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NOMENCLATURE 

a speed of sound 

C power coefficient 

d diameter 

k roughness height, relative roughness height 

M scale factor 

Ma Mach number 

n rotational shaft speed 

P power 

p static pressure 

Re Reynolds number 

t tip clearance height, relative tip clearance height 

V volume flow 

V loss distribution factor 

Y=gH specific work 

Greek symbols 

α exponent 

 thickness 

η efficiency 

 kinematic viscosity 

κ geometry scaling factor 

λ friction factor 

ψ pressure coefficient 

ρ density 

φ flow number  

Subscripts 

fluid 

f friction loss 

i inertia loss 

ideal 

l loss

m model machine 

mech mechanical 

rs real size machine 

t tip 

v viscous 

w relative velocity 

INTRODUCTION 

 In practice measurements during the design process or for final 

inspections often cannot be carried out on full scale machines. 

Mostly it is too costly to build an own test rig for each machine, so 

test rigs with standardized diameters and measuring equipment are 

used. Sometimes the diameters of the real scale machines are so 

large that a measurement is utterly impossible. Examples are water 

turbines or fans used for cooling in power plants – these machines 

may have diameters of several meters and require a brake respec-

tively drive power in the MW range. On the opposite machines with 

diameters of only a few millimeters do not allow the operation of 

established invasive measuring techniques – such as Pitot-tubes, 

five hole probes or hot wire anemometry – because of the signifi-

cant influence of the probes on the flow field. Hence measurements 

to determine the performance are carried out on models which are 

down or up scaled. As was shown by Spurk (1992) a full similarity 

between model and prototype machine is in the context of turbo-

machines possible as long as the Mach number is small, i.e. the 

compressibility can be neglected.  

SIMILARITY 

 To provide transferability of measurements on scaled models to 

the real size machines the similarity between model and prototype 

has to be considered. Scaling the geometric means scaling of all 

dimensions such as diameter d, blade length, chord length of rotor 

and guide vanes, surface roughness height k, tip clearance height t 

with the same scale factor dd /' , where the model data here 

and in the following are indicated by a dash. Even so full geometric 

similarity is possible, the similarity in relative roughness dk /  and 

relative tip clearance dt /  are sometimes sacrificed.  

 Following the Bridgman postulate, on the absolute significance 

of relative magnitudes (1920) full similarity is reached when the 

relative magnitudes of a system, which are called dimensionless 

products today, are identical for the model and prototype system. 

One example for a geometric relative magnitude is the relative tip 

clearance dt / . One example for a kinematic relative magnitude or 

dimensionless product is the flow coefficient 32/4 ndV   . In

the first example the tip clearance is not measured in millimeter or 

inch, but in multiples of the impeller diameter. In the second ex-

ample the volume flow rate is measured in multiples of the machine 

typical flow rate 3~ nd . On the other hand the rotational speed is 

measured not in Hertz or revolutions per minute but in multiples of 

the inverse of a viscose diffusion time 2/ dv , which leads to the 

Reynolds number vndRe /2 .

Following the Buckingham  -theorem (1914) the total  

specific work  tkdvnaVgHY ,,,,,,  is equivalent to

 tkReMa ,,,,  where here and in the following the 

roughness and tip clearance are relative quantities: kdk / , 

tdt / . For the low Mach number case, i.e. nearly incompress-

ible flow, andMa /  plays no role and the pressure coefficient
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222/2: dngH    is given by 

 

  tk,Re,,  . (1) 

 

The dissipated energy per unit time 
lP  is a function                             

of  tkdnaVPPP ll ,,,,,,,    which is equivalent to 

  PtkReMaPPP ll /,,,,/  . For a pump, fan or compressor the 

efficiency is defined as PPl /1  and the power coefficient is 

 /C , if P  is mechanical power transferred by the shaft to 

the impeller. For a turbine the efficiency is   1)/1(  PPl , and 

the power coefficient C  if P  denotes the mechanical 

power transferred from the impeller to the shaft. Again for small 

Mach number the efficiency in both cases can be written as  

 

  tk,Re,,  . (2) 

 

Equations (1) and (2) fully describe the performance of a turbo-

machine. Hence, as long as the dimensionless arguments tk,Re,,  

are the same, model and prototype show the same pressure coeffi-

cient and efficiency. Again if the model is denoted by a dash the 

ratios, or scaling factors )/(/' 3

ndV
MMMM   ,  

Re/' MReRe  , … have to be one. This leads to the system 4 of 

equations 
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for seven scale factors, where three can be chosen arbitrarily. For 

the same fluid in model and prototype Mv =  1 holds. With 

Md  = d’/d = κ  as the geometrical scale factor this results in:  

 

 ,2nM  (7) 

 ,
V

M 
 (8) 

 ,sM  (9) 

 kM . (10) 

 

With those scale factors, the scale factor for the head change be-

comes   

 

 .2gHM  (11) 

 

The scale factor for the mechanical power results in 
1  VgHP MMMM 
. Hence the volume specific power of the 

machine would scales as  

 

 4

/ 3


dP

M . (12) 

 

Hence, in principle complete similarity is accessible. In practice 

several problems arise. Assuming a geometric scale factor of 

κ = 1/10, the rotational speed and the power centuple, whereas the 

volume flow would be a tenth. Estimating a usual turbomachine 

with an outer diameter of 5 m1 and a rotational speed of 500 rpm 

(circumferential speed at tip 130 m/s), providing geometric simi-

larity would require scaling the relative roughness and relative gap 

width to a tenth of the real size machine. It is possible to achieve 

such small dimensions, but it is at least very costly. Using Eq. (7) to 

(11) by assuming complete similarity would lead to a rotational 

speed of 50 000 rpm (tip speed 1310 m/s) respectively a volume 

specific power in the area of several GW/m3 for the model machine 

which is impossible to achieve. The mentioned problem of un-

reachable complete similarity can only be avoided by giving up 

similarity of all dimensionless products. In this case another scale 

factor can be chosen free. Usually the similarity in Reynolds 

number and relative roughness is sacrificed and the pressure rise is 

kept constant. As a result the pressure coefficient and the efficiency 

is different in model and prototype machine. For example  

   ReRe' ,,'     and    ReRe' ,,'    for ReRe'  .  

 

 

LOSSES  

 

 
Fig. 1:  Loss coefficient for pipes at different Reynolds numbers 

and relative wall roughness 
 

Sacrificing the Reynolds number similarity means, that the simi-

larity in the relative boundary layer thicknesses is sacrificed. Hence 

for ReRe'   the relative boundary layer of the prototype is thinner 

in comparison to the model. Hence scaling the model to the pro-

totype the relative friction losses are decreased which results in a 

higher efficiency. This is valid as long as the viscous sub layer 
 // wv v  (Spurk, 2008) is thicker than the surface rough-

ness k . The wall shear stress scales as )1(~ 222  dnw  with 

the well known friction factor )/,( dkRew   shown in Fig. 1.   
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the friction losses will be dependent on the Reynolds number. For 

the hydraulic smooth case the empirical Blasius law (Spurk, 2008)  

 

 
4/1~ Re  for 5/ vk   (14) 

 

is an appropriate approach. For higher Reynolds number flow, 

when the viscous sub layer becomes thinner than the surface 

roughness, the friction losses will become independent on the 

                                                        
1
 whereas former mentioned water turbines or power plant fans 

could reach diameters of 10 m and more 
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Reynolds number. Hence for the hydraulic rough surface the fric-

tion law (Spurk, 2008)   
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is appropriate. Since for the purpose of up scaling only the relative 

change in friction has to be considered, it is feasible to work with 

the above mentioned friction laws.  

 

After this recall of the findings of Prandtl, von Kármán and Blasius 

one has to raise the question what to do with those classical results 

in the context of scaling. Since pressure coefficient and efficiency 

both depend on the Reynolds number, relative roughness and rela-

tive tip clearance so has the power coefficient  /),(Re, tkC  

(here for the example of a compressor, fan or pump). Nevertheless 

for axial machines the power coefficient is independent on Rey-

nolds number, relative roughness and tip clearance which was 

confirmed by experiments over a wide parameter range (Hess, Pelz, 

2009). Hence  /'/'   holds for the same flow number for a 

fan, compressor or pump and  ''  holds for a turbine. Thus 

there is only one scaling method for pressure coefficient and effi-

ciency. One approach to gain a scaling method is a physical analy-

sis of the possible losses. They are treated as additive of Reynolds 

number or viscosity dependent, i.e. friction losses and Reynolds 

number independent or viscosity independent losses which are 

called inertia losses: 

 

    t,ψk,,Reψψ ifl   , (16) 

 

Ackeret (Mühlemann, 1948) called the friction losses scalable 

losses and introduced the loss distribution factor  
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(17) 

 

which was set by Ackeret to the fixed value of 0.5. But from (16) it 

becomes clear, that it is a rather crude assumption to fix the value to 

0.5. It is the main task of this contribution, to gain a physical mo-

tivated loss distribution function, which will depend on the Rey-

nolds and flow number.  

 

Before doing so it is worthwhile to discuss the inertia losses even 

further. They can be split up in a loss part due to the flow between 

casing and tip and a part due to incidence losses:  

 

    . t 0  iti ,ψψ   (18) 

 

The first part was first discussed by Albert Betz (1926) for axial 

machines. Following his thoughts the resistance is due to mixing 

and an induced resistance caused by the tip vortex. This induced 

resistance has to be an even function of the flow number   or 

going further it has to be an even function of the ideal machine 

performance and it has to vanish for zero tip clearance. Hence the 

ansatz   

 

     2  thts tbt,ψ   (19) 

 

is motivated by this assumption for small relative tip clearance. 

Even though we do not use (19) in the following it might be an 

interesting thought to scale the relative tip clearance. The theoret-

ical machine characteristics is obtained by the measured pressure 

coefficient and efficiency ,  

 

 ,ˆ 



 cth   

(20) 

 

where cbt ,ˆ, are dimensionless machine constants. Figure 3 

shows the validity of equation (20) for an axial fan. From the 

measurement data the constants c,̂ are easily determined. Fol-

lowing this discussion the tip losses are maximum for small flow 

number and the slope of the losses approach zero 0/ ddψt
 for 

0 . The second part of the inertia loss   0i
 shows a mini-

mum at the design point 0/0  dd i  at 0   of the machine. For 

part and overload the incidence losses increase in an first assump-

tion proportional to 2

0 )(   .  

 

FIRST MODEL FOR THE LOSS DISTRIBUTION FACTOR 

To gain a loss distribution factor, which takes at least the depen-

dence of the loss distribution with flow number into account, it is 

promising to study the shape of the efficiency curve  Re,   

which can be written as: 
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For small flow number 1  the friction model  

 

 1for      )(Re,~),(),,(   kkRekRe fff
 (22) 

 

is a reasonable approximation. Hence (21) is for this approximation 

equivalent to  
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Partial differentiating with respect to φ leads to  
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Rearranging and integrating from φopt where the efficiency is 

maximal to φ yields to   
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(25) 

 

Integrating by parts using the relation ψ = ψth η results in   

 

    .)()()()( optoptoptii c    (26) 

 

Hence by looking only at one characteristic curve (efficiency and 

pressure rise) at one rotational speed, i.e. Reynolds number it is 

possible to determine the loss factor in the form 
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(27) 

 

Figure 2 show a significant improvement in the scaling of the 

efficiency by using the loss distribution factor (27) in comparison to 

a fixed value of 0.5 as Ackeret did. One major advantage of the 

result (27) is that there is no fitting parameter used. The one 

drawback should be mentioned concerning the above derivation. 
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Measurements show, that the best operation point of a turbo-

machine shows a shift to higher flow rate coefficients with in-

creasing rotational speed, i.e. Reynolds number (see Fig. 2). This 

scaling effect would not be covered using Eq. (27). Hence it is 

worthwhile to discuss an alternative way to gain the ratio 

V := ψf / ψl. 

 

SECOND MODEL FOR THE LOSS DISTRIBUTION FAC-

TOR 

The critical assumption done so far was that the friction losses are 

independent on the flow rate coefficient. Essential for the losses in 

the blade passage is the relative velocity, i.e. the difference between 

absolute and circumferential velocity: ucw


 . Hence the square 

of the velocity magnitude is given by w² = u² (φ² + 1). Since the 

friction losses are due to boundary layer friction, they are of the 

form  

  

     ),/,(1)/,/(1 22 dkRebdkvwlbf    (28) 

 

with the known limiting behaviour ψf ~ (φ² + 1) Re-α for  k ≤ 5δν 

and ψf ~ (φ² + 1) for k  >> 5δν. The dimensionless constant b is 

again a dimensionless geometry quantity describing the machine. 

Hence the ratio V := ψf / ψl  is now given by  
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Using the mentioned measurements by Hess and Pelz to determine 

the constant b leads to a value of approximately 11. Fig. 4 to Fig. 6 

show scale-up for efficiency respectively pressure coefficient using 

Eq. (29).  

 

GENERAL SCALE UP METHOD 

We now compare model, denoted by a prime („) and prototype 

machine. From (16) and (21) it follows  
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(30) 

 

With the factor V‟ = ψ‟f / ψ‟l  we end up with the scaling formula  
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For the special case where the relative tip clearance for both ma-

chines are the same ψi / ψ‟i ≡ 1 the result  
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is obtained where V‟ is given by the fixed value of 0.5 (Ackeret) or 

now by either Eq. (27) or Eq. (29).    

 

The absolute value of the friction factor λ in Eq. (32) is not required, 

since only the quotient of the friction factors is needed. Assuming 

similarity in the relative roughness Eq. (32) simplifies for the hy-

draulic smooth case to: 
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(33) 

 

Fig. 2 compares scale-up with Eq. (33) – using Eq. (27) to deter-

mine the factor V – with measurements on an axial turbomachine by 

Hess and Pelz (2009) and a common scale-up method by Ackeret 

(Mühlemann, 1948). The measurements were carried out with a 

relative tip clearance t/d of 0.1% and a relative roughness k/d of 

36E-06, Re = 0.6E06 respectively 12E-06, Re = 6.5E06. The ex-

ponent α is set to 0.2. 

  

 
Fig. 2 Comparison of efficiency scale-up using Eq. (33) and (27) 

with measurements and the scale-up method by Ackeret 

 

Although the calculated values are still smaller than the measured 

ones an increase of accuracy compared to Ackeret is obtained. 

Fig. 3 shows scale-up of the pressure coefficient where the same 

tendency is visible. It is assumed, that the power coefficient keeps 

constant with increasing Reynolds number (Hess and Pelz, 2009) 

and the pressure coefficient behaves in the form '/'/   . 

  

 

 
Fig. 3 Comparison of pressure coefficient scale-up with Eq. (33) 

and (27), measurements and the scale-up method by Ackeret 

 

  

 

 
Fig. 4 Comparison of efficiency scale-up using Eq. (33) and (29) 
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with measurements and the scale-up method by Ackeret  

 

 

 
Fig. 5 Comparison of pressure coefficient scale-up with Eq. (33) 

and (29), measurements and the scale-up method by Ackeret 

 

Even good results are reached in case of lower differences in 

Reynolds number shown in Fig. 6. 

 

 
Fig. 6 Comparison of efficiency scale-up using Eq. (33) and (29) 

with measurements and the scale-up method by Ackeret 

 

On the one hand a further increase of accuracy compared to method 

one for determining the factor V is visible.  On the other hand 

measurements at different Reynolds numbers are needed for de-

termining the dimensionless constant b.  
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