

The His₆-tagged protein sfGFP was purified in an equivalent fashion by affinity chromatography on 1 mL Ni²⁺-NTA colums using an automated ÄKTA Pure L protein purification system according to manufacturer's instructions (GE Healthcare). Here, Buffer W additionally contained 20 mM imidazole while Buffer E for elution contained 250 mM imidazole instead of 2.5 mM desthiobiotin.

Purification of MBP-SpyTag-Tether

4

The SpyTag-tether was generally produced as an MBP-fusion protein in *E. coli* BL21(DE3) transformed with the plasmid pET24-MBP-SpyTag-tether-LPETGG. A preculture was used to inoculate 2 L LB medium supplemented with 50 μ g/mL kanamycin in a 5 L shaking flask. Protein expression was induced with 0.5 μ M IPTG when cells reached an OD₆₀₀ 0.5 and left to express for 4.5 h at 30 °C. Cultures were harvested via centrifugation and stored at -20 °C overnight. The following day, cells were resuspended in 70 mL Buffer W (150 mM NaCl, 100 mM Tris-HCl pH 8.0) and crushed via four passes through an Emulsiflex C3 (Avestin). After centrifugation at 25,000 × g for 1 h at 4 °C, the supernatant was sonicated for 30 s on ice to destroy any residual chromosomal DNA before being filtered through a 0.45 µm syringe filter. Proteins were purified by affinity chromatography on 1 mL StrepTrap HP colums using an automated ÄKTA Pure L protein purification system according to manufacturer's instructions (GE Healthcare). The protein was eluted in Buffer E (150 mM NaCl, 100 mM Tris-HCl, 2.5 mM desthiobiotin, pH 8.0) and the concentration estimated by UV absorption at 220 nm. Protein aliquots were flash frozen in liquid nitrogen and stored at -80 °C until further use.

Azp-coupling to the MBP-SpyTag-Tether

Purified proteins were thawed on ice. Azp-coupling reactions were performed in 100 μ L reactions in 1.5 mL reaction tubes in 100 mM NH₄HCO₃ pH 7.8. Azp was added from a 1 M stock (stored in 1 M acetic acid) to a final concentration of 100 mM. Sortase A5M was included to a final concentration of 10 μ M and the MBP-SpyTag-Tether was included at 60 μ M. The Azp-coupling reaction was performed for 3 h at 37 °C according to established protocols ^[24]. Subsequently, buffer was exchanged into 50 mM Tris-HCl, 2 mM DTT, pH 8.0

by ultrafiltration through a Vivaspin 20 centrifugal concentration with a 10 kDa molecular weight cut off at $10,000 \times g$ in a table top centrifuge.

Proteolytic Removal of MBP

Prior to application to the polymer foils, the SpyTag-Tether was cleaved off MBP using 30 μ g/mL TEV protease in 50 mM Tris-HCl pH 8.0, 2 mM DTT. TEV cleavage was performed at 18 °C overnight at 15 rpm on a 3D rocker. On the following day, the SpyTag-tether was separated from the larger proteins (i.e. TEV protease, Sortase A5M, and residual MBP cleavage product) in the reaction mix by ultrafiltration through a Vivaspin 500 centrifugal concentrator with a 10 kDa molecular weight cut off at 10,000 × g in a table top centrifuge.

Summary of Protein Sequences

Nb^{GFP}-SpyCatcher002

Blue: Nanobody-GFP. Yellow: SpyCatcher002, Red: Strep-Tag

MGQVQLVESGGALVQPGGSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSY EDSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQGTQVTVSS GGSGGSG VTTLSGLSGEQGPSGDMTTEEDSATHIKFSKRDEDGRELAGATMELRDSSGKTISTWISDGH VKDFYLYPGKYTFVETAAPDGYEVATAITFTVNEQGQVTVNGEATKGDAHT GGASPAGG<mark>WSH</mark> PQFEKGIA*

Nb^{mCherry}-SpyCatcher002

Pink: Nanobody-mCherry. Yellow: SpyCatcher002, Red: Strep-Tag

MGQVQLVESGGSLVQPGGSLRLSCAASGRFAESSSMGWFRQAPGKEREFVAAISWSGGATNY ADSAKGRFTLSRDNTKNTVYLQMNSLKPDDTAVYYCAANLGNYISSNQRLYGYWGQGTQVTV SS GGSGGSG^VTTLSGLSGEQGPSGDMTTEEDSATHIKFSKRDEDGRELAGATMELRDSSGKT ISTWISDGHVKDFYLYPGKYTFVETAAPDGYEVATAITFTVNEQGQVTVNGEATKGDAHT GG ASPAGG<mark>WSHPQFEK</mark>GIA*

Nb^{αAM}-SpyCatcher002

Grey: Nanobody-α-amylase, Yellow: SpyCatcher002, Red: Strep-Tag

MGQVQLVESGGGSVQAGGSLSLSCAASTYTDTVGWFRQAPGKEREGVAAIYRRTGYTYSADS VKGRFTLSQDNNKNTVYLQMNSLKPEDTGIYYCATGNSVRLASWEGYFYWGQGTQVTVSSGG SGGSG<mark>VTTLSGLSGEQGPSGDMTTEEDSATHIKFSKRDEDGRELAGATMELRDSSGKTISTW ISDGHVKDFYLYPGKYTFVETAAPDGYEVATAITFTVNEQGQVTVNGEATKGDAHT</mark>GGASPA GG<mark>WSHPQFEK</mark>GIA*

MBP-SpyTag-Tether

Yellow: MBP; Green: TEV-site; Pink: SpyTag002; Dark Green: TVMV-site. Red: Purification tag. Grey: Sortase recognition motif

MGDRGPEFMKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAAT GDGPDIIFWAHDRFGGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSL IYNKDLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYD IKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSK VNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGA VALKSYEEELVKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKD AQTNSSS<mark>ENLYFQS</mark>GPPPPLPPKRRRG<mark>VPTIVMVDAYKRYK</mark>GGSGGSETVRFQSGSTSGSGK PGSGEGSTKG<mark>WSHPQFEK</mark>GLPETGG

Immobilized Azp-functionalised SpyTag-tether:

<mark>S</mark>GPPPPLPPKRRRG<mark>VPTIVMVDAYKRYK</mark>GGSGGSETVRFQSGSTSGSGKPGSGEGSTKG<mark>WSH</mark>

PQFEKGLPET-Azidopropanamin(Azp)

<u>GFP</u>

Green: sfGFP. Red: His₆-tag.

MSKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLVT TLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRIE LKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADHYQQNT PIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVTAAGITHGMDELYKGTSGG<mark>HHHHH</mark> H*

mCherry

Pink: mCherry. Red: Strep-Tag MGVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPF AWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEF IYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTT YKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK</mark>GGASPAGG<mark>WSH PQFEK</mark>GLPETGG*

<u>Porcine Pancreatic α -Amylase</u> (Protein Sequence Derived of Uniprot without Signal Sequence)

QYAPQTQSGRTSIVHLFEWRWVDIALECERYLGPKGFGGVQVSPPNENIVVTNPSRPWWERY QPVSYKLCTRSGNENEFRDMVTRCNNVGVRIYVDAVINHMCGSGAAAGTGTTCGSYCNPGNR EFPAVPYSAWDFNDGKCKTASGGIESYNDPYQVRDCQLVGLLDLALEKDYVRSMIADYLNKL IDIGVAGFRIDASKHMWPGDIKAVLDKLHNLNTNWFPAGSRPFIFQEVIDLGGEAIQSSEYF GNGRVTEFKYGAKLGTVVRKWSGEKMSYLKNWGEGWGFMPSDRALVFVDNHDNQRGHGAGGA SILTFWDARLYKVAVGFMLAHPYGFTRVMSSYRWARNFVNGQDVNDWIGPPNNNGVIKEVTI NADTTCGNDWVCEHRWRQIRNMVWFRNVVDGQPFANWWANGSNQVAFGRGNRGFIVFNNDDW QLSSTLQTGLPGGTYCDVISGDKVGNSCTGIKVYVSSDGTAQFSISNSAEDPFIAIHAESKL

Figure S1: Exemplary experimental data used to calculate the diameter of the base of single pore membranes. The dimensions of the base opening of single pore membranes were calculated according to **Equation S1** based on the total etching *t*. Pore 1 corresponds to the membrane used in **Fig. 2A** in the main manuscript.

Figure S2: Exemplary experimental data used to calculate the diameter of the tip of single pore membranes. The dimensions of the tip opening *d* were calculated according to **Equation S2** based on the slope value of the measured *I-V* curve. Error bars were in the range of several pA and do not protrude beyond the actual data points. Pore 1 correspond to the membrane used in **Fig. 2A** in the main manuscript.

Nanopore ID	Density	Tip and Base Diameter	Receptor	Ligand	Recording
Fig. 2A	Single Pore	Tip: 26 nm; Base: 550 nm	Nb ^{GFP}	GFP	Electrical
Fig. 2B	Single Pore	Tip: 45 nm; Base: 650 nm	Nb ^{mCherry}	mCherry	Electrical
Fig. 2C	Single Pore	Tip: 38 nm; Base: 580 nm	Nb ^{α-Amy}	α-Amy	Electrical
Fig. 3A	Single Pore	Tip: 51 nm; Base: 680 nm	Nb ^{GFP}	1. α-Amy 2. mCherry 3. GFP	Electrical
Fig. 3B	Single Pore	Tip: 42 nm ; Base: 510 nm	Nb ^{mCherry}	1. GFP 2. α-Amy 3. mCherry	Electrical
Fig. 4A	10 ⁷ per cm ²	Cylindrical: 200 nm	Nb ^{GFP}	mCherry	CLSM
Fig. 4B	10 ⁷ per cm ²	Cylindrical: 200 nm	Nb ^{GFP}	GFP	CLSM
Fig. 4C	10 ⁷ per cm ²	Cylindrical: 200 nm	Nb ^{mCh}	GFP	CLSM
Fig. 4D	10 ⁷ per cm ²	Cylindrical: 200 nm	Nb ^{mCh}	mCherry	CLSM
Fig. 5A	10 ⁷ per cm ²	Tip: 33 nm; Base: 490 nm	Nb ^{GFP}	GFP	CLSM
Fig. 5B	10 ⁷ per	Tip: 28 nm ; Base: 425 nm	Nb ^{mCherry}	GFP	CLSM

Table S1: Summary of nanopore membranes used in this study.

cm ²				
-----------------	--	--	--	--

Pore ID	Total Etching time [min]	Base Opening (D) [nm]
Fig. 2A	129.214	550.45
Fig. 2B	152.586	650.02
Fig. 2C	136.209	580.25
Fig. 3A	159.683	680.248
Fig. 3B	119.715	509.984
Fig. 5A	115.104	490.341
Fig. 5B	99.845	425.341

Table S2: Summary of etching times t used to calculate the diameter of the base opening

Table S3 Summary of slope values used to calculate the diameter of the tip opening

Pore ID	Slope Value [pA mV ⁻¹]	Tip Diameter [nm]
Fig. 2A	9.8356	26
Fig. 2B	20.096	45
Fig. 2C	15.191	38

Fig. 3A	23.735	51
Fig. 3B	14.789	42
Fig. 5A	11.154	33
Fig. 5B	8.1916	28

Table S4: Properties of individual proteins used in this study

_		Theoretical	Estimated charge in PBS at
Protein / Peptide	Size in kDa	рі	pH 7.4 (according to Prot pi)
SpyTag-Tether	7.5 (72 AA)	10.2	+5.2
Nb ^{GFP} - SpyCatcher002	27.3 (256 AA)	5.0	-9.8
Nb ^{mCh} - SpyCatcher002	27.9 (265 AA)	5.1	-7.8
Nb ^{αAm} -Spycatcher002	27.6 (261 AA)	5.0	-9.8
sfGFP-His ₆	27.8 (248 AA)	6.3	-6.1
mCherry-Strep	29.0 (260 AA)	5.6	-7.5
α-Amylase (porcine			-4.9
pancreas), glycosylated	51-54 (475 AA)	6.4/7.5	w/o considering
			glycosylation