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Abstract. Neutron matter is related to the physics of neutron stars and that of neutron-
rich nuclei. Quantum Monte Carlo (QMC) methods offer a unique way of solving the many-
body problem non-perturbatively, providing feedback on features of nuclear interactions and
addressing scenarios that are inaccessible to other approaches. In this contribution we go over
two recent accomplishments in the theory of neutron matter: a) the fusing of QMC with chiral
effective field theory interactions, focusing on local chiral 3N forces, and b) the first attempt to
find an ab initio solution to the problem of static response.

1. Introduction
Neutron matter (NM) is an extended system composed of strongly interacting particles [1, 2].
Not only is it not a toy problem, but it provides crucial information for nuclear astrophysics and
nuclear structure. Specifically, the neutron-matter equation of state (EOS) is directly relevant
to neutron-star physics: the mass-radius relationship follows from using the EOS and general
relativity. Furthermore, neutron matter offers significant input to energy-density functionals
(EDFs) tailored to describe nuclei: in addition to fitting properties of known nuclei, the use
of “synthetic data” (dependable ab initio many-body results) like the EOS of neutron matter
extends the physics content of EDFs to the neutron-rich side. Since neutron matter is not self-
bound, it provides an intriguing combination of features: it is strongly interacting but also easier
to address than isospin-asymmetric systems and symmetric nuclear matter. This has led to the
use of NM to probe detailed features of nuclear forces, of both phenomenological [3, 4, 5, 6, 7]
and chiral varieties [8, 9, 10, 11, 12, 13, 14]. (See Ref. [15] for a mixed-potential approach).

The state-of-the-art in nuclear physics has advanced to the stage where several challenging
problems are attacked using ab initio methods, i.e. from first principles: solving the many-
nucleon Schrödinger equation. A particularly successful way of doing so is via the use of the
non-perturbative many-body methods known as Quantum Monte Carlo (QMC). The two most
successful continuum QMC methods used to describe nuclear systems are Green’s Function
Monte Carlo (GFMC) [16, 17, 18] and Auxiliary-Field Diffusion Monte carlo (AFDMC) [19].
Both methods follow the general philosophy of Diffusion Monte Carlo, extracting the ground
state by starting out with a trial/variational wave function |ΨT 〉 and projecting out excited

states in imaginary time τ : |Ψ0〉 = limτ→∞ exp(−Ĥτ)|ΨT 〉. What makes the nuclear many-
body problem especially challenging is that the interactions include central, spin, tensor, spin-
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Figure 1. Three-nucleon forces at next-to-next-to-leading order. There are three distinct
contributions: a) the two-pion-exchange (containing the couplings c1, c3, and c4), b) the one-
pion-exchange–contact interaction (containing cD), and c) the contact interaction (containing
cE).

orbit, and more complicated terms. Both GFMC and AFDMC address the coordinate degrees
of freedom stochastically. What distinguishes them is how they treat the spin-isospin degrees
of freedom: in GFMC they are treated explicitly, while in AFDMC they are also handled
stochastically, at the cost of introducing auxiliary fields. Since GFMC is limited to small sizes,
AFDMC is more appropriate to describe extended systems like neutron matter, so in what
follows we will focus on AFDMC results.

2. Chiral 3N forces
2.1. Formalism
Chiral Effective Field Theory (EFT) forces were developed in order to connect with the
symmetries of Quantum Chromodynamics [20, 21, 22]. They contain pion exchanges and shorter-
range contact terms. Specifically, they predict consistent three-nucleon (3N) forces, which first
appear at next-to-next-to-leading order (N2LO) [23, 24]. Chiral EFT interactions were adopted
as input to many-nucleon calculations by the overwhelming majority of practitioners, with a
notable exception: Quantum Monte Carlo methods typically require local potentials as input and
were therefore unable to use chiral EFT forces. (For the sake of completeness, note that Monte
Carlo methods have been used to study neutron matter based on lattice and other momentum-
space techniques [25, 26, 27].) Chiral EFT interactions were usually non-local, due to having
been constructed in momentum space (without regard to their locality or non-locality). Starting
with Ref. [10], the non-locality of chiral EFT nucleon-nucleon interactions up to N2LO was fully
removed, arriving at local chiral forces that are fully equivalent to the older (momentum-space)
potentials. These were then published and used in AFDMC for neutron matter [13], while also
being implemented in GFMC for light nuclei [28].

The natural next step is to derive (and implement in QMC methods) the consistent three-
nucleon interactions up to N2LO. The relevant terms are shown in Fig. 1. Since QMC is naturally
formulated in coordinate space, these contributions need to be Fourier transformed [29]. The
3N contact contribution VE has the form:

V ijk
E =

cE
2f4πΛχ

∑
π(ijk)

τ i · τ k δ(rij)δ(rkj) . (1)

This contains a two-particle isospin term (τ ·τ ) which is 1 in neutron matter; below we similarly
find spin terms (e.g. σ ·σ). The one-pion-exchange–contact 3N interaction VD has the following
form:

V ijk
D =

cDgA
24f4πΛχ

∑
π(ijk)

τ i · τ k
[
m2
π

4π
δ(rij)Xik(rkj)− σi · σk δ(rij)δ(rkj)

]
(2)

which clearly contains not only a one-pion-exchange–contact part (Xδ), but also a contact–
contact part (δδ). Here and above, all the terms that are not delta functions should be taken
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to be long-range terms, with the details in Ref. [29]. The two-pion-exchange contribution VC is
most naturally given in three separate expressions:

V ijk
C,c1

=
c1m

4
πg

2
A

2f4π(4π)2

∑
π(ijk)

τ i · τ k σi · r̂ij σk · r̂kj × U(rij)Y (rij)U(rkj)Y (rkj) (3)

and

V ijk
C,c3

=
c3g

2
A

36f4π

∑
π(ijk)

τ i · τ k ×
[
m4
π

(4π)2
Xij(rij)Xkj(rkj) (4)

− m2
π

4π
Xik(rij)δ(rkj)−

m2
π

4π
Xik(rkj)δ(rij) + σi · σkδ(rij) δ(rkj)

]
and

V ijk
C,c4

=
c4g

2
A

72f4π

∑
π(ijk)

τ i · (τ k × τ j)

×
[

m4
π

2i(4π)2
[Xij(rij), Xkj(rkj)]−

m2
π

4π
σi · (σk × σj)(1− T (rij))Y (rij)δ(rkj)

− m2
π

4π
σi · (σk × σj) (1− T (rkj))Y (rkj)δ(rij)

[
− 3m2

π

4π
σi · r̂ij r̂ij · (σk × σj)T (rij)Y (rij)δ(rkj)

− 3m2
π

4π
σk · r̂kj r̂kj · (σj × σi)T (rkj)Y (rkj)δ(rij) + σi · (σk × σj)δ(rij)δ(rkj)

]
. (5)

It’s worth mentioning that the two-pion exchange VC , which could be expected to be long-
range from the Feynman diagram in Fig. 1, clearly also contains terms that are short-range and
intermediate-range.

As in all nuclear-force formulations, the local 3N forces need to be regulated. Similarly to
what is done in the NN sector, we regularize the 3N forces by smearing out the δ functions:

δ(r) → δR3N
(r) =

1

πΓ
(
3/4
)
R3

3N

e−(r/R3N)4 , (6)

where R3N is the 3N cutoff. Also, the long-range contributions are multiplied with a long-range
regulator:

Y (r) → Y (r)
(

1− e−(r/R3N)4
)
. (7)

The NN and 3N cutoffs can be and have been varied: this reflects the fundamental fact that
there is not one true nuclear potential: cutoffs are arbitrary, so it is worth probing what
effect, if any, this technical feature has on the physics. The NN cutoff was varied between
R0 = 1.0 − 1.2 fm [10, 13]. Smaller cutoffs lead to the appearance of spurious bound states,
while larger cutoffs cut off the (physically significant) pion exchanges.

2.2. Results
Neutron matter was chosen as the first system to study using the new local chiral 3N forces
because in it the structure of the 3N interaction is considerably simplified. Specifically, for
R3N → 0 the short-range and intermediate-range parts of VC (as well as the VE and VD
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Figure 2. Energy per particle vs density for neutron matter at N2LO, including NN forces and
the 3N interaction VC . The NN and 3N cutoffs are varied in the range 1.0− 1.2 fm.

contributions) vanish in neutron matter. Thus, their contribution in neutron matter for
finite cutoffs is only a regulator effect. Consistently with what was done for the NN cutoff
R0 = 1.0− 1.2 fm, we have varied the 3N cutoff in the range R3N = 1.0− 1.2 fm.

In Fig. 2 we show AFDMC results from Ref. [29] for the equation of state of neutron matter
using chiral NN and 3N forces at N2LO. Specifically, the energy per particle is shown as a
function of density including NN forces and the 3N VC interaction. The NN and 3N cutoffs have
been varied in the same range, 1.0 − 1.2 fm. For the softer NN potential (R0 = 1.2 fm, lower
lines) the energy per particle is 12.3−12.5 MeV at saturation density for the different 3N cutoffs.
The corresponding NN-only energy is 11.4 MeV, so the 3N VC has an impact of ≈ 1 MeV. For
the harder NN potential (R0 = 1.0 fm, upper lines) the energy per particle is 15.5 − 15.6 MeV
(cf. 14.1 MeV for an NN-only calculation), so the effect the 3N VC is ≈ 1.5 MeV. The variation
of the total energy with the 3N cutoff is ≈ 0.2 MeV, much smaller than the variation due to the
NN cutoff.

We note that the magnitude of the local 3N two-pion-exchange VC contribution (no more
than 1.5 MeV at saturation density), is smaller than the momentum-space/nonlocal-regulator
contribution, which is typically ∼ 4 MeV [8]. This difference between 1.5 and 4 MeV is
presumably due to the locality vs non-locality of the regulators in the two approaches. Similar
conclusions have been drawn using coupled-cluster theory [12].

3. Static response
3.1. Formalism
Quantum Monte Carlo studies of neutron matter have also recently tackled a situation that
probes further aspects of the interaction, namely the static-response problem [30]. The static
response of neutron matter is synonymous to the behavior of an extended neutron system
in the presence of a periodic external potential. This is equivalent to a neutron-star crust:
there, unbound neutrons interact strongly with each other and with a lattice of nuclei. The
unbound neutrons experience the nuclei as a periodic modulation, which one can model as
a one-body potential. Approaches to this general problem were until now limited only to
mean-field approaches [31, 32]. Note also that the static response of neutron matter is closely
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analogous to that of the three-dimensional electron gas and to liquid 4He at vanishing pressure
and temperature [33]. Similarly, cold fermionic atomic gases in optical lattices provide another
experimental realization of related physics [34, 35].

We start from the following microscopic Hamiltonian:

H = − ~2

2m

∑
i

∇2
i +

∑
i<j

Vij +
∑
i<j<k

Vijk + Vext . (8)

In addition to a non-relativistic kinetic energy, this contains a two-nucleon interaction Vij and
a three-nucleon interaction Vijk (Argonne v8’ and Urbana IX, respectively). The last term
corresponds to the external periodic potential: Vext =

∑
i Vi, where Vi = 2vq cos(q · ri). The

situation can be viewed as the application of a static (i.e., not dynamic) external potential to
an unperturbed Hamiltonian. The periodicity of the potential is contained in q. Continuum
QMC simulations for extended systems are carried out inside a simulation volume with periodic
boundary conditions. It is important to ensure that the box length is an integer multiple of the
period of the external potential.

We now discuss the fundamentals of response theory. One typically starts from an
unperturbed system characterized by a Hamiltonian Ĥ0 (here, the first three terms in Eq. (8)).
The last term in Eq. (8) then represents the coupling of an external potential Vext(r) to the

one-body density operator n̂ =
∑N

i=1 δ(r− ri). It is easy to see that
∫
d3r n̂(r)Vext(r) is merely

a rewriting of the last term in Eq. (8). One can define the linear density-density static response
function using the functional expansion of the perturbed density ntot(r) in terms of Vext(r):

ntot(r) = n0 +

∫
d3r′ χ(r′ − r)Vext(r

′) . (9)

This χ(r′−r) is the density-density response function of order 1, so a χ(2) response function would
involve two Vext(r) terms, and so on. It is possible to write down a corresponding expansion for
the perturbed energy Etot. This can then be re-expressed in terms of the Fourier components
vq of the modulating potential, Vext(r) =

∑
q vq exp(iq · r), and the Fourier transform of the

response, χ(q), to give:

Etot = E0 +
χ(q)

n0
v2q + C4v

4
q + · · · . (10)

Note that this expression explicitly includes higher-order response functions (hidden in the
higher-order coefficients). The response function χ(q) is related to an energy integral over the
dynamic structure factor, familiar from standard response theory.

3.2. Results
One can carry out AFDMC simulations for a fixed value of q: these would vary the one-body
strength 2vq. For that specific q, then, Eq. (10) can be used to extract the χ(q) by fitting in
powers of vq. Then, changing q this process can be repeated, leading to a better understanding
of the behavior of χ(q). This is clearly a computationally intensive approach, requiring dozens
of simulations of ∼ 100 strongly interacting particles. The results from Ref. [30] are shown in
Fig. 3. The qF used is the Fermi wave vector: the values of q/qF available to us are prescribed
by the need to respect translational invariance.

In order to provide a physical interpretation for these QMC results, Fig. 3 also shows the
static response function of a non-interacting Fermi gas, known as the Lindhard function:

χL = − mqF
2π2~2

[
1 +

qF
q

(
1−

(
q

2qF

)2
)

ln

∣∣∣∣q + 2qF
q − 2qF

∣∣∣∣
]
. (11)
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Figure 3. Static density-density linear response function of neutron matter. Points follow
from AFDMC simulations using NN and 3N interactions, as well as several one-body strengths
and periodicities. The line is the Lindhard function, which corresponds to the response of a
non-interacting Fermi gas.

Some general features are immediately obvious. First, at large q (i.e., for the case of several
clusters) the AFDMC results match the Lindhard values very well. This reflects the fact that
in that scenario the interactions are vastly outweighed by the effect of the confining potential.
Second, at low q we see a clear suppression, bringing to mind the case of the three-dimensional
electron gas (3DEG). However, it’s important to note that in the 3DEG the response function
goes to 0 at q = 0. It is easy to see, e.g. using the random-phase approximation, that this
result is specific to the Coulomb interaction, i.e., a finite-range potential changes this trend.
Qualitatively, as can be seen from Eq. (10), a suppression with respect to the non-interacting
gas means that the modulated interacting gas highlights the repulsion between the particles
(when they are brought closer together by the external potential). It is important to note that
the problem being solved here is always strongly coupled: even when q → 0 the one-body
strengths used extend to large fractions of the Fermi energy.

4. Summary & Conclusions
In this contribution we have touched upon two major recent developments in the study of neutron
matter using QMC methods: i) local chiral forces, and ii) the static-response problem. Starting
with the former, we briefly discussed the motivation behind chiral EFT and its fusing with
QMC methods. We then gave the expressions describing local chiral 3N forces. After that, we
turned to results for the ground-state energy of pure infinite neutron matter. We varied the 3N
cutoff from R3N = 1.0 fm to R3N = 1.2 fm and found a much smaller dependence on this cutoff
than on the NN cutoff, R0. This finding, along with similar explorations of regulator effects
in neutron matter, has motivated further studies of specific regulator choices. We then turned
to the second recent advance, namely the study of periodically modulated strongly interacting
neutron matter. After a brief overview of the basics of response theory, we showed the first QMC
results on the static density-density linear reponse function of neutron matter. This required
heavy-duty computations at several strengths and periodicities of the external potential. We
found a suppression with respect to the response of the non-interacting gas, of a form that is
special to the nuclear problem. This has opened up several new possibilities in the study of the
interplay between matter and nuclei in neutron-star crusts.
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