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Abstract. Micropattern gaseous detector (MPGD) technologies, such as GEMs or
MicroMegas, are particularly suitable for precision tracking and triggering in high rate
environments. Given their relatively low production costs, MPGDs are an exemplary candidate
for the next generation of particle detectors. Having acknowledged these advantages, both the
ATLAS and CMS collaborations at the LHC are exploiting these new technologies for their
detector upgrade programs in the coming years. When MPGDs are utilized for triggering
purposes, the measured signals need to be precisely reconstructed within less than 200 ns, which
can be achieved by the usage of FPGAs.

In this work, we present a novel approach to identify reconstructed signals, their timing and
the corresponding spatial position on the detector. In particular, we study the effect of noise and
dead readout strips on the reconstruction performance. Our approach leverages the potential
of convolutional neural network (CNNs), which have recently manifested an outstanding
performance in a range of modeling tasks. The proposed neural network architecture of our
CNN is designed simply enough, so that it can be modeled directly by an FPGA and thus
provide precise information on reconstructed signals already in trigger level.

1. Introduction
In recent years, MicroMegas (Micro-Mesh gaseous structure) detectors [1, 2] received significant
attention in the development of precision and cost-effective tracking detectors in nuclear and
high energy physics experiments, e.g., they have been chosen as a baseline technology for the
upgrade project of the ATLAS muon system [4]. In this paper, we provide a brief summary on
the underlying concept. For a detailed discussion we refer the interested reader to [3].

MicroMegas detectors are gaseous parallel-plate detectors with two regions that are separated
from each other by a thin metallic mesh, illustrated in Figure 1. In the drift region, typically
of a height of several mm, the traversing charged particles ionise gas atoms, typically from a
Ar/CO2 gas-mixture. The resulting ionization electrons drift along the electric field towards
the mesh. The amplification region, directly below the mesh, has a height of ≈ 100µm. The
electrical field in the amplification region is higher by two orders of magnitude, i.e., large enough
to create electron avalanches. Those imply an enhancement of the primary electron signal by
a factor of 104, enabling their measurement on the readout electrodes. MicroMegas detectors
with a spatial resolution of up to 40µm and a timing resolution of 5 ns have been successfully
constructed and tested.

A typical readout scheme for MicroMegas detectors is based on APV25 (Analog Pipeline
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Figure 1. Illustration of the working
principle of MicroMegas detectors with two
incident particles.
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Figure 2. Example of a simulated event
with 5 incident particles with a MicroMegas
detector with 360 readout channels.

Voltage chips with 0.25µm CMOS technology) hybrid cards [11] and the RD51 Scalable Readout
System (SRS) [10]. The APV25 provides 128 readout channels with analog CR-RC shaped
signals sampled at 40 MHz rate. This leads to a measurement of the integrated charge, measured
in units of ADC counts, on each readout strip in 27 time bins of 25 ns.

A typical event of a five incident particles, recorded by a MicroMegas detector with APV25
readout scheme for 360 channels, is shown in Figure 2. The signal evaluation for each readout
strip is shown for 25 time bins and a clear signal characteristic can be seen. In addition, several
readout channels with significant noise, as well as dead channels are shown. The situation get
complicated, when background events, e.g. stemming from high-rate environments, distort the
signal characteristics.

While previous approaches for the signal identification rely on simple sequential algorithms,
we present here a novel approach for the identification of MicroMegas signals in a highly parallel
way, allowing for the implementation on an FPGA processor. This theoretically enables the
reconstruction of events within less than 200 ns in complex and background rich environments.
Our approach is based on convolutional neural networks [5], which became very popular in image
classifications tasks [6, 7] and recently also in high energy physics [9], [8].

2. Neural Network Architecture
While the idea of neural-network learning has been known for decades [12, 13, 14], the rapid
progress in computing infrastructure enabled deeper architectures, resulting into a deep learning
boom for the past several years. Deep neural networks achieved an unprecedented performance
in image classification [6] and speech recognition [15, 16, 17], and have been successfully used in
high energy physics [8], [9].

Convolutional neural network (CNN) is a type of a feed-forward network network which
contains one or more convolutional layers. These networks, developed mainly for image
recognition problems [5], are useful for classification tasks in which we expect to find strong
local clues regarding class membership, but these clues can appear in different places in the
input. For example, the network can learn that a certain set of points and curves is a human
face, regardless where on an image it appears [6].

The main idea behind a CNN is to learn a non-linear function (called a convolutional filter)
to be applied on a sliding window over the image. This function transforms a window of m× n
pixel into a vector that captures important properties of the shape in the window. A pooling
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operation is then applied to combine the vectors resulting from the different windows into a
single vector, usually by taking the maximum or the average value observed. The intention is
to focus on the most important features, regardless of their location. The resulting vector is
then fed further into a network that is used for prediction. Parameters of the filter function are
updated during the training process to highlight the aspects of the data that are important for
the task.

CNNs have demonstrated excellent performance on challenging visual classification tasks
[6, 7]. Most notably, [6] show an unprecedented performance on the ImageNet 2012 classification
benchmark, reducing an error rate from 26.1% to 16.4%.

In our experiments, we treat the input data of an event, recorded by a MicroMegas detector, as
a 2D image, representing the readout channels and the time scale. Each event can be interpreted
as gray-scale image with 360x25 pixels, each representing a value between 0 and 1000. We
use a standard fully supervised CNN model, mapping the 2D input “image” through a set of
convolutional filters and a sequence of hidden layers to a probability vector over the number
of incident particles in the image (0-5), and a probability vector over the discrete approximate
position features (“segments”). The combination of the shape learning through convolutional
filters, and the position features fed into the lower layer, enables us to reconstruct the segments
with a signal into the correct number of incident particles, and extrapolate an approximate
center of each of those.

The convolutional filters are applied separately on small input regions (10x8 pixels) of the
image in a parallel way as illustrated in Figure 3. Each operation of the subsequent layers is
performed first for the small local subsets, before being combined at a later stage of the network.
This approach enables a parallel training on the small regions, i.e. reducing significantly the
complexity of the training algorithm. For each subset, we apply five filters for extracting the
brightest region, the dead and noisy readout-strips, the 1D projection to the x- and y-axis, and
the brightest point of the segment. First filter layer is optimized to be parallelized as much as
possible.

Additionally, the information of the position of the local maximum (using a weighted mean
used for position extraction) is routed directly to the second hidden layer (Fig. 3) layer, while
the other filtered results are fed into separate feed forward networks and trained independently.
Second filter layer includes also pooling layer, i.e., performing a downsampling operation. The
output information gets therefore pooled and restructured, reducing the complexity from 360x25
to 90x4. Adjoint regions are identified and connected. The final output layer makes the decision
of the presence of absence of up to five incident particles within the image, and returns the
stored local maximum feature value of the segment containing the overall maximum of the
present particles (note that one particle typically spreads over multiple segments and multiple
particles may overlap).

3. Data Set and Training
We use simulated events of event signatures, in order to quantify the performance of spatial and
time resolution, as well as signal efficiency and fake rate. These simulated event signatures
contain between 0 and 5 signal events and include typical signal characteristics such as
background noise, dead-channels and overlapping signals.

In total, our training set contains 20,000 events with different background and detector
features. Our performance tests are conducted with an uncorrelated test-statistics of 1,000
events. In addition, the results, which are based on simulated samples, have been cross-checked
with real detector data taken at the MAMI particle accelerator at the University of Mainz.

A backpropagation algorithm is used for network training. While the training itself can be
performed on a normal PC based on floating point precision, the final application on an FPGA
requires a reduced precision for the individual calculations. Hence, we reduced the precision of
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Figure 3. Overview
of the network architec-
ture used in the ex-
periments. The filters
are applied in parallel to
different regions of the
raw data. The pooling
layer transforms the fil-
tered information, select-
ing the most prominent
information from adjoint
regions. Subsequently, a
feed-forward network ar-
chitecture is employed.

input-patterns to 4-bit precision and the network-weights to a one byte precision. The sigmoidal
output-function of each neuron in the network is reduced to a 4-bit precision using a look-up
table.

The input data with a size 360x25 responds to a typical MicroMegas detector with a one
dimensional readout length of 25-50 cm. Given the input bandwidth of 600-1000 bits per cycle
for a typical FPGA1, the input size is still too large. Therefore we also tested the performance
of our network, when reducing the input information to 90x4 values, corresponding to 5 FPGA
cycles for reading, before the actual filtering.

4. Results
In the following we compare the performance of the classifier, once based on the full input
information using the full floating point precision during the classification (labelled as full CNN )
and once based on the reduced input information with reduced number precision ((labelled as
reduced CNN )).

The classification results for one simulated event with three indecent particles are illustrated
in Figure 4 as example. The efficiency as well as the fake rate in dependency of the number
of clusters, i.e. incident particles, is shown Figure 5. A particle is identified correctly if the
reconstructed position is within 1mm of the expected position, otherwise it is considered as
fake-reconstruction. The reconstruction efficiency is larger than 90% using the full network
information and larger than 85% using the reduced network. The fake rate is always below 5%.
It should be noted, that the fake rate for events with no incident particles in the event is 0,
meaning that the observed fake rate for higher number of clusters is actually an artifact of the
limited spatial resolution.

The spatial as well as the timing resolution is shown in Figure 6 for both network
implementations. Similar results are observed using the 4 byte and 6 bit number precision.
The spatial resolution is in the order of 250µm, which is corresponding to the assumed width
of the readout strips. A typical timing resolution of 36 ns is observed for both approaches.

The reduced CNN has been also tested with real data taken during testbeam measurements
at MAMI electron accelerator at JGU Mainz, as well as the GIF++ facility at CERN for testing
the stability under high background rates. In both cases we observe reconstruction efficiencies
above 90%.

1 A typical cycle rate in an FPGA can be assumed to be in the order of 500 MHz, i.e. 2 ns per cycle
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Figure 4. Example of simulated MicroMegas events with three incident particles. The expected
position, as well as the reconstructed position using the full classifier (left) and the reduced
classifier (right) are illustrated.
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Figure 5. Expected efficiency (left) and the fake-rate (right) for the full and the reduced CNN.

5. Summary and Outlook
In this work, we presented studies on the fast signal reconstruction of MicroMegas detectors using
convolutional neural networks. The network design has been optimized for the implementation
on FPGAs, leading to a theoretical interpretation of the full recorded signal in less than 200 ns
based on initial performance estimations. The expected spatial and timing resolution, which
can be achieved using a typical MicroMegas detector design, is 250µm and 35 ns, respectively.
Even for high background rates, we expect an identification efficiency of more than 90% with
a corresponding fake rate on the percent level. The chosen network architecture can be used
as basis for several further applications, e.g. GEM detectors. The implementation on a Xilinx
Virtex 6 FPGA (XC6VHX380T) is currently ongoing using OpenCL as FPGA design tool.
The board used for this study has 382k logical units, 60k slices and 4 MB distributed RAM.
Preliminary studies indicate that the process of locating the brightest regions in the first network
layer takes the most time and should be optimized in the future. Once an initial and functional
implementation of the proposed CNN is ready, we aim to optimize the design for less expensive
FPGA devices and also compare to ARM CPU versions.
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Figure 6. Expected spatial resolution (left) and the expected timing resolution (right) for the
full and the reduced CNN.
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