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Abstract. We investigate spontaneous photon emission and absorption processes of two two-
level atoms trapped close to the focal points of an ellipsoidal cavity, thereby taking into account
the full multimode scenario. In particular, we calculate the excitation probabilities of the atoms
by describing the field modes semiclassically. Based on this approach, we express the excitation
probabilities by a semiclassical photon path representation. Due to the special property of
an ellipsoidal cavity of having two focal points, we are able to study interesting intermediate
instances between well-known quantum-optical scenarios. Furthermore, the semiclassical photon
path representation enables us to address the corresponding retardation effects and causality
questions in a straightforward manner.

1. Introduction
During the last decades, the field of quantum optics has witnessed remarkable experimental
developments. They have enabled new possibilities of studying resonant light-matter interaction
[1–3]. These developments are not only interesting from a fundamental point of view, but also
from an applied perspective, because they are relevant for advanced quantum technologies and
their possible application in quantum information processing.

Understanding light-matter interaction is crucial for being able to transfer quantum
information between single photons, frequently used as flying qubits, and elementary material
systems, typically used as stationary qubits in applications in quantum information. Such a
transfer of quantum information between single photons and elementary material systems, such
as two level systems serving as qubits, is an integral building block for achieving quantum
communication over large distances. Recently, considerable experimental effort [4–6] has been
devoted to investigating the interaction of matter qubits with one or a few selected modes of
the radiation field within the framework of the Jaynes-Cummings-Paul model [7, 8]. Recent
experimental work has extended these quantum electrodynamical scenarios to the opposite limit
of extreme multimode scenarios [9–11] with structured continua of electromagnetic field modes
characteristic for half open cavities, such as a parabolic mirror[12–14].

Motivated by these latter developments, we explore in this paper basic dynamical features of
quantum electrodynamic processes in extreme multimode scenarios. In particular, we investigate
the almost resonant interaction between two two-level systems located at the focal points of a
prolate-ellipsoidal cavity and the quantized electromagnetic field. A particularly interesting
elementary quantum electrodynamical situation arises if these two atoms exchange a single
photon emitted spontaneously by one of these two-level systems. Due to the special property of
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Figure 1. Two two-level systems located in the foci of a prolate-ellipsoidal cavity.

the prolate-ellipsoidal cavity of having two focal points, the electromagnetic field strength around
the focal points is enhanced significantly, thus causing an interesting interaction between the
two-level systems and the radiation field. From the point of view of the two-level systems as an
open quantum system, the resulting reduced dynamics is highly non-Markovian with significant
memory effects. Thus, an ellipsoidal cavity is an interesting scenario to study almost resonant
matter field interaction. In particular, by changing the size of the cavity continuously, all
intermediate cases between the single mode scenario, as described by the Jaynes-Cummings-
Paul model, the large cavity limit, and the case of a structured continua of field modes can
be addressed. Even the recently explored case of a parabolic cavity [15] can be reproduced in
the limit of infinitely separated focal points. Furthermore, we are able to tune the coupling
strength between the two-level systems and the radiation field by changing the shape of the
cavity. In addition, we are able to investigate diffraction effects in the regime of wavelengths
large in comparison to the characteristic length scales inside the cavity and their extinction
in the geometric optical limit of small wavelengths. In the following it is demonstrated that
all these effects can be described adequately with the help of a semiclassical description of the
mode structure inside the ellipsoidal cavity. We show that these semiclassical methods lead to
a convenient photon path representation by which all relevant quantum mechanical transition
amplitudes are expressed as a linear superposition of contributions of relevant photon paths
inside the cavity.

This paper is organized as follows. In Sec. 2 we introduce our theoretical model and the main
approximations involved. The Helmholtz equation with the appropriate boundary conditions
is solved by semiclassical methods in Sec. 3. The photon path representation for describing
the time evolution of relevant quantum mechanical transition amplitudes is presented in Sec. 4.
Numerical results for the dynamics of the two-level systems are discussed in Sec. 5.

2. Quantum electrodynamical model
We investigate the dynamics of two identical two-level systems, e.g. atoms or ions, situated
at the focal points xa (a ∈ {1, 2}) of an ideally conducting prolate-ellipsoidal cavity as shown
schematically in figure 1. Both atoms interact with the quantized radiation field inside this
cavity. The two two-level systems are assumed to be trapped in such a way that their center
of mass motion is negligible. We assume that the dipole matrix elements da = 〈e|a d̂a |g〉a are
oriented along the symmetry axis, i.e. z−axis, of the system so that we may write

da = Dez with D ∈ R. (1)

The identical transition frequencies ωeg of the two-level systems are assumed to be in the
optical frequency regime and to dominate the coupling to the radiation field as measured
by relevant Rabi frequencies, for example. Furthermore, the sizes of the electronic states
involved in the transitions of the two-level systems are supposed to be small compared to
the corresponding wavelength λeg = 2πc0/ωeg of the transition. (c0 being the speed of light
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in vacuum.) Thus, the dipole and the rotating-wave approximation (RWA) are applicable.
Therefore, the quantum electrodynamical interaction between the two two-level systems and
the quantized electromagnetic field inside the cavity is described by the Hamiltonian

Ĥ = Ĥatoms + Ĥfield + Ĥi (2)

with Ĥfield =
∑

i ~ωiâ
†
i âi, Ĥatoms = ~ωeg

2∑
a=1
|e〉a 〈e|a , Ĥi = −

2∑
a=1

Ê+
⊥(xa)·d̂−a +H.c., and with the

dipole transition operator d̂−a = d∗a |g〉a 〈e|a of the two-level atom a ∈ {1, 2}. In the Schrödinger
picture the positive frequency part of the (transversal) electromagnetic field operator is given
by

Ê+
⊥(x) = −i

∑
i

√
~ωi
2ε0

gi(x)â†i (3)

with gi(x) denoting the orthonormal transversal electric mode functions, i.e.
´
V d

3x g∗i (x) ·
gj(x) = δij , which are assumed to fulfill the boundary conditions for an ideally conducting
cavity.

3. Mode functions of the cavity and their semiclassical approximation
3.1. Separation ansatz for the relevant mode functions
In order to determine the electric mode functions by solving the Helmholtz equation, we are
going to use prolate-ellipsoidal coordinates. The connection between the prolate-ellipsoidal
coordinates and the Cartesian coordinates is given by x

y
z

 =
d

2

 cos(ϕ)
√

(1− η2)(ξ2 − 1)

sin(ϕ)
√

(1− η2)(ξ2 − 1)
ηξ

 . (4)

Thereby, the focal points have been chosen to be located at the positions ±ezd/2 and d denotes
their distance. The ranges of the prolate-ellipsoidal coordinates are given by ϕ ∈ [0, 2π),
η ∈ [−1, 1], and ξ ∈ [1,∞). In particular, the focal points have the coordinates ξ = 1, η = ±1.
In these new coordinates an ellipsoid with the focal length f is defined by the surface

ξ = 2f/d+ 1 . (5)

Only those mode functions enter the interaction Hamiltonian Ĥi which have a nonvanishing
scalar product with the dipole transition operators of the two two-level systems situated in the
focal points of the cavity. By taking into account the transversality of the radiation field, it turns
out that for dipole matrix elements oriented along the z-axis all these modes can be obtained
by a separation ansatz. This separation ansatz is given by

gi(ϕ, ξ, η) = ∇×H, H =
1

N
eϕFi(κ, ξ)Gi(κ, η) , (6)

with [
αnκ− κ2 (η2 − 1

)
− 1

1− η2

]
G(κ, η) +

d

dη
(1− η2)

d

dη
G(κ, η) = 0 ,

(7)[
αnκ− κ2 (ξ2 − 1

)
− 1

1− ξ2

]
F(κ, ξ) +

d

dξ
(1− ξ2)

d

dξ
F(κ, ξ) = 0 ,

(8)
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whereby κ = ωd/(2c0) , αn being the constant of separation and N being the normalization
factor which has to be chosen such thatˆ

V

gi(x) · g∗j (x)d3x = δi,j ∀i, j . (9)

The index n indicates that G(κ, η) remains finite for η → ±1 only for countable sets of the
separation constant αn. The differential equations (7) and (8) are actually identical, and the
functions G and F just differ by the domains for η and ξ. The solutions of these differential
equations are prolate-spheroidal wave functions [16].

3.2. Uniform semiclassical approximation
In the previous section, we have expressed the mode functions of the electric field operator
in terms of prolate-spheroidal wave functions. We can obtain an analytical solution for this
equations in the special case of αn = 0

G(κ, η)
∣∣∣
αn=0

=
sin[κ(1− η)]√

1− η2
, (10)

F(κ, ξ)
∣∣∣
αn=0

=
sin[κ(ξ − 1)]√

ξ2 − 1
. (11)

A general closed analytical expression for arbitrary values is not known. However, with the help
of semiclassical methods, approximate expressions can be found. It turns out that the mode
functions with αn ≈ 0 yield the dominant contributions. Therefore, we can exploit the exact
analytical solutions for αn = 0 in order to improve our approximation. It is convenient to choose
the following normalization conditions for the functions F(κ, ξ) and G(κ, η)

F(κ, ξ) −→
κξ→∞

1

ξ
cos

[
κξ − 1

2
(n+ 1)π

]
,

G(κ, 0) = (−1)(n+1)/2 in case of odd n,

d

dη
G(κ, η)

∣∣∣
η=0

= (−1)n/2κ in case of even n.

(12)

These conditions are fulfilled by the exact solutions in equation (10) and equation (11).
In order to circumvent problems originating from the singularities of the differential equations

(7) and (8), we first of all apply a transformation which removes these singularities at the
positions of the focal points. Let us demonstrate this procedure by concentrating on the functions
F(κ, ξ). The procedure for the functions G(κ, η) is analogous because the differential equations
for F and for G coincide. A transformation removing the singularities is given by

F(κ, ξ) =
1√
ξ2 − 1

f(
√
ξ2 − 1) . (13)

Consequently, the function f(x) with x ∈ [0,∞) is a solution of the differential equation

0 = κ2x
(
x2 − αn

κ

)
f(x)− f ′(x) + x

(
1 + x2

)
f ′′(x) (14)

with x =
√
ξ2 − 1. The focal points correspond to x = 0. For the determination of the relevant

mode functions, we are only interested in the regular (physical) solution of equation (14) which
remains finite for all possible values of x ≥ 0.
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A uniform semiclassical JWKB-approximation [17] for the solution of equation (14) can be
constructed by using the differential equation

κ2σ
(
σ2 − αn

κ

)
f̃(σ)− f̃ ′(σ) + σf̃ ′′(σ) = 0 , (15)

as a comparison equation with the exact regular solution

f̃(σ) = e−iκσ2/2κσ2
1F1

(
1− iαn/4; 2; iκσ2

)
. (16)

In equation (16) 1F1 denotes Kummer’s confluent hypergeometric function [18]. Accordingly,
we are going to solve equation (14) by constructing a sufficiently smooth mapping between the
variables x and σ in such a way that fulfillment of equation (14) is approximately equivalent to
fulfillment of equation (15). For this purpose, we transform equation (14) into a canonical form
by eliminating the terms involving first order derivates. This is achieved by the transformation
f(x) = φ(x)u(x) with

φ(x) =

√
x

(1 + x2)1/4
. (17)

The resulting canonical form of equation (14) is given by

u′′(x) + χ(x)u(x) = 0 (18)

with

χ(x) =
2x2

(
2κ
(
x2 + 1

) (
κx2 − αn

)
− 3
)
− 3

4 (x3 + x)2 . (19)

In order to find a uniform JWKB-approximation for equation (18), we have to chose an
appropriate comparison equation whose solution is known exactly. For our purposes, we chose
the comparison equation

ũ′′(σ) + Π(σ)ũ(σ) = 0 (20)

with

Π(σ) = κ2σ2 − αnκ−
3

4σ2
. (21)

This comparison equation is related to the differential equation (15) by the relation f̃(σ) =√
σũ(σ). Furthermore, we have to choose a smooth mapping between the independent variables

x and σ determined by the relation

dσ

dx
=

√
χ(x)

Π(σ(x))
. (22)

The initial condition for the solution of equation (22) has to be chosen such that the first
positive zero of χ(x), i.e. x0, is mapped onto the first positive zero of Π(σ), i.e. σ0, in order
to avoid singularities. Solving equation (22) analytically is a complicated problem. However,
simple expressions are available for x → 0 and x → ∞ which are given by σ(x) −→

x→0
x and

σ(x) −→
x→∞

√
2x. The behavior for x→ 0 is of importance in order to evaluate the mode function

near the focal points and x → ∞ is relevant for the normalization (equation (12)). Thus, the
JWKB-approximation for F(κ, ξ) is finally given by

F(κ, ξ) = 1

(ξ2(−1+ξ2))1/4

(
Π(σ(
√
ξ2−1))

χ(
√
ξ2−1)

)1/4

ψ(σ(
√
ξ2 − 1))

(23)
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with [18]

ψ(σ) = e−παn/8
√
παn
16σ

csch
(παn

4

)
f̃(σ). (24)

This expression for F(κ, ξ) fulfills the normalization condition equation (12). The normalized
mode function at the first focal point is now given by

gi(ϕ, ξ, η)
∣∣∣
η=1,ξ=1

=

ez
4

dN (κ,αn)

(
lim
ξ→1

F(κ,ξ)√
ξ2−1

)(
lim
η→1

G(κ,η)√
1−η2

)
= ez

κ2π
4dN (κ,αn)αncsch (παn/4) . (25)

By exploiting the symmetry of the problem, we can evaluate the mode function at the second
focal point and obtain

gi(ϕ, ξ, η)
∣∣∣
η=−1,ξ=1

= (−1)ngi(ϕ, ξ, η)
∣∣∣
η=1,ξ=1

. (26)

In order to normalize the mode functions according to equation (9) we have to determine the
constant N (κ, αn), i.e.

N (κ, αn) = κ
√
dπ(I2

FI
0
G − I0

FI
2
G) (27)

with (p = 0, 2)

IpG = 2

1ˆ

0

G(κ, η)2ηpdη and IpF =

1+2f/dˆ

1

F(κ, ξ)2ξpdξ.

(28)

According to equations (25) and (26) at the focal points the normalized mode functions
are determined by the function N (κ, αn) and the function αncsch (παn/4). The function
αncsch (παn/4) significantly deviates from 0 only in the region around αn = 0. It turns out
that in this region N (κ, αn) is slowly varying in comparison with the function αncsch (παn/4)
in case of λeg � d, f . This can be verified by using the semiclassical potential χ(x) and a
corresponding potential for the semiclassical treatment of G. Thus the modes with αn ≈ 0 are
the ones of main importance as far as their coupling to the dipoles of the two-level systems
is concerned and N (κ, αn) can be assumed to be independent of αn. In addition it is also
well-known that the relevant modes have the property ω ≈ ωeg which directly translates to
κ ≈ κeg = 2ωegd/c0 . By incorporating these facts we can approximate N (κ, αn) by N (κeg, 0)
in the subsequent calculation.

3.3. Semiclassical quantization functions
In the previous subsection, we have identified the modes in the region of αn ≈ 0, κ ≈ κeg as
the ones of main importance for the dynamics of the system. However, in the case of αn = 0 ,
equations (7) and (8) can be solved analytically. This particular feature of the mode functions
can be exploited for incorporating the boundary conditions of an ideally conducting metallic
boundary and determining the corresponding quantization functions semiclassically. These
quantization functions n1(αn, κ), and n2(αn, κ) are defined in such a way that the condition

(n1(αn, κ), n2(αn, κ)) ∈ N0 × N0 (29)
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determines the possible mode functions which fulfill the boundary conditions.
The quantization function n1(αn, κ) is determined by imposing the condition that the function

G(κ, η) has to remain finite for η → ±1. The quantization function n2(αn, κ) takes into account
the boundary conditions of an ideally conducting surface of the cavity. In particular, this implies
that the tangential components of the electric field strength and the normal components of the
magnetic field strength have to vanish at the boundary which yield the constraint

0 =
∂

∂ξ

[√
ξ2 − 1F(κ, ξ)

]
ξ=2f/d+1 . (30)

As mentioned above we have to evaluate the quantization functions around αn ≈ 0 and κ ≈ κeg.
Therefore, we can approximate the quantization functions n1(αn, κ), n2(αn, κ) by their first
order Taylor expansions in αn and κ around the values αn = 0 and κ = κeg. This Taylor
expansion is given by

ni(αn, κ) ≈ ni(0, κeg) + ∂αnniαn + ∂κni (κ− κeg)
(31)

with ∂αnni and ∂κni denoting the partial derivatives of the function ni(αn, κ) with respect to the
variable αn respectively κ for αn = 0 and κ = κeg. By exploiting the exact analytical expressions
for G(κ, η) and F(κ, ξ) for αn = 0 we obtain the relations

n1(0, κeg) + ∂κn1 (κ− κeg) =
2κ

π
(32)

and

n2(0, κeg) + ∂κn2 (κ− κeg) =
2κf

πd
+

1

2
. (33)

In order to specify the quantization functions in the linearizion approximation completely, we still
have to determine ∂αnni. This is achieved by invoking the semiclassical quantization condition.
In case of a simple JWKB-approximation with Langer substitution [17] the quantization function
and the function G(η) are given by

n1 = 2S(0)/π − 1

2
(34)

G(η) = 4

√
V (0)

V (η)

1√
1 + η

sin(S(η) +
π

4
) (35)

with

S(η) = κ

ηturnˆ

η

√
−V (η)

1

1− η
dη (36)

denoting the semiclassical eikonal equation. The quantity

V (η) =
1

4κ2
− (η − 1)(η2 − 1− αn/κ)

1 + η
(37)

is the semiclassical potential and ηturn denotes the turning point of the semiclassical potential
V (η) in the region [0, 1] (V (ηturn) = 0). Thereby, we obtain
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∂αnn1 = 1
π

ηturn´
0

1√
−V (η)

1
1+ηdη

≈ 1

π
√
−V (0)

1́

−1

G(η)2dη = I0
G/

(
π
√

1− 1
4κ2eg

)
(38)

whereby all expressions have to be evaluated for αn = 0 and κ = κeg. We can apply the same
procedure to ∂αnn2 and obtain

∂αnn2 ≈ −
1

π
I0
F . (39)

We just have to evaluate IpF and IpG for αn = 0 and κeg which can again be done by using
equation (10) and equation (11), respectively. From now on we will denote with IpF and IpG the
values for αn = 0 and κ = κeg.

4. Photon path representation
4.1. Solving the Schrödinger equation by a photon path representation
We can use the results of the previous section in order to determine the time evolution of the
system. If we assume that initially only one two-level atom is in an excited state and that the
field is in the vacuum state, the time evolution of the system is restricted to the subspace of the
Hilbert space which corresponds one excitation only. Each state in this subspace is covered by
the following ansatz for the wave function

|ψ(t)〉 = b1(t) |e, g〉A |0〉P + b2(t) |g, e〉A |0〉P

+
∑
i
fi(t) |g, g〉A â†i |0〉

P . (40)

(The superscripts A and P refer to atoms and photons, respectively.) The Schrödinger equation
leads to a coupled system of linear differential equations. We apply the Laplace transform in
order to obtain a system of linear algebraic equations. Hereby, we define the Laplace transforms
of the probability amplitudes by

|ψ̃(Λ)〉 =
∞́

0

eiΛt |ψ(t)〉 dt = b̃1(Λ) |e, g〉A |0〉P

+b̃2(Λ) |g, e〉A |0〉P +
∑
i
f̃i(Λ) |g, g〉A |1〉Pi (41)

for Im(Λ) > 0. By eliminating the Laplace transforms of the photonic excitations f̃i(Λ), we
obtain

i

(
b1(0)
b2(0)

)
=

[
Λ− ωeg + i

(
A1,1(Λ) A1,2(Λ)
A2,1(Λ) A2,2(Λ)

)](
b̃1(Λ)

b̃2(Λ)

)
(42)

with

Aa,b(Λ) = i|D|2
∑
j

ωj
2ε0~

(gj(xa))z(gj(xb))
∗
z

Λ−ωj a, b ∈ {1, 2} .

(43)
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All properties of the cavity are now encoded in the functions Aa,b. It is a non trivial task to
evaluate these functions because they are defined by an infinite sum over all modes j which couple
to the atomic dipoles. However, by exploiting the semiclassical expressions derived previously,
we are able to evaluate these functions. This way, we can solve the linear system of equations.
Nevertheless, evaluating the inverse Laplace transform is still a non trivial task. For this purpose
it is convenient to solve the linear system of equations by applying the Neumann series. The
corresponding solution is given by

(
b̃1(Λ)

b̃2(Λ)

)
= i

∞∑
n=0

[
−i

(
T 1,1

1 T 1,2
1

T 2,1
1 T 2,2

1

)]n
(Λ + iΓ/2− ωeg)n+1

(
b1(0)
b2(0)

)
.

(44)

Thereby, we have defined T a,b1 = Aa,b(Λ)− δa,bΓ/2 with Γ denoting the spontaneous decay rate
of the excited state |e〉. In order to enforce convergence of the series in equation (44) we can
exploit the fact that for the application of the inverse Laplace transform we can choose an axis

of integration with Im [Λ] arbitrary large. By doing so, we can make T a,b1 /(Λ + iΓ/2 − ωeg)
arbitrary small and thereby enforce convergence of the series. Of course, at first sight it may
appear as a major complication to apply the Neumann series in order to invert a 2 by 2 matrix
but due to the retardation effects in the system caused by the finite speed of light we only
have to take into account finitely many terms. However, this expansion enables us to evaluate
the inverse Laplace transform and leads to a semiclassical photon path representation of the
relevant probability amplitudes [15, 19]. Hereby the terms generated by the Neumann expansion
in equation (44) represent sequences of spontaneous emission and absorption processes connected
by the propagation of single photons. Thereby, the propagation of a photon from atom a to

atom b is described by the function T a,b1 .

4.2. Evaluating the functions Aa,b(Λ)
The evaluation of the functions Aa,b(Λ) is the main difficulty in order to analyze the dynamics.
Therefore we are going to make use of the semiclassical results obtained in Sec. 3. Due to
our semiclassical quantization functions we are able to label the mode functions by the integers
n1, n2. Therefore we obtain

Aa,b(Λ) = i
|D|2

2ε0~
∑
n1,n2

ωn1,n2

(
gbn1,n2

)
z

(
gan1,n2

)∗
z

Λ− ωn1,n2

. (45)

The semiclassical treatment of the mode functions delivers not only the mode functions for
discrete values of n1, n2 but also smooth interpolations for all real numbers in between. Of
course these values are unphysical, because they correspond to a violation of the quantization
condition. We can however exploit this smooth interpolation by applying the Poisson summation
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formula. Thus, we obtain

Aa,b(Λ) = i
D2

2ε0~
∑

N1,N2∈Z

∞̂

0

∞̂

0

ω(n1, n2)
(ga(n1, n2))∗z

(
gb(n1, n2)

)
z

Λ− ω(n1, n2)
ei2π(n1N1+n2N2)dn1dn2

≈ i
D2

2ε0~
∑

N1,N2∈Z

∞̂

−∞

∞̂

−∞

ω(n1, n2)
(ga(n1, n2))∗z

(
gb(n1, n2)

)
z

Λ− ω(n1, n2)
ei2π(n1N1+n2N2)dn1dn2

≈ i
D2c0

dε0~
∑

N1,N2∈N0

∞̂

−∞

∞̂

−∞

∣∣∣∣J ( n1(κ, αn)
n2(κ, αn)

)∣∣∣∣κeg (ga(κeg, αn))∗z
(
gb(κeg, αn)

)
z

Λ− 2c0κ/d

·ei2π(n1(κ,αn)N1+n2(κ,αn)N2)dκdαn

(46)

with J denoting the Jacobian determinant. In the second and third step we have used the fact
that the dynamics of the system is mainly influenced by the mode functions with κ ≈ κeg and
αn ≈ 0. Furthermore we have restricted the sum to nonnegative integers in the third step. A
numerical calculation confirms that these terms quickly go to zero for increasing values of d/λeg
and f/λeg and are already negligible for d/λeg, f/λeg > 1. In fact these terms are artefacts of
the semiclassical approximation. Finally, we obtain

A1,1(Λ) = A2,2(Λ)

= Γ/2 +
∑

(N1,N2)∈N0×N0/(0,0)

eiτ(N1,N2)ΛAN1,N2 , (47)

A1,2(Λ) = A2,1(Λ)

=
∑

N1∈[N0+ 1
2 ]

∑
N2∈N0

eiτ(N1,N2)ΛAN1,N2 , (48)

with

AN1,N2 = Γ(−1)N2W(sαn(N1, N2)) , (49)

(50)

sαn(N1, N2) = N1
4I0G√

1− 1

4κ2eg

− 4N2I
0
F , (51)

τ(N1, N2) = N12d/c0 +N22f/c0 , (52)

W(x) = 3
(
−csch (x) 2 + xcoth (x) csch (x)2

)
(53)

and with

Γ = Γfree
I0F+I0G

f
d

√
1−1/(4κ2eg)

−1

(I2F I
0
G−I

0
F I

2
G)

. (54)

(55)

The spontaneous decay rate in free space is denoted by

Γfree =
D2ω3

eg

3c30πε0~
. (56)
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In fact the constants AN1,N2 which appear in the functions Aa,b(Λ) weight the different photon
paths. The corresponding time delays connected to these photon paths caused by the finite
speed of light are given by τ(N1, N2). The expression Γ/2 which appears in equation (47) turns
out to be the only expression not connected to such a time delay and describes the spontaneous
decay of an excited atom. The spontaneous decay rate Γ turns out to deviate from Γfree for d
and f below or around λeg but quickly approaches Γfree as d/λeg and f/λeg increase. In fact
this deviation also turns out to be an artefact introduced by the semiclassical approximations.
Thus, we replace Γ by Γfree in the following. Due to the fact that the parabolic cavity is only a
special case of a prolate ellipsoidal cavity we are also able to reproduce the results of Ref. [15]
by considering the limit d→∞, f = const. .

4.3. Photon path representation in the limit of short wavelength λeg � g, f
In this subsection we are going to investigate the short wavelength limit λeg → 0 with f = const.
and d = const.. In this limit most terms of the series expansion of the function Aa,b(Λ) in
equation (47) and equation (48) vanish and only the expressions with 2N1 = N2 contribute. This
directly leads to the delay times N2τ with τ = (2f + d)/c0 which we would have expected by
applying the multidimensional JWKB method [20] which is directly connected to the framework
of geometrical optics. All the expressions with 2N1 6= N2 describe diffraction effects which are
only relevant in case of f or d being of the order of a few wavelengths.

Additionally, we observe that in the mentioned limit the contributing terms are weighted
differently. The corresponding weighting factor is given by

|AN1,N2 | /Γ = δN2,2N13
N2 log( ε+1

1−ε) coth(N2 log( ε+1
1−ε))−1

sinh2(N2 log( ε+1
1−ε))

(57)

with ε = d/(d+ 2f) denoting the eccentricity of the cavity which is a measure of the deviation
from a sphere (ε = 0 corresponds to a sphere and ε → 1 to a parabola). The coupling between
the atoms increases for ε→ 0 (which corresponds to an almost spherical symmetric cavity) and
decreases for ε → 1. This reduction of the coupling efficiency for increasing ε is caused by a
confinement of the wave packets, carrying the excitation from one atom to the other, to the
symmetry axis of the cavity. Therefore for ε close to unity the electric field at the position of the
second atom is almost perpendicular to the symmetry axis and thus it’s coupling to the dipole
matrix element of the second atom is reduced.

It is indeed possible to reproduce all the results we have obtained for the short wavelength
limit including the weighting of the different photon paths also by using the multidimensional
JWKB method [20] and the framework of geometrical optics.

5. Results
We start our discussion of the dynamics of the atoms by investigating the extreme multimode
scenario which corresponds to τΓ � 1. In this scenario the spontaneous decay rate Γ is large
compared to the frequency distance between two neighboring modes. Thus the atoms couple
to many modes simultaneously. This leads to a situation which substantially deviates from the
situation in the single mode regime. The typical dynamics is illustrated in figure 2 a and figure
2 b. In these two examples, we chose situations with relatively small wavelength λeg � d, f in
which the multidimensional JWKB-method leads to a good description of the system.

In these cases the excitation probabilities of the atoms are sharply peaked in time. After
the decay of the first atom the second atom is excited after time τ , which is the typical time
the photon needs to travel from the first atom to the second one as expected from geometrical
optics. The remaining peaks in figure 2 a and figure 2 b can be understood in terms of descriptive
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Figure 2. Atomic excitation probabilities for Γτ = 16 and ε = 1/10, λeg � d, f (a) and
ε = 1/2, λeg � d, f (b), d/λeg = 20, f/λeg = 10 (c). The excitation probability of atom 1 (2)
is represented by the blue (red) curve.

photon paths as discussed in Sec. 4. By comparing the dynamics illustrated in figure 2 a with
the dynamics illustrated in figure 2 b we can study the influence of the geometry of the cavity as
already discussed in Subsec. 4.3. The situation in figure 2 a with f/d = 9/2 ⇔ ε = 1/10
corresponds to an almost spherical cavity. Therefore, the coupling between both atoms is
relatively large. The situation in figure 2 b withf/d = 1/2 ⇔ ε = 1/2 corresponds to a highly
non spherical cavity. Thus, in accordance with the results obtained in Subsec. 4.3, the coupling
between the atoms is reduced.

The semiclassical expressions obtained by the separation ansatz in Sec. 3 can also be used to
study diffraction effects in cases of relatively long wavelengths (λeg of similar order of magnitude
as d or f). Such a situation is illustrated in figure 2 c. The influence of diffraction effects can be
illustrated by comparing figure 2 c and figure 2 b because both figures correspond to a cavity
with eccentricity ε = 1/2. Due to these diffraction effects, the dynamics of the system in the
regime λeg ≈ f, g is much more complicated than in the regime λeg � f, g. In the photon path
representation those diffraction effects are connected with the appearance of additional photon
paths which are not connected to geometrical optics.

Our former treatment of the extreme multimode scenario also enables us to study the
transition from the extreme multimode scenario which corresponds to τΓ � 1 to the single
mode regime with τΓ � 1. To keep the discussion as simple as possible, we consider the
scenario of very small wavelengths and an almost spherical cavity λeg � d� f . If we take the
limit τΓ → 0 with Γ = τΩ2

0/2 and ei2τωeg = 1, we obtain exactly the results of a single mode
coupling on resonance to the two two level atoms and Ω0 being the vacuum Rabi frequency of a
single atom coupling to this mode. In figure 3 we compare the single mode scenario for τ → 0
with the results for finite τ which are more complicated due to the presence of additional modes.
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Figure 3. Comparison of atomic excitation probabilities for finite τ with ideal single mode
scenario τ → 0: The dashed lines correspond to τ → 0 and the solid lines to the results for
finite τ . The excitation probability of atom 1 (2) is represented by the blue (red) curves. The
parameters for the solid lines are τ = 4π/15Ω0.

6. Conclusion
We have investigated the dynamics of spontaneous photon emission and absorption processes
of two two-level atoms trapped close to the focal points of a prolate-ellipsoidal cavity. Our
theoretical approach is based on a full multimode treatment of the electromagnetic radiation
field and incorporates the dipole approximation and the RWA. In order to deal with the
electromagnetic radiation field in the multimode scenario, we have applied semiclassical
methods by exploiting the separability of the relevant electromagnetic mode functions. With
the help of the expressions obtained by our semiclassical treatment, we have developed a
semiclassical photon path representation of the relevant probability amplitudes. This photon
path representation enables us to discuss the dynamics inside the cavity by means of descriptive
photon paths. This way, we have studied the interplay between both atoms mediated by the
radiation field and have addressed intermediate instances between well-known quantum-optical
scenarios. These well-known scenarios include Rabi oscillations which emerge for Γτ � 1 or an
almost Markovian dynamics of the atoms dominated by spontaneous decay processes which
emerge as Γτ � 1 and as the eccentricity ε approaches unity. We have also investigated
diffraction effects and their suppression in the limit of extremely small wavelengths.
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