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Abstract 

The measurement of the dynamic stiffness of an air spring identifies a behaviour which until up now is not 
fully understood. Depending on whether the compression is isothermal or adiabatic the dynamic stiffness 
differs by a factor of 1.4 for a perfect diatomic gas. The frequency band in which the stiffness increase 
takes place is determined by the heat conduction from of the compressed air to the air spring wall. Since 
the heat transport is diffusive the change of stiffness happens to be in a surprisingly low frequency band 
ranging between 0.001 Hz and 0.1 Hz for a typical vehicle air spring. To understand this dynamic 
behaviour in detail, i.e. to find the temperature distribution within the spring, the energy equation must be 
solved using the momentum and  mass balance simultaneously. This is done in an analytic manner by 
considering only small disturbances from the initial pressure, temperature, and density, when the air is at 
rest. The results show that an oscillating temperature boundary layer is formed in which the heat 
conduction takes places. With increasing dimensionless frequency, i.e. Peclet number, the boundary layer 
thickness increases and the stiffness becomes more and more close to its adiabatic value. In theory there is 
no need to use a heat transfer coefficient. Furthermore the theory serves as a way to determine the heat 
transfer coefficient. The dimensionless transfer coefficient, i.e. the Nusselt number, is useful when only 
the average temperature and pressure are of interest. This is usually the case when the air spring is 
considered as a connecting part between different masses in a dynamic system. It is found that the Nusselt 
number for the heat conduction inside the air spring is a constant ( ).  0.3≈Nu

1 Boundary conditions for the simplified geometry 

To have in space only a one dimensional problem the most simple geometric model of an air spring is 
used: two plane infinitely extending plates (with the initial separation distance ), one of which (the 
upper) is set into a harmonic oscillation perpendicular to its plane at frequency  and 
amplitude  (see figure 1). Since the plates are infinity large (or the lateral extension is much greater 
than h ) there is only a velocity component  in the normal -direction.  
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Figure 1: Model-geometry 

 
 
 
The temperature of the upper plate is constant ,  the lower plate is insulated. If there would be a line 
of symmetry at , the problem would be equivalent. Hence the boundary conditions for the 
unknown velocity and temperature profile are: 
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The gas between the plates is considered to be calorically and thermally perfect (adiabatic exponent , 
ideal gas constant ). The dynamic viscosity 

γ
R η  and the heat conductivity  are constant. Like the gas 

velocity, the gas temperature T , density , and pressure  do depend only on the 
independent variables  and time t  

λ
RTρ p ρ=
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2 The dynamic stiffness as a function of the unknown heat transfer coefficient 
 
In the first step the dynamic stiffness of the air spring is derived by considering only average values for 
temperature T  , pressure , and density  (note: the same notation is used, as for 

). Considering a gas volume reaching form  to  
the integral form of the conversation of mass and energy becomes  
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(For convenience∂  is noted here and in the following by a dot). The term  represents 
the unknown heat flux from the air to the upper wall. Following Newton, the heat flux is proportional 
to the temperature difference:  

t∂/ )( 0TT −α
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In the next section the value of the Nussel number  will be given. The nonlinear system 
(2) is linearised by using the ansatz 
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The initial values are described by the index “0”. They are assumed to be much greater than the 
perturbation quantities marked with a tilde.  describes the dimensionless 

displacement plate distance, T T , ,  the dimensionless perturbation 
values of temperature, pressure, and density. 
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n System control engineering equation (8) describes a phase lifting limb.) The bode diagram 
(dynamic stiffness and phase angle) for the air spring is shown in figure 2. 
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Inserting (4) into (2) and neglecting all perturbation terms of higher order than one, we end up with: 
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If we choose  as a reference stiffness at low frequencies, the dynamic stiffness of the 

device   becomes 
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Other than the Nusselt number, the Peclet number is the most important dimensionless product. Here it is 
convenient to interpret the Peclet number as a dimensionless frequency.  
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( ,  stands for the specific heat at constant pressure, volume respectively). The typical time of the 

phase change from isothermal to adiabatic is .  Thus we can write (6) in the equivalent 
form  
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Figure 2: Bode diagram for the air spring 

 
3 The unsteady temperature field 

 
ynamic stiffness is needed without using the heat transfer 

oeffici t. This can only be done by calculating the unsteady temperature field. This must solve the 
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A closed solution of the nonlinear problem  conditions (1) is only feas
 only small perturbations are considered: 
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serting (12) into (9) and neglecting all perturbation terms of order higher than one, the result is:  
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In addition, the boundary lor expansion: 
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The linear combination of the four different solutions gives: 
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Resultant are the now known velocity  and temperature  fields. The pressure and density 
obtained from (13) are: 
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or the dimensionless dynamic stiffness, only the pressure at the upper plate is of interest:  
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Figure 3: Bode diagram of the solution (25) for , =1.4. 810κ = γ

 
Figure 3 shows a typical bode-diagram of solution (25) for  in the relevant Peclet-range. The 
phase lifting behaviour, already inspected in section 2, is qualitatively present. The isothermal and 
adiabatic / isentropic limiting values in the sum of the 

810κ =

admittance function are confirmed.  
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Figure 4: Amplitude field of the temperature, density and pressure  
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Figure 4 shows the amplitude field of the temperature, density and pressure at different Peclet-numbers.  
For Peclet-values lower than 0.1 there is only a small change of temperature | (  over the channel 
height. For increasing Peclet-values (frequencies) the formation of a boundary layer becomes visible. For 
a Peclet-number of 1000, the heat conduction is restricted to a boundary layer thickness of 20% of the 
plate distance. 
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Fgure 5: Bode diagram; comparison of the solutions (6) and (25); determination of the Nusselt-number 

 
  
By comparing the dynamic stiffness versus frequency of model (6) and (25) a Nusselt-relation can be 
found. The Nussel-number is a constant of approx. 3.0. Figure 5 shows a very good correlation of both 
models at Peclet numbers up to one. As long as  is valid, both models show the same asymptotes 
for high and low Peclet numbers. 

Peκ >>

If the Peclet number is of the order of the dimensionless panel distance, model (25) shows a behaviour 
which can not be explained by the homogeneous model (6): the result (25) shows a drop of the dynamic 
stiffness when the Peclet number comes close to the dimensionless plate distance  (see figure 5). This 
can be understood by looking at the pressure profiles in figure 4 at high Peclet-numbers. The bending of 
the pressure profile shows the initial formation of a standing pressure wave between the walls. This 
isentropic limiting case can be studied by neglecting the friction term in the momentum equation and 
replacing the energy equation by the isentropic relation . Doing so, it follows 
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The dynamic stiffness for 
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ideal soft. As has been said: standing waves are forming. In the rigid case a velocity knot is formed near 
the upper wall. This is only compatible with the boundary condition at this plate if the velocity in the  field 
becomes singular. In the isentropic case, the complex velocity amplitude becomes  
 

 

 
 
(29) 

+ sin( )  (y )
sin( )

s

s

X y
X

ϕ
+

=

 
 
 
 

1736 PROCEEDINGS OFISMA2004


	Leere Seite



